

Thp iheBin uiwii thr KOTOS laiiRU**f (ISO Inlernational Standard ISO 8807) as a
battiK for the formal aperifiration o f distributed systems, ('ontributions are made to
two key research areas: arch itectu re-driven specification and L O T O S language
extensions.
'I'he notion o f architecture-driven specification is to guide the specification process by
providing a reference-base o f pre-defined domain-specific components. 1 he thesis builds
an infra-structure of architectural eUunents, and provides Extended L O T O S (X L)
definitions o f these elements.
The thesis develops Kxtende«! l.OTOS (X I.) for the specification o f distributed systems.
XI- is l-OTOS enhanced with features for the formal specification o f quantitative tim­
ing. probabilistic and priority requirements. For distributed systems, the specification
of these ‘performance’ requirements, ran be as important as the specification of the
associateil functional requirements.
To support quantitative timing features, the XI- semantics define a global, discrete
clock which can l>e use<l IkMIi t<» force events to occur at specific times, and to mea­
sure Intervals between event occurrences. XI- Intriwluces /itnc-pcWiry «iperators ASAi*
(•as siKUi as possible’ corresponding to “maximal pn>gresB semantics") and A ! .A P { '» »
late as possible'). Special internal transitions are introduced in XI. semantics for the
spécification of probability, (’onformance relations baseil on a notion o f prri6a6i/ùafiou,
together with a testing framewtirk. are define«! to support reasoning about probabilistic
XI, Hpe< ifications. Priority within the XI- semantics ensures that permitted events with
the liighest priority weighting of their class are allowe<i first.
Both functional and performance specification play important rôles in (IM ((omputer
Integrate«! Manufacturing) systems. The thesis uses a (’ IM system kn«>wn as the (IM-
OSA lnt«*grating Infrastructure as a case study of architecture-driven specification using
XI-.
The thesis thus constitutes a step in the evoluti«>n o f distributed system specification
m«*thods that have b«>th an architectural basis and a formal basis.

Contents

Introduction ^
1.1 'I’hc c on tex t..

1.1.1 Dintribuled ..
1.1.2 The need for arrhiterture-driven formal development.................. 2

1.1. :j Architecture-driven »pecification .. ^

1.1. -t Korina lity ... ^

1.1..-S ...
1.1. (> Heferenre architectMCen ..

1.1.7 CIM O S A ... ^
1.2 The extent o f the theniH
1 .;t (‘ontrihutions of the ..

l.a.l KnhancementR to the I.O IOS languaRe .. <>

1.3.2 Architectural ctmceptu and their definition.................................... 7

1.3.3 ApplicatiouR of the I.OTOS laiiRuane... ^

1.4 'rhettin ... ^

An overview o f diatributed ayatema H
2.1 Introduction..
2.2 Hnulamental aapectH t>f di*tribute<l ayatem a...

2.2.1 Spatial Reparation and concurrency.. i'«̂

2.2.2 D efin ition ..
2.3 DiatributiMl ayatema in p ra c tic e .. i**

2.3.1 fVrceptlona...

2.3.2 OSl ..

2.3.3 O O P ..
2.3.4 A N S A / IS A ...

2.3.ft C IM -O S A ..
2.4 Key iaauea in diatrlbuted ayatenia reaearch for thla thea la 2H

2.4.1 Architecture driven apeclflcallon ..

2.4.2 The Hpeejfiration o f performance concerns.................................. 29

2.5 S u m m ary ..

An overview o f formal languages 51
3.1 Introduction...

3.1.1 The attributeH of a specification langu age 32

3.2 A plethora o f specification languages... 35

3.2.1 Informal specification languages.. 35
3.2.2 Semi-formal specification languages.. 37

3.2.3 l-'ormal specification languages .. 3K

3.3 l .O T O S ... 42
3.3.1 'I'he FD'I's: the genesis of L O 'I 'O S .. 42

3.3.2 Features o f the LOl'OS language... 43

3.3.3 Wtjrk related to I.O 'I'O S .. 44

3.4 System deveUipment methods using 1,0 I 'O S .. 45

3.4.1 Developinent activities... 45

3.4.2 I.ife-rycle tmnlels for formal development m eth od s 4b

3.4.3 TtKds .. 47
3.5 Key issues in formal language research for this th es is 49

3.5.1 Hesearrh into 1,01 OS language enhancements 49

3.5.2 Research into archilecttiral concep ts... 50

3.5.3 Research into l.OTOS applications.. 50

3.« Summary ..

Formalising architectural elements o f distributed systems 51
4.1 Introduction... *52
4.2 The jiattjre <»f <lescripti<in ... 52

4.2.1 W hat is description?.. 52

4.2.2 |•rlnciples f«ir description ... 53

4.2.3 System descriptitm... 54
4.2.4 FiJiidamental description ingredients... 55

4.3 Overview c»f existing architectures... 5M

4.3.1 I'he 01)1* architecture... 58

4.3.2 'Phe ANSA architecture.. 59

4.3.3 'I'he OSI architecttire.. 00

4.4 An infra structure of architectural e lem ents... 00
4.4.1 Basic architectural ingredients .. 02

4.4.2 Architectural tcmls and structuring concepts.................................... 09

4.4.3 (‘ommon architectural com ponenti.. 79

4.4.4 SynchronouB com b in a tom ... ^0

4.4.5 (’omponentH ..
4.4.6 Def. (’(U l-'unctioiial com ponen ti...
4.4.7 Def. ('('7 Performance com ponenti.. HH

4.4.K Miicellaiieoui itructuriiiK com ponen ti... 94

4.4.9 Specific architectural com ponenti... 97

4.4.10 D iicu iiion .. 97

4.5 Sum tnary... 9H

S Caae-.tudy: the C IM -O S A IIS 100
5.1 Introduction...19̂

5.1.1 Introduction to the C'lM-OSA IIS ..101

5.1.2 Juitification (and related w o rk)..103

5.1.3 'I'he choice of I .O T O S ...104

5.2 Our appriiach t<» formaliiiiiK the IIS ..10̂ 1
5.3 A ikelettin o f architectural C€>ii»ponenti...10<>

.5.3.1 ’I'he g;roii architecttire o f the I I S ..106

5.3.2 The IIS client-ierver m o d e l ... 109
5.3.3 A i.Vitem wide i e r v i c e ...110
5.3.4 Two important IIS itruclural orRanizatlon i.................................... 110

5.3.5 The protocol jupport j i e r v i c e ...114

5.3.6 Decompmition of an X -A (’ (’ l* .('lien li.!*S J il*115

5.3.7 A revlied view of the IIS ..117

5.4 An example IIS ipecificalion ..119

5.4.1 'I'he SK-Service... 119

5.4.2 Specification of the S K -S e rv ic e ..1*21

5.4.3 D iicu iiion ..1*10
5.5 (itiideline« fijr further deveh>pm enl...1*11

5.5.1 An example; X.Service deveUipinenl m a p131

5.6 Sum m ary... 1̂ *1

6 Formal apeclflcatlon of tlmlnn for distributed systems 134
6.1 Introduction...
6.2 The inadequacy of itandard I.OTOS for expresilnn timing concerni . . . 135

6.2.1 Informal deicriptlons o f ('IM -OSA IIS timing aspects136

6.2.2 An informal time-mcHlel... 137
6.2.3 A formal, but inadequate and cumbersome time-model...............139

«.2.4 Summary to fa r ...
6.3 l!ivrfitif(atioii of exprmiaive power required for sp€»cifying timing concernB 142

6.3.1 Pant and future dependent time predicate»143

6.3.2 Initial idea» for time de»cription ..

6.3.3 Must tim ing...
6.3.4 ('omptwitionalily o f time predicate« ... 146

6.3.5 Relative ordering..
6.3.6 Knvironment in teraction*.. 14S

6.3.7 An overview of clocked m o d e l* ..149
6.3.H Must timing in the context of parallel expressionr: 152

6.3.9 'n»ne p o lic ie » ... l ‘'̂ 4
6.3.10 Ijmitations on enforcing must timing ..IW

6.3.11 From T PN b to LO'l'OS ... 1^̂
6.3.12 Simulation of physical c lo c k s ... 1̂ 7

6.4 I’l.O rOS in comparison with exi»ting w o r k ..l*̂ ^
6.4.1 Summary o f quantitative time feature* f<ir extending LO TOS . . 159

6.4.2 < 'om pafi«on* with existing w<»rk ... l ’*̂ 9

6.5 Formal definition of TLO 'TO S ...1®4
6.5.1 Syntax of TLOTOS ... I*»*
6.5.2 Formal semantic* of TLO'TOS ..1̂ 0

6.5.3 Static sem antics... 1̂ 1
6.5.4 Dynamic semantics.. 1̂ 3

6.6 Mapping TLOTOS to standard L O T O S ... 1̂ 2

6.6.1 Representing t i m e .. l̂ '-̂

6.6.2 Mapping algorithm using t event* ..1̂ 3

6.6.3 Mapping algorithm using time s tam p s .. 191
6.6.4 Conclusion* from this section ...193

6.7 Timing aspects o f the CIM-OSA IIS rev is ited ..193

6.7.1 'TLO'I'OS descriptitm of the X .S erv lce ..193
6.7.2 'TLOTOS description of the X-Service. A g e n t 194

6.7.3 'I'LO'TOS description o f the extended X . Service. A g e n t194

6.7.4 Discussion... I®-*»
6.M Testing relation* for 'TLO TO S... 19<>

6.9 Su m m ary..

Formal apeclflcatlon of probability for distributed ayatem* 198
7.1 Introduction..1®®

7.2 Related w o r k ...201

7.2.1 Reartive, n«*n«Talive and Blratifi**d probabilistir inudeU................201

7.2.2 P (’(’S and the normalization fu n ction‘<¿03
7.2.3 leBtinR probabilistic procesfies .. '<¿04

7.2.-1 '•¿0<̂
7.2.5 A metric-space fi>r the comparison of probabilistic processes . . . 205

7.2.0 Internal probabilistic choice and the alternating m odel...........200

IMihOTOS: the formal framework..<¿00

7.3.1 Definition o f an NP L T S .. '<¿00
7.3.2 Definition o f a P-ITS ...‘<¿07

7.3.3 Definition o f P b l.O T O S ..‘<¿07

7.3.1 Pbl.OTOS exam ples.. '<¿00
7.3.5 'I'race-refusal n o ta t io n ... 211

Implementation relations for Pbl.O'l'OS sys tem s 212
7.4.1 Non-deterministic branching as probabilistic branching................212

7.4.2 States and transitions n o ta tion ... 212

7.4.3 The occurrence of non deterministic b ranch ing.............................. 212
7.1.1 Kxample probabilizations *>f non-<leierministic branchings 213

7.4.5 Characterization of an NP I.TS as a set of possible P M Ss . . . 215

7.1.0 A probabilization re la tion ..210
7.1.7 Definitions for the characterization of an NP I.TS as a set of

simultaneous equations ...217
7.4. M The recursive assignment of p terms in S im C h ar..................... 221

7.4. » The aviiidance of infinite recursion in S im C h ar........................ 222

7.4.10 An implementation relation and associated e<|uivalence.................. 224

7.4.11 A pnibabilization relation, and associated equ ivalence...................225

7.4.12 Discussion...22H
I Testing real world implementations against Pbl.OTOS specifications . . 22M

7.5.1 Pbl.OTOS nee<ls a framework o f tes«ing th eo ry229

7.5.2 Testing ‘ valid refinement’ ..229

7.5.3 Testability...‘229
7.5.4 Using a conformance testing framework for a te s t 229

7.5.5 Hyjmthesls te s t in g ..2.30

7.5.6 Properties for t e s t ..232
7.5.7 Kormulating a test: an exam ple... ‘232

7.5.H Discussion.. 240

fj An example; a mlcroprocessc»r CIM c e l l ... 240

7.6.1 'The I.O'TOS specification..241

7.6.2 'The Pbl.OTOS speilfiration .. ‘242

ix

7.6.3 Proving ihf* validity of a «pecifiration ... ‘•¿43

7.6.4 'resting a real world implementation.. ‘<¿44

7.6.5 ... <̂ 46

7.7 Sum m ary..

S The speciflcation o f priority, and Extended LOTOS 248
H.l 'fhe formal specification of p r io r ity .. '¿49

H.l.l Introduction ..¿“̂ ^
H.l.2 Syntax extensions ... ¿'"W)

H.l.3 Semantic Extensions.. ¿''̂ ¿

H.l.4 Discussion..¿•'̂ •'̂
H.l.5 An example: specifying a job scheduler ..¿56

H.l.6 Sum m ary..¿'*̂ ^
H.2 Extended LOTOS (X L) ... ¿■'i”

H.2.1 Introduction .. ¿•''^
K.2.2 T lX)rO S+Pb l>O TO Sf PrLO'l’O S *X I...'¿W

H.2.3 An XI, example.. ¿'"̂ ^
H.2.1 Sum ttiary... ¿**4

O C'oncIuBions
9.1 (¡eneral conclusión... ¿®®

9.2 Overall summary of wt>rk .. ¿®̂ ‘
9.2.1 Key research issues for the th es is ... ¿bf»
9.2.2 An infra-structure of architectural elentents.................................... '¿67

9.2.3 Application of (Extended) LO TOS to C lM O S A '¿67
9.2.4 Extensions to the LO'TOS language .. ‘¿6H

9.3 Future w ork ... ¿"̂ ®
9.4 ('oncluding remarks .. ¿^^

A I)ecompo»ition of an X -ACCP.C lient PS -S P ¿88
A.l Nodewise-dlstrihuteil X-A<‘(’ P-riient.PS-Servlce.Agents..........................2KK

A.2 Deciimposition of an X -A (‘r P - (’llent.PS.Servlce.Agrnt '¿HH

B XL •peclflcation o f the S E .A C C P aerver-róle component 291

C TLO TO S pre-deflned library data type*

D Example application of TLO TO S semántica 329
D.l An example TI.OTOS behaviour expression... 329

I).2 Using axioms for actlon-preflx-expressions.. 329

D.3 rB¡nR Bcheinas for rhoir«*-expres8Íons.. *̂ 30

D. f Using schemas for parallel-expressions... 330

E Supporting musí tim ing and iimr-po/irics in L O TO S 332

E . l The TI.OTOS v e r s io n ...

K.2 I'he LO rOS v e rs io n ...

F XL specifications o f the X -Service and X .Service-Agent 335

F. l X.Service TLO'POS specification 1: X s r v lT335

K.2 X-Service 'I'LO'I'OS specification 2: Xsrv2 r ...336
K.3 X.Servlce. Agent TLOTOS specification 1: XagelT 336

F.l X.Service. Agent TLO rOS specification 2: Xage2T 336

F.5 X-Service. Agent TLOTOS specification 3: Xage3T 337

G Testing: T L O T O S relations
<1.1 Introduction: why we need equivalence (etc.) relations...........................339

<1.2 Overview of LO FOS relations.. 330

<5,2.1 Trace «Hjuivalenre (* j r) ..
<5.2.2 Observational etpiivalence.. *32

<5.2.3 Strong bisimilar equivalence (*# *< .)... *3‘‘¿
<5.2.1 Weak bisiinilar equivalence ..333

<5.2.5 Weak bisitnilar coiigrtience (..*33

<5.2.6 Verificati<»n and testing for re la tions ..133

<5.2.7 Testing theory ... '*3'**
<i.2.M 'Testing €Hjuivalence (*< ,) ..337

<5.2.9 Asymmetric relations .. *37
<5.2.10 The conformance relation (c o n f) .. 337

<5.2.11 'The retluction relation (r «d and c r e d) ..33M

<5.2.12 'The extension relation (e x t and c e x t) ... *39

<5.3 Testing relations f<ir TI-O'TOS...*3®
<5.3.1 TI.O'TOS testing congruence (» I f) .. 339

<5.3.2 'TI-O'TOS cred and cex t relatltins.. 352

<5.3.3 Ntm congruent relations for 'TI.O’T O S ... *‘13
<5.3 Testing t 'lM O S A specifications.. 354

<5.4.1 Our approach..354
<5.4.2 'The specification sub jects ... 354
<5.4.3 Relations between the SE. Service and the SE. Service. Agent . 354

<5.4.4 The relations between the Extended SE-Service. Agent and the
SE. Service. A g e n t ... 35«

Xi

1.1 T h e context

Phi» «iM-tion oviTVii-w» thf roiitfXl of tin- thp»i». It provide« a *uide ihroufth the area»
of renearch vi«ited by the the»i«, and indicate« their relevance.

diÉtribut*d

il 11 1 ì
5 5 5 I S
h

i

Finur«' l . l : ihpiin*«

1.1.1 D istribu trd Bystem*

'I'h»* art*« in romputitiK «rirnrr known an d latributed ■ y item « [HalMM, ('I)HH, lanKl,
SKM7] han rapidly «rown in imporlanrp ovrr the laMt two df^-adwi. This growth ha*
liprn fui'lrtl by ih»’ falling rm l* of building nrlworkful uyatem* and by ihr atlvance-
jupiit ofrnnbllng l»H-hnology. Dintributod *y*t«*in* hold great potential. They promise
tompulalitmal |M>wer and *pei i through distributed processing, flexibility through the
interconnet tion of diverse systems, and integration thmugh communication. However,
the potential o f distrlbute«! computing systems is matched by their complexity.

Hroadly speaking, the thesis develops specific intellectual Unds for tackling key aspects
of the complexity o f distributed systems.

1.1.2 T he need for architecture-driven form a! developm ent

Distributed computing systems are among the most complex constructions ever devised
by humans. During the last few deca<les computing science has invested in the devel
opment of formal (mathematical) languages as a means o f handling the complexities
of designing distributed systems. However, demands for the accelerated production of

difitrihuted systems, coupled with increased complexity, »nean that formal languaRes are
by themselves not sufficient description tools for development o f distributed systems.
I'o me«*t the twin problems o f productivity and complexity, this thesis forecasts that in
the future. di8tribul«*d systems will be specified. desigm*d and built using pre-designed
<lomain-specific components. Distributed system components may be less concrete than
the compiinenlH found in the manufacturing industries, but the goals of knowledge and
resource re-use are the same.
I'he idea o f providing and using pre designed domain-specific components is incorpo-
rate<l in the notion of arch itecture-driven development. The phrase arr/ii/criurr-

M reflects the architectural basis o f the components (see (I'urKT, Tur9l, TuriM),
VSvSKH, Hog?)(). HieKP. BHK«. I’ ir91, <loi92]).

1.1.3 Arch itecture-driven specification

The primary emphasis o f the thesis is the specification o f distributed systems, i.e.
the description o f what systems can do, not how they do it. 'Phe aim of architecture-
d riven specification is to guide the specification process by providing a reference-base
o f pre defimnl domain-specific comp<»nents.

1.1.4 Form ality

Formality supports accurate specification and analysis of distribute<! systems. Formal
languages are languages that are wholly defijuMl in terms of axioms and inference rules,
such as those of logic and s<*t thwry. Kxamples of formal languages include: FO I’OS
[IS()H9b]. SDL [(‘(’1921, Fstelle (IS()K9a), CSV [lloaHr>, HoaH.]̂, CCS (MilKO), Z [SpiM9],
VDM [HJ7M1, and Petri Nets [Petft2, PetHl]. Unlike natural language which has no
agriHHl set <»f definitions, a formal language enjoys objective interpretation. I'he pre­
ciseness of formal languages make them ideal as notations in the contract-like' world
of systems specification.
Formal languages are precise, (relatively) concise, consistent and analysable; their use
encourages specifications that are correct and conjplete with respect to the system
requirements. A formal language is not, by itself, a solution to all o f the traditional
problems associateii with the development of distributed systems. However, its qualities
do go some way Iti alleviating the difficulties, and a formal notation together with formal
r<*asoning may result in the automation o f parts o f the development process.
The thesis embrwes formality in Us use of the formal language FO I’OS as a basis for
the specification of distributed systems.

1.1.5 L O T O S

I9HM saw ISO (the International Standards Organisation) grant International Stan­
dard status (ISO KM07) to a formal language known as L O T O S (ISOK9b). FOTOS
is based on algebraic methods: a process algebra derivml from Milner’s (’C'S (MIlHO]

'A sf>*Kilt«sUos msy br rossWersd s lo s ir s r t to be fulAUed by ss ImplemrstsOos (sse (WBLSO])

and Moarp’a CSP llloa«3]i and an abstract data type algebra, inspired by ACT ONE
[EM8.5). I.O'I'OS was originally conceived as a specification language for OSl (Open
Systems Interconnection [1SOK4, HSKl)), but the suitability o f I.OTOS for modelling
a wide variety o f discrete event distributed systems has now been recognised (e.g.
lMcC91a, llieKS, IlHKti. TS9»1).
The basic concept of the process part of the language is describing the (observable)
behaviour of a system in terms o f the relative ordering of its actions. The LOTOS
ianguage has features for supporting abstraction, providing modularity, modelling con
current behaviour, indicating synchronous behaviour, denoting non-determinism, rep­
resenting spontaneous transitions and describing data structures. 1 he net effect of
these language features is to make LOTOS particuiarly gimd for capturing abstract
descriptions of distributed, concurrent, non deterministic systems.
A iarge knowledge-base o f 1.0 TOS know-how has evolved (see section 3.3.3) — this
includes standards, tutorial literative. theoretical support, methods, example appli­
cations, and LO TOS related projects. Also, a number of supporting software tools
are available (see section 3.4.3). These include syntax directed editors, syntax check­
ers, parsers, static semantics checkers, animattirs, verifiers, and transformation tools
including compilers.
'These* attributes are among the reastms for chtHtsing LO'TOS as the most suitable
language upon which to base the work in the thesis.

1.1.6 Reference architecturea

Distributed systems are complex to specify and design. When engineers in other dis­
ciplines, such as civil engini*ering or electrotiic engineering, are fared with complex
.lesign tasks they consult their discipline's ilesign guides for knowledge. Herognising
the importance <>f this paratligm. computing science has begun to establish a number of
ilesign guides for various sub fields within its discipline. Heferenre architectures for dis-
tributinl systems include; O S l (Open Systems Interconnection) (ISOM, llSSl], O O P
(Open Distributed Processing) |v(; h9. Lin91, Ste91, ISOH9e). D A F (Distributed Ap­
plications Framework) ICCiNMa, CrmSr. C flKSbl, A N S A / IS A (Advanced Networked
Arrhitecture/lntegrated Systems Architecture) [ANS89b. ANSM9a, ANSH6], R O S A
(HACK. Open Service Architecture) |H()SN91>. ROSN9r, HOSSIIa, ROSS9d], O D A (O f
fire Document Architecture) |ISOH«a, ISOKMb) and C IM -O S A (Computer Integrated
Manufacturing Open Systems Architecture) [ClM90d, CIMIMIa. CIMH9c],
Reference architectures support architecture driven specification. Reference architec­
tures guide the specifier by. proviiling appropriate concepts and concise terminology
for talking about the design spare; structuring the design domain by partitioning prob
lems and separating concerns to make the domain easier to understand; pre defining
generic components that ran be customised, or common components that ran be re­
used; imparting domain knowledge and expertise that has been evolved by previous
designers.
Reference architectures are relevant to the thesis on two levels. F irstly, in support of
the notion of architecture-driven specification, the thesis builds Its own jencrie nr/er-
rnee arrhilrrlurr for distributed systems. This provides an infra structure of formalised

architectural concept» and component» (chapter 4). Secondly, developin* a .pecilic ref
erence architecture for CIM-OSA (Computer Integrated Manufacturing Open Sy»tem»
Architecture) ha« prompted «oine of the work in the theni», and provided raae-»tudy
material (chapters).

1.1.7 C IM -O S A

(MM O S A ((’omputer Integrated Manufacturing Open Syntema Architecture) [(lM90d,
(MM90a, (MMK9c. He<-H9, M r (’91a] is a reference architecture for (MM ((’ompuler In­
tegrated Manufacturing) Byatema [KSFHH. JHDK9]. I'he (MM-OSA Reference Architec­
ture defineH concepts, generic structure» and guidelines that can be used to integrate
manufacturing and business elements o f an enterprise within a information technoUigy
framework.
Attempts within the (MM-OSA project to formalise aspects o f the (MM-OSA Reference
Architecture involved the author [Mc(’91a, Mc('90b, Mc(90a, MBH90). It led him to
rect>gnise Ixjth the weakness o f I.OI'OS for the apecification o f performance concerns
(quantitative timing, probability, priority), and the need for an architectural framework
to guide specification. I'o address the first weakness, the thesis extends I.OTOS for the
specification of performance (chapters (i, 7 and K). and uses certain parts of (MM OSA
as a case-study (chapter f>) to demonstrate the power o f Kxtende<l 1,0 I'OS. To a<ldress
the second concern, the thesis develops an infra-structure of formalised architectural
elements (chapter 1) and uses this for the architecture driven specifications in the (MM
OSA case-study of chapter 5.

1.2 Th<* extent o f the thesis

I he tw o main products o f the thesis are intellectual and architectural insight, and
practical contributions to (MM-OSA development. I'hese mark the extent of the thesis.

M'he thesis tlevrlops extensions to the I.OM'OS language and theory for reasoning about
pf r/ormoficf aspects of distributed systems. I'he thesis does nc»t develop srjftware UkiIs
to support these extensions.
I.O rO S has been use<l to formalise parts o f the (M M O SA Reference Architecture
(VMo90|. M'he author has contribute<l to this work [Mc('91a, M c(’90b. Mc('90a, MIIHiMI).
Some o f the ideas for Kxtenderl I.O I'OS have been prompted by (MM OSA work in
volvlng the author, Kxtende«! I.OI'OS has not officially been used within the project,
although the nee<l for pr r/ormaurc extensions to I.OM'OS for specifying (MM systems
has been officially recognlserl (Vh>90). I'he rase study (chapter 5) o f the application of
Extended I.OI'OS to the s|>eclflcatlon of the (M M OSA SK (System-Wide Kxrhange),
is n<»t work which has l»een carried out within the (M M O SA prcrject. although It it
based on work by the author [M c(’90b) officially rec<»gnised by the (M M OSA project.

I'he work in the thesis builds on existing research where p<Msible. Where this has been
used, appropriate acknowledgements are given.

1.3 C on tribu tions o f the thesis

Thin MK-tion nunmiarizra the main rnwarrh rontribulion» made by the theaia.

The Iheni» rontribule» to three partirular reiearrh area«;

• enhanrement* to tho LO'I'OS languago

• architectural concepta aiitl their definition

• appIicatioiiR of the LO'I'OS language.

1.3.1 Enhaiiceinents to the L O T O S language

For dintrihuted ayatema. prrformanrr (or, more generally, Quality of Service - - QoS)
concerna have an important atatua aa well aa functional concerna.^ hOTOS ia good
at exprenaing functional aapecta (auch aa behaviour, organizational alructure and data-
atructurea) o f dialributecl ayatema, but inadequate for expreaaing performance-oriented
aapeclH (auch aa quantitative timing, probability and priority). To remedy Ihia in­
adequacy, the theaia propoaea and formally «lefinea three extenauma of the LOFOS
language:

T L O T O S : TLOTOS ia I.O I'OS extended for the formal apecification of quantitative
liming concerna, I’ LO lO S haa the folUiwing characteriatica.

• I LO rOS w'lnantlca define a global, diacrete clock which aupporta the notion
of phyaical clocka [l.amTH].

• l ime valuea hik ! operationa are preaente<l aa pre defined A t” !' ONK library
typea.

• Quantitative timea ran be abaolute (relative to the global clock), or relative
(to tither eventa).

• Kventa can be f«>rce<l to occur at apecifir timea.
• Inlervala between event occurrencea ran be meaaured.
• TI.OTOS introducea hmr-po/iry operatora: A S A P (‘aa mkhi aa poaaible*

(Hl.?ll]) re«iueata an application o f 'maximal progreaa aemantica'®; while,
A L A P requeata the uae of the 'aa late aa poaaible* policy.

• Tl.OTOS aemantlca enaure the aenaible interleaving (in quantitative time)
of eventa in parallel prf>ceaa«a.

• Tl.OTOS aperiflcationa can be teated under extended definitiona o f the IX)-
rOS teating relatlona.

Pb LO T O S j PbbO rOS ia IX) TOS extended for the formal apecification o f probabilia
tic concerna. The l»b lX)T ()S work makea the following contributiona:

'('k a p te r 2 deia ribea huw . rape« tally la diatrlhated ayatema, prrform aacr coareraa have a aubalaalial

Impat l im faai tloaal aad " r o r w l a r i « * ' roarrraa
V h a h atale that. If there la aothlas to preveat aa eveat from o rrarrla g . ihea It mual o rra r wlthoat

• Two derivalive* o f ait LTS (Labelled Transition System) (IMoHl] y e defined:
an NI* LTS which contains both non-deterministic and probabilistic transi­
tions; and a F-LTS which contains only probabilistic transitions.

• NF-l/rSs are use<l as a semantic model for FbLOTOS systems.
s FbLO rOS is defined to include a probabilistic choice operator for specify­

ing probability distributions over a set o f internal piobability transitions.
'I'he probabilistic choice operator, together with the ability to express non­
determinism. gives Fbl.OTOS the power to generate NF LTSs.

• The thesis explains how an NF-I.TS ran be considered to be a aprcification
which describes a set of F-I/I'S implrmrutaliona. On this basis, an imple­
mentation relati<in (a preorder) (Led91a). called probabilizatiou is defined.

• rhe thesis gives an operational definition of prttbabitizaiiou and describes
htiw this relation may be used to reason about Fbl.O I OS systems, and used
as a notion o f conformance in the development o f probabilistic systems.

• A statistical tilting framework is suggeste<l for establishing whether a real-
world (probabilistic) implementation is a valid implementation o f a FbLO
rOS specification, according to the probabilizatlon relation.

P rL O T O S i Frl.O rOS is LO TOS exteiide«! for the formal specification o f priority
concerns. Frl.O TOS provides the following features:

• A priorilizetl event is given a pnorttu-rlatm and prtonfy-ea/ur.

• Where there is a choice betwi«en events from the same priority-class, the
event with the highest priority-value will be fired. A choice betwiiui events
from different priority classes is rationalixeil to a non-delerministic choice be
twwn the events with the highest priority-value in their respective priority-
class.

• A choice lietween unpriorlti*e<l events (events without explicit priority val­
ues) and prioriti/eil events (events with explicit priority values) gives rise to
non-deterministic choice.

• Frloritise<l event offers may synchnmise with unprioritised event offers, pri­
oritizing these unprioritized event offers through, what the thesis calls, os-
aoriafiori.

Thi' thesis describes how the integration o f TLO'TOS. FbLO'I'OS and FrLO IO S prti-
duces Kxtended LO TO S (X L) a formal. LO TOS basetl. specification language for
the specification of distribute«! systems.

1.3.2 Architectural concepta and their definition

The thesis develops a ‘method' for the application o f LOTOS, called architecture-driven
specification (see section 1.1.2). Architecture driven specification methods are advanta
geous because they re-use domain knowledge know how built from a previous history
«»f solutions. This d«>maln knowledge la often etnbodle«l in the forms o f generic con­
cepts, ingredients, template-components, etc. The thesis develops an infra-structure of

architectural concepts and components to support the architecture-driven specification
o f distribute<] systems.
This infra-structure is orKanized as a pyramid, with the fundamental elements at the
base, and rotnmim arrhitrcturoi rotupournia at the apex. This set of components in­
cludes common performanci romponrnta, as well as/unchona/ cornpournta, in recogni­
tion o f the importance of the performance concerns in distributed systems, ('oinpunents
are given XL templates and graphical representations.

l.S .S Applications o f the L O T O S language

'I'o capture and accumulate experience in the use of L () I'OS, it is important to apply
hO rOS to new problem domains. In part, this thesis repcirts on the application of
I.OTOS to aspects of the (’ IM-OSA Reference Architecture. ('IM -O SA is interesting
because it contrasts with other domains; (’ IM-OSA is not a symmetric, layered com­
munications architecture such as OSI; and C'lM-OSA is more applied and specialized
than the very general 01)1* architcK’ture. The thesis contains a C’ lM-OSA case-study
which provides an insight into the advantages of architecture-driven specification. The
case-study also illustrates how to use the special features of Xh, and demonstrates the
practical value of XL.

1.4 Thesis structure

This section provides a chapter-by-chapter guide to the thesis.

C h ap ter 2 introduces distributiMl systems as a context for the application of the work
in the thesis. It examines both the theoretical/academic perceptions and in-
dustrlal/application perceptions of distributed systems, and provides background
material on specific systems that are relevant to this thesis. Finally, it highlights
key areas of distributinl systems research for the thesis.

C h ap ter S provides general background information about specification languages. It
focuses on LOTOS and briefly looks at the factors Involved in using LOTOS for
system development, It concludes by highlighting key asp€»cts o f LO'I'OS language
research for the thesis.

C h ap ter 4 builds an infra structure of architectural elements to support the architecture-
driven specification of distributed systems. Architectural elements are given XL
representations and graphical notations. The work in this chapter provides a
basis for the case-study in chapter 5. 'I’his chapter uses X L features defined in
chapters ft, 7 and H.

C 'hapter 6 is a case-study of architecture-driven, formal specification using XL. The
chapter intrmluces the IIS (Integrating Infrastructure) the part of ('IM -OSA
which was subjected to formal specification. The chapter uses chapter 4's infra­
structure of architectural elements to construct a skeleton architecture of the IIS.
Then the chapter shows how the rommon arrhUrrturat ratnponrnta, defined In

chapliT I, can be ruatomized for the specification of both the functional rerjuire-
inents and performance requirements of a specific part of the IIS, known as SK
(System w ide KxrhaiiRe).

C hapter 6 defines extensions to LOTOS for the specification of quantitative timing
concerns. The result Is called TI.OTOS. The chapter examines the inadequacies o f
1,0 r o s with respect to quantitative timing, it investigates the language features
inu-ded for the expression of quantitative timing, and it formally defines syntactic
and semantic extensions to LOT OS for realising these facilities. The chapter also
takes at Iwrk at ways o f mapping TLOTOS to LOTOS.

Chapter 7 defines extensions to LOTOS for the specification of probabilistic concerns.
T he result is railed I’ bLOT'OS. T he chapter extends the definition o f LTSs (La-
belled Transition Systems) to include both probabilistic and non deterministic
transitions. Kxtended LTSs are used as a semantic model for I’ bl.OTOS. The
chapter defines an pre-order relation called probabiiization for PbLO 1 OS. The
chapter shows how the probabilization can be used as a notion of conformance in
the development o f probabilistic systems. T he chapter concludes by outlining a
framework for the statistical testing o f real world (probabilistic) implementations
against IMiLOTOS specifications.

Chapter 8 comes in two parts. The first part defines extensions to l OT'^S for the
specificalion of prioritv concerns. The result Is called I’ rLO I O.i. I he second
part of the chapter descrilies how TLOT'OS, l‘ hL()T'()S and |■rLOT•()S integrate
to form Kxlemled LOTOS (XL). A simple example XL specification is providerl
to illustrate the expressive flexibility of XL for the specification of performance
roiircrnB.

ch a p te r 9 summarizes the thesis anti identifies possibilities for further work.

Append ix A contains XL specifications that reflect the archltecture drlven decompo­
sition of a (TM OSA IIS X-AC<T.(Tlent.l>S.SI’ component. This Is reference
material for section .S.T.fi.

Append ix B ctmtains the XL specification of the (TM OSA IIS SK component. This
in r«*frrrnrr iiiAtrrial ftir nwllon ii.4.1.

A ppend ix C contains A C T ONK data types for inclusion in the pre defined data
types library o f TT.OT'OS. T his is reference material for section fl.-S l.

Append ix IJ cimtains an exanijile application of the TT.OIOS semantics. I his in
rrirrmr«* matrrial for M*rtion 6.5.4.

Append ix E r<intairm an example which illunlratw Hlfflrultlen of reprewntlnR anperta
o f thr HTtnantir mrchaninmn of Tl-O'rOS in ihe •yntax of I.O 1 OS. I hi* is refer­
ence material for nection 6.6.2.5.

A ppend ix r contains a series of XL speclflcatloiis which describe alternative designs
(concerned with timing abstractions) for two parts of the (TM OSA IIS: the
X-Servlre and X-Service.Agent. These XL speclflcatlons are used as reference
material for aectlonii 5.5, 6.2 and 6.7.

Appen d ix G form» an annex to chapter 6. Th i» appendix extend» the definition» of
»ome of the I.OTOS te»tinf(relation», and »how» that these testing relation» yield
sensible and intuitive results when applied to TLOTOS »peclfications.

A ppen d ix H provides an example of the application of the SimChar algorithm. The
.Sirnrhur algorithm, defined In section 7,4,7, is used to give an operational defi
nition to the notion of prtibabitization (chapter 7).

Appen d ix 1 lists abbreviations used in the thesis.

The work reported in chapters 4 and b prompted aspects of the develop o f XI-. Chap
ters 4 and !) also provide an introduction by example to X1-. This Is the reason for
ordering the work in chapters 4 and .fi liefore the work in chapters 6, 7 and 8, although
chapters t and !> rely on the definitions o f XI. provided in chapters S. 7 and H.

2.1 In troduction

Theoretical research in the area o f distributed systems is aimed at the general problem
o f developing methods for the specification and desiRn of distributed systems that
manaRe their inherent complexity. 'Phis is the context o f the work of this thesis.

This chapter is purely a context settinR chapter. It concentrates on describinR those
aspects o f the research area that are relevant to, or have influenced our work. 1 he
chapter does not contrast our work with existinR work. Instead, we detail and contrast
existiuR wcjrk where appropriate tlirouRhout chapters 4 to K.

2.2 Fundam ental aspects o f d istribu ted system s

In this section we examine the theoretical/academic perceptions of distributed systems,
and enumerate the features that characterise a distributee! system.

2.2.1 Spatial aeparation and concurrency

In tlH*oretical terms, distributed systems include features such as concurrency, asyn­
chronous communications, spatially distributee! components, etc. The task e>f «lesiRiiinR
distribute*el systems is ncjt an easy one beuause e>f the* ce>mplexity which re*sults from
the interplay e>f such feature's.
One consee|ue*nce eif this interplay is the problem e>f establishiiiR a te>lal eireleriiiR* e>f
events in a distributinl system.
rsually we ceinsider it pewsible to elecide the total e>re|erinR e>f a set e»f events which
i>ccur within a ce»nfine*el space, provielenl that the spatial elimensie>ns are such that the
transmission delay belwe*en event sites within this spae'e is ne*RliRib|e compare*el to the
time betweM*n event occurrences in this space. 'I'hls scenario is reminiscent of a siiiRle
mide (maybe a sltiRle or tlRhtly roupM process<ir system) in a network.
However, the total orderinR for any one node Is actually only a partial orderinR for the
entire distributeil system. A distribule<l system consists of many such nodes, and the
transmission delay l>elween lUKles is not neRliRible con»pare«l to the lime between event
liccurrences in a sinRie no<le. This may make It Impossible to establish a satisfactory
total orderinR for events in a dlstrlbute«l system.
I he other factor which makes it difficult to establish event orderluRs Is the explicit
intrcMliictlon of pumlirUntn. A system may Im* able to execute a number o f processes In
parallel. I ’ sually It will Im* possible to establish a total orderinR for the events of any
one of these processes. However. It Is often impossible t«i d«» so f<»r all the events when
considerinR the system as a whole.
Kvents or prcKesses are said tc» Im* rofirufTtn/ if it is impossible to establish a total
orderinR o f events due to upahat ttrpamtiou and/or explicit parallrliMtn. It can be difficult
to distinRuish between concurrency existinR due to spatial separation and concurrency
existinR due to explicit parallelism. Hut there is a distinction.

*W r mmy lks< svesi r te ordered before evesl » If r rsa (ssssUr alfert y (see (l.an iT l))

12

2.2.2 Defínition

The li-rm “concurn-nl «ystpin" is often umkI to describe system» where concurrency
«rises due to explicit parallelism (only, not spatial separation). The term “distributed
system" is often used to describe systems where concurrency arises due to spatial sep­
aration and explicit parallelism. We have chosen "distributed systems" as the context
for i>ur thesis because our work involves solving problems that arise due to both spatial
separation and explicit parallelism. (As a warning note, terminology is at best blurred
in this area, and can confuse.)
The total ordering question manifests itself in a number of well known distributed sys­
tem problem areas, e.g. replicated distributed databases, mutual exclusion o f resources,
fair scheduling in distributed systems, etc. The total ordering question is fundamental
to many distributed systems problems. This is the basis for our "academic" definition
of a distributed system:

A distributed system is a system in which the transmission delay o f me»
sages, between spatially separate computing elements, is not negligible com-
pari'd to the time belwi-en computing event occurrences in any computing
rlcmrul.

Ily varying what we mean by a “ not negligibie" transmission delay, we can use this
ilefinitiim of a distributed system to identify a range of systems. Hy relaxing the no­
tion o f a "not negligible" transmission delay, we identify "lightly-coupled" distributed
system», such as array processor system», shared-memory systems, multi-processors,
neural networks, etc. In cotitrast, by emphasisitig the notioti of a "not negligible"
tratisttiisslon ilelay, we iilentify "Icwsely-roupled" distributed systems, such as worksla-
lion/server modeis, lelecotnmunicaliotis networks, computer integrated manufacturing
systems, etc.

2.3 D istribu ted system s in practice

In this section we hntk at industrlal/applicatiitn perceptions o f distributed systems,
and prfh-is a selection of architectures/applications that are relevant to the work in this
ihcnin.
Wr arn primarily Inlrrmtrti in “ rrfrrrnrr archilrrlurr«". r*th«r lhan Bp«K-ifir dintributed
nyulmmi. and ihi» U rfflpftttl in ihr wlwliim o f dinlrlbulíKl iiy*tpm« overvlrwr^l in
thin nrrtlon. Our aim hrrn U to providr a flavour of thi* dlnlrlbulwl nyalpm rrfrrpnci*
arrhitpcturnn that hav«* influrnrrd and provide a context for the work within thin thenis.

3.S.1 Percept iona

The induntrial/applicalion perception of a dintributed nyntem in an application that
npaiin multi-vendor, multi domain, heterogeneoun computer networkn. From the indun-
trial/applicatlon pernpective, dintributed nyntemn are defined by characterliticn nuch an

ctifr<TTOt W lur» modm, dyiianiir ronfiRuralion. ronrurrant accea», aaychronoua intarar-
tiuna, ramola arraaa, halarof^enaoua componanta, inanaf^amant of raplication. migratinR
alanianta, fadaratad maiia*aniant, aacurity, parformanra and rallability.
Product aoluliona and raaaarch aolutlona to diatributad ayatama induda: OSI, O I)P,
ANSA/ISA, t'lM OSA and ralatad atandarda work (aaa following aubaartiona); dia-
tributad tiparating ayatama (aurh aa Amoaba, Mark and l^rua [CDHH, TyRHS]); dia-
tributad fiia avatama (aurh aa Sun NKS, X1)PS and CKS (('l)HM. NHK2, I.PSHl]); add-on
faaturaa (aurh aa Hamota Proradura Call facilltiaa |BN84, NalKl, WBS7] and ran.ota
axarution [KurSH)); application programmar intarfacaa (A P Ia) (aurh aa X/Opan, SVII)
and POSIX); and total aolutiona (aurh aa (irapavina (SBNH4). Chorua [KM87, Par92|),

Iniluatry rarogniaaa tha inrraaaing iinportanra for atratagir IT including ayatam in-
tagration and opan ayatama. It la aaaantial that thaaa taaka ara rarrlad out within
aoma arrhitartural framawork which ought to ba ganarir (multi domain), optlimzabla
and vendor indapandant. Kxamplaa of arrhitartural franiaworka inrluda: OSI, OOP,
ANSA/ISA and CIM OSA. An arrhitartural framawork conaiata of: functional and
atrurtural abatrartiona; non ronatrurtivaly aparifiad daaign tamplataa; daaign rulaa of
naraaaary romponanta and atrurturaa; raripaa on how to aolva ragularly occurring prob
lama; and guidalinaa on how to tahua, optimiza and implainani daaigna.

2,3.2 O SI

Pra-l!iM(l. computar rommuniration protocola and ayatama tandad to ba dominatad
by propriatary atandarda aurh aa IBM'a Syatani Network Architartura (SN A) (Cyp78)
and DKC'a Digital Network Arrhitactura (D N A). I'ropriatary atandarda lad to rioimd
communitlaa of rom|iutara, where only ayatama from tha aaina manufacturar rtiuld in­
terwork. To addraaa thia problem tha International Organization for Standardization
atartatl work, in 1977, on tha OSI HM (Open Syatama Intarronnaction Rafaranra
Modal |lSOH4|). OSI It an attempt to ataar tha induatry away fmm propriatary atan
darda ami towardaopan, vendor indapamlant intarronnartion (interworking) |l,inH9],

2.5.2.1 Proj**rt hUtory and progrea*

OSI waa originally aat up in 1977 by ISO with input from tha C C ITT (International
lalagrai.h ami Talaphona ('onaultativa Comlnittaa). OSI dahnaa imvan rommuniration
prot.K-ol layara tha rommonly known “ aavan layer modal" |llalS8, BSKl], In 198«
ISO, than j<ilna<l by tha IKC (Intarnational K.lartrotachniral Cominlaalon), aatabllahad
tha Joint Tarhniral Commlttaa I Sub rommittaa (I (J T C l SC6) to dahlia tha lower
protocol layara, and J'l'Cl SC21 to dahna tha upper upper protm-ol layara and general
arrbitartura. Servirá and Protocol Standarda are now in place for nn»t of tha layara.

2.5.a.3 IHO architftrturiil ronr#pts

A iiunibrr iif OSI nrrhlliK-lur»! rotirrpln havp hiM*n di-fin«!. Thp«- arr umhI to drarrlbr
thr OSI HM, (I ’urH?, TvS»2) formally dffliir ami r»t«^orl*f* thr OSI arrhUwlural con-
ri>pt» (m^ MK'tl<»n 4.3.3).

2.3.2.3 Formalising OSI

Thr F m « Kslclle, I.O TOS ami SDI. have been widely u«ed far apeeifyinR communlra-
lion. »ervice» and proU.col», Actual 1,0 TOS .pecificalion. o f OSI «Tvires and protocol,
inriudo;

• network layer nervice [I'urSOc], network layer protocol [1>ANH9]

• transport layer nervine [ISOMa], transport layer protocol |lSO90b)

• session layer service (ISO90c), session layer protocol [ISOdOd]

s HOSK (Heniote Operations Service F.lements) [FAUN)

a (' (’ II (('oininitnient. Concurrency and Recovery) service [SadilO], (ICH protocol

(JC90]

a 'I'l* (Transaction FrocessinR) [WvllR90].

A large body o f knowli-dge on how to specify formally (conirnunirations) systems us-
iliR the FDT's, has evcdved from OSI work. T his expertise include. (TurDSc. ISOfll,
VSvSIlmi. vSOfl, T'nrNBb. TurK7. T'lirWla].

2.3.2.4 Relrvancc to the«i«

TIh* o s i HM is not directly relevant to this theniK. However OSI** iiifra-*trurture
o f architectural concept* ha* in*pired our own infra structure of architectural elements
(chapter I). Particularly pertinent i* the work of I'urner in (TurH7. Tu r«l, Tur9(),
TurHHb] which promote* the importance of. and provide* LOTOS Munantlc* for. OSI
architectural concept*.
Al**>. the di>cumented knowledge deHcrihing how LOI'OS ha* been u*e*I to formaline
part* of OSI. ha* been a guide in our own work of formalining part* of the (*IM OSA
Reference Architecture using LOTOS (chapter 3).

2.3.3 oni*
i'he term “open *y*tem** originated from OSI. where it wa* used to qualify ■yslem* that
were capable of suppiirting *tandardiied communication* protocol*. Today «»penne«* U
a ilemand made. m»t only o f communication* platform* but also, of computing ami in
formation platform*. ODIMOp'’ « Distribute«! Processing) [IS()Nl»e. vOKW, Ì,in9l. StefM]
i* an attempt t«» meet the new and increasing re«juirements for o|»enne««. and to create
a framew<»rk for the deveUipment of «tandardlze«!. integrate«! «Ilstributed application
platform*.

2.3.3.1 O D P / D A F hUtory and structure

|)«»th ISO and the (' r i T T have eatabllshe«! gr«»ups with the «»bje«tlve «>f pr«»duclng a
Reference Mmlel f«»r OOP. To be exact, creati«»n of a Reference Model f«>r OOP (OOP
R M) i* the aim «»f working group ISO/IF(' JT(M/S(V2I/W07. (' (‘ IT T , Que«ti«>n 19,

Study Ciroup V II has the task o f rreatiliR l)A F (Distributed Applieations iVamework)
[C’CWHa].
Work on the ODl* RM benali in 19H7. The ODl’ RM is to provide a standardised, ron-
ceptual architecture for the desinn of integrated, distributed environments that span
heterogeneous systems. The OD l’ HM deais with distribution transparency and appil-
cation portability problems. 01)1’ extends OSl work, using OSI as a means of achieving
interconnerticm and interworking.
By 19KK (’(’ IT r had developed two major distributed applications: the X.*1(K) message
liandling system ((' (’WSc) and the X.-WO directory system ICClHHb). A drawback of
these systems was their Informal descriptions. As an attempt to right this weak point,
for these and other such systems, CC ITT launched a study group whiwe task it was to
create a integrate.! framework for the support o f distributed applications (D AK). DAK
was to include modelling guidelines, techniques and tools, as well an generic functions
for th«* support o f dintributod system*.
Presently, many o f the goals for the ODl’ RM and DAK are being jointly investigated
by working groups from Inith ISO and (■ ('ITT . These goals include modelling and
specification for O D l’ and DAK |ISOH9d. (■< I90c. IS09Jb, IS093a. IS09:ib], functions
and structures for OD l’ and DAK |ISOH9c, CCIfiOa). architectural semantics for OIH’
(lS()93b, IS()9:U], DAK sociirlly frameworks. ASN-1 and Infrastructure. O f these goals,
the first three are the most relevant to the work In this thesis.

2.a.3.2 V iew poin ts

O D l’ details five viewpoints <if interest. A viewpoint is a particular abstraction of
a distributed system, oriented to a particular area o f concerns. The purpose of the
viewpoints is t.i priivide a framework <if abstractions. Partitioning tbe design space
makes the design task easier. Also, the viewpoints represent boundaries for ODP
standarisation efforts.

Kn terpriae view poin ti (The user requirements viewpoint) This descrilms the over
all objectives and g.ials of the enterprise In which the system operates. Models
front this viewpoint rapture the business requirements that mould and govern the
design of the distributed system. The enterprise viewpoint Is ronrerne.) with so­
cial. organiiational and political issues of an enterprise that affect the distributed
Nyatem.

In form ation view poin ti (I he conceptual design and s|ierlflcatlon viewpoint) This
viewpoint concentrates <in inforniati.in structures and Information flows within an
enterprise. Il.ith inaniial and autotiiated information processing may be described
from this viewpoint.

C om pu tation v law poin ti (Thpsoftwarrdrsign vi*-wp«lnl) Th«*concrrnaof this virw
point includr the oprrallonal and computational part* of thr **nt«Tprl»r that mod
Ify Information. Thr computation vlrwp«>lnt dracribr* thr organisation of, thr
communications brtwrrn, and thr data structurr* usrd by application pn>gram*
that run on thr distrihutrd computing systrm.

Engineering v iew poin t: (Thf> infraatrurture o f building blorks viewpoint) This de-
Rcribea the engineering structures, merh&nisins and tools (such as operating sys-
tenis, communications protocols, transparency mechanisms, etc.) required to sup­
port information processing. The engineering viewpoint addresses concerns such
as trade-offs between quality o f service attributes such as reliability, portability,
performance and maintenance.

Technology view poin t: (I 'h e realised components viewpoint) 'I'his viewpoint de­
scribes the actual technological artifacts (implemente<l components) out o f which
the distribute<l system is built. Technological artifacts include hardware and
software such as operating systems, input/output devices, storage systems, and
communication terminals.

2.3.S.S Structures and functions

01)1* aims to develop generic models describing the structures and functions o f n>ost
distributed systems.

From the computational viewpoint, 01)1* sees a distributed system as an abstract
machine that supports application programs develope<| using the 01)1* computational
model. I'he computational model uses objects as units of structure, and interfaces and
operations as the basis for interactions.

From an engine<Titig viewpoint, a distribut«Hl system consists o f nodes (spatially dis­
tinct computers), each supporting an 01)1* nucleus. A nucleus encapsulates computing
resources at a node to support t he execution o f engineering objects. Engineering i)bjects
are runtime representations o f computational objects. ('<immon engineering objects in­
clude transparency iniH-hanismH, activation/pansivation mechanisms, failure handlers,
migration enablers, etc.

2.3,3.4 M odelling and speclflcation

The 01)1* work on modelling and specification has two tasks; to identify and define
modelling concepts o f 01)1* (ISOHPd], and to formally Interpret these modelling con­
cepts in FD'l's (lS()92b. lS093a, IS09.'lb|. The modelling concepts for 01)1* are divided
Into three categories; basic modelling concepts, specification concepts and architectural
concepts (see section 1.3.1 for details). The work o f formally interpreting the modelling
concepts uses the FDTs LOTOS. Estelle. SDL and Z. 01)1* recognixes the importance
o f providing precise mathematical definitions o f its modelling concepts. So far, the
work of formalising modelling concepts has been complete<| for only a limite<i subset of
concepts. ((' (’ IfMlb) assesses the expressive power o f LOTOS with respect to formalising
01)1* modelling concepts.

2.3.3.B Relevance to theaia

01)1* is relevant to this thesis for several reasons. Chapter 4 uses some o f the 01)1*
modelling concepts as a starting basis for our own infra structure o f architecture for
distributed systems. We modify these concepts, suggest XL representations for them.

Engineering v iew poin t: (The infrMtructure o f building block» viewpoint) This de-
scribes the engim»ering structures, mechanism» and tools (such as operating sys­
tems, communications protocols, transparency mechanisms, etc.) required to sup-
ptirt information processing. I'he engineering viewpoint addresses concerns such
as trade-offs between quality of service attributes such as reliability, portability,
performance and maintenance.

Technology viewpoin t: (I'he realised components viewpoint) rhis viewpoint de­
scribes the actual technological artifacts (implemented components) out of which
the distributed system is built. Technological artifacts include hardware and
software such as operating systems, input/output devices, storage systems, and
communication terminals.

2.S.S.S Structures and functions

01)1* aims to develop generic models describing the structures and functions of most
distributed systems.
From the computational viewpoint. 01)1* sees a distributed system as an abstract
machine that supimrts application programs developed using the 01)1* computational
model. 'Fhe computational model uses i>bjects as units of structure, and interfaces and
operathins as the basis for interactions.
From an enginei'ring viewpoint, a distributed system consists of nodes (spatially dis­
tinct cc»mpiilers). each supporting an 01)1* nucleus. A nucleus encapsulates computing
resources at a node to support the execution o f engineering objects. Engineering objects
are runtime representations of computational objects, (‘ommon engineering objects in-
clmle transparency in«*chanisms. activation/passivation mechanisms, failure handlers,
migration enablers, etc.

2.S.S.4 Modelling and specification

The 01)1* work on nn»de|ling and sperificatliin has two tasks: tf> identify and define
modelling concepts of 01)1* [ISOHOd], and to formally Interpret these modelling con­
cepts in FD'I's llSO«2b. ISOttda. IS093b), The modelling concepts for 01)1* are divided
into three categi>ries: basic modelling concepts, s|>eclflrati<in concepts and architectural
concepts (see section •l.,'l.l for details). I'he work o f formally interpreting the modelling
concepts uses the FDTs l.OTOS, Estelle. SOI. and Z. 01)1* rec<»gni*es the importance
of providing precise mathematical definitions o f its modelling concepts, So far, the
work o f formalising modelling concepts has been completed for only a limite«! subset «>f
concepts. [rrifMlb] assesses the expressive |M»wer of 1,0 I'OS with respect to formalising
01)1’ mcMielling concepts.

2.S.3.6 Relevanre to thesls

ODI’ li relevant to this thesis for several reasons. ('hapter 4 iises some of thè ODI*
tno«lelllng concepts as a startlng basi» for «mr «>wn infra structure o f archltecture for
distributed syslems. We modify these concepts, suggesl XI, representatlons for them,

and intinratn them into our own infra-atructure. The 01)1’ work on the formal interpre­
tation of inodelliiiK ronrepta ia aimilar in purpoae, although not in form, to chapter 4 a
elforth to create a unified, (partially) formalized architecture. Alao, 01)1’ work on rê
quireinenta for apecification techniquea concludea that preaent FDTa lack “cover^n
in arena auch aa real-time and probability. The extenaiona to I.OTOS deacribed in
chaptera 6. 7 and 8, addreaa thia concluaion.

2.3.4 A N S A / IS A

ANSA/ISA (Advanced Networked Syatema Architecture/lntegrated Syatema Arrhitec-
tnre) |ANSH9t>. ANSK9a. ANS86] ia a more upplicd architecture than 01)1 ’ . ANSA ia
an architecture for building diatributed ayatema which rendera the actual diatribution
tranaparent to applicationa, making the diatributed ayatem appear aa a unified unit.
I'he ANSA etboB ia to take full advantage o f the paralleliam and aeparation in dia­
tributed ayatema to increaae performance and reliability, while hiding tliaadvantagea
such a* partial failur«*ii and communication errom.

2.S.4.1 Project history and activities

Architecture I’ rojecta Manageinent l.td. (A T M) waa eatabliaheil aa a company in 1989
to manage the work origin.ling from the Alvey ANSA project lANS8fia]. AN SA became
funded through the Kaprit II programme aa the ISA (lntegrate<l Syatema Architecture)
projw t.
ANSA Rupports four main activities: dcvrloping an architecture for building dlntrlbuted
systems, consisting of design recipes, guidelines, structures and function«; developing
s(>ftware (the “ ANSA Testbench”) to demonstrate the architecture; contributing to
international standards; and technology transfer to the distributed system« community.

2.3.4.2 Architecture

ANSA defines five related models within its architecture. These are callcM) enterprise,
information, compulation, engineering and technology. I'hese model« have extents
aimilar lo lh<»«- o f 01)1’ vicwpoinla (aaclion 2.3.3.2). Of thnac modela, compulallon
and enginrering moat infliirncn the dnaigii o f ANSA diatrlbntrd ayatenia.
I he ANSA phiUmophy la lo repreaeni dialrihiiled computing concepta, at the prograin-
iiiitig language level, by additional ayntaclic conalructa. I heae conatrucla can then be
conipilml into ayaleni calla. ANSA claim., for Ihl. approach, the advantage, of a .Imple
lirogramming model, compile lime rather than run time checking, and independence
between the application programmer world and the ayatem world.
The computation model provide, a framework for application programming. 1 hia
model a<ldre..e. topic, auch aa dialrihuted application mmlularlly, acceaa to aervlcea,
parameter paaaing .rheme., replication, ronfigurallon, concurrency and aynrhronlza-
tlon. The engine«'rlng model provide, a framework of compiler and operating ayalem
romponenta. Theae componenla Inrludei thread and taak management, addrea. apace
manageinent, inter-addreaa apace roinmuniratlon, diatributed application protocola, in­

terface locator*, interfaci* Irador*. confiRuration manaRer*. atomic operation manaRers,
and replication inanaRer*.
I'he trader and confiRuration manager provide mean* to link application* in a running
ANSA *y*tem. The trader provide* directory information which can be searched in
a number o f way*. Server* export their interface references to the trader, to make
them accessible by other application*, (’lienl application* use the import operation to
acquire exported interfaces from the trader. Federation result* from linking distributed
traders. I'he job o f the configuration manager is to start new application* in a running
ANSA system.

2.3.4.S **Reversed aaaumptlons**

ANSA believes that designers o f applications have often taken advantage of a nuinber
of simplifying assumptions that are valid only for non-distributed host*. To right thew
traditional assumptions, ANSA includes a number of “ reversed assumption*" in their
architecture and product*. I hese reversed aasumption* remain valid in context* where
remoteness would render traditional assumption* invalid. ANSA ’* approach is to as­
sume that everything is remote, and then engineer local optimuation back in where
possible. ANSA point out that this i* possible because “ local failure semantics are
always a subset of remote failure semantics". 'I'he following list o f reverse assump- ̂
tions appears in [ANSH9a), and provides a quirk comparison of the problem space of
non distributed systems and the problem space o f distribut«tl systems.

local
direct

sequential
synchronous

homogeite«>us
single instance
fixed location

shareil memory
global name space

remote
indirect
concurrent
asychronous
heterogeneous
replicateil group
migrating
disjoint memories
federated name space*

2.3.4.4 'rranapar«>nriea

ANSA offers to the programmer a numt>er of distribution transparencies. I he choice
Ilf tr»ii»p«ri.|irii.i. ili-lrrminni thi- exlrnl In which prnurininier» niu«t ron.ldrr, »upporl
ami riintriil Iho inlonratlon iif «pallally ili.lributi.il piece» iif the application. In a non
transparent program, the application pnigrammer is fully accountable for all aspect* of
distribution. In a fully transparent program, the application programmer has delegatwl
accountability for distribution problems to the ANSA support environment. ANSA
provides support for the following transparencies;

Arresa transparency provides identical invocation semantics f«>r local and remote
components.

Idocatlon transparency hide* the locations o f component* so that rode doe* not
become dependent on romp<»nent location.

Concurrency trnn iparency ma»k« the existence o f concurrent users of a service such
that a rlienl will be unaware o f other concurrent client*.

Failure transparency mask* the effect* o f communication* errors and partial failure*.

Replication transparency di*gui»e* any effects o f having multiple copie* o f compo­
nent* (for reliability or performance reason*).

M igra tion transparency is the dynamic form of location transparency which allows
component* to be relocated while being used by other components.

Perform ance transparency allow* the system to be reconfigured to improve perfor­
mance as load* vary.

Scaling transparency allow* the system and application* to change in scale without
change to the system structure or application program algorithms.

The aim is the support all o f these transparencie* within ANSA ’s Testbench.

2.3.4.5 M odelling thf*ory and form al support

ANSA modelling thwry [TocitO] and formal support for the development of distributed
systems ('rocK9). are the two specific areas of ANSA work that are most relevant to this
thesis.
ANSA haw hiillt a refiToiiro dirtumary uf inodHIiiin roncepta for diatrihutud ayatriiia
[ANSHOb], Thuap roncppla an* dufinud uaiiiK « apt luitalion and a graphical ayntax
I roePO). Spp apclioii t.S.2 fur a liât of ANSA imidplling roiicppla.
ANSA l.plipvpa in forinaliam to aiippurl thp dpaign procpaa for diatribulpd ayatpma;
forinaliam ought to aupport thp appcifiration o f partial dpaigna at arbitrary Ipvpla of
ahatraction, tranaformatioua bptwwn dpaigiia at thp aanip Ipvpl o f ahatrartion. rpfinp-
niput o f dpaigna to iiiorp tlplaiU-d dpaigna. and apparation of concerna. I.ikp 01)1’ . ANSA
hplipvpa that no o u p of the pxiating formal languagpa nippta all of thpap rpquirpnipnta.
Ilowpvpr. unlikp 01)1’ . ANSA have not optiul to uap any of the KD I'a but inatpad. have
dpvploptal thplr own formallain known aa Object Kligineering. It la defined uaing apt
theory and haa a graphical ayntax. Objecta, interfacpa and alphabeta are Ita three
principle components. The Object Kngineering calculua ilefinea a nundier of lawa of
e<|uivalencea. refinementa. etc. for objecta, interfacea and alphabeta. (TocOO) deacrlbea
aome r.f theae lawa uaing Z.

2.3.4.6 Relevance to thesis

rhe ANSA work on pnatrainnilng language aupport for dlatrlbuted ayatema la not
directly relevant to thla theala. However. ANSA'a modelling conrepta and Ita Ideaa
about formal aupport and Object Kngineering are particularly relevant for chapter 4.

2.3.5 C IM -O S A

The CIM OSA project (Computer Integrated Manufacturing Open Syatema Archi­
tecture [CIMIHId. CIMIIOa. CIMKDc. lleeH»)) la Important to thla theala. Work Involving

Ih f «ulhor [MrCQla, MHI190, MrC90a, Mc<’90b) to formaliw thf IIS (Integratin* In-
fraatructuro onr part o f the CIM OSA Roforenra Architacturo) haa prompted and
fuelled the work reportetl In thia theala. The atteinpta within CIM OSA to formulae
aaperta o f CIM ayatema lead the author to rerogniae both the weakneaa o f LOTOS for
the aperifiration of performance conrerna, and the need for an architectural framework
to guide aperifiration. To adilreaa the lirat weakneaa. the author haa extended LOTOS
for the apecification of perftirmanre (rhaptera 6. 7 and 8) and uaed the < IM-OSA IIS aa
a raae atudy (chapter 5) to deinonatrate the power of Extended LO LOS. To addreaa the
aecond concern the author haa outlined an infra atrurture o f formaliaed architectural
elementa (chapter 4) and haa uaeil thia aa a guide for atructuring the apecllirationa in
the CIM OSA raae atudy o f chapter .1.
Due to the importance o f CIM OSA for thia theaia, thia aubaection Introducea the
hiatory, objectivea and atrurture of the CIM OSA project, in more depth than for the
other reference architecturea in thia chapter.

2.S.5.1 In troduction

Today'> manufarlurinR rnlrrprinci» are aware of the Ntratef(ir importanre that complete
integration o f their manufacturing ami busineiia eleinentu within an II (!nf<»rmation
Technohuty) framework would bring. Ihe ESI’ HI I' II CIM-OSA project dehnea a ref
erenre architecture to guide auch enterpriae modelling and inti>gration [KSI’MK. ESI’ H7].

Within thia aui>M*ction we provide an overview of Ihe CIM OSA project. We alao
introduce the IIS the diatribiited IT platform on which all CIM OSA ayatema are to
l.e built. Later, in chapter ,S, we will uae the IIS aa a raae atudy for the ideaa developed
in thin th('KÌN.

2.3.6.2 C IM in general

To Burvlve. grow ami even maintain their poaition in U>day*§ highly competitive market
place, huHinoHM enterpriae« have to compete on price, quality and delivery time. !V» meet
auch challengea. enterpriaea employ aeveral atrateglea, e.g.: optimization t>f the produc­
tion proceaa; «lucation of employee«; te< hnology management focuaaing on innovation
and internal technology tranafer; ami Integration of the enterpriae within an 11’ frame
wiirk. <1M (Com puter Integrated Manufacturing) mainly encompaaaea the laat ofth eae

atrategiea.
(1M ia an area of conaiderable atrateglc lmjM)rtance for uaera, dealgnera/developera,
and vendor« alike. We can identify three main area« within CIM:

• Dealgn rule«, archllectiirea, communlcationa and interface« aimed at creating
a unifleil framework cimformlng to reference modela auch aa OSI, DAK and ODR
Thia area of reaearch contribute« primarily to reduction« in the c<»at o f deaignlng,
inatalling and maintaining manufacturing ayatema.

• Method« and t«K)la for real time manufacturing control. Thia area o f reaearch
contribute« primarily Ic» re«luctlona In lead time«, Inventory, unit coat«, and to
improvement« In plant flexibility and productivity to maximize return on Inveat-
ment.

• Shop-flcMir nysteni« (C IM IWhiioloRie»). Th«*w include robot controUeri. »enwrs
for welding, assembly and inspection systems, and various simulation tools. ('IM
users have committcKl considerable investment in state-of-the-art Flexible Manu­
facturing Systems (FMSs) and Flexible Assembly Systems (FASs) (SBK7, HalH8.
JH1)S9). This area of research contributes to improvements in product quality,
plant reliability, faster throughput and reduced work in progress.

(’ IM-OSA is mainly concerned with the first o f these three areas.

2.3.5.5 H istory o f the C IM -O S A project

Once the lUM-d to develop an Open Systems Architecture for (’ IM was recognized,
Project 6KH ('IM -OSA was launched by the (’ommission o f the Furopean ('ommunities
within its KSI’ Ri r (Kuropean Strategic Programme ftir Research and Deveiopmenl
in Information Technology) framework in 19H6. The KSPRIT (’ IM-OSA (onsortium.
AM K'K , consisted o f 21 companies from 7 Furopean countries. AM K ’ E represents
nearly all o f the major Furopean I T vendors, along with n»ajor (IM users such as au­
tomotive and aerospace industries. Also involved were (’ IM implementors (e.g. «>flware
houM»s) and university research groups (e.g. University of Stirling). I he list of involved
companies includes the likes of: Aerospatiale (France); A PT (A T frT Netherlands);
British Aerospace; Hull; (’ap (lemini Sesa (Belgium who are the prime contractors);
Digital; Fiat; (JF (’ ; Hewlett Packard; IBM: K ’ L: Siemens: Volkswagen; etc.

2.3.5.4 C IM -O S A ob jectives

create (‘ IM system models and guitlelines,
fiuence international standards, to provide

rhe primary A M K 'F objectives are:
to promote industrial c<K>peration, to
bottom up integration for CIM systems, and to achieve industrial acceptance.
(iM O S A addresses the problems and hwhIs found in today’s manufacturing Industries,
'i'hese problems include:

• riie ability to manage change in view tif the changing environment.

• rhe integration of information processing — (’ IM needs to overcome the problents
o f fragmented/dislributed Information processing. Fragmentation arises because
of boundaries created due to the use <if non-compatible multi-vendor hardware
and software, and organizational boundaries within a company. I’hese boundaries
b>ad t«> inaccessibility and inconsistency i>f available information.

• Real time control of total manufacturing process, from material input at the
supplier to product service at the customer.

• Adaptability and flexibility of the total enterprise (o|»eratlon and organization).

• An explicitly prmrimablr, functional and dynamic-behavioural description of the
/oifl/enterprise (for real time «»peratlon control anti simulation).

• The ability to integrate etptipntent frt»m different vendors.

Figure 2.1: Strpi towards ih^ tnl^Kratpd «•nUrprl»» (from (i'lMBQc])

Kixur« 2.1 iUmtraii^ tli^ st^ps towards an iiit^rated «»nterprise. The first level Is phys-
irai system integration. The physical interconnection of multi-vendor systems is the
first problem met on the way towards complete integration. It is essential for attain­
ing higher levels of integration, The need for integration at this level is already being
addressed though a number of concepts such as OSI, MMS (Manufacturing Message
Specification), etc. The next level, application integration, deals with: information ex­
change between applications; transportability o f applications between different physical
systems; distribution of applications; and standardized user Interfaces. Limited efforts
(such as ODP and O AF) exist for this domain. The highest level o f integration is
business integration. This deals with the integration of business functions, e.g. design,
production, marketing, finance, etc. Note that these functions are concerned with both
the running o f an operational system and with building/evolving the future system. A
('IM system exhibits dynamic behaviour — it is updated according to the evolution of
the enterprise business requirements and available technology.

2.S.S.5 O verv iew o f the C IM -O S A Reference Arch itectu re

r iM OSA provides a (’ IM Reference Architecture which still allows individual com­
panies to optimize their particular <’ IM architecture according to their own specific
requirements. The CIM Reference Architecture defines generic structures (framework
guidelines) that can be used to create a completely structured description of an enter­
prise as a system.
Figure 2.2 shows the “ ('IM-OSA <*ube* — this is a very general representation of

('IM -OSA*t modelling approach.

Figure 2.2: Overview o f arrhilM-turaJ framework (from (('IM 90a])

Below we describe the important aspects of the ('IM-OSA framework, and their rela­
tions.

A rrh itcrtu ra l Levels: ('IM -OSA Architectural Levels are depicted in figure 2.3. We
find Generic Building Blocks at the Generic Level and inacro-like constructs called
Partial Models at the Partial Level.

Figure 2.3: Architectural levels (from [ClM90a])

24

ngurr 2.3 help« to iUuitrate the how deiign ideu are initantiated, in a itepwiie
fuhion. through the three arrhitectural level«, Stepwiie initantiation take« the
deiign from the Generic Level through the Partial Uvei, to eventually in«tantiate
a Particular Model in the Particular Architecture.

M od e llin g LeveU CIM-OSA u«e« three modelling level« to define, «pecify and de-
icribe the enterpriie. Figure 2.4 iUu«trate« the CIM-OSA ModeUing UveU and
the Derivation Proce«« for a CIM OSA Particular Architecture,

ii

i d
' if ̂ ̂didt, fi

li

Figur«* 2.4: Modelling LeveU and Ihe Derivation Proceai for a ('IM-OSA
Particular Architecture (from (CIM89c))

The Requirements Definition Modelling Level ii used to express the system re­
quirements. Here, what needs to be done within the enterprise is described in
a business tense using business terminology. This is the domain o f the policy
makers.
The Design Specification Modelling Level is used to perform system design and
model optimization (using computer simulation, etc.). This U the domain of
system organizers.
The Implementation Description Modelling Level is used to describe the imple­
mentation o f the enterprise system. At this level, the integrated set o f components
necessary for effective realisation o f the enterprise operations are Implemented.
This Is the domain of the implementors.

V ie w ! Each of tht di(f»renl Modelling Level, and »he Architectural U ve l. are de-
•cribed In according to four different viewpoint.. The Function View focum on
the functional etructure o f the enterpriee. The Information View deal, with the
.tructure and content o f information. The Rewrurce View dencribe. and orga­
nize. the enterpri.e rercurce.. The Organi.ation View fixe, the organizational
■tructure of the enterpri»«.

2.3.S.6 Th e lE E and lE O

Figure 2.5 ihow* the two integrated environment« for building and operating a CIM
■yitem, that CIM-OSA provide«.

The Integrated Enterpri*e Engineering environment (lEE) rover« all build time aapect«.
including de.ign and maintananre of the C IM zy.tem. It comprim Computer-Aided
Engineering tool, which .upport the application of CIM OSA '. enterprl.e modelling
framework. re.ulting in a Particular Implementation Model.
The Integrated Enterpriae Operation, environment (lEO) cover, the run time aapect.
o f the CIM .y.tem. It allow, the Particular Implementation Model, built in the lEE,
to be executed after It haa he»n releaaed for operation.

2.3.S.T Integrating In fra .tru c tu re

Integration at the level o f bu.inea. function, can be reached only If a aufflcient level
o f Integration between application, and phy.ical .y.tem . I. realiwd (w e figure 2.1). In
a .tep toward, thl. objective, CIM-OSA ha. Identified what It ron.lder. a. a w t of
wrvire. common to mo.t C IM .y.tem .. Th i. compoaite w t of Mrvice. la known a. the
Integrating lnfra«tructure (IIS). The IIS act. an an Information Technology platform

26

onto which any Particular CIM-OSA System can be built. The IIS ii sometime» known
as the “ (’ IM OSA OperalinR System**.

□ sa 1
1 ^ ^ Q
1 TBS Si asass tm

Q

Figure 2.6: Kxample of integrated environments in use (from [HoeH9])

The IIS is a strongly distributed system, as a consequence o f the physical distribution
found in all CIM systems. The global functionality of the IIS is distributed across
several nodes, see figure 2.6. The IIS offers system wide services to ('IM applications
and users, IIS system wide services are actually realised by a number of physically
distributed, inter-working IIS nodes. Section 2 . 3 . describes the IIS in detail,

2.3.S.8 T h e use o f form ality within C IM -O S A

Once the "Formal Reference Base" (FHB) (which includes [ClMH9b, (IM!>Ub. (‘ IMiMlc.
riMKOa)) (the (MM OSA "bible~) was established, the need for formal descriptions
became apparent. For. despite its name, the I- KH consists o f (systematic but) informal
descriptions (Knglish language text with supporting diagrams). The FRH descriptions
were found to be ambiguous and inconiplete. ('INI OS A chose to use I.O I OS to describe
and develop a fctrmal model for the IIS (see section 5.1.3 for details). The attempts
within (IM ()S.\ to formalise aspects of <M M O SA Involved the author, and has lead
him to recc»gnize both the weakness o f I.O IO S for the specification o f performance
concerns, and the ne«*d for an architectural framework to guide specification. The
work in this thesis finds solutions to these difftculties and applies these solutions (in
chapter 5) to a simple (M M OSA case-study.

2.3.5.0 Results summary from the use o f LO TO S for C’ lM -O S A

In the short time that LOTOS was employed within the project, it had a considerable
impact. I he use of formalism gained project wide acceptance as a necessary tool for
the design of such large and complex systems.
The process of formalization highlighted those aspects of the so called “ Formal Refer
ence Base" (consisting o f Knglish prose and accompanying diagrams) that were inad­
equate. Incomplete, inconsistent and wrong. Also, the use of formalism acting as a
•common language’ helped induce ci>herence between the project wtirkpackages that
were working on Individual aspects of the IIS.

27

The R«"mT»l ronrlusion wa» that thf riRour of formalinni prom ot«f oarly idanlificalion
of errors and ao helped the development of better deKigns.

2.4 K e y issues in d istribu ted systems research for this

thesis

Thl» »eetlon tuKlilisht» the key area» within distributed «y»tem« renearrh that are ad
(lr<>MMC(l in thiN theKiH.

2.4.1 A rch itectu re driven spécification

Dintributod nyiiU*mn an* rompkx lo npecify and doniKn. When aolution enRinwm In
other dlscipliiiOH Huch an civil oiiKitHHTiiiK or electronic deniitn are fared with complex
deniRn tanks, they connult their dincipline** design guides for how to knowledge. Recog­
nising the importance of this paradigm, computing science has begun to establish a
number o f design guides for various sub fields within its discipline. We have précis«^ a
selection of reference architectures (design guides) for distribute<l systems in section2.3.
Reference architectures support architrrturr dni<rn npiri/iration. I'he notion of ar
chitecture driven specifiratum describes a scenario where a spet ifler is guidful in the
process of creating a specification by a reference architecture. This guidance takes
many forms, including; providing concise terininoh»gy and precise concepts for talking
Hlnnit the design space; structuring the design domain by partitioning problems and
separating concerns to make the domain easier to understand; pre<iefining generic com­
ponents that can be customised, or common components that can be re-use<l; imparting
domain knowledge and expertis«* which have bwn evolved by previous <lesigners.

VW choose architecture driven specification as a key issue in distribute«l systems re­
search for this thesis. I his thesis supports architecture driven specification by creating
an infra structure of architectural elements for the formal specification of distributed
systems. The features of <mr Infra structure are:

• it is created with s|>ecifiration in mind

• it is hierarchical founde«! upon the very general priuriptr/i fo r drscnp/nm, and
rising to more specific comm«»» arrhitrcturai ntmpotirtttn

• Kxtended I.O'IOS (X I.) representations and process templates are suggested for
the architectural elements

• higher level architectural elements are given graphical representations — this
makes it much easier lo understand *at a glance' the specification structure

• the categori/ation of architectural elements provides clues as to how specifications
ought to l>e striicture<l

• XL is usefi as the formal language because It supports the specification of perfor
mance concerns (I.e. timing, probability and priority)

•_archilectural component» are defined for the »pecificalion o f performance aspect»
__theM> performance aspect» treated equally with functional and structural as­
pects

• architectural components may be combined to create either constraint-oriented
or resource-oriented specifications.

2.4.2 The apeciflcatioii o f perfo rm ance concern«

The spatial separation of components within a distributed system makes dealing with
performance issues very difficult, and elevates these issues to an importance not found
in non-distributed systems. Performance issues include: time critical communications,
adequate performance, resilience to errors, robust interworking, probability of fail­
ures. acceptable delay times, measurement of netw<»rk dynamics, tolerance metrics,
message priority, lociU clock adjustment, specification o f mean failure times, and lowl
requirement».^ In non distributed, single host systems these issues either do not arise
or can be dealt with easily, and hence play an insignificant role.
The disparity belwi*en the |>erceived importance o f performance issues and function­
ality issues is justified when dealing with mm-distributed systems, but the disparity
has become obsolete in the move towards distributed systems. A consequence is that
specification languages for distributed systems <iught to have features for the expression
of perfiirmame ct»iiceriis. whereas the speciflratloti languages that are used solely for
non-distributed systems ihhuI not have performance features.
In this thesis we use I.OTOS as the basic formal language for specifying distributed
systems. IX) POS is ginnl at expressing functionality concerns but pw>r at expressing
performance concerns. The extension »)f hO I'OS for the specification o f performance
concerns is thus another key area o f distributed systems research wldressed in this
thesis. In chapters « , 7 and M we define quantitative liming, probabilistic and priority
extensions to IX) l OS; the result being XI. — Kxlenderl IX)TOS. XI. is used in chapter \
to provide formal representations o f architectural elements, and in chapter .S to formalise
aspects of the CIMOSA IIS.

2.5 Sum m ary

This chapter introduce«! distributed systems research as the c«)ntext <»f the work in this
thesis.
An examination of the theoretical/acarlemic perceptions of distributed systems set the
scene. Then we hMikerl at the induslrial/appliration perceptions of distributed systems.
Particular attention was paid to the reference architectures OSI, ()I)P , ANSA and (IM-
OSA because of the relevance for chapter i of their ideas about architectural concepts,
and the consequences for chapters « . 7 and K of their c«»nclu»ions about the formal
specification o f distributed systems. T IM OSA was given a special introduction since

'These performsnce Issses sre sisn knows ss of Service (QoS)" taase« in Ike ■perlflc esse
of rummusicstionB ssd dietributed ayetems

Chapter 3

An overview of formal languages

rhi» chapter introduceji formal lanRuaRe«. specifically LO'fOS, as context information
for this thesis.
We start by providing a broad classification of the lanKuaftes that can be used for «ya-
leiii specification. 'I'hen we focus on the Formal Description !f»chnique LO I OS. (Later
chapters will define extensions to LO'I'OS, and use Kxlendetl LO I OS for distributee!
system specification.) We briefly examine the factors involved in using formal lan­
guages for system development, amt conclude by highlighting the key issues o f I.OTOS
language research that are addressed by this thesis.

3.1 In trodu ction

Our inl<TP»l lien in langu»((m for the formal «pecifiralion of di«lribut«i «yatam«.
This chapter provides general background information about formal specification lan­
guages. This is purely a context setting chapter — it does not contrast our work with
existing work. Instead, we detail and contrast existing work (in particular, work relat­
ing to timing and probabilistic extensions for other process algebras) where appropriate
throughout chapter* 6, 7 and H

3.1.1 T h e attributea o f a specification language

An absolute definition of the characteristics o f a specification language is not possible.
Often we say that, a specification language describes systems in terms o f properties
rather than in terms o f imp/emenlolion drla ilt — it describes whal systems are to do,
not hou' they should be built. This is a relative definition, and only really makes sense
when interpreted in context with the definition of an implementation ianguage.

Itelow, we discuss the concept o f a specification language with respect to a number of
Attribute*.

A b .tra c tion : Crnerally it i* not po**ible (or dewrable) to de*cribe an object in perfect
detail. Normally a description will only rapture certain a*pe< t*. or ab»tractlons of
an object. A giKid description i* one which capture*, sufficiently precisely, those
abstraction* that are required for some given purpose. 1 his general heuristic for
description languages in also applicable to specification languages. (Specification
languages are a particular subset o f description languages, that describe whal
systems do, not how they do it.)
Distributed system* are complex objects with many facets. A specification o f a
system will express exactly thi>se facets of the jibject that precisely character-
ixe the object for some given purpose. To abstract is the process o f selectively
omitting certain details, resulting In an abstraction.
It is piMisIble to derive a number o f «lifferent, but complementary, abstractions of
the same object. For example, an abstraction may capture what is primarily a
physical shape, colour, smell, miise, aesthetic, functional, performance or logical
structure concern. No one specification language is suitable for capturing all of
thew abstractions; and only some o f these abstractions are Important to any one
discipline. For the discipline of distributed systems specification, abstractions of
functionality, perfiirmance and logical structure are important.

M odu la rity] The process of abstraction (and it* antonym, refinement) moves us vrr-
tirally between different level* of specification. Operating orthi>gonally to this is
the process of modularixation (compartmentalizatlon) which moves us horizon-
tally between different parts of a specification, at the same level o f abstraction.
(Modularity may appear in the form o f strict, self-contained modules in the sense
o f Modula-2 (KFHft), or alternatively, in the non-strict. overlapping viewpoint*
sense of 01)1* (see section 2.3..1.2).) The orthogonality between the notions of

abRtraction and modularization is conceptual, but well accepted and therefore
useful.
A specification should allow a specification to be organized as a set of
modules with well defined interfaces. Modularization ought to be compositional,
that is to say, the specification ought to be exactly the result o f composing its
mod tiles.
For the specification of a distributed system, the modular organization may reflect
the physical structure of the system, or alternatively, the logical separation of the
functional concerns o f the system.

Constructivenesa: A constructive specification describes a mechanism (or algtirithm)
for ‘achieving’ the properties a system, whereas a non-constructive specification
describes the properties of a system without providing any clues as to how these
properties might be achieved.
(’onstructive specifications suggest, if not dictate, mechanisms (or algorithms)
to be incorporated in their implementations. Therefore the more constructive a
specification, the more it constrains its possible implementations. This is known
as over-specification, and is usually frowned upon as specifications ought to say
u'hüt systems are to do. not Aou' they are to achieve it. In contrast t<» this perceived
disadvantage of constructlveness is the advantage of the ability to execute (or
“animate", or “simulate") constructive specifications, in this way. constructive
specifications may be used as early prototypes.

Form ality : Formal languages are languag«*s that are wholly defined in terms of axioms
and inference rules usually mathematical axioms and inference rules such as
those o f logic and set thetiry. Unlike natural language which has no precise
definitions, a formal language enjoys objective interpretation. Individuals must
use the unique set of rules that <lefine a formal language in order to interpret a
description written the language.

Formality brings with it a number o f advantages. Formal languages are:

• precise unambiguous and exact
• concise relatively concise syntax, with little "noise" or padding

• consistent no contradictions

• analysable amenable to mathematical reasoning.

Also, there are a number o f advantages which stem from formality, although not
direct results of formality Itself. 'I’hese include:

• correctness provable with respect to the requirements

• completeness no unwanted omissions

• implementability often formal rules can be given «iperational interpreta­
tions.

Often, the major disa<lvantage o f formalism Isi

• inromprehetiBibility thi* ii a direct result of the conciseness and unfamil-
larlty o f the formal notation to those without special training.

We would like a language for the specification of distributed systems to have all
o f the above advantages.
A formal language is not, by itself, a solution to all o f the traditional problems
a»»<)ci«l«l with Ih f arvclopment of dlilribulrd «yil^nu. However, it« qualities
do go »oine way to alleviating the difflcuitie«, and a formal notation together
with formal reasoning may result in the automation of parts of the deveiopment
process.

Concurrency: Section 2.2 explained how concurrency arises in a distributed system
as a result of explicit parallelism or the inability to totally order events due to the
spatial separation, ('oncurrency is an important property o f distributed systems.
Therefore it is essential that a language for the specification o f distributed sys­
tems. ran express concurrency in a direct way and can support reasoning about
concurrency issues.
In the main, formal languages adopt one o f two formal models of concurrency.
I'he -interleaving" nuMlel (MilKO, HoaiCl] represents concurrent events by say­
ing that -concurrent" events occur arbitrarily cUisely in lime in arbitrary order.
Kvenls within a -pern:ulation sequence" are ordererl in time, but the intervals
betwi>eti the events can be arbitrarily small. A trace through an interleave«! model
includes exactly one o f the permutation sequences, chosen arbitrarily. The “ true
concurrency" iliodel ((’d (’91) represents concurrent events by a bag of events, all
o f which are dwme«! to have occurre<l at the same instant. A trace through a
true concurrency model is a (partially) ordered list of bags o f concurrent events.
The choice betw«*<*n these two models of concurrency is normally made on philo
sophical grounds. I*ragmatically. there is little difference between the models.

Determ inisnit A system is deterministic if we can accurately predict its future be­
haviour. Prediction «if future behavUmr requires a complete and accurate de
Hcription «if the system's present slate and future specification Uigether with a
descripthm of the future influences frtim its envirtmmenl. (O f course, we can­
not accurately predict the future behaviours of real-life systems because «>f the
impossibility o f rapturing and analysing such information.)

In the world of systems specification a system is mm deterministic if, kmiwiiig
environmental Influences, we cannot accurately predict its reactions. A n«m-
deterministic system displays tiehavloiir which is not s«>lely determined by envl
ronmental interaction.
Within speriflratlons, mm determinism may lie use«l to to describe a set «if possi­
ble implemenlatUms. F«ir instance, a mm delermiiiisllr choice between two p«is
sible behaviours may be interprete«l as a rhtilce between two |KMsib|e implemen
tations.

Description of structure, data and behaviour: Usually, to understand a system
we subdivide it Into static aspects (structure and data) and dynamic aspects
(behaviour). It f«>ll«>ws that, f«ir a speciflratUm language to be comprehensible.

il i.uKht to provide feature« whirh allow thi* natural subdivision to be reflected
within its own descriptionii.

Q u an tita tive isauea: In section 2.4,2 we provided examples of performance concerns,
and discussed reasons for their particular importance for distributed system«.
Quantitative issues are intrinsic to performance concerns. For the specification of
performance concerns, a specification lan|tua*e ought to support suitable quan­
titative metrics and measttres (e.g. for time, probability and priority). Metrics
and their supporting mechanisms will preferably be built Into the specification
language, thus unburdening the user from having to describe these at a higher
|i*vel.

R eanon ing m p p o rt: Spwifiratioii languaROfi ought to bp Hupportpd by a knowlwlgp
ba»p of thporioH for reaiM>nmg about upcclfication» writtPii in that languagp, and
supportod by tutorial matorial whirh explain» how to u#p the language. Formal
thporip» for rpa»oning about »pecification» usually include equivaloncp», imple­
mentation and transformation relations. Tutorial material provides examples and
guidelines for using the language, and suggests how the user nught informally re­
late the specification language concepts to concepts within his/her understanding.

3.2 A pU 'thora o f sporiflra tion laHRuaKOH

Speciriratioii languages may be classified according to their abilities tt> concisely ex­
press certain properties. For exatnple. state oriented languages are gcHul at concisely
expressing properties such as ‘ in slate x, y can happen causing.. transition oriented
languages are g«>od at concisely expressing pn>p<*fti*’" "urh as 'x can happen followerl by
y . . and pr«)perly orienle<l languages are good at concisely expressing properties such
as 'x holds under these circumstances...'. In this section, we use such criteria to create
a broad classification of specification languages (see figure 3.1). This classification is
not jM*rfecl (some languages could be placed in alternative classes), nor is it the only
classification possible (we might have ustul (’homsky’s criteria).

3.2.1 In form al •pecification languages

Informal languages are the the most widely use<l class of specification languages. An
informal specification language Is not defined in terms o f mathematics and thus is open
to misinterpretation.
SpiM-iflcallons written in everyday language usually consist of natural language prose
with accompanying diagrams and tables. In order to reduce the scope for misinterpreta^
tion, everyday language specifications are <»ften written in “stylised natural language
(see any legal document), or are hierarchically structured with an extensive use of
cross-reference labels (see any non-formal ISO document).

3.2.2 Sem i-form al specification languages

For a semi-formal specifiration language, the scope for misinterpretation is reduced
because it has a partially complete, agreed definition.

3.2.2.1 Specialised notations

Spe<ialised notations include: Jackson Structured Diagrams [JacKII); Mascot (MasHO).
system flow charts, entity-relationship diagrams and structure diagrams (SM('74, YC79,
YouMQ).

3.2.2.2 P rogram m ing languages

Programming languages can be used to express both specifications and implementa­
tions.

Im pera tive program m ing languages Many imperative programming language
ciiiicepts are closely allied to notions o f computer architecture, such as memory and
assignment. Because o f this, imperative languages tend to be implementation oriented.
Alsti, since traditional computer architectures support what is essentially sequential
exectitiim, tiiost imperative languages do not support features ft>r expressing concur­
rency. Nevertheless, imperative programming languages have been used as specification
and design languages, e.g. Modula-2 [KPH.-V], Pascal (ISOM2) and Ada [Hm>K7)). Kstelle
[ISOKila] is an example of a formal specification language which is based cm the pro­
gramming language Pascal.

Declarative program m ing languages Declarative programming languages are
basc*d on set theory, lambda calculus and logic. Often, they have formal semantics
(separate from their computer based realizations), in which case they ought to be clas­
sified as formal languages. Declarative languages are abstract in that their concepts
are unrelated to computer architecture. Declarative language's allow concurrency. In
/unefiono/declarative languages (such as. mr Icm>[AJH9] and Miranda (IurH.5)) function
arguments may be evaluated in parallel. In /oÿir declarative languages (such as Prolog
[HamH9]) goals-to-prove may be pursued in parallel.

O b ject-oriented program m ing Innguagea The basic concept in object-oriented
programming languages is the objrrt. An object is an automonous entity, encapsulating
l>oth data and processing services. A system is built as a set of interacting, possibly
concurrent objects. Objects interact by sending and receiving messoyes. Receipt of a
message by an object lnv«>kes a mc/firx/ (a processing service). The method may modify
the state <»f the object, and may send messages to other t>bjects to solicit help, or
return a response. In object oriented languages, objects which share a common set of
melh(»ds and data f«»rm a r/oss. Kach object is an in^tarirr of a class (an instantiation
<if a template), (’lasses are structured in a hierarchical fashion. A class automatically
iuhrntM generic methods from the class which is directly above it in the class hierarchy.
Inheritance is a form of relegation o f description.

The ob jw t oriented model Is well aligned with distributed computing system frame­
works such as 01)1* and ANSA/ISA (see sections 2.3.3 and '2.3.4), in which systems are
described in terms o f distributed collections of objects relying on underlying communi
rationN M*rvice8 («uch m OSI) for mennagp-pMiiing.
KxatnplpH o f object orientiHl latiKuaKPH include Kiffel (MeyH7. MeyKHa. MeyHRb],
Smalltalk ((iRH.l) and C + + (SlrR6]. Of these languages, Kiffel in particular is use­
ful for specification, design ami inipl<’menlation stages. I'his is. in part, because Kiffel
allows all stages to be carried out within the same methodology and environment. An­
other reason for Kiffel's suitability as a specification language is that the Kiffel language
includes aimrrtion constructs that pronjote formal reasoning about statements written
in the language. I'he assertion constructs are generally bcKjlean expressions that ex­
press Ht»me property which should be satisfied by certain entities at a designated stage
in the execution of a system. These assertions include; preconditions, postconditions,
class invariants and exceptions (explicit assertion violations). Kiffel does not yet have
a full assertion language for expressing Kiffel designs in a formal way. but work towards
this goal is in progress (Mey9,f].

3.2.3 Form al specification languages

The attributes of formal specification languages were introduced in section :*.1.1 —
formal specification languages have mathematical definitions. A variety o f formal spec­
ification languages exists. Some of these are outlined and classlfie<l below.

S.2.S.1 State-oriented

State t>rient<*<l and transition-oriented specification latiguages describe systems in terms
of graphs. (Iraph nodes represent system states and graph arcs represent system Iran
sitions. A state-oriented specification language emphasixes graph nodes (states), while
a transition-oriented language emphasizes graph arcs (s«»quenres of transitions).

F in ite S ta te Machines A finite state machine (FS M) (o r finite state automaton,
KSA) is an abstract machine with a finite number of states. The machine can be in only
one state at a time. 1’he machine starts from one state, known as the initial state. A
transition takes the ma<hlne from one slate to another state. In one kind o f FSM, the
Mealy M*H»re machine (IHI79), transitions are associated with output or input symbols

input symbols drive the choices between transitli»ns; or «>utput symbols indicate the
transitions taken.
The size o f a FSM description very quickly becomes unmanageable as the complexity
of the system being described increases, 'rhis is l»ecause, in their basic form. fSM s d<i
not have concepts such as definition and Instanllallon, variables, parameterization, etc.
FSMs that support Mime of these concepts are known as extended finite state machines.
Also, without support for modular composition. FSMs are monolithic in structure.

Another problem with FSMs is that their setiuenlial behaviour might be construed as
a re<iulrement for serialized behaviour in an implementation, rather than as an artifact
of their model.

KfiteUc [ISOKQa] in »n example of a language which it baited on FSM#. In tecUont 6.2.3
and S.2.3 we ute an KSM to explain (Kxtended) LOTOS tpecificaliont.

P e tr l-N e t i Petri-Nett were first introduced by ('.A . Petri [Pet62, PetHl). A Petri-
Net is a particular kind o f directed graph with two types of nodes, namely the piarrn
and frtmtiiioris. The basic structure o f a Petri-Net consists of a set of places (depicted
as circles), a set of transitions (depicted as bars), and a set of directed arcs which
connect the transitions and the places. An arc directed from a place to a transition
defines that place to be an inpuf piare o f that transition. An arc connecting a transition
to a place implies that the place is an ouipui plarr o f the transition. A transition may
have multiple input places, and multiple output places. The atatr o f a Petri-Net is
described by the distribution of markers, called tokrnn, in the places o f the net. lokens
are depictini as dots inside the places that have them. A particular assignment o f tokens
is referreil to as the iiiaritmff o f the net.
A transition can firr when each o f its Input places contains a token. A firing results
in one token being deleted from each input place, and one token being ^ d ed to each
output place. The nuwt interesting feature of Petri-Nets is that transitions can fire
simultaneously and therefore Petri-Nets model true concurrency.

A large body o f theories, twhuiques and lends exists for Petri-Nets. In fact, the avail­
ability o f peiwerful analytical techniques is one of the ntajor advantages of Petri-Nets.
For example, there are iheniries for reachability analysis, invariant analysis, assertion
proving, and optimizations.
Various extensions (high level Petri-Nets) exist beyond the basic model. These include
Arc-limed Petri Nets. (’oloure<l Petri-Nets, Predicate-Transition Petri-Nets and Nu­
merical Petri Nets [Wal«3, DiaiM). They effe« t compact representations of systems by
having each place represent a number o f different conditions.
In M'Clion 6.3 we use a derivative of Arc-tiiiuHl Petri-Nets as a vehicle for the exploration
of quantitative time concerne<l specification.

Estelle Kstelle(Fxlended Finite State Machine Language) (IS0M9a] is a FDT (Form ^
Description Language) which has been standardized by ISO and accepted by ((J F I
(sw section 3.3.1). Kstelle is base<l on an extended finite slate machine (K T S M)
model. An F/Slelle description consists of a number o f hierarchical, communicating,
non deterministic KFSMs. The KFSMs communicate messages via bi-directional rhan-
riris that are connected to iutrrartiou p<»lnts. ('hannels queue messages at either end
until an FFSM is ready to accept them. KFSM transitions are described in a derivative
of Pascal.
K .lrllr idliiw» drlat rlauKrn fur px|>rm«in* llmln* ronrrrn«, »/».iilanrou» Irantitianm,
m ill <lplprmlnl»tir rh.ikp. dytmniir rrPBllon of KKSMri. »nd ronrurrpnry rontrnU bp
twppii KKSM». A I’aiir»! dprivBtIvp ii. uimd to dpfinp Ihp d » t » typin* p»rt of KhIp IIp .

S D L SDI. (SpppifiPBlion mid Dpurriptlon l.miKUBitp) [('('192] i, an f I) T whirh hmi
bppn ulrnidardlupil by (T I T T and apppplpd by ISO. Likp Katpllp, SDI, la baapd on an
KKSM iiiodnl. I.lkp LOTOS, SOI, ubpb abatrarl data typpa (app aprtlon 3.2.3.4) for data
typin*.

39

All SDL «perifiratioii in built from a hierarchy of btorkn. Blocks decompile into nub-
blocks and. eventually, proctimes. Procennen are represented by KFSMs. .Viÿrio/a (mes-
sages) travel between blocks via chanurln (bi-directional queues with inspection and
priority facilities), and between processes via »iguai rouies.
SDL was developed specifically for telecommunication systems specification by (X 'lT T ,
and has a formal semantics. SDL has two representations: a graphical representation
(SDL/(JR). and a textual (program like) representation (SDL/PR). SDL is an abstract
language, with a mature body of experience and l(x>ls.

3.2.3.2 Transition-oriented

I'ransition orientiHl languages characterize systems in terms of sequences o f transitions
(in contrast to state-oriente<l languages that characterize systems in terms of states).

Process algebras Process algebras describe the externally observable behaviour of
systems in terms of cecnis (transitions). Kvents are often considered to be atomic;
an event occurs at a single point in time. Fvents are used to represent real-world
actions. (Jenerally, an event is the result o f a »yurhrouization between two or more
civfif offtTB. An event offer is assriciated with a prorrss — a structural unit. A system
is structure<i in terms of hierarchies of synchronizing processes. Kach process defines
ordering constraints over the event offers that are sited within it. The synchronous
combination (using a variety of operators) of all processes yields the overall behaviour
o f the system. Kxtenally observable events are events which require the synchronous
participation o f the cm’ironmru/ (considerrxl to be a process outside the system itself).
Kvents which do not involve the environment are known as iuUrttai rirnis. I'hese are
not observable from outside the system, and are uschI to model ‘•spontaneous” actions
within the system.
l*r«>r™« nlgol.r«« »rr particuUrly «p i for th*- ronciM- «perifiralimi o f concurrency »nd
other teinpor«! orderinn concern». Kxninple» o f proce»» «iKehr«» include CCS (('«Iculua
o f CoininunicnlinR Sy»leni», (MilsüD «nd CSI’ (Cominunic«tin* Se<|uenll«l l>roce»»e«.
|llo«N:t, lloaN.I)). The proce.« «Igehr« p«rl o f I.OTOS I» l«r»ely h«»ed on lhe»e two
algebras.

3.2.3.3 P roperty-orien ted

A distributiMl system specification may be expressed as a set o f properties that the
system is required to satisfy. l»ropertles can be formally expresserl as prrdiratrti —
b<K>lean functions over sets of mathematical objects. A system satisfies a property
if the system representation in terms <»f mathematical objects satisfies the analogous
predicate. Pro|>erty oriente«! specifications tend to be very concise, but ran be difficult
to understand without mathematical training.
Property-orienterl languages are base«! on classic mathematical logic (pr«>poslli«inal and
predicate calculi, and set theory). Pr«)pertyoriented languages include trmpitrai iogicB
(a form of ttunial Utgir) and highrr-ordrr tagirB.

Tem pora l logics Temporal logic» (or. more generally, modal logica) are specialized
logic» for expressing time-related properties, ('lassical logics are useful for the forntal
specification and verification o f deterministic sequential systems. However, when dis­
tributed system characteristics such as non-determinism and concurrency are involved,
the extra expressiveness o f temporal logic may be needed to concisely state system
properties. Pnueli [l*nu77, HnuKl) proposed using temporal logic for reasoning about
such systems, as this has temporal operators with meanings such as “afu’cys", “even-
tually" and "u r it ” which hide the explicit quantification over time otherwise m*eded.
I'emporal logics have been developed into forms useful for reasoning about computing
systems by [I*nu77, PnuHl, LamNO. bamKO. bam77, bamH3, HAPMH3].
U urar trmpttral lugira consider time as a se<|uence o f discrete states so that at each
moment there is only one possible future, whereas branching temporal logica consider
time as a tre<* structure so that at each moment time can branch into alternative futures.
Lamport [LamKO] concludes that linear temporal logic is suitable for reasoning about
concurrent systems, while branching temptiral is preferable for reasoning about non-
deterministic systems. However, a study by (KHK6] showed that branching temporal
logics are needed for reasoning about “existential" properties of concurrent systems
such as the possibility of deadlock in some future.
'lemporal logics are especially concise for expressing aafety (invariance or “ something
bad never happens" (LainHO]), /iW mcm (eventuality or “something gm>d must eventually
liappen"(l.amKO)). prrctdrnct [MI*Hl] and fairttraa [(iHSSMO).
Specific work on the use o f lemporal logics for system specification can be found in
[IIKHI, HKHKI, HarH7. HKPH.'), H()K3, HdRH9]. 1’hese references develop compositional
temporal logics for modular specification. [KdbttO. IIKPH.*») report on work aimetl at
providing temporal logic semantics for bO I'OS. and work towards verifying properties,
expressed in lemporal logic, o f bO'l'OS systems.

3.2.S.4 A lgebra ic languages

Algebraic languages concentrate on the logical properties of data types and operations.
Algebraic languages do not have facilities for expressing lemporal ordering concerns.
Algebraic languages abstract from concrete representations o f data types and operations
by defining only those essential properties of the data and operations that any correct
implementation must satisfy. This is arhieve<l by identifying the mathematical ob>ct.
namely an algebra, which Is forme«! by the sets o f data values, called the data carriers,
and the sets «>f operations that can be performed on lh«*se. (See [KMH5] for a full
explanation of algebras.) Examples of algebraic languages include A<’T ONK [KMM.’i]
and OHJ [OFMM. OlFOl).

A C T O N E The A (’T ONK language was developed within the “ Algebraic specifl
ration techniques f«ir the c«»rrect design of trustworthy s«jftware systems" project by
the ACT-group at the Technical University of Merlin in 1ÍÍH3. A revised version was
later presente«i in (KMH.'i). A (’T ONK forms the basis of the data typing parts <»f both
bOTOS and Sl)b.
'I'he notion o f paramrirrtard *prn]/ira<iori drove the design o f the A (’T ONE language.

A par»inet€Ti«<Kl «pf^ifiratioii U a spwifiration with formal paramrtrrr which can later
be inrlaulialrd with actual value». AC T ONE provide« four concept, for defining
and Btructuring a .y.tem: baaic specification, rrnaming, enrichmrnt and paramrtrriza-
tion/artuatization.
HaMir involves defining typr»- Types encapsulate sets o f values railed
sor/s and the opt ratiorin on these. Sorts are defined solely in terms of the operations
allowed t)ii them. Operations are defined by means of rquations which state equivalence
classes among irrtns (the expressions forme<l from operations). The equations behave
like fru»n'/r ruirn. Rewrite rules provide an operational interpretation for ACT ONK
specifications if the cH^uations are confluent and terminating (i.e. are (hurch-Rosser),
then repealed application of the rewrite rules will reduce a tern» to its unique normal
fortn.
Renaming makes a copy of a type and changes the sort or operation names of the copy.
Knrichment allows types to import and use other types within their own definitions.
In this way. a type may extend another type. Actualisation instantiates parameterized
types with actual values.

3.2.3.5 Model-oriented languages

Moilel-orienteil languages um* notations which are specializations of U»gic and set theory.
Using ihesi' notations, system behaviours are describe«! in terms of prt-ronditum^ and
fHtnl-ronditioutt. Kxamples of mo<lel-oriented languages are Z (SpiH9j and VDM [HJ7H|.

3.3 L O T O S

We have chosen to us«- 1,0 TOS (I.anguage t)f lemporal Ordering Specification (ISOH9b])
as a basis for disiributeil system specification. baler chapters wíll define extensions to
L o r o s and dentonstrale how ihese extensions may be used to specify key aspeets
o f distribute«l Systems (as discussed in seclion 2.4.2). This section provides a brief
overview of ihe evolution. features and applications o f LO I OS.

3.3.1 T h e K D T a : th e geiieaÌB o f L O T O S

in 19H0. ISO gave a remit to ISO Committee SC21/W01 to standardize formal de­
scription techniques for OSI. Although a numl»er of formal languages already existed,
their <lefiniti<»ns were prone to unc«K»rdinale«l changes — none of the existing languages
enjoyed management by internatiiinal standards Imdies. I'wo languages emergeil friiin
the w«>rk of the SC2I/W(J1: Kslelle, based on KSMs; and LOTOS, based on pr«»cess
algebras.
In |i«rallcl with ISO. (' (T i r h«<l ilcvi'li.piHl their own » l»n d »r l» « l formul language,
SDI., for the Bprcificatlon ami iIcBlgn o f Irlrcommunlratlon» »ystemB. ISO and ('(l IT T
agreml to rm-ognl«,. E«lelle. 1,0 TOS and SOI. a» mutually acceptable »tandard». They
l»s-ame known a« the EOT«. (Nowaday«, the term EOT Ib «onietime» u«ed le«« accu
rately to Indicate any formal «tm-lficatlon language.)

3.3.2 Festu re» o f the L O T O S language

LOTOS WM devolop.-<i by lSO/TC9 7 /SC2 1 /W (¡l/F n T/Subgroup C to bwoine an
International Standard (ISO SS07) in I9KS. LOTOS ha. been deiigned for the formal
.perifiration o f distributed, ronrurrent. information processing systems.
LOTOS adheres to the principles o f good language design: it has firm mathemalicM
foundations, and is a small language with powerful constructs. Its mathematical basis
support, formal reaimning. and it. powerful constructs gives It a rich expressiveness. An
introductory tutorial to the language can be found in [ISOH9b, IIIÏK7], with guidelines
for its use in ri'ur9:lc. IS091, VSvSKK, VSvSll9<). vS90, rurH9b, TurS9a].
1.0 r o s Is a combination o f two distinct formalisms: a process algebra language and
an abstract data typing language. 'I'he process language is basetl primarily on Mil­
ner’s CCS [MilMO] with influences from related calculi, especially lloare'. fSI> (HoaHS,
lloaS.'i). The abstract data typing algebra part it based on AC T ONF, (LMS.S] (sec-
tkin
I he ha*ic unit o f l)€*havioura! «tructure in a IsO'I'OS spwifiratlon is ihn proct»». Pro-
ccsM»* ar«> treated a« “ black boxe«“ LOTOS deicribe« only the externally obMTvable
behaviour of proceHnen. 1'he behavifiur of a LO TOS specification consists of all the (ob-
servable) interactions betwe«'n the pr«icesses and the specification environment. LO I OS
models interactions as discrete, atomic ewnis (or orfmns).
Kvents occur at specific inleractùiii points called gntra. Processes are able to commu
nicale with each other if they share a common set o f gates. An event represents both a
communication and a synchronization. An event occurs when all the participating pro­
cesses (including the specification environment, if the event is observable) synchronize.
Hence, LOTOS is labelled as a “synchronous algebra**, linlike (*<*S, LO TOS supports
multi-way synchronization between more than two processes.
Only observable events are visible. tuUm al recnís are represente<Í by special, unob­
servable i events. An internal event occurs spontaneijuly withtiut the participation or
control o f the environment.
A process may be internally structure<l as a r<illection o f sub-processes. In this way, an
entire LOTOS specification is a single process (internally, hierarchically structured into
sub-processes) interacting with the environment (which, itself, can be considered to be
a special process outside the scope of the specification), (’omplex behaviour is built
by combining simpler coinp«»«’ »»!"- A LOTOS behaviour is den<itetl by a brhaviour
trprtiufwn. The LO I OS language consists of fundamental behaviour expressions and
a small, but powerful, group o f op«*rators to combine behaviour expressions according
to defined rules. I hese operators can be use<l for specifying seíjuencing. choice, non-
determinism, concurrency, synchronized and interleaved Iwhaviour. LO I OS models
concurrency using the interleaving model (section s'!.!.!).
The static structure of a LO TOS specification is governed by the formal syntax rules
of LOTOS. These are given in extended HNK notation.
The formal semantic rules describe the Interpretation o f a LO'TOS specification. The
semantics of I.O'TOS are described in the SOS (Structured Operational Semantics) style
of [l*loMl|. Kach l>ehavlour expressh>n Is semantically define<l as a labelled transition
system. The transition system Is constructed by axioms for the fundamental behaviour

cxpreANionfi, and inferonr«* MrhetnaK for the operatom. Kach inference schema defines
how (at the semantic level) a transition system is derived from two simpler transition
systems, in reflection o f the way in which (at the syntactic level) a particular operator
combines two behaviour expressions.
LO rO S uses a laiiKuage derived fron> A (’T ONK to represent values, value expres­
sions. data structures, etc. The data lypin* language has pre-define<i library types.
cimditioual tquatiou/>, rt natniug, rurichmrnt, paratnrttrizatiou and actuatizatiou fea­
tures (se<* section 3.2.3.4). The fusion of the data typing language with the process
algebra language allows:

• guarded events a b<Hilean value expression may guard/condition the occurrence
o f an event

• value passing values may be passed from a terminating process to its successor
process

• value negotiation a set of values may be negotiate<l on event synchronization.
Kach participating process provides an evrnt-offfr a gate, event values and a
preilicate over event value parameters. When event synchronization occurs, a set
o f values is negotiatetl betwwn the participating processes such that the values
in the negotiated set satisfy all the predicates associated with the event offers.

riie net effect of these language features is to make I.O IOS particularly g<K>d for
capturing abstract descriptions of distributed, concurrent, non-deterministic systems.
However, we believe that 1,0 I'OS dws have a few inade<iuacies when it comes to the
specification of certain ijuantitalive aspects t)f distributed systems. We have already
mentioned this c<mcern in a general discussion in section 2.1.2. Section J.5 will list the
key inade<iuancies of LO'I'OS.

3 .3 .3 W o rk re la ted to L O T O S

Already, a large body of literature exists which documents work relate<l to 1.0 TOS.
H<‘low. we provide references to some of this work. KIsewhere in this thesis, references
to additional l.OTOS work and other related work are given where appropriate.

D efln itive literature: [ISOKPb]

Tu to r ia l literature: [IÍHH7. l urflííc. HriKHa. vKVDHf), ISOOl. VSvSIKMt. vS»<). TiirH3b.
'I'urHPaj

L O T O S relational [HriNNb. WezMfl, HSHH, l,<*<HMa. WHl.W), K(íMlM), LedíH))

Specifications o f international atandarda in LO TO S : [IS092a. ISOfMJa. ISOtKlb,
ISOWOc. ISOfKW. SadW). J<’»0. WvHHW)]

L O T O S method and tf>ol developm ent p ro jects : (TurH9b, QI*KH9. MarHft, 1'urHHb.
I»ir«l, IINOKH. HWN+HH. WH9I. Win92, MC93)

L O T O S and architecture: (I ’urM?,'I'ur9 1 , VSvSHH, Hog»0. VSvSHttO. TS93, l'ur93a.
rvS92)

T h e application o f L O TO S to C IM -O S A i [Vio90 , HVK9. M c(‘90a. Mc<'90b, MHHiiO]

T im ing extenaion .: [QAKÎK). vHTZ90. HL91. Mc('91b. LedQlb. Ki<i90. KRP90]

O b ject-orien ted LO TO S : ('RSK9. HlaK9. MayH9. (’J92. (’1x90]

3.4 System developm en t m ethods using L O T O S

A system developm ent m ethod is a parlirular way o f producing an implementation
that satisfieK a given set of informal r«*quirements. A form al system developm ent
method (or “ fo rm al method*' for short) is a system development method employing
formalism. I he term formal mt lhod is somewhat misleading. All system development
methods require informal input ami so no method can claim to be con>pletely formal
(see (Hri91)), though the method <if processing informal requirements ran be formal.
Realistic goals for forma) methtids are: partial automation of the development process;
and providing means of handling complexity through tool and reaiwming support.

A formal method r«*quires a number of ingredients, including:

1. a M*l o f formal languages or notations in which to model the target system. In
this thesis. w<* develop and use Kxtend«*d LO I OS as our fi>rmal language.

2. a collection of formal reasoning rules for guiding and controlling step wise refine­
ments and transformations. Section provides references to formal relations,
transformations and reast>ning rules for LO I'OS. Appemlix (t and section 7.Ü add
to these existing reasoning rules by developing formal testing ideas to support our
LO TOS extensions.

:L a reference-base of domain-specific information for providing a design framework.
Sections 2.3 and 3.3 cite reference material which suggests how to use LOTOS
in the domains of 01)1», C IM . OSl and objerl-orienle<l systems, (’haplers I and

ilevelop a spwificatiiin framework for the domain of distribtjte«! (performance
concerne<l) systems.

tiKils to automate parts o f the development process, We overview ttx>ls for sup­
porting LO TOS development methods in section 3.1.3.

creativity to originate ideas.

3.4.1 n e v e lo p in e i it Activities

fTurM9b) provides a list o f the identifiable activities within a formal development method
(also see (Tur93c, Chapter 11)); these activities are:

• Requ irem ents capture requirements input cannot l>e formalised and will
occur, in gradually lesser «legrees. throughout the development lifetime. 1 ypically,
requirements capture Involves extracting and assembling in a semi structured way,
a mass o f requirements from customer persimnel and documents.

• Form al •pacification o f requirement« — the raptured requirement» are given a
formal ropreHcntation.

• Ana lysing the requirem ents through the formal sperifiration — the proewa
of writing the formal apecification will highlight ambiguitiea and inronaiatenriea
in the requirements. I'he formal spécification may be analysed for safety, liveness,
freedojn from deadlock, etc. properties, and checked for completeness.

• Design steps thi»se progressively move the development focus from the spec­
ification level towards the implementation level. Kach design step contains two
activities:

_ Kcflncm cnt o f the d e iign — introdurc implementationoriented detail,
«olve» de.ign prohlem. and rcolve« de«ign choice«. Formal correctne.«
preHerving, («enii-lautomatetl tran«formation« may he u«e<l (e.g. [Fir91]),
or Informal guideline« may he u«ed («ee «ection 5.5).

- Veriflcn tion proving that the refinement «ati«fie« the «pecification. Proof»
may he baiMHi on formal implementation relation« and equivalence, (e.g.
[HriSMh. WezHH, IISHH, lotlB la], and «ee appendix C).

• Im plem entation of the de«ign code generating t.xil. may partially automate
thi« activity (e.g. [MdMHB, WIIHII]).

• Va lidation i.,«ting that the iiniil.un.uitation «ati.fie« the «pecification. leating
framework« may he ha«iul on formal theory and formal relation« (e.g. «ection 7.5,
(HriNNhl).

From the inher.uit ordering in the above li«t of artivitie«, we might infer that formal
ilevelopinent method« take u« towaril« a «.ilution in well deftniul «ucreaaive «tep«. How
ever, in the next «uh«.H-tion we caution again.t empha«i«ing «uch «impie development
lifr-cycle models.

3.4.2 L ifo -ry rie modela for ron iia l developm ent methoda

Oeveloptnent life cycle imniel«. «uch aa the waterfall motlel or «piral nnnlel. are “ ivory
tower" nioilel«. Such model« are valuable ab.traction« and «implifiration« but, unfortu­
nately the«.' ab«tract model« are «ometime« adopte.1 by the formal ntethod« roininunity
a« reali«tic nio.lel« to l.e u«e<l in the induatrial world. The «trurture.1 ne«« ..f the«e mod
el« may «eem a|>|>ealing. but It 1« al«o unnatural — it dim« not accommodate the manner
ill which humsns work.
H.'«earrh re«ult« concerned with the «y.tematixation o f the development proce«« have
inature.1 and b.'colne le«« naive over the la«t 25 year«. [CM lIll de«rribe« how the «trict
cln«tering and deconipmitional «tructuring technique« o f the IÍMH)« (the «o called “da«-
«le analy«!« and de«ign technique«") fail when applie.1 to minit real world problem«.
Kinpirical «tiidie« (VIIOO, V1«»0, (¡uilM), fM 9 l, U.91, M ICMHO] have concluded that
human« u»e both rírp-hy-nlrp development (when advancement toward« a «olutlon pro
reed« In .ucre.«ive «tep«) and opporlutii.dr development (when ailvanrement toward«
a «»lutlon proceed« in a «eemingly ad-har faahion).

In opportuniBtir dovelopinciit. the desiRii space is explored in an apparently non-
systematic way. Opportunistic development can best be defined by listinR some ex­
ample characteristics of it in action, e.R.:

• the desiRner’s focus jumps between different levels of abstraction and refinement
tliniunhiiul thr clevplc.pmi-lit life ryrl,- (»Ithough the overall trend ii to move from
higher to lower level« o f abstraction a* the life cycle progresse»)

• elements from previous (partial) solutions are fretiuently incorporated into new
solutions

• inspiration at one point in the desiRti space frequently de mystifies other areas o f
the design spare

• partial rotnpletion o f subgoals, and then backtracking to work on other goals

• partial and incorrect derivations may exist at intermediate stages in the desii
process

• interleaving work on distinct areas <if the design space.

Methods and computer aided software engineering tmils based strictly uptm the (’las­
sie development models (stirh as top tlown, breadth first), limit the opportunities ft>r
designers to exercise insight. Such U k >1s restrict the designer from Jumping around
the design space to opportunistically fill-in multi dimensional jigsaw like pie<es o f the
design.
The idea of the opportunistic devehipment life cycle contrasts with the very system
Htiml life cycle models (such as the waterfall and spiral models) that are often refer
ence<l and reworke<l by the formal methods community, However, the apparent con­
tention between (the systematization from) ftirmal tnethods and (the ad-hnc-urHii from)
opportunistic developtnent is reconciiable. We believe that a formal method ran be sup­
ported within a framework which allows for (»pportunistir development. Development
metht)ds and tmds could allow <lesigns to be develope<l in an opportunistic way and yet
these designs could be amenable to formal manipulation. Accommodating within fc»r-
mal methods, the ad-ft«r manner in which humans work, may lead to a wider acceptance
of formal methods,

3.4.S Tools

The effective use of formal spe<ifiralion languages and methods requires the support of
Siiftware UhiIs. We use (I'urHflbl’s hroail classification of t«K»ls to structure our overview
of the t<K>ls available to support l-OTOS.

3.4.S.1 “ Book-keeping too ls "

l)(Kik keeping tixils are used to create, edit, maintain and print specifications. Normally«
operating system utilities, such as text editors and version control systems, are atlequate
(unless the formal language uses a s|»eclallzed graphical notation).

S.4.9.2 “ Front-end tool»**

Front-end tool* dlrertly manipulate the Bpecifiration text. LOTOS front-end tool*
include |MarM9):

• syntax directed editor*. e.R. a (’ornell Synthesizer (Jenerator editor [vKH9], graph­
ical editor for (J-LOIOS (<’YYWH9]. MKLO (Mentor LOTOS Kditor). SKAL
(Structure Kditor Adopted to LO'I'OS)

• syntax checker*, e.g. SC’LOTOS (Syntax Checker for LO TO S)

• cro*B-referencer*. e.g. LXRKF (I.O TO S Cro«* Heferencer)

• ahntrart repre*entalic*n builder*, e.g. LAS'I'B (LOTOS Abstract Syntax IYch*
Builder)

• Btatic semanticB analyser*, e.g. I.ISA (LO TO S Integrated Static Analyser)

• print formatter*, e.g. PIM.OTOS (P retty Printer for LOTOS).

S.4.S.9 Analyaia tools

Analysis tmd* are uw'd to verify, extract Interpretation from, and symbolically execute
formal *imm ifu ation*. LO I'OS analysis t«K>l* include:

• AT TO [MVH9] a t(H>l for the analysis and manipulation of labelle<l transition
HyBtems

• SQUKiOLKS {BCK9): (naiiuMl after the symbol* a» and -n- denoting strong and
weak «>bservational etjuivalenceB) a ttH»l f<»r automatically checking the strong
bisimulation o f LOTOS specifications

• PKRLON (BdMSM9) tend for analysing the persistency properties of A<’T ONK
data ty|>es

• symlmlic executors (animators, simulators, interpreter»), e.g. SMILK (vKK9l],
the Ottawa interpreter (LOBFHH). H IPPO (vKHH. MarK9), SPIDKR (Service and
Protocol Interactive Development Knvironment) [JohH9).

9.4.3.4 “ Haek-end tool***

Balk end tiK>ls are used to transform and implement specifications. LO TOS back end

• LOLA (I.OTOS l.aboratory) [gPFM9) a tiM>l for the automatic expansion of
LOl'OS spei'iflcations

• COOPKH lAlilHO] — » tool for Iho rlirlvaliiin of r»nonlr«I iM liT» b »«s l on thf
rO O P iiiptliod (WnnKW)

• r o l ’ o |MclMH»| — Kriiprnlp« C r™|p from I.OTOS «pprlflrnticm«

• rompiUtimi o f AC T ONK into abutract term rewriting marhinea ia reported in
1WHH9).

3.5 K e y issues in form al language research fo r th is thesis

Thia aeetion liigliiighta the key areaa within formai ianguage reaearrh tlia l are addreaaed
in thill thcRiH.
rh f Iheniii tlflv«»« into thrw broad area« of renearrh:

• onhancinK th<* LO'I'OS languagp

• architectural concoptii and their definition

• application o f the LO'I'OS laiiRuage.

3.5.1 Reaearch into L O T O S language enhancements

A number o f enhalirement. to the 1,0 TOS language have already been propoaed (e.g.
Iisoihtr. I*ir«l. yAK(H). vHT/,90, 111,91, l,e<l91b]). Some o f theae concur with our own
re<|uirementa for enhancing I.O I'OS. aome do not. Where appropriate (particularly in
aectiona ti l ami 7,'i) we referetice exiating propiuiala for LOTOS language enhance
inentn, and compare tliene propona]ii with our own proponaU.
Our concern In thia theaia liea with uailig LO TOS aa a baaia for the formal apecification
of diatributed ayatema. Section ll.l.l detaila the attributea required o f a formal apec
iliration languide for diatributed avateina. LO TOS acorea favourably on all Imt one
count the expreM»ion o f ^umihfa/ier
The ability to exprenB quantitative information lx nece»xary for the specification of
performance (or Quality of Service) concerns for dixtribute<l systeinx (section '2A.2
dixcuHxeH the importance of this). lb remedy this inadequacy o f the 1.0 1 OS language,
we propoM' and define three extensions to the language:

T L O T O S : L () TOS extended for the formal specification of quantitative timing con­
cerns chapter (>.

P b L O T O S : l.O'I'OS extended for the formal specification of probabilistic concerns
chapter 7.

P rL O T O S j I.O'LOS extended for the formal specification of priority concerns — sec­
tion K.l.

We define the enhancements to the LO LOS syntax and semantics required to real
ixe each o f these extensions, and prtivide examples for the use o f each extension.
Also, for TLO'I'OS and IMiLOTOS we define formal equivalences and implenienta
tion relations, and discuss testing. 'I'hese extensions may be used in Isolation or
in combination with one another. We call the combination of all three extensions
(TLO 'IO S-hPbLO TO S+l’ rLOTOS) Extended L O TO S (X L). Section H.2 describes
the integratiem o f 'I’LOTOS. PbLOrOS and PrLO'rOS. and provides examples In the
use of XL.

40

3.6.2 Research into arch itectural concepts

The thesis develops a ‘melhod' for the application of (Kxlended) I.OTOS. called
architecture-driven specification (chapter 4). Our architectural concepts provide both
fuurtiouai romponruti* and ptrformauct compontnt» for the structurinx of distributed
system specifications.

3.6.3 Research into L O T O S applications

III section .'1.3 we riled some of the applications of LOTOS to date. Ill this thesis we
add Ki the arriiniillated 1.0 TOS application knowled*e, by reporlin* on our application
o f (Kalendeil) I.O'IOS to the CIM OSA IIS (the case-study in chapter .6). This rase
Study is interesting for three reasonst

• In contrast to other applications o f I.O'I'OS. the (’ IM-OSA IIS is not a symmetric.
layere<! communications architecture like OSI. and the (IM-OSA IIS is more
applied and specialized than the very general OOP architecture.

• The cas«* study provides an insight into the a«lvanlages o f specifying a distributed
system using a pre defined framework o f formalised architectural concepts (de
ve|ope<l in chapter i) .

• The case sluily pr»wi«ies an opportunity to test the (11,0 TOS. Pbl.O lOS and
Prl.O rOS) extensions t»j 1,0 I'OS.

3.6 Sum m ary

This chapter introduced formal specification languages, specifically I.OTOS, as context
information for the w«>rk in this thesis.
We began by listing the general allributes re«|uired of a language for the specificaticm
<»f distributed systems. Then we classified and overviewed specification languages in
general, before f.>cussing on the FO T I.OrOS. We |H>inte<l out the inadtKjuacies of
1,0 ros ft»r the specification of quantitative liming, probabilistic and priority concerns,
and resolved to remetly these inadequacies in chapters 6. 7 and H. Also, we ltM>k
a brief liM>k at system «levelopment using LOTOS and |M>inte«l out the importance
of development meth.Kls which, without relinquishing formality, allow developers to
pn»ci**Hl in a natural manner. Finally we staled that regarding LOTOS, this thesis
contributes to the areas of 1,0 TOS language enhancement, architectural concepts, and
LO’I'OS application.

Chapter 4

Formalizing architectural
elements of distributed systems

hi thin chapter we build an infra-dtruclure of architectural element* for dintributed
nyHteniM Mpecification. I'he conviction of thU chapter i* that upecification and deiiiRn
ouRht to be architecture-driven, rathi'r than description laiiituane driven, The infra
structure supports the architecture driven specification o f distributed systems.
On the premiss that systems architecture is a special type o f description, we beRin
from a Reneral perspective, establishing what constitutes “description*’ . We then be­
come more focused to look at systems description, and form a hierarchy of the architec
lural elements which we consider imp‘ »rtant for general distribute<l system design, We
base our hierarchy <»f architectural elements on principltM fo r dmcription. Ascending
through the hierarchy we find fundavirntal dmcription ingrrdirntn, 6asir arrhitrcturai
iugrrdirnin, arrhitrrtural ttntln and ntrurturing conrrptn, rttmtium arrhilrrtuml rornpo-
nrntif and, at the top. tiprrijir arrhiirrtural ntmpimrtttii.
We suggest XI. representations and graphical denotations for elements within the infra­
structure. and relate the infra structure of architecture to a selection of existing archi-
te<'tures (01)1*. ANSA and OSl).
In thi« rhnptnr. tlio <lrliniti.in. ronrnrnml with pnrfnrmnnrn u«n Ihr XI. frnliir«,« dn
vi-Uipcil in rhnptnr« « , 7 ami H. I hr work in thi. rhaptnr providr. Ihr haai. for our
rai«.-«ludy, thn forroali/,ation of Ihn CIM OSA IIS rrfnrnnrr arrhllin-lurn (rhaplnr h).

4.1 In troduction

Wo regard an arrhilerture aa a set of structuring concept» particularly »uitable for the
description o f a specific class o f prohleni or solution. Architectural concepts and com­
ponents are elements of an architecture. Architectures are deliberately restricted in the
way in which they can describe things in order to guide their users along a particular
design trajectory, towards a well engineered final product. Phis definition o f architec­
ture in necessarily vague, since “architecture" may have subtly different meanings to
different people.
Architectures exist for dealing with a wide range of systems. Some may be aimed at so­
cial or economic system», others at technological systems such as inoUn ular enginec-ring.
car ronHtruction, or computing syulcmn.
An architeclurp in often the renult o f organizing practical experience into a sound engi­
neering recipe or discipline. A g<M)d architecture embodies previous knowledge about
constructing things (in the class of particular interest), implicitly imparting this knowl­
edge to guide its users.
Kor computing systems, architecture is fritiuently cast as a set o f dc*scription ingredients
and ttMils. rhe systen> builder can use such description ingredients to build a well
formeil model o f the problem, and apply the description t<M>ls to direct transformation
of the problem-orienleil «lescription into a target solution.

4.2 T h o nature! o f description

In this section we attempt to establish the nature of description given we are inter
ested in architecture which is really just a specializinl form of description. We take a
brief U>ok at description in general before focusing on (information) systems descrip­
tion. We end by isolating what we believe to be the fundamental concepts for systems
description, and examine their roles.

4.2.1 W lm t ia deacription?

What does to dtitcribt mean? What is a drsenpinm? Usually we understand the verb to
mean to rom m unim tt, to rrprrsrn/or to por/mp in an undersiandaWr unp or tanguagr,
and the noiin to mean n rrprrsrnioiion. a sprri/iroiion or on rrpoMf. Kxamining such
everyday definitions we can deilure two important notions about description:

• Description is inherently indirect: a description is not actually the thing Itself
but merely a miMlel or representation of it*.

• For a description to be worthwhile it must l>e communicable and analysable. It
might be said that these two properties are implicit in description given ita def
inition, but we explicitly emphasis, for clarity, the requirement that descriptions
are communicable between individuals and comprehensible to these individuals.

'Althimsk U ras be arsurd that surk reprearstatkis ia really all we ras hs<»w o f reality asylurw.

Our ability to rfprenenl (describe), analyse, manipulate and communicate information
and ideas is fundamental to the advancement of our knowledge. Many different lan-
Ruages, in a number of forms (natural, synthetic, textual, graphical, audible, etc.), have
evolved to this end. I.anguagos differ in their ability to describe types of information.
For example, language useful for the description o f geometry or shape is unsuitable
for the description <»f temperature, odour or colour. In this chapter we are concerned
with the identification and Investigation o f concepts useful for describing the functional,
logical, performance oriented, non-physical characteristics of systems.
This discussion o f fundamentals may appear obvious, and to some extent specious, but
the importance o f first establishing a philosophical foundation should not be dispar­
aged. It provides the widest possible perspective in which to reason about the issue in
question, promoting clarity and rationality.

4.2.2 Princip les for description

We UhA that this is an appropriate point to introduce prinriplra or rn irria for qual­
ity description and design. O f course quality is such a general, subjective, aesthetic,
ethereal notion that it impossible to define in any sort of concrete terms. Nevertheless,
many authors have proposinl (sometimes contradictory, but often useful) rules of thumb
or heuristics for quality in description.’ Thes4* principles are applle<l to the archltec-
tural ingriMlients discused later in this chapter, rather than being actual ingre<lients
themselves.
The billowing list of principles is by no means exhaustive, nor is It ordered in any
significant way. No attempt is made to define the relationships betwe«*n these principles

they may (partially) contradict or agree, or be completely orthogonal to one another,
dependent upon what they are applied lt> and “ their orientation” .
Before listing some mr/rtrs fo r quality, we acknowledge (F ir « !] for collecting several of
these principles.

4.2.2.1 D e f.P l. Parsimony

We should not introduce anything into a description which is unnecessary for our pur­
pose be economical with concepts. This principle is often discusse«! under the guise
o f Orcam'M Hazor. “ No more things shotild be presumetl to exist than are absolutely
necessary” .

4.2.2.2 I>ef.P2. Cienerality

This principle demands no unnecessary restricthms. In practice it often means that we
identify aspects common to different part o f a system, describe these aspects, then treat
their descriptions as generic characteristics of more specific things in the system. The
more specific things can then be described as suitable conjunctions of generic aspects
and specific characteristics. This principle leads to reuse instead of duplication.

p«>pl^ will rrasrd ssek rule« of thum b for uuslity ss (im p ih it) common-êrnëf.

4.2.2.5 Def.P3. Orthogonality

w." »hould not link what i> iiidrpendnnt. In practirn thi« principle lead, to a “wparation
of ronrern*".

4.2.2.4 l)fff.P4. Open-endednesB

Thiit ruli* impUf'H that a description should bo easy to maintain (extend or modify In the
future). If a system is faithful to this principle, then we could extend its functionality or
repair Its faults at a fraction o f the price o f constructing a revised system fron» scratch.

4.2.2.5 Def.PB. Precision

'I'his principle says that our description should not be wrong or contain unnecessary
detail, so that we may correctly reastm about it for a particular purpose.

4.2.2.6 Def.Pe. Completeness

rhls principle requires that all aspe< ts which are relevant for a particular purpose be
included in the description.

4.2.2.7 Def.PT. Consistency

Do nt>t be untM'ci'ssarily irregular or noii-uniforjti. Some rule or convention should be
adopted for creating an<l transforming descriptions. A heuristic for faithfuln«*ss o f a
descriptum to this rule is that with a partial knowledge of the description it should be
possible to hypothesize the missing parts.

4.2.3 System description

Having l<M>ke<l at some fairly general ideas about description we now orient our thoughts
to a more specific area: the description o f logical structure and function. We establish
what it means to “moder or describe real world systems. Then we list and characterize
the fundamental ingre<iienls for systems description.

4.2.3.1 Modelling the real-worldt phenomena to events

Mtidel construction and analysis is synonymous with our ability to conceive and reason
about the real world. First our senses perceive real world phenomena; then we sub­
consciously abstract and structure this data into c<»nsciously recognizable notions and
concepts about which we ran reason. It is this sub-conscious process of abstraction and
structuring perceive«! phenotnena. an implicit capability of our own brains, upon which
we found our ideas for explicit, conscious model construction (description).
Our ability to perceive real worbi ‘happenings* underlies our ability to consciously
conceive and model, l*erceive<l happenings are termed phen<»niena — real world occur­
rences measured and relaterl to our consciousness by our senses.

Often we t&ik about the functional aspect* of a syitem in term* o f it* observable
l>ehaviour or characterizing phenomena. For example, we might describe a toaster
as Komething which participate* in the events untoantrd brrad in, toantiug bread, and
fttaititd bnad out. Notice the use o f the term event we use the term event to mean
the moni primitit>e phenomenon o f which we are aware at a given level of consciousness
tir abstraction. What we know a* an event at t>ne level of consciousness will be an
abstraction for a multitude of phenomena known at another level o f consciousness.

Figure -l.l: 'I'he real world a* a set o f p<itential events

I hiis we conceive an actual real worhl system in operation as a set of events, and can
m«»del the behaviour of a real world systems as a set of possible events. Figure 1.1
depicts Ihe real worUl as a set »>f (potential) events distribute<l in time ami space.
Kvents are denoted by the dark circles within the ‘event space' which represents the
real world.
In III.’ followiiiR nuhs.n'tioii wi' introduro 111.' fiimlami'iital ¡iigrpdii'iil« o f d«irription
whii h allow 11» to roiiiimiiiirati. and analy»i' rnal world iiiodol» a» iwl» o f i.vant« (or
‘ thitiK»'. in till’ niori* gi'iiiTal ti'riniiioloxy of thn next Bub»prtion).

4.2.4 I'\indntlieiitiil drscriptioii iiigrrdients

Hi'forr [irorm'dinn to Inypatigatr nior.' »pprifir dracription roiirppt» »pprifiration ar-
c hit.Tlurp» WP coiinir with Ihp vipw of ANSA [I'orMl in »uiiiniarUlng what wp bpiipvp
to bp till* »Pt of fiiiidaltiPtital dpKrription iiiRrpiiipnt» for »y»tpm» dparription. THpbp arp:
ruirninsr, fhin^s, (dr)rtPmponHion and absirnrhVm.

4.2.4.1 l)ef. FI Naming

A name is a symiMil (normally system descriptions are In readable forms) which is
used t«i Identify s«>mething (see the named things in figure 1.2). We can describe and
communicate only things which can be identified. Mentifiers in computing usually
lake the form o f meaningful strings o f characters (e.g. •‘UKip-counter". “ response*') or
niathematical letters (e.g. “ j ” , “ oo” , “ II").

KiKur<‘ \'2: A world o f named things

The ranRp» or rla««e» o f thing» to which a dmcription ianguage ii applicable 1» dependent
on it» ability to name tho»e thing». A de»cription language «hould be able to name (in
a direct way) tho»e thing» o f concern to the u»er.

4.2.4.2 Def. K2 Things

ANSA [Toc90] provide» the following definition of thing»: “ Any thing which can be
named 1» a thing-, every thing can be named." The mapping between name» and thing»
need not be one-to-one a name may identify a collection of thing», or a thing may
have* Hoveral aliaM<*K.

figure l.:l; Partitioning o f the world into thing» A and II

l lie divi»ion o f a »y»tem into thing» 1» a »ubjective matter dependent on the ob
jective» of the proce«» (e.g. figure -l.:l). Any »y»teni may be partitionetl into thing« in
a number of dlatinct way»; each dlalinct partitioning may be u»eful for a particular
purpone. Member» o f the »et o f partitioning» may be regarded a» complementary view«
of tlir Hamr nytit<*tn.
A dcurription laiiKuaffc nhould farilitalo romplrmonlary, dUtinrt partitioninK" of a iy»*
ipin into ihinnH. Implirit in thin rnquirciupnt in iho fact that the dencription lauRuaRr
uner In able to make dintinctionn between thiiiKn.

4.2.4.a Def. F3 (De)rompoaition

A ninule thitiR may be partltioneil (deromponed) Into a collection o f ‘nmaJler* thln^n (e.g.
fiRure 4.t). A nlnule thing may aln<i form one member «if a collection (ctimponltion) of
thingn which conntltute a ‘ larger’ thing. A ningle thing may be dectimponed into a
number of dlntinct «lecoinponitlonn; nimllarly a collection «if thingn may be c«imp«ined
into a tiumber o f dintinct componltionn.

Fiffur«* -1.4: (l>e)rompo(iition of thiiiK ^

I'lu* d«*nrri|)tioii laiiRuaKo Hhouid provido oporalon» for (de)composing thing» in ways
whirh an« of interest and ronvenient to the user.

4.2.4.4 Def. F4 Abstraction

Abstraction is the process of disregarding details o f a description which are unimportant
fur some purpose. An abstraction is the result o f the process o f abstraction. AbstracUon
is an essential concept because it is impossible to describe any real-world system (thing)
in perfect detail. Many different abstractions o f a particular thing may exist (e.g.
figure any one of these abstractions n>ay be more useful for a particular purpose
ill comparison lt> the <»ther abstractions.

a b s t r a c t i o

Figure 1..5; I'wo possible abstractions of the world

rhe differences betwm«n abstraction and decomposition are of a similar nature to the
differences betwe«-n filtering and magnification. res|>ectively.
The concept of a nuOirúntly prerisr drfimtion for a given purpose, should l»e applle<l
as a guage when performing ab»tractl<»n. Heasoning about a system, baaed on an
abstraction «if the system, has the |Mitential to be correct if the abstraction is not
prrriarfy correct, but «Uj(fírirri//y correct for the Intended purpose.®

•in < !»»«» theory, no shstrsttion U ronsWered auflltiently precise to correclly model the system

< haotU systems sre <hsrs< tensed hy infinite sensitivity to initisl conditions I'lierefore, even if the

law s a«*vernina » * hsotic system c sn be pret isely represented, such a system cannot be modelled withont

defIninK its initial state to an infinite precision. w hUh is impossible

57

A dosrription lanffiiaKe «hould be able to exprenB abstractionH of thinKN.

4.3 O v e rv ie w o f ex isting arch itectures

A number of arrhiterture« for dintrlbuted dyitems already exiit (Beeseclion 2.3). In thli
Kertion we overview a selection o f existinR arrhitecturei, forusiiiK on some o f the more
important ronceptn. In later section» we modify and intejtrate many o f the existing
concepts into our own hierarchy o f architectural elements, and investigate formalizing
thin resultant architecture.
We ch<KMM* three widely known architectures for distribute«! systems: 01)1* (and DAI-),
ANSA/ISA and OSI. ODI’ is the most generic o f these architectures; ANSA is more
applied than 01)1»; and OSI «leals specifically with ccmununications standards (see
chapter 2 for intr<»<iuction» to these projects).
To avoid the unnecessary repetition of similar definitions o f architectural components,
drawn from 01)1», ANSA and OSI. we structure the subsequent sections as ftdlows. We
give a brief introduction to the gross classifications used in each o f the architectures
umler review. We then provide our «jwn classification structure within which we detail
the architectural c«mcepts from the three architectures under review. For each archi­
tectural concept discusse«!, if any o f the three existing architectures differ significantly
<»r have interesting additional definitions we mention these.

N ote: In the following discussitm the meanings given to terminol«>gy often severely
overlap this is imwtiy unavoidable given the interdep«Midency betw«'«‘n these
i«l«*as and the difficulty o f succinctly expressing these concepts in natural language
(and, to some extent, the many different groups and cultures responsible for
originating the work).

In their «Uicumenlalion, 01)1*. ANSA and OSI dlvUle their architectures into gross
classifications, for example: “modelling concepts” , “architectural ctincepts” and “spec­
ification concepts**. We endeavour to be faithful in preserving these classifications when
surveying any one project, but warn the reader that these distinctions are blurred across
project boundaries and ran therefore l>e confusing.

4.3,1 The O D P architecture

For our concerns, the 01)1» world divides into three main categories: hosir tiutdrlling
nmrrptu, arrhitrriurai ronrrpt» and Hprrifiratiim ronrrptK. ODP express these c«>n
repts in carefully phrased natural language, and mathematic m»tatl«»n (IS092b. ISOR.'la,
IS093bl.

• Basic modelling c<»nrepts are th«>se necessary to describe 01)1» systems and to
discuss distribution. These identify essential elements o f the parts «if the real-
w«irld which are of Interest, 01)1» establishes suitable abstract representations
for these elements which alhiw us to express relations between the «dements and
reason about them. Basic modelling concepts include: action, object, behaviour,
interaction.

5H

• ArchilfK-tural concepti are structurinR concepla which are used when constructing
a model o f an 01)1» system from the basic modelling concepts with the aid o f the
specification concepts. Architectural concepts build upon the more fundamental
basic modelling concepts. 1'hese concepts emerge when considering the issues of
the problem area. Architectural concepts include: object groupn, domains and
configurations, transparrncy proprrfirs (e.g. forafion, rrpiication, fault, address
etc.), rausa/ify relations (e.g. client and sertvr objects), existence (e.g. rnrapsu-
lation, creation and deletion o f objects and rfasscs), establishment (e.g. binding,
fmdiny), security policies, management architecture,

• Specification concepts are related to the features required from a supporting spec­
ification language. OOP defines an adequate supporting specification language
as one which can directly supp«>rt representation of the basic modelling concepts
and. at least indirectly, support the architectural concepts. Specification con­
cepts include: romposi/ion. refinement, trace, template, type, class, inheritance,
polymorphism.

4.3.2 T he A N S A architecture

ANSA build their architcK-ture their 6nsir rriricrp/sof alphabet, object, and interface.
I'hese are defined by natural language explanations, stiinetiines accompanie<] by set
th<*ory and a graphical syntax.
ANSA us<* their basic concepts to define the concepts within the other categories of their
architecture. Helow. we list some of these other categories, without further explanation,
tti give a flavour of the ANSA architecture.

• interactions which include: (in)drtennined inirrarhon. cemflict, cmnposUr inter­
action.

• Objects which include: r«mp/f/ abject, undetermined object, role, agent.

• .S'prrio/i;rd mteractions which include: anrmunrrmrrif. call and reply, non-atomir
action.

• Structure which includes: multi-uHiy jo in , directed jo in , rof»/iyura/ion. multiplexer.

• 4rrtifiyrmrn/s « / oh^rrfs which include: federation, hierarchy, r/iVnf-srmrr pair,
p if r-<f>*prr r.

• Models which include: interpreter, transfeenner, policy, elass drsrrtpiion.

s Ihnding which includes: representation o f structure, dynamic binder.

• Hesource management which includes: resource manager, factor.

• Trading which includes: interface description, negotiation, trader.

s lYansparenries which Include: location, rrp/irabion. migration, fault.

9 /rrhfio/oyy which include: infrastructure, infortnatietn processor.

• Tmunfonnation o f objrciH which includes: dcrornposiiion. rrfinrm rnt, ab»traction.

• MincrllantouH conctpU which include; library, dirrctory, epoch, sy/itern.

4.3.3 T h e O S I a rch ite c tu re

OSl architectural concepts are less generic than those of either ()1)P or ANSA. 1 his is
because they are specifically aimed at describing layered coninmnicalion systems. The
following classification of OSI architectural concepts is defined in [TurK?].

M eta -leve l concepts: 'I'hese are used when describing OSI architectural concepU.
Meta-level concepts include; abstrorhon. rompi>si<i<»M, iri/ormolior», ariiori, aciin-
ity, interartiou, and intemrtiou point.

Static concepts: riiese OSI concepts are concerned with static, structural or data-
oriented aspects. Static concepts include: service access point, endpoint, sertner
pnm ittt't, pnttitrol data umf, and service data unit.

Dynam ic concepts: These OSI concepts are concerned with dynamic, temporal or
behaviouroriented aspects. Dynamic concepts include: protocol entity, pn>U»col,
servicr, service user, amtociniion, multiplexing, and Kplittiug.

4.4 A n in fra-structure o f arch itectural e lem en ts

A ll in fra-structure o f architectural elements In the previous section we briefly
surveyed lhn*e existing architectures. We now plagiarize many o f the elements from
these architectures and place them within our own architecture framework for dis-
tributinl systems.

Kigiire 1.6: Our pyramid of architecture

Figure 4.6 gives a gross perspective on the architecture framework which we now define.
Our whole architecture is haseil u|M>n the four /uridamcnia/ dcncription ingrrdirntn

(■i^tiiin 4.2.4) immpr»«l in thn principirt Jor drtrription (»wtion 4.2.2). Upon thin
founiintion wn conntrurt t)>p batir archilrciuml ingrrdirnti whic-ii define the runeeptn
whicii we need if we are to talli »bout dintributed lyitenn in general. The archiirriural
tool» and almrluring ronrrpiit give us means to manipulate and reastm about systems
using the basir arrhiteetural ingredients. Using these tools and structuring concepts we
can build the more complex rotnmon acchiicciura/ romponrutti which include concepts
found in most distributed systems. The apex of our pyramid, the tprrifir arrhilrrtural
rompanf tda, contains components built for specific problem domains.
We give below a list, by no means exhaustive, of architectural ingredients and concepts.
Again, due to the interdependency between the foilowing elements, we apologise for
referencing eiements before actuaily defining them.

Formalising architectural elem ents 'Kormaliiing architecture' involves giving ar-
chitectiiral elements a formal semantics. To do this we might define a mapping betw.-en
the architectural concepts to (F.xtended) l.O'l'OS* concepts. Although such a formal
mapping may be possible to define for some of the simpler architectural ingredients,
this feat seems impossible for many of the higher order architectural elements. These
higher order elements are of much tin> general a nature to tie down to (restricting) for-
mal models. Instead we suggest possiWr mappings of some of the architectural elements
to XI. elements. These mappings should be treated as tentative guidelines or examples.
Much more practical experience o f the application of XI. to formalixing architectures
is re(|iiired. The rase study in chapter .1 lakes us a step In this direction.
Figure 4.7 shows that a set of possible mapping relations that exists between archi-
liK-tiiral concepts and formal language concepts. Some r)f the architectural elements
(especially the basic architectural ingredients) we map tt> XI, syntactic structures, and
otlier elements (es|>erially the architectural tools) we map to theories concerning XI.
(r .n . «'«ju ivalrurPH, ro jiR n ion r i»«. p I c .).

Klgur»* 1.7: MappitiK brtwpcn arrhit»»rtunil ronrrpl» and rormal laiixuagf' ronr#»pta

Simplirilg and dirvririrss o/ crprrssio.i are two criteria which we use as guides when
mapping architecture elements to XI,. Our mapping suggestions follow.

*Ib Ih r rrmaifiHrr of ihin rha p trr wr will Id k mapping to LOTOS w hrn w r atr dU<-UMMns

ari'kitfK-turd eirm rntii which c*B b*- Adpqualfly rrpr«w^atnl in Standard I .O T O S (and, by inc-lyaion,

alao X I.) ; and lalh about mapping to XL whrn diacHiwinii arthitrctiiral r lr m r n U which rr«|H ir» thr

rn h a m rd raprranivrnraa of X L .

4.4.1 Basic architectural ingredients

'I'hPHo are the elementii which form the basic biiildiiiK blocks of an architecture for the
description of distributed systems.

4.4.1.1 Def. B1 Event

In form al description Events are indicators o f the occurrence o f real-world phenom
ena or actions (w-e section 1.2.;U). An event is atomic and instantaneous. An event
orrum »t a loratioil in Hparn ami tiini'.
Symbol, in ANSA ronnplH. in a aiinilar ronrepl hut ANSA nytnboh may bn dnrom-
poaml. Wi" till not ronaider an event aa derompoaahle, but the real-world action which
it repremuits may alternatively be repreaented aa a aet of other eventa. I he reaium for
thia aeemingly unneceaaary diatinction ia that we conaider eventa to occur at pointa in
time and apace. It aeema counter-intuitive to diwompoae an event occurrinR at a apecilir
point in time and apace into a aet o f event, which occur at a number o f diatinct pointa
in time and apace. I'hia *ivea ua another inai*ht into the difference between the nature,
of abatraction and (de)compoaition. We cannot compoae a aet o f eventa (diatributed
in time and apace) into a aiiiRle event, but we can abatract auch a aet o f eventa to a
ain*le event which characteriaea the orixinal aet in aome way. The characteriaation we
ch.Kiae iniKbt lead ua to pick an event, from the oriKinal aet. which occur, at a location
in apace which can be conaidered to be the 'typical' location for all the event, in the
oriKinal ael. More often thouKh. the oriKinal aet o f event, will repreaent an action, and
we will abatract by pickiliK the event whoae location in time repreaenta the end of the
action.

Form al representation An evrnl is an elemrntary ronrrpt in 1.0 I'OS. Events are
assnriateil with transitions between states. A set o f I.OTOS events can be reRardiul as
representative of some action.

4.4.1.2 Def. H2 Location

In form al description A point in lime or space at which an event may occur. 1 he
location «»fan event (in time or space) can be describ«Ml (“ordere<l’' using some relation)
only relative toother event locations.
Often though, we chmwe reference locations and establish event locations relative to
these. Then for convenience, we assume thes«* reference locations to be in some sense
implicit, and ralabllah llm “abi«.lula" locall.ina <if avant, (l.a. dafina.1 raUtiva to tha
Implicit reference locations).

Form al representation In I.OTOS, events (except i events) are labellerl with I.O
r o s gait identifiers. Optionally, events may Im* further annotated with event parame
ters.
Wa m»y uaa combinntlona itf I.O I'OS k« " ' Idantiflara and avant paramatara to rapraaant
location information, e.g.:

gatr idrnhfitr$ to rrfrtatnt locaiton
/I an evrnt at spatial loration II
(1 an rvent at timr location <1
/111 an event at spatial location /I and time location II

Uaing event ponmetera to repreaent location
g\t\ an event at spatial location II
g\t\ an event at time location ll
yl/llll an event at spatial location l\ and time location ll

I ho advantage of using event parameters (rather than gale identifiers) to represent lo­
cation information is that we ran treat this information as a/ir»l r/ass ciluen. We can
pass this information around, manipulate it, create and destroy it. We can ^so define
ordering relations over location information and hence define measures* for time (loca­
tion in lime) and. less useful in information systems modelling, measures for location
in space.
Standard LOTOS has the built-in ability (through, for example, its sequential com
position operator) to relatively order events in time. However it lacks any built-in
mechanisms for representing and manipulating quantitative time. XL extends LOTOS
with the necessary mechanisms for handling quantitative time this topic is explored
in depth in chapter 0.
XL has in built relations and operations for reasoning about and manipulating quantita­
tive time information. We can use XL ’s built in quantitative time features to represent
location in time, e.g.:

Vamg guantttattrr Itmr parametrra to repreaent location in time

0(arlLA.'(3)) an event at a time location lens than or equal to 3

g'!tr ; 7’ime.Voel(li gl 6) {arth'QCi) Union artUQ{b) Unton a rt(!T (tt))
an event at a time location 3, 5 or greater than tr (de-referenced).
(The event g is offered only when iU aelection-prrdtcale is
satisfied and when its time-offer is salisfieil The time-offer
of event g is satisfied at times 3, 5. and greater than t t ,
de-reference<l Kxplained in section fi 5.1.6)

g(srl/nlerva/(<.y))ALAr
an event at a tune location aa late aa poaaikle within the time
range 4 to y inclusive

g A S A P an event at a time location aa aoan aa poaaikle

4.4.1.S D e f HS P o t«n tia l (P ro b a b ility)

In form al deacriptlon A p<»tenlial event Is an event with a non-*ero probability of
occurrence. (In figure 4.1 we represented the real world aa a net o f polrntial events.)

* Reference points, and functions (sarh as ordering fua< lions) over these

6»

Wh«*n we talk about the potrntial o f an evrnt we mean the probability o f the event
occurring.

Form al rep reien ta tion XL ha* built-in feature* for describing the probabilities of
event occurrence* (event potential»). rhe*e probability feature* are explored in depth
in chapter 7. XL use* the right-associative, binary p-choirr operator [* /i] (where p is
a probability value) for specifying the probability ratio between two mutually exclusive
evetit sequences (traces). Some simple examples are:

(o; ..) (* O.li)(»top)
(« ; . , .)(* 0.11(6;...)

event a will occur with * probability of 0.5
events a and 6 will occur with probabilities of
0.1 and 0.9. respectively

(a ;. .)(* 0 2 :1((6; ...)(* 0 126 :)(c;...)) events a, 6 and c will occur with
probabilities of 0 2. 0.1 (= 0.8 x 0.125)
and 0 7 (* 0.8 x 0.875). respectively

4.4.1.4 Def. B4 Object

In form al description An object is a unit o f structure; it is a “ seat of activity"
and constrains the occurrence of events. An object's location in spare is the union of
locatUxis of ail events which it has the potential to constrain.
An object may be c<msidere«i in a more ‘physical' way (as compared to the rather meta­
physical ‘set o f constraints' explanation above) as something which encapsulates a stale
and behaviovir an autonomous subsystem which interacts with its environment via
well «lefineil interfaces.
The above definition is both sufficiently descriptive and sufficiently lcM>se for us to recog­
nise that «urol»jects may be realixiul as object-oriented programming languages objects
[MeyKKb], speciftration languages objects (vll89) and di»lribule<l operating system ob
jects [HOSKlib].
01)1* basic nifidrlhug roncrptn similarly define an object a* a “self-contained part of
a system". ANSA basic c«firrp/s similarly defines an object a* a focus of or seat for
activity in a system.

Formal repreaentation In LO TOS we ran use)>ehaviour expressions as unii* of
slruclure which embody event ronslrainls. If an object display» (parameterixed) recur-
sive behaviour we accommodate ihis by wrapping behaviour expressions in (pararne-
lerixed) recurslve prore»» defìnillons'', e.g.:

prore»» Objrrt. X[xl .x2l(hi»tory;Hi»lorySort); iiim’xU >
xl ? rr«iur»l (IÌrntHeque»lS<irt; (• • re<|Ur»l •)
xl ! aKimriion(re«|ue»t.hi»lory); (• thè re»pon»r •)
Objefl. X(xl.x2l(l'pd*le(reque»t.hi»lory)) (• recurtr •)

Q
•|» thr rrmalsder o f ihU «iK-lk»» we « • » ike Irriti procrei io m r»s s LOTOH behaviour rxprMaios

«vhbh may. or may sol. isrludr ih r «ysiarU r wrappi»a o f a LOTOS pro«»»».

Wlicii wo t»lk about Iho potrntial o f an rvrnt we mean the probability o f the event
oerurrillK.

Form al rcpreaentation XI. ha« built-in feature, for de»rribing the probabilitie« of
event oerurrenre« (event potential«). Thene probability feature« are explored in depth
in chapter 7. XI. u«e« the ri*ht-a««oriative, binary p-rhuirr operator [w p] (where p 1«
a probability value) for «perifyin* the probability ratio between two mutually exclu«ive
rvenl wquoiiceii (trarea). Some simple examples are:

(a: ...)(= 0 .5](»top)
(ai ...) («ü .l) (6 ; ,.)

(«;,,.)[= 0,2 ;l{{6;,,.)[=0,iaii :](r

pvenl a will occur with a probability of 0.6
pvrnU a aixl b will occur with probabilities of
0.1 ami O.W, respectively

..)) events a. 6 and c will occur with
probabilities of 0.2, 0.1 (= 0.8 x 0.126)
and 0 7 (* 0.8 x 0.875). respectively

4.4.1.4 Def. B4 O b ject

In form al description An object is a unit o f structure; it is a “seat o f activlly”
and constrains the occurrence of events. An object's location in space is the unitin of
locations o f all events which it has the potential to constrain.
An object may be considered in a more ‘physical' way (as compared to the rather meta­
physical ‘ set o f constraints' explanation above) as something which encapsulates a state
and behaviottr an autonomous subsystem which interacts with its environment via
weil defined interfaces.
I’he above <lefinition is both sufliciently descriptive anti sufficiently loose for us to recog­
nise that ourtibjects may be realized as object orientetl programming languages objects
[MeyKKb]. specification languages objects [vHHfi] and dislributetl operating system ob
jects [HOSHttb).
() I)P 5osir rntidfllmg ronrtptti similarly define an object as a -self-contained part of
a system". ANSA 6a*ir nmrcptii similarly defines an object as a focus t>f or seat for
activity in a system.

Form al repreaentation In LOTOS we ran use behaviour expressions as units of
slructtjre which emlKnly event constraints. If an object displays (parameterizetl) recur­
sive behaviour we accommodate this by wrapping hehavitmr expressions in (parame
terized) recursive process definitions", e.g.:

pr«»eess Object. X(xl.x2j(history HisUirySort) iitM'xit
x l ? rr<|uest:<‘brntRrquestS<>rt; (* a re<|urst •)
xl ! aKunctit)n(request,history); {• the response •)
Object.X(xl.x2)(Hpdate(request.history)) (• recurse •)

D
• is the remainder o f this section we nse the term pntrtêê to mean a LO TO S behaviour espression

ii*h may, or may not. include the syntactic wrappin« o f a LO T O S process

x2 ! rrnninat«*:M«na«rm«*nt(’ommandSorl; (* terminatf command •)
■top (* tt'riiiinatr *)

«•n«lpr€>r (* Object. X •)

Bnvironawnt

Ml I«Function

KiRuro 4.K: Object.X

This example describes an object which is williiiR to either perform a request. aKunction
and then r€*curse, or accept a command to terminate, l-'igure -l.H shows object ,X
constraiiiinR the three events.

4.4.1.5 l>ef. H5 Knvironm ent

In form al deacription An object’s environment is all parts o f the universe o f dis­
course which are not part of the object.

Formal representation The concept o f environment is implicitly supported by I.O-
rOS the environment of a process (object) is everythiiiR which is not a part of that
process (object).

4.4.1.6 D ef. H6 Interaction

In form al description 'Phis term is use«! to denote an event (or set o f events when an
interaction is defined l<» span more than a sitiRle event) in which tw«i or more «»bjecls
participate (alternatively, two or more objects can be said to be ‘constraininR the
event). A siiiRle event interaction represents a synchronisation between its participatinR
«»bjects.
01)1’ boMir nuM/r/tifiif rffnrrp/i> »»<1 ANSA mfrrorfiimsslmilarly define interaction. How
ever, in ANSA intfntfunrr/ion poinfs (or crmrirriioMs as termed by ANSA) can exist
only iMdween pairs of objects, so that in ANSA only two objects may synchronise on
any sitiRle event.

Formal representation In lO VOS. an interaction is define«! as the occurrence of
an event which Is r«»nstrained by two or m«»re processes. This nicely fits with our
architectural ctmcept «»f Interaction, except that for architectural purposes we alltiw an
interaction t«» be a set of such events. I'he following example Illustrates an Interaction
between two (unnamed) objects.

(¡;inter«‘tl;intfr»rt2.««xU)
|[iiitf‘ractl,inter»ct3]|

KiKurf i.9: An intpractioi» bplwi^n two unnamed objects

Thr inl<Tirtion(«) hdwi^ii tlii- two umiaincd o l i j«m (proroniM-ii) roimiiit« o f thr i-ventii
iuti foett aiui intrrartS.

4.4.1.7 Def. B7 Interaction Point

In form al description The IiK-ation in spare at whirh an interarthin may occur.

01)1’ buHiv vutd rU ing rouc fp ti* Rive the same definition. ANSA allow their connre-
tumn to be nanie<l. OSl calls this roncept a srreirc arrcM poiut (althouRh this really
repreHents a n»ore specific concept).

Formal representation I'he interaction points of a process are iilentified to be the
locations o f the events whirh occur at observable Rates t>f the process, hor example, the
interaction points of the process .V in fiRure i . H are the locations o f all events which
occur at the Rates x l and x2.
Often, we will require to make a distinction between an interaction point (i.e. location
in spare) and the actual events which occur at the interaction point. Vor this we must
attribute event denotations with two distinct labels, e.R.:

In form al description Symbols, or a set o f event occurrences from which information
may be derived. This means that we can consider an event occurrence to be associated
with a set o f symbols, or a particular confiRuration of event occurrences in time and
space as conveyinR some information.

4.4.1.9 Def. B9 Com m unication

Inform al description This is the pattHinR of data via an interaction.
ODP 6oiiir mtidelliug courtptit define rominunication to be a “ sequence of causally or­
dered interactions between two or more objects, which results in conveyance o f informa­
tion between them". 01)1* ami ANSA suRRest a number of events to be communication.
ANSA orders symbol sequences occurritiR over connrrtionn to represent conimunication.

Formal representation This is the ‘passitiR’ of data via an interaction. The data
may be encoded in a I.OTOS Rate name. e.R. rr^ursi, do. it, etc. Then, to communicate
such data, the objects participatiiiR in the communication must synchroniie on these
events. e.R.:

(request; ...) |[request)| (I; request; -,)

M<ire <jften thouRh, we use I.O'I'OS event parameters to encode data, e.R. gldata,
g\r(gu*i*t, g lnum : Nat, etc. This method has an advantaRe that it is possible to
neRotiate values betwwn interactinR (communicatinR) objects. In the followitiR exam
pie:

(g ’'x ;N »l[x Rt 4); ...) |[k]| (i; R?x;Nat[x It 6];

the two unnamed objects interact (synchronize) to negotiate x » 5. Unless we label in­
teractions in terms i>f direction, we can only say that the data value 5 is ‘communicated
to both objects; we cannot attribute a direction to this communication.

4.4.1.10 Def. BIO Behaviour

Inform al description 'I'he behaviour o f an object is the set of all sequences o f events
in which the object may participate. Such sequences are subject to the constraints
which the object itself imposes on event seipiences. and subject to any constraints
which the environment imposes <»n the events in which the object participates.

Formal representation If we use a I.O IO S ‘process' to represent an object, then
the l>ehavlour of an »»bjecl will be the set of all possible event se<|uences (traces) in
which that object may participate. For example, the Irehaviour of the object:

x: (y, exit Q s. exit)

is the set;
{x ^ y ^ rx il,x —• t —• e i i t)

D ef. B l l S tate

In form a l description The state of ait object is defined to be the data embodied by
it. 'I'hiB (together with the state of the object's environment) will determine the future
behaviour o f the object. 'I'he state of an object can change only as a result o f actions
internal to the object, or interactions between the object and its environment.

Form al representation The state of an object (at a point in time) is anything
embodied by It (at that point in lime) which may affect the future behaviour o f the
object. For a I.O'I'OS process, this identifies something like a “state vector" which
includes the static structure o f the behaviour expression, the values of all incorporated
dynamic data, and an indication of the current state(s) reached in the execution o f the
behaviour expression (at the particular point in time).

Def. H I2 In ternal Event

In fo rm a l description 'Phese are events which are only (directly) constrained by a
single object. (However, sub-objects of an object may constrain an event which is
consider«*«! internal with resp«»ct to the object X , but «ibservable with resp«*ct to the
Hub-ol>jects). (’laiming an event is internal to a particular object gives that object
dir«*ct control over lb«* occurrence of that event. This Is useful in a description if we
want to Hh«iw that an obj«*ct has sole responsibility for s«tme action.

Form al representation In 1.0 I'OS, gates at which internal events may occur are
identified by the hide op«*rator, or by the res«*rv«»d event name i. 'I'hus, in the following
process definition, events at gales « , r ami the 1 events are internal events with respect
to process /*.

4.4.1.13 Def. H IS Actions

In fo rm a l description An action is a se<{uence of events, or just a single event.

Form al representation Actions are express«*<l as s«*quences of LOTOS events, or as
single I.O'I'OS events.

Form al repreaentation Parallel artions are concurrent sequenceB of event*. Note
that in our architecture we talk about the ro«rurrrnry of cwni» and paraUrtiam of

4.4.1.15 Def. B15 In te r fa ce

In form al description An interface is a *et o f interaction point*. Normally we as­
sociate an interface with an object “ the interface between an object and it* envi­
ronment". In such a ca*e. both the object and the environment are re*pon*ible for
'NhapinK' the interface, i.e. the conjunction o f the constraint* imposed by the object
and by the environment are, alone, responsible for creating and characteriiing that
interface.

Form al representation An interface of an «»bject defines how it constrain* a set o f
interaction points.
Normally an interface will be define<l by:

• its location the locations o f the events occurring at the interaction points which
constitute it see Def. 112

• the format of the data coinmunicate<l at the interface see Def. HH

• some behavioural properties see Def. HU).

4.4.2 Architectural too ls and structuring concepts

Architectural elements under this heading can be applied to the basic architectural
ingre<lientB In order to build higher order architectural element*.

4.4.2.1 Relations be tw een descriptions

In form al description Developing a system usually entails moving from one descrip­
tion Dm of the system to another which is further along the design trajectory. The
developer will compare two such descriptions o f a system using a number of given
relations which are us4«ful In guiding or assessing the development process.

Kxamples of relations include;

Dn absta Dn !■ abstraction of !)„
I)„ d eeps Pm Pn is a decomposition <if Pm
P„ im pla i)m Pn I* * implementation o f Pm

Only fussy distinction* exist between informally defined relation* such as the one*
above.^ Often a development step will Involve using a combination o f relations.

The next few paragraphs overview the main categories of relations.

U sot powUble to formally d rhae aur li *eNrral ro*» epU but this dor* not pret lude their uaefulsei

Formal representation Above we mentioned some very general relations which may
exist between descriptions, e.g.:

P,n absts Dn
I)„ deeps Pm

In the IX)TOS world, there is a growing body o f work concerned with establishing
useful relations, and providing methods for testing and verifying such relations.

It is not possible, or desirable, to attribute formal meanings to very general relations,
such as absts and deeps. However, for specific contexts, it is useful to establish a
prescription of formal relations which may capture some o f the properties o f the informal
relations. Suggestions for such prescriptions are made in the following paragraphs.

See appendix (J for more details of I.O'IOS formal relations.

4.4.2.2 Def. T S l (D e)C om position

Inform al description The activities of composition and decomposition are comple­
mentary to each other, as illustrated in figure 4.4.
The activity of compi>siti<»n takes a ‘set of distinct things and proiluces a single thing
(a composition). 'I'he activity of dectimposition takes a ‘single thing’ and produces a
•set of distim t things’ (a decomposition).
rite ‘set of distinct things' may contain things o f many types, e.g. events, objects, data,
ciuislraints. composition operators, etc. rherefore. in general, the type o f a resultant
(«imposition will be different from the typ«*(s) o f its constituent things.
In our architecture imt everything (i.e. events see l)«'f. HI events) ran be decomposed.
This is not aligiMul with ANSA’s view which states that absolutely everything (in its
architecture) can b<* decomposed again, see Def. Ml.

Formal repreaentatlon I.OTOS has a number o f composition operators which alUiw
us to r<impose a set of individual objects (processes) into a single, composite object
(process). 'I'he following list contains some fairly obvuius examples o f composition.

. Object. 1

[> Object. 2

setpientiai compoaition of event and object
ject I 3 ̂Object 2 «equenlial conip«isilion of two objects
ject 1 Object 2 choice rompoailion of two objects
ject I ll*atea)l Oliject 2 parallel (concurrent) composition of i\

objecU which may interact via the gate set gatra
sjikaaftling coinpoaition of two objects

Decomposing an object Involves describing that object as a set o f ‘smaller’ objects (a
decomposition). Some «>f the ‘smaller’ objects may already exist in (say) a “re-use
library” others may have to be created from scratch.

(De)Com pcM itlon In practice The practice of:

a forming a composition of already existing objects

• dorompoKiiiK into a iiuinher of new objects

is not particularly easy. The behaviour o f a composite object may not be eaay to derive
from the individual behaviours of its constituents. This is especially true i f the objects
interact with one another via 'wide' interfaces (strong coupling), or if the behaviour of
a constituent object is radically affected by its new context. There exist a number of
congruence relations (relations which hold true regardless of context, s ^ appendix (!)
which can help when reasoning about the behaviour of a composite object.

Consider figure <1.10 which shows a very simple development of an object nbj.l.

T'igure 1.10: A simple development of an object

In this .liagram, decomposition is used as a top down development method, while coin-
pimition is used as a bottom up method. Object itbj.l is developed through decompo-
sitUin into objects rd.j.1.1 and oAj.1.2. In contrast, object o i j . l . ’i Is developed through
a composition of objects iibJ.I.iA . .* j . 1.2.2 and .dt;.1.2.,1 which have been discovered
in the library of Implemented, re usable objects. Such a library will contain common,
generic objects which can be used like pre-fabricated building blocks.

We now give a piuisible lint of the relations which the developer might use in this
development process. (' . ' denotes a I.O'I'OS composition operator.)

(o i j . I . l •o6 j.l.2) deeps o6j.l

(oA j.I.I.I • o4j.l.l.2) deeps o6j.l l

(o6j. 1.2.1 • o6j, 1.2.2 ♦ o6j. 1.2..1) deeps o6>. 1.2

To add more formality and detail to this development process, we employ the help of
cext. cred and S|c three o f the formal I.Ol'OS relations (see appendix C for further
explanation).

(o 6 j.l. l * <thj.\.2) cext itbj.V cred o6/l
1.1.1 • cext ii6/l.|' cred i>6j.l.l

(o6 j.1.2.1 * obj.\.2.2 * r^jM.2.3) cext»6j.I.2^ cred o6ji.l.2

I he first o f thes<‘ equations says that object (fbj.l* is a congruent reduction of object
We imagine that ttbj.\ is a specification level object which contains a certain

amount o f implementation fr<>e<iom in terms o f non-determinism. Object <tbj.V is a
nHluction o f some of the non-determinism in f>6j.l; it is also a congruent reduction of
obj.l allowing it to be placed in any context in which obj.l can be placed. Object
(f>6j.l.l * »6^.1.2) is a congruent extension o f object obj.V. We imagine that object
(r>6j.l.l *»6jM.2)adds some additional behaviour to object o6 j.l' an addition which
does not destroy the original behaviour specified in o6j.l'."
In ord<*r to ensure that objects o6j. 1.2.1, <tbj.1.2.2 and ^>6j.l.2.3 can indeed be substi­
tuted for ready-built library objects (and hence require no further development, unlike
objects o6 j.l.I.l anil <>bj.1.1.2) we must enlist the help of another formal fO 'I'OS rela­
tion: K|(. (testing congruence).

f>6j. 1.2.1 library.fpbj.p
(>bj. 1.2.2 fi6r<iry.r>6j.</
<tbj.\ .2.3 library.ttbj.r

If *tbj. 1.2.1 is testing congruent to /i6rary.»6j.p it means that these two objects cannot
be distinguisheil from one another by testing. Hence ri6j. 1.2.1 can be substitute<l by
the pr<>-defined library object library.obj.p.

The relationship between (de)romposition and abstraction In l)ef. HI we
said that an event was atomic and therefore not itself decomposable. This is not really
a restriction since we can further decompose the real world action which an event
repres<'iits. For example, we could decompose the tuanting action, represented by the
event Utantiug- bnaH, into the events:

start. loasting, more, toasting, toasted

file alMive sequence of events represents a decomposition o f the action Utonliug. Also,
the original single Utanliug. /rnrridevent represents an abstraction of the above sequence
o f events. This leails us to ask how abstraction and (de)composition are related. We
think o f their relationship as follows.*

*<)ftes, a spe<'ifl(ation will describe osly re^Mired behaviour, but its implemeslatiun may well isrlude

additiona/behaviour for, say. handling implemestatios level error acenarioB whk h are sot sperlMcation

level ret|uirements

*W e ac'hnowledge that the relation between (de)rompoaitins and abatrar tion is somewhat sabjerilve.

72

Wo dofitio deeps (doromposilion relation) idonllficatlonii to bo a subset o f abats (ab­
straction relation) identifications. I.e.:

■ id«iiti(ieatleM

^ d a O p ^ l <tont 111 c • t

absts (x; i; y, atop) (4.1)

deeps (x ;y ;stop) (4.J)

absts ((S': *; v: Btop)l||(i: stop)) (4.3)

not deeps (x; y; stop) (4.4)

Figure t .n : Decomposition as a subset o f abstraction

We justify this by example. Consider the equations:

(x; v: atop)
(x; i; y; atop)

(x;y;atop)

F.quation 1.1 tells us that one abstraction of an object la just its Interface (the events
X and y. in this case). Kquation 4.2 complements the transformation denoted by equa
tion 4.1. saying that an object may l>e decomp<HM*<l t<» give a description of the tibject
with siime internal detail. In <*<iuations 4.1 and 4.2, abata and deepa identify entities
assoriate<i only with the object on which they act.
Kquation 4.3 represents abata again acting on the object, In this case though, the
abata transformation grutmitit an entity which is rather different from the object.
I’here is no equivalent deepa tranformation which acts on the object, see equation 4.4.
Consider the following points which stimmarixe our view on (de)composition versus
abstraction:

• abata Dt says that entitles may be in D i which are not in Dr, or that, entities
which exist in Dj may be disregarde<l in D i. And in comparison...

• Di deeps D\ says that. D j may only magnify those entities which already exist
in D i: or that. Dj may rf»/fapsr entities which already exist in Da-

Since not formally found«!, these definitions are still slightly imprecise, but they serve
us in forming a |>erspe<-tlve on <lesign transformations.

4.4.2.3 Uef. TS3 Abstraetion

Inform al deaeriptlon This is the suppression o f irrelevant detail. An abstraction
raptures the essential details o f more detailed description. Abstraction can be applied
in the dimensions of space (e.g. describe only those things within a certain locality),
time (e.g. to describe only certain epochs of a system, maybe connection-phase, data-
transfer phase or installation, etc.), and functionality (e.g. to describe only things which
realise particular functions).

73

Both () I)P »nd ANSA define a number o f ‘ntandard' abBtraclions or projrctions which
provide different, but complementary views on information processing systems (see
section 2.3.3.2).

Form al representation Using LOTOS it is possible to describe (partial) designs at
arbitrary levels and in arbitrary dimensions of abstraction. LOTOS uniformly supports
abstraction in the dimensions o f space, time and functionality, (’onsider the following
description:

(tMkl).eporhl: tiiskH.epoch2; ««xU)
|[tnMkB.rporh2)|

(laskH.epuch'i; taskA.epoch3: ««xit)

An ab«tr»rtion o f thn oriRinal dimcription in limr. innorin* cvpiitii which occur ilurinn
odd epochs, might produce;

(lsskH.epoch2; «>xit)
{[ta«kll.epoch2]|

(tiiskH. rporh'i. exit)

An abstraction o f the original description m /imf, ignoring the relative timing beiwe«‘n
events (replacing occurrences of the sfM{uenring operator *;* by the interleaving operator

tnight pr<»duce:

|(laskH]|
(laski); I'x lt ||| IwiklL exit)

I
(IsskH, ex it III laskA. exit)

An abstraction o f the original description in ^pacr, ignoring events which <Kcur wholly
within the spatial locality of the first unnameil object/behaviour expression (i.e. ignor­
ing tankl) because it appears in the first object only), might produce:

(taskH epoche, exit)
|[laskH.r|H>rh2]|

(laskM epoch'i, taskA.rpochS. exit)

An abstraction o f the original description in functionality, ignoring the functionality
realized by tamkft. might produce;

" ’ Ksaminisa ik r ressltisa shslra« ties, a reader miahl aak “Tke Iw « objerts siili ayackrosiae us ike

ImakH evesi — is ayn< hmsiiatiun not a time rosrersT". Oar view Roes like ikia. It ia |>uaaiMe to just

(iinaider this a ayn<'krusiaatk>n is apace. Tke time o f ays« hrosiaatios (I.e. U a k H event ocrsrresc«) la

not relevast — «ve « as sot «»der it relative to tke utker evesta asytvay. Hat. if an event ocrsra, it most

nccsr at some location is time, relevast or sot.

74

(luk l).fporh l: <«xit)
III

(lankA.rporhS; <«xU)

If we think o f abNtrxrtion an junt beinK applied to taskn in the above example, then
an abfitrartion tranxformation is renponsible for grurrating rompletely new taaks ̂ in
Home itiKtanceK, and renponHible for ignoring lankn which uriKin^Jly exinted, in other
itiMtanreN. 'I'hin in in rontraat to a (de)roinpoHition traiiHÎormation which munt work
with what is already there.

4.4.2.4 l>ef. TSS Transform ation

In form al description In itn mont general Hense, thin concept mean« to take a de-
Hcription and modify it in Home way (e.g. by adding and removing event«, constraints,
data, etc.) to change it into another distinct but related description.
In a more specific sense, a transformation means to take a description of a system at one
level of abstraction and to alter the description (by decomposition) so that it describes
the same system, at the same level o f abstraction, but with magnified detail.

F'ormal representation We consider transformations within a design trajectory.
Within this subsection we have looked at two very general transformation relations
abats and deeps, and a few more specific, formal, supporting relations cred. cext
and
Normally we n'<|uire transformations to:

• interpret 'syntactic structure' in description (e.g. |[]| as a physical distribution
operator; /'[]/' as duplication for reliability, etc.) and develop this accordingly

• preserve the semantics of a description.

I/O rOSIMIKKK [Pirttl] captures this two fold property of transformation in what it
calls a “ rorrrrfricss prritrrvittg trannfonnatiffn rrlalion" { H r f T) - An H c p t consists of
two components:

« an "H r transformation relation" (e.g. gate splitting, making parallelism explicit,
making states explicit, etc. see [IMr91]) which is responsible for the interpretation
and development o f ‘syntactic structure’ in keeping with st>eciflc design goals

• an * H r f correctness preserving transformation relation" (e.g. an implementation,
e<|uivaJenre or congruence relation see appendix (!) which is responsible for
ensuring that certain semantic properties are maintained).

4.4.2.6 Def. TS4 Refinem ent

Informal deacription 'I'his is a specific type o f transformation. Keflnement makes
a description more implementation oriented.

ANSA point out that in practice this ia often achieved through two routes: the reso­
lution o f non-delerminiam, and the resolution o f structure. A system description may
be refined to another by reducing the amount o f non-determinisni in the description,
or by increasing the amount o f structural detail In the description.

Formal representation Formal LO'FOS relations may be used to support the task
of refinement. For example, the red (“ reduction”) relation may be used to support
the resolution o f non determinism, and the ex t (“extension”) relation may be used to
support the resolution of structural detail (see appendix G and (Toc90]).

4.4.2.6 Def. TSB Non-determ in ism

In form al description This provides the system designer with a means o f expressing
a set o f possible descriptions.
The tool of non-determinism is often used for specifications. A upt^cificatton is a de­
scription interpreted in a specialized way as a description of a set o f itnplrmrutation».
The use of non-determinism allows specifications to compactly express, and not unnec­
essarily constrain, a number of possible implementations.
The ability to express non determinism is also useful in the description of a particular
implementation“ . Using non-determinism we can express partially ordere<l sequences
of events, and hence represent concurrency (see next concept) within a system.

Formal representation I.O TOS supp.>rts non determinism for use in expressing
specification, concurrency or environmental influence.
Using the LOTOS rhnin opt mtor we ran express non-determinisiii in a specification
of a system (i.e. a set of possible implementations of a system). Consider the LOTOS
fragment;

I; X. s to p QL y : s to p

Interpreting this results in the behaviour trace set;

(-< X y >-}

I he choice between the two possible behavioural paths remains unresolve«! at this level
of description. We could consider this description as a specification o f a system, where
each trace in the trace set represents a possible implementation o f the system.

I'he value negotiation mechanism in LO TOS also provides a powerful means of express
ing non determinism. Through this mechanism we ran express the non deterministic
choice of one value from a set of possible values. For example, in:

" T h e term impIrmenlstHin is used here lo emphssise that we are not talhiaa about a aperiftration

but rather the dew ription o f a sísale system That U to say. here we are usina non determinism as a

twd within the des< ripthin o f a sinab- system, whereas In the pret edina paraamph. we disc ussed usina

non determinism as a tool for conveniently espressina scls of possible sinale systems.

{% ? m:N»t; ,,,) || (k ? n:N*t; ...)

the value of m op n ¡* indeterminable (except that it is a term o f sort Nat).
The l.O'I'OS choice operator could be used rather indirectly for concurrency. The
hallmark o f concurrent activities is their independence from one another and hence the
difficulty o f establishing a total ordering o f their events in time, (’oncurrent activities
are often represented as non-deterministic orderings of events. I'he choice operator can
be use<l to construct such non-deterministic orderings. For example, consider activities
A and H to be represented by the following event sequences:

A :snl; a2; st«»p
H :abl; stop

If activities A and H are concurrent'*, we could express their resulting non deterministic
ordering, using the choice operator, as shown below.

A III H
(al, s2; bl, stop)

[] (a l , b l: a2; stop)
Q (bl; al; a2: stop)

l . o r o s supplies the |[]| operator to its users, saving them from having to express
concurrency in an explicit manner using the choice operator.

4.4.2.7 O ef. TS0 Concurrency

In form al deacription Kvents are said to be concurrent if there is no nee<l to relate
the events in time.

Form al representation In I.O'I'OS, a set of concurrent event sequences is repre-
s4>nte<l as a n<»n deterministic choice between all possible fair mergings/interleavings of
the event sequences in the set (see se« tion 6.3.H). (’oncurrency can be expressed using
the l(.9a/cs)(o|M rat<ir which takes two sequences of event offers, generates all possible
fair interleavings of these, and returns a non-deterministic choice between these inter
leavings. Pairs of matching event offers, whose gales names are in the set parrs, must
synchronise on single events.

4.4.2.A Def. TS7 Separation o f concern»

In form al deacrlption The architect can structure his design in a modular way such
that all elements of any one module have a ntrtmg cohrniou (i.e. each set of closely
related aspects are gathered into a module), compare<l to the u>rttk roup/trip between
modules (I.e. mi>dule interfaces should be ‘narrow’).

'*M orr liK knU slly. wr talk about parallel sr tlviUes asci cosi urrest evesls.

Formal repre»entatk>n A LOTOS deBcription ran be structured as a hierarchy of
processe». Kach set o f strongly related concerns may be assiRned a process, such that
only weak coupling exists between the processes, at any one level in the hierarchy.

If each process is assigned a “ resource” concern, the resulting LO'I'OS specification style
is said to be “ resource-oriented” [VSvSHrtO] (or “object-based” (CJ92. Cla90. M (’93]).
If each process is assigned a “constraint" concern, the resulting LOTOS specification
style is said to be “constraint-oriented” (VSvSH90).

4.4.2.9 D ef. TS6 Relegation o f description

In form al description This tcml is known in many forms, some more or less sophisti­
cated than others, e.g. inheritance, definition and reference, template and instantiation.
Basically it allows the architecture to isolate generic aspects o f the system, define these
once (see next concept), reference them when required (i.e. relegate description), treat­
ing such references as the actual things themselves.
(Related to the idea o f relegation o f description is the idea o f polymorphism/genericity.
Polymorphism/genericism is a description tend which allows designers to encode algo­
rithms such that the algorithms are applicable to any subset o f data from a set*).
Cardelli and W«*gner (rWH.*i) write with insight on this subject, categorizing various
flavours of polymorphism including universal parametric, universal inclusion, aH-hor
overloading. aH-httc coercUin.)

Formal representation Relegation of description through ‘ reference and definition'
is supported both in the ACT ONK data typing and process algebra parts o f LOTOS.
Relegation in AC L ONK is fimnd under the guise of rnric/imr»»/. AC T ONK descriptions
may reference (relegate description to) ACT ONK definitions elsewhere using the is
operator. For example, in:

type s l ype Is x l ype. y'l'ype

eiidtype (• sType *)

type z Typ* relegates a part o f its description to the type definitions o f T't'ypr and
In the process algebra part <»f LOTOS, relegation is realized through process instanti­
ation and definition. For example, in:

(• Definition of proreiM Z folUms •)
p ro ce ss /

X (* liisiantiali«in of X description relegation to «lef of X *)

e i id p r o r (• Z *)

'^whether this set he s set o f sorts or. taking the deflsitios o f polymorphism to an extreme, a set

of terms Under this extreme dehnition. eves a + operator with domain and co-domain sorts fixed as

Natural is t onsidered potymorphn, since + ran accept any natural number term from the (Infinits)

set o f natural numbers

7H

L a i i

KiRtirr l.rJ: <Miw»«lfir»llon of ntmmou arrhttrctural rompimruU

I hr followinR nubwi tiiinii providr dMiiil» on thr nynchumow» rttmbiuaUtrn and rinnptf
nn itn , and thrir iiubrla«M»*.

4.4.4 Synchronous com binaiors

A nynrhnmoUK ntmbinator la a inran* «if Ktu«*inK tourthor two or morr mmporirfila
aurh that ihr ulnrd rornporirrila nynchronoualy rommuniratf with ont* another. The

NO

Myurhrououn rornbinatorti liKtod below »re really ‘packaging’ for LOTOS process alge­
bra operators. We justify this repackaging o f I.OTOS operators on the grounds that
we want to introduce terminology and graphics suitable for discussing and depicting
combinations o f the rornpourntit defined in the next subsection.

4.4.4.1 Def. C S l Fully connecting combinator

This romfcmaior connects a number of romponcni* so that they fully synchronise on all
common (X)L gates.
I'he fully ronnrctiug rombinator will often be represented in (X)l. by a combination of
II operators and parentheses. For example, the cornpourutM uHirkrr. A, uyrkrr. li and
uHirker. C’ in the LOTOS fragment below are fully connected. In the graphical depiction
of this example (figure ‘l.l.'l). the fully couturtiug rombiualor Is depicted by the large
circle. I'he fully ronurrting combinator is symnietrical therefore the relative positioning
of the arcs joining componrut/i to the fully conuectmg rombinator is not Important,

workerJ\[workplace] || (workerJJ[workplacel |1 worker-C[workplare])

Figure l.i;i: A fully nnmrcting rombinator jiunn three romprmrnfs

4.4.4.2 Def. CS2 Partially connecting combinator

This ntmbtnalor connects a number o f rompimrntm so that they synchronise on only
B«ime o f their commtm (X)L gates.
The partially rtmnrrting rombinator will often be represented in (X)L by a parallel com­
bination using the |(]1 operaPir. For example, the rttmptmrntM fully.ro^op. uHtrkrr. A,
partly, ro. op. uorkrr H and fully ro.op umrkrr. C in the LO LOS fragment beh>w are
partially connecter!. All thr**e co-operate (synchronise) at uHtrkbrnrhl, but
only UHtrkrrn A and f ’ co operate (synchronise) at workbrnrhS. In the graphical depic
tion of this example (figure I.H), the partially rounrrting rombinator is depicted by
the hexagon. 'I'he partially ronnrrting rmnbinator Is asymmetric therefore the relative
positioning <»f the arcs cemnecting romponrnt^ to the partially ronnrrting cinnbinator
graphic is im|M>rtant. Fully synchronised rom ponrnt» are connected to either the top
or the bottom of the hexagon. I’arlially synchronised rtmiponrntit are ccmnected to the
side of the hexagon. Detailed gale information Is suppressed In the diagrams.

(fully.CO j>p-worker^(workb€*nchl,workb^nrh2)
II fully-co-op.workf*r.C(workbenrhl,workb«*nch2))
liworkbonch 1]| partlyj-o.op.workpr.C[workb«‘nch 1 ,workb«*nch2]

FiRure l. l t; A parii«//y rounrcting ror«6ma<or joins throo cotnponrntit

4.4.4.3 D e f. CSS (D ejo iu ltip lex inK com binator

rhis rombinatitr ronnwts a niimlxT o f nunponrnin such that one <»f the cotnponrntn
(the ‘prim ary') may synchronise with any of the other rmnpfmcfiM (th e ‘ seconaaries’),
but no synchronisation amongst the 'HWiUidarieK’ is p»>sBil>le.
The (d<)inuttipitrtug c«m6if«iior will often be represented in (X)!- by a parallel coni-
bination usiiiR the ||| operator. For example, the rompournt» trunk. Unr, litcal.tinr. X,
lo ca l.lin i.^ and ¡ftraU in t.X in the LOTOS fragment below are multiplexed (with
irunit. brir aa the ‘primary*). In the graphical depiction o f this example (figure 4.15),
the muitipUriug rombiuator is deplete«! by the triangle, with the ‘primary' citmponrnt
connected by an arc to the apex o f the triangle, and the ‘sec«mdaries’ connect«»«! by arcs
to the opp«>Kite base side of the triangle.
trunkJine[x.y.x] || (l<>calJinr.X(x] ||| l«>calJine.Y[y] ||| IocalJine.Z[*])

Figure 1.15: A muUiptrring rf»m6i«o<«r j«»ins four componrntn

4.4.4.4 Def. CS4 Disable switch combinator

In its ternary form, this combiuator connect* three i'omponrntB such that the ‘perma-
iipnf romixmrnt in»y be dinronlierted from the MUablable' romponrnl and permanently
reconnected to the ‘dUabler’ cotnponrut.
The diiiabh nwUrh combiuator is represented in (X)L using the O operator. In the
example below, proccnaor \9 the ‘permanent’ , uorrnaLrodr is the ‘disablable’ and ear-
crption.codr is the ‘disabler’ . In the graphical depiction of this example (figure 4.16),
the ‘permanent’ is connected by an arc to the top o f the rectangle, the ‘disablable' is
connected by an arc to the bottom o f the rectangle, and the ‘disabler’ is connected by
an arc to the zig-zagging ‘ lightning’ graphic.
proc€»MH<jr[memoryl || (normal-code(memoryl O exceplion.code(memory])

Kigure l Ui: A (Ui*abU ttwHrh cofn6ina/or joins ihre«* compimrutn

4.4.4.6 Def. CS6 Sequence switch combinatop

This r«m6i>ioi«r combines a number of romiiourntn such that one of the rotnpourtiU
(the ‘primary’) can synchronise with each of the other romptmrulii (the ‘secondaries’),
in a pre<lefine<l sequence. Once a ‘secondary’ has exhausted its function, the ‘ primary’
synchronises with the next ‘ secondary’ in the se<|uence.
The sr^urfirr tiu'itrh combtuattpr is represented In (X)l. using the » operator. In the
example below. Uirpkout is the ‘ primary’ , while rormcrl. Iratu>mit and dtticonnrrt are
the ‘secondaries’ . In the graphical depiction of this example (figure 4.17). the ‘primary*
is coniiecleil by an arc to the lop of the* rectangle, and the ‘secondaries’ are connected
by arcs to the bottom o f the rectangle.
tcdephonefdala) || (connectidata) » tran*mll[data) » dlsconnecl(data))

diaeetiMct

Figuro 1.17: A mqurncr nwUch romóinaíor join* four compourntn

Dof.CS«. Once-only «witch combinator

Thi» combinator gynchroniw** on«* rompoiirfW (th«* ‘ permanent) with one o f a number
of ‘M»condary’ component*. Wh«’ iiever the first *ynrhroni*ation between the 'primary'
and one *>f th«* ‘Hectmdarie** occurs, the combination o f the ‘primary to this particular
•«•condary* biH'ome* a permanent arrangement and possibility of synchronisation* with
any o f the other ‘seciindaries’ no longer exists.
The orier-mi/y Kwitch rfmióómííír is represente«! in (X)I . using the Q operator. In the
examph' below, íroi>c//fTÍs the ‘ primary’ , while dru-c, J\y and sai/are the ‘sectmdaries’ .
In the graphical «lepiction o f this «‘xample {figure I.IH), the ‘primary’ is connect«*«! by
an arc t<» the t«ip of the reclangl«*, am! the ‘se<«>n«laries' are connected by arcs to the
bottom of the r«*< tangle.
traveller(tranKport] 1| (drive[lransport) Q f!y(transportl Q sail(tranHport))

Htanc. <'omponent8 from th«- rofunion architectural romponrni layer of our pyramid of
arrhitpclure provide more concrete embodiments o f the concepts from the lower layers
of our architecture.

Def. C C l Functional componenta

Suhclassification within /unr/iona/romporirnie is based upoii 'IXirner’s “ implementation
functions" in (TurHKb). Figure i.l9 shows afunctional component graphic.

Figure 1.19: Functional romporirri/ graphic

4.4.0.1 Def. CC2 Storage components

In form al description The important characteristics o f a storage ctnnponrnt are:
that no transformation of data takes place l>elween its inputs and outputs; It has a
small, constant number of inputs and outputs (perhaps just one of each): and buffering
Is the primary characteristic. Storage components are often claaslfied acror<ling to the
Hcheine used to retrieve the data store«! in their buffers, e.g. I.IFO. FIFO. key-lndex<*d.
etc. Figure l.'¿0 shtiws a sloragr niniptmrnt graphic.

Form al representation The following LOTOS proc«»ss displays the key aspects of
a storag* conipitftetit.

4.4.6.2 Def. CCS L IF O and Def. C C 4 F IF O components

In form al description The primary function of a FIFO or U F O component is to
Hperify a queueing discipline for events. Queues, depending on the time data spends in
the queue and the emphasis placed upon this delay, may be used to realise either storage
('omponrntit or attychronoutt communication component» in figure 4.12 we choose to
classify U F O and F IFO component» as »torage component». Figure 4.21 shows F IFO
comptnunt and U F O citmponent graphics.

Figure 4.21: U F O F IFO ctnnponent ĝ rapWici

Formal representation 'I'he essence of a simple F IFO romporicrii is specifie<l by the
following LOTOS process. (LOTOS text for a U F O component is similar.)

4.4.6.S Def. CCS Tran «form aliona l com ponen t»

In form al description I’he important characteristic» of a transformational compo­
nent are: that data is transformed from its inputs to its outputs; it has a small, constant
number of inputs and outputs (perhaps just one o f each); and that it implicitly car­
ries a small amount o f hufferinn between its inputs and outputs, rransformational
components may compute data transformations themselves (by means o f alRorithms or
lcK>k-up tables), or may solicit help to perform the transformational computation from
server components. Kigure i.22 shows a lnms/orma/»of»a/ component graphic.

KiRure 1.22: Trana/ortnational ctnnponent Rraphic

Form al representation The essence of a transformational component is specified
by the followitiR I.O TOS process.

(* C om poiirn t cIs m : traiiaform atiotia l com ponent *)
pr«ir«'SB trails, com p [k] : imm 'X ÍI :■

K 1 Input ? data Dal ».Sort; (• input data to be transformed •)
a ! Output ! xKunctioii(data); (• output transformed data •)

trails. coinp[a]
«•iidproc (* trails, comp *)

Data is transformed by the TFunrtiun operation. The minimum amount of implicit
buffering takes place between the input and Output events.

Def. C C e Asynchronous com m unication com ponents

In form al description The important characteristics o f an asynchronous communi­
cation component are: that no transformation o f data takes place betwe<*n Its inputs
and outputs; it has a large, possibly dynamically changing, number of inputs and out­
puts; and that it implicitly carries a small amount of buffering between its inputs and
outputs. Asynchronous communication components may perform multicast functions
(copying and distributing «lata from one input to many outputs), or interleaving func­
tions (collecting data from many inputs and scheduling It into one output). f igure 4.23
shows an oHynchnntoua amimuntratioti rotnponrnt graphic.

Formal reppe»entation An aiiyurhrtmous communication component mu*t be rep-
reaented by at least two LOTOS events: an input event and a subsequent output
event. Phe interval delimited by these two events realizes the asynchronicity in the
comnmnication. (A single event synchronization may be regarded as a synchronous
communication see Def. HH and l)ef. (’ S1-('S6.)
The essence of an asynchronous communication component is specified by the following
LOi'OS process.

(• (’oinponeiit class: asychronous communication component *)
prort'ss async-comms.comp [g] : iMM'xit :■

g ! Input ? (lata l)ataSort « t l ; (* input the data to be transmitted. *)
(• at time tl •)

(! Output \ .l«t« (x riliicS<.rtKunftion(tl)); (• output thr trsiixiiiittril dat«, •)
(• communication delay is compute«! by x I imeSortiunction)
(• ■{}■ and ‘O’ are XL syntax •)

async. contniB. comp[g]
eiidproc (* async. coins, comp •)

III the XL specification 'zT im rSoH Function (tl) m\nu» t ! ' represents the communication
«lelay associate«! with this anyuchrunoun communication cttmptmrnt.

4.4.7 Hef. CC7 Performance componentB

I'he primary concern o f performance components is the specification an«l manipulatitin
of metrics. We subclassify performance components into ««imponents concerned with
timing. pr«>bability, priority ami resource metrics. Figure 1.21 shows a performance
comfmment graphic.

Figure 1.21: 1‘rrformance rfimprmrni graphic

4.4.7.1 Def. C C 8 T im in g com ponents

The primary function «>f a timing nnnpimeut is to specify quantitative timing con­
straints. Within a timing «vmiprmrfi/ we may specify that events iKCur only at con-
straimni times, events occur as late/s«M)n as possible, or we measure the duration be
tween events, etc. See chapter 6 for a full explanation o f the «levelopment and use of
the quantitative timing features supported by XL.

In protocol deiiign. the mont common example of a timing romponrnt is the timeout
mechanism, but in distribute<l system design in general, we find many instances where
quantitative timing is important, e.g. time stamping o f messages, re-synchronizing and
guaging the error limits of local clocks, providing regular pulses to clock-tick driven
components, etc. Figure 4.25 shows the graphic we use to depict a generic timing
romponrut. Ilelow we list three subclasses of timing componrnt.

4.4.7,2 Def. CC9 Clock components

In form al descrip tion Most distributed systems employ sets of physical clocks. Real
time distributed systems are r»*gulated by a set o f synchronized physical clocks, and
non real-time systems often use physical clocks to establish causality, message ordering,
etc. (see section «.,‘1.12). Figure 4.2« shows a clock romporirni graphic.

a
Figure 4.26: fVfirt rompririr n/graphic

Form al reprearn tation For the devehipment o f many distribute«! system «lesigns we
ran assume the existence «»f a set «>f distribulinl, w«*ll synrhronis«*«!, physical clocks (see
M'ction «.3.12). Hence, with no mM'd to describe how time tick infiirmation is realize«!,
we concentrate on ‘d«*rlaratively* specifying the timing constraints which system com­
ponents must satisfy. XL provi«les the luxury «>f an in built time-k«'eping mechanism,
thus rescuing th«' specifier fnmi the tim«*-c«insun>lng task of building in a tlme-k«M*pitig,
time-distribution imn-hanism. XL's time features allow the specifier t«> ‘declaratively
«lescribe the quantitative timing constraints f«>r the systems romp«>nents. Under this
scetiari«), we might introduce the clock componrnt graphic Into the graphical description
o f the system untler design, just to make explicit that some «if the system's r«)mponents
are lime «lependent. And we might link, by arcs, the time «lepen«lent componrnt graph
Irs t«> the clock ntmptmrnt graphic. II«>wever, under this scenario, there will be no nwd
to associate the clock nmipimrnt with any XL text, since the rl«Kk mechanism is implicit
in XL.
However, sometimes the ilesign «if a distributed system may invtilve the «lesign of time-
k(*eping and lime-distributing mechanisms themselves. In this scenario, these mech­
anisms are an integral part of the problem l«i be solve«l and should be given explicit
representati«ms in the XL specification. In such a scenario, cUtck rompimcnf graphics
(and the arc ronti«H-tl«»ns t«i the other rompwfirfi/s in the system) will be associated
with XL text describing the construction of the chicks, how they distribute lime infor-
mathin, how they synchronise, etc. 'Phe XL text d«»srrlblng the construction of a clock
component may use XI/s built-in time mechanism like a physical clock uses a vibrating
quartz crystal, as a means «>f sensing the passage o f lime. H«iwever, the actual lime kept
by the clttck compimrnt (in this scenario) will n«>t «inly be a function «if XL's built-in
time, but a)s«> a function <if the limes registering «m the «ither supposedly synchronous
physical cl«Kks in the system. (W e w«iuld expect that the speclficathin o f such clocks

might embody algorithms for maintaining synchronisation between distributed docks
to within calculatable error limits, such as described by [Lam78].)
(The advice from the previous paragraph, that “mechanisms that play an integral part
in the problem to be solved should be given explicit representation in an XL description"
can be put into a more general discussion: It is always the case that it is much easier
to state that “ there should be a mechanism to..." than to describe the mechanism
itself. The expressiveness of XI. is such that it may be especially easy to to describe
certain classes of system at an abstract level (in the problem domain) as compared to
their less abstract descriptions (in the solution domain). I hese particular classes of
system usually involve synchronisation and concurrency. Their abstract descriptions
are easy to formulate because they employ implicit features of the XI. niodel. such
as synchronisation, whereas their less abstract descriptions must explicitly describe a
synchronisation mechanism.
will'll iliiiii* XI. in the develoimieiit o f a »y«leni, we niuiit be careful not to overlixik
probleiiiii becauae o f their Implicit treatment by XI,. Conaider a diatributed ayatem
where the total ordering of event, ia difficult to eatabliah. If we rely on the XL featurea
o f implicit aynchroniaation and event ordering we may miaa the crux o f the problem
(eatahliahinK a total event orderiiiK on the baaia of aaynchronoua communication) until
later in the deaiitn proceaa. We niuat take care that the XI. deacription really reflecta
IIh> essence the problem.)

4.4.7.3 Def. C C IO T im eout com ponents

In form al description In protocol specifications, in particular, timeout behaviour
accounts for most c»f the quantitative time dependent aspects of the behaviour of the
systems. The primary characteristic of a timroul rompournl is that it sp«*cifies the
time at which some ‘exception behaviour’ is to be taken, in case a reply has not been
received. Figure 1.27 shows a timtout nunponrnt graphic.

Figure 1.27: Ttmrout rornprinrnf graphic

Formal representation The following XL process displays the key aspects of a
limtoul rompimrut.

(• (‘«iinponent class timeout component *)
proriuis timeout-coinp [g] n oex it :■

g t Heqiiest 7 data I)ata.Sort « t l ; (• send request *)

* g ! (onflrm ? data DstaSorl Ìsetl,K (tl+ lim eout.period)) ASAI'.
(• confirm occurs within the timeout period *)

timeout.comp(g]
D

IN)

I {•etKg(ll+tim«K>ut-p«‘hod+ i)}; (• timeout occur* *)
take.exception - behaviour, for. timeout[g]

)
«•iidpror (* timeout.comp *)

S«»e «HH-tionn b.'i and (».7 for further diHruHaions on how to aperify tiineouta in XL.

4.4.7.4 Def. C C l l Stopwatch com ponen t!

In form al d eacrip tion The primary rhararteriatic o f a MtopuHitrh romponrut ia that
it ineaaureH the duration between event ocrurrencea. Such information may be uaed to
monitor ayatem performance iaauea auch aa proceaaor utiliaation. or uae<l in the compi­
lation of ioga recording activity timea, etc. Figure 4.2H ahowa a ntopuHitch compournt
graphic.

Figure Stopu'atrh rompfirirnf graphic

Formal repreaentation The following XL proceaa diaplaya the key aapecta o f a
stoptmlrh rompttft* ttt.

(• (’ompoiienl claaa: atopwatch component *)
pror<>aa awatch.conip [g] : lUM'xlt :■

gla 'Qltl; (• note tim e o f 'atarf event •)
g!h «tufi; (• note lim e tif 'fimah' event •)
(• duration helweeii 'atari' an«l 'finiah' event* i* t!i-tl (o f type lim eSort) *)
■watch. comp[g]

«u idpror (• awatch.comp •)

4.4.7.6 Def. C C 1 2 Probab ility com ponen t!

In form al deacrip tion The primary purpoae o f a pmbabUity cotnptmrut ia to specify
prt»bability or atatlatical conatrainta. Fxainplea o f auch constraint* include the apeci
fication o f the probability of an event occurrence, or the description of the frequency
diatribution over a range «if |K>aaible event ocrurrencea. See chapter 7 for a full ex
planation of the development and uae of the probability feature* supported by XL.
Figure ahowa a prubahility rftrnpournt graphic.

Figure 4.20: Ì*mbabiltty romponrnt graphic

01

ipectB of aFormal repreien tation The followinR XI. prorem di«pl»y» thr key
probability component.

(* ('oiiipun«‘nt rlua: probability component
rhe probability distribution
between the three events is 5:3:!2. *)

proross prob.conip (g) : iMMiait :■
g!a: stop [=0,6] (g!b; stop [=0.«) g!c; stop)

«*mlpr«»r (* prob.comp *)

Def. CC13 P rio rity com ponen t*

In form al de*cription I'hc printary purpose o f a priority component is to specify
priority constraints. Priority constraints specify the relative priorities between events
o f the same priority class. See section K. I for a full explanation o f the development and
use of the priority feature** supporteel by XI.. Figure 4..'i0 shows a prtaniy component
graphic.

Figure ■l.dO: l*rufrity component graphic

Formal rapra irn tatio ii I'li«- f.illowiiiK XI. proof»« display» thf kry a»pfol» of i
priority cotnponrnt.

are allocated with respect to the order and priority o f the requests for a resource
will normally be handled by priority componenta and aaynr/irorious communication
rornpout nta connected to the rrsourre management component.

Form al representation The following example o f a rraourre management compo­
nent specifies the number o f concurrent data units which can be transmitted by a set of
aaynchnmoua communication carnponenta (described in I)e f. (X '6). The rrsourrr man­
agement component (real, comp instantiated with n s 0) launches a static finite number
max o f instances of the aaynchronoua rommunicotion component. Access to a resource
instance is controlled by the resource instance process itself (aaync. comma, comp) which
permits one client at a time to synchronise with it.

(* ('oinpoiirnt class: resource management component *)
process rest.comp [g] (n:Nat) : no«>xit :■

({ii It max]-> (* launch another resource instance *)
async.comms.comp(g] ||| resl. comp[g](Succ(n}))

D
([li ge maxl-^ (* max resource instances launched, so stop *)

stop)
«•iiciproc (* res).comp *)

l)y classifiration. the rrat ctmip component should be graphically depicted as a re-
sourrr management component (figure 4.31). However, thin obscures the primary pur­
pose o f the compotunt which is asynchronous communication. Alternately, depicting
the real .comp as an aaynrknmoua rcmimunirorion competneut graphic (figure 4.23)
d<M‘s indicate the primary purpcise of the cotnponent but it still masks the important
resource management aspect of the comptment. Masking th e resource management as­
pect o f reai.ctnnp (by the asynchronous communication aapcK't) tends to violate our
commitment to the description principle of aeparation o f ronrrms. 'I'he crux o f the
problem lies in the way in which the component is structured, with the rrsourrr man*
agement component completely encompassing the resource (i.e . the set of aaynchronoua
retmmunicaiion componenta). Our scH'ond rrsaurrr tnatmgement component example
(reaS.comp below) adheres to the aeparation of concema principle by structuring the
system such that the rrsourrr management component ami the resource component are
distinct, but synchronising componenta (see figure 4.32, le ft).

The sei'ond example below of a rraource management component specifies the number
o f data units which can be concurrently stored and retrlev€*d from a sturante resource
formed by a set of atorage rr>rnponrn)s (descril>ed in l)ef. Unlike our first rraourre
management rr^mpr^nrnfexample, the rraourre managrmrttt romponent\n this example
stays active throughout the lifetime of the resource that It manages,

(* (x>mpoiient class, resource managenirnl component *)
process res2.comp |g] (n:lntrgrr) ; tifM«xit :■

([n It max]-^ (* storage available, allow data to be stored *)
g ! Input ? any I)ata.Sort;
res2.romp(g](n-f I))

Q

are allocated with respect to the order and priority of the requests for a resource
will normally be handled by priority componrntM and asynrhronoua communication
rompofimls connected to the rrsourrr management component.

Form al representation I'he following example of a rrsourrr management compo­
nent specifies the number o f concurrent data units which can be transmitted by a set o f
osyrir/imnous rommumra/iori rofr»pf>«rri<s (described in l)ef. 'I he rrsourrr m an­
age mrrit compotterit (rrsl- romp instantiated with n « 0) launches a static finite number
max o f instances of the atiynchronouK communication component. Access to a resource
instance is rontrolle<l by the resource instance process itself (atync. commit, comp) which
permits one client at a time to synchronise with it.

(• (’omponent cisiw: resource mansgeinenl component *)
proc(«ss resl.comp (g) (n :N at) : mM^xit :■

((n It msx]-> (• launch another resource instance •)
async.comms.comp[g) ||| resl.coinp(g](Succ(n)))

([li ge m a x] (* max resource instances launche<l, so stop *)
stop)

eiidproc (• resl.conip *)

Hy classification, the rm t.m m p I'omponrnt should be graphically depicted as a rr -
noum managemt ttl rompofirril (figure •1.31). However, this obscures the primary pur­
pose of the nunponent which is asynchronous communication. Alternately, depicting
the rrMi.eomp as an anyuchronouit communicatiott component graphic (figure 4.2d)
d«M»s indicate the primary purpose of the comptmi nt but it still masks the iniportant
resource managetnent aspe< t of the component. Masking the resource tnanagement aa-
p«*ct i»f rrnl.comp (by the asynchronous communication aspect) tends to violate our
commitment to the description principle of nrparation of concern». 'I'he crux o f the
problem lies in the way in which the comptment is structured, with the rrsourre mar»-
agement component completely encompassing the resource (i.e. the set o f anynchntnou»
rommuntrahon component»). Our second rrsourfr management component example
{re »t.com p below) adheres to the srpamiiim of concern» principle by structuring the
system such that the rrsourrr mafinyr component and the resource component are
distinct, but synchronising romparirfi/s (see figure 4.32. left).

I'he second example l»elow o f a rrsourrr management I'omponrnt specifies the number
of data units which ran be concurrently stored and retrieved from a storage resource
formed by a set «»f »tom gr rompoficri/* (described in l)ef, (’ (’2). llnlike our first rr»ou rce
management component example, the rr»ourcr management atmpemrnt in this example
stays active throughout the lifetime of the resource that it manages.

(• Component class: resource nianagement component *)
prc»eess res3-Comp [g] (n:lnleger) li<M>xlt :■

([n It max]-» (* storage available, allow data to be stored *)
g I Input ? any DaiaSort;
res3.comp|g)(n-f I))

D

»3

g ! Output ? Hiiy DataSort;
r«2-rom p(g)(n-l)

<*li(l|»ror (• ri*i2.comp •)

I'hlR rrnourrr managrmrut romponrut muni be «ynchroniaed with the Moragt component
which it I-**--
rrB2.cump[g](0) || utoragc-comp[g)(ctnptyStori*)

It is miw KPnniblc to depict the combination o f the rrMt.comp and the »torogr.comp
(figure 4.32. right) as a ntomgr component (figure 4.32, left), thus indicating its primary
purpiwe. Also, the distinct separation o f the resource management aspects from the
resource aspects, in this second example, allows us to sensibly decomptnw the component
as shown in figure 4.32.

tlen r « s 2_COlip

............
a t o r s o «_ c o «p

Figure 4.32: A (de)comp<isition of a rrsourre management component and its resource
component

4.4.8 MiiCpIUneouB structuring com ponents

4.4.8.1 Def. CC16 U ntyped com ponents

In form al description An untyped component is used either to represent a romponrrif
with no dominant characteristic, or as a ‘ placeholder’ in the early stages o f development.
When used tc» represent a component with no ifoniinant characteristic, decomposition
of this rfMMpofirnf may reveal a number of itub-componentn each with an identifiable
cimiponent class. When us«hI as a ‘placeh<»lder’ component, it is ex|>ecte<l that the
untyped component will lie replace<l by a specific class of component at a later stage of
development. Figure 4.33 shows an untyped comptment graphic.

Figure 4..33: An untyped component graphic

4.4.8.2 Def. CC10 C lien t-rô le interface com ponent

A client-rôle interface component is a tiub-component o f a parent component (»ee Def.
('C IH for an example). The r/i>ni role interface component realizen an interfare o f the
parent romporuiii throuRh which the parent component soliritB the service offered by
other componentn. Figure 1.34 show» a client-rôle interface component graphic.

Figure-1.3'1; A client-rôle interface rompofim/graphic

4.4.8.S Def. CC17 Server-rô le interface com ponent

A iirrt»er-rô/c iri<cr/arr component is a i>ub-component o f a parent component (see Def.
(’ ('IH for an example). The screer rôle interface component realizes an interface of
the parent compiment through which the parent component ofTerx a service to other
eomptmtntn. Figure •1.3.'i shows a srnvr-rô/c interface romporicr»/ graphic.

Figure 1.3.̂ : A screer-rcWr interface rompofirni graphic

A client nnnpemetit solicits the help o f srn*rr components to perform functions on its
behalf. I he composition o f a client campement will include at least one client-rôle
interface cennponeni.
A srn»rr cinnponeni perh)rms functions on behalf o f client components. The composi­
tion of a scnvr component will include at least one senKr-rôle interface component.
A r/ir»»l/srn»rr eompunent acts in both client and server rôles. Fhe composition o f a
client/senvr cetmpement will include at least one client-rôle interface cetmponent and
at least one sen^er-rôle interface cmnpournt.

.lnt«r?*e«_ceMp\

t*r.lnt«rnal |

KiRur** l.iiii: A clirnt/urrtvr i'lwiptmrut KrHphir

Normally wo do not dopici a KfAphic roprowonting a iiu6-r«uipo«rfif at tho aamo lovol
of (do)compoKÌtion an tho graphic dopicliiig tho parent rompoiicni. Howovor, in tho
graphic» <lopicting rUrut/i*rrt'rr nunpour utii wo mako a conconnion for iho nako o f do-
dcriptivo power. (Jraphic» depicting riirtU/arrt>rr romp€m*ntM are pronontod a« oval»
with r/ir«f- and »rnvr-ró/r i«icr/arr rompourni graphic» inipc»Nod (o.g. figure t.dfi.
loft).” * Al»o. wo allow each rlirnt/nrn>rr-róir intrrfarr romponrnt graphic, within It»
paront r/irni/acrorr rompofirrii graphic, to bo given a label.
Kiguro I.:«» »how» the graphic for the rlirnt/t>rnvr-rompimrnt whiwo XI. doacription
follow».

(* C om p onrn l r ia »» rlionl/aorvrr com ponm l
.1 »ub rm nponrnt» a clion l-rolo intorfacr rom ponrnt.
» arrvrr-ro lr in trrfacr ro iiip onrn t. and »o m r other com|M>nrnt •)

p r o r e » » r lirt ita rrv rr .rom p (g.h) imm*k U :■
b i i lo r . f iti (

■rrvrr. role , iiite rfa rr . ro m p [g ,r])
|(r]| other, internal. rom p [e,f]
|(f)| client- rrrle. in terface, rom pjf.h]

)

**Th i» break» with the roavention uaed in the re»t o f tkia chapter be< aa»e rlienl/reraer-riMe inler/are

cofaponrfiti are »»fc-roraponenl* €»f rhenl/eeraer rnmftonrnti, and hence cileni/lerwr-rdie tnler/are

component graphUa »hould only be viewable when rlienl/eereer tomponrnl graphic* are exploded' to

reveal the graphic» o f their ■wh*r»mpnnenli.

»6

<>nci|>r«M' (• cU^nl#i*rver.comp •)

4.4.8.6 Def. CC IO Protocol

rhid ¡B A Bct of ruled which içovern how two or more ro»»#»onrfii« communicate.

4.4.8.6 Def. CC20 Service

rhis denote« the behaviour offered by a »et of rotnpoutnttt (acting in a »erver rôle) at
a »et of interface».

4.4.9 Specific architectural components

rhe»e are architectural element» which are u»e<l for »pecific distributed »y»tem» prob­
lem». The nprcijic arrhifcriurti/ componeuU for one problem area »uccinctly describe
architectural elements of that problem, but are tot» specialized to be of use outside the
particular problem domain.
.S>nyir nrchittrtural rompotnutn will often Im- built u»inft customised rttmtiwn archù
ttrturul rotnpourutf. Our caae-study in chapter 5 describe» how a set of Hprrifir or-
chiltTlum l rotnptturuttt have b«*«*n built fnim the rommon orrAi/rriurn/ nunpourutn ftir
the particular problem of formaliHinR the (IM OSA IIS ((’omputer Intenraie<l Manu
facluring Open Systems Architecture IntegratiiiK Infrastructure).

4.4.10 niscuBsion

The architecture framework presente«! in this chapter i» not definitive. 1 his deposition
o f architectural concept» »hould be regarded as an indiration of the ingredients and
structure in an architecture for distributed systems. Ciiven this reservation, we have
found the c<iinpilation ami suggested formalisation o f a framework of architectural
concepts a useful base for developing distribute«! systems, such as (IM -O SA (chapter !i).

4.4.10.1 Language asaeasment w ith reap ed to repreaenting architectural
elements

S im plicity and directneaa In se< tion 4.4.1 we saw how all the basic arrhUrrtumt in-
grrdtrntM are directly mappable to »imilar XL concepts. Section 4.4.2 show«! us
that the arrhtItHumt tfuds and siructuring nmrrpts have equivalences in the XL
world: and sections 4.4.:» to 4.4.» suggeste«! a categorisation o f common (higher or
«ler) arrhilrctural compotirnis. Kxercises using these mappings certainly Indicate
that XL meets the simplicity and directness o f expression criteria, which we sug
gest as a heuristic for a giK>d formal language in which t«» represent architectural
concepts.

W id e spectrum The examples in this chapter and in chapter 5 show that XL 1b ca­
pable of representing concepts from all branches in our hierarchical Infrastructure

o f arrhit«K-tural ronceptB (“ horizontal covorani*”). Also, (Plr9l) explains how LO­
TOS is suitable for describinn (partial) designs at arbitrary levels o f abstraction
throughout the developnjent cycle (“ vertical covera^ie*'). Hence, XL can be called
a “ wide spectrum'* language.

C 'om potiiiona l reasoning I'o manage complexity, systems are often described as
compositions of smaller subsystems. An obvious requirement for XL is that it
UK) should support some kind of compositional specification and reasoning in ac­
cordance with the compositional structure o f the system it is used to describe.
Kxamples in this chapter and in chapter 5 demonstrate how XL supports a com­
positional approach, (’ompositional reasoning about XI.. specifications is aided
by theoretical tools such as equivalences, congruences, formal Iransforniations,
etc. (see section 7.4 and appendix (t).

Q uantita tive tim e, probab ility and p rio rity In our infra-structure o f architecture,
we have not only included elements for describing functional concerns, but also
elements for describing performance concerns. We believe that performance con­
cerns are often as impt>rtant as and inseparable from functional concerns. In
recognition of this importance, we have defined a class o f perfonnancr compo-
rurtls (section 4.4.7).
Although functional elements can be reasonably directly represente<l in LOTOS,
LO rOS proves cumbersome for representing performance elements (especially
quantitative time, probability and priority concerns). Therefore we have used the
'performance specification' features supported by XL developed in chapters (}, 7
and M. in representing performance elements.

4.4.10.2 A lte rn a tive mappings o f interest

This chapter has provide<l generic XL representations o f architectural concepts. A l­
ternative representations exist. Kor example, imagine if our concern lay more with
expressing the object-orienterl aspect of our architecture in a non procedural, declar­
ative algebra. We might use the A (’T ONK part o f LOTOS, e.g. (ROSK9bl, where
objects, messages and data are mappeil to sorts and operations. 'I'he type concept is
realized by parameteriseti specification. Iterated actualization is use<) to support inher­
itance and type/subtype relations. The encapsulating properties of A (’T ONK types
are used to realize the opaqueness properties o f objects. ((Jlb93) defines another way
of using A (T ONK to describ«' object oriented systems.

4.5 S iiim nary

This chapter began with the premiss that the design o f distributed systems ought to
be architecture-driven, rather than description language driven. Architecture-driven
methods possess the ailvantage that they emlK>dy domain knowledge — know-how
built up from a previous history of solutions, and organized into an Infra structure
o f concepts, ingredients, template components, etc. I'he disadvantage fif architecture-
driven methods Is their lack of generality. (An architecture for building distributed

C h apter 5

Case-study: the C IM -O SA IIS

An important area in hOTOS rewarrh is the application of 1.0 I’OS to domains other
than OSI. For this thesis, the Kspril CIM OSA project ((omputer Integrated Manu-
farluring Open Systems Architecture) ((’ IMîM)d. ('IM9üa, (’ IMH9c) provides a chal-
lenRiiiK industrial domain for the use o f LOTOS. The author has been involved in <’ IM
O SA attempts to «ievelop a formal nio«|el of parts o f the (’ IM-OSA architecture. As
a case-study, this chapter Illustrates how XL. lo«ether with chapter 4*s infra structure
o f architecture can he use<l to model and formalise a part o f the (MMO S A reference
architecture known as the NS (InteRratinR Infrastructure). Since both functuinal and
performance sperification play important rôles in (MM systems, (IM-OSA is a suitable
case-study for testiiiR the descriptive power of XL.
VVe find architecture-driven si»ecificatlon. the conviction o f chapter 1. to be useful not
»»Illy in til«' initial stages of specificatitni but also in the later stages. M'his is tlue to
the close relationship hetweiui the problem architecture and specification architecture.
I his closeness helps guide the specifier during the initial stages, and helps the specifier
navigate around and understand the solution specification in later stages.

Regarding the use o f LOTOS (and XL), we find that this formalism provides a sound
framework for reasoning about development. In particular, its rigour promotes early
problem identification.

5.1 In trod u c tion

Thin M»rlion provide* an introduction to the ('IM -OSA IIS, in preparation for the
development of its »pecification in the followiiiK sections. This section also briefly
discusses the benefits created from the marriage of ('IM -OSA and XL.

5.1.1 In troduction to the C IM -O S A IIS

In M'ction 2.3.5 we provided a brief introduction to the history, objective* and structure
of the (MM-OSA project. Here we elaborate on the part o f the CIM-OSA reference
architecture which concerns us: the In tegra tin g In frastructure (I IS).
Section 2.3.5 placed the IIS in its (’ IM-OSA context. We identified that the IIS is
the part of CIM OSA which is responsible for providing a set o f services common to
the needs o f im>st <‘ IM systems. We can think o f the IIS as an information technology
platform onto which any particular (’ IM-OSA system can be built. This rôle has earned
the IIS the title o f the “ ('IM OSA Operating SystenriBeeHQ).

Kigure 5.1: Structural comp<»sition o f the IIS

Figure 5.1 shows the coarse structural coinpo*ltU»n of the IIS, From figure 6.1 we see
that the IIS Is a roinp*>*ltU»n of i major entitles; the Business Com plex (I I) , the

101

Front-End Com plex (K), tho In fo rm ation Com plex (I) , and the Com m unica­
tions C om plex (C).

6.1.1.1 Huainett com plex (B)

The lIuNineHR (’omplex ronaiiit« of the Business Process C on tro l Service (H I*), the
A c tiv ity C on tro l Service (A (') and tho Resource M anagem ent S erv ice (RM).
HP oxPcutoH ‘butiinesR programn*'. Those prograiiiH are susceptible to modification,
dopondont upon the relatively unstable short term goals o f the enterprise. 'I'he execu­
tion of ‘ business programs' involves HP managing the sequencing and synchronization
between the more stable ‘business activities’ *. HP is also responsible for managing the
release and integration of new ‘business programs' and ‘business activities’ .

A (’ performs a task similar to HP, but for ‘business activities'. Executing ‘ business
activities’ involves the management of ‘ functional operations
RM provides system wide management o f the resources used in the execution o f ‘busi­
ness programs' and ‘business activitic*s'.

5.1.1.2 In form ation com plex (I)

'Phe Information Complex consists of the Sya lem -W ide D ata Service (S D) aiul the
Data M anagem ent Service (DM).
SD presents a coherent means of storing, retrieving and managing schema conversions.
('lients may remain ignorant of actual data distribution aiul actual storage schema. SD
manages the integration of local DHMSs (D ata Hase Management Systems) and allows
clients to reqtiest data in schema specifier! by them, SD is alsri responsible for access
authentication and data integrity.
Each DM performs the rôle of interpreter between the particular DHMS and the SD,
so facilitating the integration of vendor-sp«»clfic DHMSs into a ('IM O SA system.

5.1.1.3 Front-end com plex (F)

The Front End (omplex consists of the H um an Front-End Service (H F), the M a­
chine Front-End Service (M F) and the App lication f>on t-End Serv ice (AF).

These services present application programs, humans and machines (i.e. the functional
units which finally perform the enterprise functions) to the rest of the IIS in a homo-
gem*ous way, and vice versa.

5.1.1.4 C'ommunicationa com plex (C)

fhe ('ommunicatlons (’omplex consists o f the Protoco l Support Service (P S), the
System -W ide Exchange (SE) and the Com m unications M anagem ent Service

' Iinplemente«! Diisliiess PrtH’esses. in (MM-OSA tprminoloay-
*Im|»leiiieiiliHl Diisliiewi ArtIvUlen, in <‘ IM t)SA trrminoloay
'lmpleitieiiie<l PNiiietliMial Operntlonn. in (‘ IM-OSA trrminoloay

102

PS^ is r«*»ponsibl€* for tnappin^ acce»«*protocol and a gen t-p ro toco l communications,
between the It. 1 and F, onto suitable SK communication services. PS provides a
certain degree o f distribute<l communications transparency to its users, by handling
communication failures, retry schemes, addressing information, etc.
SK provides a system-wide honu»geneous platform for data communication. It offers
the basic level o f service neederl to support the demands for communication made on
it from PS in its support of agent-protocols and access-protocols.
<’M acts as an intermediary between the supporting OSl or vendor-specific communi­
cations services and the rest of the (’ IM-OSA system.

5.1.2 JuBtifleation (and related work)

5.1.2.1 The benefits from C IM -O S A for (Extended) L O T O S

A number o f authors (e.g. [VSvSIUK). vS90, TurH7, ISOQiia)) have already documented
ideas and strategies for formalising system/architecture design and development using
LOTOS. The two reference architectures featured in this work are OSl and ODP.

OSl describes communications systems using a symmetric, layerecl architecture. In
contrast. T IM O S A specifies systems which cannot be described solely in terms o f
hierarchical strata due to the asymmetric composition o f the IIS. 'Fhe IIS consists of
a number <if heterogem**)Us components whos«« communications form a complex web o f
interaction and dependency.
O I)P forms a very general referejice framework for distributed systems description.
C IM O SA is interesting because it represents a much more applie«! and specialized
reference architecture. ('IM OSA implicitly uses many o f the i)l)P - llk e architectural
concepts (which we have elaborate<l and stiggesterl formal representations for in chap­
ter 1) to define architectural concepts specific to <’1M systems.
The application o f LO I'OS to the CIM OSA IIS provides an insight into the advantages
o f building a dlslribute<l system upon a pre define<l framework o f formalise<l architec­
tural concepts (as deflneil in chapter ■!).
Ih>th functional and performance specification play important rôles in (‘ IM systems.
I’his makes the <‘1MO SA IIS an excellent testing ground for assessing the performance
specification features (quantitative timing, probability and priority) of XI. develop«!
in chapters b, 7 and N of this thesis.
We have had the opportunity to observe the effects which l.O TO S has ha<l on the
r iM OSA project, and how the application of LOTOS has grariually develo|>«l. The
developers o f C IM O SA come from a wide variety of technical backgrounds (e.g. elec
trical engineering, management, automotive and aerospace manufacturing, software
engineering). It has been interesting to see how pe<iple from such differing ‘cultures’
embrace the use of a formal description technique.

*Thin service did sut oriaisslly ••sist in Ike r iM () « A sr< kiterture, bst wss Mrstifted as s«>ceMary

dsrina th«* prcH'ess uf formsllsina tk^ lIM by tke sstkor, ser [MrCmis].

5.1.2.2 The benefit» o f (E x ten d ed) L O T O S for C IM -O S A

The (’ IM OSA project hu captured its reference architecture in a volume of document»
known an the (’ IM OSA Form al R e ference Ba»e (KRH) (e.g. (<’ IMH9b, ('lM90b,
('IMH9a, (’ IM90c)). The KHH provide» »y»tematic but informal (English language
text with supporting diagram») de»cription» o f the IIS. Ortain aspects of these de­
scription» are incomplete (at the specification level), with structural, functional and
informational elements mis»ing. Ambiguity is another problem found in KRH descrip-
tions. This is a result of both the ambiguity inherent in natural language prose, and
the absence of definitive descriptions o f some o f the architectural concepts used within
(’ IM-OSA. Also, inconsistences occur in the descriptions o f IIS subsystems and their
interworking».“
Once the KHH was establishe<i, the ne<Ml to introduce s<ime kind o f formalism to all
areas of the project (IIS and other aspects o f (’ IM-OSA’s reference architecture) became
obvious, and I.OI'OS was chosen to this end (to formalize IIS descriptions). The
development of LOTOS descriptions o f IIS elements has helped identify the above
mentioned problems of incompleteness and inconsistency. The creation of LOTOS
descriptions has fiirced decision making processes which solve ambiguities and other
problems. This LO I'OS-supported deveU>pment process ha« made designers conscious
o f issues such as: levels <»f abstraction; the identification o f structural, functional and
informational elemenis within the ('IM O S A architecture which are important at the
specification level; and what constitutes a g«K>d specification level design and why.
Moreover, since the US is part of a “ reference architecture” it is even more desirable
that its description have all the properties of a formal representation.
Also, since ('IM O S A is a reference architecture still in its infancy, we believe that
formalising has helped catch many design flaws and oversights at, perhaps, an earlier
stage than normal ati advantage predicted by those acclaiming “early prototyping” ,
e.g. [A m] .

5.1.3 The choice o f LO TO S

Having taken the decision to employ some kind <if forttial technique in the development
of the IIS, the project set up a task force ((’OM») to investigate existing formal langu^es
and recommend the most suitable. A short list included the three KDTs LOTOS, SDL
an<l Kslelle. I)etaile<l, expert comparisons of these three KDTs ran be found in the
literature (e.g. [(’OMfl)). We briefly present some of the criteria used by the investigatory
task force, as it gives an indication o f what the project hope<l to gain from an KD T.
and because it portrays what one potential consumer of KD'T technoU>gy saw as the
relative benefits.
One concern of the KI) I task force was with the functional rovrragr of KDTs. The task
force examined concurrency, sequentiality, data, system testing and real-time aspects
of the KDTs. The other not (yet) standardize«! formal languages VDM and Z, based on
pr«»dirate calculus, were rejiM-tiMl b«»cause o f their lack o f built-in facilities for expr«*sslng

^W<> womM likr t(i «-rnnkssisr that such problems are by so means yni<|Ue to the T IM -O NA proj«K-t

but are rhara« tertattcs o f Informal desi ripUons In »eneral

ronrurrfncy. The lank force concluded LO l OS to be the moat powerful with reapect to
concurrency aapecta, with Ua interleaving, enabling and diaabling featurea, and becauae
of ita aynchronoua baaia*. None of the three f OTa met the real-time criteria. It
wa» fell that the ability to eaaily expreaa performance conatrainta forma an important
conaideration. eapecially in view of the time- (and safety-) critical nature of many
manufacturing operations. 'I'he task force concluded that, if necessary, one o f the
approaches for a pseudo real-time could be adopted.

N ote: rhis (’ IM-OSA task force conclusion is realized in this thesis: extensions to
LO'rOS for performance specification are developed in chapters 6, 7 and 8.

The FD'r task force studie<l formal definition concerns. 'I'heae included syntax and se­
mantics. for which I-O rOS scored highest; analyzabilily, for which LOTOS faired well
with its theories for equivalences, transformations, etc.; computability, for which LO­
TOS passed because it could support the required level of prototyping; implementation
independence, for which LO TOS was considered the moat abstract; and international
standardization, which all three FD l's have achieved.
Under the concern o f human orientation, the LO'I'OS syntax was thought to be esoteric,
and the lack of a standard graphical representation a drawback.

Note: (’hapter 1 advocates building and reasoning about distributed systems in terms
o f architectural components, rather than in terms o f LO I OS. Architectural con­
cepts tend to be much closer to the problem d<imain, thus more ‘designer friendly’
than XI. concepts. Also, chapter I suggests graphical representations which ran
be use<l in conjunction with (XI. based) architectural descriptions to aid the read­
ability o f system designs.

The learning curve for LO LOS. rompare<l to the less expressively flexible but easier to
learn SDL and Fstelle. might have adversely affecte«! project time scales — a number of
project members would have to be trained in I.O’I OS to a level o f sufficient expertise,
if the initial formalisation phase were 1«) be extended.
LOTOS takes the lead in erprettnitv pitu^er with its ability to express non-determinism,
its mixture of declarative (A (’T ONF) and procedural (process algebra) styles, and
with the ease of expression it affords to complex concepts such as concurrency and
multi-way synchronization.
Other concerns such as bwWs. iitrurturing and reunabiiity were also considered.

5.1.9.1 Substituting LO TO S for XL

I he C IM O SA projecl chose I.OTOS lo formalise thè US. bul for the purpíises of this
thesis^ we have elaborate«! CIM OSA LOTOS speclflcalions to XI. speclflcations.

* Actually, ttierr was some frar that the »yn« hroBou* hast* of I.O TO S would be isapprnpriate because

of the mMeulially aaynchrosnus commuSKatios* is real fHM ayatems. O f courae, it waa pointed out

(hat aaynchrony can easily be modelled by aynthmsy, thounh not vice versa. Alao, syschruny can be

used to mask at ihe ape> ift< atios level any implemestation depesdest asyschrusous baaed realiaatiosa

'w hkh include aaaeaaisR X I.'■ aNIily to naturally and directly espreaa performance cosrersa

I0.%

ol_tM_«»erUI lli_cooc«n>*4_worUI

Figuro 5.2: Tho !IS in context

(• ('o m p o iid it claas: untyped com ponent •)
(• ('ommentn: (’on text for the IIS *)
xpociflm tto ii n s . con text ; iioox it

l>«>hnvic»itr
hi<l(‘ liS g a le « , othergaten in (

IIS[USgateft]

IIS -concern ed . world [IISgateii,othergateii]
|(othergate»)|

re a t .o f . lh e . world jothergalea]

)
whi>r«'

(* IIS . context *)

In fiRiiri’ wr .Irfoiiipo».- thn /Kam i llir IlS .ro tirrm rd .u itrld rompnm III» of li*
urc (In thi» ilniotn|ni»ilion wn iRiiorr thi- inlnrfarn bolwwn Ihi' IlS -ro tin n ird . world
ami 111.' rrr l. of. Ih t. world.) From fiRurr ,'i.:l ami tim arooinpanyinn (X)l. <ln»rripti.in
WO ran mn* that:

• IlSgalri* ropr**xontn a union o f the ('gatm, Dgatrti, Ugatr^, Agatrn, Mgatr^ and
OSIgnIt K.

a I'll.' Ilaolrr, Igulrr an.l hgaltr am wholly rontainml within (inlornal to) Ihn II.S
romptmt-til.

• Tho //, / and F nftnpimt ntn rommunicate with one another only via tho FS
rrmiprmrNi (and ultimately via the OSI cttmporirut). In fact, all intra-IIS com-
muniratioiiR are ultimately routinl via FS lo OSI.

• H, I and F each uxe their own nubnet o f tho IlSgaUtt to interface with tho rorn-
prinrrifx in tho IIS.courrrttrd. uHirtd, with whirh they dirertly interact. I hux. for
example, the / rrmipmir fi< (lt»for«‘ «*l‘ »n Service* (’omplox) interface« with vendor
«|>oclfir databano application« via PgattM, and prexent« thi* variety of dalabaao
application« a« a con«i«tent databano «yHtern to the re«t of the rrmiporirni« in the
US via IgattM.

In th«* following nubnoclions wc move away from a global view of the IIS to define some
generir IIS ronrepts.

6.3.2 T h e I IS c l ie n t -s e r v e r m ode l

CIM-OSA use» the “ fUent-aerver model" aa the baoia o f rommuniratlon within the
IIS. Figure 5.4 provide» an overview on the client-server template. I hia template haa
Keveral inatanres within the IIS. and ao we uae **X" aa a placeholder for any legitimate
IIS service instance, ('reation o f this client-server template simply Involves annotating,
with <’1M OSA terminology, the Def. (' (’ IK compournt which we have already defined
in section 4.-I.K.4.

Figure .5.4: The IIS (’lient-Server Model

X C lien ts represents a set o f X-Service-Users. I'he X -Service P rov id er (X -SP)
is responsible for providing an X -Service to the X-Servlce.llaers. X-.Servlce.Uaers
communicate with the X-Service,Provider using the X -A C C P (X-Access.Protocol).

We classify X.('llents as cliru t romptmrntit and X.Servlre.Provlders as a srnTr rt>mpo-
nrutn { Def. (’(’ IK). I'he X.('lients rlirnt cump€mrnt specification will embody a r/irn<-
roU iutrrjfu 'i rumptturut Def. (’(’ Ifi defining “user oriented" aspects of the X .A (’('P .
'I’he X-Servlce.ProvIders sen rr nwiponrut specification will embody a scn*rr-rd/r in-
Urfan ramponrut Def. (' (’ 17 defining “pri>vider-orlente<r aspects of the X -A (’ (’P.

N ote: Often the FRH describes US r/icni/scrt'cr romporirri/s only in terms of. what
section 4,4.8.4 calls r/ic«i/scrt»cr-rd/r iutrrfacr rompourntn. 'I'he set o f r/if «//server,
rd/r intrrfacr cttmponruiH f«>r any one rHrnt/»rrvrr ctunptmrnt may nt»t fuily define
the behaviour o f the r/ir«//sen»er rompr«ir«/, but rather »u jjirit utly define the
behavUiur o f the rmnptptirtii for the purposes of CIM-OSA.

Thus for. say, the client server model of figtire 5.4, the FRH may define the
X-Clients rofM/jfmr«/ only to the extent defined by the “ user-oriented" X _A (’(’ P
specification.

5.3.3 A system-wide service

US X-Service I»rovid«TH provide vk'hat is known as a system -wide service [('IM90e)
to their X-ilients. X -(’lients may remain ignorant o f the actual distribution of the
X-Service.Provider. (’ IM OSA assumes X.Service.Providers are strongly distributed
systems, realized by a distributed set of inter communicating. X -Service.Agen ts.
X.Service.Agents communicate using an X .A G E P (X.Agent.Protocol).

Figure A d«*composition o f an X-Service.l*rovider

Kach X-Service.Agent has two interfaces: an interface to X. ACCVgatn» and an in
terface to X - AUEI*gatrit. From figure we see that the X. ACX'PgalrK interfaces
of the X-Service.Agents, are multiplexed to form the X- A ('('PgotrM interface o f the
X-Service.Provider.
’I'he X-Service.Agents communicate via X . AHF.Vgattn using the X.ACIKP protocol.
'I'he situatimi portraye«! in figure .5.5 is an abstraction. At a less abstract level, the
X.Service.Agents do not intercommunicate directly with ea<h other, as shown, but
instead their intercommunications are routed via PS (section 5..1.5). We may spec
Ify an X-Service.Agent as the combination of the interfaces to X. A ('< 'l ‘gotrH and
,V ACCVgatrn. OSl would call the XI. specification o f an X-Servlce.Agent a “protocol
specification of service X” .

6.3.4 T w o im portAH t IIS stru ctu rA l orgA iiixA tiona

While structuring the IIS in terms of romfmnrntn we encountered two Important struc­
tural organizations:

A com ponen t provid ing and w holly contain ing a aervice. This is a aituation where
a single romporirni is responsible for offering and providing the realisation, wholly
contained within the rornporir«/, o f a service. To perform the service the ronipo-
MCMl need not solicit help from any other objects.

A com ponen t o ffering but not wholly contain ing a service. This describes a sit­
uation where a ro»Mporir»»i may offer a service but does not, alone, provide the
complete realisation of that service. This normally occurs as a collection o f rom-
ponrrUs interacting with one another in order to provide a service.

The above two scenarios have been identified because each of them nicely fits parts of
the IIS architecture.

A com ponent p rov id ing and wholly contain ing a serv ice

This first scenario deserves recognition as a distinct case because, in many instances,
it provides a powerful way o f conceptualizing systems, e.g. in layered communication
systems such as OSI, and indcHnl the stratified communication support system (C) in
the IIS itself.
l.tMiking back to figure .5.1 we can see that we have portrayed the IIS (Communications
Complex as three interacting objects: l*S. SK and (’ M. Our diagrammatic representa­
tion in figure .5.1 of the com|KMite structure of the complex is misleading. We focus
on our misleading representation of the Communications (omplex in figure .5.6. (We
ignore the PS service for now, since it is discusse<i in section .5.3.5 as a special case.)

IhiB interfare is dependent <in constraints appiietl at the ('M _A (X 'P interface. In fact,
the specification of the S K -A C 'fP interface already allows for constraints such as those
applied hy the ('M -AC C I’ interface.
I'he prohlem in fiRures 5.6 and 5.1 lies in the way in which we have chosen to dia-
Rraininatirally depict the structuring of SK/CM. These diagrams ought to have made
it clear that CM is in fact a nub-rornponriU o f SK, and that SK and CM do not exist at
the same level o f (de¡composition. This is clearly shown hy figure 5.7. The S K .S P is
correctly decomposed as a linear chain of separate rompanrntf. The represents
the residuum componrol when the C M .S I‘ romponrut is 'subtracted' from the .S'i.'-.S'/'
r€jmpoufui.

SBRACO

CM̂ ACCPgctk

..________ __ '̂\

Ji.7: A corrf»cl rcpmirntalioi» o f SK/(’M utructurr

6.S.4.2 A component offering but not wholly containing a »ervice

This Hecond scenario has many inslancea within the IIS. If we turn our attention to the
HuKiness ('omplex. we find that this rompontnl is described in terms of the interacting
romponrnt» H (’ , AC and RM. However, these componruta do not interact in a linear-
chain fashion to form a stratified ramponrut as found for but in fact have a
cyclic dependency. Indwd, from a wider perspective we see that the whole IIS can be
describe<l in terms of interacting (composite) componrnta which are inter-dependent,

bet UN concentrate solely on the roviponrnta H(\ AC and RM for a moment. The
H(\ A (’ and RM romporicnis are described, in FRH, by their arrvrr-rolt intrrfacr
romponrnta for A ('^ < ’CP and RM.ACXM* respectively. The KRH also
tells us that H(\ A (’ and RM must inter work with each other and with other IIS
romponrnta in order to fulfill their duties.® Hence HC, A<’ and RM have each a rlirnt-
roU intrrfaci component through which they invoke the services of other componrnta.
Abstracting from the communications apparatus provided by ('. figure fi.8 illustrates
the dependency between the three romponrnta.
From figure .'5.8 we can immediately see that an isolated specification of. say, the
HC-A('CP scn*rr-r6/f intrrfarr rompontnt, defines only Io<MM*ly the behaviour occur­
ring at the HC-A(’CI* interface. For a more constraiiu^d “service definition” of the
HC-Service we ihmmI to consider the interactions between H<‘ . A (’ and RM.'®

Figure .̂ .8; Dependency betweiui HC. A (‘ and HM

In this example the direct c<mimunication between H(\ A (* and RM is <»nly an abstrar
tion a refinement reveals that this Interaction Is in fact indirect and realixe<) through
the l*S rf»mpr>ricn/, the topic of the next section.

•This U in roBtrssl to SK whsh <sb providr thr SK-Seivire without soUritiBR help from other

rompnnrnff
'"N o te ihst we sre Bot «uM ^tkn» thst there b sBythiss 'w roB «' with the l-'RB deftsina AC and

HM in this way. but our aoal here wan merely to rlarlfy thb ia le r workina roniept for BC, AC and

KM

5.3.5 Th e protocol-support serv ice

W<* disrovored that the level of detail, in the KRH, on the integration of the IIS subtya-
tenm wa« too alight to form a satiafactory reference guide aa to how many of theae sub-
ayatema communicate. The FHH providea only abstract descriptions such as; “entities
from the Information. Huainess and Front-Knd Service ('omplexes will communicate
with one another through the use o f acceaa-protocols (see figure 5.4) which are aup-
ported by the underlying (’ommunications (’omplex". The problem la that X-AC'CI*
communications do not readily map onto S K .A ('(T o f the the underlying SK.Service.
'I'his indicated the ni*ed for the existence of some kind o f entity which maps X-A('CU*s
(belonging to II. 1 and K) to SK.A(X 'I»s. Discussions with (’ IM OSA personnel con­
firmed this hypothesis and the ProtocolJ)Upport_Service" was born. Figure 5.9 shows
an X A C C P -P S -S e rv ic e P rov id er in context.

Figure 5.9: An X-A<'('PJ»S-Service.Provider in context

The following paragraphs provide nu»re detail on the PS.Service.

P rov id ing transparency When an X-Client wishes to use the X-Servlce. It should
only have to initiate the desire«! X Function Call and then receive the result o f this
call, It should n«it have to deal with any of the underlying communications problems
(such as protocol conversion and message transport). Similarly, the X-Servlce.Provider
should only have to receive incoming X-h'unctUm.f'alls, and return their results, in the

“ Is (Mr<?90s] this was Irrmrd tki' "H lsb-Layer", where the use o f the term “stsb" was prufKMed

iMHasae o f the aimllariUea o f fus« th»nalUy and natsre between ‘ BtMb-entkUea" is the IIN and the RPC '

atsbn o f (HNS4).

114

X-i-'unrlion_(’all format. Therefore some mean« of supporting transparent communica­
tion between X -dient» and the X-Service.Provider must exist. It is this support that
is provided by the l*S-Service.

A sym m etric nature o f the PS_Service The l»S-Service is asymmetric in na­
ture. There is the client’s side and the «erver’s side (represented in figure 5.9 by
the X .A C C P .C lien ts -P S .S P and X -A C C P .5 e rv e r J*S .SP , respectively). The
server’s side is both different and much more complex in terms o f mapping functionality
than the client’s side. Also, we may well define Particu lar X -A (’ (’ P-('Hents_PSJ5Ps,
such that we define a set of X ^ (’ rP -< ’ lients.PS-SPs. each element of this set of­
fering a different subset of X services to its users. In contrast, there is only one
X .A (’('P-Server.PS-.SP which must support the full range of X services.*^

Syntactic and semantic m apping It is important to realize that the PS^Ps
not only support the syntactic mapping between the X.Layer and the SK-Layer (i.e.
mapping X -A (’(’ P P D l’s onto S K .A ('(’P PDUs, and vice versa), but also support
a certain amount o f scmaniic mapping (I.e. supporting the desired behaviour of the
X-Function.Calls through the appropriate choice, use. and ordering o f SK-Funrtlon-<’alls).

rhe PS-SPs will also handle (transparently to their X . i ’lients and X-SP) tasks such
as: rrmr managrmrnt actions to be perforimsl if SK reports an error (e.g. retry now.
later, not at all. etc.); t'vnrurrtnry an issue for Imth the X_A(’ (’ l*-(‘lients.PS_SP and
X-ACCP-Server-PS-SP which may have to schedule a number of concurrent dialogues
betwiMMi X-<*lients and the X-SP.

D ifferent X .A C C P speciflcationa (’loser examination of the situation portraye<l
by figure .5.9 reveals that the two interfaces labelled X _A (’(’ P are not quite identical.
I he FKM labels PDFs handled by the X -A (’(’P interface of the X -A ('('P . (’lient«.PS.SP
HI, request or confirm PDFs, and labels PDFs handled by the X_A((I interface of
the X-SP as indication or response PDFs.*’ Although the FKH pfrdir/s differences
betw<a*n the contents o f re«iuest and indication PDFs, and similarly between response
and confirm PDFs, it provides no real indication o f how or where this difference in con
tents comes about. This gap in KHH km>wle<lge has been plugge<l by the introduction
o f the PS.Servlce an introduction brought about by the rigour of formalism.
We imagine the m*ed of a similar Protocol-Support Jiervice which maps ACFPs from
the H, I and K services to suitable SK-A(’('PS . Definitions of theses A iiKPs have not
yet reached a sufficiently stable stage at which to begin formalisation.

5.3.8 Derom poaition o f an X AC’C P CMi<*nts PS SP

The previous subsection prt>vide<l an overview <»f the PS-Servlce, and placed an X _A(•(P-PS-SP
ill context (figure 5.9). In this subsection we descril>e how we decomptwe the
X -A (X ’ P - (’lients.PS J)P rfimpf«irni o f an X -A (*(’ P-PS_SP.

*TkU Mymmelry brtiwes ikr » Ik s l asd

^Similar labels are foHsd is ORI.

lerver sides is also refletled is tke RP< ’ parsfliam

Klpturr Ä.IO: l)prompc»llU>n of «n X .A ('(’ P.PS-('IÌpnt-SI*

FÌr«tly, wi* dnrmupoHf* thr X-A(*i'l*-('U i*nt».PS^I’ to ri*vi*al Ui dl»trlbut**d
X-A('('P-r»«*nt.PS-.S«Tvkf-An«»nl«. (Th l» U » mttrr •p«K-lfir fx »m pk of ihr drrom

poNitUm o f any X-Servic<*.Provider, which we described in section 5.3.3.) (Jraphically
this decoruposition is shown as part o f figure 5.10; refer to appendix A .l for outline XI>
text for this decomposition.
Secondly, we decompose a single X ^ r C T . i ’ lient.PS-Service.Agent to reveal it compo­
sition in ternis of iroris/omia/iof»a/. ntoragr, rr$ourrt-managrmrut and limroui rompo-
nrutH aiul rt>m6i>>a<ors. 1 'his structural decomposition in terms o f common orrhi/rriuroi
romponcriis, depicted by part of figure 5.10, is reflected in XL in appendix A.2.
We believe that this architecturally driven decomposition conveys, in a reasonably un­
derstandable manner, the primary rf/mponcnisof an X -A (’ (’ P - (’lient.PS_Service_Agent.

• 'I'hc* rapacity mtourrt'mauagrmrnt atmptmrnt governs the number of
X _ A ('(‘P n*<|ueBtH that can be dealt with concurrently.

• 'I'he A’pdu. io. .S'/’-Wu tnmnjormational romponcrii combines X_A (X ’ P PDlJs Into
S K -A <TP SDUs.

• 'I'he Sh^tfdu.to.Xpdu traunfonnational a>mponent breaks S K .A iX 'P SDUs into
X -A ('('P PDUs.

• rite 6vpfi*s funrtiimal rompfifif nl allows the rrsend- utoragt citmpournt to res<*nd a
limed out SDU Request, without having to synchronixe with the Xpdu. i«..S7'>du
rtttnpt}ft€ ttt.

• rh<* «tvrrf«< hutuiUr timtoul cfunponrtit notes the lime at which each SK-A((P
SI>U Higwnt is sent. If a c<irresponding SK_A(X ’ !* SDU Ntply is not received
within the tim roul-pfrioii then the oivrdur.hatidUr rftmpournl will generate a
iittttd. out event.

• 'Lh«* rr send- itlorngt ntoragr rf>mpi»nr»i/ makes a temporary copy o f each SK-A((P
SDU Hequmt sent. The rmrnd.ntomgr rompournt will delete the copy an SK SDU
Ht qurnl oner an appr«ipriate SK SDU Hrply has bi*en received within its timeout
period. If rr/trud. nloragt receives a timed, out event, it resends the appropriate
SK _A (’(’P SDU HrqutMt.
'I'he rmf ttd. »tomgr ntmpotirnt may buffer S K .A iX ’ P SDUs for noticeable lengths
o f lime. Notice that the only other rompfmrntn to buffer a complete SK-A(X 'P
SDU or X -AC (’P PDU are the A'pdu. to. .V/vWu and .VA’sdii. to. Xpdu nunpourntu,
an<f these two romponrnli» buffer a single SDU or PDU only long enough to
ciinverl package/tinpackage it and send it on. Therefore we fiave localised to the
rr aend. Mtomgt rompttut tit ail problems o f implementing a buffer for storing SDUs
for sixable amounts of time.

6.8.7 A rev iaed v ie w o f th e I IS

This section has provided an insight into how we have decomposed the (MM-OSA
IIS. using an architecture driven method. We have used the rommon arrhitrrtural
cfmiporirMfsdeflned in chapter 4 to build a skeleton description of the IIS. Huilding this
skeleton description has hel|»ed res<»lve. clarify and better organise aspects of the KRH
IIS descriptions.

117

Ill the next »ectkm, we go part-way towards ‘fleshing out’ one component o f the IIS
skeleton that we have looked at in this section.

5.S.7.1 Diacuasion

One important point to come from our consideration o f the IIS architecture is that
there is no objective way of cutting up the IIS, or viewing any part of it: an X -A (’CP
can be associated with an X-Servlce_Provider resulting in a provider-oriented view of
the X -A ('(’ l*. What Imiks like a system wide service is actually composed o f a complex
distribute«! set «>f inter working agents, each of which is resptmsible for offering the
service «mly to a single system notle. An abstraction o f a simple client-server commu-
nicatnm model hides a much more complex PS based communication model. Klements
from abstractions, decompositions and viewpoints may be mixed freely with one an­
other to suit the purpose in hand. The resulting descriptions are ‘gtwd* descriptions if
they pr«>vide a satisfactory «lescription of the system for the purpose in hand.
In our strategy for the formalisation o f the IIS, we identified that the second milestone
would deliver a suite of formal specifications of IIS elements. In the next subsection, by
way of example, we select one such specification, outline its LO'I'OS description, and
list som«* «)f the (|uestions which the formalism of bO I OS f«>rced us to r«*c«>gnlse. For
«lur examph* we chose the “ service-definition" «>f the SK I.e. the SK_A(’ ('P srrtTr-r<5/c
inUrfan «if the SK-Service.Provider in figure 5.7.

5.4 A n exam p le IIS specifleation

I'he previous section c«incentrate<i on constructing an architectural skeleton o f the IIS.
In this section we wdect one of the rompofirnts from the skeleton, and examine how
to specify It in detail. 'I'he specification is structured with the aid of the architectural
rttmpontnti* defiiMMl in chapter ‘I, and emphiys the special performance features o f XL,
ilefituMl in chapters ft, 7 and K. Once we have pr<iduce«l our specification, we list some
o f the questions and answers unc«ivered by the formalising process,
hor our example ctimpitnrtit we chose the the SK-A(*(’ P srrtTr*rd/r interface component
(o f the SK Service-Provkler In figure 5.7).'^ In OSI termlimlogy, this would be railed(o f
the “service «leflnition of the SK-Servire.

5.4.1 Th e SE Service

The SK-Servlce is a c«miplex system. For the purposes o f this case-study, we use an
abstraction o f the SK-Servlre. This subsection describes those aspects of the SF.Servlce
which are important for our case-study specification. I he information in this subsection
has been inferred from the current FKH description (<’ IMH9b).
The SK-Servire is a conceptual system-wide IIS component. Section 5.3.3 sh«>ws that a
system wide service is really a set o f inter w«irking service-agents. However, to provide

**Thr»«|linst this smllos me Msr the term 'SKJtsrvlrs' to mssn ‘SK.AtUT •rrver-rtMr tnterfure
inm ponrnV

a “servic«* definition" abstraction of the SE-Service, we choose to ignore such physical
distribution aspects.
The SE.Service must fulfill a number o f functional requirements and performance re­
quirements — these are described in the next two subsections.

5.4.1.1 Functional requirem ents

With respect to functionality, the SE-Service consists o f a set of
SE Ca llab le . Functions each of which represents a usable communication service pro­
vided by SE. Each SE.C'allable.Function has a set of input paramrirrn and a set of out­
put paramrtrrn. Input parameters convey the data to be transparently communicated,
and the informatit»n necessary for the communication (e.g. source and destination ad­
dresses. etc.). Output parameters convey the result of a communication (e.g. response
data).
Below we describe an example of the use of the SE-Service which (hopefully) will convey
the essence o f the SE-(’ailable_Functions, without describing them in detail. Readers
are referred to the { (’ IMH9b] FRH Items, and to the XL specification in appendix H for
a detailed description o f SE-(’allable.I-'unctions and their associated parameters.

Figure 5.11: Example use o f the SE..Servlce

The event-sequence diagram shown in figure 5.11 illustrates an example use o f the
SE-Servlce by two SE-Servlce-Ilsers. An Informal explanation o f this event-sequence
diagram follows:

1. V trr I and ('• rr i regialer thair intaraal through tha Si'./nida/ira function call«.

•2. I 't r r I than aaka SK. to aupply it with tha U S-S rrv icr. K ty o f f/aar * bafora
invoking an SK. A tk. H'uii function call.

» . Maanwhila V trr t ha« invokad an SK -A tlrnd . Wait call, which raturn« (with
oulpal paraniatar») whan tha S K .A tk . H'oil call arriva« from U trr I.

■1. f'»cr i than raad« tha actual tran«mittad data via tha SK.Accrpt call bafora
sanding tha ra«pon«a to (/«ar /’• SK. Aak. Wait call via an /4n«u»r call.

.̂ . Whan tha data from tha SK. dnswararriva» it is convayad to ff»ar / via tha output
paramatars o f its SK.Auk. Wait call invocation.

8 . Figure .S.ll than goa« on to «how a V trr I SK .A ttrnd call raturning without
finding any ralavant massagan, bafora a «acond proba using SK. Attrnd raturn« to
inform Iturr I that it has racaivad an SK. T rll massaga from t'urr i.

7. Kuer I than accapt« this ma««aga «ant via SK. Accept bafora cancalling its intarast
by jHKuinR an SK. Trrtninatr.

rh«' above example is inteml<*<l to impart an idea o f the overall picture of the functioning
and purpose of the SK-Service to the reader. The example shows that the SK-ServIce
supports a kind of “ paasive attention control** ((’ IMKttb) mechanism (and not an “ active
attention control" mechanism as found in OSl). Under the passive attention control
r<i(ime an SK.Service.User is not actively informed o f the arrival o f messages targele<l
at it. but instead must ‘probe* SK (via SK. Altrtid. Hail or SK. Attrnd) for an indication
o f the arrival <if messages.

6 .4.1.2 Perform ance requ irem ents

The KHH is a little vague on performame requirements for the SK-Service. The fol­
lowing list of performance requirements has been Inferred from KHB statements - - we
have classified, and elaborate<l some o f these requirements to make them more under­
standable.

P R l Resource m anagement requ irem ent: ‘The SK.Servlce should support a num­
ber of multiple concurrent SK-ServIce.Users and SK-('allable.F*unctlon Invoca­
tions.*

F R 2 Quantitative tim ing requ irem ent: ‘The Invoker of an «Vi,*. 4 sir. H'aif function-
call can specify the timeout period within which the call must return with some
return-status.’

P R 3 Probab ility and quantita tive tim ing requ irem ent: ‘The SK-Service guar
antees to return a high proportion of all non-waltlng SK-Kunction.Ualls (l.e. ex­
cluding SK. Auk. Wait andSK. Attrnd. W'ail), within some specified time limit (the
target service-time).*

P R 4 P r io r ity requ irem ent: ‘ Higher priority SK.h'unctlon.i’alls are accepted before
lower priority calls.'

SlC.Sh'HVK'E \n defined an a tirrvrr-rdh in<er/are romponewi. The firat decompoai-
tiunal step separateH functional requirements from performance requirements, resulting
in the rompouruts F U N C T IO N A L IT Y find P E R F O R M A N C F figure 5.12). This
separation of requirenients is not perfect. In particular, performance requirements for
SE. Ank. W'aif are quite inteRrated with the functional requirements, forcing us to spec­
ify the performance requirements for this SK.l-'unction within the F U N C T IO N A L IT Y
romptmrtit.

5.4.2.2 The P E R F O R M A N C E component

rhe PER FO R M A N C E roinpourut is decompcjse«! into three nub-compontnln-.
PHOU.SHV. TIMK. rH IO H IT y .S f-L K C T IO N unii C A I’A C IT Y figuro 5.12).

6.4.2.3 The P R O B S R V . T IM E component

This compournt captures the quantitative timing »nd probabilistic requirement PRU
(section 5.4.1.2). 'lo realize this requirement PH O H .S R V . T IM E constrains the actual
Kcrvicc-timr o f non waiting SE-Function-(’alls such that mont actual sen’ire-iimes are
within the target urn 'icr-tim t.

8B_6srvic«_UB«r •■ .• • r v lc *

* Output

■ Output e«curran««_<

Figure A timing breakdown o f an SK.Kunction.f’all

lb do this PROH.SRV. 77Afi; notes, for each non waiting SK-f-bnction-t’aH, the Input
event wTurerncT*i»me, and then specifies the earliest time at which the corresponding
Ottipu/event is offeretl (the Output offrr^timr). (W hen the Outpui event is offered to the
SK-Servlce-lIser, it indicates that the SK-Servlce has finisheil 'servicing' the function
call. Then, when the Output event occurs. It indicates that the SE-Service-User has
accepted and received the function-rail — the function call is ‘ returned’ .)

The actual arrxnce-time fK|ualii the Output offrr-tim r minus the Input occurrmcc-lime
(M*e figure 5.13). rH OH .SH V. TVA//-;imposes X I quantitative timing and probabilistir
ronstraintH to ensure that;

• actual Benncr-time < target arrvice-time, for 99.9% o f SK.I''unction.('aUB (corre­
sponding the the “high proportion” n>entioned in requirement t*R3)

ctual t ■•timr > target aenùce-tirne, for 0.1% of SK-F'unction.i’alU.

rhe PHOU.SHV. T IM K component also enforce# the functional re<iuirement of repre­
senting each SK.Functlon.('all by both an Input event and an Output event.
l*HOH.SH\'- TIMF. pair* complementary Input and Output events by ensuring that
each event in a pair contain the same hey or Same.

6.4.2.4 The P R IO R IT Y SELECTION component

Thi* rompofif f»/ capture* the requirement for priority PH t. To realize thi* requirement
F H IO H IT Y .S F L tX 'T IO S uaen XI/* priority feature* to order the occurrence of Input
event*. ba*<*<i upon the priority parameter* found in each Input SI)U .
Note the importance o f using XI/* priority feature for thi* task: thi* XI. feature allow*
F H IO lilT y .S F .I.F X 'T IO S to preview the priority parameter* o f a *et of Input event
offer*, and order the*«-, before actually accepting the Input offer*. To do thi* without the
use of Xl/s priority feature* wouid require the con*tructioii o f an expllcil mechaniHiii
for sending queries and instructions, concerning priority, to the supplier of Input SOU*.
Although some such mechanism might he realize«! at the pr«>gram coding level, the
explicit definition of such a im-chanism may be considered a* imposing unnecessary
constraints at the *pecification level.

5.4.2.6 The C A P A C IT Y component

This r«mpori< fW captures the resource management requirement l*HI. lb realize this
r«M|uirement TA/M f77 T'offers to synchronize on a limiteil number o f concurrent Input-
Output event pairs. Since each pair represents an SK.i'allable.Function invocation,
(”4 /MC’/?') limits the total number of concurrent SK.Callable.l-'unction* invocation*
and. hence. SK.Servlce.Users.

6.4.2.6 The F U N C 'T IO N A L IT Y component

Abstracting from spatial distribution“ , the SF-Servlce o|»erates as a tranajormatumal
component. It accepts Input events and tran*f<»rin# these to produce Output events.
Hence we decompose the FVNCTIOSAI.ITYcom ponent into the tranafonnatUmal com-
ptment lO and its aub-ctnnponenta (see figure .5.14).

“ T lie SK-ServUe.Provider fusrliasa m sn a »^ rh m n o u $ rommuntettUon component, trsnsmitlina

mrMisftr. from «s e SFJ ie fv lce .tW r to ssotkrr S K -V tvk e .l ’ser H «we»er, this csse-stHdy i«sore « the

■pslial dUtrihulins Mperts o f the SKJtervU-e-Provitlef to cosrestrste on its “ ••rvire definition” , i.s.

the apeilArstian o f the S R -A t'C T «erver-rd/r infer/sre romfstnenf (the “BEJlervks '),

Kluurr 5.H : l>(*roiiipoiiition of th«» SK-S^rvic^ (2)

Wr thr important Mp<H*tii of ÍO latrr, but fímt wr d^irribi* how to mod«*! an
SK.I-'utirtion.(’all.

6.4.2.7 M odellin g an SE .C allab le Function

The SK-Service prenenlii the services which it offers to its SK-Service.Users in the
form o f SKJ-\»nction_(’alls. All SK-^^lnct¡on.('a^s have an input parameter list and
an Output parameter list. An SK.I-'unction.(’all invocation can be modelled by two
suitably structured XL events. Two events are used to model the asynchrony between
the input and Output aspects of a function call.
For example, if we consider the SIC. Ank. W'aii function, the two XL events (with corre­
sponding A (’T ONF abstract data types) which model it, will have the following coarse
structures:

se ! SF.Sdu((• SK service data unit •)
SK. Ask-Wait. (• SK callable-function type ♦)
Input, (• service primitive •)
requester, key, (• I I) o f client *)
responder, key, (• ID of server *)
Request. IMu(data), (• request-data *)
priority, (• priority o f this function call *)
timeout {• timeout period •)

)

• ! SK.Sdii{ (• SK service data unit •)
SK. Ask. Wait. (• SK callable-function type *)
Output, (• service primitive •)
requester, key, (* I I) o f client •)
Response. lMu(<lala) (• response-data *)

)

Of course A < T ONF data ty|»es with appropriate constructor, selector, etc. operations
and data values must also be specified to support the above model.

6 .4.2.A The lO com ponent

iO functions as a tmnnformational rumptmrnt which forms appropriate Output events
given a previous history <»f input events.

iO has two su6>roriiprmrri/s:

a /,V/*i'7 whkh accepts /»»puf events and updates hi»tory i»»/c»» r̂ia/im» accordingly

a which offers suitable Output events, given the current hintory informa­
tion.

HMory in/ormolion of > »»t of < l»l» »trurturmi whirh r»pturr all important
a«p-rt, o f tho prrviou» hl«tory o f SK-Callable.Kunrtion InviKation». Tim purpt».« of
thPM’ ilata .trurtiirpi, am dpurribwl I,plow.

to be delivered** to their target SK-Service.Uwri.

• rmart (read aa ‘ respoiiBe mesNage set’) rontains similar ‘yet to be delivered’ mes­
sages which have been submitted to the SK-Service via 5£--4n*u*er calls in re­
sponse to SE'- Ank. Wait calls.

• rrgarl (read as ‘ registration set’) contains IIS-Service_Key/lIS.Name pair entries
which effectively register an IIS entity as an SKJJervice.User.

• outalaakufaita (read as ‘outstanding SE.Aak. IVoif Output offers’) Indicates the
Sh'.Aak. W’ai7 invocations which have Output event offers still to be generated,
and contains the information from SE.Aak. Wait ¡nputa which will be used to
generate these Output event offers.

• oufsfirifutrrs, outatattruHn and outatarrtpta have purposes similar to outataaku>oita.

The event-sequence graph in figure 5.15 helps explain the relationships between the
history information data structures and SE-Funrtion-('all events.

5.4.2.9 The O ASK W AIT component

I'he functional and tinie<iut (performance) r€»quirements for SE. Aak. Hail function calls
are quite int<>grated. and this ctnnpimtnt is responsible for specifying both. (W e man
Hgeil. for the either SK-Kunctlon.(’alls types, to wparate functional from performance
requirements at an earlier level of decomposition.)
I'he O .A S K . H /t/7 ’ rompof»fnt captures the quantitative timing requirement PR ‘2 (sec
tion 5.1.1.2). Under this requirement there are three different cases in which an
Sh'.Aak. U'nif Output event may occur, (liven an SE.Ank. H’« i f input-

1. An appropriate response packet to the .S’/'.’-Ash. Moif Input, arrives before the
SE.Aak. Wail invocation timeout period expires. In this case the Output event,
with return-code Sh'.Ok, is offered from the arrival time of the response packet
(see figure 5.15).

2 . The timetiut perUid expires before an appropriate response packet arrives, but
then an appropriate response packet arrives before the SE. Aak. Wail Oulpul event
occurs. 'I'he Output event, with return-code SE. 7'imroul, is offered from the end
of the timeout period.

3. 'I'he timeout period expires before an appropriate response packet arrives, and no
appropriate r«*sponse packet arrives before the SE. Aak. Wait Output event occurs.
The Output event, with return-code SE\ Timrtmt, is offered from the end o f the
timeout period.

Note that rase 2 and rase 3 are considered different for the purposes o f specification - -
they cannot be separately identified by examining the SE. Aak. Wait Output events that

‘■l.e irsssmitted to the (sraetiHi HKJlervire.lIser's s«»dr ssd read by this SK-Seivke.Ussf throuRk

Ihr UM* of an S E . A c rrp t fHSrlios rail

which the ronpons«* packet become* available to the SE.Aak. Wait invocation, at
which it i* targeted.

5.4.2.10 Example queationa ariaing from formallaing the FR B deacriptlon
o f SE-Service

A* Bupporting evidence of the benefit* of formalism for CIM-OSA, we present a selection
o f question* ami issues which arose from the first attempt* at developing an (X)L
specification*^ for the SF.JJervice.
rhe following list o f problems is incomplete and will, we expect, be added to. before
eventually being totally resolved through further development work on SE-Service.

Q l .

Q 2 .

rhe FHH description says very little about what drfinabtf behaviour is this
is a very important issue since it will basically decide the extent o f any formal
specifications for the SE.Service. For this first specification attempt, we Uxik
the view (after consulting <’ lM-OSA members) that drfinabit behaviour should
include both t>alid behaviour and rxprclrd rrronroun behaviour (e.g. behaviour on
message timeout).

rhe FHII mentions little about error handling. In particular we are thinking
about what constitutes an error (see the above point), what action should be
taken when an error occurs, an<l what the content and fiirmat o f error reports
should be for SK.Funrtion-i'alls. Also, should error handling be deferre<l to a
lower-level specification?

OSI models only rfl/id behaviour on the basis that other behaviour is erronetms
and needs to be handled in an implementation dependent way. Specifications
which model, to some «legree, rrmnroun behaviour are <jften consider<Hl more
concrete. An advantage o f specifying rrprctrd rrrtmroun behaviour error handling
is that these would tend to lead to more robust system*. Also, we could argue
that certain *errt>r responses' should be at the same level of abstraction as normal
data responses'.

The specification in this section model* some rrprrtrd rmmroutt behaviour. The
present FRH description mentions very little about what rrprrtrd rm m row be­
haviour is and how the SE-ServIce handles it . '"

This decision is refl«*< te<l in the specification by allowing any input event of the
correct structure to «tccur, thus modelling the SE-Service s acceptance of both
ivi/id and iTprrtrd rmturffua /«puf event*. I he XL specification then describe*
how. if the SE-ServIce finds an Input event representing *«>me kind of erroneous
SK.Functlon-Call invocation, it will decide upon appropriate action.

spiK-ini slioB wss msisly derivrd from tbr K H H dm nm rals: (<’ lM *9b).
**Maybe the F K H i# deliberately vaaue os tbia m ailer to bint Ibat tbe bandiis« of erruneons behavioMr

to entirely an ImplementatioB-depeBdeBt tonne However C I M - 0 « A peraonnel thouKht tbal "some“

experlederroneonabehavionr should be modelled Tb u s . we have bad to improvtoe Ib e ape« IA< ation of

eeperfed emmeoua behavkinr. based on diat naaionn with (‘ I M -O S A peraonnel,

q s . I)<><-K thp SK-Scrvirr rhwk thr 'validity' o f IIS.Servirr.Kfy argumml« in rallablf
funrtion«, and if »o what »hould bn thn format o f tbn rnturned nrror report? (Note
that if the IIS-Service.Key o f the Calling entity is invalid the SE.Service cannot
return an error report since it has no means o f discovering the correct identify of
the Calling entity.) More generally, Is it the responsibility o f the SE-Service to
check other SE-Eunction.Call argument types?

q4 . In the present EHII descriptions of the SE-Service, only some SE.h'unction.Call
types are confirmed in the sense that the SE-Service.llser is informed of the return
status of the SE J-unction-Call invocation (e.g. the SK. A ik- Wail will return with
either response data or with a “ timeout occurred" Indication). However, we
perceived the neeri for some kind of confirmation for all SE-Ehinction-Call types.

A dop ted proposal: We derideil that all SE.E'unction.Call types return a 'return
code' (e.g. St:. Ok. SK. ItivalidKey, SK. T im roul) which indicates to the Call
ing SE-Service.User the status o f the SE-Eunction-Call invocation. This
means that all SE-E'unction.Call types now have an Output parameter list
which contains at least this return-code parameter. This proposal is imple­
mented in the specification in appendix II.

Confirmed SE-E'unction-Calls allow irp rrird rrrouroui behaviour (see Q 'i) to
he reportiul to the funrtion invokers. Also, now that each SE-l■^lnrtion-(all
is delimitrul by an Input event and an nulpul event, we can attach rjuantita-
tive timing and prohabilistir constraints to these events to meet rei|uirements for
SE.Function-Call service lime, priority ordering, etc. (see section .fi.-l.l).

q s . The EH II states that .S'E. AcrrpI and .Sf,'./ttisurr functions should contain J'mni-
arlitm -ld parameters which allows SEJiervire.Users to identify the funrtion calls
which compose each transaction. Our i|uestion Is. ran a single SE-Servlre.llser
I'tigage in more than one SH- Aik- Wail at any time? Surely not, considering the
suspending nature o f the SK. Aik- Wail function.'“ If an SE-ServIre.lIser cannot
engage in more than one Sh '-A ik. Wail at any given time then surely the need
for a I'ransartion-ld parameter in .S'E,'. ArccpI and SK. Aniwrr \i reilundant: the
IlS.ServIre.Key o f the S K -A ik . Wail initiator (the Calling entity) is all that Is
re<|uire<l to facilitate the Called entity to respond, in a transaction based nature,
to the Calling entity. The SK. Aik. Wail Initiator ran be engagerl In only one
St:. A ik- Hail transaction at any given time, therefore any SK .Ania irr reply can
he unamhiguoiisly Idenlifierl by the IIS.Service.Key o f the SK. Aik. H ail initiator.

If an SE-Servire.tlser wishes to distinguish between Its SE supporteil transactions
then surely it is the responsibility of that SE-Servlce.User to somehow locally label
itR iranNartlonH uniquHy.

Aasum ption: The specification in appendix II assumes that an SE-Service.llser
cannot engage In more than one SK. A ik. Wail at any given time, therefore
making the lEansactlon-Id redundant it is therefore not modelled In this
NpiK-iflriition.

'•tn i I U afl«»r ihi- Input «w R liin « thr o r m r r r n r « of thr

Output rvrnt.

Q0. t>om the FRH informal deurriplion it was unclear on what basiR the SK-Service
delivered nieHnaf(efi. I'hiB issue should be addressed in three areas:

• Is receipt orderinf(of ‘me88aí^es’ in transit the same as submission ordering?

• Under what regime should messages (o f the same I'ypr) be delivered from
the ‘arrived message buffer’ to the Called entity? Should we use a “ first In,
first out" (F IFO) scheme, for example?
In light o f these two uncertainties, the XL specification makes a
non-deterministic choice when dealing with message delivery.

• When a message is ‘delivered’ to the targeted SK-Service.Agent node, is it
immediately available for delivery to the targeted SK-Service.User?
The XL specification assumes that this is the case — see the I.Anawer
process in appendix H.

On a similar note, we found that the FRH says very little about message loss,
corruption, duplication, misdelivery, etc.

Q7. The FRB definition of an lIS.ServIce.Nanie is that it is an Identifier which is
unique within the local node o f the Caller. In our specification the IlS.Service.Name
is represent«! by UtcalSamr Typt , but since the SK-Service specification describes
a system-wide service, an SK-ServIce.User must be uniquely identifiable at the
SKlService interface by its “ name" (when the SK.Service.User does not yet pos­
sess an lIS-Service-Key). The OWomc 7'y/ir realizes this uniqueness property of
the “name" by pairing a ¡.ttcalSamr'Vyftr value with an StxlrSam rlypr value to
form a system-wide unique identifier.

5.4.3 Discussion

Structuring the SK.Service specification in terms of chapter -I’s architectural rtttnpo'
m «fs has a number of benefits. The graphical representation (figures 5.1‘J and 5 .H)
shows the major functional and performance components at-a-glance. The classifi­
cation o f rifs explicitly separates concerns and so aids understanding. I he
classification of romptmrutit prtives useful for navigating around a large design, and
fiiuling romporirnfs o f concern. For example, this is especially useful for maintenance
or experimentation work where the ‘bits that nee<l tweaking’ can be readily Identified.

An XL specification i)rganized in architectural terms is easier to read and to under­
stand. Huihling specifications in terms o f architectural componmin removes some of
the (difficult) creative aspects <»f the specification task. 'I’his is because architectural
rovipimrntH embody some domain kmiwledge (know how frc»m a previous history o f
solutions); this is an example of ‘knowledge re-use’ .
Notice that the SK.Service specification (described in this section) provides an exam­
ple o f how to write a constraint-oriented (VSvSHW)) specification (organized in terms
o f architectural romponrutH), while the outline X_A(’<'P-<’!ients.l*S-Sl* specification
(described in section figure 5.10) provides an example o f how to write a resource
oriented (VSvSHO«) specification (organized In terms of architectural componrnt»).

5.5 G u ide lines for fu rth er developm ent

The final lank within our itrateny for formaliiiinK the IIS is to produce Kuidelines for
the development and assessmenl o f XI. IIS descriptions. In part, these guidelines take
the form of a specification drvtiopmrut map. A development map consists o f a set of
nodes which are (references to) XL specifications, and a set of arcs which are (formal)
relations between the specifications. A specification development map helps to explain
the relationships between (the XL descriptions o f) the facets o f the IIS. It provides a
guide to the suite o f IIS XL specifications (such as those of in the previous sections),
suggesting possible development paths. It also provides a framework for conformance
testing.
We use this section to take a brief UH>k at a specification development map for a
particular subsystem of the IIS.

5.5.1 A n e x a m p le : X . S e r v ic e d e v e lo p m en t m ap

As an example we concentrateon the developn>ent o f the decomposition o f an A’. .Service
as portrayed in figures .S.5 and 5.9. Figure 5.1« depicts a simplified, but typical speci­
fication development tnap for the dcK-omposition o f the A'. .Service. The following para­
graphs provide a short commentary about figure 5.1«.

.S’lJ In the typical development o f an A..Scn»icr, we begin by writing a constraint-
oriente«! style “service «lefinltlon" (denote«! by sp«*clfication .S’l).

.S'l am! .S’a: I'hen we procee«! towards the goal o f a decomposition of the A'-.S’ennce in
terms of A”. .SVrt îce. (see section 5.3..1) by developing the specification o f an
A'..SVnnrc. Affiid ("P<’‘ lfl<‘« t » » » '^o build confidence in our .S’a specification,
we check that .S’a con f .S’|, where .S’{ is an abstraction of .S’j formed fr«)in only
those parts o f .S’l wh«>se functionality is (suppostn! to be) reflecte«! in .S’a.

.S’.ii An .S’3 sp«»clficatl<»n is a composition of .S'a specifications. This compositnin takes
us towards an emulation o f an X.Srnncr fortned by a set of A..S'rrvicf. Aprrils.
However, these A*. .S’rnacr. Ayrnís do not communicate with one aimther — their
X Adh'l* Interfaces remain unconnected. These unconnected Interfaces give rise
to unwante«! Iiehaviour along the X -A (’(’ P system wide interface (e.g. unwar
rante«! resp«>nse SDUs, etc.). For this reason S3 ex t .S’l (approximately, this
means that; S3 midains and extends the functionality o f .S'l).

.S'4 and .S'»i I’he S4 speclflcatl««! extends the .S'j A'. .S’enucr. Agrut specification by adding
some A- .Srnurr. Agrul management functionality. .V4 specifications are then com­
pose«! together with an X. SrnHrr, Agrut. Managrr to form the specificatUm .V».
.V» extends S\ by the additUm o f the management functionality.

KlRurp 5.1«: A np«Tifir«ti(m ««•vrlopinrnt map for an X.Srrtncr

.S'ljj In uprriflration .V« wr rompiJM* S\ X . Srrt>icr. Agrntu \n the faahton Illustrated in
figure 5.5. The .V..S>rture. Agm/ .Y. AiZ/i'/Moterfares are fully interronnected.
This restrlrti the unwanted behaviour we dearribed for S j (w e no longer have the
unronnerle<l interfares found in .S’3), and a<> .S'« ought to be testing congruent to
the .Y-.SVnurc specification .S’j.

.S't » Specification Sr maps the 'logical' connections found between the .Y. inter
faces o f the X. .S'enurr. Aprriisof spei lficatlon .S«. to connections to the .Y. rnttorol. .SuppoW
The basis for this decomposition Is described in section 5.3.5.

Kigure 5.1« is a simple example of a Mprrtfiration Hrt>rhpmrnt map. Such a map can
be used to steer the development of the specification, act as a guide to a suite of
specifications, and provide a framework for conformance testing.

5.6 Sum m ary

Thin chapter prenenled the CIM OSA IIS a* a case-atudy o f architecture-driven «peci-
hration usinft XL.
The CIM OSA IIS i> a large, fairly typical diatributed computing ayateni which includea
both functional and perftirmance requirementa. Theae conaiderationa made the IIS
a Buitable candidate for teating the worth of chapter 4’a architecture framework for
diatributed ayatema, and for teating the deacriptlve power of Xl.'a performance featurea
developed in chaptera 6 , 7 and H.
Section .S.:! ahowed how chapter 4'a common orchilcclurr romponriiln could be uaed to
liiiild a akeleton architecture for the IIS. Then aection .t.d focuaaed on one part of thia
akeleton to ahow how the common architrcturr romponrntf could be cuatoinized, and
performance featurea of XL ua.-d, to apeclfy the SK-Service. XL allowed quantitative
timing, probabiliatic and priority requirementa to be expreaaed and compoaed eaaily.

The rlaaaification of architectural componenta in chapter 4 provided guidelinea for atruc-
turing the (de)compoaition o f the IIS. The reaulting XL apecificationa were organized in
terma of architectural componenta, rather than aolely in terma of apecification language
roncepta. I'he direct reflection of problem domain atructure in the apeciflcatlon made
it it eaaier to underatand and navigate through the formal apeciflcation.
(TM OSA itaelf ia atill in ita Infancy aa regarda formaliam, but many beneflta have
already been reaped. In the main, we found that the npour of fornialiam promoted
early problem identification. In the abort time that 1.0 LOS“ haa been employed in
the (T M O S A project, it haa had a conaiderable impact, and haa gained project wide
acceptance aa an integral part of the development of the IIS reference architecture. Our
initial iiae of LOTOS haa ahowii that the ao railed “ Formal Heferenre llaae" IIS dearrip-
tiona are neither aa rigoroiia nor an complete aa required. I he application o f LO I OS
haa led tint only to deaign rorrertiona, but alao to the developttient o f better deaigna.
Development of LOTOS dearriptiona haa helpe.1 to make coherent the dearription of
the IIS. llefore the uae o f LOTOS the dearriptiona of individual IIS aervirea were not
entirely compatible, and thia waa not immediately evident from examining the informal
FKh (if'KrriptiotiR.
In ronrlunlon. tho TIM OSA raiw-Rtudy in thin chapter haa provldwl a teating ground
for the conrepta and language exlenaiona defined in chaptera ft. 7 and H.

**Nole. thr t'lM -O H A proJ«^l aclually laO'I'OH »0 form al^ Ihe 118. bul lo demonalrale X L ’a

•Mlily lo rapreaa pvrfurmaace re«|HÍrem#nU. w». ia Ikia IhnUa, elabofaled ('IM -O H A LO TO S aparlll-

rallona to XL •ptK'illralioaa — aee Motion B.l,a.

1.1.1

C hapter 6

Formal specification of timing
for distributed systems

rhiH rhaptor ia roncerned with the laiiguagr support r**<|uired for the formal ipecifira-
tion o f <|uantitative timing conrcrnii in distributed »yalem». We begin by examining
the iiiade<|uarieK of standard I.O fOS in this area (using examples from C IM O SA). We
investigate r<M|iiiremeiits for the expression of quantitative timing conrerns. and distill
a set o f features which we believe a supporting language should include. Then a timr-

derivative o f I.O l'OS (T I.O TO S) is proposed which unifies and incorporates
many of the afore mentiontHl features. In this time-extended version of LOTOS, the
notion of quantitative, phyttu'ul^rUtck base<l time is implicit and time constraints are
easily expresse<l. We detail the syntactic and semantic extensions which take us from
LO io S to TlX)TOS. Also, we explore two functions for mapping TLOTOS to LOTOS.
Neither syntactic functitm is contpletely satisfactory — giving weight to the neetl for
MMnantic-level time extensions to I.O'I'OS, such as developetl in this chapter. We con­
clude by returning to the <’ IM OSA examples to demonstrate the power of I'LO lOS
for the capture of quantitative timing requirements. Appendix (J forms an annex to the
chapter, to show how TI.01'OS specifications can be tested under extended definitions
o f the LOTOS testing relations, to yield sensible and intuitive results.

6.1 In troduction

Wo ofton find that roal lifo distributod *yitoms display timo-dopondent behaviour. In
order to fully specify such time-dependent systems we must use a description langu^e
which fully supports this aspect of their behaviour, i.e. the expression o f quantitative
timinK concerns. (C!»WK6] caution that to omit quantitative timing requirements may
subtract an entire dimension from the description. Such omission may prove a useful
abstraction for certain tasks, but often the time-dependent aspects of a system are
whore the real complexity o f distributed systems ran be found. We must ensure that our
description language effectively reflects the time-dependent essence of many distributed
systems problems, and does so in a way which is convenient and understandable to the
user.
Absence of appropriate timing information can result in ambiguous or erroneous de­
scriptions; but the cumbersome expression of timing Information will produce descrip­
tions which are difficult to understand.
(’oncern that timing information is somehow in>plen»entation detail, and should not be
a specification level concern, is addressed by (C’ PWKfi) which says that: “ the apparent
distinction between the measures of time introduced for the mathematical concern of
ntrrtctur$m and those introduce<l for the engineering concern o f prrft>nnancr may be
wholly illusory because what we originally perceived as a performance concern impacts
on correctness".
Process algebras have proved useful in capturing descrtplions o f complex, concurrent,
communicating systems. I.O'l'OS is one such algebra. I he formal basis <jf b () I OS
provides it with the combined descriptive and analytic ptiwer necessary to tackle such
c<»mplex systems. However LOTOS lacks the built in facility to express quantitative
lime, which explains our efforts to form a time-extended derivative o f 1.0 I OS for the
description and analysis o f time-dependent systems.
I'he next section substantiates, by means of examples, our criticism o f informal or
expressively cumbersome quantitative time-models.

6.2 T h e inadequacy o f standard L O T O S for expressing

tim ing concerns

This section examines some real-time aspects of the CIM-OSA IIS, and explains why
standard LO I'OS is inade<|uale for their description, We use the (*IM OSA IIS X.Service
and X-Service. Agent specifications as our example subjects (see section and ex­
amine abstractions o f these which emphasise timing aspects.
This section has the following structure: we begin with informal descriptions of the
X-Servlce and X.Service. Agent. Then we provide LOTOS descriptions o f these sys­
tems, <»ne using an informal model of lime and the other using a formal but cumbersome
model o f lime. We discuss the inarlequacies o f these LOTOS time-models, and propose
the development and use o f a lime-extended version of LOTOS.

6.2.1 In form al description* o f C IM -O S A IIS tim ing aspects

'rhr following two imbaubBertionii provide informal deacriptionB o f the timing etsentials
o f the X-Service and X.Service. Agent.

6.3.1.1 Informal description o f the X .Service

The following de»rription captures one aspect o f the timing essence o f an X.Service.
(The description is really an abstraction of an X-Service, which suffices for the purpoaes
o f this section.)

• The X . Service is willing to accept a Hrquint at any time (say M), at the X . AC (P
system wide interface. The X.Service does not place any quantitative timing
constraints on this event.

• A event results in the X.Service offering a complementary /fcsponse event
at the X -A fX ’P interface. This event will be attributed with either dataS (the
result o f some computation), or the value 7imrou< (indicating that a timeout has
occurred).

• If a HntaS Htnfxmnt is offered, its offering will begin in the time range <1 .. .(M +
tim roul. ftr rii»d), inclusive. A further re<juirenient is that the X.Service is to
compute atxi then offer a dalaS Hrnpemtif as quickly as it can. i.e. the X.Servlce
is to offer this event ASAP (as s<M>n as pijssilile).

Otherwise, if the Timroul Hn^pounr is offere<l, its offering will begin at the time
n + tim roui. pt rutd + 1. In other words, if the X-Service cannot offer the data2
HiHpnuKr within the /imrou/.pf ruid theti a 7’imrouf /fcsporisr will be offere<l im­
mediately after the end o f the Umroui.pcrittd.

The X-Service is responsible for deciding which Htnponnr event is offered, and at
what time it is offered. Also, the X.Service is responsible for deciding the value
of dataS.

0.2.1.2 Informal description o f the X Service Agent

The following description raptures the timing essence of an X.Service. Agent, and
should be rea<l in conjunction with the description o f an X. Service in section 6 ,2.1.1.
(Again, this description is an abstraction of an X-Service. Agent, constructed for the
purposes o f this chapter.)

• To perform a Htqurnt, the X. Service. Agent solicits the help o f other X.Servire. Agents
via the .V- interface (see section 5..1.3). An X.Service. Agent should be will
ing to participate ASAP (as s<k« i as possible) In events at the X. A O’/’.P Interface.
This requirement reflects the urgency indicated for dataS Hmpouitr events In the
X.Servire definition above.

0.2.1.3 DUcusBÌon

Our roncern in thin M»ction l i « not in illuminatinR thè Renerai disadvantaRen of in-
fernia! description but with the inadequacies of informal or cumbersome time-models,
which may themselves exist within formal descriptions. However the above requirement
statements typify the way in which real-time system requirements may be ill conceived
or vaguely stated in an informal language. Of course, “ requirements-lever descriptions
are necessarily vague (or abstract) — we cannot embody all the knowledge we know
about the universe of discourse o f the problem into a brief requirements-level descrip­
tion. in general, no aspect o f the requirements enjoys unambiguous interpretation,
but timing re<juirements, being o f a precise nature, often tend to suffer adversely in
“ requireinents-level” aòsiroriùms.*
We assume an unambiguous interpretation of these requirement statements in the pro­
duction of the formal descriptions o f the following subsections.

An informal tim e-m odel

By an informal time-model, we mean that no definition exists for a formal frame-
wiirk within which to reason about quantitative time. This makes it Impossible to
formally reason about relationships betwe*«n statements concerning quantitative time.
This leaves the quantitative timing aspects of the description open to subjective Inter­
pretation. 'rhis we demonstrate thrriugh the following examples.

6.2.2.1 The X Service using an informal time-model

The following LOTOS description of the X.Service is based on an informal time-model.

(• Specification of a limited X.Service, in LOTOS, focussing on timing aspects •)

• Quantitative timing constraints are expressed as comments in the LOTOS text.
(These constraints have no formal basis.)

• The i events indicate that the X-Service is responsible for deciding which He-
nponitr event is offered, and (in principle) its occurrence time. The I event within
the nuin-exprrnnion is also used to indicate that the X-Service is responsible for
deciding the value of dataS.

6 .2.2.2 T h e X . Service. A gen t using an in form al tim e-m odel

The following LOTOS description o f the X.Service.Agent is baswl on an informal
time-model.

(• Specification of a limited X.Service. Agent, in LOTOS, focussing on timing aspecU. •)

l>ror<«ss X-Service. Agenl[X. A i ’i ’ P .X-A iJKI’] ii«M«xit :■
X -A t ’t 'P ! Req ? datal:l)ataSort (• occurs at any time t l *);

X. A(JKI’ ! Req ! dalal (* should occur at a time < = tl-Kim eout.period •)
(• and ASAP within this time period •);

X. A («K P t Res ? data2:I)ataSort [data'i ne Timeout]
(• should occur al a time t2 < * ll-flim eout.period •)
(• and ASAP within this time period •);

i«xit(<lala'.2) (* should occur at time 12 *)

i (• should occur al a time t3 * tl+tim eout.period+1 •) (* timeout •);
ex it(T im eO ut) (• should occur at time t3 •) (* TimeOul is in l)ata.Sort *)

We ensure that ex it events consume no time, by commenting that each o f these
should occur at the same time as Its Immediately pre<eding event.

I he X. Service. Agent sciliclting help from X.ServIce. Agents is representetl by
the events at the X .AO KP Interface.

I'hls is realised by allowing the I (* timrout to disable (C>) this sequence.

However, from the abcjve description. It Is not necessarily obvious that the I (* tim r­
out V«*v«*nt may occur after the X.Af/A/V/frsevent. One interpreter might argue
that the choice between the 9ji\X(HataS) and i (* timrout is determinis­
tic in that the lixH(dataS) pre-empts the occurrence o f the 1 (* limrout *) event,
because the mx\X(dntat) can only occur at an earlier time than the I (* timrout *)
event.

• W ith respect to timing, we have no basis for formally proving that the
X.Service. Agent description is equivalent to the X-Service description.

• We have restricted the datag parameter in the X . AGKP!Rrn event, so that it
cannot include the term 7’imcou/ of the sort DataSort. In a real IIS system, we
would expect that this parameter could contain the value Timrout, indicating
that the object whose help has been solicited via the X . ACtKPIReq call has itself
timed-out and returned this fact via the X.AGKIMRes parameter. However for
our example, we disable the possibility of the solicited object returning a 7’ùnct»ui
parameter, to ensure that a solicited object timeout cannot be mistaken for a
timeout of the X-Service. Agent in question (given that it is the difference between
the 7'imcouf behaviour and any alternative behaviour of the X-Service. Agent
that we are especially interested in).

6 .2.2.9 Diacuasion

The above informal time-model based descriptions of the X . Service and X-Service. Agent
are inadequate. Without formal semantics there is no means of enforcing precise be­
haviour, nor can we “ prove** any of the quantitative timing aspects. As writers of the
spiK-ification. we know what we mean by the comments concerning quantitative time,
but this does not guarantee an objective interpretation by everyone.
These examples illustrate a few of the problems which can arise if we have no formal
framework in which to reason about statements about quantitative time.

0.2.3 A form al, but inadequate and cumbersome tim e-m odel

Tor a time-model, more formal than the model in the previous subsection, we cht>ose
W-events’ to represent the passing o f units of lime. Now consider the description o f the
X.Service-Agent using this time-model.

6.2.9.1 Th e X -S e rv ic e Agent ualng an m ore form al tim e-m odel

The following I.O'TOS description of the X . Service. Agent is based on the «-event time-
model.

(• S|.r.ifir«li<>n of li lilllitr.) X-S.rvirr. A*rlll, in I.OTOS, U.IIIX rxplicit l-rvrnU *)

|.r..c..Ni. X-Snrvirr. Annnl [l , X-A(* (; ■
St«lrl|t,X-ACCI-,X-A<iKI-l

l»r«»ri*ss Stalrl(t,X-A(’(‘ I’ .X-AiJTP] noexlt !•
1. SlaleHt.X.A(’('P.X.A(Jf:i’ i

0 X. A(*ri* ! Hrq ? datai I)ataS<irl; State2(t.X. AiX'P.X. A(iKI*l(0. datai)
endprtic (• Slalel •)

proreas Slate2(t.X. A(*(*I*.X. A(lKPl(tiiner:Nal. dataliDataSort) lioexlt :■
((timer le tim eout-period)t; Statealt.X-A(*<’ P.A-A(ÌKPl(Sucr(timer)))

0 ((timer le timeout.period) X. A(1KP I Heq ! datai (* and ASAP •);

St*U*3(t.X- ACX'P.X. ACJKPKtimer))
Q ([timer eq tim eout-period+1) -> I {* timeout •); Statefl[t.X. A ((Pj)

radproc (* Stated *)

procoa i State3(t.X-A (’(’ P.X-ACJKPl(timer:Nal) iiiw xU :■
((timer le t im e o u t .p e r io d]t ; State3(t,X. A ('('P ,A -A (itP](S u cc (t im er)))

n ((timer le timeout.period) -> X . A (»K P ! Rea ? data‘i:I)ataSort
[data3 ne Timeout] (• and ASAP •);

State4 (t.X .A (’C P .X .A (iK P](tim er, data »))
(] ((timer eq timeout. period+Ij I (* timeout *); State6(t.X. AC (P))

I 'lid p ro r (* State3 *)

proroaa State4[t.X. A (X 'P](tim er:Nat, dataa OataSort) n«H<xit :■
(1; S ta le6 [t ,X .A rO »j(da ta2))

(] ((timer eq timeout, periods-1] i (* timeout •); Stale6(l,X. ACX'P])
oiKlprcM- (• State4 *)

procoaa State5(t,X-A (X ’ P](data2:l)ataSt>rt) iMM^xit :•
t; State5(l,X.ACX’ P](dala2)

D X-ACX'P ! Rea ! data2; atop
«‘iitlproc (• State5 •)

proroaa Statefi(l.X ACX’P) iMH’x it :■
1; Statefi(l.X -A (X ’ P)

Q X. ACX’P ! Rea ! I'inirHiut; atop
«•ii«lpror (• Stalefi *)

t‘ii« lp ro r (• X.Service. A|{eiil •)

it ia not raay to undrratand the above LO'I'OS deacription at a glanrr. I hc KSM In
figure (i.l may help clarify the LOTOS deacription (the timeout, prrittd ia Riven the
value 3 in thia KSM repreaenlation).

• The requirementa aaid that an X. Service. Agent waa to begin offering a Hr-
qumt dataS event at a time within the timeout, period, or begin offering the
Hfquf Mt Titneout event at the time immediately after Ihla peri<Kl. LcMtking at
the KSM. it ia obvioua that thia ia the caae. The pmeeaaea StatrS and Stated of
the l.OTOS deacription. correapond to the atatea dearribed by thia requirement.
Th«*ae two atatea are reached at the correct timea (count the f-eventa). and the
appropriate Henpimin eventa are offered at theae two atatea.

• The i event, in proceaaea Statr4, directly preceding the pnMrnH-inMtantiatiou,
Statr/i..., correaponda to the exit (data!) event from the X . Service. Agent de
acription In the previoua aubaectlon. The occurrence of thia event repreaenta the
point in the behaviour of the X . Service. Agent at which It ia ready to offer the
HrMpofme data! event. Phia i event haa no f-event alternative becauae, according
to the X.Service. Agent deacription in the previoua aubaection, the ex it (data!)
event ia apecified to occur at the aame time (l i) aa ita enabling event. 'I'herefore
the alternative I 7'tmroul In .Vfafr^, ia auperfluoua aa it ran never become
enablwl at time f f (thia ia clearly ahown by the KSM).

Kinupp 6.1: KSM of an X-Servir«*. Ag«*nt

• Although Ihiii formal llmi*-imMlrI allown un lo prove and foriiially nlate certain
quantitative timiiiK pr<i|»ertien (e.*. that event orrurrenren do occur at npecified
tlmen). It lackn the exprennlve power nee<le<l to dencribe all the titninK requirement»
o f the X-Service and X . Service Anent. We can exprenn that event# muni occur by
certain time», by nuppren#lnR the offer o f i-event# at appropriate time». However,
we have no mean» to expre»» the ASAP urnency (»f event», a« anked for In the
informal requirement». In the IX) TOS de»crlptlon. we can only comment that
X A(JKP event» are to occur ASAP {»ee procennen S ta trt and StatrS).

• LO rOS dencriptlonn In thl» i-event »tyle are cumber»<ime to write, and nt»t ea»-
lly underntiKKl at a glance. Introducing yet more ‘ time-model mechanUm* Into
deacriptlon». In order to exprenn ASAP and other »uch tlmin* con»traint#. make»
(leacriptionn almo»t lncomprehen»ible.

6.2.4 Summary so fa r

W«* draw a f«*w inlrrenlinR ronrlusioni from the above X.Service and X.Service. Agent
exainpleN:

• The informal time-model ba«<Hl LOTOS dencriptionii (in which timing constraint*
are expressed as LO 'I'OS comments) provide no formal framework for reasoning
about quantitative time-dependent behaviour. We cannot prove timing proper­
ties, nor can we unambiguously state timing constraints.

• The i-event baserl description is cumbersome to write, and not easily under-
Ht(M)d at a glance because of the large number o f extra slate* introduced due to
the explicit repres«*i»tation of the time mechanism. Moreover, without elaborate
enhancement* (introducing an even greater number o f states), this time-model
is still inade<)uate in its support of timing features such as ASAP urgency, etc.
I'his is an argument for developing a lime-enhanced version of LOTOS in which
timing constraints are easily expressed and underst<M>d by intuition.

• Quf^tions may be raise<l concerning the nature and nee<l for timing constraints
such as: this event ia to occur os itttou os poHnibU, os latr os poanihU, etc. Such
timing constraints are relatetl to the ideas of mo/if»»o/ putgnnn (a system should
not idle if it can perform an action), tnuai iimmp (specifying what actions a system
must perform, and the times at which these actions occur), muUi-jMirticipant
rivriis (events c<mst raitjted by nmre than one entity, e.g. observable event* in
LOTOS are constrained by both the system and its environment), etc. These,
and other i<leas will be investigated in the next sectiim.

• In summary, we have s<hui that informal descriptions o f liming concerns, even if
expresse<l in otherwise formal descriptions, are inadequate; formal descriptions of
timing concerns are rumbersotne to write and «lifficull to understand unless the
language includes an implicit model’ for quantitative time.

6.3 IiivestiK ation o f expressive power requ ired for spec­

ify ing tin iiiiK coiict-rns

In Ihi. pMM-tUiii w.' inv...lis»ln tin* oxproBnivi. fli'xihility* rr..uirod of x IxtiRuxso for the
.l>erlllr«llon of <|ii«ntll«tlve time ronxlraineil xyxtem«. We hex!n our inve«ti*«tive J.jur-
ney hy exxmininx the ilepemlenie on time of time |irerllr»tiHi themnelvex. We then

*Ser se< tK>s 0 0
*H» “impikit" wr mrsB that irsmrworli f« f resMinisa shout quantltstivr limíRR roarer«# i#

built lato the armsstH • «»f the UtiRUsae, a# optHwed to heisg espreaaed in the «ytilss of the dew riptkin.
*We uw thi# term to iadh a le that our «oarer« Ue# with the ease of espreawon a lanRuaRe afford#

lertaia roarepta. rather thaa the absolute eipreaatve p«»wer «»f a lattRuage (e.«. relative to the power of

a Turiaa Machine).

inlrodur«* a derivative of arr-timed Petri-Nets (l*N s) and use this in our exploration of
lanKuaftes facilities needed for quantitative time-dependent specification.“

6.3.1 Past and future dependent t im e predicates

('onsider the causally ordered events:

X — V — i

and the followiiiR description of their quantitative times of occurrence:

where ("’ (v) returns the quantitative time o f occurrence of an event v, and / is a function
whose domain and codomain are of a quantitative time sort.
Then / (r (x)) * r (y) represents a pant drprtidrnt prrdiraU\ the occurrence time o f y
is some function / of the occurrence time o f x. Such a predicate (if true) constrains
the occurrence time of an event y. relative to the occurrence time of an event x which
is causally ordered before the event y.
('{ y) B /(<” (*)) represents a futun d iptftdfut pndicatt. Such a predicate constrains
Uir iirrurrfnrf tiini. of an rvaiil n, ralativa to tin- orrurranre tinip o f an avant i whirh
is causally ordered after the event y.
Future dependent predicates are of a declarative nature; e.R. in f ’ (y) * / (f ’ (*)) . ‘ h«*
value f ’(y) ‘ ** dte occurrence of y, cannot be bound until the occurrence time o f z is,
later, established. While it is nice to have the expressive flexibility afforde<l by future
dependent predicates, their <lependence on a priori knowledge means that it may be
dillicult to simulate prtdotype descriptions which contain future dependent constraints.
For example, consider a system described (in pseudo I.O I OS syntax) as.

(X - / ' i i ia g i* !)A (r (x)B / (H r)))

To decide if the system deadlocks when trying to execute an x event at time T (x) , we
may have to explore both mutually exclusive paths of processes /* and Q in order to
establish possible values of f ’ (i)) . The problem of computinR T (x) is made worse if,
say, <■’(*) depends on r (x) (incurrinn circular dependency). Also, future dependent
priniicates make it very easy for a desinner to describe a system which is impossible to
realixe in real-life.

6.3.2 Initial ideas for tim e description

Petri-Nets are a nice medium in which to reason about simple distributed systems be­
cause of their clear graphical depiction of concurrent and of non-deterministlc aspects.
We introduce a derivative (which, for convenience, we call TPN s) o f the arc-timed PNs

‘ Wi- do sot sUrmpt to deknitivHy ststr the set of qusstltstive time isrUitkes, b «l rather
[Hwislate «ome ideas asd esplore asd evolve the«* Is IhU way we attals a /eel for the topk

of [Wal93. BoliH)] an a tool for oxplorinK language requirements for quantitative time-
f<»nrerned sperificatioii. We gradually introduce properties for TPN s with a view to
building a list o f features we deem desirable for quantitative time-concerned specifica­
tion.
We begin by stating the following properties of TPNs which capture what we Initially
consider as the basic features for time description.

P I . In 'I'PNs irarisiiions represent events.*

P2. An event is said to be ruabird when all participants in the event are prepared to
synchronize (and all their non-time related predicates are satisfiable^). This is
represented if every Input plan to the event/transition contains a tokrn and any
predicates on these places are satisfied.

P3. An input arc may be labelled with a past-dependent time predicate.

P4. An event/transition is firrablr when enabled, and if the conjunction of all the time
predicates on Its input arcs can be satisfied.

P5. An event/transition is J'mdjoccurs when fireable, at a tlnie which satisfies all o f its
time predicates. Unless, that Is, the event is in the context o f a choice expression,
in which case one (and only one) of the set o f enabled, mutually exclusive events
(o f the choice) will occur.

P8. A token is aiiiiotate<l with the firing titne of the last transition which generated
the token and for which a quantitative firing time can be established.

Pigure (J.2 illustrates a I'PN displaying the properties P i Pb. (In this section the
identifiers /I, i|, etc. represent time constants which are carricnl by tokens.)

Figure 0.2: A typical TPN example

i|)A(/a - r (i)) (f i . l)

Kquation 0.1 explains the meaning c»f the I’PN in figure 6.2. It says that, if the predicate
/' can be satisfie<l, then the occurrence time C {x) of x will have a value greater than
or e<iual to the token time I,, and that token time <a will have the same value as C (x).

*ls thr rrmsisdrr of this sertion wr freely islerchsage PN terms ss« h as fransilion with LOTOS-Uhe

terms sveh as reenf. and vice versa.
^We ronsider time-related predicates as a separate iasne.

Properties P l-I* « provide us with the following two important fax îlities for the specifi­
cation o f quantitative time concerns.

F I . The facility to specify that an event may occur only at constrained times (l.e. that
time influences the occurrence of events).

F2. The facility to measure durations between events (not necessarily consecutive*).

These two facilities allow us to constrain events in quantitative time, relative to the
quantitative occurrence tin>e of other events.

6.3.3 Must tim ing

Property P5 allows the following facility.

F5. I'he facility to specify that if an event is enabled and its time predicate can be
satisfied, then the event rnunt occur. Pnless, that is, the event sits within a set
o f mutually exclusive events which form the alternatives o f a choice expression.
Kxactly one event of such a set mußt occur.

indicates that our TPNs possess what several authors have calle<! a musí timing
semantics. In the rival may timing semantics, events are not forced to occur if fireable.
Obviously, for specification purposes, we will want t<i express the fart that certain
events musí occur at certain times in a system for it to be a correct ijnplementation of
the requirements. A/oy timing does not give us the power neede<l to directly express
facts such as these. For instance, if we simply wanted to specify that an event y is to
occur within 2 units o f time o f t occurring, we might write the following TPN:

Figure fi.:); x within 2 time units of y

Without properly P. ,̂ I'PNs would revert to may timing semantics, and the specifica
tion in figure would no longer ensure our requirement. This is l>ecause, without
property 1*5, it is possible to chcHise a value for i2 (say (i2 > (<i + I))) which does n«»t
satisfy the predicate (i , < ii + 2). For this TPN , the choice of such a value would. In
effect, result in a deadlock situation where the event x would never occur.

•tisis* T P N t this impties rsirndin* token snsotstion so that lokrs« also rarry a history of the
< arreare limes of the transitions whi« h they have passed throa*k (i.a. the transitions responsible for

e-)ReneratÍH* them).

Another illustration o f the inadequacy of may timing (for specifying a symmetric time­
out mechanism) can be found in (Bol90, BL91).
We can use musí timing to express may timing, although not vice versa. For example,
leaving property l»6 in place, but changing the predicate in figure 6.3 from {ia < i| + 2)
to (ia > Í 1). we express that r may occur within 2 time units of y.
A/usi timing within the context o f a choice expression forces exactly one o f the enabled
alternatives of the choice to occur. Thus, given the 1 PN of figure 6.4, exactly one of
the events x or y musí occur since they are both fireable. Event x is not firable as its
tin»e-predicate is not satisfiable (since the token time t\ > 3).

Properties P2 PA tell us that the time constraints for an event are formed from a con­
junction o f the time constraints which each input arc imposes on the event occurrence.
Phis gives us the power to build global time constraints out of local ones — the power
to (de)compose separate timing concerns. We restate this as:

Figuro 6.5; Kxamplc ('omponition o f I,oral Time Pretlicale*

/ » { H i)) A Q{C(x)) A {C{x) > i ,) A (H i) > i j) A ((3 « C{x))

Kquatioii 6.2 (which reflect* the meaning of the 'I'PN in figure 6.5) iay* that, if the
predicate* /* and Q can i>e *atiiifie<i, then the occurrence time C (x) of x will have a
value greater than or e<jual to either o f the the token time* and <3. and that token
time is will have the name value a* ('’ (■r)-

P7. A lran*ithin whoae input arm do not have any a*iiociale<l time predicate*, will
occur if enabled. It* (<|uanlilalive) firing time i* not eKtabli*he<i.

F0. The facility to expre** relative ordering con*traint* over event* (without quanti­
tative timing conntraint*).

U not rpcorded in the hi*tory-annotnlion o f this token. Thus, in effect, we have not
established a quantitative occurrence time for x.
llsiiig facility Kd we can specify that, for example, an event must occur if enabled, and
that it can occur at any time provided that this time does not preclude the occurrence
of the directly surceedinn event. We consider the followinpt two TPNs to clarify this
example.

pie with quantitative time, then relative orderiiiR

A legitimate trace (in which events are anm»tate<l with their quantitative occurrence
times, e.g. x^ means at time 3’) for the first I PN (figure (1.7) is:

However, this is not a legitimate trace for the second I'PN (figure (i.7). In the second
'I'PN the occurrence of time of y is not established because of property P7 and so the
occurrence of y <loes not pre< lude the occurrence of * (and so a dradUtck situation is
avoided).

Pit. A dotted input arc ftir a transition Indicates that the environment is a participant
in this transition. Such a transition cannot be said to be enabled until the places,
both those controlled by the environment and those controlled by the system,
each contain a token. The environment can constrain the occurrence time of
events through Its own predicates.

Property PH recognize« that observable events require the participation of the environ­
ment; until the environment agrees to participate in the event, the event cannot be
enable<i and so cannot be forced to occur. We restate this as:

FT. I'he facility to di«tinguish between internal events and events in which the envi­
ronment is a participant.

1'he 'I'PN in figure 6 .K poKKess property PH.

Kigure (>.K: Knvironment interaction example

/’((■'(j*)) A > f|) A { i t =s r (x)) A (rM i'.con.«irainr«.on(r(x))) (b.4)

V)((uation b.-l (which reflects the meaning of the above 'I'PN) is the same as e<iuation 6.1
with a placehohier for environment Ci)nstraints on (\ x) .

6.3.7 A l l o v e rv ie w o f c lo ck ed in od eU

M odela In which local clocks co-exiat w ith behaviour Kquation 6.2 leatis us
t«» examine the concepts o f local/global time. Kquation 6.2 is actually just one t»f
l.amport's “ Kogical (’h>ck Implementation Hules** [KamTH]: local clocks synchronize
their values when the entities they influence synchronize on an event.

Until now, our TPN properties have implemented what are essentially local clocks,
each o f which co exists with an independent (sequential) stream of behaviour. This
is becaus«* each token, travelling along a s«*quential stream o f transitions, carries with
it and maintains what amounts to the value of a local clock. Figure 6.9 should help
clarify this notion.
Kach shadefl area marks the existence and extent o f influence of a local clock. All
transitions within one shaile«! area perpetuate and are influenced by the local clock
for that area. Where a transition (e.g. x) falls under the influence o f more than one
local clock (diagrammatically, more than one shaded area overlaps a transition), the
local clocks (e.g. T j and f ’a) synchronize their times and a set o f new local clocks Is
generateil (e.g. f ’s . f ’i) whose initial values are that o f the synchronized clocks (C| and
Ta).

Ki^urp 6.9: Kxistence of local clock* In a TI*N

Clocks used as description too l* In the real world, a global clock time i* not
a concept that i* readily available. Distributed system Implementations may use a
distributed set of synchronizing logical clocks or, better still, synchronizing physical
clocks to establish a satisfactory total ordering (In quantitative time) o f events in the
system.
Ideally, a specification language should provide a designer with a set of clocks built
into the language. Hocks in this set may run at different rates, may synchronize, and
may be us<*<l to Influence the outcome of time predicates. I'hls provides the flexibility
iH*<Hled to support;

• problem domain descriptions (high level, abstract specifications) which use only
one clock (a global clock time)

• solution-domain descriptions (low-level specifications) which use a distributed set
o f synchronizing local clocks.

If global time is use<l as a description or design device, the implementation may still
be base<l on local cU»cks if it maintains the logical clock properties of the original de­
scription. Moreover, the use of either global or local tin>e in a design description niay
or may not imply the assumption o f (the support o f) either global or local clocks. If a
description contains time constraints this does not necessarily require the implementa­
tion to have physical clocks time in a specification may serve as an abstract means
of stating time-dependent behaviour and |»erformance requirements (something which
may be forced onto the implementation when it is placinl in context).
We summarize that a language for describing quantitative time-dependent distributed
systems should have;

VK. The facility to declare a set o f clocks. Hock support mechanisms are implicit (built
inte» to the language). A clock may influence a set o f time predicates. HcKk* may
run at different rate* and may synchronize their time values.

O rthogonally-clocked models Facility FH requires clocks to exist Independently of
behaviour carriers (l.e. transitions, arcs, places, etc.). (This is In contrast to the model
shown in figure 6,9.) This is because FH allows clock constraint* to be applied orthog­
onally to sequential behaviour structure — l.e. each clock may be used to constrain

event# which occur in different causally independent ‘behaviour streams’ . The example
in figure 6 .10 may help clarify this; three clocks exist independently o f the tokens,
places, transitions and arcs; they constrain, orthogonally to the ‘behaviour streams’ ,
the occurrence times of transitions.

An orthogonally-clockeii i

Knhancing I I^Ns to support facility KH requires that we make a few radical changes
to our previous I'PN properties. I’okens are no longer responsible for carrying around
‘ local clocks’ . lnstea<l;

PO. A system o f clocks T’ lT’« exists independently of the TPN behaviour carriers
that we have se«*n so far (I.e. tokens, places, transitions, arcs). If a predicate /
ran be satisfiiHl by a time value where r ', (x) > C,(prrsfn<). then clock Oi
will reset Its prrsrnf valtie r*,(prcsefii) to equal C’,(x).

A token is annotated with a chronological history o f the occurrence times, each
relative to some clock in T i , . .. ,C \ of the transitions which have (re-)generateil

• W r srr only im rre»lr«l in rs|»ioriBa thp rssRr o f rsprfwuvr flexibility seeded to describe quantitative

timina (uncerns. npt providinx a Heflnitive treatment o f TPN s . hence our va*ue treatment o f iaaues

su(k as how an<l where (kMka are initialised, how token hwtorien are meraed, etc.

K 5 > t K > -

Kigure 6.11: An orthogonally-rlocked ex&mpl«*

In the above I l’ N. clock (\ a|>plien timing conntrainls orthiigonally to behaviour struc­
ture.

6.3.8 M u st tim ing in the context o f parallel expressions

Although we have gained greater expreasive flexibility with the introduction of orthiig-
oiial clocks, we have done so at the expense of increasing the complexity of enforcing
our musí timing regime of facility K3.*“ In a parallel expression context, fiiusi timing
has t<i ensure the sensible interleaving o f event sequences".
Consider the following thr«* (not necessarily legitimate) time annotate<l traces (inter­
leavings) of the T I ’ N in figure 6.11.

w — x-t, — y.i, — X (b.3)
- s i « - 6)

u> —• tr , —• dradtftrk (®-7)

I’races 6..1 and 6 .6 are legitimate deadlock free traces, while trace 6.7 is an illegitimate
trace (by property P.’i) which deadlocks after the event x occurs at time 5,. The musí
timing semantics must disallow trace 6.7 in support o f property 1*5 which dictates that,
since both events x and y are enable<i (outside the context o f choice expressUms) and
their fireable times are satisfíable, both events mus/ occur.
The following traces represent legitimate, sensible rnus/ timed interleavings (maximal
traces) of the 'I 'l ’ N in figure 6.11:

(u> —• X2, l/n, xi, —• y-.\, x,tv ^ l/n, *3,
U» — y:%, —• xr, — X, U» -• yr», —• x«, -• », ui -• X|, —• y«, -• *.

«' -* Xj, -• V4, -• X, U' -• Xs. —• ys, -• X, U» -• T4, -* V4, — X,
u’ V4, X4. -• X.U» -• y4, —• xs, -• x,u> —• y4, -• Xe, -• *)

* * (}m s Isk espresslvr Hrsibilily s i the es|>rssr «if «umpulsbllity la s pr«ihlem whUh pervades IssRUsge

ilesias
“ This U skis io the Sdtkin of (QAF90] on well hirmed islerlesvisKs

m

Sentiible, must timed interleaving** is desirable, but in order to enforce it we must be
able to ascertain particular information from time predicates.
Within time predicates, we use functions for generating sets o f time values, i.e. generator
functions. We describe any possible generator function as;

(ienFunc : T im rS o rt , . . ., Tim eSort - * T im rSetSort

'I'o enforce »Must timing we require information from two auxiliary functions that we
will call Inin and indTAIlMrmbrrnOf.

In in : T im rS o rt,T irn rS e tS o rl — HooleanSort
indTA U M rtnbrrnO f : T im rS o rt .T im rS rtS o rt — lif>olranSorl

We require that generator functions be restricted such that the auxiliary functions lain
and iadTAitMembrrnOfurr define<l for all generator functions OVnfbnr.
To explain the rôles played by the functions Inin and iaGl'AtlMrmbrrnOf \n the en­
forcement of must timing, consider the following scenario.

• (liven a set of concurrent, enable<l events {a jOn}**

• who»«' tKcurrence times are constraine<l to the time values generated by the func­
tions drnFunc........ druFunr„ (respectively)

• then, to enforce r»ius(timing for these events (i.e. to ensure that each of the events
Ml.......On are fire<l)

• we define the set o f (firings) transitions for these events to be: -a .f, —, I < i < n,
where:

- I, Inht drnFunr,
I.e. the firing time i,. o f event a,, is a value within the set of values generatetl
by its generator function (iVnf^nr,

- Moi(l, indl'AUMrtnbrrnOf drnFunCj), for 1 < j "
i.e. that an event o, does not pre empl the occurrence of any other event.
We ensure that the firing of event a, at time I, will not make obsolete all of
the firing times o f each one of the other enabled events.

ind7AUMrrn6rrnO/in use<l to ascertain whether an event can occur In the future. For
example, say event p is constraine<l to occur only at times generated by the generator
function drnf'unr/. and say the present time is I. Then to test whether event p can
possibly occur in the future, we use I iadTAllMrtnbrrnOf drnl-'unrl. The answer Falnr
would indicate that event y may occur In the future. While the answer lYur would
indicates that y can never occur in the future — I.e. we have dradlttrk with respect to
event y; all the times generated by drnl-'unri are obsolete at time t.

'*Hrrrailer, simply ralW 'masr limisa'
**W lisrr so s,. I S ' S ^ * membrr o f s srt o f r

rombisiHl ss a,Q P

HtMslly esrlasive sltersalivs svssts, i.o. a* is sol

153

c e^ - 4

(v > —

0 ^

0 ^

PiRure 6 .1 2 : Kxaniplp rontexls illuxtratinR time policies

I he fnllowiiiR table desrrilte« the efTert« o f the various coinbinations o f tim e predicates
and time policies in each o f the three contexts in figure 6 .12 , on the sets of possible
ocrurronro tiiii«** o f event x.

time predicate Ar policy (P P)
contest 1

rurresce times o f e

contest 2 context 3

/»/' « 1 < r (c) s «
P P m A S A P

P P m (1 S <' (*) S fi) ^ A S A P

P P m A L A P
P P - (1 < r (c) < fi) A A L A P

r (c | € (1 ,a .1 .4 ,5 .6)

<” (» l € 1 0 I

f («) € (1|

f ' (c) € i ifiAn.l, 1
f (c | € («1

C (») € (1 ,3 .4)

C (.)e (1)

<•■(.)« (1)

(' (•) « (4)
C (r) £ (4)

C (x) € (1)

(' («) € 1“)

f (») € (1)
f ' (i) e (I I . 1 ,1 .3 .4 .8 .« .7)

C (») € (1 .1 .3 ,4 .8 ,8)

To eiKture that the uw of ASAl* am) ALAI* time polirien doe» not render a npecifiration
unexerutable. we inniot that the three auxiliary functiom iK l'pprrUm itrd, M iti and Mar
are definahle over the xetx o f time value« prodnrerl by generator functions. The function
iii(!ppfrl.iuìittd i» u«ed to e«tabli«h if a given «et of generated time value« ha« an upper
limit, and hence if there is an ALAI* (‘as late as piwsible’) time value with the given set
o f time value«. If a given set o f time value« does have an upper limit, then Max ran be
u«e<l to return the maximum (upper limit) value. The function Win 1« uaeil to return
the minimum value in a given set of time values, l.e. the ASAl* (‘ as «<M»n as possible)
value. Note that it is not necessary to do an i«/,ou»cr/cimifrdrheck before applying Win
to a set o f time values, because all sets o f time value« have at lea«t 0 a» their lower
limit.
Sections b.fV.l and «..'S.i incorporate and define the auxiliary functions /«/ri, isCTAitMrm-
6rr«f;/. iMflpprrUmitrd, Min and Mar in the definition o f a time-exlemled version of
i.oros.

6.3.10 L im ita tion « on enforcing must tim ing

We have seen examples of how must timing can support the sensible Interleaving of
the two causally independent*^ behaviours (section 6 ..I.H figure 6.11). C*an musí timing
support sensible interleaving for more complex behaviours? (‘onsider the two causally
independent behaviours in figure 6.13.

**lanoring rhM-h rommunh stUin

- 0 ^ 4 0 -

f O r K > -

FiRurp(>.13: 'I'wo raunally iiidcpondent brhaviourn

Wp would lik<* mu#ri timing to piisutp that thr trace:

Xfi —» deadtfKk

in not lf»Ritimate. However, this >8 not as simple as the case shown In figure 6.11.
In fiRure 6.11 we use munt tirniug to ensure a sensible interleaviiiK between any set
of t tiabUd events. Munt timing d<M»s not necessarily extend this sensible interleaving
property to interleaved sequences of events. If we consider tnunt timing as a function
over behaviour expressions, we ran re-state what we have just said as;

\i(fST{a\ => S in3 ib ly ln trrlravrd{a ,b) (6 .H)

.\//̂ S■7■(fl: A .SVri.'»ii)/!//n/cr/rarrd((o; /’),(6;<^)) (*>■!*)

rhe behaviour in figure 6.13, is an instance of equation 6.9. Kvent y is not Initially
enabled, and we cannot ensure that x will occur at a time (relative to clock c l) such
that y may still occur.

Figure 6 .M: A netw*>rk o f possible causa) relations

Replacing the with ^ In equation 6.9, would imply that the function has the
ability to compute sensible interleavings from a network of possible causa) relations,

formed from both action-prrJiT operators and the orthof^onal clock constraints. Fig­
ure 6.14 shows the network o f possible causal relation# for figure 6.13, where the solid
arrows denote causal relations due to action^prrfiz operators, and the broken arrows
denote causal relations due to clock constraints.
From figure 6.14, we can see that forming a sensible interleaving of the concurrent
behaviours of figure 6.13 requires a priori knowledge of how the behaviours unfold. We
can only form a sensible interleaving after we have established all the possible causal
relations (see equation 6 .1 0).

Srnitib ly intrrlrave{VnffAdlithavioiir(a\ /*l[]|fr; V)) (6.10)

With respect to LO POS specifications, equation 6.10 implies that we w«>uld have to
-simulate” a LOTOS specification in two -passes” . This has all kinds of repercussions
for the definitions of legitimate behaviour, conformance, etc.
Is there any means o f producing sensible interleaving o f concurrent event-sequences in
one pass? We could take the view that our problem stems froni attempting to produce a
sensible linear trace from concurrent behaviours. Therefore, we might consider revising
the use o f simple linear traces as a “ normal form” , and instead use more complex
structures such as “ labelletl, partially ordered multi sets", “ augmented traces", etc.
(<’d (’91, Fid92). The function Ifn/ttidHthaviour, from equation 6.10, results in a
normal form of one o f these more complex types. However, them* norma! forms are
quite different from the simple linear traces o f standard LO LOS.
Alternatively we ran insist that, for a sensible interleaving of any two concurrent event
sequences, all event offers must have explicit constraints for each o f the clocks which
are visible to both concurrent event-sequences. (What we advocate contradicts, in
the situations mentionc'd in the previous sentence, our reason for wanting the relative
ordering facility F6 .) So. for instance, if we want sensible interleaving of the behaviours
in figure 6.13, we must attach an explicit constraint, referencing the clock C|, to the
event u.

6.3.11 FVom T P N » to L O T O S

TFNs have served well as a t«H>l for exploring language requirements for quantitative
time concerned specification, However, we now move from THNs to LOTOS. TPN#
are useful for simple descriptions, but lack the p«»werful descriptive features of LO'I’OS
(e.g. recursiijn. parameterl/.ation, «lefinitlon and instantiation, etc.) which allow the
compact expression t>f c<»mplex ami infinite behaviours.

6.3.12 S im u la tion o f phyaica l clorica

In siibseclion 6.3.7 we suggeste«! thè idea of a sei of «»rthogonal clock#, in which clock#
may run at different rate#. In subsection 6.3.10 we concluded thal each event, in
a concurrent sequence, must explicitly reference each visible clock, for mnsf timing to
produce sensible interleavings. Referencing all visible cliKks could become cumbersome
if thè set o f visible clock#, for a concurrent sequence, Is large. Thi# lead# u# to re-examine
thè need for having more than one clock.

The iil<-a of inlroducinn rlock« into I.Oi'OS is to captura quantitativa tima propartiaa
of distributad syatams. In assanra, dorks próvida a maans o f communication batwaan
(otharwisa) indapandant procassas. luiftical dorks (as disrussad in subsaction 6.3.7) do
not prtivida any axtra maans o f communication ovar and abova that o f avant synchro­
nization. What is mora, [l.ain?»] shows how logical clocks may ba implamantad using
evant synchronization as a basis tha sama conciusion drawn in subsaction 6.3.7.
Tharafora, puraly logical docks (as in subsaction 6.3.7) would not incraasa tha axpras-
sivanass of 1.0 TOS. Moraovar, (l,am7H) axplains two possibla raasons why total ordaring
using logical clocks may not ba romplataly satisfactory.
In ll.ani7H] l.amport da6 nas a system of physical dorks suitable for our purposes.
Ha states a number o f conditions that physical clocks must satisfy for them to ba
useful for the purpose o f establishing total avant ordaring. Basically, physical docks
should run continuously at approximately correct rates. Knowing soma information on
transmission delay limits, dock rata limits, ate., tima-stampad massages ran ba used
to synchronize physical docks to within known limits, Implamantation constraints
allowing, it may than be possible to establish a romplataly satisfactory total ordaring
o f events in a system.
Lamport’s physiral docks are analo^ous to our orthogonal docks of subsection 6.3.7, in
that they provide a nprriat means of communication, separate from that o f event syn-
chronixation, belwwn (otherwise) independent processes. In reality the «prrio/, instan-
tani'ous communication affordeil by physical clocks is n<»t conununication in the usual
M*nse (“ iiM'SHane commuiiicati«>n’'). but represents the sharing o f a common property
by which physical clocks measure time. { 1 'he common property may be, for example,
the universally cotislant vibration rate of a quartx crystal.)
Hence, introducing physical clocks (i.e. orthogonal clocks) into LO I OS would allow
us to describe, in a direct way. quantitative timing concerns of systems which rely on
the HfMriui means t»f communication affordeii by physical clocks. I'he ordinary event
syndironixation i>f LO lOS is left to model normal “message" communication.

Since the essence of physical clocks is that they enjoy a common property which governs
their measurement of time, the crux o f incor|K>rating physical docks into LOTOS is
to provide a mechanism for ensuring/dispeiising the basic tick rate of physical docks.
We can embody this mechanism as the 6osr r/orár. The idea of a set o f docks can be
modelled by stating time constraints as some offset of the base clock. Then, to ensure
sensible interleavings of concurrent event sequences (e.g. figure 6.13), we need only
ensure that each event explicitly reference this one 6osr clock.

6.4 T L O T O S in roinparinon w ith existing work

Having explored and evolved a set o f features which we believe to be useful f<ir the
expression of quantitative time concerns, and before proceeding to incorporate these
features into a time-extende<l version of LO'I'OS, we use this point in our chapter to
siimmarixe our set of features and contrast these with existing work in the field.

0.4.1 S u m m a ry o f q u a n t ita t iv e t im e fe a tu re » fo r e x te n d in g L O T O S

rh«* following list of features have been dUtilled from the mveatigation in the previous
sections of this chapter. We incorporate these features in a time-extended derivative of
LOTOS known as TLOI'OS.

1. TLO TO S supports the notion o f physical clocks. TLOTOS realizes the notion of
physical clocks by having a global, built-in. ban*- clock. All 11^01 OS proressesrnay
access this base clock to establish a universal value which represents an absolute
measure of the time which has passed In the system at any particular instant.

2 . The facility to specify that an event may occur only at constrain«*d times (i.e.
that time influences the occurrence o f events).

:i. The facility to measure durations betwi*en events (not necessarily consecutive).

I. The facility to express local quantitative time constraints and to compose these,
in a similar fashion to the composition of local »elrction-prrdicatrf in l>OTOS.

h. I'he facility to l>e compatible with LO LOS's relative ordering feature. A I'LOTOS
description with no quantitative time constraints will have the same semantics as
the syntactically identical standard LOTOS description.

(i. The facility to support the expression of relative quantitative time constraints.
(I his allows us to simulate the effects of clocks which run at different rates.)

7. The facility to support “ must" timing, in the sense that any event (that is not an
alternative in a choice expression and) that is fireable will occur.

Kireable events (which are not direct alternatives in a choice expressions) are
force<i to occur within their allotted time windows (specifitnl by tim r’offem).
ri.O rOS semantics ensure sensibly interleaved event sequences.

H, The facility for /imr-pf>/»nVs which operate in association with time-offer» or
by themselves. TLOTOS offers three time-poUrieir. Normal (the default); ASAP
which influences an event to occur a» ntmu os pfissi6/c (similar to “ urgency" [BL911
or “ maximal progress"); and ALAI* which influences an event to occur os late
os p»»ssi6/r. (In essence, ASAP gives ordinary events priority over events which
represent the passing of time, while A I.AP gives the inverse priority.)

6.4.2 C 'on ipariaon » w ith e x ia t in g w ork

A variety i»f s«»lutlons for extending I.OTOS with quantitative lime have alreaily been
propose«! by other aulh«»rs. The following paragraphs very briefly summarize points of
interest in these solutions, and contrast these solutions with our own TLOTOS solution.

0.4.2.1 “ T IC i A tim ed ealrulus for L O T O S ”

Of existing proposals. (QAF90)'» T I (’ Is the most similar to our PLOT OS. In TU/,
an artum-denotation has a set o f <»f possible occurrence times. Values of this set are

interpreted tm offset times from the occurrence o f the event which directly causes the
event in question. Although a Rlobal clock is implicitly defined by the semantics of TIC ,
this clock cannot be accessed at the syntax level. There is no facility for establishing
a value for the occurrence time of an event. Hence it is not possible to measure the
duration between events, nor is it possible to express absolute timing constraints or
timing constraints which are relative to anything but the occurrence time o f the directly
'causing event’ .
T l (’ enforces “must” timing, and PK ’ interleaving generates only sensible mergings of
event sequences (in the sense discussed in section 6.3.8). T IC semantics for parallel-
rrprenniotm are very similar to semantics for I'LOTOS parallel-rxprr90ions (see s^-
tion 6 .6.4.3). T I (’ applies the auxiliary operator Old to denote the aging o f inactive
behaviours. This is necessary because, all T l< ’ behaviours carry a value o f the time**,
whereas in PLOTOS individual behaviour expressions d<i not carry a value of the time,
but access an explicitly define<l global clock (value).
T l (’ offers no facility for specifying that an event is to occur ASAI* or APAF. For
example, consider the following attempt to emulate ASAF in T I ('. We want to specify
that event a is to occur ASAF. In the particular case:

i; a 0

event a is specified to occur zero time after Us directly causing event. If this oriion-prr/i>
expression is considered in isolation, this does cause event a to occur ASAF. However,
if we consider this PK' artion-prrfir expression in a pumtlrl-rxprraHum context:

b\ n 0 . . . |[a]|r; a 0 . . .
we are no longer guarajitiMMl to achieve the ASAF effect. If the quantitative occurrence
times of events b and r are not identical, then event a cannot occur. Therefore, this
simple approach to emulaling ASAF in 'P l(’ does not, in general, work. Kmulating
ASAP (or A I.AF) in T IC would require the construction o f a much more elaborate
mechanism (e.g. see section 6 .6).
Pike PPOTOS, Tl< ’ separates, within artum-druotatiom, the time-offer from the
»elrrtion-prrdiratr. 'Phis is necessary for the definition of “ must" timing, which re­
quires that functions such as /s/ri and (iTAnymember be definable over a time-offer
(see sections 6 .3.8 and 6.6.4, and appendix <’). If the time-offer was incorporated
into the nrlrrtion-prrdicatr (as is the case for (vH'PZ90)'s (’ FPO'POS, see below), it
would then be impossible to apply an ordering function, such as CTAuymember, to the
Hitolfau result of the nelrctioti-pndirate.

6.4.2.2 “ C E LO T O S ! L O TO S extended w ith clocks**

(vMTZfMll’s CKPO'IOS maintains sets «»f explicit clocks which may be started and read
by (KI.O'POS behaviour expressions. Independent expressions*" may share the same
set of clocks. I'esllng clock values within iielectiou-prrdiratrK allows time to influence
the occurrence of events. This, combined with starting clocks within special syntactic
constructs, facilitates the nieasuremenl o f durations between events (not necessarily

*Wh#s I'onsidered st s alohsl level, tlieee vslses of time deflse s a l»bsJ clock

‘ isdependest. apart from their com mos notion of the (quantitative) time

consecutive).
Tl>OTOS is very similar to C'KLOTOS with respect to the afore mentioned features, ex­
cept that in TLO TO S only one global clock is (semantically) maintained. For TLOTOS.
we take the view that the global clock emulates the special means of communication
afforded by the universal constant found in real-life physical clocks. We leave it to the
user to define, if necessary, other clocks which may possibly run at some function o f the
base clock rale (thus, for example, representing the timing defects in imperfect physical
clocks).
('K l.OTOS does not support ‘‘ must’’ timing. Thus, although the following ('KLOTOS
behaviour expressions /’ and Q ex it, when considered separately:

I* 3; e x it
Q > i 4; e x it

when considered as /»|||y they may not both exit.'^ This is undesirable given that |||
is supposed to indicate that they are causally independent.

There are no facilities in ('K l.OTOS for supporting ASAP or A LA P facilities.

6 .4.2.3 U rgen t and timed interactions

(H l,9l)’s r i . o r o s and T-hOPOS are defined on the basis o f -urgenl inleractions’*
(related to the idea of “maximal pr<»gresH"). In IJ-hOTOS, an urgent-interaction is
guaranteed to occur (“must" occur) ASAP (i.e. at its enable-tirne). 1 -LO IO S is more
flexible, guaranteeing that a lime<l interaction occurs within a specifietl time window.
Such a time window is defin«*<l to range from the enable-time o f an interaction event
until some specified time.
IM-OTOS and T LO TOS semantics consist o f a set of inference rules for deriving
action transitions, a set of inference rules (orthogonal to those for actions) for deriving
aging transitions, and auxiliary functions for establishing the times at which action
transitions are possible. The two sets o f inference rules realize, at a semantic level, that
tijue passing events and action events (which take n<i lime to execute) are separate.
This contrasts with TLOTOS. in which all transitions are annotated with both lime
and action attributes. H<ilognesi rt at. claim that having separate time transitions
and action transitions make it simpler to express “maximal progress" liming (or, as
Holognesi rt at. term it. “action necessity"). We fail to see the claimed advantage

in our opini*>n, T-LOTOS's and TLO'TOS's schemes are equal for the expression o f
action necessity. Indee<l, we argue that It is more Intuitive to think of dual ‘ time-action
transitions, where actions mus/ occur at the specified times if time is to pn>gress.**

With separate time and action transitions, U-LO TOS and 1 -LO IO S semantics must
use auxiliary functions (« » in U-LOTOS, and agt^ in T -LO IO S) to check
time-transitions, and then use this Information to forrr action transitions to occur
when necessary. The definition o f these auxiliary functions is not trivial. They are
defined in a denotational style, and are requlretl to check all inference rule derivations
from any one state. To ensure that this checking process does not diverge, fl-I.OTOS

I at t lm r 4 may o rrs r, pre-em pting the I at time 3.
‘*Tke reader m a y need to resd ae< tian 6.B.4 before fully understanding thin diarussion

and T-I.OTOS disallow non-artion guarded recursion.
liy employing compcMite ‘ time-action’ transitions, TI.OTOS has no need of such aux­
iliary functions, and consequently does not have to restrict recursion.
Although T-LOTOS supports “must" timing, and supports the notion o f ASAP events,
it dt>es not facilitate the measurement of inter-event duration, nor the expression of
ALAP, and is restricted in its ability to express local time constraints.
In T-LO rOS we can locally express time delays using a delay prefix operator; “wait for
t units o f time and then behave like /f". The effect of a local lime delay operator, us«^
within a behaviour expression, is felt in all parts of the system which are composed in
parallel with the behaviour expression. However, it is not possible to locally express
the fact that an observable event must occur within a particular time window. This
is because T-I>O rOS uses its ‘ timer a (l l , t2) in H' construct to both declare the gale
a, and to indicate that events at gate a must occur within the lime interval specified.
(It is only possible to declare muni timing constraints over a set of gales when actually
declaring the gales i.e. it is only possible to slate “urgency" requirements on internal
events.) The following example illustrates this. In section 6.5.1, we will see that in
TLOTOS we can write (in abbreviated syntax);

P [a]...
w here P[a) > a ASAP;. ..

to specify that event « must*'* o«cur ASAP. Notice that the ASAP c<»nstraint on event
« is local to /'. I'he tmwl similar specification in T-LO'rOS is:

tim er a(O.O) in P (a].. .
w h ere P[a] :aa;...

In the T LO rOS specification, we could not locally specify the timing constraint for
the event « within prticess /* the tim er statement is not local to /’ . In 1 • LO 1 OS
such timing constraints ran be applied only to internal events.

6.4.2.4 ^Sim ulating real-tim e behaviour"

Kidge in his paper [FidOO] extends Basic LOTOS by giving “events" durations. His
“ real-time simulator" produces a trace in which each ‘lime consuming' event is denoted
by delimiting start- and slop-labels. 'I'hese start- and stop-labels are attributed with
lime values, such that their difference is etpial to the duration of the “ time consum­
ing" event. Fidge introduces “concurrency" operators which interleave sequences of
“ time consuming events" such that the two time intervals o f any two events from the
concurrent sequences do not overlap. Fidge has the normal LOTOS paraUrt’oprrator
produce an interleaving in which events (time intervals) may overlap, indicating the
truly parallel occurrence o f these “ time consuming" events.
Within a Fidge specification, there Is no means of establishing the start or stop limes
<if events. The concept of “must" liming is not applicable as there is no means of
specifying that events are to occur at particular quantitative limes (although we know
that an event starts at a time etjual to the sum of the durations of the events ordered

‘•wtth the exreplUis that, If the a 4 .V 4 / ’ offer sjrschronises with ss a AI.AP olfrr, thes the A S A P

urgesf-y wUI be asnihilsted. see se«-tk>s •.5.4.1

caunally before). All events start as soon as they possibly can. unless an explicit “ delay"
operator is use<l. Also, Fidge suggests attributing LO I'OS operators with durations, in
a way similar to that in (KRPDO] (see section 6 .4.2.6).

6.4.2.6 Compound and t-events in LOTOS

(AQiK)) introduces the idea o f “ compound events" (“c-events"). Two or more “simple
events" (“ s-events") may be combined using the new operator to indicate the
simultaneous occurrence of these events.
[AQiM)) builds on the compound event concept, describing how ac-event may contain the
special s-event “ t" (t-evenl). A t-event occurrence represents that one unit of time has
passed. Phe authors suggest that their concept of c-events containing t-events avoids
the cumbersomeness t>f purely interleaved semantic interpretations of ‘a set of events
which occur at the same time'. I'races o f this calculus consist o f a linear chain of causal
relations and c events. When each c event is considered as a set of s-events, traces
could be considered as being similar to “ partially ordered iimlti-sets", etc. (Cd(’91).

'Phis c-event, t-event calculus is quite ‘ low-level’ , in that t-events appear at the syntactic
level . No facilities are provide<l for specifying event occurrence times in terms o f a
lime metric, establishing event occurrence limes, specifying ASAP or AI.AP concerns,
etc,
[AQ?«)] introduces questions on the subjects <if “divergence and realism". “ Divergence
arises when a loop of internal events occurs within a finite time interval." This may
violate the “ realism requirement" that an infinite number o f events may not occur
within a finite period of lime. Phis implies that a time-extended 1.01 OS description
may be wrong if “the total time consume<l (in the real system) by events occurring
within a lime interval becomes <jf the same order of magnitude as the lime interval
itself". Thus we must be careful if we either construct rei ursive hnips in which events
may occur imme<liately (i.e. with no time constraints), or have unbounded creation of
processes in parallel (see [QAFf)()j). F<»r example, in:

x(setK0 (‘2)); (• X ocrurs at time 2 *)
P(y)(Vrryl.argrNum) »
i(selKQ(3)): (• I occurs at time 3 •)

where
prttress P(y](n:Nat) exit :■

[n gt 0) y. P(y)(n-1)
0

[ti eq 0) l•xit
enclpror (• P •)

wo «hiiulH r.in.idor whothor cir not Iho VrryUrsrNum of orrurronro. of ovont u r»n in
fw t rralMtiooHi/hnpi'on within tho I unit tlmo Intorval In-twoon ovonl. lan d i. (A i
■porilior», wo may parry thi» probioin by laboilinn It an an implomontation ronoorn.)
Thoiio i»«uo« rolato to tho notion o f loro m-paratlon botwoon ovont» a« an approximation
of no*li|tiblo duration, whirh la in itaolf a rontrovoralal notion.

6 .4.2.0 L O T O S operators w ith durations

(KRP90) introduce time durations for LOTOS operators, including A ('T ONE function
evaluation. Pheir work emphasizes concerns about resource performance with respect to
implemented LOTOS specifications. Thus, for example, inter process communication
delays in multi-processor systems are modelled by impusinK time durations for process
synchronization. Similarly, system interrupts, context swaps, etc. can be m o d e ls by
associating time durations with process disabling and enabling operators. Espinosa
rt a/.*B system is particularly geared for prototyping system performance, but is not
marketed as a system for “sperification".

6 .4.2.7 C 'oniparison summary

I'he table below summarizes the comparison of our TLOTOS with other time extensions

TLOTOÌ Tir TKCCT05— T L6T6I---- SlnmUtor

LOTOS

Cewpewd
*v «n l
LOTOS

1 .«rraw tu slobal
«tcM-k

y " y y n

3«>v»nta
■ oMtr»in*^ in tint*

y y y y

ll.m^aatir* intre-
rv*nl «turni i«m

y y

4,rRpr«.Mtin|i
Xr «omtHMiinK Uu-nl

y y

S.rttmpnllliUity
»Uh I.OTOS

y Hwt«
I.OTOH «mJy

y
I.OTOS «mly
with «kTiiitn-

fl.rrintiv* <|unitlil*
ilv* limine

y y y y y y

y
S.AXAP. ALA P y « ASAP only Ls-------------

6.5 Form a l defin ition o f T L O T O S

6.5.1 S y iitn x o f T L O T O S

I bis se< tioii introdures thè elements of TI.OTOS syntax which are extensions o f thè
standard LO'I'OS syntax.
Olir concern Is to Integrale lime extensions aa untiblrusively as posslble into thè LO I OS
syntax. The aiin Is to presenl to thè TLOTOS user all thè funclioiis and sorts pertaining
to lime as pre-defined type definltions. These may be tised as any normal type defini-
tions. The new syntactic extensions timr^offrr, time-poUry and timr-rMablinhment
are use<i in a straighlforward and intuitive way.

6.5.1.1 The tim e metric

'I'he type definition Time'¡'ypr in appendix C define» TitneSort as our metrir for the
measurement of time. TimeSort terms are isomorphic to the natural numbers.

0.6.1.2 Sets o f time values

'Hie TimrSetTypt definition defines TimeSetSort terms which are non-denumerable
sets o f TimrSort values. (Note that TimeSetTypr is not constructed as an actualization
o f the Set type, found in the standard data type library, because Set describes only
denumerable sets.) We want the flexibility of non-denunierable sets, and their power
to express infinite sets o f time values. (For example, with the infinite set { i] i > 4 }. we
can specify that an event is to occur ‘ henceforth from time 4’ .)
Sections 6.3.K and 6.3.9 established that we need to be able to define the functions
/*/«. inaTAIlMembernOf, iaVpprrUmited, Min and Mar over all terms o f Time.SVi.Sori,
in order to implement must timing and the ASAP and A LA P time policies. In other
words, we nee<l define the functions Is in , etc. for all primitive constructor functions of
7ime.SW.Vort tern«». TimeSetType Introduces the functions lain, etc. and defines them
over the first primitive constructor function t.'mpty. (The other primitive constructor
functions are dealt with in SetdeneratorFunctionsType.)
Once Time I'ypi and TimeSet 'Typt have been imported from 'I LO iO S ’s extended stan­
dard data type library, terms of the sorts 7'imr.Vort and 7’imr.Vei.Vort can be <leclare<l
and use<l just like any normal sort.

6.6.1.3 Ctenerator functions

The .VrK»V«rrot«r/''unr/ioMs7 'ypf «lefinition in appendix (' defines all the primitive con­
structors (except Empty) of 7ïmr.SW.Vor< terms. I'he primitive constructors of 7 imc.SW-
.Sort terms are Empty, setEQ, setLE, setHE, sri/ri/rn*ol and Union. Fhe constructors
setLT, setdT and Intersection are not primitive but defined in terms o f the afore men­
tioned primitive constructors. (In fart, it is possible to further rationalise the nun>ber
of primitive constructor functions, but we have not done so for the sake of specifier
convenience.)
Srtdrneratorl'unctions'l'ypc defines the functions lain, isdTAllMernbrrsOf, isf^pper-
Umited, Min and Mar over all terms constructed by the primitive constructor func­
tions.
The ri.O rOS user may create more complex 7'imr.SVi.Vort generator functions. I'he
idea is that the rbO'IOS user must define complex *eiierator functions in terms of
the primitive construct<»r functions. 'This means that c(»mplex nenerator functions are
reducible to combinations of primitive constructor functions, and hence amenable to
the re<julred application <if the la in, etc. functions. (The Intersection function is an
example of a more complex p^enerator function which has been define<l in terms o f the
primitive constructor functions.)
Kxamples later show how to use Timr.SetSort generator functions within time-offers,
and section 0 .5.4 shows how the Is in , etc. functions are used in defining the semantics
of I i.o ros.

105

6.6.1.4 Uter-deflned generator functions

FLO ros users may define additional Time.SVi.Vori constructor/generator functions
provided that they define their functions solely in terms o f the functions Empty, »ttKQ ,
artLK, aridE , aetlntrn>al. Union and Intrraection. In this way, the Iain, iaCTAllMem-
btraOf, iaUpperUmUrd, Miu and Max functions will be implicitly defined over these
new user-defined TimrSriSort generator functions.

' N e w S etO n erato rT yp e : ron tains user-defined T im e S e tSo rt generator
* functions

t y p e N ew SeU JeneratorFun ction s’ry p e Is S eU ien erato rFu n clio n s I'ype

fo rn ll t: FimeSort
ufs(»rt FimeSetSort

We consider 'O' to be even •)
setl.lxifi:vens(0) * SetKg(O);
(• We MMUtne the existenre of the function isKven *)
lsKven(Succ(t)) ^

setFKon-:vens(Succ(t)) s setl,lk)fi:vens(t) Union selKQ(Succ(t));
not(lsFven(Succ(t))) ^

sell.Kon-:vens(Succ(t)) as set LKofl-'.vensCl):

'Fhe user-define«! function arthEofEtn-na generates a 7'imc.SVi.Vori set whose elements
are even values less than or equal to a given value, o f sort 7’ime.Vorf.

action-denotation = gate-identifier
(experiment-offer { experiment-offer } (selertion-predicate))
(time-offer] (lime-policy | (time-e»tabli8hment)
I internal-event-symbol
[time-offer) | time-policy] (lime-entablishment).

lime-offer * open-lime-pred-«ymbol value-expresBion
clo»e-time-pre<l-Bymbol.

lime policy * a»ap-*ymbol
I alap-Bymbol.

time-eatabliBhment = at-*ymbol value-identifier.

Constrain t: 'I'he valur-rTpyranion within tim r-offrr must have the sort 7 imr.SVl.S’ort.

Tim r-ofjrrs may be asBocialed with obHervable and internal event». A tim r-offer i» uiied
to conHtrain the occurrence time o f an event to one value from a given set. Such a »et is
generated by a 7'ime.SXA’ori con»lructor function (de»cribed earlier in th i» subsection).

A titnr-pniiry may be u»<*d to specify that an event must occur ASAP or A L A P (within
any lime-window already e»tabli»hed by a titnr-offrr).

Htabliahint ni may be u»e<l to e»tabli»h the occurrence lime of an event, relative
to the base clock. The ea/ur-idrrifi/irr, within a tiinr-rHtahhahmrnt, is declared to b<-
o f sort TimtSort and is bouml to the occurrence time of the associated event.

I'he evaluation order of terms within an artum-druotatUm, is as follows:

1. Firstly, irprrim rut-offrr values satisfying the nrlrctiou-prrdicatc are negotiated
and established.

2. Then, a preliminary lime-window (7’iwc.SW.Vorf value) satisfying the timr-offrr
is iH'gotiated and established.

:i. Finally, the timr-poliry in applunl to the preliminary time window to result in the
final time-window (set o f possible occurrence times for the event).

Notice that this evaluation ordering allows 7'imc.S'orl values to be negotiated as fa*prrimrn<-
offrrn and then, within the same ar/jofi-dcfioialion. used within the fimr-ojg'rr. See the
subsection on ‘ flattening or/iori-Wr«o<a/ions’ for n:ore information.

6 .5 .1 .6 Kxam ples o f action-denotations

U (setI,K (:i)}
I he event u is offered only at times which are less than or ei^ual to .1 .

v ? tx: I'imeSorl [tx gt fi] (setKQ(2) Fnlon setKQ(.'S) Union se t(iT (tx))

The event at v is offered only when b<»th its arlection-prrdimlr la satisfied and
when its tim r-offrrin satisfied. The iirne-ojffffofevent at v, Is satisfied at limes
2. 5. and greater than ir . de referenced. Notice that values negotiated In an

••for eusvrniesrr w r use 3 to denote tticr(»urc($utT(0))). snd similarly for other TtmrSort terms.

«•vent eíprrirnení-ojgVr(e.n. ? tx: Tim rSori) can be umhI within the tim r-offrro i
the name event. This is because (see sections 6 .5.1.5 and 6 .5.3.2) the timr^offer
is f ro/uaicd in an environment which includi^s bindings for the t>a/ur*idfn<i]^er«
of the fxperi»ncfii-o^cr« clause. Also notice that different Tim tSftSort con­
structor functions (e.R. nttKQ, n rtC T) may be combined to generate a set of
7’imr.Sor/ valutas.

w {Hetlnterval(t,9)) Otl
The event w is offered only at times within the interval 4 to 9 inclusive. Also,
if the event w does occur, then its actual time o f occurrence will be recorded
in the variable <1 , which can then be referenced in the artion-prr/ÍJ'expression
following this artiou-drnotatiou. 'I'he variable tl is implicitly declared to be a
normal LOTOS value identifier o f sort Timc.S’ori (see section Ô.5.3.2).

A tivir-rntabiishment allows the quantitative time, relative to the base clock, of
an event occurrence to be establishinl. Hence this m«K'hanÍBm not only provides
a means to mcasurr duration between events (not necessarily consecutive), but
also facilitates the expression o f time constraints rr/a/ier to any event — see
the next example.

w (sellnterval(4.9)) <Otl;u (selI,K(10)}; * (sclKQt 11-f7)}

riie event x is offered only at the time M -f 7. The previous example explaine«!
how fl r«M-ords the «>ccurreiice time of event u’. Theref<»re event x is offerinl 7
units o f time after the occurrence <jf u’. In this way we ran state time constraints
rr/aliiT t<» any event in this example, the occurrence time of event x is
constrained relative to the occurrence time of event u». The intervening event
u has b«*«*n introduced to demonstrate that quantitative timing constraints can
be Kpecifie<l betwe<*n n<in-cons«H-utive events (in this rase, u> ami *).

The event x is constraine«! to occur ASAP (i.e. as scnm as possible). Kvent x
must occur at the earliest time at which the participating processes in event x
are ready to synchronize.

In this way, we ran emulate [HL91]'s ASAI* semantics.

y {setlnterval(4.9)} AI.AP Ot2
'I'he event y is ronstrain«Hl to occur ALAI* (I.e. as late as possible) within the
time interval 4 to 9 Inclusive. If considered in isolation, y musí occur at time
9 . However, the ALAI* time may have t<» be earlier If this artion-dmotalion is
to synchronize with «>ther artioH‘drnotâtionn offering y. Also, the actual time
of occurrence of event y is rec«>r<l«Ml in the variable Í2 .

oiiahle-operator rnable-Hymbol
[acccpt-iiymbol idenlifipr-derlaration» [lime-MlabUshment

I pnable-nymbol
[acceptnymbol (identlfier-declarationB) lime-eBtablishment
in-symbol ,

Timr-rntabliMhnu ut may b<* ubihI to fstablish the ex it time (l.e. the f> event occurrence
time) of a behaviour expression.

Exam ples for enable-expreBsionB

I*[h] »a c c e p t O tl in Q lgl(U)
'I'he ex it time o f behaviour expression /* is rectirded in the variable f l , which
is passeil as a mlur^paramrirr Into the behaviour expression Q. M can be used
within Q juBt like any other value term.

P reserva tion o f relative ordering

Any event without a tim r-offrr \» simply ronstraine<i to occur l>etween the immediately
preceding and succee<llng events. I'hus T l,() TOS preserves the relative ordering facility
of standard I.O’l'OS.
An event, y say. without an assoriattul ii»nr-«j(frr is interpreted as: y {se t(tK (())}.

6.6.1.1U Events occurring at the 'same time*

I wo or more events may occur at the same quantitative time, even if they are composed

On initial interpretation, this might seem contradlct<»ry to the use of the se<|uencing
operator, This apparent contradiction is resolved if we accept the following explanation.
When two events r and y apparently cwcur at the same quantitative time (relative to
the base clock) but are actually compose<l as 'i\y ', x occura a negligible/unmeasurable
duration before y, given the granularity at which we can measure time durations in
the system. This explanation is satisfactory in all problems, and the expression o f such
negligible/unmeasurable durations between events may be useful.

Kor the following list o f parallel expression contexts, we describe the results of negotiat
ing time window values (7imc.SX.Vorf terms). (Also see the example in section 6..1.9.)

S^tion 6 .5 .3 .2 (flattening action~drnotationa) define» that the results o f an
ttp trim fiit-o ffe r negotiation (e.g. ? tx: TImeSort) can be used within a tim r-
offer negotiation. In the example abtjve the ezperimrut^offrr value identifier tx
is negotiated to be 7. This value is then used within the iime-OjOVr to restrict
the event at v to the time Interval 5 to 7 inclusive.

? tx: TimeSort [tx gt 5] (setInterval(.'S,tx)); stop || v ! 7 A S A P ; stop

The event at v is offere«! only at the time 5 (i.e. the 'as soon as possible’ time
within the the interval 5 to 7).

v {setlnterval{iS.7)}; stop || v {itetLi:(9)) A L A P ; stop
The event v is offered only at the time 7 (i.e. the ‘as late as possible’ time).

v (sellnterval(5.11)} A S A P ; atop 1| v (setLK (9)) A L A P : atop

The event v is offered only at times within the interval 5 to 9, Inclusive. The
result o f any conjunction which includes both ASAI’ and A LA P titnr-’policiet,
is a Normal timr-poiiry (the default).

F orm a l ■einantics o f T L O T O S

Sections «..^.2, «.fi.3 and ft.5.4 describe the formal semantics of TLO TOS. We describe
those aspects o f the TLO l OS semantics which are extensions or modifications o f the
LO rOS as tlefine«! in [ISOH9b).^'

6.6.2.1 O ve rv iew o f the definition o f T L O T O S

Figure 6.1.1 provides an overview of the different aspects o f the definition o f TLOTOS.
The previous subsection 6..1.1 addressed the syntax definition. The following subsec­
tions will define the static and dynamic semantics of TLOTOS.

Figure 6.15 »hows that a Tl.OTOS text, generated arrording to the syntax rules of
section 6.5.1, is the result of the first aspect. The static semantics aspect takes a
TI.OTOS text and transforms it into an abstract syntax structure, known as a canonical
TLOTOS specification ((’TS). This transformation is carried out by a syntax directed
function, called the flattening function. The flattening function embodies the static
semantics requirements of I'l.O'l'OS; the translation of I LO I OS texts which are not
in accordance with the static semantics is undefiiuHi.

A ('T S consists o f two related parts:

• An algebraic specification, AS, which contains representations o f TbOTOS data
types.

• A behaviour specification, W.V, which contains representations o f Tl.OTOS be­
haviour definitions.

'I'he dynamic semantics o f a (’TS are defined as an interpretation o f the (TS as a set of
structureii labelled transition systems (LTSs). Kach correct substitution o f the actual
values for the formal parameters of a ('T S is interpreted as a single bTS which serves
as a model o f the <lynamic behaviour o f the corresponding (’TS instance.

The static semantics <»f a 1,0 TOS specification are defim*<l by the flattening function:
#.#://07’(XS tertH -• cafumiro/ I.O TO S t*prci}ication^

given in jlSONOb. section 7.3). We extend this flattening function for Tl.OTOS, so that
its signature becomes:

0 .î -. r U)T O S trxtf> - CTSn

fijf .# is a partial function which defines (’TSs for only those 11.0 1 OS texts that conform
to the static semantic requirements.
'I'hls section pr»>vides tiefinitions of only those aspects of the 11.0 I OS flattening func­
tion that significantly differ from the I.OTOS flattening function found in (IS()H9b,
section 7.3].

We extend the standard library data-typr-dr/initton^ o f (ISOHttb, annex A] to include
those dala-typr-drfinitionH ilefined in sectltm 6.5.1 ami appendix (\

/' IB a K^ard,
T is a tim r-offrr,
h IB a time-policy,
z is a time-rnlabliithment

a = gid d\ .. .dn /’ T h z

4 a m t : .d t : .v t : .> rp) - ^ g i d m a t :) < ■ ■ ■ < # v * { T K , v f : u v) r h z'

d' s \rrcon (E ,TE ,V Fz ,und rJ) if d, < » < n)
wh«*ro F. in a tyalue-etprezaion

= ? r .i 'id j,.. .,e.vidm • • -f-vidm > * # » ‘f# (7 ’K , arp)
ifd , * ? id (l < I < n) where id is an idenii^er-
declaration

V = {r,f>id|f .rid € # id# (7 '/ ’-', ̂ rp), (d, =?id, i < i < n))

N ote : /!,'zpfnnw n<-Oj0Vra are flattened a* for ntandard LO'I'OS: Vd/ur-erprraaionB
(viz. !K)a re lYrofiairuried, and identifier-declarations (y\z. ?id)are flat­
tened to extend the i*a/ue-rrn>ironmrf»r.

V = { r r r o n (F ,T F ,V F U W u n d e f)} if'/ ’ * (A ')
wiirrr F in a t*a/ur-rzprrMior*

N ote: Klatteninn a iimr-OjOVr involves rrrons/rtirhnp the t*alue-rrpnssion
F in the i*o/ur•rneirormirn/ V’F extende<l (by U V) with the d|,.. .,d „
«>ii/ur-idrn<iyiirs. Kvaluation usiiiK this extended eo/ur •rm'ironwrMi
means that the 'ri.O'I'OS user may reference within the time-offer, the
variabU's d|,. . . ,d „ o f the same action-denotation. F should produce a
ground term of the sort ’I'imeSelSort.

m Q r.v id with -< r .i» id > -» i^vid t i'im eSorti^ {TF ,H cp)
X m Q rid where r id is a t>o/uc*tderdt^Vr.

(r.rtd|r.iud € # » ’*d : '/'imr.Vor/#(7’ /'.’,srp) where z * O rid }

N ote: Flattening a time-rmtablishmrnt involves extending the
«•o/ur-rririromnrr»/ with a new binding for a variable rid of sort I Ime-
Sort.

all rid with r .r id ■ <•< rid.srp >-,f_aid >•€ #id#(7*7.’ ,arp)
where (d, *? id for some M 1 i * S ”)) (*^ “ I’ld s 7'ime.S’or<),
shall be pairwise different.

6.6.S.S Flattening enable-expretiion«

'I’his is all extension of (ISOHSb, section 7.3.4.5 clause e].

brh,brhi are rnafr/r>rxprrsstons,
brhi is a diaabU-t ipresiiiou,
ifd is an idrnii/ier-</er/aniiions,
z is a timr^rntabiiBhmrtit

brh = brhi » accept ifd z in brh-i

i^ b th m T K J* K ,f/ K , V E)

= #6rh,#(77';,/*f;,r;/';,v'K) »
accept # i fd # (7’A’,scp(6e/»j)) z' in

4 b r h 2 4 { T E , P E , a E y E U V)

/unc(fr#7i, 7’A’. P E , i ' E) ■ /unr(6cAa,7'7.'. I*E, V E U V')

a €tr-vid with -< r .i’id >•* ^v id X T itn rS o r li^ ('I 'E , zrp)
z B ^ t ’id where vid is a i>alut 'idrutifit r.

V = {r.t'id|(c.rid € # i/d#(7 'A ;, scp(6cha)))
or (c .r id € #t»id: T im rS o rl§ {TE ,B cp (b rh i))u >h rrr(z * O rid))}

N o te : Flattening a iimr •c«/a6/is/»»irnt involves extending the
ea/uc-cm'iromncni with a new binding for a variable vid o f sort Time-
Sort.

RiMluirement e l: /unr(6rb,. 7’7;, P E ,V E) « X r.t.id|.r-s»d|........c.nid„.e-sid y
if # i/ d # (7 ’/v',scp(6c/ij)) » X e .r id i.......c „id „ >

'I'his subsection provides the definition o f the semantics of a canonical I LO IOS spec­
ification ('Ts * x /i.v, as >•.

• T T = { -a V H t — [a € A c t,T € Q (T im rS e tS o rt), H € ¡VrgotiatedTimrPoUcySortyt €
Q {T im rS o r t))
with
■~aTHt «<1 >*■< \Dc t s <1 ^ 0,1 Ht — < W j.i > }

Art * { i } U € i iU v € D D ') , and
i)cT S >• th<* derivation tysten» defined in the axioms and inference rules of
transition defined below.
T T is the set o f limed transitions, i.e. T T is the set o f relations ^a TH t —
definiiiK the pairs of states associated with event aTH t.
N ote : Kach transition in the set T T is attributed with event Rate-name

and value-neRotiation information (a), occurrence-time information (O*
iittir-ptfliry negotiation information (//), ami tirnr-offrr information (the
set 7). The tw<j attributes H and 7’ are not for user-ror»sump<io«. These
two attributes should not be included in traces, for user-consumption,
produced from transition sequences. ’I’he // and 7 attributes are re­
quired in the definition of the axioms and inference rules, below.

• // carries the result of negotiating a timr-pittiry for an event. The table in
figure (>.!(> tlefines timr-ffttliry nrg<itiation semantics.
In this s«*ction we use the function S tgotta tr(tp f.tp i) to compute the limr-
pffliry which results fnim the synchronization o f two event offers with fimr-
prWirirs p i and pi. I'he table defines this Srgotiatr function. We say that
terins within the table are o f sort /Vfs>«fiofrd7'irnc/*o/iry.S'orf.

A sap _______ Alap__________Normal______ Annihilate<l
A sap Annihilated
Alap Annihilated
Normal AnnihilatiNl
Annihilated Annihilateil

negotiation rules

to indicate that both ASAI* and
the same event. If the result An-
then a Normal fimr-piWirv will be
inference rules below).

H Is the Initial process definition

• Ar\ the &xiomn defined in » later *ub»eftion.

• /: the inference riile» defined in a later nubnection.

0.6.4.2 Axioms o f transition

Only a selection o f the axioms are given here. I'he omitted cases are straightforward
extensions or reductions o f the following cases.

Atom ic-expressionB

if
H is an atomir-rrprruniim,
1.1* are ground terms of sort TirnrSort

N ote: No further transitions are possible from state //.

Notes exits are forre«l to twcur *as soon as possible*. This ensures that any
behaviour expressions which can exit do so immediately.

■< H,t > *-< gdi .. .d„[Si*]Thz\ H\ t >■

< H,t > -g v i .. .i*„'/ '//(' — [ryi/viry„/y„, i'/u)]« '. i' >-
is an axiom,

if d, » !< •(! <i i < ») t, ii a ground
term,

V, € Ci(a,) If d, * ? * , (! < • < n) with sori(* i) *
ry i.......r y „ are instances with * (ry,) if d, * ? y j (l < » < n, I < j < m) and

{ y iym} * I < » S tt).
I) h S/^,

Note: 'I'he rtniuirements governing value-negotiation over experiment-offera,
and the satisfaction of the selection-predicate, are exactly the same as
those in the LOTOS standard [ISOH9b].

Clu' where u> is a variable instance of sort TimeSort,

Note: The variable u> in the h>Mr-r*/a6/isAmrri< z, is bound to the occurrence
time t* o f the transition.

7 ' * € 7 irni .S’ori|(J > 0 A (z € /')),

N ote: ?■' is the set o f all possible occurrence times of the transition, given the
•present time* i. the hmr-«ifrr /’ . and ignoring the limr-pohry h.

\f h m id then h m Sttrm al.

N ote: If the user has not specified a timr-ptdicy h for the arfion-dcrioiahori,
then h assumes the default timr-poiiry S ormai.

// m IVrgotiatr{ S ttrm a i.h),

N ote: The nc*gotiate<l hmc-prWiry for an ar/iori-drno(a<ion in isolation is just

-< w .i
IB an axiom.

t ia($TAaHMrmbtr»OfT

N ote: No IraniiitiunB arr po«*iblr from state ■< H ,t >■ \{ t is greater than any
member of 7‘, i.e. it in ‘ tmi late’ for any trannitions to occur from this state.

I) is the derivation system for data, generate<i by AS. S /*' is the ground equation
that is the result of the simultaneous replacement in S P of all occurrences of
the variable x, in Sf* which also occur contained in a d, 1 < * < «) » *
term r € i»j.

Only a selection o f the inference rules are given here. The omitted cases are straight­
forward extensions or reilurtions o f the following cases.

Parallel-expreiBions

a. Hi are pamHrUrxprr»»ionH,
H\ is a choicr'eiprrnnion,

arc brhatnovr-rzprrnitum instanr<>8,
a, a' € Act,
l , t ', t i , t\ , t i, aro Kroutid terms of sort TimrSort,
T ,T \ ,T i are ground terms o f sort TimrSeiSort,
//, //j, H i are terms o f sort NcgotiatcdTimeFolirySort,
g , is a (possibly empty) list of gatt-namr instances

< H ,t > — •< /fiKfli,.. - .dnllWai i >“

-< Hy,t >■ -a 'l 'i -*-< H[,t\ H i.t >■ - a T iH itj -*'< >"
-< B .l >- - a T l l l ' ---< f l i l l i i>•

and «a »iir(ri) € {j/i.......

wliere
T * (x € 7» n '/ jl i > /}.
// = Srg€iliatt{H\, H i),
N ote : Negotiate a resultant timt-ptfiiry by ronsidering the two iimr-

prWirirs re<pieste<i by the two behaviour expressions Ĥ and /fj.

if (// s N orm al) \/ (H « 4wni7ii/a«rd) then i' € T
elseif H ■ Anap then <' * A fin (T)
elseif (H * Alap) N {iA(lpprrLimitrd{T)) then i' ■ Max{T)
else ((// * Atap)/\ riof(isf/pf»rr/.imiird(7’)) then) t' is undermerl.

N o te : As expected, this inference rule ensures that a synchronixation occurs
only at a time agreed on by both participants.
Notice how /' is calculated from the sets 1\ and 7*a, and not from consid­
ering the lime values t\ and ij. Phis is because the lime values t\ and ij
have been pre-determine<l in an isolated context using //i and //j respec
lively. However, the occurrence times t\ and <j are not necessarily valid
occurrence limes in this paro//r/-rrprr*siof» context. Hence we determine
/' (the occurrence lime for this pamllrl-rxprrAMiou context) by considering
b«>lh the negotiate<l timr-poliry H and the sets 7’i and 7a-
exits may synchronUe <»n i at a time I' because our rules for pamllrl^
rxprrAAiotiA guarantee that all sub expressions (vl*. H\ and H i) share the
same time value t. Moreover. wcurs ASAP because o f our atomic-
rxptTAAion axiom for rrt(.

-< » , , () - - o v , //,<', >-,
(((-< Wa.l >- -a 'T iH ,t ', — < >•) ACt j > t i)) V (- < H l.l >-/•))

-< n ,(i- — < » i l l i i r f- llft.l'i >■

and {Ttamr(a). «am r(a ')) n { f l i , ■ ■ ■ tffn« * ®

(((-< H|.< >- o"/',//,(', — < > -)A (i', > < i))V (-<
■< W-j, i >■ —oYa/Zifa —*■< A-

-(H ,(y — < « . l l i i «¿n llfli.«'! >-

and {«a fn r (a), nonir(n ')} n * ®-

nr«' infereiiro rulon,

N o te : ’I'heM* lant two ¡iiferenre tuIph govern the ¡iidpppiidput pvolutton o f two
parts of a Bystpm. I'o pimurp that tliiiP pri»|trpH»PB to ihp »amp pxtpnt in
both thp ‘activp‘ and ‘ inactive’ parts o f the iysteni, all parts o f the system,
in any particular state, share the same time value (vi*. t. etc.).
Munt timinR is piiforcpil by ensurinR that any transitions occurrinR within
the active’ part of the system do not pre empt the (Kcurrence of any en
aided transitions within the ‘ inactive’ part o f the system (e.*. in the last
rule, t\ > i j) . Also, if one part o f the system has reachetl a state from
which no transition exists (e.g. t j >•/*), the nl her part of the system
may evolve alone.

I)isable*expreBsions

//, Hi are dis«6/c*r/prrssiofis,
Ht is a paniUrl-rrprrHnion,
H\. are 6c/»m»i«ur-rrprrssio»» instances,
a € Art,
t. t\t\, t\, ti, t'i are ground terms o f s€»rt 7'imc.S'ori,
T Is a ground terms of sort TiinrSriSorl,
i l is a term o f sort NrgoliatrdTitnrPoUryS€}rt,

< it.t >■ -aT//i' —-< B\C>B2,r y
and namc(a) t>

< B j . t y - a ! Ut* y
< B .t y -a T H V B*i,V y

U K r-ron iu m ab le output lYaniition» (- a T H t ->) in TI-OTOS snmantirn »r » U-
bnll«l with tim r-og rr informalitm T and limr-policn information II ■ Aa wn mantionad
aarliar, thia infortnathm ia not for uarr-rortaumpiiori, but ia raquirad for tha dafinition of
lha aanianlira. Tha uaar aaaa lha 1,TS dafinad, or tha traraa producad from tha tranaition
aaquanraa dafinad by tha aamantira. To Hidy up', T im r-o fftr and (ima-pofiry informa­
tion ahould ba filtarad from thaaa, uaar-ronaumabla and-producta of tha aamantica. For
ronvanianra wa hava iKiioratl thia tidy-np tank.
Olia way to flitar-out limr-ixtiiry and timr-poliri/ information bafora it ‘ raarhaa’ tha
ilaar ia m followa, Dafina two typaa o f infaranca arhamaa: arhamaa for intarnal uaa
(l-arhamaa). and arhainaa (l l arhamaa) which ara to ba uaad for ([anaratinft a uaar-
ronaumabla IT S and tracaa, Tim t-offrr Mid (imr-po/iry information la praaarvad within
I arhamaa, but not includad in U-arhamaa. Now to infar naw axioma or infaranca rulaa
wa uaa l-arhamaa, barauaa thay carry all tha information (including lim r-offrr informa­
tion r anil information I I) that wa naad. But wa uaa H-arhaniaa to dafina
tha 1,TS that tha uaar ‘aaaa’ . bacauaa IJ-achamaa do not includa tim r-offrr and lima-
poiiry information. Itanca. wa cannot uaa ll-achamaa to infar othar axioma or infaranra
rulaa. Now aach axiom or infaranca rula will infar both 1-achamaa and li-achaniaa, aa
thr tPinpUteK bolow illuitratp.

■< I — Hchrina >■
•< I - ichema >

1 nrhonm u»c<l to infer nu>rr axiom* ami inferonre rule« with I xchrma form«.

a< I - «rhonia >■
^ II - «rhema >•

1 arhama in uaad hara to iiifar ll-arhama, whara U arhrma in an ‘and-produrt' for uaar
<-on«umption.

Sat nagotiation and narrowing Two faaturaa o f our aamantira worth an additional
mantion ara tha nagotiatlon of timr~offrr information and tha application of tha (ime-
policy ISrgoliaIr function. I'akan togathar. and ganrraliaad. thana two faaturaa hava
great potential.
The negotiation of Ittnr-offrr information 1« an Instance <»f by set inter-
«ectlon. The application of the limr-poliry Nrgotiair function U an Instance of what
we call nrl narrttwiug. Kor each event, our semantics uses set negotiation to establish
a ‘preliminary’ '/‘imr.SVi.Vort set. Then nrl ttamtwtng is applie<l (as directed by the
timr-fMtlu'v) to the ‘preliminary’ 7imr.SW.Vorf set to prcKluce a ’ final’ 7'ime.SVf.Vorf set.
This ‘final’ set ccmtalns the possible occurrence times o f the event when all timr-offrvH
and fimr-po/irirs are taken Into conslderatkm.
Introducing int<» bOPOS generalir.e«l facilities for sel nrpofiafio« and sW narrowing,
and making these facilities accessible to the bOTOS user, seem* potentially useful. We
envisage that sef nrgoUatton and srI «arrou’ifii; could be applied to any user defined
set sorts. 'I'he user would be responsible for:

• Indicating the basis for *W nrgotiation (e.g. normal set union)

• (ipfininK the » r l uarrvwing functions (e.g. ‘ remove all item# from the set which do
not satisfy predicate /*')

• defining the result of the ‘synchronous application' of dissimilar sci «arroufinff
functions to the same set (for example, see figure 6.16 which defines the result of
a ‘synchronous application' of dissimilar timr-potirirK).

If IX) rOS was extende<l with sr< urgotiatiou and sc< narrouuns, one application of
these facilities could he us<m1 to define at the syntax level quantitative time facilities
(with ASAP and A LA P) such as we have built at a semantic level.

6.6 M app ing T L O T O S to standard L O T O S

Our previous sections have developed a lime-extended version of IX) I OS that we have
called riX)TOS. In this section we augment this work by attempting to devise a func­
tion for mapping TIX)TOS descriptions to standard IX)TOS descriptions (also see
[MrCQlb]). In essence, we are investigating if it is possible to map TI.OTOS seman­
tics dirrctiy to standard LO'I'OS semantics. Note that we could build a TLO T O S
iri/f rpfv/f r in LOTOS, but our intention is to to preserve the syntactic structure o f a
rLO 'I’OS description in the translated LO'I'OS description, and vice versa.
Originally, we hop«*«! that such a mapping function could be used to form the basis
hir a TLOrOS to LOTOS mittMiiatir translator tool. This timl would rapture the
time-relatiMl aspects of the s<Mnantics o f TLO TOS source descriptions, in the syntactic
structure of the derive<l standard LOTOS descriptions. The translation process was to
be performed on the basis of a static analysis o f the TLO'I'OS source description. This
would make a translated TLO ’I'OS description amenable to existing LOTOS tends and
analysis techni((ues.
In this section, we invi>stigate two possible mapping algorithms but show that neither is
complete. That is to say that it is not. in general, possible to automatically and directly
map (fully fledged) TLOTOS descriptions to equivalent LOTOS descriptions. However
we observe that complete mapping functions do exist for restricted subsets o f TLOTOS.
The failure to find complete, direct mapping functions leads us to recommend that the
semantics of LO'I'OS be extended, as define«! in the previous sections. If TLOTOS
semantics are not available, then we r«»c«nnmend the manual use of the appntarhrn of
the mapping funclhins when sj»ecifying systems with quantitative time re<juirements.

6.6.1 Heprenriiting tim e

In <»r«Ier to express quantitative lliiie (as «leflne«! In sections 6.5.2 to 6.5.4) we have to
associate each event with a lime value. In LO TOS, we can represent civnls Ittmird in
timr by a number of approaches that include;

• The progressi«>n of lime may be represente«! !>y the «»ccurrence «>f specially des­
ignate«! events (i.eivrils, see (AQ90]). Then the U»catlon in lime «>f all other
events ran be establishe«! by considering their «Kcurrence («miering) relative to
the t-events.

IK2

• All events could carry a timr-ntamp which denotes the location in time of their
occurrence. Such a time-stamp may be part o f the value structure an event (I.e.
an event parameter — an A ('T ONE sort in an rxpfrim rnt-offtr).

These two schemes form the basis for our two mapping algorithms. Their realizations,
merits and drawbacks are discussed in the following subsections.

6.0.2 M ap p in g a lgorithm uaing t-events

The first mapping algorithm is based on translating the iinplicii*^ quantitative time
information contained in a 'I’ l.OTOS description to rxplirit time information, in the
form of special t-events” . Each t-event represents the passing of one unit of time.”
This is most similar to the proposal in [AQ90): similarities can also be found to work
in [gAF9<). vHTZiMJ].
'The following subsubsections outline the translation to t-events, highlighting the main
points of interest. We describe, for example cases, the results produced by sub-functions
o f our mapping function. We could describe the complete mapping function as a syntax
direcie<] function in a similar vein to the flaitruiug function in (ISOH9b, s€*ction 7.3).
However, describing the results o f the mapping function for particular instances will
suffice to demonstrate the strategy it embodies and Its shortcomings, without giving
an unwieldy definition o f It. Also, we attempt ‘correr tions*, re defining parts o f our
mapping function a task which is more clearly describe<l using examples rather than
an actual definitive definition.
We will use . .Y.Y.VA’ to label a translation function which will not appear in the resultant
1,0 TOS text.

0.6.2.1 Artion-preflx expreaslons

The following translation o f an actum-prrjix expression conveys the essence of our t-
event translation strategy, (’onsider the translation of the following 1 TO 1 OS aciiori-
prrfix expression:

T H A N S -N ()H M A L -A (T K)N .I»H E F IX (a 7x:Nat !Surc(0) (predicate(x)] {setl,E (li)} « t i ;
H(a.b.f)(s.tl), -K.NV

)

tising our algorithm, this is expande<l to the following TO'TOS text* :

” ls Ihr srasr ihst thr aupiMirting qusntitstivr timr mmksntsm is htddrs to ih»- T I ,0 1 t)S

•*ln ri.O TO H . t-evests «as hr «oaaklrrrd spet iai is a aimUar way that * rvasta ara in LOTOS,
**O t lotirar, thr rrlatkinahip betwern rral-Ufr units o f time and thr intrrval hrtwrrn t-rvrnt orrnr-

rrncra d«»ra not havr to hr onr-to-onr. or in any othrr way proportional, although in grnrral wr will

rhiKiar that this br no.
'"N o tn i W r havr. f«>r thr aakr o f « larity and brevity, rationalitrd thr translatrd test and omitted

some contest information whkh must be maintained by thr automatic translating system.

.IINIQUK. l> H (K KSS-NAMK(-ENV)|t,«,b,cl(lhflimf,«)

prorm« .l]NigiIK.PRO('KSS.NAM K(.KNV) (l.*.b,c]
(thetimr:Tim<*Sorl,>:-XrH-SORT.ID(b ,-KNV)) : iMM'xit J»

l?nrwtintr:'riinrSort [(n^wtirne Kt thrtim^) »iid
i)ot(th(‘timr itiiTAIIMeiiibrniOf ■i*tLK(5))];

UNigilK-PROCKSS.NAMKi.KNVHl.a.b.cKnewtinM-.i)
0 . ,

(thrtimc Uln •rtLh(5)]->
A ?x;Nat !Succ(0) (predicate(x))i
lot tl 'I'iiiifSort s thetimr in

.TRANS. NORMAL. ACTION. l*RKnX(B(A,b.c)(s.tl).
.lH»nATK(-KNV))

(’ t id p r o r

Notire that (in the expanded text) the rhoire between the t-evenl and the a event is
Ruarded so that it is impossible for the passiiiR o f time to pre empt the orcurrence of
event a. l^ater we Khali se«* the HhortrominRs o f this naive implementation o f ‘ must’
timing. Hiiwever, we ran see how event a is ronstraine<i to be offere<l only at appropriate
timeH, and how the artiial time of its ornirrenre (the value of thrtime) is Imund to the
variable fl.
'I'he nrlrrtion-pnfiiratr (nru’hmr gt thttimr] ensures that l-events are attribute«! with
a monotonirally^ inrreasing «luantitative time.
If we l«K>k at the flattening funrtion for TLO TO S orfion-drno/oiions, given in ser-
tion 0.5.;».2. we ran see that the titm -offrr should be evaluate«! in an environment
which Is already enrirhe«! with ea/ur-idruiiyirrs fr«>m the rTprrim rnt’offrri>. However,
this is not faithfully replirate«! by the above translation funrtion. This is herause o f the
order in whirh the translation funrtion needs to use information from the tirnr-offer
and rritrrimrnt-iiffrrii. The translation funrtion needs to use information from the
titnr‘offrr t«> «lefine the urirrtion^prrdiratr ronstraining the t-event. I his information
must be available beftire the rrprrimrut-affrrti o f the a event are n«»gotiated. I here-
fore, the mapping funrtion (unlike the semantirs in sertlon 6.5..1.2) rann«)t support the
evaluation o f the litn r-offrr in of the light o f rrp trim rn t-offrr negotiation. To try to
do s«) w«iuld lead to a ra tch -it situation. This does not arise in the semantir defini­
tions in sertlon 6.5.3.2, berause a single transition ronveys b«»th time information and
value negotiation information, whereas our translation strategy uses two transitions to
ronvey the same amount «>f information.
Internal (i) events arelr«‘ate<! similarly toother rtO TO S events; t-eventsare no substi­
tute f«ir I events they are ronreptually different. The former represents the passing of
time, the latter represents some spontaneous transition within the system. I herefore.
the use of the 1 event to represent the passage o f time has the disadvantage that time-
related properties rannc»t be proved if the interna] event is used for other purposes als<».
For this reas<in, the mapping function parameterizes the resultant hO'POS specification
with the l-event gate (guarding against the relabelling o f t-events as I events).

**W lies s t-evest t/norrars, all ■shseqaest t-evest orcurresrM will be nf the form i/m, where m > s.

Already, we have encountered problems with this mapping strateny. Nevertheless we
continue with our investigation, hoping either that these problems can be later resolved,
or that Insight into the semantics of TbOTOS be reward enough from this Investigation.

6.a.2.2 Parallel expressions

All parallel behaviour expressions must synchronize on t-evenls in t>rder to share a
comin<»n tiine.*^ This implies that:

. I H ANS. PARALI.KM choice-exp |(gale-id-list)| parallel-exp. .K N V)

will be translated to:

. IH A N S -rH O K 'M choice-exp. .ENV)
|(t.gate-id-list)|

-T R A N S .P A R A L L E M parallel-exp. -KNV)

The . T H A N S .N O H M A i. A C 'T IO N .I’HKFIX descril>e<! above realised ‘must’ timing
for an arlioM-prr/irexpression considereil in isiilatlon. However, this naive approach did
not consider the consequences of placing the result of a
. TH A N S ^N O H M A l. A C T IO N . P H E U X 'm parallel with other behaviour expressions.
If the translation example shown in the previous subsubsection was placed in the con­
text o f parallel behaviour, •‘ synchronism dea<ilock" (AQiM)) may occur If neither o f the
nrlrrtion-prrdimUH can be satisfied for event « and the t-event. Then, because of
the synchromms basis of our translation strategy, this would block the progression of
lime throughout all other expressions combined in parallel with our example action*
pn jix expression. I'he desireil effect from ‘must’ timing is that lime is alh>wed to
progress while it does not pre-empt an otherwise possible event. This means that the
. THA NS . NOH M AL. A C T IO N . l*Hh'FIX ought not to block the pr«>greBsion of time if
event « is not a possible event. 'I'his Is not the case.
Unfortunately, there is no solution to this problem within our t-event mapping slrat-
t»gy. The crux of the solution would involve establishing If an event is enabled (l.e.
•possible') and to block the progression of time (to force it to occur) only if it is en-
ableil. A mapping function Implementing this solution, would produce LOTOS text
which bore little resemblance to the original 'I'LO'rOS text. In obedience to the aim
stated at the start o f this section to preserve the syntactic structure of a TLOTOS
description In the translateil I,O 'l'0S description, not to build a T I.O TO S intrrprrtrr
In I.OTOS we do not pursue this solution. Instead, we drop our attempt to en
force 'must’ timing In favour o f avoiding synchronizm deadlock. To do this we alter
the . TH A N S .NO H M AI..A ('T IO N .TH h:nX f\xnn\ni\ to have it not generate the i»(!>
7/4HA/rm6rrs(;/predicate, so that the pn>gression of lime may proceed independently
o f any other concerns.

*'TLO TO H ia c ••■ysrhr«ni»us tnodrl" nf lime

Synchronoul ex it» 'IY*n»Uling TLO TO S terminatinn (ex iting) behaviour expres­
sions combined by a parallel operator poses yet another problem. Phus far we have seen
that in the LOTOS text (translated iron» TLOTOS) we explicitly pass each behaviour
c'xpression the current time value (v ia the thrtime parameter). To establish this current
time we need to be able to determine the exiting time of the enabling behaviour ex­
pression. If the enabling expression is a set of synchronously exiting parallel behaviour
expressions we nmst devise some means o f negotiating the final synchronous exit time
of the complete parallel expression.
In an attempt to solve this problem we replace all such synchronising exits with special
W A IT processes of the form:

process W AIT(tI(thetiiiir:TimeSort) e x i t 4*xit(thrtiine)
D t?newtime:TimeSort; W Arr(t)(new tim e)

e iitlpr(»c (• W A IT •)

I he W AIT process offers to exit immediately with the time o f the last event in the
instantiating behaviour expression. However if exit synchronization at this time with
till* other parallel expressions is not possible, the W AIT process offers to synchronize on
t-events to update its 'exit time' and recurses, continually trying to synchronize its ex it
with the other parallel expressions. Thus in this way. any one behaviour expression, in
a set combined by a parallel operator, can wait until all «>ther i>ehaviour expressions in
the set are ready to terminate with it.
O f course, in general the U A /?'process must 1m* tailored to the exact functionality of
its ci>ntext, i.e. the W AIT process must offer the same list o f ex it values.

H’A// processes represent yet another departure from the TLOTOS semantics, sec­
tion ().5.L2. In section 6.5.1.2’s semantics, an exit is forced to occur ASAP, but this
ASAP urgency is not enforceil by using H'A/7'processes.

6.6.2.9 Choice expression»

'I'he semantic definition for rhoirr expressions, in section ft.9.4.3, describes a drfrrrrd
rhoirr model. What we mean by drfrrrrd rhoirr, versus ivtmrdiatr rhoirr, can be seen
by considering the following simple example.
How should; (x (s f/ / ,i; (2)) ;/ 0 [] (y i«* - iL i; (I) }:g) be translated? Two pmsibiUties for
time extended semantics are immediate or deferreil choice. For immrdiatr rhoirr the
translation «»f the above expression wimld mimic behaviour tree (a) in figure ft.17.

(r) Immodiat«* (’hoir«* (^>) l)«*fprr«Ki ('hoir«*
KiK îrr (>,17: ('hoiro brhaviour tr«*«*ii

In behaviour tr«*e (a) we ran M*e thal two t-evenls are offered^* at the choice Htatement.
When one o f theM* occurB it immediately determiiieB which of the events x or y can
MubMHjuently occur. One interpretation o f these semantics is that since we often choose
to have tiine-ronstraiiMHl events mark the finish of actions with durations, the d<*srrip-
tion is sayiiiK that the actions correspondinit t‘> (he events x and y mutually exclude
one another. Immediately one of thes<> actions starts t<» happen the other action (and
hence the other represimting event) cannot occur.
iranslatitiK the same tiiiie-extemled choice statement as above, tint usiitK the drfrrrrd
rhoici strategy (as in the semantic definition of section 6..‘>.•1.3) will result in the be­
haviour tr«*e (b) shown in fiRure (>.17. This defers as late as possible the decision as to
whether or not an event such as io r y will occur. Kvents x and y still mutually exclude
one another but, in this instance, if event y does not occur at time 1, event x may still
occur at time 2, In the imimHiiate choice translation, if event y was offered but did
not occur at time 1, event x would never be offertHf. ((’ompare the behaviour tr«*es in
figure (1.17.)
Of these two time-extende<l semantic models for choice, deferred choice seems the clos­
est tt) the standard LOTOS choice semantics, and also is the closest to the trifuifiir
interpretation of the TLO TOS syntax for choirr expressions. I)eferre<l choice is the
model that we have adopte<l for 'TLO TOS in s«»ctlon 0.5.-1.3.
Translating 'TLO'TOS deferre«! choice expr«*ssions is not as straightforward as it may
initially seem. The algi>rithm must identify all guardrd-rxpmuiumit which form direct
alternatives to each other. Kach set of such alternative guardrd-rxprrnnumn we call a
•choice set*. For example, the guardrd-txprrnnumm wh«M»e initial events are j , y and X
in the following TI.O'TOS fragment form a choice set.

w; (x(srtLK(2)), g fl y(srtLK(4)), H Q «[«1)
wlieri*

process S(s] imm’xU :■ s(setLI-:(3)) i I’ «»lidproc

'•■flir t-cvsnt may «sssr nos-drtrrmisUtn tf rninpiss^ is psrsllrl with itself, as asy other evesta

may. We might isterprel a rhohe beturees tm» t-evesta as a chaire Iretwees difTeresl ‘ time atreama*.

T r a n s la t in K th e ch oire se t:

/I K A N S - (’ H O K 'K .S K T (x {« - lL K (5)) ; Q Q y fx 'U .K ii)) ; R Q S |i|. -K N V)

givoN uh;

.U N IQ U K . I’ RCX I-ISS- N A M K (- K N V)(t,x ,y .i)(th rtim e)

w lir r i*
p r o r t i » .llNigllK.I’H()(KSS-NAME(-KNV)ll.x,y.*l(ll'<'‘‘n'''>''''“'S"'*) ■ ^

l?IM *wtim r:TillirSort [nrw tilllr n l thctinir];
U N ig i 'K - l ’ R<K 'ESS.NAM E (.KNV)(l.x .y,i](nrw linw)

i . 'lH A N S .C H O IC E .A I.T .A ("r iO N ,l> H E F lX (x(xrtLK (2)) ; g . -KNV)
. rH A N S .C H O IC E -A l;r .A (T IO N -l'R K K IX (y {«- t l,K (4)) ; K, -ENV)
-TR A N S .C H O K 'K . I>H (M '-INSTANT(S[il, .E N V)

«•iicl|>rt»r

If an orliofi-pfv/i>olpmrnt in a choire M*t is not referenceci an a direct choice alternative,
we trannlate it uninR . THA NS. NOHMA ¡..A C T IO N . TH K H X an dencribed previously.
However, where nurh an arium-prrjir ia referenced aa a choice alternative, we translate
it aa Nhown below.

I HANS.CIIOK E-AI.'I -A (' I ION.PHEKIXi y{»-U,E(4)); H, -ENV)

Thia expaiida to:

I ’ N igUI-:. I’ HOC’KSS. NAM K(. KNV)(l.y)(thrtim e)

proeeaa . UN igi’K. I’KiX KSS. N A MK(. KN V)(t.y](thetime I'iineSort) : ihm'xU !
(ihetime lain aetLK(4))->

^TH ANS.NO H M AL. A (‘T I()N .I»H K F IX (H, .KNV)

Niilirr hiiw Ihr prtirr». A..|i.Txlnl by . T H A S S .C IIO K ’K .S K T ilffrrrrd
rholr«- by «Iwxyx iilirrinn Ib f I i-vi-nl, xml iiffirllig Ihx i.lhir rvi-ntx whxli xpproprlxtr.
I hx priir«.. gmirr.tnH by . ¡H A N S .C IIO IC I ':.M .r . A C T IO N . xlgnlfirxntly
ililTrfx from thr prorrxx griiprxtiMl by . THA NS. NOHMA L. AC 7 ION . I ’H T I IX in that
It iloox not Ituxlf offrr t xvr.ntx xx xn xltnrnxtlvn to it. y rvrntx, but Inxtrxd rrliiui on thn
prornt. grm rxt«l by . TH A N S .C IIO IC K .Sh 'T h r thix t uvnnt xltirnxtlvx. If thn pro-
rpxx gnnrrxtml by - THA NS. NOHMA A C TIO N . l ‘H hFIX wnn to offrr xn xltrrnxtlvr
t rvrnt xnd thix orrurrrrl. xll thr othrr xltrrnxtlvr rvrntx In thr prorrxi grnrrxtrd by

TH AN S.C H O IC H .Sh 'T wnuM thru br rxrludrrl from rvrr orcurrin*. Ih li would not
rrlirrt our intrndrd xrmxntlrx for thr drfrrrrrl TI.O 'I’OS rhoicr rxprrxxion.

6.6.2.4 D isable expressions

(’onaider the tranalalion of a 'PLOTOS diaable expreaaion:

. I RANS-1>1SABLK({b i»rlI,K (2)); H[b,c]) O D[d], -KNV)

Thia ia traiialated to:

-IINIQUK. PRO('KSS-NAMK(- KN V)(t.b.f ,d)(thetime)

when*
pror.'»« .llNimiK.fKOCKSS-NAMK(-KNV)ll,b,c,dl(thrtinirTiin<’Sorl) : niMixit I 'lirwliiiir TiiiirSort; - lIN lg llK - l’ ROCKSS.NAMK(.KNV)ll,b,c,d](iirwlinir)

0 Ilhniiiir l.ln b; . TKANS.I)ISAHI,K(H[b,r) O l)(dl, -KNV)
0 . IRANS. 1)1SAHI.1N(!-I‘ R()C .INST(I>(d), -KNV)

(*ii«lpror

Noticf bow . TH A N S .O IS A lll.K allow« di.ablin* al any in»tant, by offering tha di«-
ahlitiK expreaaion aa an alternative to all eveiita.
. r H A SS. D IS A H U S a . IN S T all the poaaible events in the disabling
expreaaion iiiurh in the aaiiie way aa . T H A N S A 'U O K 'K -A L T . ACT tO N . P R hhIX
d<M'K, thus relegating the responsibility of updating time (via t-event synchronisation)
to the diaablable expreaaion.
Renietnber that <mr aitn is to he able to take any TLO'POS description, statically anal­
yse it ami translate it into an equivalent finite LOTOS description. Unfortunately it
is not. in general, possible to translate PIX) POS dianòie expressions which are embed
(1<h1 inside a recursive definition^** to equivalent finite LO’POS. 'Pwo possible means of
overcoming this difficulty are:

• Restrict the expressive power o f TI.OTOS by either forbidding the expression of
disable expressions inside recursion, or by altering the disable operator to force
the TI.O POS user to explicitly state at what times disabling may occur, e.g.
(fimr.r<mafroiri/>. (Phe times at which disabling may occur are immediately
derivable from [hmr_rfif»a<rainf>. This is in contrast to the ^ f*»rni of the
disable operator, for which we would have to analyse /*[x] to establish such times.)

• Integrate the translation algorithm into LOTOS simulation/expansion t<K>ls (gi»FH9,
JohH9]. In effe< t this means that we rewrite the expansion theorems (ISOM9b, sec­
tion H.2.2) so that expansion o f TLOTOS expressions yields choice LOTOS (with
data values) and the appropriate placing of t events.

6.6.2.5 Katabliahlng tlm e-po llry inform ation

Sections 6.3.2, 6.3.H, 6.3.10 and 6..^.4.3 describe how TLOTOS supports the notions of
‘must’ time and time-policies. Once an event becomes 'enabled' (i.e. all participants

**Kor essinple, sspressbiss ssrli as.

Rt«.r| wh«n. pnH-M« /’|«.>| n..w«l« ;■ <(«.ltf.'(3|); P I«. >| O »lui «xlpnx-

in thn event are prepared to aynchronize and negoliate riprrirn rn l-o ffrr valuer which
satisfy the conjunction of grirctiorl’pm itra irt), ‘must timing ensures that the event
will be fired (given that it is not an alternative in a choice set), and the negotiat^
time-policy will dictate the time value, within its time window, at which the event will
occur (e.g, ASAP, A l.AP or Normal). Supporting ‘must’ timing and time-policies is
not ptissible within the framework of our t-event mapping algorithm.
One obvious approach towards supporting ‘must’ timing and time-policies is as follows.
The mapping functions could introduce a LOTOS Arbitration process for each TLO-
I'OS gate. Kach TLOTOS event, a say, could be realised as a set o f LOTOS a„//„
events, a single afoiueud event and a single a/,r,j event. Kach Oo//#, event would convey
rrpt rimi nt-ogrr. rrlrrtion-prrdiratr. tim r-ogrr and timr-policy information pertaining
to a single o event offer. The occurrence of the OfotUcltd event would indicate that
all the a „]jtr events have occurred. The l.Oi'OS a/,r«s event would occur at (what
wtiuld have been) the chosen firing lime of the original TLO TO S a event, and would
carry (what would have been) the negotiated rxprrim rnt-ogrr values of the original
ri.OTOS a event. The Arhifrnlion process, for (what would have been) a single oc-
rurrence o f a T LO TOS a event, would synchronize with each o„//„ event in turn, to
collect all riprrim rn t-ogrr, tim r-ogrr, etc. Information pertaining to the I'LOTOS o
event. Then acoUenr ̂ event would occur to indicate that all this information had been
collected. From this collected Inftirmalion, Arbitration would offer an a/.„w event at
the appropriate time in respect o f the fimr-ojcr and fimc-po/irp Information, and with
the appropriate event parameter values in respect o f r ip rrim rn t-og rr and rrlrrtion-
prtfiiratr infonnatioii.
I'o help clarify the approach just outlined, appendix K sketches an example translation
using this approach. I'nder the approach, the I LO TOS fragment in appendix K.l
would be (approximately) translated to the LO TOS fragment in appendix K.‘2. Notice
how the a,.,u,„irS fulfills Its purptise because It cannot synchronize until all n„//„ events
have occurred. While there are o„//„ events still to be collected, Arhilrolion permits
time to progress unconstrained. However, once OcoUrOrd occurs, and Arhilrafioti com­
putes that the a event is Arable, it prevents time from progressing beyond the firing
lime of the a event, thus enforcing ‘must’ liming. Also. It seems that the Arhifmfion
process can support time-policies. It can negotiate a ‘preliminary time window frtitn
the collected tim r-ogrr data, for the occurrence of event a. 'Then, from the collected
fimc-po/icics, the resultant timr-poliry ran be rompuKd and applied to the ‘prelimi
nary’ lime window in order to obtain the actual time window in which event a is to
occur.
However, this stilulion and variations on it are fraught with diflicullles. For example,
unless we Implement another mechanism which prioritizes a „u ,f and acolOetrd events
over t-events, we cannot ensure that ao//«r snd arotoovZ events will occur as stum as
pinsihle. This means that by the lime the Arbitration process receives the information
conveyed by these events, it may be too late to offer the corresponding o/ „^ event.

Another problem 1s the representation of each TLO'TOS event offer as three romplemen
lary LO TOS events. This scheme creates sequencing problems. For example, we can­
not naively translate; a; /’ Oh; Q as: ao//tri; UrotUcirUi /*Dho//«r, hrotOrirs; bjordi Q-
The o„//.r and 4„//.r events would mutually exclude one another, when In fart we
want the oy,„u and h/.,.u events to mutually exclude one another. Solutions to this

particular problem lead to problem» elsewhere. We rould solve these, but for little gain.
The result from solving all these problems would a mapping function which described
most o f the TLOTOS semantics in I.OTOS syntax. And we hoped for a much more
direct mapping between Tl.OTOS and I.OTOS than this. The next subsection briefly
examines the use of time stamp», the alternative to using t-events as the basis for a
mapping algorithm.

6.6 .3 M a p p in g a lg o r ith m using tim e -s ta m p s

This mapping algorithm translates the im p lic it^ quantitative time information in ThO-
TOS descriptions to explicit time information (time stamps) incorporated into the value
structure of events. 'I'hus TlvOl'OS event offers such as:

a ? x;X (x eq y) {wtlnterval(3.tl));...
b ! s (setLK(lO)} «t'rl; ,.

are mapped (approximately) to the LO'I'OS text:

a ? l : TimeSort ? x:X ((x eq y) ami (I Isin setlntervaKS.tl))]; .
b ? t2 : 'I'imeSort ! s (t Islii setU-](10)); .

It) impose a proper quantitative time ordering on these events, a global time process
must also be composed in conjunction with the rest of the translated system description.
This global time process continually offers to synchronize on of/events in the system,
negotiating a immotonically increasing" tjuantitative time-stamp for these events.

However. bOTOS allows the dynamic declaration of new gates (using hide), which
makes it impossible to pre determine the set of all possible system events from simple
static analysis of the TbOTOS text. It is also generally impossible to ‘dynamically
evolve* such a global time process, i.e. to establish an initial global time process which
synchronizes on observable gales, and to then reconfigure this time process on-lhe fly
ail each hide operator in the given I LO rO S system is realized. This is because it
proves impossible to manage the synchronization between an initial global time process
and its newly evolved gates,
It is possible, through static analysis <»f any TbO TOS description, to pre determine
a set o f observable artion-drmttaliouti (gatr-idrntifirrn together with rxprnmrf»l-o^rr
structures) such that this set has the p<itential to synchronize with any observable
events in the system. This set ran then l>e used to construct a global lime pr<K-ess in
conjunction with the rest of the processes in the lranslate<l system.” A global time

the srnsr thst tk r aupporlisz qssstktslivr tims mrt hsnwm U hidrfrs to (h r T l . O T O S user
*Ms (h r srnsc (kst whrs ss rvrst limr-stsmprd t orrsrs, sll ■iihsrqsrst rv rs l ocrsffrsces will br

timr-stsmprd I 4- «■ whrrr s 2 ®
**KBtshltshinK w h rlh rr arlion.i^rnoloiion« (s p s rt from rxplicit 1 actton-dmoiattons) <ss s rv rf b r

rro lu rtls a obsrrvsM r rvrs ts is, is «rn rrs l. undr< M sblr. T h is m rsss Ih st s (rssslsUos sl||ort(hm would

produce s idobsl (im r process which contsiss superfluous syschrusissUos offers. Althouah uol elegsut.

this is itself dues not sffe« t the rorrertsrss o f the resultin« specihrstion.

191

procesH for the example above Is:

proceii» (îLOBAL.TIMK[a.bl(lhetime:TimeSort) iimtxU :■
a!lhetime?v:X; CiU)BAL-TIME[a.b)(thetime)

0 b!thetime?v:Z; GLOBAL.TIME(a.b](thetime)
D a: (ÎL()BAL-TIME[a.b)(lhetime)
D (JLOBAL-'nME[a.b)(Sucr(thrtime))

eiMlpror

Kor tiimulation an internal event would have to be introduced to ffuard the rerumion,
but the principle 1r that if an event happenN at time 3 (ia y) then the next event may
happen at time 5 (say) without the specification having to explicitly motv in constant
duration steps through the time series 3 to 5, in this case.

6.6.3.1 Time constraints on observable events

We have just seen that this time-stamp bawnl mapping algorithm can deal only with
TLO TO S descriptions in which quantitative time relations are expressed only over
obMTvable events. I’herefore, similarly to the t-event base<l algorithm, our «levelopment
<if the stamp-stamp bas<»<l alg4»rithm has alrea<ly run into difficulties (and we have not
yet consi<lere<| supporting I I.O TOS features such as ‘must timing and time-policies).
However. befi)re abandoning the time-stamp base<l algorithm, we make a few interesting
observations on th<* effects o f limiting tin* expression of ({uantitative time relations over
only observable events.
Most authors advocate the constraint-oriented style for high level specifications in view
o f its assertional characteristics. The constraint-oriented style concentrates on observ­
able events. We believe that limiting the expression o f quantitative time relations to
ori/y observable events is not always sufficient for the development of specifications, but
its discipline does provide lessons in the development of *g<M)d specifications.
Consider writing a s|M»clfication for a system which, after the user presses a button,
will either two seconds later turn on a green light or three seconds later turn 4>n a red
light. With a restricted TLO TOS. where we could express quantitative time relations
over only observable events, we would write;

press, button 'ttt 1,
(

i. KreenliKhl(srtKQ(tl-f3)). exit
0 t; rrdlight(setf'.C4(t I-f 3)} ; «*xU
)

Without this restriction we might have considered writing:

press. butt<m Otl ;
(i (setKQ(ti-f2)); greenlight. exit

i redlijiht; ««xit

III this particular example, the discipline of restriction is welcome, since the second
‘solution' is not a correct reflection o f the requirements. 'I'he second solution specifies
at what time the system determines (invisibly) which one o f the two possible behaviour
paths to take after the prrn».button event. Moreover, the second solution does not
actually specify that the grrf nlight and rrdiight events are to occur two and three
seconds respectively after the pmm. button event. This example emphasises the point
that for many “ specifleations" it is sufficient to state relations (including quantitative
time relations) amoiiK only observable events.

6.6.4 Conclusions from this section

The general objective of our work in this section was to Kain a better understanding
o f the relationship between ri.O 'l’OS and LO’fOS. Our more specific objective was to
devise a general algorithm for mapping TLO l'O S to LO'I'OS. We explored two possible
algorithms one baseil on i»cneri/s and the other on iimt-»tatnpa.
Neither algorithm has bwn fimnd to be complete in the sense that neither is powerful
enough to map complete TLOI OS (asdeflneil in sections «.5.1 to and 6.5.4) descriptions
to semantically equivalent finite l.OTOS descriptions. Nevertheless, this work has
been useful because the algorilhms provide a basis for manually describing quantitative
timing constraints in l.OTOS. We believe that the apprttachrn which the algorithms
embody are useful for the specification of timing aspects o f distributed systems.

This work has exposed many interesting problems, such as how to implement ‘must
timing, time-policies and priority using Standard IX) 1 OS. 1 his work has b«»en useful
as a comparison between the expressive power of IX) I'OS and TLO'rOS, and has leil us
to appriH’iate the iiihkI to enhance IX) I'OS (to I'lX) I OS) at the semantic level (rather
than via a syntactic mapping algorithm).

6.7 T im iiiK aspects o f the C IM -O S A IIS rev is ited

In section «.2 we used examples of the ('IM-C)SA IIS X . Service and X.Service. Agent
to demonstrate the inadequacy of LOTOS for rapturing quantitative timing concerns.
1'o correct this inade()uacy. sections «..1 to 6.« have concentrated on enhancing standard
LOTOS to r iX) rOS (l o t o s with quantitative time facilities). Now we return to our
original ('IM OSA IIS examples, and provide complete and formal descriptions of their
timing aspects using 'LLO'IOS.

6.7.1 T L O T O S description o f the X .S e rv ice

I'he TLOTOS specification. XsrvlT in appendix F.l is a direct reflection of the Informal
requirements for the X.Service, given in section 6.2.

6.7.2 T L O T O S deicription o f the X_ Serv ice . Agent

Ihe TI.OTOS «pecifiralion, XagelT in appendix K.3 ia adirert rellertion of the informal
requirement« for an X . Service. Agent, given in aection 6.2.

6.7.3 T L O T O S deacription o f the extended X . Service. Agent

'lb provide further evidence of the exprcHdive power of TI.OTOS. we present the fol­
lowing ri.O r o s description of the X.Service. Agent embellished with X . Management
functionality, rhis specification is an abstraction o f the specification .V< discussed in
MH'tion 5.5.
riie X-ManaRi’ riMMjl funrtion&Jity roquirea lh »l:

• All X-S«Tvlre-Agonla rospond appropriatnly to a ('Ufardowu broadcaiit meaaaKe
from the X-Servlre-Anent.Manager.

• All X.Service. Ageiila must terminate Bimultaneoualy on the CVoardoum event.

• I he cioardou'u event muat occur within the lime period apecified by the
X- Service. Agent. Manager.

• If an X.Service.Agent ia proceaaing an X .A f ’r i ’ Hrqurat when the ('loardoum
broadcaat arrivea. the X. Service. Agent muat wait until aa late a lime aa poaaible
before auccumbing to the iVoacdou»« re<jueat. (1 he X. Service. Agent muat, alill,
('loardown aimultaneoualy with the other Agenta.) Ihia ia to give the current
X. A(*<*!’ Htquiat the beat chance of completing.

• If the X . Service. Agent ia not pr<»ceaaing a X.AC’t ’ l* Hrqurat when (ioardowtt
broadcaat arrivea, the X . Service. Agent merely compliea in executing the (Hoar-
down re<|ueat within the time interval apecifietl by the Manager, and at the aame
lime aa all the other X .Service. Agenta.

The TLO rOS apeclficallon. Xage2T in appendix K.4 la a direct reflection of the informal
requirementa for the extended X . Service. Agent given In the paragraph above.

(onaidering apeclflcatlon Xage2T, notice how eaally TLOTOS allowa ua to deacribe the
actual ('ioardttu'u l)ehavlour. 1'he above rwiuiremenla auggeat a complex negotiation
mechaniam for broadcaating the fVoacdou»« meaaage. eatabllahing a f Voardoumtime. and
finally executing the r/oacdou*« event. A mechaniam for aupporting thla negotiation of
an event time ia already a feature <»f the TLO ’I'OS aemantlca, hence the aimple ayntactic
deacription.
Although the TLOTOS text for the Ctaardoum Itaelf ia very aimple, there are three
inatancea of thia text. The reaaon f<»r ihla Ilea in the requirement for the Agent to
rtoardttum ALAI* while proceaaing an X .A C r i* Hrqurat, or (’toardawn at any time
(compliant with the Manager) if not. Occurrence of either the aecond or third (in
textual order) o f theae inatancea repreaenla the caae of ('loardowtt while the Agent ia
not proceaaing an X . ACT’ I* Hrqurat. An occurrence of the flrat inatance repreaenta the
caae where the Agent ia proceaaing a X .A ('('P Hrqural.

The ALAI» rímr-pí>/i>y ensures that the X.Service. Agent delays to as late as possible
the (’losedoum event if that Agent is currently processing an X. A C ('P Rrqurtt. In the
X.Service.Agent-Manager process, the ('totirdoum event will be associated with an
appropriate tim r-offer to ensure that the ('losedoum event musí occur within a certain
time period (this is not illustrated). LcK>king back to specification Ss in section 5.5. we
see that all Agents, together with the Manager, synchronise on the X.M gnt gate, thus
ensuring that all the Agents ('Umrdowu simultaneously.

6.7.4 DÍBCUS8ÍOI1

Close scrutiny t»f these examples reveals questionable behaviour. For example:

• 'I'he first I event in the X.Service specification X srv lT has an attachecl ASAI»
timr-poHry. Since this event is not an interaction, we know that if this I event oc­
curs. the A S A I» timr-policy will always force it to occur at the same quantitative
time as the immediately preceding X .AC < ’P!Req event occurrence. Therefore,
this X-Service specification will never display behaviour where the
X- A C (’P!Res!data2event is offered at a lime í2 where (Í2 > í l)A (í2 € BetLE{tl +
tim rout.pt r iad)). Kxamining the informal requirements (section 6.2. point ,1). we
would expect this to be the legitimate l>ehaviour. However, point 3 also asks that
the X-Service compute and offer an X . A (‘(’ P!Res!data2 event ASAP — the con
junction o f this requirement, and the retjuiremenl that X. A (’CP!Res!data2 musí
start being offered within the period Í1 .. il + íim couí.prnW . is the reason for
this dilemma. We have trie<l to reflect both o f these requirements in the specifi­
cation o f I be X-Service.
One possible resolution of this dilemma is to assume that the requlrtunent ‘the
X.Service compute and offer an X . A(*n*!Res!dala2 event ASAP* can only really
be reflected in the X. Service. Agent specification. After all. this requirement deals
with computation, which is an Agent issue and mit an issue for the X.Servlce
ifiírr/acr-dr/iniíicm. Thus, our conclusion is that the informal requirements are
ill-stated: the computation urgency requirement should be placed in the require­
ments for the X-Service.Agent, and not In the reipiirements for the X.Service.
To reflect this conclusion, the I'LO rOS specificatitin Xsrv2l in appendix !■ .2 has
n<i ASAP urgency associated with the first i event.

Cieneral I*o in tt ('hanging the informal requirements to reflect the findings of
a less abstract description suggests a symbiotic dependency between these
two descriptions. This symbiotic dependency between the informal require­
ments and a less abstract description (and, nuire generally, between any two
descriptions at different abstraction levels) Is not a surprise, Abstract mod
els o f devehipmenl life cycles predicate iterative Itxips in devehipment. and
cognitive studies [VisftO] show that the developer continually jumps between
different abstraction levels, changing descriptions at one level to reflect find­
ings at another (higher or hiwer) level. I'hls li an rrprnm rnlat approach
to design where validation feedback may lead to modifications to both the
“specification*' and the “ Implementation" (HrifM).

In the X-Service. Agent.Kxt Bpecification Xage2T. the first instance of ('¡o»edown
text is composed with a digabir-operator. This means that the ALAP (loaedowu
event could occur immediately after the X . ACX’P!Res!data2 (an event which Indi­
cates that the Agent has finished processing an X -ACCP Requrat). The question
is, does this violate the requirements, which state that the r7oerdou>»» event should
occur ALAI* only while the Agent is currently processing an X .AC C P Rrqueat?

The specification XageTl'in appendix F .5 is a re-structured X.Service. Agent. Fxt
specification. In this alternative specification, four instances of the ('lo »r i)oum
text are used, to the effect that an A L A P C’loaeDown event can no longer imme­
diately follow an X . ArCP!Re«!data2 event. Is this alternative solution (Xage3T)
a more prcK’ise reflection of the requirements than solution Xage2'I ? Or, to put
the question another way, can we verify or test that one o f these alternatives
is a more precise reflection of the requirements than the other? To answer this
question we iH'ed to develop a theory o f verification or testing for 1 LO I OS.

For answers to this and similar questions we turn to the testing theory for TLO-
TOS introduced in the next section.

6.8 Tetitiiig relatioiiH for T L O T O S

Appendix (J forms an annex to this chapter, to lake the work on TI.OTOS a stage fur­
ther by proposing ami examining useful 'I'LO ’rOS testing relations. We define 1 1.0 I OS
testing relations as extensions of Standard 1.0 I'OS testing relations. We lake relations
such as testing congruence and equivalence, cred. cext and red, demonstrate their
application for a few small but interesting examples, and show that these T l.O rO S
relations yield sensible and intuitive results. Then we use these relations to test that
our CIM OSA example specifications, appendix F, are satisfactorily related.

6.9 Sum m ary

I'he primary objective of this chapter was to develop an extende<I version o f Stan­
dard LOTOS for the formal specification o f quantitative liming concerns in distributed
systems.
The chapter began by showing the inadequacies of Standard LO'I'OS for the specifi­
cation o f timing requirements. Lhen we investigated, using a derivative o f arc-limed
Petri Nets, the language facilities ne<Kl<Hl for the specification o f timing requirements.
A set o f quantitative tln»e features were distilled from the findings of this investigation,
and a proposal was made t<» incorporate these into an extended version o f 1.0 I OS we
calleil TLOTOS. We contrasted our TLO TO S with other existing proposals in this area
and found that TLOTOS compared favourably.
1’he syntax and semantics of TI.O ’I'OS were defineil as extensions o f the LOTOS syntax
and semantics. 11.0 LOS semantics define a global, discrete cU»ck which can be used
lM»lh to force (using ‘must’ timing) events to occur at specific times, and to measure
the intervals between event occurrences. T I.O TO S Introduces timr-poHcira, l.e. ASAP

(•a* i«K>n as possible’ rorrespoiiding to “maximal progress semantics") and ALAP (‘as
late as possible).
Another facet of this work was an attempt to devise an algorithm for mapping TLOTOS
to Standard LO I OS. No satisfactory algorithm for automatically mapping TLO l OS to
1.0 I'OS could be found. Nevertheless, this work proved useful because the algorithms
tried provide a basis for manually describing quantitative tim ing concerns in Standard
1.0 rOS. It also provided a comparison between the expressive power of LO I'OS and
ThOTOS.
rhe chapter concluded with examples demonstrating the power o f ThO’IOS for the
capture o f quantitative timing constraints. Also, the chapter refers to an annex (ap­
pendix (J) which shows how TLOTOS specifications can be tested under extended
definitions of the LOTOS testing relations, to yield sensible and intuitive results.

Chapter 7

Formal specification of
probability for distributed
systems

I'h i» r liap lrr .•xK 'ik I» I,O IOS with fratur™ for Iho »prriliration o f prohahilialir aaporta
o f (tintrilMltcd ayatrma. W o bogin by ilofilbng rxloimioloi to tho I.O'I'OS ayiltax and
HiMiiantirx to prodnfo a probabilixtir vorxion i>f I.O I OS. wo rail I’ bl.O I OS. l*bl.O 1 OS
haa a probabilixtir choiro oporator for xpocifying probability dixtributionx ovor a xot c»f

ilitornai prtdiability traiixitionx.
I ho dolinition o f l.TSx (l.aboilial I'ranxition Syxtonix), ix oxtoiidotl to dofino Nl> l.TSx
(l.TSx which may rontain both iion-dotorininixtir ami probabilixtir tranxitionx) and
I’ l.TSx (l.TSx which rontain only probabilixtir tranxitionx). Wo uxo Nl> l.TSx ax a
xotnantir tnodol for Pbl.OTOS.
Wo ronxidor that a I’ bl.O TOS xporiliration (an N l’ l.TS) doxrribox a xot o f prohabilixtir
iinploinontationx (1’ l.TSx). I'hon. upon thix baxix. wo dofino an implornontation rolation
(a pro ordor). rallo.1 prT>6o6i/i.-a(ioti. for I’ bl.O'I'OS. Wo xhow how tho probabilixation
rolation and variantx o f it ran bo nxod ax ronfortnanro rolationx In tho dovoloptnoni
of prohabilixtir xyxtoinx. Wo ronrludo by laying tho foundationx of a xtatixtiral toxt
ing frainowork ftir oxtablixhing whothor a probabilixtir irnploniontation (a I’ l.TS) Ix
a valid iniploinontation o f a I’ bl.OTOS x|)ocifiration (an NP l.'I'S). according to tho
prohabilizAtion rrUtion.

7.1 In troduction

ProcosB alKobrM provide a uiieful framework for reaaoninK about ronrurrent and non-
delerminintic behaviour». Recently, the reasoning power of proce»» algebra has been
extended to cover probabili»tic behaviour (HIM88, HMH9, LS89, vCiSST90, (tJS90,
HJH9, HJIM). HaidK)]. The probabili»tic aspect» o f distributed »ystems are often as
important as. or inseparable from, the so-calle<l functional aspects. In this chapter we
extend the LO IOS language and the«»ry to facilitate the specification of probability
information.
In this thesis our only concern is to construct an abutmrl modri o f probabilUy which
is useful in the description of distributed computing systems. We are not concerned
with “ philosophical** problems asking “what probability really is , or “ how probability
should be represented**, etc. We defend the abstract model of probability, developed In
thin section, on the basis that It ran support applications such as the specification of
reliability, the description of expected results from statistical tests, performance metrics
for the specification of averages and linuts, etc. Our model (language constructs and
supporting theory) is based on existing work on process algebras and probability (e.g.
(KS89. HJH9. HJ90. H.M89)). Also, our model o f probability is realised by a small
number o f extensions to LOTOS syntax and semantics. These extensions are intuitive,
and do not conflict with the observational, (de)compositional reasoning supported by
l.O'I'OS.

7.1.0.1 (t)e)com poa itiona l reasoning

Usually we conslrtict complex systems from simple, possibly pre-definetl components
(or constraints). Often we know about the reliability or statistical behaviour of such
components. CJiven this information almut individual components, we would like to be
able to infer the probabilistic behaviour o f the system as a whole, This is one aspect of
the (de)compositional reasoning property that we would like our model of probability
to support.

7.1.0.2 D iatributed negotiation o f p robab ility

Another important aspect of (de)compositional reasoning for probabilistic systems is
the question of how a probability distribution over a set <»f events Is negotiated among
the processes which synchronixe tm events in this set. Solutions to this problem, of
distributtsl negotiation of probability distributions, usually involve the idea o f a “ nor­
malisation function** (v(iSST90. (iJS90). The normalixation function Is a global agent
which arbitrates probability distributions such that the composite behaviour of the
system remains MUtrhaiitir ((5JS90). I'hls problem Is not an Issue f<»r the model of prob
ability presented in this thesis. In our model, probabilistic decisions are represented by
special internal transitions which carry probability values. Hwause these transitions
are internal, the probability values cannot be negotiated on-the-fly and so the problems
of distributed negotiation of probability distributions is not applicable. Adopting this
model, we sacrifice some expressive conciseness, but lose no absolute expressiveness
(as shown In (v(tSST90]). Also, we feel that the idea o f having a particular, global

**nornialîzation funrlîon’* U «n arnuablo ronrept.

7.1.0.S Non-determinUtic and probabilistic systems

Section 4.4.2.6 dmcnbiMi tho important rôle played by non-determinism in the specifi­
cation of systems. However, many of the existing proposals (e.g. [(ÎJS90, v(»SST90])
extend process calculi with probability information, at the expense of non-determinism.
They replace language expressions for non-determlnistic transitions by expressions for
probabilistic transitions. We introduce probability features Into 1.0 I OS without sac­
rificing the non-deterministic features. Also, we extend the theoretical framework sur­
rounding l.OTOS for reasoning about systems described using this extended calculus.

7,1.0.4 Supporting the development o f probabilistic systems

With respect to conformance, the development process for probabilistic systems in­
cludes two distinct activities: •proving’ and ‘ testing*. We pftMv that one l*bI.OTOS
specification conforms to another I’ bl.OTOS specification. We prove things about ob­
jects (Pbl.OTOS specifications) which exist in the world o f mathematics. In contrast
to the exact discipline of pntving is the discipline o f tmting. We trst that one real-world
implementation conforms to a Pbl.O'I'OS specification. Tnllke proving, testing involves
uncertainties.
l.aler in this chapter, we develop an algorithm calle<l SimChar upon which we base defi­
nitions of implementation relations. SimChar and the derived implementation relations
can be used as a basis for ‘proving’ conformance between PbLO POS specifications (see
figure 7.1). Then we lay the foundations for a ‘ testing’ framework for testing the con­
formance (as defiiMMl by the SlmChar algorithm and derived implementation relations)
betw<M*n real-world probabilisti*' systems and I’ b l.O IOS specifications.

Developing an implementation of a probabilistic system from a specification involves,
amongst other aspects, the resolution of non-determinism (see section 4.4.2.5). An im-
plrmrtitatmti rrlation formally expresses the notion of the tmtidity of an implementation
with respect to a specification. In order to support the development o f probabilistic
systems within a formal framework, we require that imp/cmr»i/o<iori rr/altona validate
probabilistic, as well as functional, aspects o f implementations. Therefore, in this the­
sis we define implementation relations which support the development o f pr«»babilistir
systems, from specifications which contain both non deterministic and probabilistic in­
formation. From such Implementation relations we ran derive notions o f equivalence
for systems exhibiting lM>th probabilistic and non deterministic behaviour.
In practice, implementation relations are realised by sets of tests, where the observable
responses t»f an implementatimi to the lest suites are compare«l with the observable
respiinses of the specification to the same test suites. In this thesis we lay foundations for
a testing framew<»rk for probabilistic systems, suppc»rting the implementation relations.

•p«ctClc«tion
l«v«i 1

k (MCh«MCie«l obl*<

■p*eifei*tion
l«v«l 3

MthaMtie«! ebl*cts)

•pacification
loval)
' (M th«M tie«l obl*ct«>

I inplMMntatio«

KiRurr 7.1: l)pvf*lopinR probabllintir ityBlemii

7.2 R e la ted work

Probablliiitir nuxirifi for procpnn algrbrui h*v«* recently been studied by neveral re-
nenrrherK, e.R. [HJHfl. HJIM), lUnlM). (¡JSfK), vGSSTftO].

7.2.1 R eactive, generative and stratifled p robabiliitic m odels

(viJSS'liK)) preiieiit a three way tlasiilfiration o f probabiliiitic tinKlrlii. They Identify
rrar/Mv, grurratu^ and ittmtiJirH model». In all o f the»e model», probabllitie» are
a»Hi>riated with tranNltion».
In reactive model», the »urn o f the probability value* for any *et of alternative Iran»!
tion* with the »ame event mu*t be I (or 0 if no *uch transition* exist). The reactive
model doe* not relate the probabilltie* of different transitions. Uke Milner (MllMO), van
(ilablieek rt a i characterise their model» in term* o f “button pushing experiments".
Kiif the reactive model, the “observer" may only attempt to pres* one button at a time.
In the reactive model a button pu*hing experiment either succeed* with a probability of

1. or it fails. If the experiment succeeds, then the process makes an internal state tran­
sition with a probability defined by the probability distribution of the pressed button.
For example, consider the reactive process /I, shown in figure 7.2, given by:

A as ^n.(c -f d) + -f- 6

Figure 7.2: Reactive process A

Note that the sum of the probabilities for each action is 1, and that no information
is given abtiul the relative probability of performing an a transition compare<i to a 6
transition.
In generative models, the sum of the outgoing transitions from any one state must
be I (if any outgoing transitions exist). (Jenerative models relate the probabilities of
the different outgoing transitions from any one state. 'I'he probabilities assigiKKl to
the outgoing transitions o f any one state <lefine the probability distribution when all
possible transitions are offered, ('onsider the example of the generative process //,
shown in figure 7.:t, given by:

i> =■ + <̂‘1 + ij" +

Figure 7.3: CJenerative process H

If the observer were allowed to attempt to press more than one button at a time, and
attempteil to press b<ith a and 6, a would occur with a probability of J and 6 with a
probability o f J. In any “ single button experiment". A and ti cannot be distinguished.

Stratifie<l models extend generative models with information on h»»w to renormalise
the probability distribution associate«! with a state, if some of the outgoing transitions
fr«>m that stale cannot be fire«!. This information folU»ws the structure «>f the binary
(probabilistic) choice operator. I'he foll«>wiiig example will clarify this. (onsider the
example of the process C\ given by:

r i
1 1 . 1
5 " + 5 ‘ +5 '

Now, considering a restrlrle«l context in which transition b cannot be fired, we might
expect, given the symmetry o f C l. that C l w«mld “renormalize" to:

1 ̂1n ' I

202

lining » Btratified approach we can specify how “renormalization” is to occur, (’onsider
the stratified C2 process, shown in figure 7.4, given by:

C 2 ■■

Figure 7.4: Stratified process C'2

Now we can see how the nested probabilistic choice expressions can be used to structure
the normalization inforn>ation. If C2 were to be placed in a restricted context where b
could not occur, then renornialization would yield the expression:

T2 '

“ Tliu». in Ihn »Irntifinil miidpl, the intnnar<l rnlMive friMiuonrir« «rn pmMTvrd In a
Irvpl-wii«. fanhion in thn prnw'lirr <if rnatriction" [vCiSS TIM)]. Ilnwnvrr. wn havf* atill nut
(l.-alt with tlir prublnni uf global iiuniializalion. whirn. for uxainpin. thu proem« (' 2 ia
»ynrhronixpii with other profeaaea which contain different probabili«tic conatraint« on
n. b and c,
Stratiflerl model« contain more information than generative model«, and generative
model» contain more information than reactive model«.

7.2.2 p e e s and the iiorm aligation function

I'he prohabiliatic model« of |CJS90l and (vflSS'l'OO] are ba».Ml on FCCS. a probabillatic
version o f Milner'« s e c s (MilKII] In which SCCS expreaaiona of the form J}.«/ f-'.
written a« K .i/ IP .l* ’'. («here p, 1« the probability o f o f behaving like f,',). Two inter­
eating ««pert« about I’ CCS (or any other probabiliatir calrulu») ii how aynrhronou«
compemition and reatrirtion are dealt with. In PC f'S , aynchronoua rompoaition i« In­
terpreted aa the aimultanernia occurrence of independent event«. Thua the aynrhronou«
r.imprwition I* x Q o f two proceaaea, can behave aa f*' X Q ' with a probability given by
the product Pi X p j , aa ahown in the equation below.

/■ - ..(p i) - / " . y - d l p a l ■* /’ X y - nd ip i.p j) - p< X y '

A proreaa ia aald to be utochanlir if the aum of the probabilitiea of ita derivation« ia 1.
Klae, if thla aum 1a lea« than I, the prf>rena in naid to be tabnlarhaiilic. P C rS deriva
tion achem«» preaerve the Btorhaatirlty o f romprxiite proreaaea In a irairtcied way by
employing a ttartnolizaliott function. When only a aubaet of the net o f tranaition offera
are llreable we call thin reatpirtlon. (For example, prorean C l above, la atorhaatlr -
the probabilltlea of Ita outgoing tranaition» aum to I - If tranaition» u, b and r are all

'20.1

firoable. Howevor, in a reslricted context, where 6 waa not fireable then, without nor­
malization, the proceaa would be aubatochastic the aunt of ita probabilitiea bein^ J.)
A aubatorhaatic proceaa may deadlock (C l in a restricted context, where 6 cannot be
firfKl, has a probability o f ̂ of deadlocking). The problem is that the use o f restriction
(and composition) reaults in aubatochaatic processes (and hence, the non-zero possibili­
ties of deadlock) as a conaequence o f the P (’ ('S model. Such subatochaatic procesaes. a
symptom of the P (' (’S model, are not reflected in the real world. We might say that the
real world preserves stochasticity in the presence o f restriction. This might lead to the
conclusion that we ne«*d to introduce a **norn>aJization" function Into the P ('('S model
in order to arbitrate probability values in the presence of restriction and so preserve
stochasticity. Indee<l, this is the road taken in P(T*S.
However, an alternative conclusion the one taken in this thesis and, similarly, by
(HJK9, HJ90) is that the P (’('S model is not minimalistic enough. We believe that
the real world’s preservation of stochasticity has more to do with the way in which
we interpret real world behaviour. We think that ‘ the real world never deadlocks,
something always happens next', but this is not a g(K>d reason to force our abstract
models of the real world to ‘always do something next* and never to deadlock. A
deadhick in our abstract model may indicate that the system we are modelling can no
longer behave within the bounds o f our model world, while in the real world the system
does s<imething we do not expect or do not want it to do.
We believe that definition of explicit machinery (i.e. the normalization function) to
negotiate probability distributions between synchronous processes is a symptom of an
‘ unnatural' probabilistic model. Tnnatural' because it forces stochasticity within what
is actually a ‘ rtsinWcd' moilel w<irld. Instead we propose a simpler model, where the
model mechanisms make no attempt to pres«-rve stochasticity, although the user may
build systems which attempt to preserve stochasticity within thems<*lves (sometimes
called “ reliable Bystems"). We present our simple probabilistic model in section 7.3,
but for now return to the world o f normalization.
(llabbeek rt at. define the normalization function such that it makes stochastic mm
zero substochastic processes in the presence of restrictii>n. I he normalization function
s appears in the derivation rule for restriction thus:

/ ’ - o [/i) l - • /*' ^ P \ A - P \ A
Basically, normalization calculates a probability distribution for the set o f transitions
fireable in the restricted context, given the probability distribution for the set of transi­
tions fireable outside any restricted context and given s*>me calculating formulae. The
calculating formulae may perftirm normalization according to the stratified structure
of the processes to be renormalized (as shown fi»r processes (" i and T 'i ' above), or may
be renormalizeil according 1«) some other criteria.

7.2.3 Tenting probabiliatic procetaea

[LSH9] explore the testing of probabilistic processes and define a tenting algorithm
which, with a probability of 1 - r, where t It arbitrarily small, can distinguish reactive
processes which are not probabilistically bisimilar. Their prt>cesses are defined on a
probabilistic transition system. In which the probability of a transition is either 0 or

> i, Thu« all pror™»«-« in Iheir model are finitely hranrhinn (railed "imo»r-/iniiene»«"
in [HMHS]) with f the upper limit on the number o f branrhes from any one state.
I.arsen and Skou then define a testin* framework which they enhance to test properties
written in Umited Modal l.oRir (I.M I-) (BIMNK), then the more expressive llennessy
Milner l-ogic (I IM I .) |HMN.i], and finally their own Probabilistic Modal IxiRir (I ’ MI.).
Hennessy and Milner [HMHS) showed that if two processes satisfy exactly the same
IIMI, formulae, they are bisimilar. Similarly, I.arsen and Skou describe how I.ML
formulae and I*M I, formulae can be ascribed the operational characterisations they
call “ Ü bisimulation" and “ probabilistic bisimulation" respectively. Also, their testing
framework incorporates the notion o f hypothr»in trKting at a trvrl o f sipni/icance (6),

I.arsen and Skou claim that their testin* framework ran test I.Ml., HMl, or l‘ MI,
formulae aftainst probabilistic processes, and hence di«tin*ui«h processes which are not
j bisiinilar, bisiinilar or probabilistically bisimilar respectively. Probabilistic bisimilar
is the limit o f the distinKuishinK power o f their testin* framework, hence if two processes
are probabilistically bisimilar then no test within their framework will distinnuish them.

I.arsen and Skou conclude by questioning their minimum probability assumption, and
propose the ideas o f “cost o f a test" (a metric based on the number of basic experi­
ments needed) and “ informativeness o f a test" (a metric which reflects the amount of
information Kained from a test) as issues for further study.

7.2.4 F robab iliza tion

In [HMH«). HlcKim hiuI Moynr nhow that if mm-drlprininintic bounde<l branrhiiiK pro
(«»«M*« /’ ami Q Hfp bÌKÌmilars thon thrrp in an ajiRÌp(nniPnt o f probabilitim to ihr «*dgri*
of th«> »ynrhroiiÌ7.alioii irop« of /’ and Q, yirlding prorpuiiPR t** and Q\ nuch ihal i** and Q' arp probabillalirally bÍHimilar, and and Q' havp Ihp nanip probabllily of produrmi
a gìvpn oulr<»inp untlor pvpry lp«l. Illoom and Mpypr ubp thp Irrm ‘‘pwòaòib'sofion’*
to dpurribp tlip art o f aHnÌK»inK probabilltipR to thp p<Irpr of thp »ynrhronlzaticm trpp
of a non-dptprminiatir procp«*, and to dpnrril>p thp probabilÌBtir procpii* rpRuItlng frotn
thp art of probahllization. AIro, thpy touch on thp Idpa o f rp-afiNÌKnitiK. on rprur*ion,
probabilìtìpn lo th r pdRPR of a fpruralvr non-dptprmlnUtlr procp»*. Wp pxpand on thia
idra iatpr in thia apction.

7.2.5 A inetric-Bpace for th r roniparisoti o f probabiliatic procrBBr»

[(JS9()| arKUP f*)r thp notlon of a mplrir for inpaMurinK thr Rimilarity bplwppn proba
biliatir (P (’(’S) prorpanpa. In prartirp. a notion of an pquivalrnrp may Um rratrlrUve.
bill a niPtrir for ih r dintanrr bptwppii probabiliiitir pn»rpaiiPH ia llkrly l*> Hp me»rp uar-
fui. Thi* aupporta thr apppaiitiK idpa of makinx darialon» baiwl upon a quantitativa
romparlRon o f ih r poaulbUillPR of failurr bplwppn Iwo funrlionally idanllral romponanl*.
a#tain*t ihair rrlativp monplary roatu. («iaralonp at ai. rairulalp tha ralatlva poMÌtion> <if
(funrlionally Idrnliral) probabiliatlr prc»ra<uiaM within, what ihay tarm. a matrir «para.
Than Ihay nay that prtK-aim /» ran “xafaly" raplara prora«« /*' If tha diatanra batwaan
/' and /". wlthln tha matrir «para, doa« not axraad (an arbitrary) f.

7.2.6 Internal probabiliatic choice and the a lternating m odel

lUiiHsciii and Joiiuon'a timed, probabiliatic ralrulua TPC C S 1IIJ90, llan90. HJN9] ia de­
fined on what they call the "alternating model". At each atate, either a probabiliatir or
non determiniatic choice ia made, and the model atrictly alternatea between probabilia-
tic and non-determiniatic atatea. Adoption of the alternation atrategy allowed llanaaon
and Jonaaon to atructure the ayntactlc and aemantic deflnitiona of their TPCC'S calcu-
lua into two halvea. One half deflnea probabiliatic aapecta, and the other half definea
non determiniatlr and timing aapecta, Alao, the alternating model makea the definition
of biRimul»tioii equivalencr neat.
In th<*ir ralruluR, llanuRon and Jonaaon d«*finp probabIHatir transitiona to be internal
to proceaaea, l.e. probability tranaitiona occur without the influence o f proceaaea in
the environment. Probabilitlea are not aBainned directly to tranaitiona which represent
communication, since the occurrence o f these tranaitiona depends on the co-operation
of the environment. The probabiliatic choice operator la defined as a probability diatrl-
bution over a set of possible aucceaaor atatea, reachable via internal tranaitiona. In this
respect, llansson and Jonason's work is similar to the work reported in this thesis,

ilansson and Jonssem take the branching time temporal logical C TL , and extend it
with probability and quantitative tim e (to produce T P ('T L) . T P C T L can be used to
formulate invariance, eventuality, precedence, reliability and performance properties,
llansson and Jonswin define a model checking algorithm for verifying if a FI ((S
specification satisfies a 'I'PC'I'I- formula.

7.3 P h L O T O S : tho fo rm a l fram ework

In this section we describe NP I/PSa. I* l-TSa. Pbl.OTOS syntax and semantics, and
a<lditional notation which we use throughout this chapter.
We extend the definition o f I.TSs (I.abelleil lYansltlon Systems) to define NP-U'Ss
(Non deterministic and Probabilistic LTSa) and P -I.l’Ss (Probabilistic I.ISs). N!*-
l.TSs are ITSa which may contain both non deterministic and probabilistic tranaitions.
P 1/rSs are I.TSa which contain only probabilistic transitions.

We use NP LTSs as a semantic model for PbLOTOS (Probabilistic 1.0 I OS). Pbl.O­
TOS is LOTOS enhanced by a small number of syntactic and semantic extensions
which supptirt probabilistic features. PbLO LOS has a probabilistic choice operator for
specifying probability distributions over a set of internal probability transitions.

7.3.1 Oeflnition o f an N P -L T S

An NP LTS {n labrilriUmnnitiott sysfrm (LTS) which may contain b«»th non^drtrrmini^tir
and pmbabiltMtir transitions) is defined' as a 4-tuple: •< ,V, U (I. P j) i T , sq y , where:

s .9 U as (esHtnersMe) sos-emply set o f «Isfci;

s /< is as (esumerable) set o f ofcaeri'oWr scliosi/feeola or itthrl aefi

'by a atratnhl-forward estesskm to tb e deflsitioR of as LTS as fovsd is (IftOSBb. HN8A]

2(m

• t rrpr(NM*ntB «n inlrrnoi rvent\
• i>, l*brU «n in d rx ^ intern*! tr*n*ition which h** *n »MorUted probnbility of occurrence;

• 7' « (- • _ 1« € ^ U { !)) U i* the aet of hinary tran«i(ion rriaUortê on S|

• /* ■ { - p , t (p) - p) — 10 < <* < !. where j w «uch lh * l ^.l and j.2 are, for any

one . ta le « € S, unique indexe.) i. the .et of pair, o f binary, internal, profcohiii.br tron.ibon

refafion.un S. and p. 1 - p i. the probability diatribution over the internal Irantilion. labelled

Pi »1»/
• «0 € >̂ i* the initiai .(air

7.3.2 D e fln it io ii o f a P -L T S

A l‘ 1/!'S in an NP I.TS which coiit&inn no non-determininlic IranRitionn.

More formally, a 1» I.TS in an NP ITS which nalinfi«*:

((/i/(/»rofc/*.ir.(.i,)- 0) A(/^ii//idWf«(.*) - 0) A(VCi»t(«*) (Ai/06..Sinf #>(.*. O S >)))
/

((/4 iiO *«/tnr# .> (-•) • 0) A (,4ii/»ro*/*air.(.j,) - 0) A { A U H » d d r n { » u) ^ D)

((/tfiOh./tnniX..) - 0) A (/t/iWiddrnl».) - 0) A (>4H/VofcPa.ra(.*) < 1))

Thi« « «y » ItiKt « I’ I.TS i. « I I N I’ I.TS which doci. mil ront«iii any »tâte, of the form»
illimlraliMl in Motion 7.-1.d figurín 7.H to 7 ,li (or combination» o f thriu-).

A Pill.o r o s liohaviour rxpri»i»ion I» iiilcrprcliKl in liirni» o f an NP I.TS, gi-noraliKi
from Ihr »ynlax of a Plil.OTOS linhaviour cxpr»«»ion. Iiy tho axiom» anil infarrnce
Hchniia rniim ̂ xhiiwn liolow.

A x U n i» o r Iu fnr«<nr« S rh «itia

inaction

•rtion-prrfix

Hnohnrrvabir

ubnrrvablr

('kuW'r
n-rko icr

p-cliokF

Itarallrl cumpoMtion

I ; »

9 , H • € t

H iQ B i
H I - a - HI' — • f l l D B a - o H2'

Hllmf]Hl H\[m ii),H2 - — Hi
B l l - H ,B J - p , , (l - <<) - HI

B il l« , l | B i B 1 - n - B l ' . o «
B il l.......... - B l ' l l

H l - a — Hi'.a * (« i.
B l|[a) | B a - « - B 2 '| [.

H\ - ̂~ H\'. Hi - • — Hi. a t (• , .

B l | (. 1 I B 2 - . - B l ' l l

f l \ l) B - . - B ' , . e (.
.......

H - a ~ H ' .n t (« 1 . ■ -) ^
B \ | . , , . . , . . l - " - f l '\ l - -.1

- 1 |B 2

Not«* 1: Thi* D ami (* p] oppraluni aro riRht-aasorialivp, imrh that /10B[* 0.4]f'Q/2[=
O.JiJA; Ik iMiiiivalpiil In (llin parpnlhpHizpil) 40 (/ i[* 0.-i](C'Q(/2[* O.lilK)))-

N o te 2: A p tpnn la a rpal-miinbpr, whppp Ü < p < 1.

N o te 3: For ihp ronvpnipnrp o f thp pxplaiiatioiia within Ihia rhaptpr. wp rnnaidpr that
parh ayiitartir oprurtpiipp of thp [* p] opprator within a PhlA) I OS appcifiration
artually apppar» aa [- p|j, whpfp j uniquply indpxp« a «yntartlr orcurrpnpp o f
|w /i] within the IMil.O'I'OS «pppifiration. I'hi« ia a juatiliablp rnnvpnienrp ainrr
WP rnulH havp thp "lla llru ing ¡unction # " |ISO«9b, apction 7.3] (dpflnpil over
thp ayntartir atrurturp o f a l>bl,0'I ()S appcilicatlon) automatirally pprfc.rm thia
aubatitntinn. In othpr worda, j indpxpa arp npither part o f thp ayntax nor the
apinantira o f l ’ hbO I'tlS but of thp atatir aemantica.

N o te 4t 'I’hP atiovp axionia and infprpnrp arhpinaa dpflnp pxtpnaiona to Haair l.OTOS
which yield 'llaair I’ bl.O IDS'. K.xtpnaiona to full I.O'I OS have not been ilpfined
bppauap thIa would reault In detalleil dpHnitiona which are unnpcpaaary to explain
the paaencp of the I’hl.O'I'OS ilellnilion. The two main parta of Pbl.O TOS which
are alien to I.O TOS are the addition of a definition for probablllatic tranaitiona
(aection 7.3,1) and the inference achenia for p-rhoirr pxprpaaiona (above).

The probability of performing a partirular tranailion nequeiice from a state x, ia the
«urn of the probabiiitie» o f all paths from i which exactly include the necessary tran-
sition MKiueiiro. For pxainpir 2:

/’ (a ab ^ |«o) K /'(path brtwmt atatra «0 and «•)
-f/'(path hrtwc^n atatrs «0 and a»)

a (0.6) + (0 4 X 0.25)
= 0-7

WIhtp /*(s ub ^ 1*0) meana ‘ iho probability of prrformiitK the tranaition aequenre
s£ 06 ^ given atate «o (from atate ao)'*

7.3.4.3 Exam ple 3

(a:stap 1=0.3] b ;slop) || (aistop (=0.9) b;alop)

P 0 0,7 po y ^ ^ \ »o . i P 0.

■I I - ... -I I- ■ r n -
Figure 7.7: 'I’ree notation for example 3

Figure 7.7 illuatratea the effertive reaull o f a aimple aynchronoua rombination o f prob
abiliatir I'b lX) TOS expreaaiona.
'I'he aynrhronoua rombination rontaina a branch which lea<la to deadlock. Ihia ia
berauiie (like (HJOO). and unlike [vClSSTOO, (JJSOO)) our I'bbOTOS model doea not
implicitly preaerve atochaaticity. Inatead, the I'b l.O IO S apecifier may build ayatema
which explicitly attempt to preaerve atochaaticity within themaelvea (aometimea known
aa “reliable ayatema**). In thia way I'bl.OTOS makea “ reliability" an explicit deaign
iaaue. We believe that nuMlela which implicitly preaerve atochaaticity by uaing a nor
malixation funclhm (e.g. (v(JSST90, (iJSOOj) are ‘unnatural’ (aee aection 7.2.2).

An NP-LTS »tale may be identified with a PbLOTOS prores*. where the »tate U
interpreted as the initial slate of the process. ThrouRhout this chapter we use the
words Htatr and prrirr«s inlerchanReably.

Im p lem en tation relations for P b L O T O S system s

We consider that a probabilistic specification (an NP-I/I'S) describes a set of proba­
bilistic implementations (P LTSs). Then, upon this basis, we define an implementation
relation (a pre order), calle<l probabilizatum, for N !‘ LTSt. Phe probabilizalion relation
ran be use<l as a conformance relation in the development o f PbLOTOS systems.

Non-determ in istic branching as p robabilistic branching

This work assumes that non-deterministir branching may be considered as probabilistic
branching. 'Phis assumption is justifiable if we consider that an NP-LTS specification
dfHicribes a set of real world implementations, and that real world systems display
probabilistic behaviours.
We adopt BI(K)m and Meyer's tern» pmbabtiizatum [HMM9). an<l use the phrase proba-
bilization of a system to mean that all non deterministic branching within the system
is view<Ml as probabilistic branching.
Ilefiire providing further explanation of prfi6o6i7i;o/i«n, we define some additional no­
tation on states and transitions.

\AIIHtdéfMMk)\ > 0

KÌRurr 7 .» «; ¿0«; M
Finurr 7.10

{\AUHtdérn{Mu)\ >

0)A{\Al lProhrmtrB{M^Ì\ > 0)

K , , u „ 7 l l (l . | . H . l M) n w
Kinutr 7 l i

am), i»f rourac, conibinalìotia o f Ihrao HcrnarioH. Notr that th** abovr amiarioa ar«*
«*xatii|)l«‘H uf th«’ cajM*t* rxrltn)«*<) by thr drfinltion of a I* LTS in M»ction 7.3.2.

7.4.4 K xam ple probabilizationa o f non-deterniin i»tic branchings

Wr may rrplarr a «tato wlicrr non dHrrmliiixtic braiirhing orrura, by a alale with
appropriato probabiliatir branrhitiK. (’onaidor Iho following oxamplo aubatitulioni:

7.4.4.1 Kxample probabillsation 1 (fìgtiroa 7.13, 7.14)

ia probabilizod aa

0 < Pi < 1
0 < pa < 1
Pi + Pa ■ I

The oxamplo atmvo illuatraloa c»no of iho aimploat raaoa of probabilixatioii. In thr
NI* I.TS in figuro 7.13 non dotorminiam la rauaod by tho fact that both an obaorvable
tranaitlon (a) and an tim>baorvablo tranaltion (1) originato fr<»m tho aamo alato (tho
I.TS Hi».« nc.l «« ll.fy th« p r « lir »tr in »rrlion 7.3.2). In ci.dnr In turn Ihi. NI’ ITS
into « I’ I.TS Ihn prc.bnbiliinlion i.pnrnllnn mu.t rnmiivr thla non Hrtnrmlni.nl. Thr
prnbnblli>nti.in ciprrnllon nlao niu.t prrnrrvr thr obiMTvnblr proprrtlr. o f thr Nl'-l.TS
(r,*. I).

'I'he probabilization operation um*h the fact that the expression:

a; stopQi: 6; atop (7.1)

is observationally cKjuivalent (* i * , [HSK6]) to the expression:

i;(u ;a top 0ft:»top)(]l;6;Btop (7-2)

rhis resolves the problem of observable and unobservable transitions orlRinatinR from
the same state. I'he probabilization operation replaces the two i transitions in expres­
sion 7.2 by a pair o f p (probability) transitions. This removes the non-determinism. A
6 transition ran be found on both branches o f the probability pair so 6 can occur with
a probability o f 1. 'I'his preserves an observable property of the original NI’ -I.IS. (See
appendix II for a more detaibni explanation).

7.4.4.2 Exam ple probabilization 2 (figures 7.1.*̂ , 7.16)

is probabilizfHl as
«b rrr :

Ü < Pi < I
0 < Pa < 1
0 < P.T < 1
P i -f Pa + Pa * •

In the NP-L1S in figure T.l.*) non-determinism arises as a result o f an observable tran­
sition and two unobservable transitions originating from the same state. This example
of non determinism is more complicated than in the previous example (figure 7.13),
but it can be r«*solve<l using the same principle.

7.4.4.S Exam ple probabtlisation 3 (figures 7.17, 7.IN)

whrrr

is probabili/ed as
where:

Ü < Pi < I 0 < pi < I
t)< Pa < I 0 < Pa < I

0 < Pa < I
0 < P4 < 1
Pa + P4 ■ 1

In the NI» I.TS In figure 7.17 non determinism arises as a result o f two pairs of proba­
bility transitions originating from the same state,

214

7.4.4.4 Exam ple probabilization 4 (fì^ureR 7.19, 7.20)

is probabilized an
whw;

0 < PI < 1
U < P3 < 1
0 < Pa < I
P i + Pa + p3 * I

In tho NI‘ -LTS in figure 7.19 non determinlRin arlM*ii ait a reiiull o f two observable
traniiitionii and one unobservable transition originating from the same state.

Sections 7.4.5 and 7.4.7 and appendix H define and explain an algorithm for probabi-
lizing NI» i;rSs as I» LTSs, in the same fashion as shown by the above examples.

7.4.5 C h a ra c te r iz a t io n o f an N P -L T S as a aet o f p oss ib le P -L T S s

WV consider that an Nl* ITS .V, implicitly defines a set of pmbabiUMttr imp/rmritiaiioMs
(I* ITSs), i.e.:

.S'l » { f \ f pri>6.V|,/ Is s I* —l/rS)

We characterize the set of probabilistic implementations of .S’l by a sci o f simuitanroun
iquntiouH {S im C 'har*). S im Chnr describes tach possible P-I/I'S implementation o f .Sj,
and enumerates the probabilities o f all observable traces of rack l»-ITS implementation.

In general, there will be a set o f solutions to each SimC har. Each solution in such
a solution set will describe <me possible probabilistic implementation (l»-h IS) of the
NI» ITS.
We structure Sim C'har as a sci o f tract pntbnhilitirit (trproh) and a nrt o f auritiary
rquatwn^ {auxt if), i.e.:

I he sci nf tm rr prttbabiUtitH is a set o f paJrs, each pair consists of (and is identified by)
an «ibservable trace of ,V| (ranged over by rr.) and a frre-trrm^ (rangerl over by p .) that
represents thè probahility of thè trace, i.e.:*

Irpritb m (n, ^ ,p , >• |rr. € 7’r(.V|).p, ■ . . . }

The Mtt of auriliary rquatioui* consists of erjuations relating free-terms and ground-

An example will help rlarify the above prose, ('onsider the PbLO'I'OS process Q 3,
illustrated as an NP-LTS:

Figure 7.21: Process

The sc/ of tran pmbabi/ittt m of Qn is:

i -<•< a y .p i >-.
-<-< *.<•>». >►.
■<-< 6. d y, >•)

In effect, the i branches o f have been labelled with /ii and
I'he sc/ o f auritiary vquatioun o f ^ 3 >s:

The Si / of sirnu/ZoMcous rqtiatUms which characlerize as a set o f possible P FI Ss is
thè Union of thè sì / of traci /m>6n6i7i/ics and thè se/ of aimociaUd cquatioui* o f Ĉ 3.

l'he so/u/t»ri se/ for Q.\ is represented diagrammatically in figure 7.22. Fach poitit on
thè /«t + * I !•••*’ represents a so/u/iori where pj and /la are valued by thè vertical
and horizontal axis c<M>rdinate values (respectively) o f this polnt.

Iutf>rprf*tatloitR

is wsumrd Iq b « the initial atstr o f thv system 5.
is Ih^ stnlr o f the system S. with whnh the pnrtirular instance o f .VimChar was
instantiated.
the bar sHbarript indicaten that s_ can be identified with any one state s* in S.
this is shorthand for saying so • « *

used to inde* free-terms assoiiated with J transitions, where rr» - l../4lf//iddeH(ss).
use<l to index free-terms assoriated with observaWe C transitions, where n m
1 /4 f/f> h j.< « 'm « fX s ft,O .C € t(sk)-
Hsed to index free-terms assoc iated with pairs o f probabilistic transitions, where m m
l../4/f/^roh/*airs(sfc).
used to denoted the free-term asscK iated with all observable event transitions — this
is the ‘ frac tion' that the probability values o f all observable transitions from any one
state must sum to.

concatenates s n r r f terms
f fs r i union: for frscls . member identification in based on the trace fields o f member
pairs. When two or more members have identical trace fields (i«norin|| the ‘to-state’).
then a W union o f their sets will result in a set with a member with a trace field
identical to that o f the members in c)uestion. and a probability field formed from the
sum of the probability fields o f thcwe members.
Kor examine,

{ So • ^ iu »0 ■ *si Mfi ►)
D

(So w ^ s ,.p , K. So • « 1 * >*}

, ^ $f, m ^ ag.iffi) >

Note how the pairs so - » i ^ -< so st * i ^ s .,^ . >■ have been
identified an ‘ trace field equivalent (i|tnorinit the 'to-states')’ and have been unified.
Whereas the pairs ^ so « •a-Mn ► •< so - >■
identified as trace field rt^Hivalent bec ause ^ « i .

®
(Is) —*,C4<tMxM«n< Ife)

.9 im r * « r (« , , «.l.m , d n ,m ,.d ,u rr.tr^O i)
wkerr trproh" ■ *o “ * ^ •* ■ * ^ ■«•#** * (#*« • "» + >** /»•*)

)

(• rrciirar lo (ulkow »]) |» tr«na p»ira. .. •)

0 ,
(W *.*-», t .O-**, l)— , , '

(• follow J.l p trana. -. a)
A>'imf̂ ’*a r (a « , i . * P-J-1. dm» , . drmrr. trprok")

(a follow j.2 p irana. . a)
5 im f^ 'Asr(«, j >. r p j 2. d „ „ . d^urr. trproh" ’)

u 'h rrr trpT9V* • (■< *o “ * ^ •
trp fk '* * m {■< $D m o ^ t

•f j i.#*a »< * <#*i « + ^« /'•*)
»*«;>.»<* x I*» ai * ((* - Mi I) + #*• f'**)

(a rrcurar to follow i

®
I obaerv avviit lr»R a..

(a follow xll trxna for m event C' *)

0
(W e . . f.ntCa< **.<)

.S'tmC'harfa,. x.o.(.N,dma
«c’Aere
1

Irp ro*" w {■< a« ■ <t ^ a C ^ «,.P k

)

O ^ Mk.Pk y)

,.(«fr»rr + I), lr|»rO*'')
< M« a< n y)

)
w krrt trproh • ag •

(a ami Knally return the trme probability art Irprok ', and the autiliary et|uatk>n
• aet aaaoriated with atate a» (a a r e » ') unified with the auxiliary et|uation
a aet aaatK iated with the atatea whic h follow a* (a n x e f") a)

rtiu rm itrp rok '.rn u tr^ ' 9 s « * e f ")

rn d tf

rn d (a .S'imf'Aar a)

Fur «ny Nl’ I.TS .V,. w<> cli-finr Ihnfunclicin .SimChor whirh ncnfralm thr «r i ii/amiu/la-
iirou» r^uodoti. whirh rhwrarUriif .S’l, in thr »lylr ryplainrH in »rrlicin 7.4.5. Hanirally,
Ihr Sim Char funrlic.n t»kr« an N I’ I.TS, rrruriir. through thr tracr. of thr N1‘ I.TS,
trratH non-drtrrrninirtir tranNitionn an probahillrtir trannitionH with frrr-trrm prtiha-
hilitim, roniitrurtr thr art o/ auritiary rquatiimn {a u irq) whirh limltii thrar frrr-trrma,
and ronatrurt» thr ar(iif Inter pnibabiliUrit {Iritrl). I hr art o f allnultanroua rrjuationa
produrrd by .Vimf Vmr, in rffrrt, drfinra a I’ I.TS whoar probability tranaitiona arr
aaaignrd frrr trrma (with valura iiinitrd within thr acdiltion art of thr aimultanroua

Appendix H provldon an rxitinpl«* »ppllr»llon of th«* S itnChar algorithm to a •Im-
pl«> PhlrO'I'OS lyilrm . 'rhr ««xamplp illuNtrat«>n how SimC’har probablliM*« an Nl*-
I/rS which rontalni tmr of ih«* mm-Hrtrrmlnliitlc branching ncrnarlot d«»«crlbM<i in

«ertion 7.4.3. Appendix II provide» a »tep by step Ruide through the instantiation»
o f Sim Char, illuHtrating how Sim Char produce» the »et of simultaneou» equation»
which characterize» an Nl> I.TS a. a l> I.TS, and highlightinR important point» about
the alKorithm's method.

T he recursive assignment o f ft te rm s in S im O har

For recurnive NI’ -LTSs, the Sim Char algorithm asnigiui new free term« probability
valúen) to non-determinintir tranaitionn on each r€*ruraion. If we viait the name atate
twice, the second visit will result in the assignment o f ^ terms to the transitions from
that state, different from the previously assigned /i terms to these transitions. I he
consequence is that this definition of Sim Char makes more identifications than if it
were to recognise re-visits to stales and re use the previous /i term assignments.

An example should clarify what we have said, (’onsider the NP-LTS in figure 7.‘¿3.

Figure 7.23; A recursing NP-I.I'S

The definition of .S'imf'har gives":

.Vim '̂A«r(ao. 0, i. 0, t) "

Whereas, S im C har' modified to re-use ft value assignments when re visiting states and
transitions on recursion, would give:

í 0 < ^ o i t < I . O < M o i j < l .MOi i + M o * í “ I

Now al»o roiinidiT tilo 1’ I.TS iniploiiionlatioii in fl*iiro 7,^4. l'ho trarr probabilitira for
implom«*ntation / ar«*:

h ÍRurc 7.21: A I* I/I'S imploinonlalion

Now, with Ih«* unmodifind drftnilioii o f .S'lmf’ /irtr, wr find that wo ran »oWo tho nimulta-
o«|uatioiiK Rivon by .Vimr/mr(ao. 0 , 2 . 0 . t#) (invoIvliiR tho froo tormn: /<o ./io . a.

/*o i.i. /io.«,i,i.»./^-i i.i.a/io.i.a.i.i./io.i.a.i.a) *urh that / prob S.
Whoroait. with tho inodifio<i vomion of S im i'h a r {S im ('h a r '), no Mtlution to tho Hiniul-
lanoounoquationn Rivoli by .Simr/iar'(ao.O, 2 .0.(9)(InvoIvlnR iho froo torm«: /io, »./io. a)
ran bo found whirh identify / a« a valid probabilization of S. Thoroforo, uninR .S’ im f’ fiar',
wo would have t«» ronrludo that / p f^ S.
Wo havo rhoKon to adopt tho .Vimf’ fiar alRorithm (and not tho tiiodifiod .V irnffiar') an
our baili* for dofinitiR probabli*tlr iinplomontation relation*. Thi* i* boraune .Vimf’fiar
idontifioK a larger number of valid impleinontation* in tho faro o f unknown morhani*m*
whirh are roproM*nto<l by non detorininl*tir rhoire.

I'hore are two rolatoil l*Rue* here; infinite hMiping involving ob*ervable tranRition*. and
infinite liMiping involving only hidden tran*ltion*.

This prartiral rMlrirlion on the .S’ lm rh or nlgorithm h»« repercusnion» for the defi
nitioni o f probnliiliilir implementation relation« baned on it. We define probabili.tic
relation« between Fbl.O TOS »pecifiration« a« relation« between the .S’ ln ifh a r charac
teriiation« o f the I’ bl.O'I'OS «perifiration«;

S im ('h a r{ »p« lo. 0, d l „ „ , 0. B) prtjh.rrlofion S im rfiar(»p»'2o. 0, d2„ , . 0 .«

I'he d lm „ and d i„^ r value« ought to be «urh that all the information gathered by the
two invocation« of .Virrif'hnr to the trace depth« d im «« and dBm«« i* all the Information
that 1« nece««ary to decide whether or not the relation pnib. rrlalimi hold«. For in«tance,
«ay we know that both «y«tem« »p » l and «p»2 completely unfold all their unique be
haviour» at an ob«ervable trace depth of n, and then «imply recur«e. Then It may be
»ufflcient to »et both dim «« and dBm«« to the value n. Thi« l««ue ha« a lot In common
with the i««ue of «atl.factorily te«ting a probabili«tic implementation. In «ection 7.5
we di«cu«« how finite te«t« can be u»ed to check po««ibly infinite implementation« to
arbitrary confidonre level«.
For the remainder of thi« chapter, when giving example» o f the probabili«tic implemen­
tation relation« between «y«tem«, we a««ume that the maximum obxervable trace depth
parameter« o f the involved Siv iC har inxtance. have l>een «et to appropriate value«.

7.4.H.2 In fin ite looping invo lv ing only hidden tranaltion«

I he given definition o f Sim Char fail» to avoid the problem of infinitely harping «e-
qiience» of internal (unobxervable) lran«ition». The maximum obxervable trace depth
rentriction d.a.» not apply to limping «ei|uence» o f tran«ition» containing only hidden
(1) tranxition«. Let ux con«ider the problem u«ing the exam|>le NP-I.IS in figure 7.B5
(and the accompanying |•bl.()^()S text which generate« It).

K^nerated by

S(a] iKM'xit >
1; a, ..
Q
L SI.)
«•iK ip ro r

FiKiirr 7.2%: An rxainp)«'
with an infliiiti* 1 l(M>p

Now. if wr diaKrammatkiUIy Ir*»*'* ̂ InvolviMl in thr flr«l inalanllation of
.S'tmr/ior^Ao.O. 1.0.0) wr nrl linurr 7.2«:

, / » (a a ■ /io < i
 ̂ w hrrr Mo < I t I * 1

Fluurp 7.26: I'hr flr«l
in«tantiation of SimC'har

Siirrp«nivp InHtantlation« of SimC'har will produrr fiRurr 7.27:

^0 < t
+ (po (> * i J < l)

. *^(^0 o X ^0 < a < 1 X ^0 < 3 < s m)a i a i a w h e r e

whrr«*
11 -f /<o < iit^o < a« 1-f

Hot 9i i(t*o I a (a < 1-̂
/*o« a (a < a(' • ■))) ■ 1

FiRur«' 7.27; Surrpimive innt»ntiationn of
SimC'har

Hcnc«*. »K lh«> immlMT of I l<K»pn — oo, /*(« a ^) — 1. Obviously it is not pr»ctic»lly
possible to compute />(* o usiiiR S im ('ha r, and the present definition of Sim Char
would endlessly ri^urse on encounteriiiR an infinite i-lcMip. 'I wo possible solutions are:

1. Modify the S im ('h a r algorithm so that it ran detect infinite I Unip scenarios, and
lake appropriate finite action. For example, the modified algorithm would detect
the I l<M>p scenario discusse<l above and assiKn /*(■ a ♦) the value 1.

2. Parameterize .S'imi’har with the maximum mimi>er of successive 1 transitions it
can trace before aborting (in a similar fashion as for the maximum observable
trace depth parameter).

Neither of these modifications is vital for the work described in this chapter. Therefore,
to kwp «lefinitions simple and clear, we ignore the existence o f the 1-Um>p problem; none
i»f the remaininR examples involving SiittChar will contain infinite i-loops.

7.4.10 A ll inipleiiientation relation and aaaociated equivalence

An ituplrmrntafion rrlaltou formally expresses the notion o f t>aiidity with respect to a
specification (HSKfi). An implementation relation is not necessarily symmetric. This
ri'flects the directed, asymmetric nature o f the development prcK'ess, in which an im­
plementation can validly replace a specification but not vice versa.

[I,ed9la] defines the relation im p as the reference implementation relation, imp may
be instantiateil as a number o f more specific implementation relations — the obvious
examples being ran/, cirf. c i l . («*** (l»SM6)). is reflexive (a specification
being a valid implementation o f itself), but not necessarily transitive (Indicating that
an Implementation may not be used as an intermediate specification, e.g. the row/
relation).
irn p -rq is the equivalence based on im^- The following definition is taken from
[Ted«Ta).

7.4.10.1 D efin ition o ía n im plem entation relation

.S’l im p -eq St {/|/ tmp .V|} » {/[/ imp .S3 },
where {/!/ im£ .S*,} denote« the set o f professes which are valid implementations o f the
Hpefifiration .S’, acrordiiiK to the relation imp.
Informally, two specifications are im p -eg lijÔ they describe exactly the same set o f valid
implementations in accordance with imp.

7.4.11 A probabilizntloii relation, and associated equivalence

W e adopt Hl<M>m and Meyer's term pnibabHizatiou (HMH9], and formally define this
notion for N1» I.TSs. The proh relation is a particular, transitive instance o f im£, and
therefore a pre-order (i.e. reflexive and transitive) relation.
|*re-or<lers are well suited as implrmrutatiou rrlatioun. I hey define an ordering amon^
systems which reflects their relative positions along the ‘development trajectory’ . If
.S’l < S i according to such an ordering, then S’l is a valid implementation of St (by some
criterion). The criterion formally expressed by the pro6 pre-order, is the probabilization
o f non-deterministic branching (I.e. the replacement o f non-deterministic choices by
probabilistic choices). Also. .S'l may itself be use<! as an Intermediate specification, due
to the transitive character of prob.

7.4.11.1 D efin ition o f a probabilization relation

First some a<l<litiona] notation;
Notstlon liit«T|»retatU»ii

frart.«,
■ Mcr««,

iHiKlina*

I*», bisaisa* h

Ihr tTMrl aenrrstrti by •|»|»lyjna S t m i ' h u r to Si .

ih r « s e r f arnrrsled by »pplyina .V im i'A s f to .̂ ’1 •

a ro u sd-trrm n bound to .V| frer-tt-rmn. »ufh t h » l fre^-trrm w

buund/wHKM-iat«^ with one aru u sd-trrm .

rrpiscina *11 free-trrin» found in • • »ffx , by the around tprm « *wori.

•trd with the frrr-lerm * by a s , Wnding* Mthifie* the equstions found

the (irobubility of n tr*ce a. by the prcnewi .S',, given the replwement

of free-term* in flucef.«, by ground-term*

I.et /’, and l*i be |M)l,0 TOS processes, Then
t*i pr€tb /’, iff

(1) 7 > (r j) - r r {/ \)

(i i) V(p/^ bindings ^ auxeg#^)-3(p/*, bindings ^ auxeg/^)V<r € T r {/ \)‘ Probf^{tr) i
/’ ro6/*,(<T)

informally, i 't is a prf>babilization o f t\ iff

(1) the trace sets o f /*i and Pt are equal, and

m

(ii) it is always possible to find solutions to auxeqp^ such that the probabilities of
and P i traces are identical, for all possible solutions to auxrqpt-

An alternative informal definition is: P j is a probabiliiation o f Pi iff P i describes a
subset of the probabilistic implementations (P-LTSs) which P i describes.

7.4.11.2 Definition o f probabiliration equivalence

bet Pi and Pt be PbLO I OS processes. Then
P i p rob -rq Pi iff

(i) 7> (/^j)- '/>(/>,)

(il) bindiliRii n u j-r in) 3(/i;, binillng» h auxrq,^) V(T € T r (l\) -P r n 6 p ,{a) -

(iii) V(/i;, binding» h auzrq,,,)-3(/ip, bindings ^ auxrq,^) '^a € 1 'r { l\) r r u ip , [a) =

Informally, Pi and P j are probabilization equivalent iff Pi and P i both describe exactly
the same s«*t of the probabilistic implementations (P l/I'Ss).

An alternative formal definition is: P i pro6~ f 9 P\ iff

(i) Pi prttb Pi

(ii) /*i pro6 l*i

7.4.11.3 Exainplea o f the probabilisation relations

Kigure 7 .2H portrays a family of specifications and the prob relations. 'I'he trace proba­
bility sets (trprttbn) and auxiliary equation sets (nurrqs) for these specifications are not
Riven in exact S itn f 'h a r notation (e.R. using free-lerms with indexes such as po./rma
Po o,« I. «•tr.) for the sake of space. However, the notation scheme used should be fairly
self evident, and the reader should be able to attain a overview of how the ideas of
NP I/rS, S im (’har, probabilir.ation. etc. are interrelated.

- s - 3

"i

Æ ì
H l 3 £

1

cS*? ?

■ - " î 3

. I t S
H l 3 4 :

i s

J i a 'i

■ : : 1

A i
I H Í Ili

8

J . ?

’ ’ ’■ ^
* A i -

1 H I i ì l i

i

¡Í ; s
;

s A i Ï -
S H I
“ »£ £ l l i l i

1 'i c* I
a B e 8 Gt &

i l l !

Í
Î

I 1Í 15 i
a 8 8 0 8

S. I

KiKurr 7.2H; A f*mily of «p«H-ifir»tlonii and thrir prob rrlation«

7.4.12 D iscussion

h i rontraul to other probabiliiitic profewi algebra», w e have i u o v c k I the emphasis away
from the semantics of the IMiLOTOS language, and instead place<l many of the ‘prob­
abilistic concepts’ in the associated theory of relations. The cons«K|uenre of this is that
the probabilistic aspects of the PbLOTOS semantics are simpler than the probabilistic
aspects of the semantics o f other process algebra, but PbLO TOS theory for relations
is, consequently, imire complex.
For example, “ normaluation” is an instance o f a ‘probabilistic concept’ which we have
locate«! in PbLO I OS's theory of relations but which, in contrast, has been located
within the language semantics o f other process algebras, such as P (’(’S [v(JSST90).
Section 7.2.2 describes the “ normaliiatitm" function that is built into the semantics
of P (’(’S. Its task is to preserve stochasticity. For PbhOTOS, auxrq (section 7.4.5)
performs, in effect®, the same function as P (' (’S’s -normalization" function. However,
uuxeq is defined as an aspect of the Sim Char algorithm which exists as a part of
Pbl.OTOS’s theory of relations, and not as an actual part o f the PbLOTOS language
semantics.
1'he consequence of locating many of the ‘ probabilistic concepts’ within the theory of
r<>latiotis, rather than within the language semantics, is that a PbLOTOS specification
is not completely meaningful unless interpreted within the framework of the PbLOTOS
tlHKiry o f relations. We see this as a perfectly natural situation since, analogously, no
real world behaviour is, in itsidf. meaningful unless interprete«l within some framework
of understanding. Moreover, this results in greater flexibility. For Instance, in the next
section we examine how to test Pbl.OTOS implementations using statistical methods,
('hanging the test statistic used for conformance, in effect changes the type o f proba­
bility distribution (e.g. unimodal, multimodal, etc.) that we expect the probabilistic
behaviour to follow. We might not have this flexibility if we had somehow built the
probability distribution type into the language semantics. Also, it seems more appro­
priate to separate information such as the probability distribution type from the actual
specification. A more appropriate place for such information is within a “conformance
testing framework" (see section7.5.4).

7.5 TVifiting real w orld im p lem entations against P b L O ­

T O S specifications

We suggest a simple statistical testing framework for establishing whether a probabilis
He implementation (a P LTS) is a valid Implementation o f a probabilistic specification
(an NP LTS), arcording to the probabilizatlon relation.

■ The rqustioss ronlsined in s s r c f rn ssrr thst individusl probsiaiistt« trsnsilioSB sre sMianed

vslues ssrh ih s l th r wh<»lr system remains stor kssiK'

7.5.1 P b L O T O S needs a fram ework o f testing theory

The probabilistic aspects of PbbOTOS’t syntax and semantics, described in section 7.3,
are meaningless unless interpreted within a framewoik of testing theory. Section 7.3
describes how values ^ denoting probability, are associated with transitions within F
I.TSs or N !‘ ITSs. Hut these values only become meaningful when interpreted within
a statistical testing framework. Sections 7.4.5 to 7.4.11 have developed implementation
relations for use within this testing framework, and this subsection concentrates on
applying these implementation relations.

7.5.2 Teating ‘valid refinement*

In practice, we want to be able to test whether a particular implementation is a valid
refinement of a given specification. I'he notion t»f ‘ valid refinement' is often expressed
as a set o f implementation relations. In essence, a set of implementation relations will
describe a set o f properties which the implementation nmst satisfy in order to be a
‘ valid refinement' of the specification. Thus, in general, we would like to be able to test
if a given implementation satisfies a set of given properti«*s.

7.5.3 TeatitbilUy

A test is M fiiiile exercise, whereas the behaviour of a system may l»e infinite (or not
wludly contaiiuMl within the attention of the test). In general this implies that testing
canm>t be cotnpletely conclusive, but instead testing establishes if a particular system
satisfies a particular property to stmie confidrnrr ir tv i
(’omptrtr nmfidrurr is usually <»nly achievable in the world of mathematics (where
we “ prove** results), or (in the real world) for •'/MVficss-pmprrhrs* in the case where
the property is observe<l within the test‘ °. In the real world, complete confidence is
the exception rather than the norm. Normally we attribute to the result of a test a
confidence level within the range ntmpirtrly no rtmfidrnrr to ctptnplrtr ronfidrnrr.
1'he point that we want to emphasis is that correctness, and testing for correctness,
are not black an«l white issues. N«»w, if we argue ftir the pr<»babilistic nature o f real
world systems, the consequence is that testing is not merely an exercise in Ixmlean
logic, but in statistical Inference. Then, It follows that the prohabllistic information
nee<led to drive the statistical aspects o f tests ought to be present stnnewhere within
the specification c»r a ‘confi>rmance testing framework*.

7.5.4 Uaiiig a roiifornianri* teating fram ework for a teat

I'he conformance testing framework includes system requirements additional to those in
the specification. 'I'he framework Includes information Identifying c<»nfc»rmance points,
testing practices. c«»nformance environments, ccmformance assumptions (including, for
probabilistic systems, expected types o f probability distributions), etc. (see [Hog90]).

for Ike property ‘s Uaki will «witch os st lesst oars’ , s lest ohssrvstius msy «h«»w that the

light hsa Isiteeci «witched oS.

I'eat condtrurlion must be done with renpecl to the specification, the conformance test­
ing framework and the implementation under test. For example, we test if an imple­
mentation imp satisfies a property prfy (expressed by the specification), in conjunction
with additional assumed properties add^rty (expressed by the conformance frame­
work), in a restricted environment res_enw (expressed by the conformance framework);
i.e.:

imp A rr ».en v ^ prfy A ttdd^riy

We may find the (probabilistic) information needed to construct (statistical) tests from
the specification or conformance testing framework, or both.

Aside: Hefore proceeding we make the following observation about this area of work,

rhe vocabulary used in the area of specification, testing and conformance can be
confusing and lead to disagreement. For example, one commentator might talk
about “ testing if an implementation satisfies properties’* while another might talk
about “ testing if an implementation, within the restricted context described by
the conformance testing framework, satisfies, to some confidence level, properties
of the specification**. Then the second commentator may ridicule the first, in­
ferring that the first commentator’s view o f testing is too simplistic. In reality
though, the first commentator’s vocabulary may differ from the second's, and may
be saying the same thing in a more concise way. However both commentators
may n*cognise the same essential ingreilieiiis for testing even if their vocabularies
differ.
Hear this in mind when, later, we write: imp ^ prfy (rather than something like:
imp A rrs-cne ^ prfy A nrfd prfy).

7.5.5 IlypotheBia testing

Normally the more tests a system passes, the greater the confidence we have in the
correctness of the system. I'he logical extension o f this is to suppose that we can test a
system to confirm its correctness with an arbitrary level o f confidence. Testing, to an
arbitrary level of confidence, that a system possesses some property is normally known
as hypothesis testing in statistics [Kay93, (’ (’S3, FelHH. 1)1170].
A specification Implicitly defines a set of properties that a valid implementation must
satisfy. We write sys ^ prfy to indicate that a system sys satisfies a property prfy of
a specification.
Now, if we want to perform a test to establish if a system satisfies a property, we may
form a null fiyp»f/irsis and an d/feroafiiv hyptithrm» as follows:

//(>: sys h
li\\ sys ^ prty
Thus we have reduced our test to a “decision problem** — we must, given the evidence
contained in our test observations, decide for //u or II
The null hypothesis Hq is a statement of our base belief, while the alternative hypothesis
//i is the statement for which we will attempt to accumulate supporting evidence.

This formulation of hypolhews is not without question. The reader might ask why
the hypotheses were not formulated the other way around. After all, one might argue
that the bant assumption, //o. «hould say that, in general, any given system will not
be a valid implementation o f a particular specification. And then Hi should state
what we want to ‘ prove’ (i.e. that the system is indeed valid). Actually, the formation
of hypotheses is very sensitive to exactly what it is we are trying to prove, and to
test observations. Thus, formation of hypotheses will be peculiar to a particular test
situation.
(liven the “ decision problem” we require a “decision rule” . Therefore we partition the
“sample space" (observation spare) into two regions; the “acceptance regitm" (A R)
and the “ rejection region" (HR) . The decision rule is that if the test observations fall
within HR then reject //o, else if the lest observations fall within AR then do not reject
11».
I'he property prty is the “ test statistic" it helps us differentiate H » from H i. prty
ought to be a specification o f all the possible behaviours in the (sub)system under lest.
In hypothesis testing, we can set various parameters to values to provide quantitative
indications o f the confidence with which we can accept the result o f the test. Setting
th<*se various parameters allows us to bias our decision rule.
If. for example, we take the hypothesis formulated as shown above. If we are a prospec­
tive buyer of the system under test, we will want to accept the null hypothesis H » only
if we are very sure that a system satisfies the specification (I.e. a stringent “ quality
conlrol“). Or. slale<l from a different angle, we will want to decide in favour of the null
hypothesis only if we are very sure that the results of tests on the system strongly in­
dicate freetliiin from implemenlati<»n errors. On the other hand, if we are the producer
of the system under lest, we will want to reject the null hypothesis H » only if we are
very sure that a system does not satisfy the specification.
In statistical hypothesis testing we will never know whether or not our decision is really
correct. The following table, taken from (Kay93). shows the four possible decision
categories.

Reality
■ Ho I'rue Wj True

Decide
for W(,
Decide
for W,

ly|>e II error
X

Ty|>e error
X

• A 'I'yiM* 1 error occurs when we reject H », when in reality it is true.

• A Type 11 error occurs when we accept H », when in reality it is false.

Returning to the example above. In the rôle of system buyer, our interest would lie In
re<lucing Type II errors, i.e. we would want to reduce the chances of accepting a false
Ho (an erroneous system). However, In the rôle o f system producer, our Interest would
lie in retlucing 'I'ype 1 errors, I.e. we would want to reduce the chances o f rejecting a
true Wo (a correct system).
So how do we bias a decision rule, or assess the level of confidence that we should
attribute to a test result (I.e. to a ‘decision’)? The parameters that statisticians use for

thin purpoHe ar<>;

a s Pr{Typ< I r r r o r) and /i * Pr{T y p r I I r r r o r)

In order to rwlure Type 1 error* we Khould set o (often known an the **B¡nnÍftrance
level") to a low value. Unfortunately, as we reduce the risk o f inakinR a Type I error,
we increase the risk of making a Type II, and vice versa.
Another metric for measuring how much confidence we should place in a test result is
the “ Power" of the test procedure.

high Power = low Pr(Type 11 error)

Say our decision is to accept Ho- I hen. if the !*ower is high, we may feel confident
in this decision. Otherwise, if the Power is low, or the sample size is small, maybe we
should gather more evidence.
Statistics provides a multiplicity o f theories, formulae and a<lvice for hypothesis test­
ing. The intention here was just to introduce statistics as a framework within which
to perform conformance testing for probabilistic systems. Phis is the extent o f our
explanation o f statistics for conformance testing. Kxamples later in this section adopt
and use statistical methods.

7.5.6 P ropertie i for teat

Helow we list some of the properties that we might wish to test for in Pbl.OTOS
specifications.
In siM-tion 7.1.5 we showed how to characterize a Pbl.OTOS system as a set (S im (’har)
of observable traces an<) probabilities. We use observable trace and probability notation
to express examples in the list o f pmpertles beh»w.

Eventuality properties: properties that eventually will become true. e.g. -< » a ^
. 1 event a will eventually happen,

R eliab ility properties: properties that are true with a specified probability, e.g.
■<m SurrrM/ul.Srnd » (event sequence) Succra»ful.Seud will Im* »9%
reliable. ('Phis is particularly relevant f<ir Pbl.OTOS systems.)

Perform ance properties: properties that with a specified probability become true
within some speclfie<l time, e.g. tank.fin ifhrd{i*rtlntrrval{3,^)) ^
tank.JimKhrd will, with a probability of occur within the time interval 3..9.
('Phis is particularly relevant for combined 'PI.O'POS and Pbl.O'POS systems.)

In this list, we have consideretl Just thfme properties relevant to Pbl.O’POS. Por a list of
properties expressible in full XI, see section H.2.3.4. Por the remainder o f this chapter,
we restrict ourselves to considering only eventuality and reliability properties.

7.5.7 Form ulating a test: an exam ple

Suppose that we have deve|ope<l an implementation and we want to test If it satisfies
a specification, l.e.:

Ho: im p ^ »p rc
H i: itup spec
How do wp go about this?

7.6.7.1 EatablUhing the hypothese*

Firstly, wp must deride what the satisfies relation means. For the example developed
in this section, we take ^ (above) to mean pro6— — this requires that the implemen­
tation preserves the probabilistic properties o f the specification. Also, for this example,
we take S5 in figure 7.2H as the specification. Hence, as our grurral hypothenrit we have:

Ho- prob — rq spec
Hi : imp
Our general approach to testing these hypotheses is to rhararterixe the specification
S.'i by a set o f properties, and then test that the implementation satisfies each o f these
properties. We accept Ho only if the implementation satisfies all the properties from
the set. otherwise we reject Ho- K »fh property will form a sub-hypothesis, and we will
test each o f these sub-hypotheses separately. The separate testing o f properties leads
to some rinlundancy but we ignore this for this simple example.
Section 7.4.7 showeii that we can characterlxe any l»bLOT()S specification by (Sim-
Char) a set o f trace probabilities and a set o f auxiliary equations, l-'rom figure 7.2H
we see that, for S.5, the set o f auxiliary equations is em pty", and the set o f trace
probabilitic's is:

(-<-<«>►, n .
y , ^ y ,

b,d y , ^ y }

We view each trace probability pair as a property to be satisfie<l by the implementation,
and so pose these (below) as sub-hypotheses.

imp n >-, J //a.o: imp ^-<-< 6,c fh.o- imp 6,d >-. A >■
//, i: imp a y.|i y //jj: imp ̂ ih\- >"

7.6.7.2 W h ich statiatical in ference methods?

We have decomposeil our conformance problem and established our hyp<ithesis, but on
the basis o f which statistical inference methods do we perform testing? In other words,
which statistical methods should we use to interpret lest observations, and decide for
one hypothesis or another? First, we attempt to develop a statistical method based
upon some assumptions about properties enjoyed by discrete event systems. However,
the complexity of real world systems pervades this approach, and we abandon it in
favour o f an established statistical method (\ *).

"or. more st i urstHy (Is re«|>rrt of tke Nlmt’hsr drflniUos), hM one aolulkis srl of vdses for frê
vsrishfM, as<t Ibesr vsIum ksvr brrn suhstilMl ̂dirsc ily Isto the srt of irste probsbiUtles.

Statistical inference based on special assumptions Now we try to develop a
method for interpreting lest observations, based upon some assumptions special to the
discrete event nature of most distributed computing systems.

sum ption 1: The “minimum probability nssumption” says that, within a PbbO-
TOS system, no probability transition has a value less than A . This assump­
tion seems plausible for certain syalems; implementation details may be available
which describe what internal transitions exist within in the system, their nature,
and minimum chance o f occurring (in particular environments).

'I'he minimum probability assumption implies a finite limit on probabilistic branch­
ing from any one stale. In fact ¿ is the universal upper limit on such branching
(s<*e figure 7.29). This is similar to “ image-fiiiiteness" in (H Mln.'S).

/*(oa) > A

Figure 7.29: “ image-finiteness" for
l»bl.OT()S

/>(On) > A
/ > (o ,)+ P { a i) + -
^ n < i

Assum ption 2: The “copying assumplion** says that we ran make a copy of a system
at any state (s«*e (AbrH7)). Phis would allow us to re-run trials o f a test several
titnes, each time on a ‘ fresh copy* of the systen». Initially this seems plausible
because it ran often be achievcnl in practice, e.g. for software systems by core
dumping. Later we air reservations about this assumption.
The implications of this assumption, for the example in figure 7.29. are that we
can compute the number o f test trials that we neiul to perform «»n (fresh copies o f)
the system (at stale S\) in order to achieve a particular probability o f achieving
evidence of any one particular transaction.

Let us put these two assumptions to work. Say we would like to test, f<»r the system
shown in figure 7.29. the hypotheses:

Ho- N *
//i: sys oi ^

Our dcH'ision rule will be:

Accept //o if lest evidence falls within AH
Reject //o if test evidence falls within KH
We choose rpiaiititative values VAtt and I - v^ft f<»r the areas AH and KH (see fig
ure 7.;i0), where 0 < vah < 1. (A higher value corresponds to a lower o value.)

If, in rnality, //u ■» f “ <'. »<■ impli*-» lh » l *><• >»
conitruct our tw t no that Ihn probability o f obtaining nvidanca for Ha 1» > »an »'•'•■n
//o »8 rc*ally true, i.e.
/^(evid enre fo r //o w h en //o !■ r<*itlly true) > v̂h
AB8um ptioiifl 1 an d 2 KURge>»t th a t it is poARible t o c o n it ru c t Burh a tes t, (’o n s id er
f igu re 7.31, w h ich Ib th e s y s tem in f igu re 7 .29 e xcep t th a t th e tranB itiu iis o j . . . a „ have

been collapse<l in to a s in g le tra n s it io n 6.

Using only assumptions 1 and 2, we can say that:

/’ (evidence of an 0 | transition) » » 0 | ^)
> A
* 1 - (I - A)

fo r on e tr ia l.

S I

p u l | g g C ' ' ^ S y P u 2

X b outcaa»
• • o(I t«a t tr ia l

If we run a second independent trial using a fresh copy of the system (see figure 7.32),
then we can say that;

•1

I“”

: f ^ ; ■■ . r t

FiKufp 7.32: IViitinK uninn two trials

'I'hiH result Koiierali/.eii to;

/*(pvidrnre o f an 0 | transition) > 1 — (1 - J l)"
for n iiHlepPiidrnt trials.

I'hus. by spiM-ifyiiiR n (the number o f lest trials) it would seem that we ran arbitrarily
Rovern I be probability of obsrrvinR rvidrnre for a transition. 'I'hereforc. returninR to
the issue o f how to ronstrurt our tcuit siirh that:

/*(evi«lenre for //o. when //o is really true) >
and usiiiR the above result, we have:

/*(evidenre for //o. when //o I» really true) ^ t'a«
/’(evidence o f an (it transition) ^
1 - (1 - J i)" > vah

This result tells us that we ran rh<K>se the size o f AH (and hence the chance o f a I ’ype I
error), and then rhiMuie the number of test trials such that supportlnR evidence for //o
will Im* found if //o Is true in reality. This result seems Um» r<km1 to be true. Below we
Rive two difficulties which make this result unusable.

D ifflru lty It This testinR model is tcMi simple to check the actual probability of a
transition. It only detects the fact that a transition may possibly occur, if in
reality it can. It may be possible to extend the testinR model to check actual
probabilities, but there is another problem:

O iffiru lty 7i In real systems, not all transitions and states are observable. We ran
only detect observable events, but there may be a hidden number o f unobservable

internal traiiBÍtions and sta le i between observable events. Therefore, although It
may be p<MtNÍble to make a copy of a system at a state between any two observable
events, we cannot be sure at which exact state we have made the copy. This, in
itself is not the problem. 'I'he problem is that there may now exist an indeter­
minable number of hidden states between observable transitions, and hetjce an
indeterminable amount o f branching between observable transitions (even with
the minimum probability assumption). This invalidates our previous result. One
'solution' would be to assume a maximum limit on the number of internal states
betwe«*n any two observable events, which would mean that, again, we could com­
pute the upper limit on branching between observable events. However, we think
that this assumption contradicts what we our trying to do: test the observable
behaviour of systems without having to disassemble them.

Therefore, we abandon this as a generally applicable approach for test inference, al­
though it might be usable for systems with strictly controlled, and determinable, num­
bers o f states. Instead we turn to an established statistical inference method

Statiatical inference based o n v* X* »■ «f'en known as the “goodness of fit” statis­
tic. The test is not directed against any specific alternative from the hypotheses,
but provides a quantitative indication of how well lest observations fit each alternative.
This fits well with our objective, s<i we adopt » method for interpreting test
observations.
First, we briefly introduce as a method for interpreting test observations. Consider
again the example in figure 7.29. and the hypotheses we posed for it:

//,>: sys ni ^
//i: sys Ai ^
'These are formulated as a table as:

outcome expected observcnl
w uj se
^ "1 » (1 (1 -

n N
where:
N is the number of test trials
d./. (degree's of freedom) * (rou’ — 1)(co/ - 1) - (2 - 1)(2 - 1) * 1

- 1 , — r ------
• •I

where:
() , is the observed fre<|uency In cell i
A,', is the expected frequency in cell i
n is the numl>er of outcomes m row m 2

Reject Hu if xî*. > \\.4 t
If we are the producer o f the ImplementatUm then, most likely, we will want to reject

237

//o only if we have Hubdtantial evidence to support H\.
^ reduce Type I errors ^ set a low o value.

We may deride that we require P {rra lity ^ HH\Ho (ru e) < O.OJi, i.e. I*{7 ypr I error) <
0.05. rhen, from tables (FelBH) we find that vgos.i = So we reject //« if > 3.84

7.6.7.3 Exam ple application

We have decide<l to use the statistic to interpret test observations and decide for
i»ne hypothesis or another, and have introduced this statistic. Now we return to the
example o f testinx an Implementation against specification S5. and apply *.
lo make the testing procedure more clear, we cast the iniplementation under test as
the concrete example represente«! in figure 7.34.

Figure 7.34: The implementation under test

Now we formulate the sub-hypotheses as tests:

Sub'hypotheaia 1

outcome | expected observed
ws a ^ 1 S
a N S

N N

Sub'hypothesis 2

outcome expected observed
m be ^
ji be ^ g A -

N N
H2.0 '. imp 6,r ^
H i.\ . * » » P >•. >■

2 Y ' (O - + ($ i^ - ^ ü.OO.WAf
Xo4. - ¿^ jg;v jJiV

Now, if wr have carried out > 726 test trials (l.e. N > 726) then > 3.K4 s» reject
//(j, however, if we have carried out < 726 test trials (i.e. S < 726) then > 3.K4)
^ accept Ho-
III other words, we would need to carry out at least 726 test trails liefore obtaining
a sufficient amount of evidence (at the chosen n level) to reject Ho. Ib is raises the
question of, in general, how do we decide the number of test trials that should be
carried out? 1'he answer to this depends on two related issues: what we know abt)ut
the expected behaviour of the system under test, and the test statistic.

I'he first of thes«* issues takes us back to our discussions on the **minimum probability
assumption’' and the “copying assumption**. If we know ^omrthiug o f the amounts of
branching, and the minimum probability o f any branch, then we can infer some thiugM
about the number of test trials requireil U» produce a critical mass «»f evidence for or
against an hypothesis. In general, this type of information may be quite vague, but
enough to give us a rough guesstimate on the number of test trials required.

The second issue ciincerns the test statistic itself, lake as an example the statistic
that we have been using. I'he power o f x* to detect an underlying disagreement be-
twwn the theory and and sample data is largely controlled by the size o f the sample.
is a continuous distribution but we have applied it to discrete data. I his incurs approx­
imations. With large expected frequencies this approximation it gmrd. however this is
not s<» with small frequencies. (('oc.V2] examines this subject in detail, and |l)H70] dis­
cusses the use o f Yates's correction when dealing with small expected frequencies, but
it is customary to recommend that the smallest expected number should be between
ft and lO. Applying this rule-of-thumb to the smallest expected frequency in the table
above, l.e. to expecteil fre<|uency for ■ be gives ^ lO. therefore N ought to be
at least ,')4.
The reailer may be concerneil that ,'I4 is markedly less than the figure 726 calculated
earlier. I'he figure 34 has been calculate«! f«»r a different reason to the figure 726. 34
is a heuristic value f«ir the number i>f lest trials that ought to be c«»nducted in «»rder
to ensure that the discrete, sample distribution is a reasonable approximation to the
continuous. distribution. Whereas. 726 is the number of lest trials that would have
to l>e conducted before obtaining a critical mass of evidence to Justify rejecting the
Ho hypothesis. I he figure 726 may seem high, but remember that we formulated the
hypotheses to significantly bias Ho, consequently we require a large amount o f evidence
against Ho before justifying its rejection.

Sub'hypotheiU 5

If3.0' *»'*P ^ 6, rf >-, 3
Ih . i ' imp fr.rf >•. 3

outcome expected observed
m bd ^ N

■
N
N

N N

' “*• “ ^ t: f v f iv

Therpforn - '(\^ , > 3.M*) => arrept Ho
Again, Ipsl obdorvatioiiM for the implemrnlation In figure 7.34 would lead us to make
this decision for any ttutnber N of lest trials > 1.

7.6.8 Discussion

We have considered PbLOTOS specifications to be mathematical objects, and their
final realizations to be real world objects. I’he question ‘Is object Q a valid refinement
of object /* according to some probabilistic implementation relation' is pose«! as a
hypothesis. Then we say that we can have total confidence in our hypothesis decision
if both objects Q and P are Pbl.OTOS specifications (l.e. objects in the mathematical
world). However, if at least one of these objects is a real world Implementation, then
we ran have only some level of statistical confidence in our hypothesis decision.

• iiinthrmatiral t>bjerts ^ total ronfldence in hypothesis derision

• real world objerU ^ statistical ronfldence in hypothesis decision

Our approach to implementation relations for probabilistic systems has been much more
praKiiiatic than approaches taken by (I.SK9, 1IMH9, HIMNK, v(iSSl90, (iJSfK), llanfK)].
I'hey do not always make a distinction between mathematical specifications and real
world implementations. (I.SH9) use “copying*' |AbrM7l and “minimum probability as­
sumptions" [HMHO) in their methods. However we have taken the view that such as­
sumptions are unrealistic and tw) simplistic when considering real world probabilistic
implementations, and Instead statistical testing ought to be used. Moreover, when con­
sidering probabilistic specifications (not real world implementations), we believe that
there is no mnul to use assumptions such as “copying" and “minimum probability" in
a method for establishing validity, since specifications are mathematical objects whose
details are completely knowable.

7.6 A n exam ple: a m ic.roproce»»or C IM cell

This section shows how PbhOTOS can be used In the specification and testing of a
simple r iM (Computer Integrated Manufacturing) system which manufactures micro­
processors. A mlcroprocessrjr CIM cell Is specified using I.OTOS. Then a refinement

of thin »pecification it wrilten in PbLO'I'OS. The FbLOTOS specifiration formally de-
trribet an important probabilittir rharacterittir of the manufacturinK cell. We thow
that the PbLOTOS specification it a valid refinement o f the LO'I'OS specification ac­
cording to the probabiiization relation define<l in section 7.4.11.1. We discuss how the
testing framework develope<l in section 7.5 provides a basis for statistically testing a real
world injplementation o f the manufacturing cell against its Pbl.O l'OS specification.

T h e L O T O S B perifica tion

The I.O'rOS specification in figure 7.35 describes how the microprocessor (’ IM cell takes
a mu*, si/iron. u*a/rr and produces a JulLupeed.procrnnor, a rrdurrd. speed, processor or
a fT3rct.prttcrinii>r. ('I'his scenario is typical o f microprocessor manufacture. Son>e of
the manufactured microprocessors will operate at the target clock speed. Others will
fail to operate at the target clock speed but will operate at a reduced clock speed.
Others will be totally rejectcHl.)

process processor.C lM .celll(rsw . silkon. wafer,full, speed, prorei
reduced, speed, processor,reject, protessor] luoeexit :■

raw.silicon, wafer.

fu ll.speed. prcK'essur:
prtH'essor. (' IM . i ell 1 (raw. silicon, wafer.full.speed, proressor,

redut eti. speeti. prcKessor,reject, processor]

reduc e«!.s|>eed. proi
prtK-esaor.CIM.crUl(raw. silicon, wafer,full.speed. prcMesaor,

re«iu(ed. speed, prwensor,reject. prtHessor]

rejec't. processor;
prcK-essor.(TIM .cellt[raw . silicon. wafer.fuU.s|>eed. processor,

reduced . speed. prcKessor.reject, processor]

7.6.2 The P b L O T O S Bpeciflcation

'rhe I.OTOS of the manufacturing cell doe« not contain any requirement«
about the relative probabilitie« o f manufacturing fu ll. nprrd.proct»»on,
rfdund.Mprrd.pnM'rMKon and rrjrct.prorrnfion. Normally the «pecifier will want in­
clude r<*quirements in the specification that tell the implementer to build a manufac­
turing cell which manufacture» a high proportion o f fuli.Mprrd.proreinton and a low
proportion of rrjrct,prorrtiMon. It i« not poHsible to «pecify probabilintic behaviour in
LOTOS, but It ik possible in IM>LOTOS. The 1‘ bLOTOS specification in figure 7.36
contains requiren»enls for the probabilistic behaviour o f the manufacturing cell, i he
»pecification requires that the manufacturing cell produces full.iiprrd.promutoni, rr-
durrd. Mptrd.pnMynMorH and rrjeri.prwrrMoni in the ratio 6:3:1.

pruceM p «> < r »o r . (’ IM .< r lli[rsw . ■ili< o s . wsr«-r.full.ape«>d. prcKrwKjr.
rwiured. aperd. prcH-easor.rejert. prorrsaor] inoeesil :■

raw.atlK'os. waf«>r:

full.ap«*r«l. proTMsor;
prixeaaor.i'IM .crU iirsw .a ilkos . wafrr.full.aprrd. pror^aaor,

reduc-fd. ap«*d. pw raaor.reject. proriN«or]
[-0,(1]

redu<e<i. B|>eed. priM-eaeur;
priMeaaor. ('IM . rella|r«w. aili« «>B wafer,full, apeed- prw eaa»>r,

re«lu<ed- a|>eed. prweaaor,reject, prweaaor)
(-0,75)

reject, prtneaaor;
pr<Meaa«>r.<’ IM.cell2[raw.Bilicort. wafer,full.aj»er«l.priKeaaor,

retlu< e«f. »peed. pr<M e»»or, reject. prriceaaor)

reduced.apm l.proceM or,reject.procM M or] :noeeut :■

rew .u licoa. wafer.

full, speed, prcx-eeaor;
prcxe«u)r.<’ lM -ceU3[raw.silicoB. wafer.full.speed, processor,

reduced, speed, processor.reject, processor]

[> 0.8]

reduced. s|>eed. processor;
pro<essor-(’ IM .ce U 3 (raw .siU coB . wafer,full.speed-processor.

reduced.speed, processor.reject. processor]

[2 0 75)
reject, processor;
processor. ('IM .ceU3[raw.silicon, wafer.full.speed-processor.

reduced-speed- processor.reject. processor]

WV identify defininR additional Pbl.OTOS operators, as future work in section 9.3.

Proving the validity of a apecifleation

Is the PbKO rOS sjwification of the mirroproressttr (’ IM cell a valid refinement o f the
LOTOS specification? To answer this question we need a definition of the phrase i-a/id
rtjin tm ru l. The pntbabtlizalum relation (pro6) definetl in section 7.4.11.1 provides a
definition of what it means for one specification to be a valid refinement o f another
specification.'^ 1 ’he pntbabilizatum relation checks if trace and probabilistic refusal
properties are pr€»served in a refinement (see section 7.4.11.3 for examples).

So now we can post* the question formally as:
prftcffMor. (’IM .ce lts prttb prorcssor. ('IM .c r llP .

In section 7.4.11.1 the pro6 relation is defined in terms o f the .SimrAar algorithm.
Applying .ViffiC’Aar to the speiification we get:

Applying SimC’har to the rr//i upecification we get:

• the tirt o f tracr probabiliticn o f ctiH to be:

{ ëilicon, fuU.tptfd V .0.6 >,
ailicon, reduced^prrd v , (0.4 x 0.75)

« aUironsTeject y,/is(0.4 x 0.25) >• }

• the nrt o f aurHiary rquationn o f c r lt i to be:

{)

Now, crIiS prob r r i l l iff (»ection 7.4.11.1):

(I) the trare net« o f rrllS Aud crlti are equal, and

(a) it in always ponnible to find itolutions to the auxiliary e^ua/ionx o f crlU such that
the probabilitieh of crllt and crtlS traces are identical, for all possible solutions
to the auxiliary rquatioUM o f crlli.

It is trival to se«* that the trace sets o f rrllS and r r l l l are equal. Also, it is trival to see
that we can find values for p i . /*a and pn of rrtU such that the probabilities o f r r l l l and
rr//ÿ traces are identical. 'I'herefore c r llt prob c r llt, i.e. the I’ b l.O IOS specification of
the microprocessor ('IM cell a valid refinement o f the LO I OS specification.
(See appendix H for a more detailed example o f the application of .S’lrnffcar, and see
section 7 .4 .M.!) for more complex examples of the pro6 relation.)

7.6.4 Testing n real world im plem entation

Section T.«..*! showe<l how to prove that a probabilistic specification implemente<l (re­
fined) another specification. In this section we l«H»k at how to test if a real world
implementation corr€*ctly implements a probabilistic specification. We use the frame­
work for testing describfMl in section 7.5.
For this example, we assume that the testing is carried out by the quality control
department at the company that manufactures microprocessor (MM cells. The company
constructs the testing hypotheses with the base belief, //o, that their product satifies the
specification. I'he means that, unless testing provides a significant amount o f evidence
to the contrary, the company assume that their pr«»duct satifies the specificati«»n (i.e.
innocent unless ‘pf‘ *ven’ guilty).’ ̂ Hence the hypotheses are formulated as:

//o i imp N c rtl'2
//i : imp ^ r r l l 2

where r r t lt is an abbreviatnin for the 1’ bl.O'rOS specification procraxor.C IM .rrllt,
and imp denotes a real world implementation o f a microprocessor (MM cell.

■ may br'*Hertkis 7.S.5 dtM «

conslrurted.

> the fartors whxh influence the ways in which teatin« hypothei

'I'he company want to reduce the chance of rejecting implementations when they are in
fact correct (true Ho)- In hypotheses testing terms, the company want to reduce the
chances of making Type 1 errors and so they set low significance level (o) , such that
P{Typ* ! e r ro r) < 0.05 (see section 7.5.7). Looking up the test statistic »n tables
[Fel6 H] they find tlTat xg.os.i “ 3-^4. So the company rejects Ho if > 3.«4 (i.e. the
company rejects an implementation if the evidence against the implementation being
correct is above the chosen significance level).
'I'he company are particularly interested in testing the probabilistic behaviour o f micro­
processor ('IM cells. So they take to mean prob~rq (defined in section 7.4.11.2). In
section 7 .6 .3 the specification re lit w m characterised by a set o f probabilistic traces us­
ing the .Simr/ior algorithm. We call these traces‘ properties* o f re//#. An impimentation
satisfies the specification re lit, if it satisfies each o f the properties of re lit (as explained
in section 7 .5 .7 .1). 'I’he company formulate each property as a sub-hypothesis, and lest
each o f these sub-hypotheses separately.
I'he properties o f re lit are the probabilistic traces of relit. These were established in
section 7.6.3, and are repeated below.

(Bitiron, full.»peed
B tliron , reduredutperd y , (0,4 x 0 75) >,

BÌlicon,rejert V.pafO.H x 0 25) >■)

'l'he probabilistic Iraces are formulateti as sub-hypotheses as follow:

H \ .o - si/irc»«, f u l l j t p r r d >■, 0.6 >•
si/iron,/«//-sperd y , 0.6 >•

Ht.o- /»»F Atliron, reduredjtperH >-,0.3 >•
Hi.x- niliron, rrdurrd.^perd >-,0.3 >•

//rio: si/iron, r r jr r / y ,0.1 y
//a.i: imp -<-< s»/iron, rejVrl y , 0.1 y
'I he company statislically test each implementation o f thè microprocessor <*IM celi
against each o f thè sub hypi>theses. Kach test o f an implemention against a sub-
hypothesis would Iw documented as as shown for sub-hypothesis 1 below (also see
section 7.5.7.3).

provide evidenre for //|,o-

, ^ (0 - A) ^ -o .e ;v)» , ((1
»*• “ f : “ 0.6> '*’ 0.4N

If X^, > => »«■‘■ept //|.o-
The number of leiil trial« S «hould be aa lar^e an potaible (»ee the text under Sub*
hypotheHiH 2 in M*etion 7.5.7.3).
Karh »ub-hypotheBi« tent for each implementation would be laid out an shown for sub*
hypotheniK I.

7.6.5 Discussion

'I'hls Bertion has dejnon«trate<l the use o f the prob and prob~rq relation« (define<l in
BectionB 7.4.11.1 and 7.4.11.2), the .S’lm r’Aor algorithm (defined in «ection ■:probrel).
and the framework for Btatistical testing (described in section 7.5). The proh relation
was used to prove that one probabilistic specification was a valid refinement o f another
specification. A framework for statistical testing was established to test if a real world
implementation was correct with respect to {p rob -rq to) a probabilistic specification.

7.7 Siiiiitnary

rh<* primary concern o f this chapter has been to extend the 1,01 OS language and
support tluH)ry to support the specification and development of probabilistic systems.

We exiended the definition of I.TS# (l.abelhnl Iransition Systems) to define Nl* I.TSs
(Non-deterministic and Probabilistic 1,'1'Ss) and I*-1, PSs (Probabilistic I, I Ss). N P - I.l Ss
are 1,’1'Ss which may contain b<»th n«m deterministic and probabilistic transitions. P-
l.'I'Ss are I,TSs which contain only probabilistic transitions.
N!*-l/rSs were use<l as a semantic model for Pbl.OTOS (Probabilistic !,() I OS). Pbl.O
rOS Is I.OTOS enhanced by a small number tif syntactic and semantic extensions which
supp<irt probabilistic features. IMiI.O TOS has a probabilistic chtdce operator fc»r spec­
ifying probability distributions over a set o f internal probability transitions.

Having define<l Pbl.O TOS. the chapter turne<l to defining Implementation relations
(pre-orders) to support the «levelopment of Pbl.OTOS systems. We definetl the pntb-
abtlizatum pre-order j prtib) as a formal implementation relations between NP I.TSs.
“ Pr<ibablll/.atloir (HMH9) o f an NP I.TS Involves replacing non deterministic transi
tions by probabilistic transitions. In this way. we can consider that an NP I.TS .V
describes a set of implementations {/[/ prnb S) (P-!/rSs).
We showerl how to characterise the set o f probabilistic Implementations {/)/ prob S)
as a set o f simultaneous equations, where each equati<»n describes the probability of an
observable trace of .V. The /rrr-<crms within the simultaneous equations generate the sel
<»f probabilistic implementations. These free-lerms are used to range over the pcisslble
probabilixations of non-delerministlc branches in S. We defined an algorithm Sim Char
which, given an NP-l.TS, generates a characterising set of simultaneous equations.

24A

Wo Haw how for any two NI*-LTSs, A’l ami »S’a, Si prob S2 iff S\ doacribo* only a aubaot of
the probabiliiitir iiiiplomontation* which S j doacrlboi, i.o. {/| / prob } C {I\ I prob .V3 }.
Kurthermor«*, S\ and are probabHizatiou r^uttHi/cnt, written S\ prob — eg .S3, iff
{ l\ l prob .S*i} » {/|/ pro6 A’3 }.
In rontraat to other probabilistic proce»* alxebraa. we moved the eniphaMis away from
the Nomantirs o f the PbLOTOS latiKuaKo, and iimtead placed many o f the 'probabilistic
concepts* in the associated theory o f relations. The consequence o f this is that the
probabilistic aspects of the l»bIX)'rC)S semantics are simpler than the probabilistic
aspects o f the semantics of other process alK<*bra, but IMjLO'I'OS theory for relations
is, consequ«*ntly. more complex.
We KURj(eNte<l a simple statistical testing framework for establishing whether a prob­
abilistic implementation (a 1» I.TS) is a valid implementation o f a probabilistic spec­
ification (an Nl* ITS), according to the probabilization relation. We investigated if
the “copylnK** (AbrH7] and ‘•minimum probability** (IIMH.'i) assumptions could be usetl
as a basis for interpreting test observations and making hypothesis decisions about
probabilistic systems. However, we decided that these assumptions were unrealistic,
and abandone«! theju in favour o f an established general purpose statistical inference
method (\ ‘*)•
We considered PbLOTOS speciflcations to be mathematical objects, and their final
realizatl<»ns to be real world objects. I’hen we said that we can have total confidence
in a hypothesis decision about the validity o f a relation between two objects Q and /'.
if both objects and /* are I'b lX) 1 O S specifications (l.e. objects in the mathematical
w«»rld). However, if at least one <»f these objects is a real world implementation, then
we ran have only s<ime level o f statistical confidence in our hypothesis decision.

Kinally, we illustrate the use o f the prub relation, the pro6 - r g relation, the SimC'har
algorithm and the framework for statistical testing in an example of the development
of a simph' mirropn>ceHsor (*IM cell.

8.1 T h e form al specification o f p r io r ity

This section defines Prl.OTOS LO POS extended with features for the specification
o f priority. We describe the new priority features, provide simple examples o f their use.
and define the syntactic and semantic extensions to LO TO S for their support.

8.1.1 Introduction

I'he priority feature of I*rlX) I'OS facilitates the specification of priority among events
which are mutually exclusive alternatives in a choice, l o specify priority information
for an event, the syntax #(t»«.,Vp) is included in the event denotation, where Ve (a Nat
sort) indicatf>s the prioniy-c/o## of the event, and Vp (a \ a t sort) indicates the priority-
valur (or priority weighting) of the event. The higher the priority-tyatur, the higher the
priority o f the event (within its priority-clan»).
Where there is a choice between events, all of which belong to the same priority-
clann, the event with the highest priority-t>alur will be fired (or there will be a non-
deterministic choice between those events with equal highest priority-t*alur within the
prion ty -rla »»). Where there is a choice between events, o f more than one priority-
clann, there will be a non-deterministic choice between the events which are highest
in their rwpectlve priority-clannrn. Kach event with an unspecified priority (an un-
prioritueil event) is d«*eined to be in a unique priority-rlann, and hence will cause a
lion-deterministic choice as an alternative in a rhoirr-rrprrnnion.
If two event offers synchronize then either at least one €»f them must be unprioritized,
or they must both be o f the same priority-clan».
If two prioritize<l event offers synchronize then they must both be of the same priority-
rlann. The resultant event offer will be of this priority-dann and have a priority-mlur
equal to the higher of the two priority-t>alurn o f the synchronizing event offers.

If an unprioritized event offer synchronizes with a prioritize<l event offer, then the
result Is an event offer with the same priority-clann and the same priority-tyalur as the
prioritized event offer. We say that the unprioritized event offer is annt>ciatrd with the
prioritized event offer, In this way, priority information, localized in one process, can
influence, through synchronization, the prioritization o f events with unprioritized event
offers in other processes. We call this the annoriatton feature.
An unprioritized event is given a 'status' equal to that o f a prioritized event. A choice
between an unprioritized event and a prioritized event is a non-determinlstic choice.
We consider that an unprioritized event is an event without a specified priority — not
necessarily an event with a low priority.
Our general approach to priority specification is that no priority prece<lence is assumed
unless explicitly specified. No precedence is assumeil between priority-rtannrn, or be­
tween unprioritized events.

A.1.1.1 Related work

Kxtreme cases o f van (ilabbeek rt o/.'s ntratijird model (section 7.2.1), in which zero
probabilities are permitted, can be used to describe a notion of priority, ('onsider the

Ktratified model expreHsion:

la + 0(16+ Of)

Thin Kives a priority over b and c, and b priority over c. c ran occur only in a restricted
environment in which a and b cannot occur. 6 can only occur in a restricted environment
in which a cannot occur.

van (ilabheek r l o/.’s priority model includes features that we wish PrLO TO S to in-
dude. However, we do not use the stratified probabilistic model approach as basis for
P r b o r o s .

8.1.2 Syntax extensions

8.1.2.1 P rL O T O S action-denotations

'I'he following Mprriat-Mymbol is added to [lSOK9b, clause 6 .1.3.2] (and removed from
sprciaf-rAarurfr r clause 6 .1.2 to prevent parsing problems):

priority-symbol = **#"•

and alter the artiou-dmolatiou section 6..* .̂2 to:
gate-identifier
[experiment-offer (experiment-offer } (selection-predicate]
[timeoffer] [time-|M>Ucy] [time establishment]
[priority-symbol open-parenthesis-symbol priority-class
comma symbol
priority-valiie-symbol close-parenthesis-symhol]
I inlernal-event-symbol
[time-offer] [time-policy] [time-establishment]
[priority-symbol open-parenthesis-symbol priority-class
comma-symbol
priority-value-symbol close-parenthesis symbol].
term-expression,
term-expression.

lin prtorily-rlaMn and pn'ortfy-iia/ur must eval-

Priority constraints may be associated with observable and internal events. Our se­
mantic extensions for pri<»rity event ordering ensure that those events with the highest
prU ity weighting {priority-tuthr) o f their priority’d a »» are eligible to be fire<l first.

I'he evaluation order of terms within an artion-drnotalwn, is as follows;

1 . Pirstly, the rtprrim rnt-offrm and »rlrrttnn-ptTdirtttr are processed (as described
in section 6.5.1.5).

8.1.2.2 P rLO T O S examples

u #(1.4): 1* Ov # (i,K);Q
'rhia is an example o f a choice between two observable event* o f the same
priority-rlaint with different pnon<|/-i>a/ur*.

Kvent V i* in the same priority-ciaaa as event u (class 1) and creditcnl with a
higher priority weighting (H > 4). Therefore if events u and v are both flrable,
event t» will be firwl.

1 #(1.4): 1» Di # (I*H);Q
This is an example o f a choice between two unobservable event* of the same
priority-rtatm with different pnonip-»»o/urs.

rhe leftmost I event will never occur. The rightmost I event will pre empt
the leftmost i event since both events are in the same priority class and the
rightmost i event has a higher priority weighting than the leftmost i event.

u # 0 .4); I' 0« # (1.H):Q
This is an example o f a choice between two identical observable events of the
sanie pn«n7y-r/ass with different priority-t^lum. at the same gate.

The leftmost u event will never occur. The rightmost u event will pre empt
the leftmost u event.

i #(1.4); 1* Qv #(1.K); g
This is an example o f a choice between an observable event and an unobservable
event o f the same prionty-claitti with different priority-tHtiurti.

1 ’he i event will only occur if the v event cannot be fired (fails to synchronise).
'I'his template could be use<l to specify a “ fail safe** or “ fall back** mechanism
within a system, where the i event represents a fall back action, to be taken
only if V Ciiuld not occur. In a real specification a “ fall back** mechanism might
also include quantitative timing constraints such as “ the fall back action I is
enable<l only after some time i**.

u # (I.4): I* Ov #C i.H);g
'I'his is an example of a choice between two observable events o f different
prtority-rlamtrM.
No priority relationship exists between events u and t> because they are not of
the same priority-rioMH. Hence, i(both u and «» events ran occur, then there is
a non-deteriiilnistlc choice l>etween these events.

u # (l.4)i V Dv # (l . 4) ; g
This Is an example of a choice between two observable events of the same
priority-rlamt with the same prtort(y-i>a(ucs.

Kvents u and t» are in the same priority-ria »» and have the same prionty-t^lur.
Hence, If both u and v events ran occur, then there Is a non-determlnlstir
choice between these events.

251

u #(1 ,4); I* Ov #(1,H);Q Qw; H
This is an example of a choice between three observable events, two of which
are of the same priority-cla»M.

If all three events u, v and w are firable, then there will l>e a non-deterministic
choice between only events v and w. Event u will be pre-empted by event v
because both events are in the same priority-rlaa», but event v has a higher
priority-t>aiur than u.

(u #(1.4): I* Dv # (l ,K) ; l ') t l Q M
Phis is an example o f the ag^ttciation feature.
Assume that process Q contains no prioritlxed events. Then all priority in­
formation has been localized within the parenthesized behaviour expression
(conforininK with the ‘separation of concerns* principle, section 4.2.2.3). The
attHficiatiou feature of l»rb () l OS allows the parenthesized behaviour expression
to govern the prioritization o f events in the process Q by synchronizing with
these events.

(u #(1.4); P Ov # (l.H); P) |[u]| (u #(1.9); Q Qw # (1 ,6); Q)
Phis is an example of priority negotiation between synchronizing parallel-
t rpn ssiorts.
Phe result of the parallel combination o f the two rhoire-rrprrnHiouM is to pri­
oritize « with a priority-t'alur o f 9 (the higher of the ptinrity-tHtlurM from the
two u event offers). Hence, considering the PrPO'POS expression in isolation,
event u may be firerl since it has a higher priority-tHtlut (9) than either t* (K)
or w (6).

8.1.3 Sem antic Extensions

8 .1.3.1 Extensions to the structure o f a transition

Section 6.5.4.1 defined the structure o f a tiine<l transition as T T ■ -^aTUt Here
we extend the structure t>f a T T to: T T ■ —aTUiVr-Vp where

s a. 7'. // and t are define<l as describe<l in section 6.5.4.1.

• Dr is a priority-rlaHH.

• ty is a priortfp'ea/ur.

8 .1.3.2 A dd ition a l transition rule schemas

I'he following transiti«»n rule schemas realize priority event ordering in PrPO ’POS.

Only those schen»as that are significant f«»r the operation of priority are given, i.e.
we describe only the schemas responsible for modifying priority-rlasM or priority-mlur
terms. These schemas (below) need to be integrate«), in the obvious way, with the
semantic schemas In sections refs;tlsem and 7.3.3. The remaining schemas, not given

252

below, are thuKe in Hertion 6.5.4, with iiimple extensions to the transition structur
deHcribed above, to rarry and Vp terms.

Choice-expresaiona

H, Hi are paraUrl’rrprrn^iona,
Hi is a rhoifY*rrprrs*io«.
H\,Hi are òrhat’iour-rfprrasior» instanres,
ai,a-i € Act̂
i. i*. Rfound terniH o f sort 7’ime.Vor/,
7 ',7 'i,7j are Kronnd tertns o f sort TimrSriSort,
//. H\, H-i are terms of sort /VrpoÌiai«/7’ifnr/*o/iry.S'or<,
t>(.|,t>ra are pnort(p*r/ass terms,Vpi,Vp2 are pr*oniy-i»a/ur terms

•< Hi,f y ~niT\Hit\veiVpi — ■< H\,t\ >►,
*< H i,l y —«a/’a / / j i ^

-< H , t y -n i7 ’Wi'i'ri«Vi H \ , t * y

undrfinrd)) V (iv i ^ «Va) ^ ((«Vi * « r̂a) ^ («V> —

N ote: We assume that a slightly extendeil version o f the flattening function
(section 6 .5 .3 .2) assigns the special value undrfittrd to pri«rt<y-r/oss and
pnon/y-i>a/uf o f an event with unspecifle<l priority.
»1 can he flre<l: (1) if the priority of either event is unspecified; or (2)
if at is not in the same priohty-rtasB as a-a; or (3) if 0 | is in the same
priorily-rtaaa as o j and its priortfy-i*o/ur is greater than or equal to aj*s
priority-tHiiur.

Wra) A (v â Ì

ParaUel'expreBBionB

i ì , H j are paraUrl-rzprt ß»ionit,
til i« a rhoirr-rzprr»MÍon,
f i\, tif¡ are brhaviour’rzprrttzion instance«,
o, a' € Art,
t, t\ í|, í|, Í2» **■<* KrouH<í term« of sort 7ï»nc,Sorf,
7’. 7’i.7a are terni« o f «ort 7'irnc.S>i5ori,
//, fi\, H’i are term« o f sort A^eí í̂íh'oícd7 ’imc/*o/iry.Vorí,

are priortiy-c/o«« term«.
Vpi,Vpi are prioniy-iHi/ur term«,

is a (po««ibly empty) U»t of gatr-namr in«tanre«

-< f i , t >►*-< WiiliM,.. ..rfnll/fj.i y

■< H x . t >■ - a V x l l \ t \ v c \ V p i -»-< /f'i.ti V,
■< H j , t > —«/'2//j<2t?t-2t>y2 -*■< (^2*^2 y ______

■< H , t y ~ t i T I t t *VcVp |[yi,. . . , i' y

NftotftePrVaUe{vei,Ve7> t'^a) “
if ((t * , = wej) or (Vfi = uinlefined) or (v , j * undrfinrd)) then

if («'el ^ *>») *’P‘
rl»e Vfii
eiidif

elne undrfined
eiidif.

N o te : 1'ho M>inantirs for priority place a further reatriction on process syn-
chroni/atioii: for two event offers to synchronize they must be of the same
prton7y-r/ass. or at least one of them must be unprioritized.
If synchronization occurs and both event offers are unprioritized, then the
resultant event offer is unprioritized.
If synchronization occurs and only one o f the event t>ffers is unprioritized,
then the resultant event offer takes the priority-claftt and priorifv-i>ofuf of
the prioritized event offer. I'his rule realizes the ossociaftori feature that
we introduced in section K.1 .1 .
If synchronization occurs and both event offers are prioritized, then they
must both be o f the same priority-rla^M. 'I'he resultant event offer will be
of this priority-rlatut and have a priority-tHtiut equal to the higher o f the
two values t'pi and Vp2 -
If the two event tiffers are prioritized but have different priarHy-rlaniirH,
then synchronization cannot occur.

H.1.4 niBCuasioii

A. 1.4.1 C hoice as a result o f in terleaving

l*rioritize<l event occtirrence is enforciKl when choices occur as a direct result of a
r/ioirr-crprrssiof». However, pritiritized event occurrence is not enforced when choices
occur as a direct result of the interleaving mcKlel of paraUrl-rxprrimiouM. Knforcing
prioritization of events when merging interleaved behaviours would be akin to “ process
scheduling". It would not be technically difficult to extend l»rLOT()S semantics with
a “ process scheduler" with specifier-selectable “scheduling policies" for merging inter­
leaved behaviours (parti//r/-rrprrssi«ris). However this work is outside the scope of this
thesis, Nonetheless, Prl.OTOS users ran specify their own “process scheduler" at the
syntax level. 'I’hey ran use the given priority features to build a “ process scheduler",
and then synchronize it with the pitraitri-rrprrimwti in order to prioritize events within
the paroitrt-rrptTHMiou (and hence govern the merging/interleaving o f the parallel be­
haviours).

S.1.4,2 The atnntriaiiou feature for separation o f concerns

I'he “process scheiluler" would be an example which makes use o f the aMMoriation
feature <»f Prl.O'I’OS. The necessary priority Information can be confined to the “ process

srhodul«T’*. The “proce** scheduler" influences the prioritization o f events offers outside
itself by synchronization.
IsolatinK priority information in this way neatly separates priority requirements from
other requirements. Kxamples which uses the ossoriafion feature of l*rI^O 1 OS to sepa­
rate priority concerns from other functional and performance concerns are: the penul­
timate expression in section 8 .1 .2 .2 , the Prrctdrncf process in the vending machine
specification in section 8.2.3, the Schedulrr example in section 8.1.5 and the PHiOH-
iT Y .S E h h 'C T lO S procetM described In section 5.4.2.4.

Negotiating priority information for synchronising events

In the semantics for paraUtl-tiprnitiiouM we define an algorithm which, in effect, ne­
gotiates the resultant prionfy-r/ass and priority't>aiur from the synchronization of two
event offers. We can think of other algorithms for negotiating priority Information.

Ft>r example, an alternative negotiation algorithm ndght realize the following nego­
tiation po licy ': when two event offers from the same priority-rtasn synchronize, the
resultant pn'on/y-i»a/ur is a mean o f the individual event t>ffer priority'Valuru.
I’ rLO r o s could be extended to allow users to express precedence among pnonfy-
r/asscs. Another possible extension might alU>w prioritized events to l»elong to the
pnority-riaim 'any. When such an event offer with priority-rta »» any synchronizes
with an event offer with the (particular) priority-rla^n y«., then the prionly-iw/uc of the
resultant event would he a function o f the two offered pn<in<y*i>a/urs. The basis for
deciding the priority-rlani* of the resultant event would not be so clear. 1 he resultant
prionty-rlaitH could be either any or Ur.

In this subsection we show how I’ rbOTOS can he use<l to specify a simple job scheduler,
('onsider the following Prl.O'l’OS specification:

Notf th<* following point* about the .S'rAedu/rr «periftcation:

• A current job (i.e. a job being proceised) is delimited by the events 6effi«-rruria/_>o6
and end. crucial, job, or by the events non. rrurio/->o6 and end. non.rruria/_>o6.

• If a crucial job is available for processing at the same instant as a non-crucial job,
the crucial job will be processed first. Crucial and non-crucial jobs are both in
priorily-clattn 1 . Oucial jobs have a higher priority {priority-value 2) than that
of mill-crucial jobs (prioniy*t*a/uf 1).

• In an environment (e.g. the ('IM -OSA llusiness (omplex, section 5.1.1.1) which
continues to offer jobs until they are processed, non-crucia) jobs are effectively
queued awaiting the processing o f all offereil crucial jobs.

• The Scheduler process makes use o f the assoriolton feature o f P rLO IO S. It in­
fluences the prioritization of events offers outside Itself by synchronization. 1 he
Scheduler process could be placet! in a context where it synchronizes with job
offers from other proc«*sses in order to prioritize these job offers. The assoria-
tion feature of PrlX) POS has allow«*d all of the job scheduling Information to be
confined the the Scheduler process.

It would be tedious to write a L ()'K)S specification with the same observable behaviour
as the PrbO rOS specification. If we used PO'I OS, we would have to build an explicit
mechanism for queuing and tiequeuing tifferetl jobs. All offeretl jtib* would have to be
plat ed in this queue pentling prticessing. A de<iueuing function wtmld have to remove
crucial jobs from the tjueue before ntin-crucial jobs. Specifying the Scheduler in LO I OS
wtiuld be tetlious. but it would have a mtire serious drawback. 1 'he introduction o f a
queuing mechanism Into the specification might be considered over-specification. It
might be said that the description of a queuing mechanism introduces Implementation
bias.
I'hls example has Illustrated ht>w Prl.OTOS allows pritirity concerns to be easily ex-
pressetl. I'lie example has also shown htiw the aitnociation feature o f PrI.O I OS supports
the separation of concerns.

H.1.6 Sum m ary

This section has extende<l the LO TOS syntax and semantics with features for priori
tizing events which form the alternatives in rhotrr-r/prrssmns.
A prioritized event is given a priortly-claioi and pnority-valur. Where there is a choice
betwe<*n events from the same priority-claMii, the event with the highest priority-value
will be flre<l. A choice between events frc»nj «lifferent prionty-rlaimr» is rationalized
t«i a non deterministic choice between the events with the highest priority-x*alue in
their respective priority-claBn. A choice between unpriofltized events and prioritized
events give* rise to non-delerministlc choice. Prioritized event offers may synchronize
with unprioritized event offers, thus prioritizing these unprioritized event offer* through
what we have called atmociation.

8.2 E xtended L O T O S (X L)

'I'hin iwlion diMtcribos XL »s the intenration of TLOTOS, PbLO IO S and PrLOIOS.
Also we demonstrate the special expressiveness afforded by XI. to performance concerns.

8.2.1 Introduction

Kxtended LOTOS (X L) is a formal specification laiiKuaffe based on LOTOS. In addi­
tion to the features that LO'LOS supports, XL also supports features for the formal
specification o f quantitative timinK. probabilistic and priority concerns.

XL is forme<l by integrating the individual extensions to I.OTOS: T I.OTOS (chapter 6).
PbLOTOS (chapter 7) and I’ rLOTOS (section 8.1).

8.2.2 T L O T O S 4 P b L O T O S fP r L O T O S ^ X L

I'l.OTOS. PbLOTOS and PrLOTOS may be used in isolation or in combination with
one another. We call the combination of all three Kxtended LO'I'OS (X I.).
Sections «..'S.l, 7.3.3 and 8.1.2 progressively define the syntactic extensions to LOTOS
r«*quire<l to support XL, While, sections (J.ft.3. 6.. .̂4, 7.3.3 and 8.1.3 pri>gressively
d*‘ftiie the semantic extensions to LO'I'OS require<l to support XL.
When integrate«) as XL. the interference between the 'FLOrOS, PbLOTOS an<l Pr­
LOTOS parts is minimal (and well define«!). The Pbl.O'LOS part of XL d«>es not
«lireclly interfere with interpr«>tations of 'I'LO'I'OS or PrLOTOS parts. ’! his is because
PbLO rOS is ««ssentially concerned with only the p-rhoirr operator (see section 7.3.3)
which do«*s not figure in the «lefinitions o f FLO LOS or PrLOTOS. Interference between
the TLO'FOS and PrI.OTOS parts d«»es not occur. PbLOTOS deals with the resolution
o f choice between possible events, arising from rhoier-rrprrssions. i'LO 'FOS deals with
tin* res«ilution o f choice between possible events, arising as a consequence «>f interleaving
o f parailrl-rrptTMMioun. FI.O'FOS must resolve choices between the interleaving «»rder
f>f events from paro//r/-rrprrssi«ris to ensure 'sensible interleaving* (see section 6.3.8).
PrLOTOS must resolve choices between mutually exclusive events within a rhoicf’
rrprtHHion in acc«>rdance with the priorities assigned to these events (see section 8.1.3).

8.2.3 A ll X L exAinple

Filis subsection demonstrates thè expressive flexibility of XL for the specification of
performance concerns. To do this we use an exaniple the specification o f a simple
vending machine. We sh«»w how the informal re«|ulrements for the vending machine.
es|>ecíally performance relate«) re<|uirements, can lie precisely and concisely captured in
a XL s|M*cification. We further explain the XL specification by means of synchronixing
finite State machines. Then we list the properties that we might wish a specification to
possess. and relate these properties to the XL vending machine example.

Ais«» see; sections fi.fi. I and fi.7 f«»r examples speciflc lo the specification of quantitative
timing concerns; sections 7.3.4 and 7.fi for examples speclftc to probabilistic concerns;

Bectionv 8.1.2 and 8.1.5 for exampl«i sperifir to priority concern*; and section* 5.3.6
and 5.4.1 for two larRO example* which Involve the specification o f quantitative timing,
probabilistic, priority, resource and functionality concerns.

0.2.3.1 The vending machine

'I’he informal requirement* for the vending machine are as follow*.

* The function o f the vending machine i* to accept a coin and then Í*»ue a chocolate
bar.

* The vending machine i* always willing to repeat this sequence.

* However, the vending machine is a little unreliable: 2% o f the time it will simply
not issue a chocolate bar.

* 'lb ensure that a hungry user does not have to wail too long for a chocolate bar,
the time interval between the vending machine accepting a coin and issuing a
chocolate bar is to be not more than 3 seconds.

* rhl* vending machine has two coin slots: a T I coin slot and a .50p coin slot. Only
one of iheM* coin* is ne<*<le<l tt> pay for a bar of chocolate. However, if the user
offers both types o f coin (by placing a T l coin In one slot and a 50p coin In the
other slot), the machine will gree<lily ch<x>se to accept the / I coin as payment,
giving no change.

he following X I. specificalitm forjnallzes these informal requirement*.

rhoc.bATi (• ...ta»ue rhocol*!^ b *r *)
f-'un<-lioMli(y[(-uin.lpuund.ruin.M>p,rhoc.bw.no.choc.b*r] (” ...rvpe*t *)

.jo.dkcK'.bAr; (* ...do not M«ur cKocolM« b*r *)
l-\iiwtlf>n*Uty(<^««-t|>ound,c»in.50p,choc.b*r^-<*oc.b*r) (• ...r«p«»t •)

«mIpriM- (” l-'un«'ti<H\«Uiy *)

(* } ’rub*blltBlic c4>iMlr*inli... ”)
proroM R<>li*bilily|(itu<'.b«r.no.rlM>r.bar] t No«sit ¡v

(* Wl% prtd i^ llty ai rhocoUt» b *r *)
rhcM'.bar;
H»-li*bili»y[<ho<-.h*r.no.c-bo«'.l>*r)

(-U.M1
(* 3% pr«>b*bllily » f imi c-h«M'»l*lr b *r *)
no.chor.bAri
K#li»hiliiy{'-h4»'-bM,no.rhuc.lMM']

«•ndpror (* Holi*bUlty *)

(* limint ronitrainl«... *)
pr«H-«>M riminflrt^n-lpound|r€»in.SOp.rhoc.b*r,i»o.cl»or-b«rl : BO«>xU ?■

(roin .lpoundOil ASAt': «>xU (tl) Q c-uin.&Op « i l ASAP; o x lK t l))
(* • roin wUhout d#Uy. rm-ordinc

lb* time xt wkirh • coin U x cc »p l^ •)
5^ «4-< «p t i l :Tim«Kort in

I (M>llnt*rv»l(lt.tl<f3))i
(* ...mxlM* c-htK-ulxl'tuw rexdy within 3 •M'amda *)

(■hua .iMw AHAPi (• ...xitd immwdixi^ly l»«r •)
yuxntUxtiv^rimlntiataln. I p<H* ltd.<€»in.M>p,«-h4>r. bxr.no. «•hoc. i»xr)

........ {w tF .y (ll)> i (• ...»»« .ha....Ut.'»MW i*.u^d •>
<4uxniitxtiwTimin»(*^»in.lp«Hind.toin.iM)p,rhcM-.l»xr.no.«K€M-.l>xr)

• Ntillcr ht»w XI. ronxlrurt» Nupp<»rt the HPparation o f funrlionallly, pn>bmblll»llc,
tiinitiK i»»<I priority ronrrrnx. Wn rould havr umhI a monolithir xtrurtuir. rhU
would havr rmultiH) in Hhortrr but Imn iindrrxtaiidablr Nprriflrati<»n text.

• The Hrliability proce«* captures the probabilistic requirements of the vending ma­
chine using the PbLOTOS language construct [* 0.98] (specifying the probability
of issuing a rhoc.bar). ('I'he unobservable no. r/jor. 6ar event is used to keep the
spfH'ification processes in step when no chocolate bar is issued.)

• 'I'he QuatUitatitH-Timing process captures the quantitative timing requirements of
the vending machine using a number of T IX)’rOS language constructs. O il is used
to establish ami record the time at which a coin is accepted. {sel/nlerea/(f 1 . 1 1 +
:i)) is used to specify the time at which a chocolate bar ought to be made available
to the environment. A S A P is used to specify that the vending machine is willing
to participate in observable events (i.e. interact with the user) as stnm as possible
(without introducing any unnecessary delay).

• I’he Prrrrdrncr process captures the priority requirentents of the vending ma­
chine using the PrI.OTOS language constructs # (1 .2) and # (l . l) (specifying
the priorities assigneil to roin. ¡pound and co in . 50p, respectively).

Sections S.3.6 and .̂ .4.1 discuss more detailed XL examples. The following subsection
explains details of the XL specification, using synchronizing finite state machines.

R.2.S.S An explanation using synchronizing finite state machines

Figure M.l explains the XL specification of the vending machine using synchronizing
finite state machines (FSMs). The synchronizing KSMs representation is strurture<l
to reflect the parenthesise<l /xim//c/-crprrssion structure o f the XL specification the
boxes in the figure represent the parentheses in the specification.
The FSMs synchronize on the transitions / I , choc and no.choc which are syn­
onyms for the XL events roin.SOp, roin. ¡pound, choc, bar and no.rhoc.bar. In one
sense the licit transitions are observable since we assume that the environment has the
same notion of time-progress as the system itself.

• hi the Hrliabtltly FSM, the probability transitions p(0.9H) and p(0.02) denote the
probabilities of taking the tw<i possible paths 'issue chocolate bar* and *do ntH
issue chocolate bar'.

• In the Quaniitatùv Timing FSM. a tick transition represents the passing o f 1
second of time. An i(rrady) transition indicates the moment after which the
vending machine makes a chocolate bar available. The FSM makes sure that,
if the vending machine offers a choctilate bar, then the chocolate bar will be
made available within 3 seconds of the vending machine accepting a coin. The
rhttc transition meurs when the user actually accepts the chocolate bar from
the machine. Notice that. In the FSM representation, we have not indicated the
ASAP urgency specified for the 50p, £ l and choc transitions. This urgency exists
in the XI. specification, but reflecting It in the FSM representation would require
the presentation of a lot of detailed ‘machinery*.

• In the Prrrrdrnrr FSM, we use the three outlined arrows and states to reflect
the XL mechanism responsible for establishing what coin combination is being
offere«! to the vending machine.

2fil

the Hike of readability, our description* o f these properties are not strictly formal. The
= rr ^ notation for event sequences was introduced in section 7.3.5.)

E ven tuality properties: properties that eventually will become true, ('onsider the
following trivial example from our vending machine specification:

VtndinfMacktnt ^ rvrntually coin, tfouni

l.e. the vending machine satisfies the property: the vending machine will eventu­
ally accept a £\ coin.

R e liab ility properties: properties that are true with a specified probability, lor
example:

VrndtnfMarhtnr ^ P (* r * o c .* «r^ | *cois. /f»o«nd=>) » Ü.98

i.e. the vending machine satisfies the property: the probability o f getting a choco­
late bar given the acceptance o f a «TI coin, is 0.9N.

Invariance/Recurrence properties: properties that are always true, or are true
infinitely often. For example:

VtndtniMacktnr ^ infinitely often ^cotn. ¡pounds

i.e. the vending machine satisfies the pro|>erty: a l\ coin will be accepted in­
finitely often.

P recedence properties: properties that specify the ordering of events. For example:

VrndtngMtickinr if both * r o t a . Ipomnd^ k *coin. .50p=> are offrrfMl by the user
thru x c o in . /pounds will occur

i.e. the vending machine satisfies the property: if both a T l and a .Mlp coin are
offeretl to the vending machine, the vending machine will accept the coin and
not accept the .50P coin.

R ea l-tim e properties: properties that will lM»come true within some specified time.
For example:

VrndinfMarkinr ^ mroia. ¡pound.rkor. kur̂ implies
clocktimr(«rAoc.4sr:^) - rlocktime<aceis. ¡pounds) S 3

i.e. the vending machine satisfies the property: if a chocolate bar is dispenser!, it
is dispenser! at a time not greater than .3 seconds after a coin was accepted.

Perform ance properties: pro|»erlle* that with a specified probabl!ity Irerrune true
within some s|>ecifleri time. For example:

8.2.4 Sum m ary

Thin sfK'tlon described Kxlended I.OTOS (X L) as the intef(ration of T LO IO S (chap­
ter 6), PbLOTOS (chapter 7) and l»rLOTOS (section 8.1).
We discussed how the interference between the TLOTOS, PbLOTOS and PrLOTOS
parts o f XI. is minimal. This allows any one o f these three parts to be studied or used
in isolation (as we have done in this thesis). Then we presented a simple example XL
specification. The example Illustrated how XL supports the syntactic and semantic
separation of functionality, quantitative timing, probabilistic and priority concerns in
the specification o f a system in which these concerns interwork. Also, the example
showed the directness of expression afforded by XL to quantitative timing, probabilistic
and priority concerns. (A large example of XL applle<l to a (IM-OSA system is given
in appendix II and explained in section 5.4.)

9.1 G enera l conclusion

ThU thesis constitutes a step in the evolution of distributed system speci­
fication methods that have both an architectural basis and a formal basis.

9.2 O vera ll sum m ary o f work

This section suniinarizes what we have accomplished in the thesis.

9.2.1 K ey research issues for the thesis

In chapters 1. 2 and 3 we overviewe<l the topics of distribute<l computing systems and
formal spis-ification languages. From these topics we selected (sections 2.4 and 3.5)
a number of key research issues for the thesis. The following subsections précis these
issues and their research importance.

9.2.1.1 A rch itectu re-d riven specification

I'he nature of distribute<i systems makes them complex to specify and design (sec­
tion 2.2). We have promoted the notion of arch itectu re-driven specification as
a prescription to help alleviate the difficulty o f distributee! system specification and
design. Architeelure-driven specification methods are advantage'ous because they ex­
ploit and re-use domain knowledge know how built up from a previous history of
solutions. This elomain knowleelge is «»ften embodiee! in the forms o f generic concepts,
general ingredients, template-components, etc. In section 2.3 we reviewcs! reference
architectures as examples o f existing work that support architecture-driven speci­
fication and design. Chapter 4 realise«! our intention to construct a reference infra­
structure to support the architecture-driven specification of <!lstribute<! systems. Our
infra structure is unique because it supports specification using Kxten«!ed I.OTOS, and
it places «Mjual emphasis on both pt rformaucr concerns and fuuciumaliiy concerns.

9.2.1.2 Perform ance specification

in distributed systems, the interplay between concurrency, asynchrtmous communi­
cation. spatial separation, etc. makes dealing with performance issues (such as time
critical communications. ade«]uate performance, probability o f failures, etc.) very diffi­
cult (chapter 2). This difficulty elevates performance issues to an importance not foumi
in non distrlbut«*«! systems. (onse«|iiently, specification languages for distributed sys­
tems need to have features for the expression of performance concerns. In the thesis,
we decide«! to use I.OTOS as our formal language f«»r distribute«! systems specificathm
(section 3.3). I.OTOS is g«H>d at expressing functhmality requirements but p«M>r at
expressing perf«irmance requirements. To reme«ly this, the thesis devel«»pe<! extensUtns
to I.OTOS ftjr the specification of the performance c«mcerns <jf quantitative timing
(chapter 6). probability (chapter 7) and priority (chapter H).

B.2.1.S Practical application

For any theoretical work to be o f use, it must have practical applications. The products
of the theoretical work in this thesis are the infra structure of architectural elements
(chapter I) and XF (chapters « . 7 and H). The case-study in chapter 5 demonstrates a
practical application o f this theoretical work.
The case-study in chapter li also fufills a more specific aspect of practical application:
the application of (Kxlende<l) FOTOS to the (MM-OSA case-study has contributed
to the existing body o f knowUnlge and experience in the use of LOTOS in particular
problem domains.

9.2.2 An infra-structure o f architectural elements

To support the notion o f architecture-driven specification, the thesis (chapter I) builds
an infra structure o f formalis«^! architectural concepts and components.

This infra-structure is create<i with specification in mind. Its structure is hierarchical
foundcKl uptm very Reneral principles fo r description, and rising to more specific

common arr/n'/friuro/ atmponents. XI. representations are suggested for architectural
elements; the higher level architectural elements are given graphical representations
that help a reader see at-a-glance the structure of a specification. XI. is use<l as the
formal language for repres<*nting architectural elements because it supports the specifi
cation of performance concerns. Architectural components are define<l for the specifica
tion o f performance aspects, and these performance components are Ireate«! as equals
with functionality and structuring compt>nents. I'he architectural components may
combined to create either constraint oriente<l or resource-oriented XI. specifications.

9.2.3 AppIicBtion o f (E x ten d ed) L O T O S to C 'lM -O S A

Chapter prewnted the CIM-OSA IIS (Computer Integrate«! Manufacturing Open
Systems Architecture Integrating Infrastructure) as a case-study o f architecture-driven
sp<*cification using XL.
(IM-OSA pnivefl interesting for two reasons. Firstly, (’ IM OSA contrasts with previous
application domains for the use «>f LOTOS: we found that (’ IM O SA is not a symmet­
ric, layere«! communications archltiu-ture such as OSI; and (’ IM-OSA is more applitul
and speciali*«*d than the very general 01)1* architecture. Secondly, the (’ IM O S A IIS
is a distribute<l computing system which includes lK>th functional and perf«»rmance re­
quirements. This ma«le (’ IM OSA a suitable candidate for testing the descriptive jM>wer
of the perfi>rmance features of XL.
In section .*).:! we showe«! how chapter 4’s cttmmon architrcturr mrnpiirirMisrould be used
to build a skeleton architecture for the IIS. Then, in section ft.4, we focussed on one part
<if this skeleton to show how the common architecture rompfnirfiis could be customixed,
and the perfiirmance features o f XL used, to specify the SF..Servlce. We found that XL
allowfMl quantitative timing, probabilistic and priority requirements to be expressed
and compose«! easily. Furthermore, the classification «>f architectural components in
section 4.4 pr«)vlde<! guidelines for structuring the (de)composition <»f the IIS. The

267

multinK XI. np«ific»tion» wi-rf cirganiz«! in term« of arrhltrctural fomponfnt«, rather
than solely in terms o f speeifiration language concepts. We found that the direct
reflection o f problem-domain structure in the speciflcation made It easier to understand
and navigate through the formal specification.

9.2.4 E x ten s io n » t o th e L O T O S language

The thesis develops Extended LO TO S (X L) — a formal, I.OTOS based, language
for the specification o f distributed systems. XI. is defined to be the integration of the
three extensions to I.O'I OS we call T L O T O S , P b L O T O S and P rL O T O S . The work
constituting these extensions is summarized in the following three subsections.

9.2.4.1 Extension» to L O TO S for quantita tive tim ing

In chapter (i we developed TI.O TOS; I.O'I OS enhanced for the formal specification of
quantitative timing cunrernii.
We exemplified the inadequarie» o f LOTOS with respect to the »pecifiratioii o f quantita­
tive timing concerns (section (>.2). ’I'hen we investigated, using a derivative of arc-timed
Petri-Nets, the language facilities neede<l for the specification of timing requirements
(section «.:»). A set o f quantitative lime features were distilletl from the findings o f this
investigation, ami a proposal was made to incorporate these into an extende<l version of
LO rOS we calliHl TLO TOS (section (>.5). Tl-OTOS was contrasted with other existing
proposals in this area and foiiml tiseful (section i i . i).
I'he syntax and semantics of TLOTOS were defineil as extensions o f the LO I'OS syntax
and semantics (section TLOTOS semantics define a global, discrete clock which
can be used to force events to occur at specific limes (using muitt liming), and to
measure the intervals betw«*n event occurrences. I’LO IO S intrcMiuces iimr-pi>/irics:
ASAP ('asB(M)n as possible* corresponding to 'maximal progress semantics’) and ALAP
(‘as late as possible) (section 6.3.9).
Section <>.6 hM>ked at ways of mapping LLO rOS specifications to LO IO S . No satis-
fact(»ry aulonialic means for doing this could l>e found. Nevertheless, this work prove<l
useful as a basis for manually describing quantitative timing concerns in Standard IX)
TOS.
Appendix CJ extends the definitions of the LOTOS testing relations, and shows that ex-
tende<l versions <»f the testing relations yield sensible and intuitive results when applie<l
to 'ri.O rOS specifications.

B.2.4.2 Extensions to LO TO S for probability

In chapter 7 we developed Pbl.OTOS: LO LOS enhanced for the formal specification
of probabilistic concerns.
Wi- uxtvndpil thp dvflnitiuii of l.'I'S» (l.abollod rr«n»ition Syxtrm») to d.finr N l’ I.TS»
(Non drlrmilnixlir «nd rrob»hlli»lir I,'l S »)»nd I’ LI'S« (I’ robabilUtir I.TSt) (»wtlon 7.3).
N I' LI'S» »rn L'I'S« whlrh m»y rontnin both non d»t»rmlnl«tir and probablli»lir Iran«!
tion». I’ I.TS« ara LTS« whlrh contain only probablll»tlr tranaltlon».

NI* LTSs were used u a iieniantir model for PbLOTOS (aection 7.3.3). PbLOTOS
ban a probabilifltir choice operator for specifying probability distributions over a set of
internal probability transitions.
We define<l the pro6a6i7i;afsori pre-order (pro6) as a formal implementation relation
between NP-LTSs (section 7.4). “ Probabilization” of an NP-LTS involves replacing
non-deterministic transitions by probabilistic transitions. In this way, we can consider
that an NP-I/l'S S describes a set o f implementations (/|/ pro6 S) (P -lTSs).
We showed how to characterize the set of probabilistic implementations {/|/ prob 5)
as a set o f simultaneous equations, where each equation describes the probability of
an observable trace of S. The /rre-<rrms within the simultaneous equations generate
the sc/ o f probabilistic implementations. 'I hese free-terms are used to range over the
possible probabilizations of non-determinislic branches in S. We defined an algorithm
S inU 'ha r which, given an NP-I/I'S, generates a characterizing set of simultaneous equa­
tions (section 7.4.7).
In contrast to other probabilistic process algebras, we moved the emphasis away from
the semantics of the PbLOTOS language, and instead pla< ed many of the ‘probabilistic
concepts’ in the associate<l theory o f relations. The consequence o f this is that the
probabilistic aspects of the I’ bLO rOS semantics are simpler than the probabilistic
aspects of the semantics of other process algebra, but the PbLO'I'OS theory for relations
is consequently more complex.
We developed (se< tion 7.5) a simple statistical testing framework ft>r establishing whether
a probabilistic implemeiitalioii (a P LTS) is a valid implementation o f a probabilistic
specification (an Nl* LTS) according to the probabilization relation. We investigate«!
if the “copying*' ami “minimum probability" assumptions could be use«! as a basis for
inter|>reting test observations and making hypothesis decisions about probabilistic sys­
tems. However, we decided that these assumptions were unrealistic and abandoned
them in favour of an establish«*«! general purp«>se statistical Inference method (\ *). We
considered PbLO'LOS specifications t«> be mathematical objects, and their final real-
izati«>ns t«> be real w«>rld «>bjects. Then we claimed t«»tal c«»nfidence in a hyp(»thesis
(l(*ciHi«>n abotit the validity «>f a relati«ui between tw«> «>bjects Q and /* If these are
PbLO rOS specifi«atUins (I.e. objects in the mathematical world). H«iwever. if at least
one o f thes«* «ibjects is a real w«irl«l implementation, then we ran have only sotne level
«>f statistical c«inftdenre in «>ur hyp«>theslB decisl«»n,

9.2.4.S Extensions to LO TO S for prlority

In section H.l we devel«>pe«l PrLO TOS: LOTOS enhanre«! for the formal specifícation
of pric»rity concerns.
We define«! a prioritized event t«i have a priority-riaM» and priarHy-t>a¡ur. Where there
is a chídre between events fr«>m the same priority-rtattM. the event wlth the highest
prionlif-fo/ur will be flred. A rh«dce between events fr«>m dlfferent prionfy-r/oasrs is
rationalized to a n«»n «leterministir cholee between the events wlth the highest prionty-
tHilur In thelr respective priority-rlaii». A cholee between unpri«>rltlzed events and
pri«>ritized events glves rise l«» non-determlnlstlc rh«>lce. Prl«)ritlzed event «»ffers may
synrhmnize wilh unprloritlzed event offers, thus pri«>rltlzlng these unprUiritlzed event

offpr» through w h*l wo have rallod a««oriafion.

9.3 F u tu re work

Wo foroHoo two main thomo« of fuluro work: tho dovolopmont o f additional roncopt*
and thoorios, and tho dovelopinont o f wiftwaro support tools.
PoBsiblUtios exist for dofining now XL language constructs. For Instance, now set oper­
ators (o.g. urtyfftinrludinglntrrtHil, nrtNoth'q) could be Invented for dofining inrquality
over sots o f 7'imc.Vori, in addition to the rquality operators (e.g. nrtintrrval, aetKQ)
described in section 6.S. Now inequality operators would provide the power to express
tho quantitative times at which events are not permitted to occur. In a similar vein,
now relational operators (e.g. (< p], [< p], (> /i). (> p)) could be defined for Pbl.O fOS,
in addition to tho existing (» p) operator (section 7.3.3). Using these new relational
operators, we could express probability re<|uirements such as: ‘message delivery will be
ai Irant 9K% reliable', or 'the probability o f failure will bo Iraa than or rqual to 0.05’ .
(’ompletely new formal relations could be invented, or existing ones extended, to sup­
port XL development. Alreatiy, the thesis has invented (based on the notion of probabi-
lization) a new implomontation relation for PbLO'I'OS (section 7.4), and has extended
the existing L () FOS testing relations for TLO'I'OS (appendix (1).

A project known as I'OPK ' (rOPO'J) is currently developing verification methods and
Uk >1s for Quality o f Service (QoS) specification. I 'O PK ' rowarch includes investigating
tho formal lr«*atmont of time and probability in behaviour tnodols (including I.O IDS).
This work is still at an early stage, but it will be Interesting to sec- how this work
compares with tho work on time and probability described in this thesis.
Chapter I paves tho way for tho creation <»f a comploto taxonomy o f generic architectural
components for dlstributo<i system specification ami design, (’hapter 4 has laid tho
foundation for this taxonomy by dofining. and assigning XL ropresontallons to. tho
generic architectural contponenls (such as the (trncouL //70and rrsourrr luauagnnnit
comptmtnta in figure 4.12). Future work could assemble and prt»vlde XL templates for a
collection <»f im»ro specific cotnponents (such as the 01)1* Irudcr, rtmjiguratum managrr,
etc.).
The aim o f recent 01)1* wt»rk (IS093a. IS093b] Is to give LOTOS definitions to archi­
tectural concepts f»>r distribute«! systems. It would be useful t«i analyse these emerging
01)1* LOTOS «lefinitions and, if |M»slble. align the architectural concepts and XL defi­
nitions ileveloped f«>r <’ IM OSA with the emerging 01)1* I.O FOS definitions. Aligning
CIM OSA architectural definitions with those «»f 01)1» (possibly basing the higher level
('IM OSA concepts upon the 01)1* basic m«Hlelling concepts) would make ('IM OSA
systems Instances of ODI* systems, and allow CIM OSA to take advantage <»f 01)1»
work.
In addition to developing the concepts and theories described above, a second theme
(»f future work is the development «>f software support tools. We visualize the develop­
ment of t«M»ls that: support architecture-driven specification, through the rule-guided
assembly o f pre designed domain specific compcments; are visually-oriented, allowing
their users to w«»rk in a graphical mHation; and have a f«>rmal basis, generating XL code

Bibliography

SaiUHon Aliramsky. Obnervatioi» equivaleiicp an a tcHtinR equivalence. Thro-
rrtical ('om putrr .S'rirnrr, .V)(2,3):225 241, 19H7.

Heather Alexander and Valerie M. Jones. Softwnrr Ornign and Tmtotyping
uttiug me t<K). Prentice-Hall. New Jersey, 19H9.

H. Alderden. (‘OOPKR the compositional C€>nstruction of a canonical
tester. In (VuoH9j, pages 13 IH, 1990.

ANSA, ANSA: Functional specification manual (release 1). Technical Report
FS.37.1, Advancetl Network«! Systems Architecture, Architecture Projects
Managmeiil Limite<l. Poseidon House, Castle Park, i AMHRIDitK, U.K..
May 19K().

[ANSK9a] ANSA. ANSA: An engineer’s intrcxluction t«> the architecture. Technical
Report TK.03.02. Advanced Network«! Systems Architecture. Architecture
Projei'ts Managment Limited. Poseidon House, ('a s t le Park, (’AMHRIIKJK.
F.K.. November 19K9.

[ANSH9b] ANSA. Tht A/VSA Hrfrrriirr Manual. Architecture Projects Managment
Limited, P«Hteidon Hotise, (’astle Park, (’A M H R II)t lF , P.K., 19H9.

Arturo Ascorra and Juan C^uemada. Proposal for the introducth>n o f lime
in LOTOS. Technical Report Ix>/WP3/T3.3/UPM/N(MM.3/V01. LOTO-
SPHKRK (KSPRi r 2304). January lt»90.

|HAI’ MN3] M. Hen Ari, A. Pimeli, and Z. Manna. The temporal logic o f branching
time. Acta /n/., 20:207 220. 19H3.

Howard Harringer. Pp and down the temporal way. Thr (\ttnputrr Journal,
30(2):I34 14M. 19K7.

F. P. M, Hiemans and P. Iflonk. On the formal spcH-iflcation and verification
o f (’ IM architecture using LOTOS. ('ftrnputorH in induMry, 7:491 .̂ 04, 19H0.

(HdMSK9l P. Bohm, J. de Meer. and I*. Schoo. Perlon peraistenry checker for data type
definitions. In [HSV89j, pages 'J85 302, 1989.

[BoeH9] Dirk Hoekman. (IM-OSA: Computer integrated manufacturing — open ays-
tema architecture, hit. Joum. ('om putrr Intrgmtrd Manufacturing, 2(2):94
105,1989.

[Bie89] F. V. M. BiemaiiB. A Hrfrrrncc Model fo r Manufacturing IHanniug and
Control. I*hl) thesis. University o f Twente, NL, 1989.

[BIM88] Bard BUmmu, Soriii Istrail, and All>ert R. Meyer. Bisimulation can’ t be
traced: Preliminary report. In Fifteenth Annual ACM Sympoatum on Prin-
ciplea of Programming ¡.anguagea, San Diego, ('alifom ia, pages 229 239,
1988.

(BJ78) I). Bjoner and <’ . B. Jones. The Vienna De\yelopment Method; The Meta-
Langauge, volume 01 of Lecture Notea in ('omputer .SVienre. Springer-Verlag,
1978.

[BK84] Howard Barringer and Rudolph Kuiper. Hierarchical development o f con­
current systems in a temporal logic framework. .Vemiriar « « ('oncurrrncy.
¡.ectun Notea in Computer .SVienre, 120:35 61, 1981.

[BKP81] Howard Barringer, Rudolph Kuijier, and A. Pnueli. Now you may compose
temporal logic specifications. In !6th AC'M T ()(\ pages 51 63. 198-1.

[BKP8.5] Howard Barringer. Rudolph Kuiper. and A. Pnueli, A compositional ap
proarh to a ('S P like language. In /^mr. IF ll* H’orAriny ('o n f : The Hole of
/46s/mr/ Moeiela in Informatum Proceaaing, Vienna, 1985.

rommaso Bolognesi and F. Lucidi. I.OTOS like process algebras with urgent
or timer! interactions. In fPH9lJ, pages 255 270, 1991.

Stewart Black. Objects and I.OTOS, Technical report, Hewlett-Packard
Faboratories, Stoke (iifford, Bristol, BS12 6QZ. Kngland, Great Britain.
October 1989.

[BM89] Bard HlcKim and Albert R, Meyer. A Hemark on «isiniu/a/i«n betun-rn Prob-
a6i7ishr Prrtrraaea, volume 363 o f Ucture Notea in (tnnputer Science (Logic
at liotik 'M9). iirtty. M. and Tories, C. H. (eda), pages 26 40. 1989.

[BN84] Andrew I). Hirrell and Bruce Jay Nelson, Implementing remote procedure
calls. AC'M I'ranaucttona on ('omputer Syatema,‘i{\y.'A9 59, February 1984.

(BN088) David W. Bustard, M. I'. Norris, and R. A. Orr. A pictorial approach to the
animation <»f process oriented formal speclflcallons, Soflu*are Fnginrrrtng
Jouma/, ,1(4):I14 118, July 1988.

Tommaiio HoU>Rn<*si. l imed LOTOS: Which way to go? In Hritinh Trlerom
firitiiih ('om putrr Soriety/FACS (¡roup Meeting on LO TO S ¡Attuion,

September 1090.

(irady Hooch. Softu>are Engineering with Ada. ('ummingn-Benjamin, »econd
edition, 19H7.

Kd HrinkMua. On the Design o f Frtended LOTOS. PhD thesis, Uni. of
Twente, Nlv, 19HH.

Kd BrinkNina. A theory for the derivation of tests. In Froc. Fight !nt.
Symp. on i*nttocol Sprrificatiott, Jesting attd V'erifiration, Atlantic ('ity, New
Jersey, VSA, 19KH.

Kd BrinkKina. W lial is the method in formal methods? In [FH9IJ, pages
50, 1991.

II. J. Burkhardt and S. Schindler. Structuring principles o f the communica­
tion architecture o f open systems a systematic approach. 19H1.

Kd Brinksma and (Jiuseppc* Scfdlo. Formal notions of implementation and
conformance in LO TOS. Technical report, Twente University of Technology,
NL. December 19K0.

Kd Brinksma. CJiuseppe Scollo, and (’hris A. Vissers, editors. Fmr. o f the 9th
Int. Symp. ott Frtttttt'td Spcvifivutiitn. Trntiug and Verification, Amsterdam,
19N9. North-llollHiKl.

Stewart Black and Patrick Viollet. (IM OSA: Activity control service de­
scription in LOTOS. Technical reptirt, Hewlett-Packard Laboratories, Fliton
Road. Stoke (Jlfford, Bristol BS12 bQ/. U.K.. October 19H9.

(BWN+MH) David W. Bustard. Adam V. Winstanley. M. T. Norris. K. A. Orr, and
S. Patel, (iraphicai views o f process-oriented specifications. In (I'urHHa),
pages H.1 156, September 19HH.

(5. M. (’larke and D, (’cx>ke. A Hasic Course m Statistics. Kdward Arnold,
second e<lition, 19K:1,

[(’(’ iMMa] (' ('IT T . Abstract service definition conventions. International (’onsullative
('ommittee on 'Telegraphy an<l 'Telephony, 19KH. Recommendation X.107.

[(’('iKMb] (' (’ I 'rT. Directory system, 19MM. X .500 series Reiommendations.

[CClMHcj (’CTT'T. Message handling systems. 19MK. X.IIH) series Recommendations.

[(‘('I90a) ('(TT 'T . DAFi Design melhi»d. Technical Report J'T(‘ 1/S<'21 W(i7/N22.'l.
international Consultative Committee on Telegraphy and Telephony, 1990.

(<’(’ I90rl (' (' I T T Q19/VII. DAK: InterprMing modellinR concepii in LOTOS. Tech­
nical Reporl W(i7/N225, International ('onaultative ('om m ittee on Telegra­
phy and 'I'elophoney, li>9().

(' (’ ITT . Specification and description language. International (’onsultative
('ommiltee on Telegraphy and Telephony, 1992. Recommendation Z.IOO.

(ieorge F. ('oulouris and Jean Dollimore. Dintributrd .S’yairm«/ ('oncepU and
¡hnign. International (’ompuler Science Serieii. Addinon Wealey, 19HH.

Jeaii-Kierre (’ourtiat and Joao Coelho da ('osta. A LO I OS baaed calculus
with true concurrency semantics. In ¡PH 9tj, pages .WS 574, 1991.

('IM O SA. FHIl series on “ business services complex (B)" . Technical Reporl
('IM -OSA (’5-4XXX Series, Wl*-H, C IM O SA , Kapril 6KK, 1989.

(’ IM O SA . KRH series on “system wide exchange (SK)” . Technical Reporl
C IM O SA (’5 12xx Series, Wl*-J, C IM O SA , Ksprit 6HM. 1989.

C IM O SA. Open Syntrm Arrhitecturr fo r C IM . Number ISBN 3-.540-52058-
9. Springer-Verlag, 1989.

(’ IM OSA. ArchitfK’lure description (’ IM-OSA AD 1.1. lechnical Reptirt
R0:i91/1. (’ IM O SA . Ksprit B8H, 1990.

CIM OSA. KHB series on “machine front end (M K)". lechnical Reporl
C IM O SA ('5-:i:ixx Series. W l’ -C, C IM O SA , Kspril 688, 19<M).

(’ IM OSA. KHB series on “ system wide data (S I))" . Technical Report (’ IM
OSA (’ .5-21XX Series, W P K. (’ IM-OSA. Ksprit 688, I9ÌH).

C IM O SA. Management overview (’ IM-OSA AD l . l . Technical Report
K0;i91/0, (’ IM OSA, Ksprit 6«H. 1990.

CIM OSA. System wide capability o f the IIS services. Technical Report
C IM O SA OI 1H)02, Wl* 11. CIM OSA, Ksprit 688. 19ÌM).

Robert (J. (’lark and Valerie M. Jones. Use of LOTOS in the formal devel­
opment of an OSI protocol, ('om putrr (’ommuriirations. 1.5(2):86 92. March
1992.

Robert (5. Clark. Using LO TOS in the object base<l development of embed
dell systems. In [H('90j, pages 307 319, 1990.

John M. Carroll and Thomas I*. Moran. InlriMluclion to this special issue
on design rationale. //umfl»i*<”«mpuirr /nirmriiori. 6(3fr4)tl97 2(M), 1991.

[('PWH6] H. (*oh<*n, 1). H. Pitt, »nd J. C. P. Woodcock. The importance of time in
the specification o f OSI protocol»: An overview and brief survey of the for­
malism». Technical Report ISSN 0262-5369, National Physical Laboratory,
TeddiiiKton, Middlesex. T W U OLW, U.K., November 19K6.

[(’ RSH9) Klspeth ('u»ack, Steve Rudkin, and (’hris Smith. An object-oriented inter­
pretation of LO rO S. Technical report. British Telecom Research & Tech­
nology, St. Vincent House, 1, (’utler Street, Ipswich, IP l IP X , United Kin*-
dom., October 19H9.

Luca (ardelli and Peter Winner. On understanding types, data abstrac­
tion, and polymorphism. ACM ('omputing Surxvy»^ 17(4):471 522, Decem­
ber 19H.5,

R. J. (’ypser. i'ommuriirahoos Architrcturr fo r Distributed Systems.
Systems Programming Series. Addison-Wesley, first edition. 1978.

[CYYW 89] T. Y. Cheung. Y. C. Ye, X. Ye. and C. Q. Wang. UO LOTOS: A syn-
tax/syslem for representing, editing and translating graphical LO IOS. In
[VuoH9j, pages 31 36, 1989.

N. M. Dowiiie and R. W. Heath. Hasic .S'iaiisiiro/ Methods. Harper k Row
Publishers, ihiril edition, 1970.

M. Diaz. Kormal «lescriplion techniques bas4*d on state approaches.
FORrK/91, Forth International (‘onference on: Formal Description Tech
niques, 1991. (tutorial).

[FH86] K. A. Kmerson and J. Y. Halperm. “ sometimes" and “not never" revisited.
Joum. ArA/, 33(1):1M 178, January 1986.

H. Khrig and H. Mahr. AMf»rfomr«io/s o/A/gr6niir /, volume 6
of h A T ('S Monographs on Theoretical (om puter Science, Hrtiurr. W. and
Ho:enbtrg. (!. and .Salomaa, A. (eds). Springer Verlag. 1985.

Josi Manuel Martin Kspinosa, Jm^ Miguel Robles Roman, and Luis Fuertes
Prieto, (’oncurrent modelling in LOTOS as a solution to real time problems.
In (QMV90), 19iM).

F.SPRir. Computer integrated manufacturing ((' IM). In Ksprit: The firs t
Dhast: rntgrrss and Hesuits 19H6. ISBN 92 825 6916 0, Luxemburg: Office
for Pnblicatbms o f the Kuropean Communities. 1987.

KSPHi r. Computer integrated manufacturing (C IM). In f'.urttpran Strategic
Programme fo r He search and Drt>etopmrnt in Information Technology. I9f17
Annual Hepitrt. ISBN 92 825-83791-1. Luxemburg: Office for Publications of
the Kuropean (’ommunitles, 1988.

David Free*tono and S. S. Aujia. Specifying ROSE in LOTOS. In ¡TurSSa],
pages 231 245, 19KH.

William Keller. An Introduction to Probability Theory and Its Applications,
volume 1. John WUey &r Sons, Inc., third edition, I96H.

Alessandro Kantechi, Stefania Gnesi, and i\ Laneve. An expressive teniporal
logic for basic I.O'I'OS. In (QMV90}, pages 261 276, 1990.

Alessandro Kantechi, Stefania (inesi, and Gianiuca Mazzarini. How expres­
sive are lt)los behaviour expressions? In [QMVSO], pages 17 32, 1990.

(oUn J. Kidge. A I.OTOS interpreter for simulating real-time behaviour. In
(QMV90J, 1990.

(olin J. Kidge. Process algebra traces augmented with causal relationships.
In [PH9I}, pages .527 541, 1992.

J. Paul Gibson. Formal Object Oriented Dewlopment of Software Systems
usiriff LOTOS. PhD thesis, DnI. of Stirling, Scotland, 1993.

Al«*ssandro Giacalone, rh i- (’hang Jou, and Scott A. Smolka. Algebraic rea­
soning for pmbabilistic concurrent systems. In M. Hroy and C\ H. Jones,
iHlItors, / W , o f tht IF IP Working (intup i.t/ g .9 Working rofi/rrr»irc on
Pmgrtwtmittg ('(tneepts and Methods. Sea o f lia lile i, Israel, pages 44,1 45M.
Elsevier Science Publishers H .V. (N orth Holland), 191H).

Keinhard Gotzhein. Open Distributed Systems: On (oncepts. Methods, and
Design from a Letgtcal Point «/ V'iru’. PhD thesis. Uni. o f Hamburg, 1992.

1 I). Gabbay, A. Pnuell, S. Shelah, and J. Stavi. The temporal analysis of
fairness. In 7th A ('M PO PL, pages 163 173, 19H0.

A, Goldberg and I). Hobson. Smalltalk-HO: The Language and its Implemeti’
tation. Addis«>n-Wesley, 19H3.

Kaymonde Guindon. Knowledge exploited by experts during s<jflware system
design. Inte rtialional Jeeurrtal o f A/ar»-,V/ar/iir»f Studies, ,33(3):279 ,104, 1990.

Kred Halsall. Data ('ennmunicalions. Computer SetuHteks and OSI. Addison
Wesley, second erlithin, 19KK.

Alan G. Hamilton. I'he Pretfessiemal Prttgrammers (,'uide to Prtdog. Pitman,
I9K9.

Hans llansson. Modelling timeouts and unreliable media with a timed prob
abilistic calculus. In fPH9lJ, pages 67 M2. IIMM).

J. J. M. HtKJinan and William P. de Ri>ever. Design and verification in real­
time distributed computing: an introduction to compositional methods. In
proceedings o f the 9th IF IP W (i 6 . 1 Int. Symp. on Protocol Specification,
Testing, and Verification. (F'ditetrs: Fd Hrinksma. diseppe .Vroo/o, ('hris A.
Vissersj, North-Hedland, I9M9.

277

HaiiK IlajiRson and Hongl Jonsson. A fraini'work for reasoning about time
and reliability. In /'ror. tOth IKEK Heal-Time Sÿêtrma Symp., Santa Monica,
pages 102 111. (’omputer Sor. Press, 19H9.

Hans Haiissoii and Hengt Jonsson. A calculus for communicating systems
with tin>e and probabilities. In / W . l lth IEEE Hral-Timr Syatema Symp.,
Oriando Florida, pages 27K 287. (’ompuler Soc. PrwB, 1990.

Matthew llennessy and Robin Milner. On Obarn^ing Nondrtrrminiam and
('onrurrrncy, volume 85 of Ijccturr Notra in Computer Scirnct (Automata,
i,anguagra and programming), dr Ifakkrr, J. H'. and non Lrruwrn, J. (rda),
pages 299 :I09. 1980.

Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminisin
and concurrency. Journal o f the Aaaociation for ('omputing Machinery,
;ï2U):I:17 Ifil.January 198.5.

H. T. Hailpern and S. S. Owicki. Modular verification of computer commu­
nication protocols. IEEE I'rana. Comma., 31(1):.56 68, 198.).

(’ . A. R. Hoare. Notes on communicating sequential processes. Technical
Report Technical Monograph PR(i-33, Oxford llni. (om puting I.aboratory,
August 1983.

('. A. H. Hoare. (’omrnunira/ifip .SVyurniia/ Procraara. i*rentice-Hall Inter­
national. KttglewiKMl Cliffs, New Jersey. 198.5.

Dieter Hogrefe. (’onformance testing base<i on formal methods. In [QM \ 90),
pages 207 222, 1990.

John K. Hoperoft and Jeffery 1). llllman. Introduction to Automata Theory,
Tanguagta, and (omputation. Addison-Wesley Publishing (ompany, 1979.

ISO. Specification for computer programming language pascal. Internationa]
Organisation for Standardization, 1982. 718.5.

ISO. Information processing systems open systems interconnection basic
reference m<»del. International Organization for Standardization, 1984. 7498.

ISO. Infiirmation pri»cessing systems text and office systems distributed
office-application iimdel. part I: (îeneral model. International Organization
for Standardization, March 19HH. lSO/IK(’ JT('1/S('18/W(14 N86.5.

ISO. Inftirmatlon processing systen»s text and «>ffice systems distributed-
office application model, part 2: Reference«! data transfer. International
Organization fiir Standardization, March 1988. ISO/IK(’ J r (* l/ S (’ 18/W(»4
N866.

(ISOH9b) ISO. Information procesdinR systems open systems interconnection LO-
rOS a formal description technique based on the temporal ordering of
observational behaviour. International Organization for Standardization,
19H9. HH07.

(lSOH9c] ISO. Working document on topic 4.1 structures and functions. In­
ternational Organization for Standardization, December 19H9. lSO/IK(
JT('1/Sr21 N40r2.

(IS0K9d) ISO. Working document on topic 6.1 modelling techniques and their use in
01)1*. International Organization for Standardization. May 19K9. ISO/IK('
J T (’ l/Sr21/WC;7.

|lSOH9e) ISO. Working document on topic K.l draft basic reference model o f open
distribute<l processing part ii. International Organization for Standardiza­
tion, December 19M9. ISO/IK(' JT(*1/S(’21 N402fi.

|lSO90a] ISO. Information processing systems open systems interconnection formal
description in LOTOS of the connection-oriented transport service. Interna­
tional Organization for Standardization, lOiH). 'I'R 10023.

(ISOOOb) ISO, hift)rmatitm pr<Kessing systems open systems interconnection for­
mal description In LOTOS of the connection oriented transport protocol.
International Organization for Standardization, HMM). 'I'R 10024.

[ISOOOc] ISO. Information processing systems open systems interconnection formal
description in LOTOS of the connection-oriented session service. Interna­
tional Organization for Standardization, 1990. 1 H 9.̂ 71.

[ISOOOd] ISO. Information processing systems open systems interconnection formal
description in LO LOS of the conneclionorlented session protocol. Interna­
tional Organization for Standardization, 1990.

[IS09I] ISO. Information processing systems open systems interconnection guide­
lines for the application o f KSTKLLK, LOTOS, and SDL. Technical report.
International Organization for Standardization, 1991. TH 10167, Kenneth
J. Turner (e<l).

|lS092a] ISO. LO rOS specification of the trader. International Organization for
Standardization, 1992. ISO/IKC J'r(M/SC'21/W(i7 N74.'l Annex (¡.

[IS092I)] ISO. Dse of formal specification techniques for 01)1». International Organi
zation for Standardization, 1992. ISO/IK(' J 'rC l/S ('2 l/W (»7 N7M.

(IS093a) ISO. Draft 01)1* architectural semantics using LOTOS. International Or
ganization for Standardization, 1993. IS0/IK (’ JT(M /S(’21/W(57. Richard
Sinott (ed).

|IS093h] ISO. Draft 01)1* architectural semantics using Z. International Organiza
tion for Standardization, 1993. ISO/IK<’ JT<M/S(’21/W(17, Richard Sinott
(ed).

[IS093r] ISO. Draft answer to question Q1/4H.6 * E-LOTOS - proposed extensions to
LOTOS. International Organization for Standardization, SC21 W G l, June
1993.

(JarK3l

[JHDK9)

M. A. Jackson. Syntrm Dmign. Prentice-Hall, 19H3.

Albert Jones, Edward Harkmeyer, and Wayne Davis. Issues in the design
and implementation o f a system architecture for computer integrateci man­
ufacturing. Int. J. ('om putrr ¡utrgratrd Manufacturing, 2(2):6ft 76, 19H9.

Valerie M. Jones and Robert (i. ('lark. LOTOS specification o f the OSI <‘('R
protocol. Esprit Project 2304, ('ommission o f the European ('ommunities,
Hrussels, 1990. LOTOSPHERE, I^/WP3/T3.1/DST/N0003/V0-I.

S. (5. Johnson. SPIDER service and protocol interactive development
environment. In /7urii/iay. pages 67 71, 19H9.

James W'. Kay. Statistics lecture notes. Dept, o f Mathematics, Uni. of
Stirling. Scotland. 1993.

Ed Knepley and Ri>bert Platt. Moduta-g Programming. Reston Publishing
(’ompaiiy, Inc., Reston. Virginia., lOK.'i.

Leslie I.amport. Proving the correctness of multi process programs. IPh'h'.
'i'mntiactionM ofi Soft. A.’np., SE-3(2):21 37. March 1977.

Leslie Lamport. Time, clocks, and the ordering o f events in a distribute<l
system, ('orntnunirattonn of the AC'A/. 2l(7):^5K .'SO.'S, July 197H.

Leslie Lamport, ‘sojnetime’ is sometimes ‘not never’ . In A tutorial on thr
7Vfii/j«fti/ Lopic o f in /*ror. o f thr 1th Ann. .S'yrnp. on Principlrn
o f /'rriprnrMrninp l.onguagrit (AC'SI .S7(»Ai’7’-.S’/(i/*/.A/Vy, January 19K0.

Leslie Lamport. What ginn! is temporal logic. In /n Prttc. o f I t 'l l * ('onf. on
Ittformalion Prorrinfittg ¡BUS, pages 657 66K. North-Holland, 19M3.

C*uy liwluc. On thr Holt of Implementation Helationn in the De/tign of !)%»•
trihutrd Syntrmn uaing LOTOS. PhD thesis, Uni. i>f Lii^e, 1990.

<tuy Leduc. ('onfiiriiiance relation, associated equivalence, and minimum
canonical tester in LOTOS. Technical report. Università de Li^ge, August
1991.

<iuy Leduc. An upward compatible timed extension to LO TOS. In (l*H9IJ,
pages 223 2.’)K, 1991.

Peter K. Linington. Why OSI? ('ornputrr Srtworku and ISD S Sy/ttem», 17(4
hf 5):2H7 2fM). Oclol>er 19K9.

Jinta« Lee and Kum-Yew L&i. W hal’i in design rationale? Hutuan-C'omputfr
/fitrrarhori, 6(3J^4):251 2K0, 1991.

[LOHFKK] L. Logrippo. A. Obaid, J. P. Briand, and M. C. Fehri. An interpreter for
I.OTOS, a specification language for distribut€*d systems. Softwarr - Practicr
and h'Tprrirnce, 1H(4);36K 3M5, April 19HH.

H. W. I.ampHon, M. Paul, and li. J. Siegert, editors, ¡hntributrd Syëtrmê
AfThitrrturr aud Implrmrutation. Springer-Verlag, second edition, 19H1.

Kim (5. Larsen and Arne Skou. Bisimulation through probabilistic testing.
In .Sii-/cc«M Annual ACM Sympoiiium on Principlfê o f l*rogmmming l^n-
guagtH, Autitin. Trratt, pages 344 3.V2, 19K9.

A. K. Marshall. Introduction to I^OTOS ttMils. In [vh \ ¡)H9}. North-llollaiid,
19N9.

Mascot Suppliers AsstKiation, ('omputer Standards Section, Room L303,
Royal Signals and Radar Kstablishment, St. Andrews Rd.. Malvern, Worces­
ter, Kngland. Thf Official HandbtMtk of MAS('OT,\yccemhvT 19K0.

Thomas Mayr. Specification o f object orientwl systems in LOTOS. Forma/
Dritcrtption Trrhnigurm, 107 119, 19H9.

[MBH90| Ashley M c(’lenaghan, Daniel Boisson, and Stewart Black. LOTOS specifica­
tion of the r iM O SA IIS SI)-Servlce-l)eflnltloii. Technical report, <’ IM-OSA,
Ksprit ftHK. 19‘M).

[M(*93] Ana M. D. Moreira and Robert CÎ. Clark. Dsing rigorous object-oriented
analysis, lechnical Report TR 1 11. Department of (’omputing Science and
Mathematics, I'niversily o f Stirling, Stirling. Scotland., August 1993,

(M c(’90al Ashley Mcnenaghan. Aspects of the formal specification o f the (’ IM-OSA
IIS architecture. Technical report, <’ IM-OSA, Ksprit ftHH, 19tK).

[Mc('90b) Ashley McClenaghan. On the specification o f the CIM OSA system wide
exchange. 'Technical report, (’ IM-OSA. Ksprit 6HM, 1990,

[Mr('91a| Ashley McClenaghan. Kx|>erience of using LOTOS within the <’ IM O SA
pn>jecl. In pages 113 120, 1991.

(M c(’91b) Ashley McClenaghan. Mapping time extended LOTOS to standard LOTOS.
In (PH91/, pages 239 2M. IIMÎI.

[MdMH9] J, A. Manas and T. de Miguel. From LOTOS to C. In pages
79 H4. I9M9,

(MoyHHb) Hertraiui Meyer. Ob)*ct-orif nted Softwarr Con»tm ction. Prenlice-HAÜ, 19M8.

(Mey93) Herlr*n<l Meyer. Syntematic concurrent object-orientfHl programniinK* In
mth iFU* Symp. on Protocol .S’periyiraiiori, Testing and Verification, Liège,
Andrt' /;ariMiru. (!uy Uduc and Pierre Wotper (edsj, 1993.

Robin Milner. A ('alcutus of ('ommunicating .Sy«icrn*. volume 92 of Ijccture
Notes in C’ompufer .SVicnrr. 19H0.

Holiin Milner. A modal characterisation of obserx^tbl* machine-behaviour,
volume 112 of Lecture Notes ù» Tompuicr .Srirnrr (C A A P 'S i) , Astesiano,
h\ attd Ihthtn, C'. (eds). paftex 25 3-1. 19H1.

Robin Milner, (‘alculi for synchrony and aaynchrony. Theoretical ('ornputer
.SVicnrr, 2.5:267 310. 19K3.

Z. Manna and A. Pnueli. The verification of concurrent proKrams: The
temporal framework. Iti The Correctness Problem in ('ornputer .SViVnre, R.
.S’. Hoytr. J. S. A/<K>rr (eds), pageN 215 273, 19H1.

[M T (’Mho) a . Malhotra, J. (’ . Thomas, J. M. (’arroll, and !.. A . Miller. Cognitive pro­
cesses in design. Intt mational Journal of Man-Machine Studies, 12(2):119
1-tO, lOKO.

K. Madelaine and I). Vergamini. Alî'l'O : A verificatitm timl for distributed
systems using reduction of finite automata networks. In [VuoH9j, pages 79
8-f. 1089.

Hruce Jay Nelson. Remote Prttctdurr ('all. PhD thesis, (’arnegie-Mellon
University. May 1981.

H, M. Needham and A. J. Herbert. The (’ambridge t)istributed (’omputing
.System. Addison-Wesley, 1982,

Koji Okada and Kokichi Futatsugi. SupiKUting the formal description pro­
cess for communication protocols by an algebraic specification langauge
OHJ2. In Pnx'. o f the gnd Int. Symp. on tnitroprretble Information Sys­
tems. /A7AP. pages 127 131. 1988.

Koji Okada, Masaki Ishigamori, and Kokichi Kutatsiigi. Systematic construc­
tion of services from protocol specifications by a parameterized description
according to the OSI layere«! structure. In Proc. ttf the dth Joint Workshop
on ('ommunication (J W ('('-6) kitkaoka, Japan. July 1991.

(PAN89) PANOhOSS. S|»eclflcallon of the OSI connection less Internet protocol.
I'echnical report, Ksprit Pr«»Ject 890. (’ommissior> o f the Kuropean (’om-
munities, Hrussels. 1989.

[P«'t(>2] A. IVtrl. Kommuuikatioti mii Automalrn. PhD thesis. Instituí fur In-
Btruinentelle Matheniatik, Bonn, FRCi. 1962.

[PetHl] J. h. Peterson. /Vin Net Throry and thr Modeling of Syaiema. Prentice-Hall.
19H1.

(Pir9l) Luis Ferreira I*ires. The lotosphere desixn methodoloR>': Basic concepts.
Technical report. I.O TO SPIlFRF, 1991. U>/WPl/Tl.l/N004’i/V02.

[PIoHl] («. 1). Plolkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Aarhus University, Denmark, 19H1.

(Pnu77) A. Pnueli. The temporal logic o f programs. In Proc. o f thr ¡9th ÍKKK Annual
.S'ymp. on /’’ourirfa/iof»s of C'omputrr ,SVi., pages 46 S7, 1977.

(PnuHl) A. Pnueli. The temporal semantics of concurrent programs. Throrrtiral
(om putrr .Vri.. l.'):45 60. 19K1.

(PR91) Ken Parker and (lordon Rose, editors. FOHTE"9l, Fourth ¡ntrmational
('on/tnnn on: Formal Í)rticription Trrhniqurn, Sydney, Australia, 1991.
Flsevier Science Publishers B.V.

(gAFlKl) J. Quemada. A. Ancorra, and I). Frutos. TIC: A limed calculus for LOTOS.
In (\uoS9j. pages \9h 209. 1990.

(QMV90] Juan Quemada. Jiwe Manas, and Fnrique Vazquez, editors. FOHTF'90. Thr
IF IP Third Intrmationnl ('tm frrrn rr on: Fortnal PrHrrtption TrrhniqurH.
Madrid. Spain. November 1990. Flsevier Science Publishers B.V. (Norlh-
Bolland).

[QPFK9) Juan Quemada. Santiago Pavón, and Angel Fernandez. Transforming LO
TOS speciñcations with LOLA; The paramelerlze<l expansion. In [l\árHHa},
pages 4.̂ .54. I9K9.

(K (’90) Charles Rattray and Robert <1. dark , editors. Thr Fnijird ('omputation
¡.abitralory Modrtling, Sprrifirationr, and Ttxiln, Held at the University of
Stirling. Scotland. July 1990. Institute of Mathematics and Us Applications,
Clarendon Press, Oxhird.

IHMK7) M, Riizier and L. Marlins. The chorus distrlbute<l operating system: some
design issues, thrtributrd Operating Syatrm». Throry and Practirr, F2K:26l
2K7. 19N7.

[HOSM9a] ROSA. R A (’ F open services archlte<ture: Architectural workpackage,
WP.'i outline o f ROSA architecture. Technical Report :ind Deliverable,
6H/in R/42ft/DS/H/(HW/bl. Malcolm Key (ed). RACK Open Services Ar
chlteclure, RIOHH, November 19H9.

[ROSN9b) ROSA. R A (’F open services architecture; Object definition workpackage
object «»riente<l techniques for ROSA. Technical Rep«»rt 1st Deliverable,

6M/HTR/42ft/l)S/B/00l/bl. Malcolm Key (e«i). R A (’ K Open Services Ar­
chitecture. RIOKN, July I9M9.

[H()SK9c] ROSA. R A (’ K open M-rvireii architecture: Service specification workpack-
age specifying services using objects. T€*chnical Report 2nd Deliverable,
6K/BTR/425/l)S/H/002/bl, Malcolm Key (ed), RACK Open Services Ar­
chitecture. RIOHH, September 19K9.

[ROSH9d] ROSA. RACK open services architecture: Tool support workpackage, WP4
outline requirements for tend support. Technical Report 4nd Deliverable.

6H/HTR/425/DS/H/004/bl. Malcolm Key (ed), RACK Open Services Ar­
chitecture. RIOKH, November 19H9.

[Rud92] Steve Rudkin. Inheritance in LOTOS. In fPH9lJ, pages 409 424, 1992.

[Sad90] K. Sadouii. LO LOS specification o f the OSl (T 'K service. Technical Report
Lo/WP:»/T3.l/SYS/N0007/V02, Ksprit Project 2.104, (’ommission of the
Kuropeaii ('ommiinities, Brussels, 1990.

(SBH7) Jurgen Suppan-Borowka. Planning the use o f MA**. In ¡ntrmational Oprn
Sytttrm« fi7: Procredingti of the iutrm atioual <'’on/crencr held in London,
volume 1, March I9H7.

(SBNH4) Michael I). Schroeder. Andrew I). Birrell, and Roger M. Needham. Experi­
ence with grapevine: 'I'he growth o f a distributed system. AC'M Tratmartionn
on (’omputrr SyaUtuM, 2 (l):3 23, February 19H4.

(SKK7) Morris Sloman and Jeff Kramer. PtHtribultd Syttirmn and ('om putrr Nrt-
H'orlbs. Prentice Hall International Series in (on iputer Science. Prentice-Hall,
19K7.

(SM (‘74) W. P. Stevens. (J. J. Myers, and L. L. (onstantine. Structured design. //M/
Syntrfw* Jouruai, 1.3:11<*S 139, 1974.

(SpiK9) J. M. Spivey. Thr X Notation. Prentice-Hall. New Jersey, 19H9.

(Ste91) Jean Bernard Slefani. Open distributed processing: The next target for the
application of fiirmal description techniques. In ¡QMV90J, pages 427 442,
1991.

(StrHb) H. Stri>tjslrup. Thr fV - f t*mgramming ¡Mttguagr. Addison-Wesley, 19K6.

(lanHl) Andrew S. I'anenbaum. ('om putrr Nrtu*ork^. Prentice-Hall Software Series.
Prentice-Hall, I9H1.

(TocKO) Alastair J. Tocher. Formal support for the development of distributed lys-
tems. Technical Hep<irl ANSA R<’ .97.0, Advanced Networked Systems Ar­
chitecture, Architecture Projects Managment Limited, Poseidon House, (’as-
tle Park, (’AMHHIDOK, H.K., November 19H9.

[I ’oc90) Alastair J. I'ocher. Fowards a the<iry o f objects. lechnical Report
ANSA H<’ .0ft«.02. Advanced Networked Systems Architecture, Architecture
I^rojects Managment Limited, Poseldim House, ('astle Park, ('AM B R IlK tK ,
B.K., May I9IH).

rO P K ’ . rO P K ’ : rool»el for protocol and advanctKi service verification in
ibc environments, 1992. RACK Proposal 13231.

Kenneth J. Turner and Richard O. Sinnott. DILL: Specifying digital logic in
LOTOS. In FOHTF.'9S. The IFU * 6 th Intemational Conference on: Formal
/Jrarrip/iofi Techniquen, 1993.

[1'urHS] 1). I'urner. Miranda: A yon-Strict f-'unctional language with Folyrnorphic
lypcM, volume 201 of Lecture Note» in ('omputer Science. Springer-Verlag,
19N.’>.

[TurKT] Kenneth J. Turner. An architectural semantics for LOTOS. In Froc. of
thf IF ll* W(t 6.1 .Set>enth hit. ('on f. on Frotocol .S’prri/ira/ion. Tenting, and
Vcrijication, pages L5 2K. May 19M7.

[TurMHa] Kenneth J. nirner, editor. FOHTF'HH, The IF IF First International Con-
ferrncr on: Fttrmal Description Techniques, Stirling, Scotland, September
19KK. Klsevier Science Publishers H.V. (North-Holland).

[TurHHb] Kenneth J. Turner. PAN(iLOSS reference architecture development strat-
ogy. Ksprit K90, August 19KM. PAN(iLOSS/Al/US I/NOO-S.

('PurHOa) Keimeth J. 'Lurner. The Formal Sprcijication ¡Mnguagt LO TO S: A ('ourse
For Vsers. Department of (’omputing Science. University o f Stirling, Stirling.
August I9H9.

(TurKOb) Kenneth J. Turner. A LOTOS baM'd development strategy. In [VuoH9),
pages |.'i7 171. November 19K9.

[TurKOc] Kenneth J. Turner. A LOTOS case study. Specification of the OSl
coiinection-orientiMl network service. In O T i ' 11 orArsAop or» Formal 'lech-
niqurs. .S'ydriry, July 19K9.

I'TurOO) Kenneth J. Turner. Tetnplate-base<l specification in LOTOS. Technical
report, Department of (’omputing Science and Mathematics, University of
Stirling, Stirling, Scotland.. 191M).

(Tur9l] Kenneth J. Turner, The role o f architecture in formalism. In [PH9IJ (tuto­
rial), imn.

|'Tur93a] Kenneth J. Turner. An engineering approach to formal methods. In iSth
IF ll* Symp. on Frotocol Specification, Trstingand \erification, Li^gr, Andri
Danthtnr, (luy Lrduc and Fierrr Wolprr (rds), 1993.

('Tur93b) Kenneth J. Turner, h'ormal specification and design with LO'TOS. (In prepa
ration). 1993.

('Tur93c] Kenneth J. 'Turner. Vsing Formal Description Techniques: An Introduction
to F.STFLLF, LO TO S and SDL. J<»hii Wiley k Sons, Inc., first edition,
1993.

(TvRMfi] A. S. Tanenbaum and R. van Renesse. Distributed operating systems. Com­
puting .Surveys, 17(4):4I9 470, I9K5.

2K5

[TvS92] Konnrth J. 'IHirner and Marten van Sinderen. OSI apecification atylea for
LO rOS. In l*ror. o f the .ird LOTOSPHE'HE' Worknhop, Pisa, pagea 5/1 22.
September 1992.

Peter H. J. van Kljk. Softwarr Io o Im fo r the Specification Language LOTOS.
P ill) theaia, Twente University of tefhnoloí^y, Knarhede, Netherlands, 1988.

!‘ eler H. J. van Kijk. LO I'OS tools based on therornell aynlheauer generator.
In [HSVS9], 1989.

Peter H. J. van Kljk and H. F>rtink. Design o f the LotosPhere symbolir
I.OTOS simulator. In [QMV90j, 1991.

vKVD89) Peter H. J. van Kijk. (’hris A. Viaaera, and Michel Diaz, editors. The Formal
l)tHcription Technique LOTOS. North-Holland, 1989.

JiKwt J. van (Jriethuysen. Open dialribulwl processing (O D P). Ninth IF IP
li'O' 6.1 International Sgmponium on Protocol Specification, Tenting, and
Verification, June 1989.

(v(JSST90) Rob van (Jlabbe«*k. Scott A. Smolka, Mernhard Steffen, and ('hris M. N.
'I'ofts. Reactive, generative, and stratified models o f probabilistic processes.
In Prttc. o f the ,Mh IF F F Int. .Sgmp. on Logic in Computer .SVienrc, pages
I.'IO M l. 1990.

WilfriiMl H. P. van Hulzen. ()b j«i l-orieuted specifiration style in LOTOS.
I’erhnical Report Lo/W P 1/T1.1/RNL/N0002. Kuropean LOTOSPHKRK
Consortimn, Ksprit 2I10-1. July 1989.

VVillemieii Visser and Jean Michel Hoc. Frpcrt .Softu>arr Penign .SIratrgien,
pages 235 219. Psychology of Programming (1'. (Jreen et al. (e<ls)). Aca­
demic Press, 1990.

[v in Z90] Wilfried H. P. van lluUeii, Paul A. J. Tilanus, and Han Zuidweg. I.OTOS
extendfHl with clocks. In (VuoH9), pages 179 193. 1990.

Patrick Viollet. LO POS guidelines for the IIS. Technical Report RO.373/0,
('IM O S A . Ksprit «88, I990,

Willemien Visser. More or less following a plan during design: opp<»rtunistir
deviations in specification. International journo/ of MamMachine StuHien,
33(3):247 278, I990.

Marten van Sinderen. (Jeneric service and protocol structures. In FSPH IT
Confrrrnce '90, Hrunneln, Uni. <if'Twente, NL, I990,

(VSvSHiM)) ('hris A. Vissers, Giuseppe Scollo, Marten van Sinderen, and Kd Brinksma.
On the use of specification styles in the design o f distributed systems. Uni­
versity of Twente. NU, 1990.

(VuoH9) Son T. Vuong, editor. The IFU* TC/WG 6.1 Srroud /ri<rma/io»»a/ Confer-
enre on Format Pencription Trchniquea fo r Piatributrd Systemn and ('ommu-
nirationn ProtocoU, FOHTF. '89, Vancouver, ('anada, 19H9. North-HoUand.

Bernd Walter, 'ritned petri-nets for modelling and analyzing protocols with
real-time characteristics. In Frorrrdiuga of the IF If* 8rd ¡ntrmationat H'ort-
ahop on l*roU>rol Specification. Teating, and Verification. Harry Hudkin.
('otin H. Wrsf (rda), Sorth-Holland, pages 149 1!S9, 1993.

Steve Wibur and Hen Hacarisse. Building distributed systems with remote
procedure calls. Technical report. Dept, o f ('omputer Science. University
(’ollege I.ondon, 19H7.

I). Wolz and V. Bohin. Compilation o f LOTOS data type specifications. In
(HSVHQj, pages 1H7 202. 19K9.

Adam C. Winstanley and David W. Bustard. KXBOSK: an animation UxjI
for process-oriente«! specifications. SoftuH»rr Engineering Journal, 6(0):114
I IK, November 1991.

(WBI.IM)] Clazien I). Wezeman, S. Batley. and James A. Lynch. Formal methods to
assist ronforjuance testing a case study. In [Q M \ 90j, pages 1.̂ 7 174,
19<H).

[V\'ezH9] ('la/ien D. We/.eman. I'he (’O-OB method for the compositional derivation
of conformance testers. In / W . Ninth IF IH WG 6.1 Int. Symp. on HntUtcttl
.S'prriyimhofi. Traling, attd X'rrification, 19K9.

(WGW92) Jorg Wolf (Junther and Adam Wolisz. SIM’I'IS a simulation package for
the performance evaluation o f communication protocols specifie<l as timed
interacting systems. 1992.

(Win92) Adam (*. Winstanley. Thr Elucidation o f /*rMrrss-Or»r»»lrif Specificationa.
I*hl) thesis, Queen's Uni., Belfast. 1992.

[WvHK(M)] Ing Widya, Gerl Jan van Heijden. and Francis Riddoch. LO’I'OS speciflca
ti<m of the TI* protoctil. Technical Report |,o/WI*3/T3.1/xxx/N(K)20/V02.
Fsprit Bniject 2304, (ommission of the Kuropean Communities. Brussels.
19IKL

Kdward Yourdon and Larry L. Constantine, Structurrd Praign: Fundamrn-
tala of a Piaciplittr o f C’omputrr /‘mgram and Syatrma Praign. Prentice-Hall.
1979.

A ppend ix A

Decomposition of an
X ACCP-Client PS_SP

I hi« appendix ronlain» XI. »perifiralion» that relle< t the architeeture driven deeompo-
«ition Ilf a C IM O SA IIS X -AC (T-C lient-l’ S-Sr (X Arreaa Protorol Client I’ rotorol
Support Service Provider) component. Thix ix reference material for xectitin S..I.6.

A . l Noai'w is i'-d istrib iitc 'd X A C C P C lien t PS S ervice Agen ts

Ih r following (pseudo) XL sppcifiralion reflefts a doromposilion o f the
X .ACCI’ -d ien tJ ’ S^SI* which revraU Us luMlewiBr-distrihutotl X.Ai'C'P.rUent.PS-Service.ARpn

•I

Provider *)

(• |>w iim|KMr Intc» n4>H#ailM>-clUtrnHit#H X . AC 'C 'I*.(il#ni.PX.S*rvk». Ag*i

A .2 D e ro in p o s it io n o f an X A C C P .C lie n t P S S ervice A gen t

(* C'umpunvnt cUm : iturac« romponciM *)
(• ('umm«nui T«mp<»r*rily »lor»^ St:Mlu HeM-nd* the appropriate,

atured Sl->du Hequeal If a Itmed.out erent occur». OeUt«» an Kt^du
HequMl from the »iore when the c-»rre»pondinc SI-ImIu Reply la reckved
in time. ”)

prurttM re»end.»tora«e(SK.AC(Pgate.tlm»d-out)(buirer:Bulfar8ort) :no«xU :■
(* Store an »du Request *)
SR.AC'f'Pgate ? »du:SI-kduSort [»Pri(»du) eq Request);

resend. ■torag»(SK.AC'('Pgate,ttmed.out](lnaert(sdu.bufrsr))

(• Delete a sdu Request when a correeponding edu Reply orcurs •)
SE.ACCPgate ? sdutSI-kduSort |(KPri(edu) eq Reply) and

(sSduld(sdu) IsInHySduld buffer)];
resend.»lorage(SK.AC’C'Pgale.timed.*H»t)(De leleHySduld(«Sduld(»du),buffer))

(• Timeout resend an sdu Request ■)
timed.out I sduld SlieduldSort ;
SK.AC'CPgate ? sdu:St-kduKort ((sdu lain buffer) and

(aSduId(sdu) eq sduld)];
(* Note that another ropy of the sdu is saved to the buffer. This

is because there must be one stored cropy of a Request sdu
fur every outstanding reply sdu *)

iend.sturage(SK.Ar('Pgale.limed.oul|(lnsrrt(Bdu.buffer))
e o d p ro r (• resend.storage •)

forali krtKjl, krtĤ a, k r»«l. kr«*3; KeySort.
pdui, pdua: PduSort, ty l, ty3: Typ«Hort

oCiMirt Buoi
ly l Typ^Kq» R »q l’ kl(krrq3. km3, pdu3. ty3)

■ tyl eq ty3i

kreal R«K|Pkt(kre<|3, kr««3. |>du3. ty3)
■ kr««l mi kr«Ni3i

R«^l*ki(kr«^l. krml. pduI, ty l)
Hf>qPkt(krtK(3. kr««3, pdu3. ty3)

m (hrtHiI tK| kr«q3) and (kr««l kr««3) and
(pdui pq pdu i) and (ty l pq ty3)i

Hrql‘ kl(krpql. krp«l, pdui. ty l) nr
Hpql‘ kt(krpq3. kr«>«3, pdu3. ty3)

m (krrql nr kroqi) or (krMl n* krmii) or
(pdui nr pdu3) or (ty l m> ty3);

HaqPkt(kr*ql. krrwi. pdui, ty l) Il
RaqPkt(krpqÌ. k m i, pdui. ly i)

■ krrql nr krpqii (* SKDOR TooUal fiat •)

typ«> S«SduTyi>« U C ^lUbJrFnTyp«. I'rim itlviTyp#. PriorilyTyp*. KeyTyp«.
(JNM wTyp«. PduTyp*. T^mpTyp«, Typ«Typ«, Tinw Typ*
RlnTyp^

iiNkRM'Kori, l>mpS<trt, Pri<M4tySurt
- > K«HfluSi>rl (* SE.In ili*!!»« Inp *)

: UNMnvHort, KoySort, HtnCodvHurt
-> S^KduHurt (* 8E. InUlAlt»^ Out *)

: KvySort, (<N«m«Sort, PrioritySuH
- > SfSduSort (* 8E.Inquire.K«-y Inp *)

; KrySort, K«ySort. KinC‘«>d«*Hort
S<>KduMort (” HE.lnquiff.Key Out ")

Awln ; K»ySort. KoySoct. PduHurt. Typ«Sort. Tim«Sort. PrtoritySort
HeSduHurt (* SE.Aak. Wm I Inp *)

AwOu : K^ySort, PduSort. Htn<'«»d«Sort
-> SeSduMort(* SE.A»k.W ail Out ")

Atin : K«yHort, T yp # 8 ^ . PriuritySort
Si>SduSort (* SE. Attend Inp *)

: K«ySurt, TypeHort, Hin('od«Surt
-> K^SduKurt (* SE. Attend Out *)

KeySort. TypeSort, PrioritySort
-> SeSduSurt (" SE.Acrept Inp *)

AcOu ; KeySort. KeySort. PduSort, Htn<'odeSort
HeSduSort (” SK.Ac-repi Out *)

: KeyKurt, KeyS<^, PduHort. PriorityKort
SeHDuHort I” SE. Answer Inp

: KeyHurt, Htn('f>deHort
-> KeSI)uSort(* SE.Answer Out *)

; KeySort, TempS«»rl. I’ rifwItySort
-> SeSduSort (" SE. rertnin*te Inp *)

. KeyKort. HtnCodeSort
SeSduSort (• SE. I'erminwle Out *)

aKn(ArIn(kl. ly. pr)) ■ SE. Arr*pti
BFn(Ar(Hi(lil. k2. pdu. rt)) m SE.Acr«pt;
KKn(Antft(kl, ka. |̂ u. pr)) ■ SE.Aiwwer:
KFn(AnOu(k>, rt)) m SE. Answer;
■ Fn(TmIn(kl. temp, pr)) ■ SE.Termin*le;
aKn(TmOu(kl. rt)) « SE.Tertninnte;

oiMirt PrImitiveSort
• Pri(ltln(n*. temp, pr)) m Inp;
■ PH(ll(>w(n«.kl, H)) ■ Out;
aPH (lqln (k i, n*. pr)) • Inp;
Bpri(IqOu(li>-k:<- r t)) * Out;
KPri(AwIn(kt. ka. pdu. ty. ti. pr)) • tnp;
■ Pri(AwOu(kl. pdu. rt)) ■ Out;
BPri(AiIn(kl, ly. pr)) m Inp;
aPri(AtOu(l>>- ̂ y< rt)) « Out:
aPri(Arln(kl, ty. pr)) m lap;
aPH(A<<)u(kl. ka. pdu. H)) ■ Out;
aPrMAnln(kl, ka. î u. pr)) ■ Inp;
aPri(AnOu(kl. rt)) ■ Out;
aPH(TmIn(kl. temp, pr)) a Inp;
aPrI(TmOu(kl. rt)) a Out;

oflHtrt PriorilySort
>r»ly(Itln(n*. temp, pr)) a pr;

aPriurity(IqIn(kl, rut. pr)) a pr;
aPriurity(Awln(kl. ka. pdu. ly, ti. pr)) a pr;
aPriurity(Alln(kl. ty. pr)) a pr;
aPriortty(Arln(kl. ty. pr)) a pr;
aPri»iily(AnIn(kl, k3. pr)) a pr;
apriority! rmln(kl, temp, pr)) a pr;

(* An Outpul «vant orrur«... *)
OUTI’ l'Tfa*] (r «< ^ l. r«wM>i, r«gw i, uutBiln

outatAttenda. oMlatMccpla. genarAtur)
) ^ ATcapt (* lha naw "alAl«'’ infortnAlion *)

nraqaal: HaqBMalHort.
nraaaat; RaaSalSort,
noutstAAkwAita: OutSUakWAltaSort.
itragaal: HagDHAAaSorl.
nctulallmiuiraa: OutSlInquiraaKoft.
noulatAltanda: OmSlAtlandaSorl.
noutatAt-rapia: OulStArraplaSort,
nganarAtur: KaySort

in
I(>(aaj(nrtK^t. nraaaal. noulalAakwAita. nragaal.

noutalinquiraa, niMilalAtlanda.
noulalArrapta. nganarAlur) (• ... Aiirf wuraa ■)

* Cumponanl tUm : func-tUmAl < «>mponan(
■ Commanta: INPUT ctaAla with primArily fum lionAl < uitatrAlnla
* uvaravanta whit-h rapraaanl Input MK SI)Ua.

04aaa INPUT (aaj (raqaat: HaqaSalSort.
raaaat. HaaSalKort,
oulatAAkwAtta: OutHlAakWAilaSurt,
ragaat: Magl)HAaaH4>rt.
■ »utatinquiraa: OuiStlnqulraaHurt.
outatAttanda: OulHtAltandaHuTt,
oulalATf-apla: OutMt A<'<aplaHurt,
grnarAi»r: KayHort)

pail (MaqaKatSort, KaaSalSorl. OulStAakWAilaKort. HagOHnaaSorl,
OutSlInquiraaSorl. OulMlAtlan<taK«>rt,
<)utMtAr<-aptaS«>rt, KayS<ut) :■

(• SaiMVAla LOTOS prorMM lamplAlaa to tmpoaa «onatrainta «ut
* Aixi daAl with lha pnx-aaalng fur aai'h ly|>«> o f
* SK-('AllAl>ta-l-'Unrlton Input avrnl...

* I. IN I I IALr/K{aa](raqaal.raaaat, oulataakwAita. ragaal,
oulallnquiraa. ciutalAttanda,

«lUlatATrapta, ganaralor)
Q I.INgUIHK.Ki>:Y(aa|<raqaal. raaaal, outataakwAita. ragaal,

oulalinqulraa. oulatatlanda.
oulatArcapla. ganaralor)

Q I. ASK. WAIT(aa)(raqaat. raaaal. uulataakwAila, ragaal.
oulalinquiraa, »utalAllanfla.
oulalATi-apta. ganaratfir)

0 I. A I I KN I)(aa)(ra<^. raaaat. outatAakwaita. ragaat.
nutatinqulraa, oulatallanda.
cnitatiw-f-apta, ganaraliir)

Q I.A(VKPr(aa|<raf|aat. raaaal. •HtlataakwAtta, ragaal,
iHitatlnqulraa. outatattanda.
4HllalArrapU. ganarator)

Q I. ANMWKM|aa](raqaat. raaaal. outatAAkWAlta. ragaal,
nulatinqwlraa. mitatattaftda.
«mtalArcapla. ganaralrw)

Q I.TKI.L(aa|<raqaat. raaaal. «HilataakwAlla, ragaat.
outatinquitaa, oulatallanda.
»wlatArrapta. ganaratnr)

Q I.TK H M IN ATK |aa)(ta^ . raaaat, «nilalAakarAlla, ragaal.
owtaltnqwtraa. owtatAltanda.

()utStArr«pta8ort, K*ySort) J*

tr ? »du: ScSduSort ((RPri(Bdu) m| Inp) *nd
(Rl-'n(»du) SK. Inqulrv.Key)];

« kU (r*qM>l. rewel. ouUlMkwMlt.
]Mert(NP*ir(«C'*U«rK*y(Mlu). HNMn*(wlu)). oulBlinquir*
outat*(tMida. c>ulal*c-<-epta. ••nar«lor)
(* ...Note the <>uUl*ndin(SK.ln<|uir* *)

endpru« (” I. IN t^ l'IRK . KKY

• <'umponent rloaa: furw tluMl < ompi>nent/Bi«n»wM«-h «»mpooenl
■ ('omínenla: Thia c-imtponeM aperillea both the func-tionki *nH
■ alopwkli-h M perla o f the SR. Aak. Wkit Input event.
■ We note the ocrurrence time o f the Input event, fiir thia
- time Vklue U neeiled by O. ASK. W AIT to «-«Irulkte when the
* SK.Aak.Wkit InvoTktion timea out.

• I.A S K -W A IT (ae) (reqaet: He<|BSetKort.
reeael: Hea.SetSurt.
oulalaakwkita: OutSlAakWkitaSort.
regael: HegDHkaeSort,
outatinquirea: OutStlnquireaSort.
oulatktlenda: OutStAttendeSort.
oulal*rc-epta: OutStArreptaSurt.
generklor: KeyHort)

rail (He«|aHetKoH. Hea.HelSort. OulStAahWAtlaSorl, Ke^DH«
()ulKlln<|uiiwaH<wt. OulSiAltendaSort.
OutSlA«-<eptaSort.KeySoH) :■

ae ? adu: HeHduSort ((« l ‘ri(adu) eq Inp) *nd
(aKn(adu) eq SR. ASk. W «it))

•invoke.time;
(■ .. .Note the oivurrence lime o f the SK. Aak. W*it

Inpul event------thia lime le needed leter tu
to « . erlkin if ihiaSR.Aak.W eil limea-oul *)

eait (lnaert(Meql’ kt(»CkllerKey(adu). «CelledKeyladu).
■ I’du(adu)- aType(adu)). reqael).

• «it (K^qsSctSort, HmSetSort, OutStA«kW»luSort. HcgDBai
()utSllnquir«*S(in, ()ulStAtt«ii<USort,
OutStArc«ptaSort. KayHort) :■

•• ? adu: KaSduSort [(aPH(adu) eq Inp)
(«Fn(adu) •«! SK.T*rmin*te)ji

((« Temp(adu) »q <-€>Jd)-> (• Cc»ld larminate ■)
• «it (raqaat.

H«mov«ByKay(«('»U«rKay(adu). r« «a>t),
uutataakwalla,
Hamov^RyKey(«<'*ll«rK«y(adu), ragaat).
outatlnquiraa, outalattenda.
uutat*r<-epta. ••iterator)
{■ ...Remove »11 reaponae meaaagea to thia entity")
(” ...Unregiater thia entity”)
(■ gttRSTION TO FHB: I>oea it matter? If it doea

then what a(>oMt reaponae meaukgea targeted at
thia IlS.Hervke.Key in the future T ")

[«'l'emp(adu) eq Warm] (" Warm terminate ")
• ait (r e i^ t . reaaet. outataahwaila. regeet.

outatinquirea. f>utatatlenda.
outatarrepta, generator)
(* Preaerve the regiatration entry ”)

ondpror (" © .ATTE ND *)

■ Cumponenl runc-iiun*l compunvni
• <'omm«nta: <'onalr»ina m d p rw — «wi Output event i>ccurT*nr«
• for SE.Acfept.

pn>re«i O . AC'CEPT (ee) (re<|eet: KeqeSetSort,
reeeel: ReeSetSurt,
outetaidiwnlte: OutStAekWnitiSurt,
regeet: Kegl)H*M>Surt.
outetinquiree: OulStInquireeHort,
Mutetnttendi: OutStAttendeHurt.
uutetnrc-epte: OutStArrepleSort,
generntur: KeySurt)

: e«it (HeqaSetHurt. HeeHetAnrI. OutHtAekWniteKurt. HegDHMeSort.
OulStlnquireeSort, OutStAttendeHort,
OutStArrepteSort, KeyHort) :■

rhulre reqpkt: ReqPktSort Q (* ..Chooee nny requeel pwkel •)
[(reqpkt lain reqaet) nnd
(rP*ir(KTu-getKey(reqpkt), «Type(reqpkl)) Iain uutatnrrepla)

) -> (” ...C'ocwtrntn the rhoirn to
* be • pw'ket in the reqael
” «nd for thia pn<-ket to be
* tnrgeted at an entity whii'h
” h*B an Outatnndiiig.SE. Arc-ept
“)

(ae 7 edu: HeSduSt»rt [(a l’ri(adu) eq Out) and
(aKn(adu) eq HE. Accept) and
(alnitiatorKey(adu) eq

alnlliaturKey(re<^l)) and
(aPdu(adu) eq al’du(reqpkt)) and
(aHtn('.>de(adu) eq SE.Ok)

h
(■ ...And return thia requeal |mw kel •)

regael, oulatinqulrea,
liUlatattenda.
HemoveHyKey(a('allerKey(adu). nulataccepta),
generator)

(■ . Remove the requeat packet •)
(* . Remove the oulatanding !<E. Accept *)

tl It t3 ^ M tLK (tl) Union M lLK (t3) • MiL>E(t2);
not(tl It t3) ^ actLE itl) Union •etLIC(ta) ■ M tLK (tl)i
t l i t ta ^ ••t< iE (tl) Union M t(iE (t3) ■ •M()E(t3)i
not(tl |i t3) ^ M t(IK (t l) Union •*tC}E(t3) m •*t<iR(tt):

t l tS ^
•rllnt«rvnl(t3.t3) Union BetUE(tl) ■ •#tLK(tl)|

(t l t3) ond (t l It t3) ^
•vtUE(tl) Union ■»tlntervnl(t3.t3) ■ MtLK(t3):

(t l i f t3) nnd |tl It t3) ^
M>tIntorv»l(t3.t3) Union aetUKItl) a •*il.K(t3)i

tl k t3 ^
M tO E (tl) Union «-tlnt«>rv»l(t3.l3) a •»t ()K (t l)i

tl U ta ^
M>tlnt#rvnl(t3,t3) Union ••t< iK (tl) a ••t(iE (tl)(

(t l Ir t3) *nd (I I gt 13) ^
■ *t (ik (t l) (inion •*llnti‘rv«l(t3.t3) a •vl(iK (t3)i

(I I l«> t3) and (t l gt t3) ^
•»Ilnt'rv*l(i3.t3) Union ■ • t(iE (t l) a •*t(iE(t3):

*1(13.14) a •rllnl̂ rv*l(tl.t3);

'•1(13,14);

(I I W 13) *nd (13 gf- 14) ^
•»tlnlf>rv*l(il,t3) Union •

(13 ll t l) *i>d (t4 gl ta) ^
wlIntrrvAlill ,13) Union ■rltntrrv*l(t3,t4) a ■

(tl ll- 13) *nd (ta ll 14) *nd (13 g«* t3) ^
M-tlnli-rv*l(ll.t3) Union •»linl«-rv*l(t3.t4) a •rtlnierv*l(tl.t4);

(11 gl 13) and (13 gi- 14) *nd (t4 gr t l) ^
M-iInlrrv*l(ll.t3) Union M-llntrrv*l(t3.t4) a M-llnlrrv*l(t3,t3);

A ppend ix D

Example application of TLOTOS
semantics

'I'hiH appendix nupplioH a Biniple deinonKtratioii o f the 'I'LO ’IOS KenianticB defined in
Hertion We lake a Himple TLO I'OS behaviour expre«HÍon an our example. We une
thiH to iuHtaiitiate the appropriate T L O I OS Hemantir axioiiiH and inference HchemaB.
and hence find the meaniiiK of the exproMHion.

D .l A l l t'xainplo T L O T O S behaviour expression

CoiiRider the following TI-OTOS behaviour expreBHion;

(a {l i| . /#,Q «ÍV .;í . ' Í 1 A S A P . /ia)|[a]|al3,-1.51;/#s

To find the meaning of IhiH expreHnion we um* the axiomn ami Hchemaa define«! in
MH'tion f>.5.4. (For convenience we deviate Rlightly from the notation uned in nection 6.5.
Fiir itiHlance, we write {2, 5 ,. . .) innlea«! o f {nrth^Q(i) Vuitm nrtEQ(5) Ih iion . . . }.)
The 1 l.O I'OS HemanlicH are defined uhíiik (IMoS1)*s itructured operatmiial approach,
To find the meaning «if our example r i.O IO S behaviour exprennion we fir»t find the
meanitiKR o f the component partB o f the expreHHion ami then the meaniiiK <‘f their
compoHition. UNinx nection 6.5.2'i axioitiH and uchemaH.

D.2 UsiiiK ax iom s for action-preflx-iixpresaions

Our example ri.OTOS liehavWiur expre*Hlon ciinlalnH three orfio»i-prr/i>-rxprr**i<m*.
Their meaninp(H are define«! by innlanlialinn HeclUin 6..5.4*h axi«>mR for ar/i«ifi*pfr/ix-
trprriutumit aa ahown beUiw.

< a l5 l; /#i, I ► -o {5)(VprmH/)(f ■ 5) -•

:i29

Wp assume that at the initiaJ state of our example behaviour expression the time
equals 1.
-a {5 }(yVorm ai)(f = 5) — means that event a ran occur at time 5. {5) and Nortnal
are terms o f sort 7'imc.SX.S’ori and i^rgotiatedTimePolicySort. As explained in sec­
tion 6.5.4.4. these two terms are required for the definition o f the semantics. 1 hey are
used to m>Kotiate the outcome of synrhronizinK event offers.

-< a { 2 , 3 . 4 1 A S A P ; W 3 . 1 >- - o i 2 . 3 . 4) (A « s ^) (l « 2) —

-a {2 .3 ,4 }(As<ip)(/ * 2) — means that if the above action-prrfir-rrprrtiaion is consid
ere<l in isolation then the event a can occur at time 2. However, if the above action^
prrjir-f TprtMHiort was placed in a context which would Anuihitatr the Atiap timr'-policy
then the event a miRht occur at any one time in the set {2 ,3 ,4 }.

-< a{3,4.5);/ia, I -a {3 , 4. Ii}(€ {3 .4 .5 }) -

-a{3,4,.5}(-Vorm<if)(f € {3 ,4 ,5 }) — means that event a can occur at any one time in
the set {3 ,4 ,5 }.

D.3 U hiiik Hc-hemas for rhoicfs-expressioiiH

'I’lie meaninK <>f the rhoirr-rrprtnnion in our example, is defined by instantiatinn sec­
tion (),.5.4’s schemas for rhoirr~trpTr^niinut as follows.

a{2 ,3 .4 }ASAP, I >■ -a {2 . 3. 4) (A i s p) (l « 2)—
^ a{5). /l,0n{2.3.4)ASAP; H, >- -o {2 . 3. 4 }(Ass^)« - 2) -

I'he two schema instances indicate that there are two alternative behaviours for the
rh«irr-rj‘pfTssion: either event a occurs at time 5, or event a occurs at time 2.

At the highest level of composition our example I LO TOS expression Is a paraiirl-
rrprrmHton. Its meanlnK !• deflne<l by Instantiating section «.5.4's schemas for pnrailrt-
cxpfTssions. HeUiw. we instantiate these schemas usinpt the results from the axiom and
schema instances shown above.

'I'h f instantiated schema abctve says that event a can occur at time 5. This is one
possible behaviour o f our example I'l-OTOS behaviour expression.

-< n {5); « ,D a (2 ,3 , t)A S A P ; H, >- -o {2 ,3 ,4)(A s sp)(t * 2) — .

A a (3 ,4 .S);«s ,l >- -a (3 , 4, ») (WormsO(l € (3 ,4 .5))—___________
-< (o{5); BiQa(2, 3.4)ASAP;a,)|(al|o(3.4,5);«s. 1 >- -u (3. 4)(A Jsp)(t « 3) —

The Instantiated schema above says that event a can occur at time 3. This is another
possible behaviour o f our example T I.OTOS behaviour expression.
The above schema negotiated a set o f times {3 ,4) (s= {2 ,3 ,4 } n {3,4,,'S)) for the
two synchroniiing event offers. Also negotiated was the tim r-poliry Aaap (= Aego-
liatr(Aiiap,yormai), according to the table in figure 6.Iff). Applying the negotiated
limr-poliry A sap to the negotiated set o f times {3, I) , results in the possible occurrence
lime s'i for event a.
Hence our example 'I'lsO'rOS behaviour expreimion ran either perform event a at time
5. or event a at time 3.

A ppend ix F

XL specifications of the
X_ Service and X_ Service-Agent

rhid appendix lintii a dene« o f uperifirationn of the X . Service and X . Service. Agent. The
X-Service and X.Service. Agent are abdtractiond o f generic entitled found in th e i ’ IM-
OSA IIS (deedection S|>eciflcationd in thld deried refl«*< t the deaign o f the X.Service
and X-Service. Agent at different dtaged in the development procedd, or reflect poddible
alternate dedign proto typed.
riM*M‘ dpiM-iflcatioiiH dhould he read in conjunction with aectiond Ji.R. fi.2, li.7 and
appendix (M . which guide the reader through example dtaged o f the development
X.Service and X. Service. Agent dedign.

X . Service T L O T O S specification 1: X s r v lT

A ppendix G

Testing: TLOTOS relations

Chapter (> eKlabliHhcd the motivation for TLO I’OS and its definition. This appendix
takes this work a stage further by proposing and examining useful 'I’LO’rOS relations.
We define TLOTOS formal relations, such as testing congruence and equivalence, cred.
cext and red, demonstrate their application for a few small site, but interesting exam­
ples. and then use these relations to test that our (iM OSA SK example specifications,
evolveil ill chapters and 0, are satisfactorily relatinl. First though, to provide us with
a perspiK tive on formal relations, we begin with a brief overview o f existing Standard
LOTOS formal relations.

G . l Introciuction: why wo iiood equ ivalence (e tc .) re la­

tions

Most process algebras use Inbt lln l IrauMitiou sysfrms (LTSs) as common basis fiir their
s«>mantics.' Usually such LTSs are defined by a ittrurturrH oprrationat srmoniirs (SOS)
in the style o f (I’ loMl).
Ideally, any two processes which we woulil want to consider equivalent would have the
same ITS as their semantic definition. ((IIMH.^] calls a semantics with this property
fuily abftrart). However, we usually find that Ll'Ss are over specifications o f process
l>ehaviour, in the sense that two processes which we may wish to consider as equivalent
for some particular purpose may reduce to distinct LTSs. We therefore chcMise to
consider certain distinct L'LSs to describe the same process (or e<)uivalent processes).

A rich web of e«|uiva)ence relations exists for process algebra. Kach particular equiva
lence relation identifies sets o f distinct LTSs which represent processes which are equlv
aient in some particular sense, identifications are based on comparisons within a com
bination of prwess characteristics, e.g. trarr», rr/usa/ scis, bounded bmnrhmg, copying,
global tenting, pretbabilintic tenting, rXe. (see (HMH.'i, AbrK7, I.SH9|).

't ls yd ly systems srr described in the systss o f pru<-ess sicebrs, rstker than directly is terms o f

l.'I'Hs, bet suse pror ess alaebra systas prwUles a convenient, finite means o f descrtbina LTHa with hna'<

if not inhsite numbers o f states.

:L'}»

This appendix is concerned with defining relations for TLO TO S whose validity can be
established through testing.

O verv iew o f L O T O S relations

A number of formal relations have been defined for comparing IX) FOS specifications.
Most o f these make idtutificationn on the basis of observable behaviour. Strongrr
relations make less identifications.
Kach relation falls into a number of different categories, such as:

A sym m etric Relations: For terms a, 6, and asymmetric relation H\

a H b does not imply b H n

Sym m etric relations: For terms a, 6. and symmetric relation

a = n b i f f b ^ n a

Symmetric relations which are associative and transitive are usually called rçuie-
ali tiers.

C-ongruence relations: For terms o. b, a symmetric congruence relation » r « . »
context f

Fhat is til say. terms identifieil by an equivalence (using some sense of equality)
are e<juivalent (in the same sense o f <*<juality) when su6sh'<u<rW into a context.
In i)ther words, congruences are a subset o f «Hjuivalences (l.e. they make less
identifications), and allow substitutions into all l , () ’I OS contexts.

This secthin summarlies several of the better km>wn of the LOTOS formal relations.
Figure (i . l may help place the relations descril>e<l in this section in perspective to one
anoth<<r.
I'he definitions o f LO TOS relations vary between authors. 'This section is intended to
provide the reader with a flavour of these relations. See (AbrH7. HSHfi. MilMfl, Led9la.
L<mI »0. H (’M9. |»ir!)l] for more detailed treatments of formal LOTOS relations.

• XASIp l«« o f
LOTOS fo r iM l
r a lo t ion s

/ \

KiRurrtJ.l: l.OTOS rrUtlons hi prnipiH-llvr

G .2 .I T ra c e equ iva lence (—ir)

’rriw«* «Hjuivalenrc it s wr*k iHpilviilpnr«* which iiiskct morr idftitiflrstiont than arr uteful
for mott piirpoM*«. Wp mrntion It for roniplrtmet*, and to that it ran he r<mipared
with thr other relationt.
Informally, two prornw are trarr equivalent If they ran generate equal tett o f event

Hoqucnre« (traces).
('onsider prorosses A and M (fiRure CJ.2):

Kinuro (».2: Processes A and H

(liven the definition o f trace equivalence;

A ft

where * (r denotes trace e<juivalence, since:

A generates x xy >■.•< xx y)
It generates < x > ,< xy xx >■)

C i . 2 . 2 O bservation «! equivalence

Observaiioiml «‘«|uivalenre fulfills the ne<-d for an equivalence which distingiiishs <»bserv
able b«*havitmr (e.g. process A ami It in figur«* (1.2) but not structural complexity (e.g.
processes (' ami D in figure (1.3).

Figure (1.3: (Processes (' and 1)

Ct.2.S Strong b isim ilar equivalence

Strong bisimilar equivalence is an instance o f observable equivalence.

Informally, two process I* and Q are strongly bisiniilar if the nodes of their l»ehaviour
trees* are hislmilar. Two nmles /»' and Q ' are strongly blslmllar iff for each event n
(observable or internal) ofreri*<l as a transitkm from node to a node an event n
will lead from niMle Q ' t«i imde and /*" ami are themselves strongly bisimilar,
and vice versa.

* ls thU subseillos wr freely mix tree solstlos ss*f l.OTOS aystss to represent I.OTOfl procei

(liven thin defiiution

C 1)

whore denote« KtrunR hiiiimilar equivalence (nometinies denoted as » by other
Bitt hors t.

W eak bisim ilar equivalence (»«./ie)

Strong biHiinilar equivalence make« no diHtinctionH between internal event* and observ­
able event*. (Jiven our interest in obnervable behaviour we would like a equivalence
which take* intt) account the npecial nature of i event* (e.g. we would like procenn E
and F (figure (M) to be in some *en*e e<|uivalent). Weak bifliinilar equivalence Hati*fies
thi* concern.

>NHe* K and K

Informally, Two proce** /* and Q are weakly bisimilar if the nodes of their behaviour
lr«*es are weakly bisimilar. rw<j tmde* /*' and Q ' are weakly bisimilar iff for each event
o (observable or internal) offered as a transition from t** to /*". an event se<iuence T
from node Q ' to can be fiiund. and /»" and are themselves weakly bisimilar. and
vice versa. T is an arbitrarily long se<iuence of t events with the t» event embed<le<l at
any point.

(liven this <lefinition:

F F although F F

where denotes weak bisimilar etjuivalence (sometimes denoted as -«» by other
authors).
As a ctiunter example, consider process ($ and // in figure (!.5.

a H

G.2.5 Weak biaim ilar congruence (- h4c)

W(> havf> eMtahlÎHhed that;

i; y
(* //

Now notice that:

where the context ^’ (.l i« defuMnl by:

Thin indicate» that weak hisimilar equivalent identification», »uch a» /v’ and /■', may be
context »en»itive (i.e, weak bi»iinilar i*<|ulvalence doe» not nece»»arily identify congru­
ence»). We find that Q ami C> are the context» which de«troy weak bi»iinilar equivalence.
A stronger form o f weak bi»imilar equivalence which Identifie» congruence» i» known as
weak binimilar congruence.

/’ Q if f*'*" context» C[.\

where denot<ui weak hisitnilar congruence (»ometiine» denote<l a» "-e by other
author»).

(liven this definition.

z ; x ; n to p ■ u 4 r t<

x; »(opQt; x: afop t;x;atop

G.2.6 Veriflcation and testing fo r relations

((liven that our lntere»t lie» with investigating te»llng congruence for I'l.O rO S. we
lake thi» opportunity to Introduce »«»me theory <»n testing by providing definition» of
relation» using testing the«»ry. Ilefiire |cK»king at such relations, the following paragraph»
place testing In relation to verification.)
Mroadly »{»eaking. there are tw«i means o f determining whether a given relation holds
between two descriptions: verlficatl«»n and testing. Verification Involves prYMtin̂ r
Iwt» descriptions are rquuHttrnI based «»n some notion of rquaiity. Testing establish«*» If
a m«»re implementation orlent«»d description ronfomiM to a more requirements oriented
d<*scription.

In prarlire. verification involving “ large" descriptions is, at bw t, complex and resource
conHUtning, at worst practically impossible given current theories and tf*chnology. Ver­
ification ou-the-flv^ using corrvrturim prrarrving /rons/ormaiions provides a possible
solution, but identifying arid formalizing useful general transformations has not proved
easy^. Testing has reache<l a state o f greater maturity and usefulness.

G .2 .7 Testing theory

In testing theory a system is defini*d by the way in which it responds to tests. A system
is, in some sense, rori/ormani if it responds appropriately to a particular set of tests.

A typical test composition for a LO’I'OS specification is:

SpecificationlInderTest(<gatea>) |(<gates>]| Test[<gates>, Success)

A test Hucrrnnfulíy trrminaten for a test execution if a Succraa event is offered. A
test unsuccessfully terminates for a test execution if the execution deadlocks without
offering a .S'ucrc«»event.
We summarize the definitions for the testing relations, o f [AbrH7, HSKfi. MilKO, Led91a,
l.edfM), H (’H9, PirfH] in the remainder of this section.
I.O ’I’OS may describe systems which exhibit non determiiiistlc behaviour. I’herefore,
two basic types of test response have bwn define<l; may rrfpouai and musf response.

M a y response: A test 7 'has a may respons# when applied to a I.O'I OS specification
S if it surer anfully rminafrs for at least one execution o f the test composition.

M u st response: A test 7’ has a musf rrHfxmai when applie«! to a I.OTOS specification
.S’ if it surrrss/u//y fenm'nnfcs f*)r every execution o f the test composition.

Also, we identify two basic types of tests: may trata and mnat trata.

M a y test: A may trat of .S’, written May(S), is a test which gives a tnay rraptmar when
applied to .S’.

M u st test: A musf trat of .S’, written Muat(S), is a test which gives a rnusf rrapouar
when applierl to S.

We can use specific types of tests to check particular properties of specifications. Kxam-
ples of these tests are: the tnay arqurutial trat, the rrfuaal art trat, and the rriatrntial
nfuaal art trat.

T h e may sequential test: A may arqurntiat <rs< of a specification S, is a sequential
test which has a may res|M>nse when applieri to S.
1'he may arqurnttal tral ran be used to determine possible traces o f a specification.
('lYivially, a se<|uentiai test may contain no observable transitions.) The following
template characterizes a sequential test:

*As upposfd to paat vrrifltstios ilNMUssrd in Ike prevKiss sesteare.

* Hardly svrpriaiaa sisre tkia lank appear« «imilar to cudina and aulitmatina denlas rreativtlir.

p ro oe «« S^qu«*nti»n«it [< g »tn i> , S u fc «»] : tuM^xit ;
< e v rn t l > ;

<ev»*ntn>;
SurcrM;
«top

«'iitlproo (• S^qupnlian'rxt *)

Th e refusal set test: 1'he rrfunal art teat can h<* used to check that no events from
a particular set are offered at the system state where the test is applied. The
rollowing template characterizes a refusal set test:

proc(«ss HcfusalSrt Test (<galrs>, Success) iitM>xit :■
<rejecleil.eventl>; stop

The existentia l refusal set test: The ms/rnfia/ rrfuaal art teat (KRS test) ran be
use<l to check rr/uaat arta after a gitvtt obar rtHiblr tranaitiou.
An KRS test is a composition o f a may sequential test and a refusal set test. An
KHS test successfully terminates if the m<iy arqurntial teat ieads to a state where
the application o f the rt/uaat art trat has a muat termination.
The foliowiiiR template characterizes an KRS test:

lUM 'xit :■

G .2.8 Testing equivalence (= u)

Thin is an interesting equivalence because it is a slightly weaker form of weak bisiniu-
lation e<^uivalence.
1'wo specifications .Vj and A’a are testing €*quivalent if every tnay and mus< test of S\ is
also a may and a musf test respectively o f .S’a, and vice versa.
Testing equivalence cannot distinguish between specifications that cannot be distin-
guishe<l by experiments, while weak bisiinulation e<juivalence may make such distinc­
tions. This point is illustrated by the following example.

Figure (i.b: Processes I and J

Feaving equivalences aside for thè moment, we survey a numl>er of asymmetric relations
which bave been propcwed. i'hese are interesting because ihey reflect thè asymmetric
character o f thè development process, where a specificalion .Vi in some sense “ imple-
ments** a descriptiiin .Va bui thè opposite is not Irne. See [HSH6, I/edIHa, 1.«mI901 for
detaiUnl insights into this issile.

.S'i ro n f .Va iff (for every KHS test formed as descrilM»d beli>w) there exists (a mus/ run
o f) an F.KS test applietl to S\ then there exists (a musi run o f) the same F.RS test
ap|>lied to .Va. An F-RS test i»f .V| is formeil from a may nrqurtitiai trnt of .S'a followed
by a n funai uri trnt formed from the union o f events in S\ and .V'a.

con f is not transitive. Hence it is p<»ssible that:

KiKurf* (¡.7: ProrcuKeN K, I, and M

To understand why K cqh f A/, consider the following KHS tost:

proroRH KHS-'IVatl (*,y,i,Surcr*iI,Succe«s2) : iMM'xit :«
y; Surceaiili (s: stop (] Succ« mi2; stop)

«•it«lproc (• K RS.Trstl •)

h'HS.Trtitl is an KRS test o f h , in the sense describe<i In the definition above. In
composition with h' there is a test run instance which must generate the trace <
y,Succrtial,SuccrnA2 >. In com|K>sition with M there exists no test run instance
which must generate tills trace. Therefore h' co|hf Af by the above definition.

T h e reduction re la t io n (r e d and c re d)

.V| red .Vi, if .Vi con f .Vj and the trace set o f .S’l is a subset of the trace set of .Vj. cred
is the subset o f congruent red relations.
The reduction relation formalizes the notion o f a reduction of non-determinism. The
behaviour o f an impirmrutation is an acceptable reduction of the behaviour of the
specification.
Kxample:

/. red A/

Also, consider the following example (figure (J.H) taken from [HHH7].

1 A r

The reaiMiii why red holds in equation (*.2. but not in equation (i.4, is quite subtle.
To understand this reason consider the following two KRS tests:

process KRS-Tesl.Naiidg [x.y.Successl ,Suffeia2] :■
SucreasI; (y; stop [] Surress ;̂ st<»p)

eiidpror (* KHS-’I’est. NandQ *)

pr«»ross KRS-IVst.OaiidQ (x.y.Succetsl .Sufcets2l ikm'xU :•
SurcrasI; (x; stop Q Successa; stop)

t'lidproc (* KRS-lest.OandQ *)

(Notice, that in lK>th o f the above KHS tests, there are no observable events before
the .Vurrcss/ event. I his trivial itrqurnlial tmt allows for the cases where there are no
observable transitions before the rrfunal »r t irs/.)
h'HS.Tmt.NaudQ is an KHS test of <V in the sense described in the definition above.
In composition with S it has a lest run instance which must K<*ii<*rate the trace -<
.S'urrrssl,,S'ufccss2 >►. Also, in composition with Q it has a test run instance which
must generate this trace. It follows that A con f Q.
On the other hand: t:HS,Trnt.OandQ is an KHS test o f O in the sense describtKl in the
definition almve. In composition with O it has a test run instance which must generate
the trace .Vuccrsal, .Vwcrrss2 >. However, in composition with Q there exists no
lest run instance which must generate this trace, Therefore O cph f Q.

CJ.2.12 T h e ex ten s ion re ln tion (e x t niid c e x t)

S\ e x t St if .S'l con f St an<i the trace set o f St is a subset of the trace set o f .S',, cext
is the subset of congruent ext relations.
The extension relation formalizes the notion of preserving and extending the function­
ality o f the nprcijicntiou in the implrmrntation in a control!«! manner (any sequence
<»f events accepted by the sprnyirolion will also be accepted by the imp/cfMrrifoiicm)-

Kxample:

K ext I.

G .3 TpHtiiiK roIatioiiB for T L O T O S

We use the review in the previous section of KO'TOS formal relations as a basis for
investigating TKOTOS formal relations. We consider only those relations which can
be defined by testing, having dismissed in subsecti<»n (i.2.ft the current verification
methods as 1(k i expensive or im|KMsible to implement.
We begin by immediately considering tmtiug cttugrurnrr for 'TLO'TOS.

G .S .l T L O T O S teaiing ron gruen rr (« (r)

We initially assume that ThOTOS Is defined similarly to KOTOS » ic , 1.«*. that:

.S'l A'a o (A/uj»/(7'[A’i]) o A fu *i(r[5a])
A A/ay(r[.Vi]) O Aiay(T[A'3l)) for all test rontexts 7'[.]

Now we Investigate if this definition of TLO'I'OS is useful.

O.S.1.1 Case 1

(liven:

S| :■ a, s to p Sa > a A S A P ; s to p

Is Si =,(. .Vj? We define* the following test context C(.):

. |[a]| a; Success {0 }; stop
Using this t«»sl context in a mus/ Irsi, we find that C(.S'|] fails (i.e. a .Surrrssevent dt>es
not occur for every lest run), whereas r (5a] succeeds (i.e. a .Surrcs* event does occur
for every test run), Therefore:

.V| .Va
rhis result confirms our intuition about how .V, compares to .S’a- The lest context
makes use o f the fa< t that the initial state o f all T IX) I'OS specifications is given the
lime value 0 (see section In .S’a. th«’ a «*v**nt is specified to occur ASAP, the
initial lime is 0. and there are no other constraints preventing the occurrence of event
«. Therefore for St, a must occur at time 0. In contrast. ,Vi specifies no ASAP urgency,
and event u may occur at any time > 0.
For testing with TI-OTOS, we (unsurprisingly) specify occurrence times for events,
including the .Vurrrss event, within the test context process. This allows us to differen­
tiate specifications that are identical in terms o f relative ordering, but which differ in
the r>ccurrenre times of their respcn-live events. Also, the test context can be combined
with the specification under test using a selection of any of the TTO TOS behaviour
operalt»rs. For instance, to test an exiting TTOTOS specification, the test context
may be combined as follows;

(
Specification II nderTesl

|(< g ates> l|
Test Part 1 (< gates>]

)
(• T estP arta •) Success (se ll.K (H)l, s to p

This example can be userl to test that the SprrtfiratumlhidrrTr^t may e x it within H
units o f t i m e . _______________

*ls the rcmalsitvr o f this «hapter. for runvesies<-«>. we write ‘ (J .7 ») ' isstesd of

f'nton •rtKQfl) Vnton . Vmon •plt:Q(B))\¥ir.

Now nince, <'’ [.S'’i]|(fl)|i,’W.S'jrr<»<^r«/2 rnunt Renerato the trace «< .Vucceaal,S'ucceja2
but C [5 a l l [« I I ^ ' " • “ i' generate this sucress trace, it follows that
.S’l co^ f S-j, and hence that .Vj c i^d .S’a.

G.S.2.9 C a s e S

a (0 ,1) ASAP

S| :ba {0,1) A S A P : stop S] :>a {0.1}. stop

('onjecture:

.S’l cped .S'a

and i ’ [‘S’a] both produce the same responses to KRS tests of .S’l, hence .S’lConfA’a.
Also, since the* trace set of .S’l in any context C [.) is a subset o f the trace set o f 5'a in
the same context (i.e. 7>(rl.V|)) Q 7>(r(.S’a])), our conjecture is proved correct.

.S', and .S’a can be distinguished by a suitable set o f musi and mop tmtM, which implies
that are they are not testing congruent. 'Phis is confirme<l by the fact that 7'r(C[.Sa)) 2
'/'rif’ I.S',]), hence .S'a cp>d .S’, and therefore .S', .S’a.

We have demonstrated that ronf. cred and cext tnake sensible, intuitive identifications
for Tl.O rOS.

G.4 'lasting C IM -O S A specifications

III chapter« JS and 6 we «aw how we could u«e TLO TO S to describe ('IM -OSA Sh
Bpecification«. and how the I LOTOS description* overcame the inadequacies o f the
l>()TOS de*criptions introduced in chapter 6 . Havinp(investigated formal relations
UKing small T IX) I'OS specifications, we now employ these same relations to demonstrate
how to check that our ('IM -OSA SK 'I LOTOS specifications (appendix F) meet the
requirements discussed in sections 0.7 and 5.5.

G.4.1 O u r approach

A number of discussions and ihwries have been document<Hl. and UhAh developed in
the field of (automatic) test suite generation and application for LOTOS. In particular,
sources such as (HSK(>. WezH», LedOla, MilHO) have been the inspiration, and projects
such as SKDOS. FANOLOSS and LOTOSPHKRK have been the genesis of t<M>ls such
as SQKHiLKS [H (‘M9], LOLA [QFFM9], llll 'I 'O [MarH9], TOPO (MdMHg], COOPKR
[AldlKlj, etc. Such tmils contribute towards an automate«! testing prt)ces*.
The development and use of such t<K>la for automating 'I'LOTOS tests is outside the
scope of this thesis. We are Intereste«! t>nly in investigating whether the testing theories
for ri.O rOS are useful, and can be applied. For the testing examples documente«l in
this section, we generate, apply and analyse the tests manually. No attempt is made
to automate this process.

G .4 .2 The specification su b je c ts

D ie specifications, inforim
tion (>.7 and appendix F. a
in s<>ction 5.5. In this sect
«tract) specifications, We
development process, in a
Also, we I

ly described in section fi.2 , and formally described in sec
I* abstractions of the .V|. .Va and .V3 specifications discusse«!
>n we explore the web formal relati«>ns between these (ab-
night consider this web as a map through aspects «>f the
ay similar to figure 5.1« (see the discussUm in sertum 5.5).

• the example (piesti«>na raised at the eii«l of secti«»n 6.7.

G .4 .3 Relationa between the S E Service and the SE Service A gent

Appendixes F.l and F.:i c«intain (abstractions o f) speciflcallon* of the SK.Service and
SK. Service. Agent. Now, we provide an example «>f the pr«>cess o f investigating what
relati«>ns hold belwe«*n the««* specifications: we make an example c«mjecture an«l test
its truth.

G .4 .3.1 X a g e lT c ron f X t r v l T

We ctinjecture that the SK.Service. Agent specification Xagrl1'(\n any context C l.])
c«>nf«>rms to the SK.Service specification X»n> lT (in the same c«>ntexl f ’ (.j). Stated
another way, we would like the SK. Service. Agent specifleatUm to preserve the fune-

tiunaiity o f the SK.Service iipecifiration. To prove our conjecture we test the relation:
r (A 'o | jr ir] c o n f r [A '«r t* lT), where C[.\ i> any context.
('onHider C(.] a« the context*:

(

I1x . a (;k i ')|
()

(X-AtJKI’ ! Hr<i ? *l*Ul;I)ataSort ALAP;
X.ACKP ! Hm? (Uta'.2:l)ataS(>rl AhAP:
atop)

and consider the following KRS twt:

pror«>aa PRS. Teat. X 1(X. A ÌX i ’.Sucreaal .Succea#2| ià<M'XÌt :■
X .A (’<’P ! Req ? data! DalaSort
Surreaal A S A P .
(

X .A rC I* ! Rea ? dala2 DataSorl {arl|-;g(tl)): atop

Surrraa2, at«>p
)

••iiilpr«M' (• KRS.Trai.XI *)

N«»W aince. r [A o f l f 17’)|(A ̂ <” r / ’) | I doea yield muaM-Vurrcaai) teal runa,
but r [X jtrv \ r]\ (.\ J {C C r]\ l‘:HS:rri>t.X\ yielda only may (A u rrraa i) teat runa, It fol-
lowB that A’ aflf 17’ ccuhf A'art’ 17’ .̂
I hua we have pnwed that A'oiff /7’ doea not preaerve the functionality o f A’arti/7'. How­
ever. we would like thia to be the caae, ao how ahould we redeaiKn A'«pr/7 or A>rr/77
The anawer ia related to the <|uc*ation raiaetl in the firal point at the end of aection 6.7.
In aertion 6.7 we doubted if the informal requlrementa for the X .ServIce (aection 6.2)
waa a auilable place in which to expreaa the conatraint that ‘ the X.ServIce ahould
compute and offer an X. Ar(TfHri>f<iataS ASAP*. The Aarr/7’ directly reflecta
thia conatraint by placing ASAP timr-poiiry on the i event*, which repreaenla the
computation in queation.
Aa auKffeated in the flrat point at the end o f aeclion 6.7. we reaolve thia ‘error in the
informal requlremenla’ by rele^atinK the ‘urgency o f computation* conatrainl from the
X.ServIce re<|uirementa, to the X.Service. Agent requirementa only. Thia la reflected
in the formal TI.OTOS deacription of the X.ServIce. through the removal o f the ASAP

•NoUcr h«»w w r pur|><iwly a n n ih iU lr tk r A S A P v r ira r y oa th r X.AOF.P r v r a l « of XayfiT by

p lw ina A I .A P Umt‘poiur»un ih r A . AW A/’ rv ra l o S rr» of ih r r o a lr i l C’l). Aaaih ila tiu a of tkr A S A P

uraracy allow« A . A f/ A P r v r a U to o rra r at aay lim r ia thr raaxr f l . t l -f ilia «

•imulatiaa tk r rangr of o rra ffra rr iim r« of A . AdKP rv r a l« if ih r X .S e rv ic e . A a ra l were placed ia a

'real* IIS roa lea l.

^ rrn iif denote« r o n f ciwararn« e.

*TealaaUy, the flr«l I rvral in tkr Arraf 7«perillcalU>a

timr-poliry on the i event. Thin reHult» in the new X.Service specification X$rv2T, in
appendix F.2.
X a g r lT ccon f X »rv '2T does hold, with the .Yaffc/7*specification alone reflectinR the
‘urgency of computation' constraint.

G .4 .4 T h e relH tions b e tw een th e E x ten d ed S E . S e rv ic e A g en t and th e

SE S e rv ic e A g en t

Appendixes K.4 and F.5 contain (abstractions o f) specifications of the SK. Service. Agent
{XagrST) and the Kxtended SK. Service. Agent (A ’opcir). Now, we provide an exam­
ple of the process o f investigating what relations hold between these specifications: we
make an example conjecture and test Its truth.

Xage2T

We conjecture that the extend<*d“ SK.Service. Agent specification XagrST (In the par­
ticular context where no X. Management functions may occur), is tr^ting rguiva-
trut to the SK.Service.Agent specification A'agf/7’ (in the same context C l.]). Stated
another way, we would like the extende<i SK-Service. Agent specification to behave
e<|uivalently to the SK. Service. Agent spt»cification, when they are both placed in the
context (r (. l) Nvhere no X. Management functions may occur. I'o prove our conjecture,
WI* test the relation: r (A a »r r r] r(A 'a ffr27 ’). where C [.] is the particular context*®:

It is trivial to see that:

(Af usi(7 '[r(A aj/r 17']]) ♦* A/usi(7'[i"[A ojr27']])
A Afav(/ '[r[A'asr 17']])«* A/oy(/'[r(A 'aiir27']])) for all test contexts T[.]

and hence that C(A'a.9cl7'] « i , f ’ [A'aÿr2/’].

G .4 .6 T h e re la tion b e tw een th e E x ten d ed S E . S e rv ic e A g en t Bpecifl-

c a t io n » : X a g e2 T and X a g e S T

In the last point in section tt.7, we alretl a worry that the ALAI* (’Ut»rdoum event
In A «grf7 'cou ld occur immediately after the A'. event. Does this

violate the informal requirement« o f «eclion 6.2 which indicate that the i Voaedowfi event
should not be required to occur ALAI* once the X. ACCP!Hrfi!dataS event occurs?
Specification XagrUT represents a restructuring of specification XagrST, written to
explicitly avoid this worry. Hut are XagrST and XagrST different (by testing)? Stated
more formally, does the relation X agr’l'V XagrZ 'l hold?
We ran capture the essential ilifference between the two specifications XagrST and
.V«ii» .y7’ in the abstractions (respectively, AXagrST ami AXagtST):

AXssr J l : » (X . A<’riVRi*!cUtsJi »*sU [>X .M «iu!Clo*rl)own; s lop) »X .M «n l!C lo «» l)o w n ; stop

AX««p;H : « (X . ACCPtKeatdsIsJ; es»t Q X. «»op) 5 > X . MtnttC’ l4»wl)<.wn; stop

resting, we find that /1,Vaffc27’ * , r AXagiXV . For example, if we take the simple
context

(.)
|(X.A(’('I ’ , X.Mgnt)|

(X.A('(T!Hes!dala2 (0); stop ||| X. Mgnt!(’lo«-I)own {0.1}; stop)

we find that both ('[A X a g rT T] and 37’) have the same set o f may tratr.

{ X -A ('('l*\ H i aidttta'lM -• X .Mgnt\Cloarl)ownu,
X - A (' (' P\Hi a\data'i» — X .Stgut\('loarl)own\,

.M gut \('loar t)ow n j }

With A A «yr2/ ’ AXagt'.VV, it follows that Xagt'ZT »i«- .\ayc37‘.
(liven the <»<|uivalence betwwn A A’ayf i7'an<l AA”ayr.y7’, a reasonable next step might
be to attempt to rationalixe either A XagrST or AragrS'i\ tt»:

AXagel'l' ;«X -A('(*l»!Res!data2; stop OX. MgntU’ loseDown; stop

but the set o f may if sis of f ’ (A A aye •»/’] contains the trace: X .M gniH 'ioarDow uo, and
hence A.X'nyrd7' jijr A.X'ayf27'.

A ppend ix H

Example application of the
SimChar algorithm

'riiid appendix provides an example of the application of the S im i'h a r alKorithm (»ec-
tion 7.4.7) to a simple IMiI.O TOS system. This example illustrate h<iw Sim Char prob-
ahill«*s ail Nl* l.TS which contains one of the non-determinislic branching scenarU»
describml in section 7.4.li. 1 he ap|mndix provides a a step-by step guide through the
instantiations of .VimiViar. illustrating how SimC'har produces the set o f simultaneous
equations which characterize an Nl‘ l.TS as a I* I.TS, Important points concerning the
algorithm's method are highlighteil,

T h e (*xainpU> P h L O T O S system

riie example system (spec) to which we apply S im ('h a r, is defined by the following
IMiI.O’l'OS fragment, ami representeil graphically in figure H I.

H.2 Instan tiation fo r state sq

Th f reniill of Ihe A’ imr/>or(»o.. . .) in»tanti»lion (S im C h a r appliini to the initial atata
ao of tha PbLO'I'OS system spsr) is described below.

0.1.0, 9)

(• firm rr«“* l r ih r »ubiirt o f »uxiliary «H|u»tiunB «M oria t«^ with Blatc «o
• « « « f * • (0 < #lo frmi < 1 . »*0 • • I “ Mo /r««.

0 < M o i i < i . 0 < M o * « i < l .
Mo + Mo i 1 “ >

)

(• now Uunrh .Vimi'har inBlantiation* to prucMa ihr BtatM that follow alalr
• «0. ami unify the Irproha ami a u r r ^ returned from theae
• inatantiationa when they return •)

< (Mo . I + Mo /rat) > I
* M o . . , V)

(• and finally, return the unified trace probalwlity aeta {trp rob '). and
• return the auxiliary rtiuationa (a u r r f ') for the atate ao roncalenaled with the
• auxiliary equationa (a a fr y ") for the atatea which follow ao •)

n(s< trp rok '.a u rt^ ' ^ a a a e f " >-)

S im ('h a r (ii i , . . .) proernaon atat«»« which follow the I tranaitioii from i*o-
S im ('h a r (n i, . . .) proreaaea atatea which follow the a tranaitioii from ao-

We take at ItKik at theae S im (’har inatantiationa in a moment, but flrat we have an
important point to make about how SimC'har proceaaea atate ao of thia example.

ao la an example of a atate where non-determiniam ocrura aa a reault of a combination of
an obaervable tranaition an unobaervable { [) tranaition (the caae |^///'rrr6/*aira(ak.n)| >
1 in aectiona 7.4.s') and 7.3.2).
Kor thia caae .Vimf’ hor muat preaerve the /’ (■ a ^) ■ 1 property of the NI’ -LTS
aprr in the reaultiiiK "«•I <>f aimultaneoua equationa. To d<» thia, SimC'har containa
knowledge of the f«rt that:

is ubnervationally
equivalent to:

'I’hi« means that the NI*-I^TS:

where;
0 < /il < I
0< /ia < 1
/il + /i3 • 1

ran effectively be
replaced by the P-LTS:

However, rather than have S im ('h a r actually edit the branching structure o f the Nl*
i;rS to prt>duce the branching structure of the P-LTS (as shown above), we instead
define S inU 'hn r to generate traces of a P-LTS which has the above branching structure.
I'he difference is not just conceptual. The definition o f the S itn (har algorithm would
have been much more complex if we had define<l SimC'hnr so that, when encountering
a non-deterininistic state similar to that shown above, it re-arranged the branching
structure o f the system and then proceeded to act over the new branching structure.
Our chosen definition o f .Simrhar, which produces traces os if the offtnding branching
structure had b(«en re-arrangtKl, is much more tidy.
When enctiiintering the non deterministic scenario at state so, SimC'har allocates the
free-term /*o,/r«f to be the sum t)f probabilities of all observable transitions from stale
.So (o only, for this example). S im ('h a r allocates 1 to the sum of probabilities of
unobservable I transitions from state so (only one 1 transition for this example). Hence.
S im ('h n r generates the traces (depicte<i as branches):

which could be assembletl to
produce the P I/PS:

p u_0

1“
(I'he definition of an P I/l'S section 77 tells us that the assembly of the above traces as
a P I/’l’S would have t*> be as shown since the P LTS definition disallows any p transition
to carry a probability value > 1 (which the second trace does, since /io.i.i +#*o./fsr " 1)•)

H.4 In stan tia tion for s tate m|

The result o f the instantiation is describeil below.

.VimC'fcsr(si .U.o.s I, I, l.(r/ »rn l) ii

trptok.$

I’here are no transitions from m\ (and. anyway, the maximum specified observable trace
depth ha* been reachtnl) so simply return the trace probabilities {trprob) and auxiliary
equations (at/xr^) that have been accumulated for this branch.

:i(iO

Appendix I

Abbreviations

Thin appendix rontainii a Hal o f arronyma. initializations and other abbreviation* used
in the theffis.

Abbreviation Kxpaiuion Context

ANSA A«lvanred Netw<»rkr<l Syatem* Arrhitecture

AC Activity Contro l Service C IM O S A

AK Application Front-Kml Servicea (MM-OSA

A(C l* Acre«»-Protocol C IM O S A

A(il-:P Agent-Pr<)tocol ('IM -O S A

A fM Architecture Project* Maimgrment Ltd. ANSA

M Hiinineiwi ('o iu p lex C IM O S A

HC huHineM I'rocea* Control Service (M M O SA

C ('onimunications ('omplex C IM O S A

(■ c m International ('onaultative Committee on 1'elegraphy and

'I'elephony

CIM ('omputer Integrated Manufacturing

CIM OSA Computer Integrated Manufacturing Open Sy*tema

Arrhitecture

KSPHM

CM Communication* Management T^rvice ('IM -O SA

DAK Distributed Application* Kramework

DM Data Maiiagetiietit Service CIM OSA

Abbreviation Kxpaniion

{'IM-OSA
(IM O S A
C'lM-OSA
(iM-OSA
('IM O SA
riM-OSA
(iM-OSA

European Strategic I’ rograiniiie for Heaearch and Develop­
ment in Information Technology
Krtmt-Knd ('omplex
Kormal Reference Ha»e
Human FVont-Kiul Services
Information ('omplex
Integrated Knterpriae Kngineering environment
Integrated Kiiterpriae Operationa environment
Integrating Infrastructure
Integrated Systems Architecture
International Organisation for Standardisation
Language of Temporal Ordering Specification
Machine Kront-Knd Service
Open Diatributed Proceaaing
Open Syatema Interconnection
Probahiliatic LOi'OS
Protocol Data Unit
Priority LOiOS
Protocol-Sup|H>rt Service
Resource Management Service
SyatemWide Data
Service Data Unit
System-Wide Kxchange
Service-Provider
l imed i.o ros
Timed Petri-Net
(used as a placeholder name for any IIS aervice)
Kxiende<i LOTOS
(Kxlended) LOTOS

('IM OSA
(’IM-OSA
(’IMOSA

('IM-OSA
(’IM-OSA

