








ABSTRAi T

Ix'ophyKiological indices (hut chuructcrisc unimuls fitness directly or indirectly 

measure the components of protein turnover and its assiK'iated metabolic costs, 

Iherelore. more likely protein turnover and asMKtated melaK>lic costs may play a 

major role in underlying stress tolerance mechanisms. In this thesis a t1ou-through 

system was designed and developed to overcome some of the existing basic design 

flaws in such systems and used U> determine responses of'different species of'tilapiine 

fishes (C'ichlidae; Tilapiini) under lethal and non>lethal stress using cadmium and 

copper.

A significant variation in tolerance capability between mouth briMKling and substrate 

spawning tilapia yolk sac-fry to lethal cadmium and copper stress was observed. There 

was citncordance between the relative tolerance capabilities of these two groups to the 

two metals suggesting a general response. Similarly, tolerance capabilities were in 

concordance with early life-history growth traits and ass<K:iuted metabolic costs 

mea.sured under non-stressed (control) conditions suggesting individuals with higher 

growth rates and low maintenance metaK>lic costs are better capable o f tolerating 

metal stress than the individuals with low growth rates and higher maintenance 

metabolic costs. Lower cadmium body burden levels were observed in the sac-fry of 

the more tolerant substratc-spawner T zi/lH than th<tse o f in the more sensitive mouth- 

brooder () nUolU m . Variations in growth performances between miiuthbr«HKlers and 

substrate spawners were attributed to the difference in their developmental rates. 

I hercfore. genetically based phenotypic variations for early life history traits translate 

into variations in stress tolerance.



Similarly O niloluus yolk suc-lry originating from small eggs were more tolerant to 

cadmium stress and hod lower bi>dy burdens than larger conspccincs originating from 

large eggs. The early life history growth traits and asMK'iated metabolic costs 

measured under non>stress conditions were in concordance with the tolerance 

capabilities of the two si/« groups suppt>rting the correlation between higher tolerance 

and low maintenance metabt>lic cost. I hc si/c of the yolk sac-fry was influenced by 

maternal age and s i/r . and hence, by egg si/e. I herelore. translation of pre-determined 

phenotypic variations for early life history traits into variations in tolerance 

capabilities to metui lethal stress was supported.

Starvation-induced reductions in metabolic rate of tilapia sac-fry carried a fitness 

advantage by reducing cadmium uptake under lethal stress. I herefore. post adapted 

physiological acclimation to one type of stress may carry a fitness advantage over 

metal stress. In all cases Itilerunce capability to metui stress was correlated to the 

metabolic status o f yolk suc-fr>.

I ’sing the most sensitive mouth brintder (> nihuU ux and most tolerant substrate 

spuwner T ziliH. which demonstrated the largest difTcrcnce in their lethal tolerance to 

cadmium and copper, the efTccts of rton-lethul cadmium stress were investigated. 

Significant ditfercnccs in stress tolerance between the two species was observed. 1 he 

elTects of cadmium tm growth and asMK'iuted metuNilic costs were similar for both 

species suggesting a general response under non-lethal cadmium stress. I here was 

evidence that both species showed un increase in protein turnover, and hence, un 

increase in maintenance metabolic costs. It was found that cadmium did not alTect the 

energy supply, but reduced protein growth which appears to be due to investment of
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1. G rnerai introduction

I'hcre are over 50.(NK) knou-n chemicals produced in quantities greater than one ion 

per annum, and since up to KKK) nesv chemicals are launched t>n the market annually 

(Bourdeou. WK4). the control and evaluation of these substances has become one of 

the major environmental issues of present times. Over the past lwt> decades increasing 

emphasis has been placed on the toxic evaluation o f  the impact of industrial and 

municipal efUuents on the aquatic environment and the organisms which dwell within 

it. since the aquatic environment increasingly serves us a receiving sink for various 

chemicals, for a comprehensive evaluation of the environmental hazards associated 

with a specific chemical, the determination of its toxic potential along with fate of the 

substance in the environment, is needed, foxic effects of a substance on organisms 

is largely determined b> the extent to which the organisms could tolerate the stress 

caused by the chemical (his concern prompted the development of a new scientific 

discipline. ecotoxicolog>. which cun be broadly defined us the science which is 

concerned with the effects of potentially toxic chemicals on the functioning of 

populations, communities and c*cosystems. through effects on individual organisms.

1.1 l-^nvironnirnlal ulrriiii, rmponsr and Nlrrsii lolvrNnee

1.1.1 Concept of liiological iitrriiii

1 he concept of biological strcs.s lias been defined at different times by various authors 

these definitions of stress. Iiowever. share the common premise of a stimulus' acting 

upon a biological system and the subsequent reaction or the response* of iIk*

I



hiologicul system to the stimulus (Pickering. W8I). When defining the term stress, 

st>mc Ncorkers (Meir. I‘>72; l etller. m?«; Ulanowic/. I‘i78) used the stimulus' us 

stress while others (Selye, l*)56; l-sch and llu^en. 1 )̂78; l.ugo. I‘#78) used the 

'response' us stress and the stimulus as stresstir. I'or the purpose of this thesis, unless 

otherwise specified the term 'stress' will he used to describe a stimulus, the reaction 

of the biological system being defined as the stress 'response'.

The approaches of defining stress are bused on the changes in performance cupacit) 

of an organism (or Darwinian fitness, see below) and the energy demand caused by 

a stress. Drett (1^58) defined stress us any environmental factor which extends the 

normal uduptiNC response of an animal, or which disturbs the normal f unctioning to 

such an extent that the chances of survival are significantly reduced. This definition 

is useful when referring to individuals but it is not so readily applicable to populations 

in which, under certain circumstances, a decrease in the probability o f survival t>f <mc 

individual may directly increase the probability of survival of other members of the 

population b> means of reduced, intruspecific Ci>mpetition (Pickering. 1^81). Sibly and 

('alow ( W8*>) defined stress in general us an environmental condition that, when first 

applied, impairs Darwinian Illness, which is applicable to higher levels of 

organization. Impairment of Darwinian fitness cun involve reductiitns in survivtirship. 

fecundity or an increase in the lime interval between life*cycle events, (irime (D>79) 

used the term ’’stress” only to describe factors that inhibit production and the term 

"disturbance” to describe factors that impair survivorship to which Sihly and ( alow 

(1989) referred as growth stress and mortality stress respectively. Ilradshaw and 

Hardwick (1989) considered that stress is anything which reduces growth or



performance, thus a reduction in fitness, K<K*hn and Huyne consider the elTects

of stress as the physiological energetics o f the organism, i c. the physiological traits 

such as feeding. ahsi>rption and the metabolic costs of maintenance, growth and 

reproduction, that together reduces the performance capacity of the individual due tt> 

the energy costs associated with trying to maintain homeostasis.

In terms o f energy demand resulting from stress. Ivanovici and Webe (IdKI) defined 

stress more specifically as “a significant reduction of adenylate energy charge (AIX ) 

which is induced by an environmental perturbation". Adenylate energy charge is an 

index calculated from measured amounts o f adenosine triphosphate (A IP), adenosine 

diphosphate (AI)P) and adenosine monophosphate (AMP) where by (Atkinson. I*i77; 

llochochka and Somero. Î )K4)

A H '  -  (A IP  + 1/2 ADP)/ (A IP ♦ ADP + AMP),

However, such biochemical measurements need to be interpreted with caution as the> 

may not translate into efTects at individual and population levels because of 

homeostatic compensation (('alow. I‘>K*)), Irrespective of the definition and source, 

stress is now generally accepted us an interference with the normal functioning of a 

biological system which reduces its structural and functional integrity, and results in 

an increase in energy demand, and. reduces fitness (lloesch and Rosenberg. H)KI)

1.1.2 Mrsponsv to toxic xtrr»«: Adsantage« o f using physiological ami biochemical 

responses in toxic stress.

In his classic work on the morphological aruf physiological responses of animals to

.1



stress, the Austrian physician Huns Selyc (1^50; IV56; 1^54) suggested that in 

mumniuliun systems there is u recognisable group of physiological responses which 

he termed the (iencrul Adaptation Syndrome ((lAS) to environmental inlluences. I his 

group of physiological responses operates in three successive stages; alarm reaction, 

resistance and exhaustion, which influence the health of the individual concerned 

(Sclyc. Sclyc's concept of stress dilTers from others in that stress (response)

is considered to he an essential component of normal metabolism (Pickering. I^KI). 

and there is no reference to a non>stressed state which makes quantitative and 

qualitative predictions difficult (liarbcr. IW<)).

Organisms function ut many levels in an hierarchy of ttrguni/ed states from the cell 

to the community and the search for measures of' response to stress has priKeeded at 

all levels (l)ayne. H>K5). Neural and neuro'cndi>crine resptmses which occur at the 

cyt<»logical level and their resulting physiological consequences are known us primary 

and sc*condury responses, respectively (Mu/euud. Mu/euud and Donaldson. 1977). 

lertiary responses includes changes in behaviour, decreased growth rate and increased 

susceptibility to disease and are resultants of bitKhemicul and physiological changes 

in the organism (Wedemeyer and Mcl cuy. 19K1). Iherelorc. integration t>f 

biochemical and physiological responses will be a useful tool to quantify an 

organism 's performance under conditi«ins of environmental stress. I hese responses 

meet the majority «tf criteria of responses to be considered us useful measures of 

bi4)logical effect In toxicological t>r environntcnlal monitoring programmes (Widdttws, 

19K5)

-they arc sensitive to environmental stress and have a large scope lor response



throughout the range from optimal to lethal conditions.

•they reflect u quantitative or otherwise predictable relationship with 

the stress or pollutant.

-they have u relatively sht>rt response lime, in the order of hours to weeks, m  

that stress impact may be detected in its incipient stages.

- they represent non-spc*ciflc (general) responses to the sum of environmental 

stimuli, thus providing measurements of the overall impact of environmental 

change and complementing the more contaminant-speciHc responses ut the 

cellular level.

-they are measurable with prc*cision and with u high "signal to nt>ise" ralit> so 

that the efTect of stress may be detected ubt>ve the "noise" o f natural 

variability.

• they are ecologically significant and cun be shown, or convincingly argued 

to be related to un adverse or damaging efTect on growth, reproduction or the 

survival of' the individual and the population.

l'rop<isrd stress lolerNnee mechanisms

The c*cophysiological indices used to characterise the fitness of un unimul under given 

envirttnmentui conditions directly or irklirectly measure components of protein 

turnover and its associated metuK>lic costs. Many «>!' these indices, such us 

oxygen:nitrtigen (0:N ) ratio (Widdows. I'helps and (iailowuy. Î ^KU ('orreu. h>K7). 

net growth cfliciency (Widdows vi u i.  WKI). scope for growth (Widditws. hukke. 

liayne. Ihmkin. I.tvingstone. I.owe, MiHtre. Mvuns and M<K>re. WH2; Stickle. Kice and 

Moles. )')K4. MiMirc. I.ivingst«>nc and Widdows. I*)K7) and adenylate energy charge
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(hanovici and Wicbc. 1^81; (iiesy, Duke. Dinghum and Dickson. D>8.1) have been 

used O.S stress indices. Recently, the interpretation of protein turnover us u possible 

general mechanism for stress tolerance has been offered by several authors for both 

plants and animals (C'tK>ke. Oliver and Davies, C\H)kc and Davies. W80:

Hawkins. Wilson and Bayne. W87. K(K*hn and Buyne. WHM).

1.1.3.1 Proposed mechanisms of stress tolerance based on protein turnover 

t here is a continuous need to repair and replace the damaged molecules and tissues 

(protein turnover) throughout the life time of un organism and this is known us protein 

lum iucr (Sibly and ('alow. D>8 )̂. t his equilibrium stale which is referred to us the 

dynamic steady slate of the body (Schoenheimer. 1946) requires energy for its 

maintenance at u certain level, known as maintenance metabolic cost. Proposed 

response mechanisms bused on protein turnover and associated metabolic costs are 

given below.

i) High inherent metabolic cost.

A priori, high rates o f protein turnover, though incurring high metabolic costs, have 

been proposed to be un udNuntuge under condilii>ns o f stress (Koehn and Buyne. 

1989). I his was proposed on the basis, that inherent high protein turnover is sufllcient 

to repair the protein damage caused by toxicanls. and bearing the energy cost involved 

in repair I herefore. the cost involved in protein turnover under stress should not vur> 

significantly from that under non-stressed conditions, us the cost of tolerance is curried 

all the lime.



ii) Reduction in metabolic coiil

One way that an organism may increase its tolerance to u range of environmental 

stresses is to reduce its metabolic energy requirements via u reduction in metubt>lic 

rote during exposure (llotTmonn and Parsons. 1984). Such a mechanism is used by 

animals that hibernate or diapause to avoid periods of environmental stress 

(lliKhochka and Somcro. 1984). Supporting this hypothesis, stress tolerance is known 

to be reduced under stress conditions that increase metabolic rate (llolTmann and 

Parstms. 1989), For example, when the metabt>lic rate was increased at higher 

temperatures, adult DrosopUa melunofta.stcr showed a reduction in tolerance to various 

stress factors, including anoxia, starvation, high concentrations o f ethanol, and 

desiccation (Matheson and Parsons. 197,'t): the strategy adopted here is to reduce 

overall activity to save energy. Protein turnover is a primary facutr alTecting 

maintenance metabolic energy demand and therefore considered to be un important 

component of maintenance energy requirements. Therefore, organisms under such 

types o f stress should reduce the protein turnover to reduce its metuKilic energy 

requirement. The prediction of reductii>n in metabolic rate to tolerate stress may not 

apply to all cases of stress tolerance, particularly those associated with chemical stress 

(MotTmann and Parsons. 1989). Tolerance for chemical stress could be asMKiated with 

increased mctaK>lic rate because of an increa.se rate of detoxification. This leads to 

the third proposed mechanism.

Ill) Increase in metabolic rale

Changes in envintnmenta) conditions may affect the dynamic steady stale of the K>dy 

by increasing the rate o f protein damage ((iarlick. Millward. James and Waterlow.



\^75. Hawkins vl uL. 1 )̂87; Houlihan. Hall, (iray and Noble. I*iK8), Ihis will lead lo 

an incrca.se in the rale of repair priKcss of the damaged proteins to regain a new 

equilibrium at higher rates of both priKesscs: thus the t>rganism can tolerate the 

damage caused by the environmental change. Ihis process is expensive in terms of 

energy, as it leads to a higher maintenance cost, using rest>urces in maintenance which 

might otherwise have been invested in production (grt>wlh and/itr reprinluction) 

(Sibley and C'alow. 1^89). These increa.sed maintenance costs have benm di»cumented 

in several organisms subjected to environmental stress such us fust flowing water (Tox 

and Simmonds. I^!13). osmotic stress (Stearns. I^>80) and chemical pollutitm 

(Widdows vt ti/., 1^81).

It can be sc*en from the previous section that there is no single generalized 

mechanism to stress tolerance It is also known that very distinctive responses cun 

evolve to resist stress, each related to the nature o f the particular stress: eg 

physiological acclimation, behuviourial changes within the life spun of an animal to 

resist the stress or leading to natural selection for an increased resistance, resulting in 

genetic adaptation to the stress, have been documented us other possible resistance 

mechanisms (Klerks, and l.cvint«tn. IW8My These genetic uduptutions ma> include 

special detoxificatitm mechanisms and structural alteratit>ns of the site of action to 

reduce the Nniy burden



1.2 AdviintiiKr!i o f u m ir k  n»h m r ly  lifr in ccoloxicity Mtudic!« o v r r  com pkttr

life cycle ecoluvicity s t u d io

Olsen und l uster's (1956) summary on sodium dichromute (nxi^ity to the eggs, fry 

and curly Juvenile stages of sulmonids is one of the curliest reports of non-lethul 

exposure to consecutive fish life stages, f ollowing this reptxl studies on cttmplete life­

cycle toxicity tests (embryo to embryo) were conducted with the fathead minnow 

{l*imi'phiilcs promitas) by Mount und Stephen (1967; 1969) and Mount (1968). und 

the elTects o f the toxicant on survival, growth und reproduction were measured 

quantitatively. Such quantitative dutu were used to determine the maximum acceptable 

titxicont concentration (MA (C'). which is defined us the geometric mean between the 

no observed elTcct concentration (NOfX') und the lowest observed etTect concentration 

(I.O f'(') (Mount und Stephen. 1967). Such studies were also conducted Ibr many other 

fish (Akiyuma.!97(); I•.ul^m.l97(); Mckim und iienoit. 1971. 1974; Smith. 197.'̂ ; 

Schimmel und Munsen. 1974; Holcombe. Benoit. I.eonurd und McKim. 1976; Spehur. 

1976; Hansen und Parrish. 1977; Midduugh and Oeun. 1977). The fish complete life­

cycle toxicity test Is considered by many uquutic toxicologists to be the ultimute test 

in establishing long term “suf'e" environmental concentrations of toxic chemicals for 

both vertebrate und invertebrate aquatic populations (McKim. 1985).

A disadvantage in c«>mplele lifc-cycIc toxicity studies is that, for many Itsh species, 

u minimum of six to twelve mttnths of concentrated elTort is required Some of the 

complete lifc-cycIc non-lethul toxicity tests cun lust for up to two years (Benoit.Puglisi 

und Olsen. 1982). I he increasing rate of production of new prinlucts in recent years



has created the urgency for more rapid, less costly and reliable toxicity tests than 

complete lit'c>cycle tests tor determining sate environmental concentrations of toxic 

chemicals.

Hynes ( 1 ^ ) )  and l ar/well (H>67) emphasi/c*d the necessity of conducting toxicity 

tests ^^ith the most susceptible life stages of dominant species. During early life stages 

man> critical development events take place in a very short peri<KÍ of time including 

dramatic biidogical. metabolic and morphoU>gical changes from embryo to yolk sac- 

fry (Christensen. 1^75) and these stages arc particularly sensitive to litNv level 

environmental disturbances (Vailali. Culamuri and Marchetti. W75; Macek. I.indberg. 

Sauter. Buxton and Costa. Id7b: von Westernhagen. than later developmental

stages (von Westemhagen. IdHH; Rosenthal and Alderdice. 1^76; McKim. 1*>K5). 

Short-term expt»sures t>f embryi)s and newly hatched fry provided an adequate 

estimate «tf safe concentrations over the complete life cycle of those lish (McKim. 

Arthur and Ihorslund. IM7S; Vailati <7 o/.. l ‘>75). I he studies used sht>rter early lite 

stage toxicity tests (Pickering and (iast. 1^72; baton. 1974; McKim t7 <//. 1975; 

McKim. 1977; Mckim. I.aton and Holctimbe. 1978; baton. McKim and lh>lct>mbe. 

1978) and strong!) supported the usefulness o f the early life stage toxicity lest as a 

quick reliable mcthi»d for predicting U»ng term non-lethal elfcets (Benoit c7 u ! . 1982). 

McKim (1977) analysed data from 5b life cycle toxicity tests completed during the 

1960‘s and early 1970’s with 14 i>rganic and inorganic chemicals and four species itf 

fish. He concluded that the embrytt-lurval and early juvenile life stages were the most 

or amtmg the most sensitive in their responses to chemical insult. Macek and Sleight 

(1977) corKluded uMer a review of much of the available data (hut critical life stages
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(embryos uml developing fry) exposed to (oxicunls provides estimules o f chronically 

safe concentrations remurkuhly similar to those empirically derived from complete 

lifc'cycle chronic toxicity studies. Woltcring (I9K4) reviewed 173 toxicity studies. Ihe 

proportion o f  these studies which included early life stages as well as adult stages. 

repriHluction and adult growth as most sensitive end point however, was only 3()%.

Apart from the reduction in cost and time, toxicity tests with critical early life stages 

can provide information on potential long term ctTects in situations where lethal 

toxicity ( I.C’50) is not observed (Macek and Sleight. 1V77).

1.3 Test o rg a n ism  sricction: I ilapia as a pttsstble test organism  in early life stage 

toxicity testing in tropics

A number o f  fresh water and salt water species o f fish have been used in early life 

stage toxicity tests (see Appendix I). lilapias (C'ichlidae: lilapiini) have not received 

much attention us a test species in toxicity testing compared with most other fresh 

water t'ish largely because they have been traditionally regarded us a "hardy" llsh. The 

sensitivity o f  tilupius to toxic compounds is piHirly studied. A few metal toxicity 

studies using juvenile or adult tilapius were reported ( fable 1.1). f^xcept the studies 

that have been done by Pundyu and Kuo (I^K6), IK* Silva and Kanusinghe ( I ‘>K'>) 

(with pesticides) and fu and Lock ( 1 ^ ) )  (with metals) in acute toxicity tests no 

toxicity studies have been reported on the early life stages such us eggs, saedry and 

feeding fry of' tilapiu. thus the most sensitive early life stages have rarely been 

subjected to testing. Despite their reputation as "hardy” fish, tilupias fulfil most of the

I I





criteria used in selection o f u test organism for toxicity studies.

filapia arc widely available. iKcur in a wide range o f  aquatic habitats, including 

p(H>ls. lag(H>ns. river margins and IlmKl plains, reservoirs and lakes. Due to the keen 

interest in tilapia us un aquaculture species, it has been widely introduced into tropical 

areas other than its native Africa and cun now be found in over one hundred and five 

countries (l)alurin and Mutton. 1^7^; Philippurt and Kuwet. I^K2). Thus, tilupius could 

be considered us u representative fish in the tropics.

Adequate background inidrmation dinrs exist on the biology and ecology o f tilupius 

to establish laboratory rearing, t he fry of lilupiu unlike murine fry. also ure amenable 

to hatchery rearing (Kuna. W86b: l^KK). I he relative eu.se of culture of tilupiu and its 

rapid growth rute under tropical conditions (i)ulurin and Hutton. 1*̂ 7̂ ; liulurin and 

Muller. 1^82) show that tilupiu ure well adapted to laboratory rearing. Kunu (l^>8ba) 

rerH>rted high hutchuhility rutes and subsequent fry survival rules (dr ( fn ’tuhronuy 

species (around 85%) in urtiflciul incubation containers. The abnormalities in yolk sue* 

fry during intensive breeding, which ure observed in i>thcr species (IX>roshev. 1970; 

Pirón. 1978). were below 2% in hatchery reared tilupiu species (Kunu. |986b). I he 

ability to spuwn readily throughout the year and produce high quality fry in large 

numbers under laboratory conditions will supply sulVicient numbers of eggs and fry 

for toxicity testing. I he curly embryology of lilupiu is known I he incubution and 

complete york ubs*>rption pcriinls ure us short us live to twelve days post hutch (Kuna. 

I98f>b; 1988). 1 herefore. the short early life stages, which ensure u rcduclum in cost 

and lime involving in toxicity tests, make lilupiu useful lish for luborutory curly*life 

stage toxicity tests.

1.1



1.4 Kcoloxicolofsiciil im portancr »f cudmium

C'aUmium was selected in this thesis us u study compound due to its ecotoxicologicul 

importance, (.'udmium is u biologically non>cssentiul. non-dcgroduhlc cumulative 

pollutant, interfering with the metabolism of some of' the essential metuls in animals 

and human beings (Allen, (irimshaw. Parkinson and Quormby. 1^73). The total world 

production and the total anthropi>genie emissions of'cadmium have increased greatly 

between l*>20 and 1^80 (Nriagu, I*i7d; Korte. 1*̂ 82). Apart from geological stmrees 

additional cadmium enters the aquatic environment us u result of many industrial 

activities such us /.inc refining und mining, cadmium plating, alloy, battery, aluminium 

solder, smoke bombs, arms und ammunitions, paint and pigment manufacturing, und 

from pesticides and fertiliAer sources (von VV'esternhugen. Kt>scnlhal and Sperling. 

1M74). It may contaminate the drinking water by its leakage from gulvani/vd copper 

or plastic pipes (Saxenu und Purushuri, I'>81).

Among heuNy metuls cadmium us a pollutant represents u great hu/ard tt> human 

health und has been implicated in the "itui-ltui” disease in Japan (Kobayashi. l'>71). 

( ‘udmium is normally present in natural water, both in soluble fractions and bt>und to 

particles. (Inder circumrtcutrul pits, particulate cadmium has no knowt) toxic effect 

on fish but with u decrease in pll it may become unbt«und und biouvuiluble. 

unleashing u series of non*lethul und lethal effects (llaux. W85). As shown in (able 

1.2 levels of dissolved cadmium m natural fresh water are usually low, hut cun be 

considerably higher in ureas ullecled by human activities and polluted water (see 

Ittble. 1.1). Ihe cadmium corKentrutions in many waters in Atlantic ( anuda that
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prin idc important habitat for the Atlantic salmon arc in the range of I to 1,4 ^gl ’ 

(Mcrcer-C'larke and I.ord, W?*)) which is well in excess the safe limits of 0.3 ^g| ' 

(Anon. W78) to 0.4 ^g] ' (Ani>n. W74) rect>mmended for salmonids in st>l( waters.

I he toxicity o f cadmium to telcosts has several interesting aspects. One of these is 

delayed mortality olWn observed in lethal toxicity tests (Alabaster and U o\d . W80: 

ilaux. N85). Accumulation factors, ie.. ralit> o f cadmium in the tissues to level of 

cadmium in the water, of more than KHKH) have been reported (PasetK* and Mattey. 

1977), On the other hand cadmium seems to be extremely slowly eliminated from 

tissues that contain the major body burden of cadmium (Henoit. Leonard. Christensen 

and Mandt. 1976; Pentrealh. 1977; C'alamari. Oaggino and Pachetti. 1982). 

hurtheimore non-lethal efTects initially only recorded in high dose groups may 

subsequently alst> deveK>p in low dose groups (Mengtsson, Carlin. I arsson and 

Svanberg. 1975; l.arsson. 1975). I his suggests that cadmium may luck a distinct 

threshold where no elTect is obser\ed. which indicates that it is hard to pro\ide a safe 

level of cadmium in water (Maux. 1985), Hence, a comprehensive apprtmch to 

evaluate the elTects t>( cadmium on a wide range i>f species is needed in itrder to 

delineate its toxicity in the environment.

1.5 I hr rlTrcIs <if cadm ium  loxicity on early life stages of fish.

The major concern of research intti heavy metal in general, and cadmium in particular, 

in the past has been primarily with direct toxicity, with much of the work iiriented 

titwords ascertaining the lethal levels. Less attention hud been given to aspects of
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indirect toxicity such as long-term non-Ieihul etTects, Very little wt>rk has t'tKuscd on 

elucidating the underlying resistance mechanisms of fish to cadmium insult.

The term non-lethal is not used in this thesis as a synonym for ”sub-lethar*, I he term 

“sub- lethal” is not easily defined. Ki>senthal and Alderdice ( ld76) defined "sub-lethul" 

as those responses to environmental changes that may be induced in one stage of 

development but be expressed at a later stage of development in terms of reduced 

survival potential. Sub-lethal cITccts might not nc*cessarily be persistent. Particularly 

during the very early cleavage stages of embryonic development, irregularities caused 

by dilTercnt stresses being adjusted in the course of development (von Westemhagen. 

Id88). Iherefore. to avoid confusion, the term "non-lethal” was used in this thesis to 

include stresses that may or may not persist until later development stages. I he term 

''lethal" refers to the lethal response determined by the non-recovered immobility upon 

gentle prodding.

1.5.1 I.ethal toxicity of cadm ium  «m early life stages o ffish .

There arc a number of extensive reviews on the toxicity of cadmium to fresh water 

fish (Alabaster and l.loyd. 1M80; Nriagu. 1^80; ld8 l; Mancc. WK7; S<ircnscn. Iddl). 

In aquatic environments, the presence of relatively low and high levels of cadmium 

is reported to be lethal to early life stages of teletist ftsh (Table. 1.4). This is 

exemplified by the V6-hr l.('50 value for rainbow trout, which was estimated to hv us 

low as I ug/l (Ball. I«M7)

The exact mechanisms causing death due to cadmium poisoning in fish has not been





rcst>lvcd (Sorensen. IW |). Several pt>ssible causes for death due to cadmium stress 

have been suggested. Among those, the most commonly suggested are physiological 

disturbances to respiration which result in hypoxia. i<moregulator\ disturbances 

resulting in bod> it>n depletion and necrotic damages; no attempts have been made to 

identify the underlying mechanisms behind species-specific dilVerences in cadmium 

toxicity in fishes.

1.5.2 N on-lrlha l rfTccts of cadm ium  on early life stages o f fish.

I he tolerance capabilities of early life stages to cadmium stress may vary with the 

developmental stage and species, l-iarly-tifc stages that were considered in this review 

are the developmental stages from fcrtili/iition to fry stage offish. <iamete production 

and fcrtili/.ation prtKesses were considered us events of reproduction.

1.5.2.1. Tolerance of Hsh embryos and yolk sac-fry to non-lethal cadm ium  stress

l-.arly embryonic development of Baltic herring was uBected by U>w concentrations 

(5.(>Mktl ')ofcadm ium  (Ojuveer. Annist. Junkowoski. fulrn and Raid. I*>KO), Ihe nu»st 

sensitive embryonic developmental stage of Japanese meduka iOrizia\ Iu Ii/ k s ) to 

cadmium toxicity was found to be early cleavage stage up to thirty two cell stage 

(Michibuta. Nujimu and Koiimu. I*>K7). In contrast. Van l.eeuwen. (irifliocn. Vergouw 

and Maus-Diepeveen (IMK5) reported that the sensitivity of rainbow trout embry<»s to 

cadmium increased during embryonic development Cadmium in high concentrations 

may have a indirect detrimental ellect on embryogcncsis by altering the properties of 

egg membrane and jelly coat and impeding oxygen exchange (Alderdice. Kao and 

Rosenthal. I97*i; Von Westernhagen. Dethlelsen and Rosenthal. 1975). Chorion



strength o f herring embryo during lute development is reduced by cudmium (Rosenthal 

and Sperling, W74; von Westernhagen, f t  at.. 1974; Alderdice. Rosenthal and Velstm. 

I979a.b). I his weak chorion may be the reason lor increased sensitivity to cadmium 

stress us reported by Van I.eeuwen w at.. (1985). Dp to 98% of the cudmium cun be 

usstK'iuted with the chorion, rather than with the developing embryt» (Beattie and 

l*asct>e. 1978. Michibulu. 1981. Peterson. Metcalfe and Ray. 198.1). (ienerally greater 

resistance of eggs (embryos) than sac-fry to metal poisoning has been attributed to a 

measure t»f pn>tectit>n alforded by the egg capsule rather than to s<ime change in the 

intrinsic sensitivities of the various stages (Ro.senihul and Sperling. 1974; vt>n 

Westernhugen and IK*thlefsen. 1975; Beattie and Puscoe. 1978; Michibatu. 1981), 

These tibscrvutions are dilVicult to rcs:oncile with the chorionic function described by 

Rombough and (iarside (1982). who reported that dechorionuled Atlantic salmon 

embryos were more resistant to cudmium and tiH>k up less of the metal than did 

embryos with intact chorions (Weis and Weis. BWl). Therelbre. the underlying 

mechanism Ibr the resistance of embryos to cadmium remains uncertain.

Due to its resistance, the embryo stage has been omitted in many early-life stage 

toxicity studies K'rosslund. 1985: DSi-:PA. 1989). Metal toxicity to early life-stages 

of lish expresses itself m<tst sensitively in suc-fry than embryit. with signilicunt 

inhibition <if growth in Atlantic salmon upon exposure to cudmium levels us low us 

0 47 ^gl '. while a signillcunl reduction in viable hutch is noticed at high cudmium 

concentration (100-800 /ig ')  (RomKtugh and (iarside. 1982). I.ow concentrations ol 

methylmercunc, cadmium and lead ions appear to cause little "biochemical stress" on 

briNik trout embryits. but cause definite changes in sac-fry (von Westernhagen. I98K).
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The respt>nsc variation in tolerance to cadmium among early-life stages atirihutahle 

tt> phenotypic variations such as. si/e and age has been overhH>ked. Natural lish 

communities ore composed of a mixture of species and phenotypes. I herefore. an 

integrated upprt>ach to determine interspecific and phenotypic sensitivity would be 

useful to predict impacts on biodiversity.

1.5.2.2 l-'ffrcts of non -lrlha l cadm ium  stress on m orpholoio  o f em bryos and yolk  

sac-fry

I he most conspicuous non-lethul ctTects observed due to cadmium <»n embryos and 

sac-fry ore abnormal development of the spinal column, head and eye and irregular 

proliferations from the main Knly <ner the yolk surface (von Westernhugen. 1V8K). 

Deformations of the eye arc common in sac-fry hutched from eggs that were exposed 

to cadmium, liye diameter of the newly hutched sac-fry incubated in cadmium 

contaminated water tends \o decrease with increase in cadmium concentrations frt>m 

50.0 to 500,0 #igl ’ (Ojuveer **/ u / . IWKO) or > l(KM).0 ^gl ' (von Westernhugen. i t  u l . 

1V74) irrespective ol the salinity level. Subtle deviations fn>m the normal are 

displayed by herring sac-fry from embryos exposed to cadmium (Rosenthal and 

Sperling, 1074. von W'esternhagen et a/., 1074)

C admium causes vertebral damage in developing fish embryos ut concentrations 

betw^ecn H.O ^gl ' (l-;aton. 1074) and 100 ^g 'I (Kombough and (iurside. 1082) in fresh 

or brackish water (Voycr. Wentworth, Herry and Kennekey, 1077) but higher 

concentrations of between |(K)0.0 and 20(N) () ^gl ' in sea water (von Westernhugen 

et uL, 1074. 1075). Cadmium concentrations up to KKK) ^gl ' with varying salinities
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(10 lo 30 ppl) and temperatures (5’*C to 10‘’C'), had a deleterious impact on the 

embryt>nic deveh>pment o f  winter flounder that manifested itself* at the time of 

hatching (Voycr w u/.. 1V77). liatón (1<>74) reported that bluegill embryos when 

incubated in cadmium contaminated water (780 ^g] ') developed severe physical 

abnormalities including pericardial and abdominal edema, lordosis dorsally of* more 

than W ' from normal, delayed yolk st>rptit>n. shorten and deformed caudal fin. 

peduncle and micriKcphalia. C'ardiac malformations were also reported in rainbow 

trout embryos subjected to 10-100 ^g] ' cadmium treatment (WtHniworth and l*u.sctH;. 

W82).

Since cadmium interferes w ith calcium metabi>lism it may al.so impair the calcification 

prtKess directly (vt>n Westernhagen. WKH). Abnormalities were also seen in perichord 

and chorda leading to a hcnl body in Daltic herring sac-fry hatched from eggs 

incubated in cadmium contaminant water (Ojaveer <'/ at., I‘>K0). These gross 

deformities due to cadmium lead to abnormal behaviour during embryonic and sac-fry 

stages and may afTect their survi\al (vt>n Westernhagen. 1088).

1.5.2.3 |''.frrcts i»f non-Irthw l cadmium  stress on physiology o f embryo and yolk  

sar-fry

In addition to morphological cfTccts. activity, hatching success and growth <if embryos 

and yolk sac-fry have received considerable attention as sensitive end points in early- 

life stage toxicity tests.



Activity

Many workers have used ihc change in the rate of' heart heal o f embryos as an end 

point in non-lethal toxicity tests to determine the etTects of cadmium on embryonic 

activity (von Westernhagen et at., Id75: Dial. ). Cadmium concentrations around

KKH)

^gl ' in the incubation medium of garpike eggs caused a reduction in heart beat rate 

of the developing embryos (vtm Westernhagen et a!.. 1*̂ 75). The depressed heart beat 

was more pronounced with advancing development and at low salinity levels. 

C'admium inlluences the normal "wriggling” movement of late embryos of' herring 

(von Westernhagen et a!., 1974. von Westernhagen. Dethlel'sen and Rosenthal. 1979) 

and pectoral fin movement, responsible tor circulating the perivitelline fluid, ot' lute 

embryos of'garpike (von Weslernhagen e ta /..  1975). Implicatiitn o f  these elTects t>n 

embryo movements would be altered hatching success. Ihe detrimental ellecl of' 

cadmium on embryonic activity was most apparent in diluted sea water itr in Iresh 

water.

Sac-fry hutched from eggs incubated in high concentrations of cadmium remain still 

UK seen in bluegill and cod (l.ulon. 1974; Swedmurk and (trunmo. |9KI) or show 

reduced swimming activity us seen in winter flounder up to 1(K) ^g( ' (Voycr. Cardin. 

Keltsche and llofTman. I9ff2). Ihese responses suggest a potential long term cfTcct 

on sac-fry yolk ulili/ation. growth and susccptibilit> to predation (Rosenthal and 

Alderdicc. 1976; vt>n Westernhugen. 19K8). I here fore, the implication of lowered 

larval activity would be reduced fitness.



M a lc h in g  succcs»

Cadmium cun cuusc both shortening und lengthening of the incubation lime depending 

the concentration in the medium. Rosenthal und Sperling (1*^74). von Westernhugen 

el a/., (W74). Mounib. Rosenthal and l-asan. (1*^76) und WtH»dwi>rth und PasetK* 

(1^82) reported that cadmium shortened the incubation period o f  herring eggs und 

caused premature hatch, while Servizi und Martens (1978) rept>rted u prolonged 

incubation period tor sulmonids. Premature hutch is otWn ussociuted with u reduction 

in chorion strength. Rosenthul und Sperling (1974) attributed the decreased hutching 

time to reduced embryonic activity preventing the normal distribution of hutching 

en/ym e. resulting in it concentrating in one region, thus rucilituting the rupture.

iifTects o f toxic metals on halchubility and viable hutch are dependent on the stage of 

development, the spc*cies and type ol'toxicant. 1 he viable hutch is regarded us u nu)re 

sensitive indicator ol toxic elTects than hulchubilily because only the viable und 

n«>rmul suc-lry urc eventually recruited to the udull population (Rosenihul und 

Sperling. 1974. Ma/mumdi and Uu/.hushvili. 1975: Vt>yer e / <//.. 1977; ( ijuveer e/o/.. 

1980; von Westernhugen. 19KK). C admium exerts delrimentul elTccts on hutchubilily 

und viable hutch ul lower concentrations in fresh water or diluted suit water than in 

suit water (luble. 1.5). A rK’gutive relationship was observed between cadmium 

toxicity und salinity level on the elTccts ot viable hutch of salt wuter species. I he 

enhanced toxicity ul lower salinity may be due to greater uptake of wuter. und. 

thcrcl'ore. of the melul (Weis und Weis. 1991). It is also known that ul the low 

salinities and fresh water, less cadmium ions may go into complex ion lormulion und 

more will be available as tree ions. Unlike salinity, temperature has contru.sting elTecIs
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(Table. 1.6) on cadmium toxicity. Rombough and (iarsidc (1^82) rept>rtcd a greater 

embryonic toxicity o f Atlantic salmon at low than high temperature, while Birge el 

<i/..(|y85) reported opposite toxicity o f cadmium to embryos of fathead minnow with 

increasing temperature. The ft>rmer attributed the higher toxicity o f cadmium at U>w 

temperature to a prolongation of sensitive stage by the reduced developmental rate at 

the lower temperature whereas the latter suggest an increased metabolic rate at higher 

temperature.

( t n m i h

(irowth of the ncwiy >hutched fry from the eggs that were subjected to cadmium stress, 

has been used as a sensitive non-lcthal end point in early-life stage toxicity tests 

(Maton. 1*)74; Rosenthal and Sperling. 1974; Ojavc'er el u/.. 1980), Reduced growth 

in terms of length was reported to be more sensitive in fresh water than in salt water 

( lable 1.7). Reduced length of newly hutched larvae is frequently correlated with 

larger yolk sac sizes (von Westernhugen. I9KK). A large or deformed yolk sac is taken 

us an indication for metabolic or osmotic disturbances that may be caused by 

mitochondrial malfunction, induced by heavy metals or petroleum hydrocarbons (von 

Westernhugen. 1988).

Increu.sed yolk sac volume has been reported for herring embryos incubated in high 

cadmium concentrations (von Westernhugen. et al.. 1974) and with decreu.sing salinity 

levels (Rosenthal and Mann. I97.t). Since metabolism and mobiliziition of yolk 

proteins involve formation of'calcium complexes with those proteins (IMack. Pritchard 

and i-raser. 1971), their utilization may be less cfTicient in yolk sac-fry exposed to
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AI-; -  C' . U>U) ....  1,2

v^hcrc. Al' * ussimilutcJ energy.

C omponent l*r is mil invoKcd in eurly lilc stages sueh as yolk sue-lry. Iherelore.

I » g - A i ; - 1 M  ....  1.3

Mt>sl studies employing growth us an index of cadmium toxic etTecl used the direct 

measurement o f growih in terms of length »>r weight rather than determining it 

together with the cITccts on diiferenl elements of the balanced energy equation. 

Determination of the avuiluhic energy for growih based on the physiological and 

biochemical analysis of components in the balanced energy equation proves 

particularly useful in assessing the biological impact and tolerance mechanisms to 

stress at the individual, population and ecosystem level and permits the uppliculion of 

modelling (K(M>yman and Met/. I*)K4). Moreover, linking stress tolerance capability 

to available energy lor growih (see sectum 1.1.3) may reveal whether there is a 

general tolerance response to metals.

1.5.2.4 KfTretN o f cadm ium  stress on biochemical activity of em bryos and yolk  

sac-fry.

Cadmium cun cause a significant decrease, increase or inhibition in en/yme activity 

in fish embryos and yolk sac-fry (Christensen, 1*̂ 7.̂ ). I he activity of four important 

carbon dioxide- fixing en/ymes. namely, propionyl coen/yme A (Co A) curKixyluse, 

nicotinamide adenine dinucleotide (NAD) en/yme. NADI* malic en/yme and
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phosphi>cnolp>ruvalc (PI P) carbt)xykina.sc. decreased in Pacific herring eggs when 

exposed to 10.(KM) ^gl ' cadmium (Mounib «7 W.. I'iTb). It is also known inhibit the 

proteolytic (unctions ofen/ym es (llagcnmaier. 1^74) in developing fish embryt»s. In 

view of the important role played by the carbi>n dioxide fixing en/ymes in 

biosynthetic priKcsses, the cfTect of cadmium in depressing en/yme activity during 

the deNelopmentuI stages may result in lethargic embryos and small and inactive yolk 

sac-fry (von Westemhugen. I*>KK). Cadmium also significantly alTected the activity 

of en/ymes such as glutamic-oxaloacetic transaminase ((iO l ). alkaline phosphate 

(Al.P). acetylcholine esterase (ACII) and adenosine triphosphate (A l P). causing either 

a significant decrease in activity late embryos or increase in y<tlk suc-f'ry of' briKik 

trout (Christensen. W75). Cadmium not only affects the activity ofen/ym es but also 

affects the substrates of en/ymatic reactions (Scoppa. 1^75; /.aba and Harris. 1^78). 

The reduced growth which is often observed in yolk sac-fry at hatching may be due 

to decreased en/yme activity, which has been noted in cadmium exposed embryos 

(Weis and Weis. IV 7|)

( admium may also influence hormonal activity in embryos and yolk sac-l'ry. l u and 

i.ock ( l ^ i )  demonstrated an increase in fractional volume of prolactin cells in 

OrffKhromi.s mowamhu u.s embryos, indicating a higher synthesizing capacity I hey 

suggested that the higher levels of synthesised prolactin have a decisive role in newly 

hatched fry to counteract adverse effects of cadmium

A few rc*cent investigations suggested that even without obvittus external damage. 

pollutJints such as metals may adversely affect cellular or sub-cellular aiul tissue
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i>rgani/^tion by disrupting intracellular structure in organs, causing damage to 

miUK'hondria. ribosomes and endoplasmic reticulum (von Westernhagen. IWKK). Ibis 

in turn ina\ atTect biochemical and related physiological reactions and may give rise 

to delayed responses uliimateK atTecting survival, lerms such us cellular or sub- 

cellular ultrastructure and biiKhemical functions have been used only superl'icially ttt 

describe the fH>ssible causes to the observed responses instead o f  establishing clear 

cause-etVect relationships.

From the uN>vc review it was revealed that interspecific comparist>ns in sensitivity are 

difllcult due to large variation in experimental conditions and exposure durations (see 

fables 1.4 and 1.8). Most early-life stage toxicity studies with dilTcrent fish species 

have liK'Uscd on easily visible resptinses such as gross morphological abnormalities 

and growth (sc»e fable 1.9 and Appendix If) in terms of dilTerences in length or 

weight increments to cadmium stress, ignoring the question why are there differences 

in sensitivities? I he extrup«>lution of'these responses at the individual level to effects 

at the populalitin level has not been attempted. Yet unless stress cun be shown us 

having efi'ccts at the population level it is unlikely to be ecologically signillcunt 

(McIntyre and I’eurce. 1981). Ihese morphological and growth responses mu> be 

considered us ultimate responses t«> stress. Moreover, a possible relationship between 

lethal and non-lelhal metal stress responses in early life stages has been overliMiked. 

Investigations into a possible relationship belwc*en lethal and non-lethul stress 

responses may yield a p«>ssibility o f uncovering a general response or a mechanism 

o f metal lolerarKc I he range o f species on which this kmd of knowledge is available 

is extremely narrow



1.6 Aim» of thr »tucl\

IX‘spitc the u^^arcncss of increasing metui pollution in the tropics (Herg. Kiihus and 

kuutsky. in press.), published data on the toxicity of cadmium to fish early-life stages 

largely relates to temperate species (Alabaster and Uoyd IVKO). (  onsequently, we are 

no further touords either providing u suitable system ft>r assessing toxicity levels of 

cadmium in tropical aquatic environments, or selecting the most sensitive stage and 

species tt> adopt as a representative t)f such environments, or understanding the 

tolerance mechanisms to cadmium stress, l o address these .short comings the aims of 

this thesis were lo ­

ti  design u ilow-through system suitable for early life stage toxicity testing using 

tilapios.

2) investigate the interspecific and introspecific phenotypic variations of lilapius in 

tolerance to lethal and non-lethal cadmium stress.

.̂ ) investigate the correlation between the early life history growth traits and assiK'iuted 

phy siological and biochemical parameters and stress tolerance capability of tilupiu lo 

cadmium.

4) . investigate the correlation between the cadmium body burden of lilupius and the 

tolerance capability, and.

5) . investigate whether there is a relationship between the tolerance capabilities of 

tilapias to lethal and non-lethul cadmium stress.









I cchniqucs common lo ull sections o f the present study arc described below Materials 

and methods specillc to individual experiments are outlined in the relevant chapters.

2.1 Procurrm cnf o f rf{K« and fr>

2.1.1 Hrood »lock.

Six tilupiu species. (fretKhromis nilttlwus (I.innueus). (hvtKhrumis mossumhU-us 

(Pelers), OrviKhromis aureus (Stcindochncr), SarothentJon yalUaeus (Linnaeus). 

lilapia ziUii (Oervais) and TUapiu rendaUi (Huulcngcr) used during the course ofthis 

investigation were procured the tropical hatchery ut the Institute of Aquaculture. 

University of Stirling. I he hr<H>d fish were maintained in u recirculatory system in the 

tropical aquarium facility of the Institute o f  Aquaculture I hc recirculatory system 

comprised of 12 glass aquaria (250 I). which individually received water at a rule of 

2 I min. ' through delivery pipes from the header tank Water quality was maintained 

by an extensive system t>l hiotlltration. The oullltïws !n»m individual tanks were 

channelled to sump tanks through a scries of settling tanks, inlerdigitated with bio- 

lllter tanks which contained bio-filtcr rings. A submersible pump was used to pump 

the water from the sump tank to the header tank from which water was fed into the 

fish holding tanks by gravity. Ihe cfViciency of the bio-HIlcrs was regularly monitored 

by measuring NH,-N and NO.-N in the tank water, I he system was cleaned and fresh 

water added ut regular intervals. W'uter temperature was regulated (25.5 and 2T’t')  

using thermostatically- conlnilled heaters in the header tank. A 12:12 h light and dark 

regime was muintumed using electronically preset lights. Individual fish holding tanks



were aerated using ditTusers and additional aeration was prov ided in the header and 

sump tanks tt> cope with the oxygen demand generated by the bacterial activity in the 

bio-lilters. I he oxygen level in the tanks was always maintained uK>ve i> mg/l. The 

fish were led daily with trout pellet (Ontega. no .l; protein contenl-47%. l-wos Uakers. 

liathgate. Scotland).

2.1.2 Suppiv o f cKK* and fry

l-iggs and yolk sac-frv for the experiments were tibtained fn>m genetically pure species 

(McAndrew and Majumdar. IMK.')), Artificially obtained eggs/yolk sac'fry sitK'ks were 

used in all experiments, lo r  the artificially obtained yolk sac-fry sUK'ks. ovulated eggs 

were manually stripped from females into clean dry petri dishes and fertili/ed with 

milt ptMiled from three conspecific males, five minutes were allowed for fertili/ation. 

fhe eggs were then rinsed in a net container with clean warm (28'C*) water. Prior to 

incubation 50 randomly sampled eggs from each clutch were weighed on a balance 

(Mettler Al JtM)). I he egg clutches of the mouth*bn>oding On-ochrumn and 

Sunnherttiitm species were then transferred t»> round bottom jar incubators described 

b> Kana (l^Kba), until used in the experiment I he eggs from each clutch of the 

substrate-spawning Tilapia species were placed in petri dishes before transferring to 

the chambers of the incubation system.

2.2 Oilu lion w ater

In order to carry out metal exposures under consistent conditions, an artilicial 

exposure medium was used for all trials as recommended by ASIM  (lOKO) Soft



synthetic dilution water at temperature 21^ !“C' was prepared according to the AS l M 

( l^KO) chemical recipe (see Appendix III) using nano pure water (conductivity < 0.05 

^s cm '), Nanopure water was obtained from a filtration system (Marnstead I) 4752). 

Dilution water was prepared and continuously aerated for at lea.st 24 h before use. I he 

water hardness, temperature, pi I and dissolved oxygen were monitored by standard 

methods (APIIA. I<)KM).

2.3 Toxicant solution.

Cadmium chloride (Anhydrous C'dCU Analar grade. Sigma Chemicals l td.) was u.sed 

to prepare the metal stiKk solution. The stock solution (one I) of required 

concentration was made up in nanopure water and stored in stoppered and labelled 

amber colour glass bottles (2.5 I viilume). I he required concentration of toxicant 

solution was prepared by mixing the appropriate amounts of ('dCI^ stock solution and 

pre>ucratcd dilution water, loxicont solutions were not aerated during any experiment.

2.4 Preparation of the system for experiments.

New chambers were cleaned to remove any chemical or dirt residues remaining from 

manufacture or accumulated during construction and storage. IlypiKhlorite at 2()0 mg/l 

(5 ml of household bleach in I litre of water) was used Ibllowed by rinsing with water 

to disinfect and remove any organic mutter in the system. 5”/« nitric acid was used to 

remove mineral deposits and metal residues that may have an adverse elTect on the 

test organism, l-inally the system was wu.shcd with dilutitm water Then the littw-



through system was run for 12 h. continuously hcl'orc sac-fry were introduced into the 

expt>sure chambers. Physical and chemical water parameters were nutnitored during 

this lime lt> ensure that the system was opeiating efliciently. Acceptable limits of 

stability were usually achieved within 24 h and maintained with in limits iherearter.

2.5 M»nil«»ring m rtal concentration.

fhe nominal concentrations of the metals used in the present study were maintained 

by regulating the concentration of the metal in the slock solution and Mow rate per 

minute of the toxic solution into an individual exposure chamber. I he actual 

concentratitm of the metal in the exposure chamber was mt)nitored regularly with each 

experiment. Samples of water taken at regular intervals from individual exposure 

chambers during each experiment were acidified (!%  UNO,) and analy/rd using an 

atomic absorblion spectrophotometer (Perkin-I.lmer 22KO) ((iolterman. ( lymo and 

Ohnsiad. 1M78). 1 hen actual concentration of the metal in the water was calculated 

from a standard curve I he actual concentrations of the respective metals in the 

exptisure chambers did not differ significantly (df 1^. t 0.722. !*• 0.05) fn>m the 

nominal concentrations (l-igurc 2.1 & 2.2). The actual concentrations iif the metal in 

the exposure chambers were always within 10% Of the nominal concentrations. I he 

lowest detection levels o f the metals, cadmium and copper, used in the present study 

were O.S ^gl ' (W. Struthers. Institute of Aquaculture. University of Stirling, personal 

communication).



N o m in a l  c a d m iu m  e o n o a n t r a i lo n  (ug/l)

Fig. 2.1 Rdlatlonship botwoon nominal and actual cadmium 
concantratlon at taO h. Actual Cda2.063«0.959 X nominal Cd (n s 6 l).

N o m in a l c a d m iu m  c o n o o n ir a t lo n  (ug/l)

Fig. 2.2 Ralatlonahip batwaan nominal and actual cadmium 
concantratlon at t«96 h Actual Cd ■ 2.S19^0.991 X nominal Cd (n a t i )



2.6 M on itoriiiK  im portiinl w tiirr qualit> pnniinvlrr<<.

The temperature, oxygen, pH. hardness and ammonia were monitored according to 

API IA (ld89). Ihese parameters were analyzed during evaluation of the llow-through 

system (see C hapter 3). primarily to ensure the system did nt>t alh>w the huild-up of 

the harmful levels of ammonia or deplete oxygen.

2.7 Flow rale o f (hv system.

The tlow of the water through the lest chambers minimised the accumulation of 

metabolic products, prevented build-up of organic matter which c«>uld be a nutrient 

source for bacteria and maintained acceptable dissolved oxygen content o f solution in 

the exposure chamber. I'he water How through the exposure chambers was always 

maintained to achieve d()% replacement lime within each expt>sure chamber every 4 

h. This was above the recommended minimum replacement time in a How-through 

toxicity system (Sprague, Id7ft).

2.H A cclim ali/atlon  of experimental fish.

Sac fry were removed from the round bottom jars (see section 2.1.2) and transferred 

to the exposure chambers of the How-through system and held for a minimum of 24 

h before the commerKemeni of any experiment. This procedure of acclimati/ation 

remained the same throughout the study.





3.1 Introduction

t here is u consideruhlc discrepancy hetyseen results obtained bctv.ecn responses to 

toxic stress yvhen tested under static and tloyving test conditions (Monce. IdK7). t he 

udvontuges of u (1oyy-lhrough system over u static system for toxicity testing have 

bc*cn describc*d by several authors (Huikemu. Niederlenher and Cains, IdK2; Pascoe 

and lidyvards. t^Kd). t he use of Hoyv-through systems in aquatic toxicity testing is 

superior to static systems, not only because they prevent the build up of test animal 

yyustc priniucts. but also they ulloyv a constant exposure level to be maintained over 

the test period, t his latter advantage is particularly important yvhen dealing yvith so* 

called 'difllcult substances' (i.e. piM)rly yvater soluble, volatile or biinJegrodable 

compounds).

3.1.1 Physical and chemical considerations

I he movement of the yvaler itself through the test chamber in u lbm-thn>ugh toxicity 

testing system, intiuenccs the results of u test. I luduation in the quantity of toxicant 

introduced into the test chamber may affect the validity of test results more 

significantly than fluctuations in other physical and chemical lest c«)nditions. Hence, 

the toxicant delivery system in u t1oyv>through toxicity testing system plays a critical 

role in the validity of the test results. Many systems consist of lyvo devices to deliver 

the dilution ysalcr and toxicant siiK'k solution. A number of devices designed lt> 

deliver dilution yvater have been described previously, and curly devices include those 

operated by hydrostatic force (Abram. Id60. (ircnicr. IW»0; Mount and Warner, 1W»5;
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Siark, l<>67) and dcclromcchunical devices (Herbert and Merkens. 1952: Merkens, 

1957. Alabaster and Abram. I9f»5). Menoit. Mallstm and Olstm (1982) developed a 

space saving gravity operated system which can als4i be installed in a ct>mpacl vented 

enclosure to permit safe testing of ha/iirdous volatile chemicals.

\Varner (1964). was the first to introduce a truly continuous How serial diluler. The 

serial diluter and the proportional diluter described by Mount and Warner (1965) and 

Mount and Hrungs (1967) respectively, were the first types o f intermittent flow­

through systems successfully used ((iarton. 1980; Henoit e / «/,. 1982). Serial diluters 

continuou.sly dilute a toxicant from a sU>ck solution by succes.sive addition of water 

to provide series of concentrations of a toxicant, while proportional diluters consist 

of dosing apparatus which cun maintain a scries of constant concentrations of toxicant 

in flowing water. A majority of designs that have been used for toxicant delivery 

systems arc ofTsh<M>ts o f the serial dilutcr and the continuous tli>w dilutcr (McKim. 

1985). Interest in developing the early life stage fish lt>xicity test concept inin>duce 

by McKim (1977) led to design of the compact continuous-flow mini-dilutcr expt»sure 

systems (licnoit vt at.. 1982).

U n fo rtu n a te ly , the s y s te m s  w hich  are p re sen tly  in use h av e  fou r basic  d esig n  

p ro b lem s, f i r s t ly  they a r e  c o m p le x , offen re q u ir in g  ex cessiv e  a m o u n ts  o f  sp ac e , large 

w a te r vo lum es (and  h e n c e  po ten tia lly  la rg e  a m o u n ts  o f  w aste  w a te r for d isp o sa l) 

(K eish  and  O sh ida . 1986). In  m any ca-ses, flo w -th ro u g h  sy s te m s  in co rp o ra te  m any 

m o v ab le  co m p o n e n ts , s o m e  o f  w hich are e x p e n s iv e  o r frag ile  an d  m ay not be read ily  

o r  co m m erc ia lly  av a ila b le . I hese  delica te  asse m b lies  w ill re q u ire  freq u en t c le an in g .



adjusimcnt and repairs (o maintain rdiahilily (Chandler. Sanders and Walsh. 1*̂ 74). 

System complexity can thus lead to increased variability in toxicity data and 

reprixlucibility (vemi/ Calou, IW2). Hence, when designing a flow-through toxicity 

testing system, special consideration should be given to readily available components, 

small space, low flow rate and simplicity.

Second, in multichannel systems, purticuluriy those using proptirtional diluters of split- 

channel designs, channels within the system are not truly independent of one another, 

since they derive fh>m a commt>n rcservtnr. Thus, if a channel needs to be closed, or 

otherwise taken t>fT-linc for maintenance, this cannot be dt>ne without alTecting the 

function of the remaining channels. In addition, channels within the system are non- 

independent. producing pseudoreplicated data which are unsuitable for inferential 

statistical analysis (Hurlbert. 1^84).

I h ird . m any to x ic ity  testing  system s u se  se p a ra te  re se rv o irs  it> d eliv er to x ic  sitK'k 

so lu tio n  an d  d ilu tio n  water. S ince  the h o m o g e n o u s  m ix in g  o f  Itixicant an d  d ilu tion  

w a te r in ex p o su re  ch a m b er w ou ld  be difVicult to  ach ieve , m ost to x ic ity  te s tin g  sy stem s 

use a ch a m b er b etw e en  the tox ican t d e liv e ry  system  and  th e  e x p o su re  c h a m b e r. tt> 

p ro m o te  m ix in g  o f  tox icant an d  d ilu tio n  w a te r  for each  c«m centration  (H en o it and 

P u g lis i. 1973). th e s e  add itional un its  n«it o n ly  increase  the co m p lex ity  t t f  th e  system  

bu t a lso  the su rfa c e  area in the system  fo r  tox ican t ads«irption. t h is is  oru.* of the 

p ttten tia l p ro b le m s  that w as overlix>ked in  lc»xicity tests w h ic h  h as  the ten d en cy  to 

re d u ce  the U txieity  o f  the substance  u n d e r  testing  by a lte r in g  the e ttn ee n tru lio n  

D e liv e rin g  to x ic a n t sUK-k so lu tion  has b ee n  d o n e  by using  e ith e r  a  M ario tte  b o ttle  or
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a dosing pump, l-vcn though the Murii>lte bottle has been widely used as a toxic stiKk 

solution delivery device, it is diHlcult to fill, may require insulation where ambient 

temperature vary considerably (('handler vt al., 1^74). limits the amount o! sUKk 

solution and would be a disadvantage in long term experiments ((iarton. 19K0). 

iXising pump systems lor the delivery of toxic sUK’k solution ((iraton. WHO) can be 

simple, compact, easy to set up. and portable High accuracy could be obtained if high 

quality pumps arc used and such pumps will last a Ittng time with proper maintenance 

(I'SliPA. 1482).

l-inally. most toxicity testing systems are inllexible. olTering the user a relatively ptKtr 

choice of test parameters for measurement. In toxicity testing, particularly where this 

may involve work with so-called 'dinicull substances' (see aKtve). Ilexibility of 

operation is rtecessary in »)rder tt> customise test designs appropriately (within 

acceptable regulatory limits, e g  OIX'l). iw ;t).

.1.1.2 lli<»lf»gical considerations

I hc usefulness <if an c'cotoxicily test in evaluating the hu/4ird potential of u lest 

toxicant is of questionable value unless the survival rales in ihe conlmls arc high lo r 

this reason a minimum survival of 80% in controls has been set for fish early life 

stage toxicity tcsts(nSI'.PA. 1982; Of'CI). IW l), Ihe test system should he designed 

lo minimise stress to the organism due to entwding. Hence, ihe biological loading 

shtmid be limited lo assure that a) Ihe concentration (tl diss4>lved oxygen and lest 

substarKc do mtt decrease below acceptable levels, b) and that waste melaKtlites 

(umtmised ammonia, nitrile and mtralcl accumulalion d«>es n«it exceed acceptable



In working with laboratory studies on the toxicity of metals to early life stages of 

mouth hrcHHiing tilapia, the churning mo\ement provided in the mothers huceui cavity 

for eggs and early yolk soe-fry sht>uld be provided in the exposure chambers to obtain 

natural survival rales, fo  stimulate the churning movement of the naturally reared 

eggs and early yolk sac-fry, various investigators have used conical upwelling 

containers (Mires, 197.1; Roihbard and Kulatu, 1980; Ranu, 1986a,b) and shaking 

tables (Shaw and Aronstm, 1954; Rothbard and Pruginin, 1975; Snow. Berrios- 

Hernender/ and Ye, 198.1). Losses in these systems have been reported us high us 

4()®/o. I he llow-through type round b<mom jar incubation system described by Runa 

(1986a.b) used 5(H) I of water day ' KHH) yolk sac-fry '. However, the yolk sac-fry in 

exposure chambers oi the present sy stem were nt)t subjected to churning mt>vemenl 

as such movements for yolk-sac fry arc not essential (eg. Ranu, I98i>u)

I h e  te c h n iq u e s  m en tio n ed  a b o v e  used  for m uss re a rin g  o f  eg g s and  suc-fry in c lu d e d  

a ir-w u le r interphu.se to  ugitute them  I lo w -th ro u g h  system s using  these tec h n iq u e s  w ill 

re q u ire  large v o lu m e o t w a te r per d ay  an d  facilita te  lo ss  o f  tox ican t in to  uir, e s p e c ia lly  

th o se  vo la tile  in na tu re . H ence, u sy s tem  is needed  to  test tox ic elTecls o f  c h e m ic a ls  

on  the ea rly  life  s tag es  o f  m o u th  brtHKling fish such us OrviH hntmis und SurtuhvnHinn  

sp ec ies , w ith c lo sed  e x p o su re  ch a m b e rs  ihrough t to  fucililule the m ea su rem en ts  o f  

p h y sio lo g ic a l re sp o n ses  w h ich  re q u ire  m in im u m  w ate r



1.3 Aim of Ihv di'MiKn of xyxtcm.

rhc uim was to design a llow-ihrough system which minimizes variability in the 

testing procedure and enhances reproducibility by overcoming the four basic design 

flaws outlined aK)ve with special reference to yolk sac-fry of tilapia to be used in 

toxicity studies, fo meet this challenge using cadmium us the study Ci>mpound the 

following were ascertained to select optimum conditions and requirements of the 

system for tilupiu yolk sac-fry and then evaluate the elllciency of the design:-

1) the quantity t)f the toxicant introduced by the toxicant delivery system frt>m one 

addition of toxicant to the next.

2) the adsorption of cadmium by the materials used,

3) the loading density and survival rates of tilupiu yolk sac-fry under control exposure, 

and.

4) the important chemical parameters such us oxygen and ammonia levels.



3.2 Muttfriiil!« HmJ mcthoii»

3.2.1 l)r»if(n of the f1<m>lhrouKh system

The flow-through system designed and developed to test the efTccts of cadmium on 

yolk sac-try of'tilupia is represented in schematic plan view in f igure. 3.1.

Toxicant reservoirs

Kit\een 2.5 I amber coloured glass bottles were used to deliver tour dilTerent 

concentrations of cadmium stilutions and AS I M dilution water (see chapter 2) us the 

control treatment. 1 he reservoirs were tilled with freshly prepared toxic solutions of 

ditTerent concentrations and dilution water in a randomised design at the 

commencement o f each experiment and therealler replaced with freshly prepared toxic 

solutions twice daily.

Toxicant delivery system

Toxicant solutions were delivered to individual exposure chambers using a lb-channel 

variable speed Watst>n-Marlow Peristaltic pump (model 202 I ’/AA). Siliconized tubing 

(manifold pump tubing of 1.52 mm internal diameter. Watson-Marlow. UK) connected 

to individual channel trumes (cassettes) was used to deliver the toxicant. These short 

tubings were placed in such a fashion in the individual channel frames, that, during 

the rotation of the K rollers of the pump, the tubing wt>uld be pressed in between the 

roller and the channel trame at regular intervals. The speed of the pump and the 

internal diameter of the tubing determined the flow rate. One free end of the tubing 

was connected to an individual reservoir containing toxic solution or AS I M soil
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dilution water (see C'hupter 2) and the other end to an individual exposure chamber 

using translucent silicone tubing (1.52 mm internal diameter) I hese connections were 

secured with small plastic straight tubing connections. The outlet from the pump 

canning the toxicant solution was connected to the inlet tubing o f an individual 

exposure chamber.

K.xposure cham ber unit

The yolk sac-fry exposure chambers were 260 ml Nunclon polystyrene plastic 

stoppered tissue culture flasks (Nunc. Inter Med. Denmark). lo  ensure the exposure 

chamber was completely filled with toxicant solution at all the times clamps were 

connected to the outlet tubing from the individual exposure chambers tt> regulate the 

outflow in a such a way to equal to the inflow. I^ach chamber was placed in a plastic 

spill container (12.0 cm x 7.0 cm x 4.0 cm).

W aste cnilerlor

I he discharged toxic solution from Kith the outlets and spill containers drained into 

a 75 I plastic ctintainer for disposal.

. .̂2.2 Kfllclcncy <if the system.

I he stmree. prtKcdure for maintenance and pre acclimation of D nUotu us yolk sac- 

fry. unless otherwise mentioned, were similar to those describenJ in chapter 2. fo 

evaluate the cfViciency of the system a scries of trials were conducted to establish the 

consisterK'y of the chemical composition of dilution water, flow rales of the dosing 

pump, the oxygen content of the reservoirs and exposure chambers, ammonia content

50







3.2.2.1 K ’kpeHfiKMiltil protovol.

K x p rh m rn i I : l-!>iiluation o f n<m r»tc» o f ihc m ultichunncK o f (okicunt solution 

doking pum p

Dilution uutcr v.ixs Itllcd into cuch of the 15 reservoirs, and collected from each inlet 

to expitsure chambers into pre weighed 5 ml sample tubes for a duration of 3 minutes, 

f  inal weights of each tube were determined. DifTerence between the linal and initial 

weights o f the tubes was used to determine the How rate ol' each channel. This 

prtK'edure was repeated 5 times and the mean was taken us the How rate.

I'lkpcriment 2: flvaluation o f o ty g rn  eonerntrations o f  tokicani solution 

rrsersoirs.

fifteen reservoirs were tilled with pre-aerated dilution water and their oxygen 

concentration was determined in each reservoir with a Struthkelvin dissolved oxygen 

meter (model 7KI). I hereafter, oxygen concentrations in each reservtiir were rec»>rded 

for 24 h at 4 hour intervals, I he temperature of (he dilution water was recorded to 

allow estimation of the oxygen saturation level.

fikp rrim rn l 3. D rtrrm ina lion  of Ihc ehrm ival com position o f the dilution water.

Samples were collected f rom outlets of exposure chambers and stored at 4"C in acid 

washed polythene bottles, in a matrix of IH  (V/V) nitric acid for determination of 

total ( 'u ‘\  M g N a  and K lotal levels of each were determined using atomic 

absorption spectroscopy us described in (iolterniun e/ o/.. (l'f7K).



Kxprrim rn t 4: (  udm ium  udiiorhrtl by Ih r  Im linK  »yslcm.

Prior to using any toxic substance the system was operated without yolk sac-fry with 

5 cadmium concentrations (0.5, 1.0. 10.0, 100.0 and 5(K).0 ggl). each in triplicate, for 

24 h I riplicated samples from each replicate at 0 . 6 .  12 and 24 h were acidilied and 

analysed with an atomic absorhtion spectrophotometer I he actual cadmium 

concentration in the water was calculated from a standard curve, fhe actual 

concentrations at 6. 12, and 24 h were plotted against the initial actual concentrations. 

Regression analysis was performed to see the significant dillerences in the actual 

cadmium concentrations between initial and the final at 6. 12 and 24 h.

Ktperim ent S: p.valualhin o f the su n iv a l rates and loading density o fyo lk -sae  fry 

o f  O. niiotu‘u.% in Iht* expo«urr chmnhvr«.

I his experiment wus designed lest the loltouing aspects.

a) Whether acceptable survival rates could he achieved in the exposure chambers by 

rearing one day old yolk sac-fry for 15 days in the dilution water

b) I he loading density o( yolk sac-fry to ensure that. I ) the concentration of dissolved 

oxygen diK-s not decrease below acceptable levels, 2) the waste metabolite 

accumulation does not reach above unacceptable levels and .1) that yolk sac-fry are 

not stressed due to crowding.

fo  establish the optimum loading density lor sac-fry in dilution water five loadings 

(70.0, 104.0. 140 (1. 174 (1 and 210 0 mgl ' wet weight) of one-day old <> ntliilUiix 

yolk-sac fry in triplicalc were used Mortality in each exposure chamber was recorded 

daily up to 15 days Water samples were collected from each exposure chamber on





Mean Hon̂  rates from the 15 channels arc given in lablc 3.1. Ihc maximum 

CiKtllcient of variation \sithin a channel for five measurements was O.K %. I he 

maximum % variation hctueen flow rates o f 15 channels was 6.0%, I he mean pump 

flow rale was 1.12 ml m in ' (S(*±0.(K)75). l otal amount o f dilution water required for 

15 channels was 24.2 I day '.

Ihe daily maximum and minimum saturation level of oxygen in each reservoir is 

shown in f igure .3.2. 1 he maximum variation of oxygen saturation day ' between 

reservoirs was 1.6%. The saturation level o f oxygen day ' in any reservoir did not fall 

below 95.0%. I he results of the chemical composition o f dilution water is presented 

in I able 3.2.

Ihe relationship between initial and flnal actual concentrations of cadmium in 

exposure chambers is shtiwn in figure 3.3. Ihe value ( 1.0) indicated the system

material did not cause un> variation between initial and llnal actual concentrations.

Ihe temporal mean survival (%) for i)  niittiuus yolk-sac fry reared at various Ittadmg 

densities is shtiwn in I igure 3.4 Mean survival (%) of try reared at 70 mg (20 try). 

104 ntg (30 try). 140 mg (40 try). 174 mg (50 try) and 210 mg (60 try) I 'day ' ilid 

n4>t tall below KK % I here were n«) signiticanl dilterence (I* -0.05) between survivals 

among the three lowest loadings (70. 104 and 140 mgl ') while Ihe survival try in 

the two highest loadings ditter signiticuntly (f  ■ 16 67. 4.10 d.t . I*- 005) trom Ihe
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three lower loadings, but not from one um>lhcr (P-0.05).

I he temporal variation o f total Nll,-N ut dilferenl loading densities is shown in I ig. 

3.5. The total NM,-N showed a positive relationship with loading density. A triphasic 

behaviour of total Nll,-N concentration was observed at alt loading densities. The first 

pha.se consisted of an increase for the first 6 days lolU>wed by the sect>nd phase i>f a 

decreu.se towards the end of >olk absorption stage, t hird phase was the slight increase 

of total NH,-N towards the 15* day during starvation. The minimum NH, 

concentration (76.^3 /igl SI)t4,K4) was observed utter i>ne day of rearing ut the 

lowest loading density, while the highest (21^.8« ^ g lS IH 3 .4 6 )  was t>bserved on 6 

day of rearing ut the highest loading density. The ammonia concentrations at 5 loading 

densities were significantly different (I 408 43; 4.K) d f ; P- 0.05) from one am»ther 

except ut 140 and 174 mgl ' loadings.

I he temporal changes in suturation level ofOxygen in exposure chambers at 5 li>uding 

densities is shown in I ig. 3.6. At all slocking densities the saturation level of <»xygcn 

decreased towards 0 day of yolk absorption and then increased towards the completion 

of yolk absorption and during subsequent starvation. However, the oxygen suturation 

did not lull below <>0% during the rearing period ut any loading density except for 210 

m gl' d ay ' I he oxygen suturation levels ul 5 differenl loadings were significuntly 

different (I 105 11 ; 4.10 d.f.. P- 0.05) from one another, except for the lowest two 

loadings (007 and 0 104 gl. '). over the period of the experiment
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.1.4 OiNCtiNMion

Many toxicity testing system requirements were established upon the available 

information supporting specific methiHls or conditions. Requiremeiits of a system for 

toxicity testing should always take into consideration the optimum requirements for 

the test spc*cies. fherefore. several aspects of the present testing system were studied 

and discussed in this section to evaluate its suitability for early life stage toxicity 

testing with tilapia yolk-sac fry and cadmium.

.1.5.1 I'h ysica l and chemical aspects «»f the system

Ihe present system is simple in design, based on inexpensive ofT-the shelf 

components, which are ptitentially disposable if required. One o f the impi>rtant 

features of the system is that the test solution rcser\’oirs. delivery system and exposure 

units including outlets are truly independent of one another. These independent 

channels cun K' taken olT-linc w ithout utTecting the rest of the system, and ulst> avoid 

pseudorepheution by allowing true randomisation of experimental units.

In these studies the mean flow rule and the amount of dilution water required were 

1.12 ml m in ' and 24.2 1 day ' respectively. These flow rates and daily water 

requirement were lower than those used by i>ther wx>rkers in early life stage u>xicity 

tests (see table .1.1). As there is no general agreement tin the flow rates used in flow­

through systems for toxicity testing, flow rate should be carefully selected to cuter to 

the needs o f the species and life stage under test. This will avoid arbitrary selection 

of high flow rales leading to high water requirements. A rate of two to three I g ' and
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ru b le  i ..r  Sum m iir>  of fl<m m lrs  UHrd in rarl> life nUge l•l>icil> lc»l> usinc flim - 
Ihrttugh

i : l s S p e c ie s F lo w  r a t e  ( m l  m in . ' )  K e f e r c n c e

Alcvins;fry S u l m o  \a U tr 716-6M2 Peters4>n e t a / . .  I0K.3
I-.mbryo S o l v e l i n u s  f tm i in a l i s 222.20** llunn e t  a / . .  |0«7
l.mbryo; l* im v p h o U ‘s  p r o m t ‘la .\ 75.00
lurvue 1080
l•.mhryo;fr>' M e n id ia  ¡H‘n in .\u U u ‘ 66.66** (  HKxJmun e t  a /., 108.3
l.mbryo:fry M v n iJ i a  h ^ r y tU n u 66,66* (nxtdmun (7u/.. |085u
l-.mbi^oifry l .v u r v s ih v s  t e n u is 66,66** (HHxJnune/o/.. 1085b
l-.mbryo; K iresh 42.IH* McKim e t  a / . .  1078
lurvue water spp *
I'mbryo; 7 fresh 37.50* l-uton e t  a t . .  1078
lurvue wutcr spp.**
I.urvae 4 fresh 34.72* McKim e t  a / . .  1075

water spp.‘
i 'K g s : M e n iJ i a  m e n iJ u t I5.()() Voycr !■/ a ! ..  IS?*»
lurvue
l .g g s : P im e p h a ie .s I5.(H) Mvnnil f l  t i l. .  l<iK2
lurvue p r t tm e /u s
l-.mbryoMry (  y p r i n t t j o n 7,00 SchimnK‘1 e i  a /.. 1074

Vi4rii‘f(uti4s
Yolk suc-f'ry ( )  n i io t ie u s 112 present system

u Om orhym u\ ( ultiMomm t »mmerwim. ( 'nrcgiinm <irlt Ji.
timlinulis. S  num avim h Stilmn irullii Knix liaim. M nriiplfni\ M iw m uui

h Salwlinu.y /nnlinulis. .S' m m u yi uyh. .Stilimi Inula  Hsax Im im. ( iiinsliimus 
fnmmcrMint. M u-roplxnti tliilamiful. O m o rh y m m  kiutlch

f  I’irnyphulfi pnimfliiy. Ksax Imiux. KlUrapifrm iliilomiiu Ciainliimiiy sp

• C a k u lu lc d  Ir iim  the lu rn -n v o r ru le und Ihc eu p u tily  o l » u le r  in un expnsurc  
chum  hers

• •  ( u lcu lu tcd  Iro m  the d u ru tion  o f  u cyc le  und um ount w ulcr d e liv e red  into un 
expoH ure ch u m h e r



one I O.lg ' (Alubustcr and Abram. I*>65; USI-PA. 1^82) ot testing organism were 

recommended.

Sprague (1*^6^) recommended a flow rate which provides W)®/o replacement time of 

8-12 h. I he turnover rate of 6.5 day ' of the system is well within Sprague's 

recommendation.

One factor ofWn overUM>ked in evaluating the efUciency of a toxicity testing system 

is adsorption of the toxicant to the walls of* the exposure chambers. I his could 

contribute substantially to inaccuracy in lest results. However, the materials used in 

the present system did not produce significant variability in observed actual 

concentrations of* cadmium after 24 h. o f exposure to system material.

The present system gives maximum flexibility in terms of mixing prol<H:ols and 

chamber design, allowing customising to the particular chemical/species requirements 

of the user. It can also be used for ondine monitoring of curly life history and 

metabolic parameters such us survival, growth. >olk utilization, respiration and 

excretion. I hus it olTers a g<M>d choice of test parameters for measurement. One of the 

problems of most of the flow-through systems used to study the effects of toxicants 

on the energy budgets of early life stages of fish species is undetectable excretory 

ammonia concentrations due to high flow rates. In the current design the flow rates 

used enabled the accurate monitoring of N il, excreted by the sac-fry. I he rate of 

ammonia production was so small in Musisi’s (H^84) experiments with developing 

young stages iy\' Orvtn hntmis mossamhU us that the flow-through respirometer hud to



be slopped Cor several hours to allow the ammonia to build up to levels that could be 

reliably measured. Although this is u common practice, it entails the following two 

htt/urds (i)rutield, 1̂ >X.̂ ). t he ammonia may build up to levels that harm the fish and 

oxygen deficiency may tKcur If the water is not aerated, yet if It is aerated some 

ammonia may escape (Weiler. 1^7^). However, aerating a toxic medium is not 

advisable as it may result loss of toxicant through evaporation.

I he temporal fluctuations in ammonia concentrations in exposure chambers in the 

present study could be related to the pattern o f yolk nutrient utili/iition. Uenerally. 

carbohydrate, lipid and protein are consumed prior to hutching, while protein and lipid 

catabolism predominate alter hutching (Meming and Duddington. IWKK). It is evident 

that utter hutching a larger proportion of yolk protein is utilised for energy produclii>n 

and thus, yolk pnttein quantity is decreased us growth priH-'cvds and the metabolic rate 

increases (Heming and Muddinglon. I bis trend has been reported for other fish

species (Kumler. IM76; /eiUmn. Ullney. Hergen. and Mugee. 1977: liuckley. I9KI; 

Dubrowski and I.uc/ynski, I9K4). The higher utili/ution rate of yolk protein during 

first 6 days compared with that of 6 to 9 days utter hutching may have resulted In un 

increase of ummi>niu production followed by u decrea.se. Subsequent increase ot' 

ammonia production could be attributed to the resorption of body protein during 

starvation.

Dissolved oxygen is un important parameter in the toxic medium since expi>sure of 

fish to u toxicant may increase the rate ut which they consume oxygen or 

microorganisms if present in the test chamber may also create u demand for the



oxygen. A minimum level of 6()% suturuUt>n of dl.sst>lved t>xygen has been 

recommended for lest solution water used in early life stage toxicity studies (USIiPA, 

W82; OI-.C'I). I‘i84; 1W3). Minimum dissolved oxygen requirements for warm water 

species are generally not us critical us those for cold water species (IX>udorolT and 

Shumway, 1970). I he system used in the present study allows loadings o f 174 mg I 

'day ' in keeping the recommended level of oxygen saturation for early life stage 

toxicity tests.

Cost of all the ctimponenis of the test system are inexpensive except for the relatively 

high cost multichannel pump (87.50% of the total capital cost (see fable .1,4) 

However, the depreciated cost of the pump could be considered as h>w. fhe precision 

and high reproducibility provided by the multichannel pump justifies its initial cost.

5.5.2 Hiological aspeets of the system.

Survival of 80% (HSPI A. 1982) or 90% (Muikema t*/ a! . 1982: O f t  I), I9K4. Munce. 

1987) for controls has been considered us acceptable for lethal toxicity tests. 

Notwithstanding this, there are long term experiments reported with considerably 

lower control survivals. Mow these particular .survival levels were chosen is not clear. 

1 he acceptable control survival level should be species dependent and m>l be less than 

those typically determined historically. Ihe survival rates observed in Ihe present 

study could be compared with those tibscrved by others for Ihe yolk absorption period 

«)f ntUuUus. Survival percentages between 80 and 90, have been observed during 

hatchery rearing for fry pri>ducli4»n (Rana. I98bu; 1986b: Kuna and Mucinlttsh. 1987).

I he optimal survival of the fry to the completion of yolk-sac stage has been observed



Tublc 3.4 C'oMt cxtimatc of the prvMvnt flow-throuKh M>Mtctn

A. C'apitiil coiil

C om (£ Sterling) %  of total coNt

Peristaltic pump 16(H).(M) «7.50
Manifold pump tubing 69(H) 3,77
Wa.ste drainage system 6K.(H) 3.74
Reservoirs 45.(H) 2.46
l•xp^>surc chambers 20.40 1.15
1 ubing connectors 15(H) 0.82
Iranslucent precision tubing 10.20 0.56

Total cost IN27.60 lOO.(H)

H. C'oM after depreciation

Depreciated coxt (£ Sterling)

I’cristahic pump 2(H).(K)
Munil'old pump tubing 6<).(M)
Waste drainage system H.55
Reservoirs 3.62
l-ixposurc chambers 20.40
I ubing ctmnectors I K7
Iranslucent precision tubing 1.27

Total cost after depreciation 306.71



at loading densities between 70 tt> 174 mg I ' day ' (20-50 yolk-sac fry per chamber) 

in keeping w ith  acceptable dissolved oxygen and unionised ammonia levels. Despite 

thcrecorded low saturation level o f  oxygen at the highest loading, acceptable survivals 

indicated that crowding might not caused stress. The highest concentration of Nil,-N. 

the main w aste metabolite. rect>rded was 21* .̂KX ^gl ' at the maximum loading density 

tested. I'his level is well below the acceptable highest level, when compared with 

those of o ther authors. Total ammonia and nitrite concentrations o f 6200 ^gl ' and 

7200 respectively, for O nihUcus (Kuna. 1‘>X8) and O mossamhuus

(Subasinghe. WX6) were considered us sublethul concentrations us they showed 

histoputhologicul changes in the gills and kidney.

As percentage survival, oxygen saturation levels and ammonia concentration are kept 

well within the acceptable levels, loading densities up to 174 mgl ' day' could be 

recommended for tilapia yt>lk sac-fry in the present test system. I he test system 

satisfied important requirements set by other agencies for toxicity testing. It also 

provides the tlexibility to use species other than tilupia us test species and other 

toxicants o ther than metals. I herefore. the present system could be used us a 

reproducible system to evaluate lethal and non-lethul responses o f early life stages of 

fish to toxicants stress.





4.1 Introduction.

I here arc two possible rca.sons why an organism exhibits resistance to u ti>xicant. I his 

could be first, due to pre-adaptive resistance: pre-adaptive resistance is the pc»lential 

ability of an organism to perform its normal biological functions under u wide range 

ot environmental fluctuations such us temperature, oxygen and performing other 

activities necessary for the organism to survive and ultimately reproduce. I his may 

be the resistance Schreck (l^iKl) referred to as potential performance capacity tif an 

organism, this type of gcnelically>bused resistance evolves by means of natural 

selection. Second, post-adaptive resistance; post-adaptive resistance could also be 

genetically based but may need to be induced by the envimnment. Hven though post- 

adaptive resistance is a somewhat reduced version of pre-uduptive resistance Shreck 

(I^HI). it could carry fitness advantages through physiological acclimation; eg., 

resistance acquired lhn»ugh physiological acclimation during expt>surc t»> subicihal 

concentrations of a toxicant at some prior period of their life, l or many studies that 

rep«»rt on resistance «if organisms to heavy metals, it is «ifien not clear whether this 

involves an adaptation (pre-udaplive) or physiological acclimation (posi-udaplive) 

(Klerks and Weis. 1‘>K7). I he distinction between phenotypic and genetic basis of 

tolerance is stimewhat arbitrary, and difVicult u» distinguish us the capacity f«ir a 

physMilogically plastic response must ultimately have an underlying genetic basis 

(Mulvey and Diamond. D^>l)

Species specific diflierences in mtide of life may trunslale int«i differences in fitiwss



a n d  (his ma> ex p la in  d itT crcnccs b etw een  sen sitiv ities  to  stress. D ilT crcn cc s  in m ode 

o r  life  c o u ld  fall in to  c ith e r p re -udap tive  o r pt>st-adaplivc re s is tan c e . I h ith e r  w ho le 

btHly c a d m iu m  lev e ls  w e re  ob serv ed  in  btXtom d w ellin g  (b e n th ic ) f ish  sp e c ie s  than  in 

free  sw im m in g  fish  sp ec ie s  (N ey  and  V an llo sse l. 19)13). I he  a s s o c ia t io n  o f f i s h  w ith  

s ed im en ts  seem s to  p lay  a cr itica f ro le  in  th e ir sensitiv ity  to  c a d m iu m . I hc pt>sition 

o f  an  o rg a n ism  is o f  p artic u la r re le v an c e  to  tidal w ater. S ub-tidu ) a n d  in tertidal 

a n im a ls  o ften  h av e  d iO 'eren t leve ls o f  co n ta m in a n ts  (eg. IK* W olf. 1 9 7 5 ).

D ifTerences in d ev e lo p m e n ta l ra te  and  o n to g en y  m ay be im portan t in  re d u c in g  ab io tic  

s tress , a lth o u g h  they  m ay  have ev o lved  for t>ther reaso n s (eg. tt) av o id  p re d a tio n ) . This 

ty p e  o f  fitn ess  a d v a n ta g e  is m o re  likely  to  be pre -adap tivc . H ow ever, t h e  d iftlcu lty  in 

d is tin g u ish in g  b e tw e en  p re -ad a p tiv e  an d  p o st-ad a p tiv e  to lerance  m a y  b e  d u e  to  a 

co m m o n  u ltim a te  m ec h an ism  und erly in g  them  IK v e lo p m e n la l ru le  in f lu e n c e s  the 

g ro w lh  p attern  <»f a n  o rg a n ism . There is ev id e n ce  to  suggest (hat g n > w th  ra te s  of 

o rg a n ism s  a re  not a lw a y s  at th e ir po ten tia l m ax im u m  levels us co s ts  t»f g ro w in g  last 

in th e  ju v e n ile  phase cu n  in crease  mi>rtulily (W illiam s. I96<>; I ack. |9 6 K : t  asc . 1978) 

It Is h y p o th es ised  th a t th e re  are m iirta lity  co s ts  in g row ing  faster, s in ce  g ro w in g  faster 

m ig h t in v o lv e  tak in g  im>re risk s  to  o b ta in  m ore  h>od. and . faster g r o w th  may im ply 

that less en e rg y  is b e in g  invested  in m ain ten an ce  an d  repair (S ib ly  a n d  (  a lo w . |9 8 ‘>) 

There is  little  in fo rm a tio n  on the re la tio n sh ip  betw een  nuirtu lity  a n d  g ro w th  rule. A 

p o s itiv e  c o rre la tio n  w a s  show n  betw een  g ro w lh  and  m ortality  ru les in  echiiuK lerm s 

( i :b e n . 1985) and  a  s im ila r  re la tio n sh ip  has been d em onstra ted  for fish  (H e v e r to n  and 

H o lt. 1959) It is  su p p o rted  that m ortality  rule is positive ly  co rre la te d  w i th  g ro w th  rule 

(S ib ly  an d  ( a lo w , 1989) I herefo rc . an im als  should  "hurry  th ro u g h "  th e  vu lnerab le



early life-stages (Wiliams. 1V66; l.ack. 1^8 ). Similarly in early life stages. grovMh 

rates should increase with vulnerability, so that species with high olT-spring mortalitv 

should have higher growth rates than those with a lower mortalilv level (Sibly and 

C'alow. |V8^). On the other hand maximising growth rates would minimise 

developmental time and thus thc*̂  exposure of early developmental stages to abiotic 

stress factors, t herefore, under expt>sure to chemical stress faster developing species 

may have a fitness advantage over slower developing species by minimising the 

exposure period of sensitive or vulnerable early life stages. This hypothesis is 

explored in the present study by examining interspecific variation in tilapia early life 

stage response to cadmium exposure.

rilapias which belong to the tribe lilapiini are a group of fish which exhibit 

considerable interspecific variation in their early ontogeny (Noakes. 1^1 ). The most 

recent classification of this group recognises three genera. Tilapui. Simtiht'nnlfm and 

Oraochromts. which dilTer in their reproductive behuviitur. It is suggested that the 

more primitive substrate spawners belonging to the genus Tilapiu have given rise to 

two distinct groups t>f mouth br»H>ders. the genera (>n‘tn hromi\ and Suroihi-riHion. 

Substrate spawners maintain their briHtd on or close to the substrate, from the time i>f 

spawning until the young become independent, while mouth briKnlers carry their olf- 

spring in their buccal cavity until llrst feeding, a possible mechanism to reduce 

predation mortality on eggs and sac-fry (biotic stress) (N«takes and Ifalon. 1^82. Kana. 

1990). As a consequence of these ditTcrences in their reproductive behaviour, substrate 

spawning and mouth br<H>dlng species dilTer markedly in the development ol their 

early life history stages. 1-ry in the former group having a distinct larval stage (indirect
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development) (Youson. 1488; i-'legter-Bulon. 1484), whereus those of the latter 

undergo direct development without u larval stage (Noakes. 1441). In addition, mouth 

hriMHiers produce much larger, yolkier eggs than substrate spawners. and their 

otTspring have a more protracted early developmental period than those of the latter. 

I'o test the hypothesis that olTspring from tilapia species with faster developmental 

rate are more resistant to metal stress than those with slower developmental rate, yolk 

suc’fry o f six species of l ilapiini belonging to three genera. TUapiu. SunHhirtHion and 

OrviK-hromis were exposed to heavy metal stress using cadmium as a reference metal.

I'o establish the variation in stress tolerance among substrate-spawning and mouth 

brtHHiing tilapias. lethal toxicity tests were performed to provide a rapid screening for 

interspecific sensitivity and to provide the information for a detailed non-lethal toxic 

assessment It isoBen assumed that differences in non-lethal toxicity will translate into 

larger differences in lethal toxicity (Kenga. 1482). Hence, lethal tests can be used 

initially to establish whether species have different tolerances, and if so. to rank 

species in tirder of sensitivity t«> stress. Also life- histtiry traits ctiuld be used to 

predict how animals are likely to respond to different levels of' stresses us they are 

expected to be correlated with the availability of metabolic energy (Hoffmann and 

Parsons. 1484). As described earlier (('hapler 1) the uvuilabilily of metabolic energy 

provides a general measure of the environmental stress that cun be tolerated by 

organisms. I herclbre. life-history growih traits were measured in tilapiu yolk sac-fr> 

under non-strcsxed (control) conditions in the present study to predict the possible 

underlying mechamsm to withstand metal stress





4.2 Mutcrialx and (MrthodM.

4.2.1 Lethal toxicity text».

All lethal toxicity tests were performed according to established OI-C'I) (1W2) 

guidelines. However, to minimise the ditTerences in tolerance due to genetic variability 

within any one species the same lagged brtHHJ fish were used to provide yolk sac'fry 

in repeated experiments.

initial rangC'l'inding experiments were curried out lor cadmium and citpper with 5 lest 

concentrations. 0. 1. 10. 100. KKM) ^gl '. It'uny of the specivs tested did not full into 

this runge. or if control mortality was greater than 20%. the test was repeated . using 

a dilTerent toxicant runge if necessary, the test end point was non-recovery 

immobilization bu.sed on response to gentle prodding with a pipette, hence in the strict 

sense, an l.('50 was calculated, us this was considered us indicative of a lethal 

resptmse,

4.2.2 Preparation (tf cadm ium  and copper test concentrations.

Luch test concentration was prepared by serially diluting a stock solution us described 

below.

A 10 mg I ' stock solution of cadmium (( 'd ' was prepared by dissolving 16.12 mg 

anhydrous cadmium chloride ((d ( 'l;)  (Anulur grade) in 1 litre of A SIM  dilution 

water. A 20 mg I ' st(H.'k solution of Citpper (C'u'^) was prepared by dissolving 5.1.70 

mg dihydruted cupric chloride (C‘u('l;) (Anulur grade) in I litre ASI M dilution water, 

l our test concentrations were then prepared by serial dilutions of the sttKk solutions.
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I rcsh sttKk stilutions vscrc prcpurcd on the duy o f use. Whenever pi>ssible each test 

concentration was unaly/ed on the day for the actual concentration. If this was not 

possible a KM) ml sample from each concentration was acidified with 1% Aristar nitric 

acid and stored in cleaned plastic bt>tlles kept in a refrigerator (4” (') for analysis at 

a later date.

4.2.3 K.xperimrntal protacol.

Ksperim ent 1. Assessment o f interspecific variation in sensitivity to lethal 

cadm ium  stress.

Ihe 6 species belonging to the tribe l ilapiini used in the experiment were O 

nilotuus. O mossumhicus. O auri-us. S  fialUueus. Tilapia zillii and / rinJuili. five- 

day old yolk-sac fry t)f each Ori'iK hromi.\ and SaroihenHJon species and I-day old 

hiapiu species were obtained from the incubaht>n system in the tropical aquarium 

facility, fry  of each species used in the experiment were originated Ifmn a single 

clutch, ftmr hundred and fiUy fry of each species were divided among filtecn 2W) ml 

exposure chambers filled with ASIM  dilution water (see chapter 2) Alter 24 hours 

i>l acclimuti<in. when yolk sac-fry ot' <in'oehromis. SorolhcnHion and I Hapiti were b- 

and 2- day <ild respc*ctively the yolk-sac-fry of mouth briKHlers and substrate spawners 

were of equivalent developmental stages (See discussitm). Alter acclimation Iry In 

exposure chambers were randomly allocated, using random number tables. U> i>ne ol 

5 triplicated treatment levels (including contnil) I ach exposure chamber was checked 

lor immtibili/atmn and Ihe number of fry respitiKling was recorded at 24 luuir 

intervals for a h perMuJ



K kpenm rn l 2. Axftrivxmrnt o f intvrsprcifli' vnritilioii in »eninitivity to kthttl i ' u

Previous ^^ork (Baird. Barber. Brudic>. Soares and C'alow. IW I) indicated that in 

Ikiphma genotypes, variability in resistance to cadmium was much greater (greater 

than three orders o f magnitude concentration) than resistance to copper and zinc (less 

than one order of magnitude concentration). It was speculated that response to 

cadmium, a non-essential toxic metal, was more variable since this trait was not under 

‘continuous selection' from an esolutionary standpoint (unlike copper and zinc), for 

this rea.son copper, an essential metal, was also used to screen for acute sensitivity, 

in order to compare and contra.st interspecific responses.

fhe previtius experiment was repeated with same age of fry obtained fn»m egg 

clutches of same brtKHicrs used in the previous experiment to evaluate the consistency 

of the respt)nsc.

Kxpcrim rn I 5. Assessment o f early life-history growth traits under non stressed 

(control) conditions.

This experiment was curried out to determine whether there is concordance between 

early life history growih traits and lethal heavy metal stress tolerance of six tilapia 

species



15 days post*hatch. I he try were killed in hen/iKaine (I : lO.(MK) solution in ^^ute^) 

and rinsed in nunopure water to minimise shrinkage. The bodies of' hull'or the each 

sample were dissected from their yolk>sacs (if present) under u dissecting microscope 

(Olympus) and the htnlies and fry (bi>dics + yolk, if present) were weighed ulU*r 

removing excess surface moisture with absorbent paper. I he samples were oven dried 

overnight at 60" C'. Ihe dried samples were then C(H>led in a desiccator to r<M>m 

temperature and reweighed to un accuracy of ().(HK)lg on u top pun balance (Mettler 

AK l(K)). Similarly, the initial hi>dy weight and whole fry weight was performed on 

the triplicated samples of fry at hutch obtained from the same egg clutch.

4.2.4 Statistical analyses.

A proportional mortality respt>nsc based on measured actual rather than m>minul 

concentrations was calculated using a standard probil priK'edure (l inrtes. 1^71) to 

estimate the 50% lethal concentration (l.('50). (i<H>dness-of-rit for each data set to the 

probit model was assessed by comparison with critical ( hi-squarc-vulue ( I*- 0.05). 

One way ANOVA. and Iukey MSI) multiple range tests (/.ur. 10K4). were used to 

compare the values of specific growth rates and yolk utilization etllciencies obtained 

lor the species, ('«irrelution coelllcients were used to ci>mpure the stress tolerance and 

early life history growth traits. Where uppropriule. data were first normalised using 

an appropriate transformation (arcsine transformation).



4.. .̂1 In tenpci'inc  Mirintion in Mrnxilivily lo  Icthtil mrtHl «»IreM!«

There was significunt intcrspccics variations in lethal tolerance to both cadmium and 

copper. These ditTerences were ctmsistent over lime. In all cases, concentration 

response data fitted the prohii model adequately (C'hi-square P '0.05 in all cases). The 

predicted I.C'5() value, together with its calculated ^5% confidence limits. Tor each 

species is displayed in figures 4.1 and 4.2 as a normal probability density function 

(midpoint * l,C'5(); kurtosis •  intensity of the response). Two things are apparent from 

the density functions given in f igures 4.1 and 4.2. f irst, there was signillcunt (P* 0.05) 

variation in the response lo the metals among the spcn:ies tested, of almost an order 

o f  magnitude (20.64 to I4!t.47 ^gl ' and 70.55 to 4.19.."iO ^gl ' for cadmium and copper 

respectively). The yolk suc-fry of mouth brcMuJing species, us predicted, were 

consistently more sensitive than (hose of the substrate spawners (Table 4 1). Second, 

the response ol individuals within each ol the species tested was remarkably 

consistent, giving extremely steep resptinses (hence the leptokurtotic, or ‘spiked” 

appearance of the density f unctions). The correlation coefTicient showed that there was 

u clear concordance (r •  0.*MW; P 0.00) in the rank order of species response for the 

twi) toxicants.

4.1.2 Karly lifr-hisli»ry growth tra ils under non-siressrd (control) conditions.

I he time taken to attain maximum weight, maximum length and to complete 

utili/iilion of yolk in mouth briNuJing species was about twice that of substrate 

spawning species and the mean growth characteristics of yolk suc-fry of the 6 species



Kig 4 1 interspecific vanttion in lethal responses ot' h-dav old tiiapia volk-sac t'ry (o 
cadmium stress Responses are expressed as probability density functions of ^he LCxo 
(mean and confidence limits)

copper concentration (ppb)

Ktg 4 2 interspecific vanation in lethal responses of o-day old tilapia volk-sac fry to 
copper stress Kcspcmses are expressed as probability density functions of the *^h LC'so 
(mean and confidence limits)
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arc given in lublc 4.2. I cmporul changes in mean htnly and yolk dry weights o f  try 

(d' the 6 species arc shown in l-igure 4.it and 4.'^.l.

I'he specific gn»wth rate and yolk utilization efllciency for the periods hutching to 

maximum body weight attainment o f the tested 6 tilupiu species are shown in f  igures 

4.4, and 4.5. Ihe interspecific variation in mean specific growth rate for the peri<»d 

from hutching to maximum body weight attainment period (df 5,12; f  p-

0.05) and yolk utilization efllciency for the period from hatching to maximum htniy 

weight attainment (df- 5,12; h»2I.W 6; P- (),05) were significantly different.

In general signiflcunily (P*0.05) higher specific growth rule and yolk utilization 

eHlciency values were obtained for yolk sac-fr> from substrate spuwners than those 

o f mouth briHKlers. I he specific growth rate and yolk utilization efllciency values 

between the substrate spuwners. 7' renJa/ii and 7' ztHti. were not significantly 

different (P *0.05). Among the mouth briHKlers the hiwest values for b*>th specific 

growth rate and yolk utilizatiiin efficiency were observed for O niioiiciis.

I he rank order for specific growth rate and yolk utilization eniciency values for all 

6 species are given in fables 4..1 and 4.4. l-!ven though the mean values for specific 

growth rate of O nitoUvus yolk sac-fry from hatching to maximum body weight were 

significantly (P*0,()5) lowest, the other mouth briNHling tilupiu yolk suc-f'ry showed 

insignificant variation (P*0.()5) from one another.

There was u significant c<irrclation between cadmium I.C'50 values and specific



D a y s  ( p o a t 'h a lc h )

D a y a  (p o a t 'h a tc h )

Fig. 4.3 Tp m po ra i c h a n g « s  in b od y  and  yo ik  m aan  d ry  wt. of 
lliapta yo lk  aac -fry  (m aana  g iv a n  with S D )



D a ys (poathatch)
Fig. 4.3.1 Tam pora i c h a n g a a  in b o d y  and  yo lk  m aan  d ry  wt. of 
Itlapla y o lk  aac-fry  (m aana  g iv a n  w ith 8 0 )
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I'tibli* 4.3 I'hc riink order o f specific gron th  rMtex ( %  d»> ') o f  Ih r  «ix MpecieM of 

til«piii (mvMnx Ki\en n ith  S I) )

IlMtchinK to maximum xpeciex
HCif(ht

25.86 ± 0,15 <) n U o tu  u-s
2 * i .M  ± 0.10 S. f io tU ew u s
2 9 .4 7  ±0.15 <) m o s s o m h u u s
20.82 ± 0.16 ( )  a u r e u s
38.45 ±0.15 T  renU ctU i
.30.02 ± 0.45 T  z iU ii

4.4 I'he rank order i»f volk utilization efflcieno ( %
(meanx given with SI))

Hatching to maximum Specie»
weight

58.7.3 ± 2.88 (> n i l o tk u . s
61.65 ± 0.40 () rru rs .sa m h u  us
63.16 ± 2.60 S  f ta li /a e u .s
65.72 ± 0,21 <) a u re u .s
70.05 ± 2.38 7 Z iU ii
70.20 ± 1.50 T  r e n J a U i



«rimlh rute (di' 4, r -  0.0X1, !>• (MH)I) and between eadmium I.C'50 values und yolk 

utili/alion ellìeieney (di'- 4. r- O.OOO, p-O.(K)I) ol lilapiu yolk sae-fry (l igures 4 6 

and 4.7). Similarly a signilleam eorrelaliun between eopper I.C 50 values and speeille 

growth rate (df= 4. r’  0.077, P-O tHH) and between eopper I.C50 values and yolk 

utili/alion emeieney (di' 4, r= 0 0X6, P- O.(K)I) was observed (l igures 4 X und 4,0)







4.4 DiMcuHKion

I he preseni study investigated the tolerance ot'tilapia species belonging to two distinct 

groups, substrate spawners and nu>uth brtHHlers. tt> metals. I he tilapia species in these 

groups markedly dilTered in dc\elopmental rates ot'their early life stages. Thus. here, 

"equivulent" developmental stages of the two groups rather than age were used tt> 

ct)mpurc the tolerance tt> metal stress. Six-day »>ld yt>lk sac-fry of mouth brtH»ders 

were Ci>nsidered to be the "equivalent" developmental stage to two-day old yolk sac- 

fry o f  substrate spawner. I hese observations were based on the ontogenical studies 

of Runu (l^iShb). (iaiman and Avialion and Mutsekwu (h>K‘i)

Ihe results obtained here indicate that interspecific differences in sensitivity are 

significant for both cadmium and copper. I he %h I.C'50 for cadmium ranged between 

20.64 ^ g  I ' and 148 47 and for ctipper 70.55 and 4.^0 .10 ^g] '. No published values 

comparable to the test conditions of the present study were found in the literature for 

lethal toxicity of cadmium and copper to early life stages o f tilapia and therefore any 

comparison with previous studies would be dubious. I he only similar study found in 

literature was the effects o f cadmium and 3,4 dichloroanilline (IH’A) on 0 clones of 

Ikiphnia nutunu (Maird vt <//., IW l), Ihe remarkably consistent individual responses 

to both cadmium and Clipper lethal stress observed in the present stud>. were perhaps 

not surprising, given that all the individuals tested within each species were obtained 

from th e  same parent. A similar respon.se patterns was also reported for /kiphniu 

clones (Haird et at.. 1 W |). raised in a common environment. I hese studies, however, 

served to  underline the fact that the observed interspecific differences reflected



genetically bused.

and life history dependent pre-adaptation to pollutant stress.

Despite their reputation as "hardy" fish, mouth-br(H>ding tilapia sac-fry proved very 

sensitive to cadmium and C(»pper exposure, with l.C'5() values lower than thtise 

recorded for equivalent stages of salmonids (C'alamuri. Marchetli and Vuiluli. 

and comparable to those obtained for Iktphnia mu^nu (Huird el <//., 1W |). This high 

degree of sensitivity suggests that tilupiu >olk sac-fry may be an ideal candidate 

species for ecotoxicity testing in tropical countries.

I he variability in respi>nsc and the rank order o f  tolerance o f tilupiu species were the 

same for cadmium and ci»pper. C ontrary to this observation lack of ct>ncordance in 

acute tolerance t>f / i  m anna  within metals have been recorded. Ihe inlruspecitic 

variation of Daphnia in resp^inse to metals was generally within an order of 

magnitude, with the notable exception of cadmium which \uried twer three order ol' 

magnitude (Maird el <//.. IW I). Baird et a/.. (1W |) attempted to attribute this 

exceptional response to cadmium to its non-essential metal category when compared 

to the other essential metals tested. In contrast, in the present study, the inter-specific 

variation of tilupiu response io cadmium and c<»pper was around an order of 

magnitude, /kiphnia species are among the <ddest and possibly the most »>lk*n used 

test organism in ccotoxicology because of low genetic variability maintained by 

asexual reproduction There are. h«»wever. genetic differences between clones of /) 

manna that are used for cc«>toxicitlogical testing (Soares. |qx^>. Baird el at.. ). If 

the differences in lethal tolerance to cadmium o f over three orders of magnitude in



¡\iphnut can result from inlruspcxific variability in genetically-based pre-adapted 

tolerance alone, the expectation here was to  observe a similar large variation in 

response to cadmium when shiHed to larger levels of generic variation, us levels of 

genetic variation will be determined by opposing selection pressure (llolTman and 

Parsons. I I herefore. the observed variation in interspecific tolerance to cadmium 

lethal stress in the present study suggests the  underlying mechanism may not be a 

compound-spcH:inc genetically-based pre-adaptation.

What inferences could be made from the observed generality in toxic responses?. I he 

generality in the response and rank order of tolerance to cadmium and copper between 

the six species tested suggests that either the mode of action o f the two toxicants or 

the mechanism of detoxification could be similar. Ihe observed ditTerences in 

tolerance between mouth briHHlers and substrate spawners may reflect a difference in 

general stress response between the two groups, which may be related to differences 

in modes of life between mouth brooders and  substrate spuwners.

Proposed models of stress tolerance (see ('hap ter I) suggest that the existence of' 

genetically bused differences in growth may account for genetically bused differences 

in stress tolerance. Ihe efficiency with w hich yolk is transformed to body tissue 

would give an indication how effectively resources are ull<H.uted for growth and other 

metabolic activities. High growth rate and y«>lk utili/alion efficiency means less 

resources being used tor maintenance than for growtii Ihus, higher growth rules may 

indicate reduced energy Investment in maintenance compared with growth, hence u 

trade-off could be taking place between grow th and maintenance to meet the higher
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maintenance cost under stress conditions. I his is in agreement with the findings o f the 

present study that faster growing yolk sac-fry of substrate spawning Titupiu species 

( having significantly higher specific growlh rate and yolk utilization efficiency than 

mouth briHKiing yolk sac-fry) were more tolerant than slower growing mouth bnH>ding 

Oreochromis and SaroihcritJon species. I he rank t>rder of tolerance among species 

tested within mouth hrtxHlers showed the similar rank order o f  growth performance 

(measured us specific growth rate frt>m hutching to maximum weight attainment).

lo  conclude, there were significant dilTerences in lethal tolerance between the tilupia 

species tested for both cadmium and copper. Moreover, a conct>rdance in response t<i 

the two metals was observed, suggesting that the observed differences in ttilerance 

may relate to differences in modes of life between mt)uthbriH>ding and substrate 

spawning species. A reduction in the exptisure peritul of sensitive developmental 

stages of early life stages could cause a reduction in uptake, and hence increase 

tolerance. An increased htnl) burden of cadmium in the relatively slow developing 

mouth brtMHJer sac-fry compared with the faster developing substrate spuwner sac-fry 

could be expected us the sensitive early developmental stages o f  the former will he 

exposed for longer periods than the latter. C learly, in order to test this hyptnhesis 

further, it will be ncccssar> to demonstrate differences in the metal uptake and its 

partitioned body burden between the two groups of fishes. Under non-stressed 

conditions, the substrate spawning and mouth hrmnling yolk suc-ffy shiiwed 

significant (P- O.O.S) differences in their patterns of growth and these differences were 

found U» correlate with the tolerance capabilities of the two groups. I he correlation 

between tolerance capability and growlh pcrlbrmurKc suggested the tolerance







5.1 Introduction.

I hc previous chapter demonstrated significant differences between tilapiu species. A 

key feature of these differences between the three genera, however, is the obvious si/e 

difference in eggs produced between substrate spawners and mouth briHHiers. I his 

chapter explores any general advantage that egg si/e. and therefore yolk sac-fry si/e. 

and age may offer to lethal cadmium tolerance.

Variation in physical characteristics such us egg si/e and weight can be higher 

(Hugenul. 1971) than the bitKhemicul composition o f major constituents in eggs 

between females of the same species originating from populations of mixed ages or 

from different geographical locations (Kanu. 1986b). Intraspecific variation in egg si/c 

and weight and hence, quality of emergent sac-fry. could be attributed to either the 

genetic variation (Kirpichnikov, 1981. Kunu. 1986b) or to the age and si/e structure 

of the breeding populutiiin (Hluxter and llempel. 196.t: (iall. 1974; llululu. Mouv and 

Wohlforth. 1974). In general egg weight, and hence emergent yolk sac-fry are 

dependant on maternal fish age and si/e for many fish species (Kamler. 1976; Kamler, 

/.uromsku and Nissinen, 1982; Docker. Medland and Deamish. 1986) including 

lilupius (e.g. Runu. 1985.1990),

Physiological priKesses are controlled by age and adjusted to body si/e (Kamler. 

1992). I bus. intruspecific differences in egg si/c. and hence si/c and age of yolk sac- 

fry have the potential to influence their tolerance to metal stress. Natural populations 

arc composed of u wide range of maternal ages and sizes of u single species



priKlucing oiVspring with u wide range of* ages and sizes, Variations in age and si/jc 

respt>nse \o metal toxicity are t>fU*n eliminated by use of* a narrow range ot xi/x* and/or 

age classes to enhance the precision of* the toxicity study (Newman and lleagler, 

1‘i^ l). Hence, to describe, understand and predict laboratory-based toxic cITects of* 

metals to field populations, an understanding of ecotoxicological allometry and age 

is needed. Physiological difTerences between intraspecific sac-fry of dilTerent ages and 

si/«s can be inferred to reflect their dilTerent ability to resist metal cxpt>sure. 

Ihereforc. comparative studies using sac-fry o f difTerent ages and sizes may yield 

information about intraspeciflc variation in metal tolerance.

5.1.1 In tra sp rc irs  aftc-spccine tolerance of sac-fry

C'hanges in physiological activities with age of a particular early-life stage can be 

identified by the differences in oxygen consumption. The oxygen consumption rate 

of fish embryos increu.ses slowly during the cell cleavage stage and then accelerates 

several fold to hatching (Davenport and l.onning. A distinct increase in the

relative respiratory rate af\er hatching has been repiMled for endogenously feeding suc- 

fry of many fish species (I)avenpi>rt and l.onning. P>KO; O/ernyuk and l.elyam>vu. 

P>87). The peak relative rate of oxygen consumption usually coincides with the onset 

of exogenous feeding fry (Kamler. 1W2) and then declines with the depletion o f yolk 

reserves in unfed fry. As the oxygen consumption rule declines with depletion o f yolk 

the metabolic rule of yolk sac-fry may alst) to decrease. Many species t>f fish fry are 

capable o f surviving long periods of fiHtd deprivation by reducing metabidic rules 

(Jobling, IW!1). Thus, unfed sac-fry with limited or deprived yolk reserves may be 

expected to experience reduced metabolic levels and decreased oxygen consumption



I hc reduction in oxygen consumption which uceompunics depleted yolk reserves and 

starvation may partly be due to a reduction in activity and partly due to a reduction 

in protein synthesis activity, since protein synthesis is the major contrihutor to 

maintenance energy metabolism (Houlihan. Mathes. luster. 1>W.1).

Ha.sed upon the results of growth studies with brown trout. Hrown (IU4ft) as early as 

mid |y40 's suggested that the metahtilism of the lish declined as the fiHxl supply was 

reduced. Brown (IU46) hypothesised that the nutritional status of the fish was an 

important determinant ol the level o f energy expenditure, and that metabolic activities 

altered with changes in IikkI availability. In the light of more recent work it was found 

ftXKl deprivation was accompanied hy reduction in total metabolism to "basal" levels 

(Smith and llaseencyer IdgO; Smith. IdXI; l ied, fund and Von der Deeken. I‘)(I2. 

Houlihan . lUUl; Johling. lUU.f) and reduced protein synthesis and degradation 

(Jobling. lUU.I). fhe decline in protein synthesis was attributed to reduction in both 

rihosomul activity and number under conditions of IimkI deprivation (Houlihan. IW I).

Physical and chemical metabolic activity constitutes a high energy cost during fish 

early life stages dependent on limited yolk rcstmrccs. During ftHid limitations and 

starvation sac-try probably have to adopt a "switching strategy" to save energy. It is 

well known that starvation induces dilfercntial readjustments of numerous enyyme 

activities (Jurss. Bittorf. Vokler and Wackc. IUK4) to reduce energy expenditure As 

deprivation of IimhI resources and starvation induces an overall reduction in activity.



respiratory metabolism may be accompanied by a reduction in blood supply to. and 

the permeability t>f the gill lamellae (Jurss vl u/.. I*>K4). Ihis could mean that the 

reduction in water How and filtering rate across gills may be reduced. I herei'ore. in 

sac't'ry with depleted yolk reserves undergoing starvation the reduced gill activity may 

reduce toxic metal uptake in its milieu, and thus, reduce metal stress. I heret'ore. it is 

hypothesised here that starvation induced reduction in activity and respiration rate may 

be benenciul under metal expt>sure.

I'o test this hypothesis dilTereni post-hatch ages of mouth-briKHling yolk sac-fry. 

belonging to 2 genera. Onuuhromis and SantlhvrttJon. were selected, and exposed 

to cadmium and copper lethal stress. Ihe most sensitive species among tested 

candidates were selected to measure growth and metabt>lic traits under non-stressed 

conditions to test the hypothesis.

5.1.2 Intraspceies si/c specific tolerance of sac-fry

Iniruspecific ctmiparisons revealed no signitlcant effect of fish egg si/e on rate of 

embryonic development. Mass hutch of (> nilolUus and O mossamhUus eggs 

incubated at 2T'C' to 28"C‘ occurred within h of spawning and was independent of 

egg si/e (Ranu. WK6b). Other studies reported neither the time to eyed stage nor the 

hutching time o f fish embryos were influenced by the egg st/e illlaxlcr and Hampel.

Komler and Kuto. IM81; liscatfrc and Hergot. I‘i84; Hirgc c'i u/.. Marsh.

WK6). It is well-diK'umenicd. however that, egg si/e has a profound effect on the 

developmental events of yolk sac-fry. Maximum dry body weight, end of yolk-sac 

resorption and survival time of tilapiu mouthbrinxling yolk sac-fry were delayed in fry
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derived from larger eggs than those from smaller eggs (Kunu. IW()).

Under com|>aruble hatchery conditions the growlh performance o f () nilolicus and 

() nu>\xumhu u.\ fry were found to be significantly dependent on the maternal age. and 

hence the egg .si/c ( Kanu. Id85.1d<i0). in the previous chapter a significant correlation 

between the interspecific growth performance and tolerance capabilities o f tilapia yolk 

suc‘fry to metal stress was revealed. A similar variation in the respt>nse to metul stress 

between yolk-sac fry emerging from dilTerent sues  o f eggs of the same species may 

be expected due to their dilTerences in growth characteristics. Onset of feeding 

capabilities (exogenous feeding) commenced at 5-6 days pt>st-hatch in Orvochromis 

species, and was independent of maternal age, and hence, egg sue  (Rana, WSbb). 

However, delaying the initial feeding in smaller Orvochntmix yolk sac-fry than larger 

resulted in higher early mortalities (Kuna. I W()). This suggests that even though these 

smaller yolk sac-fry may be capable of ingesting some of the Unni during delayed 

initial feeding (Kuna. ldH6b) they may nevertheless die because o f irreversible 

physiological damage u> organs such as the liver and pancreas (Stroband and 

Dabrowski. 197V). Thus, within u species smaller sac-fry may physiologically dilTer 

from larger sac-fry during and alter yolk resorption.

I here are several hundred studies in the literature reporting the elYects o f binly size 

on rates o f oxygen consumption in fish (see review by Jobling. 1995). It is alst» 

believed that the contribution ol maintenance metabolism to tittul metubt>lism dilTers 

between fish of diflerenl si/cs (Houlihan. 1991; Jobling. 199.1). All these factors 

suggest u physiological dilTercnce between large and small yolk sac-fry which may



influence the capability of an organism to tolerate metal stress. Moreover, these 

dilTcrences in sac-fry si/c may also be reflected in their growth efilciency. Sac-fry 

originating from small eggs have a higher growth efliciency than those originating 

from larger eggs (Jobling. IW.^). Adaptation to stres.s involves several active prt>cesses 

and hence, requires energy, fherefore. it is hypothesised here that the m>n-starving 

yolk sac-fry with small body si/e has the better adaptive pt>tcntial to metal stress as 

they have better gri>wih performance and energy efVicicncy to meet the maintenance 

energy requirements under stress than large yolk sac-fry.

To test this hypothesis, yolk-sac fry from ()♦ year class (small eggs) and 2+ year class 

(large eggs) O niloiUus females, the m«>st sensitive species (C hapter 4). were selected 

and exposed to lethal metal stress using cadmium (the more u>xic among the 2 metals 

tested) metal. I he growth and metabolic traits were measured under non-stress 

c«>ndition of the two si/e groups to text the hypothesis.

5.1..^ C'seful physiological and biochemical trails that predict fitness of yolk sac- 

fry under non-stress (control) conditions

Under non-stress conditions, measurements itf physiological and biiKhemical 

parameters involved in the balanced energy equation (equation 1.1) will be a useful 

tiMil to understand and predict fitness of organisms. I he regulation of the rate of the 

synthesis of tissue protein is of fundamental importance to the energetic cost for 

maintenance and growth of the whole animal Protein is the largest component of dry 

body mass and minimal theoretical estimates of the cost of' synthesising proteins 

indicate that they represent the most expensive molecules to produce (KiorKte. Munk







5.2 M ate ria ls and mrlhodM

5.2.1 l.vthal toxicit) tv%t%

l.clhul toxicity tests were performed with cadmium and copper according to the 

priK'edure described in section 4.2.1, 4.2.2 and 4.2.!1 lixperiment I on tilapia yolk*sac 

fry.

5.2.2 Determination of metabolic tra its

A. Determination o f oxygen consum pti<in of tilapia yo lk  sac-fry

All measurements of oxygen consumption were carried out on individual yolk-sac fry 

using the static respirometry technique. Although llow-through respiratory technique 

provides advantages over static respiratory technique and the present llow-through 

system allttws measurement of oxygen consumption, the static respiratory technique 

was adopted because the 15 channel llow-thrt>ugh system limits channels to measure 

temporal oxygen consumption together with an on-going experiment without 

interrupting it. further. I.ampert, (l^>Kb) has shown that oxygen consumption is the 

same in both static and (low-through techniques using daphnids us test organisms. 

Individual yolk-sac fry were enclosed in ml Nunclon tissue culture Musks (Nunc. 

Intermed Denmark), containing ASI M dilution water (see chapter 2). I he tissue 

culture Musks were sealed at the mouth utter removal of any air bubbles, for each set 

a control tissue culture Musk was prepared in the same itianner but with no sac-fry 

present I he sac-fry were then maintained at 2T  i  TC for a period o f  2-1 hours Ut 

obtain a measurable decline in oxygen content of the medium Alter the incubation
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pcriiKi a sample of medium was injeeted inlsi a sealed jaekel surroundinti a 

Radiometer oxygen eleetrode eonneeled to a StrathKclvin Oxygen meter (mt>del 781). 

An initial volume (l(K) «ill o f medium was injeeted into the jacket to Hush the 

chamber and then a lurther 1(8) «il was injeeted to measure the oxygen cimtent. I he 

amount of oxygen consumed was calculated by obtaining the dilTerence of amount 

ol oxygen between the without Iry' (control) and 'with fry’ treatments. Alfer 

measurement of oxygen consumption all fry were frozen at -70" C' within one htiur 

I hese Iry were Ireeze dried (Micro Modulyo ) and dry weight measured to 0.(888)1 

g on a balance (Mettler 1151)

H. Ifelcrminalion of RNA, l)NA and prolein conteni of lilapia yolk-sac fry.

I ml ol nanopure water was added to each microcentrifugc tube containing a single 

freeze dried sac-fry, and then sonicated and centrifuged at 5(88) rpm for 5 minutes at 

4" (• A 1(8) «il sample of the homogenate was use to measure RNA and DNA content 

lluorometrically (I'rusad. DuMouchelle, Kontuch and ( »hcrleas. 1072) All solutions 

were kept on ice due to the temperature dependence o f  lluorcscence (Van Dyke and 

Sgustkiewicz. I<)(>8) I he sample was added to a solution of I ml ethidium bromide 

(20 «ig I ’) plus 0 0 ml Iris-sodium chloride hulfer (pH adiusted to 7 5) lllank 

solutions consisted of I ml ethidium bromide plus I ml Iris-sodium chloride buffer 

A luminescence spectrometer (I'erkin I Inter I.S 50H) was nulled with the reagent 

blank using 565 nm excitation, 500 nm emission, maximum exeitatuin and emission 

slit widths, fluorescence was then measured liir samples at same excitation, emission 

and slit widths I he initial sample lluorcscence was due to both RNA and DNA RNA 

Irom call liver (Sigma) and DNA from salmon testes (Sigma) dissolved m Iris-1 DIA



hutTcr (1(N) mM I ris und 1 mM I J )  I A pH adjusted to 7.5). were used us standards. 

Standard eurves for RNA and DNA were prepared daily.

After the initial fluorescence reading. 20 ul of KNAase (type 111 A. Sigma. 20 mg ml 

') stored at «TO" C' prii>r to use was added to each sample and incubated for 2 hours 

at 50" C'. I he solutions were then C(K>led on ice for M) minutes and flut>rescence was 

remeasured. Hence RNA content was estimated by the difVerence between 

fluorescence before und utWr KNAu.se treatment. DNA was estimated from the final 

fluorcsccnce.

Another 100 fd o f  homogenate was used to measure protein content. Protein content 

was measured using a modified version of that of Hrudford (1076). Ihe  sample was 

prepared according to Mckee and Km)wles (1087). 5 ^1 of0.il M perchli>ric acid and 

45 ^1 of .1.2 M sodium hydroxide, were added to (he homogenate und mixed 

thoroughly. A sample of 50 t̂ \ of' this solution was then added to u 2.5 ml protein 

reagent (Sigma). Values for protein content for each fry were obtained by comparing 

the abst)rbence of each sample ul 505 nm. using a spectn)photomeler (Kt>ntron Uvikon 

KIO) against standard bovine serum albumin (Sigma) dissolved in phitsphute buffer 

saline at pH 7.5.

5.2..1 Kxprrim cntM l protocol

Kxprrfm cnt I:  D rtrrm in a llo n  of inlrtt-agr specific srnsitivily o f m outh  brood ing  

tilapia yolk sac-fr> to lethal metal stress

I he fry of nitoticu.s. <) mossamhivus. () aurvu.>. und S. fiaHtuvus on .1. 6. 0, 12
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days rH>sl- hatch obtained from +2 year class female, were subjected to ‘>6h, cadmium 

lethal toxicity test according to the priKcdure described in section 4 2.1 and 4,2.3. 

I hrev and 6 day post-hatch fry vsere used ti> represent sac-fry with sufficient amount 

of yolk reserves while ^ and 12 day pi>st-hatchs were used to represent sac-fry with 

limited and deprived yolk respectively for the study. I he whole design was repeated 

using copper t»i determine whether the observed intra-age specific sensitivity to 

cadmium is consistent amt>ng the other metals.

l - . x p c r i m c n l  2 :  D e te r m i n a t i o n  o f  i n t r a - s i / e  s p e e if ie  s e n s i t iv i l>  o f  O , n H o tic u s  t o  

l e t h a l  c a d m i u m  s t r e s s

Since post-hatch yolk sac-fry s i/r  was found to be highly correlated with egg si/e and 

hence maternal age (see Kamler. 1W2). females from ♦() year and +2 year classes 

were used as source for different yolk sac-fry si/cs, I he nti>st sensitive O mloiU us 

was selected evaluate the si/e specific sensitivity to metal stress using the nmst 

toxic of the lwt> metals tested, cadmium. Yolk sac-fry at 6. and days post-hatch, 

were obtained fn)m M) year and +2 year classes O nihtiuus females t»> determined 

the ‘W)-lmur lethal resptmse cadmium stress. The procedure folUiwed is same us above.

Kxprrim cnt .3. Dclrrm inalion  of si/c allom rtry and itrowlh »Í O. nUotit us c k k « 

and yolk-sac fry under non-strrsscd (control) conditions

l-.ggs were collected fmm ♦() year class and *2 year class individual females within 

12 hours of spawning (hcreaffer referred to us small and large si/e groups 

respectively) I he width (I ) and height (II) of .M) eggs randomly sampled from each 

egg clutch were measured under a calibrated binocular microsc«>pe (Olympus), l-gg



volumes (V mm') were calculated from the following formula:

V -  (n/6)l.H-,

In addition a random sample of 50 eggs was dried on ahst>rbent paper, then oven dried 

at 50" C' and the mean dry egg weight (±0.1 mg) determined. The remaining eggs 

were incubated in the hatchery. Since the C'V (%) of eggs and yolk sac-!'ry si/rs 

within clutches was low the mean egg and yolk sac-fry si/.cs of individual clutches 

was considered to he representative (Kana. I^K6h). lo  estimate allomelry i>f yolk sac- 

fry si/« and growth, one day aOer hatching, yolk sac-fry from an individual egg clutch 

were transferred lo 15 exposure chambers at a stturking rate of 40 yolk sac-fry per 

chamber. Three randomly selected cxp«»sure chambers were renu»ved at .V 6. 0. 12 and 

15 days aOer hutching and the ."U) sac-fr> per chamber was used to measure length, 

weight, growth rate and >olk utilization. Remaining sac-fry in exposure chambers 

were used in Txperiment 4 and 5. The study with small yolk sac-fry fn>m smaller 

eggs terminated at 14 day us high mortality occurred due to starvation I he growth 

and ytdk utilization was measured as described previously (see scclit>n 4 2,') 

T.xperimcnt .■)). Prior to dissecting the yolk sacs from Knlics. the standard lengths 

(±<M mm) were measured according to the ittethtnl o f  May (ld7l). Initial 

measurements (day I) were perf(»rmed t>n randomly-sampled triplicated batches of ■)(> 

fry from the same clutch.

K.xprrimvnt 4. I>eli*rminaliiin of oxyKcn consumption, KNA, l>NA ami prolrin  

contrnts of O. nilttlUus y»lk sac-iry fn»m Ihr two sè/r group* al tlirTrmit agr«.

I wo sac-fry per replicate (ic, n * 0 per post-hatch age) were ttbtuined from lite abovc 

cxpcrimeni ut 3. 6. 9. 12 and 15 duys post-hatch and encloscd in Ihe stutic



rcspiromctcr to measure oxygen consumption. I his parameter was perlornted on small 

sac-fry up to the day 12. AtU*r measuring oxygen consumption all fry were fro /rn  at - 

70" C within I hour. At a latter stage the sac-fry were freeze dried (Micr»> Modulyo) 

and used for analysis of KNA.ONA and protein content.

Experiment 5. Determination of age specific-activity lexels o f O. niiotiem  sac-fry . 

The sac-fry were allowed to move voluntarily in this experiment. Single ytdk suc-fry 

were held in a 10 ml capacity I.eighton tube (C’ostar) at day 3. 6. 12. and 15 p<>sl-

hatch and allowed to he voluntarily active, luhes were placed under a binocular 

microscope (Olympus) and opercular beat rates were ct>unted with the help o f a 

telecountcr. The opercular beats were counted within the first three minutes o f suc-fry 

enclosure in order to minimise stress. ! t>r each age five sac-fry from each triplicated 

exposure chamber (n * 15 per post-hatch age ) were used to record the ventilution 

frequency.

5.2.4 Stntistical analyses

A proportional mortality response based on measured actual rather than nominal 

concentrations was calculated using a standard probit priicedure (l inney. Id 7 l)  to 

estimate the 5()% lethal concentration (I.C'50). Comparisons of oxygen consumptitm 

rates. RNA concentrations. RNA:I)NA and opercular frequencies for different ages 

of nihUUus yolk sac-fry under non-stress conditions were curried out using One­

way ANOVA and lucky USD multiple range technique (/u r. DiK4). I he RNA 

concentration. RNADNA and Protein RNA ratios between small and large yolk suc- 

fry at each age were tested by directional t-test (/.ar. l ‘iH4). RNA. DNA. and protein
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5.3.1 Intra-iiKc specific and in(ra-si/c spcciric tolerance o f  m oulhhroodinx lilapia  

yo lk  »ac>fr> to lethiil m rltil streM

There was an intra-specific age and si/e variation in response of yolk sac-fry to both 

lethal cadmium and copper stress. In all cases, concentration respi>nse data fitted the 

probit mtHlcI adequately (P*().()5). The predicted 1.C50 values, together with its 

calculated 95% confidence intervals for each age and si/e o f  each species are shown 

in Figure 5,1 to 5.3 as a normal probability density function (midpoint -  1,C‘50. 

Kurtoscs •  intensity of the response). It is apparent from the density functions given 

in Figures 5.1 to 5.3 that there was a significant variation in the responses among both 

the ages and si/«s o f lilapia yolk sac-fry tested. This variation, however, is less than 

an order of magnitude ( fable 5.1 to 5.3). The fry with depicted yolk reserves and 

smaller fry si/e. us predicted, were more tolerant than sac-fry with yolk reserves and 

larger fry si/e. The ct>rrelation coetVicient showed that there was a strong concordance 

(r “  0.996. I* “  (),(M)4) in the rank order of age specific response of niloticus sac- 

fry to the two metals tested.

5..3.2 S l/r  allom rtry and g n m lh  o f a  nUotU-m yolk sa^-fry under non-stressed 

(control) conditions

Mean egg volumes and mean dry egg weights between 0+ and 2+ year classes of (I 

nilotku.% arc given in Table 5.4. liggs from the ()♦ females were 36 and 40 % smaller 

than eggs from 2^ females in terms of volume and weight, respectively



i  I jue-specitlc sensttivitv ot 1. 0 . .ind i2-ilav old volk-iac irv ot the iilapia 
OfnUtiuus to (a) cadmium and lb) copper stres* l ach curve is a purhabiliiv 
density function fepresentin« the mean and ‘»5*9 coniidence limns ol the ‘»nhr



cadmium concantratlon (ppb)

hig 5 2 agC'ftpectfic seniiDvitv of 3, (>. ^  and 12-dav old volk'MC trv ot ihree 
npeciet ot' tilapia U )  mouxamhum  ( b )  O  aurtua  and (c) S. yuiiimu.% to cadmium 
Mrest Hoch curve la a probability denutv t'uncnon repretenang the mean and 95*'» 
confidence iim iu ot'the ^ h r
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Fig S 3 ihectTect ot'egg iize i m  a function of maternal age • O*' ■ imaJl eggs. 2* •  
large eggs ) on the retponie o f O. niloticu.%  yolk>MC fry of different ages ((a) i*dav 
old (b) <>*dav old and (c) *̂ >day old] to cadmium Each curve ii a probability 
Jeniitv ftinction repretentina the mean and confidence hmiis of the 96hr 
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T iihk. 5.4 M rrni tcnmth chtinicteriKlic» o f  a  niiofuu.% >o lk  5ittc-rr>: C'omp«ri<«oii 
of fr> from  0+ aind 2+ frm tik  brood fish (mninH K^vcn w ith  ±  Sl>)

(tro H ih  chMractrrixtic Age class o f  fem ales (ye an )

«+ 2+

ligg volume (mm') 6.70 10.52
±0,5« ±0.72

Mean dry egg weight (mg) 1.03 3.20

%  difference in egg ¡li/e
±0.07 ±0.06

Vt>lume 64.(H) KM).(M)
Dry weight 60.IM) tOO.(H)

Fry growth at 1 da\ po«l-hatch
Standard length (mm) 3.40 5,70

±0.15 ±0.15
Dry body weight (mg) 0.0« 0.17

%  difference in fry growth 
at 1 day powl-hatch

±0.02 ±0,02

Standard length 50 60 KH).(M)
Dry Ixuly weight

Fry growth at m axim um  body 
weight

47,(K) KK).(M)

Standard length (mm) 7,«0 0.00
±0.12 ±0.21

Dry body weight (mg) 1.55 l.«0

%  difference in fry growth 
at m axim um  body weight

±0.01 ±0.02

Standard length «6.60 1(H).(K)
Dry body weight «6.(M) KH).(K)

Age at m axim um  fry growth (dayx)
Standard length 0 0
Dry btxly weight 0 0
l'!nd of yolk sac stage 0 12



The mean allomclry of yolk sac-fry from 0^ and 2+ females In terms of growth traits 

are given in fable 5.4. I he si/e of small yolk sae-fry in terms of length and dry 

weight were 40% and 5-1% Ic.ss than of large yolk sae-fry, respectively, on day one 

after hatching and the dillercnce reduced to 14% at maximum body dry weight 

attainment I he weight o f fry from both year class females reached maximum body 

weight within 0 days of hutching, while the complete yolk absorhtion of fry from O* 

female iKCurred 3 days earlier than their 2+ conspeeillcs indicating a higher 

developmental rale in terms ol growth than their conspecilles front 2+ lemules.

I he speeilic growth rale and yolk ulili/alion elllcieney for the period from hutching 

to maximum body weight allainmenl of the yolk sac-fry from both year class females 

arc shown in fable 5.5. I here was a signineanl (P- (1.05) inlru-si/e variation with the 

mean values of spécifié growth rule for the period hutching to maximum Ixxiy weight 

attainment. I he O nilolicu\ smaller yolk .sue-fry showed significantly higher specific 

growth rule (t,,," 41.72; d.f. 4; P-0,()5). fhe yolk utili/alion elficiency for smaller 

and larger yolk sac-fry were not significunlly dilferenl (P () ()5),

S..1..1 Oxygen eonsumpliiin. HNA. I>NA and protein eonlenis o f« , nlln lhu f yolk 

sae-fry from the two sl/e groups at different ages

Kelallonship between KNA and KNA;I>NA with respiration rale

I o investigate whether dilTcrences in oxygen consumption rate ussoeiuled with both 

age and si/e of yolk sae-fry were related to dilfcrences in protein synthesis (measured 

as RNA eonccnirulion and RNA-DNA ratio), regression analysis of the piHiled data





was pcHormed. Iherc was a significant linear relationship between both RNA 

concentration (d f- 1.64. b -  25.41. !»• ().()5) (Figure 5.4> and RNA:1)NA (df l.M . I -  

145.10. P* 0.05) (Figure 5.7) with respiration rate (measured us oxygen consumption 

rate). Uoth the small and large yolk sac-fry showed significant linear relutii>nships 

between K>th RNA concentration (df I.2H. F* 32.18. P- 0,05 and df I..34. F -  5,25. 

P* 0.05. respectively) (Figures 5,5 and 5,8 respectively) and RNAiDNA (df 1.28. F- 

55.02. !*■ 0.05 and df 1, 28. 377.87. P- 0.05. respectively) (I'igures 5,6 and 5.0

respectively) with respiration rate.

Age-spccinc differences in oxyKcn consum ption rate. K N A  and K N A : I)N A

Fhe rate of oxygen consumption. RNA. RNA-DNA and Protein:RNA o f f ;  niloiicu.s 

sac-fry at dilTerent ages for two siw groups are given in figures 5.10 to 5.13, There 

was a significant difTerence (P (),05) In oxygen consumption rate and biomolecule 

ratios between sac-fry with yolk and with depleted yolk Oxygen consumption 

(d .f.-5 .l2 ; T 108.18; P-0.05). KNA (d.1.-5.12; I 10 86; P -0.05) and RNA-DNA 

(d.f*5.l2; I'* 163.43; P -0.05) were significantly decreased in sac-fry with depleted 

yolk compared with thtise <»f fry with yi>lk reserves indicating reduced state of 

metabolic activity.

Si/e-specific differences in oxygen consum ption rale, K N A , K N A : I)N A  and 

protein

The whole body oxygen consumption in yolk sac-fry originating from smaller eggs 

was less than whole Knfy oxygen consumption of larger fry from larger eggs. I he 

oxygen consumption mg ' dry Knly weight gave opposite results. I he present study
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measured the protein synthetic capacity between the two si/c gn>ups as KNA 

corwentration and RNA:1)NA. The protein synthesis expressed as whole htnly RNA 

concentratii>n o!‘i> nilotUus small sac-fry were significantly k>wer ut 3 day post-hutch 

(d .f.- 10; l,,,--6.7950; p- 0.05). 6 day ptist-hatch (d.f.-lO; t,,,--l2  7506; P- 0.05) and 

9 day post-hutch (d.f.-lO; t,,, -8.0496; P -0.05) than the whole body RNA 

concentration of large fry at corresponding ages. A similar trend was observed for the 

bio-molecule ratio. RNA;I)NA. I he protein synthesis elllciency given as Protcin:RNA 

ratio showed results opposite to whole Knly RNA concentrations. The Pn>tein-RNA 

ratios were significantly (P- 0.05) higher in O niUtUeux small yolk sac-fry ut all three 

ages than i*rotein-RNA ratios of larger fry at corresponding ages (d.f 10. t,,,*2.381 17. 

P' 0.05; d.f 10. I,,,-7.9805. P -0.05); and d .f .-10. I,„-.3.5506. P-0,05) for 3.6 and 

9 days post-hatch fry respectively).

5..3.4 Age-spreiflc avIivKy levels o f O. nilolUux yolk sae-fr>

I he age specific variation in physical activity nicasurcd us opercular Ircqucncy is 

shown in figure 5 14. I he opercular beat rate decreased significantly (d f. 4. 10 I 

158.52 P' 0.05) in fry with limited or deprived yolk than growing fry on yolk.

Overall, the oxygen consumption. RNA concentration. RNA-DNA. and opercular beat 

rate were low in <i niloiu u> fry during yolk depletion period and growth performance 

and protein synthesis ctVicicncy were low in larger yolk sac-fry than in smaller yolk 

sac-tfy while protein synthesis rate was higher in larger yolk sac-try ihan in smaller 

yolk sac-fry



Fig . S.4 R A ia l io n th Ip  b * tw « *n  R N A  A  o x y g * n  c o n su m p t io n  
In  O. n l lo t ic u s  fry  (p o o le d  d s ts ,  O x y g e n *  -2.16+0.23  X  R N A . 
r2 *0 .7 6 9  ,n *6 6 )

R N A  c o n c e n t ra t io n  (u g/ m g  d ry  b o d y  wt.)

F ig .5.5 R e la t io n sh ip  be tw een  R N A  & o ry f lA R  c o n su m p t io n  In  O .n ilo t icu s  
fry fro m  0«  fem ale  (O x y g e n *-2 .7 9 > 0 .2 6  X R N A . r2 *0 .9 4 9 ,  n *3 0 )

R N A  e o n c e n ira t lo n  (u g/ m g  d ry  b o d y  wt.)

F lg9 .6  R e la t io n sh ip  b e tw een  o x y g e n  c o n su m p t io n  A  R N A  In  O.nito t ic u s  
fry fro m  2 *  fem ale  (O xygen *-2.10 '*>O .22 X R N A . r2 *0 .7 6 9 .  n a ) 6 )



■ t* try 
•  0«lry

R N A :O N A
Fig- 8-7 R # la t lo n « h lp  batw aa n  R N A :D N A  A  o x y g a n  c o n su m p t io n  in  Q. 
n l lo t ic u s  fry  ( p o o la d  data. 0 * y g a n « 2 . 3 2 * 2 . 8 8  X  R N A . r2 s0 .A S0 ,  n s S S )

R N A : D N A

Fig. S.8 R a la t io n s h ip  batw aan  R N A :D N A  A  o x y g a n  c o n su m p t io n  In  Q. 
n ito t ic u s  fry f ro m  O ^ tam sla  (O x y g a n *2 .4 7  ♦ 3 .2 7  X HN A . r2 s0 .6 S5 .  n«3 0

R N A rO N A
Fig. 8.8 R a la t io n s h ip  batw aan  R N A iO N A  A  o x y g a n  c o n s iu m p t io n  in Q. 
n ilo ttcu s fry  f ro m  2 *  fa m a ia  (O x y g a n * l . 7 4 ^  3.01 X R N A . r2 a 0 .0 l7 ,  n»3 f



2« fry 
0« try

A g *  (d a y s  po st-ha tch )

2* fry 
0« try



Z  9Œ 3
2^ fry 

O* try

A g *  (d ay s poa t*h atch )

2 *  fry 
0 *  fry

F ig .  5.11 T e m p o ra l  c h a r> ga s  in  R N A  a )w h o la  b o d y  b )  pa r 
m g  d ry  b o d y  w a ig h t  of O . n l lo t ic u a  fry  fro m  0 +  A  2 ^  

fa m a la a  (n>a ana  o i v a n  w ith  S E )

W



2«fry  
0 « try

A 9*  (d a y s  po st-ha tch )

Fig. 5.12 Tem poral cha ng«  in RN A/O N A of Q. n liotlcua fry from  
O« A 2«  ̂ fam alaa (m oan s g ivon  with S E )

2« try 
0^ try

A g o  (d a y s  post-hatch )

Fig. 5 .13  Tomporal c ha ngo  In P ro lo ln/RN A  of Q- n liotlcua fry  from 
04 A 2 4  fom alot (m oan s g ivon  with S E )





5.4. DixcuKxion.

I he present study investigated the tolerance of* dilTerent post-hutch ages of 

(>nuKhromi.\ und SartuhvriHion yolk sac-fry und dUTerent sizes of yolk sac-fry from 

0+ und 2+ femules o f f /  mloiUu.s to metal stress. Uoth the age and sizes o f yolk sac- 

fry showed varying tolerance capabilities to the tested metal stress.

5.4.1 Age-sprciflc tolerance o f mouth brooding tiiapia yo lk  sac-fry to m etal stress.

Ihe results indicated that suc-fry with adequate yolk reserves (.1 und 6 days post­

hatch) were more sensitive than suc-fry with depicted yolk reserves und 12 day 

post-hutch) in terms of lethal response und these difTerences were signitlcunt for both 

cadmium und copper. Studies conducted to determine the age sensitivity o f a particular 

eurly-lifc stage to metal stress in general and to cadmium in particular, are scarce. 

Michibutu t'f (i/.. (I^K7) evaluated the sensitivity of embryonic developmental stages 

of fVvr/m UitifH’s to cadmium stress und found that curlier devcUipmenlul stages were 

nu>re sensitive than later stages. Decrease in sensitivity to cadmium, in terms of 4K- 

hour lethal toxicity, was repi>rted tor mummichog yolk suc-l'ry. from 7 to 14 day post­

hutch. (Middaugh and Dean. 1M77). Ihese results are in disagreement with those of 

Kombough und (iurside (1^X2). wht> reported that salmon embryos were less sensitive 

during cleavage and that peak mortality rates occurred during gustruluti«>n und 

uxiution. during vitelline circulation, und shortly before hutching. Similar increase in 

sensitivity tt> cadmium has been observed near the ct>mpletion of yolk ubsiirption. 

Chapman (l^7K) found increasing sensitivity in terms o f lethal resptmse t<» cadmium 

from newly hutched yolk sac-fry to swim-up stage, in sleelheud trout/ruinbow trout
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{Oncorhymu.s mykt.w) and chintH>k salmon (()morhymi4.\ i.shuMyischa). Similar 

increases in sensitivity in terms ol lethal response have been reported for sockeye 

salmon {<)ncorhyntu.s mrka) hatch to fry siatte (Ser\i/i and Martens. 1978). Apart 

from the dilTerences in test conditions in these studies, the duration of lethal toxicity 

tests were extended from 8 to 24 days. Since no IihkI was ofTered during lethal 

toxicity tests, the studies with later yolk sac-fry had been subjected to 'deliberate' 

prohmged starvation. Ihus. it is obvious prolonged starvation reduced fitness.

1 however, no previous studies comparable to the test conditions of the present study 

cun be found in the literature for lethal response of yolk-sac fry at difTereni post hatch 

ages to cadmium and copper.

I he variability in response and the rank order of tolerance between yolk sac-fry t>f 

difTerent post-hatch ages were similar for cadmium and copper in the present .study, 

t his indicates a general response tt> lethal levels of the two metals tested and Ihe 

observed dilTerence in lolcraiicc between sac-fry with yolk and depleted yolk may 

reflect a difTcrcnce in the general resptmse. Ihis difference in general response may 

relate to dilTerenccs in physiological status of the sac-fry with and without adequate 

yolk reserves.

Ihe present study revealed that, us expected. Ihe oxygen consumption in sac-fry with 

depleted yt>lk reserves was significantly lower than that of sac-fry with yolk reserves. 

This reduction in oxygen consumption may reflect the adjustment in physiological 

status during depicted yolk conditions in order to reduce Ihe total metubt>lic cost, and 

hence, energy expenditure. The decrease in total mctuN>lic ct>st may be due to cither
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u decrease in maintenance metabolism or/und activity metabolism. Maintenance 

metabolism involves costs for supplying oxygen to various body tissues, and hence, 

cost involved in circulatory function, and cellular maintenance functions, l-ven though 

the maintenance cost has been recognised as involving two types of costs, i.c. 

supplying oxygen to cells and maintaining cellular functions, the bitKhemicul events 

contributing to both functions may not be mutually exclusive (Jobling. 1W3). Ihus. 

it is rea.sonable to expect u reduction in bt>th circulatory and cellular maintenance 

functions during depleted yolk stages.

In maintenance metabolism several energy demanding prtK'esses are involved. Ihey 

have been recognised as protein turnover. No . K -A l Pa.se activity, substrate recycling 

and nucleic acids turnover and urea biosynthesis (Jobling. IW.l). Ihc two most 

important prt>ces.ses contributing to energy demand are protein turnover which 

involves protein synthesis and degradation (Hawkins. l^*^l: Houlihan. I^P>l) and Na^. 

K+-A'l'Pu.sc activity which is resptmsiblc for the active transport of substances, the 

maintenance of cellular homeostasis and is involved in the generation and maintenance 

o f membrane potentials (Milligan and McHride. H>K5; Kelly and McBride. ]9<M)).

Ihe decreased oxygen consumption rates during yolk depiciittn period may be 

accompanied by a decrease in protein synthesis in yolk sac-fry. since there is evidence 

from u whi>le range <if animals that oxygen consumption increases with increasing rate 

o f protein synthesis (I.ydon. Houlihan and Hull. l^X^. Wuterlow and Milwurd. I^Kd; 

Houlihan. 1^1 ). In ihe present study this is confirmed by the decreu.He in KNA 

ctmeentration and KNA/DNA ratio during the yttik depletion periiKl and is in
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agreement with those in the literature tor other species (Buckley. I^Kl: Kaao. Opstad. 

Kvenseth and Walthger. WKK; Richard ef at.. Id^l). A number ol' studies with a 

variety o f ectotherms have found that protein synthesis rates are directly related to 

KNA concentrations in the tissues (Houlihan. IW I). Iheret'orc a tall in protein 

synthesis could be attributed U> a reduction in ribt>somal activity and/or a decrease in 

ribi>somal numbers. Reduction in riKtsomal number and/or activity could be expected 

in (). nilolu us sac-try during the yolk depletion period, as changes in the nutritional 

status of an animal lead to changes in tissue RNA concentration. A reduction in RNA 

concentration may take place within several hours to days during starvation 

(Houlihan. IW I). Activity levels offish have been estimated by monitoring changes 

in a range of physiological parameters, such us ventilation frequency, heart rate and 

muscular contraction in the swimming muscle (Weutherley and (iill. I9K7). 

Ventilation rate is the number of opercular cycles per unit of time and it indicates 

respiratory responses t>f fish (Jobling. IWi^), In the present study yt>lk sac-fry were 

ulK>wed to move voluntarily, since at high swimming speed, some species of fish may 

switch from the usual form of gill ventilation to rum ventilation, whereupon 

ventilation frequency becomes uncoupled tfom their overall activity level (Jobling.

In addition to the lower levels ol' maintenance metabolic cost the ventilation 

frequency of O nUotivus fry in the present study showed a significant reduction 

during yolk depletion pcriixJ. Thus, activity energy cost ciiuld be expected to be 

reduced. I he energy costs o f activity under normal conditions cun account for 

approximately !()*/• to 2()*/o of the total energy expenditure or greater in highly active 

pelagic fish (Jobling. IW l), Increased oxygen demands during activity have been 

confirmed in studies carried out <tn a range offish  species (iieumish. IV7K: llrell and
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(irovcs, 1979). IX-'crcuscd oxygen consumption in () niUuuu.s sac-fry during yolk 

depletion period may be partly due to u reduction in maintenance mctaN>lism and 

partly due to a reduction in activity level.

As observed in the present study, the reduced metabolic rate in O niloticus sac-fry 

with depleted yolk reserves may be an adaptation to reduce energy expenditure when 

energy intake is reduced or absent. In order to adapt to the reduced energy intake level 

they reduced their rate of protein synthesis and mechanical activity to reduce their 

total metabt>lic energ>. As a result the respiratory water How passing through the gills 

may reduce in yolk sac-fry during yolk depletion. I herefore, the main uptake route 

o f water bt>rn metals may be reduced, ('learly. in order to lest this hypothesis further, 

it will be necessary to demonstrate dilTerenccs in the rates of uptake and partitioned 

body burdens of cadmium beivveen the yolk sac-fry of niloiU ux vvith sunicienl yolk 

reserves and with depleting yolk reserves. This is considered in chapter 6.

5.4.2 Intra-si/c sperifir tolerance of O. nifoticu% >olk sac-fry to metal stress.

The present study revealed that egg si/e. and hence, si/e of the yolk sac-fry cun 

significantly inlluence the tolerance capability to lethal cadmium stress. <> nilolicus 

yolk sac-fry originated from small eggs were more tolerant to lethal cadmium stress 

than yolk sac-fry of the same age frt>m larger eggs. Ibis disparity in tolerance 

capability tt> lethal cadmium stress, however, was not prominent between the small 

and large yolk sac-fry groups at their maximum weight allainment (9 days post-hutch) 

us the initial si/e advantages conferred upon yolk sac-fry hatched from large eggs tend 

to diminish with the subsequent development I he persistency of initial s i/e advantage
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conferred upi>n yolk sac-fry u( hutching frt>m large and small eggs could vary between 

species. It could persist into the juvenile phase ( fhorpe. Miles and Keay. iy«4). be 

i>bscurcd during subsequent development or even decrease (Springute and Mromage. 

1^85). information on the efTccts of metal stress to yolk sac-fry from varying egg 

sizes is lucking and therefore comparison of this study with the literature is not 

possible.

Clearly the total energy content of larger yolk sac-fry is higher than that of smaller 

yolk sac-fry at hutching (Kumler and K uUh>. Id83), A l l* is generally considered to 

be the most important metabolicully available energy source in organisms, generating 

from the catabolism of ftHHi. requiring oxygen. In the present study, even though the 

larger yolk sac-fry consumed more total oxygen than smaller yolk sac-fry, smaller 

yolk sac-fry consumed mt>re oxygen on a unit weight basis than larger yolk sac-fry, 

suggesting that smaller sac-fry could generate mt>re A 11* in weight specific terms than 

their larger conspcciflcs. liecuuse of the greater metabolic expenditure of larger yolk 

sac-fry the energy efViciency fulls us dcNclopment priKeeds (I.usker, 1^2 : Hansen and 

Moller, Hf85). This may mean small sac-fry utilise meagre energy resources that they 

have at their disposal nu>re etViciently or ecitmimicully. A possible bi(K*nergeticul 

regulatory mechanism for variation in tolerance capabilities to metal stress between 

smalt and large yolk sac-fry, may be the increased energy utilization eniciency of the 

smaller yi>lk sac-fr>, which allows enhanced adaptive capability to metal stress in 

smaller yolk sac-fry than larger conspccitics. lo  gain insight into this predicted 

regulatory mechanism, curly life history growth traits and metabolic traits were 

monitored under non-stressed (control) condilitms for yolk sac-fry from small and
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large <) nilotUus eggs.

Significant variations in early life history traits in terms of growth were found among 

the two si/e groups studied. Ihe measured growlh traits in small yolk sac-fry were 

significantly higher than those ol' large O nihttUus yolk sac-fry. Hitherto, somatic 

growth has been defined as an increase in the energy content of the fish body, and it 

has been assumed (hut an increase in body weight is synonymous with an increase in 

energy content (Jobling. l^^.l). As growth is the resultant energy between assimilated 

energy and expended energy (see equation 1.3.) higher growth may indicate less 

energy expended on metabolic activities and more energy deposited as growth, 

rherefore. under stress conditions lo meet the higher metabolic cost due to elevated 

maintenance cost a trade-olT could lake place from growth energy to maintenance 

energy. I his is in agreement with data in that faster growing small O niiotieux yolk 

sac-fry were more tolerant than large conspccifics which hud lower growth rates. 

Ht>wevcr. change in body weight will accurately retied changes in (he energy content 

of the body if it is assumed that the composition of fish tissue is constant (Jobling. 

l*W3). As the somatic composititin of sac-fry between difTerent si/e groups o f a 

species may not be necessarily constant, growth in weight specific terms may not 

always give an accurate reflection of growth in terms of energy gain, fherefore. in the 

present study metabolic and biochemical traits were also explored to gain an insight 

to the mechanism underlying differences in tolerance capabilities between the two si/e 

groups.



synthesis as measured by whole btniy RNA and RNA:1)NA indicating u high rate of 

maintenance metabolism, and a low synthesis cfTiciency. relative tt> the faster growing 

smaller yolk sac-fry. Hawkins. Ruyne and Day (I^Kb) found similar results for protein 

synthesis and maintenance metabolism in two groups of musseis cJutis) of

the same age. one slow growing and the other fust growing. I'hey concluded that 

protein synthesis comprised a major element of muinlenunce metabolism, which 

curried a high metab»>lic cost. I*rt»tein synthesis in weight specific terms, hiiwever. 

showed the opposite results. Protein synthesis represents protein needed for K>th 

maintenance us well us growth. I herefore. protein synthesis alone would not be u 

giMKl indicator to predict energy performance of a fish. It has to be c<tnsidered 

together with protein synthesis elficicncy. which is indicative of energy performance. 

Individuals with reduced efilcicncy of protein synthesis therefore incur a higher 

metabolic expenditure on maintenance and a low net rate o f somatic growth. 

Ihcrefore. in the present study. ditTerences in growth rates between the two si/e 

groups may derive from differences in energy balance, leaving proportionally nuire 

energy for growth in smaller fry. Sacrificing protein synthetic efficiency allowing a 

trude-olT to take place from growth energy to maintenance energy could be expected 

in smaller yolk sac-fry to meet the elevated maintenance cost under metal stress. Thus, 

smaller yolk sac-fry have the better ability tt> tolerate metal stress than their larger 

conspecifics. Similarly. Hawkins et a!., (WH7) reported that in mux.sels. having a low 

rate of protein synthesis and higher protein synthesis enicicncy cun confer a fitness 

advantage (under high temperature stress) over those having higher rates o f protein 

synthesis and low protein synthesis efViciency. Ihercfore. it cun be suggested that 

stress factors such us metals and temperature which elevate metabolic rule, act
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ditTcrently on small and large individuals. I hc lower the maintenance metabolism, the 

more surplus energy will be available tor growth and for diverting to tolerate metal 

stress. When energy resources in the environment are ample genotype-dependent 

variability in maintenance etViciency may be a quantitatively minor t'acti)r in alTecting 

individual dilTerences in the rate of growth (Koehn and Dayne. 1^8^). Hut. when the 

energy source is limited, as in the case of mouth briHKling yolk sac-fry. ditTerences 

in maintenance etilciency may play a determining role in the variability between 

individual in stress tolerance.

lo  conclude, there was a variation in tolerance capability to lethal cadmium and 

copper stress between mouth briMuling tilapia yolk sac-fry with adequate yolk reserves 

and with depleted yolk, the latter being more tolerant. Similar variations were 

observed for lethal cadmium stress between smaller and larger () niloiicus yolk sac- 

fry of the same age originating Irom 0* and 2^ females. In the case ttf' the former, 

their energy saving strategy reduced the total metabolic cost. During yolk depletit>n 

period the reduced ventilation rate may have caused a reduction in respiratory water 

flow and as a result a reduction may have occurred in metal uptake via gills. I he 

higher protein synthesis etViciency of 0^ yolk suc-fry compared with the 2^ yolk sac- 

fry may have enabled a trade-olT from growth energy to maintenance energy to meet 

the elevated maintenance cost under cadmium stress. Ihe partitioned cadmium body 

burden levels among yolk sac-fry of var>ing si/es and ages may give an insight into 

the mechanism by which they reduce the body burden lo increase t«>lerunce capability.





6.1 InlriHluctiun

In the previous chapters the dilTerenccs observed in metal tolerance between species 

and age and si/e o f  tilupiu yolk soc-l'ry were attributed t<i their mode ol' life and 

physiological dilfercnces. I hese dilTercnces in the general response may be related to 

the varying degrees o f  metal uptake levels and partitioned htxiy burden One may 

speculate that more tolerant species, ages and si/e lend to reduce uptake and 

partitiimed body burden than sensitive species, ages and si/e. In this study uptake and 

body burden refers to the amount o f metal absorbed into the whole body while 

partitioned body burden and actual body burden refer how this amount is distributed 

among organs or various tissues and Ihe amount in the toxic form, respectively.

High metal body burden levels in tolerant species have been reported tor organisms 

at dilfercnl taxonomie levels (Hryan and llummerstone. Id7l; Hrown. 1177; Klerks 

and l.evinton. 1187). I hese species are likely to have an increased capacity to 

sequester metals in less toxic forms, therefore. Ihe varying tolerance capabilities 

between aquatic organisms may suggest the presence of mechanisms which can 

decrease actual body burden of the metal through reduced uptake or one which can 

prevent Ihe toxic action o f metals from alTecling cellular or metabolic functions or 

damage sensitive intracellular structures.

Studies on Ihe kinetics o f  metal uptake by aquatic organisms indicate that this is a two



step priKCss consisting of rapid adsorption or binding to the surface followed by slow, 

transport intt» the cell interior (O is t. Oberholser. Schwartz. MaezolT, Ryder and C'rist. 

t^K8; Xue. Stumm and Sigg. l^KK). I ransport of metals to the cell interior may iKcur 

either by ditTusion of metal ions across the cell membrane or by mUive transport by 

a currier protein. Once in the cell, the metal ions interact and disrupt cellular proteins 

and functions (Hre/onik. King and Much. 1V9I). Moreover, the impact of metals on 

cellular functions may vary among tissue types and depend on the amount of 

intracellular metal accumulation. In order to link the observed interspecies, intru-suc- 

fry age-specific and intra-suc-fry size-specific sensitivities of tilupiu yolk sac-fry to 

cadmium and copper stress in the present study (Chapters 4 and 5) to the amount of 

metal uptake, it is necessary to determine the amount absorbed into the body, rather 

than the total adsorbed and absorbed, fhen the question arises, how much is adstirbed 

and how much is absorbed'.’.

Most of the studies on metal accumulation in general and cadmium accumulation in 

particular, pay little attention to quantifying or removing adsorbed cadmium from 

absorbed cadmium. I he attempts made to remove adsorbed cadmium from the surface 

of tissues are a few. Bodar (l*)K9) placed test animals ( /) manna) in cadmium free 

test solution for a period of 10 minutes afier the exposure while Michibata ( lOKl) and 

Somasundaram. King and Shockley (I^K4) rinsed Oryzia.\ iuiifKs and 

harennus eggs respectively, in distilled water and glycine bulTer pll 2 in order to 

eliminate adherent cadmium. Ivxicy (I^K^) washed Atlantic salmtm {Salmo salar) 

briefly in 5% (v/v) nitric acid to remove surface adsorbed aluminium. It seems that 

Modar (IMKO) and Hxley (IMHO) assumed that all adsiirbcd cadmium and aluminium
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were removed from /> manna or fish body surfaces within 10 minutes by placing 

them in distilled water and by u brief rinse with 5% nitric acid respectively. Michibutu 

(lOKl) und Somusundurum. v! a/., (I0K4) did not include u specific time period for 

rinsing organisms in distilled water und glycine butTer in their studies, h is unclear 

from these studies whether these methodoUigics for removing adsorbed cadmium from 

tissue surface removed 'uM* or 'only' adsorbed cadmium from the tissues, fherefore. 

it was necessary to develop u method to remove adsorbed cadmium prior to 

determining the body burden in the present study.

I he form of complexution of metals is an important aspect o f biouvuilubility us 

complexed metul ions will behave difTerently in terms of transport, toxic elTects und 

biouccumultttion from free ions, this principle may be used to remove adsorbed 

cadmium from suc>fry body surface. Unlike inorganic metal complexes, metul ions 

complexed with natural mucromoleculur organic mutter, such us humic acids, or strong 

synthetic cheating agents that are generally unavailable to aquatic organisms 

(hre/onik. cl al.. IW 1). Among synthetic organic compounds, polyuminocurboxylutes. 

such us ethylenediumine tetru acetic acid (i-'I) l A) and nitrilo triucetic acid (N l A) may 

complex with metul ions (MreA>nik. ci al., I ). Among chelating agents liDI A and 

N'l A have been reported to reduce accumulation und toxicity of heavy metals in u 

wide range of organisms (Murumuto. l^KO. 19KI; Holwerdu. Memelruud. Veenholfund 

/.andee, Macdu. Mi/Atguchi, Ohki. Inunugu und lukeshitu. 1^^)). Iherelorc it

was intended to evaluate the use of l'J)I A to remove adsorbed cadmium from the 

surface of soc^fry to a.scertuin more accurately the levels of absorbed cadmium.



I he mude o f cadmium uptake and accumulation in fish arc tw o important priKcsses 

that must be considered in order to explore the mechanisms b> which they tolerate 

cadmium stress. I he mode ol uptake in fish is a.scrihcd to dietary or water stiurccs 

(l ucas. Iditington and Colhy, 1970: Atchinson, Murphy. Hishop, McIntosh and 

Mayers, 1977: Murphy. Atchinson and McIntosh, 1978). Some workers consider gills 

o f fresh water fish the most important site not only for uptake but also for 

accumulation of cadmium from water (Mount and Stephen. 1967: Varanasi and 

Markey. 1978). while others consider the liver, kidney and gastrtiintestinal tract tissues 

o ffish  arc the main organs of greatest importance in cadmium accumulation (Mount 

and Stephan, 1967: Mcfarlane and l-ran/in, 1980: Ncy and Van Kassel. 198.7: 

Dendell-Young. Harvey, and Yttung. 1986). I he two major pathways of incorporatittn 

o f cadmium in fish are absorption across the gill surface and across the intestinal 

mucosa (Sorensen. 1991). In yolk sac-lry. the deveUtping gills may be an impttrtant 

site for cadmium accumulation as they form the interface organ between the external 

envirt>nment and the interior hiKly. fhc gastrointestinal route t»f cadmium uptake in 

yolk sac-fry may he more important than the gill route, if yolk becomes progressis ely 

more contaminated with cadmium and there is ntt exogentius feeding. In the case of 

unfed sac-fry during yolk depletion, gills may be the main target site for cadmium 

uptake. In view of the dilTcrcnccs in organ response, and reactions to cadmium stress, 

estimation of total cadmium htxiy burden levels alone will limit the understanding ol 

tolerance mechanisms which present accumulation, detoxification and removal of 

cadmium from yolk sac-fry Hence, estimation of the partitioned body burden of 

cadmium would be a more useful approach in understanding the transport as well as 

the harrier functions of the organs with respect to cadmium, and would help to





6.2 M H lrr ia K  iind method!«.

6.2.1 Text » lock »olution»

All chemicals used were Anulur grade, 

cadmium  stock solution

A 10 mg I ' (0.080 M) cadmium st<K*k solution was prepared by dissolving 16..‘̂ 2 mg 

anhydrous cadmium chloride in one litre of AS I M soh dilution water (see Chapter 

2). A 1.5 ml aliquot of the sttK'k solution was mixed in one litre of dilution water to 

provide cadmium exposure medium of 15 /xgl ' cadmium (mmiinul) concentration,

C a d m iu m -K D T A  slock solution

331.iO mg dihydruted distnlium I-DI A and 4.0 g of*sodium hydroxide was dissolved 

In 4(H) ml of A SIM  dilution water (see chapter 2) and adjusted the pH to 7.5 with

11.4 M hydrochloric acid, lo  this solution, u solution of 16.32 mg anhydrous 

cadmium chloride dissolved In 25 ml of AS I M dilution water was added. I he 

combined solution made up lo i>ne litre. Ihc ratio of complexing agent cadmium 

(O.K‘>M:0.080M I'J) I A:cudmium) in the stcK'k solution was maintained at 10:1 lo 

provide the equilibrium in favour o f the complex A 1.5 ml aliquot of this sti>ck 

solution mixed in »>ne litre of dilution water was used to prepare the cudmium-l'I) IA 

exposure medium with a mtminul concentration of 15 ^gl

K I>TA  stock solution.

This solution was used io rcmt>vc adsorbed cadmium from the surface <if soc-fry. 

331.30 mg of dihydraled disttdium hO IA  and 1078 mg of I ris buffer was dissolved
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in 4(K) ml o r  ASI M soil dilution water (see Chapter 2) and the pit adjusted to 7.5 

with I I 4 M hydroehlorie aeid and the solution was made up to one litre

6.2.2 < a d m iu m  d e te rm in a t io n  in  H a le r  a n d  tis s u e  s a m p le s

W'liter Kumplr tmalyscM

lest s4ilution samples were taken from each exptisure chamber at the beginninit and 

at the termination ol' each experiment given below Samples were collected in acid- 

soaked pt>lythene bottles lrt>m the outflow of each exposure chamber to avoid 

unnecessary disturbance of tilapia sac-fry. lest si>lution samples were then stored in 

a matrix o f 1% (V/V) concentrated nitric acid (Aristar: 1)1)11 l td.) at 4" fhe acid 

matrix was successful in reducing sample losses through udsi>rption. Total cadmium 

was measured by graphite furnace atomic absorption spectroscopy ((iollerman cf u/..

tissue digesti<m and cadmium  analyses

1 he sac-try were sueriliecd by means ol quick ireeving ut -70" C  and dried slowly to 

minimise cadmium loss due to inorganic and/or organic volatiles, ul 50" C to eonslunt 

weight. I hc dry mass, of known weight, was then digested in sealed lellon tubes 

using 1 ml or eonccntralcd nitric acid (Aristar: i)l)M l td.) and moderate healing (.50" 

(') in a water bath tor .V) minutes. I he sealed tcllon tube greatly reduced sample loss 

due to acid turning and prevented sample contamination. I‘hc digestant was ulhtwed 

to ctxtl at r«K>m temperature, and diluted with I ml of nanopurc water I he samples 

were then stored for analyses at a later stage ut 4" C*.



6.2.3 preparation

Ihc yolk sac-fry were sacrificed by means o f  quick Iree/ing at - 70" and 

immediately fixed in appr<ipriate fixative solutions (see beU>w).

6.2.3.1 Klectrun mieroscop>

Tissue fixation

The whole yolk sac-fry were fixed immediately alWr sacrifice in ctild 2.5% 

gluleraldehyde In 0,2m cactniylate hulTer. This fixation lasted for 2 hours and was 

followed by overnight washing in the same buffer at 4" C'. I he gills of sac-fry were 

then dissected under a bimKular microscope (Olympus) in a fume cupKmrd. while in 

the same buffer medium. The gills were then post-fixed in 1% osmium tetroxlde in 

cacodylate buffer for 1.5 hours. Ihe gills were then subjected to two washes. 15 

minutes each, in the above buffer and passed through 50% and 70% alct>hi>l. At this 

stage of dehydration gill tissue samples were subdivided Into two groups; »>ne for 

scanning electron microscopy (SI:M) and the i>thcr for transmission electron 

microscopy (H ;M ) studies. Tissues were stored (not more than ^ to 4 da\s) in case 

further prtK'essing had to be delayed as recommended (llyat, I07K).

Scanning T'Jrctron Microscopy

(iill lis.suc samples designated for Sl-M studies were transferred from 70% alcohol to 

70% acetone and were further passed through and l(K)®/» acetone (2 changes in 

each grade for .10 minutes each). Ihe tissue samples were then critical pt>int dried 

(Polaron li-.lOO critical point dryer), mounted on aluminium stubs and c<mlcd with 

gold-palladium in a sputter coûter (I dwards S-1.50) and examined under u scanning



electron microscope (ISI-60 A).

TninsniiMsion Klecirnn microscopy (TF.M)

Ciill tissue to be processed for IKM were passed through an alcohol series and 

propylene oxide mixtures for complete dehydration, t issue samples were then taken 

into i:pon medium hard resin (TAAH) through diOerenl grades of propylene oxide and 

resin mixtures. AfU*r overnight impregnation in fresh resin at r<H>m temperature and 

then at 37*' C' for 2 ht>urs, tissues were embedded in the moulds using fresh resin and 

allowed to harden at 60'' C for 16-20 hours. Ultra-thin sections of selected tissue areas 

were then cut on a I.KI) 111 ultratome in the gold colour region using glass knives. 

Sections were numnted on coated copper grids and were double stained with uranyl 

acetate and lead citrate (Glauert. 1*̂ 75; Hyal 1978). Stained sc%:tions were then 

examined under JI-OI. electron microscope. Representative areas were then 

photographed.

6.2.4 K.xpcrimcntal protocol

l’:xprHm cnt 1 InvcstisMtion into the effects o f  F.IH  A  on cadm ium  uptake o f fA 

nUoticus yolk sac-fry

A randt>m sample o f 40 five-day t>ld O niloiUus yolk sac-fry was introduced intti 

each of 15 exposure chambers attached to the flow-through system filled with AS I M 

soR dilution water (see ('hapters 2 and .3). ARer a 24 h acclimation period yolk sac- 

fry in exposure chambers were randomly alliKated to one of the following three 

treatment levels in five replicates
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1. (udmium test solution containing 15 ^g I '  (nominal concentration) of' 

cadmium.

2. C'admium-l'llXrA complex containing 15 I ' (nominal concentration) of 

cadmium.

3. AS I'M soft dilution water (control).

lo  estimate the cadmium and cudmium-}:!) l A uptake levels of mhtticus yolk sac- 

fry. five fry I'rom each exposure chamber were sampled alter 6. 12. 24. 36. 4H. and 

72 h of exposure and rinsed in AS ! M dilution water before being sacrificed by means 

of quick freeze at -7()‘‘ C'. Samples were dried and known dry weight was digested in 

Aritar (l)l)H Ltd.) nitric acid and stored in 4" ( '  for cadmium analysis at a later stage.

Kxpenment: 2. Investigation into the use of K.lfl'A to rem ote adsorbed radmium 

from O. nUotUus yolk sac-fry

In a second experiment, six day post-hatch () nUttticu.x fry in exposure chambers were 

exposed to cadmium lest solutions containing 15 ^g I ' (().()K̂ >M) (nominal 

concentration) cadmium for 72 h. At the end of 72 h sac-fry in each exposure 

chamber were divided into six groups containing five yolk sac-fry in a group. Live 

groups from randomly sclc*cted five exposure chambers (5 replicates) were subjected 

to the following treatments

1. Sacrificed, dried and known dry weight digested and stt^red in 4" C for 

cadmium analysis at a later stage.

2. Kinsed in distilled water, by using a distilled water Kittle, for 5. 10. 15. 20. 

and 25 minutes and were sacrificed, dried and known dry weight digested and stored



in 4" C' for cadmium analysis at a later stage. I his pr<H:edure was repeated with 5% 

(v/v) nitric acid and liD lA  solution prepared by mixing two ml o f |{I)I A stiKk 

solution in one litre of AS IM sot) dilution water (O.K^M) tthis solution contained 10- 

told I'JXI A over cadmium in the test medium to maintain the equilibrium in favour 

of the complex for eOlcicnt removal of adsorbed cadmium frt>m the surface of 

tissues).

K.xpcrim rnI 3. ln\estiKHlion into cadm ium  uptake and partitioned body burden  

of tilapia yo lk  sac-fry

l our hundred and eighty O niloiicus sac-fry. derived from a single egg clutch from 

a 2-̂  year class female, were divided amimg 12, 260 ml exposure chambers, of the 

ilow-through system (see chapter 3). filled with ASIM  S4>t) dilution water (see 

C'hapter 2). At)er a 24 h acclimation period fry in exposure chambers were randomly 

alltKated to two treatment levels: 0 exposure chambers containing 15 /<gl' cadmium 

text solution (nominal concentration) and 5 expi>xure chambers containing AS I M sot) 

dilution water (control) (see chapter 2). I'o estimate cadmium uptake and partitioned 

body burden. 5 fry from each exposure chamber subjected tt> cadmium treatment were 

sampled at 6. 12. 24. .16. 4K and 72 h exposure, friplicated groups containing live 

yolk sac-fry in each group were treated us below.

fhe fry were rinsed in l-DI A solution (prepared by mixing 2 ml of I J ) I  A 

sttK'k solution in one litre of ASI M sol) dilution water) for 10 minutes to 

remove adsorbed cadmium from the surface of yi>lk sac-fry. sacrificed by 

means of quick frcc/c at -70" and subjected to one of the following:

1) dried and weighed and digested for total whole body cadmium analyses.
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Kxpehm ent 4. The m orphological and r>tological cfTcciM o f cadmium  exposure 

on tilapia yo lk  xac-fry gilh

One hundred and eighty, five-day pi)st-hatch O. niUnUus sac-fry derived from a single 

egg clutch were randomly divided anumg six 26() ml exposure chambers linked to 

the flow-through system (see C hapter 3). filled with ASIM  dilution water (see 

C'hapter 2). Similarly one day old T zillii sac-fry were allocated to amnher six 

exposure chambers linked to (he flow-through system. Afler 24 h of'acclimation, three 

exposure chambers containing (). niUtUcus and three exposure chambers containing 

7'. zilUi sac-fry were randomly selected and exposed to cadmium test solutions 

containing 20 ^g  ' of (nominal concentration) cadmium (equivalent to the ^>6-h i!C'50 

cadmium concentration of six day old O niloiU us) for hours. I hree sac-fry were 

i>btained from each exposure chamber at 24 hour intervals and sacrificed for elcn:tron 

microscopic examination, (tills from three sac-fry were examined under scanning and 

transmission electron microscope. I'iir consistency, the second, third and fourth 

holobranchs were used for examinations.

6 . 2 . 5  S t a t i s t i c a l  a n a ly s e s

C'omparison o f  cadmium uptake and burden levels in tilapia sac-fry were performed 

using cither one-way ANOVA or directional t-test (/o r. WK4).



6.3.1 K.fTccI» <ifKI) l A on tnclmium upUkt' and u>c o iK IH  A In remove advorhed 

cadmium from O. nilolicm  >(dk aac-fr>

kfiecl of KDTA on cadmium uptake by yolk vac-fry

I he tcmporul chunges in whole body cadmium uptake by (> nilolii m  suc-l'ry exposed 

to cadmium and cudmium-l l) l A mediums were shown in figure 6 I . I he whole body 

cadmium uptake under cadmium and cadmium-l:l)l A exposure increased with 

exposure lime. I he whole body cadmium uptake in yolk sac-try exposed to cadmium- 

l-.DIA medium, however, showed liltle variulion with exposure lime Ihe cadmium 

uptake levels in yolk .sac-fry exposed to cadmium alone increased signilicantly (d.f-- 

5.24. I-- 254.06; P- ().05| with lime alter 24 h and continued to rise lt> 72 h. of 

exposure. I he yolk sac-fry exposed to cadmium-l-l) I A medium showed a signillcanl 

increase (d.f 5.24: I ' .  5.V)4; 0.0 5 ) only alter 24 hours and reached a more or less

steady stale. At Ihe end of Ihe 72 h exposure period cadmium levels in yolk sac-fry 

exposed to cudmium-l:l)I A medium were less than 40% of those in yolk sac-fry 

exposed to cudmium ulone.

Kffcelivcnrns «f k D IA  «f rrmovinfc Mdsorbed i-admium from >nlk sac-fr>

I he temporul changes in wht>le body cadmium uptake by O niioticu.\ yolk suc-lry 

subjected to dilTerent washing prtKcsscs are shown in I igure 6,2. Distilled water 

washes up to 25 minutes were incircctive in removing udsttrbed cudmium Irtmi yolk 

sac-lry us the whole body cadmium levels between yolk sac-lry rinsed with distilled

1 4 0



D ura tion  (h.)
Fig.6.1 Tom poral changot In cadm ium  lava la  of O. n lloticua  aac-fry 
w han  axpoaad  to cadm ium  and C d -E O T A  m adlum t (m aana  g ivan  
w ith SD )



water and control were not significantly dilTerent (I* O.OS). Whole bod> cadmium 

level in yolk sac-fry rinsed in l-DI A solution for 5 minutes was significantly Uiwer 

(d.f= 6, t,|,* -5,7877. P* 0,05) from ctmtrol cadmium value, and. thereuOer the 

cadmium level did not vary significantly (d,f- 4,15; I'» 0,70; l»•0,05) with the 

increased rinsing time. Rinsing yolk sac-fry in IvDTA and nitric acid for 5 minutes 

removed 30% and 44% of lota' cadmium uptake, respectively. Ihe whole htnly 

cadmium levels in O niUnuus yolk sac-fr> rinsed for 5 minutes in 5% (v/v) nitric 

acid showed a significant decrease from Ihe control value (d .f -  6. l,,,--12,K16. 

P* 0.05). Ihe cadmium level alter liDl A rinse for 5 minutes wa.s significantly higher 

(d .f 6. t,,,» 3.4514, P* 0.05) than the corresponding value alter 5%  nitric acid wash.

I he cadmium level in yolk sac-fr> continued to decrease significantly (d.f 4.15; I -  

16.12; P* 0.05) with increasing 5% nitric acid rinsing lime.

6..3.2 Cadm ium  uptake and partitioned body burden in t ilap ia  yo lk  sae-fry

Interspecific cadm ium  body burden

The control cadmium values measured at the termination of each experiment was 

below delectable levels. DilTerencc in cadmium KnJy burden between O nUoiiiu\ and 

7' zillU yolk sac-fry is shown in f igure 6.3. l or both species body burden of cadmium 

was highest In the gills. Ihe weight-specific cadmium burden in O  niloiivus gills was 

notably higher than the weight-specific cadmium burden in T ziUU gills. The cadmium 

burden in whole Kuly (d.f- 4. t,,,- -6,577. P 0.05) and viscera (d .f -  4. i,,,- -5.716. 

P' 0.05) in 7' zitUi were significantly lower than in O ntlolUu.s.
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Intra-Hge NprciHc cudmium body burden of O. nitotivus yolk Hac-fr>

The ugc-spccitlc cudmium UhIv burden levels in O nUotu u.s yt>lk sac-fry o f varying 

ages is shown in f  igure 6.4. At each yolk sac-fry age cadmium burden levels in gills 

were significantly (P-0.05) higher than the cudmium burden levels in viscera and 

whole Knly The whole Knly burden (d .f- 3.8: 1« 28.4K; P* 0.05) and viscera burden 

(d.f* 3.8; I-» 21.86; !*• 0.05) in and 12-day post-hatch sac-fry were significantly 

higher than that in younger yolk sac-fry (3 and 6 day post-hatch sac-fry), while the 

gill cudmium burdens (d.f» 3.8; f *  84,78; !*• 0,05) were significantly lower than the 

younger yolk sac-fry with yolk reserves.

In ira -s i/r  spreine cadmium  body burden o f O. niloticus yolk sac-fry

Wht>le btKly gill and viscera cudmium burden levels between yolk sac-fry originating 

from 0« (small yolk sac-fry) and 2* (larger yolk sac-fry) nihUcus females at 

different ages shown in figure 6,5 to 6.7. (iill cudmium levels were significantly 

(!*' 0.05) higher in yolk sac-fry of Kith sizes at all ages than the corresponding whole 

K»dy or viscera cudmium levels. Three and 6-duy post-hatch fry from the 2+ female 

showed significantly higher cudmium burden levels in Kith the gills (d.f 4. t,,^" 

6.2510. P- 0,05; d I 4. t,,,- 4 8342. P- 0.05 respectively) and whole KkI> (d .f- 4.1,,,- 

8.0565, P-0.05; d.f 4, I,,,- 5.278. P -0.05 respectively) than yolk sac-fry from 0*̂  

female at the same ages. In contrast, the 0 day post-hutch sac-fry from the 2> female 

did not show any significant (P '().()5) difference either in whole KkJv. gill or viscera 

cudmium burden levels. Viscera cudmium burden levels K'tween 0* and 2* yolk sac- 

fry behaved differently at post-hatch ages 3 and 6. I he viscera cudmium burden in 3- 

day post-hatch sac-fry from 2> female was significantly higher (d.f** 4. t,,,« 4 0073.
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F‘ ().05) Ihun (hut in 0+ 1-da> post-hutch sac-fry. while 6-day post-hatch sac-fry fn»m 

2+ female showed signillcuntly lower (d.f- 4. l,,,« -4,176. F- 0.05) viscera cudmium 

hardens than thut in O-̂  6 day post-hutch sac-fry.

K.ffrcls of cadm ium  on gill m orpholog} and u llrasiruclu rc

I'ypicul examples of morphological and cytologicul uherrutions o f gill tissue are given 

in Flutes I to 8. C admium exposure hud destructive elTects on gill tissue morpht>logy 

and cytology in general und indicuted increasing deterioration with increased duration 

of exposure, f requency of changes in gill tissue morpht»lt>gy und ultrustructure, 

h»>wever. varied ct>nsiderahly between filaments and between fry exposed to the same 

treatment.

liach gill arch bears two rows of gill filaments (primary lamellae) with equally spaced 

lamellae (secondary lamellae) and no fusion between adjacent lamellae (Flute 1). Ihe 

apical plasntu membrane of the epithelial cells is folded into cle>uted structures, culled 

microridges. Microridges are well defined on the filaments und are arranged in a 

concentric manner (Flute 2).

Considerable changes in (he above morphology und ultrustructure of gill filaments und 

lamellae were noted in nilinu u.s yolk sac-fry under the latter part of the exposure 

to lethal cadmium stress. The muji>r changes observed in T ziUit exposed to (he ^6h 

lethal cudmium level of 6 day old O niltHU us sac-fry for ^  h were (he proliferation 

and hypertrophy of mucous cells (Flute 3). Alter 24 to 48 h of exposure, the gill 

morphology of O nihuUus sac-fry under lethal exposure showed ntt major



Jcgcncrulivc changes. I he epithelial lamellae showed slight swelling and distortion 

and mucous cell prolil'eration and hypertrophy was clearly noticeable (Plates 4a to 4b). 

Obvious pathological changes on gill structure were observed alter 72 to Ufi h. of 

exposure. I he major morphological changes were the appearance of hyperpla,stic and 

hypertrophic swellings on Ihe gil| arch and gill filament epithelium. Ihe epithelial 

cells on these swellings had either totally or partially lost their microridges on 

filaments and gill areh epithelium and intercellular vacuolation were evident (Plate 5a 

und 5h).

An increased number of hypertrophic chloride (Plate 6a) and mueous cells was 

uniformly distributed on most of Ihe lamellae, fhe hypertrophic chloride cells were 

characterised by swollen mitochondria with mitochondrial cristae and extended tubular 

system, f ully transformed chloride cells eonsisted of apical membranes and apical 

crypts. With increase duration o f exposure many chloride cells showed necrotic arcus 

und contained swollen mitochondria Ihe crislue of which ullimulely burst to form 

cytoplasmic vacuolalion. lend li> ItMise tubular system (Plate 6b and 6c) und rupture 

of apical membrane and exposing to exterior (Plates 6d).

Increasing mucous cell proliferation und increasing mueus cell activity are typical of 

prolonged exptrsure. fhe mucous cells showed necrotic changes, fhe integrity of Ihe 

individual eletronlucent mucus vesicles of Ihe mucous cells were brolten with 

dominated electron dark mucus vesicles (Plate 7). Necrotic ureas were also observed 

within the lamellae epithelium (Plate K).































6.4 l>i<«cu«Mion

I hc bioa\ailability of metal ions may be redueeii by ehelalion by natural subslanees 

like humie aeids or by synlhelie eompounds like lilD A . lienee, in the presence of 

l:l) l A. the toxicity of cadmium to () nilolU m  yolk sac-fry was greatly reduced by 

reducing the hioasailahility of cadmium through the formation o f  cudmium-l:l> IA 

complex Similar results have hc-en observed liir a range o f  organisms including 

murine molluscs (Hung. Idll2; llolsverdu. er u / . I'tltX). Ilsh (Murumalo. I‘)K(I. l‘iX|) 

and unicellular algae (Maedu er a l . IVdO)

Ihe mechanism by which chelating agents reduce the cadmium uptake in Ilsh is not 

clear Several possibilities have been proposed: either a lower uptake ol the 

complexed metal, or a more rapid excretion ol absorbed metal complexes (I’arl and 

Wikmark. HIM) the low hiouvuilahilily of metal may he due to the inability of 

meiul-l.l) IA complexes to cross biological membranes (1‘urt and Wikmark. I‘<K4) 

Muranioto (luxtl) has suggested (hut cudmium-l I)I A may be taken up. but will not 

be retained, us the chelator prevents (he tnetul from bcitig btuind Itt tissue proteins. 

However, it is more likely that I DIA cun not puss through the cell membrane and 

enter Ihe cyloplasnt us has been experimentally shown by using cadmtum with ( '* 

labelled I.D I A (see Cmmibs. Id?*)) Moreover. I'urt and Wiknmrk ( l ‘)X4l shtiwcd that 

Ihe Iransler of Ihe cudmium-l I) I A complex in trout gill was lOtM) times less than free 

cadmium ion I his observulton is supported by Ihe present study that biouvuiluhilily 

ot cadmiuni-l:DI A complex is greatly reduced Ihe adsorbed cudmium louiul on r) 

mloltiUA yolk sac-try upproximuted lite amount ot cadmium lound in yolk sac-try



when exposed to

cudmium*i-J)I A medium. Ihis suggests that, possibly, the cadmium found in O 

nitoUcus yolk sac-fry exposed to cadmium-ld) l A was on the surface.

In larger fish, the skin and gills are in direct contact with water, however, the uptake 

route via the skin is probably negligible as it is almost impermeable to dissolved 

substances (Part and Lock. WK.l). The gills, however, with their large surface area and 

short difTusion distance between water and bUHni (Hughes. Id72) serve as the main 

uptake site for metals (Part and l.iK'k, In the present study, when the weight

specific cadmium accumulation of tilapia yolk sac-fry gills was compared with whole 

body and viscera accumulation, cadmium accumulation in gills was significantly 

greater and yolk did not act as a cadmium sink to contribute to cadmium accumulation 

via the dietary source.

In the present study, the age- «>r si/e-dependeni variuiion in cadmium accumulation 

in () nilotuus yolk sac-fry. depended upon the type of tissue studied. I he cadmium 

levels in () nihuUu.s yt>lk sac-fry whole biuly and viscera increased with increasing 

age. but the gill cadmium levels decrea.sed with increasing age. In contrast, increased 

cadmium levels in gills and decreased cadmium levels in viscera were observed with 

increasing si/c. However, the whole body cadmium levels increased with increasing 

si/e.

I he studies that were reported in the literature determining cadmium uptake iind 

accumulation levels in yolk sac-fry of other species involved exposure of newly
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hatched yolk sac stage of herring (von Westernhagen. c/ at., Id79) and Atlantic 

salmon (Kombough and (iarside, l<iK2> to cadmium for 16 and 46 days respectively. 

They found that newly hatched yolk sac-fry increased cadmium accumulation with 

exposure time. Similar patterns of cadmium uptake by rainbtm trout alevins were 

rept>rtcd by Beattie and Pascoe (1978). However, these studies can m>t be compared 

with the present study as the yolk sac-fry were continuously exposed throughout the 

yolk sac-fry stage and not subjected at dilTerent ages or sizes. Ihe other studies 

reported in the literature of size and age efTect on cadmium accumulation were mainly 

done on adults obtained from the wild. Increa.sed cadmium levels were repi>rted in the 

viscera (Pentreath. 1977) and in the whole Nnly (Cutshall. Naidu and Pearcy, 1977) 

with increasing age of wild-collected adult fish species. In contrast, no changes in 

whole btuiy cadmium contents of fish have been found either with age (I.ovette. 

(iutenmonn. Pakkala. Youngs and l.isk. 1972; Kelso and i-rank. W74) or size (Bohn 

and MePdroy. 1976).

The observed interspecific and intra-age and -size- specific ditfcrences in physiological 

and bitK'hemical factors in the present study (chapters 4 and 5) of tilapia may play a 

role in determining the level of cadmium accumulation. l o provide an insight into the 

question, how do the more tolerant tilupia yolk sac-fry avoid cadmium accumulatit>n. 

morphological and cytological changes in the target organ (the gills) were examined.

Mallutt (IVK.5) reviewed comprehensively the morphological and cytological elTects 

of metal exposure on fish gills and categorised these into two groups, f  irstly, the 

accumulated aberrations due to direct toxic cITecIs of the metal and second, the



compcnsauiry rcspt>nscs. which appear to he usstK'ialed with the repair of gill duniuge. 

The first group includes, separation of epithelial layers, tissue iK’dema and clubbing 

of lamellae at moderate toxic levels, t issue necrosis and rupture and fusion of 

secondary lamellae under more severe conditions. Hypertrophy and hyperplasia of 

mucous and chloride cells, and a general thickening of the filamental and lamellae 

epithelia are common in the second group. Morphological etTects belonging to both 

the groups were observed in gills o f f /  niiotum  yolk sac-fry subjected to the lethal 

cadmium level in the present study. I'hc characteristic histopathological changes that 

were observed with () niloticux yolk sac-fry gill tissue following lethal cadmium 

exposure included; cell necrosis, epithelial lining, loss of microridges, intracellular and 

intercellular vacuolution and chloride and mucous cell proliferation and hypertrophy.

Most distinctive pathological changes in gills were observed in mucous and chloride 

cells. Doth increased in number (proliferation), cell si/c (hypertrophy) suggesting 

increased activity. Ihese changes wore interpreted us a ptfssible compensuiors 

response to metal stress. Under non-stress conditions, mucus secretion is in\olved 

with osmoregulation and defence mechanism of fish (Pöttinger. Pickering and 

liluckstock, mX4; Mullal. I4H5; Handy, Handy and liddy, 148^) Proliferation

. hypertrophy and increased activity of mucous cells may be a defence against 

cadmium exposure. I here is a general agreement (e g. Varanasi and Markey. 1M7K: 

I.iKk and Van Overbecke. W81; i;ddy and Iru-ser. I**82; Miller and Mackuy, 1M«2: 

Handy and I-iddy. 1*̂ 8̂ ) that excess production of mucus which keeps metals uwuy 

from the epithelial surface is one of the first lines of defence against metal exposure 

(McDonald and Wtx>d. IW.l).
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Mucus is a mixture of glycoproteins. mucopolysuchuriJes. low molecular weight 

compounds and water (l letcher. Jones and Reid W76; Wold and Selset. 1^77), 

Although no metal binding protein in mucus has been isolated, it is known that the 

glycoproteins have sufticicnt binding capacity to trap metals (McKime. Young, liache 

and I.isk. I*i71; C\H)mbs. l-letcher and White. 1972; Varanasi and Maekey. 1978; 

l.iK'k and Van Overheeke. 1981). ('admium is known to form strong covalent bonds 

with sulphydryl (SH-) groups o f proteins. S-containing amino acids and wide range 

of biomolccules (Friberg. Piscator. Nordberg and Kjellstrom. 1974; Webb. 1979). It 

is therefore, probable that mucus traps cadmium by complexing it in mucus proteins, 

and thus prevent them from being absorbed into gill epithelial cells. Varying degree 

o f trapping capabilities of cadmium in mucus may be a possible reason for 

interspecific as well as intraspecific ditTerences in tolerance capabilities to cadmium 

stress.

In the present study increased tolerance of T ziUii and 9- und 12-day p«>st-halch and 

smaller yolk sac-fry () nilolUus was accompanied by less branchial accumulation of 

cadmium (Figures 6.3b. 6.4b und 6.6). The development of cadmium tolerance, may 

involve adaptations that reduce the toxic impact of cadmium on branchial ntorphoUigy. 

ultruMtructure us well us physiology. In the present study, less branchial accumulation 

in more tolerant tilupiu may indicate that the increased metal tolerance was achieved 

through decreased net metal accumulation by the gills, the question then ci>uld he 

asked us to how these decreased cadmium accumulation occurred to varying degrees 

in different ages, sizes und species of tilupiu yolk sac-fry. I wo p«>ssihle explanations 

are offered, l-iithcr the ‘mucus turmtver' rate or ‘ctmtplexing capacity' of mucus «>r



both could vary umi»ng tolerant and non-tolerant tilupia. These two possibilities are 

illustrated in Tigures 6.8 and 6.9. The 'mucus turnover' rale is continuous sloughing 

oil and replacing the mucus layer. This is particularly activated when heavy metals 

are present in the water (Varanasi and Markey. 1978; I .iKk and Van ( )verbeeke. 1981; 

l-ddy and Traser. 1982). Under cadmium stress the elevated mucus turnover' rate 

from the normal level may be higher in tolerant tilapia forms than in the less tolerant 

tilupia forms (figure 6.8u). Allernalively the increased level of'm ucus turnt»ver' rate 

may be the same in Knh the forms but in less tolerant Ibrm the elevated mucus 

turnover' rate may be maintained to a lesser duration than in the tolerant Ibrm (figure 

6.8b). Due to increased avuilubility of binding sites at higher 'mucus turnover' rule 

the cadmium ion complexing in mucus layer will be ellicient. thus, reducing the 

cadmium being absorbed. Activation of mucus cells and the secretion of mucus which 

contains proteins, may involve an energy cost leading Ui an elevation of maintenance 

cost. The extent It» which the 'mucus turnt»ver' rate can be increased and/or 

maintained at the increased level may be limited by the ability to expend energy to 

meet the mucus cell activation and mucus secretit>n cost. Therefore, among tested 

tilupiu yolk sac-fry. those forms and species with higher growth performance and 

energy efViciencies may be able to meet the elevated maintenance ct»sl. and hence, 

show higher tolerance capability to cadmium stress.

An increase in mucus turm»ver' rate may not be the expected mechanism of tolerating 

cadmium stress in O nUotum  yolk sac-fry during the yolk depletii»n period, since 

they arc expected to ad»»pt an energy saving strategy and be unable to meet the 

elevated maintenance cost due to high 'mucus turnover'. The ptts.sibic mechanism In



Kl«. 6.H Si'heitw lic diaxram  illunlrating increase m ucus lurm iver rale and  increase 
metal tolerance iA  and B  represent a less tolerant and a more tolerant forms 
respectively, a I Two levels of increase mucus turnover rate, b) DifTerent mainten­
ance durations of mucus turnover rales. and t ’* represent m in im um  effective 

concentrations of metal for A  and B).
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increased tolerance to cadmium stress in () niloiUus yolk sac-fry during yolk 

depletion would be the increase in ‘complexing capacity' of the mucus layer. Metal 

‘complexing capability' within the mucus layer will be governed by the number and 

species of ions present and by the charged density* (valence and hydrated ionic 

radius) asMKiated with each ion (Robinson and Stokes, 1^5 ). us well us by the 

number and type o f  metul-binding ligands within the mucus (Campbell and Stokes. 

1^85). Ihereforc, metui ‘complexing capacity' could be increased by increasing the 

availability of metui binding ligands. A reduction in the ionic content of mucus will 

lead to un increase in the availability of melul binding ligands. Handy and (iddy 

(1*)^)) showed that scu water uduplution clearly increases mucus ion content in fish, 

whereas starvation in fresh water fish reduces mucus ion content. Handy and liddy 

( 19<X)) illustrated this observation by measuring ionic content of mucus in starved and 

fed adult rainbow trout. Ihey found that starved tish decreased their mucus iiin 

content by 5K7V« against I?.*)*/« increase in fed tlsh. Thus, mucus from starved iish has 

u lower ionic content and may have more metal binding ligands to trap melul ions.

1 herelore, although the starved sac-fry may m>t be able to increase the 'mucus 

turnover' rule to the same extent us fed fry, the increu.sed 'complexing capacity' of 

the former may compensate for the lower turni>ver rules ii> increase tolerance (f igure 

6 ,4)),

Changes were also tibscrvcd in chloride cells. The ullrustructurul changes in chloride 

cells seen in the present study was also reported by Oronsuye and Hratleld ( H)K4). Ibr 

sticklebacks (iiaMeroMcus acuU'tUus) exposed to cadmium. Similar changes in 

chloride cell number, their dislributii>n and ullrastructure have frequently been
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Fig. 6.9 Schematic d iagram  illustrating increase com pleting capacity ' of mucus 
and increase metal tolerance (A  and  H represent a less tolerant and  more tolerant 
form s respectively. and represent iniiiim um  effective concentrations of metal 
for A  and H).



rcp<mcd in studies under u variety o f  circumstances »>ther than expi»sure to cadmium 

(Mutthiessen and liruiield. 1973: Pottinjter w al.. 1984; Wendeluur llongu and 

I^deren . 1986). C hloridc cells are known to be involved in iim transport across the 

gill epithelium both in fresh and salt water (Kvans. 1982; Pang. 1983. Pery and W<KKi. 

1985). In fresh water fish, chloride cells perform an absorptive function, where Kith 

N a and C'l are actively transported from its milieu to bltHnl. while in salt water they 

perform the oppiisite function (Kirschner. 1979). It is well documented that when 

fresh water fish are transferred to salt water dramatic morphological and ultrastructural 

changes tKcur in chloride cells in order to alter the ionic movement (l.oret/. C ollie. 

Richman 111 and Hern. 1982: Wickes. Smith and Meude, 1983: l ungdon and fhorpe. 

1985: l.ubin. Rourke and Mrudly. 1989), Most of the ultru.struclural alterations in 

branchial chloride cells of Atlantic salmon (Soimo \ulur) during fresh to seu water 

transformation (parr-smolt transformation), recorded by l.ubin el a!.. (1989). were 

observed in O ni/olieu.\ suc-fry during lethal cadmium exposure in the present studv.

I hcse changes include, cell proliferation, hypertrophy, apical crypt Ibrinutitm. electron 

dense appearance of miUK'hondria and cristae degeneration, reduction in enditplasmic 

reticulum and cell rupture and expose to the external milieu. If these nu>rphoU>gicul 

and ultru-Htructurul changes in chloride cells are exclusive to the ion transportation 

function, it could be indicative of un hiss tif essential ions from branchial cells 

creating un ionic imbalance under cadmium exposure rather than a compensatory 

mechanism to increase tolerance.

If this ionic imbalance is more likely. Kiw could it possibly happen? ( ‘udmium may 

com pete for binding sites and replace essential i«ins such as Nu und Cu'^ in mucus



to form complexes and bind to negatively charged ions such as C l in mucus, thus, 

creating an it»nic gradient alli>wing essential ions to move from NhIn lluid to the 

exterior. Such increases in Nu and C l elTlux. resulting in net ionic loss and esentual 

disruption o f  gill epithelium vsas ohserNed in goldfish arter treatnKrnt vMih the metal 

lanthanum (l-.ildy and Bath. Higher dilTusion rates were also reported for

essential ions such as Na . C'l (Marshall. I»#?») and C'a’  ̂(Part and IakL. 1^83) in llsh 

mucus, indicating that these ions are rather l<H>sely bound to the mucus and lend 

further suppt»rt to the hypi>thesis o f Kirschner (W79). who suggested that the mucus 

layer could act as a matrix from which essential it>ns are rapidly mobilised for uptake 

via gill epithelium The lower dilVusion rate (Part and I tKk. 1^83) and higher 

complexing ability (sec BrcAmick. i*r a/.. IVdl) of cadmium than essential ions in 

mucus facilitates the competition and replacement of essential ions from the mucus 

layer by cadmium. Ihis replacement may lake place rapidly, once the available free 

binding sites and negatively charged ions in mucus arc saturated with cadmium 

lncreu.scd efflux of essential it>ns under metal stress may be the reason for the 

observed increased synthesis in bi>th Na.K-AI Pase (I auren and MclXmald. I'iK?) and 

C'a ^ATPase (Shephard and Simkiss. I«í78; Watst>n and Beamish. W81) in fish gills. 

In the present study the observed changes in chloride cells in gill epithelium could be 

cUisely related to this ion loss. Ihcrefore. ultrastructural changes in chloride cells, 

indicative of' an ionic imbalance, may be a result of toxic elTects of cadmium. 

Matthiessen and Brafield (1973) and Oransayc and Brafield (1984) attributed the 

proliferation and hypertrophy of chli>ride cells to the direct or indirect response lt> rirw 

and cadmium respectively m sticklebacks and suggested that the subsequent 

degeneration o f  chloride cells caused an excretion of metals. In addition to the



iruppint! of* cadmium by mucus secretion and excretion of cadmium by chloride cells, 

proliferation and hypertrophy of both the cells types may cause a substantial 

thickening of* the gill epithelium (Matthiessen and Hrafield. 1^73). In addition to the 

mucus layer ofTering protection lt> the gill epithelium, the thickening ma> cause a 

further increase in the distance between the cadmium source and interior bliMKl. 

However, due to the action of bi>th cell types the gaseous exchange may be impaired 

making dilTusion difìicult. I herefore. it is most likely that, changes in both cell types, 

under cadmium lethal stress, carry a compensatory response followed by a toxic- 

response. which may lead to death.

However, the most frequenth stated reason for increased cadmium tolerance in fish 

is the increased synthesis of metallothioneins (M l ) or M f-like proteins (Benson and 

Birge, I*i85; Stone and Overncll. Ktaverkamp and Duncan. 1^87; I'u.

Steinebach, Van den Hamer. Balm and 1 ock. 1^1). Increased tolerance via increased 

metal storage and deli>xiticatu>n through binding to M l or M l -like proteins was not 

suppt>rted by the present studv. since gills of tolerant lilapia sac-fry consistently 

exhibited significantly lower cadmium levels than the sensitive sac-fry. Ihe present 

study suppttrts the hypothesis that tolerance capability in tilapia sac-fry to cadmium 

is due to decreased burden levels rather than storage and detoxifying through binding 

to M l or M 1-like proteins in the gills. Wicklund-(ìlynn and Olsson (Bb>l) found no 

efi'ect of cadmium on Ml or M l like protein levels in the gills of* minnows. e\en  

though gill cadmium increased 20-ft>ld compared with controls. This level was well 

above the cadmium levels that arc needed to induction of Ml or M l-like pniteins 

(Me Donald and W imhI. l*b̂ .3). t he sites of greatest induction of Ml i>r M I -like
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proteins arc the liver and kidneys, but they are also found in the gills o! fish (see 

revic^^ by Hamilton and Mehrle, 1^86). The increased weight specific le\els of 

viscera cadmium in more tolerant older yolk sac-fry with yolk depletion, when 

compared to their younger conspecitlcs with yt>lk reserves, could be attributed to the 

decrea.sed weight in viscera due to lack of yolk when c<tmpared with younger sac-fry 

with yolk rather attributing to the sequester cadmium by Ml or Ml -like proteins 

produced by the de\eloped yolk sac-fry liver. However, the latter is more unlikely as 

the cadmium in viscera was not present in sulficiently high levels to indicate 

priHluction of such proteins.

Another striking gill lesion asstKiated with acute cadmium exposure was the increased 

iKcurrence of intercellular vacuolation in the lamellar epithelium. An implication of 

this may be the increa.sed ion elUux by disruption o f  the scaling of intercellular 

diffusion pathways. Similar observations have been made with metals other than 

cadmium (Malthicssen and Ifruficld. liutgc. Jons4>n and liergmun. H*KK; I'vuns.

lirown and Haru, H^88). Infiltration of cells into the intercellular spaces ti> suggest a 

protective osmoregulatory manifestation of the gills (Hughes and Uray. Id72> was not 

i>bserved in the present study.

A partial or total loss of surface microridges in gills, was i>bscr>ed as a cimsequcnce 

o f cadmium exposure. Possible causes i>f disappearance i>r breakdown itl niicroridge 

patterns include oedematous changes in gill tissue and^i>r increases in cell si/e 

(Karlsstm-Norrgrcn. Kunn. Haux and l-orlin. Ihc partial or total loss o f surface

mierttridges contributes to the impairment of gill lunctiitns. such as, suggested by



Hughes (WHO). Ihercforc. a reduction in mieroridges may cause a reduction in K>th 

the capacity for gaseous exchange and metal trapping in mucus lhcrcft»re. the 

obser\ed \acuolation and loss of microridges v\ere toxic responses tt> lethal cadmium 

stress rather than compensator) responses.

lo  conclude, the cadmium burden in gills, when compared to \iscera and whole htnly 

cadmium burden, in O  niloUius and T ziUii sac-fry . was significantly (P- 0.05) higher 

in all species, ages and sizes tested. I his suggested gills were the main target organ.

I he more ttilerant older and smaller O nUotuus yolk sac-fry had less gill cadmium 

burden than their conspecillcs and also the mt>re tolerant T ziliii had less gill 

cadmium burden than more sensitive O nilotuus yolk sac-fry. Ihis confirmed the 

ass(H.'ialion betwt*en less gill cadmium burden and tolerant capability to cadmium 

lethal stress.

I he p»)s.sible mechanism by which the tolerant lilapia forms reduced their cadmium 

burden was dependent upon the species, age and size of sac-fry. The fa.sier-dc\ eloping 

species such as 7' zi//ii and small fry from smaller eggs hud higher growth efilciency 

than slow-developing species such as t)  nilolicus and large fry from larger eggs. This 

increased efficiency may have made it possible for growth energy lo be diverted lo 

meet the increased maintenance energy cost, possibly due to increased mucus turnover 

rate, under cadmium stress. Increased tolerance i>f older sac-fry under starvation 

conditions may be due to less energy demanding higher cadmium binding capacity of





7.1 Inlrodurlion

Lethal toxicity tests have been acclaimed as the most convenient and useful uk)I for 

both first screening o f chemicals for their toxic efi'ects and sensitivity o f species to 

toxic stress (Forbes and Forbes. I W )  A general problem in using lethal toxicity tests 

alone in ecotoxicology to assess ecological harm is that, the harm' is irreversible 

since the lethal response is a condition involving a stimulus severe enough to rapidly 

induce a biological rcsptmse resulting in death To be able to understand, explain and 

predict the effects o f stress on individuals, populations and communities, it is 

necessary to estimate whether resp<inses to stress occur to resist and increase stability 

under stress Lethal responses alone would restrict such understandings Therefore, 

lethal responses alone may not be useful in linking individual effects to ctTects at 

higher levels, such as populations, communities and ecosystems It is ofien assumed 

that there is a functional link between responses in individuals to short-term lethal and 

long-term non-lcthal stress ((iiesy and (traney. However, potential existence

of time lags in the lethal responses of an organism may provide misleading individual 

responses to lethal stress (Alabaster and Lloyd. L>80. Maux. h>8M le. the organisms 

may not die during acute exposure, but die a few days afier the exposure On the 

other hand non-lethal toxic impacts on the population level may show a time lag 

between the impact and response due to various compensatory mechanisms (Forbes 

and Forbes. IW i) If there is a functional link between lethal and non-lethal 

responses, it must depend on general underlying mechanisms of lethal and non-lethal 

toxic actions and tolerance If the observed responses to lethal cadmium stress in
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tilapia yolk sac-fry are functionally linked to non-lethal cadmium stress, the predicted 

fitness advantages to lethal stress should come into action under non-lethal stress To 

investigate the existence of such a relationship, the equivalent .stages of the most 

sensitive O nilolkus and the most resistant T. zUUi yolk sac-fr> were subjected to 

non-lethal cadmium stress

As the measured respon.se, death in lethal tests will not provide an early warning of 

harm’ in individuals and populations Indices of stress relating to  the aspects of 

fitness' of an organism may be indicative of an early warning under non-lethal stress

7.1.1 The use of physiological and biochemical indices in stress tolerance

The ’fitness' or 'health' o f an organism is dependent on the balance between energy 

gains and losses to the organism It may be icpresenled in the balanced energy 

equation' given in ( haptet I (equation I ^) for tilapia yolk sac-fry If an 

environmental stress reduces energy assimilation or increases metabolic cost 

(maintenance metabolic cost or/and routine metabolic cost) the somatic growth rale 

will reduce, potentially reducing fitness Iherefore, monitoring ecophysiological 

condition indices of a fish could be a useful ttml for evaluating fitness' or 

physiological activity under stress Ihese ecophysiological conditutn indices that 

include physiological and buH.hemical variables indicative of metabolic and energy 

slate of the fish will act as ,sensitive indices to environmental stress I hese indices aie 

of two types, static and dynamic



Static ind irrs

This includes both physiological and biochemical indices The widely used static 

condition indices are the dry weight wet weight. RNA concentration, RNA DNA. 

Protein RNA or Protein RNA I>NA ratios and adenylate energy charge (AF(') Dry 

weight wet weight has been used on the basis that high proportion of water in tissue 

signifies a state of depleted energy rescmrces, as observed in starvation stress 

(Johnston and (Kildspink. 197.1) or in winter conditions (Ansel). 1975. Beninger and 

Lucas. 1984) This index may be calculated for a whole animal or for the body tissues 

in the case of yolk sac-fry ALX , RNA and RNA DNA ratio have been proposed for 

use as biochemical indices of environmental stress (Ivanovici and Wiebc. 1981) and 

have been discussed in previous chapters (C hapter I and 5 respectively) AH(' is a 

direct mea.sure o f ATP and ADP in the body and probably indicates the energy 

performance of an organism While very sensitive, this index poses two maior 

problems I he first is that measurements of adenylate levels are quite time consuming 

and difVicult and the second is one of sample collection (Luca.s and Bvninger, 1985)

RNA concentration and RNA DNA ratio which represent the protein svnthetic 

capacity will provide information regarding maintenance metabolism of the fish 

Hence, they can be u.sed under environmental stress as an indicator o f changes in 

maintenance metabolism Protein RNA or Protein RNA DNA represent protein 

synthetic efTiciency (Houlihan. I99 |) Therefore, the measures of protein synthesis and 

efficiency under environmental stress indicate the changes in growih eflficiencv The 

balance between net protein gam and synthesis will indicate protein degradation 

Ihereforc measuring RNA, DNA and protein under stressed and non-stressed
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condilicms and using their ratios in difVerent combinations will provide information 

regarding changes in metabolic cost and availability of energy for growth

D y n M m i f  i n d i c e s

Net growth efTiciency (NOE), availabtlity of energy for growth or scope for growth 

(SFO) and oxygen nitrogen (<) N) ratio are the imp<mant dynamic indices that 

provide information regarding the energy status of the fish under stress NCiK is the 

cfi’iciency with which assimilated energy (AH) is utilized for somatic growth (Pg)

A net growth efTiciency (NGH) value of 0 indicates that metabolic requirements are 

balanced by consumed energy and no tissue growth takes place A greater value than 

0 for NOI-: indicates a positive energy balance, and hence, positive tissue growth 

( onversely values less than 0 reflect a negative energy balance indicating the 

organism has to meet higher metabolic demand using its stored energy resources Thus 

a negative growth takes place I herefore, determining NOH! under both stress and non­

stress conditions, will he indicative of an energy irade-ofT from growth to maintenance 

metabolism

Scope for growth (Sh(i) has been widely used by a mimbei of workers as a ’fitness 

index (Hayne. Widdow and rhi>mps*m. Hayne and Widdows, l ‘i7H, Widdows,

I*>78) In practice, the term SK i is synonymous with the bioeneigetic term production 

since.

S H i  A l  I M

where. IM is total metabolic cost (Witriall. Widdows and I owe. I‘>8t)



A general response by an organism to stress is the utilization o f nutrient reserves to 

meet a metabolic requirement that may have been enhanced above normal values 

(Widdows, l ‘)8 i) If one assumes the energy is generated aerobically then oxygen 

consumption rate can provide a rapid method for estimating metabr>lic rale d  ampen.

The measurement of oxygen consumption as an indicator of metabolic status 

has been used in many aquatic studies (Philippova and Postnov. |088) Depletion of 

nutrients under stress can be measured in terms of nutrient substrate and its amount, 

when the stress is most extreme, but generally it is necessary to use a more sensitive 

index which reflects the alterations in the balance between catabolism of nutrient 

substrates (Widdows. I‘)8. )̂ Oxygen nitrogen (O N ) ratio provides an index o f the 

relative utilization of protein in energy metabolism and assesses the physiological 

state of fish under the given set of environmental conditions If the whole animal O N 

ratio is used, it is possible to follow the physiological changes in a given group of 

organisms under varying environmental conditions, as this index docs not require the 

sacrifice o f the animals It provides meaningful data on the metabolic state o f an 

organism and it may thus be u.scd to complement the N(il{. although the () N does not 

sum up the physiological conditions of an animal as well as does the N(il- (Lucas and 

Heninger. h>8S)

7.1.2 Aims of the study

I hc aim of this study was to explore whether there is a functional link between lethal 

and non-lcthal respimses of tilapia yolk sac-fry to cadmium stress lo  achieve this aim 

the most sensitive {(> niloiuus) and most resistant ( /  zillii) tilapia species were 

employed to perform the following I) Physiological and biiKhemical correlates of



previously predicted fitness advantage to lethal cadmium stress (chapter 4 and S) were 

monitored under non-lethal stress These included changes in physiological and 

biochemical correlates of protein turnover and associated energy metabolism under 

non-stress and stress conditions

2 The responses with respect to theses physiological and biochemical correlates of 

the two species were compared



7.2 M uteriiils iind methods

7.2.1 Test solutions

All chemicals used were Analar grade A 10 mgl ' cadmium sunk dilution was 

prepared as described previously Kour nominal test concentrations of cadmium. 0 5. 

1 5. ^ O. and 6 0 ^gl ' for stress and ASTM dilution water (see chapter 2) for non- 

stressed condition.s were selected

7.2.2 ¡Method of sarrifice of >olk sac-fry and cadmium determination in w ater 

samples

Methods of sacrifice o f yolk sac-fry and cadmium determination in water samples 

were the same as previously described in ('hapter 6

7.2.J  Physiological and hiochemical measurements of yolk sac-fry 

Oxygen cxinsumption KNA, DNA and protein determination in yolk sac-frv were the 

same a.s previously described in Chapter  ̂ Ammonia concentrations were niea.sured 

on a technicon-SampIcr IV Autoanaivser

7.2.4 Kaperimental protocol

K sperim enl I. l>elerniinalion of growth |»erfnrmanre of lilapia yolk sac-fry under 

lion-lethal cadmium stress and non-siressed conditions

A total o f  6(K) two-day post-hatch yolk sac-fry of O t$ihnu u\ from an individual egg 

clutch were transferred to 15 exposure chamheis at a stiK'king rale o f 40 sac-frv per

166



chamber AlUr 24 h acclimation yolk sac-fry in exposure chambers \ccre randomly 

allocated to one of the triplicated four cadmium concentration levels and ASTM 

dilution water Yolk sac-fry were exposed up to the maximum bt>dy weight attainment 

(‘)-day post-hatch) and tor each treatment iO sac-frv per replicate were sampled for 

the estimation of growth rates and yolk utilization etTiciencies The growth and yolk 

utilization were estimated as described previously (see C hapter 4) This design was 

repeated exposing newly hatched / zUlh volk sac-fry after acclimatising for 24 h up 

to the maximum body weight attainment <(>-day post-hatch)

Txprrim ent 2. l> rtrrm inalion  nf physiological and biochemical m rlah o lir trails 

of lilapia yolk sac-fry under non-lethal cadmium  stress and iion-stressed 

conditions

The remaining sac-fry in each treatment o f the above experiment were used for the 

physiological and biochemical measurements Two volk sac-fry from each leplicate 

of each treatment were individually used to measure the oxvgen consumption rate 

Individual volk sac-fry was placed in the static respirometer filled with freshly 

prepared relevant test solution At the end o f the oxvgen consumption measurement 

experiment a sample of 50 ml test solution was transferred into a clean plastic bottle, 

stoppered and frozen for analyses of ammonia at a later stage l ach yolk sac-frv used 

in the oxygen consumption measurement was quick frozen, freeze dried and 

subsequently weighed on a balance (Mettler M5I) The freeze dried sac-frv were later 

sonicated in one ml nanopure water The homogenate was used for the determination 

of RNA. DNA. and protein ctmlents



Prior to the exfK>surc triplicated samples consisting of two yolk sac-fry per replicate 

from the same yolk sac-fry clutch o f each species were sampled The bodies of yolk 

sac-fry were separated from the yolk and used for the determination of initial protein 

content This was used to calculate the net protein gain To investigate whether protein 

synthesis in terms of RNA DNA and protein synthesis efficiency in terms of 

Protein RNA is related to protein growth, the relative protein growth rate o f control 

yolk sac-fry of both species were calculated as

rale of net protein gain (^g day ')
_____________________________________________  X I (H)

protein content at the termination of exposuie (^g)

7.2.5 Statistical analyses

One way ANOVA (Zar. I‘)84) were performed to compare the elTect o f non-lethal 

cadmium stress on all the parameters tested for each species C'orrelation coefTicicnls 

(Zar, l<>84) were calculated to investigate the relationship between RNA I)NA and 

Protein RNA with relative protein growth for p<H>led data o f control tilapia yolk sac- 

fry



The mean actual concentration recorded for each nominal concentration ts shown in 

Table 7 I It was found that ni/otUw* and /  zUlu yolk sac-fry significantly 

(P- 0 05) vary m their specific growth rates and yolk utilization etTiciencies (chapter 

4) There were obvious ditTerences between <). nilotUu.s and /' zillii yolk sac-frv in 

all tested parameters under all treatment and control conditions

7.3.1 <;rowth performance of tilapia yolk sac-fry under non-lelhal cadm ium  stress 

when com pared to non-stressed conditions

I'he efTect of non-lethal cadmium stress on the mean values of specific growth rate 

and yolk utilization etTiciency for both f)  niltnuus and / ziUii yi>lk sac-fry are 

shown in Figures 7 I and 7 2 There was a significant variation in mean specific- 

growth rale with increasing cadmium concentration in O nilntnN\ (df 4.10. 

K*I2 P*0()5) and the kiwest effective concentration was tO  ^gl ' cadmium

while It was significantly (df 4.10. I- 4 (>00. P 0()S) decreased in / zi//ii volk sac* 

fry at the highest concentration tested (6 0 ggl ') when compared to the coiies|Hmding 

control values Similarly, the yolk utilization efficiency showed significant variations 

in both O nilttiuu\ (df 4.10. I- 14 5.t. I* ()05) and / zillii (df 4.10. I- 4 2^0. 

P- 0 05) yolk sac-fry The lowest cadmium concentration ( t 0 ^ g l ') that reduced volk 

utilization etTiciency significantly in O nihunus when uim paied to the Ciintiol value 

was lower than that in / zi/lti (nO ^gl ') Fven though the specific growth rales and 

yolk utilization efficiencies of both species







were significantly reduced under cadmium stress the amount of yolk consumed was 

not significantly (P -0 05) affected (Figure 7 .1)

The variation in mean values of' protein growth rale under stress and non>stress 

conditions for both species is shown in Figure 7 4 Protein growlh rale did not follow 

a similar pattern for O niloin.u.\ as in the case of specific growlh rale The protein 

growth rate was significantly (df 4.10. F'*26()5. P '()05) reduced at all cadmium 

concentrations tested for <). Hi/ofuu.s yolk sac-fry when compared to the control value 

For /' zif/ii yolk sac-fry protein growth was significantly (df 4.10. F*K 334. P- 0 05) 

reduced only at the highest concentration (6 0 ^gl ' cadmium) tested

7.3.2 Physio logical am i biochemical metabolic trails um ier non-lelhal cadmium  

stress when compared to non-siressed conditions

Oxygen consum ption and am m onia excretion rales and 0 :N  ratio

The variations in oxygen consumption and ammonia excretion rates o f yolk sac-fry 

of both species with increasing cadmium stress intensity are shown in Figures 7 5 and 

7 6 lioih oxygen consumption and ammonia excretion were significantly affected by 

cadmium stress in <) nt/otnu.s (df 4.10. F*26KH. P*005 and d f 4.10. F*35‘)7. 

P' 005. respectively) and in / zitlii (df 4.10, F 4 75. P- 0 05 and d f 4.10. F*I266, 

P '0  05, respectively) yolk sac-fry In (> niUnuus yolk sac-fry both oxygen 

consumption and ammonia excretion rates were significantly increased at 3 0 and 1 5 

g g t ' cadmium.





respectively, when compared with the corresponding control values These parameters 

were significantly greater than the control values only at the highest cadmium 

concentration tested (6 0 ^gt ') for 1. zHUi yolk sac>fry

The variations in mean values under stress and non>stress conditions of () N ratios for 

both species is shown in Figure 7 7 Variation in () N ratios in both species showed 

an opposite pattern to both oxvgen consumption and ammonia excretion with 

increasing cadmium concentration The () N ratio was significantly (df 4.10. F* 10 14. 

P '0  05) alTected at the highest cadmium concentration (6 0^g r') tested in I. ziUU 

while the () N ratios in O niloluus yolk sac-fry was significantly (df 4.10. F“30 45. 

P' 0 05) reduced at all cadmium concentrations tested

K N A :I> N A  and P ro le in iK N A

Protein synthesis expressed as RNA ONA ratios and protein synthesis etTiciencv 

expressed as Protein RNA ratios under both stress and non-stress conditions are shown 

in Figures 7 K and 7 9 In O ni/otuM.\ yolk sac-fry RNA ONA ratio was significantly 

(df 4.10, F*I1 712. P* 0 05) increased at 3 0 ^gl ' cadmium when compared to the 

control value The Protein RNA ratio in <>. niltnicus yolk sac-fry. however, was 

significantly (df 4.10. F* 24 61K. P '0  05) reduced at all cadmium concentrations 

tested when compared to the control value In /  :iUii yolk sac-fry, RNA ONA ratios 

(df 4,10. F*10976, P -0 0 5 ) and Protein RNA ratios (d f4 .IO . P 005 ) were 

significantly increased and decreased, respectively, only at the highest cadmium 

concentration (6 0 ftgl ’) tested





Overall, all the parameters tested in /. ziUii yolk sac-fry were significantly IP- 0 05) 

alTected only at the highest cadmium concentration (ft 0 g g l ') tested when compared 

to the corresponding control values In i)  yolk sac-fry protein growth. O N

ratio and Protein RNA (protein synthesis elTiciency) were significantly (P -0 05) 

reduced at all cadmium concentrations tested while specific growlh rale, yolk 

utilization etllciency. oxygen and ammonia excretion rates and RNA UNA (protein 

synthesis) were significantly (P- 0 05) alTecled either at I 5 or .) 0 ggl ' cadmii

7.3.3 Kelalionsh ip  between K > A :I> N A  ratio and P ro te in iK > A  ratio with relative 

protein growth

To investigate whether protein synthesis in terms of RNA DNA and protein synthesis 

elTiciency in terms ol Protein RNA ratio is related to protein growth, regression 

analysis of the pvxiled data of control tilapia yolk sac-fry was performed fhere was 

a significant negative correlation (df 10. r 0 «52. P 0 001) between RNA DNA and 

a significant positive correlation (df 10. r 0 777. P 0 01) between Protein RNA and 

relative protein growlh (figures 7 10 and 7 11)



R N A :O N A
Fig. 7.10 R t la t lo n th ip  batw aan R N A :O N A  and ralativa protain  grow th  
of tllapia yo lk  aac-fry undar contro l con d it ion s (poo lad  data. Ra lativa  
protain grow th  (r s  0.952)



7.4 Dixrussion

The two tilapia species. (>. niloiicus and T ziUii, used to determine the non-lethal 

stress responses showed significantly difTereni responses. i:i terms of etTective 

concentrations to cadmium stress As the two species markedly differ in their 

developmental rate, the expt>sure was commenced and terminated at the equivalent 

developmental stages One day post-hatch T ziUii and three day post-hatch <) 

ni/ottcM.s can be considered as equivalent developmental stages (Rana. !‘>86b. (ialman 

and Avtalion, l ‘>89. Mulsekwa. I98‘)) I'he exposure was terminated on the previously 

determined maximum weight attainment day (see Chapter 4) in order to prevent stress 

due to starvation

The relative non-lethal sensitivities of niloiuu\ and /. zH/ii yolk sac-fry to 

cadmium were concordant with their relative lethal sensitivities to cadmium The 

differences in non-lethal sensitivities for the parameters tested, except for growth in 

terms o f weight and protein synthetic capacity in terms of RNA l>NA. like their lethal 

sensitivities, were within an order of magnitude I'herefore. lethal toxicity tests may 

provide an indication of relative interspecies tolerance to non-lethal stress This may 

suggest that the route of uptake and mode of action under lethal as well as non-lethal 

stress could be the same and that a general mechanism may be underlying the 

tolerance for both the lethal and non-lethal stresses

T he growth responses of both species to cadmium, in terms o f dry weight gain and 

in terms of protein growth indicated a general reduction in energy supply and/or
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reduction in energy deposition under cadmium exposure In yolk sac-try the growth 

rate is determined by the amount of yolk consumed and etllciency by which ingested 

yolk energy is assimilated into the body The present study revealed that both species 

showed no significant variation in the amount o f yolk consumed under cadmium 

exptisure when compared with the control values This suggests that cadmium did not 

®tTect yolk consumption In contrast, reduced yolk consumption was observed for sac- 

fry of .Vu/mo \alar at 2 0 ^gl ' under lower hardness and temperature conditions than 

in the present study (Peterson d  a ! . I<>8.1) Since, no part o f the yolk is lost as faecal 

matter and the compt>sition of yolk o f sac-fry of the same age were similar (('raig and 

Haksi. I<)77). the yolk assimilation elTiciency may not vary between sac-fry of control 

and different treatments Therefore, the observed increased oxygen consumption rate 

with increasing non-lethal cadmium stress m the present study, may be associated with 

other metabolic costs To compare the observ ations of the present study no other work 

was found in the literature

In the present study the nitrogenous excretion was increased with increasing cadmium 

concentration Nitrogenous excretion is the end result of deamination of amino acids 

which releases ammo groups that can not be recycled through other metabolic 

processes and must therefore be excreted Nitrogenous excretion could originate from 

two sources, endogenous and exogenous (Jobling, IW.1) Hndogenous nitrogenous 

excretion resulting from breakdown of tissue proteins (protein degradation), while 

exogenous nitrogenous excretion result from direct deamination o f amino acids during 

assimilation of ingested f<x>d f'nder non-stressed conditions, endogenous nitrogenous 

excretion is generally quite low (Jobling. I‘̂ ‘i.1), but can be considerably high under
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stress conditions, if tissue protein breakdown is elevated (Hawkins v i a / ,  h>87) The 

relative contribution of these two sources towards nitrogenous excretion is hard to 

determine in endogenously feeding yolk sac-fry a.s in practice, it is measured under 

nitrogen free diet However, assimilation elTiciency was not apparently alTected in the 

present study (see above) Therefore, the increase in nitrogenous excretion with 

increasing stress intensity was most likely due to protein degradation

The cadmium concentration alTecting growth in terms of dry weight and in terms of 

protein growth In O. nilotuiis wa.s not similar Indeed, overall dry weight gain was 

not necessarily related to protein deposition Protein growth was significantly alVected 

at the lowest nominal concentration (0 5 ^gl ’ cadmium) while growth in terms o f dry 

weight was alTected relatively at higher concentration (.) 0 ^gl ' cadmium) This 

indicates the protein growth may be a more sensitive index to stress than the growth 

in overall weight since protein is the ma|or component of the dry body tissues

I'he significant elevation in protein synthesis at higher stress intensities may be due 

to increased protein degradation and this increase may have stimulated protein 

synthesis A proportion of the synthesised protein will be retained as growth and the 

rest will be mainly invested in protein turnover (protein turnover ■ degradation of 

protein replacement of protein ■ maintenance metabolism)

Net protein growth •  protein synthesis • protein degradation 7 I

An increase in synthesised protein and a corresponding decrease in protein growth



suggests the protein turnover has increased In order to understand the relationships 

between the rates of the energy demanding costs of protein synthesis and protein 

growth, it is clearly necessary to have accurate measures of both processes (Houlihan. 

I9QI) In the present study, the methods utilized by other workers (eg (iariick, 

McNurlan and Preedy, 1980. Hawkins, 198^) to determine protein synthesis can not 

be utilized due to practical difficulties Therefore the present study employed an 

indirect method to determine protein synthesis using RNA ONA Unfortunately there 

is not yet a reliable method to determine protein degradation rates in the shon>term 

(Haulihan, 1991) and degradation rates are generally determined from the dilTerence 

between protein growth and synthesis rates (Millward. Ciarlick, Stewart. Nnanyelugo 

and Waterlowm, 1975)

The protein synthesis in terms of RNA DNA and protein growth was not alTected at 

the same cadmium concentration for ( /  nilttlnus yolk sac-fry in the present study 

A significant increase in RNA I>NA was observed in O. Hilnluus at .1 O ^gl ' and in 

/. ;///// at t) 0 ^gl ' cadmium implying increased protein synthesis However, protein 

growth in (). Hihuum  sac-fry significantly decreased at all cadmium concentrations, 

while it decreased only at the highest concentration (6 0 ^81') ^

imply decreased protein deposition at all concentrations tested for (>. nUntum  and at 

the highest concentration for T. :iUii As shown above decreased protein growth rate 

could be attributed to the dilYerences in priitem synthesis and protein degradation 

rates It is possible that decreased protein growth could occur through a decrease in 

protein synthetic rate with degradation rate remaining ctinstant or alternatively protein 

degradation could increase and synthesis could remain constant The other possibility
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is both rates could increase hut degradation rate increase more than synthetic rate 

Decreased protein synthesis rales were not observed in the present study tor either 

species tested At effective non-lethal cadmium concentrations of both species where 

significant decrease in protein growth was observed, either the protein synthesis was 

significantly elevated or remained without significant change This implied elevated 

protein degradation rates at all etTective concentrations for both species The 

unchanged protein synthesis together with significantly changed protein growth at low 

stress intensities may imply that elevated protein degradation may be replaced through 

a trade-ofT from growth protein I'he reason for this may be increase in protein 

synthesis is energetically costly as protein is the most energetically costly biomolecule 

to produce (eg Kiorboe a  <i/. Î )K7, Jorgensen. h^K8) In the present study at the 

higher stress intensities, the diversion of protein from growth alone may not be 

sufficient to meet the protein demand created through elevated protein degradation 

rates, and as a result protein synthesis rates increased

At all effective concentrations protein investment to replace elevated protein 

degradation

was in concordance with the () N ratios observed in the present study I'he () N ratio 

has been used in several studies as an index of nutrient utilisation for energy 

production (('onover and ('orner, l*)6K. Johns and Miller, 1^82) and in interpretation 

of the balance in catabolism between nutrient reserves in the tissues (('orrea. t̂ >K7) 

The decreasing () N ratios with increasing stress intensity in the present study suggests 

an increasing rate of protein catabolism relative to other nutrient, which is generally 

indicative of a stress condition (Widdows. 1^78) A value of around 50 for () N has

202



been suggested for a healthy X/ytiiu.s vUuhs catabolizing relatively little protein and 

value under .10 has been suggested for a stressful condition (Bayne. 1971, Widdows. 

1978) In the present study the non-stressed ( /  nihtlU us yolk sac>fry showed a () N 

ratio value less than 10 However, the interpretation of () N sluiuld be based on 

relative changes rather than absolute values as documented () N values for many 

animals show inter and intra-specific differences under unstressed conditions 

(Widdows, 1985)

Protein synthetic efficiency may indicate the relative proportion of protein being 

deposited as growth The present study measured protein synthetic efficiency using 

Protein RNA The non-stressed yolk sac-fry showed a significant positive relationship 

between Protein RNA and relative protein growth rate, while there was a significant 

negative relationship between RNA DNA and relative protein growth rate Therefore 

low protein synthesis and high protein synthetic efficiency was associated with high 

protein growth rates This indicates low protein degradation and high protein 

deposition Therefore faster growth is derived from decreased energy requirements for 

maintenance Similar results have been obtained for /> using the same

biochemical ratios for the components in protein dynamics (Barber c/ <i/. I9(K)) 

Hawkins v i a / .  (I98(>) and Hawkins. Widdows and Bayne (1989) concluded similar 

results with direct measurements of protein synthesis, protein synthetic efficiency and 

protein growth for \h t i /u \  vtiuUs Unlike RNA DNA. Protein RNA was in 

concordance with the protein growth under non-lethal cadmium stress for both species 

tested As (he stress intensity increased both protein growth and protein synthetic 

efficiency decreased This confirms that as stress intensity increases, protein
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degradauon increases and protein depositu>n decreases, and hence maintenance cost 

increases As the eftective concentration for significant increa.se in protein degradation 

rate for O. ni/otuu.s yolk sac-fry (0 5 ^gl ' cadmium) was significantly lower than the 

effective concentration of /  :iHii for protein degradation rate (6 0 ^g | ' cadmium) it 

can be inferred T. ziUii yolk sac-fry were more tolerant than nihuuus  yolk sac-fry 

under non-lethal cadmium stress Protein synthesis alone will not provide clear 

information on the protein dynamics as it does not provide the relative proportions 

being invested in growth and maintenance

To conclude, a concordance was ob.served between non-lelhal sensitivities of (>. 

niloium  and T. zUUi yolk sac-fry with their relative lethal sensitivities to cadmium 

suggesting a common route o f uptake and mode of action for both types of cadmium 

stress At all effective concentrations of cadmium, the protein growth and synthesis 

efficiency were reduced Protein synthesis in both species, however, was eithei 

unchanged or increased fherefore, protein degradation was increased at all effective 

cadmium concentrations suggesting a general response to non-lethal cadmium stress 

between the two species The higher tolerance capability of /' ziUii yolk sac-fry to 

cadmium stress than that of () niloluu.\ yolk sac-fry imply faster growing /  ziUu 

may sacrifice growth to meet the elevated maintenance costs under stress m<ire 

efficiently than that of O. niloiUus Therefore, the difference in tolerance capabilities 

of the two species may be a difference in the degree of a general response to cadmium 

stress Further, the predicted mechanism for fitness advantage under lethal stress was 

observed under non-lethal stress





I he present study designed und developed u tlow-thmugh system and used it to 

investigate the tolerance capability of substrate spawning und mouth briHHling tilupiu 

species to cadmium stress. Some physiological and biiK'hemical parameters o f protein 

turnover and usstK'iated metabolic costs were measured to elucidate whether there is 

a general mechanism underlying the stress tolerance.

I he observed results ol the present study hove several implications for the 

generalization of toxic responses bused on labi>rutt>ry bioassays fi>r natural 

populations. Single-spc‘cies toxicity tests have been empUiyed to generate LC'5() 

values, no observed elTect concentrations (NOIX'). maximum acceptable toxic 

concentrations (M A H ') and to establish the damage caused by the toxicant for a large 

number of aquatic organisms under a variety of conditions. Hecause of their 

simplicity, low cost und potential for standardization, single-species toxicity tests play 

a major role in establishment of water quality criteria for metals (Clements, IW I). It 

is nt>t known for certain to what extent the information bused on the single-species 

toxicity tests cun be reliably extrapolate to the higher levels of biological organization 

such us populations, communities und ecosystems. Ihe communities receiving a 

toxicant will contain species that have not been tested for their respt>nse to that 

toxicant. The results of the present study revealed that tilapia us a group o f llsh 

exhibited an order of magnitude of dilTercnce in tolerance to cadmium und copper 

I his implies that il t>ne fails to recognise the most sensitive species in single-species 

toxicity tests, the information bused on such tests may not provide any protective 

value for the higher biological organization in the natural environment. Ihe

205



dcscriplinn and prcdiclion o f toxic responses from single-speeies tests hase become 

more ditllcuit due to standardization During standardizat.on of »ingle-spec.es tests use 

o f one gen..type (Soares and C alow, IW 1 , and eliminating allometric aspects, such 

as size, and age (Nessman and Meagler. IW I) is a common practice to mcrease 

precision and repeatability. I bis implies that standardization is I.Kused on narrossing 

the gap between toxicity data generated from within as well as between laboratories 

rather than widening the extrapolation of such results to the higher biological 

organisation in the natural envirtinmenl. l ypically, predictions should he expected to 

decline in reliability as the extrapolation distance increases (l.evin. Harwell. Kelly and 

Kimball. I»«U). Ihe observed dilTerences in tolerance capability between dilTerent 

sizes and ages of Ihe same life stage ol the same species in Ihe present study indicate 

that eliminating allomelric aspects and age from toxicity tests limits their ability of 

prediction of toxic responses to the natural populations However, unless we work 

with systems that are controlled experimentally, we can not know how l,i interpret Ihe 

results that derive from them (Soares and ( alow. IW1,. Standardized community 

level ecotoxicological properties more acceptable (or regulatory decisi.ins concerning 

Ihe potential safely of chemical releases in to the environment (Harrass and Sayer. 

Idkd). faub (IW.1) reported encouraging reprixlucibilily of such a standardized 

micrrHiosom lest fherelbre. there is a need for research into mullispecies lest» under 

conlrt.lled conditions which will enhance extrapolation of experimental data to the 

held. ( )ne t.f Ihe major unaccounted source of variance in Ihe extrapolation of toxicity 

from Ihe laboratory to Ihe field relates to the condition of the lish under starvation or 

low ration (Suler.HarnIhouse. Herck. (iardner and O Neill. lUK.M I he present study 

observed a variation in Ihe tolerance capability among yolk »«.-fry with adev,ualc atid
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vuriation in both Icihul and non-leihul responses lo eadmmm and copper stress In the 

present study sug(tests that mouth hriKiding tilapia are more sensitive than substrate 

spawning tilapia. I hereldre. among tilapia, mouth br.Hxiers may play an important 

role lo delect potential changes in the ecological endpoints Mouth hrmiding tilapia 

such as O nllolicwi may have an intrinsic importance', ie. the indicator organism is 

the ecological end point (Kelly and Harwell. IdK») Demonstrating changes through 

population levels, age structures, recruitment rales and mortality rales in mouth 

briHKlers as indicators would constitute cxological impact Striped bass populations of 

the Hudson river have been used as indicators with 'intrinsic imptirtance' for major 

anthropogenic disturbances (Kelly and Harwell, lusy).

C oneeniralions as low us 0.5 lo 6.0 pgl ' cadmium (actual values 0 X1 to 6 44 pgl ' 

respectively) hud non-leihul elUxIs on lilupiu yolk suc-fry, ulTccling the growth rule 

( ushing (1076) has hypothesised Ihul growth rule, by changing the lime of exposure 

lo predation, may he the most iniporluni factor controlling recruitment I bus. non- 

leihul coneenirulions ol cudmium may dcxreuse recruitment of lilupiu by slowing the 

development ol yolk suc-fry I his in turn may ulTecI the lilupiu fishery

I hose uyuulic organisms iKcumululing metals to concentrations much greater than 

those found in the surrounding envirimmeni have been suggesled us indicators of 

metal pollution (l*rosi, |y7U) In the present study the accumulated cudmium levels 

at near lethal resptinse in lilupiu yolk suc-lry were less ihuii the exposure medium 

Occurrence ol lethal responses ul lower burden levels than the exposure medium 

indicates Ihul lilupiu yolk suc-fry luck mechunism/s lo detoxify uccumulaled metals



The tolerance capability to metal stress has been attributed either to a pre-adapted or 

post-adapted mevhanisms (see chapter 4». If a pt.sl adapted tolerance is not passed on 

to the olTspring, it may not he genetically based (Klerks and l.evinton. IdhU). I he 

tolerance capahility to  metals can he achiesed cither by decreasing the net rate of 

metal entry or hy increase in the storage and detoxilication o f the metal through 

sequestering hy metallothionicn or mctallothioncin-like proteins (sec chapter 6) An 

induction o f these proteins coincides with increased tolerance when exposed to the 

metals (Henson and Hirge. Id«i) and therefore, may he considered as post-adaptive 

I he present study did not support such a specific detoxifying mechanism underlying 

the tolerance capahilily us the more-tolerunt suhstrute-spuwning T ziUii hud a lower 

cadmium body burden than the less-tolerant mouth-br<H>ding (> niloluu\. The same 

pattern was seen for age- and si/e-spccillc elTccIs in (> nilolicut yolk sac-fry 

I hcrcforc. the tolerance capability in tilupia yolk sac-fry to lethal metal stress may be 

a pre-adaptation to reduce the net rate of metal uptake

I he rank order ol sensitivity between mouth briKulers and substrate spuwncrs is the 

same for both cadmium and copper. Similar concordance was observed between 

younger and older (> ni/olU'u\ yolk suc-lry. This suggests a general rcsptmsc to lethal 

metal stress and a similar nuKic of action in tilupiu yolk sac-fry Moreover, a 

correlation was ivbserved between the tolerance capabilities of mouth brvHKlers and 

substrate spuwners. and. their early life history growth performances Similar 

correlation was observed for smaller and larger O nilnlUus yolk sac-try between their 

tolerance cupuhilities and early file history growth performances I he dilVerences in 

growth derive Irom dinerences in energy balance and energy balance rellects. in purl.
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dilTcring costs o( mctuhoHc maintenance, caused by voriuhilily in the crtlciency of 

protein synthesis (Koehn and Muyne. I herc was u significunl variation between

the less tolerant mi>uth hrmnling O ni/<f/Uux and more li>terant T zUiii yolk sac-fry 

lor the measured physiological and biochemical parameters o f protein turnover and 

usMK'iated metaK>lic costs under non-stressed (control) conditions (Chapter 7). Slow 

growlh of a  niioiuus was marked by low protein growlh. low rate of protein 

synthesis eincicncy and high rate of protein synthesis, and hence, higher maintenance 

metabolic cost. I he some was true for the less tolerant larger rather than smaller <> 

niloUcus yolk sac-fry. Mechanisms that increase stress tolerance may divert energy 

from growlh under optimal conditions (MtifTmann and Parstm.s. |yK<>). I herefore. the 

growlh performance and level of maintenance cost may be predictive of the tolerance 

capability to metal stress. I hus, the phenotypic variations for early life-history growth 

traits may have contributed to the variations in tolerance capability between mouth- 

briKKiing and substrate-spawning lilapia and between smaller and larger O mloiU us 

yolk sac-Iry to metal stress. I he ditTcrences between growth performances of mouth- 

briMKling and substrate-spawning tilupia yo\k  sac-fry are related to their dc\elopmental 

rates, l-.vcn though this difVerences in developmental rates may not have been evolved 

due to stress, it may have resulted in a dilTerence in the ability to tolerate metal lethal 

stress. Since stress tolerance may involve prcKesscs requiring energy expenditure 

(HolTmun and Parstms. Sibly and Calow, 1^8»)) the increased resistance to

cadmium noticed in the smaller yolk sac-fry in the present study compared with their 

larger conspeciflcs may pt)ssibly be due to  the availability o f energy to meet the 

required energy requirement under stress. I he increased availability of metabolic 

energy in smaller y<tlk sac-fry may have been brought about by utilizing more
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cfllcicnt energy production pathways. It is also known that animals utilise both 

oxidative and glycolytic pathways for nictaKilic energy production. I hc t>xidative 

pathway is more eHlcient than the glycolysis pathway and it was rcci)rded that with 

increasing body si/c energetically more efllcient oxidative patiiway dc'creases. as 

noticed in O mossamhkus (l)ashamohidecn and Parvatheswararao. m76). Moreover, 

a negative relationship between oxidative en/yme activity and Nxly weight appears 

to be a general rule (Houlihan e/ «/.. IW ). Iherefore. the dilTerence in tolerance 

capability to metal lethal stress in tilapia yolk sac-fry may have been brought about 

by the genetically pre-determined differences in the early life history, in terms of 

developmental rates and growth rates.

The cadmium Knly burden differences between dilTerenl post-hatch ages alst> failed 

to supptm the existence o f the storage of cadmium through specific detoxification 

mechanisms, as more tt»leranl older post-hatch yolk sac-fry under cadmium lethal 

stress hud lower bixly burden levels than younger post-hatch yolk sac-fry. This may 

be attributed to an adjustment in metaK>lism under depleted nutritional status to 

switch over to an energy saving strategy. IK'pleted yolk reserves in older yt)lk sac-fry 

were marked with a reduced overall metabolic activity (C hapter 5). 1 he entry of 

cadmium may have reduced through the resultant decrease in respiratory flow rate and 

bl<H>d circulation in the gills due to general reduction In the metabolic activity.

I herefore. the adjustments made in the metabolic rate to tolerate nutritional stress may 

have brought about the tolerance capability to metal stress.

Mouth hriMuJing () nilotUux and substrate spawning T zUlii. which demonstrated the



must scnsilive and most lolcrani responses rcspeelivcly. to both cadmium and eopper 

lethal stress, were used to investigate the physiological and bi.H.hemicul responses to 

non-lethal cadmium stress. It was assumed that, because these two dilTered in their 

lethal tolerances to cadmium and copper stress due to predicted ditTerences in lltness 

advantages, under non-stress conditions (control), ha.sed on their dilTerences in 

developmental rates they would alsr> dilTer in their relative toleranee ttr non-lethal 

stress.

I he measured physiologieal and bitHthemieuI parameters related to protein turnover 

and associated metabolic costs under non-lethal cadmium stress suggests (chapter 7). 

responses involving energy expenditure occurred with a con.so(uent reduction in 

growth in both species. (> nilolUm  yolk sac-l'ry were alTectcd at lower cadmium 

eoneentrations than 7. zi/tii yolk sae-lry. eonl'irming their lower toleranee Itt non-lethal 

cadmium exposure, us observed lor lethal cadmium stress. I he range over which 

diircrcnces in response between the two species lor parumeters such us growth in 

terms of dry weight, oxygen consumption, ammonia excretion. RNADNA under non- 

lethul cadmium stress was less than for their relative tolerance capability to lethal 

cadmium stress, while parameters such as protein synthesis clllcicney. protein growth 

and ():N were more or less similar for their tolerance capability t<i lethal cadmium 

stress. I hereforc. the assumption of a constant factor to relate acute to chronic elleets 

that is made in establishing environmental standards is questionable in tilupiu yolk 

sae-fry us it varies with the stress index I he parameters such as protein growth, 

protein synthesis ellieieney and ():N which measure speeillc components o f  the 

balanced energy equation were more .sensitive stress indices than parameters such us



oxygen consumption, dry weight guin und protein synthesis which reflect overall 

changes in several components in the balanced energy equation.

lo  conclude, the t>bserved inter und inlraspecitic variations ir stress tolerance to 

metals indicates just how far single species toxicity data are from ecological realism. 

I he sensitivity of tilapia to metal stress may enable them to be used as indicator 

iirganisms for ecological endp«>ints or as Ihe ecoh>gical endpoint. I he present study 

suppt>rts a general response mechanism for tolerance to Kith h lethal und non-leihul 

cadmium stress. I'he variation in tolerance response to metal stress in the present 

study was related to the variations in Knly burden levels and lo the predicted 

availability tif metuKilic energy under non-stressed conditions to meet the required 

increased maintenance cost under stressed conditions. These predictions were bused 

on genetically determined phenotypic variations for early life history trails such us 

growth und developmental rales. Therefore, genetically pre-delermined phenolypic 

variations tor curly life history traits may translate into variations in metal stress 

tolerance. There was a concordance between the range over which difTerences in 

responses <if the two species tKcur under non-lethul cadmium stress, in terms of the 

more sensitive stress indices, und their tolerance capability to lethal cadmium stress. 

Thus, there may be a possible link between responses to lethal und non-lethul 

cadmium stress based on a general response. The nutritional status of an animal, 

however, may cause a difTcrent response, but achieve a similar tolerance. I he KhIv 

burden level, und hence, tolerance capability was related lo the reduced overall 

activity as a consequcrKc of the reduced metuKilic rule under starvation I herefore. 

post-adapted physiological acclimation lo starvation stress carries a fitness udviintuge
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