




Different polysaccharides were shown to have no significant effect on either 
the absorbency or tensile strength of the materials, therefore, it can be 
concluded that most of the physical characteristics are imparted by the 

collagen matrix.
In summary the results obtained from this work have led to a greater 
understanding of the factors which control the release of polysaccharides from 

collagen/polysaccharide composite materials and have given some insight 

into how the rate of diffusion may be altered to suit a particular application.
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nHAPTER 1-INTRODUCTION
Polysaccharides and proteins are widely distributed in nature where they 
perform a range of biological and functional roles. As well as functioning as 
enzymes, antibodies, hormones, membrane components and the basis of all 

animal movements, some proteins act in a structural role. Similarly, many 
polysaccharides are responsible for the maintenance of structural integrity in 

the plant and animal kingdom (e.g. cellulose, chitin), as well as providing an 

energy reserve (starch, glycogen). Glycosaminoglycans (GAGs) and some 

proteins, e.g. fibronectin and laminin, play an important role in the interaction 

between cells and the extracellular matrix.
In animals the structural protein collagen is the major component of the 
connective tissues e.g. skin, tendon and cartilage (Grant and Jackson 1976) 

and is also the main fibrillar component of bone and teeth.
However, both proteins and polysaccharides are capable of interacting to 

produce an even greater range of functional characteristics. Of many protein 
/polysaccharide interactions in animals, possibly the most biologically 

conserved, and, therefore, presumably one of the most important in 

evolutionary terms is the interaction of collagen molecules with proteoglycans 

and glycosaminoglycans (GAGs) In the connective tissue of higher animals. 

The GAGs found in animals are a family of heterogeneous polysaccharides, 
of which seven types are commonly recognised, six of which are structurally 

related. In general these molecules are composed of repeating disaccharide 

units consisting of a hexosamine, (usually N-acetyl glucosamine or N-acetyl 
galactosamine) glycosidically bound to either uronic (glucuronic or iduronic) 
acid or galactose. The monomer units of the seven glycosaminoglycans are 

shown in Table 1.1.
It was suggested as early as the 1950's (Gross and Kirk 1958) that for a 
range of physical characteristics such as that found in the connective tissues.





to occur, interactions between the GAGs and other molecules in the 

extracellular matrix were likely.

1 ■2-Polvsaccharides
There are many different types and species of polysaccharide. It would not be 
possible to carryout a comprehensive review of the structures of all the major 
polysaccharides. Therefore, this overview will concentrate on those 

macromolecules selected for study in the present work

1.2.1-Alginate
Alginates are polysaccharides obtained from brown seaweed. Man has used 

seaweed as a source of food since early historical times. With the onset of the 
industrial revolution and its demand for raw materials, seaweeds were used 

for their chemical content.
The first record of alginates being isolated was by Stanford in 1883, who 

prepared them by destructive distillation, followed by a lixivation process 

(McDowell 1977). In the first description of his product, Stanford referred to 
'soluble and insoluble algin', and soon realised that insoluble algin was an 

acid, whilst soluble algin was the sodium salt.
Compounds now available under the name alginates include alginic acid, its 

compounds with some metals and organic bases, and some organic 

derivatives.
Alginic acid and its salts of most di- and poly-valent metals are insoluble, but 
the alkali metal salts are water soluble. Sodium alginate is one of the most 
commonly used alginates and several types with differing structures, purities 

and degree of polymerisation are available.
Although alginate was purified as early as 1896, the first report on its structure 
was In 1930 by Nelson and Gretcher, who claimed it was a D-mannuronic



acid polymer. Likewise, Hirst efa/(1939) determined alginic acid to be 

composed of 01-4 linked mannuronic acid (Fig 1.1).
The first report of guluronic acid (Fig 1.1) present in alginate was by Fisher 

and Dorfel (1955), when it was discovered to be a major component. 
Improvements in chemical techniques and analysis led to the finding that 

there are three kinds of polymer segments in the alginate polysaccharide 

chain (Haug et a l . 1967). The first segment consists essentially of D- 

mannuronic acid (Fig 1.2 A), the second region is essentially an area of L- 
guluronic acid monomers (Fig 1.2 B), whilst the third is a region comprising 

alternating D-mannuronic and L-guluronic acid residues (Fig 1.2C)
Penman and Sanderson (1972) analysed alginate purified from a variety of 

different seaweeds, and calculated the relative proportions of the guluronic 

and mannuronic acids, (Table 1.2).
The molecular weight of alginate, like most polysaccharides, is not a definite 

value, since polysaccharides are of variable chain length; therefore their 

molecular size is usually defined as a range and mean value. Commercially- 

available grades of alginate are obtainable from mean molecular weights of 

greater than 450000 Da, which corresponds to a degree of polymerisation 

(DP) of 2250 units, down to alginates with a DP of 80.
Highly-polymerised alginic acid powder depolymerises slowly at room 

temperature to give alginic acid of low molecular weight; however these 

smaller molecular weight units (DP 40) are very stable and show no 
appreciable breakdown after years at 10-20 °C. The salts of alginate such as 

sodium alginate are generally more stable, and those with a DP 500 can be 
stored for 3 years with no degradation occurring. However, degradation can 

be observed with more highly polymerised alginates and can become serious 

if the temperature of storage is above 50° C.
One of the most Important and useful properties of alginates is the ability to 
form gels by reaction with divalent and multivalent cations, of which calcium is
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the most commonly used. The gels that are formed can resemble a solid in 

their ability to resist stress and deformation of shape. Typically the gels used 

in the food industry consist of 99-99.5% water and alginate. Applications in 

the food industry include milk desserts, table jellies and animal foods. In all of 
these systems alginate is used because of its excellent gelling and binding 

properties.
A gel may be defined as owing its physical properties to a system of 

polymers cross-linked into a network, which form at the gel point (Hermanns 

1949). Much work has been done to elucidate the structure of the gel formed 

by calcium and alginate, and to determine how the individual polymer 

molecules interact with each other. Originally it had been suggested that the 

cross-links were simply a result of ionic bridging between carboxyl groups in 
adjacent polymer chains by the calcium ions (Rees 1969). This was however 

shown to be energetically unfavourable and unlikely to provide enough 

stability to form a gel. Later studies in this field centred on determining the 

secondary and tertiary structure of the polymers.
X-ray diffraction of fibres of alginate and polarised light IR spectroscopy have 

resulted in the nature of some secondary structure being determined. The 

shap>e of polymannuronic acid (poly M) was shown to be similar to that found 

in other 61-4 linked hexosans, such as cellulose. The mannuronic acid 

hexose ring was shown to bo in the Cl conformation (Fig 1.3)(Atkins 0t al 

1971). This conformation results in the polymannuronic acid (poly M) being a 

flat-ribbon like molecule.
Polyguluronic acid (poly G) is different from that of the poly M, in that the 

sugar rings are in a 1C conformation, which results in a more buckled ribbon 
shape (Atkins at al 1971). Both the 1C and the Cl sugar conformation are 

shown in Fig 1.3.
On the basis of the fibre diffraction data, it was suggested that since both the 

poly M and the poly Q segments of the polymer were ribbon-like In structure.





that these ribbons would be capable of stacking together in sheets (Atkins et 

al 1971). Rees (1969) suggested that co-operative association of either the 
poly M or the poly G segment was involved in the formation of the cross-links. 
Circular dichroism studies have shown that the calcium ions react 

preferentially with poly G segments of the chain (Morris et al 1973). The 

nature of the poly G interactions has since been defined and the most recently 

proposed model is the 'egg-box' model (Morris and Welsh 1982). The rigid G 

blocks of the alginate chain are aligned in such a way as to form a cavity 

between two adjacent G monomers, where the cavity is the correct size to 

allow a divalent cation such as calcium to fit in. Once a calcium ion has 

located between the G blocks a second alginate polymer can align on top of 

the first, to encapsulate the cation. In this manner the calcium acts as a bridge 
between the two chains and allows junction zones to form, which leads to 

gelling. The model is illustrated in Fig 1.4.

1.2.2-Galactomannans
Galactomannans are neutral polysaccharides and as such would not be 

expected to interact strongly with proteins since there can be no charge- 
interactions. However as discussed in section 1.4.2 locust bean gum has 

been reported to prevent casein aggregation in milk. In addition 

galactomannans are widely reported as interacting with xanthan gum, which, 

like collagen, is a long rigid molecule. It is for this reason that possible 

galactomannan collagen interactions were investigated in the present study. 

Galactomannans are derived from two major sources (a) the endosperm of 

plant seeds, principally in the Leguminoseae and (b) microbial products. 

Microbial galactomannans are usually allergenic and are common to a 
number of microbes associated with skin diseases, such as the 

dermatophytes (Bishop et al 1965). The galactomannans may even be the 
causative agents of the symptoms (Barker et al 1967) since they are



Figure 1 4 Alginate junction zones formed by calcium ion bridging



immunogenic (Sakaguchi et al 1969) and provoke hypersensitive reactions 

(Barker et al 1962).
Of the plant galactomannans, two types are the most commonly used 

commercially, and so are readily available. These are guar gum, and locust 
bean gum isolated from seeds which grow in pods on guar plants and carob 

trees, respectively.
A few of the plants that produce galactomannan polysaccharides have been 

known and cultivated for many hundreds, and even thousands of years. The 

best known example is the carob tree {Certonia siliqua ) which was originally 

native to Southern Europe and the Near East, but has since been transported 

to Australia and the U.S.A. (Binder et a l , 1959). Carob pods have a long 
history of use by man for both animal and human food sources. In the latter 

case however this was usually in times of hardship rather than through 

choice. The synonym of 'St. Johns bread' reveals the biblical association with 

the carob tree, since the "locusts" eaten by John (Matthew 3:4) in the 

wilderness are thought to have been locust bean pods. Today guar and locust 
bean gum are used mainly for their capacity to thicken solutions that remain 

virtually unaffected by ions, pH and heating and cooling cycles.

During World War II the supply of locust bean gum (LBG) from the 

Mediterranean countries was severely restricted, and so a search for an 

alternative was conducted. The plant which was finally selected as a rival was 

guar (Cyamopsis tetragonoloba). Like LBG, the guar is obtained by extraction 

from the beans that grow in pods on the plants.
Qalactomannans were first examined chemically in 1897, when Effront 

investigated the carbohydrate from the Locust bean pod. Two years later 

Bourquelot and Herrissey reported that the gum was composed of 83.5% 

mannose and 16.5% galactose. The structure of these sugar monomers is 

shown in Fig 1.5.
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Despite the fact that the chemical composition of galactomannan was known 
at the beginning of the 20 th century, it was not until the 1940‘s and 50's that 

the structure of the gums was investigated. Most of the structural studies have 

been restricted to LBG and guar gum, because of their industrial importance. 
The pioneering work indicated that the galactomannans contain a 8-D-1-4 
linked mannan backbone to which single a-D galactosyl residues are attached 

at the Oe position of some of the mannose residues. Analysis has shown that 

guar gum has approximately twice as many galactose residues as LBG. This 
information was based on polymer méthylation analysis (Whistler and Stein 

1951; Ahmed and Whistler 1950). Possible structures of guar and Locust 

bean gum are shown in Fig 1.6
It should be noted that the polymers do not have a regular repeating structure 
and that the distribution of substituents along the mannan chain is not known 

with certainty.

1 2.3-Carraaeenan
Carrageenan is obtained by extraction with water or alkaline water of certain 

species of the class Rhodophyceae (red seaweed). It is a linear polymer 
consisting of galactose units linked with alternating u(1-3)and (J (1-4) linkages. 

In addition, the galactose units linked u 1-3 in the structure often occur as 3,6- 

anhydro-D-galactose units, and sulphate ester groups may be present on 

some or all galactose units. Since carrageenan is a large molecule containing 

up to 1000 residues, the possibility for structural variations are enormous. 

Three idealised types of carrageenan have been proposed (Fig 1.7), however, 

commercially available samples contain a mixture of the three. Carrageenans 

are used extensively in the food industry as both gelling agents and 

thickeners.







1 .G-Collaaen

Collagen in one or more of its many forms can be found in all groups of 
animals, with the possible exception of the protozoans (Fraser et a l. 1987). In 

mammals collagen constitutes approximately one third of the total body 

protein. Its abundance can be traced to both its prime function of determining 
the form and structure of an organism, and its versatility, in fulfilling many 

different biological roles.

Collagen derives its name from two different Greek words, Kolia, meaning 
glue and Gennan, to produce; hence collagen means 'glue producer'. This is 

due to the fact that, upon boiling animal tissue, collagen is denatured to 

produce gelatin.
Before 1970 all vertebrate collagen was regarded as being a simple class of 
molecule consisting of two a l chains and one a.2 chain, with only slight 

heterogeneity between species. Since the discovery that collagen was 

polymorphic the number of recognised vertebrate collagens has grown to at 

least sixteen, which differ genetically, chemically and immunologically (Ayad 

et al 1994). The tissue distribution and functional characteristics of the 

collagens are shown in Table 3. For the purpose of this thesis only the fibrous 

collagens (types I and III) will be discussed. The structures of these collagen 

molecules has been extensively reviewed (Piez 1976, Fietzek and Kuhn 1976, 

Miller 1976, and Kuhn and Glanville 1980, Van der Rest and Garrone 1992) 

and so only a summary of the major structural features will be presented.

1.3.1-Biosynthesis of collagen

All the fibrillar collagens are initially synthesised In a precursor form called 

pro-collagen. The production of a procollagen molecule (consisting of three 
pro a  chains) is a complex biosynthetic process, where diversity of the protein 

product arises from post-transcriptional and post-translational events.



Table 1.3 Collagens: types and distributions.

Type Chains Molecules Representative
Tissues

1 a1(l), o2(l)
[a1(l)]2 a2(l) 
[a1(l)]3

Skin, bone, tendon, dentine, 
etcDentin, skin(minorform)

II a l(ll) [a1(ll)]3
Hyaline cartilage, vitreous body

III a l(lll) [a1 (111)13 Skin, vessels

IV a1(IV), o2(IV) [1(VI)]2 a2(VI) Basement membrane

V a1(V), o2(V),a3(V)
[a1(V)]3
(a1 (V)]2 a2(V)
a1 (V) a2(V) a3(V)

Hamster lung cell cultures 
Fetal membranes, skin, bone 
Placenta, synovial membranes

VI a1(VI), o2(VI),a3(VI) a1(VI)a2(VI)a3(VI)
vessels, skin, intervertebral 
disc

VII al(VII) [a1(VII)]3 Dermoepidermal junction

Vili al(VIII), a2(VIII) (?) Descemet’s membrane

IX a1(IX), o2(IX), a3(IX) a1(IX),a2(IX)a3(IX)
Hyaline cartilage, vitreous 
humour

X a1(X) [a1(X)]3 Growth plate

XI a1(XI), cx2(XI), o3(XI) a1(XI)a2(XI)a3(XI) Hyaline cartilage

XII al(XII) [a1(XII)]3
Embryonic tendon and skin 
periodontal ligament

XIII al(XIII) (?) Endothelial cells

XIV al(XIV) [a1(XIV)]3 Fetal skin and tendon



Following synthesis of pre-pro- a chains, cleavage of the signal peptide and 
insertion into cisternae of the rough endoplasmic reticulum, the pre-pro a 

chains align in the correct stoichiometry. The chains are cross-linked in the C 

peptide region, the triple helix is then formed in a zipper-like fashion from the 
C to the N terminus. Simultaneously the triple helical region of the molecule is 
cross-linked. The newly formed pro-collagen molecules are transported 

through the golgi apparatus and are secreted into the extracellular matrix 

where they are modified by a number of enzymes. At this stage the C-pro- 

peptide and the N pro-peptide are removed to form a collagen molecule.

1.3.2-Structure features of collagen

Type I Collagen is one of the largest of all protein molecules and is composed 
of three a polypeptides, each having a molecular weight of around 95000 

daltons. Each of the a chains is wound in a left handed helix which contains 

approximately three amino acids per turn. Three of the collagen polypeptides 

are wound in a rope like structure to form a trimer known as collagen. This 

molecule is 280 nm in length and 1.4 nm in diameter. The collagen molecule 

is a right handed helix (Piez et al 1963). At each end of the helix there are 

non-helical domains. In typo I collagen at the N-terminus there are around 24 

non-helical amino acids, whilst at the C-terminus there are about 16.

The two types of alpha chains which make up the type I collagen molecule 

have been sequenced and found to contain 1052 amino acids (Hulmes 1973). 

The helical domain of the collagen has 330 repetitions of the sequence Qly-X- 

Y which is a triple helix forming sequence. This sequence is common to all 

types of collagen. However the distribution of amino acids at the X and Y 

positions varies (Fietzek and Kuhn 1976). Approximately one third of the X 
and Y positions are occupied by proline and hydroxyproline. The repeating 
sequence stabilises the triple helix conformation, with the glycine residues 

located In the inside of the helix due to their small side chain. Proline and
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hydroxyproline stiffen the helix by preventing rotation around the C-N bond in 

the polypeptide backbone.

1.3.3- Fibrilloaenesis

As well as the assembly of collagen monomers to form a triple helical collagen 

molecule, collagen is polymerised extracellularly into fibrils. The formation of 

fibrils is initiated by the removal of both the C and N terminal pro-peptides 
(discussed above), which allows the collagen molecules to align. The fibrils 

are generated as the collagen molecules self-assemble side by side in a 

quarter-stagger array, and have a wide range of diameters (10-300 nm). Once 

formed, the fibrils are stabilised by inter- and intra- molecular bonding. The 

fibrils can then associate to form fibres, which further associate into fibre 
bundles. When viewed under the electron microscope the fibrils have a 

striated appearance which can be explained by the "quarter stagger " 

arrangement of the collagen molecules (Fig 1.8).

Thus by arrangement of collagen molecules, large bundles of collagen fibres 

can be formed which are unique, stable and in the case of type I and type III 

collagen have a high tensile strength.

1.3.4- Commercial processing of collagen

Animal skins contain up to 85% collagen, thus by-products from tanneries can 
be used as a commercial source of fibrous collagen. In leather production the 

top layer of cow hide (the epidermis and upper dermis) is removed to be 

processed into leather, the lower half of the hide (the corium) can then be 

used as the starting material for fibrous collagen production.
Many different processes are carried out to extract collagen from hide in forms 

suitable for its use as a raw material from a mass of insoluble hide. The first 
step is dehairing of the hide, which is done under alkaline conditions. 

Following this, the corium is defatted and any residual pieces of flesh are
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removed by liming, this process deaminates the glutamine and the asparagine 
residues (effectively reducing the lEP from over 9 to below 5), and breaks 

some of the cross-links. The cleaned and limed hides can then be buffered to 

a pH value close to the lEP, and chopped and homogenised to yield a 

dispersion of collagen fibres. Since this process does not denature the 

collagen, materials produced from the fibres can retain a high tensile strength. 
Other methods can be used to "clean" the collagen as a fibrous industrial 

product including salt and enzyme washing, but the liming process is perhaps 

the predominant method in use today. The resulting high tensile strength of 

the collagen and the fact that it can be reconstituted into a number of physical 

forms such as films, tubes, sponges and powders has led to its use in an 

number of industries including medical practice (Chvapil 1973, Leipivert et al 

1985).

1.3.5- Soluble collagen
There are several methods of isolating soluble collagen which are commonly 

used. The method of choice depends on what the collagen will be used for, 

e.g. to study fibrillogenesis, acid solubilised collagen is most commonly used. 
However, to prepare collagen for use as an emulsifier, large yields are more 

important, hence, pepsin solubilisation of cow hide is commonly used.

1.3.6- PrQ-collaqen

As outlined above, collagen is synthesised as a triple helical pro-collagen 

molecule. Cleavage of the non-helical amino and carboxyl terminals produces 
a collagen molecule that rapidly polymerises to form collagen fibrils. The fibrils 

are stabilised by covalent cross-links which render the collagen molecules 

insoluble.
It is possible to isolate small amounts of pro-collagen from collagen containing 

tissue. However, type I and III pro-collagen molecules are processed to
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collagen rapidly and so only exist in very small concentrations, particularly in 
mature animals. The preferred tissue for pro-collagen isolation is foetal skin or 
placenta. Simple washing of the tissue in Tris buffered saline in the presence 
of protease inhibitors will extract pro-collagen in a soluble form.

1.3.7-Neutral and Acid soluble collagen

A mixture of covalent cross-links have been shown to stabilise collagen fibrils 

through a combination of inter and intra molecular cross-links. Soluble 

collagen can be isolated from tissues that contain only an aldimine-acid labile 

intermolecular linkage by extraction with 0.5M acetic acid. Foetal calf skin or 

placenta have the highest percentage of this type of fibril, however, small 

amounts can be isolated from the tendons of young animals. Acid solubilised 

collagen obtained in this way is predominately type I, but is 15 amino acids 

shorter than native type I due to cleavage of an acid labile bond in the C- 

terminal non-helical region. Collagen prepared in this manner was used 

extensively as a model for studying fibrillogenesis (Na 1988).

1.3.8-Pepsin soluble collagen
Collagen can be extracted from most connective tissue (including mature 

hide) by treatment with pepsin. The source tissue is cut into small cubes and 

suspended in 0.5M acetic acid, with pepsin, usually in a ratio of 1:10 enzyme: 

substrate, and allowed to digest at 4 °C. Residual insoluble collagen can be 
removed by centrifugation, and the resulting soluble collagen can be purified 

by salt precipitation and resuspension. The pepsin does not cleave the triple 

helix but digests the non-helical cross-linking domain thereby liberating the 
whole triple helix as a soluble entity. As a result the collagen which is obtained 

lacks the non-helical region and so has a slightly shorter chain length than 
native collagen. The collagen obtained in this way is heterogeneous since the
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covalent cross-links that stabilise the molecule are intact, this is illustrated in 
Fig 1.9.

1.4-The nature of protein polysaccharide interactions
In order to understand protein/polysaccharide interactions, it is important to be 

able to determine how the macromolecules associate with one another. There 

are several types of interaction possible between macromolecules, and these 
can be divided into five categories, discussed below.

1.4.1 - Electrostatic interaction

Most of the work carried out on protein polysaccharide (pr-p) interactions has 

been concerned with electrostatic interactions. This is because the insoluble 

nature of the protein anionic polysaccharide (pr-ap) complexes makes their 

detection easier.

At pH values below the isoelectric point (lEP) of a protein, the protein and an 

anionic polysaccharide will carry opposite net charges. Therefore it is 

apparent that a protein and polysaccharide interacting under these conditions 

is simply a case of two polyions of opposite charge interacting. At a pH below 

the lEP of the protein, insoluble complexes can be formed even at very low 

concentrations e.g. 10 pg/ml (Tolstoguzov 1986), provided that the ionic 

strength of the mixture is sufficiently low (generally less than 0.1-0.2)

When proteins and anionic polysaccharides are mixed at an ionic strength 
which prevents the formation of insoluble complexes, the solution divides into 

two phases: one phase contains a high concentration of the two reagents, and 

this has been termed the coacervate phase. The second phase is a dilute 
solution of the two reagents which is called the equilibrium liquid. The 

pioneering studies on this phenomenon were carried out in the early 20 th 

century on the Interactions of gelatin and gum arabic (Tiebacks 1910) and 

later by Bungeberg de Jong(1938).
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As well as complex coacervation, much attention has been paid to soluble pr- 
ap complexes, which can form between opposite or similarly charged 

macromolecules, where the complexes remain soluble indefinitely.
The process of electrostatic complex formation can be considered at the 

molecular level, as a gradual attachment of protein chains to a polyanionic 

polysaccharide chain. In this manner the protein acts as a ligand and the 

polysaccharide is the nucleus of the complex. In this way as each successive 

ligand is attached, the net charge on the polysaccharide decreases 

(Wajermann et al 1972, Tolstoguzov and Wajermann 1975). Therefore the 

final charge on the pr-ap complex will depend on the folding of the protein and 

the availability of the charged groups.
For proteins that have a disordered conformation (e.g. gelatin or an unfolded 

globular protein), the composition of the complex coacervate phase, formed 

with the anionic polysaccharide is electrically neutral. This is because all the 

polar amino acid residues will be exposed on the protein, and the polypeptide 

chain will be flexible enough to allow interaction with the polysaccharide. In 

this manner the ratio of the charges carried by the macromolecules will 

determine the protein/ polysaccharide ratio in the complex.
Insoluble complexes of globular proteins with anionic polysaccharides 

generally contain an excess of protein and therefore possess a net positive 

charge at a low pH. In contrast, soluble complexes of globular proteins with 

anionic polysaccharides are generally far from being saturated and so have a 

net negative charge.
Polysaccharides with carboxyl groups are incapable of complexing with 

proteins above the protein lEP, due to the net negative charge on the protein. 
The forces of repulsion between the macromolecules are therefore greater 

than the forces of attraction. Sulphated polysaccharides on the other hand are 
capable of interacting above the lEP. This is because they have a higher 
charge density and so they form weaker, soiubie complexes. An example of

14



this is the interaction between serum albumin and dextran sulphate, where the 
complex formed can remain in solution up to pH 8.5 even though the serum 
albumin lEP is 5-5.3 (Noguchi 1960 ¡Thomson and M^Kernan 1961).
As discussed earlier protein-polysaccharide interactions illustrate only one 

case of an interaction between oppositely charged macromolecules in 

solution. This area of interactions has been reviewed by Zezin and 

Rogatsheva (1973), and Bektrov and Bimedina (1977). However mixtures of 

proteins and polysaccharides show some unusual properties, such as the 

non-equilibrium nature of Pr-ap complexes (Gurov ef a/ 1977), which are 

discussed below.
The structure and properties of soluble complexes have been investigated by 
Gurov and his colleagues (1974, 1978 and 1981). The non-equilibrium nature 
of the complexes was shown by the dependence of the solubility, and other 

properties of the complexes, on the physical conditions during formation. This 

is illustrated in Figure 1.10.
If a protein and anionic polysaccharide are mixed below the protein lEP, then 

an insoluble complex is formed (point A). This insoluble complex is called a 
mixing complex (M complex). If the same solutions are mixed at a pH above 

the protein lEP (point B) and then the pH is lowered by dialysis, a soluble 

complex called a titration complex (T-complex) is formed (point C). A similar 

effect can be achieved by changing the ionic strength of the solution. It is 

apparent that by mixing the same protein and polysaccharide at the same 

pr/ap ratio, but under different physical conditions, complexes which differ in 

their physical characteristics can be formed.
Surprisingly the two types of complex are very stable, since both T and M- 

complexes can be stored for months without precipitation or dissolving, 

respectively.
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Figure 1.10 Schematic diagram of an acid base titration of a 
mixture of protein and dextran sulphate solution



1 ■4.2-HvdrQQen bonding.

Hydrogen bonds can be formed between uncharged molecules as well as 
charged ones. In a hydrogen bond, a hydrogen atom is shared by two other 

atoms. The atom to which the hydrogen is more tightly linked is called the 

hydrogen donor, whilst the other atom is the hydrogen acceptor. The donor in 
a hydrogen bond in a biological system is either an oxygen or a nitrogen atom 

that has a covalently attached hydrogen atom. The acceptor is either oxygen 

or nitrogen
Although there is much documented evidence of both inter- and intra­

molecular hydrogen bonding in proteins and also between polysaccharides, 

there is considerably less information on bonding between proteins and 

polysaccharides.
In theory there is no reason why proteins should not be capable of hydrogen 

bonding to polysaccharides, assuming that steric positioning of the molecules 

is such that the two macromolecular chains can come into close contact. 
Within the extracellular matrix hydrogen bonding of the GAGs to collagen 

cannot be ruled out, but any investigations into this have been largely 

inconclusive.

One example where protein-polysaccharide hydrogen bonding has been 

indicated is the interaction between casein and locust bean gum (LBG). 

Locust bean gum is a galactomannan, i.e. it has a linear polymeric backbone 

of 0 1-4 linked mannose units, which are substituted with single galactose 
units (section 1.2.2). The areas of the backbone which are unsubstituted are 

called 'smooth' regions, whilst those with galactose branches are called 'hsüry' 

region. If milk is heat-treated the protein casein is denatured and self- 

aggregates to produce small protein bodies; addition of LBG to the milk can 
prevent this aggregation. The proposed model to explain this effect is shown 

in Figure 1.11. It was suggested that the casein interacts with the LBG 

through hydrogen bonding with the galactose residues of the LBG; the areas
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of the mannose backbone which are substituted with galactose. However, it is 
also possible that simple entanglement is occurring (unpublished results B. 

Jud, Unipectin Industries Ltd)
There are also instances of more specific interactions between proteins and 
polysaccharides, for instance in the immune system: where the binding of an 

antibody to a polysaccharide antigen is by a combination of electrostatic and 

hydrogen bonding.
A second example of highly specific hydrogen bonding is in enzyme-substrata 

specificity, when a polysaccharide-degrading enzyme comes into contact with 

its substrate. The precise recognition of the substrate is facilitated by a 

combination of non-covalent bonds, these are usually a mixture of hydrogen 

and ionic bonding. In this way a substrate is not only delivered to the active 

site of the enzyme, but through hydrogen bonding is orientated in the precise 

position necessary for the catalysis to occur. Several examples of this type of 
interaction have been reported by workers studying enzymes that act upon 

polysaccharides; these include lysozyme, hexokinase and taka-amylase. In 

the case of lysozyme there are a total of six hydrogen bonds distributed 

between three enzyme sub-binding sites and three acetyl glucosamine 

residues (Clarke and Wilson 1988), whilst the interaction of arabinose binding 

protein with arabinose is facilitated by 10 hydrogen bonds (Quinocho 1986). 

This subject has been reviewed recently (Sharon and Lis 1990) and will not 

be discussed in detail in this thesis

1.4.3-Covalent bonding
In the extracellular matrix of animals QAGs, with the exception of hyaluronic 

acid, are covalently attached to a protein core to form proteoglycan (Brandt 

1981). Of the proteoglycans, the most studied and best characterised are 
those present in cartilage, particularly chondroitin sulphate proteoglycan.
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Cartilage proteoglycans consist of a central core protein with up to 80 GAGs; 
which are covalently linked to serine residues of the protein (see section 1.6). 

As well as being bound to protein cores, there is evidence that GAGs are 
covalently linked to collagen. One example that has been well defined is the 
covalent attachment of GAGs to type IX collagen (McCormick eta! 1987).

The covalent attachment of heparin, a GAG, to proteins has been investigated 
as a mechanism of retaining GAG molecules in prosthetic devices. Narrow 

diameter vascular prostheses made of collagen should have a uthrombogenic 

surface. This has been achieved by incubation of the device in a solution of 

heparin (Rubin and Stenzel, 1969), however, it was feared that the ionic 

interaction would allow the GAG to leach into the blood stream. Raghunath et 

al (1983) have shown that the heparin can be cross-linked to the collagen, by 

carbodiimide, to 'lock' it into the prosthesis.
In food systems it would often be advantageous to link a protein covalently to 

a polysaccharide in order to stabilise the complex over a wide range of 

conditions. An example of this Is in the production of ice cream. When 

alginate is treated with propylene oxide at 70-85 C, propylene glycol alginate 

is produced: if the pH is then raised in the presence of gelatin the two become 

covalently linked via a lysine group (conference presentation G. Stainsby, 

Proctor Department of Food Science, University of Leeds). This produces an 

emulsifying agent that is very stable and resists 'creaming' (coalescence of 

the oil droplets).
A second example of the importance of covalently bound protein/ 

polysaccharide complexes is illustrated with the naturally occurring 

biopolymer gum arable. This is a hetereopolymeric substance consisting of 

galactose, arabinose, rhamose and glucuronic acid residues. In addition there 

is a small amount of protein present which forms an integral part of the 
structure (Vandevelde and Fenyo 1985). This complex is one of the world's 
most commonly used gums in the food industry, owing to its excellent ability
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to thicken and stabilise emulsions. Despite this, its mode of action is not 

understood but is thought to be due to the mixture of protein and 
polysaccharide.

1 ■4.4-Hydrophobic and Van Per Waals Forces

Although polysaccharides are by nature hydrophilic molecules, the steric 
positioning of the hydroxyl groups due to the carbon ring can lead to 

hydrophobic patches on the surface of the sugar (Lemieux 1988). It has been 

suggested that these hydrophobic areas could form contacts with hydrophobic 

regions of proteins, possibly by stacking between aromatic rings of tyrosine 

and tryptophan amino acids.
Van der Waals forces are the attractive forces between atoms other than 

those due to hydrogen or ionic bonding. It has been reported that in the 

interaction between lysozyme and its substrate there are 141 van der Waals 

contacts (Clarke and Wilson 1988).
Although both of these types of interaction are possible between many 

polysaccharides and proteins, there are very few documented cases due to 

the lack of information on the complexes which is required to establish the 

nature of these contacts.

1.4.5-Phvsical entanglement

When long chain polymers are placed in a dilute solution they will rotate freely 

with only minimal interactions with other molecules, (Fig 1.12a). However, as 
the concentration of the polymers increases, a point will be reached where the 

number of molecules is such that they will be forced to interpenetrate, or 

‘'entangle" due to the volume constraints (Fig 1.12b). The concentration at 
which the polymer chains interact is called the coil overlap concentration 
(Qidley and Robinson 1990). Although, in theory, there will be a single 

concentration of interaction, effects appear gradually with increasing
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concentration. At concentrations above the coil overlap, viscosity increases 
more rapidly as the polymer chains are forced to interact to a greater extent 
This area of physical interpenetration is termed the semi-dilute region. A 

logarithmic plot of specific viscosity/concentration against relative 

viscosity/concentration can be extrapolated to zero to determine the intrinsic 

viscosity of a solution. A second graph of log specific viscosity against log 

intrinsic viscosity x concentration provides a linear plot. The theoretical 

gradient of this slope can be calculated (De Gennes 1979) and compared to 

the measured value.
If both are similar, then only a physical entanglement of the polymers is 

occurring. If, on the other hand, the two values are significantly different, then 

the increase in viscosity can be attributed to more specific polymer 

interactions such as hydrogen bonding or electrostatic interactions described 

earlier.

1 fi-Thfl interaction of collagen with Qlvcosaminoolvcans 
Many methods have been used in an attempt to understand the interactions of 

collagen and GAGs These have included electrophoresis (Mathews 1965), 

affinity chromatography (Obrink and Wasteson 1971), precipitation (Toole and 

Lowther 1968), light scattering (Mathews and Decker 1968), circular dichroism 
(Gelman and Blackwell 1974), equilibrium binding (Obrink et a/1975) and 

agglutination of collagen coated erythrocytes (Conochie ef a/1975).
Initial investigations demonstrated that the GAG/collagen interactions were at 

least partially electrostatic in nature since raising the ionic strength prevented 

association. This meant that any hydrogen bonding that may have been 

occurring was not sufficient to cause complex formation. The strength of 
binding was also shown to bo dependent on the length of the polysaccharide 

chain and also its linear charge density (Mathews 1965) (Obrink and 

Wasteson 1971). Frannson (1970) showed by binding studios that QAQs
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containing iduronic acid interacted more strongly than those with glucuronic 
acid. This suggests that the shape of the GAG, as well as the charge upon it, 

is important in the interaction with collagen
Typical binding ratios for GAG/collagen complexes are 2:1,4:1, and 5:1 for 

chondroitin sulphate, depending on the size of GAG used in the study (Obrink 

and Surdelof 1973).
GAGs are capable of binding many more than one collagen molecule as can 

be demonstrated by mixing soluble collagen and GAGs which results in 

precipitation. Both the collagen and the GAGs are long chain repeating 

structures and therefore a number of interaction sites would be expected. 
However, the potential number of sites available for interaction is relatively 

small when one considers that only 8% of the collagen molecule is composed 
of polar amino acids. In addition, these tend to be found clustered together in 
small groups on the collagen molecule. Therefore the actual number of sites 

that a polyanion can bind to a collagen molecule is significantly reduced. 

Another consideration is that in vivo these interactions occur at physiological 

pH, which is above the isoelectric point of collagen and so the number of 

positive charges on the collagen will be further reduced. As a consequence a 

GAG chain may have to align itself parallel to a collagen molecule, or coil 

around it, in order to interact at enough sites to stabilise the complex 

(Mathews 1965).
The theory of GAGs having to align or entwine, may explain why GAGs that 
have iduronic acid bind more strongly to collagen than their glucuronic 

counterparts. Perhaps the iduronic acid with its sterically different structure is 

capable of aligning more closely to the triple helix. Interestingly similar results 
have been observed by groups studying the binding of lipoproteins, and factor 

4 to GAGs (Iverlus 1972), In each of these cases it was found that Dermatan 
sulphate (DS) proteoglycan showed tighter binding than the Chondroitin 
sulphate proteoglycan (CS-PG). No obvious explanation could be given for
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this since both molecules have a similar charge density. This recurring 
phenomenon highlights the need for information regarding the spatial 
arrangement of charged groups on polysaccharides. The possibility of the 
GAGs having to entwine also provides an explanation as to why long chain 

GAGs bind more tightly, since they would be capable of interacting with more 

binding sites on the collagen.

1 .e-Interaction with proteoalvcan
In general GAGs do not occur as free chains in vivo, but exist covalently 
bound to a protein with many GAG chains bound to a single protein core. In 

these complexes the protein is the smallest proportion of the complex, 

typically accounting for 5-15%. The protein cores of these complexes are very 
diverse but can in general be divided into three classes determined by their 

morphology, i.e. small, large and very large.
The salient physical features of the proteoglycans have been determined by 
rotary shadowing electron microscopy (Wiedmann et al 1984). Schematic 

diagrams of each of these classes are shown in Fig 1.13.
It was suggested that if free GAG chains were capable of binding to soluble 

collagen, then the proteoglycan molecules which contain many more GAG 

units should be capable of binding several collagen molecules, leading to high 

molecular weight aggregates. This was indeed shown to bo the case by 

Mathews (1965).

1 7.Thfl ftffnrt of proteoalvcan binding on collagen in dftVfllQPmflnl and 

fibrilloqenesis
The structural features exhibited by the wide variety of tissues in which 
collagen is the major component stem from the way that the collagen 
molecules arrange themselves within the tissues. The 'Interstitial' collagens 

(types 1,11 and III) form fibres by parallel alignment of collagen molecules
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Figure 1.13 Diagrammatic illustration of the appearence of (A) the small. (B) the 

large, and (C) the very large proteoglycans when viewed by rotary shadowing.



during fibrillogenesis. In tendon the collagen forms large diameter fibres all 
aligned in the same direction. This provides unidirectional strength to allow 
muscle attachment and the transmisson of energy and movement to the bone. 
In skin however the fibres are much smaller and are arranged randomly to 

provide strength in all directions. In development it is the processes which 

control this fibrillogenesis that ultimately determine the form that collagen will 

take in the fully developed tissue. It has been suggested by many authors that 
GAGs and proteoglycans are responsible for controlling collagen fibril growth, 

(Toole and Lowther 1968, Lowther et al 1970, Mathews and Decker 1968, 

and Obrink 1973a).
Much of the original work carried out on this subject was invalidated due to 
the heterogeneous nature of the two species being studied. Sajdera and 
Hascall's (1969) work on proteoglycan isolation and that of Miller (1971) on 

collagen other than type I were considerable breakthroughs in that they 

founded methods for separating heterogeneous preparations of the 
macromolecules. Work since has shown that chondroitin sulphate (CS) and 

keratan sulphate (KS) have little effect on fibrillogenesis (Snowdon and 

Swann 1980, Oegona e fa /1975 and Obrink 1973a).
Hyaluronic acid was shown to accelerate fibre formation (Obrink 1973a) and 

initially this was thought to bo an exclusion volume effect. Where the collagen 
molecules can not move close to the large bulky HA chains and are effectively 

concentrated into a smaller volume. However neither CS or KS showed a 
similar effect oven at a higher concentration. It is more likely therefore, that a 

more subtle and specific interaction is occurring
In general GAGs which Interact strongly with collagen at low temperatures 

(i.e. dermatan sulphate, heparan sulphate (Obrink 1973a) and heparin (Obrink 

1973b) were shown to acceierate the initial step in fibiillogenesis. 
Proteoglycans do not behave according to the simpie scheme above, and in 
the case of CS -proteoglycan, although having no effect on fibrillogenesis
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(Snowdon and Swann 1980, Obrink 1973a) or even slowing it down (Obrink 
1973b; Lowther and Natarajan 1972), the CS-proteoglycan (CS-PG) was 
incorporated into the collagen fibrils. This contrasts with free CS where the 

polysaccharide was not incorporated.
In embryonic tissue collagen fibrils grow in an environment rich in hyaluronic 

acid and PG (Scott et al 1981, Toole 1982). Fibril development occurs in two 

phases: the first is where the fibrils remain thin and any newly synthesised 
collagen tends to be laid down in the form of new fibrils. This is followed by a 

second phase where the fibrils increase in diameter due to fibril fusion and 

aggregation of new molecules of collagen (Wood and Keech 1960). It was 

observed that phase two coincided with the decline in the 

proteoglycan/collagen ratio, apparently due to the decline in the amount of 

CS-PG being produced. Therefore phase two may be dependent on low 
levels of CS-PG. CS-PG has been reported to be associated with collagen 

fibrils in several tissues (Scott 1980) and it is possible that the binding of CS 

to the fibres restricts their growth. It is possible that once the level of CS-PG 
has dropped to a critical level larger fibrils can begin to form by the 
displacement of the CS-PG with newly synthesised collagen molecules. Thus 

by affecting the fibril size, proteoglycans can alter the physical characteristics 
of the collagen. This indicates that collagen-polysaccharide interactions are 

very important in development and may be an important force in the direction 

of the major and subtle differences in connective tissue structure and function

1 a-Food systems
Since the interaction of proteins and polysaccharides have led to such a wide 
range of rheologies In vivo, it is not surprising than food scientists have 

attempted to exploit such interactions in food systems. Many food products 
use protein polysaccharide interactions to control the texture, mouth-feel, 

stability and taste of many processed foods. The major difference between

24



studying processsd food systoms and in vivo systems, is that in many cases 
food systems are simpler, contain fewer components and are fabricated by 

man.
Proteins are commonly used as functional components in food systems in two 

main areas: as emulsifiers for oil-in-water or water-in-oil emulsions, where 

their surface active properties are critical, and as gelling agents, relying on 

lattice networks or fibres. In both respects gelatin (denatured and partially 
degraded collagen) is widely used. Polysaccharides are not generally surface 

active but can give rise to high viscosity solutions and gels (such as those 

formed with alginates) which are used to modify the physical properties of 
food. However, when proteins and polysaccharides are added in combination, 

interactions may occur which effect the functionality of the mixture. This 
change in functionality can often be exploited to produce foods with novel 

physical properties.
Two areas in food production where protein polysaccharide interactions have 

been utilised are in the production of emulsions and whipping agents. Bovine 
serum albumin (BSA) is used as an emulsifying agent. It has been reported 

that the binding of the polysaccharide dextran to BSA modifies the surface 

active properties and the emulsifying activity of the protein (Gurov and 

Tolstoguzov1988). It has been shown that a given quantity of oil can be 
emulsified by using much smaller amounts of protein-polysaccharide 

complexed than protein alone. Similar results have been published for a 

variety of mixed food systems, for instance corn oil-ln-water emulsions have 

greater stability and less tendency to cream and coalesce when prepared 
using casein-pectin complexes rather than casein alone. This is thought to be 

due to precipitation of casein-pectin complexes and the subsequent 
absorption of the complexes onto the surface of the oil/water interface, 
leading to an encapsulation and stabilisation of the oil droplets (Tokaev of a/ 

1987).
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The stabilisation of foams by the protective adsorption of protein- 
polysaccharide complexes at the interface between air and water has also 

been investigated in order to enhance the encapsulation of air bubbles. It has 
been shown that the foaming properties of proteins can be greatly improved 
by interaction with anionic polysaccharides (Poole et al 1984) or cationic 
polysaccharides (Poole 1988). Interactions between gelatin and anionic 

polysaccharides (AP) below the lEP of gelatin are known to produce foam 

structures, which are used extensively in mousse products. The precise 

method of interaction has not been determined, however it is thought that the 
gelatin-AP complex has advantages in terms of texture, compared with gelatin 

alone. The polysaccharides which have successfully been used in this regard 

are carrageenan, alginates, pectins and carboxymethyl cellulose.
As well as using protein polysaccharide complexes to alter the functionality of 

a food system, there are many reported cases of using the complexes as a 

food source, or to replace another ingredient, such as fat, within a food. A 

typical example of this is described by Wen-sherng and his colleagues (1989) 

who mixed protein and polysaccharide to form complexes which were then 

homogenised. The homogenised dispersion of the complex had a fat-like 

texture and was suitable as a fat substitute in food products such as ice 

cream, salad dressing, dips, spreads and sauces. In a case such as this (and 

many similar cases In the food industry) the designed functionality can bo 
achieved with a range of protein and polysaccharides components, for 

instance polysaccharides with poly-carboxylic acid or sulphate groups, such 

as CMC, pectin, alginates, gellan, xanthan gum and carrageenan, whilst the 

protein source can be vegetable or animal, such as soy protein, casein, egg 
protein, peanut protein, cottonseed protein, sunflower protein or pea protein 

or. Indeed a mixture of these. The chosen polysaccharide and protein source 
are then blended together at a pH below the 1ER of the protein, until Insoluble
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complexes form. The complexes are then simply homogenised until a smooth 

creamy texture is achieved.
The fibrous nature of some protein-polysaccharide complexes has been 
exploited in several areas of the food industry, for instance to produce fibres 

that resemble torn meat fragments in both texture and appearance (Okada 
1989). The fibres are formed from an insoluble complex of alginate and a heat 

coagulable protein such as soy protein, or egg albumin. The precipitated 

fibres can be formed by mixing soluble sodium alginate with the protein, and 
introducing a calcium salt. Co-precipitation of calcium alginate-protein 

complexes occurs giving an insoluble protein-polysaccharide complex. This 

material can then be flavoured, cooked and compressed to yield meat 

analogues such as 'crab sticks'.
Many food related patents involving protein-polysaccharide interactions are 

non-specific with respect to the precise protein source used, since, as long as 

the protein is food approved and imparls the correct functionality, the only 

other consideration is the cost. In some cases however, more specific 

interactions are used, such as in meat reconstitution. Once the prime cuts of 
meat have been taken from an animal carcass, some off-cuts that are left are 

still good quality meat but are lacking texture. Several methods have been 
proposed to eliminate this area of wastage, by reconstituting the meat into 

large pieces.
One such system involving protein-polysaccharide interactions uses alginates 

(Richardson 1988). Alginate is mixed with 80% good quality meat off cuts and 

20% fat, with calcium ions added to form a gel. This method has been shown 

to work for lamb, beef, pork and chicken. Although gelling of the alginate is an 

important stop, it is also necessary to allow the alginate to bind to the meat 
proteins before it gels, to achieve the desired texture. This illustrates that 
polysaccharides are capable of interaction with insoluble protein, such as the 

muscle fibres in meat, as well as soluble protein.
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analogues such as 'crab sticks'.
Many food related patents involving protein-polysaccharide interactions are 

non-specific with respect to the precise protein source used, since, as long as 

the protein is food approved and imparts the correct functionality, the only 

other consideration is the cost. In some cases however, more specific 

interactions are used, such as in meat reconstitution. Once the prime cuts of 
meat have been taken from an animal carcass, some off-cuts that are left are 

still good quality meat but are lacking texture. Several methods have been 

proposed to eliminate this area of wastage, by reconstituting the meat into 

large pieces.
One such system involving protein-polysaccharide interactions uses alginates 

(Richardson 1988). Alginate is mixed with 80% good quality meat off cuts and 

20% fat, with calcium ions added to form a gel. This method has been shown 

to work for lamb, beef, pork and chicken. Although gelling of the alginate is an 

important step, it is also necessary to allow the alginate to bind to the meat 
proteins before it gels, to achieve the desired texture. This illustrates that 

polysaccharides are capable of Interaction with Insoluble protein, such as the 

muscle fibres in meat, as well as soluble protein.
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Cold desserts are a further area of food production where protein and 
polysaccharides are utilised. Many cold desserts are made from gelled milk 

products. In the majority of these cases the polysaccharide used is 
carrageenan, a linear sulphated polysaccharide, which interacts with milk 

proteins. Interestingly the amount of carrageenan required to gel milk was 

found to be only 20% of that needed to gel the equivalent amount of water 
(Personal communication: Jens Roesen). This can be explained by the fact 

that carrageenan interacts with casein in milk. In order for gelling to occur in a 

system, linear polymers must associate. In water, carrageenan chains will 

interact to form junction zones which consist of two molecules intertwined in a 

double helix (Rees 1972), once a sufficient number of zones have formed 

gelation will occur. The same is also true in milk. However, because casein is 
capable of forming junction zones with carrageenan, the number of junction 
zones is increased through casein-carrageenan interaction. This results in a 

lower concentration of carrageenan being necessary to form sufficient junction 

zones, and cause gelation. A diagram of kappa-casein and carrageenan 
chains interacting is shown in Figure 1.14. A synergistic effect on gelling, such 

as that observed with carrageenan and casein, is what has led to protein- 

polysaccharide systems becoming so popular in the food industry. Often a gel 

can be formed that requires very small amounts of solid; this is more 

economical in the use of raw materials and can improve the palatability of the 

product.

1 9-Methods of investigating protein anionic polysaccharides interactions

1.9.1-C ircular dlchrolam

Optically active compounds are capable of rotating plane polarised light. 

Optical rotatory dispersion, measures how much polarised light is rotated on 
passing through a solution. Circular dichroism Is based on a similar principle; 
however Instead of measuring rotation of polarised light, the difference In the
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Figure 1.14 Diagramatic interaction of can^igeenan polymers with 
(X casein at the Interface of an emulsion particle In milk



absorption of left and right polarised light is measured at different 

wavelengths.
In protein molecules many of the carbon atoms along the polypeptide 
backbone are optically active The precise spectra obtained from CD depends 
on the spatial arrangement of these atoms in relation to one another, in this 

manner any change in protein structure will involve the rotation of bond 

angles, and a resultant change in the CD spectra. CD is therefore capable of 
determining changes in secondary and tertiary structure. Collagen is a 

particularly good molecule to study because of its highly repetitive structure. 

Gelman and Blackwell (1974) measured CD spectra on mixtures of soluble 

collagen and polysaccharides, using the CD to detect the melting point (Tm) 

of the collagen helix, and then adding the GAGs to see if they had any effect 
on the melting point. In all cases the GAGs had the effect of raising the Tm, 

leading to the conclusion that they were stabilising the collagen molecule in 

some way.

1.9.2-PreciDitation

Work has been carried out on the precipitation of protein polysaccharide 

complexes by a number of researchers e.g. Toole and Lowther 1968: Toole 

1976: Oegema et a l . 1975). Toole used radio-labelled 35s proteoglycans and 

added them to a suspension of collagen. The resulting precipitate was 

centrifuged and the amount of radiolabel incorporated into the precipitate was 

measured. Similar investigations were carried out by Oegema et a l , but in this 

case the rate of precipitation (fibre formation) was measured as well as the 

composition of the precipitate. This method of analysis has the advantage of 
being easy to carry out, and allows the binding ratio of the protein 

polysaccharide complex to be calculated.
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1.9.3- Affinitv chromatography

Affinity chromatography was used by Greenwald et al (1975) and Obrink 
(1973a), to investigate the interaction of proteoglycans with collagen. Soluble 
collagen was covalently bound to CNBr activated sepharose 4B, which was 

placed in a chromatography column. Proteoglycans were applied to the 
column at physiological pH and ionic strength to measure any binding that 

was occurring. This technique is well understood and has the advantage that 

once the column is packed, many different polysaccharides can be applied, 

allowing a large number of samples to be screened for an interaction. By 

altering the elution conditions of the column, the range of physical conditions 

over which interactions occur can be determined.

1.9.4- ElectroDhoresis.

Interactions between polysaccharides and proteins can be detected using 

electrophoresis. This technique was popular in early studies (Mathews 1965), 

however, it has not been widely used since, due to the development of 

alternative techniques, such as chromatography, that are easier to use.

1 .gs-Viscositv
The development of more reliable and accurate viscometers has meant that 

the detection of small transient interactions, between bioploymers, is possible 
using viscometry. Simple chain entanglement as described in section 1.4.5 

can be detected using rotational viscometers. However, for smaller, but 
permanent Interactions, this method is unsuitable since the rotational 

movement of the viscometer plates destroys any delicate structure that may 

have formed. Clearly, small deformation techniques are required which 

preserve the structure of an interaction, this can be achieved by oscillatory 
movements of the viscometer plates as opposed to rotational. The theory 
behind these measurements is complex and very mathematical in nature, but
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nonetheless can provide important information on biopolymers interacting in 

solutions and gels (Gidley and Robinson 1990).

1.10 Aim of this work
The aim of this work was to investigate the interaction of a range of 
polysaccharides with collagen. Initially any interactions of interest were found 

by studying mixtures of polysaccharides and pepsin solubilised collagen in 

solution. Once characterised in solution, the interactions were then 

investigated in biomedical wound healing devices prepared from fibrous 

insoluble collagen. By using this system it was hoped to determine the effect 
of different polysaccharides, molecular distribution, degree of polymerisation 

and ion concentration on the release of the polysaccharides, from the wound 

healing devices, into solution.
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CHAPTER 2 MATERIALS AND METHODS

2.1.'PREPARATION OF BIOPOLYMERS 

P 1 1 . Fibrous collagen

Fibrous collagen was prepared from limed bovine hide that had been 

chopped, and swollen in acetic acid (obtained from Johnson and Johnson 

MBG Bellshill, Scotland). This collagen ’paste* was freeze dried in trays 25x 
500x 1000 mm. The dry collagen was then broken up by hand and passed 

through a Pfiffer mill with a 1 mm plate. During this operation the mill was kept 

below 25°C by pre-cooling the removable parts in a -18°C freezer, to reduce 

the possibility of heat dénaturation of the collagen. The resulting fibres are 

shown in Plate 1
2.1.1.2 Methvlation of fibrous collagen
Méthylation of fibrous collagen was carried out in dehydrated methanol 

containing 0.1M HCI according to the method of Wang et a! (1978). Collagen 

fibres (2g) were suspended in 21 methanol and HCI and stirred by overhead 
mechanical stirrer for 7 days. The fibres were then filtered and washed with 

pure methanol and air dried.

2.1.2. Pepsin solubilised collagen
Pepsin solubilised collagen (PSC) was prepared from limed calf hide obtained 

from Devro Limited (Moodiesburn, Scotland). The hide was cut into small 

cubes (2-3 mm) and (500g) added to 10 litres of acetic acid (0.05M). The 

cubes had a 70% moisture content and using this value, the amount of 
collagen in the hide was calculated, pepsin (Sigma chemical Co) was then 
added In a 1:50 (pepsinicollagen) ratio. The solution was then stirred at 4®C 

for 72 hours to allow digestion to occur, and the mixture was centrifuged 
(12000g for 20 minutes) to remove the undigested hide. The supernatant was 
collected and the pH raised to 7 by the addition of sodium hydroxide (10M).
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Plate 1 (a) Digital image of fibrous collagen (scale cm)

Plate 1(b) Collagen fibre visualised under phase contrast (104x magnification)



The solution was left for 24 hours to inactivate the pepsin. After this time the 

pH was lowered to 3 by the addition of glacial acetic acid. At this stage an 
assay for pepsin activity was performed to ensure that none remained 
(section 2.2.12). If measurable pepsin activity was found, the pH was again 
raised to 7 and left for further a 24 hours prior to acidification. Sodium chloride 

was then added to a final concentration of 5% and left overnight to allow 
collagen precipitation to occur. The precipitate was collected by passing the 

solution through a sieve (1 mm mesh) and further concentrated by 

centrifugation (12000 g for 10 minutes). The pellet obtained was redissolved 

overnight in 10 litres of acetic acid (0.05M). The salt precipitation step was 

then repeated and the pellet redissolved as before. The solubilised collagen 

obtained in this way was then assayed for protein (see sections 2.2.10 and 

2.2.11 ) and stored at 4°C.

2.1.3 Gelatin

Gelatin was prepared by dénaturation of fibrous collagen (prepared according 

to method 2.1.1). The dénaturation was achieved by suspending fibrous 

collagen in 0.05M acetic acid and heating to 60°C for 15 minutes. The 
suspension was then cooled to room temperature and stored at 4°C.

2.1.4. Polysaccharides

Six alginate preparations, varying in molecular size and ratio of mannuronic 
/guluronic acid (M/G) wore obtained from Protan Ltd (Drammon, Norway). The 

technical data on these samples are shown in Table 2.1. Guar and locust 
bean gum were donated by Moyhall chemicals (Krouziingon, Switzerland.). All 

the polysaccharides wore supplied In a powder form, and wore prepared as 

1% stock solutions (w/v) In deionised water unless indicated otherwise. This 
was done by adding the powder slowly to water stirred to a vortex by a 

mechanical overhead stirrer (Janke and Kunkel GMBH), to prevent
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aggregation of the particles and allow good dispersion. Any large 

aggregations were dispersed by passing the solution through a Silverston 

mixer (Chesham) for 30 seconds. The solutions were then heated to 90°C for 
1 minute to promote and standardise the development of viscosity, then 

allowed to cool to room temperature before being stored at 4°C for up to two 

weeks.

2.1.5. BiODolvmer soonoes

Collagen/alginate sponges were prepared by making the collagen fibre slurry 

and the alginate premix separately and then mixing the two. The collagen 

slurry was prepared by stirring 24.58g of collagen fibres in 5 litres of 0.05M 

acetic acid at 4°C. The mixture was then transferred to a Waring blender 
(capacity 41) and homogenised in two batches of 2.51, for 30 seconds three 

times.
The calcium alginate premix was prepared by taking 600 ml of a 1% alginate 
solution in 0.05M acetic acid, adding 300 ml of CaCl2 H2 O (3.025 g In 300 ml 

of 0.05M acetic acid). The amount of calcium added was such that 50% of the 

calcium binding sites on the alginate polymer chains were filled (based on a 

titration of sodium alginate with Ca2+ ions, personal communication Dr P. 

Watt). The calcium alginate mixture was then mixed in a Waring blender for 

15 seconds three times.
The two components were then mixed: for 10% alginate sponges 698.66g of 

collagen slurry was mixed with 51.34g of calcium alginate premix. The mixing 

was done by adding the alginate to the blender cup over a 15 second 
homogenisation. One further 15 second homogenisation was carried out 

before the mixture was placed in a vacuum chamber (Gallenkamp) to degas. 
Solutions and suspensions that required degassing were placed in a beaker 
10 times the voiume of the sample, in the vacuum oven at room temperature. 
A vacuum of not less than 1 0 * mbar was then applied (using an Edwards two
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stage pump) until no further bubbling occurred in the slurry. If upon removal 

from the oven there were still air bubbles present, the sample was returned to 
thei:hamber for a further 10 minutes
Once degassed, 600 ml of the mixture was poured into a freeze drying tray 

(500x250x35mm to a depth of 5 mm) and placed in a blast freezer (Foster) at 

- 30°C until frozen. The samples were then freeze dried.

2.1.6. BioDOlvmer Films

Biopolymer films were prepared by adding 3.6g of collagen powder to 500 ml 

of 0.05M acetic acid and mixing in a Waring blender for 30 seconds three 

times. The calcium alginate premix was prepared as for sponges (section 

2.1.5). Collagen slurry (500 ml) was homogenised in a Waring blender with 1 

g of glycerol, for 15 seconds during which 60.6 ml of the calcium alginate was 

added. The mixture was homogenised for a further 15 seconds then 
degassed. The degassed slurry was poured into plastic trays (520 x 330 x 15 

mm) to give a total solids content of 5g per tray. The trays were then placed in 

a drying cupboard and allowed to air dry at room temperature. Once dried the 

films were carefully peeled from the tray.

2.1.7. Freeze drying
Samples to be freeze-dried were frozen with a temperature probe placed in 

the sample at the side of each tray and loaded into the freeze drier (Virtis 

10001, USA). Before loading, the freeze drier shelves were chilled to -25°C. 
Over the 48hrs duration of freeze drying the shelf temperature was raised in 

10°C increments to room temperature. The process was then complete and 

the samples were removed.
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2.2. ASSAYS
2.2.1. Alginate release from collaaen-alainate composites

2.2.1.1. Extraction with stirring
To measure the amount and the rate of alginate release, a sample of sponge 
or film was taken, weighed and placed in 10 ml 0.9% saline. The sample was 

cut using a cork borer (15 mm diameter) to ensure size uniformity.

The composite sponge and saline were placed in a 15 ml sterilin container 

and shaken on a rotary shaker (120 rpm). To investigate the rate of release, 

samples of 0.25 ml were removed from the container at intervals up to 24 

hours, and replaced with the same volume of fresh saline at each time-point. 

The amount of alginate in these samples was determined using the carbazole 

uronic acid assay (section 2.2.11.1). The total amount of alginate released 

was determined by analysis of the supernatant after 24 hours.
The molecular weight distribution of the alginates released from the collagen 

alginate sponges was determined by taking three collagen alginate sponges 

weighing approximately 600 mg and placing them in a 165 ml sterilin 

container with 100 ml of 0.9% saline. The samples were shaken on an orbital 

shaker (Jankle and Kunkel) for 4, 24 and 72 hours, and at each time point the 

saline was decanted and replaced with fresh solution. The three extracts were 
dried at 35°C by rotary evaporation, and re-dissolved in 10 ml of deionised 

water. The salt was removed by 24 hour dialysis against deionised water and 

the dialysate was chromatographed on the Sepharose 4B^ column (650x22 

mm).
To extract residual insoluble alginate from the composite, it was necessary to 

remove the collagen from the insoluble collagen-alginate complexes. The 
sponges were placed in 100 ml of water and the pH adjusted to 3 by the 
addition of acetic acid. Pepsin was added (0.5% w/v, 1590 units mg*1 and the 

sponges incubated overnight at 35°C. The mixture was then heated to 60° C 
for 15 minutes, cooled to room temperature and a further 0.25g of pepsin was
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added. The sponges were then incubated at 35°C for a further 4 hours. 
Sodium hydroxide was then added to raise the pH to 8 and the solution was 

dialysed overnight against 10 litres of 0.01 M sodium hydroxide with 1 mM 
EDTA. The contents of the dialysis tubing were centrifuged (lOOOOg for 15 

minutes) and any insoluble material discarded. The supernatant was then 

dialysed against 10 litres of water for 24 hours. The contents of the tubing 
were evaporated to dryness and the residue was redissolved in 40 ml of 

deionised water. Two volumes of ethanol (at -18°C) were then added to 

precipitate the alginate, and the solution held at this temperature for 4 hours. 

The solution was again centrifuged (200g for 15 minutes) the supernatant 

discarded and the pellet redissolved in 10 ml of 0.1 M sodium sulphate prior to 

chromatography on Sepharose™ 4B.

2.2.1.2 Extraction in phosphate buffered saline
A second method was used to extract insoluble alginate from the collagen- 

alginate complex. This consisted of extraction in 0.1 M PBS containing 10 mM 

EDTA at room temperature overnight. The solution was centrifuged at 10000 

g for 10 minutes, the pellet was discarded, and the supernatant rotary 
evaporated to dryness (35°C). The residue was redissolved in 10 ml of 

deionised water, dialysed overnight against 20 litres of deionised water, and 

applied to the Sepharose™ 4B column.

2.2.1.3. Extraction bv passive diffusion
Initially it was planned to construct a wound healing model which mimicked 
the environment of a biomedical sponge placed on a wound. The 

requirements were for the sponge to be supported in contact with a limited 
volume of liquid rather than immersed in a large volume to give "sink" 

conditions. The support medium had to allow simple sampling of saline
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solution without interference with the carbazole assay for uronic acids. 

Several supports were tested but found to be unsuitable: these included 

polyurethane foam, Sepharose™ beads and polyacrylamide. Finally, glass 
beads (diameter 1 mm) were chosen since they were inert, easily separated 

from the liquid, and recyclable. The arrangement used for the model is 

illustrated in Figure 2.1.
To assess how effective the beads were in allowing passive diffusion of 

molecules, small circles of sponge were dipped in methylene blue dye and 

placed on the wound model. It was found that the dye diffused uniformly from 

the sponge. This was taken as evidence that the beads did not inhibit the 

diffusion of small molecules into the 'interstitial fluid.
To construct the wound model 7 g of glass beads were placed in a petri dish 
(diameter 90 mm), with 7 ml of saline solution (0.9%). This volume was 

sufficient to cover the beads without an excess on the surface. The sponge 

sample was then placed on top of the beads and left for 24 hours at room 

temperature. After this time the sponge was removed and the saline was 

decanted from the beads, the alginate content was determined using the 

carbazole uronic acid assay.

2.2.2. Permeability of collaaen-DoIvsaccharide films

Permeability studies were carried out on collagen polysaccharide films by 

measuring the weight of saline lost from a vessel through a film clamped over 

the opening (see Fig 2.2). A 20 ml Sterilin container was adapted to measure 
permeability by removing the centre of the lid and clamping the film over the 
mouth of the container. A 5 mm diameter hole was drilled in the bottom of the 

container through which 10 ml of saline was introduced. The initial weight was 

noted and the containers were placed on a mesh support In a sealed 
incubator and weighed at set time intervals. The Incubator was set to a 

temperature of 37°C.
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Figure 2.1 Schematic representation of the "wound healing " model

Hole for saline

-sterilin container

Figure 2.2 Cross-sectional view of the film pemneation apparatus



2.2.3. Tensile strength of sponaes and films
The tensile strength of samples was measured on a Lloyd tensile tester (500 

series). Samples were cut using a dumbell shaped die (Fig 2.3). The sample 
was then clamped in the jaws of the instrument using tissue paper to prevent 
the samples being damaged (Fig 2.4). The distance between the clamps was 

100 mm and the loading rate was 10 cm/min applied until the sample broke. 

The tensile strength of the sample was taken to be the point of maximum 

strain and was measured in Newtons.

2.2.4. Absorbance of saline by sponges.
To measure the swelling and water-binding characteristics of the sponge 

composites, samples were placed in a small volume of saline (typically 10 mg 

of sponge placed in 5 ml of saline). At regular time intervals the sponges were 

removed from the saline, excess fluid drained and the sample weighed. The 

rate and total amount of saline absorbed was then calculated and expressed 

as ml of saline per mg of sponge.

2.2.S. Rheology

2.2.5.1. Bulb Viscometrv
The relative and specific viscosities of the Protan alginates were measured on 
an Ubbelhode suspended level viscometer (Fisons). The viscometer is used 

to compare the viscosity of a solution with that of its solvent, at a constant 

temperature.
The viscometer was clamped in a water bath, half submerged in water at 

25°C. 1.5 mM phosphate buffered saline pH 7.3 was added to the viscometer 

(through tube A, Fig 2.5) and equilibrated for 10 minutes. The PBS was
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Figure 2.3 S hape and dimensions (mm) of the samples used for 
tensile testing

Figure 2.4 Cross sectional view of clamping mechanism with sample 
In place



B

Figure2.5 Ubbelhode suspended level viscometer . The solu tion being measured
Is drawn Into arm C and the time taken for the level to drop between 
points X and Y Is recorded.



sucked by pipette filler into the top bulb in tube C. The time taken for the level 
of the solution to fall from X to Y was then measured three times. Alginate 
was-added to tube A and mixed by blowing air through tube B. The solution 

was drawn into tube C and the time taken for the level to fall from line X to Y 

was recorded three times. If the average time was less than 140 seconds 
more alginate was added to the solution and the measurements repeated, 
until an average greater than 140 seconds was achieved. The concentrations 

of the alginate samples were determined by the carbazole uronic acid assay 
(Section 2.3.11.1). The formula used to calculate the molecular weight of the 

samples is that of Fermentech Limited (unpublished results, given below.)
To = average time of buffer Ti = average time of sample

c = concentration of sample (g/100 ml)

nsp= I I  *‘1
To

In nrel= In I I
To

In] =>/2 (nsp - nrei) 
c

Mwt -  Antilog logfn] +3.244
0.75

2.2.S.2. Controlled stress rheometrv
Rheology measurements were made on two controlled stress rheometers. 

The Deer rheometer was a manually adjustable cone and plate rheometer, 

the details of which are given in Table 2.2. The plate which was used in each 
case depended on the viscosity of the sample being measured. The plate was 
chosen so that the shear rate was between 1 and 50 radians/sec (1<shear 

rate<50 rad/s), since at shear rates in excess of 50 rad/sec, the sample was 
forced from between the plates. Whereas, shear rates below 1 were in the 

region of high shear thinning and were largely inconsistent and unrepeatable.
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The second Rheometer was a computer-operated controlled stress rheometer 

(Carri-Med); the cone and plate assembly used was 6 cm diameter with a 0.5 

degree angle and 12 micron gap.
The preparation of PSC and polysaccharides was carried out as described in 

section 2.1.2 and 2.1.4. The required amount of each component was 

weighed out to give a final volume of 50 ml and added to a 60 ml sterilin 

container. The container was then shaken gently by hand whilst repeatedly 

inverting for 15 seconds, and the samples were then stored overnight at 4°C. 

When applying a sample to the Deer rheometer, a defined amount of sample 
was added according to Table 2.2. This was done by spooning the sample 

onto the base plate which had been tared on a digital balance.

With the Carri-med rheometer an exact amount of sample was unnecessary, 

since approximately 1 ml was placed on the plate and, once the cone was 

positioned, the excess sample that extruded at the side was carefully 

removed with a tissue.

2.2.6. Gel electrophoresis

2.2.6.1 SDS polyacrylamide electrophoresis of collagens 

The solutions used in the preparation of SDS-PAGE are shown in Table 2.3. 

The procedure is based on a method devised by Laemmli (1970). The 
samples were prepared by mixing 1:1 (v/v) with sample buffer containing 10% 
3-mercaptoethanol. This mixture was placed in a boiling water bath for two 

minutes. Upon cooling 5% (v/v) of 1:1, 1% bromophenol b lu e /^  

mercaptoethanol was added. The components for 6 and 12 % gels are shown 

in Table 2.4. Electrophoresis was carried out at 12 mA until the bromophenol 

blue dye front was 5 mm from the bottom of the gel. The gels were stained for 
30 minutes in 0.1% Coomassie blue in 10% acetic acid/methanol and de- 

stained in 10% acetic acid overnight.
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2.2.6.2 Electrophoresis of alginates
Gels were prepared to a final concentration of 1% polyacrylamide/1 % 
agarose. The solutions used in gel preparation are given in Table 2.3 and 

Table 2.5. The agarose solution was prepared and kept in a water bath at 

4 5 °C, the acrylamide solution (minus the ammonium persulphate) was also 

heated to 4 5 °C and then added to the agarose. Finally, the ammonium 

persulphate was added and the mixture was poured between two glass 

electrophoresis plates. The gels were cast in slabs (140 x 160 mm xO.8  mm) 
and run on Hoefer scientific apparatus, at 200 volts for 1.5 hours. The 

samples were dissolved in an equal volume of sample buffer (table 2.3); 5% 

volume of 1% bromophenol blue was added and the samples were loaded 
onto the gel. The gels were stained in 1% methylene blue in 10% acetic acid 

for 10  minutes, then destained overnight in 2 0 % acetic acid

2.2.7. Gel filtration chromatography
Chromatography of alginates was performed using Sepharose 4B 

(Pharmacia) in a column (650 x 22 mm Wright, England) which was 

equilibrated with 0.1 M sodium sulphate. The void volume was determined 

using blue dextran (Sigma International) at a concentration of lOmg/ml. The 

column was calibrated with a protein mixture: amylase (200 kDa), LDH (140 
kDa), BSA (6 6  kDa), carbonic anhydrase (29 kDa) and Aprotinin (6.5 kDa). 

The six samples of Protan alginates were applied to the column in 4 ml of the 
eluting buffer (0.5 mg/ml alginate in 0 .1M Na2  SO4 ) and eluted at 50 ml/hr 

and 5 ml fractions collected.
A second column designed for semipreparative use was also packed with 
Sepharose 4B. This column (400 x 40 mm, Wright, England) was loaded with 
100 mg of alginate (20 ml at 5 mg/ml), and 5 ml fractions were collected.
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2.2.8. High Pressure Liquid Chromatography (HPLC)
2.2.8.1 Molecular weight analysis of commercial alginates
A Kontron HPLC system was used (models 450 mtz, 422, 425, 430). Two gel 
permeation columns were run in series: the first was a 10 micron 'Aqua Gel' 

(Jones Chromatography, Strathaven, Scotland) and the second a TSK gel 

GSOOpwxl (Anachem, Luton, England). The columns were eluted with 0.5N': 

NaCI at a flow rate of 1 ml min .
Calibration of the column was performed using dextrans of known molecular 

weight (Crawford Scientific, Strathaven, Scotland), with detection of the 

polysaccharide by U.V. absorbance at 210 nm.

2.2.5.2 Amino acid analysis of methylated collagen bv HPLC
The collagen (50 mg) to be analysed was added to 2 ml of 6M HCI in an 

airtight vial and hydrolysed for 16 hours at 105°C. The pH of the hydrolysate 
was corrected to pH 8-9 by the addition of 6M NaOH and the total volume was 

adjusted to 10 ml by the addition of water. 50 pi of this solution was added to 

200 pi of 0.5M lithium borate buffer pH 9.5 with lOOpI of dansyl chloride in 

acetonitrile (6 mg ml*’'). The mixture was vortexed and placed in the dark for 

24 hours at room temperature. 70% Phosphoric acid (15 pi) and 0.5M lithium 

borate buffer pH 9.5 (500 pi) were added, the sample was centrifuged at 

13000g for 5 minutes and placed in an HPLC vial for analysis.
The HPLC column used was Spherisorb ODS, 3p, (25 cm x 4.6 mm), the 

mobile phase was 86% (25mM Acetic acid + 25mM sodium dihydrogen 

orthophosphate) and 14% acetonitrile. The amino acids were eluted from the 

column and detected by UV absorbance at 254 nm.

2.2.9. Soluble collagen /polysaccharide titrations
The 1% stock solutions of sodium alginate were diluted to give 20 ml of a 2 

mg/ml alginate solution in each case. PSC was diluted with 0.05M acetic acid
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to a final concentration of 0.75 mg/ml. The pH of the alginate and the collagen 
was adjusted by the addition of acetic acid or sodium hydroxide. The 20 ml of 
alginate was placed in a 60 ml sterilin container on a magnetic stirrer. The 

solution was stirred and aliquots of 0.8 ml PSC were added. After each 

addition of collagen the solution was allowed to mix for 30 seconds prior to 

removal of 0.8 ml for analysis. When removing the sample, care was taken 

not to include any the collagen alginate precipitate that may have formed. 
Once removed, the samples for collagen analysis were centrifuged for 5 

minutes at 900g. The supernatant was removed by pipette and 500pl mixed 

1:1 with concentrated hydrochloric acid for hydrolysis and hydroxyproline 

content (section 2.2.10.1)

The alginate content of the supernatant was also assayed as follows. 
Samples were centifuged (12,900 for 5 minutes) and 2 volumes of 95% 

ethanol (cooled to -18°C) was added to each sample, followed by 
centrifugation at (12900 g for 5 min). The ethanol was then removed and the 

pellet resuspended in 0.5 ml of water for subsequent carbazole assay.

The ratio of each biopolymer in the precipitate could have been calculated on 

a w/w basis but that was not considered accurate owing to the heterogeneity 

of the alginate samples.
The stoichiometry was calculated on the basis of repeating units (r.u.) of each 

of the biopolymer chains. A repeating unit of the alginate was taken as being 

one single sugar unit with an average molecular weight of 176 Da. In the case 
of collagen the unit of repeat was taken to be one full turn of the triple helix. A 

single alpha chain has three amino acids per turn of the helix, and so in a turn 

of the triple helix there will be nine amino acids. Taking the average molecular 
weight of the amino acids to be 100, the repeat unit of the helix has a 
molecular weight of 900 Da. By using these molecular weights and the mass 

of each component in the precipitate, the molar equivalent of repeating units 

could be calculated.
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Sample calculation

(moles of collagen) repeating units = weight of collagen 

900

(moles of alginate) repeating units 2 mg
176

therefore the ratio of collagen /alginate = ru of collagen
ru of alginate

2.2.10. Protein determination assays

2.2.10.1 Hydroxyproline analysis
Collagen concentrations were estimated by hydroxyproline analysis. This was 

performed on a Bukhard auto analyser, and the reagents are shown in Table 

2 .6 .
Samples were prepared by complete acid hydrolysis: insoluble collagen 

samples were suspended in 6M HCI, and soluble samples were mixed 1:1 

with concentrated HCI. The samples were then placed in disposable screw- 

cap test tubes, sealed, and left overnight at 105°C in a heating block (Grant, 

England). Samples were neutralised by adding 3.2 ml of alkali diluent (Table 

2.6), until a salmon pink colour was achieved. If the colour of the mixture was 
not salmon pink then the pH was adjusted using 6M NaOH or 6M HCI. The 

sample was then made up to 10 ml in a volumetric flask and 1 ml of sample 

placed in the autoanalyser sample cup.
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Standard solutions were prepared by adding hydroxyproline to 0.06M HCI to 
give a stock solution of lOOpg/ml which was used to prepare standard 
solutions of 1-5pg/ml fresh each day.

The autoanalyser was allowed to run for 30 minutes or until a steady baseline 

was obtained before the samples were analysed. Samples were run at a 

sensitivity of 1.7 which was the value that caused a maximum chart recorder 
reading for a 5 pg/ml sample.

Hydroxyproline contents were calculated from a standard curve taking into 

account the sample dilutions. To convert hydroxyproline values to collagen, a 
factor of 7 was used, based on a value of 13% hydroxyproline in collagen.

2.2.10.2. Biuret protein assay
The Biuret method of soluble protein determination was used to calculate the 

concentration of collagen present in PSC. The Biuret reagent was prepared 

by dissolving NaOH (29g) in deionised water (200 ml) adding Benedicts 

solution (43 ml) and making up to 1 litre with deionised water. The PSC 

samples were diluted 1:1 with 0.05M acetic acid and centrifuged (at 12000 g 

for 10 minutes). 1 ml of the supernatant was then added to 4 ml of the Biuret 
reagent, the solution was mixed vigorously and the absorbance measured at 

550 nm. The values were measured against a 2 mg/ml purified PSC standard.

2.2.10.3 Lowry protein determination assay
The reagents used in the Lowry assay are given in table 2.7. In each case 

0.5ml of the sample to be tested was place in a test tube and 2.5 ml of 
reagent C (table 2.7) was added and left to stand for 10 minutes. 0.25 ml of 

reagent D was then added with mixing and left for 30 minutes. After this time 

the absorbance was read at 650 nm on a spectrophotometer.
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2.2.10.4. Assay for oeosin activity

The pepsin assay was used in the preparation of PSC as a final step to 
ensure that all pepsin had been inactivated to prevent the possibility of further 

digestion of the PSC upon storage. Pepsin activity was measured by the 

liberation of TCA-soluble peptides from Haemoglobin. Haemoglobin (2g) was 
dissolved in 100 ml of 0.06M HCI and filtered. 2.5 ml of haemoglobin solution 

was incubated in a water bath at 35.5°C with 0.5 ml of PSC sample or 

standard pepsin solution for 10 minutes. 5 ml of 5% TCA solution was then 

added to precipitate any polypeptides, and this precipitate was removed by 
filtration. Absorbance of the filtrate was measured at 280 nm against a blank 

of haemoglobin and water. If the PSC sample had a similar absorbance to 
that of the blank it was concluded that no pepsin activity was present.

2.2.11. Polysaccharide assays

2^J 1.1. Uronic acid detsrminaiiQn
The uronic acid assay was essentially the carbazole method of Bitter and Muir 

(1962). The two reagents were 98% sulphuric acid with 25mM di-sodium 

tetraborate and 0.125% carbazole in absolute ethanol. The assay was carried 

out by adding 1.5 ml of the sulphuric acid reagent to 0.25 ml of sample. The 

mixture was heated at 100°C for 10 minutes. The tubes were then cooled in 

ice and 50pl of carbazole reagent added. The samples were mixed and 
heated at 100°C for a further 15 minutes. After this time the tubes were cooled 

to room temperature and the absorbance measured at 530 nm. The standards 
used for this assay were alginates made up in water over the concentration 
range 0-100^g/ml. The standard curve obtained is shown in Figure 2.6.
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Figure 2.6 Standard curve of colour development versus alginate 
concentration, using the carbazole acid assay



2.2.11.2. Phenol sulphuric acid assay for total carbohydrate 
This assay is based on the formation of a chromophore with phenol after 

hydrolysis of the carbohydrate. The reagents were concentrated sulphuric 

acid and 5% (w/v) phenol in water.
200jil of sample was placed in the bottom of a clean test tube, and 1 ml of 

concentrated sulphuric acid was added without touching the side of the tube. 

The tubes were left for 5 minutes and 200pl of 5% phenol was added and 
mixed. The absorbance was measured at 490 nm. The assay was linear in 

the range 0-200 pg of glucose equivalents per ml.

2.2.12. Circular dichroism
Circular dichroism is the measure of the ability of a molecule to differentially 

absorb circularly polarised light. This ability is dependent on the molecule 

being optically active. Unfortunately, the precise structure of a molecule 

cannot be predicted from its CD spectra.since the rules for determining the 
structure are largely empirical Despite this, CD can be a powerful tool for 

measuring any change in the structure of a molecule.
Proteins often have large areas of u-helix or R sheet, these absorb left and 

right polarised light to different extents, resulting in characteristic CD spectra. 
The triple helical structure of collagen makes it particularly suitable for 

investigation by CD, since the highly repetitive helical structure gives a strong 

signal
The effects of guar and locust bean gum on the secondary structure, and the 

stability of the secondary structure, of collagen were investigated. In addition, 

the effect of pH on the secondary structure of collagen was determined. 
Samples of PSC and galactomannan gums were prepared as described 
previously (section 2 1.2 and 2 1.4) The samples were centrifuged at 15000g 
for 30 minutes, to remove any insoluble material, and dialysed against dilute
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acetic acid at the required pH, overnight. The PSC and galactomannans were 
diluted to 0.1% w/v for analysis on the Perkin Elmer CD instrument.
To -determine the effects of the galactomannans on the structure of the 
collagen, the two were mixed 10 minutes before being placed in the cell 
holders. The mixture was equilibrated to 25°C and the spectra measured from 

190 nm to 260 nm.
The samples for stability of the collagen triple helix were prepared in an 
identical manner. The cuvette of sample was equilibrated for 10 minutes 

before the spectra were measured at 220 nm and 2 °C intervals between 20 

and 42°C.
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CHAPTER 3;-RESULTS
3. COLLAGEN-POLYSACCHARIDE INTERACTIONS IN SOLUTION

3 1 Effect of dH on the viscosity of pepsin solubilised coHaaen 
Since collagen fibres swell when the pH is raised or lowered below the pi of 
the protein, it was expected that the pH of a solution of collagen would also 

determine its viscosity. In order to test this, the viscosity of a solution of PSC 
was measured at a range of pH values between 2.5 and 4.5. The viscosity 

profiles of the solution are shown in Figure 3.1.
The viscosity of the collagen decreased as the pH of the solution increased. 

The curved nature of the lines showed an inverse relationship between 
viscosity and shear stress, which is characteristic of a shear thinning solution, 

i.e. a solution which exhibits a loss of viscosity as a greater force is applied. 

When the force applied was increased above 0.6 dynes cm'2 the viscosity 

curve began to plateau and the curves approach a single value.
The collagen solution measured at pH 4 appeared to have a higher initial 

viscosity but returned to a lower value as the force applied was increased. 

Precipitation of the collagen close to the isoelectric point may have resulted in 

small masses of precipitate fouling the cone and plate arrangement at low 

shear rates leading to the apparent higher initial viscosity. This was supported 
by turbidity measurements of the collagen solutions (Table 3.1) and the fact 

that at pH 5 the sample of PSC was fully precipitated from solution. 

Measurement of the viscosity at pH 5 was not possible due to obstruction of 

the plates by the precipitate.
Since the viscosity of the collagen solutions was shown to be dependent on 
the pH, all further measurements were made at pH 3 where the viscosity is 

high and there was no detectable precipitation.
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Figure 3.1 The viscosity of PSC at ditterent pH values measured using the Deer rheometer

All viscosity measurements were performed on a 5cm piate with a 2“ angle at 25“C. The 

collagen solutions were at a concentration of 1 25mg/ml and samples were left at each shear 

stress for 30 seconds to stabilise before viscosity measurements were made The pH of the 

solutions were adjusted by adding 1M NaOH until the required value was obtained

Table 3 1 Turbidity of PSC solutions over the pH range 2-5

The absorbance measurements were performed on PSC solutions of 1 25 rrxj/ml, at 720 nm



n p V iscosity measurements of collaQen/poIvsaccharide mixtures 

Viscosity measurements of polysaccharide/collagen samples were performed 

on the Deer rheometer. Samples of the polysaccharide and collagen solutions 

alone were diluted to give the same concentration of each component as in 

the m ixture. In this way the viscosity of the mixture was expected to be the 

sum of the  viscosities of the two ind iv idua l com ponents if no interaction 

occurred.

3.2.1 Modified celluloses

Three modified celluloses were screened for an interaction with soluble 

collagen: hydroxypropyl cellulose (HPC). hydroxypropylmethyl cellulose 

(HPMC) and methylcellulose (MC). The results are shown in Figures 3.2, 3.3 

and 3.4. In all three cases the concentration of the polysaccharide was 
standardised at 0.1% because the viscosity at this concentration was so low 

that upon mixing, the contribution of the polysaccharide to the final viscosity 

would be minimal. Solutions of MC, HPMC and HPC at concentrations of 
0.1% had viscosities below 0.03 poise. In each case the mixture of PSC with 

the celluloses had a slightly lower viscosity than the PSC alone. This could be 
due to a complex forming and lowering the viscosity due to ordering of the 
system or undetectable precipitation. The difference was, however, so small 

that it was considered insignificant. At an applied torque of 20 Dynes cm*2 

there was no difference between the PSC and the mixtures with HPC.

3.2.2 Modified Starch
Modified starch was investigated since it is a highly soluble simple 
polysaccharide with a short chain length, which should reduce any interaction 
with the collagen due to entanglement. The results of the viscosity 
measurements (Fig 3.5) show very similar curves for the starch and the
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Figure 3.2 Viscosity profile of HP cellulose mixed with PSC

Figure 3.3 Viscosity profile of HPMC mixed with PSC

Figure 3.4 Viscosity profile of Mcellulose mixed with PSC



shear stress (dynes cm)

Figure 3.5 Viscosity profile of modified starch with PSC

Measurement systems and conditions are as described in Figure 3 1 The starch was 

measured at 0.1%w/v .PSC at 1,25 mg/ml. The mixture of amylogum and PSC had final 

concentrations of 1.25mg/ml PSC and 0.1% amylogum.



PSC/starch mixture. Apart from the initial readings at low shear stress, the 
curves coincide exactly, suggesting that there is no interaction between the 

twa components.

3.2.3 Galactomannans
Two galactomannans were screened for possible interactions with PSC:- guar 
gum and locust bean gum. Each had a polymannan backbone linked ^ 1-4, 

with single galactose units branched along the backbone. The structures are 
thus similar, varying only in the degree of galactose substitution, (Fig 1.6).

3.2.4 Guar Gum
Guar gum was the first galactomannan to be screened, and the viscosity 

profile is shown in Fig 3.6. Surprisingly, the curves showed that the viscosity 

of the mixture of guar and PSC was considerably greater than the sum of the 
individual components. This was unexpected since guar gum is a neutral 

polysaccharide and obviously is incapable of interacting electrostatically with 
collagen. In an attempt to confirm that an interaction did occur, a second 

experiment was carried out where aliquots of PSC were added to water or 

guar gum, with the viscosity of the resulting solution measured after each 
addition. The viscosity was then plotted against the number of additions of 

PSC (Fig 3.7). As well as showing a different initial viscosity the slope of the 

two lines was also significantly different. If no interaction was occurring then 
the addition of collagen would result in a similar viscosity change for both 

solutions. As this was not the case, it appears that an interaction or 

entanglement of the biopolymers was occurring.
The pH dependence of the interaction was investigated over a pH range of 

2.5 to 6. The results show that the viscosity of the mixtures decreased as the 
pH increased (Fig 3.8). This is most probably due to the degree of swelling of 
the collagen since it has already been shown that PSC viscosity is pH
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shear stress (dynes cm)

Figure 3.6 Viscosity of PSC and Guar gum mixtures measured at 
different shear stresses

The guar gum was measured at 0.1% w/v. and PSC at 1 25 mg/ml The mixture of PSC with 

guar had final concentrations of 0.1% guar and 1.25 mg/ml collagen. The rheology was 

performed on a Deer rheometer MS-2, at 25°C and pH3



■  w a te r 
e Guar

Figure 3.7 Titration of water ar»d guar gum with PSC

Sequential additions ol 1 2ml PSC (2 5mg/ml) wore made to a starting volume ot 20ml water 

After each addition, and thorough mixing a sample of 12 ml was withdrawn and the viscosity 

was measured at 4 47 dynes cm A similar experiment was performed adding PSC to 20 ml of 

Guar gum at a concentration of 0 2%



Figure 3.8 The effect of pH on the viscosity of PSC/Guar mixtures

All solutions had final concentrations of 0 1% Quar.1.25 mg/ml PSC. The solutions were 

adjusted to the correct pH by small additions of 5M NaOH.



dependent. The viscosity of guar gum alone was largely unaffected by the pH 

of the solution (illustrated in Fig 3.9).
Figure 3.8 shows further evidence of an interaction since, in contrast with the 
precipitation of PSC at a pH of 4.5 and above, no precipitation of collagen 

occurred when the pH was raised to 6 in the presence of guar gum. This 

would suggest that the guar gum was interacting with the PSC in a manner 

which prevented or reduced reconstitution of the collagen fibres.

3.2.5 Locust bean oum
Since there was an unexpected interaction between guar and PSC it was 
considered relevant to investigate whether a similar interaction occurred 

between PSC and LBG. which is structurally related to guar. Viscosity 
measurements were made on the Deer rheometer and the results plotted in 
Figure 3.10. The results showed that locust bean gum also caused a 

significant increase in viscosity above the predicted value.

3 3 Mechanism of interaction between Quar Qum and PSC 
Since the interaction of PSC with these neutral gums was unexpected, more 
detailed analysis was considered necessary. In order to perform this analysis 

a Carri-med controlled stress rheometer was used.
Collagen/guar gum solutions were prepared containing different proportions of 

each biopolymer. The proportions chosen ranged from 0 to 100 % in 10% 
increments. It was predicted that a plot of viscosity against concentration 

could result in three types of relationship shown in Figure 3.11. If no 
interaction occurs between the two polymers plot (a) would bo expected 
because viscosity would be proportional to the ratio of the biopolymers in the 
mixture. If however an interaction was occurring then either plot (b) or (c) 
would be expected since such an interaction would lead to either an increase 

or decrease in the viscosity of the solution.
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Figure 3 9 The effect of pH on the viscosity of guar gum solutions

The viscosity of a 0 1% soiutlon was measured , after adjustment to the correct pH by the addition 
of 5M NaOH



Figure 3.10 The viscosity of locust bean gum mixed with pepsin solubilised 
collagen, measured at 0.1% polysaccharide, 1.25mg/ml PSC. The samples 

were tested on deer rheometer measurement system, MS-2, at room 

temperature, pH3



Figure 3.11 The curves typically observed when mixing two polymers in different 
proportions and measuring the viscometry of the mixture. Plot (a) signifies no 

interaction, whilst (b) and (c) are typical of two interacting polymers.





50 dynes cm 
30 dynes cm 
ZO dynes cm

Figure 3.12 The viscosity of different mixtures of PSC/guar gum. The viscosity 
measurements of the samples were performed on a Carri-med rheometer. 

The measurment system was a 6cm plate with a 0.5° angle, and the 

measurements were made at 25°C. The viscosities were measured at three 

different shear stress values (20. 30 and 50 dynes cm-2). The solutions used 

in the sample preparation were 7.5 mg/ml guar gum, and 4,7 mg/ml PSC



50 dynes cm 
35 dynes cm 
25 dynes cm

Figure 3.13 The viscosity of high concentration mixtures of PSC and guar gum. 
The PSC and guar were both lOmg/ml w/v solutions, measurements were 

performed under the same conditions as those in Figure 3.12



was at 45% PSC where the value was 36 poise greater (59% higher than 

expected). A similar pattern was seen at 50 dynes cm-2, with the peak 
increase in viscosity again being at 45 % PSC and 22 poise. The level of 
enhancement over the predicted value in this case was found to be 55%. It 
has been shown that in each case there was an enhancement of the viscosity 
of the solutions. Although the size of the increase was different at each shear 

stress, i.e. 25 dynes cm*2>35 dynes cm-2>50 dynes cm*2 the percentage 

increase was similar in each case. The fact that the percentage increase 
remained constant whilst the actual increase became smaller with shear 

stress indicated that at higher shear stress values the peak would become 

smaller and almost undetectable.

3.4 Titrations r̂ f soluble co llagen with anioniC PQlYSaCChandS 
When dilute solutions of soluble collagen and anionic polysaccharide are 

mixed, a white fibrous precipitate forms. Using this principle, titrations of 
collagen and polysaccharide were made in order to calculate the binding 

stoichiometry of the co-precipitate, and to determine the effect of pH on 

complex formation.
The initial results showed two important practical considerations; firstly that 

the soluble collagen became insoluble above pH 4.5; (section 3.1) limiting 

titrations to the pH range 2.5-4.5.
Secondly the colorometric analysis of hydroxyproline on the autoanalyser 

varied with the pH of the sample. It was considered necessary, therefore, to 

prepare hydroxyproline standards for each pH value tested.
Once it was apparent that the amount of collagen in solution was detectable, 

and that the pH range was 2.5- 4.5. an experiment was performed to optimise 

the time of mixing between the addition of collagen and the removal of a 
sample. Times of 10. 30 and 120 seconds were tested. The samples were 
then tested by the Lowry protein determination assay (methods 2.2.10.3). The
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results (Fig 3.14) show there is no appreciable difference between the three 
mixing times. The mixing time did not therefore appear to be critical, so for 
consistency all further titrations were performed with 30 seconds mixing, prior 

to sampling.
Five different alginates were titrated with soluble collagen. Experiments to 

determine the effect of dénaturation, dénaturants and different 

polysaccharides were also performed.

.3 4.1 Alginates
Figure 3.15 shows the results of the titrations of alginate LF1040 with pepsin 

solubilised collagen at pH values 2.5-4.5. No collagen was found in the 
supernatants after the initial additions of PSC to the alginate, indicating 
complete precipitation of the collagen. After a certain point (taken to be the 
end point of the titration) collagen appeared in solution corresponding with the 

disappearance of free alginate in the supernatant. Subsequent addition of 

collagen produced a linear increase in the amount of collagen in the 
supernatant. The end points of the titration range from 5-17 additions of 
collagen depending on the pH that the two biopolymers are mixed. As the pH 

of the mixture was increased from 2.5 to 4.0 the amount of collagen required 

to saturate the alginate increased. The final pH point of 4.5 had a lower end 

point than that of the pH 4 mixture(16.1 additions compared to 17)
Using the calculation detailed (section 2.2.9), the ratios of alginate / collagen 

in the precipitates were calculated and are shown in Table 3.2.
The ratio of alginate/collagen ranged from 1 : 0.54 to 1 : 1.65. This illustrates 

a significant effect of pH on the binding stoichiometry of the two 
macromolecules. To determine what effect the properties of the alginate have 

on its ability to bind collagen, four other alginates were titrated under the 
same conditions as alginate LF1040. The characteristics of these alginates 

are shown in Chapter 2, Table 2.1.
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B 30 seconds 
•  10 seconds
B 120 seconds

F igu re  3.14 The  effect o f m ixing tim e  on  the am oun t of co llagen in so lu tio n  

d u r in g  p o lysa cch a rid e  titra tio n s . T h e  p o lysa cch a rid e  is pro tan a lg in a te  

LF 1040  titra ted  at pH 2 5



. 5

pH 2 .5  
pH 3 .0  

pH 3 .5  
pH 4 .0  
pH 4 .5

Figure 3.15 The titration of alginate (LF1040) with soluble collagen over the 

pH range 2.5-4.5. The collagen was added in 1.2 mg additions to a mixing 

solution of alginate (20mls at 0.1 mg/ ml)

Figure 3.16 The effect of pH on the alginate binding ratio of aiginate/coilagen. 

Using Protan alginate LF1040 titrated with soluble collagen



The results of the titrations were similar to those obtained for LF1040 and are 
illustrated in Figure 3.17. In each case the initial additions of collagen resulted 

in no detectable collagen in the supernatant, and a linear increase after the 

end-point.
The number of moles of repeating units of each biopolymer in the precipitate 

were calculated and are shown in Table 3.2.
When titrated at pH 2.5 each of the alginates had very similar binding ratios, 

the average being 1 ; 0.54. At pH 3.0 alginates LAM LV, SF, HF and LF120 

had almost identical ratios, however the LF1040 was approximately twice that 

of the other alginates. This was also shown to be the case at pH 3.5. At a 
mixing pH of 4.0 all five alginates showed a similar amount of collagen 

binding.
As an alternative method of determining the end point of the titration, the 

amount of alginate remaining in solution was measured (Methods 2. 2.9). The 

purpose of this was to determine if all the fractions of the alginate molecular 
weights were interacting with the collagen. It was possible that small chains of 

alginate would not be capable of interaction, and may stay in solution. The 

results obtained from the initial experiments are shown in Figure 3.18. These 

showed that alginate was removed from solution at exactly the same point as 

collagen appears. The fact that after the end point no alginate is detectable 

suggests that all the alginate chains are capable of binding to collagen. This 

analysis of alginate remaining in solution also provided a second method of 
determining the end point of the titration, since both methods give the same 

result. The alginate assay was, however, more time consuming and so the 
remaining titrations were performed using the hydroxyproline assay for 

collagen determination.
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pH 2 .5  
pH 3 .0  
pH 3 .5  
pH 4 .0

T itra tion  o f p ro tan  HF w ith  so lub le  co lla g e n

A

Titration of SF alginate with so luble collagen

B

Titration of LAM LV with soluble collagen

c D

Figure 3 17 The titration of four Protan alginates with pepsin solubilised
collagen (A) Protan HF, (B) Protan SF, (C) LAM LV, and (D) LF 
120 Over the pH range 2 5 -4 0



□  collagen pH  2 .5
•  a lg ina te  pH 2.5 
■  collagen pH 3
•  a lg ina te  pH 3

Figure 3.18 Titration of alginate LF1040 with pepsin solubilised collagen at 
pH 2.5 and 3.0



3.4.2 Hyaluronic acid
Structurally, hyaluronic acid is similar to alginate, the main difference is that 

HA-is a larger molecule (ranging from approximately 10®- 8x106 Da in 
mammalian tissues) and has a lower charge density. Titrations of HA with 

collagen were carried out to compare binding capacity with that of the 

alginates. The results are shown in Figure 3.19.
The end points ranged from 5-11 additions of collagen, which is a narrower 

range than that for the alginates. The binding ratios of HA to collagen are 

given in Table 3.3 and show that at pH 2.5 and 3.0 that the binding was very 

similar to that of the alginates. At pH 3.5, 4.0. and 4.5 the biopolymer ratio 
remains unchanged. At pH 4.0 the collagen /HA ratios were slightly lower than 

those of the corresponding collagen/alginate ratios. As in the case of alginate 

LF1040 the ratio increased from pH 2.7-4.0, and then fell at pH 4.5.

3.4.3 Carrageenan
Titrations of carrageenan were carried out to compare polysaccharides with 

carboxyl groups (such as alginate) to one containing sulphated residues 

(carrageenan). Titrations of carrageenan were carried out over the same pH 

ranges as the alginate experiments i.e. pH 2.7 -4.5. The results are presented 

in Figure 3.20 and Table 3.3. It is obvious that the range of end points was 

much narrower than with the uronic acid containing polysaccharides. As with 
alginate and HA the ratio of the polysaccharide to the collagen increased with 

pH up to 4.0, decreasing slightly at pH 4.5.

3.4.4 Titration of alginate with denatured CQllaoen
The polysaccharides used so far were considered to be long chain molecules 
with a random conformation, and no predetermined secondary structure. The 
collagen however has a well defined triple helical structure (section 1.3.2). It 

may be considered that the rigid nature of the triple helix may to some extent
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pH 2 .7  
pH 3 .0  
pH 3 .5  
pH 4 .0  
pH 4 .5

Additions of collagen
Figure 3.19 The titration of Hyaluronic acid with pepsin soluble collagen at pH
2.5-4.S



s.

Additions of collagen

Figure 3.20 Titration of carrageenan with pepsin soluble collagen at pH 2.5-
4.5



interfere in preventing the interaction of collagen with the polysaccharide. To 

test this titrations of alginate (LF1040) were performed using gelatin instead of 
native PSC. The gelatin was prepared according to Methods 2.1.3 and was 
used because of its flexible structure. The results obtained are shown in 
Figureure 3.21.

As in previous experiments, the binding ratio increased with the pH. The 

denatured collagen however, bound approximately 50% more alginate than 
native collagen per alpha chain.

3.4.5 Effect of Dénaturants on collaaen-alainate interactions 

Guanidine hydrochloride (Gdn HCI) and urea were included in a set of 

alginate titrations to determine their effect on the interaction of alginate with 
collagen since they act by disrupting hydrogen bonding.

Titrations were performed at two different concentrations of urea and Gdn 
HCI, the results obtained are shown in Figure 3.22. The results showed that 

neither urea nor Gdn HCI at a concentration of 0.1 M had an effect on the 

precipitation of the collagen/alginate complex since collagen appears in 

solution after 5 additions whether the dénaturants are present or not. At a 

concentration of 1M, urea still had no effect, however Gdn HCI completely 

prevented the formation of insoluble complexes.

3.5 The release of alginate from sponges

The initial experiments to measure alginate release from the collagen alginate 

sponges was performed according to methods 2.2.1.1, where samples of 

sponge were weighed and shaken in 10 ml of 0.9% saline. After a set time, 
the sponge was removed and the saline was assayed by the carbazole 
method to determine the amount of alginate released. It was often found that 
a sponge removed from saline after 10 minutes, released more alginate than 
an identical sponge, shaking for 20 minutes. This was considered to be due to
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Additions of collagen

Figure 3.21 Titration of alginate (LF1040) with heat denatured soluble 

collagen at pH 2.5 -3.5. The collagen additions of 1.2 mg were made in each 
case to 20ml of a mixing alginate solution (0.1mg/ml)



Figure 3.22 The titration of alginate LF1040 with pepsin solubilised collagen at 

pH 2.5 in the presence of guanidine hydrochloride and urea. The titration was 

carried out according to method 3.2.9. but adding 0.8 mg of collagen per 
addition to a mixing solution of 20ml alginate (0.1 mg/ml)



heterogeneity of the samples. To test this samples cut from one sponge were 
assayed for total alginate content (methods 2.2.1.2). The alginate content 
(n=9) was 7.3% +/. 0.7, i.e. a 9% coefficient of variation. This variability was 

significantly less than that for alginate extracted into solution from similar 
samples. A second possibility was that the sample dimensions, in addition to 

the sample weight, were important. The dimensions were standardised by 

cutting the samples with a cork borer.

Given a constant size, any difference in the sample weight was due to 

variations in sponge density. Therefore to determine the effect of sponge 

density on alginate release, high density and low density sponges were 

prepared and extracted in the saline solution. It was shown (Fig 3.23) that 

high density sponges released more alginate than their low density 

counterparts, when expressed as a percentage of the total weight.

The sponges used in these initial experiments were production Fibracol™ 
sponges which had been cut from a 25 mm block of freeze dried material. 

When these blocks of slurry are frozen, the rate of freezing affects ice crystal 

formation and thus pore size in the resultant sponges, leading to a 

progressive decrease in density from the bottom to the top of the sponge (P. 

Watt, personal communication). The remaining studies were therefore done 

on material prepared in the laboratory, where this relative density difference 

was eliminated by casting individual sponges of 3 mm thickness.

3.5.1 Relationship between alginate type and release from collagen sponges. 

Five alginate preparations were used to prepare a series of 10% 
alginate/collagen sponges and the release of alginate from 15 mg samples of 

the sponges into 10 ml volumes of saline was measured. The results (Fig 
3.24) showed a rapid release over the first 15 minutes, followed by a rapid 

decrease in the rate, plateauing in three of the samples from approximately 30 

minutes. In two of the preparations (LF1040 and LAM LV) there was a
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continued, albeit slower, release between 30 and 160 minutes. There are 
obvious difference between the rates of alginate released from the sponges 

dependent on the type of alginate used to make the sponge.

3.5.2 Wound model
The design of the wound model made it impractical to measure the rate of 
alginate release from the sponges. Instead, the total amount of alginate 
released from the sponge was measured after twenty four hours. The results 

(Fig 3.25) show that the amount of alginate released into the wound model is 
considerably smaller, than the values measured by shaking in saline solution. 

Sponges prepared with alginate HF released only 4% of the total alginate 

compared to 32% in the saline solution. The order of alginate release, was 
found to be LF1040> LF120>LAM LV> HF> SF. The wound model was 

difficult to use and very slow, as a result all further samples were tested by 

shaking in saline solution.

3.5.3 Effect of calcium
Calcium is used in the commercial preparation of Fibracol™ sponges, where it 

has been shown to stabilise the alginate component and reduce its solubility. 
To determine the effect of calcium on the release of alginate from the 

sponges, samples were prepared without calcium or containing 0.8% 

(standard production concentration) calcium. The total amount of alginate 

released from the sponges was measured, and the results (Fig 3.26) showed 

that in the absence of calcium more alginate was released from the sponges. 
In the case of sponges prepared from alginate SF, the amount of alginate 
released from the sponge more than doubled in the absence of calcium. 

However, with sponges containing alginate LF1040 the omission of calcium 
resulted in only a 5% increase in the level of alginate released, probably 
because the level of alginate released from sponges containing calcium is

61







already high, and so removing the calcium has a limited affect. In general 

sponges prepared without calcium showed proportionally smaller differences 
in the amount of alginate released, ranging from 45-80 ng/mg of sponge, 
compared with 20-65 ng/mg of sponge when calcium was present.

3.5.4 The effect of different types of collagen on the rate of alginate release. 
To measure the effect that different collagen structures had on the release of 

alginate from composite sponges, samples were prepared from three collagen 

preparations made from the same bovine hide source: pepsin solubilised 

collagen, fibrous insoluble collagen, and heat-denatured (gelatinised) 

collagen. Sponges were prepared containing 0.8 and 1.6% calcium. Six 

different commercial alginates were used giving thirty-six possible variations 
shown in Table 3.4.

The amounts of alginate released from the sponges over a 24 hour extraction 

period in saline solution (Methods 2.2.1.1) are shown in Figures 3.27, 3.28 

and Table 3.5. In Table 3.5 the amount of alginate released is expressed as a 

percentage of the alginate released from control sponges: which were fibrous 
collagen sponges containing 0.8% calcium and 10% of the six commercially 

available alginates (sponges 1-6, Table 3.4)

3.5.5 Fibrous cQllaaen/alginatfl sponges
The release of alginate from the fibrous collagen sponges with 0.8% calcium 

(sponges 1-6, Table 3.4), were similar to the values observed in the rate 

release experiments (section 3.5.1). The order of alginate release was 
SF<HF<LAM LV< LF120<LF1040<LF1060.

When compared to the control sponges those prepared with fibrous collagen 
and 1.6% calcium (sponges 9-24), showed the same or lower levels of 

alginate released. Alginates LF1060 and LAM LV showed similar levels of 
release, irrespective of the calcium content LF 120 released 85% of the
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Table 3.4 Comparison of collagen alginate sponge samples

SPONGE
NUMBER

COLLAGEN
USED

ALGINATE USED CALCIUM (%)

1 fibrous LF 1060 0.8
2 fibrous HF 0.8
3 fibrous LF 120 0.8
4 fibrous LF 1040 0.8
5 fibrous LAM LV 0.8
6 fibrous SF 0.8
7 denatured LF 1060 0.8
8 denatured HF 0.8
9 denatured LF 120 0.8
10 denatured LF 1040 0.8
11 denatured LAM LV 0.8
12 denatured SF 0.8
13 soluble LF 1060 0.8
14 soluble HF 0.8
15 soluble LF 120 0.8
16 soluble LF 1040 0.8
17 soluble LAM LV 0.8
18 soluble SF 0.8
19 fibrous LF 1060 1.6
20 fibrous HF 1.6
21 fibrous LF 120 1.6
22 fibrous LF 1040 1.6
23 fibrous LAM LV 1.6
24 fibrous SF 1.6
25 denatured LF 1060 1.6
26 denatured HF 1.6
27 denatured LF 120 1.6
28 denatured LF 1040 1.6
29 denatured LAM LV 1.6
30 denatured SF 1.6
31 soluble LF 1060 1.6
32 soluble HF 1.6
33 soluble LF 120 1.6
34 soluble LF 1040 1.6
35 soluble LAM LV 1.6
36 soluble SF 1.6









control value, however, both SF and HF sponges released less than half that 

of the control. The order of release in the sponges with 1.6% calcium was 
similar to that observed in the control sponges, except for LF1040 and 
LF1060, whose positions were interchanged: SF and HF <LAM LV, LF1040 

and LF120 < LF1060. (Fig 3.27 and 3.28).

3.5.6 Denatured collagen sponges
The amount of alginate released from the sponges prepared from denatured 

collagen, with 0.8% calcium (sponges 13-18) was not significantly different to 

the control sponges (Table 3.5), and the order of alginate release was 

unaltered.
When slurry was prepared from denatured collagen with 1.6% calcium, 

flocculation of the slurry was observed with alginates LF120, LF1040 and 
LAM LV. This prevented subsequent processing into sponges, and therefore 

no alginate release measurements could be made. The three sponges which 

were prepared with 1.6% calcium (alginates LF1060, HF and SF), showed 20- 

40% less alginate released than their equivalents with 0.8% calcium. As in the 

previous sets of sponges, the order of release was SF < HF < LF1060.

3.5.7 Soluble collagen soonoes
The amount of alginate released from the sponges prepared with soluble 

collagen is also shown in Figure 3.27 and 3.28. The sponges with 0.8% 

calcium (Table 3.4, sponges 13-18) were shown to release less alginate than 
the control sponges; typically, this was less than 50%, and with the sponge 

prepared from alginate HF, only 15%.
Despite lower amounts of alginate being released, the order of release was 
largely unchanged i.e. HF <SF <LAM LV <LF1040 <LF120 <LF1060, although 

the sponges containing HF and SF, and LF1040 and LF120 reversed order.
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The higher calcium concentration (1.6%) reduced the release of alginate from 

the sponges to 18-42% of that of the control sponges (Table 3.5)
In contrast to the other groups of sponges tested, the order of release of the 
six alginates changed: the sponge containing alginate LF1060, which was 
released most readily from the other sponges, showed the second lowest 

release of alginate: the release of alginate from the other sponges was 

unaffected.

3.5.8 Methylated collagen soonoes
The effect of modifying the primary structure of collagen on the 

collagen/alginate interactions in the sponges was investigated by méthylation. 
This was chosen since although altering the charge on the collagen, it was 

thought unlikely to cause steric hindrance to the collagen/alginate interaction. 
Fibrous collagen was methylated according to the method of Wang (section

2.1.1.2) , the modified collagen fibres were used to make collagen alginate 

sponges. Amino acid analysis was performed on the collagen fibres (methods

2.2.8.2) to determine whether the méthylation was successful. The HPLC 
elution profile of modified and unmodified collagen are shown in Figures 3.29 

and 3.30. The modified collagen elution profile had an extra peak (No. 12) 

which was assumed to be a methylated amino acid derivative.
Since modification of the collagen primary structure may have altered the 

tertiary structure and fibre organisation, this could have altered the pore 
structure of the sponges and affected the rate of diffusion. To determine 
whether this had occurred, blue dextran (2 mg/ml) was incorporated into the 

sponges and its rate of diffusion out into solution was measured. Sponges 
were prepared from modified and native collagen fibres with and without 

alginate, shown below.
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Sponge number collagen alginate blue dextran

1 modified +

2 modified . +

3 fibrous + +

4 fibrous - +

Approximately 15 mg of the sponges were soaked in 10 ml of saline, samples 

of the saline were taken at times up to 24 hours and the absorbance 
measured at 660 nm. The results (Table 3.6) show there were no significant 

differences between the sponges prepared from methylated collagen and 

those of native collagen, indicating that macromolecular diffusion, and 

presumably the physical structure, had not been affected.
The amount of alginate released from the methylated collagen/alginate 

sponges was measured by shaking samples of the sponges in saline solution 

(Methods 2.2.1.1).
The results are shown in Figure 3.31 and Table 3.7, where the values are 

expressed as a percentage of the total alginate released from control sponges 

(Table 3.4 sponges 1-6).
It was shown that the total amount of alginate released was significantly lower 

than that of the unmodified sponges. The higher molecular weight alginates 
(HF and SF) showed only 24 and 52% of the control level released, whilst 

those prepared from the other alginates released between 70 and 80 %.

As with sponges prepared from other collagen sources, the order of release of 

the alginates was unchanged.

3.6 Tensile strength of collagen alginate soonoes
The tensile strength of collagen alginate sponges prepared from the Protan 
alginates was measured according to the previously described method
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(Section 2.2.3).The mean values ranged from 4.213 to 6.939 N (Table 3.8). It 

was thought that the tensile strength of the sponges would increase with the 
molecular weight of the alginate added. Although the sponge with alginate SF 
had the highest tensile strength (6.93N) it does not have the highest Mr. As 

Figure 3.32 shows, there was no correlation with the other sponges.

3.6.1 Absorption of collagen alginate sponaes
The ability of collagen alginate sponges to absorb saline solution was 
measured (methods, section 2.2.4). The sponges were soaked for 8 hours 
and weighed to determine the amount of saline absorbed. The results (Table 

3.8) are expressed as pi of saline absorbed per mg of sponge and show no 

significant difference between sponges illustrating that the alginate used in the 

sponge does not affect the ability of the sponge to absorb saline.

3.7 Galactomannan sponoes
To obiain a comparison between anionic polysaccharides and neutral gums, 

sponges were prepared containing locust bean gum or guar gum which are 

structurally similar galactomannans. Since no electrostatic interactions occur 
between the galactomannan molecules and the collagen fibres, it was 

hypothesised that all the polysaccharide in the sponges would be capable of 

being released from the sponge.
Borate ions were added to some sponges, since borate ions cross-link 

galactomannans it was thought that they might have a similar effect as 
calcium ions cross-linking alginate within the collagen matrix. The anions 

cross link the polysaccharide chains which leads to a thickening of 
galactomannan/borate solutions. The cross-links are via c/s-diol groups in the 

sugar residues (Pittet 1965). It was thought that the addition of borate ions 
would affect the rate of galactomannan release from the sponges A set of 

sponges containing calcium ions were prepared as a control.
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Figure 3.32 The effect of different alginate molecular weights on the tensile of 
collagen/alginate sponges



The amount of galactomannan released from the sponges was measured by 

shaking samples of the sponges in saline (Methods 2.2.1.1), and the amount 
of eluted polysaccharide determined by the phenol sulphuric acid assay 
(section 2.2.11.2). The results showed a time dependent elution of the 

polysaccharide up to 24 hours (Fig 3.33 and Table 3.9).

3.7.1 Guar sponges
The sponge containing neither calcium or borate was taken as the control. At 

1 hour the sponge containing calcium had released 10% less guar than the 

control, whilst that containing borate ions released 20% more. At 24 hours the 

sponges containing calcium and borate had released less guar than the 

control sponge (23 and 17% respectively).

3.7.2 Locust bean gum
As above, the sponge containing no ions was taken as a control. The results 

(Fig 3.33) show that at the three time points the sponges containing ions had 

released less LBG into solution than the control sponge. The exception to this 

was at 4 hours, when the sponge with calcium had released more guar than 

the control. After 24 hours the sponges containing calcium and borate ions 

had released 6 and 30% less LBG than the control.

3.8 Collagen alginate films.

3.8.1 Tensile strength
Samples of film were cut using the dumb-bell press (Methods 3.2.3) and 
clamped using the same method as for the sponges. The tensile strength was 

taken to be the load at the point of fracture, measured in Newtons. Samples 
which fractured at the clamps were considered unrepresentative and rejected. 

A minimum of seven measurements were made.
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The results showed that there were considerable differences between the 

tensile strengths, with the values ranging from 24.5 to 61.7 N.
The tensile strength of the collagen/alginate films was not related to the 

molecular weight of the alginate: as illustrated in Figure 3.34. In some cases 

such as the film prepared from alginate SF, which has the highest molecular 
weight, the length of the alginate chain corresponds to the highest tensile 

strength, however there is no obvious correlation with the other five films.

a.2 Film Permeability
To determine if there was any difference in the pore structure of the films, 

their relative permeability to saline was measured.
A model was developed (methods 2.2.2) which allowed accurate, repeatable 

measurements of the film permeability. The film was clamped in place, the 

tube inverted, and 10 ml of saline solution was added through the base of the 

tube to fill the container. The initial weight of the container and solution were 

noted, and the tubes were then placed on a mesh support in an incubator at 

37°C. At 1,4 and 24 hours the tubes were removed from the incubator and 
weighed to determine the mass of solution lost. The permeability values for 

the films containing 10% alginate are shown in Table 3.11 
There were small differences in the amount of solution lost through the films 

at 1 and 4 hours, but It was difficult to compare the samples since the volume 

lost was so small. At 24 hours a larger volume had permeated the film, 

however, the differences between films were not significant.

B Rftiftflse of pnlvsaccharirifl from collagen alainalfl fllmŝ
The release of alginate from collagen/alginate films, was measured by 

shaking samples of film in saline solution (methods 2.2.1.1). The solution was 

sampled at time Intervals and alginate assayed by the carbazole method. 

After 24 hours no detectable alginate was released from the films.
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Q Investigation of alginate /Seoharose^ 4B interaction^
Initial results from the Sepharose™ 4B gel permeation chromatography 
suggested that the Protan alginates had similar molecular weight distributions. 

It was thought that an interaction between the alginate and the Sepharose*^
4B was occurring, which was preventing the resolution of alginate on the 

column. To verify this, the fractions eluted from the column after addition of 

alginate LF1060 were pooled into apparent high and low molecular weight 

sample, and re-chromatographed (Fig 3.35). The alginate sample eluted 
between fractions 11 and 40. the high Mr fraction between 11 and 32. and the 

low between 16 and 40. The area of overlap of the high and low curves was 

30% indicating reasonable separation of this poly-disperse preparation.

3.9.1 Thft molecular distribution of the alginates, determined t?Y Oel QXClUSIon 

chromatography
The six commercially available alginates were chromatographed on a 
Sepharose™ 4B column. The elution curves (Fig 3.36 and 3.37) show there 

was little difference in the range of molecular weights. Elution of all six 
alginates commenced immediately after the void volume (120 ml), and the 

end of the peak was typically after 450 ml was collected. The exception to this 

was with Protan SF which was retained by the column until 500 ml had been 

collected.
The peaks of the elution curves (Table 3 12) showed that alginates SF and 
HF had the highest apparent molecular weight. This corresponded with the 
molecular weights given by Protan Ltd. The remaining alginates, which were 

reported to have similar molecular weights, showed peak absorbance 
between 255 and 300 ml. Table 3.12 shows that for the other alginates
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Figure 3.35 Chromatography o f  alginate LF 1060 on Sepharose 4B (Rg 3.35A) 

Fractions 14 to 22 , and 23-35 ware pooled to give high and low molecular 

welghtpools, respectively. The pooled fractions were concentrated and 

rechromatographed on the same column (B).





Eluant (ml)

Figure 3,37 Preparative chromatography of Protan alginates on Sepharose™ 4B. 

(column details on Fig 3 36)



(LF1040, LAM LV. LF1060, and LF120) there was no relationship between the 

retention volume and the molecular weights described by Protan Ltd.

Each of the six alginates eluted from the column as a single peak with a 
distribution approximating to normal. The exception was again with alginate 

SF which 'tailed off more slowly than the other alginates, forming a skewed 

curve.

■̂ 9.2 Molecular distribution of alginate released from collagen alQinalQ 

sDonoes.
The alginate that was eluted from a collagen/alginate sponge, prepared from 

alginate LF1040. was collected after 4. 24 and 72 hours and 
chromatographed on a Sepharose'"’ 4B column. Before application to the 

column the alginate was concentrated according to methods 2.2.1.1. The 

elution profiles obtained are shown in Figure 3.38. Protan alginate LF1060 

eluted from 45-180 ml with a peak at 110 ml. The alginate released from the 

sponge during the first 4 hours was eluted between 145 and 200 ml with a 

peak at 160 ml. The samples taken at 24 and 48 hours eluted between 50 and 

190 ml with peaks at 130 and 140 ml respectively.
The elution profiles show that after 4 hours only alginate molecules from the 

lower end of the molecular distribution have been released into solution. After 

24 and 72 hours molecules from the complete molecular weight range, i.e. the 

largest and the smallest molecules are released, however, the only a small 

proportion of the large molecules have been released.

■3 9 3 Analy-«iis of the mnlecular distribution of the alainata ffttflinsd in CQllaflfln 

sponflfla.
After extraction into saline of soluble alginate from a sponge approximately 

40% of the total alginate was retained in the sponge. The sponges were 
treated by EDTA extraction (methods 2.2 1 2) or pepsin digestion (Methods
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Figure 3 38 The elution of alginate washed fromaFibracol™ sponge. Alginate 

extractions were made at 4. 24. and 72 hours by extracting the sponges in saline. 

A profile of the alginate which was used for the sponge preparation is included as 

a comparison



2.2.1.1) to release the alginate remaining. As shown in Figure 3.39, the 
alginate from the EDTA extracted sponge eluted from the column between 65 

and 175 ml with a peak at 110 ml. The alginate from the pepsin treated 
sponge eluted between 80 to 180 ml with a peak at 140 ml, indicating that 

alginate isolated by enzyme treatment had a lower molecular weight than that 

extracted by EDTA.

3 9 4 The effect of irradiation on the molecular distribution of the alQinata 

released from collagen /aloinate soonoes.
Industrially prepared biopolymer sponges are routinely sterilised by gamma 

irradiation, therefore, the affect of irradiation on the molecular distribution of 

alginate was investigated
Soluble alginate from gamma irradiated and non-irradiated collagen alginate 

sponges was eluted, concentrated and chromatographed on a Sepharose™ 

4B column as described in section 2.2.1.1. The elution profile (Fig 3.40) 

showed a normal distribution. The alginate extracted from the irradiated 

sponges eluted with a peak at 130 ml. indicating that it had a lower average 
molecular weight than the non-irradiated alginate (peak at 120 ml), however 

the reduction in molecular weight could not be determined since the 

Sepharose"^ 4B column was not calibrated with suitable standards.

3 in  HPLC Chromatography of the Protan alginates 

The six alginates were chromatographed on HPLC gel permeation 
chromatography columns (Fig 3.41). The alginate was eluted from the column 

between 9 minutes and 17 minutes, regardless of the alginate applied. The 

void volume of the column, detected by exclusion of 600 kDa dextran was 9 

minutes, indicating that the alginate was released at the void volume. The 

ascending part of the peak can therefore be ignored, since the larger 
polysaccharide chains were not resolved by the column. The descending side
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Q EDTA 
♦ Pepsin

Figure 3.39 The alginate retained in collagen alginate sponges 
after 72 hours washing in saline. Two methods of isolating the 
alginate are compared; pepsin digestion of the collagen and 
washing the sponge In lOmM EDTA.



Figure 3.40 The comparison in the molecular weight distribution 

of alginate released from irradiated and non irradiated collagen 

alginate sponges. 5 ml fractions were collected and assayed for 

alginate content by the carbazole method.





of the peaks, however, can be used to compare the molecular distribution of 

the alginates. In the case of alginates HF and SF the peak was steep and 
very narrow, indicating, that the polysaccharide chains are high molecular 
weight and have a narrower molecular weight distribution than the other 
alginates. Alginate SF had a second, broader, peak, eluting between 12 and 

17 minutes corresponding to a molecular weight of 2500 Da. Similar peaks 

were found with the other alginates: however, they were less intense.

Alginate LF120 was shown to have a steep, narrow peak, indicating a 

relatively small size distribution. The remaining alginates were more 

polydisperse.

11 Agarose/oolvacrvlamide gel electrophoresis 
The alginates were electrophoresed on a 1% agarose/1% PAGE gel (Plate 

2). Lane 1 was hyaluronic acid of 375 kDa and was included as reference.

The alginates (lanes 2-6) migrated further and showed a high degree of 
polydispersity. The Rf value for the point of maximum absorbance determined

by scanning densitometry is shown in Table 3.13
The alginates were streaked over a large area of the gel. Alginates HF and SF 

had only a low intensity staining on the lower part of the gel, suggesting that 

there only small amounts of low molecular weight polysaccharide in the 

samples. The remaining alginates had a wide spread area of intense staining, 

indicating a wider molecular weight distribution than alginates SF and HF.

19 Determination of the average molecular weights of the Protan alainatflS 

by viscometrv
The average molecular size of the alginates (shown below) determined by the 

Ubbelhode viscometer are within 30000 Da of the values supplied by Protan 

Ltd; the exception was alginate SF which was 80000 Da lower than the 

manufacture's value.
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Plate 2 Agarose polyacrylamide gel of commercial alginates

Lane Polysaccharide
1 hyaluronic acid
2 Alginate SF
3 Alginate HF
4 Alginate LF1060
5 Alginate LAM LV
6 Alginate LF120





Alginate nsD nrel n c (mg/ml) Mwt (Da) Protan (Da)

SF .686 .522 7.53 .0761 312000 400000

HF .823 .600 10.60 .0630 493000 525000

LF1060 .754 .562 4.648 .133 164000 150000

LF120 .837 .609 5.459 .1237 230000 200000

LAM LV .737 .553 4.161 .1456 141000 165000

nsp specific viscosity, ^rel > relative viscosity, n intrinsic viscosity

c alginate concentration. Mwt average molecular weight. Protan= commercial molecular 

weights

13 The effect of dH on the secondan/ structure of CQllaoen 

3.13.2 Circular dichroism
The spectra of PSC was measured at pH 2.5, 3.0, 3.5. 4.0 and 4.5. The 

results (Fig 3.42) show that the curves obtained from the PSC are identical, 

with the exception of pH 4 where a deeper trough is observed at 198 nm. This 
was considered unusual, particularly since a similar effect did not occur at pH 

4.5. The trough was thus considered to be an anomaly, rather than an actual 

change in the collagen structure.

3 13 2 The effect of Quar and locust bean gum on the structure of PSC 

The spectra from the galactomannan/collagen mixture (Fig 3.43) showed that 

the collagen had an identical spectrum, irrespective of the presence of 
galactomannan. Guar and LBG showed no significant dichroism over the full 

range of wavelengths.
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Figure 3.42 The change in the circular dichroism spectra of pepsin solubilised 
collagen at pH 2.5-4.S
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Figure 3.43 The effect of guar and LBG on the structure of pepsin solubilised 
collagen determined by circular dichroism
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3 13.3 Tha effect of galactomannans on the stability of the collagen triple 

helix.
The melting curve of the PSC (Fig 3.44) showed a rapid loss of ellipticity 
between 32 and 42°C. The addition of LBG to the PSC did not alter the 

melting curve. However, the addition of guar gum to the PSC caused the 

collagen helix to melt at a lower temperature. If the melting point is assumed 

to be midway on the linear section of the graph, then the values are: PSC 

34.5°C, PSC and LBG 34.5°C, and PSC and guar 33°C. Therefore, there was 

no significant change in the melting point when LBG was added, however, 

guar appeared to de-stabilise the triple helix.
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Figure 3.44 The effect of guar and LBG on the stability of the soluble collagen triple 
helix.

The integrity of the structure was expresed as a percentage of the native structure, 
taking the value at 20®C as 100%. The collagen concentration was O .lm g/m l, 
galactomannans were added to the relevant samples at 0.1% w/v.



CHAPTER 4 DISCUSSION

d 1 I n t e r a r t in n  of s o lu b le  c o l la Qf in  w ith  DOivsaccharides in  SQllitlQD 
Upon mixing protein polysaccharide solutions it has been shown that one of 

three things may happen (Tolstoguzov 1986). In the first instance a 
coprecipitation may occur, often caused by an electrostatic interaction 

between the two polymer systems. In the second instance the two polymers 

may co-exist in solution with no interaction between them. The third case is 
when the polymers interact so weakly that it does not result in precipitation. 

Examples of this last situation include polymer entanglement or complex 

formation through hydrogen bonding.
In the third case it is often difficult to detect or quantify any interaction which 

may be occurring, and Gidley and Robinson (1990) have shown that 

rheological measurements can help demonstrate such weak interactions. 
Formation of insoluble complexes between collagen and charged 

polysaccharides precludes the use of rheology to investigate their formation 

and nature. However, the phenomenon of complex precipitation can be used 

as the basis for titration experiments. These two approaches were the main 

tools used in the investigation of interactions between soluble polysaccharide 

and soluble collagen.

d 1 1 In te raction  of so lub le  collagen with charged noIvsaccharidflS.
With the six alginates investigated, the pH of the mixing solution was shown to 
be important in determining the concentration of each biopolymer in the 

collagen/polysaccharide precipitate. This was expected since the pH of the 

solution affects the net charge on the collagen molecules. As the pH 
approaches 4.8 (the lEP of the protein) the net charge on the collagen 
becomes less positive. If an alginate has x negative charges available to 

attract collagen molecules, then at pH 2.5, where the collagen has more
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positive charges, fewer collagen molecules will be needed to cancel out the 
charge on the alginate. It follows that at pH 4.0 there will be a smaller net 
positive charge on the collagen and so a larger number of collagen molecules 

will be needed to interact with the alginate.
The alteration of the net charge on the collagen helices appears to be the 

most likely reason that the binding ratio of the two macromolecules is pH 

dependent. The fact that the different alginates exhibit similar binding ratios at 

the same pH values is more unexpected. This may be explained by the fact 

that the charge density of each alginate is very similar and that on such a 

large scale, steric effects such as chain size have no influence on the 

electrostatic interaction, In effect this would mean that two small alginate 

chains could interact as well as one large chain.
That chain length does not appear to affect the interaction, could be 

explained by the fact that alginate is a flexible molecule and regardless of 
chain length, the polysaccharide would be capable of orienting to interact with 

the collagen.
Hyaluronic acid appears to interact in a similar manner to the alginate, this is 

despite the fact that it has a greater chain length and a lower charge density. 

This supports the previous suggestion that for a simple interaction in solution 

the size of the polysaccharide chain has little or no effect on the 

collagen/polysaccharide binding ratio. It was expected that HA, which has a 

lower charge density, would have a smaller binding ratio than that of alginate. 

The fact that this was not the case, suggests that the charges on the 

polysaccharide are in excess and do not interact fully with the positive 

charges on the collagen molecules, this would lead to the precipitate having a 
net negative charge. Although the charge density may affect the strength of 

binding in the coprecipitate it does not appear to affect the stoichiometry.

This is supported by the fact that the charges on the collagen molecules are 
not evenly distributed (Asghar and Henrickson 1982) and so there will be
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localised areas of charge where there is the potential for interaction. It is 
unlikely that such a large molecule as HA could orientate in a manner that 
would permit each of its negative charges to interact with a corresponding 

positive charge on a collagen molecule.
With the sulphated polysaccharide carrageenan the collagen/carrageenan 

binding ratios were similar irrespective of the pH. The largest difference in the 
collagen/polysaccharide binding ratios of the uronic acid containing 

polysaccharides and carrageenan were observed at pH 2.7 and 3.0. The most 

likely explanation of this difference, is the fact that the charges on both the 

collagen and the alginate (pKa 2-4) are ionising over this pH range. This 

would give rise to a larger range of end points than with carrageenan where 

only the collagen is capable of ionisation.
The titration of alginate LF1040 with denatured collagen showed that the 
denatured collagen was capable of binding a higher number of alginate 

molecules than native collagen. It was found that a denatured collagen 

molecule could bind three alginate repeating unit (ru) per denatured ru. whilst 

the native triple helix bound only two alginate ru per collagen ru Therefore, in 

total the denatured collagen bound 50% more alginate than the native. This 
result was expected since denaturing soluble collagen produces a less 
constrained molecule, allowing more flexibility in the interaction of the two 

biopolymers. Since the charged amino acids on the collagen molecule will be 

on the outside of the helix, then unfolding will not significantly increase the 
number of positive charges available for interaction. Dénaturation will however 

lead to a more flexible collagen molecule where the charged residues are not 

locked in position, but can move more freely, leading to a more complete 

interaction with the polysaccharide
Guanidine hydrochloride (Gdn HCI) is a dénaturant used in protein unfolding 

studies. It is generally accepted that it acts by interrupting the water structure 
around a molecule through competition between Gdn HCI and water for
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protein binding. In globular proteins Gdn HCI concentrations of 1-3M are used 

to cause subunit dissociation. For complete unfolding 6M is required. The 

finding that Gdn HCI disrupted the binding between PSC and alginate was 
surprising since guanidine hydrochloride at this concentration had no 

detectable effect on the structure of the collagen as shown in the CD spectra 

of PSC in the presence of 1M Gdn HCI. More unusual was the fact that urea, 
which is thought to act in a similar way to the Gdn HCI has no effect on the 

interaction. The most likely reason for this is that Gdn HCI is a charged 

molecule and would be expected to interrupt electrostatic bonding between 

the biopolymer chains. The fact that urea has no effect on the precipitation of 
the collagen/polysaccharide complexes, is evidence that the interaction is 

mainly electrostatic in nature. This cannot be taken as evidence that hydrogen 
bonding does not occur, simply that any hydrogen bonds which are formed, 

are not critical in maintaining the collagen/ polysaccharide complex. The 

finding that Gdn HCI disrupts the complexes, shows that the electrostatic 

bonds are important in preserving the structure, and that in the absence of the 

electrostatic interaction other intermolecular bonds are ineffective.

4 1 2 In teraction of soluble collagen with neutral DQlysaccharidfiS 
Rheological measurements on mixtures of collagen with modified celluloses, 

or starch, showed no appreciable enhancement of viscosity indicating a lack 

of interaction
The modified celluloses (MC. HPMC, and HPC) caused a small decrease in 
the viscosity of PSC at low torque, but this effect disappeared at high torque 
The initial decrease in viscosity is unlikely to be caused by entanglement, 

because there are very few cellulose molecules in the mixture; in addition an 
entanglement would be expected to lead to an enhanced viscosity. Similarly, 
electrostatic interaction can be discounted since the modified celluloses are 
neutral gums. A possible explanation is that the modified celluloses interact
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hydrophobically with the collagen, which would increase order in the mixture, 

thereby reducing the viscosity. Henderson (1987) has shown that methylated 

cellulose can aggregate hydrophobically, to produce a gel. However, the 

temperature has to be raised to 50°C to achieve this phase transition. That 

HPcellulose, which does not hydrophobically aggregate, also resulted in a 
decreased viscosity, casts doubt on the role of hydrophobic interaction. It is 

also possible that the reduced viscosity was a result of differences in the ionic 

strength of the solutions, which could have been caused by ion contamination 

in the modified cellulose powders. There are no known instances of modified 

cellulose interacting with proteins, therefore the presence of ions seems the 

most likely cause of the reduced viscosity. Since the reduction in viscosity 

was relatively small, no further investigation of this system was performed.
The addition of potato starch to PSC solution resulted in no change in 

viscosity.
Since these uncharged polysaccharides did not precipitate PSC from solution. 

It was not surprising to find that they caused no, or minimal, viscosity 
changes. However, mixtures of the galactomannans with PSC surprisingly 

produced significant increases in viscosity, indicating that interactions 

between them had occurred. The dilute guar solutions may have shown less 

viscosity enhancement since there were fewer polymer chains to interact This 

suggests that any complex which may have be formed would be weaker and 

more difficult to detect. Another reason for the smaller peaks with the dilute 

sample could be due to the shear rate of the measurements. Applying a 
particular force to a sample causes the plate of the rheometer to rotate at a 

particular speed (the shear rate). The viscosity is a measure of the resistance 

to this flow at a particular shear stress. Therefore although the two samples 
were measured at similar shear stresses, the shear rate in each case was 
very different In the more dilute sample the plates were rotating more quickly, 
as a result, any complex formed would be more likely to be broken down.
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The fact that the other galactomannans tested also showed an enhancement 

of the viscosity suggests that some form of interaction was occurring.
Since both gums have similar structures but interact to different extents, it is 

possible that the degree of branching is important. A similar effect to this has 
been reported for galactomannans interacting with the bacterial 
polysaccharide xanthan gum (Brownsley et al 1987). The exact method of 

interaction is poorly understood, but it has been shown that guar gum 

interacts with xanthan to a lesser extent than the LBG. This was considered to 

be due to the less branched structure allowing larger areas of the mannose 

backbone to be exposed, and therefore be available for interaction. The 

results recorded on the Deer rheometer suggest that the order of interaction is 

also LBG>guar. This corresponds with the degree of branching, where LBG 

1:3.5> Guar 1:1.1. Therefore, there is a likelihood that the interaction is 

occurring between the PSC and the mannose units on the backbone of the 

polymer.
Xanthan gum is considered to be a stiff rod-like molecule which consists of a 
single stranded helix. It has been proposed that the interaction of xanthan with 
galactomannans is via intermolecular bonding between the mannose 

backbone of the galactomannans and ordered elements of the xanthan (Dea 

et al 1977). More recently an interaction has been suggested via the tri­

saccharide branches of the xanthan. In both cases the interaction is proposed 

to be stabilised by intermolecular bonding, owing to the stereochemically 

compatible backbones of both molecules. Although these models of 
interaction are different with respect to the role of xanthan, it is accepted that 

the galactomannan molecules interact through their mannose units. The 

extent of interaction is dependent on the degree of substitution of the 

galactomannans (Dea et al 1977).
As the interaction of PSC with galactomannans was also found to be 
dependent on the degree of substitution of the mannose chain, this suggests
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that although the precise method of interaction between PSC and 
galactomannans is unknown it is likely to be via intermolecular bonding 

between the mannose units and the triple helix.
Rheometry used in this manner can do little more than suggest an interaction. 

In order to define the method of interaction, more detailed molecular studies 

are necessary.

4.3 Circular dichroism measurements
Circular dichroism was used to detect any changes in secondary structure of 

the collagen triple helix that occurred when PSC was mixed with 
galactomannans. The stability of the collagen triple helix in the presence of 

guar or locust bean gum was also determined. In addition the structure of the 
PSC was investigated over the pH range 2.5-4.5 to ensure that the 

differences observed in collagen/alginate binding at different pH values 

(section 3.4.1) were not caused by conformational changes in the collagen 

triple helix.
It was found that the pH of the solution had no detectable effect on the 

secondary structure of the collagen. This was expected since raising the pH 

would only effect the acidic amino acids in the collagen, namely glutamic acid 

(pKa 3.65) and aspartic acid (pKa 4.25) causing them to ionise. This would 

increase the number of charged groups in the molecule, thus altering the 

electrostatic bonding within the helix. However, the acidic amino acids only 
constitute 9.1% of the total collagen. Therefore, the overall destabilisation of 

the structure would be minimal, since the majority of the intramolecular forces 

will be unchanged. The collagen triple helix is stabilised by a mixture of non­

ionic bonding. Although the energy required to break each of the bonds is 

small, the total energy required to disrupt the structure is considerably higher. 
It was proposed that the galactomannans may interact with the collagen 
molecule through hydrogen bonding. The number of sites available for
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interaction, and the resultant energy of interaction, are likely to be too small to 
cause a significant change in the collagen conformation. Therefore, the 

galactomannans were not expected to alter the secondary structure of the 

collagen. This was shown to be the case in mixtures of collagen and LBG. 

however, the addition of guar gum significantly reduced the intensity of the 

collagen trace; this may represent a change in the structure of the collagen 

triple helix in the presence of guar gum.
The melting point of the collagen helix can easily be detected by CD. and is 

characterised by the loss of secondary structure.
Gelman and Blackman (1974) investigated the effect of GAGs on the melting 
temperature (Tm) of the collagen triple helix. They found that the addition of 

anionic GAGs to the collagen stabilised the helix, resulting in a higher Tm. 

and postulated that the increase in thermal stability was caused by 

aggregation of the collagen molecules, which was facilitated by the GAGs.
The finding that guar lowered the melting point of the collagen, suggests that 
it does so by reducing the aggregation of the molecules. This is supported by 

the fact that PSC precipitates at pH 6. but could by kept in solution if guar was

present.
The stabilisation imposed by the GAGs. was greater than the observed 

destabilisation caused by guar gum. LBG failed to produce a similar 
destabilisation. There is no obvious explanation for the lack of destabilisation 

caused by the LBG. However, the ratio of polysaccharide to collagen was 

shown to be important in the stabilisation, therefore it is possible that there 

was not enough LBG in the collagen/polysaccharide mixture. This would have 

resulted in a biphasic melting curve. It was shown that the melting curve of 
PSC with LBG may be slightly, but not significantly biphasic. A second reason 

that LBG may have had no effect on the collagen, could be the molecular 
weight and distribution of the polysaccharide. If guar destabilises the collagen 
helix by preventing aggregation, then the size of the polysaccharide is likely to
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be important. It could be that the LBG used in this study was too small to act 

in a similar manner to the guar gum.

d d Interaction of alginate with insoluble collagen
The extent of interaction of the polyanionic alginates with insoluble collagen 

was studied indirectly by measuring the rates of release of free polymer from 

three dimensional sponges made from mixtures of the two.
The rate of alginate release from sponges prepared with a range of alginates 

differing in structure and Molecular weight was shown to vary, depending on 

the alginate used. The curves obtained from a plot of alginate release with 

time, could be divided into three main parts (Fig 3.24). The first was 

associated with an initial rapid release of alginate: a second phase where the 
rate gradually decreased, and a third ’plateau' showing little change in the 

release rate.
With all of the sponges tested, phase 1 lasted for approximately 15 minutes, 

during which time the rate of alginate release was constant, though different 

for each sponge. The initial release of alginate was likely to be caused by 

soluble sodium alginate, located near the surface of the sponge pore walls 

and hence with a small diffusion path, being released into the saline most 

rapidly.
The second phase, may be due to either sodium alginate diffusing out of the 

sponge, and/or an ion exchange effect between calcium and sodium alginate 

resulting in an increasing concentration of the more soluble sodium alginate 

form. The length of this phase varied considerably between sponges, in the 

case of SF sponges phase 2 was almost undetectable, but with sponges 

prepared from LF1040, it lasted almost 30 minutes.
In the third phase of alginate release, the concentration of alginate in solution 

was almost constant, indicating that the release of alginate had effectively 

stopped.
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Interestingly, the initial rate of release, and the duration of phase 2. appeared 
to be related to the total amount of alginate released. For example, sponges 
prepared from alginate SF had the slowest initial rate of release, the shortest 

phase 2 time, and released the lowest amount of alginate. By contrast the 

sponge prepared from alginate LF1040 sponges showed the opposite: the 

initial rate, the length of phase 2. and the total amount of alginate released 

were higher than the other sponges.
When sponges prepared from the different alginates were measured to 

determine the total amount of alginate that was released, it was found that the 

amount varied between sponges. The order of release was: LF1060> LF1040 

> LF120 > LAM LV > HF > SF. Initially, it was considered that the factors 

responsible for the retention of alginate within the sponges, would be a 

combination of electrostatic interaction and biopolymer entanglement.

If electrostatic interaction was occurring, then since the charge density was 
the same on each alginate, the effect should have been constant. 

Alternatively if simple entanglement of the biopolymers was occurring, then by 

diffusion, the highest molecular weight alginate would take longer to be 

released from the sponge.
The results from the titration studies in section 3.4.1 showed that the ratio of 
interaction between the collagen and the different alginates were similar, 

irrespective of the type of alginate. In addition to this, the alginate release 
experiments were performed at pH 6. where the insoluble collagen and 

alginate have the same net charge. Although this would not have prevented 

localised charge interactions, however, it is unlikely that any electrostatic 

interactions would be sufficient to cause the large differences observed in the 

amounts of polysaccharides released from the sponges.
If entanglement of the fibres was occurring, then, the larger molecular weight 

chains would be expected to be more interwoven within the sponge and. as a 

result, take longer to be released. When the total alginate released was
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plotted against the average molecular weight of the alginates, it was shown 
that although the high molecular weight alginates (SF and HF) were released 

frorn the sponge in smaller amounts, the other alginates did not follow this 

trend. It must therefore be assumed that the average molecular weight of the 
alginate chains was not the only factor controlling the release of alginate from

the sponges.
The alginates were known to have different percentages of guluronic (G) and 
mannuronic acid (M). The G and M content was considered important, 

because only the G residues are capable of binding calcium (section 1.2.1). 

The binding of calcium to sodium alginate results in the formation of insoluble 
calcium alginate fibres, therefore the proportion of soluble sodium alginate in 

the sponges would be expected to influence the amount of alginate released.

A plot of alginate released against the percentage of guluronic acid in the 
alginate (results not shown) showed no correlation however, suggesting that 

the % G in the alginate, had no influence on the amount of alginate that was 

released.
The amount of soluble sodium alginate in the sponges was estimated by the 

ability of calcium ions to precipitate a known amount of alginate. The results 
showed that the binding and subsequent dissociation of calcium and alginate 

were closely related to the extent to which sponges retained the alginate. 

There was a linear relationship between calcium binding, and alginate 

released from the sponges, the only exception being LF 1060. As the binding 

affinity of alginate for calcium increased, more insoluble calcium alginate 

fibres form, resulting in less soluble alginate being released from the sponges. 
It was assumed therefore that the calcium binding affinity of the alginates is 

the critical factor in determining alginate release from the sponge.
Although the presence of calcium was shown to be important in the release of 

alginate from the sponges, the reason for this is not understood. One 
explanation is that if the calcium alginate fibres were entangled in the collagen
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matrix, fibre length (determined by extent of calcium binding) would dictate the 

rate of diffusion. Alternatively the calcium could have formed alginate-collagen 

bridges. Methylated collagen sponges were prepared to investigate whether 
collagen chains were being cross linked by calcium ions. If collagen-calcium- 

alginate bridging was occurring, then the méthylation of the collagen would 

reduce the number of charged groups available for calcium bridging. This in 

turn would lead to an increase in the amount of alginate released from the 

sponges. Surprisingly, however, the total alginate released was lower in 

methylated collagen sponges than in unmodified sponges. This indicated that 

calcium bridging between the alginate and the collagen chains is not likely to 

be responsible for retaining the alginate within the sponges. A reduction in the 

number of charges on the collagen would also reduce the electrostatic 
interaction with alginate, and it would be expected, therefore, that the amount 

of alginate released from the sponges would increase. The fact that no 

increase was found supports previous evidence that electrostatic interactions 

do not influence the release of alginate from the sponges.
The results showed that the interaction between calcium and alginate is most 

important in determining the amount of alginate released from the sponge. 
The manner in which the alginate release is controlled is not understood, but 

could be due to entrapment, entanglement, or a mixture of both. It was 

hypothesised that in sponges, collagen would form a matrix with alginate 

fibres within it. The collagen would act like a sieve, allowing alginate 

molecules of a certain size to diffuse from the sponges. Therefore, in each 

batch of sponge there would be a population of calcium alginate fibres which 
were retained in the sponge. There is however little evidence to prove this 

hypotheses as the correlation of molecular weight and release rates were 

poor. Investigations at the molecular level are necessary to provide 

information on the manner in which the biopolymers are interacting.
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Sponges made from the different structural forms of collagen, containing 0.8 

or 1.6% of calcium, were prepared in an attempt to provide details on the 

effect of calcium in the sponges.
The results of the alginate release studies on the fibrous collagen sponges, 

containing 1.6% calcium, showed the amount of alginate released from the 

sponges was reduced compared with the 0.8% sponges, the effect was not 

uniform, ranging from a 4% (LAM LV) to a 64% (HF) reduction 

The sponges containing soluble, and denatured collagen, also showed that an 

increase in the concentration of calcium, reduced the levels of alginate that 

were released from the sponges, proving that additional calcium can reduce 

the amount of alginate released. However, it is difficult to predict the extent of 

the reduction.
When preparing sponges made with denatured collagen, three of the slurry 

mixtures flocculated. This effect did not occur with the native soluble and 

fibrous collagen preparations. It has been shown that at a pH below its 

isoelectric point, collagen will interact with alginate to form a coprecipitate. 

Therefore, it would be expected that the collagen and alginate would interact 

in the low pH (pH 3) conditions used during sponge preparation. The addition 

of calcium to the collagen/ alginate slurry is designed to reduce or prevent 

flocculation by blocking ionic sites on the alginate chains. The slurries that 

precipitated were prepared from alginates LF120, LF1040 and LAM LV, which 

contained the lowest percentage of guluronic acid (Table 2.1), and as a result, 
could not bind as high a level of calcium. It is. therefore, likely that the higher 

calcium levels resulted in the saturation of the calcium binding sites. A 

flocculation effect was not observed in the other slurries made from these 

alginates which also contained 1.6% calcium, thus the flocculation was not 

caused by the formation of calcium alginate alone. It must therefore be 
assumed that a denatured collagen/calcium alginate network had formed, 

which led to the precipitation. The reason a similar effect was not observed
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with the other forms of collagen is unclear; however, the flexible structure of 
the denatured collagen may allow a higher potential for interaction with the 

alginate. This is supported by earlier results (section 3.4.4), where denatured 

collagen was found to interact more strongly with alginate than native 

collagen.
The effect of different collagen structures on the rate of alginate release 

showed that there was little difference between sponges prepared from 

fibrous and denatured fibrous collagen. This was unexpected since 

denaturation of the collagen increases the protein flexibility, and hence, the 

potential for interaction with alginate. The fact that no additional interaction 

occurred in the denatured collagen sponges appears to prove electrostatic 

interactions are not important in controlling the release of alginate from the 

sponges. The increased flexibility of the denatured collagen polypeptides was 

expected to result in a closely packed matrix which would retain more alginate 

molecules within the sponge. The amount of alginate released from the two 

types of sponges was comparable, therefore it can be assumed that the 

collagen sponge matrices are similar.
The release of alginate from the sponges prepared from soluble collagen, was 

less than 50% of that from fibrous collagen sponges. This can be explained by 

considering the structure of the collagen molecules. In sponges prepared from 

fibrous collagen, the fibrous structure, i.e. fibril orientation and the gaps 

between fibrils within each fibre, will be dictated as it is laid down in the 
animal. However, once solubilised each of the helices can interact to form a 

more dense network on drying, without having a predetermined fibre structure 

imposed on it. Furthermore, alginate will be able to interact with only a 

minority of collagen molecules on collagen fibres, since the majority will be 

internal to the helical and super-helical arrangement of fibrils and fibres. In 

contrast, each individual collagen molecule in a solution of PSC will be
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theoretically available for interaction. In this way soluble collagen sponges 

would retain more alginate within the collagen matrix.

4.4.1 Physical characteristics of collaaen-aloinate sponges 
The effect of different alginates on the physical characteristics of collagen- 

alginate composite sponges was investigated by measuring the tensile 

strength and the absorption of a saline solution.
The absorption of the samples varied with the type of alginate incorporated 

into the sponge; however, the standard deviation of the samples was high, 

and the differences relatively small. This indicates that any effects due to 

alginates were less than the variability between sponges of the same type. 

The tensile test results showed differences between the sponges prepared 

from different alginates, but the S.D values were very high (coefficient of 

variation up to 25%). Sponges prepared from alginate SF appeared to be 

stronger than the other sponges, but not significantly so.
The measurements of the tensile strength, and the ability to absorb saline, 

showed no correlation with the release of alginate from the sponges.

The fact that there were no significant physical difference between the 

sponges is perhaps not surprising, since the different alginates are unlikely to 

alter the dispersion of the fibrous bundles of collagen molecules which will 

inevitably dictate the strength of the matrix in conjunction with the pore size 

determined by ice crystal formation (P Watt unpublished results).

4.5 Release of Galactomannan from collaaen/Qalactomannan SDonaes 
The release of polysaccharide from sponges containing galactomannans 

showed that the sponges with guar and locust bean gum released more 

polysaccharide into solution when the sponges contained no cations. This 
proves that addition of a cation such as calcium, which has no direct effect on 
the galactomannans, interacts with the collagen fibres in a way that entraps
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more polysaccharide within the sponge. It may be that the calcium ions act as 

cross links between adjacent collagen molecules, since at the pH the release 

experiments were performed, collagen is largely negatively charged. This 
contradicts the earlier observation that methylated collagen sponges behave 

in a similar manner to native collagen sponges, suggesting that calcium was 

not crosslinking the collagen fibres. This discrepancy may be explained by the 

fact that the méthylation of the collagen would not be 100% complete, thus, 

enough unmodified sites may have remained for crosslinking to occur.

Borate ions, which are known to interact with the galactomannans (Pittet 
1965), showed a mixed effect on polysaccharide release from the sponges. In 

both guar and LBG sponges, the presence of borate ions resulted in lower 

amounts of polysaccharide being released, than in the control sponges. The 
guar sponges containing borate ions released less polysaccharide than those 

with calcium, however, with LBG sponges the opposite was true. None of the 

sponges showed a 100% release of the galactomannans from the sponge, 
even after 24 hours It appears that entanglement of the polysaccharide 

chains occurred, preventing their released from the collagen matrix. This 

supports earlier evidence that charge interactions are of little importance in 

controlling the release of alginate from the sponges, since in this case 

entrapment is sufficient to retain the polysaccharides within the sponge. 

Attempts to measure the rate and total alginate released from 
collagen/alginate films were unsuccessful, since no detectable level of 

alginate was released. It appears that the dense structure of the films does 

not allow the alginate chains to diffuse from the matrix. This was unexpected 
since it had previously been shown (personal communication E Lorimer) that 

the polysaccharide hyaluronic acid (Mwt >1000 kDa) was eluted from similar 

films, thus, it was expected that alginate chains of less than half the size 
would be released. The difference between the HA-collagen films and the 
alginate case was the presence of calcium, therefore, it is likely that the
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alginate is in the form of insoluble calcium alginate, which is entangled in the 
collagen matrix and protected from release or exchange with sodium ions.

The permeability of the films to saline solution was not affected by the type of 

alginate used in the film preparation. This was expected, since it would be 

unlikely that the alginate molecules could alter the alignment and surface 

activity of the collagen fibres, and hence, change the pore size of the films. It 

has been shown (Gilbert and Lyman 1990) that diffusion through collagen 

membranes is dependent on the degree of cross-linking, quaternary structure, 

and fabrication technique; the method of permeation was "pore" type. In this 

study, no cross-linking was performed, and the type of collagen and the 

method of preparation were the same in each case. Therefore, it is not 
surprising that the inclusion of different alginates did not significantly alter the 

pore size, and hence, permeability of the films.

The tensile strength of the films varied considerably, depending on the 

alginate used. The values recorded were far higher than those of the 

sponges. The difference in the strength of the films is most likely due the 

alignment of the collagen fibres, as opposed to a change in fibril structure. 
Although the strongest film was prepared with alginate SF, the alginate with 

the highest molecular weight, there was no direct correlation between 

molecular weight and film strength.

4.6 Molecular weight analysis fli aJainalfls ffllaasad iram CQllaafln-aloinale
sponges

The discovery that different alginates were leached from collagen/alginate 

sponges at different rates suggested that the differences may be due to the 
molecular weight distribution of the alginates. Several methods were used to 

determine the molecular weight distributions.
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The elution curves of the alginate types from the Sepharose 4B column 
indicated that they had an almost identical molecular weight range. It was 

shown that the alginates did not interact with the Sepharose™. therefore it 

was assumed that the broad peaks eluted from the column indicated that 
Sepharose 4B was incapable of separating the alginate molecules. It was 

reported (manufacturers information) that Sepharose 4B would fractionate 

polysaccharides between 3 and 500 kDa; unfortunately this proved not to be 

the case, under the conditions used in this work. The elution profiles from 

HPLC supported the gel exclusion results, suggesting that the molecular size 

distributions of the six alginates were very similar. The elution profiles from 

the HPLC columns showed that the alginates were eluted as two peaks. 

However, the second smaller peak was common to many samples prepared 

in this laboratory, and was assumed to be an anomaly of the solvent system. 

Unfortunately the supply of alginate LF1040, was exhausted at this stage, and 

an identical batch could not be obtained. As a result, the viscometry and gel 

electrophoresis experiments were performed with the five remaining alginates. 

Polyacrylamide/ agarose gel electrophoresis showed the molecular weight 

distribution of the alginates to vary considerably. Although the apparent 

molecular weight could not be calculated, the migration of the alginates 

through the gel verified the commercial data that alginates HF and SF had a 

higher molecular weight that the other samples.

The molecular size distribution values calculated by viscometry, used the 

'molecular shape' constant for Hyaluronic acid. This was considered 

acceptable since both alginate and HA are unbranched polysaccharide 

molecules.
The average molecular weight of the alginates determined by viscosity, were, 

in the majority of cases, within 30 kOa of the values supplied by the 
manufacturer. This was considered reasonable, when the use of the HA
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constant, and the inaccuracy and batch variability of the alginates was taken 
into consideration (personal communication R. Stead).

The molecular weight calculated for alginate SF was considerably less than 

the value supplied by Protan Ltd. However, the gel permeation and the HPLC 

elution curves offer an explanation for this irregularity. The elution profiles 

showed a high level of low molecular weight material (10-50 kDa), which 

would reduce the average molecular weight. The origin of this material is 

unlikely to be depolymerisation of large alginate molecules, since it has been 

reported (M^Dowell 1977), that sodium alginate (approx Mwt 100 kDa) can be 

stored at room temperature for 3 years without a detectable change in the 

size of the alginate molecules. Similarly degradation of the alginate molecules 

by shear stress during preparation can be eliminated, since the alginate 

solutions were prepared in an identical manner and other preparations did not 

show this low Mr fraction. Therefore, it is likely that the low molecular weight 

material was present in the alginate when obtained from the supplier.

It was found that alginate molecules with a smaller degree of polymerisation 

were released from the collagen alginate sponges more rapidly than larger 

molecules. This was expected since smaller molecules can diffuse through 

the sponge matrix more rapidly. After 4 hours in saline, only low molecular 

weight alginates were released from the sponges; by 24 and 72 hours, larger 

molecules were released, but only a small proportion of the total. Analysis of 

the alginate molecules retained in the sponge showed two elution curves 

depending on the method used to released the alginate from the sponge. The 

alginate obtained by pepsin digestion had a lower average molecular weight 
than that obtained by EDTA extraction. The pepsin extracted alginate was 
degraded by impurities in the enzyme preparation, leading to the lower 

apparent molecular weight. Hence, the EDTA extracted alginate was 

accepted as the most representative.
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These results indicate the importance of the size distribution of the alginate 

molecules in determining their release from sponges. This explains why the 

amount of alginate released from collagen alginate sponges is not directly 

proportional to the average molecular weight, but is dependent on the 

molecular distribution.
Interestingly, sponges prepared from alginate SF (which was shown to 

contain substantial low molecular weight material), released only small 

amounts of alginate into solution. The reason that high levels of alginate SF 

were not released, may been due to other factors, e.g Guluronic acid content, 

pore size of the sponge and high calcium affinity, increasing the retention of 

alginate SF within the sponge.
Irradiation of the Fibracol™ sponges reduced the apparent molecular weight 
of the alginate that was released. In particular, the higher molecular weight 

molecules from non-irradiated sponges were not detected in the alginate 

extracted from irradiated samples. There are two possible reasons for this: (1) 

that the alginate molecules are degraded by the radioactivity, (2) that a 

change in collagen structure has occurred, enabling more alginate to be 

eluted from the sponge. It was reported (Bowes and Moss 1962; Bailey and 
Tromans 1964), that irradiation of collagen fibres in a 'dry' state, resulted in 

fragmentation, and an increase in intermolecular crosslinking of the collagen 

fibres. However, the degree of crosslinking was reported as almost 

undetectable in dry collagen products. Therefore the density of the sponge 

matrix would decrease due to depolymerisation of the collagen, allowing more 

alginate molecules to be released from the sponge.
Alternatively, the alginate in the sponges may have been degraded by 
irradiation, this would result in a lower degree of polymerisation, enabling 

more alginate to be released from the sponge in the form of smaller 

molecules. There have been no publications on the effects of irradiation on 

alginates. However, it has been shown (Kennedy 1991) that HA, which has a
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CHAPTER 5 GENERAL CONCLUSIONS

The interaction of the anionic polysaccharides with collagen in solution, was 

dependent on ionic bonding. This is in agreement with published results of the 

interaction of G AGs with collagen (Obrink 1973a, Obrink e ta ! 1975). The 
composition of the complex formed between the collagen and the 

polysaccharides was dependent on the pH that the two were mixed, the type 

of polysaccharide was also shown to effect the ratio collagen:polysaccharide 

in the coprecipitate. The fact that denatured collagen interacts more 

effectively with alginate, illustrates the importance of the flexibility of the 

molecules, in reducing steric inhibition and increasing the interactions.
Several authors (including Obrink e/a/1975. Tolstoguzov 1986), have shown 

that an electrostatic interaction between a protein and anionic polysaccharide 

can occur above the lEP of the protein, but does not result in precipitation of 

the biopolymers. An investigation of a similar effect between collagen and the 

polysaccharides studied in this thesis, was not performed owing to the 

insolubility of the PSC above pH 5.
Viscosity measurements suggested that there was an interaction between 

Guar gum and collagen. Interactions between neutral gums and protein, have 

been reported, e.g. dextran and gelatin (Tolstoguzov et a l , 1974). In these 

examples the aggregation of the protein is either prevented or promoted by 

the addition of the neutral gum. Circular dichroism studies showed that guar 
gum destabilised the collagen triple helix, resulting in a lower temperature of 

melting. The guar was thought to act by preventing the aggregation of the 

collagen molecules, thereby lowering the energy required to unfold the helix.

The type of alginate used in collagen/alginate sponges, influenced the amount 

of alginate released into saline solution. The size distribution of the

96



polysaccharide used in the sponges was important, since smaller molecules 

were released from the sponges most readily.
The addition of calcium to the sponges was shown to reduce the amount of 
alginate that was eluted, whilst increasing the concentration of calcium above 
the normal level, further reduced the amount released. However, it was shown 

that sponges containing no calcium retained up to 40% of the total alginate, 

proving that other factors are also important in controlling the release.

The structure of the collagen used in the sponges effected the amount of 

alginate released, probably due to differences in the collagen matrix of the 

sponge, allowing different sizes of alginate molecules to be released. The 
release of polysaccharide from collagen/ galactomannan sponges varied 

depending on the galactomannan used. Guar was more readily released than 

LBG. The addition of borate and calcium cations, reduced the amount of 

polysaccharide released. The fact that calcium was as effective as the borate 

ion. suggests that the cations are crosslinking the collagen, rather than the 

galactomannans.
No detectable amount of alginate was released from the collagen/ alginate 

films, due to the less porous structure. However, other larger polysaccharides, 

in particular Hyaluronic acid, are released from films prepared in an identical 

manner (unpublished results in this laboratory). Therefore, calcium ions, 

which were not present in the collagen/HA films, are likely to be responsible 

for the retention of the alginate within the film. The calcium was thought to 
have crosslinked the alginate within the sponge matrix. Whether this was by 

intermolecular bonding of alginate, collagen, or both, was unclear and would 

require further investigation.
The structure and physical properties of the sponges and films were not 

significantly changed by the addition of different polysaccharides. This was 
expected, since the fibrous bundles of collagen can only interact with the 
polysaccharides on the outside of the collagen fibre. Therefore, any binding
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which occurs will be unlikely to change the structure of the collagen fibre, thus 
the sponges and films will have similar collagen matrices, and similar physical 

properties.
The results of this thesis could have a direct effect on the production of 

Fibracol™ sponges, manufactured by Johnson and Johnson Medical 

Biopolymer Group. If a wound healing device is designed for external 

appliance to a wound, then it is undesirable to have migration of material from 

the device to the wound bed. It has been shown within this work that 

polysaccharides are released from collagen/ polysaccharide sponges. If it 

were necessary to prevent the release of all material from the sponges, the 

manipulation of the calcium concentration, would be the most effective 

method of achieving this. In addition, the alginate used in the Fibracol™ 
sponges (LF1060) could be changed to a higher molecular weight alginate 

(SF or HF), which has a higher retention within the sponge.
Small alginate molecules, are more likely to raise an immunological response, 
than large molecular weight molecules. It has been shown that the smaller 

molecules are most readily released from the sponges. Therefore, it could be 

argued that a source of alginate with minimal amounts of low molecular 

weight material, would be advantageous.
Although the percentage of guluronic acid in the alginate did not directly affect 

the amount of alginate released from the sponges, it is important for another 
reason. Skjakbraek et al (1991) have shown that the mannuronic acid 

residues of alginate are ten times more likely to stimulate cytokine release 

from human monocytes. These compounds have important roles in the acute 

inflammatory response in humans. Therefore, it is desirable to use an alginate 

with a high percentage of guluronic acid residues, in wound healing products. 
Alginate LF1060, which is used in production, has a high G content (65%), but 
low molecular weight. It would be better to use alginates SF, or HF, which 

have the same percentage G residues, but a considerably higher Mwt.
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Therefore, although all three alginates would raise a similar inflammatory 

response, smaller amounts of alginates SF and HF would be released from 

the sponges, to cause the response.
There are also implications for the use of collagen sponges as a slow release 

drug carrier. If a drug could be associated with the alginate, then the rate of 

release from the sponge could be controlled by the choice of alginate, and the 

calcium concentration. This would be particularly useful when a rapid initial 

release was required, followed by a prolonged slow release.
The apparent increased viscosity observed between PSC and the 

galactomannans has no direct bearing on any of the present JJMBG products. 

However, if any future products use soluble collagen in a thick solution, then it 

would be possible to achieve a high viscosity with lower solids content by 

adding guar gum. This could be of particular relevance if an absorbent pad 

was required, since guar gum can swell and absorb a large volume of water.
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