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Abstract
Thi» thesi* describe* sn image segmentotic» techniqae based on watenheds, a clustering 
technique which doe* not use spatial infonnation, but relies on mnltUpectral images. 
These are captured using a monochrome camera and narrow-band filters; we call this 
color segmentation, although it does not use c<dor in a physiological sense. A major part 
of the work is testing the method deveioped using different c<dor images.

Starting with a general discussion of image processing, the different techniques used 
in image segmenUtion are reviewed, and the applicati<m of mathematical morphology to 
image processing it discussed. The use Of watersheds as a clustering technique in two- 
dimensional c<dM space is discussed, and system performance iUnstrated. The method 
can be improved for industrial applications by using normalized col« to diminate the 
problem of shadows. These methods are extended to segment the image into regions 
recursively. Different type« of coior images inciuding both man made c d «  images, and 
natural color images have been used to illustrate performance. There is a brief discussion 
and a simple iUnstration showing how segmentation can be used in image compression, 
and of the application of pyramidal daU structure* in clustering for coarse

The thesis conclude* with an investigation of the methods which can be used to improve 
these segmenUtion results. Thi* includes edge extraction, texture extrwition, and recursive 
merging.
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Chapter 1

INTRODUCTION TO IMAGE
PROGRESSING
1.1 Introduction
Image pioceMing can be divided into two areu, namely analog and digital Analogue 
image piocewing if concerned with image signals which vary continnonsly in intensity, 
and space, but digital image processing is concerned with images that are quantised with 
respect to intensity and space, so that they can be processed using digital computer. Video 
signal processing can also be considered as one kind of image processing. The difference 
is that video signals vary with time as well. An image is a two-dimensional light intensity 
function f(xor), where (x,y) denotes spatial coordinates and the value of f at any point (x,y) 
is proportional to the brightness of the image at that point. A digital image is an image 
where both spatial coordinates and brightness have a discrete values. The pmnts forming 
a digital image are termed pixels, and the discrete brif^tnesses are termed gray-leveb.

Image processing is concerned with the manipulation and analysis of images by com-
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puter. It cui be clMtified into three mnjor «nbnreu [SoMnfdd k  Knk 82]:

1. Image digitization, compneiion and coding.

2. Image enhancement, leatoration and reconatmction.

3. Image matching, description and recognition.

1.2 Image Digitization, Compresgion and Coding
Digitization is the process of converting an image generated by a  camera from iu  original 
analog form into digital form. This process entails analog-to-digital conversion (ADC). 
Since digital computers process finite-length numbers, it is necessary to reduce the con­
tinuous measurement value to discrete uniU and represent them appropriately. There 
are two components to be considered in this process: spatial quantisation and gray-level 
quantisation. Both are illustrated in figure(l.l). Each of these methods are discussed in 
mote detail below.

1. Spatial quantisation: Spatial quantisation corresponds to sampling the bri^tness 
of the image at a number of points: for example an Af x AT array of points, where 
Af and AT are the number of pixels in the horizontal and vertical direction. Usually 
it is done in a rectangular grid and the value is the gray-level at the sampling 
point (figure(1.2)). The image is then represented as an array of pixeb, representing 
samples of the image brightness at a grid of poinU. The grid of brightness samples 
must be finer than the smallest features of interest in the image. Otherwise it may 
miss a feature completely. It is obvious that the approximation improves as M  
and AT increases. However, the original image can be reconstructed exactly from 
the digitised image as long as the sampling frequency is at least twice the highest
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freqaency praaent in the image. This 'sampie at twice the maximum frequency’ ruie 
it known as Shannon’s sampling theory and the rate of sampling is called Nyqnist 
frequency. A good presentaticm of sampling theorem may be fonnd in [Rosenfeld & 
Kak 82].

2. Gray-level quantisation: Since the gray-levd at the sampling points may take any 
value in a continuous range, for digital processing the gray-levd needs to be quan­
tised. In gray-levd quantization, the range of gray-level is divided into K  intervals, 
and the gray-levd at any point is required to take on only one of these integer values. 
These values are then coded and represented as binary numbers. The number of bits 
required will depend on the number of gray-levek. For example, 256 gray-levds will 
require 8 bits. In an image comprising K  gray-levels, level zero normally represents 
black, and level K  — 1 normally represents white.

A digital image may, thus, be considered as a matrix whose row and ccdnmn indices 
identify a pixel in the image and the corresponding matrix dement value identifies the gray- 
levd at that pdnt. In order for the reproduced picture to be a ‘good’ reproduction of the 
original, M , N  and K  have to be large. Ordinarily, the finer the sampling and quantization, 
the better the reproduced image. However, nothing is gained by increasing M, N, and K  
beyond the spatial and gray scale resolution capabilities of the image acquisition system.

The transmission and storage of pictorial information in digital form is of practical im­
portance in diverse application areas, including digital tdevision, picture-phone, remote 
sensing etc., mainly because digital communication systems are more flexible and contnd- 
lable. The central problem in digital image communication is channd capacity or data 
volume reduction while maintaining an acceptable image quality. Image compression and 
coding have been used to reduce the total number of bits required to code an image by

3



Analog Low -pass 
signal filte r  
Input

Sam ple &
hold

Quantizer D igital
signal
output

Figure 1.1: Illustration of analog-to-digital conversion, the low -pass filter is 

used to supress the high frequency noise (I.e. noise at a  frequency more than 

2 X sam pling frequency) from the input analog signal.

M

( a ) (b )

Figure 1.2: (a) Spatial quantisation of an Image, where * represents a  sam pling pdm ,

and (b) X and y represent two ditferent gray-ievels sensed at the san^tHng points.
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removing the rednnduit or irrelevnnt information frmn the image. There are two typee of 
techniqne for this:

1. Reversible image compression and coding.

2. Nonreversible image compression and coding.

Reversible coding techniques attempt to compress the image daU in a reversible way, so 
reconstruction of the original image with no d^ndation  can been achieved. This can be 
done by removing redundant information in the image subject to Shannmi’s infwmation 
theory [Shannon b  Weaver 49). The basic idea is that since not all the gray-levels in an 
image occur equally often, by assigning shorter binary code words to the more frequently 
occurring gray-level one can achieve compression over the case when all the levds are 
represented by equal length binary code words. The examples of this method are Huffman 
coding and Run length encoding [Hall 79).

For many appUcatiom such as video-confetoicing and deaf communication [Pearsosi k  
Robinson 85), the quaUty requirement for the image is not so important, so nonreversible 
coding can be employed to allow more compression. An information theory guiddine for 
the nonreversible coding problem is Rate-disunion theory, which aUows a trade-off be­
tween the achievable coding rate and signal distortion. The theory is extensivdy discussed 
in the book by [Berger 71], and [Gallager 68).

1.3 Image Enhancement, Restoration and Reconstruction
In image enhancement, the objective is to process a  given image so that the result is more 
suitable than the original image for a specific application. For example, increasing the 
contrast of a image b  a reasmiable enhancement operation for human viewing. In image
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rettoration, an ideal image hae been d^raded and the objective ii to make the processed 
image resemble the original as much as possible. However, image enhancement is closely 
related to image restoration. When an image is degraded, restoration of the original 
image often results in enhancement. The main difference is that an original, nndegraded 
image cannot be farther restored bat can be enhanced. For example, high-paas filtering, 
where the low fteqaency components are redaced and the higher fteqnency components are 
preserved, prodaces sharpened contrast and better edges, since the edges are associated 
with high freqamcies [Gonaales k  Wints 87].

Enhancement methods inclade histogram equalisation, edge sharpening and pseado- 
color enhancement. Restoration methods include geometric transformations, filtering and 
deblurring (Gonaale* k  Wint* 87). It is not necessarily to have a clear boundary separating 
the two areas, since some techniques can be applied in both.

Image reconstruction from sets of projections is sometimes necessary, since most phys­
ical objecU are spatially three dimensional, and the object characteristics may only be 
measured after the three-dimensional reconstruction has been formed [Castleman 79). The 
basic techniques for reconstructing a three-dimensional object from iU two-dimensional 

wide application. The significance of this technique is shown by its wide 
applicatiem to medical areas such as computed tranography, where X rays are used to 
generate projection data for a number of cross sections of the human body. From the 
projection data a cross-sectional image depicting the morphological details of the body 
in that cross section can be constructed. Due to the radiation hasards «««»»i-ji t ed with 
X rays, computed tomographic imaging with ultrasound attracU considerable attention. 
However, the later method can only he suitable for soft tiasue structuies because of the 
highly distortion caused by beam refraction in the presence of bone [Kak 84].
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1.4 Image Description, Matching and Recognition
IdeaUy, image deictlptioiu ihoold be independent of object file, orientation and iocation 
and tbonld contain enough diicriminatoiry infomation to uniquely identify one object from 
another. Since a region of intereit can be deicribed by the shape of iu  boundary or by ite 
internal characteriitics, we can subdivide description into two principal categories:

1. Boundary descriptors; represent the region based on its external characteristics (i.e., 
its boundaries),

2. Regional descriptors; represent the region based on ite internal characteristics (i.e., 
the pixels comprising the region).

Generally, an extemnl descripti<m is chosen when the primary focns is on the shape 
characteristic (also called Morphological features), while an internal description is selected 
when one u  interested in internal properties, such as c<d<w and texture.

Image descriptions generally specify properties of parte of the image and rdaticmships 
among these parte. Thus such descriptions are often represented by relational structures 
such as graphs in which the nodes correspond to the parte; each node is labded with ite 
associated property value such as shape, size, color or texture; and the arcs correspond to 
relations between parte, labeled with the associated relation and with a value as well if 
qualitotive. In the special case where the description does not refer to parte of the ¡"»»g- , 
it consists simply of a list of property values defined for the image as a whde.

In image matching, the tasks involve comparing the |^ven image with a standard refer­
ence and verifying the existence of discrepancies. Sonantic knowledge of the relationship 
between the each part may need to be identified, unless the image is extrmnely simple 
and heavUy constrained so that object matching processes can be applied directly to the



imige. A more flexible »ppioeck u  to mcMore » let of propertiee of the image and to 
compare the meaanred valnea with the corresponding expected valnes. An example of this 
is the use of width measuremento to detect flaws in printed circuit boards. The connects 
on the boards should have standard width. When a narrow one is found, it may be an 
indication of possible defects. There are many situations in which we want to match or 
register images with each other, or match some given pattern with a image. The frdlowing 
are some commmi examples:

1. Given two or more images of the same scene taken by different sensors, if they can 
be brought into registration with one another, we csm determine the characteristic 
of each pixel with respect to all of the sensors.

2. Given two registered images of a scene taken at different times, the points at which 
they differ can be determined, and thus the changes that have taken place can 
be analysed. For example, inlremote sensing, changes in land utiHaation can be 
detected.

3. Given two images of a scene taken from different positions, if we can identify the 
corresponding scene points in the two images, we can determine their distances frran 
the camera by tnangulation and thus obtain three-dimensional information about 
the scene. This process is known as stereomapping (Baker 80). The main difliculty 
with this approach is that it is not always easy to find pairs of corresponding points.

4. Given a pictmial description of a region of a scene, we may want to determine 
which region in another image is similar. The simplest approach is called template 
matching. The template is, in effect, a snbimage that looks just like the image of 
the object. A similarity measure is computed which reflecto how well the iTn«g . data
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matchea the template for each poeeible location. The point of maTimal match can 
be idected aa the location of the feature. Thia method can be uaed in detection of a 
known object and ia uied in applicationa, auch aa antmnated inapection of integrated 
circnita and printed circuit boarda [Hara et al 83].

The eventual goal of recognition, which might be dependent on matching the daU with 
stored models, is a labeling, where the function of recognition algorithms is to identify each 
segmented object in a scene and to assign a label (e.g., sea, sky) to that object [Ballard 
ic Brown 82][Goniales 74]. An example of a simple application is the automatic analysis 
of cells where the problem might be to locate cells in an image and to measure simple 
parameters such aa the number and size of the cells.

Recognition approaches can be divided into two principal categmies of decision-theotetic 
(statistical) and syntactic (structural) [Fu et al 80].

1. Decision-theoretic methods are based on quantitative descriptions. Usually two 
stages are required (ftgure(1.3)): the first is extraction in which a set of charac­
teristic measurement, called features, are extracted from the image; the second is 
classification in which the recognition of each pattern is made by partitioning the 
feature space. Thus this method is good for measurements that can be wdl repre­
sented in feature space (for example, statistical texture); the structural information 
about the image is not considered important.

2. The syntactic method is to divide a picture into simpler ‘subpictnres’, and then 
each subpictnre is treated as a new picture and divided again into even simpler 
snbpktnrea, and so on. The final snbpktures ate called ‘picture primitives’. These 
primitives will be linked together by a set of grammatical rules to produce ‘sentences’.

V



Faatunmeaturamants

Class

Figón 1.3: A two-tUge pattern recognition fyitem.

The decompoeition of the image is then described in terms of a ‘picton descripti\e 
language’. Object recognition is then accomplished by performing a syntax analysis 
of the sentence describing the given picture, rather than directly from the input 
image. Thus a syntactic approach to pattern recognition is a process in which 
structural descriptions and their relationships a n  compared to modeb to find the 
most similar model. Therefore this method is good for images whose structural 
properties a n  pre-dominant in their descripticms (for example, in fingerprint and 
Chinese character identification, etc.). An extensive discussion in this approach csmIbe found in [Fn 82].

This type of recursive sub-division can be demonstrated by using the building block 
image shown in figure(1.4a), which shows a simple building block image composed 
of a hexagon A and a pyramid B. Face M,N,0 and P are parts of hexagon A. Face 
X,Y and Z are parts of pyramid B. Hexagon A, and pyramid B together with the 
background constitute the whcde image. The structural representation of the image 
using tree description is illustrated in figure(1.4b).

The appiicaticms of image recognition vary from ‘simple’ character recognition, where 
an image of page is transformed into machine-readable text, to complex scene matching 
for medical diagnosis where the sise of a lung or its texture might be obtained in a chest

10



(•)

Image

Otüects Background

HaxagonA Pyramid B

FaoeM  FaceN FaceO  FacaP  FaceX  FaoeY FaceZ

(b)

Figure 1.4: (a) Building block image, and (b) itructural leptesentatim of the image uiing 
tree description.
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X-r»y image, industrial inspectic» where the position of faulU in mannfactnred articles 
would be pin-pointed, or earth resource studies frían satellite images.

The selection of approach depends primarily on the nature of the daU samples invcdved 
in a problem. Since there are many problems which have both properties, a combination 
of these two approaches may result in a more efficient and practical scheme for solving the 
problem.

1.5 Image Segmentation
Two types of segmentation have been defined [Levine 80). The first is complete segmenta­
tion, in which the object model must in general be taken into account in order to achieve a 
final result consisting of the segmented regions which correspond exactly to the objects In 
the picture. The second is partial segmenUtion, in which only the local predicates of the 
image such as intensity, texture and color are used. This is a general purpose approach in 
the sense that it segments the input image into a set of coherent regions based on the local 
predicate used without using any specific knowledge about the image domain, application 
or problem that is to be solved; and each picture is treated nearly identically. Usually, the 
segmented images are somewhat noisy, and do not correspond perfectly to semantically 
significant objects.

However, they are the atomic regions that, if properly joined, will give ns a structural 
description of the original images. So complete segmentation can be achieved using the 
segmento, which are created in the partial segmenUtion, as a basis for further analysis at 
a higher level [Levine 78] [Nazif & Levine 84). In the higher level stage a priori knowledge 
about the image is utilized. It usually invidves semantics about the class of image being 
processed. Moreover, the analysis deals with a representatiim of the features extracted

\
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from an image (i.e., segment«) lather than with the image itself (i.e., pixds). The compn- 
tational processing could be simplified, since the number of segments is much smaller than 
the number of pixds in the original image. In other words, the goal of data compression 
has been achieved after partial segmentation.

In the past, most efforts in image segmentation have been concerned with black-and- 
white images, since they are easier to handle. But all actual scenes and images contain 
color, and color information plays important roles in human perception and recognition of 
scenes and images. Of course there are some cases where ccdm is not intrinsically rdated 
to the object’s identity in the way that other cues, such as shape, are. For example, it 
may be nonsense to model a car as being red and green, but this color information should 
be very useful in locating it among the other cats unless the others are the same color. 
In other words colw not only increases the perceptibility of important details but also 
increases the speed of object recognition. This explains why the pseudocolor enhancement 
is used to present numerical images, such as satellite images, in a chromatic manner. This 
also suggests the importance and usefulness of colm information in image segmentation.

One of the reasons for the limited use of color images may lie both in the low availability 
or accessibility of specific hardware and software for acquisition and processing of color 
images. And the increase in complexity and computation time caused by the use of colors 
is quite notable. However, the situation has changed sharply due to the greater availability 
of acqnisiti<» and processing hardware for color images such as CCD color TV-cameras, 
frame stores, very-large-scale integration circuit (VLSI) and transputer, etc. As a result of 
more hardware becoming available, the availability of software is also increased. In other 
words, c<dor should no longer be regarded only as a means of improving the beauty of a 
B/W image, but rather as an aid to help os to s<dve complex segmentation problems.
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1.6 Outline of the Thesis
In thii theiif, dnatering and racnnive cliutering techniqnes niing watenheds algorithms 
are being used as a partial segmentation method for colcMr images. A considerable amount 
of research into image segmentation using recursive region splitting baaed on c<dw has 
been done by many authors. For example, [Ohlander et al 78] used nine one-dimensional 
histograms of cdm  features in recursive histogramming. [Ohta et al 80] examined the 
segmentation in natural scenes using different cdm features, and suggested that three 
effective cdor features can be obtained using a linear transformation of the R,G, and B 
color space. [Shafer & kanade 82] presented an improved versi<m of the recursive regions 
segmenUticm by analysis of histograms of color. [Tominaga 88] introduced a method for 
segmenting a color image into uniform color regions by means of the three color perceptual 
attributes of hue, lightness, and saturation.

The work described in this thesis is mainly to study the application of watersheds as a
1dustering techniques in two-dimensional colm space. It should be noted that we are using 

color in a physical, rather than a purely psychological sense. The work concentrated on 
two main areas. First, the methods are described and the performance of the methods are 
illustrated. The possible application of this method in industrial usage using normalized 
color to eliminate the problem of shadow in color scenes is discussed.

Second, these methods are extended to segment the image into regions recursively. 
Different types of color images including man made color, and natural cdm  have been 
used to illustrate the performance of the methods. Finally thoe is a brief discussion and 
a simple illustration showing how segmentation can be used in image compression and the 
application of pyramidal data structure in clustering for coarse segmentatimi.

The thesis consists of six main chapters. This chapter contains the outline of main
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u ew  of image proceHing.

Chi4>tar 3 provide! a review of image segmentation methods. Both segmentations based 
on edges and regions are discussed. Finally, there is a brief discussion of the relsp 
tionship between the methods.

C hap ter S introduces some basic concepts in euclidean and di^ptal mathematical mor­
phology for image processing, which form a background to the methods used later, 
and also serves as a review of mathematical morphology.

C hap ter 4 develops the color image segmentation algorithm using watersheds, and il­
lustrates how the noise cleaning and edge detection can be implemented by using 
dilation and erosion, u d  also illustrates how the fragmentation caused by the shadow 
problem in color scenes can be partly eliminated using normalized col<». Finally, 
there is discussion of application of this method to industrial usage.

C hap ter 6 develops the recursive clustering algorithm using watersheds for color image 
segmentation. These methods have been applied to man made color images, and 
natural color images. Finally, there is an illustration showing bow segmentation 
csm be used in image compression by means of regional description and boundary 
descriptimi, and the application of pyramidal data structure in clustering for coarse 
segmentation.

C hap ter 6 discusses methods which can provide some improvement to the segmentaticm. 
These methods include pre-processing of edge extraction and texture extraction, and 
post-processing of merging. Finally, there is a brief discussion in segmentation errors.

C hap ter 7 provides the conclusions of the thesis, and suggests possible areas of future 
research that would improve the methods already devdoped.

15



Chapter 2

REVIEW OF IMAGE
SEGMENTATION
TECHNIQUES
2.1 Introduction
For various applications such as data compression discussed in section 5.4, pattern recog­
nition, descriptive economy, or as a stage in the process of image understanding, it is 
often useful to segment pictures into regions. Region segmentation has been described by 
[Gonzalez & Wintz 87) as follows. Let R  represent the entire image r e ^ n .  Segmentation 
may be viewed as a process that partitions R  into n snbrepons, Ri, R , , ..., R^, such that

1. US.,«. = «.

2. Ai is a connected region, t = 1 , 2, ...,n,

3. Jt,- n  = I  for an i and j ,  and i /  j .
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4. P(Ri) = TRUE for i =

5. P{Ri U Rj) = FALSE for i /  j ,  where R,- end Rj »re adjacent.

where P(Ri) ii a logical predicate defined over the pointa in set R,, and •  is the noil set.
The first condition indicates that every pixd must be in a region. This means that 

segmentaticm shonld not terminate until every point has been processed. The second 
condition requires that points in a region must be connected. The third condition indicates 
that the regions must be disjoint. The fourth condition determines what kind of properties 
the segmented regions shonld have. One simple example is uniform gray levels in which 
P{Pi) =  TRUE if all pixels in R,- have the same intensity. The final condition indicates 
that adjacent regions R,' and Rj are different in the sense of predicate P,

Segmentation is the process which divides the image into parts such that each segment 
has a homogeneous property such as intensity, cdlor or texture etc. Interesting features can 
then be extracted for subsequent processing, such as description, recognition and identifi­
cation of complete objects. For example in an earth resource study from satellite images; 
the problem may be to find homogeneous regions with respect to some characteristics such 
** level, color or texture, and to classify them into various land-use categories such as 
city, forest, water, and agricultural fields. To achieve this result the image is partitioned 
such that:

1. Regions of an segmented image should be uniform and homc^eneous (i.e. pixels 
belonging to the same region must have approximately the same gray level, same 
ccdor or same texture).

2. Adjacent r^ o n s  of a segmented image should have significantly difibrent values 
with respect to the characteristic on which each is uniform (i.e. pixds belonging
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to adjacmt regioiu must have significantly dififeient gray level, different color or 
different textnre).

It is, sometimes, not easy to achieve both properties because nsing strictly uniform and 
homogeneous regions will break the image into numy small pieces. Further, insisting that 
adjacent regions should have large diffemnces in values can cause regions to merge. As a 
result boundaries are lost and the objects of interest may not be found. Segmentation has 
generally been done under the assumption that:

1. The area representing an object is more or less uniform in its local properties: gray 
level, color, textnre, and so on.

2. There is a detectable discontinuity in local properties between the ar«u representing 
two distinguishable objects.

These two assumptions result in two methods:

1 . Segmentation based on areas (regions): the process of region finding is the parti­
tioning of an image into its disjoint subsets corresponding to distinguishable regions 
in a scene.

2. Segmentation based on edges: in this case the edge is the boundary between two 
adjacent regions. Generally, edge finding is a process of detecting the parts of an 
image where there are abrupt changes in local properties, and it is frequently difficult 
to use such edges to define regions.

18



2.2 Review of Image Segmentation Techniques Based on 
Regions

Image segmentation techniques based on regions can be classified into two categories: 
measurement space guided spatial clustering, and region extraction. The former methods 
do not make use of spatial infmmation on the image to form regions, but the latter methods 
do use that infonnation [Haialkk k  Shapiro 85].

Since the measurement space guided clustering methods are based on the assumption 
that the similarity of measurement values of each class of a segmented region form a ‘mode’ 
in the measurement space, these methods ate relativdy immune to noise but will &il if 
this assumption is not true.

Measurement space guided spatial clustering methods work by using a measurement 
space clustering process to define a partition in measurement space. Each pixel on the 
image is assigned the label of the ‘mode’ in the measurement space partition to which it 
belongs. The segments are defined as the connected components of the pixds having the 
same label. The accuracy of the measurement space clustering processing depends directly 
on how wdl the objects of interest on the image separate into distinct measurement space 
clusters.

The simplest measurement space clustering is ‘global thresholding’, which can be ac­
complished by determining the valleys in the histogram and declaring the clustering to be 
the intervals of values between valleys. Since each uniform region contains many pixels 
of similar value, peaks in the histogram (called ‘modes’) are considmed to ccwiespond to 
such regions. If the histogram contains multiple peaks, the region is regarded as being 
composed of multiple uniform regions, and can be split by using ‘multilevel thresholding’
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M foUowi: a pixd whoM value U in the ith  interval U Ubded with 1 and the legment it 
belong! to in one of the connected component« of all pixel« whoae label i« 1.

In the ca«e where the objecto to be extracted are very «mall and thinly «cattered, the 
picture con«i«t« almoet entirely of background, and the obJecU may not produce detecUble 
peak« on iU hiitogram. Thin problem can be «olved by luing ‘local threahtdding’ in which 
the whole image i« divided into a number of «mall tub-imagee. Each «nb-image i« then 
u«ed to form an hiatogram. If the «ub-image contain« objecte, the corteaponding hiatogram 
.hould have peak«. Therefore local threahold« can be adected for theae .ub-image« to 
separate the object from the background.

The technique ia extended to make uae of multiple hiatogram« to do recunive aegmen- 
tation in the foUowing way: the aegmented region« are conaidered aa new imagea and the, 
procaw of hiatogramming, peak aelection, and cluatering ia repeated untU no new peaka 
can be found or regiona become too amall. The effective implementotion of thia method
are deacnbed by (Tomita et al 73] for texture imagea, and by [Ohlander et al 78] for color 
im a ^ .

However, the hiatogramming technique ia not auitable for image« that include non- 
uniform region«, where the hiatogram containa no prominent peaka becauae pixel valuea 
within each region are not uniform. Nonuniformity inaide the image would reault in a very 
large number of amall regiona. Since the cluatering ia done in meaaurement apace and no 
apatial infimnation inherent on a image ia taken into account, the reuniting bonndarie« 
are very noiay and bu«y [Haralick k  Shapiro 85).

Kegion extraction methoda make nae of apatial information to form regiona. T h ^  can 
be claaaified a«: region merging, region aplitting, and r ^ n  aplitting and merging.

Region merging invcdvea flnding amall group« of pixd« (which can be individual p i~ lt
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or colloction of adjacent pixda) with itmilar propertica inch aa gray levd, color, texture, 
then merging adjacent aimilar regionf until no adjacent regiona are aufficiently aimilar to be 
merged. The typical region merging algorithm performa a calculatim of the aimilarity for 
each pair of adjacent regions, and the beat pair are merged together. One example criterion 
of similarity of two adjacent regions is the difference of the average gray levels. If the seed 
region used is a single pixd and the segmented regiona should be highly homogeneous, the 
worst case is that each segmented region be a single pixel. On the other hand if we insist 
adjacent regions should have large differences in values, the worst caae is that only one 
segmented region, consisting of the whole image, can be found. However, region merging 
technkines work very wdl in the ideal case (i.e. images in which regions are basically 
homogeneous with small variations in the properties used such aa intensity).

A way to extract the seed regions is to use edges [Shirai 87]. After applying an edge 
detector to the image, edges are extracted in the gradient image by thresholding. Seed 
regions are determined aa those enclosed by edges. Edges with open ends are ne^ected. In 
order to obtain many seed regions, the threshedd for edge extraction must be low enough 
so that edges with low contrast may be detected. A similar approach used to And the seed 
points has also been used by [Levine 80).

Region merging can be implemented by linking pixds together in graphs. Regions in 
an image can be represented in the form of graphs, in which the nodes represent regions, 
and two rq ^ n s  are jomed by an arc if they are adjacent. The properties of each region 
(average gray levd, cdor, etc.) are associated with each node. Similarly the properties of 
each pair of r^ions (length and strength of comm«» border, etc.) are assodated with each 
arc. The region merges can then be carried out by contracting the graph. The properties 
of a new merged region are recomputed whenever two nodes are merged. [Asano k  Yokoya
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81] and [Sole k  Cko 83] u(«d a similar approach to do the region merging.
One of the disadvantages of the re |^n  merging process u  its inherently sequential 

nature. The regions produced depend on the order in which regions are merged together. 
In order to s<dve these problem, the methods proposed by [Burt et al 81][Hong k  
84] adopt a  pyramidal representatiem of the image, in which the image is represented at 
a number of different spatial res<dntions, and a heuristkally derived ‘relation’ type of 
process is used to merge the regions. The method takes advantage of the pyramidal image 
description to combine local u d  global information in guiding the segmentation process.

Region splitting is the opposite approach to merging for segmentation. Starting with a 
large region such as the entire image, split it into multiple regions. Continue the splitting 
process until no further splitting is possible. The key to this method is a criterion for 
deciding how a region should be split. [Klinger k  Dyer 76] proposed regular decomposi­
tion for image segmentation, using a top-down recursive partitioning of picture area into 
successively finer quadrants to obtain! resulting tree structures for images.

The boundaries produced by this region splitting technique tend to be squarish and 
slightly artificial because regions are successively divided into quarters. The final partition 
may contain adjacent regions with identical properties. This may be remedied by allowing 
merging, as well as splitting. The general idea is to start with a given initial partition such 
as squares of a fixed size, Ri,  J ij ,..., R„, merge adjacent regions if the resulting new region 
is sufficiently homogeneous i.e., P{Ri  U Rj) = TRUE, and then split a region if it is not 
homogeneous enough i.e., P(R,) =  FALSE. The process will sUq> if no further merging or 
splitting is possible.

A good method which can be used to represent the split and merge segmentation 
is the segmentation tree, where vertices correspond to regions and branches denote the
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relatioothip between these connected re ^ n s . The splitting SAd merging of regions ere 
expressed in terms of moving down end up the branches. A good emmple using split 
and merge method can be found in [Horowitz i¿ PavUdls 74,76]. They used a quad-tree 
for their segmentation algoritlun in which each region is divided into four quarters in a 
recursive manner.

2.3 Review of Image Segmentation Techniques Based on 
Edges

Edge detection techniquet, which me bneed on the concept of diacontinnity, work by 
detecting bonndnriee between homogeneous regions of some properties such is intensity. 
Such techniques are well known for their limitations which are:

1. Edge detection by differentiation is easily affected by high frequency noise, espe­
cially when a small mask is used (Le. an edge is characterized as a local intensity 
discontinuity).

2. Sometimes edges detected are not the boundaries between what we wish to consider 
as regions. They may be caused by a shadow lying on a region.

3. Homogeneous regions with smooth changes at the boundaries may not be detected.

4. Closed boundaries of regions are difficult to find in practice, since edges detected 
often have gaps where the transitions between regions are not abrupt enough due to 
blur, noise, insufficient contrast etc. Therefore, an additional linking step such as 
hough transform or edge relaxation, must be used to obtain a representation of the 
connected edge segment.
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s. After the linking step, the orignal segment may change. Consequentially, repro­
cessing of the properties of some region may be required (for example, average gray 
level, color).

[Davis 75] has written an excellent survey on different edge extraction techniques, and 
classifies them into two groups; parallel techniques, and sequent!^ techniques.

Parallel edge detection techniques are based on the result of convolving a local mask 
about the pixel in the image. Since the decision made is not dependent on previous 
results, the edge detection operators csm be applied simultimeously everywhere in the 
image. However, the result is quite susceptible to noise, since the computation is based 
on a small window. The Kirsch, Sobel, and Prewitt operators are examples of these 
techniques [Fu & Mui 81], and are based on a 3 x 3 pixel masks.

Another approach in parallel edge detection is boundary detection based on formal 
models of edges, in which a model is defined and are fitted to a sample region of the input 
image in an optimal way. The Griffith, Hneckel and Chow operators are examples of these 
techniques [Davu 75].

Edge detection algorithms are seriously affected by noise on the image because they 
do approximate differentiation operations, calculating the rate of change of pixel intensity. 
Thus, the noise-characteristic of an edge detector depends on its size. The larger the size 
of the detector, the more random noise will be averaged out. However, it is also more 
likely to overlap several edges or comers simnltsmeously and thus degrade the resolution 
capability. The effect of noise can also be reduced by pre-processing with a smoothing 
filter (i.e., low pass filter), but as a result the edge will be blurred and the sensitivity of 
the edge detector reduced.
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[Marr & Hildreth 80] have luggwted a compromite method using an opentor con­
sisting of a Laplacian of a Gaussian. The Gaussian serves as a smoothing function and 
the Laplacian gives a nondirectional derivative, in which the second derivative is zero at 
the edge but has a positive and negative peak on either side. Thus, edge detection is 
accomplished by locating zero crossings. High or low resolution of the operator can be 
obtained by using a sharp or wide Gaussian respectively. This operator is considered as a 
good model of the processing in the human visual system, and has been used extensively 
for work in stereo vision [Grimson 80).

The parsdlel edge detection techniques are not guaranteed to produce a set of closed 
connected curves that surround connected regions, because of n < ^ , breaks in the bound­
ary due to nonuniform iliumination, and other effects that introduce spurious intensity 
discontinuities. Thus edge detection techniques are typically fi^owed by edge linking 
procedures designed to assemble edge pixds into a meaningful set of region boundaries. 
One possibie approach is the Hough transform [Hough 62). In this method, the edges are 
transformed to another space, called the Hough space, with the property that the desired 
groups of edges cluster in the transform space.

Sequential edge detection techniques, in which the result at a p<rat is dependent on 
the results of the operator at previously examined points, are used to force some conti­
nuity between edge points. There are a number of sequentisd techniques such as using 
heuristic search, dynamic programming, and guided edge detection [Davis 75). The major 
components of a sequential edge detection techniques are;

1. The picking of a good initial point: since the result will depend on the present input 
and the previous result, the performance of the entire procedure will depend upon 
the choice of a good starting point.
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2. The dependence stracture: how do the reenlts obtained at previously examined 
points affect both the choice of the next point to be examined and the result at the 
next point?

3. A termination criterion: there must be a way for the procedure to determine that it 
is finished.

2.4 Review of Region and Edge Extraction Using Color
The term ‘color’ is often used where it is really multlspectral signals which are bring tised. 
Frequently, color tdevision techniques are applied as these are easily available. See section 
4.2 for a further discussion of this.

[Ohlander et al 78] used nine one-dimensional histograms of color features: the red, 
green, and blue color components; the intensity, saturation, and hue components; and the 
National Television Systems Committee (N.T.S.C.) Y,I,Q components. Among the nine 
histograms, one is selected which contains the most prominent peaks and valleys. The 
regions are then thresholded. Every time new regions are produced, the nine histogram 
are calculated and a decision is made on the basis of the result of those calculations. This 
procedure is repeated until no threshold is suggested by any histogram. Similar methods, 
which integmted edge information, have been proposed by [Milgram & Ksihl 79] [Milgram 
k  Herman 80].

[Schacter et al 76] used ‘3-dimensional histogram’ of (RGB) color features to do the 
clustering. The 3-dimensicmal histogram is stored as a binary tree by using the triples of 
crior values as key, t a i  the infivmation is the number of the points with this key value. 
To construct the tree, the triple of crior values at each scene point is used to sesoch the 
tree for this key. If the kqr is found, the point count a t that tree node is incremented by 1,
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and if not, a node with that key m added to the tiee with iu  count let to 1. Clusten are 
detected if the number of the poinU exceeds some threshdd and if they lie within some 
distance from each other. This method is computationally expensive, since it searches for 
the optimal cluster locations and the optimal number of clusters by repeated iterations 
over the data.

A similar technique for clustering was employed by [Sarabi & Aggarwal 81], where an 
interactive system that use 3-dimensi<mal clustering in the normalized col«» space (X,Y,I) 
represenUtion of the scene scdves segmentaticw when there is no pri<w knowledge about 
the color space characteristics of the scene. When particular color space characteristics 
are known, the color space is projected onto the X-Y, X-1, or Y-I faces of the normalized 
color space as described in (Underwood & Aggarwal 77). They determined the threshold 
interval to extract the region by manual adjusting for their interactive system.

[Khotanzad & Bouarfa 90] described a non-parametric clustering algorithm, which is 
totally automatic and is easily parallelizable, and its application to nnsnpervised image 
segmentation. Image segmentation is performed by clustering features extracted frmn 
small local areas of the image. The clusters are found by mode analysis of the multi* 
dimensional histogram of the considered vectors throng  a non-iterative peak-climbing 
approach.

[Celenk 90] described a clustering technique and its use in segmenting the color image 
of natural scenes. The proposed method operates in the 1976 CIE (L,a,b) uniform color 
coordinate system using cylindrical coordinates. It detects image clusters in the cylindrical 
color space by means of estimating thd r distribntimis in some well-defined decision volumes 
of the constant lightness and constant chromaticity loci.

[Chang et si 87] have proposed a new threshold sdection algorithm to determine the
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tkrethold interval that extract! the tingle clutter nearett to a tpecifted feature vector in 
multi-dimentional feature tpace. Thit algorithm hat been applied to color imaget for 
extracting a uniform color region of tpecifted R,G,B intentitiet, and they found that the 
extracted color regiont are well matched with the tpecifted real color region.

[Funakubo 84] reported that color feature! which contiitt of three gray levd valuee 
(i.e. red, green, and blue) do not provide inificient infc^mation for extracting regioni from 
such a complex image at biomedical tittue image. In such the cate textural feature, which 
it determined by the tpatial dittributicm in retpect to colm infcmnation of pixdt, might 
be uied to improve the tegmentation effectively.

There are few reporta of uaing human color perception model for tegmentation. Two 
examples are the research done by Tominaga and Garbay.

[Tominaga 86,87,88] described a method for segmenting a color image into uniform 
color regiont by meant of the three color perceptual attributes of hue, lightness, and 
saturation. The Munsdl color system, which it used at the c d m  tpace for specifying 
human color perception, provides a perceptually uniform color tpace defined in the three 
attributes called Muntell Hue, Value, and Chroma. They are determined from human 
perceptual experience of object colon. Fintly, a mapping method it used to transform 
the observed color signals into the ccdor space [Tominaga 83,84], so that the perceptual 
attributes of a color image can be predicated quantitatively. The histograms of the three 
attributes are then analysed for image tegmentation by recursive threthcdding method.

Another human c<dw perception modd wat proposed by [Fangerat 79]. The basic 
feature of the modd it a linear tiansformatimi of the R,G,B log-imaget into one achromatic 
image and two chromatic imaget. Eiach colm it then characterised in the perceptual tpace 
by its luminance (L), saturation (S) and hue (H). Garbay used thit modd for tegmentation
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of bone marrow cell*, in which a segmenUtion algorithm ba^d on a linear Hiwrimin.M 
analysis is used. It involves the partitioning of the space generated by the vectors (L3 and 
H) into four clusters corresponding to the background, the erythrocytes, the cell cytoplasm 
and the cell nucleus, considered as four classes of objects. This approach was shown to 
increase the efficiency of the segmentation, feature extraction and clanification of bone 
marrow celis [Garbay 81,82][Chassety k  Garbay 83,84).

(Ito 75,7630] utilized col<w information in an industrial inspection system for IC 
patterns. Patterns of IC masks were illuminated by red, green, and blue light, respectively. 
Defects of these mask pattern could be identified by the optical composition of the patterns 
under illumination of the primary coior light source.

Two color coordinate systems for coior image recognition for industrial automation 
have been evaluated by (Asano et al 86). The two cdot  systems are RGB and Chromi­
nance signal (Y3-Y,B-Yj. In both systems the c<dor image are transformed into hue and 
saturation image, and the luminance signal is not used for recognition. They find that 
both systems have similar hue resrdution; however the hne/satnrati<m traruformaticm in 
chrominance signal system is faster than that in RGB system.

A similar technique, which uses the coior system, NTSC YIQ, for color image analysu, 
has been discussed by [Keiley b  Faedo 85). In tha r experiments, on detecting resistor color 
bands, the results show that phase-magnitude representation of the IQ-plane chrominance 
data leads to computationally efficient scalar segmentation algorithms. Saturated colors 
can be distinguished using phase data alone while nonsaturated c(d<ns require chrominance 
and intensity data.

[Aus et al 83] suggested that the luminance and chrominance signal obtained from 
an ordinary color TV camera m i^ t  be useful in scene sq^entation. After checking the
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white belutce and registratioa of the three tube* of a ccdor TV camera, a ctdor scene 
is captured and stored as three gray level images representing the red, green and bine 
component image. The P.A.L. Y,U,V at each pixd in the image are calculated using a 
software algorithm, then the user can interactivdy select color phase, col« amplitude, and 
luminance thresholds to segment the scene.

[Keil 83] used a chromakeyer to convert the hue content of a N.T.S.C. Y,I,Q, col« 
television image into a standard monochrome television image. The chromakeyer is used 
to select a desired hoe, which represents the object of interest. All occurrences of this hue 
in the col« image are enhanced with a high gray level value and its complementary col« 
is suppressed with a low gray level value. All other ccd«s become various shades of gray 
depending on their relative p«itions in the IQ-plane. The particular characteristic of t lu  
system is that not all of the information which is available in the c d «  image is used.

Another industrial inspection system using col« spectral signatures for col« recog­
nition was reported by (Berry 87). Firstly, experiments are conducted to determine the 
spectral features that are invariant over a range of lighting conditiorts. Having determined 
those features, an automatic color recognition scheme which makes use of both col« and 
gray-scale information is developed for spray paint can trq». Input to the system is a col« 
image and output is the dimensions of the center, radius in screen coordinate and col« of 
the spray paint caps.

The performance of segmentation depends not only on its segmentation algorithm, but 
greatly on col« features used in iu  segmenUtion pr«esses. [OhU et al 80] conducted a 
systematic experiment of segmentation in natural scenes using different col« features, and 
»“8g«**®d three effective c«d« features in terms of a linear transformation of the R,G,B 
col« space. The three features are ( i l G -1- B)/3, ( R -  B)/2,  and ( 2 G - R -  B)/4,  and
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these u e  used to find the threshold instesd of R ,G ^ d  B.
The edges in the colw inuge ere found to be Inrgely contnined in the edges in the 

intensity image. This implies that most of the information of interest is embedded in the 
intensity image. On the other hand, if intensity edges are absent due to low contrast, color 
edges can resolve the problem of finding edges. Besides, the coin edges can be used to 
determine the edges with higher confidence particularly for edges that occur in both the 
intensity image and ccdor image [Nevatia 76].

The simplest scheme is perhaps to compute edges in the three components sep­
arately and determine an edge in the ccdor image if certain rdatimis between edges in 
individual components are satisfied, e.g., we can take their RMS, or the sum or maximum 
of their absidute values [Rosenfeld & Kak 82). For example, let R(ij), G (ij), and B(ij), 
be the red, green, and blue components. Then the RMS of the difference between points 
(ij) and (i-1 j )  are

i(R (i,i) -  Jt(i -  l , i ) ) i  +  (G(i,j) -  <?(f -  l,i))> + (B ( iJ )  -  B (i -  l,i))* ]‘/i 

which is just the Euclidean distance between the cidor vectors
[R (i,j),C (i,j),B (i,i)]and  W  ~
A similar technique has been used by (Robinsi<m 76], in which the maximum value of 

the gradient of the three color components at a point in an image are cMculated, and then 
combined to form a color edge. This is essentially a gray level edge technique, and thus the 
result is dependent on the choice of suitable thresholds for each gradient color component 
image. One of the biggest problem is selection an optimal threshcdd value automatically.

[Nevatia 76,77] developed a color edge detector based on a generalization of an edge 
operator developed by [Hueckel 71,73] for a single gray levd images. The Hueckel operator 
determines the presence of an edge in a circular n^ghbourhood by fitting an optimal step
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to the input signnl. An iden] edge step ia defined to hnve n atep or line profile in brightneaa, 
thia profile being conatnnt along a atraight line in the aignal window. Nevatia extended 
thia concept of edge to a c«fior edge by applying the operator to the three componenta 
aeparately. Preaence of an edge in the color image may now be baaed on the relationahip
between the edges in the three components.

2.5 The Relationship Between Region Based and Eklge 
Based Segmentation Methods

Region baaed and edge baaed segmentation methoda are cloady related, aince region baaed 
methoda attempt to locate homogeneoua regiona in the inuge and edge baaed methoda 
attempt to locate bonndariea between regiona in the image. Naturally, bordera of regiona 
may be identified aa edgea. So it ia reaaonable to aaanme that rdating theae two proceaaea 
together can improve an aegmenUticm reailto which depend on juat one method. However, 
it ia hard to eatabliah the rdationahip between theae two methoda.

On the other hand, if the rdationahip between theae two methoda can be eaUbliahed, 
these two processes can be unified. One passible method, which can establish such rela­
tionship using region and region boundaries, ia graph theory [Morris et al 86]. It uses the 
vertices to represent the re^ n s . Regions are connected by links if they share an edge (i.e. 
adjacent). Using graph duality, we can derive the relationship between vertices and links 
in a graph and the spaces that are formed between the links. An recent example using 
integration of both methods, region growing and edge detection, is described in [Pavlidis 
k  Liow 90).

However, it ia hard to establish such relationship for the region based methoda which 
use the clustering techniques. Since the clustering ia done in feature apace, there is no
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spatial infonuation from the ima«e. Besides, the contradictory regions and edges produced 
are not easy to solve, unless we have some prior knowledge about the type of image. It 
also explains why most papers consider these two methods in almost total isolation from 
each other.

2.6 Summary
The aim of the present chapter is to review the general s^mentation techniques based 
on both region and edge. The wide variety of methods have been reviewed indicates that 
many different approaches are possible. However, one major advantage of using region 
based methods over edge based methods is the former always produce closed regions and 
those regions can constitute the whole image, but the set of all edges obtained using thé 
latter usually does not work.

So far, there is no standard approach to image segmentation and also no theory of it, 
and the methods used are strongly problem dependent. However, it seems further improve 
can be obtained, if we can combine edge detection and region segmentation with seman­
tic information to perform image segmentation. A good survey on image segmentation 
methods can be found in (Davis 75) [Zucker 76][Fu k  Mui 81][Haralick & Shapiro 85].
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C hapter 3

INTRODUCTION TO
MATHEMATICAL
MORPHOLOGY FOR IMAGE
PROCESSING
3.1 Introduction
Morphology refers to the study of form and structure. Mathematical morphology provides 
an approach to the processing of images, where the images being analysed are considered at 
a set of pointo and the operations come from set theory [Matheron 75][Serra 80,88](Haralkk 
et al 87). Morphological operations can be employed for many purposes, inclnHiiig edge 
detection, segmentation, and enhancement of images. Indeed, one of the most useful 
areas of morphological analysis is the generation of feature parameters for use in artificial 
intelligence schemes, since the morphological operations manipulated on pictorial content
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rather than pixd lUtee can rigotooily quantify many aipectt of the shape or geometrical 
stmctnre of signals in a way that agrees with human intuition and perception (Mangos & 
Schafer 90). In this chapter, we will discuss euclidean (or analog) and digital morphological 
opentions. In order to define mathematical morphology, we first require some background 
definitions in usual set-theoretic operation of union and intersection.

1. Let P(E) (the powerset of the set E) be considered as a complete lattice. For 
Xi € P(E), i = 1, 2, 3,..., the least upper bound of Jf, is their union and the 
greatest lower bound of Jf, is their intersection flJf,-, both of which belong to P(E) 
(figure(3.1)).

Figure 3.1: The block diagnm for LUB(Xi)  »nd GLB(Xi),  where i = 1,2,3.

2. The lattice P(E)  is distributive since union and intersection are distributive, i.e.,
xu(ynz)  = (xuy)n(xuz)  >/x ,y , ze  p (E)

3. The lattice P(E)  is complemented, i.e.,

X u X ‘ = E  and X n X ‘ = $
where X ‘ is the complement of the set X  and 0 is the empty set (figure(3.2)).

4. Given two sets Jf and y  6 P(E),  their set difiference X / Y  can be derived from 
intersection and the complement as follows :
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X I Y = X r \ Y ‘
X / Y  il the part of X  which does not belong to Y  (fignre(3.3)).

Figure 3.2: The block diagram fot X \J  X ‘ = E  and X n  X'‘= = I

Figure 3.3: The block diagram for X /Y .

3.2 Euclidean Morphological Operations
Thii section discusses some fundamental morphological operations in euclidean space, 
including two important techniques of dilation and erosion. These techniques are then 
used to explain the closing and opening operations, and have also been used to illustrate 
edge detection. Although the actual implementatimi of these operators will be in digital 
setting, the euclidean model is essential to the development of an understanding how the 
operators function in both theory and application.
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S.2.1 P r im itiv e  E uckdeen  M orphologicel O p era to re

1. Stracturing dement

With each pomt x of the euclidean plane S? in which we work, we auociated a get 
A(x) called a structuring dement (i.e., a  set of pixels constituting a spedftc shape 
such as a line or square).

2. Reflection

Given an image (subset) A in H», the reflecUon of A U -A, wUch is simply A routed 
180° around the origin (figure(3.4)).

Figure 3.4: Illustration of reflection.

3. Translation

Given an image (subset) A in the translation of A by the point x in is defined 
by

A +  z = {a +  z ; a e A }

where the plus sign inside the set notaticm refers to vector addition (fignre(3.5)). We 
can write x +A  interchangeably with A + x because vector addition is commnUtive.
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Figure 3.5; Illustration of translation.

4. Minkowski addition

Given two images (subsets) A and B in R^, we define the Minkowski sum as

A ® B =  U M  + *)

In this operation, A is translated oy every element of B and then the union is taken 
(figure(3.6)).

A •  B

□ • •

Figure 3.6: Illustration of Minkoarski addition.
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5. Minkowski tnbtraction

Given two images (snbseU) A and B in R*, we define the Minkowski diffeience as

A0 B= r i(^ + ‘)tea
In this operation, A is transiated by every eiement of B and then the intersection is 
taken (fignre(3.7)).

6. Erosion

We define erosion of A by B to be E(A, B) =  A 6 ( -5 ) ,  where -B is simpiy B rotated 
180“ around the origin. If B=-B, the erosion is equal to Minkowski subtraction. 
When A is eroded by B, the latter is called a structuring element. Eroding an 
image by a structuring element B has the efifect of ‘shrinking’ the image in a manner 
determined by B (figure(3.8)).
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A e B

Fignte 3.8: Dliutration of the erotion aa shrinidng.

7. DUation

Corresponding to the erosion operation is the operation of dilation, which is defined 
simply as Minkowski addition:

D{A,B) = A ® B

When A is dilated by B, the latter is called a stmctnring element. Dilating an 
image by a stmcturing element B has the effect of ‘expanding’ an image in a manner 
determined by B (fignre(3.9)).

The dilation and erosion operations are duals because in the sense that the dilation 
of the foreground is equivalent to the erosion of the background (figure(3.10)).

8. Opening

In mathematical morphology, the process of eroding and then dilating by the same 
stmctnring element is called an opening.

0(,A,B) = [ A e ( - B ) ] ® B
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A •  B

Figure 3.9: Illustration of the dilation as expansion.

A •  B

e(-B)

Figure 3.10: Dlnstration of the duality of dilatii» and erosion, A ® B = {A‘ Q
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The opening of A by B u  the union of all tianilations of B that can be included in 
A, or

0(A,B) = |J{B + * :B  + * c A }

which allows us to determine where the pven structuring element B can fit as it 
‘slides around’ within A. It will remove all the regions that are too small to contain 
the structuring element in the image being opened. If a disk-shaped structured 
element is used, all the regions smaller than the disk will be eliminated. This forms 
a filter that suppress the spatial details (figure(3.11)).

E(A.B) CXA.B)

Figure 3.11: Illustration of opening.

9. Closing

In mathematical morphology, the process of dilating and then eroding by the same 
structuring elements is called a closing. This fills in holes smaller than the structuring 
element (figure(3.12)).

C(A,B) = (A®(-J9)]eB
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D(A3 ) C(A3 )

Figui« 3.12: Dlustntlon of cloung.
10. fklge Detection

Dilation and erosion can also be used to detect the edges of an image. Consider 
an image A and a small symmetric structuring element B, then the set difference 
(A®B)/A gives the external edge of image A. The set difference A /(A 0B ) gives the 
internal edge of image A. By adding both the operations, new edge of image A can 
be obtained that treat mote symmetrically the image and its background. However, 
the thickness of the edge is doubled. In terms of algebraic difference, the edge of 
image A can be defined as:

(a) External edge of A = D(A, H) -  A

(b) Internal edge of A = A -  E(A, B)

(c) True edge of A = External edge + Internal edge = D(A, B) — E(A, B)

The thickness of the edge of image A results from the thickness of B. Figure(3.13) 
illustrates the edge detection using dilation and erosion.
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D(A3) D(A3)

D<A,B)-A A-E(A.B) 0 (A ^ -E (A .B )

Figure 3.13: Dluatntion of edge detection uiing dilation and erosion.

3.2.2 Clustering by Watersheds

Clustering can be defined as dividing a set of data samples into a number of subsets (i.e.
I I

classes) such that all the members of one subset are similar enough and differ significantly 
from the members of the other subsets. Thus clusters can be identified by defining cluster 
centers which try to minimize the difference within a cluster of points, and try to maximize 
the difference between the centers of the clusters.

Normally there is no a priori knowledge of the number of subsets. Therefore, clustering 
can also be considered as a form of unsupervised classification and consists of determining 
both the number of clusters and the subset membership of the data samples [Rail 79]. 
That means the partitioning or grouping decisions are to be totally dependent on the daU 
samples themselves. So the choice of the feature space, which the daU samples are drived 
from, m i|^t be the major and most difficult problem in dnstering, as the performance 
relies almost totally upon the feature space for each class of object being distinct. A
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more deUiled difcaMion in how the feature space affecU the clostering can be found in 
secti<m 4.1. It also explains why clustering is a classic method used in partial segmentation 
problems, since the image being segmented can be anything (snch as landscape or urban 
estate) and therefore there is no a priem knowledge of the classes.

In this section we will discuss what watersheds are and then illustrate how this concept 
can be used as a clustering technique in two-dimensional data. Let us imagine that it rains 
over a geographical snrfue. The water streams down, reaches a minimum height and stcq>s 
there. For n ch  minimum, a set of all the points &x>m which the water may come, is called 
a catchment basin. Several catchment basins may overlap and their common points form 
the watersheds as shown in fignre(3.14).

Wttaialwdi
Catchmani Batins

Figure 3.14: Watersheds and catchment basins

The watersheds of a continuous function from R x  R  to R  intuitively correspond to 
the intersection of geographical watersheds [Bencher 82][Lantnqjonl 82]. For some such 
functions, they form a  Ufay of dividing the functions domain into disjoint subsets: two
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points of the domain are in the same subset if thar function images bdong to the ssune 
catchment basin. The watenhed concept can equaUy be applied to functions mapping a 
two-dimensional discrete space into R. One application of watersheds was proposed in 
[Watson 87]. They were used to provide a technique for classifying satellite images which 
made no a priori assumptions about the nature of the classes into which the image would 
be divided. Thus an unbiased aid to the interpreUtion of an image can be obtained.

One can consider the geographical surface formed by a two-dimensimial histogram in 
an inverted positicm so that the minima and maxima are interchanged. Their minin'. 
catchment basins and watersheds can then be located by using the ftdlowing method:

1. Locate and label the peaks in the two-dimensional histogram. The maximum detec­
tion algorithm consists of detecting the location at which the count is higher than 
ebewhere in the 3 X 3 square nrighbourhoods. When peaks consist of more than
one point (adjacent locations have the same count), these points will be considered1
as one single peak and marked with the same label (iignre(3.1S)). It is necessary 
to use 8-connected neighbourhoods to detect the peak, since the 4-connected neigh­
bourhoods detection in which only the horizmital and vertical neighbour are exam­
ined will sometimes lead to false indications of peaks in the vicinity of true p.-ir. 
(figure(3.15)).

2. Grow the region around each peak by constantly descending from the peak untU 
whole two-dimensional histogram has been labelled.

Adjacent mountains meet in their commrai valleys (i.e. watersheds in the geographical 
surface), and are thus separated from each other. Each catchment basin region can be 
labelled, so that the whole histogram can be segmented, and the labds are used as a LÜT 
(lookup table) for classifying the image. The motivation is using similarity in property (in
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Falsa peaks

Tiuepeak

Classifiad as aingls p e *

Figure 3.15: False indication of a peak when the peak detection is 4-connected. 

this case color), without reference to distance in initial image, for segmentation.
The method above is illustrated in flgure(3.16). Figure(3.16a) and (3.16b) are the 

two input bands: the R and G images (i.e. the image produced by using a red and 
green filter in front of a monochrome camera). Using these two bands, wo may compute 
a two-dimensional table H(v,u) giving the number of pixels having value v in the R- 
image and value n in the G-image. ThU two-dimensimial histogram, (sometimee » 
scatterplot), of the two bands is shown in figure(3.16c). The clustering method consists 
of first identifying local peaks and iteratively connecting to these peaks any pmnts which 
are lower than and are 8-connected to these peaks. If a  point has the same distance from 
two or more peaks then it is assigned to the group whose peak has the tnavim»! value. 
This process is shown in figures(3.16d) and (3.16e). The final two-dimensicmal histogram, 
figure(3.16f), consuts of two disjoint regions. Each region is labelled, and hence can be 
used as a  LUT to classify the original color image by each pair of R and G values suppling 
the coordinates within the table.
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1 1 1 1 1 1 4
2 2 2 2 2 2 4
2 2 2 2 2 3 4
3 3 3 3 3 3 4
3 3 3 3 3 3 4
3 3 4 4 4 4 4
3 5 5 5 5 5 5

1 2 3 6 7 8 2
1 1 2 2 3 4 2
5 6 7 8 9 2 2
2 2 3 3 4 S 3
6 7 7 7 8 8 4
8 9 7 7 6 8 S
2 2 2 4 5 6 7

(a). Tharadoompoiwntiinaga.

(b). The green oo«nponafll hnaga.

1 2 3
Q-lmage 
4 5 6 7 8

1 1 1 1 t 1
2 2 1 1 t 1 1 1

4 2 1 1 1 3 3
3 1 1 1 2 2
2 1 1 1 1

(c). The 2-dknanelonal 
Nstogram oi R and G 
componeM fenage.

(d). Ttwo peaks,'4 'and'3', are 
found and are rapreaented 
by labela a and b.

(e). After one pass of the ragton 
growing some of the pixeia 
are connected to the 
existing groups.

(0- Repealing the region 
growing unM no further 
addftions can be made.
The final results are two 
groups labelod with a and b.

Flgue3.16 : lltusftation of dustarlng using waMrshede.



3.3 Digital Morphological Operations
Digiul morphological image proceeiing ii characteiiied by thoae algoiithma that can be 
formed through the nae of operators from the structural basis and the morphdogical 
basis. The processing power of morphological methods are limited by the nature of these 
basic operators. This secticm starts with a review of the bound matrix used to represent 
a digital image. This is fidlowed by a discussion of basic structural operators, and a 
discussion of basic morphcdogical operators. Lastly there is a discussion of the fundamental 
morphological operations based on the basic structural and morph<dogical operators.

A digital image F can be defined as the function F : D -> R,  and D C Z  x Z  where Z 
and R denote the sets of integers and real numbers*. D (which is used to denote a subset 
of the set 2  X Z) is called the domain of the image, and R is called the range of the image. 
A digital image can be represented using the bound matrix. [Giardina k  D ou^erty 88] 
described the bound matrix representation of an image as follows: assuming D is finite, 
then F can be represented as an m X n array.

«m,l Om.J

where

1. (l,t) denotes the position of the upper left entry oi,i in the Z x Z  grid.
'T he psttem isto which the ims(e is divided is esUed iu  teeselletioa, a lectssfidu  tessdUtioB I 

beem itiemed Im«.
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2. o,,, denotes the gray level value of F at the pixd (p,q) when the array is laid over 
the grid so that aj,i is over pixel (l,t).

3. is a star (*) if F is not defined at the pixd (p,q).

Since F has value oi.i at the pixd (l,t), all gray levd values of F can be found by 
positioning the matrix at the specified (l,t) location and reading off the corresponding 
matrix values. The bound matrix representation of an image can be changed by employing 
extraneous columns or rows of stars. However, a minimal bound matrix is usually used to 
represent a digital image F with finite domain because it is convenient and space saving. 
The minimal bound matrix for F is simply the represenUtion for which m and n are as 
small as possible.

3.3.1 Structured Operators

The operators, DOMAIN,RANGE, and CREATE, which will be referred to as the struc­
tural basis of digital image processing, are defined as follows:

1. DOMAIN

The operator DOMAIN takes an image F as input and yidds an array of ordered 
pairs that make up the domain of the image (fignre(3.17)).

DOMAIN(F)

Figure 3.17: The block diagram for DOMAIN.

2. RANGE

The operator RANGE takes an image F input and yields an array consisting of the 
gray values of the input image (figure(3.18)).
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RANQE(F)

Figure 3.18: The block diagram for RANGE.
3. CREATE

The operator CREATE takes an array consisting of real numbers R and an array of 
ordered integer pairs D as inputs and outputs an image (figure (3.19)).

CREATE(D,R)

Figure 3.19: The block diagram for CREATE.

The following example will illustrate the operations of DOMAIN, RANGE, and CRE­
ATE. Let

F:
Then

f 3 5 ♦
~ [ 0 3 1 i.t

DOMAIN(F)  = (1,1),(1,0),(2,1),(2,0),(3,0) 

RANGB(F)  =3,0,5,3,1 

CREATE[(DOMAIN(F),RANGE(F)] = F
3.S.2 Primitive Digital Morphological Operators

The five elementary operators, EXTMAX, MIN,TRAN, NINETY, and COMP, which serve 
as the fundamental set of primitives for morphological image processing, are referred to 
as the morphological basis. After a brief discnssi<m of these operators, they will be used 
to illustrate the four fundamental operations of dilatimi, erosion, opening, and closing in 
next section.
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1. EXTMAX

The extended maximum operator EXTMAX comparée two images in a pixelwiae 
manner and ontpnts the maximnm value at each pixd at which both images are 
defined. If both images are undefined at a specific pixel, then * is the output of 
EXTMAX. However, if only one image it undefined at a pixd while the other is 
defined, then the output of EXTMAX it the gray value of the defined im a^ at the 
given pixel. The definition of EXTMAX can be extended to more than two input 
images by taking the maximum value over all input gray levd values defined at the 
pixel, and outputting a * at pixdt outside the union of the input image domains. 

The extended maximum operator EXTMAX can be defined as follows;

i)]i If both F and G are defined at («, j)
n i j ) . ji ♦ and G(i,j) =

W G(‘ .i) = * and F(i, j )

ifF-(i,j) = G (i,j) = *.

[E X T M A X {F ,G )l i, j)  =

The domain of the output image is the union of the input domains.

F -----

Q ------
EXTMAX(F,Q)

Figure 3.20: The block diagram for EXTMAX.

2. M m

The minimum operator Mm, which is similar to EXTMAX in that a pixelwise 
comparison is taken, can be defined as follows:
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m«n[F(i, j)J, if both F u d  G »re defined at («, j)
*1 if either F or G ia not defined at (i,j).

The domain of the ontpnt image u  the intenection of the input domains. The 
definition of MIN can be extended to more than two input images by taking the 
minimum of the gray level values on the intersection of the input domains and by 
being undefined (*) elsewhere.

MIN(F.Q)

Figure 3.21: The block diagram for MIN.

3. TRAN

The translator operator TRAN operates on the image F and two integers i and j, 
and produces an image which is identical to F but moved i pixels to the right and j 
pixds up (figue(3.22)). Thus TRAN leaves the gray levd values of an input image 
intact while altering the domain of the image.

The translator can be defined pixelwise by

[TRAIV(F; («, j))](u, o) = F(o -  i, r  -  j )

where i j  represent input, while u,v correspond to the coordinates of pixel undercon­
sideration.

53



TRAN(F:(IJ))

Figure 3.22: The block diagram for TRAN.
4. NINETY

The rotation operator NINETY rotatea an input image 90® in the counterclockwise 
direction about the origin and is defined pixdwise by

[N IN E T Y (F ) l i, j )  =  F U , - i )

NINETY(F)

Figure 3.23: The block diagram for NINETY.

In morphological analysis, the double application of NINETY, plays a key role since 
it yields a reflection of the image through the ori^n. A general image can be rotated 
by 180® by means of two successive application of NINETY, we can call this operation 
NINETY^ and its block diagrsun is given by

NINETY (F)

Figure 3.24: The block diagram for NINETY^.

Similarly, a 270® rotation is equal to NINETY®, NINETY applied three times in 
succession. The respective block diagram for NINETY® is given by

54



3
NINETY (F)

Figure 3.25: The block diagrun for NINETY*.
5. COMP

Let image S be a binary image which poaMstes two valuea: 1 (defined) and * (unde­
fined). The complementation operator COMP can be defined aa foUowa:

[COM/»(S)Ki.i) =
I, i f 5 ( i , i ) = .  

i f 5 ( i , i ) = l .

►  COMP(S) or S

Figure 3.26: The block diagram for COMP.
The Mowing example wiU illuBtrate the operaUont of EXTMAX, MIN, TRAN, NINETY, 

COMP. U t ’

F  =
4 * 2 a 
3 3 6 4 
0 2 * 0 0,2

G =
1.1

Then

S  =

E X T U A X (F ,G )  =

0,2

0,2
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M IN (F ,G )
1.1

TJi.4JV(G;(2,l)) =
3,9

N IN E T Y {G )  =

C O M P (S )  =

■10,9

3.S.S Fundamental Digital Morphological Operation

If we assume the images are binary images which posses only two values: 1 (defined) and 
* (undefined), then the two image operations, EXTMAX and MIN, that are similar to 
the set-theoretic operations U and D, can be represented by two notations V and A. The 
operations of EXTMAX(S,T) and MIN(S,T) can be defined as 5 V T and 5  A T, where V 

and A are the logical symbds called cup and cap, respectively.
If 5s, h = 1,2,..., n, are binary images, then

denotes the image that is 1 on the union of the domains of the 5s and is undefined 
elsewhere; similarly,

k s kkml
denotes the image that is 1 on the intersection of the domains of the 5s u d  is undefined 
elsewhere. Pixdwise, we have
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and

I V  =

(A*«i

1, if there exiate at least one k' for which = 1
*, if Sk(i,j) = * for all k.

1, if Sk(i,j) = 1 for all h
*, if there exists at least one k' for which = *.

The ftindamaatsd oparations sura:

1. Digital Minkowski addition, or dilation

S ® E  = D ILATE(S, E )=  \ /  TRAN (E; (i.j))

where D, denotes the domain of S, and the domain of S ® E  equals the union of the 
domain of the translates, TRAN(E;(iJ)). Digital dilation results in a larger image 
than S wherein the small holes of S have been filled in a manner depending upon 
the size and the shape of the structuring element E.

DLATE(S.E)

Figure 3.27: The block diagram for DILATE.

2. Digital Minkowski subtraction

S e E =  / \  T R A N (S;(i,j))
{iJ)eDOMAlN{S)
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Figure 3.28: The block diagram for DILATE ipecified in terms of primitive operations. 

3. D istal Erosion

Since ERO D E(S,E) = S & (— a corresponding formulation of erosion is 

ERO DE(S,E) =  / \  T R A N (S \{ - i,~ j))
{iJ)iD O htA tS{E )

=  A  r«AA r(5 ;(i,i))
^ij)iDO»iAIN[SINBTYi{,E)]

Erosion eliminates those parts of the image that are small in comparison to the 
structuring element. The manner of the elimination is dependent on the shape of 
the element.
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ERODE(8.E)

Figoie 3.29: Th« block diagram for ERODE.

Fignic 3 JO: The block diagram for ERODE specified in terms of primitive operations.
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4. D istal Opening and Cloting

Digital opening and cloaing are defined analogoiuly to the definition« of the cone- 
■ ponding Enclidean operator«, i.e.,

OPEN{S, £ )  = [5 e  (-E )] ® £J =  DILATE[ERODE{S, E), 

and

CLOSE{S,E) = [5® ( - E ) ] e  E  = E R O D E [D IL A T E (S ,-E ),-E \

The opening can also be represented as an extended maximum (union) of fitted 
translates of the structuring element;

O P E N (S ,E )=  V  {TR A N (E ;(i,j)): T R A N (E ;(i,j))«  S )

where

T R A N ( E , ( i , j ) ) « S  
denotes I j

TRAN {E ;(i,j))
is a subimage of S.

Opening, which can be used to determine where the given structuring element can 
fit as it slides around an image, has been used in biomedical image processing by 
[Sternberg 83].

5. DigitsJ Boundaries

Given a binary image S, the external boundaries of S, BOUND(S), is the 
whose domain is such that each pixel within it has a neighbour in the Hnm«ln of 
S but is not in the domain of S itsdf. The BOUND(S) can be implemented using 
MIN, COMP, and DILATE as shown below.
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and

OPEN(S.E)

and

CLOSE(S.E)

Figure 3.31: The reepective block diagtuma for OPEN and CLOSE.

OPEN(S.E)

CLOSE(S.E)

Figure 3.32: The reepective block diagram! for OPEN and CLOSE specified in terms of 
DILATE and ERODE.

61 V



BOUND(S) = M IN[CO M P(S),D ILATE{S,E)] 

where E u  a 3 x 3 eynunetric binary dement aU with the valne of ‘1’ ae shown bdow.

E  =
-1.»

BOUND BOUNOfS)

Figure 3.33: The block diagram for BOUND.

BOUNO(S)

Figure 3.34: The block diagram for BOUND specified in terms of COMP, DILATE and 
MIN.

Paralld implementations of digital morphdogkal operations are more efficient than 
sequential ones. A lthou^ we have not discussed paralld architectures, an 
of the block diagram such as dilaUon (figure(3.28)) and erosion (fignre(3.30)) wiU suggest 
that translations simply appear as a cdlecUon of paralld operations; each is «•»«/•edeil with 
some arithmetic operation, and then b  followed by some operation acting on the paralld
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ontpnti. Since theae openUona do not interfeie with each other, they can eaaily be done 
in paralld. One of example in paraUd approach can be found in [Sternberg 79],

I 3.4 Sum m ary
The theory of mathematical morphology it rich and cannot be diacuaied fully in this 
chapter. However, this chapter providea an introduction to the basic concepts of both 
euclidean and digital morphological operations for image proceadng induding the four 
fundamental operations of dilaticm, erosion, opening, and dodng. Most morphdogical 
operations, no matter how complex, can be defined in terms of these basic operations. 
Dilation and erosion are often referred to as ‘expand’ and ‘shrink’ operations, since with 
dilaUon an object grows uniformly, while with erosion an object shrinks uniformly. They 
have also been used to detect edges. Opening can be used to diminate ‘sdt-and-pepper’ 
noise, while dosing can be used to fill in the holes.

So far we have not discussed the eAsct irf the nature of the structuring dement used 
(i.e., shape and size) in the transformation. However, the nature of the structuring element 
itself is very important, since it will strongly influence of resulting image. For example if 
different sizes of structuring dement are used in edge detection (fignre(3.13)), different edge 
thicknesses will be obtained. Clearly there are a very wide range of possible shapes and 
sizes for the structuring dement. It is impossible to predict which one is the best because 
the solution is problem dependent. For example, the size of the structuring dement used 
in the noise deaning (figure(3.11)) wiU depend on the size of the noise. Another example 
can be found in section 4.4.1, the purpose is to count the number of the leaves in the 
image. The first thing have to do is to break the linkages between each leaf This can be 
done by appling the erosion on the image. Clearly, the number of erosions requited will
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depend on the size of the structuring element used: the larger the size is used, the less the 
number of erosions is required. Of course the size of the structuring element can not be 
greater than the smallest leaf size. Otherwise it can not be restmed during the subsequent 
dilation.

Given a specific requirement, an experienced user of these techniques can choose an 
appropriately shaped and sized structuring element. The basic requirement is that the 
dement sdected should be kept as simple as possible to simplify the process of transfor­
mation provided that the desired purpose can be fulfilled. For example, in section 4.4.2 
in stead of using a 3 x 3 structuring dement to find the true edge, a 2 X 2 mask is used. 
Although the latter can only locate the approximate edge, it is simpler and suffident for 
our purpose to illustrate the segmentation result by superimposed the edge on the original 
image.

We have explained the geographical properties of watersheds, catchment basin, and 
minima, and illustrated how these properties can be found and used as a clustering tech­
nique in two-dimensional feature space using different color bands. The next chapter will 
describe how an image can be segmented based on color using such techniques.
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Chapter 4

IMAGE SEGMENTATION 
BASED ON COLOR USING
THE WATERSHEDS
ALGORITHM
4.1 Introduction
Many technk|uea (diKussed in chapter 2) have been used for segmentation: e.g. region 
extraction, edge detection, thresholding, and clustering. However, thresholding [Weszka 
78] can be considered the simplest method. In segmenting a black-and-white picture, 
thresholding is conducted on the gray level description of the scene to produce a binary 
image. Usually a histogram of the gray level values of the picture elements is formed. 
The modes of the image histogram are identified, and pixds are labdled H)' or ‘1’, so that 
edges can he located at the boundaries between connected regions oi each segment.
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Tke method is to tepente the peaks at the vallejrs, since peaks on the histogram often 
correspond to the gray levd values of significant regions in the pictures, and then to label 
each pixel in the image according to which one of the peaks its intensity value belongs to. 
The connected pixels having the same labd are obtained as the objective regions. This 
method csin be illustrated by using the following example, a leaf on the white background 
(image(4.1a)), the histogram of the image (figure(4.1a)), and the segmentation result 
(image(4.1b)). Of course, this is the simplest case where a single thresholding is enough 
to separate the object and the background.

Images usually can not be segmented into more than a few segments based on a sin­
gle feature of gray level alone even using multiple thresholding; if there are too many 
classes, they overlap and become impossible to discriminate. For example, in the natural 
scene (image(5.1a)), there are seven major types of regions; sky, hills, trees, lake, yacht, 
bushes, and shadow, but the histogram of this image has fewer than seven significant peaks 
(figure(4.1b)). i |

More refined segmentations can be obtained if we have more than a single feature 
(gray levd) for each pixd, for example, texture and cdor. The reason one wants to use 
mote features to perform image segmentation is that sometimes there are problems not 
resolvable with one feature that can be resolved with two or more features. This effect 
can be illustrated by using the two-dimensional histogram formed by Red and Green 
component images (figure(4.2a)), in which each concentric ellipse represents a distributicm 
(or cluster) of image points having similar values of the color features. In this case, clusters 
can be easy separated. But removal of dther coordinate Red or Green results in a loss 
of discrimination: there is a high degree of overlap of the two distributiaas corresponding 
to the two classes of regions such that no valley may exist between the modes of the
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diftributiao* on encb of the on« dimensional histogram (fignTs(4.2b) and (4.2c)).
However it is easy to separate the two modes in two-dimensional histogram by draw­

ing a s tra i^ t line which is a decision boundary in the two-dimensional feature space 
(iignre(4.2a)). For many pmnts, projectitm onto either the Red axis or the Green axis will 
give an unambiguous separation, however, there are points which can be separated by the 
decision surface in two-dimensional space, but not by either of Red or Green space. Thus 
use of the Red space and the Green space independently does not give the same power as 
their use together.

The feature space whose axes correspond to measurements made on an object proper­
ties must be appropriate: the different classes of r e ^ n s  of an image need to be represented 
by distinct clusters in the distributiim in the two-dimensional feature space, and then the 
decision line esm be used to separate the clusters effectively (fignre(4.3a)). If the points 
are scattered in the space as shown in iignre(4.3b), distinct clusters can not be formed. 
As a result there is no way to place the dfeisiem line.

When an image’s properties are represented as points in this space, there are many 
clustering techniques which can assign them to a class by using the point’s distance Itoti 
an ideal p<dnt of that class, or by noting where the unknown point falls in a previously 
partitioned feature space. However, these methods usually involve mathematical manip­
ulation and some prior knowledge of the image. In section 4.4 we will discuss how the 
'^•i*"h®ds algorithm (section 3.2.2) can be used to provide partitioning criteria depending 
only on the peaks and connectivity in the feature space (i.e. in a data-driven way without 
making any assumptions about the image).

How many features should be used? Obviously, there is a trade-off h«e: as the number 
of features becomes large, the discrimination improves, but the computation cost increases.
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Figure 4.2: (a) Two.dimeiiii«i«l hutognm of red and green componenU of a color 
j (b) one-dimentional hiitogram of ted component, and (c) one^imeniional hUtogram of 
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Two other thingi need to be conaideied. Firstly, different features may extract exactly the 
same s^m ents, giving no additional information for the additional computational cost. 
Secondly, different features may extract different and contradictory segments, and it is 
not easy to determine which segmento should be merged, and which segmente should be 
remained unchanged without high level knowledge such as a model of the So the
presence of fragmentation due to multiclass segmentation cannot in general be avoided. 

Fnahm 2

^  Fealura 1

Foahjf« 2

Faatura 1

(b)

Figure 4.3: (a) EffecUve feature space (l.e. decision boundaries are straight lines), and (b) 
ineffective feature space (i.e. decision boundaries would be very complex.)
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4.2 Color Description And Representation
Befóte storting to nse «Jot in image sqpnentotion, let ns consider whnt col«’ is and how 
it can be represented. Light is one form of electromagnetic energy, which includes x-rays, 
'*l***''̂ oi*f> as wdl as infrared and radio waves. Color is a perceptual phenomenon related 
to human response to different wavelengths in the visible dectromagnetic energy spectrum 
&om approximatdy 400 to 700 nanometers (blue and red) [Ballard k  Brown 82].

An object has ctd« because of the way in which it reflects the light that is incident on 
it. If it reflecte all wavelengths of a white light that falls on it, it will appear to be white. 
B it absorbs all wavelengths of a white light then it will appear to be black. If it reflects 
primarily the long-wavdengths of a white light, it wiU tend to appear to be red. However, 
if the light reaching the object does not contain any of the wavelength that the surface^ 
reflects, then the surface will appear black, since no light will be reflected Iran it at all.

The energy distribution of the light reflected from a surface is determined by the 
spectral response of the object and thé spéctral distribntíon of the illuminant light. The 
sensitivity of the detector to different wavelengths will be a third factor in determining 
its response. However, if the detector is the human eye, the perception of col« is a psy­
chological phenomenon rather than a purely phjmical phenomenon and is highly complex 
[Goldstein 1989][Wyszecki k  Stiles 82). Some of the important psychophysical aspects of 
c(d« are briefly as frdlows.

The trichromatic theory states that col« vision depends on three cone receptor mech­
anisms, each with different spectral sensitivitisB [Wald k  Brown 65). According to this 
theory, light of a particular wavelength stimulates the three mechanisnu to different de­
grees, and the ratio of activity in the three mechanisms resrdte in the perception of a C(d«. 
This theory of col« vision enables ns to predict which colors should be result when we
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combine UgbU of diffeient cdon. For example, ydlow can be seal whoi red and green 
lights are mixed.

The opponent ccdor theory sUtes that the perception of ctAot occurs in two principle 
stages [Boynton 79]. Initially, light is absorbed by (ted, green and bine) cones in the 
retina of the eye. The nenral signals originating in the retina are transmitted into a 
second stage of processing in which their valnes are snmmed and diftrenced to produce 
three new channels: an achromatic, or Inminance, chann^ a red-green opponent 
and a yeUow-blue opponent channel The three outputs &am this process are transmitted 
to the brain, resulting in a sensation of coin.

An important discovery in color perception is color constancy which states that we 
perceive a snriace as having a consUnt color despite changes in the spectral composition 
of light reflected from it [Bmce k  Green 90]. A remarkable demonstratitm of this issne is 
provided by [Land 77). In his experiment, a  picture constructed from overlapping patches 
of crdored paper is iUuminated by mixing the lighU of red, green and Wne. An observer 
percaves surprisingly little cd«w change despite the fact that the intensity of light at each 
wavelength that reflect to the eye varies linearly with the incident illumination intensity 
at that wavdength.

Human cdor vision is not used in the work reported here. The intention of above 
discussion is to distinguish the difference between a physical and psychophysical approach 
to colOT. We are using the term color rdaUvdy loosdy, and in a physical sense, to refer 
to the wavdength and energy distribnticw of reflected light.

Since a computer is used to analyse a color image, it is necessary to have some idea how 
color is represented in the input. A color image is typically represented in the computer 
as three separate arrays <rf numbers, with each array corresponding to the image Altered

72 \



by a (red, green, or blue) filter. The vnlue of eech element in each army repreaents 
the intendty of thia component at the come ponding location. Each piv«» of the color 
image ia therefore repreaented by a triple of valnea (fignre(4.4)). The (R,G,B) apace can 
be tranaformed into other coIot apacea, anch aa YIQ and HSI, naing linear or 
tranaformation. Each crfor apace haa iU own characteriatic. For YIQ ia an
efficient method for encoding color information in TV aignala; and HSI if convenient for 
repreaenting human color perception.

Figure 4.4: Each pixel of the col« image repreaented by a triple of gmy-level valnea.

The YIQ col« apace ia naed in the tdeviaion ayatem, where Y ia the Inminance .ign.l 
which indicatea the amount of light intenaity. In a black-and-white picture, the lighter
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parte have more Inminanc« tlian the dark areae. I and Q together are called chromi­
nance signal. The YIQ col« space is derived &om the RGB odor space using a simple 
linear transformaticm. The transformation equations for the National Tdevision Systems 
Committee (NTSC) system [Ballard t¿ Brown 82] is shown as:

Y  = 0.299R-i- 0.587G-H 0.114B

/  = 0.596R -  0.275G -  0.321B

Q = 0.212R -  0.523G + 0.311B

This transformation is clearly invertible, so no inf«mation has been lost; it b  useful 
for compatibility with monochrome TV, since the Y signal can be used in place of the 
black-and-white TV signal.

The HSI col« space is based on the perceptual concepts of intensity, hue, and satu­
ration and can be represented in a cylindrical coordinate system as shown in fignre(4.5) 
[Kelley k  Faedo 85). Intensity b  represented along the vertical axb. Angular p«ition 
represents hue, and radial position represents saturation. Intensity (I) corresponds to 
lightness. Hue (H) b  the attribute of a col« perception denoted by rod, yellow, green, 
blue, purple, and so on. Saturation (S) refers to the amount of white light in the col« 
with the same hue. For instance pink and red are the same hue, commonly called red, 
but red b  more saturated than pink because it contains less white light. A fully saturated 
col« has no white light present. Normally, a col« signal b  divided into two parte. These 
are chrominance and luminance. As for the HSI col« space, the term rhmml«anr« b  used 
to indicate both hoe and saturation whUe luminance b  used to indicate Ughtncss. The 
chrominance signal can be represented as a 2-dimenslonal vector whose magnitude rep- 
resente saturation and whose angb represents hue. The luminance signal b  a magnitude
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Figure 4.5: Hue-satarution-intensity color space.I I
I

In additional to YIQ and HSI, different c d «  spaces such as YUV, XYI, and (Y,R- 
Y,B-Y) discussed in section 2.4 have also been used. However, the simplest color space 
should be the (red, green and blue) color space, since it is the output of the capturing 
equipment (i.e. camera) and thus does not require any transfonnatimi.

The iastest method to obtain these values simultaneously is to use a color TV<amera 
with red, green, and blue output channels. A multi-channel framestore is then used 
to digitise and store these values. Since three<hannel framestore is considerably more 
expensive than its monochrome equivalent, a simple alternative is to use a mnniKhrome 
system with an input multiplexer that can sdect between the red, green and blue outputs 
from a colar camera. In this way three component cdor images can be captured from each
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chumel and stored in three different locntioni of the image memory inccessivdy. However, 
the simplest method is to add simple ccdor discrimination to monochrome vision system 
by sensing the image three times with a conventional monochromatic TV-camera, each 
time throng  a different (red, green, smd blue) color filter.

The main shortcoming to this method is that different tasks may require different 
filters. In order to provide a correct filter response for a particular task, we may need a wide 
variety of filters. A new approach, which can combine the advantage of an optical filter 
while maintaining flexibility and ease of use, is to implement the c<dor filter characteristic 
electronically by means of look-up table rather than optically. This method, known aa the 
Intelligent Color Filter [Plummer 90], can even provide a specify filter characteristics that 
would be physically impossible using optical methods.

In addition to the acquisitim speed for the first method being roughly one third of 
the others, the major limitation for the latter two methods is that the image must be 
stationary, as the three chatmels are caprured at different times. However, more hardware 
snll be required for the first approach, since red, green, and blue signals need to be 
processed at the same time.

In our case the last method is used. A more detailed discussion about the setup for the 
experiment can be found in section 4.3. After capturing the image through red, green, and 
blue filters successively, each pixel of the image is then characterized by a set of R, G, and 
B colw components. These components can be summarized by the following equations:

R  =  J  X ( X ) T r ( X ) » ( X ) d \

G = J  X ( X ) r / ^ X ) » ( X ) d X  

j X(A)tv(A)s(A)dA
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where

•  A = the intensity of red component image,

• X{X) = the spectnd distribution of the light,

•  s(A) = the responsivity of the camera at each wavelength,

• t (A) = the transmitUnce of the filter, which tells what fraction of light at each 
wavelength passes through the filter.

All of these integrals are evaluated over the set of wavelengths for which the filter’s 
transmittance and camera's responsivity are nonzero.

As shown by the above equations, the information associated with each point on the 
color image can be viewed as a vector in 3-dimensional space [Schacter et al 76]. The 
(R,G,B) color space is a cube because the camera’s response is bounded by zero and some 
maximum pixel value for each color compoaent. In our system, each element of the vector 
is restricted to the range (0,63), and viewed as a vector within the 64 x 64 x 64 cube as 
shown in figure(4.6). The main diagonal is called the intensity or brightness axis, and 
corresponds roughly to the various gray levels from black to white. It is clear that the 
origin (0,0,0) is black and the maximum brightness (63,63,63) is white. Thus, poinU in the 
color cube get progressively brighter as one moves from the left bottom to the upper right 
comer. The comers of the color cube are labelled with the names of perceived colors which 
are formed from the three primary colors. For example, red and blue in equal amounU 
produce magenta when the green component is 0. Other colors are obtained when the 
primary ccdrxs are combined in different amounts.

Now let P denote a ccdor vector (R ,G 3) 1® a three-dimensional color space, which is 
represented by a nnit cube as shown in fignre(4.7). The length of the projectitm of P on

77



Figure 4.6: Three-dimenak>iial (R,G,B) color space.

the main diagonal represents the brightness, and the direction represents the chromaticity 
(hue and saturation). The chromaticit; can also be represented by the crosspoint Q of the 
vector P extraded if required and the plane passing through the cube at the comers red, 
green, and blue, forming the equilateral triangle depicted in figure(4.7). The coordinate of 
the crosspoint (rg,b) is called the normalized color coordinates or chronmticity coordinates 
given by

6 = R + G + B
The pmnte in a plane perpendicular to the brightness vector from black to white are 

of equal intensity. Thus the triangle shown in iigure(4.7) is the largest constant intensity
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plane within the cube. At any other level of inteniity thie triangle ia tmaller. The impli­
cation is that there is a smaller range of color combinations that can be formed as one 
approaches minimum or maximum intensity (black or white).

If this equilateral triangle is redrawn with unit height, the lengths of the perpendiculars 
from Q to the perimeter will be r,g, and 6. The center of gravity of the triangle, which 
corresponds to r  = g = 6 = 1/3, represents white as shown in figure(4.8a). This figure is a 
chromaticity diagram, and can now be used to describe two other characteristics of color 
space, hue and saturation, which are independent of intensity (Shirai 87]. The hue of a 
point Q in figure(4.8b) is defined as the angle f  between WR and WH, where W (white) 
and R (red) is the center and comer of the t r ia n ^  respectivdy. Let Q be represented by 
(rg,b); then the hue $ is formulated by using 9i as follows:

(4.1)



$l =  CO i~ *
2r — g — b

V 6 ((r-i)>  + ( j - J ) »  +  (4 -J )* ]’'*
where 0 < < x

e = b < g
2x — #i b> g

Thus, hue can be represented as an angle 9 with red as 0°, green as 120®, and blue as 
240®.

The saturation of Q is defined as a percentage of the distance of WQ to WH, where H 
is the crosspoint of the extension of the line WQ and the perimeter of the triangle.

The saturation S  is given as follows:

5 = WQ/WH

= 1 -  3 min (r,p,6) (4.2)

The line between W and H represents the same hue with different saturation values. 
Thus a point close to the perimeter of the triangle represents a color with high saturation. 
If Q is anywhere on the perimeter of the triangle, then it has a saturation of 100% while 
the point W (white) is completely diluted and has a saturation of 0%.

From the viewpoint of a three-dimensional color space, each c<d<w is represented by 
triples of numbers representing the strengths of their red, green, and blue components. 
Thus the color of each pixel defines a point in the three-dimensional space. If the picture 
contains a large region of pixels all having approximately the same color, picture regions 
of near-constant color will form clusters of points within this space (figure(4.9)). If these 
clusters can be detected, their cluster labek can then be used to map back to the images. 
The points of one cluster that form connected regions in the image coitstitnte the segments 
[Schacter et al 76].
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Figure 4.8: (a) Chromaticity diagram, and (b) hue and saturation.

Automatic detection of clusters in color space is much more complicated than thresh­
olding in gray level histogram, since clusters can have complex shapes and can interact 
in many different ways. The process of cluster detection, can be computationally costly 
since it may involve searching for the optimal cluster locations and the optimal number 
of clusters by repeated iterations over three-dimensional space [Schacter et al 76). One 
remedy for this problem is to project feature space onto a lower-dimensional space [Sarabi 
& Aggarwal 81) such as the R-G, R-B, or G-B faces of the color space, and look for
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densely populated subtegioni (clusters in the face). It is reasonable to assume that such 
clusters will correspond to significant subpopulations of pixels. And it should be possible 
to segment the image effectively by choosing surfaces that separate the clusters.

Figure 4.9; Cluster in three-dimensional ccdm space.

The reason why three color faces are used is that sometimes there are problems in 
finding distinct ‘modes’: for example one may not be found on the R-G face, but can be 
found on the R-B or/and G-B face. However, if the ‘mode’ cannot be located on at least 
one of the three faces, the s^;ment based on this mode will not be found. This effect occurs 
when the R,G,B colors are highly correlated. This is because the correlated colors lie in an 
area, very roughly dlipsoidal, near the R=G=B diagonal of the three-dimensional color 
space (figure(4.10)), the modes will be overlapped after projection onto the three color 
faces (as shown in figure(4.2)), on which the clustering algorithm will be applied.
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Figure 4.10; Distribution of correlated colon.

4.3 Setup for the Experiment
The setup for the experiment is shown as in iigure(4.U). A JVC TK-5310 CCD black/white 
camera was used. The automatic gain control (AGC) in a camera is not necessarily im­
portant on a single image, but will be v i t j  if we want to compare results over a  number 
of images. Besides, the noise will be increased when the actual maximum output is low. 
Therefore, the AGC is disabled during the experiment. The color component images, 
which were captured through red, green and blue filten, were stored with 256 x 256 spa­
tial resolution in the frame store. A total of twenty-four images of this size, each with 64 
gray-levels, can be stmed simultaneously. Tungsten filament lamps were used for illumi­
nation.

Since overlapping filters will produce the problem of correlated cdor as discussed in 
last section, a set of red, green and blue filters with non-overli^iping bands are used. Thmr
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characteristkf u e  fbown m  in iigaie(4.12). Since n tet of mlmoet non-overlnpping filten 
are used, the component image* captured are nearly independent from each other. One 
can, in term* of the equation* on page 76, conaider the three Alter* and the camera to be 
three different detector*, with aenaitivity proAle*

r,(A)*(A),r^A)*(A),n(A)*(A).

Since r,(A)r,(A),r,^A)Ti(A) and r,(A)r^(A) are all (almoat) cero, the color* are only 
minimally corrdated. Moreover, they are (Urgdy) indepmtdent of the camera aenaitivity 
a* long a* the camera’* reaponaivity i* nonaero over the aet of the wavdength* for which 
the Alter’* tranamittance i* nonzero.

The way in which we will be uiing the color information (that U, uae of cdor plane* 
deAned by rg, rb and gb pair* of detector output*) mean* that the reanlt* are eaaentially 
independent of *(A), given that it ia reaaonably wdl-behaved. The uae of broad-apectmm 
illumination i* important, *o that ail of the detectors are likdy to be stimulated. However, 
we do not need precise information on the illumination, since we are using the rdative 
value of detector outputs in our clustering technique. In the same way, we can do without 
white balancing, since this would only help to label certain part of the color plane*. The 
actual cluster* would be unaffected.

The Alter* should be chosen so as to maximise the amount of variance in the three 
single-spectrum image*. However, this depends on the Ulnmination and on what is being 
imaged. Human cdor receptor* overlap very considerably [Wald & Brown 65]; we require 
non-overlapping Alters. We used non-overlapping Alters with centre wavdength o f450 nm, 
525 nm and 620 nm (see Agure 4.12), following Shirai [Shirai 87). This gave successful 
results, although the variance of the intensities transmitted th rong  ‘blue’ Alter was let* 
than that of the ‘ted’ or ‘green’ Alters.
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We will now briefly describe n few important &ctors when image* are taken.

• The central frequencie* of the filter* are wkldy spaced in the visible spectrum. That 
means there will be almost no overlap of the filter characteristic*. However, the 
choice of filters must ensure that any wavelength is transmitted through at least one 
filter for the technique to work effectively, since the actual wavelength sensitivity 
will depend on both the filters and the camera.

# The light level at the camera itself must nmther be so high as to cause clipping, nor 
so low that random thermal noise becomes a major problem. Cameras have only a 
limited dynamic range to sense the brightness of the incoming Ught. The walls of 
the three^imensional (R,G,B) color space (figure(4.6)) denote the upper and lower 
limiU in the dynamic range of the respective color bands. H the incoming Ught U too 
bright at some pixel position, the camera cannot sense and represent it adequately 
and the Ught is cUpped. The c<fior cUpping cause* the saturation to the maximum 
pixel value (i.e. 63). If thU saturation occurs in aU the three color bands, the result 
wiU imply a white pixel even though the color of the Ught incident at the camera 
may not be white. A simple method to prevent this problem from occurring is to 
make sure the histograms of the three color component images sire not saturated at 
the maximum gray-level value.

* The raw image often contains high frequency noise. This can be induced by the 
imaging system itself fr«n error* in image digitisation or random noise produced 
by the camera. The presence of high frequency noise can impair the segmentation 
processing. We can reduce the effect of noise by taking a number of frames of the 
same picture and averaging the resnlu, or applying a low pass filter to the raw imag»
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in order to imooth ont the noise. One of the problems in nsin^ low pnss filtering 
is the sdection of the smoothing window, since its size is determined both by the 
unonnt of noise thnt must be eliminated and the size of the smallest objecte to be 
extracted.

CCD Blacfĉ sMi« Camera JVC TK-5310

FMar

Figure 4.11: Setup for the experiments.
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Blue G m n R«>

Relative
response

Figare 4.12: Filter chsracteriitic.
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4.4 Description of the Segmentation Method
Pftrtitioniiig of k tcene or u  image field into diajoint regiona of uniform predicate (in lome 
sense) is often called ‘Image SegmenUtion’, as discussed in section 2.1. Most predicates 
used in image segmentatimi liave relied on only gray-levd infwmation. However, color 
information plays an important role in human perception and recognition. Besides, color 
features provide additional information which can result in improvements when two re­
gions have similar intensities, but differ in R,G,B component values. Our own experience 
suggests that there are many scenes in which regions are easier to identify by color than 
by gray levd. For example, outdoor scenes which include such object as trees, sky, lakes 
etc. In industrial applications, there are m u y  entities which have the same shape such as 
colc»-coded resistors, wires, and capacitors. Automatic inspection of such objects cannot^ 
be done without rdating to color. Further, there are many applications where color is not 
directly rdevant, but can be used to supply additional infc»mation to simplify and speed 
up the processing task.

If the predicate used depends on c<d<w, the problem is usually referred to as *c<dor 
segmentation’, or ‘image segmentation using c<dor’, and can be s<dved primarily in two 
ways. Uniform Color Region Extract!«» (UCRE) [Sarabi k  Ag^rwal 81][Chang et al 
87][Scha«dtter et al 76][Crisman Ic Thorpe 90] focuses on areas in which a color-based pred­
icate is fulfilled, and Color Edge Extraction (CEE) [Nevada 70,77][Robinson 76][Hunts- 
berger k  Des«»lz! 85] concentrates on finding boundaries.

In this chapter, the problem of color s^mentation based on UCRE is approached: 
the algorithms proposed involve the projecticm of the three-dimensional (R,G,B) color 
space onto three two-dimensional ccd«» spaces (R,G), (R,B), and (G,B), and these are 
clustered using watersheds. The clusters are then used as a look-up Uble (LUT) to map
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the correeponding imegai into regiona of limilnr colon, permitting the original image to 
be segmented. The principal objective of these techniqnes that naap each data point in 
the original three-dimensional color space into a point in an two-dimensional color space 
(i.e. mapping from a space of high dimensimiality to one of low dimensimality) is that 
one can achieve a data set which can be moK economically manipulated. Using the 
oripnal three-dimensional color space for clustering is very computationally expensive, 
since searching for the optimal cluster locations and the optimai number of the clusters 
by repeated iterations over the data in three-dimensional space seems unavoidable. One 
of the examples using this method can be found in [Schacter et al 76]

Segmenting color images using clustering by watenheds in two-dimensional color space 
is described in ftgure(4.13) and ilinstrated in image(4.2). A color pattern which contains 
128 X 128 pixels and is quantized to 6 bits in gray level shown in image(4.2a) is used to 
illustrate the process at each stage;

1. Red, green, and blue images (inlage(4.2b)X4.2c),and (4.2d)) are captured using a 
conventional monochromatic TV camera through three color filters.

2. Three two-dimensional histograms with 32 cluster spaces are shown in image(4.10a) 
to (4.10c) which are formed using:

e red and green component images 
e red and blue component images 
s green and blue component images

The two-dimensional histograms are smoothed to eliminate the small peaks by using 
a 3 X 3 averaging window. The average value of the pixds within the window replaces 
the value of the pixd being processed. The smoothed two-dimensional hbtograms
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Figure 4.13: Sqpnentotiaa usiiig w»tenheda algorithm. 
90



Me ibown in image(4.10d) to (4.10f). Tki* imoothing ii neceeanry becnnae the 

two-dimemional hUtogrMn fonned by RG, RB, Mid GB may be discrete Mid not 

continuons. Some locations therefore may appeM as local peaks. This problem and 

methods of remedy are discussed in more detail in the section 4.4.3.

3. The watenheds algorithm discussed in section 3.2.2 is then used to segment each 
two-dimensional histogram. The peaks found in each two-dimensional histogram 
are shown in image(4.10g) to (4.1(H). And the three LüTs created are shown in 
image(4.10j) to (4.101).

4. The three segmented images based on RG, RB, and GB images (image(4.2e),(4.2f ),(4.2g)), 
in which the segmented regions are shown as constant gray level regions, are clas­
sified by converting the individual pixel values into coordinates of the appropriate 
LUT so that the pixds can then be assigned to a cluster number.

5. A three-dimensional histogram can be computed &om the three segmented images. 
Assume that the three segmented images have 2,3, and 4 segments respectivdy. A 
cuboid of 2 X 3 X 4 locations is formed. Initially, the point count a t all the 24 locations 
is set to sero. To construct the three-dimensional histogram, the triple of sèm ent 
labels of each scene point is used to index the location of the cuboid. The point 
count at this location is incremented by one. Note that many locations will be zero.
Then the non-zero locations are labelled, starting with the largest value.

The resultant segmented image (image(4.2h)) can be produced by simply converting 
the individual label values of the three segmented images into coordinates of the 
cube. Each pixel can then be assigned a region label.

7. Each r^ o n  label is used to generate a corresponding binary image by setting points
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with the region Inbd to ‘1’ otherwise to ‘O’. Binnry images are used since processing 
can tise Bodean operators, which is faster than integer or floating point arithmetic. 
Besides, the binary image can be easily used for extraction of features of a  region 
such as region shape, contours, etc.

8. The binary image is refined using ‘opening’ and ‘closing’. Detailed discussion in 
these techniques can be found in section 4.4.1.

9. Extract the connected regions from each refined binary image by labelling. The 
refined binary image we obtain may be disconnected. As discussed in section 2.1 a 
segment is a connected region. The method used is based on the idea of propa^tion 
[James 87]: scanning from the top left-hand comer of the binary image, the first 
foreground point encountered is assigned a label. Then the scan is stopped and a 
region grown around this point until no connected foreground point can be found. 
Then the scan is resumed until an uilabelled foreground point is found whereupon

f

a new label is used, and a region is grown. For example, the first region is labelled 
‘1’, the second region is labelled ‘2’, and so on. This process is continued until the 
entire image has been scanned and all the segments labelled.

For a binary image, one may consider two definitions of connectivity depending on 
the neighbour set. A ‘1’ pixel can be defined as being connected to either its eight 
nearest ‘1’ neighbours (i.e. 8-connected), or to its four horizontal and vertical ‘1’ 
neighbours (i.e. 4-connected). The difleience and relationship between 4-connected 
and 8-connected in connectivity can be illnstrated in figure(4.14). For example, 
the r e ^ n  in fignre(4.14a) is 8-connected but not 4-connected, but the region in 
fignre(4.14b) is both 8-connected and 4<onnected. The 4-connectedness implies 8- 
connectedness but not the convene. The labeUed 4-connected regions of figure(4.14a)
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u e  fhown is figiu«(4.14c). In the case discussed here, the 8-connected version of 
connectivity is used.

10. Any region, whoee sise is less than tome user-determined threshold, wiU be rdabelled 
0. We consider these small regions are either due to noise or texture. The threshold 
value we use is 0.1% of total image area. The pixels labelled 0 (shown by black 
dots in image(4.2i)) will be replaced by the label of its neighbour pixel with highest 
occurrence. The final segmented image is shown in image(4.2j).

11. The segmented image boundaries is shown as in image(4.2k). Detailed discussion in 
edge detection using dilation and erosion can be found in section 4.4.2.

1 1 1 1 0 0 0 1 1 1 1

0 1 0 1 0 0 0 0 0 1 0
1 0 1 1 1 1 1 2 2 0 3
0 0 1 1 0 0 0 2 0 0 3

(a ) (b) (C)

Figure 4.14: (a) 8-connected region, (b) both 4-connected and 8-connected r e ^ n ,  and (c) 
labelled 4-connected regions of (a).

Image(4.21) shows the boundaries superimposed with the black-and-white image to 
illustrate how the segmentation matches to the original image. The original image has 
eight colors: from left to right there are violet, red, orange, light green, yellow, green, 
blue, and the background is pink. The segmentation result in image(4.21) is considered to 
be perfect. The edges shown are based on the segments found by the clustering method 
with no post-processing, such as thinning, linking, etc.

The result of this method b  good. However, it is only suitable for images in which 
the ccdor features are distinct in the color space. If not, the segments found by each two-

93 V



dimensional histogmm of RG, RB, and GB may be different and even contradictory. As a 
result, fragmentation occurs in the resultant segmentatic». This method may be useful in 
industrial inspection, in which we have some prior knowledge of what colors will appear 
in the scene e.g. ccdm coding of resistors.

Moreover, in some situations, one or two LUTs may be enough to locate the regions in 
the image. For example, in image(4.2e), all the regions can be segmented except the oruge 
area and the pink background. If we have some prior knowledge that these two colma do 
not require to be distinguished then only one LUT baaed on the RG two-dimensional his­
togram will do. If we look again at the image(4.2e),(4.2f) and (4.2g), we find that any two 
of the three LUTs can separate the «ght regions. The reason why all three two-dimensional 
histograms are used is that sometimes there are problems where distinct modes cannot be 
found on RG-histogram, but can be found on RB and/or the GB-histogram. However, if 
the mode cannot be located on at least one of the three two-dimensional histograms, this 
cluster will be lost, and the corresponding segment will not be found.

4.4.1 Noise Cleaning Using Opening and Closing

The binary image resulting from mapping back the clusters on the original image often 
contains noise, such as isolated points, small isolated regions, and small holes in regions, 
which are artifacts of the clustering and do not exist in the original image. One may 
ddete this noise by post processing the binary image. ‘Opening’ and ‘Closing’ (discussed 
in section 3.3.3) may be used to refine or smooth a binary image. These methods are also 
called geometric smoothing because the result depends on the shape of the image and the 
shape of the structuring element used. The refined (or smoothed) images tend to have 
fewer small regions.
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The method coiuute of multiple applicaticmf of two proceHee; ‘eroeion’ and ‘dilation*. 
The porpoee of the lequence of erosion it to thrinli segments in a uniform manner so that 
small segments or small projections on segments or thin connections between s^ments 
disappear entirdy. So the number of successive erosions determines the minimum sise of 
the surviving region. The purpose of the sequence of dilations is to expand segment in a 
uniform manner so that small holes and concavities in segments are filled in.

Both the operations have complementary smoothing actions on the binary image, but 
share the shortcoming of ather decreasing or increasing the size of the segment. This 
problem can be overcome by using the two operations together. However, the resultant 
smoothed image depends on the sequence of the pair of operations, which are known as 
‘opening’ and ‘closing*. Their function are summarized as follows.

1. In ‘opening* (an erosion followed by a dilation) smaU necks between segments, and 
small segments and projections (presumed noise region) tend to be removed without 
changing the overall size of an segment: in the erosion operation an image is shrunken 
in a manner depending on the shape of the structuring element used. The erosion 
operation can be iteratively applied several times. A dilation operation can now be 
used to try to regrow the remaining shrunken segments to their original size. Any 
small noise region will have been eliminated by the erosion operation, and the larger 
regions will be left unaltered if the number of erosion and dilation operations are 
equal.

2. In ‘closing* (a dilation followed by an erosion) hides and concavities tend to be filled 
also without changing the overall size of the segment: a sequence of dilation operation 
is applied first and then followed by erosion operations. SmaU gaps in regions and 
small gaps between regions (we presume the g^p is caused by noise) will be filled.
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bat the shape* of the segment will generally be nnaltered if the namber of dilation 
and erosion operations are equal.

Image(4.3a) to (4.3c) illnstrate the operation of ‘opening’ using the structing element of 
8-connected mask. Image(4.3a) is thresholded from the segmented image(4.2h), a binary 
image requiring opening. The dots and the thin line beside the object region represents 
the noise caused by the transitional color between different coIot regions. After erosion, 
they are eliminated and the segment size is decreased uniformly as shown in Image(4.3b). 
After dilation, the eroded image is restored to the original size image(4.3c) with noise 
regions eliminated.

In large images the opening methods discussed as above can be used quite effectively. 
But in smaller image* these methods will remove all the tiny regions, which are smaller' 
then the structuring element used, and may brrak the other* into many small frictions. 
As a result fragmentaticm would occur. So an alternative refining method may be used 
[Ohlander et al 78], where a mask of 3 x 3 pixels is used. The pixel being processed is set 
to T  when more than 4 pixds in this mask is ‘1’. Otherwise, it is set to *0’.

Imags(4.4a) to (4.4e) are another example* showing the usage of ‘c^oiing’. For ex­
ample we wsmt to count the namber of leaves in the image shown in image(4.1b), which 
is the thresholded image of image(4.1a). The first thing we need to do is to separate the 
leave* from each other. This can be implemented by using opening with a structuring 
element of 8-connected mask as follows. After 1st and 2nd erosion the eroded image of 
image(4.1b) can be shown in image(4.4a) and (4.4b) respectively. After 2nd erosion, the 
thin connections are eliminated and the leaf size ha* also been decreased uniformly. In 
order to restore the eroded image back to the original size, the same number of erosions 
and dilaticms are required. Image(4.4c) and (4.4d) illnstrate the images after the 1st and
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2nd dilaU<»a renpectivdy. Aft«r two dilation*, the eroded image U re*t<»ed to the oripnal 
size. The number of leave* can then be fonnd uiing labeling (eection 4.4) and each i* 
repreeented o*ing a different gray level a* *hown in image(4.4e).

Image(4.5a) to (4.5c) illiutrate the operation of ‘cloeing’ ueing the etructnring element 
of 8-connected ma*k. Image(4.5a) threeholded from the *egmented image(4.2h), a  binary 
image requiring doting. After diUtion, the hole* in the object region are filled and the 
object *ize ia increaaed uniformly a* *hown in image(4.5b). After erosion, the dilated 
image i* reetored to the original *ize image(4.5c) with hole* eliminated.

4.4.2 Edge Detection Using Dilation and Erosion

Edge* can be contidered to be of three type*: internal edge* (being the boundarie* of 
segment, drawn in*ide the eegment), external edge* (being the boundaries of segment, 
drawn outside the segment), and true edges (i.e. the actual s ^ e n t  boundary). This 
section will illustrate how these edges can be extracted using dilation and erosion (section 
3.2.1). The method is illustrated in figure(4.15), where the structuring element used is a 
3 x 3  square neighbor mask.

Image(4.6a) shows the binary image, which is part of the segmented image of im- 
age(4.2j), where black represenU the area of interest. Image(4.6c) shows the im­
age. Image<4.6b) shows the eroded image. Image(4.6e) shows the external edge that is 
obtained by the subtraction of the diUted image from the binary image. Image(4.6d) 
shows the internal edge that is obtained by the subtraction of the binary imsg» from a 
erosion of that image. Image(4.6f) shows the true edge that is obtained by the subtraction 
of the dilated image from the eroded image. ThU implies the addition of the external and 
internal edge, so the thickness of the edge is doubled. The above methods are good when
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Fignie 4.15: Block diagram for edge detection using dilatirm and erosion, 

the object region and the background can be rlim«ifl»d clearly.
For illustration, this method has also been applied to the binary image shown in 

*̂“*8*(4-7a), which is extracted from the segmented image of image(5.3a) and is part 
of the lake in the landscape image (image(5.1a)). The results are described as foUows: 
image(4.7c) shows the dilated image, image(4.7b) shows the eroded image, image(4.7e) 
shows the external edge, image(4.7d) shows the internal edge, and image(4.7f) shows the 
true edge.

If we want to find edges in a segmented image (image(4.2j)), in which each region is 
represented using a different label, the only edge that can usually be defined u  the true 
edge. The leasmi is that the external edge of one region may become the internal edge of 
another r ^ n  and vice versa. The above methods used to find the true edge are not very 
good because of thrir compuUUonal cost. An alternative method is to use the 3 x 3  
square neighbour mask used to process the segmented image. The pixel being processed is
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assigned to be in a region, when this pixel and all its ndghbor pixek have the same label. 
Otherwise it U assigned as edge. The result of using this method b  shown in image(4.6g). 
Since the edge found b  equal to the addition of external and internal edges of each region, 
it looks very thick.

If we simply want to illustrate the segmentatim result by superimposing the edge 
on the original image, the following approximate method b  sufficient. The pixel being 
processed b assigned to be inside a region, when thb  pixd (*, y) and iu  three nmghbours, 
(*.» +  1). (* +  l.k ), and (x +  l,y  +  1), as shown in «gure(4.16) have the same bbel. 
Otherwise it b  assigned as edge. The result of using thb  method b  shown in image(4.2k). 
Thb method b  faster than the method discussed above since the pixd being processed b  
compared to three neighbours only, and the edge found looks better as it b  only half the 
thickness of the edge shown in image(4.6g). So all the edge images shown in thb thesb 
were produced using thb method.

x-1.y-1 x-1,y x-l.ye-1

x.y-1 *.y x.y+1

x+1.y-1 xel.y x+y.y+1

Figure 4.16: A general 3 x 3  mask showing corresponding image pixd location.

4.4.S Reduction of Cluster Space

The two-dimensi(»al hbtogranu formed by RG,RB, and GB may be fragmented and 
not continuous as shown in fignre(4.17). For example, an image with 256 pixds by 256 
pixeb consbb of 65536 pixeb, and each of the two spectra b  quantised into 64 (from
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0 to 63) levels of brightneBS. Then the corresponding two^imensional histogmm will

have 64 X 64 = 4096 locations (i.e. cluster spaces) into which counts of pixds will be

accumulated. If the locations ate filled nearly uniformly then a very sparse histogram may

result. Some locations may appmir as a local peak resulting ftom some isolated location

being occupied by a sin|̂ e pixd and surrounded by empty locations; this clearly is not

a true maximum, although the maximum detection algorithm, which detects locations

whose pixel count is higher than elsewhere in the 3 x 3 nrighbonrhood, will classify it as

one. As a resuit fragmenU (i.e. very small segmenU) will appear on the segmented lm«g. 

Spectraia

Figure 4.17: Dlustiation of fragmentation in a two-dimensional histogram.

Two methods csm be used to remedy this problem.

1. The two-dimensional histogram is accumniated using locations which are several 
brightness values wide in each dimension. The dynsmiic range of the data in each 
dimensicm is ascertained and the cinster space is reduced.

2. The two-dimensional histogram is smoothed with a local window, in which the pixel 
being processed is replaced by the average value of iU neighbours.
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Both opentiom have the effect of eUminating the local peaks and tightening the clus­
ters themselves; significant clusters remain intact while small diffuse clusters are central­
ized. Clearly resolution is sacrificed (i.e. colors which are only slightly different will be 
treated as the same), but this is necessary to yield an acceptable dustering.

However, if one classifies segmentation error into undersegmentation (i.e. failing to 
split riio n s  that should be separated) and oversegmentation (i.e. splitting regions that 
need not be separated), then errors caused by the former will affect later processing more 
seriously than that by the latter, since the oversegmentatioo caused by the local peaks 
may be remedied by fdlowing a merging procedure.

It is impossible to find a general solution that specifies which cluster space or window 
size is the best, since the accuracy of the clustering process depends directly on how wdl 
the objects of interest on the image separate into distinct dusters as shown in figure(4.3), 
and it is problem dependent. That means for different kinds of images, different features 
may be required. In particular, cdot is not good for highly textured images, since the 
distributiw may scatter widely on the two-dimensiimal cdor space and no distinct modes 
may exist (figure(4.3b)). However it is possible to find an appropriate duster space or 
window size, if the applicatitm is limited in a particular area. Besides, fragmentetion can 
be avoided by appending a merging algorithm at the end (i.e. the split is fdlowed by a 
merging algorithm), and this is discussed in sectic» 6.4.

The following example is used to illustrate the effect of using different sizes of smoothing 
window. Image( 4.11a) shows the two-dimensional histogram with 42 duster spaces formed 
by image(4.9e) and (4.9g). Image(4.11b) shows the peaks found in image(4.11a) without 
using smoothing, and the number of peaks found are 10. The segmentation is shown 
in image(4.12a). The segmentations using different smoothing window of 3 x 3, 5 x 6,
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7 X 7, and 9 X 9 >n shown in ima«a(4.12b) to (4.12e). The effect of applying different 
sizes of smoothing window to the two-dimensional histogram (image(4.11a)) are shown in 
image(4.Uc) to (4.11J)-

In this case a smoothing window size of 3 X 3 seems to provide the best resnlt, «in«-« 

the image can be segmented properly and the local peaks are diminated as shown in 
image(4.11d) in which only 7 peaks are found. Larger values of window size resnlt in fewer 
peaks. For example, if a smoothing window size of 3 x 3 is used, the isolated peaks with 
value greater than 8 cannot be diminated. When the window size is 5 x 5, the isolated 
peaks which cannot be eliminated will be those having a value greater than 24.

In addition to the function of dimination of the local peaks, smoothing will also merge 
the dusters which are very close together. It is not a very serious problem when the 
smoothing window is small. For example when a window size of 3 x 3 is used, the clusters 
which will be merged together will be those having the peaks separated by a single pixd. 
We may consider such effect as tightening the clusters as we expected.

However, if the window size used is very large, its effect will serioudy affect the seg­
mentation since some of the well separated clusters are also forced to merge together; and 
the worst case is that the original distributicm of the dusters may be distorted. These 
two effects can be illustrated in image(4.12d) and (4.12e). The former effect can be illus­
trated in image(4.12d). When a window size of 7 X 7 is used, there are only 3 clusters 
found in image(4.11h). As a resnlt, some color chalks are no longer segmented and merge 
with the background. The latter effect can be illustrated in image(4.12e). When a win­
dow size of 9 X 9 is used, although 2 more dusters are found in image(4.11J) compared 
to image(4.11h), the scgmenUtion is worse than image(4.12d), since the original duster 
distribution is distorted.
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4.5 Application in Industrial Scene Analysis
Sepantion of the objects of interest in the image fr«n all other objecU and the backgronnd 
is a key step in machine vision, itself a vital part of industrial automation. In gray scale 
machine vision systems, the gray level informaUon of an image is used. Since only gray 
level information is used, there are a large class of image scenes which are either impossible 
or very difficult to analyse because of the shadow problem or the lack of attribute of color. 
By providing a machine vision system with color capability many of the problems that 
exist in gray scale work would disappear. In particular, these systems (described below) 
which use normalised color do not require precisely repeatable illumination.

In addition, the range of colors is usually restricted and known, and objecU rarely 
have much variation in color over their suriaces in an industrial environment. So the col* 
information, which is used to help isolate objects or regions, rather than to check that 
exactly the correct color is present, is useful for recognition, sorting or inspection of parts 
or products. Typical industrial application areas include:

1. Electronics; differentiating between identically shaped objecU such as color coded 
wire, resistors, and capacitors and locating componenU on a circuit board [Thomas 
& Connolly 86][Gordillo 85][Kelley k  Faedo 85][Keil 83].

2. Food production; color may also be used as a property in quality control. This is the 
case in food processing industry. For example, [Keller et al 86] used color and color 
distribution to determine quantiUtive measuremenU of ‘doneness’ of beef steaks by 
analysis the histograms of the red, green and blue color componenU.

3. Medicine; detecting c<d*ed pills to prevent contamination and checking color coded 
labels to prevent different producU frinn mlviiig
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4. Meduinical; checking the assembly of colmed parts and detecting faults in color 
paints and coatings.

Most of the above examples do not requite accurate ccdw measurement, but do need 
the ability to differentiate between regions of an image on the basis of color (i.e, image 
segmentation based on colw). Therefore precision illumination is not necessary. In next 
secticm, we will discuss and illustrate how color can be used for this purpose.

However, if the ccdor is used as a color signature to identify the region in the image 
having the same c(dm, precise illumination is very important [Berry 87]. The main reason 
is that what we require is a parametric clustering, in which four stages are usually required 
and discussed as follows:

1. Decide the set of colors into which the image is to be segmented. For example, if a 
resistor is required to be identified based on the color coding, the set of colors is the 
possible colors coated on the resistor.

2. Choose representative pixels from each of the desired set of coIots. These pixeb are 
said to form a training data.

3. Use the training data to estimate the parameters of the classifier algorithm to be 
used. The set of parameters for a given color is called the signature of the color.

4. Using the trained classifier, classify the region of interest in the image into one of 
the desired colors.

If the illumination is changing during the training u d  classifying stage, the segmen­
tation result will be affected.
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4.5.1 N orm alised  C olor C lu s te rin g

Let R(x,]r), G(x,y) and B(xjr) be the red, green and bine component« of the reflected 
Ught (raw ipectral intemity) from the point (x,y) in the «cene. If these values are used 
directly as in section 4.4, this results in segmenting the shadowed area of the scene into 
separate regions although both regions have the same hue. This effect can be illustrated 
using c«dor building blocks, which are illuminated from the both top-left-hand and top- 
right-hand corners. Since soUd objecU are used, the shadow problem can clearly be seen 
as shown in image(4.8a). Spurious segmentation due to changing of intensity can also be 
shown in image(4.8h) to (4.8j).

The main reason is that chromatic spectra have a strong intensity component (Pratt 
78), and this component varies according to the following factors:

1. the reflection characteristic of the object,

2. the distance fitmi the illumination source,

3. the a n ^  to the illumination source,

4. the brightness of the illumination source.

We generally want to partition the picture into regions according to the color of the 
surface i.e. the analysis should be unaffected by changes of illumination or the presence of 
shadows. For example, in industrial automation color is used to recognize, search, sort, and 
manipulate colored parts or color-coded objects such as wires and resistors. Segmenting a 
region into different regions due to shadows is not intended. An alternative method is to 
use normalised colors, since the chromaticity is approximately independent of the intensity. 
Such a s^mentatic» will then be rdatively unaffected by intensity variation, but will be
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highly tenaitive to hue change*. After normaliting the RGB value*, the inteniity can be 
bctored out [Jordan III k  Bovik 88][AndTeadi* et al 90].

A* diecuseed in section 4.2, the normalised RGB values can be expressed in terms of 
the raw spectral intensity values as follows:

< *,v) =

9(*,y) =

») +  <3(*. y) + B(», y)

M*,y) =

R(*,y) +  G (*,y)+B (*,p)
B(z,y)

R(x, y) +  G(*, y) + B{x, y)
The ratio r(x,y), g(x,y), and b(x,y) are firstly calculated and then multipied by a 

constant to form the normalised red, green, and blue component image as shown in im- 
age(4.8e) to (4.8g). A constant of S3 is selected in this case. The reason for using thi% 
value is that the original mskximum gray level of the image is 63. That means the maxi­
mum value of the normalised value will also be 63 when two out of three colms are zero, 
and the non-zero value is used as dividend. The minimum value, zero, will occur when 
the the color which is zero is used as dividend. However, when all the three color* are 
zero, the result would be meaningless. So this pixel is replaced by zero directly. After 
normalising the color, the normalised component images are then used for forming the 
two-dimensionsJ histogram for clustering.

A region segmentation based on the normalised colors will ideally be insensitive to 
change of intensity. For example, suppose we have a red surfttce, and part of the sur&ce 
is in shadow. Ideally, the segmentatitm based on normalised color will classify the whole 
surface as one region. This is illustrated in imsge(4.8k) to (4.8m).

The ideal shape of a histogram of a black-and-white image will have two well defined 
peaks. One peak on the histogram corresponds to the pixels in the background, the other
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peAk comipondi to the pixel« in the object. Threeholding the image at the valley of the 
histogram between the two peaks, ensures that the correct pixds will become either part 
of the background or part of the object. However, when the shadow problem occurs in 
the image, gray scale treatment is often difficult since the image cannot be threaholded 
in any simple way. So the need for complex and time consuming gray scale analysis to 
locate the optimum threshold value cannot be avoided. This effect can be shown using the 
black-and-white image of the color building blocks (image(4.8a)) and the black-and-white 
image of the color chalks (image(4.9a)).

Besides, edge detection will also give confusing results, since some surface boundaries 
may be missed because the contrast across them is low, while shadows may introduce 
extra lines. Futher there is no easy way to distinguish the edges of objecU from the 
edges of shadows. Moreover, the edges of the object may be blurred under the shadows 
and not be detected. These problems cause a lot of trouble in later processing such as 
recognition. For example, when the objects requiring recognition are man-made ones, 
simple geometric primitives such as straight lines, circles or arcs detected are used in high- 
level processing, in which the recognition system tries to ascertain if the combination of 
detected primitives is consistent with one of the known objects. Additional edges m.V. 
such high-level processing very difficult.

Three edge operators, Robert’s cross (Roberts 64], Sobel (Sobd 70], and Lapadan 
[Rosenfeld t¿ Kak 82], are used to demonstrate this problem. Since the output of the 
Robert’s cross operator is based on a smaU 2 x 2  window, it is very sensitive to noise. 
Sobel’s operator using a 3 X 3 window in the computotion of the gradient has the advantage 
of increased immunity to noise. Laplacian operator responds even more strongly to isolated 
pmnt (noise point) than to edges, since its output is proportional to the difference between
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the gray level of the central pixel nnd the average in the region. Thus in n noiey {Mctnie, 
the noise will produce higher Lnplncian values than the edges, unless it has much lower 
intensity.

The edge images computed using these three operators are shown as in image(4.8n), 
(4.8o), and (4.8p) where Robert cross, Sobd, and Lapacian operators have been applied 
to the black-and-white image (image(4.8a)). None of them work very welL In addition 
to false edges caused by the shadows, some of the edges are blurred by the shadows and 
cannot be detected.

Moreover, this method can be extended to odor recognition. If each region can be 
classified accurately on color, the color within that region can be »nd then
used for recognition. The main advantage of using this method is that the objects do 
not require to be placed in pre-defined positions in order to reduce the time required for 
searching. For example, (Kelley k  Faedo 85] used N.T.S.C. Y,I,Q for ccdor recognition. 
However, before these values can be oalculated for recognition, the regions require to be 
identified. In their paper, a c<d<» resistor is used for illnstraticm, and a rectangular search 
window, which matches the shape of a typical color band, is passed over the entire image 
in order to locate regions of saturated ccdor. Obviously, this is a very time consuming 
procees, particulariy if the object (a resUtor) has not been placed regularly. The main 
disadvantage of camera based color recognition is that it gives only relative results, which 
can be compared meaningfully only with other results measured with the same equipment.

However, transforming R,G 3 to normalised components can cause instability, where 
small changes in R.,G3 can produce large differences in the normalised values [Kender 
77). This effect can be explained in more detail as fcdlows; the video «ign«i is Higiti«.! 
to 64 leveb by the analog-to-digital converter. Since there are light-colored and dark-
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colored object« in the «eene nnd nil of them mo«t be in the mnge of 64 level«, the vnlne of 
[R(xor)+G(xor)+B(x,y)] U Urge for the light-cdored objecta, but «mnll due to «hndowi, if 
we n««nme the betör« which effect the reflected Ught from the objecto nre kept coiutont.

Since r(x,y), ^x,y) nnd b(x,y) nre quotient« of R(x,y), G(x,y) nnd B(xjr) divided 
by (R(xor)+G(xor)+B(x,y)), the vnlue of r(x,y), g(x,y) nnd b(x,y) nre not reUnble for 
*^**b-colored object«. A «mail input error will cnu«e n large output error during the 
tmiuformnUon. For example n««nming there nre «ome error induced by the 
camera nnd repre«ented by e. The vnlue R(x,y), G(x,y), nnd B(xjr) will become« Ä(x, y) + 

+  e, nnd B(x,g) + e. And the correeponding corrupted normaliied value« will
become

B(x,ii) + ef(x ,v ) =

6(*,y) =

Ä(x, v) +  G(x, y) + B{x, y) + 3e

B(*, y) + G(x, y) +  B(x, y) + 3e 
B(*,y) + e

B(x, y) +  G(x, y) +  B{x, y) + 3e
In case of R{x, y) = G(x, y) =  B{x, y) = 0, the normalized value will become f(x , y) = 
y) = i(*, y) = 1/3 instead of 0.

Thu« we get different normalized value*. In general the values of e is much ..n .ll., 
than R(x,y), G(x,y), nnd B(rjr) nnd should not have a serious effect. However, it has 
significant effects when R(x,y), G(x,y), nnd B(x,y) nre not large. ThU can be iUu«tmted 
in image(4.9k) to (4.9m). The chalk at the bottom is partitioned into two regions, since 
the part of the chalk under the shadow is very dark.

Two methods can be considered for solving this problem; one is to use more analog- 
to-digital conversion levels and other is to open the iris of the lens.

The former method invedves altering the system configuration. An input video «igi<«i 
is digitized into 64 brightness levds and transferred to the 68k system as an image with
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256 X 256 pbcda. The leaolntioii of imagiiig devicet and analog-to-digital convenion greatly 
influence! the cost and speed of the system, since the amount of daU to be processed is 
dependent on the spatial and bri(^tness resolutions. Ideally, higher resolution in conver­
sion will increase the reliability and flexibility of the system, since the dynamic range over 
the input signal is increased and then details of the image can be represented better. For 
example a 6-bit converter has only 64 leveb, but a 8-bit converter has 256 levels. So that 
if 8 bits are used in place of 6 bits, the improvement in dynsunic range will be

(lopio 256 — login Ad) x 10 decibels sa 6db

However, one thing we need to consider is the noise caused by the imaging system 
itself. This does not affect the output of the analog-to-digital converter seriously when the 
signal is much larger than the noise. However, it has a significant effect when the signal is 
very small. So higher conversion resolution does not bring any advantage when the noise 
in the system is high. Furthermore, it may decrease the speed and increase cost because 
of increasod hardware requironents.

The latter method is easier to implement. After opening the iris of the lens, the value 
of dark-c(dored objecU can be topped up. However, some of the values of light-colored 
objects may be boasted to such an extent as to saturate causing the cdior clipping effect, 
which can also not provide a steady result. Thus, when this method u  used, proper 
precautions must be taken to avoid saturation occurring.

4.5.2 Experimentsd Results

The two teat images shown in this secti<m are c^cx building blocks and commercial color 
chalks. Each component image of red, green, and blue contains 128 x 128 pixds and up 
to 64 gray levds.
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Color Building Blocks

The color of the building blocks is red in top-left comer, green in bottom-left comer, blue 
in top-right comer, end yellow in bottom-right comer. The bsckgroond is gray. The effect 
of spurious segmentation due to differences in intensity can be seen clearly in image(4.8h) 
to (4.8j). The segmentation results based on normalised colors shown in image(4.8k) to 
(4.8m) demonstrate how the shadow problems have been eliminated. Hi^lights are a 
problem in sqpnmUtion, since the areas of highlighte do have significantly different gray 
level value than their surroundings. One of the methods to solve this problem is to model 
it and separate it from the object color [KUnker et al 87, 88,90). (Sect!«» 7.2.1 has a more 
detailed discnssi<m about this problem.) This problem can be iUnstrated by the object in 
the top-right comer. The color of this block is blue and ideally it should be classified as 
one region. Due to the direct refiection of the light at the ed(^ (image(4.8a)), part of the 
edge has been classified as another region.

The resulte on the colcw blocks pictur« are very good, since all of the three LUTs can 
be used to separate the five color r^o ns. The main reason is that objects shown occupy 
areas of many pixds, and the colors of them are quite strong and distinct. Therefore it is 
easy to segment frmn clusters in the color space.

Color Chalks

Now let us look at a more practical problem. The test scene consists of six 
color chalks. The colors of the chalks are green, yellow, red, brown, blue, purple, and 
the background is pink. The scene is illuminated from both the t<^left-haad and the 
t(q>-right-hand comer, so many shadows occur as shown in image(4.9a). Image(4.9h) to 
(4.9j) are used to illustrates the effect of spurious segmentatim due to the shadows.
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The segmentotion reiulU based on the normalised ctdors are worse thsm that using 
the crfor bnilding blocks, since some of the chalks can not be clasaifted as a single region. 
However, if we consider the complexity of the image, these errors should be accepUble. 
In the practical world, precisdy correct segmenUtion is rarely possible, unless the ¡"■ »g« 
is very simple. However, the segmenUtion obtained is enough for many purposes. For 
example, we may already have prior knowledge of the scene, such as how many cidors there 
will be, and their mean values. Then each segment can be used to calculate the mean 
value of c(dor, which can be used for comparison. The results could be used for sorting the 
crfor chalks. Moreover, only one of the LUTs produced by R/G or R/B two-dimensional 
histogram is required to do the job, since both of than  have already separated the six 
colcw chalks and the background. This can be seen in image(4.9k) and (4.91). The LUT 
produced by G/B two-dimensicmal histogram is not sufficient to do that, since one of the 
color chalks is mixed with the background (image(4.9m)).

That edge detection gives confusing resulto can be illustrated clearly when the Robert’s 
cross, Sobel, Lapacian operators are appUed to the black-and-whiU image (image(4.9a)) to 
produce the edge images. The resulto are demonstrated in image(4.9n) to (4.9p), and none 
of them produces a utisfactory result. Since the edge images are composed of both objects 
and shadows, they are not easy to distinguish. It seems that adding the capacity of colw 
to the machine vision, its power in processing of images can be enhanced in many cases by 
using the attribute of color, since objects which can not be separated in the conventional 
black-and-white image, may possibly be distinguished in the color image shown as above 
example. Clearly, higher levd inf<»nation (such as knowledge of the likdy shape of the 
chalks) can permit precise segmenUtion of even a noisely black-and-white image; bnt here 
we are concerned with direct segmenUticm of the initial
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4.6 Sum m ary
Thia chapter dcKribea the methodi of image segmentation based on c<d(v using the water­
sheds algorithm to classify the image into a set of separate regions based on the predicate 
of color, and illustrates how the noise cleaning and edge detection can be implemented 
using dilation and erosion.

Using of R(x,y), G(x,y) and B(xor) raw spectrum intensities directly for segmentation 
requires no transformation. But each of them is stron^y influenced by intensity. Thus, 
spurious segmentaticms tend to occur because of the difierence of intensity.

One of the methods which can be used to remedy this problem is to eliminate the &ctor 
of intensity by normalising the colors. Ideally, image segmentation based on 
colors should be insensitive to change of intensity. This method is useful in machine vision  ̂
where the color is important for identification.

Precisely repeatable illumination is critical for color signature identification; however 
altering the illumination will move clusters, but will not, in general, change the cluster- 
based segmentation, so that precise repetition of illumination is not critical for this type 
of segmentation.

In addition to the complexity of hardware, high cost, large daU storage requirement, 
the main limiting factor for use of normalised color in industrial applicatimi is the long 
processing time. Color data is three dimensional. Each of the three primary colms (i.e., 
red, green, and blue) is stored as an gray level image and must be processed to calmiate 
the ratios, and that requires quite a lot of floating point calculation. The time required is 
often considerable, but modem CPU chips with intq^ral floating point ALUs (e.g. 68040) 
make this much less of a disadvantage.

The «dor Alters used are additive «dor Alters which transmit one of the three primary
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colora of rod, greco, ond blue. Thio meoos irr^evont con be easily suppressed by 
using differant filters [Chen & Milgram 82). For example, blue colora are nearly invisible 
under a red filter. In industrial automation, this feature can be used for autmnatk rejection 
of unwanted (i.e. irrelevant to the task at hand) color objects in the background. This can 
also simplify the processing needed to identify the required object, and save on computer 
processing time.

115



C hapter 5

RECURSIVE CLUSTERING BY
WATERSHEDS
5.1 Introduction
Recunive r q ^ n  splitting, which segments the image recursivdy can locate lees noticeableI
réglons after isolating and removing the large redone, is widely used in image segmentation 
[Ohlander el a t 78][Ohta el at 80][Shafer & Kanade 82][Tominaga 86](Tominaga 88). The 
general color features of the image used here are R,G,B color components, which constitute 
a three-dimensional c<dor space. Since only a one-dimensional histogram is used, clusters 
which are apparent in the color space may be projected in such a manner that they 
are not evident on any one histogram individually. To over come this problem, additional 
histograms in color TV features Y,I,Q, and psychcdogical features hue, saturation, intensity 
will be required [Ohlander d  at 78][Shafer k  Kanade 82).

The instability in transformation of R,G,B to another c<dm space such as hue and 
saturation, in which small changes in K,G3 *dll produce large differences in the trans-
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formed componenU, cennot be avoided [Kender 77]. A< disciused in section 4.5.1 the 
normalized value used to calculate the hue and saturation is unstable, so the value based 
on these quantities is also unstable. The hue becomes unstable when the denominator of 
the equation 4.1 in sectim 4.2 tends to zero and this will occur when r = g = h = 1/3. 
That means the hue becomes unstable around the center (white) of the chromaticity di­
agram (flgure(4.8b)). The saturation, which uses normalized values directly as shown in 
equation 4.2 in sectita 4.2, is also unstable. This will also occur around the center of the 
chromaticity diagram (figure(4.8b)).

As a result, the segmentation will be seriously affected, so that special precautions are 
required. For example, hue may not be used to compute the histogram if the saturation 
is near zero [Ohta el at 80). In spite of this, the research has concentrated on using one­
dimensional histograms. The reason is that clustering is much faster in one-dimensional 
histogrsjns than in higher-dimensional histograms.

5.2 Description of The Recursive Clustering Method
The watersheds algorithm usee a two-dimensional histogram to detect clusters in the color 
space. Small clusters are often not noticed when they occur inside large regbns. This 
is because small peaks in a two-dimensional histogram are veiled by dominant peaks, or 
because many small peaks overlap with each other after smoothing. Recursion is used to 
apply the algorithm to small areas (i.e. segments) of the image. Recursive application 
removes the largest peaks, allowing less noticeable peaks to become visible; the reduction 
in the number of peaks reduces their mutual interference. Furthermore, peaks may come 
from different parts of the image, and then overlap. Recursive clustering will only consider 
smaller portions of the image at any one time.
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If the origina] method difcufied in «ection 4.4 ii applied to some complicated image, 
many fragment* may be produced due to different cluster* being found on different two- 
dimensional histograms. This problem can be illustrated using the picture of a natural 
landscape scene, shown in figure (5.1a) to figure (5.1h). Each component image (red, 
green,and blue) contains 256 x 256 pixel*, and is quantized to 6 biU in gray level. In 
this section, we discuss how this fragmentation can be eliminated using the watersheds 
algorithm recursively.

In this recursive clustering algorithm, the largest region is selected. The segmentar 
tion method initially takes the wh<de image as a region, and using three two-dimensicmal 
histograms from RG, RB, and GB images determines the best cluster by the watersheds 
algorithm, splitting the region into subregions each of which is connected. The algorithm 
is then applied iteratively until a region is either classified as a single segment, or its size is 
so small that further splitting is considered meaningless. Figure(5.1) describe* the proce­
dure. The same image, the color pattern of image(4.2a), is used to explain the procedure. 
The process is now explained in more detail.

1. Select the largest rej^n  in an image. (Initially this region is the entire image.) If 
more than one region has the same largest size, any of them can be selected. In the 
present example, three regions in image(5.2a) have been extracted. The largest area, 
the background, has been reclustered and segmented into two regions as shown in 
image(5.2b). If no region csm been found or the largest region size is snudler than 
291 (a user-defined constant) of the total image area, then go to step 10.

2. Compute the throe two-dimensional histograms for the portion of the image which 
is contained in the region.
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Figure 5.1: Recunive cluitering ueing walenliotlt. 
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3. Smooth the three two-dimensional histograms using a 3 X 3 window as described in 
section 4.4.

4. Apply watersheds algorithm to these three two-dimensional histograms to creates 
three LUTs.

5. Select the largest cluster in each LUT. If the segmented region of the cluster is
than 90% of the original region area, (again, a user-determined constant) 

then this cluster can be ignored. If all these three clusters are larger than 90% of 
their corresponding original region area, then this region is considered as segmented 
and will be saved, and we return to step 1. In the example, the first segmented 
region is the background, which is shown in image(5.2c).

6. Select the largest cluster from the three LUTs. Multi-threshold the portion contained 
in the region being segmented, using this cluster as a LUT. This generates a binary 
image where the pointo within the cjuster are set to ‘1’ and the other poinU are set 
to ‘O’. The reason why the largest cluster is selected is that we assume each cluster 
corresponds to one connected region and consider a successful segmentation to have 
more large regions and fewer small ones.

7. Refine the cluster. A detailed discussion about binary image refining, where small 
regions and thin ‘necks’ between large regions are eliminated and small gaps in 
regions are filled, using ‘opening’ and ‘closing’ can be found in section 4.4.1.

8. Extract the connected regions in the refined binary image by labelling based on the 
idea of propagation as described in section 4.4.

9. Save these regions for further s^mentations. A user-determined sixe criterion, (here 
0.1% of total image area) can be used to limit the minimnin site of segments.
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10. Continue the tegmentntion on the remninder of the region which it being legmented. 
The sequence of region extmctioni nre shown in image(5.2d) to imnge(5.2j). Ter- 
minnte the segmentation of the remainder regions when no more regions are larger 
than 2% of total image area, (again a user-determined constant).

That means regions with less than 2% of total image area will not be used for 
further segmentation. Restricting the smallest sise of region for recursive clustering is 
necessary, otherwise it may break a region into many smaller regions, which possibly 
represent textural elements. This is clearly not a desirable effect of the segmentation. 
Additionally, it is possible to limit the number of levels of recursion used, thus 
providing a coarse segmentation of the image.

11. Relabel the segments. Regions which are less than 0.1% of total image area (shown 
as the small black regions in image(5.2j), are replaced during relabelling by the label
of their neighbour pixels. The segmented image is shown in image(S.2k). This is an1
image in which each pixel value is the number of the region containing that pixel. 
For example, region 10 will consist of all the pixels whose value is 10.

12. Find segment boundaries. The edge detection using dilation and erosion to find the 
external, internal and true edge of segmentation is discussed in section 4.4.2.

Image(5.21) shows the segmented image boundaries and image(5.2m) shows these 
boundaries superimposed on the black-and-white image of the color pattern, to show 
how the segmentation matches to the original inuge. For this simple case of colw pattern 
both methods work very well. The total eight regions can be separated accurately.
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6.2.1 E x p e rim en ta l R esu lt*

The recnnive clustering methods described in secticm 5.2 have been applied to a number 
of color images, and have produced successful results. The three test images shown in 
this section are a color pattern, a natural landscape scene, and a natural road scene. 
Each component image of red, green, and blue contains 256 X 256 pixels for the landscape 
scene and 128 X 128 pixels for the road scene, and all are quantized to 6 bits in gray 
level. The difference between these images is that the first two images are captured 
under the illumination of tungsten lamps on the pictures, and the third one is captured 
directly through the window. Segmentation results are displayed as segmented image edge 
representing the continuous boundaries of re ^ n s .

Color Pattern

The same color pattern (image(4.2a)) used in chapter 4 for illustration is also used here 
to illustrate the recursive clustering techniques. The segmenUtirm result shown in im- 
age(5.2m) is quite acceptable, since all the eight coIm  regioiu can be separated accuratdy 
without requiring any post-processing such as thinning or linking. The main shortcoming 
using recursive method for this case is that the processing time required is much longer 
than that required by the previous method due to the recursive nature.

NatursJ Landscape Scene

The recursive method, (in which segmented regions of size less than 0.03% of total im- 
*6® area will be rdabded), has also been applied on the natural scene of image(5.1a). 
Image(5.3a) shows the segmentaticm result in which the original image is segmented into 
119 connected regions. The segmented image boundaries are shown in image(5.3b). Im-
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age(5.3c) shows the boundaries superimposed on the black-and-white image to show how 
the segmentation matches the original image. Results of this nature are difficult to in­
terpret, since no quantitative or qualitative evaluation procedure has been established for 
image segmentation. One possibility is the simple criterion of the percentage of pixels 
misclassiAed [Yasnoif el at 77].

Before we discuss the result of segmentation, let us look again at the image shown in 
image(5.1a), and find out which parts of the image that might be extracted as regions based 
on the feature of colm. The sky, clouds, hills, and lake are relativdy distinct homogeneous 
regions. It might be easy to segment the main area of sky, clouds, hills, and lake from 
the rest of the image. The difficult ikreas in the image are the maze of texture variations 
in the tree, the reflections of the hills on the lake, the shadow of the hills on the ground, 
and the area consisting of reflections and shadows of the yacht, which are white reflections 
fiom the yacht.

However, there is reasonable agreement between the regions obtained from the seg- 
mentatic» and actual regions of the natural scene. For example: the segmentations of the 
hills, lake, and sky are quite accurate, although none of them it classified as a s in ^  region. 
The main reason is that natural scenes are not as uniform as images of artificial objects 
(e.g. the color pattern) but rather have natural textural variations, reflectance, shadows, 
etc. For example, we may classify the sky as one single region, but it is impassible to do 
this based on the color feature alone, when there are clouds, since the color of the sky and 
the clouds are not the same. For this, domain dependent knowledge would be required. 
Besides, uniform ccdor may not imply regions in the real world, but it provides essential 
dements for constructing a complete scene.

In conclusion the proposed segmenting method, which invtdves the recursive clustering
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ufing watenheiU, ha« yielded «atis&ctory retolt«, if we coiuider the complexity of the 
image analyaed. In fact natural icenes auch a* landscape« are rich in detail« and made 
up of region« that are not alwayi homogeneous enough to be separated from one another, 
and that exhibit different textures.

Natural Road Scene

Another natural scene (image(5.4a)), is used for segmenUtion using the recursive method. 
The difference between this and the previous one is that the road is a real scene taken by 
the camera directly through the window of the laboratory. The previous one is a picture. 
Since the position of the picture and the lamps can be moved freely to obtain an almost 
even illumination and reflection of the picture, the result is almost considered as perfect. 
However, in the present condition the only thing we can control is opening of iris of lens 
of the camera. So a suiUble gray level image, which is not too low to be affected by 
the random nmse from the camera or too high to induce colcw clipping, can be obtained 
through the filters.

There were six possible regions in the scene, which are the objects of interest including 
tree, chair, road, roadside vegetatíon, double yellow lines on the roadside, and white center 
line of the road. The result of segmentation (image(5.4h)) might not be as good as we 
desired, the tree cannot be separated probably because these regions are too small to show 
up as a peak in the two-dimensional histogram. Additionally, the road is separated into a 
few regions. It can not be classified as a single region. The main reason is the problem of 
changing intensity as discussed in section 4.5.1. The raw red, green, and blue component 
image has a strong intensity component, which can be seen quite clearly when the scene 
displayed on the monitor. The brightness of the road does not seem to be distributed
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evenly when the brightneee of the monitor ie being adjusted. Part of it ia brighter, and the 
rest of it is darker. Actually, this effect appears on the whcde image, the road is just mote 
distinguished. The main cause is that the reflection frmn the scene is not even. Section
5.3 will illustrate how normalized colw can be used to remedy this problem.

In addition to the probiem of changing intensity, the texture is another problem we 
need to stdve in order to improve the segmenUtion result, since the region of roadside 
vegetation at the bottom of the image has been divided into a lot of meaningless fragments 
(image(5.4h)). A passible method which can be used to s<dve this problem is extracting 
the texture parts of the image before applying the clustering. The details of this method 
will be discussed in section 6.3. ,

5.3 Recursive Clustering Based on Normalized Color
As mentioned in section 4.5.1, normalizing the color can eliminate the intensity embedded 
in the chromatic spectra. The simple color building blocks image (image(4.8a)), the color 
chalks image (image(4.9a)) and the natural road scene (image(5.4a)) are used to tmt the 
recursive methods using the normalized coior. The results are discussed as below.

S .S .l E xperim entstl R e su lts  

Color Building Blocks

The results shown in image(5.5c) show how changing intensity affects the segmentation. 
The background is separated into different regions due to different values of intensity. For 
example, since the scene is illuminated from both top-left-hand and top-right-hand comer, 
the upper part of the background is separated as one region because it is b r i ^ t«  than the 
lower part. However, the lower part is also split into different regions due to the shadows

125



of the object*. The block on the lower-right-hnnd corner show* clearly how the spnrioos 
segmentation occnri. This block is divided into six different regions and the brightness of 
each rqpon can be seen clearly. A total of 14 s^m ents were fonnd.

The segmentation results based on normalizing colon shown in image(S.5h) are quite 
promising. Image(5.5d) to (5.5h) show the sequence of region extracted. The four c<dor 
blocks and the background have been separated accurately, which is shown in image(5.5j) 
using the segmented image boundaries (image(5.5i)) superimposed on the black-and-white 
image of the building blocks.

Color Chalks '

The results of the color chalks (image(5.6c)) pves a strong impression of how the spurious 
segmentation problem caused by shadows. However, the results based on normalizing 
colors shown in image(5.6n) are very good. The only faulU tend to be in areas where a 
very dark-colored part of an chalk is separated from it due to problem discussed in section 
4.5.1. The chalk on the bottom of the image show* this effect clearly. Since the part 
near the upper edge of the chalk is very dark due to shadow, the problem of instability of 
transformation of &,G,B to normalized components exists. Thus this part of the chalk is 
segmented as another region. Image(5.6d) to (5.6m) are used to illustrate the sequence of 
extraction of separated regions, to give a clear picture how the regions are extracted one 
by one using the recursive methods.

Since the recursive algorithm will sdect the largest region to classify first, the sequence 
of the re(^ns extracted also tells ns the sequence in terms of region size. So the first 
region extracted form the image is the background shown in image(5.6d) because it is 
the largest. However, it is not a complete segment, since part of the background of the
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central tiUngular npon  it not inclnded. Thit central ragion wm extracted and shown 
in image(S.6k). For ditpUy, and for farther segmentation, regions are always considered 
to be connected. However, disconnected regions may be part of the same tnriace, and 
share the same predicate; thit system will still consider them at different entities. It also 
explains why tome of the color chalks are cUstified as different region although they are 
the same color.

This problem can be iUnstrated in fignre(5.2) using letter ‘A’ and ‘i’. The shaded 
region in figure(5.2a) would be regarded as single object with a h<de representing a letter 
‘A’ since it is connected. But the shaded regions in figure(5.2b) would be regarded as 
two separate objecU although it is as simple as a letter ‘i’. So the upper shaded region 
may be regairded as ‘full stop’ and the lower shaded region may be regarded as a numeral 
T’. The reason is that they are not connected, and there is no concept of the structure 
forming a ‘single’ object (called a i). One method for solving this problem is using higher 
level processing where primr knowledge is incorporated such as semantic knowledge, which 
tells the relaticmship of separate things in an image, but this is beyond the scope of this 
thesis. Image(5.6o) shows the segmented image boundaries, and image(5.6p) shows the 
boundaries superimposed on the black-and-white image of the color chalks.

Natural Road Scene

This method has also been applied on the natural road scene. After normalizing the color, 
each ratio of r(xor), g(x,y) and b(x,y) is multipied by a constant of 63 to form the three 
normalized cede« component image as shown in image(5.4e) to (6.4g). Then, they are used 
as the color feature for forming the two-dimensional histograms for clustering.

The segmentatiem result (image(5.4k)) clearly shows that the problem of changing
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(a)

Figure 5.2: (a) Connected region representing letter ‘A’ and (b) two separate regions 
representing letter ‘i’.

intensity has been solved. The road can be classified as a single region. However, the 
small area is sacrificed. The narrow double yellow lines at the side of the road and part 
of the white center line are completely missed. This is not in itself a reason to reject this 
segmentation method as an invalid technique, but simply demonstrates that segmentation 
task is problem dependent. Whether the result is good or not depends on our aim. For 
example, if the present task is a car which is controlled by the computer, and the camera 
is used to sense the outside world, then locating the region of the road for the car to run
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tftfdy on it the principle requirement. The present result m i^ t  then be sccepUble.

5.4 Application in Image Compression and Coarse Seg­
mentation

As discussed in sectimi 2.1 segmentati<m is us^ul for several problems including feature 
extraction [Levine 85) and image compression or data reduction [Tominaga 88). Having 
discussed the segmentation methods luing watersheds based on colm, we will show how 
these methods can be used in image compression, where the number of gray levels u ^  
to represent the spatially uniform gray-level regions in the reconstructed black-and-white 
image is much smaller than the number of gray levels used to specify the data in the 
original high resolution black-and-white image. The same principle can also be applied 
to a color image. The only difference is the color image requires three times the memory 
since it is represented by red, green, and blue component images.

This secticm will describe how this can be done. The methods are illustrated in 
figere(5.3) and discussed as follows:

1. The red, green and blue images are reconstructed by firstly, calculating the mean 
of all the intensity levels in the same segment of the original ted, green, and blue 
images and then replacing the value of each pixel with this mean.

2. The reconstructed color image can be obtained from the reconstructed red, green 
and blue component images.

3. The black-and-white image can also be recorutrncted by firstly, calculating the mean 
of all the gray levds in the same segment of the original black-and-white image and 
then replacing the value of each ptxd with this mean.
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Figure 5.3: Reconitmcted image using segment.

The original image is stored in a two dimensional array of size, M  x N , where each 
pixel can take K  different gray-level values. So total number of bits required to store this 
image is

M X  N  X logt K  biU

After reconstructing the image, there are a number of segments and each segment has 
the same gray-level value. That means we do not need to store the image pixel by pixel. 
Alternatively, it can be stored using a regional description or boundary description (section 
1.4). Both methods can provide a lot of compression since the reconstructed image should 
be much simpler.

This effect can be illustrated using the reconstructed black-and-white image of the 
mandrill (image(5.7e)) and the segmented image boundaries (image(6.3e)). Comparing 
the result of the original image (image(S.7a)), one can see that a lot of compression has

130 V



been done ns some of the regions in the reconstructed image, which are replaced by a single 
gray-level value, are very large indeed. Although the details such as the texture parts of 
the cheek and the beard are no longer available, the remaining features are sufficient for 
US to recognize what the image is, particularly if we have seen the original image before, 
or for us to learn what a mandrill looks like if we have not seen such an animal before.

We may wonder why the nose at the right hand side of the reconstructed image is not 
clearly distinguished from the cheek. The problem is not the reconstructed image itself, 
because it already exists in the original image (image(5.7a)). The reason is that although 
the nose is well segmented from the cheek as shown in the segmented image boundaries 
(image(6.3e)), the gray-level at this part is not contrasted enough and each segment of 
the reconstructed image is replaced by its average gray-level value of the same segment of 
the original image. In other words, a reconstructed image is similar to a restored image. 
Both of them can only be expected to be similar to the original one as much as possible, 
but they can never be expected to be better than the original one. The next two sections 
will discuss how both regional and boundary description methods are implemented.

5.4.1 Line Segment Compreuion

One simple regional method is as follows: since each row consists of a different sequence 
of segments such that the points in each segment all have the same gray-level value, the 
reconstructed image (image(5.7e)) can be completely determined by specifying the lengths 
and gray-level values of these segments in each row. For N  different rows, the number of 
bits needed is now

^ 5 ,  X (lopa K  +  lo g i  M )  b i u  iml
where Si is the number of segments in row i. So the rate of compression for the whole
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linage u

1 2 m» ! X  ^

M x N x I o g i K

The compreuion rate for the whole image is limply the mean of the compreuion rate for 
the rows. We may thiu consider the compression rate row by row. This is

S  X (loff2 K  +  lo ^  M)
M X log2 K

Let M  = N = 256, and K  = 64. When all the pixels in a row is belong to one segment, 
i.e., 5  = 1, maximum compression can be obtained and is equal to ,

M  X logj K

No compression can be done if the rate is equal to 1, and the corresponding number of 
segment is

^ _ M x f o g j K  ____
logt K  + lom M

The compression rate can be shown as in figure(5.4). This compression is also appli­
cable for color image. However, this method is not suitable when the number of segment 
is greater than 109, since no compression is obtained. So we need to set an upper bound 
for the number of segments in a line. When it is greater than 109, the original method, 
pixel by pixel, will be used to store the image instead. That means no compression can be 
obtained and the line representing the compression will be clipped when S  is greater than 
109 (figure(5.4)). Practically, the number of segments per line is seldom greater thsm 109, 
so that this method csm still provide a great deal of compression.

The rate of compression obtained will depend on how effective the coding scheme is. 
The method discussed above is not the optimal one, but is used only for illustration.
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CompTMsIon

Figure 5.4: Compieuion using line segment. ,

5 .4 .2  C h a in  Code

Another possible approach is to store the description of segment boundaries using the 
edge image (image(6.3e)). A region is completely defined by its boundary. Thus the 
region can be reconstructed from it if the internal characteristic is provided (for example, 
gray level, color). Since the number of pixek in the whole object is considerably larger 
than the number of pixels in the boundary, it should be more efficient (i.e., provide image 
compression) to store the object by means of boundaries, than storing the object itself.

The line pattern coding technique can be implemented by using a chain code [Freeman 
74]. The idea of chain code is to follow line or boundary points and to code them using 
a sequence, of the integers {0,1,2,3,4,5,6,7}. A chain code is a string used to represent 
the line segment. If the size of a pixel is assumed as 1 x 1, each integer corresponds 
to a directed line segment of length 1 or in the image boundary, and the directions 
of the segments are multiples of 45®. Therefore the boundary of an object in an image 
represented in two-dimensional array is reduced to one-dimensional representation. The 

of each nmghbour of the pixd c shown in Figure(5.5a) gives the numeration directions
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of the 8-connected chain code. Then a boundary can be specified by a string read from 
left to right with an arbitrary starting point and the number of the next pixel in the chain. 
For example, the chain code of the circle is 23456701 (figure(5.5b)).

3
___ 1

2 1

4 ^
'v T  /  • c  - 
✓  1 s ►  0

i5 f  t
6 & 7

(a)

2 Start of Chain code

(b)

Figure 5.5: (a) 8-connected chain code, and (b) illustrated example of a circle.

Obviously, the chain code of a boundary is an efficient way of stming the description 
of an image, since the segmentation of an object requires only one absolute positicm of the 
object (i.e., co-ordinate for the starting point of the code) and three bits for each boundary 
point plus whatever is required for the label. This is considerably less storage than that 
required for the whole object stored pixel by pixel unless the number of boundaries is very 
large indeed.
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In this cue  the number of bite needed for the background are ¡ogi and for each 
segment are

(/oji M  +  loff2 N) + log2 K + 3 x E i

where (lo^  Af + logt N ) denotes the starting point, logt K  represents the gray level (or 
label number), and Ei is the number of edge points in segment t.

When the number of segments are S, total bits required become
s

loQi AT + 5 X (/oj2 M  + loin N  + logt K ) + 3 x ^ E i
wl

So that compression rate is ,
logt K  + S x  (log2 M  loga N  + logt K) + 3 x  £,■

M x N x ! o g 2 K
Let M — N = 256, K  = 64, the compression becomes

64-22 X 5 + 3 x E i .1 ^ .
256 X 256 X 6

smd really, this is C  1 even for large 5 and large E.
Note ako that reconstruction of the compressed image is much more straightforward 

for the technique in section 5.4.1, and could easily be done at video rates. The technique 
in section 5.4.2 is (generally) more efficient, but more difficult to reconstruct - very hard 
to do at video rate.

If only object size and shape are of interest, further data reduction results since the 
internal characteristics of each segment can be discarded. So the compression rate can be 
simplified as follows

6 + 1 6 x 5  +  3 x E L i £,
256 X 256 X 6

And this is a very common case in industrial usage, since the shape description of an 
object is frequently enough for recognizing the man-made articles.

135



6.4.S Coarse Segmentation Using Pyramidal Data Structures in Clus­
tering

Deciding wUch ueM  of an image are important is fteqnently a problem in low level vision, 
particularly if there is no higher level guidance. If the image has been transformed into a 
feature space, then one guide is the significant cluiters in that feature space.

In this section we will show how information directly available fhnn the pyramidal data 
structures in clustering can be used for extraction of such significant image structures in 
a solely bottom-up datardriven way without any a prior knowledge about the image. 
Below, we give experimental results showing how this method can be used to segment out 
perceptually relevant image regions. The treatment is based on the assumption that:

•  Clusters, which are significant in the two-dimensional feature (color) space, corre­
spond to relevant importent regions in the image.

Pyramidal (hierarchical) date structures are a very common method used in image 
processing such as guided edge detection [Tanimoto & Pavlidis 75] [Levine 78). The original 
image is placed on the base of the pyramid, and the ascending level is the smoothed version 
of the original image. For example, in guided edge detection, the low-resolution image is 
used to locate the edge, and the edge found on that level will be used to guide the detector 
to trace the edge on the next lower level. Since the low-resolution levels in the pyramid 
tend to blur the image, the gray-level changes that denote edges are attenuated. Thus the 
starting level in the pyramid must be picked carefully to ensure that the important edges 
are detected.

Applying the pyramidal date structure to clustering, we treat the two-dimensional 
histogram as an ‘pseudo-image’ and placed it on the base. Therefore we have a pyramid 
consists of 7 planes (Le. two-dimensi<mal histogram) stacked one upon the other, with the

13# y



original two-dimen*i<»al hiatogram of dimenaioo 64 x 64 (i.e. cloiter space) at the base 
and the 1 X 1 tingle cluster space at the top. The pyramidal data structure is illustrated 
in iigure(5.6).

Pobrtt Levels

Figure 5.6: The pyramidal data structure.

The function which is used to derived an arbitrary level firom next lower level it shown
I I

as follows:
Let Li, (o) represent the value of a cell at level k. Then

i * + i  (« )  =  (o .)
im l

replacing £*+i (u) by the sum of its four predecessors at level k.
That means each cell at level £^4.1 is a tom of the 2 x 2  window in the next lower level 

Lk- For example, each cell at level 1 is a sum of the 2 x 2 window in the level 0. But each 
at levd 2 will be a sum of the 4 x 4  window in the level 0. The effect of this process 

it to contract the cluster space at each successive levd in the pyramid.
The watersheds algorithm is originally applied on the higher levd to do the clustering. 

Once the clusters have been found, the higher levd is projected down to the original levd
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(i.e. 64 X 64). Thi» haa the effect of adding connected fringe pointi to the clnaten identified 
at the higher level.

Since the planes in the pyramid are contracting versions of the previous (lower) one, 
clearly rescdntion is sacrificed (i.e. cdors which are only slightly different will be treated 
as the same). That means fine details (in terms of c<dor difference) tends to disappear as 
one ascends the pyramid. While detail may be lost, this will not matter if we are l««lring 
for the major regions of the image. There are two advantages of this method over simply 
applying clustering to the original two^dimensicmal histograms (i.e. base of pyramid) for 
searching the major regions of a image:

I
1. Computation cost savings result frmn the procedures not having to process the entire 

original two-dimensional histograms, where many local peaks may exist.

2. Local peaks due to noise are lost in the summing process going up the pyrsmid.

This ^ e c t  can be highlighted whesi comparing the segmentation using the base of the 
pyramid to the segmentaticm using different levels of the pyramid. A 256 X 256 mandrill 
(image(5.7a) to (5.7d)) which has both textural regions uid uniform color re ^ n s  is used 
for illuatratimt. Image(6.3e) is the segmented image boundaries using the ori|pnal two- 
dimensional histograms (i.e. base of pyramid) to do clustering. The resulU which use three 
different levels (1,2,3) in the pyramid are depicted in image(5.7f) to (5.7k). Comparing 
the image(6.3e) to image(5.7f) to (5.7k), we see that using higher level of pyramid to do 
clustering, the details disappear as small segments become grouped into large entities. 
The reas<m is that the amount of texture region in the cheeks of the mandrill’s face leads 
to a large number of local extrmna. When the levd ascends higher, these extrema are 

I subsumed by some more prominent extremum. So the small clusters disappear gradually.

138 \



The «egmenUticm of this example it good in the lenie that thoee l e ^ n i ,  which are 
given by the cluiten in the reduced cluster space, really serve as landmarks of significant 
regions in the image. For example, the cheeks, nose, and eyes of the mandrill are well 
preserved (image(S.7f)). This method can be used as a coarse segmentation in which the 
information about the approximate location and extent of rdevant significant regions in 
the image can be obtained. And this infmmation can then be used in further higher- 
level processes such as focusing where the possible location of the desired object has been 
found. Thus later stage processing can he concentrated on this particular area to reduce 
the computational cost.

I

5.5 Sum m ary
The recursive clustering techniques described in this chapter have been applied to both 
man made crfor and natural color images. Although there is no formal method for eval­
uating the goodness of segmentations, the results produced are quite successful since the 
boundaries do largely conform to the object boundaries in the image. So the quality of 
the segmentation is sufficient for partial segmentation, in which only the local predicate 
of color has been used without including any specific knowledge.

This particular technique is straightforward to justify, and not difficult to implement. 
But with recursive region splitting, the segmented image may consist of many small re­
gions. So a merging algorithm may be required to combined them into a few final regions. 
Section 6.4 will have a more detailed discussion about this problem.

However this method provides an unbiased aid to classifying the image, since it does 
not require the input of any prior information, and few assumptions need to be made 
about the initial image. These are the user-determined constants.
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The choice of the user defined constants will depend on the image itself. The 90% 
choice used in determining whether a region should he further segmented comes frcan the 
likelihood of discovering further peaks in the remaining 10%. Our experience suggests 
that these peaks will be unreliable due to nmse. The limit of 2% on segment sizes is 
again system dependent: it depends on both the expected minimum size of segments, and 
on the pixel resolution of the system in use. On our system, such small regions do not 
cluster reliably, since they do not contain enough pixels. Similarly, relabelling of very 
small regions (0.03% in this case) is dependent on the likelihood of pixels actually being
on c<fior edges, again dependent on the image pixel res<dntion. Actual values to be used/
will depend on pixel resolution, and on the nature of the image itself. The precise values 
are not critical.

The major limitation on these methods is that the segmentation process takes a Imig 
time due to its recursive nature. Often, a task must be performed within a given time or in 
real time. The timing can be substantially improved by employing special hardware such 
as transputers which can perform high-speed parallel compnUtion. The penalty is higher 
cost. However, hardware is steadily getting faster, more powerful and its cost continues 
to drop, so that this limitation will become less uid less significant over the coming years.

An illustration of how segmentation may be used for image compression was presented. 
Methods based on both regions and boundaries have been considered. The region method 
used to code the image is very straightforward. I n s t ^  of storing the original image pixel 
by pixel, we store the length of the segment in each row and the gray-level value of that 
segment. A maximum compression rate, 0.009, can be obtained, when all the row belongs 
to one segment. However, nothing can be gained if the number of segment is equal 109 in 
a row; and more bits will be required when the number of segment is gresOo than 109.
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The boondary method need ii 8-connected chain code, which providec the ihape de- 
■ cription of the area of interest. If the abeolnte starting point of the chain code and the 
internal characteristics of the segment are provided, the image conld be reconstructed. 
However, the shortcoming of both methods is that compression can not be obtained as 
anticipated if fragmentation happens on the segmentati«». For example, in the worst case 
65536 segments occur on an 256 x 256 pixel image. The best way may be to store the 
image pixel by pixel again without doing any compression.

Finally there is a discussi<m showing how a pyramidal data structure can be used in 
clustering for coarse segmentatimi, in which the important image regions based on theI
significance in the two-dimensional feature (color) spaces are extracted. The mandrill 
image is used to illustrate this method and the results are quite promising, since the 
important regions such as the cheek, nose, and eyes are extracted successfully.
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Chapter 6

IMPROVING IMAGE
SEGMENTATION
6.1 Introduction
We hftve diacuased how the homogen^y^ of color ia naed aa the criterion (i.e., predicate) 
for dividing the image into regiona. If we aaaume that a meaningfiil aegmentation, where 
each region corresponda to a part of an object aurface in the input image, ia a aucceaaful 
aegmentation, it ia hardly ever achieved by uaing only anch local image propertiea. The 
reaaon ia that coherent regiona are not alwayt equal to meaningful regbna In the practical 
world, unlesa the image ia very simple and the local properties can be related to the 
interesting objects. For example, a brown wire in an electrical plug represents live. In 
this case, successful segmentation on that colmr means finding that wire. Otherwise higher 
level processes, where various additional information about the image must be empli^ed, 
is required to obtain useful regiona. However, this chapter will discuss some possible 
modifications which can improve the results before they are passed to further processing.
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Some modificetioni, which indnde pre-proceuiog and post-procening, can be used to 
improve the segmentation. So &r, the segmentation has restricted itself to the nse of color 
information, pixei by pixei, alone. Here, we consider how additional infmmation, edge and 
texture, can be used to improve the segmentation. The edge points and the textured parts 
(busy parts) in an image, which are apt to be divided into a lot of meaningless fragmenU, 
can firstly be extracted from the image during pre-processing. Then the s^menUtion 
process is applied only to the parts remaining. After the segmentatirm is compieted, the 
edge points are repiaced with the iabd of one of iU neighbours during reiabdiing. However, 
the textured parts are considmed as terminal regions. A merge algorithm can be used for 
post-processing to further reduce the fragmenU by merging them with a neighbouring 
region.

6.2 Eklge Points Extraction
Edge poinU, which tend to contain strange, transitional colors due to spatial averaging, 
are likely to affect the clustering [Connah k  Fishboume 81). This effect is most likeiy to 
happen on edges with high gradient magnitudes [Broder k  Rosenfeld 81]. The gradient 
magnitudes tend to be higher on different colmed objecU and backgrounds than in the 
interiors, so that high magnitudes are associated with colors that are often intermediate 
between the coiored objecU and the background. Suppose the color image is used to 
form a two-dimmisional histogram consisting of objecU of one colmr on the background 
of another coior, the ccdor pixels with high-gradient magnitudes shouid produce clusUrs 
iying between the object and the background clusUrs. So by suppressing those pixeis 
whose c(dor gradient magnitudes are high from the two-dimensi(»al histogram, we should 
improve the separation between the clustos, since suppressed pixds are likely to have
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colon intermediate between thoee of the object and the backgronnd. Theae intermediate 
colon are partly due to resolution effect»: the actual color is not a color found in entity 
being imaged itself, since the pixel corresponds to part of both object and backgronnd.

How the transitional color affects the segmentation is illustrated in image(4.2i). Most 
of the regions requiring relabdling are edges between two different color r^ o n s . Since the 
edge regions usually are discrete and small in size, they can be almost eliminated during 
relabeUing. However, one could simplify the diutering process by computing the edge 
points, that is the sharp changes in intensity or color, and then extracting them from the 
image before segmentation.

There are two methods of incorporating edge information into a clustering algorithm: 
find the edges in each of the color component image, and determine an edge in the color 
image if certain relations between edges in individual components are satisfied, or find 
edges in the intensity image. Although it is quite simple to compute the edge in a color 
image [Robinson 76], this approach seems computationally inefficient since the gradient is 
computed effectively three times.

Moreover, the edges obtained from the chromatic spectra are rarely very different from 
those obtained from the intensity image: this is not surprising, as the chromatic spectra 
have a strong intensity factor and the color edges are highly correlated with the edges in 
the corresponding intensity image [Pratt 78). Thus, the second approach has been chosen 
since it will require less computation and the edges obtained are quite satisfactory for this 
application.

When edge detection is used as a segmentation method, an edge detector is firstly 
applied to an image to obtain a gradient image. Then a threshold is applied to the 
gradient image to obtain an edge image. An edge point is said to be present at a pixel
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if its result exceeds this thieshcdd. In practice, this set of edge p<^ts will often have 
gaps due to blur or noise, so that they will not characterises a boundary completdy. 
Thus edge-detection algorithms are typically fdlowed by edge linking procedures, such as 
Hough transform, relaxation method, designed to assemble edge points into a  meaningful 
set of object boundaries. So in such a situation, a load threshold or a set of thresholds 
is generally used to obtain the edge image. For example, the threshold used by [Haralick 
& Dinstein 75] is the mean of the gradient values of a local region. One of the biggest 
problems in using edge detectors is that human intervention is usually required to select 
these threshold vdues when one would prefer the whole process to be automatic.

I
However, in the present situation, it is not intended to produce a closed boundaries 

that will completely surround the regions. The objects of interest are only the sharp 
edge points that lie on the boundary between two high contrast regions. This is why the 
Robert’s cross operator and a global threshold are used.

The Robert's cross operator is based on a 2 x 2 window, and detects a distinct change 
in intensity between two adjacent points in the gray level image. So only very sharp edges 
with high contrast between the surfaces which form the edges will be detected. Edges 
which are formed by a gradual change in intensity across the edge cumot be detected. 
However, the result is quite sensitive to noise and surface irregularities, since a small 
window is used for the computation.

Using the Robert’s cross operator, we pre-process the intensity image to And a gradient 
image. After thresholding the gradient image, a binary image can be obtained, represent­
ing the edge image. If a pixel is found to be an edge point, it is then ign<md in the 
dustering process. The procedure consists of:

1. Applying the Robert’s cross operator to a black-and-white image to produce a gra-
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dient image Grad I(x,y).

2. Threaholding the gradient image to produce an edge image E(x^) aa follows:

£(* ,») = 1, iff r <  G rad /(* ,p)
0, otherwise.

A gloW  threshold T used by [Ohta 85] is chosen. The cutoff vaiue T for the gradient 
image is determined from the mode value and the standard deviation of the histogram 
for the gradient image.

T  = mode value + »tandard deviation X 1.4 I
The amount of edge visible in the edge image E(x,y) is directly controlled by the 
choice of T. Larger values of T result in fewer edge with values near T=0 yielding 
many edges. When the value of T is set to 0, all the edges on the gradient image 
will ako appear on the edge image.

I3. Edge points found in the thresholded gradient image are then ignored in the cius- 
tering process. After compieting the segmentation, these pmnts will be relabelled.

This method detects areas with sharp edges. It is not sensitive to areas where the 
edges are formed by a graduai change in intensity at boundaries between objects. This 
method has been applied to the ccdor pattern (image(4.2a)). Image(6.1a) and (6.1b) 
show the sequences of the extraction of edge points. Image(6.1a) is the gradient image 
computed using Robert’s cross operator on image(4.2a). Image(6.1b) is the edge image. 
Image(6.1c) is the final segmented image. lmage(6.1d) is the segmented image boundaries 
and image(6.1e) is the segmented image boundaries superimposed on image(4.2a) to show 
how the segmentatimi matches the original image.
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6.3 Textured Parts Extraction
Texture contains important information about the structural arrangement of surfaces and 
their relationship to the surrounding environment. This information is useful in several 
applications. Changes in texture can be used to segment an image [Tornita b  Tsuji 90]. 
For example texture measures can be used to classify agricultural crops in remote sensing.

The quantitative definition of texture does not exist. However, a texture may be 
defined as a repetitive arrangement of a basic pattern, which yields an characterization of 
textures as smooth, rough, fine, coarse, and so on. The repetition and the basic pattern 
can be entirdy tegular or there can be an dement of randomness in each or botfi. A 
texture normally has some basic pattern and some degree of randomness in repetition 
although there are textures which show no obvious fixed basic pattern nor repetition. So 
an effective texture finding operator must have certain properties. It should describe the 
spatial distribution of the texture dements (randomness), and characterize the shape and 
the size of the texture dements.

The three principal approaches used in texture analysis are statistical, structural, and 
spectral [Gonzalez b  Wintz 87).

The statistical approach usually describes texture by statistical rules governing the 
distribution and rdation of gray levd [James 87]. For example, first order statistics are 
based on properties of single pixels (i.e., the means, variances, Md the standard devia­
tions). An example of a  first order statistic in that it depends on individual pixd gray 
levd is the gray levd histogram. Second order statistics describe how properties vary in 
pain of pixels, third order statistics consider triplets and so on. Since most statistical 
methods apply statistics to gray levd value of pixels, this approach is more suitable for 
images that do not have a geometrical regularity such as microtextnres.
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Th« itructunl appionch »ttempU to break the texture down into it* baaic pattern 
and deicribe* such pattern* in terms of rules for generating them [Ballard & Brown 82]. 
Formally, these rule* are grammar* of different types, such as tree grammars, shape gram- 
m an, and web gramman. Thus these basic pattern* and the grammar can be used for 
such purpose* as classiiication or comparison of textured images. This approach is best for 
describing textures, which have been imaged at high rescdution, and where there u  much 
regularity in the replication of the basic pattern. Sometime* there is no clear distinction 
between these two approaches, particularly when the organisation of the basic pattern is 
essentially random. In such a case, we may need to describe this randomness by some

I
statistical properties. Thus we have returned to the statistical case. A good survey on 
statistical and structural approaches to texture analysis u  given in [Haralick 79).

Spectnd technique are based on properties of the Fourier spectrum [Bajcsy 73). It is 
based on the result that any real periodic function of the original texture has a symmetric 
Fourier spectrum with respect to the original. If a function is periodic, then its Fourier 
spectrum could provide a representation of the image, and the corresponding features, 
for example: high-energy, narrow peaks derived from the Fourier spectrum, form a 
good description of the periodic pattern. Further, an interesting property of the Fourier 
spectrum is that it is invariant with respect to translation of pattern in the spatial domain, 
but not with respect to rotation. Thus the directionality of a pattern in the picture is 
preserved in the Fourier spectrum. So it it possible to distinguish directional and non- 
directional components of texture.

Segmentation of textured parts (busy parts) in an image it difficult using only color 
features [Ohta 85], since they are apt to be divided into many tiny, meaninglets region* 
(image(5.^)). This problem can be solved by eliminating textured parts from examination
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by the tegmenUtion proceH in » timiUr w»y to the lemovml of edges, discussed in section 
6.2. Pre-processing U required to ex tr^ t the textured parts from the image and the 
segmenUtion process is applied only to the parts without texture.

The decision on what type of texture analysis to choose depends very much on the 
speafic applicaticm. However, one of the simplest textural operator is an edge detector, 
which is not intended to produce the exact boundaries between regions, but merely indicate 
areas of rapidly changing intensity. The ‘bus3mess’ of an image can be measured by 
counting the number of edges per unit area [Sosenfeld k  Troy 70][Roeenfeld k  Thurston 
71). This texture measure can distinguish coarse and line textures; coarseness is related 
inversely to the amount of edge per unit area: coarse textures have a small number of 
edges per unit area, and fine textures have a high number of edges per unit area. This 
can be used to extract regions of similar texture.

The method proposed by [Rosenfeld t  Troy 70][Rosenfeld k  ThursUm 71) is applying
an edge detector to the image to produce a gradient image. Then an average operator

j
which produces values proportional to the number of edges in a local region U appUed to 
it. An image whose intensity is proportional to the edges per unit area of the gradient 
image is obtained. The image in which each pixel’s value is edge per unit area is actually 
a defocused gradient image. Finally, the textured parts can be obtained by thresholding 
the image to separate busy areas from quiet ones. However, the result of this method is 
not good for the present purpose, since average values of sharp edges may be high enough 
to CAUM them to be threeholded m  busy areM.

[OhU 85) used a similar measure to aid him in pre-extracting the textured area from 
the image before segmentation commenced. The modified methods are: first applying 
an Laplaaan edge detector to the green image to produce an gradient image, second
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thretholding the gradient image to produce an edge image on which ‘1’ represent« the 
edge found. Then utilizing a 9 X 9 window on the edge image, if more than a pre-defined 
number (say 5) of 9 subwindows (3 X 3) have at least one T ,  the cmtral pixel is considered 
to be textured. He noted that this method can detect an area with scattered edge segments 
and is not sensitive to the sharp edges at boundaries between objecU because sharp high 
contrast edges are spatially localised and this technique will ign«e them.

6.S.1 Description of the Pre-processing Texture Extraction Method
The method used measures a texture feature along with the R,G,B color features. When

Ieach ftegmentati<m is commenced, the texture feature will be the first feature used for clus­
tering. If the largest cluster found could fulfil the specified requirement (the segmented 
region of the cluster is larger than 90% of the original region area), this region is consid­
ered as highly textured area and such area would be classified as terminal and be saved.
Otherwise, the region would then be processed using the c<d<̂  features. This approach

1

provided a reas<mably smooth integration of texture and ccdw information within the re­
cursive r^ion-splitting algorithm. The texture feature choeen, based on an image’s gray 
level and local busyness, is that used by (Ekstrom et al 84]. The method illustrated in 
flgure(6.1) is performed by the f<dlowing steps:

1. Apply the Robert’s cross opeiator to the black-and white image to produce a gradient 
image Grad I(x,y).

2. Use the black-and-white image and the gradient image to compute a two-dimensional 
histogram for the portion of the image that required segmentation.

3. Smooth the two-dimensional histogram to eliminate thrir local peaks by using a 
3 x 3  average window. The average value of the pixds within the window replaces
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Figure 6.1: Textui« extraction bated on gray level and local butyne
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the vklne of the pixd being proceued.

4. Apply wntenhedt algorithm to thli two-dimenilcmal hiitogram to create a LUT.

5. Sdect the largeet duster in the LUT. If the segmented region of the cluster is larger 
than 90% of the original region area, this r e ^ n  is considered a terminal region and 
will he saved. Then go back to step 2.

6. Segment the region using color features as described in section 5.2.

This method has been applied to the naturd road scene (image(5.4a)), and the results 
are shown in image(6.2a) to (6.2d). Image(6.2a) U the gradient image computed hsing 
Robert’s cross operator on image(6.4a). Image(6.2b) is the segmented image. Image(6.2c) 
is the segmented image boundaries and image(6.2d) b  the segmented image boundaries 
superimposed on image(5.4a) to show how the segmentation matches the original image. 
Comparing image(6.2d) with image(5.4j), the present results are very good, since the 
vegetation at the bottom of the image which produces a lot of texture can he nearly 
classified as a single region. But in image(5.^) many fragments occur. However, the 
effectiveness of the method can not be guaranteed. A more detailed discussimi about this 
problem and the remedied method can be found in next section.

Since an additiond texture feature is used in the segmentation, and each region will be 
exammed using this fu ture before cdor segmentation is commenced, the computationd 
cost is increased. A slightly modification can be used to reduce the computationd cost. 
The method is to segment the image with color feature as in the origind technique. If a 
choppy and noisy segmentation result occurs, the texture feature is used instead [Shafer 
k  kanade 82]. In this method, texture features can be used to override colcv features only 
where necessary. However it is indeed very difficdt to define a choppy and noisy «•'̂ ndition
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6.S.2 DcMription of the Poet-proceMing Texture Extraction Method
This section will discnss post processing for texture extraction, a method used to extract 
the textured regions which can not be extracted using the method mentioned in the pre­
vious section. Let us consider the following example: image(6.3f) is the segmented image 
boundaries superimposed on the original black-and-white image(5.7a) using color incor­
porated texture extraction applied to image (5.7a) to (5.7d). However the fragmentation, 
which is caused by the textured parts on the cheek of the mandrill, still exists in the 
image. It can not be extracted as a  single segment. The reason is that the texture extrac­
tion discussed as above does not work effectively since no significant clusters occurs in the 
brightness and local busyness feature space.

The unsuccessful pre-texture extraction will create not only fragmentation bat also a 
subsequent problem that will upset our relabelling method, because, during the relabelling 
processing, the unclassified pixels will be labelled by the neighbour with most frequent 
occurrence. This method works very wel] when the regions requiring relabdling are 
and are scattered throughout in the whole image. However, the r^ions shown at the top- 
left comer and right hand side of the nose in the image(6.3a), requiring rdabelling are very 
large. (The transitional edge effect can also been seen in the contour of the nose.) There 
are no simple ways to decide which neighbour label should be used without incorporating 
external knowledge. So we may prefer to classify such regions as a single one and p«— it 
to higher level processing rather than merging it with its neighbour at this stage.

One might wonder why these regions can not be extracted during the segmentation, 
since thrir sizes are much larger than the threshdd value. The problem is that during 
each clustering, after opening and coloring, the small re ^ n s  which are less than a user 
determined thresh<dd will be assigned to ‘O’, and will be replaced by their neighbour label
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duriug leUbelling. However, when the cltutering ii applied on a highly textured area, 
fragmentation reenlt« in a lot of very imall isolated areaa. TheM area* may eventually 
join together to form such n large re^on.

A pouible method for solving this problem is to use a smaller threshold value. Then 
the regions requiring relabelling wiU be reduced. As a result no such a large region* 
requiring rdabelling will exist. However, fragmentatimi will occur in the final segmented 
image because a lot of small regions are allowed to exist. This is unlikely to be suiUble for 
further processing. Further, there is no simple way to decide on the threshold value since 
the clustering is datardriven, no prior information about the image having been assumed.

Another method which can s<dve this problem is post processing for texture extraction, 
which is achieved as foUows: after completing the color-based *<«mentation, apply the 
following step* to the binary image segments which require rdabeliing. (The example 
used to illustrate this method is the mandrill image where 218 segments have already 
been found.) i

1. Opening the binary image (image(6.3a)) in which pixds requiring reiabelling have 
been set to ‘1’.

2. Regions larger than the threshold value will be treated as a segment (image(6.3b)) 
and wiU be added to the segmented image to form the final segmented image. In 
other words the large segmenU found can be considered as highly textured parts in 
the image (i.e. regions at the top-left hand and right-hand side of the nose). In this 
case the thresh(dd value is 20 pixels and 31 repons are extracted.

3. Regions of sise less than a user determined threshtdd is set to ‘O’.

4. The pixels set to ‘0’ are replaced by their neighbour labd during relabelling.
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Under these circnnutances, the smell region cut be relsbeUed to rednce the Segmen­
tation in the final segmented image, and highly textured parts which can not be extracted 
during pre-processing can be identified here as shown in image(6 Jb ). Image(6.3d) is the 
segmented image boundaries and the total number of segments found is 249.

However, the problem of what threshidd size should be the optimal value chosen still 
remains unsolved, since too small a size implies too many segments, and too large a size 
implies details lost. How we balance the pros and cons depends upon the applicaticm, on 
what we want from the segmentaticm and on the higher levd processing intended.

This effect can be shown in the image(6.3b) and (6.3d). The right eyeball can not be 
extracted since it is less than the threshidd value (i.e. 20). If the threshrdd is decreased 
to 18 pixds, the eyeball can be extracted as shown in image(6.3c) in which 39 pixds are 
extracted (i.e. eight more regions extracted ). And the total number of segments shown on 
image(6.3e) become 257. From this example we can conclude that the smallest size allowed 
to exist will depend on the smallest object of interests and this will certainly change from 
image to inuge. Even using the same image, different sizes may be required for different 
purposes. Additionally, if the threshold value is correctly chosen, regions of interest will 
already be extracted during the recursive clustering process and will not appear on the 
image(6.3a). The qnesti<m is how we can know this size before starting the segmentation.

How false edges are produced by textured areas is illustrated in image(6.3g), (6.3h) and 
(6.3i) which show the computed edges using Robert cross, Sobel and Lapacian operators 
respectively. All of them produce many busy edges. Although there is no standard mea­
surement to assess the results, the boundaries shown in image(6.3e) — in« to be superior 
intuitivdy. Besides, these images also show how the region-based segmentation method 
*®^ks better than the edge-based method, since the latter needs further processing such
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a* edge-linking, or idnxntion to find closed botmdnries.

6.4 Recursive Merging
If we consider a segmentation snccessfol on the grounds of having more large regions 
and fewer very small ones, one method which can be used to improve the result is a 
split followed by a merge algorithm. Fragmentation (that is, a image is divided into a 
large number of small regions) may occur due to the process of recursive region splitting, 
although we have limited the smallest size of the region used for reclustering. For example 
say there is a region whose size is greater than the smallest limit, say 2% of total image 
area. After reclustering, it may be segmented into a lot of small regions with size smaller 
than 2% but larger than the size which we considered as noise. However, this problem 
be ameliorated by appending a merging algorithm at the end, i.e. using region splitting 
followed by merging algorithm. A merging procedure, such as the one based merely on 
coIot difference between two adjacent regions, will remove most of the 6a|pnentation, and 
improve the performance of the segmentation. Problems can arise in the selecting the 
merging criterion.

In the region merging process, adjacent similar regions are merged until no two ad­
jacent regions are sufficiently similar to be merged. One of the principal criteria of the 
region merging algorithm is the similarity of regions: the difference of the average levels 
of the adjacent regions. If the difference is less than a threshold, regions are merged. 
Other criteria sometimes involves object-dependent heuristics, when man-made objects 
are present in the scenes [Brice t t  Fennema 70]. If objects in scenes are not constrained, 
an object-dependent heuristic caimot be used. Parvin [Paivin 84] used a merging criterion 
where two adjacent regions were merged if t h ^  had equal mean values. The test of equal
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mean value waa achieved by analyiia of variance from a lubaet of pixeb in each region.
It U clear that th«e  i* no eaay way to determine any t l n ^  threehold for region m^ging 

that i* acceptable, even for a simple scene Thus, dynamic setting of thresh<dds is required 
in the different re^^ns, but that is a complex process to automate without global guidance 
or prior knowledge. However, if the purpose is to perform an initial segmentatirm without 
use of external knowledge, and what we want is to have more large regions and fewer small 
regions, a very simple criterion discussed below can be used. After sqpnenting the image, 
we define the smaliest sire of regbn which should be outlined. Any region which is less 
than that size will be diminated and merged with its ndghbonr region with smallest )C<dor 
difference to obtain the final segmented image.

Let the chromaticity be represented by color C(r,p,6) in the three^imensional R,G,B 
color space. The difference of the two colms C i(fi, pi, hi) and C j(rj, pj, 6j) can be defined 
in different ways, three of which are as follows (Ito t¿ Fnkushima 76]:

1. A (C i,C a) =  {(n -  r,)» + (p, -  p,)» + (6, -  6,)»}*/»

2. Di{Ci,Ci) =  |fi -  rj| +  |pi -  Pal -f |6i -  6j|

3. Da^CiyCi) =  mox{|ri — rj|, |pi -  pa|, |4i -  6a|}

Two colors C | and Ca are defined to be equivalent if and only if the difference be­
tween two vectors is less than a certain threshold C(. That means C, determines the 
discrimination ability for the color. Method (1) takes more computation time, but can 
discriminate different colors more precisely. Method (2) and method (3) can only yidd 
approximate soiution. In method (3) two cdms Ci and Ca are defined to be equivalent if 
aU of |ri -  ra|,|pi — pa| and |6i -  ha| u e  leas than Ct, and not to be equivalent if any of 
them is equal to or greater than Ct- The decision ot which difference measure should be
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tued dependí heavily on the problem. In my caie, method (2) wm adopted became it ii 
suiRcient for the current purpoie and ita computation overhead ii imall.

The reason why method (3) is not med is that if we comider the clmter is the points 
formed within a certain range in the three-dimensional cedor spaces shown in iignre(4.9), 
the solution of method (3) expressed in terms of the largest vector difference is not precise 
enough because only one direction is shown. However, the sedution of method (2) expressed 
in terms of three directions can pve m a generad idea that the difference between points 
and a clmter in a three-directional spaces.

The merging methods illmtrated in the block diagram (figure(6.2)) can be described 
as follows: after segmentation is completed,

1. Go through the segmented image looking at the smallest region which is less than 
some pre-defined region size. If no such region can be found, merging is complete.

2. Calculate the average color of red, green and blue of that region and its neighbours.

3. Calculate the color difference between that region and its neighbours ming method
(2).

4. Merge that region to its neighbour with the smallest color difference. Go back to 
step 1.

Iniage(6.4a) to (6.4c) and image(6.4d) to (6.4f) show the results of recursive merg­
ing the segmented image of a landscape scene shoam in image(5.3a) with region size less 
than 0.06% and 0.09% of the total image area respectivdy. Image(6.4a) smd (6.4d) are 
the new segmented images. Image(6.4b) and (6.4e) are the new segmented image bound­
aries. Image(6.4c) and (6.4f) are the new segmented image boundaries superimposed on 
image(S.la).

158



Fignre 6.2: Recnrsive merging based on region size and color difference.
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To assess the effectiveness of the mergmg algorithm, then it is necessary to make 
some judgement on the way it affects the segmenting of the picture. If we consider a 
segmentation successful on the grounds that it is better to have mote large regions and 
fewer very small ones without involving high level knowledge, this method can do the job 
very welL The merging process improved the quality of the final segmentation, reducing 
the complexity of the segmentation by eliminating many small regions. The merging 
process utilized both local pixd similarity information (i.e. cdor) and size of the region 
to modify the segmentation.

The total number of regions in the original segmented image (image(5.3a)) is 119« after 
recursive merging the total region number of the new segmented images of inuge(6.4a) 
and (6.4d) are reduced to 84 and 73. The segmented images now appears to be much 
simpler; they contain less noise, more large regions and fewer small regions. This merging 
method can also be used during relabelling, in which the segmented r e ^ n  that is smaller 
than a certain region size will be considered as noise and will be relabelled by its neighbour 
label. But the computational cost is increased.

Although the results have been encouraging, this approach must face the question 
whether such small rej^ns with values different irmn their surroundings are objects to 
be outlined, or noise to be ignored, or part of a neighbour required merging. This is 
fundamentally impossible to solve without using higher levd knowledge about the class 
of scenes or without a model for the scenes. This problem can be illustrated using the 
following example: when this method is applied on the image(6.3e) where region size less 
than 0.09% of the total image area will be merged, 133 segments found. The new 
segmented image boundaries (image(6.5a)) now seems more simpler than image(6.3e). 
But the right eyeball is l(»ger separated out. However based on the simple criterion such
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as the smallest size of object of iateiest and the color diffieience, farther improvement can 
be obtained in this way.

6.5 Segmentation Errors
Many methods of segmentation have been suggested in the literatnre. However, discussion 
of segmentation errors is rare. One example of an error measure for blood cells segmen- 
tatimi is discussed in [Yasnoff et al 77]: the percentage area incorrectly classified can 
often provide useful information to supplement subjective evaluation. However, it does 
not seem to agree well with human observation. One reason for this is that the percentage 
area measure does not take into account the spatial information inherent in an erroneous 
segmentation, i.e. a  misclassified pixel in the center of an object is given the same weight 
as one at sui edge. In fact human perception of these errors is not the same. So an ef­
fective error meuure should combine the percentage area misclassified with the spatial 
information inherent in an erroneous segmentaticm and correlate this error measure with 
human observation.

Another example is discussed in [Kohler 81): comparing an automatic segmentation 
and a corresponding ‘correct’ segmentation of an image, segmentation errors can be classi­
fied into two primary types. First the segmentation contains regioiu which do not exist in 
the ‘correct’ goal segmentation. Second the segmentation misses regions which do appear 
in the ‘correct’ segmentation. There is a third type of error which can be considered as 
a compound of type one and type two errors. For this type of error the regions in the 
correct segmentation are correctly detected, but not in the correct locations. The major 
difficulty in this method is that it is not esMy to define the general criteria for ‘correct’ 
segmentation of an image. Further, these criteria are ambiguous without knowledge of the
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goklf of the segmentatioa lyitem.
Since no qnnntitntive criteria have been established for measnring the segmentation 

error, it is hard to say how good the algorithm is unless some qualitative statements on the 
advantages and disadvantages of the methods can be made. Besides, due to the different 
images used for experiments, it is also not easy to compare each algorithm with others. 
Even if the same image is used to test different methods, it is still not easy to make a 
conclusion about which method is the best, since part of the result may be better using 
method A but the rest better using method B.

The solution m i^ t  be found, if the segmentation task can be defined and limitations 
such as required processing lime, memory, and cost declarwl. The first requirement can 
be iliustrated using the crfor chalks (image(4.9a)). Assuming that the task is to segment 
the image based on color. Image(6.6a) to (6.6c) is the segmenUtion using histogramming 
applied on the normalised red, green and blue component images (image(4.9e) to (4.9g)). 
None of them can do the job properly. Even thrir resultant segmented image shown in im- 
age(6.6d) is also failed. Comparing them with image(4.9k) to (4.91), We can conclude that 
in this case the two-dimensional clustering is superiw than the one-dimensional histogram­
ming, since either the image(4.9k) or image(4.91) can segment the image successivriy.

If all the methods used can produce the same result, which one is the best one will 
depend on the second requirement. For exampie, the task for a computer vision system 
might be to automaticaliy inspect an electric ping in order to make sure that the three wires 
(earth, neutral, power) are correctly assembled. Based on this requirement any method is 
acceptabie as long as it can separate the wires from each other and the background (i.e., 
plug) correctly. Then later processing can be used to identify the wire. The segmenUtion 
performance on something rise is irrelevant e.g., screws, fuse, and the plug itsdf. The best
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method will be higUighted only when the limitntion ii impoeed. For example eny there 
are two methods, A and B, that can do the job properly. The former is laster bat requires 
more equipment (i.e. is more expensive). The latter is slower but the required equipment 
is simpler (i.e. is cheaper). At that time we still can not make a conclusion about which 
is the best one. However, if the time required to complete the job is known and only the 
latter method can also give the result within that period, clearly the better one is the 
latter.

SegmenUtion methods are ad hoc in nature. We can not reject any method as an 
invalid technique purely on the segmentation result alone. We have to consider whether 
the feature sdected as a basis is appropriate or not (section 4.1). For example color infor­
mation is an effective and essential feature for an application which requires segmenting 
the wires in the plug. It is because the electric properties of wires u e  related to color; 
blue wire marks the neutral, brown wire marks the live, and so on. A textural method is 
unlikely to do the job effectively. It does not mean textural method is invalid. The only 
conclusion is that textural method is not appropriate in s<dving this specific problem. For 
a given image the poinU may be scattered or clustered, depending on the feature space 
used. However, choice of the optimal feature space which can provide distinct clusters for 
meaningful segmenUtion is quite difficult and depends on higher level information. The 
technique generally employed is to use a wide variety of feature spaces to perform image 
segmenUtiim, the optimal features being those giving the best segmenUtion for the immg» 
An example using such a technique can be found in [Ohlsmder et al 78).

Although there are no correct answers to the problem of how good a segmenUtimi 
should be and the evaluation of segmenUtiom methods is not easy without specific infor­
mation on the problem to be solved, segmentation algorithms should at least provide a
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complet« u d  structured representation of the image. Then features (l.e., segmento) and 
their relationships can easily be manipulated in the higher level processes using external 
knowledge such as a model and semantic information, since partial segmentation not 
provide the required solution. For example, say we want to count the number of cells in 
an biolopcal image. The solution should be found if we can segment the cells from each 
other and the background properly. However, if we imagine the image(5.1a) is a satellite 
picture where the yacht is a spy ship, amd our aim is to locate the y u h t in the image, 
and this job is nnlikdy to be done without higher level processing. First it may need to 
identify the four main regions: sky, hill, bmd, and lake. Second the process is concentrated 
on the lake area since the yacht should sail on the lake. Third the location of the yacht 
may be found provided the information about its model (such as c<d<» and sice) are given 
when there is more than one boat.

Although there are no quantiUtive methods to evaluate segmenteticms, additive noise 
with different magnitudes have been add«d to the image before applying the clustering 
method to illustrate ita effect on the method and the segmenteticm. The noise added 
is normally distributed gaussian noise with lero mwn and unit variance. The red and 
green component image of the c d »  pattern (image(4.2b) and (4.2c)) are used for this 
experiment. The clusters found in each noised image are illustrated in the LUTs shown 
in image(6.7a) to (6.7x) with 64 cluster spaces, and also illustrated in fignre(6.3). The 
segmentation are iUnstrated in image(6.8a) to (6.8x). And some of the noisy images are 
illustrated in Image(6.9a) to (6.91).

Since additive gaussian noise is used, the resultant gray level of the noised image will 
be equal to the summation of the original gray level and the noise. Therefore it is pcssibie 
for a resultant gray level having a negative value, which is meaningless physically, so that
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Figure 6.3: Number of clusters plottea sgsinst normslly distributed gsussUn noise with 
zero mean and unit variance.

a lower bound for the n < ^  image is set to 0. The cUpping effect can be seen on the 
left-hand and top-hand sides of the LUTs.

When the the noise is small and the clusters are wdl separated, the original clusters 
may not be affected, so the result might be the same. This can be illustrated in image(6.7a) 
to (6.7e) and the segmented image (image(6.8a) to (6.8e)). However, if the clusters are 
very close together, small amount of noise may have an influence. This effect can be seen 
by comparing image(4.10j), which is the original LUT having 8 clusters without adding 
noise to the component images. After adding the noise, two of the clusters at the center 
of the LUTs shown in lmage(6.7a) to (6.7e) are merged together. And the total cluster
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number ù  reduced to 7. The renaoo ù  thnt thii two ciuf ten  are very cloae at shown in 
image(4.10g), which shows the peaks distribution of the LUT (image(4.10j)).

When the noise is increased, the original d u st«  will probably be distorted. Some dis­
tinct dusten may merge together, and some dnsten may split into many smaller separated 
dusten. Or cluster merging and splitting happen at the same time. This eflfect can be 
illustrated in image(6.7f). The central cluster is split and merged with their neighbouring 
dusters. As a result the region represented by this cluster will be lost (image(6.8f)).

When the noise increase further, the dusters found will become bigger and bigger, 
since the distributions may drift away from their original position and scatter Widdy 
on the duster space (image(6.7g) to (6.7x)). Moreover, the segmentation wiU be total 
unacceptable and fragmentation will occur since the clusters found will be determined 
by the noise (image(6.8g) to (6.8x)). Under such conditions the clustering method fails, 
unless the noise can be moddled and be extracted before applying the clustering.

This example also illustrates the difficulty in representing the segmentation result 
quantitativdy. The g r^ h  illustrated In fignre(6.3) would only td l us that as more noise 
is added, more clusters result. It cannot give ns any idea how the noise affects the seg­
mentation, since the number of clusters do not have direct rdation to the segmentation; it 
is the distributions of the clusters that matters. Assuming a very extreme case happens, 
and the same number of dusters are found (i.e. a horizontal line in the graph). It is still 
not possible to draw any conclusion on the segmentatimi result. The reason is that the 
same number of dusters does not mean the same pattern of distribution of clusters, so 
that the segmentation may be seriously affected.

Some points which are worth noting in performing image segmentatimi are d'ncutttd 
bdow;
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1. The segmentation task: this should be the most important point in the image seg­
mentation problem since we csm not have a universal method, which can handle all 
the problems. Besides, even when the same image is used, different purposes will 
affect consequent process such as the feature selection, and the segmenting method 
used. So we must first define our aim.

2. The effective feature: what feature (ftw example, color, texture, gray levd etc.), 
from which the data is derived, should be used. The decision depends on the specific 
environment considered (i.e., object characteristics). Usually the criterion of feature

I

selection is often based on either the importance of the feature in characterizing the 
image or the contribution of the features to the performance of the segmentation 
results.

3. The feature highlight: what method can highlight the feature, so that the segmenta­
tion can be done more effectivdy. For example, as discussed in sectirm 4.6, differentI
color filters can be used to highlight the object we want, while suppressing the un­
wanted objects. In this way, the segmentation may be made easier.

4. The segmentation method (for example, edge, r^ o n , texture etc.): what is the 
most appropriate method. Probably this will depend on the feature selected. No 
definite answer can be given. However, the criterion should be based on the time 
and complexity. Once the purpose can be fulfilled, the best method should be the 
simplest method.

5. Result: comparing the experimmrtal result for the task under the pven constraints 
(such as processing time), we can determine whether the method is appropriate or 
not.
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6.6 Summary
Some modiftoktions which might be lueil to improve the s^menUititm are diaciuaed in 
this chapter. These methods indude edge points extraction, textnred parts extraction 
and recursive m e i |^ .

Figure 6.4: An overview of the segmentation algorithm.

These modifications are illustrated in the foUosdng block diagram (figure(6.4)). Cdor 
image is the original image. Red, green, and blue are the three component images. Black- 
and-white is the brightness image. Pre-processing can be applied to the black-and-white
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image to pre-extract the edge points, which are not ased during the segmentaticm process. 
These edge points will be replaced by the labd of its neighbour pixel during rdabdling.

The texture feature of the black-and-white image which 1s formed using gray-level and 
local busyness is also examined. Once a cluster which fulfUis the specified criterion is found 
on the texture feature, the corresponding area will be considered as a highly textured area 
and will be treated as a terminal region. That means it will be saved as a segmented 
region. Since the efiectiveness of the method can not be guaranteed, after completing the 
segmentatirm, post-processing extraction is applied on the binary image which requires 
relabelling. After applying opening and labelling on the binary image, r e ^ n s  whose îze 
is greater than user determined threshold will be considered as a highly textured parts 
and saved as a single segment.

The reason why the pre-processing texture extraction is still required is that the tex­
tured parts of the image will produce scattering in the color feature space. Eiach isdated 
point will become a local maximum. This will increase the computational cost. However, 
if they can be extracted during the pre-processing, the problem csm be scdved.

After completing the segmentation, post-processing, recursive merging, can be applied 
to the segmented image to further reduce the fragments under some simple pre-defined 
criterion. In the case discussed here, the region size and color difference are used. However, 
other parameters such as average gray level, length of adjacency, texture, and final shape 
can also be used. Possible improvements in the accuracy of the method can be obtained 
by using knowledge-based approach. In this case, the r^(ions selected for possible merging 
will depend on prior knowledge about the structure of each object, driven by moms of a 
modd-driven approach. According to this approach, the control structure can derive some 
hypotheses &«n the available regions, and test the compliance of the recognized objects
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C hapter 7

CONCLUSIONS AND
SUGGESTIONS FOR
FURTHER RESEARCH
7.1 Conclusions of the Thesis
In this thesis we have considered the applkaticm of clustering techniques using watersheds 
in segmenting color images.

We begin by introducing the problem in image segmentation. The general approach to 
this problem using edge-based and region-based method is presented. The relationship be­
tween these two methods is briefly discussed. The idea of clustering using watersheds and 
the implementation methods are discussed. The clustering and recursive techniques which 
have been developed using watersheds is outlined and the ^ectiveness of the methods are 
illustrated in the segmentation results. The applications of such methods are highlighted 
and possible improvements to such methods discussed. Finally there is a brief discussion
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in segmentntion errors.
In our introduction to watersheds we emphasized that it is a data-driven dnstering 

method for two-dimensional data. Therefore it is very suitable for non-parametric clus­
tering in images since there is usually no prim knowledge of the classes. Clustering using 
watersheds algorithm applied to image segmentation based on color can be regarded as the 
multidimensional extension of the concept of thresholding. Since this approach is based 
on the assumption that different classes of regions (i.e., different colors) of an image are 
represented by distinct ‘modes’ in the distribution of the two-dimensional histogram, the 
technique will (aO if this assumption is not true. However, it is not the shortcoming of 
watersheds, it is coherent with any clustering method based on the ssune assumption.

An important feature of the two-dimensional histogram clustering using watenheds 
followed by mapping of cluster labels back to the image is that the two-dimensional his­
tograms provide a global view of the feature data without reflecting the spatial infmma- 
tion in the image (i.e. the positional rdaticmships between the pixels) from which they 
are derived. Thus, formation of clusters in two-dimensional colm space does not take into 
consideration the spatial infmmation inherent in the image. For example, a odor random 
dot image should provide good clusters in color space, but can not provide good re^on 
segmentation. It is likely that the segmentation will be improved if the watenheds can 
be combined with spatial information, although this is not easy. One example which tries 
to combine the spatial information to help the clustering in feature space was discussed 
by [Riseman k  Arbib 77). However, this clustering technique is strai^tforward both to 
justify, and to implement.

This study looks at two versions of watenhed applications. One is direct clustering 
and the other is recursive clustering.
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The direct cltutering method it good for imaget in which priw knowledge can be ob­
tained, tnch at induttrial tcenea. In indnttrial circnmttancet, we can have prior knowledge 
about the tcene, tuch at what kindt of color will be there. Betidee, the range of the color 
is usually restricted, and the objects rarely have much variation in c«dor over th«r surface. 
So we can easily select the most appropriate LUT (i.e. col<w features) to do the clustering.

Moreover, we propose using normalised color in place of red, green, and blue com­
ponent color. The main reason is that red, green, and blue are stron^y influenced by 
intensity. Thus, spurious segmentations tend to occur because of the diflfeience in in­
tensities. Normalised c<rior which can eliminate the factor of intensity embedded in'the 
component color is ideally suited to segmentaticm. The effectiveness of the method relies 
on the reduction of fragmentation caused by the variation in brightness in color images.

Recursive clustering is good for images about which we do not have any prior knowl- 
Clusters which are distinct in the three-dimensional color space may overlap in 

the two-dimensicmal color space. Combining the segmenU found in each twoKlimensional 
color space (as discussed in chapter 4) is a remedy for scdving this problem. However, frag- 
mentati<m due to multiclass s^mentation cannot be avoided if we do not have any prior 
knowledge about the image. In recursive clustering, only one clutter is selected at a time, 
so that such fragmentatimi does not occur. Besides, recursive application can remove the 
largest peaks, allowing less noticeable peaks to become visible; the reduction in the num­
ber of peaks can also reduce their mutual interference. Therefore the problem that ■ ■ »■ «ii 
clusters are often not visible when they occur inside large regions can be avoided. Fur­
thermore, peaks may come from different parts of the image, and then overlap. Recursive 
clustering will only consider smaller portions of the image at any one time.

One major limitation on the method is that the segmentation process takes a lot of
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time due to its recunive nature. This can be substantially improved by employing special 
hardware which can perform high-speed parallel computation.

Both methods do provide an unbiased aid to classification of the image, since they do 
not require the input of any prior information, with the exception of a few assumptions 
that need to be made about the initial image. These are the user-determined constants.

How the developed segmentation method can be used for image compression is pre­
sented. Both methods of regional and boundary have been discussed and illustrated using 
the reconstructed image and the segmented image boundaries. Besides, there is a dis­
cussion showing how the pyramidal data structure can be used in clustering for coarse 
segmentation, in which the important image regions based on the significance in the two- 
dimensional feature (color) spaces are extracted.

The rest of the thesis is a study of improvements to these methods used in segmentation. 
Edge extraction; pre-processing can be applied to the black-and-white image to pre-extract 
the edge points, which are not used during the segmentation process. These edge points 
will be replaced by the label of ito neighbour pixel during rdabelling. This method is good 
when it is applied to the man made objects because edges ate more apparent than is usually 
the case with natural scenes. Usually these edges will not affect the segmentation result 
seriously since their regions are some small broken lines, and can easily be thresholded. 
However, their existence will increase the computational cost. So it may be wise to pre­
extract them before starting the segmentation.

Texture extraction: both clustering methods above do not cope well with the textured 
parts of a image, since these parts will produce scattering in the two-dimensional coIot 

space. As a result fragmentation will occur. To overcome this problem we propose the 
texture extraction methods. Such methods can be divided into two areas: one is a pre-
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proccMing method and the other it poet-procetting method. Since the effectiveneta of 
the former method can not be guaranteed, after completing the segmentation the latter 
method it applied to the binary image which requires relabelling. The latter method it 
very effective because it overcomes the well known problem in clustering using color that 
the textured parts are apt to be divided into a lot of tiny, meaningless regions; further, 
the large parte requiring relabelling are combinations of those parte.

The reason why the textured parte of an image will produce scattering in the c<dor 
feature space is that each isolated point will become a local m avim nm  This will increase 
the computational cost. However, if textured parte can be extracted during the 'pre­
processing, the problem can be solved. It seenu that when both methods are appUed 
together, the problems caused by the textured parte seem to have been solved. The 
penalty is higher computational cost. However, it is hard to have an effective texture 
extraction method without invdving some prior knowledge about the image.

Merging; merging can be applied to the segmented image to further reduce the frag­
ments under some simple pre-defined criterion. In this case, the region site and c<Jor 
difference are used. However, other parameters such as average gray level, length of ad- 
jacency, texture, and final shape can also be used. Since these methods still depend on 
the local properties, the improvements are limited to having more larger regions in the 
segmented image than that without merging. Further improvement can only be obtained 
if priw knowledge about the image is available, such as the shape of the objects. That 
means the merging algorithm becomes model-driven.

Although there are no formal methods to assess the segmentation results, based on 
the author’s subjective evaluatim, the algorithm devdoped here represents some success 
in partial segmentatiem based on the use of clustering techniques of watersheds in cdor
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space. The performance of the methods is satisfactory within the physical limiUtions 
such as 64 gray-level resolution, the varying noise of the output of the camera and also 
the noise intrinsic in the image. These clustering techniques can be used in a wide vari­
ety of applications. The current concern is with color images but the technique is only 
restricted to images whose features can be represented in two or mote dimensions. Then 
the catchment basin or the cluster as shown in figure(3.14) can be located and mapped 
back to the original image to do the segmenUticm. For example the feature space used 
for clustering based on texture as shown in section 6J.1 is a two-dimensicmai histogram 
formed by using the gray-level values and the local busyness.

As the concluding remarks to this thesis I remark that:

1. Image segmentation tasks are problem dependent, so that no single method is suffi­
cient for all applications, and no optimal method exists for all images. The method 
used implicitly reflecte the user knowledge and expecUtions about the scene domain. 
Therefore the selection of an appropriate method is lar easier if prior knowledge 
about the image is available and the aim is specified. Explicit representation of 
such knowledge may also enable a user to make different assumptions in different 
cases and improve various constraints to make the sdected segmentation algorithm 
proceed more effectivdy.

2. It is almost impossible to implement a practically useful complete segmentation 
technique based only on local predicates without including any external knowledge 
in the segmentation process, such as semantic knowledge about the nature of the 
scene being analysed. This knowledge is used to aid the segmentaticm of the image 
into regions that correspond roughly to the objects expected in the scene. This 
problem can be lUnstrated using letter ‘A’ and ‘1’ as shown in figure(5.2). Although
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the letter ‘i’ looki limpler then ‘A’, it cen not be Mfigned m  one segment (i.e. one 
object) since it is not connected.

One of the renscws is that sm image, which can be considered as a two-dimensional 
signal varying in space and gray level (as discussed in section 1.1), can represent 
an infinite number of possibilities [Fu k  Mui 81]. So we can not built a general 
image understanding system based on local properties unless we know exactly what 
kind of knowledge is required. Otherwise, it would require the storage of a vast 
amount of knowledge due to the infinite number of possibiUties. However, successful 
incorporation of knowledge in segmentation is much simpler when the problem is 
linuted to one specific applicatic». For example an industrial vision system can be 
used for component recognition and a prior knowledge about the passible componenta 
is available.

7.2 Suggestions for Future R esearch
Some possible methods which could be used to improve the segmentation results and are 
worthy for future research are discussed below.

7.2.1 Color Decorrelation smd Highlightn Separation

It is passible that the color based segmentation could be improved by using color decor­
relation. The color images are correlated in that they lie in an area near the 
of the cube, and so after projection onto the face of the cube, the clusters which can be 
located in the cube may disappear due to their overliqiping Decorrelation would expand 
the distribution into the comers of the R ,G 3 c<dw space. One passible technique for this 
is described by Hérault [Hérault et al 89]. Preprocessing of this type should decrease odor
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image correUtion, and help segmentation.
H i^ g h ts  aie an unstdved problem in segmentation, since the highlighted parts of an 

object do have significantly different brightness valnes than their surroundings although 
they lie on the same surface. So it will upset our definition in defining a region and an 
edge. Worse, it may possibly induce cidor clipping because of the limited dynamic range 
of the camera. The simple way to solve this problem is, of course, by moving the position 
of objects or/and the position of the lighting, so an almost even illumination to the scene 
and reflection frtnn the objects can be obtained.

However, this problem can also be solved by firstly obtaining a physics-based c61or 
reflection model for the highlight and then separating it fran the object color as dvcribed 
by (Klinker el at 87, 88, 90]. In their papers, they noted that the color of every pixel 
from an object can be considered as a linear combination of the highlight color caused by 
the reflection of the material surface and the object color caused by the reflection in the 
Eoaterial body. ; |

When light hits the surface of a dielectric material, the change in refraction indices 
causes both reflection and refraction. The process of light reflecting back into air at 
the material surface is referred as siuface reflection. It generally appears as highlight 
on an object. But not all incident light is reflected back at the material surbce: the 
refracted light penetrates into the material body, travelling through the medium and 
hitting pigments from time to time. The light is partially or entirdy absorbed and changed 
into heat at some wavelengths. The residue of it is scattered by the pigments. Finally 
some of the light exits from the material body back into the air. This reflection process is 
referred as body reflection.

The cdor of every pixd from an object can then be separated into a matte object
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component and a highlight component uaing the Dichromatic Reflection Model [Klinker 
el at 87, 88). Thii generates two intrinsic images: the intrinsic matte object image of the 
scene showing the scene without highlighU, and the intrinsic highlight image of the scene 
showing only the highlighte of the scene. The matte object image may then be used for 
segmentaticm.

7.2.2 Plsuining and FocuMing

Planning can be used to improve the speed of the segmenUticm. Segmenteticm of large 
images is always very time-consuming, especially when the method is recursive in nature. 
To s<dve this problem, planning has been used. The planning procedure performs the 
segmenUtion of the reduced images and uses this segmenUtica as a plan for the final 
segmenUtion of the full size images. For example, planning used by [Ohlander et al 78] 
involves creating a reduced version of the image, in which the pixel value is the average 
of the value in the original image. The threshold, which is determined uaing the same 
segmenUtion procedure on the reduced image, are applied to the original image to produce 
the final segmentation. This technique requires less computational time. However, detaib 
tend to disappear. This will not matter if we are looking for the major feature or the 
approximate nature of the major feature of the image.

Another method, focussing, is recommended by [Shafer 80) to improve the speed of seg­
mentation. The method involves extracting the original image around objects of interest. 
The advantage is that, since extracted image contains fewer objecU, the costly computa­
tional problem can be minimized. However, this technique can only be used when there 
is some specific knowledge, such as semantic analysis, to identify the ‘objects of interest’.

Using focussing in planning seems to be an interesting topic in segmentation. The
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ide» Menu very aimple. Fiittly, the original image ia reduced in tize to form a pyramid. 

Seccadly, Marching ii applied on the reduced image. If the objects of interest are found, 

searching on this level is st<q>ped, and one proceeds to the original image to do the seg- 

menUti<Hi. However, if the ohjecU of interest cannot be found, the searching wiil continue 

from the t<q>most level (the most coaiM image) until the baM (the original image). Re­

duced images are used for searching for the object and only part of the original image, the 

vicinity area of the object, is used to do the segmentation. The computation time should 

be reduced.

However, if this approach were adopted, it would make the central problem for in«»e» 

segmentation arranging for the right piece of specialized knowledge to be made available 

at the appropriate time during segmentation. The reasmi is that segmenUtion may make 

an object surface Mparate from the background or from other object surfaces but it does 

not do the job of detecting the presence of such object in the image. This could only 

be done when the segmentation is presentfd in a hierarchical manner, in which not only 

the structure or relationship between the segments or features is defined, but also the 

order of importance between the features is given, since the objects in an image can be a 

composition of a number of features and some of them are the key features and the rest 

are less important. For example, the wheels of a car mif^t be considered as the most 

importamt feature in identifying the presence of a car.

The addition of such higher levd (structural) information eventually would turn the 

problem into an artificial intdligent problem: however, the work reported here aims to 

produce a bsM, which is data driven, on which higher level processing could be attempted.
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A ppendix A
Images For Chapter Four

Image(4.1a) Leave*.
Image(4.1b) The legmented image of the leave*.

Image(4.2a) The B/W image of the color pattern.
Image(4.2b) The red component image.
Image(4.2c) The green component image.
Image(4.2d) The blue component image.
I™*g*(4.2e) The segmentation baaed on R/G image*.

The segmentation based on R/B image*.
Image(4.2g) The segmentation based on G/B image*.
Iinage(4.2h) The re*nltant segmented image.
Image(4.2i) The regions required relabdling are shown in black. 
Image(4.2j) The final segmented image.
Image(4.2k) The segmented image boundaries.
Image(4.21) The boundaries superimposed on the B/W image.
Image(4.3a) Binary image extracted from image(4.2h) for opening. 
Image(4.3b) Image after erosion applied to imag^4.3a). 
Image(4.3c) Image after dilation applied to image(4.3a).
I“ *ge(4.4a) 1st eroded image of image(4.1b).
Image(4.4b) 2nd eroded image of image(4.1b) .
Image(4.4c) 1st dilated image of image(4.4b).
Image(4.4d) 2nd dilated image of image(4.4b).
I“ H*(4.4e) Number of leave* represented by different gray levels.
Image(4.5a) Binary image extracted frmn image(4.2h) for closing. 
Image(4.5b) Image after dilation applied to im a^4.5a). 
Image(4.5c) Image after erosion applied to image(4.5b).
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Image(4.6a) Binwy image extracted fcran iinage(4.2j) for edge detection. 
Image(4.6b) Image after eroaion applied to image(4.6a).
Image(4.6c) Image after dilation applied to image(4.6a).
Image(4.6d) Internal edge of image(4.0a).
Image(4.6e) External edge of image(4.6a).
Image(4.6f) True edge of image(4.6a).
I»iage(4.6g) Edge found using a 3 x 3 structural element .
Image(4.7a) Binary image extracted from image(S.3a) for edge detection. 
I>uage(4.7b) Image after erosion applied to image(4.7a).
Iiuage(4.7c) Image after dilati«» applied to image(4.7a).
Image(4.7d) Internal edge of image(4.7a).
Image(4.7e) External edge of image(4.7a).
Image(4.7f) True edge of image(4.7a).
Image(4.8a) The B/W image of the cidor block worMs.
Image(4.8b) The red component image.
Image(4.8c) The green component image.
Image(4.8d) The blue component image.
Image(4.8e) The normalised red component image.
Image(4.8f) The normalised green component image.
Image(4.8g) The normalised blue component image.
Image(4.8h) The segmentati«» based on R/G image.
Image(4.8i) The segmentati«» based on R/B image.
Image(4.8j) The segmentati«» baaed on G/B image.
I>»age(4.8k) The segmentati«» based on normalised R/G image.
I>o*8e(4.81) The segmentati«» based on normalised R/B image.
I»iage(4.8m) The segmentati«» based on normalised G/B image.
Image(4.8n) Edge computed using Robert cross operator on the B/W image.
Image(4.8o) Edge computed using Sobel operator on the B/W image.
Image(4.8p) Edge computed using Lapa«dan operator on the B/W image.
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Image(4.9a) The B/W image of the color chalks. 
fniage(4.9b) The red component image.
Image(4.9c) The green component image.
Image(4.9d) The bine component image.
Image(4.9e) The normalised red component image.
Bosgs(4.9f) The normalised green component image.
Imsge(4.9g) The normalised bine component image.

segmentation based on R/G image.
Image(4.9i) The segmentation based on R/B image.
Image(4.9j) The segmentation based on G/B image.
Image(4.9k) The segmentation based on normalised R/G image.
Image(4.9I) The segmentation based on normalised R/B image.
fnt*ge(4.9m) The segmentatimi baaed on normalised G/B image.
Image(4.9n) Edge computed using Robert cross operator on the B/W image.
Iniage(4.9o) Edge computed using Sobel operator on the B/W image.
Image(4.9p) Edge computed using Lapacian operator on the B/W image.

I

Image(4.10a) Two-dimensional histogram formed by R/G component images. 
Image(4.10b) Two-dimensional histogram formed by R/B component images. 
Image(4.10c) Two-dimensional histogram formed by G/B component images. 
Image(4.10d) Smoothing using 3 x 3  window in image(4.10a). 
fm*8«(d.l0e) Smoothing using 3 x 3  window in image(4.10b).
I™“*e(4.10f) Smoothing using 3 x 3  window in image(4.10c).
Image(4.10g) Peaks found in image(4.10d).
Image(4.10h) Peaks found in image(4.10e).
Image(4.10i) Peaks found in image(4.10f).
Image(4.10j) LUT of R/G component images.
Image(4.10k) LUT of R/B component images.
Image(4.101) LUT of G/B component images.
Image(4.11a) Two-dimensional histogram formed by image(4.9e) & (4.9g). 
Image(4.11b) Peaks found in image(4.11a).
Image(4.11c) Smoothing using 3 x 3  window in image(4.11a).
Image(4.11d) Peaks found in image(4.11c).
I“ *g«(4.11e) Smoothing using 5 x 5  window in image(4.11a).
Image(4.11f) Peaks found in image(4.11e).
^ •€* (d .llg ) Smoothing using 7 x 7  window in image(4.11a).
Image(4.11h) Peaks found in image(4.11g).
Image(4.11i) Smoothing using 9 x 9  window in image(4.11a).
Image(4.11j) Peaks found in image(4.11i).
Iniage(4.12a) Segmentatimi without smoothing
Image(4.12b) Segmentatimi using 3 x 3  smoothing window (duplication of image(4.91)). 
Image( 4.12c) Segmentatimi using 5 x 5  smoothing window.
Image(4.12d) Segmentation using 7 x 7  smoothing window.
Image(4.12e) Segmentation using 9 x 9  smoothing window.
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4.11a

4.11c

4.11a

4.11g

4.11b

4.11d

4.111

4.11h

image-4m
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A ppendix B
Images For Chapter Five

Image(5.1a)
Imftge(5.1b)
Image(5.1c)
Image(5.1d)
Image(5.1e)
Imkge(5.1f)
Im»ge(5.1g)
Image(S.lh)
Inuige(5.2&)
Image(5.2b)
Image(5.2c)
Imkge(5.2d)
Inutge(5.2e)
Image(5.2f)
Image(5.2g)
Image(5.2h)
Image(5.2i)
Im»ge(5.2j)
Image(S.2k)
Inutge(S.21)
Image(5.2m)
Imsge(5.3a)
Image(5.3b)
Image(5.3c)

The B/W image of the landscape.
The red component image.
The green component image.
The bine component image.
The segmentation based on R/G images.
The segmentaticm baaed on R/B images.
The segmentation based on G/B images.
The resultant segmented image.
In 1st clustering, three regions are found in the color pattern. 
In 2nd clustering, the l a r ^ t  region is divided into two regions. 
In 3rd clustering, background is saved as a complete segment. 
Sequence of regions extraction.

” and the regions required relabelling are shown in black. 
The s^mented image.
The segmented image boundaries.
The boundaries superimposed on the B/W image.

The segmented image of the landscape.
The segmented image boundaries.
The boundaries superimposed on the B/W  image.
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Im«ge(5.4a)
Image(5.4b)
Inuge(5.4c)
Inuge(5.4d)
Image(5.4e)
Image(5.4f)
Image(5.4g)
Image(5.4h)
Im»ge(5.4i)
Im»ge(5.4j)
Imftge(5.4k)
Image(5.41)
Image(S.4in)
Image(5.5a)
Image(5.5b)
Imkge(5.5c)
Image(5.5d)
Image(5.5e)
Image(5.5f)
Image(5.5g)
Image(5.bb)
Im«ge(5.5i)
Image(5.5j)
Image(5.6a)
Image(5.6b)
Inuige(5.6c)
Image(5.6d)
Imkge(5.6e)
Image(5.6f)
Image(5.6g)
Image(5.6b)
Imftge(S.6i)
Image<5.6j)
Image(5.6k)
Imagc(5.6I)
Im»ge(5.6m)
Image(S.6ii)
Image(S.6o)
Image(5.6p)

The B/W im*ge of the road.
The red component image.
The green component image.
The bine component image.
The normaliaed red component image.
The normaliaed green component image.
The normalised blue component image.
The segmented image.
The segmented image boundaries.
The boundaries superimposed on the B/W image.
The segmented image based on normalised color.
The segmented image boundaries based on normalised coior.
The boundaries based on normalised color superimposed on the B/W image.

The segmented image of color building blocks.
The segmented image boundaries.
The boundaries superimposed on the B/W image.
Sequence of regions extracted based on normalised color.

The segmented image baaed on normalised color .
The segmented image boundaries based on normalised color.
The boundaries based on normalised color superimposed on the B/W image.
The segmented image of color chalks.
The segmented image boundaries.
The boundaries superimposed on the B/W image. 
Sequence of regions extracted baaed on normalised color.

The segmented image based on normalised color.
The segmented image boundaries based on normalised c<dor.
The boundaries based on normalised color superimposed on the B/W image.
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Inukge(5.7a) The B/W image of the mandrill.
Imnge(5.7b) The red component image.
Image(5.7c) The green component image.
Image(S.7d) The bine component image.
Image(5.7e) The recoiutmcted image baaed on image(6.3e). 
Image(6.7f) The segmented image using levd 1 of the pyramid. 
Image(5.7g) The segmented image using levd 2 of the pyrandd. 
Image(5.7h) The segmented image using level 3 of the pyramid. 
Image(5.7i) The segmented image boundaries baaed on image(5.7f). 
Iiuage(5.7j) The segmented image boundaries based on image(5.7g). 
Image(5.7k) The segmented image boundaries based on image(5.7h).
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A ppendix C
Images For Chapter Six
Image(6.1a) Gradient image computed using Robert’s cross operator on image(4.2a). Image(6.1b) The edge image.
Image(6.1c) The final segmented image.
Image(6.1d) The segmented image boundaries.
Image(6.1e) The segmented image boundaries superimposed on image(4.2a).
Image(6.2a) Gradient image computed using Robert’s cross operator on image(5.4a). Image(6.2b) The segmented image.
Iniage(6.2c) The segmented image boundaries.
Image(6.2d) The segmented image boundaries superimposed on image(5.4a).
Image(6.3a) Regions require relabelling.
Image(6.3b) Regions extracted by a threshcdding of 20 pixels.
Image(6.3c) Regions extracted by a thresholding of 18 pixels.
Image(6.3d) Segmented image boundariea using a thresholding of 20 pixds. 
^*8*(6'3e) Segmented image boundaries using a thresholding of 18 pixels. 
Image(6.3f) Segmented image boundaries (image(6.3e)) superimposed on image(5.7a). 
lmage(6.3g) Eldge computed using Robert cross operator on the B/W  image(5.7a). 
Image(6.3h) Edge computed using Sobel operator on the B/W  image(5.7a). 
Image(6.3i) Edge computed using Lapacian operator on the B/W image(5.7a).
Image(6.4a) The merged image with region smaller than 0.06%.
Image(6.4b) The merged image boundaries.
I™age(6.4c) The merged image boundaries superimposed on image(5.1a).
Image(6.4d) The merged image with region smalier than 0.09%. 
lnrage(6.4e) The merged image boundaries.
^•8*(6 '4f) The merged image boundaries superimposed on image(5.1a).
lmage(6.5a) The merged image boundaries with region smaller than 0.09%.
Image(6.6a) The segmentation using histogramming applied to image(4.9e). 
Image(6.6b) The segmentation using histogramming applied to image(4.9f). 
Image(6.6c) The segmentatimt using histogramming applied to image(4.9g). 
lmage(6.6d) The resultant segmented image based on image(6.6a) to (6.6c).
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Imac«(S.7a) LUT of ima«^4.2b) k  (4.2c) with 0.25 (td-dev. gwiiMian ]
Imagc(0.7b) LUT of image(4.2b) k  (4.2c) with 0.50 ttd-dev. g^nMU-n i
Image(6.7c) LUT of image(4.2b) k  (4.2c) with 0.75 ttd-dev. gwoMian i
Im«ge(6.7d) LUT of image(4.2b) k  (4.2c) with 1.00 itd-dev. gaiuiiaii i
Image(6.7«) LUT of inu«e(4.2b) k  (4.2c) with 1.25 «td-dev. gauMun i
Imagi(6.7f) LUT of image(4.2b) k  (4.2c) with 1.50 std-dev. g&UMian ]
Im»ge(6.7g) LUT of image(4.2b) k  (4.2c) with 1.75 std*dev. ^ qmÌui i
Image(6.7h) LUT of iniage(4.2b) k  (4.2c) with 2.00 itd-dev. gauuian i
Im»ge(6.7i) LUT of image(4.2b) k  (4.2c) with 2.25 std-dev. gaossisn :
Imsge(6.7j) LUT of image(4.2b) k  (4.2c) with 2.50 ttd-dev. gaussUn i
Image(6.7k) LUT of image(4.2b) k  (4.2c) with 2.75 std-dev. gaussian i
Image(6.71) LUT of image(4.2b) k  (4.2c) with 3.00 std-dev. gaussi&n ]
Image(6.7m) LUT of image(4.2b) k  (4.2c) with 3.25 std-dev. gaussian i
Image(6.7ii) LUT of image(4.2b) k  (4.2c) with 3.50 std-dev. g&uuian ]
Image(6.7o) LUT of image(4.2b) k  (4.2c) arith 3.75 std-dev. gautsian i
Image(6.7p) LUT of imsge(4.2b) k  (4.2c) with 4.00 std-dev. gaussian i
Image(6.7q) LUT of image(4.2b) k  (4.2c) with 4.25 std-dev. g»uMi&n 1
Image(6.7r) LUT of image(4.2b) k  (4.2c) with 4.50 std-dev. gautsian i
to*i*(®-7s) LUT of image(4.2b) k  (4.2c) with 4.75 std-dev. gaussian i
Image(6.7t) LUT of image(4.2b) k  (4.2c) with 5.00 std-dev. gautsian i
Image(6.7n) LUT of image(4.2b) k  (4.2c) with 5.25 std-dev. gaussias i
Iji>age(6.7v) LUT of image(4.2b) & (4.2c) with 5.50 ttd-dev. ganssian i
Image(6.7w) LUT of image(4.2b) & (4.2c) with 5.75 std-dev. gauuian i
Image(6.7x) LUT of image(4.2b) k  (4.2c) with 6.00 std-dev. g&ussian ]
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Image(6.8«)
Image(6.8b)
Image(6.8c)
Image(6.8<l)
Image(6.8e)
Imag«(6.8f)
Immge(6.8g)
Image(6.81i)
Image(6.8i)
Im«ge(6.8j)
Image(6.8k)
Image(6.81)
Iinage(6.8m)
Immge(6.8it)
Imag«(6.8o)
lmage(6.8p)
Image(6.8r)
Image(6.8s)
Image(6.8t)
Image(6.8a)
Image(6.8v)
Image(6.8w)
Image(6.8x)
Image(6.9»)
Image(6.9b)
Immge(6.9c)
Image(6.9d)
Image(6.9e)
Im»ge(6.9f)
Image(6.9g)
Image(6.9h)
Image(6.9i)
Image(6.9j)
Image(6.9k)
Image(6.91)

The segmenUtion 
The tegmentotion 
The segmenUticNi 
The tegmenUti<» 
The legmentstion 
The sqpnentetion 
The segmentotion 
The s^mentetion 
The legmentation 
The segmentation 
The segmentation 
The segmentatimi 
The segmentatimi 
The segmentation 
The segmentation 
The segmentatimi 
The segmentation 
The segmentation 
The s^mentation 
The sqpnmtation 
The segmentatimi 
The segmentation 
The segmentation 
The segmentatimi

using image(6.7a). 
using image(6.7b). 
using image(6.7c). 
using image(6.7d). 
using image(6.7e). 
using image(6.7f). 
using image(6.7g). 
using image(6.7h). 
using image(6.7i). 
using image(6.7j). 
using image(6.7k). 
using image(0.71). 
using image(6.7m). 
using image(0.7n). 
using image(6.7o). 
using image(6.7p). 
using image(6.7q). 
using image(6.7r). 
using image(6.7s). 
using image(S.7t). 
using image(6.7u). 
using image(6.7v). 
using image(6.7w). 
using image(6.7x).

The image(4.2b) added 
The image(4.2c) added 
The image(4.2b) added 
The image(4.2c) added 
The image(4.2b) added 
The image(4.2c) added 
The image(4.2b) added 
The image(4.2c) added 
The image(4.2b) added 
The image(4.2c) added 
The image(4.2b) added 
The image(4.2c) added

with 1 std-dev. 
with 1 std-dev. 
with 2 std-dev. 
with 2 std-dev. 
with 3 std-dev. 
with 3 std-dev. 
with 4 std-dev. 
with 4 std-dev. 
with 5 std-dev. 
with 5 std-dev. 
with 6 std-dev. 
with 6 std-dev.

Gaussian noise. 
Gaussian noise. 
Ganssism noise. 
Gaussian noise. 
Gaussian noise. 
Gaussian noise. 
Gaussian noise. 
Gaussian noise. 
Gaussian noise. 
Gaussian noise. 
Gaussian noise. 
Gaussian noise.
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6.6« 6.6b
6.6c 6.6d

image-6e
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