
Quasi-Optimal Recombination Operator

Francisco Chicano1[0000−0003−1259−2990], Gabriela Ochoa2[0000−0001−7649−5669],
Darrell Whitley3, and Renato Tinós4[0000−0003−4027−8851]

1 University of Malaga, Spain ?

chicano@lcc.uma.es
2 University of Stirling, UK

gabriela.ochoa@cs.stir.ac.uk
3 Colorado State University, USA

whitley@cs.colostate.edu
4 University of Sao Paulo, Brazil

rtinos@ffclrp.usp.br

Abstract. The output of an optimal recombination operator for two
parent solutions is a solution with the best possible value for the ob-
jective function among all the solutions fulfilling the gene transmission
property: the value of any variable in the offspring must be inherited
from one of the parents. This set of solutions coincides with the largest
dynastic potential for the two parent solutions of any recombination op-
erator with the gene transmission property. In general, exploring the full
dynastic potential is computationally costly, but if the variables of the
objective function have a low number of non-linear interactions among
them, the exploration can be done in O(4β(n+m) + n2) time, for prob-
lems with n variables, m subfunctions and β a constant. In this paper,
we propose a quasi-optimal recombination operator, called Dynastic Po-
tential Crossover (DPX), that runs in O(4β(n + m) + n2) time in any
case and is able to explore the full dynastic potential for low-epistasis
combinatorial problems. We compare this operator, both theoretically
and experimentally, with two recently defined efficient recombination
operators: Partition Crossover (PX) and Articulation Points Partition
Crossover (APX). The empirical comparison uses NKQ Landscapes and
MAX-SAT instances.

Keywords: Recombination operator, dynastic potential, gray box op-
timization.

1 Introduction

Many binary recombination operators for genetic algorithms have the property
of gene transmission [1]. When the solutions are represented by a set of vari-
ables taking values from a set (possibly different for each of them) with no
other constraint among the variables, this property implies that any variable

? This research is funded by the Spanish Ministry of Economy and Competitiveness
and FEDER under contract TIN2017-88213-R, and the University of Malaga.

This is a post-peer-review, pre-copyedit version of an article published in Liefooghe A & Paquete L
(eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer
Science, 11452. EvoCOP 2019: European Conference on Evolutionary Computation in
Combinatorial Optimization, Leipzig, Germany, 24.04.2019-26.04.2019. Cham, Switzerland:
Springer International Publishing, pp. 131-146. The final authenticated version is available online at:
https://doi.org/10.1007/978-3-030-16711-0_9

https://doi.org/10.1007/978-3-030-16711-0_9

in any child will take the value of the same variable in one of the parents. In
particular, the variables having the same value for both parents will have the
same value in all the children (i.e., the respect property [1] is obeyed). The
other (differing) variables will take one of the values coming from a parent so-
lution. The set of all the solutions that can be generated by a recombination
operator from two parents is called dynastic potential. If we denote by d(x, y)
the Hamming distance (number of differing variables) between two solutions
x and y, the largest dynastic potential of a recombination operator is 2d(x,y).
Uniform crossover has this dynastic potential. The dynastic potential of single-
point crossover has size 2d(x, y) and the one of two-point crossover has size

2d(x, y) +
(
d(x,y)−1

2

)
= 1 + d(x, y)(d(x, y) + 1)/2. In general, z-point crossover

has a dynastic potential of size O(d(x, y)z) for z << n, with n variables.

Our goal in this paper is to design an Optimal Recombination Operator [2],
which is one obtaining the best offspring from the largest dynastic potential.
In the worst case, however, such a recombination operator is computationally
expensive, since finding the best offspring in the largest dynastic potential is an
NP-hard problem. For this reason, we design a Quasi-Optimal Recombination
Operator, with worst time complexity O(4β(n+m) + n2) where m is the num-
ber of subfunctions and β is an arbitrary constant. This operator will find the
best offspring of the largest dynastic potential if the objective function has low
espitasis, that is, if the number non-linear interactions among variables is small.

Our proposed operator, called Dynastic Potential Crossover (DPX), uses the
variable interaction graph of the objective function to simplify the evaluation of
the 2d(x,y) solutions in the dynastic potential by using dynamic programming.
The ideas for this efficient evaluation date back to Hammer’s basic algorithm for
variable elimination [3] and are also commonly used in operations over Bayesian
networks [4]. Since it requires more information than just the objective function
to do the job, this operator is framed in the so-called gray box optimization [5].

Recently defined crossover operators similar to ours are Partition Crossover
(PX) [6] and Articulation Points Partition Crossover (APX) [7]. Although they
were proposed to work with pseudo-Boolean functions, they can also be applied
to the more general representation of variables defined over a finite alphabet.
PX and APX also use the variable interaction graph of the objective function
to efficiently compute a good offspring among a large number of them. PX and
APX have O(n2 +m) time complexity and both of them obtained excellent per-
formance in different problems [8, 7, 9, 10]. When combined with other gray box
optimization operators, partition crossover was capable of optimizing instances
with 1 million variables in seconds. We compare DPX with these two operators
from a theoretical point of view and in the experimental section.

The paper is organized as follows. Section 2 presents the required background
to understand the working principles of DPX. The proposed recombination op-
erator is presented in Section 3. Section 4 describes the experiments and presents
the results and, finally, Section 5 concludes the paper.

2 Background

We will work along the paper with functions defined over a set of variables xi,
each one taking values in a finite set, Xi, not necessarily the same for all the
variables. We say that a function f of n variables has k-bounded epistasis if it
can be written as a sum of m subfunctions fl, each one depending on at most k
variables:

f(x) =

m∑
l=1

fl(xil,1 , xil,2 , . . . , xil,k), (1)

where il,j is the index of the j-th variable in subfunction fl. In the case of binary
variables, these functions have been named Mk Landscapes by Whitley et al. [5].
In Gray Box Optimization, the optimizer can evaluate the set of m subfunctions
in Equation (1) (although their internal structure is unknown). This contrasts
with Black Box Optimization, where the optimizer can only evaluate solutions
and get their fitness value.

2.1 Variable Interaction Graph

The Variable Interaction Graph (VIG) [5] is a useful tool that can be constructed
under Gray Box Optimization. It is a graph V IG = (V,E), where V is the set
of variables and E is the set of edges representing all pairs of variables (xi, xj)
having nonlinear interactions. These nonlinear interactions can be captured in
two ways. First, assuming that every pair of variables appearing together in a
subfunction have a nonlinear interaction. A second approach is to apply the
Fourier transform [11], and then look at every pair of variables to determine if
there is a non-zero Fourier coefficient associated to a term with the two variables.
This second method is more precise and not very expensive, because the Fourier
transform can be constructed in O(n) time for k-bounded epistasis functions.

An example of the construction of the variable interaction graph for a func-
tion with n = 18 variables (numbered from 0 to 17) and k = 3, is given below.
We will refer to variables using numbers, e.g., 9 = x9. The objective function is
the sum over the following 18 subfunctions:

f0(0, 6, 14) f5(5, 4, 2) f10(10, 2, 17) f15(15, 7, 13)

f1(1, 0, 6) f6(6, 10, 13) f11(11, 16, 17) f16(16, 9, 11)

f2(2, 1, 6) f7(7, 12, 15) f12(12, 10, 17) f17(17, 5, 2)

f3(3, 7, 13) f8(8, 3, 6) f13(13, 12, 15)

f4(4, 1, 14) f9(9, 11, 14) f14(14, 4, 16)

From these subfunctions, assume we extract the nonlinear interactions that
are shown in Figure 1. In this example, every pair of variables that appear
together in a subfunction has a nonlinear interaction.

0

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

Fig. 1. Sample Variable Interaction Graph (VIG).

2.2 Recombination Graph

Let us assume that we have two solutions to recombine using the optimal re-
combination operator. We call these two solutions the red and the blue parents.
All the variables with the same value in both parents will also share the same
value in the offspring and the solutions in the dynastic potential will be in a
hyperplane determined by the common variables. In the solution representation
we will use digit 0 to denote that the variable has the same value as in the red
parent and 1 to denote that the value is different. Thus, the red solution will be
the string with all 0s. For example, let the two parents be

red = 000000000000000000 and blue = 111101011101110110

in our sample function of Section 2.1. Therefore, x4, x6, x10, x14, and x17 are
identical in both parents. The rest of the variables are different. Both parents
reside in a hyperplane denoted by h = ∗∗∗∗0∗0∗∗∗0∗∗∗0∗∗0 where ∗ denotes
the variables that are different in the two solutions, and 0 marks the positions
where they have the same variable values.

We use the hyperplane h = ∗ ∗ ∗ ∗ 0 ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗0 to decompose the
VIG in order to produce a Recombination Graph. We remove all the variables
(vertices) that have the same “shared variable assignments” and also remove all
edges that are incident on the vertices corresponding to these variables. This
produces the recombination graph shown in Figure 2.

The recombination graph also defines a reduced evaluation function. This
new evaluation function is linearly separable, and decomposes into q subfunctions
defined over the recombining components. In our example:

g(x′) = a+ g1(9, 11, 16) + g2(0, 1, 2, 5) + g3(3, 7, 8, 12, 13, 15),

where g(x′) = f |h(x′) and x′ are restricted to a subspace of the hyperplane
h that contains the parent strings as well as the full dynastic potential. The
constant a = f(x′)−

∑3
i=1 gi(x

′) depends on the common variables.

0

1

2

3

5

7

8

9
11

12

13

15

16

Fig. 2. Recombination Graph for the solutions (parents) red = 000000000000000000
and blue = 111101011101110110.

The Partition Crossover operator (PX), defined by Tinós et al. [6] is based
on this recombination graph. Every recombination graph with q connected com-
ponents induces a new separable function g(x′) that is defined as:

g(x′) = a+

q∑
i=1

gi(x
′). (2)

Partition Crossover selects the parent yielding the best partial solution for each
subfunction gi(x

′). All of the variables in the same recombining component in
the recombination graph must be inherited together from one of the two parents.

Articulation Points Partition Crossover (APX) [7] goes further and finds
the articulation points of the recombination graphs. They are variables whose
removal increases the number of connected components. Variables x1, x2 and
x3 are articulation points in our example (see Figure 2). Then, APX efficiently
simulates what happens when the articulation points are removed, one at a
time, from the recombination graph by flipping the articulation point in any of
the parent solutions before applying PX, and the best solution is returned as
offspring. With the appropriate data structures, this can be done in O(n2 +m),
the same complexity of PX.

3 Dynastic Potential Exploration

The proposed Dynastic Potential Crossover Operator (DPX) takes the idea of PX
and APX even further. DPX starts from the recombination graph, like the one
in Figure 2, and tries to exhaustively explore all the possible combinations of the
parent values in the variables of each connected component to find the optimal
recombination regarding the hyperplane h defined by the blue and red parents.
This exploration is not done by brute force, but using dynamic programming.
Following with our example, in order to compute the best combination for the
variables x9, x11 and x16, we need to enumerate the 8 ways of taking each variable
from each parent, and this is not better than brute force. However, component
x0, x1, x2, x5, forms a thread. In this case we can store in a table which is the

best option for variable x0 when any of the two possible values for variable x1
are selected and we can store in the same table what is the value of the sum
of subfunctions depending only on x0 and x1 (and possibly common variables
eliminated in the recombination graph). After this step, we can consider that
variable x0 has been removed from the problem and we can proceed in the same
way with the rest of the variables in the order x1, x2 and x5. At the end, only
12 evaluations are necessary, while a brute force would require 16 evaluations.

The idea of variable elimination using dynamic programming dates back to
the 1960’s and Hammer’s basic algorithm [3]. It is well-known that the com-
plexity of this approach is O(N2t), where t is the treewidth of the graph. Com-
puting the treewidth of a graph is an NP-hard problem [4]. Thus, heuristics
should be applied to find an elimination order for the variables. The problem
of variable elimination has also been studied in other contexts, like Gaussian
Elimination [12] and Bayesian Networks [4]. In fact, we follow the works done
for computing the junction tree in Bayesian Networks. In order to do this, we
first need a chordal graph and then compute the clique tree (or junction tree),
which will fix the order in which the variables are eliminated using Dynamic
Programming. Our contribution in this work consists in applying these ideas to
the recombination operator. The high level pseudocode of the proposed DPX is
presented in Algorithm 1. In the next subsections we will detail each of these
steps.

Algorithm 1 Pseudocode of DPX

Input: two parents x and y
Output: one offspring z
1: Compute the Recombination Graph of x and y as in [6]
2: Apply Maximum Cardinality Search to the Recombination Graph [12]
3: Apply the fill-in procedure to make the graph chordal [12]
4: Apply the Clique Tree construction procedure [13]
5: Assign subfunctions to cliques in the clique tree
6: Apply Dynamic Programming to find the offspring (see Algorithm 2)
7: Build z using the tables filled by Dynamic Programming

3.1 Chordal Graphs

A chordal graph is a graph where all the cycles of length 4 or more have a chord
(edge joining two nodes not adjacent in the cycle). All the connected components
in Figure 2 are chordal graphs. Tarjan and Yannakis [12] provided algorithms
to test if a graph is chordal and add new edges to make it chordal if it is not.
Their algorithms run in time O(n + e), where e is the number of edges in the
graph. In the worst case the complexity is O(n2). The first step to check the
chordality is to number the nodes using Maximum Cardinality Search (MCS).
This algorithm numbers each node in descending order, choosing always the

unnumbered node with a higher number of numbered neighbors and solving the
ties arbitrarily. Figure 3 (left) shows the result of applying MCS to the third
connected component of Figure 2.

3

7

8

12

13

15

2

5

1

6

3

4

C1 = {7, 12, 13, 15}
S1 = ∅
R1 = {7, 12, 13, 15}

C2 = {3, 7, 13}
S2 = {7, 13}
R2 = {3}

C3 = {3, 8}
S3 = {3}
R3 = {8}

Fig. 3. Maximum Cardinality Search applied to the third connected component of
Figure 2 (left) and clique tree with the sets of separators and residues (right).

If the graph is chordal then MCS will provide a numbering of the nodes such
that for each triple of nodes u, v and w, with (u, v), (u,w) ∈ E and u has a lower
number than v, w, it happens that (v, w) ∈ E. If this is not the case, the graph is
not chordal. A fill-in algorithm tests this condition and adds the required edges
to make the graph chordal. This algorithm runs in O(n + s′) time, where s′ is
the number of edges in the final chordal graph. Again, in the worst case, the
complexity is O(n2). These two steps, MCS and fill-in, can be computed to each
connected component separately or to the complete recombination graph with
the same result. The algorithms are applied in Lines 2 and 3 of Algorithm 1.

3.2 Clique Tree

Dynamic Programming is based on the exhaustive exploration of the cliques5

in the chordal graph. The maximum size of a clique in the chordal graph is
an upper bound of its treewidth, and determines the complexity of applying
dynamic programming to find the optimal solution. A clique tree of a chordal
graph is a tree where the nodes are cliques and for any variable appearing in
two of such cliques, the path among the two cliques in the tree is composed of
cliques containing the variable (junction tree property). We can also identify a
clique tree with a tree-decomposition of the chordal graph [4]. This clique tree
will determine the order in which the variables can be eliminated.

Starting from the chordal graph provided in the previous steps, we apply an
algorithm by Galinier et al. [13] to find the clique tree (Line 4 in Algorithm 1).

5 We will use the term clique to refer to a maximal complete subgraph, as the cited
literature does. However, the term clique is sometimes used to refer to a complete
subgraph (not necessarily maximal).

This algorithm runs also in O(n + e′) time and finds all the O(n) cliques of
the chordal graph. The cliques will be denoted with Ci, where i is an index
that increases when a clique is discovered by the algorithm. An edge joining two
cliques in the clique tree is labelled with a separator, which is the intersection of
the variables in both cliques. A clique Ci is parent of a clique Cj if they are joined
by an edge and i < j. In each clique Ci the residue, Ri, is the set of variables
that are not in the separator with its parent. In each clique Ci, the residue, Ri,
and the separator with the parent, Si, forms a partition of the variables in Ci.
It is not hard to prove that each variable is in the residue of one clique only.
In Figure 3 (right) the residues and separators for all the cliques of the third
connected component of Figure 2 are shown.

After computing the clique tree, all the subfunctions fl depending on a
nonempty set V of differing variables must be assigned to one (and only one)
clique Ci containing V (Line 5 in Algorithm 1). They will be evaluated when this
clique is processed. There can be more than one clique where the subfunction
can be assigned. All of them are valid for a correct evaluation.We denote with
FCi

the set of subfunctions assigned to clique Ci.
The optimal offspring is found by iteratively reducing the variables in the

residue of the cliques (Line 6 in Algorithm 1 and Algorithm 2). The clique tree
must be traversed in post-order in order to do this. During the clique evaluation,
for each combination of variables in the separator Si (Line 2 in Algorithm 2), all
the combinations of variables in the residue Ri are considered (Line 4 in Algo-
rithm 2) and evaluated over the subfunctions assigned to the clique (Lines 6-8)
and their child cliques (Lines 9-11). The evaluation in post-order makes it pos-
sible to have the value array of the child cliques filled when they are evaluated.
The best combination of the variables in Ri for each combination of the variables
of Si is stored in the array variable in Line 14. This array will be used in the
reconstruction of the offspring solution (Line 7 in Algorithm 1). In Algorithm 2
we assume that value 0 for a variable means the value in the red parent and a 1
means the value in the blue parent. The term xV for V a set of variables, will
denote a vector with the variables in V .

The operator described is an Optimal Recombination operator: it finds the
best offspring from the largest dynastic potential. The time required to evaluate
one clique in Algorithm 2 is O((|FCi

|+ |children(Ci)|)2|Ci|), where children(Ci)
is the set of child cliques of Ci. The number of children is bounded by n and the
number of subfunctions m is bounded by O(nk) due to the k-bounded epistasis of
f . However, the exponential factor is a threat to the efficiency of the algorithm.
In the worst case Ci can contain all the variables and the factor would be 2n.

3.3 Limiting the Complexity

In order to avoid the exponential runtime, we propose to limit the exploration in
Lines 2 and 4. Instead of iterating over all the possible combinations for all the
variables in Si and Ri we fix a bound β on the number of variables that will be
exhaustively explored. The remaining variables will jointly take only two values,
each one coming from one of the parents. This reduces the exponential part of the

Algorithm 2 Optimal Offspring Computation

1: for all cliques Ci of the clique tree in post-order do
2: for xSi ∈ {0, 1}|Si| do
3: value[xSi] = −∞
4: for xRi ∈ {0, 1}|Ri| do
5: aux = 0
6: for f ∈ FCi do
7: aux = aux + f(x)
8: end for
9: for children cliques C′ of Ci do

10: aux = aux + value[xC′];
11: end for
12: if aux > value[xSi] then
13: value[xSi] = aux
14: variable[xSi] = xRi

15: end if
16: end for
17: end for
18: end for

complexity of Algorithm 2 to 22β . Since β is a predefined constant decided by the
user of the algorithm, the exponential factor turns into a constant. The operator
is not anymore an optimal recombination operator, and this is the reason why we
call it quasi-optimal. In the cases where β ≥ |Ci| for all the cliques, the operator
will still return the optimal offspring. The next theorem presents the complexity
of DPX.

Theorem 1. Given a function in the form of (1) with m subfunctions, the com-
plexity of DPX with a constant bound β for the number of exhaustively explored
variables is O(4β(n+m) + n2).

Proof. We have seen in Section 3.1 that the complexity of Maximum Cardinal-
ity Search, the fill-in procedure and the clique tree construction is O(n2). The
assignment of subfunctions to cliques can be done in O(n + m) time, using the
variable ordering found by MCS to assign the subfunctions that depends on each
visited variable to the only clique where the variable is a residue. The complexity
of the dynamic programming computation is:

O

(∑
i

(|FCi
|+ |children(Ci)|)2|Ci|

)
= O

(
22β

∑
i

(|FCi
|+ |children(Ci)|)

)

= O

(
4β(m+

∑
i

|children(Ci)|)

)
= O(4β(m+ n)),

where we used the fact that the sum of the cardinality of the children for all the
cliques is the number of edges in the clique tree, which is the number of cliques
minus one, and the number of cliques is O(n). The reconstruction of the offpsring
solution requires to read all the variable tables until building the solution. The
complexity of this procedure is O(n). ut

In many cases, the number of subfunctions m is O(n) or O(n2). This is true,
in particular, when the function has k-bounded epistasis. In these cases, the
complexity of DPX reduces to O(4βn2).

3.4 Theoretical Comparison with (A)PX

It is clear that DPX is no worse than PX, since it considers each connected com-
ponent in the recombination graph and, in the worst case, it will do the same
as PX and will pick the variables from one of the parent solutions. We wonder,
however, if this happens with APX. If β is large enough for a given recombi-
nation, it cannot be worse than any recombination operator with the property
of gene transmission and, in particular, cannot be worse than APX. If β is not
that large and the limit in the exploration (Subsection 3.3) is applied, it could
happen that articulation points are not explored as they are in APX. One pos-
sible threat to the articulation points exploration in DPX is that they disappear
after making the graph chordal. The next result proves that articulation points
survive the fill-in procedure and inspires a mechanism to reduce the probability
that a solution explored in APX is not explored in DPX.

Theorem 2. Articulation points of a graph are kept after the fill-in procedure.

Proof. Proving that all articulation points survive the fill-in procedure is equiv-
alent to proving that all the edges added by the fill-in procedure join vertices of
one single bi-connected component. If an edge (v, w) is added joining vertices of
two different bi-connected components, then two paths would exist to go from
v to w: the original path traversing at least one articulation point a and the
new edge. But, in this case, the articulation point a could be removed from the
graph. In the other direction, adding edges to a bi-connected component never
removes articulation points.

We assume that MCS has been applied to the graph. We denote with γ(v)
the number assigned by MCS to node v. Let us prove the claim by contradiction.
Imagine that edge (v, w) is added in the fill-in procedure, where v and w are in
different bi-connected components. The definition of fill-in (see [12]) implies that
there is a path among v and w where all the intermediate nodes have a γ value
lower than v and w. In particular, since v and w are in different bi-connected
components, all the paths between them include the same set of articulation
points and for all of them the value of γ is lower than min(γ(v), γ(w)). MCS
numbers the nodes in a connected component in decreasing order and in such
a way that all the numbered nodes are connected. Thus, in all the bi-connected
components the first node numbered by MCS is an articulation point, with the
only exception of the bi-connected component where the numbering starts. This

implies that in one of the bi-connected components, say the one of v, there is
an articulation point av with γ(av) > γ(v) that was the first numbered in that
bi-connected component. Regarding the bi-connected component of w, if it is
the one where the numbering started, then there must be an alternative path
from w to v though av. But this means that w and v belongs to the same bi-
connected component, what is a contradiction. If the bi-connected component
of w is not where the numbering started, there must be an articulation point aw
with γ(aw) > γ(w) where the numbering started in that bi-connected compo-
nent. Once again, there must be an alternative path between v and w through
aw and av, contradicting the fact that v and w are in different bi-connected
components. Then, the fill-in procedure will not add edge (v, w). ut

The previous theorem implies that articulation points of the original recom-
bination graph are also articulation points of the chordal graph. Articulation
points of a chordal graph are minimal separators of cardinality 1 (see [13]) and
they will appear as separators Si in some cliques Ci. They are, thus, identi-
fied during the clique tree construction. In each clique Ci when β variables are
chosen to be exhaustively explored (Lines 2 and 4 of Algorithm 2) we choose
the articulation points first. This way, articulation points can be exhaustively
explored with higher probability. The only thing that can prevent articulation
points from being explored is that many of them appear in one single clique. This
situation is illustrated in Figure 4. For β ≤ 1, the clique of articulation points
is evaluated only in the two parent solutions, and the same happens with the
other cliques, giving a total of 16 explored combinations. However, APX would
explore 20 combinations in this situation (see Eq. (6) in [7]).

3 6 4 1

5

2 C1 = {4, 5, 6}
S1 = ∅
R1 = {4, 5, 6}

C2 = {3, 6}
S2 = {6}
R2 = {3}

C3 = {2, 5}
S3 = {5}
R3 = {2}

C4 = {1, 4}
S4 = {4}
R4 = {1}

Fig. 4. Pathological component (left) in a recombination graph where DPX with β ≤ 1
explores less solutions (16) than APX (20) and its clique tree (right).

4 Experiments

In order to experimentally analyze the performance of DPX, we included it in the
Deterministic Recombination and Iterated Local Search (DRILS) algorithm [7].
We think this allows us to explore the performance of the operator in a real
scenario, rather than generating random solutions and providing them to the
operator. DRILS [8] uses a first improving move hill climber to reach a local

optimum. Then, it perturbs the solution by randomly flipping αN bits, where
α is the so-called perturbation factor. It then applies local search to the new
solution to reach another local optimum and applies crossover to the last two
local optima, generating a new solution that is improved further with the hill
climber. This process is repeated until a time limit is reached.

In our case, the recombination operator is DPX, but we also present re-
sults with PX and APX in Subsection 4.2 to compare the operators. In all the
runs we set a time limit of 60s (1 minute). Since the algorithms are stochastic,
we performed 10 independent runs for each instance and algorithm. We tested
DRILS with DPX in NP-hard problems: random NKQ Landscapes with K ≥ 2,
which allows us to parameterize the density of edges in the VIG by changing
K; and MAX-SAT instances of the MAX-SAT Evaluation 2017. Random NKQ
(‘Quantized’ NK) landscapes [14] can be seen as Mk landscapes with one sub-
function per variable (m = n). Each subfunction fl depends on variable xl and
other K = k − 1 random variables, and the codomain of each subfunction is
the set {0, 1, . . . , Q − 1}, where Q is a positive integer. The values of the sub-
functions are randomly generated. Random NKQ landscapes are NP-hard when
K = k − 1 ≥ 2. The computer used for the experiments is a multicore machine
with four Intel Xeon CPU (E5-2670 v3) at 2.3 GHz, a total of 48 cores, 64 GB
of memory and Ubuntu 16.04 LTS. The source code of all the algorithms can be
found at https://github.com/jfrchicanog/EfficientHillClimbers.

4.1 DPX Statistics

In a first experiment, we compute statistics about DPX. In particular, in Tables 1
and 2 we count the average number of connected components identified in the
recombination graph (Comp.), the average logarithm (in base 2) of the number of
explored solutions (Exp.), the percentage of applications where the full dynastic
potential is explored (Full) and the average runtime in milliseconds (Time). We
used instances of random NKQ Landscapes with n =10 000 and n =100 000
variables. The value for K varies from 2 to 5, Q = 64 and β varies from 2
to 5. For each combination of the parameters n and K we generated 10 random
instances and run DRILS with DPX 10 times. Thus, the numbers in the tables
are averages over 100 runs (the percentage of full explorations counts all the
applications of crossover in the 100 runs). The perturbation factor (α) in DRILS
was set to α = 0.05 in the cases K = 2, 3 and α = 0.01 in the cases K = 4, 5.
These values were taken from the recommendations in [8].

We observe in the tables that the percentage of applications of DPX where
the full dynastic potential is explored is high, almost always around or above
90%, except in the case of N =100 000 and K = 3. This percentage should
increase with β and it normally does, being the exceptions not significant. But
the fact that the value is high for low values of β (2 or 3) is an indication that
the cliques found in the recombination graph are small, with size 2 or 3 in most
of the cases. One can imagine that this corresponds to threads of variables with
some triangles sometimes. This corresponds with the plots presented by Chen et
al. in [9]. Due to this high percentage of success we can trust that the logarithm

Table 1. DPX Statistics for n =10 000 variables.

Comp. Exp. Full (%) Time (ms) Comp. Exp. Full (%) Time (ms)

K = 2 K = 4

β=2 64 212 99.9 6.8 β=2 13 44 99.3 6.2

β=3 64 210 100.0 3.9 β=3 12 42 100.0 3.5

β=4 64 210 100.0 3.9 β=4 12 42 100.0 3.4

β=5 64 210 100.0 3.9 β=5 12 42 100.0 3.6

K = 3 K = 5

β=2 50 232 94.7 8.4 β=2 11 42 99.0 7.1

β=3 50 225 99.8 4.7 β=3 11 39 99.9 3.8

β=4 50 226 99.9 4.7 β=4 11 39 99.9 3.8

β=5 50 226 99.9 4.8 β=5 11 40 100.0 4.0

Table 2. DPX Statistics for n =100 000 variables.

Comp. Exp. Full (%) Time (ms) Comp. Exp. Full (%) Time (ms)

K = 2 K = 4

β=2 668 2 249 99.9 75.5 β=2 140 567 91.2 69.2

β=3 668 2 249 100.0 74.1 β=3 140 566 99.1 68.8

β=4 668 2 248 100.0 72.5 β=4 141 571 99.3 71.0

β=5 670 2 261 100.0 81.6 β=5 142 587 99.2 82.2

K = 3 K = 5

β=2 505 2 693 63.2 110.6 β=2 121 570 89.6 75.9

β=3 505 2 691 94.0 109.6 β=3 121 570 89.6 75.9

β=4 506 2 702 94.7 113.3 β=4 122 575 96.9 77.2

β=5 505 2 726 94.8 126.1 β=5 123 596 96.8 91.9

of the number of explored solutions (column “Exp.” in the tables) is a good
measure of the number of differing variables in the parent solutions. If we divide
this number by the number of components we find a value between 3 and 4. This
must be the average number of variables in each connected component.

Both the number of components and the differing variables are approximately
multiplied by 10 when we compare the 10K variable instances with the 100K
variable instances. We observe, however, that these values are similar forK = 2, 3
and are divided by 4 or 5 when K = 4, 5. The reason is the perturbation factor
α, which is also divided by 5 in these instances.

The runtime is in the order of a few milliseconds for 10K variables and 70 to
100 milliseconds for 100K variables. This runtime should increase with β but we
observe some exceptions for low β. The reason has to do with the procedures in
DPX used to identify the group of variables that will be exhaustively explored
and the one for which only the parent solutions will be evaluated. From the
results of the tables, we conclude that a value for β of 3 or 4 is the best one
for these instances. Two other parameters affecting the runtime are the pertur-

bation factor α, because it will determine the number of differing variables (the
higher the value the higher the runtime), and K, since it will add edges to the
recombination graph. This is why we observe that runtime increases from K = 2
to K = 3 and from K = 4 to K = 5. Anyway, this runtime is small compared to
the number of solutions that are explored. If we take the results for N =100K
and K = 3 as an example, DPX is exploring 22693 solutions in 110 ms. This
is equivalent to exploring around 10800 solutions per nanosecond (ns) if a black
box approach is used.

4.2 Comparison with PX and APX for NKQ Landscapes

In this section we compare DPX with PX and APX. Table 3 shows a comparison
regarding three aspects: exploration capacity, runtime and performance inside
DRILS. The first two aspects depend only on the crossover operators and the
third one depends also on the algorithm (DRILS). For the exploration capacity
we show the logarithm in base 2 of the number of explored solutions by each
operator. We observe how DPX has the largest exploration capacity, around the
square of the one of APX (the logarithm is around double) and between the
fourth and fifth power compared to the one of PX. In terms of runtime, DPX
requires more time than PX and APX, as expected, and this time is between
20% and 70% higher than PX and APX. Finally, we compare the performance
of DRILS using each of the crossover operators. For each instance (ten per value
of K) we compare the medians of the algorithms after 1 minute of computation
and we apply the Mann-Whitney test (with significant level 0.05) to check if the
differences are statistically significant. The numbers followed by a black triangle
(N), white triangle (O) and equal sign (=) are the numbers of instances in which
DRILS with DPX is statistically better, worse or similar to DRILS with the
operator of that column (PX or APX). The performance comparison suggests
that DPX is improving the search of DRILS only for K = 3. In the other cases
the other two operators (specially APX) are better. A complete explanation of
this observation requires further research, but we can guess that DPX can be too
greedy, providing a solution which is a (near) local optimum difficult to escape
from. It also requires more time to run and this time is used in the other versions
of DRILS to escape from the local optima. Both ideas can be checked with a
Local Optimal Network (LON) analysis, which we defer to future work.

4.3 Comparison with PX and APX for MAX-SAT

In Table 4 we compare PX, APX and DPX using MAX-SAT instances from the
MAX-SAT Evaluation 20176. We used the same instances as in [7]7 to allow an
easy comparison. They are 160 unweighted and 132 weighted instances.

We observe how DPX required on average twice the time required by PX
and APX in each run, in the order of 2 to 5 milliseconds. However, the perfor-
mance of DRILS using DPX is significantly better in most of the instances than

6 http://mse17.cs.helsinki.fi/benchmarks.html.
7 The list of instances is at https://github.com/jfrchicanog/EfficientHillClimbers.

Table 3. Comparison of PX, APX and DPX for N =100 000 variables. The value for
α depends on K as described in the text and in DPX we used β = 4.

Exploration DRILS Performance Runtime (ms)

K PX APX DPX PX APX PX APX DPX

2 662 1 311 2 248 1N 0O 9 = 0N 8O 2 = 46 55 73

3 503 1 105 2 702 10N 0O 0 = 2N 0O 8 = 73 67 113

4 138 286 571 0N 4O 6 = 0N 9O 1 = 52 55 71

5 119 254 575 0N 9O 1 = 0N 10O 0 = 52 63 77

Table 4. Comparison of PX, APX and DPX for MAX-SAT instances (weighted and
unweited). In all the cases α = 0.3 in DRILS and β = 4 in DPX.

DRILS Performance Runtime (µs)

Instances PX APX PX APX DPX

Unweighted 126N 2O 32 = 96N 19O 45 = 1 060 849 1 907

Weighted 102N 14O 16 = 90N 17O 25 = 1 713 2 365 5 171

the performance when PX or APX is used. In particular, DPX is statistically
better than APX and PX in 96 and 126 unweighted instances, respectively. The
difference in the weighted instances is not so high, but still large enough to be
promising. Interestingly, weighted MAX-SAT instances must have a fitness land-
scape similar to NKQ Landscapes while unweighted instances have a different
fitness landscape, with many plateaus difficult to escape from. DRILS with DPX
seems to work better than DRILS with PX and APX in such a plateau-based
landscape. We defer to future work the detailed analysis of this performance and
the big difference with NKQ Landscapes.

5 Conclusions

In this paper we propose a new gray box crossover operator, DPX, with the
ability to obtain the best offspring out of the full dynastic potential if the density
of interactions among the variables is low. We have provided theoretical results
proving that DPX is no worse than Partition Crossover (PX) and usually no
worse than Articulation Points Partition Crossover (APX). We also compared
these three operators inside the DRILS algorithm in NKQ Landscapes and MAX-
SAT, certifying its exploration ability.

An interesting future line of research is to analyze the operator using Local
Optima Networks and the shape of the connected components of the recombi-
nation graph to understand the reasons for the observed different performance
in NKQ Landscapes and MAX-SAT. It would also be interesting to check the
performance of the operator in other algorithms and to develop a competitive
MAX-SAT solver based on it.

References

1. Radcliffe, N.J.: The algebra of genetic algorithms. Annals of Mathematics and
Artificial Intelligence 10(4), 339–384 (Dec 1994)

2. Eremeev, A.V., Kovalenko, J.V.: Optimal recombination in genetic algorithms.
CoRR abs/1307.5519 (2013), http://arxiv.org/abs/1307.5519

3. Hammer, P.L., Rosenberg, I., Rudeanu, S.: On the determination of the minima of
pseudo-boolean functions. Stud. Cerc. Mat. 14, 359–364 (1963)

4. Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-
Bost, B., Sýkora, O. (eds.) SOFSEM 2005: Theory and Practice of Computer
Science. pp. 1–16. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

5. Whitley, D., Chicano, F., Goldman, B.W.: Gray box optimization for mk land-
scapes (nk landscapes and max-ksat). Evolutionary Computation 24, 491 – 519
(Jan-09-2016 2016)

6. Tinós, R., Whitley, D., Chicano, F.: Partition crossover for pseudo-boolean opti-
mization. In: Proceedings of the 2015 ACM Conference on Foundations of Genetic
Algorithms XIII. pp. 137–149. FOGA ’15, ACM, New York, NY, USA (2015)

7. Chicano, F., Ochoa, G., Whitley, D., Tinós, R.: Enhancing partition crossover with
articulation points analysis. In: Proceedings of GECCO. pp. 269–276. GECCO ’18,
ACM, New York, NY, USA (2018)

8. Chicano, F., Whitley, D., Ochoa, G., Tinós, R.: Optimizing one million variable
NK landscapes by hybridizing deterministic recombination and local search. In:
Genetic and Evolutionary Computation Conference, GECCO 2017. pp. 753–760
(2017)

9. Chen, W., Whitley, D., Tinós, R., Chicano, F.: Tunneling between plateaus: Im-
proving on a state-of-the-art maxsat solver using partition crossover. In: Proceed-
ings of GECCO. pp. 921–928. GECCO ’18, ACM, New York, NY, USA (2018)

10. Tins, R., Zhao, L., Chicano, F., Whitley, D.: Nk hybrid genetic algorithm for
clustering. IEEE Transactions on Evolutionary Computation 22(5), 748–761 (Oct
2018)

11. Terras, A.: Fourier Analysis on Finite Groups and Applications, Cambridge U.
Press, Cambridge. Cambridge University Press (1999)

12. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing 13(3), 566–579 (Aug 1984)

13. Galinier, P., Habib, M., Paul, C.: Chordal graphs and their clique graphs. In: Nagl,
M. (ed.) Graph-Theoretic Concepts in Computer Science. pp. 358–371. Springer
Berlin Heidelberg, Berlin, Heidelberg (1995)

14. Newman, M.E.J., Engelhardt, R.: Effect of neutral selection on the evolution of
molecular species. Proc. R. Soc. London B pp. 1333–1338 (1998)

