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Abstract 

Microbial contamination of watercourses can threaten ecosystem services related 

to clean water; for example, recreational bathing, shellfish harvesting and potable 

water supplies. This is because pathogens associated with faeces from warm 

blooded animals can cause gastrointestinal illness in exposed human beings. 

Microbial water quality impacts from point sources associated with wastewater 

transfer and treatment have been reduced through engineering solutions. 

However, as these sources of contamination have been reduced diffuse sources 

have become more important. Diffuse pollution describes water quality impacts 

originating from accumulations of many small, spatially distributed, inputs. These 

sources of pollution are difficult to manage because their loading and connectivity 

to sensitive receptors varies spatially and temporally. The Sensitive Catchment 

Integrated Mapping Analysis Platform (SCIMAP) is a risk-based approach that has 

been developed to map sources of diffuse sediment and conservative nutrient 

pollution allowing for efficient targeting of mitigation efforts which are often 

expensive and occupy valuable productive land. SCIMAP has been well received 

within the regulatory community in the United Kingdom and its development to 

account for diffuse microbial pollution is therefore timely. The primary goal for this 

thesis was to explore SCIMAP’s application to microbial pollution, highlight areas 

for improvement and work towards a new SCIMAP framework that accounts for 

microbial diffuse pollution. An initial application of SCIMAP, as it exists, revealed 

that the time-integrated approach currently employed may be inappropriate for 

sources of microbial pollution that are likely to vary temporally due to microbial die 

off. Furthermore, an enhanced description of land use incorporating spatial 

distributions of the numbers and types of livestock may improve SCIMAP’s 
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performance. Spatial variations in microbial source loading arising from differences 

in the persistence of E. coli (an indicator of faecal pollution) in the faeces of 

different livestock was investigated within a controlled environment facility. This 

controlled experiment provided a novel non-linear description of E. coli growth in 

ovine and 2 types of bovine faeces for a period of 30 days post defecation. 

Potential variation in rainfall induced E. coli release from faecal matrices 

associated, with beef cattle, dairy cattle and sheep were explored using rainfall 

simulation. An asymptotic model of E. coli release with increasing rainfall depth 

was developed and no difference was discovered in the profile of release from 

sheep, beef cattle and dairy cattle. Finally lessons from these investigations were 

combined to propose a framework for an evolution of SCIMAP allowing for a better 

description of microbial source and transfer risk. This new version of SCIMAP will 

provide a decision support tool allowing for more efficient targeting of mitigation 

efforts reducing microbial impacts to important ecosystem services relying on 

clean water.  
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Figures. 

Figure 2.1. Theoretical response of faecal indicator organisms at different scales: 

(a) the survival of FIOs within individual faecal deposits; (b) the burden of FIOs at 

the scale of individual fields; (c) FIO population variations in the sediment sink; (d) 

3 scenarios with differing FIO – discharge relationships (i)  FIO peak prior to the 

discharge peak (sediment FIO stores relatively more important), (ii) FIO peak 

subsequent to discharge peak (landscape stores relatively more important), (iii) 

FIO peak concurrent with discharge peak; (e) variation of FIO concentrations at 

the catchment outlet which are a result of combining the processes represented in 

(a) to (d).   

Figure 2.2. Variable relative importance of landscape and sediment sources to 

FIO flux under differing meteorological conditions. Under successive rainfall 

events the landscape store of FIO becomes depleted and stream-bed sediment 

stores are replenished. Under dry weather the sediment store of FIOs declines 

due to die-off and deposits from animals replenish the landscape store.  

Figure 3.1. Maps illustrating the two study catchments: The Wyre in Lancashire, 

North West England (left); and The Yealm in Devon, South West England (right). 

Numbered points indicate sample locations and associate with the sample 

locations indicated in figure 2 and table 2. River data is from an Ordnance Survey 

MasterMap Topography layer.   

Figure 3.2. A bar plot illustrating the proportions of the contributing area 

associated with each sample point occupied by different land cover types. Please 

refer to online version for colour. 
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Figure 3.3. SCIMAP fitted results for (a) the Yealm and (b) the Wyre. The top 

panels show hexagonally binned scatterplots depicting how model performance 

changes with changing the risk weighting for each land cover. The colour of the 

hexagonal bin depicts how many simulations fall into that part of the plot. The 

bottom panels show boxplots which depict the variation in the risk weighting of the 

1% best performing simulations. 

Figure 3.4. An ordination plot showing the dissimilarity in land cover mosaic 

across the contributing catchments associated with sample points from the Yealm 

(grey) and Wyre (black). Increasing distance between points illustrates increasing 

dissimilarity in land cover make up between catchments. 

Figure 3.5. Boxplot illustrating the variability in the concentration of E. coli across 

samples from the Wyre catchment. Letters above the boxes indicate significant 

differences in FIO concentrations between sites as determined by a Dunns test.  

Figure 3.6. Boxplot illustrating the variance in performance associated with the 1% 

best performing simulations when observed data is subset according to season. 

Figure 3.7. A scatterplot of optimum risk weighting identifiability and percent 

coverage of the associated land cover. 

Figure 4.1. Scatter plot of E. coli concentrations through time. Where growth 

occurred lines are predictions of nonlinear (asymptotic exponential) mixed effects 

modelling. Where no growth was apparent lines illustrate linear mixed effects 

models. Dashed lines indicate 95% confidence intervals derived from normal non 

parametric bootstrap. Where the prediction is coloured black there was no 
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improvement in model performance (change in AIC <2) when the present 

average/present average +2°C treatment was incorporated.  

Figure 4.2. A scatter plot of E. coli concentration growth rate against moisture 

content. Colours indicate present average or present average +2°C temperature 

treatments. 

Figure 4.3. Boxplot showing logit transformed initial moisture content in the faeces 

of three livestock types from two seasons.  Different letters and colours illustrate 

where results of a Tukey post-hoc test revealed differences between livestock and 

season combinations. Y axis labels have been back transformed to improve 

interpretability. 

Figure 5.1. Rainfall simulator construction. From the top left moving clockwise: 

placement of soil boxes underneath a spray nozzle; water pressure and flow 

gauges; rainfall simulator construction to prevent interference from wind. 

Figure 5.2. The left plot shows the spatial variation of simulated rain within the 

rainfall simulator; boxes indicate placement of soil-runoff boxes and the circles 

indicate the placement of rainfall collection pots. The distribution of droplet size is 

shown in the right hand figure. 

Figure 5.3. Boxplot of E. coli die off in the mains water feeding the rainfall 

simulator and in de ionised water. 

Figure 5.4. Discharge of surface runoff from soil boxes across stock type 

treatments and through time. 

Figure 5.5. E. coli load in surface run off from soil boxes through time. 
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Figure 5.6. Logit transformed E. coli release as a percentage of the total faecal 

burden applied to each soil-run off box. The y axis has been back transformed to 

enhance interpretability. The solid line illustrates the results of a asymptotic mixed 

effect model. Dashed lines are 95%, bias-corrected and accelerated (BCa), 

bootstrap prediction intervals. 

Figure 5.7. Dot plot of model random effects (deviation of individual faecal 

deposits from the population model) against stock type. 

Figure 6.1. Scatter plot illustrating how initial concnetration of E. coli and the 

extent to which E. coli can grow in a feacal deposit contributes to an overall source 

hazard weighting. Stock season combinations occuring in the top right of the plot 

will have the highest source hazard; stock season combinations at the bottom left 

of the plot have the lowest source hazard weighting. An overall source hazard 

weighting is therefore the distance form the origin.  

Figure 6.2. From left to right: bar plot of median daily rainfall amount; bar plot of 

average number of days with rain.  

Figure 6.3. Scatter plot of a hazard weighting reflecting the relative likelihood of 

rain on a day in a given month against a hazard weighting associated with the 

amount of rain that occurs on a single day in a given month. A hazard weight that 

reflects both theses aspects of mobilisation hazard is then the distance from the 

origin. 

Figure 6.4. The bottom bar plot illustrates stock type and month differentiated 

hazard weightings that capture aspects of hazard associated with the 

concentration of E. coli in fresh faeces; the extent to which E. coli grows in faeces; 
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the relative chance of rain on a day of a given month; and the amount of rain that 

falls in a single day of a given month. The top bar plot shows how source hazard 

and mobilisation hazard contribute to the overall hazard weight in different months. 
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Tables.  

Table 3.1. A description of SCIMAP land cover classes and how they are derived 

from CEH LCM land cover classes. 

Table 3.2. Catchment characteristics of each of the sub-catchments investigated. 

Connectivity is defined as the lowest value of topographical wetness index along a 

flow path as per Lane et al. (2009). Number of samples indicates the number of 

records remaining after sub setting all the available data by the days where flow is 

>60% of the highest flow recorded. 

Table 3.3. Table summarising the influence of land cover risk weighting on 

SCIMAP performance. Mean risk weightings and associated standard deviation for 

the 1% best performing models. p value indicates the results from a t-test and the 

confidence with which we can reject the null hypothesis that there is no variation in 

model performance as a result of the risk weighting assigned to a land cover type. 

Table 4.1. Controlled environment facility settings. 

Table 4.2. Average (n=5) initial, maximum, and day of maximum E. coli 

concentration for faeces from three different livestock types under four 

temperature regimes. All values are given as log10 CFU/g dry faeces.  

Table 4.3. Table of model parameters associated with asymptotic models for each 

of the livestock types. Numbers in parentheses indicate lower and upper bounds of 

a 95% confidence interval.   

Table 5.1. Summary information for faecal deposits; values in parentheses are 

standard deviations. Model random effect is the deviation of an individual faecal 

deposit from the population model. Here the standard deviation of the random 
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effects associated with each stock type are shown to demonstrate individual 

variability associated with different stock types. 
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1. General introduction 

 

Microbial contamination of watercourses can threaten ecosystem services related 

to clean water for example recreational bathing water, shellfish harvesting, and 

potable water supply. Improvements in microbial water quality have been achieved 

through engineering solutions associated with point sources of pollution such as 

sewer network overflows and outlets from waste water treatment works. However, 

as inputs from point sources have been reduced diffuse sources have become 

more important. Diffuse sources of microbial pollution provide inputs that by 

themselves do not have a great impact on water quality, but the accumulated 

impact of many inputs has the potential to impact ecosystem services relying on 

clean water. Diffuse sources of microbial pollution often originate from agricultural 

activities and include direct deposits of faeces by livestock and spreading of 

manures and slurry; although wildlife can also provide a source of microbial 

contamination. Diffuse sources of microbial pollution are difficult to manage 

because their source loading and connectivity to sensitive receptors varies 

spatially and temporally. Pollution mitigation measures such as fencing of water 

courses and vegetative buffer strips are costly and can occupy valuable productive 

land. Therefore, mitigating infrastructure should be targeted toward areas where 

they will provide the most improvement in water quality. In the fields of diffuse 

sediment and nutrient pollution the Sensitive Catchment Integrated Mapping 

Analysis Platform (SCIMAP) has proven valuable in identifying areas that 

contribute to diffuse pollution. The overarching goal of this thesis is to explore the 

application of SCIMAP to the problem of catchment microbial dynamics.  
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1.1 Aims and Hypotheses 

(i) To investigate the performance of the current iteration of SCIMAP when it is 

applied to diffuse microbial pollution and identify areas for improvement. 

Hypotheses: SCIMAP, as it exists, considers conservative nutrient and sediment 

pollution and is therefore unlikely to capture temporal variations in source risk of 

microbial pollution due to microbial die off. 

(ii) Under controlled conditions, replicate the proliferation of E. coli seen within 

faecal deposits in field trials and study E. coli survival in the faeces of three types 

of livestock in parallel.   

Hypotheses: There will be a greater magnitude of E. coli growth: (i) under warmer 

conditions more conducive to E. coli survival and (ii) within bovine faeces which 

have a higher water content than ovine faeces.    

(iii) Create livestock type differentiated E.coli release profiles under simulated 

rainfall. 

Hypothesis: E. coli is released more rapidly from bovine faeces which have a 

higher moisture content.  

(iv)Finally, the culmination of the thesis will be a framework with which information 

on the persistence of FIOs in faeces and FIO release from faeces under rainfall 

can be used to adapt the SCIMAP method for diffuse microbial pollution. 
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1.2 Thesis Structure 

The thesis is structured to guide the reader through the research questions 

outlined above. The state of the knowledge in the field of catchment microbial 

dynamics is discussed in chapter 2 and concludes with a discussion surrounding 

the need for predictive modelling frameworks that address different and diverse 

problems from forecasting pollution to informing the deployment of mitigation 

measures. The SCIMAP modelling framework is put into context with existing 

frameworks for modelling the dynamics of microbial transfer through the 

environment and the need to adapt SCIMAP for diffuse microbial pollution is 

discussed. 

There are 3 data chapters. In order to reflect the demands of contemporary 

academic writing each chapter is written as if it were appearing in an academic 

journal. Therefore, each chapter is written to allow it to stand as an individual piece 

of writing and is structured with its own abstract, introduction, methods, results, 

and discussion sections.  

Chapter 3 applies SCIMAP in its present form to diffuse microbial pollution and 

provides a benchmark to test future developments. It also highlights weaknesses 

in the current approach and informs the rest of the thesis. The SCIMAP framework 

has its foundations in the source-mobilisation-delivery-impact continuum and this 

provides a narrative for its development to account for diffuse FIO pollution. To 

address some of the problems associated with SCIMAP’s treatment of source 

loads of diffuse pollution chapter 4 investigates the persistence of a commonly 

used indicator of faecal pollution, E. coli, in the faeces of different livestock under 

environmentally relevant temperature conditions that vary diurnally and are typical 



 19 

of temperatures experienced in spring and summer. Chapter 5 investigates the 

profile of E. coli release from the faeces of different livestock under simulated 

rainfall.  

New knowledge gained through the experimentation in chapter 4 and 5 is 

synthesised in chapter 6 to develop a concept for developing SCIMAP for 

application to diffuse FIO pollution. Challenges and next steps are discussed. 
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2. Faecal indicator dynamics in the catchment continuum: recent          

developments and future research challenges for microbial compliance 

parameters. 

 

2.1. Abstract 

Agricultural landscapes, through the management of livestock and their manure, 

provide a source of faecal pollution to the environment, which can impact upon 

important ecosystem services such as clean and safe bathing, drinking and 

shellfish harvesting water. The potential impact of diffuse faecal pollution is 

recognised in legislation throughout the world; for example, via the Bathing Water 

Directive in the EU and the Clean Water Act in the USA. Regulators monitor 

microbial water quality using faecal indicator organisms (FIOs) as an indicator of 

faecal pollution. In order to meet stringent health-based standards set out in 

legislation there must be the capability to predict water quality impairment, identify 

impaired water bodies and identify opportunities for water quality improvement. 

The aim of this critical review was to investigate to what extent previously 

identified challenges have been addressed and determine opportunities for further 

research. The review identified that knowledge of FIO fate and transfer in 

catchments has advanced in recent years, but that research is still required to fully 

understand the dynamics of FIO regrowth in faeces following deposition and 

factors determining variable patterns of FIO persistence in soil. In addition, field 

relevant information regarding persistence of FIOs in sediment is required to 

supplement recent laboratory investigations. Understanding the episodic flux of 

FIOs remains a challenge and developing FIO release kinetics from faecal, soil 
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and sediment matrices may allow for further understanding of the emergence of 

faecal pollution following rainfall events. There is also a need to develop 

understanding of how landscape sources of FIO connect to watercourses and to 

develop tools that allow mitigation efforts to be spatially targeted.



22 
 
 

2.2 Introduction 

Microbial pollution of watercourses has gained increased attention in recent years, 

with growing recognition of the breadth of impacts it can have on both the 

environment and human health (Eze et al. 2014). The contamination of receiving 

waters with pathogens has the potential to threaten the ecosystem services that 

clean and safe waters provide, such as recreational, drinking and shellfish 

harvesting services. Environmental monitoring and quantification of faecal 

indicator organisms (FIO) such as Escherichia coli and intestinal enterococci 

provides an internationally accepted regulatory framework to help understand 

levels of faecal pollution in the wider environment, though their relationship with 

specific pathogens is a topic of much debate (Bradshaw et al. 2016; Pachepsky et 

al. 2016). Environmental monitoring of pathogens is less common largely due to 

cost constraints, their lower abundance in the environment and the wide range of 

microorganisms that could be chosen as a specific target for quantification.   

Common sources of microbial contamination of the aquatic environment include 

agricultural activities and end-of-pipe outflows associated with sewage treatment. 

In agricultural catchments, there is a tendency for rainfall to promote diffuse inputs 

of FIOs to receiving waters, for example via hydrological pathways such as 

overland flow and subsurface drainage (Murphy et al. 2015). At small scales, 

individual diffuse inputs (e.g. livestock faecal deposits) might pose little risk to the 

aquatic environment, but with increasing scale the cumulative impact of diffuse 

contributions can seriously threaten water quality. In catchments dominated by 

urban environments there is a greater risk of microbial water pollution from point 

sources at waste water treatment works (Kay et al. 2010). 
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The potential risk that FIOs pose to ecosystems service delivery is recognised in 

legislation throughout the world. For example, the United States Clean Water Act 

requires a Total Maximum Daily Load (TMDL) assessment of a pollutant to be 

carried out once a water body has been identified as being impaired. In 2014 

microbial pollution caused more U.S. water quality impairments than metals, 

nutrients, oxygen depletion and sediment (Pandey et al. 2014). In the European 

Union, the Water Framework Directive (2000/60/EC) requires identification of 

impacted water bodies and implementation of ‘programmes of measures’ (POMs) 

to improve water quality, including meeting the regulatory standards set out in the 

Bathing Water Directive (2006/07/EC) and Shellfish Waters Directive 

(2006/113/EC), which aim to reduce public health risk by minimising exposure to 

water contaminated with faecal microbes.  In response, a holistic catchment-based 

approach is needed to understand pollution inputs and their environmental 

interactions and thus enable effective management of water quality for multiple 

benefits. This approach has led to increased efforts to promote the integrated 

catchment management (ICM) approach (McGonigle et al. 2012; Falkenmark 

2007) and has helped to drive forward multi-pollutant research agendas and raise 

the profile of FIOs as a priority pollutant alongside more widely studied nutrients, 

such as nitrogen (N) and phosphorus (P). Furthermore, the source-mobilisation-

delivery-impact (SMDI) continuum developed for diffuse nutrient pollution 

(Haygarth et al. 2005) is useful for conceptualising how generic diffuse pollutants, 

including FIOs, interact with the environment to become a threat to water quality at 

the catchment scale. To ensure effective prediction, management and reduction of 

FIO concentrations in receiving waters, a robust understanding of FIO behaviour 

throughout the entire SMDI continuum is required.    
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The field of catchment microbial dynamics represents an interdisciplinary and 

multi-scaled research agenda cutting across rural and urban environments, linking 

science and policy, and necessitating the integration of microbial fate and transfer 

dynamics from the hillslope through to the coastal environment. The state-of-

knowledge and breadth and scope of research opportunities associated with this 

emerging research agenda were outlined by Kay et al. (2007b) who provided a 

roadmap of challenges and priorities for the research community to tackle in order 

to advance this field. Therefore, rather than provide a comprehensive and 

exhaustive evaluation of the literature in the field of catchment microbial dynamics, 

the aim of this review is to provide a critical and timely update on recent 

international research progress, assess how those challenges identified by Kay et 

al. (2007b) are being met and to highlight the pressing issues that still remain or 

have since emerged. Critically, this review will cover the advances made through 

research in agricultural systems and focus on FIOs as a regulatory compliance 

parameter rather than detail research needs associated with specific pathogens.   

2.3 An existing research agenda 

In summarising the state-of-the-science, Kay et al. (2007b) concluded with seven 

core observations. Briefly these conclusions were:  

1. studies show reductions in FIO flux following implementation of on-farm 

measures such as exclusion of livestock from watercourses; 

2. export coefficients, whereby parts of the landscape are assigned a 

coefficient describing its ability to deliver FIOs to watercourses, provide a 

means to spatially target mitigation measures however a limited 
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understanding of the episodic nature of FIO transfer provides challenges in 

this respect; 

3. predictive approaches, such as the use of export coefficients, operate at a 

scale of >1km2, however features influencing FIO transfer are often far 

smaller making the use of these approaches for spatially targeting of BMPs 

challenging; 

4. a limited understanding of the survival of FIOs in different environmental 

matrices and a lack of field-relevant information on the transfer of FIOs to 

watercourses hampers predictive modelling of instream FIO concentrations; 

5. monitoring exercises often utilise a regular monitoring regime which is 

limited in its potential to explore the episodic nature of FIO export, a key 

knowledge gap; 

6. the assumption that FIOs associate with sediment is challenged by a limited 

understanding of how FIOs partition with sediments of different 

characteristics; 

7. cooperation between water and agricultural sectors as facilitated by 

changes in the structures providing financial support for farmers provides 

opportunities for the control of FIOs in the EU.       

These observations provide a benchmark against which research progress can be 

evaluated. These observations have been categorised into four themes for the 

purpose of this review, namely: (i) fundamental data needs, (ii) event dynamics, 

(iii) landscape drivers of FIO risk and (iv) managing diffuse FIO pollution. For each 

theme we provide a critical update on the research developments and the 
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advancing state of knowledge in an effort to identify where challenges remain, and 

new opportunities are emerging in the field of catchment microbial dynamics. 

 

2.4 Fundamental data needs 

A number of issues identified above fall under the general theme of ‘fundamental 

data needs’. Key knowledge requirements have been highlighted including a need 

for further understanding of the variability in FIO concentrations within fresh faeces 

and FIO population dynamics in the faeces of livestock, in soil and within stream 

bed sediment. An additional knowledge requirement is also discussed: the 

potential contribution of FIOs from wildlife faeces to watercourse pollution (Kay et 

al. 2007b). 

Diffuse FIO pollution can be described as source limited because the number of 

FIOs available for transport is finite and varies through time depending on 

microbial die-off (Evanson and Ambrose 2006) and management practices 

(Donnison et al. 2008; Oliver et al. 2014). Therefore, knowledge of the proliferation 

and persistence of FIOs in the landscape is a key first step in understanding the 

potential for catchment transfers of FIOs (figure 2.1a and 2.1b). The size of the 

landscape store of FIOs can be defined as the sum of the daily input of FIOs and 

the FIO inputs from previous days, which will be declining as a result of die-off 

(Oliver et al. 2010). Determining the initial concentration of FIOs in fresh faeces 

remains a challenge due to high variability seen within and across studies.  
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Figure 2.1. Theoretical response of faecal indicator organisms at different scales: 

(a) the survival of FIOs within individual faecal deposits; (b) the burden of FIOs at 

the scale of individual fields; (c) FIO population variations in the sediment sink; (d) 

3 scenarios with differing FIO – discharge relationships (i)  FIO peak prior to the 

discharge peak (sediment FIO stores relatively more important), (ii) FIO peak 

subsequent to discharge peak (landscape stores relatively more important), (iii) 

FIO peak concurrent with discharge peak; (e) variation of FIO concentrations at 

the catchment outlet which are a result of combining the processes represented in 

(a) to (d).   
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For example in dairy cattle faeces Moriarty et al. (2008) observed concentrations 

of E.coli ranging between 2.6x103  to 2.0x107 g-1 CFU (wet weight); Muirhead 

(2009) observed a range between 1.7x103 and 4.9x106 and Soupir et al. (2008) 

reported a variation of 1.16x105 to 8.63x107MPN g-1 (wet weight). These examples 

report wet weight counts and are difficult to compare as variations in moisture 

content are likely to alter the weight of samples and thus counts per weight. Dry 

matter content should also be reported to allow conversion between wet and dry 

weight counts for comparison (Oliver et al. 2014).   

It is important to determine what drives the variability of FIO concentrations in 

fresh faeces in order to understand the landscape reservoir of FIOs. Animal age 

has been shown to influence FIO inputs to land with average E. coli concentrations 

of 1.62x107 in adult sheep and 6.04x108 g-1 (wet weight) in lambs having been 

recorded (Moriarty et al. 2011). However, there is little reliable information on the 

different contributions of FIO from animals across different age bands. Hormones 

associated with host stress may influence the survival of bacteria residing in the 

gut of livestock (Freestone et al. 2008). Diet has also been implicated as a factor 

with silage fed during housed periods reducing the burden of FIOs within faeces 

compared with the diet typical of grazing regimes on pasture (Oliver et al. 2014). 

Silage is more acidic than grazed grass reducing rumen pH which may impact 

upon micro-organisms in the gut (Donnison et al. 2008). Diet is unlikely to be the 

only factor influencing shedding rates by cattle and removal of cattle from faecally 

contaminated pasture is likely to have reduced the opportunity for FIO re-

ingestion. Development of FIO fate and transfer models requires data and 

understanding of the FIO burden within the faeces of different animals under 

different conditions. Understanding of initial concentrations of FIO in faecal 
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deposits is growing; however, limited data means model development often 

requires the use of parameters reported in international literature, which may not 

represent local conditions (Oliver et al. 2014).  Models of FIO fate and transfer 

may have to be calibrated to individual circumstances through collection of new 

data which can be time consuming and expensive. Thus, there is a need for a 

systematic review and meta-analysis to bring disparate datasets together and 

create a library of global FIO concentrations across livestock dominated regions. 

Such analysis could begin to address important questions as to whether 

concentrations remain stable in different regions over time, follow trends or differ 

dramatically year on year. Subsequent development of models describing how the 

shedding rates of livestock vary would also be a useful addition to existing 

process-based models.  

The persistence of FIOs in faecal deposits do not necessarily follow normally 

expected decay rates within faecal deposits (Kay et al., 2007b). Wang et al. (2004) 

determined that the first order kinetic often used to approximate FIO persistence 

outside the alimentary canal described E. coli die-off only between 3 and 20 days 

post defecation and Stocker et al. (2014) showed that a Weibull model, describing 

initial slow inactivation followed by more rapid inactivation, rather than a linear 

semi-logarithmic is preferable for the description of FIO persistence in a faecal 

matrix. A key weakness in FIO fate and transfer models is a failure to recognise 

complex FIO survival dynamics such as the potential regrowth of FIOs outside of 

the alimentary canal. Further evidence has emerged over recent years highlighting 

the importance of including a consideration of FIO regrowth. For example, Soupir 

et al. (2008) studied dairy cow faeces and observed E. coli growth for 7 and 4 

days, and enterococci growth for 13 and 4 days in spring and summer 
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respectively. In New Zealand, enterococci growth occurred within sheep faeces 

during all four seasons with peak concentrations reached after 11, 28, 14 and 24 

days in spring, summer, autumn and winter respectively while E. coli growth in 

sheep faeces was observed in spring, summer and autumn only with peak 

concentrations reached after 11, 8, and 14 days respectively (Moriarty et al. 2011). 

Soupir et al. (2008) explored the limitations of first order die-off kinetics and noted 

that because it does not capture regrowth the statistically derived intercept can 

over-estimate the initial concentration of FIOs. In addition, if an experimentally 

derived initial concentration is used within the first order die-off kinetic the 

persistence of FIOs is likely to be under predicted because the equation is shifted 

downward. While progress has been made in understanding growth of FIOs there 

remains a need for more complex models of die-off that account for variable rates 

of growth and death under different environmental conditions (Soupir et al. 2008a). 

These models need to combine durations and rates of growth to able to describe 

the magnitude of FIO population growth occurring within faecal matrices. It is 

possible that small differences in the specification of models describing FIO 

persistence in individual deposits may lead to more than just trivial differences in 

landscape scale predictions of FIO burden. However, the use of more complex 

FIO survival models would need to be justified by comparing their performance 

against predictions from simpler linear decay functions.  

Over recent years progress has been made in addressing the need for more 

complex models of FIO persistence. For example, Oliver et al. (2010) observed E. 

coli growth in cattle faeces for up to ten days post defecation and incorporated 

average growth into a field scale FIO burden model. However, this first 

approximation of FIO regrowth utilised a static rate of growth. The rate of growth is 
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likely to vary spatially and temporally due to variations in abiotic factors such as 

temperature, humidity, rainfall and solar radiation (Soupir et al. 2008a), and this 

should be captured within new models of FIO persistence in faeces. Martinez et al. 

(2013) applied the Q10 approach to E. coli survival in order to understand how 

rates of growth and death vary according to temperature. The Q10 temperature 

coefficient is a measure of the rate of change of a system as a result of increasing 

the temperature by 10°C. This coefficient can be used to correct die-off models to 

account for the effect of temperature. The method has been applied to both the 

growth and die-off phase of FIOs. The approach shows promise, but further 

exploration is limited by available datasets. For example, without further 

information regarding the duration of the growth phase under different conditions 

and variability in animal shedding rates it is difficult to apply these coefficients in 

models describing the variation in landscape burden due to the growth and decay 

of FIO populations.     

There are limited data regarding the potential for wildlife to contribute FIO pollution 

to watercourses. For example, Daszak (2000) highlighted the potential for wildlife 

to contribute to the landscape store of FIOs but important information on the 

survival of FIOs within wildlife faeces is scarce (Guber et al. 2015). More recently 

there has been increasing momentum with respect to addressing this knowledge 

gap. For example, E. coli and enterococci have been shown to survive and grow 

once inoculated into Canada Goose faeces (Moriarty et al., 2012) and Guber et al. 

(2015) studied FIO persistence in the faeces of White-Tailed deer and reported 

differences in FIO survival dynamics from those observed in the faeces of 

domestic animals that have been more comprehensively studied. This highlights a 

need to understand variabilities in the persistence of FIOs occurring naturally in 
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the faeces of wildlife. Depending on the niche space wild animals fill they will be 

more or less likely to contribute FIOs to watercourses and further information on 

the survival of FIOs within the faeces of a variety of wild animals would be useful if 

we are to understand the contribution wildlife make to faecal pollution of 

watercourses. The impact of wildlife on microbial water quality has the potential to 

be as significant as some farm management practices, such as spreading of 

collected manure or grazing of livestock on pasture (Muirhead et al. 2011) 

especially where catchments have a higher proportion of non-agricultural land 

cover (Kiefer et al. 2012). Furthermore, mitigation efforts such as vegetated buffer 

strips have the potential to attract wildlife leading to a concentration of wildlife 

faeces on stream margins. While attention toward this knowledge gap is growing, 

research is needed before the contribution wildlife make to the landscape reservoir 

of FIOs is fully understood. This can perhaps complicate the communication of risk 

management to farmers and landowners if these catchment stakeholders then feel 

that wildlife sources are receiving less regulation than farmed animals despite 

perceptions that wildlife contributions could impact water quality. Evidence is 

therefore needed to help underpin communications about proportional 

contributions of different animals and livestock to the different catchment 

communities responsible for managing land and water. 

FIOs are able to persist in the soil contributing to the landscape reservoir of FIO 

(Texier et al. 2008; Muirhead et al. 2009) and the ability of FIOs to persist in soils 

is important as it provides the opportunity for their transfer to watercourses over 

successive rainfall events. Muirhead et al. (2009) compared the faecal and soil 

reservoirs and found the soil reservoir to be only two orders of magnitude less 

than the faecal reservoir; 3.4 × 104 to 6.3 × 106 MPN m–2 (wet weight) in the soil 
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compared with 4.2 × 107 to 1.4 × 1011 MPN m–2. It is important to understand the 

variation in the prevalence and persistence of FIOs within this store if the 

landscape reservoir of FIOs is to be determined. Texier et al. (2008) studied E. coli 

persistence within cow faeces and in surrounding soil and E. coli survived for two 

months while a faecal matrix existed, it declined when the faecal matrix broke 

down. Meanwhile E. coli populations in the top soil layer (0-5 cm) remained at a 

constant concentration of 103 to 104 cells g−1 dry soil and E. coli prevalence in the 

root zone (5-25 cm) appeared to vary with soil type and was reduced in well 

drained soils (< 102 cells g−1 dry soil compared with 103 to 104 cells g−1 dry soil in 

poorly drained soils). Evidence suggests that the soil reservoir of FIOs depends on 

soil characteristics (Texier et al. 2008), such as organic matter content (Oliver et 

al. 2005a), and some progress has been made in understanding the relationship 

between soil characteristics and FIO persistence in soil stores. VanderZaag et al. 

(2010) discovered that E. coli was able to survive for two times longer in soils of a 

field amended with dairy cattle manure and inorganic fertiliser compared with soils 

from an adjacent riparian zone. Bucci et al. (2015) investigated the impact of 

freeze/thaw cycles on the survival of E. coli in soil and observed a decrease of up 

to four orders of magnitude in faecal coliforms (FC) and enterococci following 

winter freezing and Oliver et al. (2012) report a drop of E. coli concentrations at a 

headwater catchment during freezing conditions. However, Adhikari et al. (2007) 

report E. coli survival of six months in frozen soil. There is, however, little data 

regarding the influence of freeze/thaw and wetting/drying cycles on the fate and 

transfer of FIOs in the environment. This represents a critical limitation in current 

understanding because these cycles are likely to determine the extent to which 

FIOs persist and are transported over multiple rainfall events or snowmelt periods. 
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Further knowledge regarding the influence of soil temperature, type and nutrient 

status on the persistence of FIOs in the soil store would be useful for 

understanding the spatial heterogeneity of the landscape burden of FIOs and the 

extent to which FIOs can move toward watercourses over successive rainfall 

events.          

While survival of manure derived FIOs in soil has been studied, evidence is 

emerging that suggests E. coli are able to develop into naturalized populations 

adapted to conditions in the environment. Differences in the genome of E. coli 

derived from faecal deposits and soil have been observed and E. coli have been 

shown to compete for niche space in the soil, exploiting a wide range of nutrient 

sources at temperatures as low as 15°C (Texier et al. 2008; Brennan et al. 2013). 

The survival dynamics of these naturalised populations of E. coli are influenced by 

the indigenous microbial community and environmental conditions such as soil 

temperature, moisture and nutrient status (Ishii et al. 2010). The presence of a 

naturalised population of FIOs in the soil may impact on the performance of FIOs 

as indicators of faecal pollution in water courses. It is possible that transfer of 

these organisms to watercourses may be perceived as faecal contamination. It 

would be useful to understand how these naturalised populations of E. coli interact 

with their environment in comparison with faecally derived E. coli in order to realise 

how the presence of these organisms influences the perceived level of faecal 

contamination in watercourses.   

FIOs, once delivered into streams, are able to settle and survive in stream bed 

sediments creating an important reservoir of FIOs (Muirhead et al., 2004; 

Pachepsky and Shelton 2011; Pandey et al. 2013) which can be remobilised under 
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high flow conditions (Droppo et al. 2011; Piorkowski et al. 2014) or resuspended 

by livestock trampling. Current process-based modelling tends not to account for 

FIO persistence in a sediment reservoir or FIO/sediment association and 

dissociation. Understanding the persistence of FIOs in the sediment reservoir will 

improve our ability to assess and predict microbial water quality by providing 

information on this legacy store of FIOs that have the potential to contribute to 

pollution. It has been suggested that FIOs are able to survive in stream-bed 

sediment because it provides nutrients and a surface on which to grow (Shelton et 

al. 2014). Some progress has been made in determining what drives variable FIO 

population dynamics in sediment utilising laboratory experiments. For example, 

Shelton et al. (2014) investigated the impact of nutrient concentrations on FC 

population change and found a nitrogen peak stimulated FIO growth with 

subsequent population decline at the rate prior to the nutrient spike. An influence 

of bed shear stress has been observed with thicker substrata enhancing FIO 

population survival (Walters et al. 2014). It is also likely that predatory bacteria 

indigenous to stream-bed sediment will impact FIO persistence by grazing and 

depleting their numbers (Walters et al. 2014). Temperature has also been shown 

to have an impact with slow population decline at 4°C. In addition, fine particle and 

organic carbon content reduces inactivation rates and sensitivity of inactivation to 

temperature (Garzio-Hadzick et al. 2010). The experiments by Shelton et al. 

(2014), Walters et al. (2014), and Garzio-Hadzick et al. (2010) provide valuable 

information on FIO survival in sediments. However, field relevant studies are 

required to assess the appropriateness of extrapolating findings from these 

laboratory studies to field conditions.  
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Kay et al. (2007b) recognised that more complex models of FIO persistence in the 

landscape are needed and further knowledge of FIO die-off has been achieved. 

However, understanding a period of FIO population growth immediately following 

deposition in the environment remains a challenge. The lack of a large dataset 

representative of E. coli prevalence and persistence in livestock faeces at a 

national to international scale provides a significant barrier to the development of 

robust FIO risk prediction tools. In addition, the potential for wildlife to contribute to 

FIO water pollution has been raised and this is now emerging as a new research 

agenda. The variability of FIO persistence in soil and river sediments has been a 

topic of investigation and the ability of soils and sediments to provide an 

accommodating habitat for FIOs as they are transferred to sensitive receptors over 

multiple rainfall events is a research priority. While preliminary laboratory results 

have suggested factors that influence FIO persistence in stream bed sediments 

field relevant data are now needed to assess the appropriateness of extrapolating 

these findings into the real world.   

2.5 Event dynamics 

Landscape accumulations of FIOs can be mobilised by rainfall. Once mobilised, 

rainfall-runoff can transport FIOs across and through the soil, and if delivered to an 

aquatic receptor this can lead to wider contamination of watercourses. It is 

important to understand the episodic flux of FIOs following rainfall events (figure 

2.1c) because it is widely recognised that storm events account for >90% of the 

total load of FIOs transported to watercourses (Kay et al. 2007b; McKergow and 

Davies-Colley 2010; Kay et al. 2010). More recent evidence has suggested that 

even small increases in discharge (0.25 - 0.8 L s-1), that still represent a 
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hydrograph ‘surge’ but at much smaller magnitude under base flow conditions, can 

also lead to an order of magnitude increase of FIO concentrations in headwater 

streams (Oliver et al. 2015). Despite some focus on FIO flux dynamics during 

storm events in recent years this remains an area of much uncertainty and an area 

of significant opportunity in terms of substantiating an evidence base concerning 

how scale of study, and storm and catchment characteristics can influence FIO 

flux responses. The impact of different storm typologies and antecedent conditions 

on the transfer of FIOs to watercourses and the role hysteresis can play in 

predicting FIO flux is unclear. Perhaps a barrier that prevents a catalogue of 

empirical storm datasets being produced is the lack of perceived investigative 

novelty associated with such monitoring campaigns relative to research exploring 

the mechanisms of FIO fate and transfer. Alternatively, it may be due to the nature 

of the resources required to enable the capture of good quality storm pollutant 

data through hydrographs, being labour intensive and technically challenging if 

sampling in remote locations.  

Hysteresis analysis is a useful way to describe how the peak in discharge relates 

to the peak of a pollutant such as FIOs (Williams 1989) and intra event and intra 

catchment variations in the FIO – discharge hysteresis patterns observed (i.e. 

peak FIO load occurs either before, after and at the same time as the discharge 

peak) highlights the complexity of the processes involved in the flux of FIOs 

throughout catchment systems. For example, studies associated with large 

catchments have observed E. coli concentration peaks prior to discharge peaks 

(McKergow and Davies-Colley 2010) whereas small headwater catchments have 

shown no clear trends of hysteresis (Oliver et al. 2015).  The hysteresis responses 

observed are likely to be influenced by scale making comparison between studies 
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difficult. A useful resource for the research community would be the development 

of a database of hysteresis rules associated with different catchment types, storm 

typologies and management regimes. Further understanding of what drives 

variation in FIO – discharge hysteresis patterns will be critical to help develop 

robust and transferable rules of cell emergence during different types of storm 

event. 

The general agreement that an order of magnitude increase in FIO load will occur 

during high flow conditions suggests that rainfall is activating a rapid hydrological 

pathway such as overland flow to facilitate the efficient transport of FIOs (Collins et 

al. 2005). Using a flow path separation technique (loadograph recession analysis) 

Murphy et al. (2015) associated high loads of FIO with faster flow paths including 

overland flow, preferential flow, conduit flow and large fissure flow highlighting 

these as key pathways for FIO transport to watercourses immediately following 

rainfall. Overland flow dominated transport of FIOs during high flow may lead to 

diffuse landscape sources becoming more important than urban point sources 

which are likely to be relatively more important during base flow conditions (Kay et 

al. 2010).  

Drainage of agricultural land is another conduit for faecal pollution providing rapid 

transport at times of heavy rainfall. Oliver et al. (2005) investigated the relative 

importance of drained and undrained pasture and while drainage reduced 

overland flow there was little difference in FIO export from the two treatments as in 

the drained treatment overland flow was routed to mole and tile drains which 

routed cells to the watercourse. Additionally, Falbo et al. (2013) and Buchanan et 

al. (2013) found that roadside ditches adjacent to agricultural land provide conduits 
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for E. coli transfer to watercourses that bypasses landscape features which may 

attenuate FIOs. Therefore, management of rapid pathways that bypass the 

general landscape may provide an opportunity for water quality improvement.  

Complex patterns of FIO – discharge hysteresis highlights the complexity of the 

processes driving FIO flux and understanding what drives the variable hysteresis 

patterns observed will be useful. It has been suggested that the relative 

importance of landscape and sediment sources of FIO between different 

catchments may drive some of this complexity (Hudson 2003). Wilkinson et al. 

(2011) investigated stormflow increases of E. coli concentration and developed a 

model that made better predictions of storm flow dynamics within large catchments 

compared to small catchments. The authors highlight the spatial heterogeneity in 

sources of FIOs as a significant challenge for modelling FIO flux in smaller 

catchments as the relative contribution of landscape sources compared with 

stream bed sediment sources is greater in smaller catchments. In larger 

catchments the stream bed sediment sink of FIOs is likely most important with 

successive settling and remobilisation of FIOs over multiple storm events 

influencing FIO flux (Wilkinson et al.  2011). It is important to note that the relative 

contribution of landscape and sediment stores will vary not just between 

catchment typologies but also through time. It is likely that over successive rainfall 

events the landscape burden of FIOs is depleted (Evanson and Ambrose 2006) 

and sediment stores are replenished shifting importance of landscape stores to 

sediment stores as illustrated in figure 2.2. Modelling this shifting of importance 

from one store to the other may prove to be useful in predicting watercourse FIO 

flux and will require combining knowledge of FIO persistence, mobilisation, 

depletion, and replenishment in different environmental matrices. Further 
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understanding of the mobilisation of FIOs from faecal deposits into soil and 

sediment sinks and remobilisation to watercourses will therefore be important in 

understanding FIO flux and the relative importance of different stores under 

different flow regimes (Droppo et al. 2011; Muirhead et al. 2009).  

 

 

 

The rate at which FIOs are mobilised from different matrices is likely to influence 

the emergence of FIOs in watercourses following rainfall. Hodgson et al. (2009) 

Figure 2.2. Variable relative importance of landscape and sediment sources to 

FIO flux under differing meteorological conditions. Under successive rainfall 

events the landscape store of FIO becomes depleted and stream-bed sediment 

stores are replenished. Under dry weather the sediment store of FIOs declines 

due to die-off and deposits from animals replenish the landscape store.  
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investigated release kinetics of FIOs (E. coli and enterococci) from different faecal 

matrices under simulated rainfall in a laboratory environment and discovered FIO 

release became less likely as faecal material aged and percentage dry matter 

increased. The study also recorded differences in FIO release related to the 

physical structure of different types of faeces with sheep faeces remaining intact 

after simulated rainfall and dispersal of cattle faeces occurring much more readily. 

While laboratory studies are a useful first approximation, they must be combined 

with field relevant studies to ensure their applicability in the field. The relative risk 

of different kinds of livestock faeces will be a function of initial concentration of 

FIOs, FIO persistence and likelihood of mobilisation from the faecal matrix. New 

insight into the dynamics of source risk in space and time could emerge through a 

combination of new and existing knowledge relating to these parameters. This will 

require development of more complex die-off kinetics and information on release 

kinetics of FIOs from faecal matrices, which will be important for understanding the 

risk of disparate agricultural practices such as the grazing of different types of 

livestock on pasture or spreading of slurry and manure. Blaustein et al. (2015) 

investigated the impact of the rate of rainfall on the release of FIOs from solid 

manure and observed a two-stage response with initial rapid FIO release followed 

by slower release suggesting easily removed FIO are mobilised quickly with 

further bacteria becoming harder to remove from the faecal matrix. However, 

whether this is due to differing morphology between individual organisms, an FIO’s 

association with colloids or a bacteria’s position in a faecal matrix is unknown. This 

may mean that certain proportions of a faecal deposit’s burden of FIOs are more 

or less prone to mobilisation and understanding the size of the easily mobilised 
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proportion and how this proportion differs between the faeces of different animals 

is likely to aid our understanding of FIO risk to watercourses.  

The rate at which FIO mobilisation occurs is likely to depend on the faecal matrix 

investigated. For example, Guber et al. (2013) investigated FIO release from slurry 

and observed slower release compared to direct faecal deposits (Blaustein et al. 

2015a). It is suggested that this difference is a result of the more complex physical 

structure of solid manure that contains not just animal faeces but also plant 

material (Blaustein et al. 2015a). FIO release kinetics are also likely to vary 

through time with potential influences from the formation of faecal crusts, 

wetting/drying and freeze/thaw cycles. However, there is a lack of data in this 

regard and it cannot be accounted for in assessments of FIO mobilisation and 

transfer. Field relevant release kinetics for different types of faecal matrix 

commonly associated with livestock manure management should be developed 

and their incorporation into process based models may improve prediction of in-

stream FIO flux.  Despite knowledge of the survival of FIOs in a soil reservoir there 

is little knowledge regarding the remobilisation of FIOs from this store once 

dissipated from the faecal source within which the FIO load was delivered to 

pasture. Work exists regarding the vertical leaching of FIOs through soil (Aislabie 

et al. 2011) but there is little knowledge regarding the mobilisation of FIOs from 

soil stores into overland flow and it is this hydrological pathway that is likely to 

affect FIO flux in watercourses following rainfall (Collins et al. 2005; Murphy et al. 

2015).   

Artificial high flow events have shown the stream bed sediment as a significant 

reservoir of FIOs (Cho et al. 2010; Muirhead et al. 2004) and Wilkinson et al. 
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(2011) describes a ‘shunting’ mechanism whereby FIOs are transferred further 

downstream over successive rainfall events moving from one sediment store to 

the next. This concept not only applies to rivers but also to the wider landscape 

with FIOs moving from faecal matrices into a soil sink then through successive soil 

and stream-bed sediment sinks depending on the size of the catchment. 

Understanding this process will require knowledge of FIO release kinetics from soil 

and sediment stores. A number of techniques exist for calculating re-suspension of 

stream-bed sediment FIO stores. For example Droppo et al. (2011) use average 

associated bacteria and critical bed shear stress as parameters in a sediment 

resuspension model to predict how bacteria are resuspended over high flow 

events; reach specific variation in sediment resuspension has been reported 

(Piorkowski et al. 2014) and Cho et al. (2010) attempt to capture reach specific 

sediment properties (Piorkowski et al. 2014) affecting shear stress and 

entrainment coefficients; and Pandey et al. (2012; 2013) developed and tested an 

empirical equation that represents FIO resuspension from stream bed sediments. 

Pandey et al. (2013) compared model predictions of watercourse E. coli 

concentrations between simulations including and excluding effects of a sediment 

reservoir and observed an increase from 107 to 1014 CFU/s highlighting the 

importance of including impacts from a sediment store in models predicting 

watercourse FIO pollution.    

Evidence suggests that many of the FIOs transferred in run-off exist as highly 

mobile, free-living organisms that are less likely to settle into a soil or stream-bed 

sediment store (Muirhead et al. 2005). The extent to which a catchment ‘shunting’ 

mechanism occurs is likely to depend on the proportion of FIOs that exist as flocs 

or adsorbed to particles of soil or organic matter. Modelling approaches often 



44 
 
 

assume FIOs associate with sediment particles driving the settling of FIOs into 

streambed sediment. However, this assumption may not be justified (Kay et al. 

2007b). Deriving proportions of attached and free-living organisms has been 

attempted via a number of techniques: centrifugation, settling and filtration. 

Muirhead et al. (2005) investigated the transport state of E. coli from cowpats 

using centrifugation and found that the majority of E. coli was transported as free 

organisms with only 2-26% of the E. coli attached to soil particles. Other 

centrifugation experiments have focussed on additional FIOs including faecal 

coliform, E. coli, and enterococci with attachment rates of 15 to 30% (Cizek et al. 

2008). This suggests that once mobilised E. coli are highly mobile and when 

mobilised can be efficiently transported to watercourses and through a catchment 

systems. In contrast, other experiments record higher levels of FIO attachment to 

soil particles. For example, using field derived soils packed into soil boxes Soupir 

et al. (2010) recorded 28 to 49% attachment to particles present in run-off and 

Characklis et al. (2005) report 30 to 55% attachment to particles in urban river 

samples which suggests settling of attached FIOs and retention in the landscape 

is more likely. A study utilising the settling method whereby particles are allowed to 

settle by gravity for a period of time as determined by Stokes Law which describes 

the rate a particle descends depending on its density reports a rate of FIO 

attachment to soil particles of 15.5 to 41% (Liu et al. 2011). Filtration utilises a 

method based on the ability of membrane pores relative to the size of particles to 

separate attached FIOs from free living cells.  Using the filtration method Krometis 

et al. (2009) reported 78% E. coli attachment after one hour of contact time. Soupir 

et al. (2008b) investigated FIO attachment to different particle sizes using a series 

of different sized filters and records E. coli attachment of 9.5% with most 
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attachment associated with particles 3μm and 8μm in size. Literature on the 

attachment of FIOs to soil particles and manure colloids demonstrates the 

variability of this critical process in the transfer of FIOs through landscapes. 

Despite this research their remains inadequate information about the factors that 

drive the variability in FIO attachment to soil particles and manure colloids to make 

predictions, at the landscape scale, of the proportion of the reservoir of FIOs that 

may be associated with particles and thus potentially more settleable. This 

information is important as it will provide insight into the relative importance of 

landscape and sediment stores of FIOs under different conditions.    

The lack of a standard method for separating attached and unattached FIOs as 

well as difficulties associated with available techniques may contribute to 

uncertainty in FIO attachment to soil particles and manure colloids (Liang et al. 

2014). Liang et al. (2014) proposed a novel method utilising flow cytometry which 

showed promise as a simple way of measuring the proportion of attached FIOs in 

samples of river and run off water and sediment. However, most flow cytometers 

can only accept particles which are <100µm wide, which limits investigation to clay 

soils. Large particle flow cytometry is a growing field of study and flow cytometers 

that can accept particles up to 2000µm do exist. The availability of species-specific 

fluorescent tags is another limiting factor. The technology has been applied only to 

laboratory inoculated samples due to the high microbial diversity of environmental 

samples. More specific staining techniques such as fluorescent in-situ 

hybridization (FISH) and fluorescent labelled anti-bodies (FITC) may improve the 

method for field derived samples (Liang et al. 2014). 
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Another method useful for particle separation is field flow fractionation (FFF), 

which exploits the tendency for particles in laminar flow to move toward the edge 

of a channel. A transverse field, for example a thermal gradient, that can be 

modulated forces particles of different sizes depending on its strength to remain at 

a stable position at the edge of a channel (Williams and Caldwell 2014). 

Baalousha et al. (2011) review the use of FFF in the characterisation of natural 

colloids and manufactured nanoparticles present in environmental systems. 

However, to this author’s knowledge the technique has not been applied to the 

field of catchment microbial dynamics. FFF may prove useful in the separation of 

free-living bacteria and sediments in environmental samples.     

Determining what drives FIO flux (Figure 2.1d) is a key priority for policy makers 

(Kay et al. 2007b). It has been highlighted that catchment characteristics such as 

area and patterns of precipitation influence FIO flux, suggesting that further 

understanding of the interaction between catchment characteristics and FIO 

emergence in rivers may allow development of tools for predicting the FIO 

contamination of watercourses. Mobilisation of FIOs from faeces has been 

investigated but the development of reliable and transferable FIO release kinetics 

for faecal, manure, slurry, soil and sediment matrices remains a challenge. 

Attachment of FIOs to particles of soil and organic matter is likely to be a 

significant factor influencing FIO transport. Realising the proportion of attached 

and flocced FIOs at the catchment scale is an obvious challenge and this may be 

in part due to difficulties associated with laboratory procedures that delineate 

attached, flocced and free-living bacteria from environmental samples.     
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2.6 Landscape drivers of FIO risk 

Determining sources of FIO pollution is an important step in the management of 

diffuse FIO pollution (Kay et al. 2007b). Managing diffuse sources of FIO pollution 

is especially challenging because sources vary spatially and temporally in both 

loading and connectivity and hence not every part of the landscape contributes to 

pollution to the same extent (Heathwaite et al. 2005).  

To describe the spatial heterogeneity of FIO sources a number of studies have 

employed a regression approach, relating watercourse concentrations of FIOs with 

land use information and land uses associated with management of livestock and 

their faeces have been associated with higher watercourse concentrations of FIOs 

(Kay et al. 2010, Tetzlaff et al. 2012, McGrane et al. 2014). A limitation associated 

with regression approaches is that they do not consider the physical processes 

driving FIO variability in watercourses and do not account for the spatial 

heterogeneity of hydrological connectivity among catchments (Tetzlaff et al. 2012). 

Therefore, regression approaches can only highlight sources of FIO at a scale 

coarser than the scale at which mitigation measures operate, creating difficulties 

for implementing this technique for the spatial targeting of mitigation. 

An alternative approach to deriving the origin of FIO pollution is microbial source 

tracking (MST). MST is an emerging technology that uses quantitative polymerase 

chain reaction (qPCR) to investigate the genome of FIOs enumerated from the 

environment to determine the species from which the FIO originated. MST, in 

determining whether faecal pollution is derived from human, livestock or wildlife 

sources, would be useful in source apportionment and targeting mitigation. 

Harwood et al. (2013) provides a recent review of the technology and highlights a 



48 
 
 

number of challenges including: the techniques sensitivity to dilute samples; the 

effect of PCR inhibiting substances in environmental samples; and the efficiency of 

DNA recovery. Within the microbial source tracking domain, much attention has 

been given to human faecal sources. However, the development of MST markers 

for animals is less established, especially in regard to wild animals, providing 

challenges for the use of this technology in apportioning diffuse sources of FIOs 

(Harwood et al. 2013).  

The SMDI concept shows how a source of pollution is only a risk if it can be 

transferred and delivered to a watercourse (Haygarth et al. 2005). The extent to 

which mobilisation and delivery occurs will vary both spatially and temporally. 

Heathwaite et al. (2005) described the critical source area (CSA) concept whereby 

a part of the landscape is only a risk to in-stream microbial water quality when a 

source of pollution exists and that part of the landscape connects to a 

watercourse. The importance of connectivity to FIO risk in streams is highlighted 

by Murphy et al. (2015) who suggest FIO emergence in streams is limited by 

hydrological response rather than the magnitude of sources in the contributing 

catchment. The representation of connectivity in predictive models is crucial but 

Kay et al. (2007b) suggested that current approaches that lump connectivity into 

hydrological response units are too simplistic. An improved characterisation of 

connectivity in the landscape would be useful for predictive modelling of FIO 

contamination of watercourses.   

Attempts to apportion FIO pollution to characteristics of the landscape are 

important in determining where management should be focussed and recent 

experiments employing regression approaches highlight land uses that may be 
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responsible for a large proportion of in-stream contamination. In addition, 

experiments exploring MST highlight organisms that are responsible for pollution. 

However, these approaches do not consider landscape connectivity hindering their 

use for spatial targeting of diffuse FIO pollution management. Understanding how 

sources of FIO pollution in the landscape connect to watercourses and sensitive 

receptors remains a research priority. 

2.7 Managing diffuse FIO pollution  

The modelling of FIO transport through catchments represents an effort to bring 

understanding of how FIOs interact with different environmental matrices together 

within a single framework. These models can then be used to predict the loading 

of FIO to a sensitive receptor, such as a bathing beach or shellfish harvesting 

area, hence allowing policy makers to make informed decisions about the 

management of water quality in a catchment of interest. The development of a 

process based generic model of FIO transport through the landscape is 

challenging as these approaches require a significant amount of data for model 

development, calibration, predictive uncertainty assessment and validation (Beven 

2014). Rather than creating one generic model, this challenge may be addressed 

through the development of a modelling toolbox consisting of a number of models 

focussed on specific policy/management questions and within certain 

environments reflecting the hydrological pathways and typical land management.  

A number of key catchment management questions exist that the catchment 

management toolbox would need to address, for example: 
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1. what is the concentration of FIOs that will be delivered to recreational 

waters, shellfish harvesting areas or a drinking water reservoir in response 

to forecasted rainfall? 

2. what and where is the source of FIOs within the landscape? 

3. and how can water quality be improved to meet required standards? 

The first question is perhaps best addressed through process-based mechanistic 

models that aim to predict the emergence of FIOs as a result of predicted or 

observed rainfall. Existing process based models considering FIO transport 

include COLI (Walker et al., 1990), Hydrologic Simulation Program FORTRAN 

(HSPF) (Bicknell et al. 2001), Spatially Explicit Delivery Model (SEDMOD) (Fraser, 

1999), Water Assessment Model with ArcView interface (WAMView) (Bottcher et 

al. 2002), Loading Simulation Program in C++ (LSPC) (Shen et al., 2005), Soil and 

Water Assessment Tool (SWAT) (Neitsch  et al. 2005; Bougeard et al. 2011), 

WATFLOOD (Dorner et al. 2006), KINEROS/STWIR (Guber et al. 2011), an 

approach based on the MIKE modelling suite (Bedri et al. 2014) and others 

developed by Tian et al. (2002), Moore et al. (1989), and Fraser et al. (1998). 

While a detailed review of these models is beyond the scope of the current work, 

de Brauwere et al. (2014) provides an in-depth description of process-based 

models. The processes governing the occurrence survival and transport of FIOs 

will be numerous and complex, and a lack of understanding and data relating to 

FIO persistence and transfer (as discussed under theme 1) provides a challenge 

for process-based modelling. It is possible that not all of the complexity involved in 

the processes of FIO behaviour in the environment can be captured in these 

models because understanding or data does not exist for that part of the process 
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or the process cannot be perceived or measured with existing technology (Beven 

et al. 2006). This complexity also requires many parameters, meaning upon model 

calibration many optimum parameter sets are possible and multiple parameter 

sets may lead to identical, equifinal, outputs (Beven, 2014). The problem of data 

availability is compounded in catchment microbial dynamics due to the relative 

scarcity of data compared with similar diffuse pollution pressures such as nutrient 

pollution (Kay 2008; Muirhead 2015). There are significant financial costs 

associated with setting up FIO monitoring campaigns that gather data at the 

temporal and spatial scales needed to calibrate complex process-based models. 

Goss and Richards (2008) argue that risk index approaches may be useful interim 

tools while data and knowledge gaps challenge process-based models. 

Questions 2 and 3 are interlinked with water quality improvement focussing on 

addressing important sources. These questions may best be addressed through 

use of a phased approach with the first phase utilising a regression-based 

screening tool (e.g. Kay et al. 2010, Tetzlaff et al.2012, McGrane et al. 2014) 

predicting whether catchment inputs or point sources are most important in the 

impairment of a waterbody of interest. The second phase would then involve a 

more distributed modelling approach that works at the catchment scale to 

determine where in the landscape pollution may be coming from and target 

mitigation efforts. 

Mitigation of diffuse pollution can be split into two broad categories, changes in 

management and physical infrastructure such as fencing (Kay et al. 2018) and 

riparian buffer strips. Changes in management can be achieved through financial 

incentives and awareness raising through stakeholder engagement activities. For 
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example, in the EU the Common Agriculture Policy provides financial support to 

the farming community based on the concept of cross compliance whereby 

payments depend on compliance with environmental, conservation and animal 

welfare legislation (Kay et al. 2007b). Physical infrastructure proposed for 

mitigation of diffuse FIO pollution includes: wetlands (Rea et al. 2015; Morató, 

2014), retention ponds (Jenkins et al. 2015, 2012), streamside fencing (Kay et al. 

2007a) and buffer strips (Tate et al. 2006). These physical infrastructure options 

are expensive and occupy valuable productive land. Therefore, it is important that 

their performance under different conditions is understood and spatial targeting 

exercises are carried out in order to determine where in the catchment these 

options will make the biggest difference.   

A number of opportunities exist for the spatial targeting of diffuse pollution 

management. For example, regression-based approaches include those described 

by Kay et al. (2010), Tetzlaff et al. (2012) and McGrane et al. (2014) and can be 

developed into screening tools which use statistical relationships to differentiate 

the importance of different sources of FIO, whether they originate from point 

sources or diffuse catchment inputs. However, Wilkinson (2011) highlights the 

non-linear and non-stationary response of FIO emergence during storm events 

suggesting statistical relationships cannot represent the complex process of in-

stream FIO flux and in a recent review, de Brauwere et al. (2014) suggests that 

statistical relationships cannot be used in place of more complex mechanistic 

models. However, it should be noted that the appropriateness of the modelling 

approach utilised depends on the scientific or policy question asked (Oliver et al. 

2016b) and while a regression approach’s ability to predict FIO load due to a 

rainfall event is limited it may be a powerful tool for prioritising areas for mitigation. 
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A challenge associated with this approach is that generalisation of statistical 

relationships developed at one site is likely to be inappropriate and a large amount 

of data will be required to derive relationships for specific sites. Therefore, 

understanding the minimum amount of data required to capture the variation in 

FIO concentrations is a key question in determining how feasible these 

approaches are at a national scale.  

Where catchment inputs of FIOs are highlighted as a potential significant 

contributor to water quality impairment then prioritisation of the most significant 

sources of diffuse pollution at the catchment scale will be necessary. Given the 

importance of hydrological pathways in facilitating the transfer of FIOs to 

watercourses this prioritisation will require a good representation of hydrological 

connectivity from source to receptor and Kay et al. (2007b) highlighted the flow 

connectivity simulation approach carried out by Heathwaite et al. (2005) for diffuse 

phosphorus pollution as a potentially powerful approach for the prediction of 

diffuse FIO pollution. FIORIT (Oliver et al. 2010) is a risk indexing tool whose goal 

was to create an operational risk assessment framework given the importance of 

connectivity and lack of understanding for some of the processes involving FIO 

transport to watercourses. Rules for the allocation of risk between fields were 

developed by panels of experts with flexibility for location specific influences a 

priority. It is a useful tool for the prioritisation of mitigation effort as it highlights 

fields that are relatively more risky to river water quality. A benefit of FIORIT is that 

new knowledge can be integrated into the framework with ease (Oliver et al. 

2010).  
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Another tool utilising the CSA concept is the SCIMAP risk mapping framework. 

SCIMAP uses spatial land cover data to determine the potential locations of 

sources and detailed topographic information to calculate how likely it is for a 

source to become connected to the river network (Reaney et al. 2011). The 

process is risk-based and does not attempt to determine the absolute 

concentration of pollution in a stream but outputs a risk quotient between 0 and 1, 

which represents the risk of pollution transfer at that point relative to all the other 

points in a river network. Therefore, the approach aims to identify where is most 

and least at risk within the catchment. Where routine monitoring has highlighted a 

catchment of concern, SCIMAP can be applied to predict where in the catchment 

mitigation efforts should be concentrated. A benefit of the SCIMAP framework is 

that it is built around a minimum information requirement philosophy, requires a 

minimum of three inputs (elevation, land use and spatial rainfall information) and 

can be run using relatively inexpensive computer hardware. The software is also 

available for free as a web app (https://my.scimap.org.uk). 

The approach has been optimized for conservative diffuse nutrient and sediment 

pollution (Reaney et al. 2011; Milledge et al. 2012) and has not been developed 

for FIOs. Given SCIMAP’s use by the regulatory community in England it is timely 

to develop this framework to account for diffuse FIO pollution. At present SCIMAP 

is time-integrated, i.e. it shows a long term average of risk in the landscape. FIOs 

are a non-conservative contaminant; their concentrations vary over time due to 

population growth and die-off and capturing the temporal variations in FIO risk is a 

key challenge for the application of SCIMAP to diffuse FIO pollution. Given these 

limitations, SCIMAP use for diffuse FIO pollution may be problematic; however, 

there are opportunities for the development of SCIMAP. Abiotic conditions that 
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vary from month to month have a significant influence on the persistence of FIOs 

in the landscape. Therefore, a time-integrated approach is inappropriate as it is 

important to understand the month-to-month variation of risk across the landscape. 

Understanding the effects of various factors that influence growth and die-off of 

FIOs in the landscape will allow for a weighting of risk according to month given a 

set of conditions expected of that month. Furthermore, survival in overland flow 

and transport times needs to be derived in order to discover what proportion of a 

population of FIOs die or is withheld in the landscape before reaching a 

watercourse.  

The SCIMAP output would represent the risk of FIO contamination occurring 

rather than the risk of illness due to FIO prevalence in stream water. Quantitative 

Microbial Risk Assessment (QMRA) aims to investigate public health risk 

associated with contamination of water (McBride et al. 2013). Muirhead et al. 

(2015) use QMRA to develop a risk index creating an output suitable for 

interpretation by land managers, for example farmers, and water quality 

managers, such as regulatory authorities and charities. The approach relates farm 

management practices with resulting instream concentrations of FIOs identifying 

opportunities for mitigating infrastructure and changes in management that may 

reduce instream concentrations of FIO.  

Many approaches targeted toward modelling FIO transport focus on catchment 

outlets (Kay 2009). A benefit of both the SCIMAP and risk-index approaches 

outlined above is that they address the potential for FIO contamination within the 

stream network. This is important for identifying important catchment inputs and 

understanding potential harm of within-catchment network receptors such as water 
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supplies and those partaking in water contact recreation such as sport fishing and 

kayaking.   

A tiered approach which moves from coarse to fine scales is likely to provide a 

resource efficient approach that the policy community can easily implement. 

Therefore, modelling should be seen as a toolbox for catchment managers with a 

suite of tools able to provide outputs for a variety of questions.  

Increasingly integrated catchment management is moving away from a traditional 

top-down approach where environmental issues are managed at a relatively high 

level of governance to a more participatory approach with more involvement from 

the community and stakeholders within catchments (McGonigle, 2013). It is 

therefore more important than ever that model outputs are easily interpreted by a 

variety of end users and model developers should pay close attention to human-

computer interaction during model development (Yearley 1999; Whatmore et al. 

2011). Communicating uncertainty is a significant challenge in this respect and 

likely to influence stakeholder engagement with academic outputs (Spiegelhalter 

et al. 2011; Retzbach et al. 2015).  

When considering mitigation options it must be noted that integrated catchment 

management requires catchment managers to consider the risk of multiple 

pollutants to multiple receptors. Phosphorus (Schoumans et al. 2014), nitrogen 

(Heppell et al. 2014), pesticides (Bloodworth et al. 2015), suspended sediment 

(Rickson, 2014) and FIOs are diffuse pollutants that have the potential to cause 

harm to the environment and ecosystem services. A priority for research should be 

the development of modelling tools that determine what mitigation measures 

should be and where these measures should go in order to represent an efficient 
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use of resources, not just within types of diffuse pollution but across all types of 

pollution. Such an integrated assessment of mitigation options should also 

investigate the potential for pollution swapping whereby mitigation of one pollutant 

leads to an increase in another pollutant (Stevens and Quinton, 2009). A 

conceptual multi-pollutant framework to identify opportunities for multiple benefits 

and potential pollutant swapping has recently been proposed (Bloodworth et al., 

2015). Concepts from this framework can be built into multi pollutant frameworks, 

such as SCIMAP, to develop prioritisation tools where there are pressures from 

multiple contaminants.  

Limitations in the understanding of FIO fate and transfer make it difficult to predict 

what mitigation options will be most effective. Determining the efficacy of different 

mitigating infrastructures is a research priority. In addition, tools predicting where 

mitigation efforts should be targeted are required in order to justify occupation of 

productive land and the cost of mitigation measures. The management of diffuse 

FIO pollution must be taken in context with other potential pollutants such as 

sediment and nutrients and opportunities to target multiple pollutants with the 

same infrastructures must be explored.  

2.8 Conclusion 

Catchment microbial dynamics is a rapidly evolving field and in recent years there 

have been a number of advances in the understanding of FIO behaviour in a 

range of environmental matrices. For example, progress has been made towards 

more complex models of FIO persistence in the landscape but research 

understanding the growth of FIOs immediately following deposition under different 

conditions is required. An emerging research priority is understanding the potential 
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contribution wildlife faeces makes to watercourse FIO pollution and how this may 

vary spatially and temporally. Kay et al. (2007b) highlighted a need for further 

research into FIO population dynamics in the sediments associated with 

freshwater systems. FIO persistence in sediments has been investigated in the 

laboratory and now field relevant studies are needed to assess applicability of 

these results in the field. Nutrient status and soil type have been implicated in the 

variable persistence of FIOs in soil and determining the characteristics of soil that 

drives this influence is a priority.  Understanding the episodic nature of FIO 

emergence in watercourses had been highlighted as a topic of priority (Kay et al. 

2007b) and challenges in this respect remain. Mobilisation of FIOs from different 

reservoirs is likely to influence FIO emergence in streams following rainfall and 

further study is required in order to develop a database of FIO release kinetics 

from faecal, manure, slurry, soil and sediment matrices. Understanding the 

proportion of FIOs that are free living, flocced or attached to particles of soil or 

organic matter at the catchment scale remains a significant challenge for 

understanding the episodic flux of FIOs in watercourses; flow cytometry and FFF 

may provide solutions to this problem.  Kay et al. (2007b) highlighted 

understanding the connectivity of landscape sources of FIO to watercourses as a 

research priority. While pathways for FIO transport such as overland flow and field 

drainage have been investigated understanding FIO connectivity at the catchment 

scale remains a challenge. Modelling frameworks such as SCIMAP, FIORIT and 

QMRA approaches provide opportunities in this respect. Addressing the 

challenges outlined in this review may allow for better management of diffuse FIO 

pollution of watercourses and the impact upon ecosystem services such as clean 

and safe bathing and shellfish harvesting water can be reduced.  
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3. Predicting diffuse microbial pollution risk across catchments: the 

performance of SCIMAP and recommendations for future development  

This chapter was published in Science of the Total Environment: 

Porter, K.D., Reaney, S.M., Quilliam, R.S., Burgess, C. and Oliver, D.M., (2017). 

Predicting diffuse microbial pollution risk across catchments: The performance of 

SCIMAP and recommendations for future development. Science of the Total 

Environment, 609, pp.456-465. 

3.1 Abstract 

Microbial pollution of surface waters in agricultural catchments can be a 

consequence of poor farm management practices, such as excessive stocking of 

livestock on vulnerable land or inappropriate handling of manures and slurries. 

Catchment interventions such as fencing of watercourses, streamside buffer strips 

and constructed wetlands have the potential to reduce faecal pollution of 

watercourses. However, these interventions are expensive and occupy valuable 

productive land. There is, therefore, a requirement for tools to assist in the spatial 

targeting of such interventions to areas where they will have the biggest impact on 

water quality improvements whist occupying the minimal amount of productive 

land. SCIMAP is a risk-based model that has been developed for this purpose but 

with a focus on diffuse sediment and nutrient pollution. In this study we 

investigated the performance of SCIMAP in predicting microbial pollution of 

watercourses and assessed modelled outputs of E. coli, a common faecal 

indicator organism (FIO), against observed water quality information. SCIMAP was 

applied to two river catchments in the UK. SCIMAP uses land cover risk 

weightings, which are routed through the landscape based on hydrological 
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connectivity to generate catchment scale maps of relative in-stream pollution risk. 

Assessment of the model’s performance and derivation of optimum land cover risk 

weightings was achieved using a Monte-Carlo sampling approach. Performance of 

the SCIMAP framework for informing on FIO risk was variable with better 

performance in the Yealm catchment (rs = 0.88; p <0.01) than the Wyre (rs = -0.36; 

p > 0.05). Across both catchments much uncertainty was associated with the 

application of optimum risk weightings attributed to different land use classes. 

Overall, SCIMAP showed potential as a useful tool in the spatial targeting of FIO 

diffuse pollution management strategies; however, improvements are required to 

transition the existing SCIMAP framework to a robust FIO risk-mapping tool. 

3.2. Introduction 

Faecal pollution has the potential to negatively impact upon ecosystem services 

associated with clean and safe recreational bathing and shellfish harvesting water 

(Clements et al. 2015; Wu et al. 2016). Microbial contamination of such aquatic 

environments can expose humans to harmful pathogens that may cause 

gastrointestinal illness (Wade et al. 2006). Direct measurement of pathogens in 

environmental water samples is uncommon due to challenges associated with 

their enumeration in the laboratory, e.g. cost, detection limits etc., and so faecal 

indicator organisms (FIOs) such as Escherichia coli and intestinal enterococci 

provide an internationally accepted framework for the assessment of faecal 

pollution of water bodies. In the European Union, the health risks of faecal 

pollution of aquatic environments are recognised via the Bathing Water (EU, 

2006a) and Shellfish Water (EU, 2006b) Directives. Regulators must compare 

measured FIOs against stringent standards of microbial water quality in order to 
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comply with these directives. Risk assessment tools that can identify ‘hotspots’ of 

FIO pollution in catchment systems are therefore welcomed by regulatory 

agencies as a mechanism to help understand origins of pollution and to spatially 

target catchment management and interventions for improvements in 

microbiological water quality (Dymond et al., 2016). 

   

Diffuse sources of FIO pollution, such as organic fertilisers applied to land and 

excretion of faeces by grazing livestock to pasture, provide challenges to water 

quality managers. This is because the loading of diffuse sources, and their 

propensity to connect to watercourses, varies spatially and temporally (Heathwaite 

et al. 2005). The impact of diffuse sources of microbial pollution on watercourses 

can be reduced through the use of mitigation measures such as streamside 

fencing (Kay et al. 2007a), vegetated buffer strips (Tate et al. 2006), wetlands 

(Morató, 2014) and retention ponds (Jenkins et al. 2015). These measures can be 

expensive and occupy valuable productive land. Therefore, methods to spatially 

identify and target locations in catchments where interventions will provide the 

best improvement in water quality are warranted. Past research has used 

regression approaches to attribute sources of FIOs to different land cover types 

and/or discrete point sources (Kay et al. 2010; Tetzlaff et al. 2012; McGrane et al. 

2014). However, these approaches do not account for the spatial heterogeneity of 

landscape to watercourse connectivity (Tetzlaff et al. 2012).  

      

Alternative approaches include the development of fully process-based models 

that attempt to account for the mechanisms that govern FIO fate and transfer in 
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more detail. There are, however, limitations in our understanding of FIO fate and 

transfer that can amplify uncertainties in fully quantitative, process-based risk 

assessment approaches. For example, there are knowledge gaps regarding the 

complex behaviour of FIO persistence in different matrices such as faecal deposits 

(Soupir et al. 2008a; Martinez et al. 2013; Oliver & Page, 2016), soil (Muirhead et 

al. 2009; Park et al. 2016) and stream bed sediment (Pachepsky and Shelton 

2011; Shelton et al., 2014; Pandey et al. 2013; Pandey et al., 2016). In addition, 

current understanding of the mechanisms with which FIOs aggregate and attach to 

particles is limited (Muirhead et al. 2005; Liu et al. 2011). This understanding is 

especially important as it is likely to determine the extent to which FIOs settle 

within the streambed environment or the extent to which cells might be retained in 

the landscape through processes of filtration by the soil architecture (Engstrom et 

al, 2015). Such limits in understanding make it difficult for all processes to be 

considered in complex process-based models (Beven 2006, Cho et al., 2016). 

These complex models also require a significant amount of data for model 

parameterisation and validation. This is especially problematic in the field of 

catchment microbial dynamics due to the relative scarcity of data on FIO 

concentrations and loads compared to nutrient and sediment flux (Muirhead 2015; 

Oliver et al., 2016). Semi-quantitative risk assessment frameworks, which provide 

a basis for decision support, are therefore useful tools to inform on relative risk of 

FIO transfers in space and time. This is because, despite gaps or limitations in the 

current evidence-base concerning FIO behaviour in complex catchment systems, 

they are able to provide a ‘1st approximation’ of risk (Goss and Richards 2008).  
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The Sensitive Catchment Integrated Mapping Analysis Platform (SCIMAP) has 

demonstrated significant potential as a framework to inform on catchment-scale 

risks for diffuse nutrient and sediment pollution (Reaney et al. 2011). The 

approach provides an estimate of in-stream risk relative to the catchment being 

considered and provides information at multiple spatial scales but within a time 

integrated framework. SCIMAP is underpinned by the source-mobilisation-

delivery-impact (SMDI) continuum (Haygarth et al. 2005) and critical source area 

(CSA) concepts, which describe how a source of pollution can only convert to a 

pollution risk if there are no interruptions to the SMDI continuum (Heathwaite et al. 

2005). At present, the SCIMAP approach is optimised for diffuse fine sediment 

(Reaney et al. 2011) and nutrient pollution (Milledge et al. 2012) but offers scope 

for addressing a number of additional diffuse pollutants, including FIOs.  

 

The aim of this study was to assess the effectiveness of the current SCIMAP 

framework for informing on risk of FIO pollution in contrasting catchment systems 

by comparing FIO pollution risk predicted by SCIMAP with observed FIO risk, e.g. 

FIO concentrations. To deliver on this aim the objectives were to: (i) quantify 

variation in model performance as a result of risk weightings being assigned to a 

particular land cover type; and (ii) determine whether there was an association 

between SCIMAP predicted FIO risk and observed FIO risk in our study 

catchments. The intention was to develop initial risk weightings for land cover 

types and benchmark model performance on the assumption that FIOs behave 

similarly to sediment, albeit in a ‘living’ form.  
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3.3. Materials and Method 

Most modelling frameworks predict in-stream pollution by defining a function, e.g. 

a relationship derived from regression analysis, and these can be described as 

forward models. Our study adopted an inverse approach (Reaney et al., 2011; 

Milledge et al. 2012), because it defined a function (in the case of SCIMAP, land 

cover risk weightings) based on observed FIO concentrations, i.e. the approach 

queries how a model needs to be parameterised in order to simulate observed 

pollution and is therefore ‘fitted’ to observed data. This ‘fitted’ approach is 

described in detail in Milledge et al. (2012). Briefly, the fitted approach involves 

pseudo randomly generating simulations from forward models whose output is 

compared to observed data. In this case the forward model used is SCIMAP and 

the user definable parameters are risk weightings for different land cover types. 

Model outputs were compared against a spatial FIO water quality dataset provided 

by the Environment Agency. This dataset spans 6 years (2007-2012) and was 

collected as part of the Catchment Sensitive Farming (CSF) initiative (Environment 

Agency, 2016). The FIO dataset reported here concerns E. coli concentrations, 

measured using the standard method of membrane filtration, reported across two 

catchments in England: The River Wyre, Lancashire and The River Yealm, Devon 

(Figure 3.1).  

 

 

 



65 
 
 

 

Figure 3.1. Maps illustrating the two study catchments: The Wyre in Lancashire, 

North West England (left); and The Yealm in Devon, South West England (right). 

Numbered points indicate sample locations and associate with the sample 

locations indicated in figure 3.2 and table 3.2. River data are from an Ordnance 

Survey MasterMap Topography layer.   

 

 

To evaluate the SCIMAP approach when applied to a FIO dataset we used the 

same SCIMAP framework that was developed for prediction of diffuse fine 

sediment risk. This approach was implemented within the SAGA geographical 

information system (Conrad et al. 2015). The SCIMAP risk mapping approach is 

described in detail in Lane et al. (2009) and Reaney et al. (2011). Briefly, the 

approach involves determining the risk of a sediment (or other pollutant) 
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Figure 3.2. A bar plot illustrating the proportions of the contributing area 

associated with each sample point occupied by different land cover types. Please 

refer to online version for colour. 

 

source being generated and the risk of the sediment (or other pollutant) source 

becoming connected to a watercourse, capturing the CSA concept described 

earlier. For sediment pollution, the risk of a source being generated is defined as a 

function of topography, land cover and rainfall. These datasets are used to 

calculate local erodibility based on the land cover, and the erosive potential of 

overland flow, which is driven by the local slope gradient and the upslope 
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contributing area. Therefore, due to the combination of these factors, each land 

use is associated with its own risk weighting. The risk of the source connecting to 

the stream network is determined using the network index of hydrological 

connectivity (Lane et al. 2009), which can be derived from the topographic 

wetness index. The topographic wetness index calculates the propensity for part of 

the landscape to generate saturation excess overland flow from topographic 

information (Beven & Kirkby, 1979). The propensity for a point in the landscape to 

connect to a watercourse is then defined as the lowest value of topographic 

wetness index along the flow path to the watercourse. If overland flow is not 

generated at any point along a flow path, it is not possible for that cell to transmit 

water further downslope and hence the source of risk is disconnected from the 

stream network (Lane et al. 2009). Once a pollution source has been delivered to 

a watercourse, pollution risk is concentrated as it is routed downstream and diluted 

based on the rainfall weighted upslope contributing area, with higher risk inputs 

concentrating risk and lower risk inputs diluting risk.  

 

SCIMAP adopts a minimum information requirement approach, and the standard 

version requires three inputs: the generation of a source of risk requires a land 

cover map and spatially distributed rainfall information; the derivation of a 

topographic wetness index requires a detailed digital elevation model (DEM); and 

the concentration and dilution of risk utilises the same rainfall information 

described previously. In this study; the land cover map utilised was the Centre for 

Ecology and Hydrology (CEH) Land Cover Map 2007 (Morton et al. 2011); rainfall 

information was Met Office UKCP09: 5 km gridded data - annual averages (Met 
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Office 2014); and the NextMap digital elevation model (DEM) at a grid resolution of 

5m x 5m, developed by Intermap, was used. It is important to balance the 

information content of the observed dataset with the complexity of the modelling 

approach.  

Table 3.1. A description of SCIMAP land cover classes and how they are derived  

 

CEH LCM broad 
habitat class SCIMAP class Description 
Broadleaved mixed and 
Yew woodland Woodland 

Deciduous, mixed, conifer, larch, evergreen 
and felled 
forest. Coniferous woodland 

Arable and horticulture Arable Freshly ploughed land and annual and 
perennial crops. 

Improved grassland Improved 
grassland 

Intensively managed grassland for hay, 
silage. 
and/or grazing of livestock 

Rough grassland 

Rough grazing Semi-natural grassland and managed low  
productivity grassland.  

Neutral grassland 
Calcareous grassland 
Acid grassland 
Fen marsh and swamp 

Bog 

Herbaceous and mossy swards with a peat 
depth of 
> 0.5 metres. Fen, fen meadows, rush 
pasture, swamp,  
flushes and springs.  

Bog 

Dwarf shrub heath 
Moorland 

Heather grassland and exposed rock as 
well as habitats 
occurring at higher altitudes. 

Montane habitats 
Inland rock 
Salt water 

Other 
Coastal water, rivers, canals and standing 
water. 
Coastal rock and sediment. 

Fresh water 
Supra-littoral rock 
Supra-littoral sediment 
Littoral rock 
Littoral sediment 

Built -up areas and 
Gardens Urban 

Built up areas including towns, cities, dock 
sides,  
industrial estates and car parks. Suburban 
areas with a 
mix of built up areas and vegetation. 
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Therefore, for the purposes of this experiment the 23 land cover classes described 

in the CEH land cover map were condensed into eight classes: improved 

grassland, rough grazing, moorland, bog, arable, urban, woodland and other. 

Table 3.1 shows which of the CEH land cover classes were included in each of 

these new classes. The rationale for the reduction and merging of classes was 

that a number of separate classes within the larger CEH Land Cover map were 

listed where we would not expect a significant difference in the risk weights 

associated with the cover. For example, the deciduous and coniferous woodland 

classes were merged since they will have similarly low levels of livestock and 

represent similar availabilities of FIOs. Here, the fitted approach was used to 

establish how these land covers needed to be weighted in order to best represent 

in-stream measured E. coli risk. The SCIMAP fitted approach uses a Monte Carlo 

sampling framework based on the Generalised Likelihood Uncertainty Estimation 

(GLUE) methodology (Beven and Binley 1992). Here 25000 model realisations 

with varying land cover risk weightings were generated.  

 

Modelled risk values for 10 locations in the River Wyre catchment and 13 locations 

in the River Yealm catchment were compared with associated observed 

measurements of E. coli concentration. Locations and an overview of catchment 

characteristics for each location are shown in figures 3.1 and 3.2 and table 3.2. 

Previous studies have found that >90% of FIO loading to water occurs during high 

flow conditions following rainfall (Kay et al. 2007b; McKergow and Davies-Colley 

2010; Kay et al. 2010) and Kay et al. (2007b) noted that many studies employ a 

regular sampling regime which biases toward low flow and while this was 
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observed in the EA dataset, sufficient data representative of high flow conditions 

were deemed to be present. In order to avoid a bias toward the many base flow 

samples present within the EA dataset for both catchments, the data that were 

associated with flow that was >=60% of the highest flow were subset. This 

operationally defined exceedance threshold retained high flow events while 

excluding data associated with base flow conditions. Flow data were not available 

for all of the locations used in this experiment so flow information from a local 

gauging station was used; location 9 for the Wyre and location 14 for the Yealm 

(figure 3.1). This approach assumed that if it was high flow at one point in the 

catchment it was also high flow at the other points in the catchment. While this 

approach represented an approximation, we argue that it remains valid given that 

it is being used within a risk-based framework, i.e. it is the relative magnitude of E. 

coli concentrations that is important rather than the absolute concentration. The 

number of records remaining at each site after this sub-setting procedure was 

used is shown in table 3.2. A high number of samples were associated with 

locations 1 and 9 in the Yealm catchment and location 14 in the Wyre catchment. 

These locations were equipped with autosamplers programmed to sample after a 

flow threshold considered to be high flow was met. Samples from other sites were 

acquired using manual grab sampling.   
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Table 3.2. Catchment characteristics of each of the sub-catchments investigated. 

Connectivity is defined as the lowest value of topographical wetness index along a 

flow path as per Lane et al. (2009). Number of samples indicates the number of 

records remaining after sub setting all the available data by the days where flow is 

>60% of the highest flow recorded. 

  
Location  

Mean 
connectivity/ 
standard 
deviation 

Mean slope(°)/ 
standard 
deviation 

Mean elevation 
(metres)/standard  
deviation 

Number of  
samples  

W
yr

e  

1 0.71/0.04 0.24/0.66 8.6/0.4 706 
2 0.63/0.13 5.41/5.63 141.33/129.28 20 
3 0.71/0.14 0.89/1.00 13.72/3.71 21 
4 0.75/0.13 0.62/0.79 12.06/3.06 21 
5 0.69/0.12 1.78/1.93 56.32/33.92 20 
6 0.68/0.13 1.75/2.28 45.35/25.38 20 
7 0.67/0.12 1.97/1.65 42.62/20.2 19 
8 0.62/0.12 7.49/7.26 223.17/95.61 21 
9 0.62/0.12 6.88/7.05 199/99.89 888 
10 0.64/0.11 3.39/3.36 104.54/42.18 23 

Ye
al

m
 

11 0.88/0.10 3.42/1.71 128.91/8.76 40 
12 0.83/0.12 7.34/4.66 274.93/123.84 40 
13 0.59/0.05 7.16/1.79 44.08/2.39 42 
14 0.81/0.14 6.51/4.74 125.58/85.16 193 
15 0.77/0.04 6.05/3.32 33.49/13.81 47 
16 0.45/0.07 14.1/5.06 20.98/4.57 41 
17 0.78/0.13 5.96/4.61 59.72/19.29 30 
18 0.78/0.14 5.64/4.13 55.08/18.18 50 
19 0.83/0.12 5.82/3.62 85.25/32.87 41 
20 0.79/0.11 2.45/0.82 57.8/0.56 42 
21 0.63/0.13 7.23/2.84 87.19/3.32 27 
22 0.49/0.05 20.4/7.14 122.77/10.83 28 
23 0.88/0.07 5.00/2.47 262.31/44.18 42 
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Statistical analysis 

All statistical analysis was carried out using the R statistics package (R Core Team 

2015) and third-party packages (Augie 2015; Carr et al. 2014; Sarkar & Andrews 

2013; Neuwirth 2014; Wickham 2007, 2014, 2015; Wickham & Francois 2015; 

Deepayan 2008). All E. coli counts underwent log10 transformation prior to 

statistical analysis. The observed E. coli measurements used in our study were 

derived from a median of the subset data for each location and were converted 

into risk values by determining their rank order to allow comparison with the 

relative risk nature of the SCIMAP output. The Spearman’s rank correlation 

coefficient (rs) comparing observed risk with the simulation output was used as the 

objective function. This statistical comparison measures the extent to which the 

relative order of the locations in the observed and simulated datasets match and 

avoids assuming the observed dataset includes the most and least risky locations 

in the catchment. For each catchment this assessment provided 25000 

Spearman’s correlation coefficients; one associated with the comparison of each 

of the randomly generated combinations of land cover risk values and the 

observed in-stream E. coli risk. One sample t-tests were used to assess whether 

the land cover risk values associated with the best modelled outputs (i.e. top 1% of 

rs) were significantly different from 0.5. Because E. coli concentrations in the Wyre 

catchment were not normally distributed, a Kruskal Wallis test was used to 

investigate differences in E. coli concentration among the observed data across all 

sites of the Wyre, with a Dunn’s test used to determine which sites were different 

from one another. Differences at the p < 0.05 level (95% confidence interval) were 

considered statistically significant. 
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3.4. Results 

The SCIMAP fitted approach provided three outputs that elicit information on the 

influence of different land covers on the risk of FIO pollution in streams and rivers. 

Two-dimensional density (2-Dd) plots and boxplots (figure 3.3) depict the 

relationship between land cover risk weighting and model performance. The 2-Dd 

plot is a scatter plot of risk value against the Spearman’s correlation coefficient, 

derived from comparing the SCIMAP output associated with that risk value and 

observed FIO risk. The scatterplot is divided into hexagonal sections whose 

saturation determines the number of models that fall into that part of the plot. 

Results from t-tests (table 3.3) determine the confidence with which we can reject 

the null hypothesis that the mean risk weighting of the 1% best performing models 

is significantly different from 0.5 and therefore either contributes to diffuse pollution 

(risk weightings >0.5) or dilutes pollution (risk weightings <0.5). Together these 

results provide insight into the performance of SCIMAP’s prediction of diffuse FIO 

pollution risk by providing the maximum correlation achieved and the potential 

uncertainty associated with model outputs, which is driven by the ‘identifiability’ of 

optimum risk weightings for land cover types. Identifiability, or the ease at which 

an optimum risk weighting can be derived, is represented by the standard 

deviation of risk value in the 1% best performing models. Larger standard 

deviations suggest that it is harder to identify an optimum risk weighting for land 

cover types. 
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3.4.1 The River Yealm catchment 

The results for the Yealm catchment suggest that improved grassland and 

woodland should be assigned low risk values with respect to their contribution to 

FIO pollution of water. The 2-Dd plots (figure 3.3) show improvement in model 

performance as the risk weighting for these land covers decreases. In addition, the 

boxplots (figure 3.3) show low mean risk weightings associated with best 1% 

performing models. By contrast, the results suggest that rough grazing should be 

assigned high risk weightings with the 2-Dd plots showing improving performance 

of SCIMAP as the risk weighting increases. The boxplot shows a high mean risk 

weighting for the best 1% performing models affirming this result. The 2-Dd plot 

infers that arable land cover should be associated with a medium amount of risk, 

with model performance peaking at risk values approaching 0.54. This was 

supported further by both the box plots (figure 3.3) and mean risk weighting of the 

best 1% performing models (table 3.3). Risk weightings associated with the 

remaining land cover types (moorland, bog and urban) were not influential on the 

performance of the model predicting in-stream FIO risk. The mean risk weighting 

for these land covers was approaching 0.5 with a large standard deviation (table 

3.3); therefore, the mean risk weighting was not significantly different from 0.5 

(table 3.3). This was also apparent in the 2-Dd plots, as represented by a ‘flat top’ 

in the output (figure 3.3). 

Of the land covers shown to have an impact on FIO diffuse pollution risk, only the 

risk weightings associated with improved grassland and woodland were highly 

identifiable. The optimum risk weighting for rough grazing was harder to identify 
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(table 3.3). Overall the performance of SCIMAP in the prediction of FIO risk in the 

Yealm catchment was good with a maximum rs of 0.88 (p<0.01). 

 

Table 3.3. Table summarising the influence of land cover risk weighting on 

SCIMAP performance. Mean risk weightings and associated standard deviation for 

the 1% best performing models. p value indicates the results from a t-test and the 

confidence with which we can reject the null hypothesis that there is no variation in 

model performance as a result of the risk weighting assigned to a land cover type. 

Land cover type Yealm 

  

Optimum mean/ 
standard 
deviation 

p value Summary of 
influence on FIO risk 

Improved Grassland 0.08/0.05 <0.001 Low risk 
Rough Grazing 0.78/0.16 <0.001 High risk 
Moorland 0.5/0.29 >0.05 Not influential 
Bog 0.5/0.29 >0.05 Not influential 
Urban 0.5/0.29 >0.05 Not influential 
Arable 0.54/0.23 <0.01 Medium risk 
Woodland 0.19/0.05 <0.001 Low risk 
    
Land cover type Wyre 

  

Optimum mean/ 
standard 
deviation 

p value Summary of 
influence on FIO risk 

Improved Grassland 0.63/0.32 <0.001 Medium risk 
Rough Grazing 0.58/0.26 <0.001 Medium risk 
Moorland 0.52/0.29 >0.05 Not influential 
Bog 0.49/0.30 >0.05 Not influential 
Urban 0.52/0.30 >0.05 Not influential 
Arable 0.18/0.22 <0.001 Low risk 
Woodland 0.04/0.04 <0.001 Low risk 
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3.4.2 The River Wyre catchment 

The performance of SCIMAP in predicting FIO risk in the Wyre catchment was 

poor with no correlation between predicted risk and observed risk (rs = -0.357, p > 

0.05). The 2-Dd plots in figure 3.3 provide little insight into the influence of all land 

cover risk weightings on model performance. 

Figure 3.3. SCIMAP fitted results for (a) the Yealm and (b) the Wyre. The top 

panels show hexagonally binned scatterplots depicting how model performance 

changes with changing the risk weighting for each land cover. The colour of the 

hexagonal bin depicts how many simulations fall into that part of the plot. The 

bottom panels show boxplots which depict the variation in the risk weighting of the 

1% best performing simulations. 
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However, when the risk weightings from the best 1% models are depicted as 

boxplots (figure 3.3) relationships can be seen. Arable and woodland show better 

model performance with lower risk weightings while model performance appears 

to improve when improved grassland and rough grazing is assigned a medium risk 

weighting. Land covers associated with moorland, bog and urban areas do not 

appear to influence model performance. These results are supported by the 

results of a t-test (table 3.3). The risk weighting associated with woodland is more 

identifiable while risk weightings associated with the remaining land covers of 

influence are less identifiable (table 3.3).  

Ordination plots can be used to illustrate the variability in land cover between the 

contributing catchments associated with the sample points in the Wyre. Here non-

metric multidimensional scaling (Kruskal 1964a) was used, utilising a Bray Curtis 

dissimilarity index (Bray and Curtis, 1957) (figure 3.4). The approach plots the 

coverage of each land use against the coverage of all other land uses creating a 

space with, in this case, 7 dimensions and then reduces the number of dimensions 

to 2 to allow visualisation. The extent to which the new 2-dimensional space 

represents the original 7 dimensional space is described with a value of stress. In 

this case a solution with a stress of 0.09 was achieved which Kruskal (1964b) 

describes as a fair representation of the original multi-dimensional space. Each 

point on the plot represents one sub catchment and increasing dissimilarity in land 

cover make up is associated with increasing distance between points. It was clear 

from this plot that the sub catchments associated with the Yealm river basin were 

more dissimilar than those associated with the Wyre river basin. There was less 

variability in the composition of land cover in the Wyre and sub catchments appear 

to gather into two clusters. This similarity between sub catchments was also 
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apparent in the FIO concentrations observed in the Wyre. Figure 3.5 shows a 

boxplot illustrating the variability in FIO concentration at each of the sampling 

points in the Wyre catchment and a significant difference in the distributions of FIO 

concentrations at each of the sites was observed (P < 0.05). The Dunns test did 

reveal that there was a degree of clustering of sites. For example, five of the ten 

sites were associated with group a and/or b and five were associated with group c 

(Fig 5). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. An ordination plot showing the dissimilarity in land cover mosaic 

across the contributing catchments associated with sample points from the Yealm 

(grey) and Wyre (black). Increasing distance between points illustrates increasing 

dissimilarity in land cover make up between catchments. 
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Figure 3.5. Boxplot illustrating the variability in the concentration of E. coli across 

samples from the Wyre catchment. Letters above the boxes indicate significant 

differences in FIO concentrations between sites as determined by a Dunns test.  

  

The potential for seasonal differences in SCIMAP’s performance can be 

investigated by comparing model output with observed data split into winter or 

summer months. This revealed that there was some variance in model 

performance depending on the season of interest (figure 3.6). For the Yealm, 

SCIMAP performance appeared to reduce during winter months while an opposite 

more pronounced effect was observed for the Wyre. The possibility of a 

relationship between the identifiability of a land cover’s optimum risk weighting and 

it’s representation in a catchment is explored in figure 3.7. As the percent 

coverage of a land cover class increased the identifiability of an optimum risk 
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weighting appeared to decrease. The pattern was more pronounced in the Yealm 

catchment.  

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Boxplot illustrating the variance in performance associated with the 1% 

best performing simulations when observed data is subset according to season.  
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Figure 3.7. A scatterplot of optimum risk weighting identifiability and percent 

coverage of the associated land cover. 

 

3.5. Discussion 

This study provides a novel application of the SCIMAP model fitted against 

historical E. coli data collected across two UK catchments. The performance of 

SCIMAP in the prediction of diffuse FIO risk in the catchments studied was 

variable, with a higher degree of agreement between predicted and observed FIO 

risk in the Yealm than in the Wyre catchment. Even where SCIMAP performed 

well there was variability in the certainty with which risk weightings could be 

applied to land cover types. There are several reasons why model performance 

might be poor or why assignment of land cover risk weightings was uncertain. 

First, high risk weightings may offset low risk weightings resulting in a wide range 

of optimum risk values; this problem is associated with covariance between one or 
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more land covers where the land cover mosaic is similar between catchments. 

Second, it is possible that a land use either does not exist in a catchment or 

represents only a small proportion of the catchment meaning that the signal from 

this land use is weak. Third, a land cover class may be too broad combining too 

many different availabilities of FIOs (Reaney et al. 2011). Finally processes that 

influence FIO fate (e.g. die-off, persistence, affinity to particles, etc.) may be 

important to consider alongside processes that govern transfer and SCIMAP, in its 

current form, does not adequately account for the former. 

 

In the Wyre catchment, areas associated with improved grassland and rough 

grazing were assigned a medium risk which was unexpected as these areas are 

associated with agricultural practices such as increased spreading of farmyard 

manure and slurry and livestock grazing providing a high availability of FIOs (Kay 

et al., 2010). When the relative coverages of land covers are similar between 

catchments the fitted approach cannot determine which land cover is responsible 

for a change in in-stream risk, resulting in high risk weightings being offset by low 

risk weightings or vice versa. It is possible that there was too much similarity in 

land cover between the sub-catchments investigated in the Wyre catchment. The 

overall composition of land covers in the sub catchments shows how sub 

catchments of the Wyre largely fall into two groups of similar land cover mosaic. 

Statistical analysis revealed that there was a difference in the E. coli concentration 

between sites of the Wyre, however it was not apparent whether this difference 

was large enough for the SCIMAP fitted approach to delineate risk values for the 

different land covers. While too few catchments were investigated in this study to 
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determine the level of difference in land cover between catchments required for 

the SCIMAP fitted approach to be applied optimally, Milledge et al. (2012) 

investigated 11 catchments across England and that dataset was used to 

determine how identifiability of land cover risk values associated with increasing 

diversity of land cover types in catchments. However, Milledge et al (2012) used a 

diffuse nutrient pollution dataset, whereas for FIOs we were limited to two 

catchments, largely because in the UK there are a limited number of spatial 

datasets of FIOs across catchment systems (Oliver et al., 2016).  

 

Even when an influence on model performance was apparent, a large standard 

deviation in optimum risk weightings was seen for many land cover classes in both 

the Wyre and the Yealm, indicating that the identifiability of an optimum risk 

weighting was low and could only be applied with a relatively low degree of 

certainty. As representation of a land cover decreases, its signal is likely to 

decrease making its optimum risk weighting harder to identify. Previously, a 

positive relationship between percentage coverage of land cover in a catchment 

and the identifiability of its optimum weighting has been observed when 

considering nutrient pollution (Milledge et al. 2012). This also appeared to be the 

case for FIO pollution, with decreasing standard deviation in optimum risk 

weightings as percent coverage of a land cover class increased.  All of the 

catchments studied in the Wyre were dominated by improved grassland leaving 

little space for other land covers. This may, in part, explain the large standard 

deviations observed for this catchment for all of the land covers. In contrast, the 

increased variation in land covers in the Yealm may have resulted in smaller 
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standard deviations recorded for improved grassland, rough grazing and woodland 

land covers. It has been shown that the use of the SCIMAP fitted approach can be 

improved when close consideration is given to the location of sampling points 

(Reaney et al., 2011). Thus, ensuring that contributing catchments of monitoring 

points vary in their land cover make up as much as possible is a clear priority in 

order to maximise the identifiability of land cover risk weightings. This is likely to 

be challenging in catchments where there is a dominance of one land cover, for 

example those associated with agriculture. Thus, carefully considered sampling 

campaigns to ensure appropriate spatial coverage of an observed FIO dataset 

across catchments are essential in order to verify SCIMAP performance in 

predicting FIO risk following future model refinements. This reinforces the need for 

good quality monitoring distributed across stream networks, not just end-point 

receptors.  

 

Optimum risk weightings may be hard to identify if a land cover class is too broad 

encompassing many different availabilities of FIOs. It is possible that the 

availability of FIOs in the landscape depends, in part, on livestock density and that 

livestock density will vary between farms. Incorporating this information into land 

cover classes associated with agriculture is possible through use of Agricultural 

Census data which provides information on livestock density in 2km2 grid squares. 

However, there are potential issues with using this information (Winter et al., 

2010). For example, livestock are assumed to be located in the 2km2 associated 

with a farm address and yet it is likely that farm managers will graze livestock, or 

produce silage or hay, on land that is either owned or rented beyond this 2km2 
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area. Nevertheless, this information may provide an adequate compromise in 

terms of understanding the variation of FIO pollution risk across catchments 

resulting from variable stocking densities.   

 

In addition, the improved grassland land cover class is likely to encompass many 

different management regimes that are likely to represent different availabilities of 

FIOs, which may have influenced modelled outputs from SCIMAP. For example, 

improved grassland can be managed for livestock grazing and the source of FIOs 

will come in the form of faecal deposits from livestock. Improved grasslands can 

also be managed for silage production where spreading of slurry is likely to 

present a risk of FIO pollution. Across a catchment it is likely that there will be 

differences between farm management (Winter et al., 2010). For example, some 

dairy farms are now opting to house dairy cows on a permanent basis, particularly 

in wetter regions of the UK, whereas others continue to adopt a more traditional 

split between summer pasture grazing and winter housing for cows. The 

environmental risks that these contrasting management systems pose will differ 

(Harmel et al. 2010). Permanent housing of dairy cattle can result in the production 

of more slurry and/or farmyard manure, putting pressure on storage infrastructure 

and requiring more frequent application of organic fertiliser to the landscape, 

though on farms with sufficient storage those applications can be timed better to 

reduce coincidence with heavy rainfall. By contrast, on those farms that adopt 

grazing regimes there will inevitably be deposition of fresh livestock faeces on 

pasture, leading to an accumulation of untreated faeces containing high 

concentrations of FIOs (Muirhead 2009; Oliver 2014). The concentration of FIOs 
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and dynamics of their mobilisation will vary between faecal, slurry and manure 

matrices driving variability in their respective risk to watercourse microbial quality 

(Hodgson et al. 2009; Guber et al. 2013; Blaustein et al. 2015b). Thus, 

augmenting the improved grassland land cover with management regime and 

livestock density may improve SCIMAP’s characterisation of the spatial variability 

of FIO risk.  

 

At present SCIMAP’s prediction of diffuse pollution risk is time integrated and an 

annual average risk is predicted. An approach which considers seasons 

separately may be more appropriate when considering diffuse FIO pollution 

because the extent to which watercourses receive FIO pollution is likely to vary 

between seasons (Kay et al. 2008). For example, the persistence of FIOs in the 

landscape is dependent on abiotic conditions such as temperature (Martinez et al. 

2013) and moisture (Moriarty and Gilpin 2014), which will vary between seasons 

(Oliver & Page 2016). Additionally, mobilisation of FIOs from landscape reservoirs 

will vary depending on patterns of rainfall (Blaustein et al. 2015 b) and, from a UK 

perspective, the regulatory end-point receptors, i.e. bathing waters, are monitored 

seasonally over the summer. The seasonal differences in SCIMAP’s performance 

were more pronounced in the Wyre catchment. Therefore, it may be possible that 

an improvement in model performance can be achieved through accounting for 

characteristics of FIO fate and transfer that vary seasonally.  

 

An interesting and surprising observation in this study was that for the Yealm 

catchment improved grassland was assigned a low risk value. This was 
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unexpected because this land cover type can be associated with activities that 

might produce a high availability of FIOs (McGrane et al. 2014). For example, 

improved grassland is used to graze livestock, which deposit fresh faeces into the 

landscape or it can be amended using slurry and manure for silage production 

creating a source of FIOs in the environment (Hodgson et al. 2009; Blaustein et al. 

2015b). This has been further supported by regression (Kay et al. 2010, Tetzlaff et 

al. 2012, McGrane et al. 2014) and export coefficient (Kay et al. 2008) approaches 

that have suggested an association between FIO pollution and land covers linked 

with the management of livestock and their manure. Our study assigned risk to 

land cover types relative to all other land cover types in the catchment. It is 

possible that, for this particular catchment, another land cover type was more risky 

than improved grassland. In the Yealm catchment, areas of rough grazing were 

assigned a high risk value and an optimum mean value of 0.78. Perhaps rough 

grazing in this catchment provides more FIO pollution to the river network than 

improved grassland and therefore inputs from extensive grazing, most likely via 

sheep, are more important than inputs from areas of improved pasture for this 

particular catchment. Similarly, in the Wyre catchment, a medium risk value (0.58) 

was assigned to areas associated with rough grazing but our confidence in the 

interpretation of this finding is low given the covariance of land cover types in the 

catchment. Issues concerning the many availabilities of FIO in one land cover that 

have been discussed may also be a factor in the assignment of a low risk 

weighting to improved grassland areas. Of course, the fact that land cover 

information is derived from remote sensing techniques may also influence results. 

There is some overlap in the spectral properties of improved grassland and rough 

grazing, neutral, acid and calcareous grasslands meaning in some cases it can be 
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difficult to delineate between these land covers (Morton et al. 2011), which are 

likely to vary in their susceptibility to FIO contamination. Additional ground- truthing 

may improve model performance but is restricted by time and resource 

constraints. 

 

In this experiment the SCIMAP modelling framework was applied to diffuse FIO 

pollution in two catchments in England. Model performance was variable with 

better agreement between modelled outputs and observed data in the Yealm 

catchment than for the Wyre catchment.  For the Yealm catchment, where model 

performance was good, there was uncertainty involved with the assignment of 

optimum risk weightings. This would suggest that, in its current form, SCIMAP is 

not yet optimised for mapping FIO risks. It would, however, be surprising for a 

model developed to describe an inert pollutant such as fine sediment to perfectly 

describe the fate and transfer of a living organism and these results should not be 

viewed as a failure of a modelling framework, but rather as a learning process in 

which the development of new hypotheses can be framed, and further 

developments of SCIMAP for predicting FIO risks can occur (Beven 2007). There 

are significant differences between the processes of fine sediment and FIO fate 

and transfer in catchment systems. For example, sediment is a conservative 

pollutant that persists indefinitely in the environment where FIOs, once excreted 

from the alimentary canal, die-off over time (Stocker et al. 2014). In addition, there 

is an unlimited store of sediment in the landscape where the FIO reservoir will be 

finite; sediment pollution is therefore transport limited and FIO pollution source 

limited (Sigua et al., 2010). This study has provided the necessary evidence to 
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highlight that the adaptation of SCIMAP to account for FIO fate and transfer will 

likely mark a significant departure from previous iterations of this risk-based 

framework. 

 

3.6. Conclusion   

This research has provided a ‘bench-marking’ modelling experiment to determine 

how well the current SCIMAP framework for diffuse fine sediment pollution can be 

applied to map diffuse FIO pollution risk in catchment systems. Overall 

performance was variable with reasonable performance of the model for the 

Yealm catchment but poor outputs when tested in the Wyre catchment. In addition, 

assignment of risk weightings to land cover types exhibited uncertainty for all land 

covers, excluding woodland in both catchments and improved grassland in the 

Yealm catchment. However, a number of opportunities for the development of 

SCIMAP to account for diffuse FIO pollution risks have been identified, paving the 

way for a roadmap of future research needs.  First, the fitted approach developed 

by Milledge et al. (2012), which was used to train SCIMAP land cover risk 

weightings to individual catchments, can be hampered by the mosaic of land 

covers across a catchment and therefore, when using this approach, targeted 

effort must be made to ensure that there is variation in the composition of land 

cover in the contributing catchments of in-stream monitoring points.  Second, 

management of livestock and their faeces is likely to vary across catchments and 

the risk to microbial water quality is likely to differ between different management 

regimes. Therefore, a single land cover class encompassing all of these 

management regimes is likely to be inappropriate and multiple land cover classes 
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discriminating animal stocking rates and housing regimes should be developed. 

Finally, watercourse FIO pollution has been shown to vary seasonally and the 

SCIMAP framework should recognise this and taking account of the varying 

potential for FIO survival and mobilisation through the year is a priority in this 

respect. SCIMAP has proven useful for the targeting of interventions for 

conservative nutrient and fine sediment pollution and the framework shows 

promise in its consideration of FIOs. However, the un-conservative nature of FIOs 

undoubtedly provides a different set of challenges for this model. Opportunities for 

addressing these challenges exist and optimising SCIMAP for prediction of diffuse 

FIO pollution risk will mark a significant departure from previous versions of 

SCIMAP and provide a useful tool for those attempting to reduce the impact of 

faecal contamination of watercourses at the catchment scale. 
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4. High resolution characterisation of E. coli proliferation profiles in dairy 

cattle, beef cattle and sheep faeces 

4.1 Abstract 

An increased demand for food resulting from a growing population has contributed 

to the intensification of livestock management practices. Grazing livestock 

contribute faeces to the landscape and, once mobilised, pathogens present in 

fresh deposits of faeces have the potential to impact upon ecosystem services 

related to clean water such as bathing, drinking and shellfish harvesting waters. 

The extent to which these ecosystem services may be impacted upon can, in part, 

be attributed to the survival of pathogens in the landscape reservoir. Therefore, 

understanding the survival of pathogens in the environment is key if catchment 

management practices that reduce impacts to services provided by clean water 

are to be developed. Here the survival of E. coli (an internationally accepted faecal 

indicator organism (FIO)) in the faeces of dairy cattle, beef cattle and sheep is 

investigated using a controlled environment facility simulating diurnal variation of 

temperatures typically experienced during a British spring and summer. The 

experiment, conducted under controlled conditions, reproduced E. coli regrowth in 

livestock faeces which has previously been observed in field trials. This allowed for 

the development of a non-linear description of FIO survival dynamics in faeces 30 

days post defecation and the relative risk of faeces from different livestock 

contributing E. coli to the environment to be investigated. A new framework for 

predicting E. coli regrowth in livestock faeces immediately following defecation has 

been developed. This new knowledge regarding the proliferation of E. coli in 

faeces can provide input into tools that are designed to inform catchment scale 
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assessments of watercourse E. coli contamination. Such assessments may help 

catchment managers and policy makers to manage health risks originating from 

grazing livestock on pasture.    

Keywords: diffuse pollution, faecal indicator organism, microbial die-off, survival 

curves
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4.2 Introduction 

 Increased demand for food production has led to approaches that aim to deliver 

sustainable intensification in agricultural systems (Rockström et al. 2017). Despite 

best efforts to promote sustainable intensification, the need to feed a growing 

population can still lead to poor management of livestock, and the unsustainable 

use of agricultural land and (in)organic fertilisers, with the potential to impact 

negatively on wider environmental quality (Yang et al. 2016). For example, 

increased livestock numbers on-farm could lead to higher volumes of livestock 

faeces being applied to land, either as manure, slurry or via direct defecation, 

introducing large quantities of faecal indicator organisms (FIOs) to agricultural 

land. Importantly, the mobilisation and delivery of FIOs to receiving waters 

following rainfall threatens important ecosystem services related to clean and safe 

drinking, bathing and shellfish harvesting water (Clements et al. 2015; Murphy et 

al. 2015; Wu et al, 2016).  

E. coli is the most routinely monitored FIO in environmental samples, though its 

detection does not imply the presence of pathogenic microorganisms in the same 

sample (Bradshaw et al. 2016; Pachepsky et al. 2016). However, detection of E. 

coli in soil or water does indicate faecal contamination of the environment. The 

magnitude of E. coli burden contributed to land from agriculture is therefore a 

useful index when assessing the vulnerability of nearby watercourses to microbial 

pollution risk (Dymond et al., 2016). Understanding how the landscape burden of 

E. coli varies in space and time is challenging, due to the complex survival 

dynamics of E. coli under different abiotic conditions (Oliver et al. 2018). A 

particularly important source of E. coli in agricultural landscapes is freshly excreted 
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livestock faeces which, unlike most slurry and farmyard manure, does not undergo 

any storage or treatment prior to land application and therefore often contains a 

higher concentration of FIOs (Chadwick et al. 2008).  

Controlled laboratory studies, under constant temperature regimes, have been 

used extensively to determine the impact of specific environmental factors on E. 

coli persistence in livestock faeces. Outputs from such studies have been 

deterministic first-order decay functions that describe the exponential die-off of the 

target population under different temperatures (Wang et al. 2004), dry matter 

content of protective media (Ishii et al. 2010) or contrasting soil types (Lau & 

Ingham 2001). To complement the mechanistic understanding delivered via 

controlled laboratory studies, field-relevant investigations have profiled E. coli 

persistence in livestock faeces exposed to combinations of variable and interacting 

environmental factors (e.g. Oliver & Page, 2016; Moriarty et al., 2011; van Kessel 

et al., 2007). This field-relevant research has identified significant deviations from 

the first-order decay functions observed under controlled conditions, with E. coli 

cell growth and protracted survival leading to much longer persistence than that 

predicted from first-order die-off models (Brouwer et al. 2017).  

Whether research has opted for a field or laboratory focus, there has been little 

direct comparison of persistence profiles in multiple faecal types under contrasting 

conditions. Most research has focussed on bovine faeces (e.g. Oladeinde et al. 

2014; Martinez et al., 2013) with relatively little information currently available for 

ovine faeces (Moriarty et al. 2011; Hodgson et al 2009). Furthermore, the 

observed growth phase of E. coli, commonly identified in field-relevant studies, 

represents an interesting shift in our understanding of E. coli survival; however 
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knowledge of what governs the rate and magnitude of post-defecation E. coli cell 

growth is lacking (Oliver et al. 2016b). This problem is compounded by 

observations of E. coli growth occurring at the beginning of long-term studies, 

leading to inferences of E. coli growth being based on only a few data points. 

Therefore, the modelling of E. coli persistence in faecal deposits may justify a 

piecewise approach whereby the initial growth phase is described separately from 

the subsequent decay phase. For the initial growth phase, non-linear modelling 

approaches may provide a better approximation of the system than the linear 

approaches employed previously (Oliver et al. 2010). For example, we might 

expect regrowth to be most rapid in fresh faeces, reducing through time as 

conditions within the deposit become less favourable. Thus, fitting an asymptotic 

model to describe the E. coli population growth rate, which declines as it moves 

toward a maximum, could provide an opportunity to improve upon linear modelling 

approaches.  

While field-relevant studies are useful for investigating E. coli behaviour in the 

landscape, the complex mix of interacting environmental factors makes it difficult 

to identify the dominant drivers that govern E. coli persistence and growth in 

livestock faeces. Yet controlled static-temperature laboratory studies oversimplify 

real world conditions and rarely, if ever, capture growth as observed in the field. 

The use of a more advanced controlled environment facility (CEF) offers the 

potential to minimise uncertainty from variable interacting factors but elevate the 

quality of simulated controlled conditions, e.g. by allowing diurnal temperature 

regimes and varying daylight hours, but have yet to be exploited for exploring E. 

coli persistence in the context of environmental management. The aim of this 

study was to investigate E. coli persistence in beef, dairy and sheep faeces, using 
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a CEF.  Our objectives were to: (i) use high-resolution sampling to investigate and 

model the potential for E. coli regrowth previously unaccounted for by controlled 

laboratory studies; (ii) determine whether E. coli regrowth profiles vary in different 

livestock faeces across contrasting seasonally-defined conditions; (iii) investigate 

the temperature sensitivity of E. coli persistence within different faecal types; and 

(iv) characterise differences in the E. coli hazard associated with faecal deposits 

from different livestock types. 

 

4.3 Materials and Method 

4.3.1 Experimental climate chambers 

All experiments were carried out in climate cabinets, which were designed to allow 

multifactorial climate manipulation (Snijders Microclima 1750E, Tilburg, 

Netherlands). Cabinets were set up to mimic diurnal temperature variation 

experienced during a typical British spring or summer. Two temperature 

treatments were used: (i) typical seasonal temperatures for spring and summer 

based on long term average datasets; and (ii) scenarios to test climate sensitivities 

for spring and summer. Temperature settings were derived from 30 year averages 

available from the Met Office MIDAS dataset (Met Office, 2012). For the climate 

sensitivity experiment, temperatures of 2°C more than the MIDAS seasonal 

averages were used. For the spring treatment this was equivalent to UKCP09 

projections for temperature increases for 2070, 2070, and 2060 for the low, 

medium, and high emissions scenarios, respectively. For the summer treatment a 

temperature increase of 2°C is equivalent to UKCP09 projections for 2040 for the 

low, medium and high emissions scenarios. These data were acquired from the 
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Scottish Climate Projections App (2017) with the Eastern Scotland region 

selected. The probability level used was 50% representing an equal chance of 

UKCP09 climate model realisations resulting in a temperature either above or 

below the temperature specified. Temperature in the CEF varied from an average 

minimum and maximum following a sinusoidal wave mimicking diurnal variation of 

temperature (Table 4.1). In order to simulate solar irradiance, timers were set to 

mimic periods of daylight and night time with UV strengths typical for the UK 

during the seasons of interest. UV activation periods were centred over the time of 

maximum temperature. Monthly means of solar irradiance were acquired from the 

SoDa Service (2013) and converted to a seasonal mean (Table 4.1).      

Table 4.1. Controlled environment facility settings 

   

 

  4.3.2 Experimental design 

To ensure that the faeces used in the experiments was representative of the 

livestock diet typical for the season of interest, fresh faeces was collected during 

the respective season, and then transferred to the CEF. Faeces was collected 

from farms in Stirlingshire, Scotland and from the same herd/flock for the spring 

Season 
Minimum 
temperature 
(°C) 

Maximum 
temperature 
(°C) 

Temperature 
variation 
(°C) 

Hours 
of 
daylight 

UV 
(J/cm2/day) 

Spring 3.97 11.86 7.89 13 34.41 
Spring +2°C 5.97 13.86 7.89 13 34.41 
Summer 10.2 18.34 8.14 15.5 36.3 
Summer +2°C 12.2 20.34 8.14 15.5 36.3 
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and summer treatments. For each temperature treatment, five intact replicates of 

dairy and beef cattle faeces, which were less than 12 h old, were collected. Dairy 

cattle faeces were collected from an area where cows were held prior to milking, 

which was cleaned twice a day. Beef cattle and sheep were grazing on pasture 

and the freshness of faeces was ensured by collecting deposits from the area 

immediately surrounding livestock. In order to collect enough faeces for the sheep 

experiment, each replicate was made up of pellets from five fresh deposits which 

were collected and homogenised. Faecal deposits had an average fresh weight of 

1516 g (sd= 350 g) and 1766 g (sd = 633 g) for dairy and beef cattle, respectively. 

The average fresh weight for groups of five faecal deposits from sheep was 116 g 

(sd = 58 g). All faeces were transferred into the climate cabinets on the day of 

collection. Every two days the faecal deposits were misted with sterile distilled 

water at a rate of 1ml/100cm2 to mimic a ‘morning dew’ effect and avoid a 

complete dehydration of the faeces under CEF conditions. Bovine faecal samples 

were collected for microbial analysis on a daily basis, and every other day for 

sheep faeces (as dictated by the smaller faecal volume associated with ovine 

faeces). Sampling was undertaken over a period of 20 to 30 days, depending on 

the volume of source material available. A small sample of faeces representing a 

cross section of the deposit, approximately 0.5 cm in diameter, was retrieved using 

a sterile spatula. This was carried out daily for 15 to 20 days after which the 

sampling frequency was decreased in order to retain enough material to lengthen 

the complete duration of the experiment to 30 days. Sampling ceased when further 

samples could not be taken without intersecting with areas previously sampled. 

The spatula used to sample the faeces was sterilised between replicates, and the 

faeces transferred into a sterile sample pot. Repeated sampling was used over 
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destructive sampling; sampling repeatedly from the same faecal deposit assumed 

homogenisation of the generic E. coli population within the faecal matrix during 

passage through the livestock gut, as previously demonstrated by repeated spatial 

sampling of faecal material (Oliver, 2014).  

2.3 Sample analysis 

On each sampling occasion approximately 2 g of faeces were removed from each 

deposit; 1 g was used to determine moisture content by oven drying the sample at 

105oC for 24 h, with the remainder used for quantifying the concentration of E. coli. 

The number of viable E. coli cells in faeces was determined using standard 

culture-based methods and carried out within 30 minutes of the faecal samples 

being collected. Briefly, approximately 1 g of faeces was added to 9 mL of 

phosphate buffer saline (PBS) prior to shaking at 130 rpm for 30 minutes. The 

resulting slurry mix was then vortex mixed and serially diluted prior to inoculation 

onto membrane lactose glucuronide agar (MLGA) (CM1031, Oxoid; Basingstoke, 

UK) using the spread plate method. Agar plates were inverted and incubated for 

24 hours at 37°C. All colonies counted represented presumptive E. coli and all 

sample analysis was performed in duplicate. Membrane filtration of samples was 

also used to complement the spread plate method and improve the limit of 

detection. Briefly, 1 mL of each serially diluted sample was mixed with 

approximately 20 mL of sterile PBS and filtered through sterile cellulose acetate 

membranes of 0.45 μm pore size (Sartorius Stedim Biotech; Goettingen, 

Germany) using a vacuum filtration unit (Sartorius). Membrane filters were then 

aseptically transferred to plates containing MLGA, inverted and incubated for 24 h 
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at 37 °C. The limit of detection was 50 cells / g of wet faeces. Method blanks of 

PBS were used to ensure no contamination occurred during sample processing. 

2.4 Statistical analysis 

All E. coli counts underwent log10 transformation prior to statistical analysis. 

Distributions of E. coli were not log normally distributed as determined using the 

Anderson – Darling normality test and this was accounted for in subsequent data 

analysis.  

We hypothesised that E. coli population growth within faecal deposits would likely 

be most rapid immediately following deposition, slowing as conditions within the 

deposit become less favourable for E. coli population growth. As linear modelling 

approaches assume a constant growth rate they would not be appropriate here; 

and whilst quadratic terms within a linear model can be used to address this 

problem, this approach can lead to predictions with negative values. Therefore, the 

use of more complex non-linear models is justified (Paine et al. 2012). The 

asymptotic exponential model provides an opportunity to investigate the 

magnitude and duration of E. coli growth. The asymptotic exponential form 

(equation 1) predicts growth rate to be fastest initially, slowing to a stationary 

maximum and has three parameters: an intercept (initial E. coli concentration); a 

horizontal asymptote (maximum E. coli concentration); and a rate constant (speed 

of E. coli population growth). 

y = a + (b-a)e-cx  
         

Equation 1: Where a is the horizontal asymptote, b is the intercept and c is the rate 

constant. 
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Classical regression approaches require data to exist under the assumptions that 

errors are uncorrelated and independent. However, repeated measurements of E. 

coli concentration from a given faecal deposit are not independent and are likely to 

be serially related. Therefore, a mixed effects approach, which incorporates a 

random effect allowing a model to vary between individual deposits and a temporal 

dependence structure between measurements, was required (Davidian & Giltinan 

1995; Pinheiro & Bates 1995). Three temporal autocorrelation structures were 

tested: auto regressive order 1; compound symmetry; and autoregressive moving 

average. The Akaiki Information Criterion (AIC) was used to compare competing 

models and a reduction of > 2 was deemed to be an improvement in model 

performance. Confidence intervals were derived from an ordinary non-parametric 

bootstrap procedure because this conservative method makes no a priori 

assumptions about the distribution of the data (Carpenter & Bithell 2000). Where 

growth was not observed, a linear mixed effects model was fitted to the data 

incorporating the temporal autocorrelation structures described above. For the 

linear models, goodness of fit was quantified by calculating marginal and 

conditional R2 values, as described by Nakagawa and Schielzeth (2013). 

Where E. coli concentration growth was observed, the day of maximum E. coli 

concentration was determined for each replicate individually. A log10 

transformation was required to normalise the data after which a one-way ANOVA 

and a Tukey test was applied to investigate whether the day of maximum E. coli 

concentration differed significantly between livestock/temperature treatments.    

Moisture content of faeces was measured as a percentage and was thus bounded. 

Therefore, a logit transformation was applied and an Anderson – Darling normality 
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test used to confirm the transformed data were from a normal distribution. A one-

way ANOVA and a Tukey test was applied to determine any differences in the 

moisture content of faeces from the three livestock types collected during different 

seasons.  

Data processing and analysis was implemented in the R statistics package 

utilising a number of third party plugins (R Core Team 2015; Wickham & Francois 

2016; Graves et al. 2015; Pinheiro et al. 2015; Ogle 2015; Neuwirth 2014).   

4.4 Results and discussion 

The high resolution monitoring in this study has, for the first time, provided data 

that has enabled the development of a non-linear, asymptotic description of E. coli 

proliferation in livestock faeces immediately following deposition. Results are 

based on a total of 364, 383 and 255 faecal samples taken from beef, dairy and 

sheep faeces, respectively. This represents the most sustained period of high 

frequency sampling of three livestock faecal types thus far reported, providing an 

unparalleled evidence base with which to characterise E. coli growth patterns in 

livestock faeces.  

 

Initial concentrations of E. coli in livestock faeces are shown in table 4.2 and, with 

the exception of the spring beef treatment, were in line with previously published 

research for all livestock and season combinations; the concentration of E. coli in 

the spring beef experiment were approximately 0.5 log10 CFU g-1 of dry faeces 

lower than values commonly reported in the literature (e.g. Hodgson et al. 2009; 

Muirhead et al 2009; Oliver et al. 2010; Oladeinde et al. 2014). Both temperature 

regimes applied to dairy faeces for the summer treatment resulted in maximum  
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Table 4.2. Average (n=5) initial, maximum, and day of maximum E. coli 

concentration for faeces from three different livestock types under four 

temperature regimes. All values are given as log10 CFU/g dry faeces.  

Livestock Temperature 

Mean initial 
E. coli 

concentration 
(log10 CFU g-1 

dry wt. 
faeces) 

Mean 
maximum E. 

coli 
concentration 
(log10 CFU g-1 

dry wt. faeces) 

Mean day of 
maximum E. 

coli 
concentration 

Mean 
initial 

moisture 
content 

(%) 

Be
ef

 

Spring 3.87 5.02 6.28 87.2 
Spring +2°C 5.22 5.96 1.90 85.5 

Summer 6.03 8.51 15.8 91.2 
Summer 

+2°C 5.70 8.65 13.2 90.4 

D
ai

ry
 

Spring 6.19 8.11 20.4 84.9 
Spring +2°C 6.18 8.28 11.8 85.0 

Summer 6.60 8.87 10.7 86.5 
Summer 

+2°C 6.58 9.10 10.5 85.6 

Sh
ee

p 

Spring 6.79 8.20 11.5 66.9 
Spring +2°C 6.41 8.59 16.9 67.3 

Summer 7.03 8.73 10.4 71.9 
Summer 

+2°C 7.18 8.88 14.0 72.0 

 

concentrations of E. coli that were greater than maximum concentrations reported 

in previous published studies (table 4.2). The summer and summer +2°C 

treatments exceeded the previously reported maximum by 0.32 and 0.49 log10 

CFU E.coli g-1 dry faeces, respectively (Muirhead et al. 2005; Soupir et al. 2008a; 

Oladeinde et al. 2014; Oliver 2010; Van Kessel et al. 2007). While efforts were 

made to simulate field conditions these inflated maxima may be due to the 

experiment being carried out inside a CEF where faecal deposits were isolated 
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from stressors present in the field, and did not encounter, for example, cell wash-

out following rainfall. Furthermore, under field conditions soil macrofauna such as 

beetles and earthworms break up faeces, which can affect the survival of E. coli 

(Ryan et al. 2011; Hénault-Ethier et al 2007; Pedersen & Hendriksen 1993). Given 

that the faecal material in this experiment may have been protected from some 

factors experienced in the field, extrapolation of our regrowth model to field 

conditions must be done with a degree of caution, with recognition that the 

experiment was undertaken to develop greater insight into what drives patterns of 

E. coli regrowth. 

The day of maximum E. coli concentration is shown in table 4.2 and, where E. coli 

growth was observed, did not differ significantly between temperature/stock type 

combinations (p ≥ 0.05). However, a large variation was apparent. Day 13 (sd=6) 

was, on average, the timing of maximum E. coli  concentration which is similar to 

previous studies with an average of 9 (sd = 9) days (Muirhead et al. 2005; Soupir 

et al. 2008a; van Kessel et al. 2007; Oladeinde et al. 2014; Oliver et al. 2010). An 

earlier day of maximum concentration was observed for beef cattle faeces in the 

spring treatment; little or no E. coli growth was associated with these faeces and 

early maximum E. coli concentrations arise due to a small deviation from a static 

phase of E. coli persistence. These data suggest that livestock type and 

temperature do not affect the time taken to reach a maximum E. coli concentration 

during regrowth; this is important in that it might present an opportunity to simplify 

the parameterisation of E. coli persistence. However, our experiment was 

conducted under moderate temperatures typical of spring and summer in the UK. 

Regions of the world where temperatures are higher, and closer to the optimum for 

E. coli replication (37oC), may promote further E. coli regrowth.  
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An asymptotic model form provided good fit to the data for all instances of E. coli 

regrowth. Model results are shown in figure 4.1 and asymptotic model parameters 

for the models associated with each of the livestock types are given in table 4.3.  

 Table 4.3. Table of model parameters associated with asymptotic models for 

each of the livestock types. Numbers in parentheses indicate lower and upper 

bounds of a 95% confidence interval.   

Li
ve

st
oc

k 

Te
m
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ra

tu
re

 

Model  
parameters 

M
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m
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)  
(lo

g 1
0 C

FU
g-1
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Intercept (log10 
CFUg-1) Rate constant 

Asymptote (log10 
CFUg-1) 

Be
ef

 Spring - - - - 
Spring +2°C - - - - 

Summer 
5.88 (5.51, 6.20) 0.18 (0.13, 0.28) 7.72 (7.35, 8.09) 1.84 

Summer +2°C 

D
ai

ry
 Spring 

6.35 (6.19, 6.49) 0.23 (0.17, 0.32) 

7.02 (5.41, 8.62) 0.67 
Spring +2°C 7.00 (6.26,7.71) 0.65 

Summer 7.95 (6.35,9.43) 1.6 
Summer +2°C 8.68 (7.05,10.29) 2.33 

Sh
ee

p 

Spring - - - - 
Spring +2°C - - - - 

Summer 
7.10 (6.63, 7.52) 0.41 (0.24, 0.91) 7.91 (7.70, 8.28) 0.81 Summer +2°C 

 

The asymptotic form contains three parameters: a starting value, rate constant and 

an asymptote. A fixed effect of temperature category was applied to the asymptote 

parameter only because: (i) the observed data showed no significant difference in 

the time taken to reach maximum concentration between temperature treatments, 

and (ii) the starting value is expected to be similar because, for each model, the 
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source of faeces is the same. For the data associated with beef and sheep faeces, 

a solution for an asymptotic model was not achieved when the data from the 

spring temperature treatment were included (i.e. no growth was observed for those 

treatments). A solution was achieved when the summer data were considered 

separately. For these models, including an effect of temperature sensitivity 

(present / present +2°C) on the asymptote did not improve model performance (i.e. 

the reduction in AIC was < 2). For the dairy faeces data, an asymptotic model was 

fitted to both the spring and summer data with the inclusion of the temperature 

sensitivity effect on the asymptote improving model performance (AIC reduced by 

11.98). A plot of the autocorrelation function associated with the models for the 

beef and dairy cattle experiment showed some temporal autocorrelation between 

residuals at different time points. The best performing autocorrelation structures 

were a compound-symmetry (AIC reduced by 12.87) and auto-regressive moving 

average autocorrelation structure (one auto-regressive parameter and one moving 

average parameter) (AIC reduced by 12.30) for the beef and dairy treatments, 

respectively. No E. coli growth was observed during the spring treatments for beef 

and sheep faeces; therefore, linear mixed effects models were fitted to these data. 

The E. coli concentrations in beef faeces decreased at a rate of -0.04 (-0.04, -

0.03) log10 CFU g-1 dry faeces per day and had an intercept of 4.78 (4.19, 5.30) 

log10 CFU g-1 dry faeces (numbers in parentheses show lower and upper 95% 

confidence intervals). Marginal and conditional R2 values associated with this 

model were 0.13 and 0.76, respectively. For the sheep data, a linear model 

showed a negative relationship between E. coli concentration and days 
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Figure 4.1. Scatter plot of E. coli concentrations through time. Where growth 

occurred lines are predictions of nonlinear (asymptotic exponential) mixed effects 

modelling. Where no growth was apparent lines illustrate linear mixed effects 

models. Dashed lines indicate 95% confidence intervals derived from normal non 

parametric bootstrap. Where the prediction is coloured black there was no 

improvement in model performance (change in AIC <2) when the present 

average/present average +2°C treatment was incorporated.  
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since defecation (slope parameter = -0.02 (-0.03, 0.00) log10 CFU g-1 per day, 

intercept = 6.72 (6.41, 7.01) log10 CFU g-1). However, this was associated with a 

large uncertainty and a gradient of 0 within the 95% confidence interval. Marginal 

and conditional R2 values were 0.02 and 0.06 respectively, suggesting that the 

model does not explain the variance in the data (Fig 1). This weak relationship 

may be due to E. coli concentrations remaining largely static within sheep faeces 

under the spring temperature regime, with variation between individual deposits 

greater than the change over 30 days.  

Where E. coli concentration growth was observed, separate non-linear, asymptotic 

models were fitted to the different livestock types because a model could not be 

fitted when all instances of growth across all livestock type/season combinations 

were included. Separate models are justified given the marked differences in the 

management of beef cattle, dairy cattle and sheep. For example, there will be 

differences in the diet and reproductive status of different livestock. In the future, it 

may be possible to develop a unified model of E. coli persistence in livestock 

faeces but this would require a large amount of supplementary information on 

different management regimes, which at present is unavailable.  

In this study, relatively few individuals (i.e. faecal deposits) were investigated 

intensively in order to characterise a profile of E. coli regrowth through time. The 

new understanding presented here demonstrates that future studies can 

investigate more faecal deposits but less intensively; this may allow the mixed 

effects approach to identify contrasts between livestock type/temperature 

combinations more easily. The use of an asymptotic exponential form has 

limitations in that it is only applicable at temperatures where growth is observed 
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and clearly it would be advantageous to develop a more flexible model that can 

account for temperatures where E. coli growth does not occur. Despite these 

potential limitations this new model provides a step change in our understanding of 

E. coli persistence in fresh livestock faeces.  

Parameters derived from the models can be used to compare and contrast E. coli 

persistence in the faeces of the different livestock studied. For example, the 

magnitude of growth can be taken as the asymptote minus the intercept. For dairy 

faeces, the summer +2°C temperature treatment showed the highest level of E. 

coli growth, whilst the dairy faeces under the spring temperature treatments 

showed the lowest increase in E. coli concentrations. Model results showed that 

only dairy faeces under the summer temperature regime showed a difference in 

the magnitude of growth between the present and +2°C treatment, with the +2°C 

treatment showing an increase of 0.73 log10 CFUg-1 dry faeces more E. coli growth 

relative to the standard summer temperature treatment. For beef faeces, E. coli 

concentration growth was only observed in the summer temperature treatments 

with only a small difference in E. coli concentration growth between the summer 

and +2°C temperature treatments. The magnitude of E. coli growth observed in 

the beef faeces within the summer temperature treatments was comparable to that 

recorded in dairy faeces. E. coli growth was only observed in sheep faeces under 

the summer temperature treatment with no difference in the magnitude of E. coli 

growth between summer and +2°C temperature treatments. For all livestock types, 

sheep faeces showed the lowest E. coli growth during the summer experiment. 

The rate constant of the asymptotic equation provided insight into the rate of E. 

coli growth, with larger values indicating faster growth. In order of fastest to 
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slowest for rates of E. coli growth: sheep faeces >dairy faeces >beef cattle faeces 

(table 4.3). 

Increased potential for E. coli growth during warmer temperatures for all three 

livestock types was observed. Moisture content also appeared to affect the rate of 

E. coli concentration change. The average initial moisture content of faeces is 

shown in table 4.2. The effect of moisture on the change in E. coli concentration 

through time was observed by taking the moisture content associated with an 

individual sample and the rate of E. coli concentration change between that 

observation and the corresponding previous observation. Figure 4.2 illustrates that 

E. coli growth in dairy and beef cattle faeces is more likely to be observed at 

higher moisture contents with beef cattle faeces showing some E. coli growth at 

lower moisture contents. No clear pattern was evident for sheep faeces and 

growth rates appeared to decrease as deposits dried over time. A one-way 

ANOVA revealed that beef cattle faeces collected during the spring were 4.5% 

drier than those collected in the summer (figure 4.3) and this reduction in moisture 

content associated with spring faeces may have influenced differences in the 

survival of E. coli in fresh beef cattle faeces that were observed between the 

spring and summer temperature treatments. Reductions in the moisture content of 

faeces are likely due to differences in the diet of beef cattle in the two seasons 

studied. For example, the diet of beef cattle in spring was more likely to be 

supplemented with hay, silage and concentrates, whereas in the summer the diet 

was dominated by fresh grass. The effect of diet on E. coli persistence in faecal 

deposits is likely to be multifaceted with moisture being one of many controlling 

factors; for example, Donnison et al. (2008) reported a reduced burden of FIOs in 

cattle that were fed silage  
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Figure 4.2. A scatter plot of E. coli concentration growth rate against moisture 

content. Colours indicate present average or present average +2°C 

temperature treatments. 
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compared to cattle grazing pasture and suggested reductions in rumen pH as a 

controlling variable. If the difference in E. coli concentrations in beef cattle faeces 

between seasons is extrapolated to a catchment scale the differences in the size 

of the landscape reservoir of E. coli through time are likely to be marked, 

reinforcing the importance of accounting for seasonal persistence profiles of E. coli 

in catchment-scale models (Oliver et al., 2018). Therefore, further investigation 

into the influence of cattle diet on FIO concentrations in faeces is warranted.  

 

  

 

 

 

 

 

 

 

 

Figure 4.3. Boxplot showing logit transformed initial moisture content in the faeces 

of three livestock types from two seasons.  Different letters and colours illustrate 

where results of a Tukey post-hoc test revealed differences between livestock and 

season combinations. Y axis labels have been back transformed to improve 

interpretability. 
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A relationship between moisture content and E. coli growth rate was not apparent 

in sheep faeces, which were significantly drier (p<0.05) than the faeces of the beef 

and dairy cattle. This reduced moisture content may have contributed to the lack of 

E. coli growth in sheep faeces exposed to the spring temperature treatments and 

the very limited growth relative to dairy and beef cattle observed in the summer 

temperature treatments. For sheep faeces in the summer temperature treatments 

there were a few observations with high moisture content. These observations 

occurred during the first five days of the experiment with rapid drying occurring 

over subsequent days. Despite higher moisture content, E. coli growth was not 

apparent suggesting that moisture content is not the only limiting factor for E. coli 

growth in sheep faeces. Variations in the survival of E. coli in the faecal reservoir 

due to changes in moisture content and temperature may contribute to observed 

seasonal variations of watercourse FIO pollution (Cho et al. 2016b). 

This study, operating within a CEF, succeeded in replicating E. coli regrowth in 

livestock faeces, which has previously been observed under field conditions 

(Oliver et al. 2010; Oladeinde et al. 2014). A key difference in our study relative to 

other laboratory studies is that temperature was not statically held at a single 

value; it varied diurnally following a sinusoidal wave form. This would suggest that 

diurnal variation in temperature can somehow promote a mechanism to drive E. 

coli regrowth, which controlled experiments under a constant temperature cannot 

replicate. From our experiment it is unclear whether it is the size of diurnal 

variation or the absolute temperature that drives protracted E. coli survival 

because there was only a small difference (7.89 vs 8.14°C) in the diurnal variation 

between the seasons studied. Furthermore, little is known about the mechanisms 

that promote E. coli regrowth in faeces but it is possible morphological changes in 
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E. coli cells may promote more rapid growth of E. coli under varying temperature 

compared to static temperature regimes. For example, E. coli growth was 

observed when the cells were refrigerated below the minimum temperature for 

growth but were exposed to warm temperatures every 12 hours. The formation of 

filamentous E. coli at temperatures colder than the minimum for growth was 

suggested as a driver (Jones et al. 2004). Likewise, Mattick et al. (2003) showed 

how refrigerated filamentous Salmonella spp. rapidly multiply when temperature 

was increased. Thus, it is possible that the development of filamentous forms of E. 

coli and subsequent rapid division over a diurnal temperature variation contributes 

to protracted E. coli survival in livestock faeces under variable field conditions 

compared to static temperature conditions. Investigation into the influence of E. 

coli morphology on nuances in its survival in livestock faeces is therefore 

warranted.  

Replicating E. coli regrowth, as seen under field conditions, in a laboratory setting 

demonstrates the potential for improvements in reductionist, laboratory-based 

studies. For example, embedding a more accurate (but controlled) representation 

of environmental drivers into mechanistic studies via more sophisticated CEF 

functionality can reveal new insight that would be overlooked by simplistic constant 

temperature regimes. Clearly, interactions between multiple environmental 

variables in the field make it difficult to identify variables that control profiles of E. 

coli persistence; however, our study demonstrates that CEFs can be used to 

control some environmental variables while varying others for a more detailed 

investigation relative to static-temperature laboratory studies. 
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Diffuse pollution mitigation measures are costly and occupy valuable productive 

land, and therefore measures must be targeted toward areas where they will 

contribute to the greatest improvement in water quality and the least disruption to 

catchment stakeholders (Beharry-Borg et al. 2013). Ultimately, the results from our 

study can be used to improve understanding of the relative contribution of different 

livestock types to microbial watercourse pollution. Field burden models have 

shown how total E. coli reaches an asymptote as the introduction of new E. coli via 

fresh faecal deposits equilibrates with die off of E. coli in existing faecal deposits 

(Oliver et al. 2010). Therefore, the peak concentration of E. coli within individual 

deposits is one way to characterise the hazard of faecal deposits and can be 

calculated by multiplying the asymptote of the models and the dry weight of the 

deposits. For deposits under the spring temperature treatment, dairy cattle 

contributed the most E. coli per deposit (9.35 log10 CFU) followed by sheep (7.80 

log10 CFU) with beef cattle contributing the least E. coli per deposit (7.06 log10 

CFU). For the summer experiment the peak E. coli hazard followed the order of 

dairy cattle (10.29 log10 CFU) > beef cattle (10.00 log10 CFU) > sheep (8.98 log10 

CFU). Defecation rates and variable stocking densities would also influence the 

level of hazard associated with faecal loading of pasture and must also be 

accounted for when making landscape scale predictions of E. coli burden. While 

this provides a useful concept, national scale inventories of faecal deposit mass by 

livestock age, faecal deposit E. coli concentrations and defecation rates are 

needed to supplement the data collected here. This would help to make 

predictions of the relative hazard associated with different livestock faeces more 

robust.  
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Such characterisation of microbial hazards can be integrated into existing risk 

based models of diffuse pollution transfer, for example SCIMAP (Porter et al. 

2017). Risk-based approaches may be especially useful in the study of catchment 

microbial dynamics because of the relative lack of understanding on the fate and 

transfer of FIOs in the landscape compared to other agricultural diffuse pollutants 

(Oliver et al. 2016b). Furthermore, risk-based approaches can often answer the 

management question regarding what actions to take without the expense of 

complex process-based models.  

4.5 Conclusion 

FIO survival at the landscape level is likely to be a key controlling factor on the 

extent to which river networks become contaminated following rainfall and is a key 

component of catchment scale predictions of FIO contamination. However, 

existing catchment scale modelling approaches often assume a simple linear 

decay function, which does not capture the complexity of E. coli persistence in 

fresh faeces (Coffey et al. 2010; Cho et al. 2016b). A linear approach is likely to 

underestimate the burden of E. coli in fresh livestock deposits because it does not 

account for E. coli proliferation, under favourable conditions, as observed in field 

studies (Oliver et al. 2010), and now also captured within a CEF mimicking 

fluctuating environmental conditions. The model developed as part of the current 

study provides a critical preliminary step towards a framework of accounting for 

seasonal variations in E. coli growth associated with livestock faeces at the 

catchment scale. However, management practices (for example diet and livestock 

housing), which vary throughout the year and between farms, are also likely to 

influence E. coli survival. The interaction of agricultural management practices and 
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meteorological variables presents a contemporary challenge for the field of 

catchment microbial dynamics and further understanding is needed if the risks to 

ecosystem services related to clean and safe water are to be fully understood and 

predicted. The analysis presented here will prove beneficial for land managers and 

make catchment scale predictions of E. coli accumulation and persistence on land 

more robust, accurate and evidence-based, and thus more useful to the policy and 

decision-making community.   
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5. Evaluating E. coli mobilisation from fresh faeces of different livestock 

under simulated rainfall 

5.1 Abstract 

Pathogens associated with fresh deposits of faeces from grazing livestock have 

the potential to cause gastrointestinal illness in human beings. Once mobilised by 

rainfall, pathogens can be transported through the river network exposing sensitive 

receptors via ecosystem services associated with clean water; for example, 

shellfish harvesting areas, designated recreational bathing sites and drinking water 

reservoirs.  Measuring changes in concentrations of E. coli, a faecal indicator 

organism (FIO), provides a means of assessing the extent to which water bodies 

have been contaminated by a faecal source.  Release of E. coli from a faecal 

source under rainfall is an important factor controlling its subsequent transport to 

sensitive aquatic receptors. For the first time, this study measures the release of 

E. coli into overland flow from faecal deposits associated with three different stock 

types: dairy cattle, beef cattle and sheep. Comparing different stock types is 

important because it provides insight into which agricultural management practices 

provide the greatest risk to microbial water quality. To ensure the characteristics of 

rainfall were consistent throughout the experiment a rainfall simulator was 

constructed that allowed for calibration of rainfall rate and distribution. This allowed 

for robust comparisons of the experimental treatments. There was no difference in 

the profile of E. coli release over time from faeces associated with beef cattle, 

dairy cattle and sheep but there was a greater variation associated with sheep 

faeces. This finding suggests that variable prevalence and survival of E. coli in the 

faeces of different livestock types may be a greater driver of differences in risk to 
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microbial water quality compared to variable E. coli release under rainfall. 

However, this initial study requires support from national inventories of E. coli 

release profiles which capture spatial, temporal and between herd/flock 

variabilities. Despite these data being unavailable at present, the current research 

can support management of diffuse microbial pollution by providing a first 

approximation input for tools that predict E. coli transport or identify areas of the 

landscape for mitigation; which will ultimately protect important ecosystem 

services relying on clean and safe water.
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5.2 Introduction 

An increase in the demand for food production from existing agricultural land has 

resulted in the intensification of farming practices. Despite a push toward 

sustainable intensification of agriculture (Rockstrom et al. 2017) increases in 

production can require an increased use of (in)organic fertilisers and densities of 

livestock, which is likely to increase the landscape burden of faecally-derived 

human pathogens. During rainfall these pathogens can become mobilised and 

transferred to watercourses with subsequent delivery to sensitive receptors such 

as bathing, shellfish harvesting and drinking waters (Clements et al. 2015; Murphy 

et al. 2015; Wu et al, 2016) where they may pose a risk of gastrointestinal illness 

in exposed populations. In order to move toward a sustainable intensification of 

agriculture, catchment managers must be able to mitigate impacts associated with 

microbial pollutants which originate from agricultural sources. Pathogens 

themselves are not routinely monitored because they occur sporadically in the 

environment and are difficult to enumerate in the laboratory. Faecal indicator 

organisms (FIOs) such as E. coli provide an internationally accepted framework for 

assessing the extent of watercourse microbial pollution and the development of 

mitigation strategies requires understanding of the fate and transfer of E. coli 

through catchment systems; the diffuse pollution transfer continuum (Haygarth et 

al. 2005) provides a conceptual framework to aid this understanding. This transfer 

continuum, when applied to FIO pollution, requires knowledge of the spatial and 

temporal variation of: (i) FIO source loads, (ii) FIO mobilisation from sources and 

(iii) subsequent transfer through the landscape. Understanding the mobilisation of 

E. coli from agricultural sources is therefore key to developing mitigation strategies 

designed to reduce microbial diffuse pollution.  
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An important agricultural source of E. coli is the deposition of fresh faeces from 

grazing livestock. Fresh faecal deposits can be an especially potent source of E. 

coli because unlike slurry and manure they have undergone no treatment 

(Chadwick et al. 2008). Previous study considering the mobilisation of E. coli from 

faecal deposits has employed a variety of methods including: laboratory 

investigations, for example rolling of vials containing faeces and a buffer solution 

(Hodgson et al. 2009); observing concentrations in run off from natural rainfall 

(Tate et al. 2000); and simulated rainfall (e.g. Soupir et al. 2010; Blaustein et al. 

2015a). Rainfall simulator design has varied in complexity from drips formed 

through needles (Moriarty & Gilpin 2014) to the use of spray nozzles with pressure 

and flow rate gauges to carefully control application rates (Muirhead et al. 2005, 

Fergusson et al. 2007, Soupir et al. 2010, Blaustein et al. 2015a). The use of 

rainfall simulators allows control of rainfall rates which is impossible in experiments 

utilising natural rainfall because attributes associated with rain vary greatly 

between meteorological events. Therefore, controlled rainfall rates from rainfall 

simulators allow for more robust comparisons of experimental treatments (Davies 

et al. 2004). Studies utilising rainfall simulators have suggested that rainfall is able 

to mobilise and deliver E. coli derived from faeces to the stream network (Collins 

et al. 2005) and have highlighted a number of key factors that determine the rate 

of mobilisation. For example, while the concentration of E. coli in run-off decreases 

with time (Moriarty and Gilpin 2014) percentage release of E. coli from faecal 

deposits remains consistent (Muirhead et al. 2005) showing the importance of the 

influence of microbial persistence in the contamination of watercourses. 

Furthermore, depth of rainfall has been found to be a better predictor of E. coli 

mobilisation from faecal matrices than rainfall intensity (Blaustein et al. 2016).  
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Studies utilising rainfall simulators have previously considered mobilisation of E. 

coli from faecal deposits from a single livestock type; for example, Moriarty & 

Gilpin (2014) investigated ovine faeces and Blaustein et al. (2016) investigated 

dairy cow manure. It is therefore difficult to compare the mobilisation of E. coli from 

the faeces of different animals and to understand variations in impacts to microbial 

water quality associated with grazing different livestock. Understanding the relative 

differences in the contribution of E. coli to watercourses from deposits of faeces 

from different livestock can be especially useful in the development of risk based 

approaches to predicting watercourse microbial contamination. Risk-based 

approaches are likely to be helpful in the field of catchment microbial dynamics 

due to some of the current limitations in our understanding regarding the fate and 

transfer of microbial pollutants relative to other diffuse pollutants such as sediment 

and nutrient pollution, which potentially limits the parameterisation of fully process-

based models (Oliver et al. 2016b). 

The aim of this study was to develop new understanding on the release of E. coli 

from the faeces of different livestock under rainfall. The objectives were to: (i) 

develop E. coli release profiles from faecal deposits under simulated rainfall; and 

(ii) investigate whether the profile of E. coli release from faecal deposits under 

simulated rainfall varies between the faeces of dairy cattle, beef cattle and sheep.      

5.3 Materials and Methods 

5.3.1 Rainfall simulator 

The rainfall simulator (shown in figure 5.1) was based on the design of Kibet et al. 

(2014). To ensure a consistent rate of rainfall throughout the experiment a wide 
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angle full cone spray nozzle (TeeJet FL-5VS) was used with flow and pressure 

gauges for calibration.  

 

Figure 5.1. From the top left moving clockwise: placement of soil boxes 

underneath a spray nozzle; water pressure and flow gauges; rainfall simulator 

construction to prevent interference from wind. 

Operating at a pressure of 1 bar this gave a flow rate of 1.19 L/min. Figure 5.2 

shows the spatial variation in rainfall intensity across the area of the rainfall 
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simulator, placement of soil boxes and the distribution of drop size given by the 

spray nozzle. Drop size was measured by placing a filter paper in a  

 

 

 

 

 

 

Figure 5.2. The left plot shows the spatial variation of simulated rain within the 

rainfall simulator; boxes indicate placement of soil-runoff boxes and the circles 

indicate the placement of rainfall collection pots. The distribution of droplet size is 

shown in the right hand figure.  

petri dish which was momentarily passed through the simulated rain. A photo of 

the filter paper and a ruler was taken immediately. The photos were used within 

WebPlotDigitizer (Rohatgi 2018) to measure the diameter of water droplets. The 

rainfall simulator was enclosed within tarpaulin to prevent the disruption of 

simulated rain by wind.  

The rainfall simulator was fed by mains tap water which was tested to ensure that 

any constituents of the tap water did not affect E. coli survival. Briefly 0.1 ml of an 

E. coli stock solution of known concentration was added to 40ml samples of tap 

water and deionised water; this was replicated five times for each water type. After 

refrigeration at 4°C for 24 hours E. coli concentration change was assessed by 
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inoculating membrane lactose glucuronide agar (MLGA) plates with a sample from 

each replicate and incubating inverted for 24 hours at 37°C. Deviance from the 

expected E. coli concentration given the concentration of the stock solution was 

taken as E. coli die off and any difference in deviation between tap water and 

deionised water taken as a tap water effect. The difference between the two water 

types was assessed using a t test. There was some uncertainty in the E. coli 

concentration of the stock solution. Therefore, there was uncertainty in the number 

of cells added to each water sample prior to refrigeration. In order to understand 

the potential for this uncertainty to lead to a type 2 error (that is accepting there is 

no difference in E. coli die off between the two water types when there is a 

difference) an expected cell count was drawn from a normal distribution 

determined by the mean and standard deviation of the cell counts associated with 

the stock solution. Subsequently the difference in deviance from the expected 

count and observed count in the two water types was assessed using a t test. 

Using computer simulation this was repeated 10,000 times with the percentage of 

significant differences taken as the probability of a type 2 error given the 

uncertainty in the E. coli concentration of the stock solution. For the stock solution, 

river water was filtered through sterile cellulose acetate membranes which were 

subsequently placed on MLGA and incubated inverted for 24 hours. Three E. coli 

colonies were transferred to sterilised Luria-Bertani (LB) broth and incubated at 

37°C for 24 hours. To clean the cells of LB broth the solution was centrifuged, 

supernatant removed and pellet re-suspended in sterile phosphate buffer solution. 

This was repeated three times to remove all residual LB broth. The E. coli 

concentration of the resulting solution was estimated by inoculating MLGA with a 

small sample and incubating inverted for 24 hours.  
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5.3.2 Soil boxes 

Soil boxes were 50cm long, 35cm wide, 15cm deep, constructed from marine 

plywood and lined with plastic. An aluminium gutter was placed at the end of each 

soil box to aid collection of run off. Dilution of the sample by simulated rain in the 

gutter was prevented by fitting a splash guard over the gutter. Soil boxes were 

filled with 31.2 kg of A-horizon, mineral gley soil, in layers of 5.2 kg to ensure 

uniform bulk density. Each layer was compacted with a plywood board and 

grooved with a hand cultivator tool before a subsequent layers were added. The 

surface of the soil was left bare as the focus of the experiment was on mobilisation 

of E. coli from faecal deposits and not on microbial transfer over vegetated 

surfaces. The soil boxes were placed into the rainfall simulator at a slope of 20%.    

5.3.3 Faecal deposits 

Five intact fresh faecal deposits of each stock type were collected from farms in 

Stirlingshire, Scotland on the day the experiment took place. Dairy cattle faeces 

were collected from an area where cattle were held prior to milking. This area was 

cleaned twice a day so freshness of the collected faeces was ensured. Beef cattle 

and sheep were grazing on pasture so faeces were collected immediately 

following deposition. 

5.3.4 Experimentation 

Immediately before the experiment, soil boxes were placed into the rainfall 

simulator for 60 minutes to ensure that the moisture content was consistent across 

all of the soil boxes. Prior to simulating rainfall, faecal deposits were weighed and 

samples of faeces were collected from each faecal deposit in order to estimate the 
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total E. coli burden of the faeces. To enable this, composite samples of each 

faecal deposit were made up of five 1cm diameter cores for the bovine faeces and 

3 faecal pellets for the ovine faeces. Samples were placed into sterile tubes for 

subsequent microbiological analysis. Faecal deposits were then placed at the top 

of the tilted soil box. Samples of run-off were collected in sterile pots with the 

length of time for a sample to be taken recorded; this allowed for the volume of run 

off being discharged and the E. coli load associated with the run-off to be 

calculated. Rainfall collection pots were placed at the corners of each soil box in 

order to determine a rainfall application rate for each soil box separately and to 

confirm no differences in the rainfall rate throughout the experiment.   

5.3.5 Microbiological analysis 

Samples of faeces were suspended in 9 ml of phosphate buffer solution (PBS) and 

mixed for 30 mins at 130 rpm. The resulting slurry underwent serial dilution prior to 

inoculation onto Membrane Lactose Glucuronide agar (MLGA) (CM1031, Oxoid; 

Basingstoke, UK) via the spread plate and membrane filtration method. Samples 

of run-off were filtered through sterile cellulose acetate membranes of 0.45 μm 

pore size (Sartorius Stedim Biotech; Goettingen, Germany) using a filtration unit 

(Sartorius), prior to the filters being aseptically transferred to MLGA. The plates 

were then inverted and incubated for 18 to 24 hours at 37°C. All sample analysis 

was carried out in duplicate and counted colonies represent presumptive E. coli.    

5.3.6 E. coli release modelling 

Based on flow rate, E. coli counts were converted to a bacterial load and 

expressed as E. coli per minute. Following linear interpolation between time points 

these data were used to calculate the E. coli release as an accumulating 
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percentage of the total E. coli load applied to each soil box. Subsequently the 

potential for a relationship between percentage E. coli release and increasing 

rainfall depth was investigated. Rainfall depth rather than time elapsed was used 

as the dependant variable because Blaustein et al. (2015) suggests a stronger 

effect of the former on E. coli release. To normalise the data and residuals from 

subsequent modelling it was necessary to carry out a logit transformation on the 

percentage release of E. coli.  A scatterplot of these data suggested that there was 

an asymptotic relationship between logit transformed E. coli release and 

increasing rainfall depth. An asymptotic model was fitted to the data using a mixed 

effects approach because the experimental design consisted of repeated samples 

from individual replicates that are not independent and may be serially related 

(Pinheiro & Bates 1995).  

A single mixed effects model was developed with rainfall depth specified as the 

predictor variable and a unique identifier for each replicate specified as a random 

effect. To account for potential serial relatedness three temporal autocorrelation 

structures were trialled: auto regressive order 1; compound symmetry; and 

autoregressive moving average. The Akaiki Information Criterion (AIC) was used 

to determine the best performing auto correlation structure with an AIC reduction 

of ≥ 2 taken as an improvement in model performance. All data processing and 

statistical analysis was carried out in the R statistics package (R Core Team 2015) 

utilising a number of third party plugins (Wickham & Francois 2016; Pinheiro et 

al.2015; Neuwirth 2014). 
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5.4 Results 

Die off of E. coli in the tap water feeding the rainfall simulator and in de-ionised 

water did not differ significantly (p > 0.05, figure 5.2). The E. coli concentration of 

the stock solution used for this comparison was 7.82 (sd = 0.07) log10 cells / ml. 

The probability of finding a significant difference between the two water types 

given the uncertainty in the E. coli concentration of the stock solution was 4.3%.  

Total deposit E. coli content, moisture content and weight of faecal deposits from 

each stock type are described in table 5.1. E. coli concentrations were 2.99 (s = 

0.51), 5.99 (s =1 .22) and 4.54 (s = 1.13) log10 CFU g-1 (dry weight) for beef cattle, 

dairy cattle and sheep faeces respectively. 

The rainfall simulator constructed for this experiment performed consistently 

throughout the study. An analysis of variance confirmed that there was no 

difference in the rainfall rate applied to individual soil boxes (p > 0.05). Variation in 

the discharge of surface run-off from the soil boxes was similar across the 

treatments (figure 5.3). Discharge increased initially, stabilising after between 15 

and 30 mins. An increased discharge of surface run off was observed for two of 

the replicates used for the dairy cattle faeces treatment. 

The pattern of variation in the load of E. coli in the surface run off was similar 

between the stock types while the absolute numbers of E. coli load were 

determined by the concentration of E. coli in the fresh faeces (figure 5.5). An initial 

increase in E. coli load was seen over the first two to three time points after which 

a consistent decline was observed.     
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Table 5.1. Summary information for faecal deposits; values in parentheses are standard 

deviations. Model random effect is the deviation of an individual faecal deposit from the 

population model. Here the standard deviation of the random effects associated with each 

stock type are shown to demonstrate individual variability associated with different stock 

types. 

  

  

  

 

 

 

 

 

Figure 5.3. Boxplot of E. coli die off in the mains water feeding the rainfall 

simulator and in de-ionised water. 
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Beef 6.11 (0.49) 1323.17 (16.40) 85.68 (3.26) 0.61 0.92 0.44 
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Figure 5.4. Discharge of surface runoff from soil boxes across stock type 

treatments and through time.  

 

 

 

 

 

 

 

 

 

Figure 5.5. E. coli load in surface run off from soil boxes through time. 
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Figure 5.6. Logit transformed E. coli release as a percentage of the total faecal 

burden applied to each soil-run off box. The y axis has been back transformed to 

enhance interpretability. The solid line illustrates the results of a asymptotic mixed 

effect model. Dashed lines are 95%, bias-corrected and accelerated (BCa), 

bootstrap prediction intervals.    

The relationship between E. coli release and rainfall depth fitted an asymptotic 

model (Figure 5.5). The asymptotic model suggests a law of diminishing returns 

with a phase of rapid E. coli release for the first 20 mm of rain followed by a 

slowing of E. coli release at higher values of rainfall depth. The model predicted a 

maximum E. coli release of 4.87% associated with deposits from all stock types. 

For the logit transformed data, the predicted value of the model parameters were -

2.97 (-3.48,-1.69), -9.60 (-19.10, -7.99), -1.93 (-2.31, -1.22) for the asymptote, 
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intercept and shape parameter respectively (parentheses show 95% BCa 

confidence intervals). A plot of the autocorrelation function suggested some 

potential for temporal autocorrelation in the model. The best performing temporal 

autocorrelation structure was auto-regressive moving average (zero auto-

regressive parameters and four moving average parameters) (AIC reduced by 

134.63).    

A model differentiating between stock types did not converge on a solution. 

However, a dot plot of the random effects against stock type (figure 5.7) shows a 

potential difference in the shape parameter between stock types. This suggests 

that the rainfall depth at which the maximum E. coli release is reached may differ 

between stock types. The dot plot also illustrates variability in the model 

parameters associated with each individual deposit. There was increased 

variability in all three parameters associated with sheep faeces; the standard 

deviation of the random effect is shown in table 5.1. 

Figure 5.7. Dot plot of model random effects (deviation of individual faecal 

deposits from the population model) against stock type. 

 

Asymptote Intercept Shape 

Beef 

Dairy 

Sheep 
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5.5 Discussion 

In this study E. coli release from faeces associated with three different livestock 

types has been profiled in parallel and under controlled conditions for the first time. 

E. coli release from faecal matrices associated with sheep, beef cattle and dairy 

cattle showed a two stage release profile, which is consistent with existing 

observations associated with dairy cattle faeces (for example Blaustein et al. 2016; 

Ferguson et al. 2007). Initially the release of E. coli was rapid, with cell emergence 

slowing as rainfall continued. This suggests an initial flushing of easily mobilised E. 

coli that may exist as freely living organisms on the surface of the faecal deposit 

and has been described previously (Tate et al. 2000). As the supply of cells that 

are easily mobilised depletes E. coli emergence slows. The observed deceleration 

in the release of E. coli from the faeces may be due to better protection of cells 

within deeper layers of the faecal matrix, thus limiting the effectiveness of raindrop 

impact and associated detachment processes on the remaining E. coli population. 

The strength of association of E. coli with manure particles is likely to be important 

here, unless the raindrops physically dislodge organic material that the cells are 

attached to. The attachment of E. coli to particles may reduce the speed at which 

cells are transported over the soil surface and into the collection gutter further 

reducing the speed at which cells emerge in run-off as well as allowing more time 

for the overland flow to be diluted by rainfall (Blaustein et al. 2016). 

There is limited experimental data considering the transport state of E. coli in run 

off. E. coli can be transported as free living cells, flocs of multiple cells or attached 

to soil and manure particles (Muirhead et al. 2005). Evidence suggests that >25% 

of the E. coli in overland flow is transported as free living cells (Muirhead et al. 
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2005). However, attachment rates are reported as averages in the run off of a rain 

event. The two stage release profile here may suggest that the attachment of E. 

coli varies throughout individual rainfall events. In the later stages of a rainfall 

event, as the source of readily mobilised cells depletes, the much slower 

mobilisation of cells attached to particles and flocs of cells may make up a greater 

proportion of the E. coli in run off. The distinction between attached and freely 

living cells is important because cells that exist as flocs or attached to particles are 

more likely to be filtered by vegetation and soil matrices (Fiener & Auerswald 

2003). Therefore, attached cells that are released toward the end of rainfall events 

may present a reduced hazard to watercourse microbial quality compared to free 

living cells released at the beginning of an event. Furthermore, although rainfall 

depth rather than intensity has been highlighted as a useful predictor of E. coli 

mobilisation, increased rainfall intensity may increase flow velocity which has been 

shown to decrease cell attachment (Guber et al. 2005) and potentially increase 

downstream microbial hazards because a greater proportion of the E. coli load is 

made up of highly mobile free living organisms. Understanding variabilities of E. 

coli attachment to particles and other bacteria within individual rainfall events 

should, therefore, be a focus of future investigation.        

The percentage of total E. coli released from livestock faeces under rainfall has 

been shown to be very small (<5%) (Moriarty & Gilpin, 2014; Ferguson et al. 

2007). However, the E. coli load of faecal deposits on pasture is large (up to ~ 8 

log10 CFU g-1 dry faeces) (Oliver et al. 2016a; Moriarty et al. 2011a) so a relatively 

small percentage release can create significant hazards for microbial water quality 

when mobilised cells are successfully delivered to a receiving water. The small 

release also suggests that, despite rainfall, E. coli removal is relatively minor and 
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faecal deposits on pasture can persist as a significant source of E. coli after rainfall 

events.  

The study presented here focussed on E. coli release from fresh deposits during a 

single rainfall event. Under subsequent rainfall events it is unclear what profile E. 

coli release may take. A potential theory is that during subsequent rainfall events, 

E. coli release continues through the two-stage profile where the last rainfall event 

finished. Alternatively, the release profile may ‘reset’ with E. coli mobilisation 

during subsequent rainfall events accommodating the same two-stage profile 

illustrated here for fresh deposits. Rainfall simulation studies operating at larger 

scales show time since last grazing as a significant factor in determining E. coli 

loads and concentrations in rainfall induced overland flow. This may be attributed 

to cell wash out during rainfall before the experiment, perhaps, supporting the prior 

theory. However, E. coli die off is also likely to contribute to this effect (Collins et 

al. 2005). Given the high concentration of E. coli remaining in faecal deposits after 

rainfall the effect of multiple rainfall events on the mobilisation of E. coli at the 

individual cow pat scale should be a focus of further study.  

The age a faecal deposit receives its first rainfall may influence E. coli release. For 

example, drying of faeces has been shown to reduce the rate at which E. coli is 

mobilised from beef cattle and sheep faeces (Hodgson et al. 2009). Alternatively, 

UV may inactivate easily released cells existing on the surface of a faecal deposit. 

However, there is little variation in E. coli release between fresh bovine faeces and 

week old bovine faeces (Ferguson et al. 2007); fresh and 30 day old dairy cattle 

faeces (Muirhead et al. 2005) and between sheep faeces aged 0, 1, 4, 7, 14 and 

21 days (Moriarty & Gilpin 2014). Despite little evidence of total E. coli mobilised 
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varying with age up to 30 days, it has been suggested that an aged faecal deposit 

may require rehydration before releasing E. coli which could lead to a delay in the 

emergence of cells in run off (Moriarty & Gilpin 2014) producing a different profile 

of E. coli release.  

Repacked soil boxes may not be an accurate representation of soil conditions in 

the environment because the soil structure has been compromised. The focus of 

this study was on a single part of the diffuse pollution transfer continuum, 

mobilisation, and the transfer and attenuation of E. coli through soils and in 

overland flow was not a focus of this experiment. However, in order to make valid 

comparisons it was important to ensure that the soil conditions were consistent 

throughout the experiment and the use of repacked soil boxes as a medium on 

which to place faecal deposits allowed for control of soil conditions. Similar 

justification is given to the use of a rainfall simulator in place of natural rainfall. 

Natural rainfall is highly variable, and the attributes associated with rain during one 

event are unlikely to be similar to subsequent events. A rainfall simulator ensured 

that rainfall conditions were consistent throughout the experiment (Davies et al. 

2004), thus making comparisons between treatments more robust. 

Similar rainfall simulation studies have partitioned surface run off and leachate 

(Blaustein et al. 2016). In the present study we chose to focus on surface run off 

because this rapidly responding pathway has been highlighted as a key contributor 

to high E. coli concentrations in river samples following rainfall (Collins et al. 

2005). Furthermore, soil has been shown to act as an efficient filter of pathogens 

(Morales et al. 2014) which may reduce the relative contribution of subsurface flow 

pathways to microbial watercourse pollution. However, it is important to note that 
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at the hillslope scale, field drainage might increase the importance of subsurface 

pathways (Oliver et al. 2005). 

An aim of this study was to determine how hazards to microbial water quality vary 

with livestock type. There were no contrasts in the release of E. coli from the 

faeces of the three livestock types investigated for the particular rainfall intensity 

studied. However, values of the model parameters for individual faecal deposits 

suggest that there may be a small difference in the shape parameter between 

livestock types. Based on figure 5.6, sheep faeces reaches the maximum E. coli 

release at smallest values of rainfall depth followed by beef cattle faeces and 

finally dairy cattle faeces. However, the between stock type variability was not 

strong enough to distinguish predictive models specific to livestock type. The lack 

of a clear difference between livestock types is in contrast to previous literature 

which suggest E. coli are mobilised more readily from beef cattle faeces than 

sheep faeces (Hodgson et al. 2009). However, the previous laboratory study 

simulated raindrop interactions by rotating a mixture of rain water and faeces in a 

vial which may not be representative of rain/faeces interactions in the 

environment. No difference in the mobilisation of E. coli between livestock types in 

the present study suggests that relative hazards to microbial water quality 

associated with grazing different livestock are likely to be driven by the variability 

in the prevalence and survival of E. coli in faecal deposits from different livestock 

(Oliver et al. 2016a; Moriarty et al. 2011b). However, the extent to which E. coli 

associated with deposits from different stock types attach to faecal colloids and 

soil particles may influence variabilities in microbial water quality hazards 

associated with grazing different livestock types.  
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The profile of E. coli release was similar between all livestock types however there 

was a much greater variability in the release of E. coli associated with sheep 

faeces. Most of this variation is attributed to the asymptote and intercept 

parameter of the predicted model with one outlier showing a percentage release of 

up to 80%. Further data would need to be collected to confirm whether this 

variability is genuine or as a result of a single outlier. However, even discounting 

this single outlier, mobilisation of E. coli from sheep faeces was variable. This 

provides a challenge for incorporating this new knowledge into catchment scale 

tools because the uncertainty will be propagated through the catchment continuum 

contributing to large confidence intervals associated with predictions of 

downstream E. coli concentrations. 

Decisions about diffuse pollution management are often made at the catchment 

scale so extrapolation of findings at smaller scales is required before these 

findings can be useful to water quality stakeholders. Our observations have 

potential to inform process-based models of diffuse pollution transfer that aim to 

predict downstream concentrations of E. coli; for example, Soil and Water 

Assessment Tool (SWAT) (Cho et al. 2016) and Hydrologic Simulation Program in 

FORTRAN (HSPF) (Pandey et al. 2016) (see Cho et al. (2016) for a full list). The 

findings may also inform risk-based approaches, for example SCIMAP (Porter et 

al. 2017), that aim to target locations for management based on the likelihood of 

part of the landscape contributing E. coli to watercourses. However, the data 

presented here and in similar studies (Blaustein et al. 2016) provide only an 

indication of the release profile of microbial contaminants from faecal sources and 

national-scale inventories of E. coli release profiles from multiple herds/flocks and 

locations is required before these release kinetics can be robustly captured within 
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decision making tools that operate at larger scales. In addition, it is unknown what 

uncertainty is incorporated into large scale models when knowledge from small 

scales (individual faecal deposit or field-scale) is scaled up to the catchment scale 

(Cho et al. 2016b). 

5.6 Conclusion 

For the first time E. coli release into overland flow has been profiled for sheep, 

beef cattle and dairy cattle faeces in parallel and under controlled conditions. This 

allowed for an assessment of the relative contributions that different livestock 

make to hazards associated with microbial water quality. This first assessment 

revealed that E. coli release profiles of the three stock types studied are similar, 

suggesting that differences in microbial water quality hazard come primarily from 

variable E. coli prevalence and persistence in the faeces of different livestock; 

although further research investigating different rates of rainfall is required to 

support this finding. The results presented here can be used to inform models 

operating at larger scales however a much larger inventory of E. coli release 

profiles is needed to determine spatial, temporal, between herd/flock and within 

herd/flock variabilities and make the use of the knowledge regarding E. coli 

release from faecal deposits within catchment scale tools more robust. Despite 

current limitations associated with data availability this study has provided valuable 

new knowledge on the fate and transfer of E. coli originating from the faeces of 

different livestock types and can inform further study and provide starting points for 

models predicting watercourse E. coli contamination.   
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6. Synthesis: using new knowledge to adapt SCIMAP for diffuse microbial 

pollution; next steps and challenges for the field of catchment microbial 

dynamics 

6.1 Opportunities for development 

The Sensitive Catchment Integrated Mapping Analysis Platform (SCIMAP) has 

been widely accepted in the fields of diffuse sediment and nutrient pollution 

(Reaney et al.  2012). It is therefore timely that it should be further developed to 

account for diffuse FIO pollution. A core aim of this project has been to assess 

SCIMAP’s suitability as a tool for mapping diffuse FIO pollution risk and identify 

and act upon opportunities for improvement. The SCIMAP approach has its 

foundations in the source, mobilisation, delivery, impact (SMDI) conceptualisation 

of diffuse pollution transfer. This approach describes how a source of pollution is 

only converted to an impact if it can be released from its source and transferred to 

a sensitive receptor (Haygarth et al. 2005). Therefore, in the language of risk 

assessment, the source is akin to a hazard with mobilisation and delivery 

determining the likelihood of a sensitive receptor becoming exposed to the hazard. 

The SMDI continuum has provided a narrative for the adaptation of SCIMAP to 

diffuse FIO pollution with investigations into how its treatment of source, 

mobilisation and delivery should be modified to better represent this novel 

pollutant. 

SCIMAP is at its most powerful when it is combined with the SCIMAP fitted 

approach demonstrated in chapter 3 which trains the land cover risk weightings to 

represent the spatial pattern of sources within an individual catchment.  However, 

this approach requires a spatial dataset of information on FIO contamination levels 
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that is distributed both spatially and temporally (Porter et al. 2017). These datasets 

need to capture the variability in the mosaic of landcovers across a catchment and 

also account for seasonal variations in environmental variables such as 

temperature (Martinez et al. 2013) and rainfall (Blaustein et al. 2015b) that 

influence FIO survival and transfer, and land and stock managements (Oliver et 

al.2016b). A requirement for this level of information may provide a barrier to the 

use of SCIMAP at a wider scale for predicting FIO risk because these datasets are 

difficult and expensive to develop.   

A set of default land cover risk weightings can be developed for situations where 

catchment scale FIO information is not available. The evidence gathered in 

chapters 4 and 5 can be exploited to create a set of default land cover risk 

weightings which are required for the SCIMAP approach. An initial investigation 

into the performance of SCIMAP when applied to diffuse FIO pollution highlighted 

opportunities for improvement in the representation of the source and mobilisation 

phases of the SMDI continuum. At present SCIMAP’s treatment of diffuse pollution 

transport is time-integrated because diffuse pollution management strategies are 

often permanent features that once installed cannot be moved and should 

therefore be placed to optimise pollution management throughout the year (Porter 

et al. 2017). However, a time-integrated approach to predicting diffuse FIO 

pollution may not be appropriate because, unlike conservative sediment and 

nutrient pollution, once introduced into the environment FIOs may proliferate or die 

off. It is widely recognised that meteorological variables that vary throughout the 

year impact the survival and persistence of FIOs in the landscape (Oliver et al. 

2016a) and the resulting temporal variations in pollution risk should be 

characterised. This problem is especially pertinent in the case of designated 
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recreational bathing sites where a sensitive receptor is only present during part of 

the year. Therefore, SCIMAP’s treatment of FIO source hazard may be improved 

by capturing temporal variations in the FIO loads of faecal sources that are a result 

of variable rates of FIO concentrations in fresh faeces and post defecation FIO 

growth. Furthermore, SCIMAP can better predict temporal variations in FIO risk if it 

captures temporal variations in mobilisation of FIOs from sources under rates of 

rainfall that vary throughout the year.  

Another opportunity for development highlighted after an initial investigation of 

SCIMAP’s performance was that a key part of SCIMAP relies on land cover 

classifications to assign source hazard weightings to parts of the landscape 

(Porter et al., 2017). Two such classifications were improved pasture and rough 

grazing. Grazing different animals at varying densities will result in these land 

cover classifications covering a wide range of FIO availabilities due to the variable 

prevalence, persistence (source) and release (mobilisation) of FIOs associated 

with faeces from different animals. This creates uncertainty in the risk weighting 

that should be assigned to a land cover type (Milledge et al. 2012). In the case of 

diffuse FIO pollution, spatial variation in source hazard may be better 

approximated by understanding spatial variations in the types and densities of 

livestock that are contributing FIOs to the landscape. 

6.2 Spatial and temporal variations in sources of microbial hazards 

The chapter ‘high resolution characterisation of E. coli proliferation profiles in 

sheep, dairy cattle and beef cattle faeces’ was designed to gather information that 

would inform the development of SCIMAP to better account for temporal and 

between stock type variations in source hazard. Two elements that contribute to a 
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faecal deposit’s overall hazard are: the starting concentration of E. coli in fresh 

faeces and the extent (magnitude and duration) to which E. coli can grow within 

the faecal matrix. Overall source hazard weightings for faecal deposits from 

different livestock at different times of year that capture both aspects of hazard can 

be derived by ranking deposits by initial concentration and plotting against a 

corresponding rank of the magnitude of E. coli growth (figure 6.1). The overall risk 

value is then the distance from the origin rescaled 0 to 1. Parameters from the 

model developed in the current study were used to inform this, with the intercept 

used to describe initial concentration and asymptote – intercept taken as the 

magnitude of E. coli growth. Where no E. coli growth occurred, the initial 

concentration was taken as the intercept and growth specified as 0. Capturing the 

influence of spatial variation in stocking density can be achieved by combining 

these new hazard weightings with agricultural census data.  This spatial 

information can easily be incorporated into SCIMAP as it exists by replacing the 

land cover hazard weightings. 



145 
 
 

 

Figure 6.1. Scatter plot illustrating how initial concentration of E. coli and the 

extent to which E. coli can grow in a feacal deposit contributes to an overall source 

hazard weighting. Stock season combinations occuring in the top right of the plot 

will have the highest source hazard; stock season combinations at the bottom left 

of the plot have the lowest source hazard weighting. An overall source hazard 

weighting is therefore the distance form the origin.  

  

6.3 Temporal variations in mobilisation hazard associated with seasonal 

variations in rainfall 

The SMDI continuum suggests that a source of hazard must be mobilised and 

delivered before a sensitive receptor can become exposed to the hazard. 

Therefore, capturing variations in FIO mobilisation that result from seasonally 
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variable rates of rainfall may improve SCIMAP’s consideration of diffuse FIO 

pollution. Chapter 5 was designed to investigate the release of E. coli from faeces 

with increasing rainfall depth. The relationship derived from this study can be 

combined with routinely collected rainfall information to predict the extent to which 

microbial sources release E. coli in different months.  

 

Figure 6.2. From left to right: bar plot of median daily rainfall amount; bar plot of 

average number of days with rain. Met Office rainfall data for the period 1961 to 

2009. 

The hazard associated with a faecal deposit releasing E. coli depends on the 

relative likelihood of rain occurring on a day in a given month compared to all other 

months; and the average daily rainfall during a given month compared to all other 

months. Rainfall data were acquired from the Met Office MIDAS dataset ‘UK daily 

rainfall data’. Data for the period 1961 to 2009 were downloaded and for each 

month the average number of days with rain and median rainfall amount (median 

were used because the data were skewed to the left) was calculated (Figure 6.2.). 
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The relationship between rainfall amount and E. coli release developed in chapter 

5 was used to predict the percentage of a deposit’s E. coli that may be released 

under rainfall in different months given the average daily rainfall of that month. For 

example, daily rainfall for a month is taken and read from the X axis of figure 5.6; 

percentage of E. coli release is then shown on the associated Y axis. These data 

were then rescaled 0 to 1 with values of 1 illustrating most hazardous months and 

0 least hazardous. Developing an overall mobilisation hazard is then similar to the 

treatment of source hazard.  

 

 

 

 

 

 

 

 

 

Figure 6.3. Scatter plot of a hazard weighting reflecting the relative likelihood of 

rain on a day in a given month against a hazard weighting associated with the 

amount of rain that occurs on a single day in a given month. A hazard weight that 

reflects both theses aspects of mobilisation hazard is then the distance from the 

origin. 
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Figure 6.4. The lower bar plot illustrates stock type and month differentiated 

hazard weightings that capture aspects of hazard associated with the 

concentration of E. coli in fresh faeces; the extent to which E. coli grows in faeces; 

the relative chance of rain on a day of a given month; and the amount of rain that 

falls in a single day of a given month. The upper bar plot shows how source 

hazard and mobilisation hazard contribute to the overall hazard weight in different 

months.   

The number of days with rain in each month is rescaled 0 to 1 and plotted against 

the E. coli release hazard weightings. The distance from the origin is then the 

overall mobilisation hazard due to rainfall on different months (figure 6.3).  
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6.4 Combining source and mobilisation hazards 

A plot of mobilisation hazard against source hazard would illustrate a new hazard 

weighting that encompasses both source and mobilisation terms. The source and 

mobilisation encompassing hazard weighting would be the distance from the origin 

of this plot. Therefore, the hazard posed by faeces from a given stock type and 

month could be calculated as:	

"𝐴$ + 𝐵$ + 𝐶$ + 𝐷$ 

Where A is the rank of initial E. coli concentration; B is the rank of E. coli growth; C 

is the rank of number of days with rain; D is the rank of rain amount. Figure 6.4 

illustrates the stock type/month differentiated source/mobilisation hazard 

weightings based on the data collected within this thesis. In this example two 

seasons of high risk can be identified. There is a higher risk of E. coli transfer 

associated with months June, July and August. This risk is driven by greater 

source hazard; there are likely to be warmer temperatures in these months driving 

a greater magnitude of E. coli growth. The second period of high risk occurs 

September to January and this risk is driven, largely, by increased chance of 

rainfall. This highlights the importance of considering interacting meteorological 

factors when assessing the risk of E. coli transfer to watercourses. The weightings 

developed using this approach can be combined with agricultural census 

information to develop spatial information that can replace the land cover 

weightings presently used in SCIMAP. This adaptation of the way SCIMAP treats 

sources and mobilisation of diffuse FIO pollution may address the challenges 

associated with temporal and between stock type variations in E. coli source and 

likelihood of mobilisation outlined in chapter 3: ‘Predicting diffuse microbial 
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pollution risk across catchments: the performance of SCIMAP and 

recommendations for future development’.    

While the method outlined provides a proof of concept, the workflow needs to 

capture information from additional existing research. Information capturing 

variations in hazard from a variety of locations, animals and management 

practices should be gathered. This consolidation of existing research should be 

carried out in a strictly quantitative manner using contemporary meta-analysis 

techniques like those described by Gurevitch et al. (2018) and is unfortunately not 

within the scope of this project.  

The development of a default set of FIO risk weightings for the SCIMAP 

framework allows for the mapping of FIO risk in catchments that are not 

associated with large amounts of FIO data. However, there will be more 

uncertainty associated with these risk weightings than those developed using the 

SCIMAP fitted method and distributed datasets. Collection of FIO data is therefore 

a priority for managing diffuse FIO pollution in sensitive catchments. Currently 

available data collection techniques provide a significant barrier in this respect. 

The field of catchment microbial dynamics is still largely confined to the use of 

culture-based methods which are relatively expensive (compared to nutrient 

analyses), labour intensive and time consuming; these issues prevent the 

collection of the amount of data required for testing and specifying models that 

operate at large spatial and temporal scales.  

Within the field of diffuse sediment and nutrient pollution, technologies that acquire 

near real-time information have been developed which allows for the efficient, and 

often remote, collection of large quantities of data (Owen et al. 2012). This allows 
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for robust training and testing of catchment scale models of pollution transfer. The 

development of new technologies that are able to measure FIO concentrations 

remotely and near real-time should be an ambition for catchment microbial 

dynamics. Devices such as ColiMinder (VWM Solutions) provide opportunities for 

data collection but to this author’s knowledge has not been applied to spatially 

distributed sample collection for catchment-scale model development and 

specification. These systems exploit the presence of a metabolite β-glucuronidase 

as an indicator of faecal pollution and has an advantage over culture-based 

methods in that viable but non-culturable E. coli are captured (Joensen et al. 

2014).   

The SCIMAP framework provides opportunities for mapping diffuse pollution risk 

and planning the deployment of mitigation measures, and has been the focus of 

this thesis. However, SCIMAP’s use case is relatively specific and concerns the 

targeting of areas for diffuse pollution mitigation. The information gathered within 

this thesis could have wider impact in that it can be useful for developing other 

modelling approaches with different objectives; for example,� predicting E. coli 

contamination in response to rainfall (SWAT (Cho et al. 2012)) or risk of health 

implications following contamination of watercourses (QMRA (McBride et al. 

2013)).  

The information presented throughout the current work could also provide 

opportunities for developing an Agent Based Modelling approach (Reaney 2008). 

Agent based modelling (ABM) is yet to be applied within the field of catchment 

microbial dynamics but could be useful for modelling the fate, transfer and impact 

of diffuse microbial contaminants. ABMs describe a system via a group or multiple 
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groups of entities (agents) and an environment. Simple rules then describe how 

these agents interact with each other and their environment. Through simulation, 

agents are allowed to interact with other agents and their environment with a 

global level effect emerging as a result. For describing complex systems this 

approach has significant benefits over traditional mathematical modelling 

approaches which are limited by mathematical tractability. This simulation-based 

approach is also useful for understanding uncertainty in highly stochastic systems.   

In the context of catchment microbial dynamics, agents could be livestock, faecal 

deposits and/or parcels of contaminated run off. Environment variables might 

include topographic, land use, stream network and meteorological information. 

Experiments like those presented in the current work which are developed under 

the source, mobilisation, delivery, impact framework can then inform rules 

determining how agents interact with each other and their environment to result in 

downstream impacts to ecosystem services that rely on clean water.  
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7. Conclusion: 

 

Faecal contamination of watercourses has been reduced through engineering 

solutions associated with point sources of contamination. As point sources have 

been addressed the relative importance of diffuse sources from the landscape 

have become more important. The distributed nature of diffuse sources of FIO 

pollution makes it difficult to determine where sources are, and which sources 

contribute most to microbial water quality impacts. The objective of the work 

described in this thesis was to develop a solution to the problem of determining 

where diffuse FIO pollution originates and where mitigation measures should be 

deployed for the greatest improvement in water quality. SCIMAP was identified as 

a tool which shows promise, and prior to this work, had not been considered for 

application to diffuse FIO pollution. The research here has shown that: 

• SCIMAP as it exists has limitations in its application to diffuse FIO pollution 

in that: 

o It’s approximation of source risk using landcover information does 

not appropriately reflect the spatial and temporal distribution of FIO 

source risks; 

o SCIMAP’s time integrated approach may not be appropriate for a 

non-conservative pollutant. 

• E. coli populations are able to grow in livestock faeces for up to 30 days 

post defecation. 

• The extent of E. coli growth is influenced by temperature conditions that 

vary seasonally. 
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• The release of E. coli from faecal matrices exposed to simulated rainfall is 

relatively small and can be approximated using rainfall depth. No livestock 

type variation was discovered.  

 

These findings were consolidated in a proposed workflow that outputs a set of 

default hazard weightings that can be applied within the SCIMAP framework. 

Below, these findings are described in more detail. 

Assessment of SCIMAP’s performance when applied to diffuse FIO pollution: 

SCIMAP, which has been optimised for diffuse sediment and nutrient pollution, 

has been highlighted as a tool with potential to inform the spatial targeting of 

diffuse FIO mitigation pollution. However, an initial investigation into its 

performance highlighted a number of weaknesses: (i) SCIMAP’s treatment of 

source hazard does not account for the variability in FIO availability that arises 

from grazing different livestock at varying densities; (ii) the existing ‘time 

integrated’ approach does not capture seasonal variations in the proliferation, 

survival and release of E. coli in/from faecal matrices. 

Post defecation proliferation of E. coli in livestock faeces: 

Chapter 3 demonstrated how the growth of E. coli, often observed in field trials, 

can be replicated under controlled conditions. This shows experiments conducted 

under controlled but environmentally relevant conditions can inform understanding 

on the fate and transfer of E. coli in the environment. Furthermore this experiment 

showed an increased potential for E. coli growth in livestock faeces during warmer 
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seasons in the U.K. These results informed the development of seasonally 

differentiated hazard weightings that can inform the SCIMAP approach. 

Mobilisation of E.coli under simulated rainfall: 

In chapter 4, the release of E. coli from faecal deposits was investigated. It was 

demonstrated that the release of E. coli can be approximated using accumulated 

depth of rainfall. This investigation showed a law of diminishing returns with 

release of E. coli becoming more difficult as rainfall continued. This experiment 

also suggested no difference in the release of E.coli between three different 

livestock types. The model of E. coli release developed here was combined with 

routinely collected rainfall information to create monthly differentiated hazard 

weightings for grazing livestock on pasture. 

Integrating new knowledge within the SCIMAP approach: 

An initial investigation into the performance of SCIMAP when applied to diffuse 

FIO pollution highlighted a key weakness in that the approach did not consider the 

highly seasonal nature of diffuse FIO pollution or the variation in FIO source 

loading due to grazing different livestock types. The experiments conducted 

subsequently aimed to inform an adapted SCIMAP approach that may better 

account for the spatial and temporal variation in diffuse FIO pollution. Rates of E. 

coli growth varied with seasonal variations in temperature and also between 

livestock types; rate of E. coli release varied with rainfall that changes monthly. A 

workflow for capturing these variations within SCIMAP was developed.    
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Overall the research here has developed an approach for applying SCIMAP to 

diffuse FIO pollution. The implementation of these recommendations would 

provide a tool for those who aim to reduce FIO contamination through the 

mitigation of diffuse inputs from agricultural landscapes. Furthermore, this 

research has shown the usefulness of controlled experiments to inform modelling 

approaches operating at large scales. Field studies will remain vital in improving 

knowledge of the fate and transfer of FIOs in the environment; however, variable 

and interacting factors making it difficult to disentangle the effects of individual 

drivers of diffuse pollution. The experiments investigating the proliferation of E. coli 

in faeces within a CEF and the release of E. coli from faeces under simulated rain 

demonstrate how new knowledge derived from controlled experiments can inform 

decision-support tools operating at field scales. While such extrapolations should 

be treated with caution and tested against environmentally derived data, such 

approaches are required for understanding how faecal pollution reacts to varying 

meteorological conditions and agricultural management interventions, which in 

turn allows for the development of operationally useful decision support tools.  

7.1 Recommendations for future research. 

SCIMAPs potential for supporting diffuse FIO pollution mitigation planning has 

been illustrated for the first time. However, there remains scope for further 

research considering the application of SCIMAP to diffuse FIO pollution; 

development of fate and transfer modelling approaches for a variety of objectives; 

and to develop knowledge regarding the fate and transfer of FIO pollution more 

generally. Key areas for further investigation arising from this research are: 
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• Validation of an updated version of SCIMAP encompassing the work flow 

described in chapter 3 that captures seasonal and between livestock type 

variation in post defecation E. coli proliferation and rainfall induced release.  

• Relative to other pollutants, there remains a significant lack of knowledge 

regarding the fate and transfer of FIOs. In terms of adapting SCIMAP for 

application to FIO, data regarding the persistence and release of FIOs 

under a greater variety of meteorological conditions is needed. 

Understanding the impact of different agricultural practices, for example 

variable diets and housing regimes, on the fate and transfer of FIOs is also 

required.     

• A strictly quantitative meta-analysis following stringent rules of research 

synthesis should be used to consolidate existing knowledge on the fate and 

transfer of E. coli. Results from this should feed into the workflow outlined in 

chapter 6 to inform the development of default hazard weightings for 

SCIMAP.    

• The development of data collection tools and protocols that allow for the 

efficient and ideally remote collection of spatially distributed samples across 

catchments will facilitate the application of the SCIMAP fitted approach, 

thus reducing uncertainty in the framework as a whole. For example, a 

network of remote monitoring stations in the River Eden catchment, located 

in Cumbria, England has been used to investigate phosphorus and fine 

sediment pollution (Perks et al. 2015). 

 

Overall, this project has provided new information on the fate and transfer of FIOs 

in the landscape and has provided a framework for a new model of FIO transfer. 
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SCIMAP FIO will support catchment managers by supporting decision making 

regarding the targeting of diffuse FIO mitigation measures, ultimately reducing 

contamination of recreational bathing areas, shellfish harvesting operations and 

drinking water supplies.  
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