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Abstract—The detection of wind turbines in a strong clutter
background is analyzed at variance of polarimetric Synthetic
Aperture Radar (SAR) configurations. The area of interest is
the intertidal zone near Jiangsu, China and two detectors are
used, the Polarimetric Notch Filter (PNF) and a change detec-
tor that optimizes the ratio between covariance matrices. The
detection performance is quantitatively analyzed using the re-
ceiver operating characteristic (ROC) curve while the scattering
mechanisms that characterize wind turbines are analyzed using
the Yamaguchi decomposition. Experimental analysis shows that:
a) wind turbines result in a non-trivial scattering mechanism;
b) full-polarimetric measurements achieve the best detection
performance independently of the two detectors.

Index Terms—PolSAR, wind turbines, change detection, notch
filter, polarimetry.

I. INTRODUCTION

Wind is a sustainable and alternative resource for producing
energy and it is one of the green pillars. Wind turbines are
widely used at onshore and offshore sites to convert the energy
from wind to electrical power [1]. Offshore wind farms have a
very low global warming and noise impact. Hereafter, we focus
on Rudong County, China, where wind turbines are located in
the intertidal flat area together with aquaculture farms. This
scenario is very interesting for both scientific and operational
viewpoints since it provides an unprecedented opportunity to
test the effectiveness and the robustness of multi-polarization
Synthetic Aperture Radar (SAR) algorithms to detect metallic
targets in a very harsh clutter background. Since wind turbines
consist of a metallic tower with blades, polarimetric SAR
(PolSAR) detection of wind turbines may be meant similar
to the detection of small metallic structures at sea. One key
difference relies on the clutter that, in the case of the Rudong
County, can be very difficult to be rejected due to the presence
of shallow waters, mud flats and aquacultures [2]. This makes
the clutter very inhomogeneous and therefore the detection
exercise is challenging [3]. To the best of our knowledge, there
is only one study that explicitly addressed the detection of
wind turbines [4], where a sensitivity analysis is proposed to
discuss the enhancement of the target–to–clutter ratio achieved
using conventional and compact–polarimetry (CP) PolSAR
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modes.
Several methods have been proposed in literature to deal
with the detection of metallic targets at sea. In [5], convo-
lutional neural networks (CNN) are used for maritime targets
detection and classification. Results, obtained by processing
TerraSAR-X high-resolution images, demonstrate the ben-
efits of deep-learning in improving detection accuracy. In
[6] and [7], a physical dual–polarimetric (DP) approach is
proposed to discriminate man-made metallic targets by the sea
background according to their different symmetry properties.
Experiments, undertaken on TerraSAR–X, RadarSAT–2 and
ALOS SAR measurements, show that metallic targets can
be distinguished from the surrounding sea. In [8], different
sub-look multi–polarimetric detectors are used for vessels
detection. Results, undertaken using multi–polarization and
multi–frequency SARs, i.e.; RadarSAT–2, TerraSAR–X and
ALOS, show the soundness of the proposed approaches. In
[9] a detector algorithm based on Polarimetric Notch Filter
(PNF) is applied on TerraSAR–X FP SAR data to detect
ships. Results show a significant agreement with the available
ground truth. Furthermore, the approach resulted to be almost
independent of sea conditions. In [10] the sensitivity of CP
SAR features to metallic targets at sea is analyzed using CP
modes emulated from quad-polarimetric L- and C-band SAR
imagery.

This study analyzes the role of polarimetric information to
detecting wind turbines at sea in a harsh clutter background.
Experiments are carried out considering C- and X-band Pol-
SAR imagery collected by RadarSAT-2 (in full-polarimetric
(FP) mode) and TerraSAR-X (in dual-polarimetric (DP) mode)
over the Rudong County, Jiangsu Province, see Figure 1. Two
PolSAR algorithms are used to observe wind turbines, i.e.;
the PNF [9] and a change detector method based on the
polarimetric matched filter (PMF) [11][12] since they allow
exploiting both FP and DP (VV-HH and VV-VH/HH-HV)
and also CP modes [10]. This allows a fair inter-comparison
of the detection performance achieved when using different
polarimetric channels configurations. To quantify the detection
performance the receiver operating characteristic (ROC) is
used. The analysis is undertaken at both C- and X-band.
Experimental analysis shows that: a) the scattering mechanism
that results from the wind turbines is non-trivial and is char-
acterized by a mixture of polarized (i.e.; single-reflection and
double-bouncing) and unpolarized (i.e.; volume component)
scattering. In addition, it breaks the reflection symmetry; b) FP
measurements result in the best performance since they allow
discriminating polarized scattering mechanisms, i.e.; single-
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Fig. 1. Google Earth c© image collected on 12 May, 2014 over the area of
Rudong County. On the bottom–right side an enlarged version of the area that
includes a wind turbine and the mud flat is shown.

and double bouncing, from the unpolarized backscattering; c)
when DP information is available, the VV-HH combination
and the CP modes outperform the VV-VH/HH-HV combina-
tions.

II. METHODOLOGY

The theoretical rationale that underpins the proposed multi–
polarization methodologies is here described. First, a brief
introduction on the polarimetric observable is given. Then, the
two multi–polarization methods are described.

Polarimetric descriptors of complex random scenarios are
second-order products of the scattering matrix [13][14]. The
positive semi–definite (PSD) and Hermitian covariance matrix
is considered:

C =
〈

kL · k†L
〉

(1)

where 〈·〉 is the finite averaging operator and kL, is the
scattering vector, i.e.; the projection of the scattering matrix
S according to the lexicographic basis [13][14] and † means
complex conjugate transpose. Since C is a PSD Hermitian
matrix, it can be uniquely decomposed according to the
eigenvalue/eigenvector decomposition [15]:

C = UDUT (2)

where U and UT are unitary orthogonal matrices and D is a
diagonal matrix whose elements are the real and non negative
eigenvalues of C.

When dealing with turbines, we expect a complex polari-
metric signature which consists of pixels characterized by
a dominant deterministic mechanism (i.e.; single reflection,
double-bouncing, etc.) and pixels resulting in depolarization
[16]. Hence, a robust detector should be not tuned on the
discrimination of a single specific scattering mechanism that
characterizes the target, indeed it should be able to include all

the scattering mechanisms that distinguish the target from the
background clutter. Hence, we selected two detectors that are
described in the following subsections.

A. PNF method

This method exploits the polarimetric coherence to enhance
differences between targets and the clutter background: targets
are considered as anomalies with respect to the scattering of
the background.
Hence, the polarimetric coherence between the sea clutter and
its perturbed version can be defined as follows [9]:

γ =
1√

1 +RedRPsea

PT

(3)

where the parameter RedR is a tuning parameter that allows
rescaling the clutter distribution to avoid numerical errors in
the computation of the detection mask [9]. Note, however,
that the theoretical detection performance is independent of
RedR [9]. Psea and PT stand for the power of the sea surface
clutter and the target, respectively. The total power related to
the observed scene is defined as:

Ptot = t†t (4)

where t is the feature partial scattering vector obtained pro-
jecting C onto a lexicographic basis. This power can be
decomposed into a term associated to the sea surface, Psea,
and a term that includes “non-sea” targets. The sea clutter
power is given by:

Psea = |t†tsea|2 (5)

where tsea is the partial target extracted from a sea clutter
reference area. Note that, the square operator is necessary
because tsea is a unitary vector. The power of the “non–sea”
targets is given by:

PT = Ptot − Psea (6)

In this study, γ (3) is exploited to observe wind turbines.

B. Change detection method

The method is based on the PMF that, proposed in the
seminal study of Novak et al. [11] to deal with the opti-
mization of the target-to-clutter power ratio using a single
polarimetric SAR image, has been extended in [17] to deal
with the optimization of the power ratio between two different
polarimetric SAR acquisitions. Hence, the method used in this
study to observe wind turbines against the clutter is based on
the scattering mechanisms ωmax that maximize the following
ratio:

ρ12 =
ω†C11ω

ω†C22ω
(7)

where C22 and C11 are covariance matrices that describe the
reference scenario (i.e.; the clean sea surface) and the test area,
respectively, and ω is the projecting vector. Both covariance
matrices, in this study, are estimated using a 3 × 3 boxcar
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window. To maximize (7), an optimization problem is to be
solved. In this study, the Lagrangian method [12][13][14][17]
is applied to the quadratic form ω†CCDω where the change
matrix CCD is given by

CCD = C11C−122 (8)

Hence, the following eigenvalue problem is obtained [11]:

CCDω = λiω (9)

with λi (with i = 1, 2, 3) being the real eigenvalues that
maximize/minimize the ratio between the covariance matrices
associated with the test area and the reference scenario,
respectively.

In this study, the sum of the absolute value of the three
eigenvalues is considered to detect anomalies with respect to
the clean sea surface:

λ = |λ1|+ |λ2|+ |λ3| (10)

λ is expected to be sensitive to the peculiar scattering mech-
anisms that make the polarimetric signature of the metallic
turbines different from the clutter. Note that when DP PolSAR
data are available, eq. (10) consists of only two eigenvalues;
hence, only partial information about the scattering scene can
be obtained.
In this study, λ is exploited to observe wind turbines.

III. EXPERIMENTS

In this section, showcases related to C–band RadarSAT–
2 FP and X-band TerraSAR–X DP HH/VV SAR data (see
Table I), are discussed. Wind conditions, estimated from the
SAR imagery according to [18] and [19], belong to the low-
to-moderate regime, see Table I. The Jiangsu coast is mainly
characterized by mud flats that are well visible in the optical
image in Figure 1. A large number of wind turbines is located
in the Jiangsu intertidal zone, see the white dots in the image
of Figure 1. In the bottom right part of Figure 1, a camera
picture of the mud flat and wind turbine is shown.

To discuss the added–value information provided by polari-
metric measurements to distinguish wind turbines from both
the sea surface and the more challenging mud flat environment,
the two detectors are exploited using different combinations of
polarimetric channels. The quantitative analysis is undertaken
using the ROC curve evaluated on the γ and λ imagery. The
ROC consists of plotting the probability of false alarm Pfa

with respect to the probability of detection Pd by varying
the threshold between a minimum and a maximum value that
depends on the histogram of γ and λ [8]. In particular, Pd

is given by the ratio of the detected wind turbines over the
total number of wind turbines visually inspected in the SAR
imagery. Visual inspection is undertaken geocoding the SPAN
image and superimposing it on an optical image. To evaluate
Pfa, an area (see Figure 2 (a) and (b)), that includes both
aquacultures and intertidal flat but does not contain land or
evident ambiguities, is selected. Then, the signatures of wind

TABLE I
SAR DATASETS ACQUIRED BY RADARSAT–2 AND TERRASAR–X

Dataset Sensor Polarization Acquisition
date Band

Angle of
incidence

(AoI)
(◦)

Wind
speed
(m/s)

Number
of wind
turbines

1 RS-2 FP 10/04/2014 (9:50:53) C 29 5.49 62
2 RS-2 FP 17/04/2014 (9:46:44) C 22 4.70 88
3 TS-X DP (HH–VV) 10/04/2014 (9:52:54) X 40 5.49 78
4 TS-X DP (HH–VV) 16/04/2014 (9:44:24) X 23 5.13 53

turbines are manually masked out and the Pfa is given by
the ratio between the number of detected pixels over the total
number of pixels.

The first experiment deals with the RadarSAT–2 scenes
acquired on 10 April 2014 (see dataset 1 in Table I) and 17
April 2014 (see dataset 2 in Table I). An excerpt of the HH–
polarized squared modulus SAR data related to dataset 1 is
shown in graytones (dB) in Figure 2 (a), while the output of
the PNF and the PMF are shown in false color in Figure 2
(c) and (e), respectively. Both detectors correctly emphasize
wind turbines with respect to the sea background and, more
interestingly, wind turbines are also well-distinguishable from
the intertidal flat. The output of the PMF looks noisier than the
PNF one, witnessing that this method exhibits a pronounced
sensitivity to even small changes between the scattering mech-
anisms of the reference area and the observed scene. On the
other side, PNF being a notch filter, is better tuned on the
detection of departures from the quasi-deterministic Bragg
scattering. To better analyze the added–value of polarimetric
information to detect wind turbines, the ROC curve related to
the dataset 1 is evaluated using both FP and DP polarimetric
combinations and considering the single–polarization HH and
HV channels as benchmark, see Figure 3. Note that, in the
single-polarization case, the ROC curve is evaluated using the
5×5 speckle-filtered HH and HV intensity image adopting the
same procedure followed in the polarimetric case. The RedR
parameter, after a cut-and-try process, is fixed to 0.7 since
ensuring the best trade-off. In this case, 62 wind turbines are
used as test. We note that polarimetric measurements, together
with appropriate polarimetric filters, are beneficial to achieve
better results with FP resulting in the best performance.
The comparison of the PNF and PMF shows that the latter
performs slightly better, for a given polarimetric combination.
To provide quantitative results, a figure of merit is introduced
that consists of evaluating the area between the ROC curves
and the left top part of the plot, see Table II. The area is
calculated using a rectangle whose right-most side is bounded
by the ROC curve resulting in the lowest Pfa value, see
Figure 3. The detector performance improves as the area gets
smaller. In Table II results relevant to emulated CP modes
are also listed [20]. In particular, linear +45 and right-hand
circular (RHC) CP modes are considered [20]. The figure
of merit shows that FP information always guarantees the
best performance, independently of the two detectors. Hence,
FP performance is considered as benchmark to quantify the
performance loss (PL) (listed in percentage in Table II) when
partial polarimetric data are used. The PL are always within
46%; hence, all the PolSAR modes perform better than the
single-polarization ones. The performance of CP and HH-VV
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TABLE II
FIGURE-OF-MERIT: AREA BETWEEN THE ROC CURVES AND THE LEFT

TOP PART AND PERFORMANCE LOSS (PL) IN BRACKETS.

Dataset 1 Dataset 2 Dataset 3 Dataset 4
γFP 6.01e-05 8.14e-05 - -

γHH−V V 6.93e-05 (15%) 8.96e-05 (10%) 2.07e-05 1.96e-05
γV V −V H 8.11e-05 (34%) 1.19e-04 (46%) - -
γHH−HV 8.46e-05 (40%) 1.19e-04 (46%) - -

γ CP linear+45 6.79e-05 (12%) 8.87e-05 (9%) - -
γ CP RHC 6.62e-05 (10%) 8.79e-05 (8%) - -

λFP 5.45e-05 7.99e-05 - -
λHH−V V 6.37e-05 (17%) 9.05e-05 (13%) 1.99e-05 1.84e-05
λV V −V H 7.53e-05 (38%) 1.09e-04 (36%) - -
λHH−HV 7.95e-05 (46%) 1.15e-04 (44%) - -

λ CP linear+45 6.31e-05 (16%) 8.94e-05 (12%) - -
λ CP RHC 6.53e-05 (20%) 1.03e-04 (30%) - -

σHH
0 1.92e-04 1.80e-04 7.06e-05 7.45e-05

σHV
0 1.43e-04 1.78e-04 - -

σV V
0 1.97e-04 1.89e-04 7.13e-05 7.75e-05

modes is very close to the FP mode (i.e.; within 20%); while
HH-VV / VV-VH combinations provide the worst result (i.e.;
within 46%).
These results can be physically explained by analyzing the
scattering-based information carried on the polarimetric chan-
nels combinations. The model-based decomposition, proposed
by Yamaguchi et al. [21], is applied to analyze the dominant
scattering mechanisms. Results show that the mean scatter-
ing mechanism consists of 21% of surface component, 24%
of helix component, 27% of double-bouncing and 28% of
volume component. Note that these percentages are obtained
by averaging values obtained for all the visually inspected
turbines. Hence, wind turbines are characterized by a non-
trivial scattering mechanism that is not dominated by double-
bouncing since it includes both a polarized component (i.e.;
surface and double bouncing), and a depolarizing one (i.e.;
volume scattering). In addition, wind turbines, being man-
made metallic targets, broke the reflection symmetry property
that characterizes natural target [7] leading to a non-negligible
helix component. This is in contrast to what naively expected.
The detection performance of the polarimetric modes can be
explained considering that: a) full-polarimetric measurements
show sensitivity to all the above-mentioned mechanisms; b)
partial polarimetric modes show sensitivity to a subset of
these mechanisms. In particular, DP HH-VV and CP modes
result in a sensitivity closer to FP one; while the co-cross
combinations are mostly sensitive to the departure from the
reflection symmetry. The ROC curves related to the dataset 2
(not shown to save space) agree with the previous ones, as
well as the figure of merit listed in Table II. Note that, in this
case, 88 wind turbines samples are considered.

The second experiment deals with the TerraSAR–X scenes
acquired on 10 April 2014 (dataset 3) and 16 April 2014
(dataset 4), see Table I. An excerpt of the HH–polarized
squared modulus SAR data related to dataset 3 is shown
in graytones (dB) in Figure 2 (b); while the output of the
PNF and the PMF are shown in false colors in Figures 2
(d) and (f ), respectively. Even in this case, both detectors
correctly emphasize wind turbines with respect to the clutter
background. The ROC curves evaluated using the different
polarimetric combinations are shown in Figure 4 where the

Fig. 2. Excerpts of SAR scenes collected by RadarSAT–2 (first column)
and TerraSAR–X (second column) both on 10 April 2017. Rows refer to the
outputs of the PNF (second row) and change detector (third row); while the
first row shows HH–polarized grayscale image in dB.

Fig. 3. ROC curve related to the RadarSAT–2 dataset acquired on 10/04/2014.

speckle filtered single–polarization HH and VV intensity chan-
nels are also shown for reference purposes. In this case, the
number of wind turbines is equal to 78. Qualitative results
are similar to what formerly experienced in the RadarSAT-
2 cases. The quantitative results provided by the figure of
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Fig. 4. ROC curve related to the TerraSAR–X dataset acquired on 10/04/2014.

merit, see Table II, confirm the visual inspection of the ROC
curves, demonstrating that the best performance is achieved by
the polarimetric mode that results in the highest information
content (in this case DP). The ROC curves related to dataset 4,
where 53 wind turbines are considered, agree with the previous
ones (not shown to save space).

IV. CONCLUSIONS

In this study, the detection of wind turbines in a strong
clutter environment is analyzed at variance of polarimetric
SAR configurations using actual data sets acquired by the
C-band RadarSAT–2 and the X-band TerraSAR–X sensors.
Two detectors are used and the performance is analyzed at
variance of polarimetric configurations using ROC curves.
Experimental results show that FP measurements always guar-
antee the best performance independently by the polarimetric
detector choice. In addition, wind turbines result in a non-
trivial polarimetric scattering behavior that, in contrast to what
naively expected, cannot be simply described by a dominant
double-bounching mechanism.
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