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Summary abstract  

Increasing human activity means that populations are more susceptible to sudden 

environmental change. However, we have an inadequate understanding of the long-

term effects of human-induced change on natural populations. This thesis focuses on 

the long-term effects of exposure to high environmental radiation levels resulting from 

the Chernobyl disaster. The accident caused both abrupt environmental changes to 

populations from high acute exposure from the initial radionuclide release and long-

term chronic exposure from radionuclides that persist in contemporary populations. 

This work tests radiation effects by combining laboratory and field approaches using 

Daphnia, a freshwater crustacean, as a model organism.  

I first examined the fitness of Chernobyl Daphnia populations sampled from eight lakes 

with different radiation levels and found that variation across populations was not due 

to dose rate. Assessment of population genetics showed that genetic diversity 

increased with dose rate, indicative of mutation accumulation. However, gene flow 

between populations reduced population structure, which could explain why no 

phenotypic differences were observed between populations. I then tested radiation 

effects under controlled laboratory conditions. This required the characterisation of the 

irradiation facility at Stirling University. Testing under continuous radiation exposure 

revealed a reduction in Daphnia survival across generations, consistent with mutation 

accumulation. Assessment of reproductive fitness revealed that inferior lineages were 

selectively removed from the experiment, stripping variation in reproductive effects.  

This thesis demonstrates that ionising radiation negatively impacts individual Daphnia 

lineages in the laboratory at dose rates relevant to highly contaminated areas in the 

Chernobyl Exclusion Zone (350 µGy h-1 in the laboratory, <~180 µGy h-1 estimated field 

dose rate to Daphnia), and also found that genetic diversity was higher in wild 

populations experiencing higher dose rates. However, my field research also 

uncovered evidence that is consistent with the idea that the negative radiation effects 

are masked by selection from other ecological pressures.  
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1.1 Protection of the environment from ionising radiation  

Radiation is energy that that can travel through space in the form of particles or waves 

(Hussein, 2007; Kudryashov, Yurii, 2008). Radiation with enough energy to cause 

damage at the molecular level is referred to as ionising radiation (NRC, 2006). Some 

level of ionising radiation is always expected to be naturally present in the environment 

and this level is termed background radiation. Both natural radiation sources such as 

cosmic rays and radon gas, and anthropogenic sources including radiation released 

from medical procedures and from the production of nuclear power, contribute to total 

radiation dose (Eisenbud & Gesell, 1997; UNSCEAR, 1982). 

The International Commission on Radiological Protection (ICRP) is an organisation that 

provides recommendations on protection from ionising radiation. Radiation protection 

standards were primarily focused on human protection (ICRP, 1977), under the stance 

that “if humans are adequately protected from ionising radiation, then other species are 

unlikely to be put at risk” (ICRP, 1991). However, in 2008, ICRP recommended that 

radiation protection should be extended to wildlife (ICRP, 2008), presenting new 

challenges in assessing radiation effects across different species.  

In order to begin addressing these challenges, ICRP created a framework for 

protecting different species. The framework was designed to be compatible with the 

existing radiation protection standards for humans. This framework is based on 

concept Reference Animals and Plants (RAPs) (ICRP, 2008). The RAPs are a set of 

organisms selected to represent an appropriate generalisation of different species. The 

12 RAPs include wild grass, pine tree, bee, earthworm, deer, rat, duck, frog, trout, 

brown seaweed, crab and flatfish. Taxonomically, Daphnia are listed as crustacea and 

this demonstrates the limitations of using these 12 RAPs. However, the data presented 

in this thesis will contribute to the general understanding of radiation effects and can be 

used to test the robustness of the RAPs approach.  

Different exposure pathways (such as inhalation through air, transfer through skin in 

aquatic environments or external exposure through emersion into water, NDAWG, 

2009) and radiosensitivities were considered, to designate points of reference 

(“benchmarks”). Benchmarks are used to contextualise the levels of radiation risk and 

are usually numeric values given as doses or dose rates (see Box 1). Benchmarks are 

usually either legal benchmarks, where the designated levels should not be exceeded 

(there are currently no limits in place for the protection of wildlife) or used as screening 

values. Screening values are generally conservative estimates, where negligible 

radiation effects are expected below these values. Values exceeding screening value 
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benchmarks will not necessarily have detrimental effects but more research may be 

required to understand the level of risk (Garnier-Laplace et al., 2010; ICRP, 2014).  

1.2 Units of ionising radiation 

The International System of units is most widely used to measure different aspects of 

ionising radiation. The two key parameters measured are activity and exposure. The 

activity of a radioactive source is measured in Becquerel (Bq), where one Bq is equal 

to one disintegration per second. Units of radiation exposure are expressed in different 

ways, depending on radiation effects and variation in sensitivity. For wildlife, only the 

absorbed dose is used. The radiation dose to an organism (absorbed dose) is a 

measure of radiation exposure expressed in Gray (Gy), where one Gy is equal to the 

absorption of one joule of radiation energy per kilogram of matter (BIPM, 2006; NRI, 

1999; Greening, 1985; ICRU, 1998). 

Radiation effects can vary depending on the type of radiation administered and the 

tissue type that has been affected. To address issues in estimating radiation effects, 

ICRP generated values for radiation weight factors for the radiation type (WR) to 

calculate an Equivalent dose and the affected tissue (WT) to calculate the Effective 

dose for humans (ICRP, 1977, 2007). Equivalent and Effective doses refer to radiation 

exposure that is specific to humans, given in Sieverts (Sv). These doses cannot be 

physically measured but can be calculated from Gy. Equivalent doses are calculated by 

multiplying the absorbed dose by WR. Effective dose is calculated by multiplying the 

Equivalent dose by WT (Henriksen & Maillie, 2003). Dose conversion coefficients are 

used to calculate equivalent values for non-human biota, based upon the RAPs 

proposed by ICRP (see section 1.1) (ICRP, 2017) 

Non SI units (used in older literature and in American publications) used units for 

measuring ionising radiation include the Curie (Ci), radiation absorbed dose (rad), 

Roentgen (R) and the rem. Ci is a unit for the activity of a source (similar to Bq), where 

one Ci is equal to 37,000 MBq (Rutherford, 1910). Rad units are used for radiation 

exposure in terms of absorbed energy (similar to Gy), where one Gy is equal to 100 rad 

(ICRP, 1955, 1964). The Roentgen (R) is also a unit of radiation exposure, however it 

refers to the ionisation of air molecules and therefore cannot be used as a dose 

measurement (as in Gy or rad, Henriksen & Maillie, 2003). Rem was introduced in 

1962 by ICRP as an equivalent dose for rad, which was later changed to the Sv (ICRP, 

1977).  
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1.3 Dosimetry 

There are a variety of different methods that can be used to detect ionising radiation 

levels. More commonly used methods for environmental radiation detection can be 

categorised as either integrating dosimeters or pulse mode detectors. Alternative 

dosimetry methods are generally more suited to other applications, for example, 

ionisation chambers are commonly used in radiotherapy for calibration purposes 

(Karger et al., 2010). An example of an integrating dosimeter used in Chapter four is a 

thermoluminescent dosimeter (TLD). TLD’s are frequently used as personal dosimeters 

due to their high sensitivity and wide range of detectable doses (Kortov, 2007). Crystals 

contained within TLD’s trap released electrons when they are exposed to ionising 

radiation. Heating these crystals enables them to release electrons which then emit 

light (Meijvogel, van der Burg and Bos, 1996; Bos, 2001). Thermoluminescence is a 

useful tool for measuring ionising radiation because the light emitted is proportional to 

the amount of radiation that is absorbed. Lithium fluoride (LiF) was the first substance 

to be used in TLD’s due to similarities in absorption to soft tissue. Other commonly 

used materials now also include Aluminium oxide (Al2O3) and Calcium fluoride (CaF2) 

(Kortov, 2007).  

Pulse mode detectors include scintillators, Geiger Müller counters and semiconductor 

detectors (reviewed in Knoll, 1979). Geiger Müller and scintillator counters are used in 

Chapter two, to detect levels of ionising radiation in Chernobyl in the air and in water 

samples respectively. Geiger Müller counters consist of a gas-filled cylinder that 

conducts electricity when it comes into contact with a high energy particle (Geiger and 

Muller, 1928). They are useful in detecting environmental radiation levels but do not 

provide information on the type of radiation present. Scintillation methods work on the 

principle that different substances will emit light after exposure to ionising radiation. A 

sensitive light detector (usually a photomultiplier tube) converts the light into an 

electrical signal which can then be measured. Scintillation counters can identify gamma 

isotopes because the light emitted is proportional to the amount of gamma radiation 

absorbed (Ageno et al., 1950; Reynolds et al., 1950).  

It is also possible to model radiation dose through computer simulations, which are 

often coupled with dose measurements for verification. One of the most common 

approaches for the mathematical modelling of dose rate from ionising radiation sources 

is the Monte Carlo modelling technique, specifically Monte Carlo Neutron Transport 

(MCNP) models (Briesmeister, 1986; Hendricks et al., 2000). This process is utilised in 

Chapter four, where TLD measurements are used to verify predictions made using the 
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MCNP approach. The process simulates the exposure pathways of ionising radiation 

(from protons, neutrons, photons, electrons, etc.) emitted from the source, including 

scattering and absorption interactions with the materials making up the sample and its 

surroundings. Each interaction is then used to make a dose calculation. MCNP 

modelling of ionising radiation used in a wide range of applications, including 

radiotherapy, shielding design and assessment and nuclear facility assessments 

(Rogers et al., 1995; da Silva and Crispim, 2001; Ancius et al., 2005; Gilbert et al., 

2012; Tekin and Manici, 2017). MCNP has consistently been proven as an accurate 

method for predicting radiation dose in a range of scenarios (Whalen, Hollowell and 

Hendricks, 1991; Nathan et al., 2003; Kiger et al., 2005; Chetty et al., 2007; Szoke et 

al., 2014).  

1.4 Genetic effects of ionising radiation 

Ionising radiation can cause a variety of DNA lesions, such as DNA-protein crosslinks, 

damaged base sites, single and double strand breaks (Nikjoo et al., 2001; von 

Sonntag, 2007), with the DNA double strand break being the most biologically 

damaging (Olive, 1998). Once DNA damage has been caused, DNA damage response 

pathways are activated which may include cell cycle arrest and apoptosis (Iliakis et al., 

2003). More commonly, genes involved in DNA damage repair will be activated and 

attempt to repair the lesion. Ionising radiation can cause mutation through damaging 

the DNA directly, through pitfalls in DNA repair machinery causing alterations to the 

DNA sequence or chromosomal translocations (Hakem, 2008) and through indirect 

mechanisms such as reactive oxygen species (ROS, DOE et al., 2000; Feinendegen, 

2002).  

In addition to directly damaging the DNA, internal repair mechanisms can also 

contribute to the damage caused by ionising radiation. Although some mutations can 

occur in non-coding regions of the DNA or may not alter the amino acid sequence 

produced due to the triplicate nature of the genetic code, mutations that alter the DNA 

sequence within coding regions of the DNA that result in a change in product, may 

result in damaging effects. Repair machinery usually maintains DNA integrity by using 

the complementary DNA strand to reconstruct the damaged sequence (Alberts, 2003). 

There are a number of mechanisms that maintain DNA integrity following damage from 

radiation exposure. Single strand breaks can be repaired through a number of 

mechanisms including direct reversal of DNA damage (Mishina et al. 2006), base 

excision repair (Seeberg et al. 1995), DNA mismatch repair (Kunkel & Erie 2005) and 

nucleotide excision repair (Costa 2003). Double strand breaks are repaired through 
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either homologous recombination or non-homologous end-joining mechanisms. 

Homologous recombination has a higher accuracy, whereas non-homologous end 

joining is more efficient and takes less time (Mao et al., 2008). Both these types of 

repair mechanisms are conserved across a wide range of species, although in higher 

eukaryotes, non-homologous end-joining is more important for double strand break 

repair than homologous recombination (Shrivastav, De Haro and Nickoloff, 2008; 

Iliakis, 2009). Daphnia utilise both mechanisms for DNA damage repair (Nakanishi et 

al., 2014, 2015). 

Homologous recombination works by re-joining the DNA ends at the break site and 

restoring the sequence in between (Shinohara and Ogawa, 1995). The essential 

components for homologous recombination are searching for homology between two 

sequences, invading the strands by the Rad51-single-stranded DNA presynaptic 

filament and strand invasion at the 3’ end of the template DNA. RAD54 promotes DNA 

synthesis at the end of the process (Sung and Klein, 2006; Li and Heyer, 2008). 

Homologous recombination restores the original sequence and prevents chromosomal 

translocations. However the utilisation of sister chromatids during homologous 

recombination restricts the process to the S and G2 phases of the cell-cycle, whereby 

DNA is replicated and distributed between two daughter cells during mitosis (Mao, et 

al., 2014). 

During the process of non-homologous end-joining, the broken ends of DNA are 

brought together and ligated without the requirement of a homologous template strand 

to repair a double strand break. Therefore, non-homologous end-joining operates at 

any phase of the cell cycle. It is also a shorter process than homologous recombination 

and even some single-strand break repair processes (Hefferin and Tomkinson, 2005). 

Despite the apparent advantages of non-homologous end-joining over homologous 

recombination, the enzyme involvement in the process means that if two double strand 

breaks occur within a close proximity, it is possible that the DNA ends may not join up 

correctly, resulting in chromosomal translocation (Mao, et al., 2008; Mao et al., 2014) 

Additionally, DNA damaging agents such as ionising radiation often damage the 

nucleotide bases and in some cases, the phosphate backbone of the DNA which can 

result in nucleotide addition, loss or alteration. These damaged break sites therefore 

require additional processing before ligation can occur, potentially resulting in an 

overall sequence alteration.  

Ionising radiation can indirectly induce DNA damage through the induction of ROS 

such as hydrogen peroxide, hydroxyl radical and superoxide (Riley, 1994; Dent et al., 



25 
 

2003). ROS reacts with biomolecules including DNA, lipids and proteins, which can 

result in increased DNA damage and responses at the cellular level including 

senescence and apoptosis (Chen et al., 1998; Chen et al., 2000; Mates and Sanchez-

Jimenez, 2000). ROS also contributes to genomic instability (see section 1.5), which 

can be transmitted to future generations and may have detrimental effects on progeny 

(Morgan, 2003a; b). Transgenerational impacts of ionising radiation, with regards to the 

transmission of mutations to offspring is assessed in Chapter five.  

1.5 Non-genetic effects of ionising radiation 

Ionising radiation also induces non-genetic effects such as, epigenetic changes and 

bystander effects. Epigenetics describes heritable alterations to DNA expression which 

are not attributed to genetic change (Waddington, 1957). Epigenetic profiles will 

change throughout normal development and in response to environmental stress such 

as starvation or pollution (Lumey et al., 2007; Heijmans et al., 2008; Bind et al., 2013; 

Suarez-Ulloa et al., 2015). Epigenetic modifications include DNA methylation (which 

suppresses gene expression, reviewed in: Bird, 1986), histone acetylation (which 

increases gene expression, reviewed in: Struhl, 1998) and gene silencing through long 

non-coding RNA’s (reviewed in: Mercer et al., 2009). 

Although epigenetic changes are associated with ionising radiation (Dubrova et al., 

2000; Barber et al., 2002; Barber and Dubrova, 2006), the mechanisms are largely 

unknown. Research suggests that epigenetic effects of ionising radiation in both 

animals and plants are predominantly non-adaptive (reviewed in: Youngson and 

Whitelaw, 2008). DNA methylation is one of the epigenetic processes that regulates 

gene expression, where DNA hypomethylation results in an upregulation of gene 

expression (Razin, 1998). Most research suggests that global DNA hypomethylation 

occurs following radiation exposure (Raiche et al., 2004; Koturbash et al., 2006), 

including Daphnia experiments (Trijau et al., 2018). However, more detailed 

methylation studies have shown that hypo/hypermethylation is variable across different 

tissue types (Pogribny et al., 2004; Zielske, 2015). In addition, epigenetic effects of low 

radiation doses have previously been extrapolated from high-dose exposures, whereas 

increasing evidence at low doses suggests that DNA methylation profiles neither 

increase or decrease with radiation dose, but differential methylation patterns arise 

across genes (Waldren, 2004; Ma et al., 2010; Antwih et al., 2013).  

Bystander effects refer to the process where irradiated cells/organisms transfer signals 

to non-irradiated cells/organisms. Bystander responses include apoptosis, mutation, 

genomic instability and chromosomal rearrangements (Morgan, 2003a, 2003b; Morgan 
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and Sowa, 2007). The mechanism for such effects still largely remains unclear, 

although ROS have been implicated in the process (Narayanan et al., 1997; Azzam et 

al., 2003). 

1.6 Ionising radiation effects at the organism level 

Ionising radiation effects at the molecular level may result in radiation effects at higher 

levels of biological organisation (i.e. individual, population, ecosystem). Typical 

assessments at the level of organism are conducted on growth, reproduction and 

survival, similar to standard ecotoxicology assessments (Garnier-Laplace et al., 2008). 

These traits are highly representative of the overall fitness of an organism and have 

been used for assessing organism fitness throughout this thesis. Research generally 

shows that ionising radiation has detrimental impacts on these measures of fitness 

(e.g. Phillips & Coggle, 1988; Zaka et al., 2004; Parisot et al., 2015), consistent with 

research at the sub-organism level (sections 1.4 and 1.5).  

Furthermore, studies at the level of organism have revealed “subtle” radiation impacts 

such as reproductive delays, age at maturity and embryo development (Taskaev et al., 

1988; Florian. Parisot et al., 2015; Hurem et al., 2017). These life stage specific 

alterations suggest that life history evolution might be influenced by the effects of 

ionising radiation. Whilst there has been no radiation-specific mechanism related to 

such effects identified to date, there is abundant evidence that oxidative stress impacts 

life-history evolution. Specifically, relating to the balance between investment in 

somatic maintenance and survival (Alonso-Alvarez et al., 2004, 2006; Dowling & 

Simmons, 2009; Monaghan et al., 2009). Evolutionary theory also tells us that 

organisms investing in somatic maintenance can show reduced reproductive 

investment (Williams, 1957; Kirkwood, 1977; Harman, 1981; Kirkwood and Rose, 

1991). However, whilst this provides potential explanation for more nuanced effects on 

organism fitness, evidence for radiation-mediated life history shifts in wild populations 

is limited (e.g. Blaylock, 1969; Cooley, 1973). 

1.7 Ionising radiation impacts on evolutionary processes 

Organism and sub-organism level assessments are useful because data can be 

extrapolated to the population level (Birch, 1948; Beckerman et al., 2002; Alonzo, 

Hertel-Aas, et al., 2008). However, it is important to consider that organisms living 

within high radiation environments may be exposed to ionising radiation across many 

generations, potentially at variable levels of exposure (due to radionuclide decay and 

movement across a heterogeneous landscape). Exposure over generations may add 

further complications, as evolutionary processes such as selection and adaptation can 
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have effects at the population level. Ionising radiation causes mutations which supply 

variation to populations, so higher genetic diversity might be expected in populations 

experiencing high levels of exposure (Haldane, 1937; Kimura and Maruyama, 1966). 

However, exposure to radiation across multiple generations might also drive selection 

towards more radiation-tolerant genotypes and thus lower genetic diversity (Haldane, 

1937; Crow, 1970).  

One of the key challenges associated with assessing evolutionary impacts of ionising 

radiation is the effects of confounding factors in wild populations, that also drive 

evolutionary change such as parasitism, predation and competition (Brockelman, 1975; 

Lehmann, 1993; Creel and Christianson, 2008; Auld et al., 2013), which may also 

impact overall population fitness. Policies for environmental radiation protection are 

created based on protecting populations from radiation risk rather than individuals 

(Beresford et al., 2007; Garnier-Laplace et al., 2008). Therefore, it is important that 

radiation impacts on populations are conducted accurately, considering all potential 

confounding factors. One way of addressing this issue is the use of genetic techniques 

on populations living across a variety of radiation contamination levels. By assessing 

parameters such as genetic diversity and population structure in relation to dose rate, it 

should be possible to test whether radiation is a key factor in shaping population 

fitness. This approach is used in Chapter three, to assess population diversity in 

Chernobyl populations of Daphnia.  

1.8 Controversy in current approaches for radiation assessment on wildlife 

Whilst confounding evolutionary processes have previously been considered in 

radiation studies in natural environments (Polikarpov, 1998), there are still issues that 

need to be addressed in terms of assessing radiation in the context of the wider 

ecosystem (Mothersill et al., 2019). Particularly because there has been controversy 

surrounding some of the reported wildlife effects (Beresford and Copplestone, 2011). 

Møller and Mousseau frequently report effects on wildlife at dose rates considerably 

lower than expected (e.g. Møller & Mousseau, 2007, 2009; Moller & Mousseau, 2011). 

This issue was highlighted in a review of laboratory and field data from radiation 

studies, where data from research conducted by Møller and Mousseau’s group are 

clear outliers on the dose response curve (Garnier-Laplace et al., 2013).  

Møller and Mousseau have received several criticisms that could explain the 

differences between their reported dose rates at which effects are observed, and those 

of the rest of the radioecology community. One suggestion is that these differences 

could be attributed to the dosimetry approaches used, specifically that only external 
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measurements of dose rate were taken into account (Beresford et al., 2008; Beresford 

and Copplestone, 2011; Garnier-Laplace et al., 2013). Additionally, work conducted on 

bird abundances at Fukushima (Møller et al., 2012) has been criticised for the 

interpretation of statistical analysis. Specifically, that the low R2 value does not support 

the significant results presented and that high degrees of freedom suggest that 

confounding variables have not been taken into account (Beresford et al., 2012). Møller 

and Mousseau received further criticism on their work which showed increased 

cataract frequency with ionising radiation in voles (Lehmann et al., 2016). This was 

also due to statistical interpretations, as a significant relationship was presented 

despite the lack of effects in male voles and a weak relationship in females. There were 

also few animals tested from control sites and the nature of the preservation methods 

used have been suggested to compromise lens opacity and hence results 

interpretation (Smith et al., 2016). These suggestions might explain why the dose rates 

reported by Møller and Mousseau are lower than those reported by other researchers 

working in the Chernobyl Exclusion Zone (CEZ, Wickliffe & Baker, 2011). 

It is important to take confounding factors into account. Additional stressors that are 

naturally present can act synergistically or antagonistically with ionising radiation, either 

exacerbating or masking radiation impacts on populations (Holmstrup et al. 2010; 

Coors and De Meester 2008). Radiation studies should consider a multi-stressor 

approach to understand some of these impacts, in line with current ecotoxicology 

research (Mothersill et al., 2019). Additionally, common garden experiments (also 

known as transplant experiments) offer a useful solution to issues involving 

confounding factors in wild populations (de Villemereuil et al., 2016). These 

experiments involve testing organisms in a common environment. The purpose of 

these experiments is usually to test local adaptation strategies (de Villemereuil et al., 

2016), but they can also be used to assess organism fitness in the absence of 

confounding factors (as demonstrated in Chapter two).  

In natural environments the distribution of contamination is likely to be heterogeneous 

due to variation in radionuclide transport in different environmental conditions 

(Mccarthy and Zachara, 1989; Thiessen et al., 1999). The movement of organisms 

across their natural landscapes should be considered in the dosimetry, for example, 

terrestrial organisms will be exposed to different levels of radiation as they move 

across a heterogenous landscape of contamination. This could lead to further issues in 

reporting effects. Daphnia are used as a model species throughout this thesis, as 

populations can be defined by the boundaries of the water body they inhabit, with more 
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restricted migration than in terrestrial species. This may reduce some of the variability 

in dose rate predictions.  

1.9 Daphnia as a model organism 

Daphnia are a useful model organism for studying radiation effects and offer a variety 

of benefits to both laboratory and field-based studies that address some of the issues 

in predicting radiation effects on populations. Daphnia live in freshwater lakes and 

ponds on every continent (Adamowicz et al., 2009). They are a key species for 

studying aquatic ecosystems and play a central role in food-web dynamics (Miner, de 

Meester, et al., 2012). Effects on Daphnia life history traits therefore have the potential 

to cause significant responses in the surrounding environment (Pace et al., 2004; 

Flaherty and Dodson, 2005). 

Daphnia reproduce on a cyclically parthogenetic basis, meaning that they have both 

sexual and asexual components of their reproductive cycle, triggered by environmental 

cues (Hebert, 1987, see Figure 1.1). Throughout the spring/summer Daphnia 

populations will reproduce asexually where their offspring are genetically identical to 

each other and to the parent. It is possible to maintain field-sampled Daphnia asexually 

in the laboratory (i.e. the same genotype that exists in the field) for testing in the 

absence of confounding factors. Daphnia will begin their sexual cycle as conditions 

become less favourable (i.e. during autumn/winter); they will produce male offspring 

which will mate with the females to produce sexual eggs (Berg, 1931). Sexual eggs are 

encased within hard capsules termed ephippia, which each contain two eggs that get 

released into the water body and remain dormant throughout the winter (Alekseev and 

Lampert, 2001; Decaestecker et al., 2009). Ephippia can withstand extremely hostile 

conditions including freezing and desiccation (Meijering, 2003; Altermatt and Ebert, 

2008). Migration of Daphnia between populations is restricted to the resting stages 

(ephippium) of Daphnia reproduction, where eggs be carried through means such as 

wind or by predator species such as birds (Maguire, 1963).  

Different substances or conditions can induce “sub-lethal” alterations to life history 

aspects such as growth, reproduction and survival which can be easily monitored as a 

proxy for fitness of individual Daphnia (Flaherty and Dodson, 2005; Beasley et al., 

2015). The asexual component of their reproductive cycle provides the opportunity to 

generate natural experimental replicates that can be exposed to a variety of different 

treatment conditions, making them a valuable tool in the laboratory. Daphnia can 

therefore be used in a wide variety of toxicity studies including; the effects of metals 

and metal accumulation (Liu and Wang, 2015; Okamoto et al., 2015), as well as the 
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toxicity of pharmaceuticals and organic pollutants within water systems (Flaherty and 

Dodson, 2005; Pérez et al., 2015). Daphnia reproduction is also used as an OECD test 

for chemical toxicity (OECD, 2012), demonstrating their application as a useful 

organism for assessing benchmark values.  

Daphnia pulex also have a fully annotated genome sequence, allowing researchers to 

investigate environmental effects on gene function (Colbourne et al., 2011). A variety of 

molecular applications exist for Daphnia, creating the opportunity to investigate 

differences in population genetics across landscapes (Shaw et al., 2008). This is useful 

in uncovering any evolutionary processes that could mask variation in phenotype. 

There have also been advances in the methylation profile of Daphnia pulex, showing 

changes in response to the environment. This highlights applications of Daphnia as an 

epigenetic model (Asselman et al., 2015; Strepetkaitė et al., 2015). The benefits of 

asexual reproduction make it possible to investigate changes to the epigenome without 

the complication of confounding genetic factors (Harris et al., 2011). 

 

Figure 1.1: Daphnia lifecycle. Adapted from Vizoso (2005). 
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1.10 Ionising radiation in the context of other anthropogenic and natural 

stressors 

The field of radioecology can benefit from the existing research in ecotoxicology based 

on the use of multiple stressor approaches and assessing evolutionary responses to 

abrupt environmental change. Ecosystems are usually exposed to multiple stressors 

including both natural stressors (such as predation, food availability and parasitism: 

Lehmann, 1993; Oro et al., 2003; Creel & Christianson, 2008; Auld et al., 2013) and 

anthropogenic stressors (such as heavy metals and chemical pollutants, Nazir et al., 

2015; Noyes & Lema, 2015). The requirement for a multi-stressor approach is widely 

recognised in ecotoxicology (Eggen et al., 2004; Holmstrup et al., 2010; Baird et al., 

2016; Van den Brink et al., 2016), whilst it has only recently been highlighted as a key 

issue for the assessment of radiation effects (Bréchignac, 2016; Mothersill et al., 2019). 

One of the main challenges in implementing this approach is the controversy in 

assessment of radiation effects in wild populations (see section 1.8), as correct dose 

response curves would need to be established to model radiation with other stressors 

(Garnier-Laplace et al., 2013; Goussen et al., 2016). 

Ecotoxicology research can also provide insight into the evolutionary responses to 

long-term radiation exposure in the environment. This is partly because some 

anthropogenic stressors have similar effects on wildlife to ionising radiation. For 

example, air pollution, heavy metal and pesticides have all been shown to generate 

mutations (Kada, Moriya and Shirasu, 1974; Shirasu et al., 1976; Lin et al., 1994; Yang 

et al., 1999; Somers et al., 2002; Gómez‐Martín et al., 2014) and reactive oxygen 

species (Risom, Møller and Loft, 2005; Valko, Morris and Cronin, 2005; Liu, Zhu and 

Wang, 2015; Mangum et al., 2015) in wildlife. In addition, relevant assessments on the 

effects of chemical pollutants, including mutagenic substances, on population genetic 

structure provide a useful insight into evolutionary responses to long-term exposures 

(Giska et al., 2015; Inostroza et al., 2016). Furthermore, literature on population 

responses to abrupt environmental change is valuable in predicting the effects of 

unscheduled radiation releases (such as accidental releases) on wildlife (Husseneder 

et al., 2016; Reid et al., 2016).  

It is also important to consider that the research being conducted on radioactively 

contaminated sites following nuclear accidents, including the work described 

throughout this thesis, is valuable in providing information to other fields of research on 

responses to abrupt environmental change. The CEZ provides a unique opportunity to 

understand both the immediate population responses to rapid changes in the 
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environment (Kozubov et al., 1987; Shevchenko et al., 1992; Arkhipov et al., 1994), as 

well as long term population effects (IAEA, 2006a; Møller & Mousseau, 2006; 

Beresford & Copplestone, 2011; Omar-Nazir et al., 2018). This thesis provides insight 

into the long term phenotypic (Chapter two) and genetic (Chapter three) responses to 

ionising radiation in wild populations and tests radiation effects in isolation (Chapters 

four and five), to characterise radiation effects alone. This could inform other 

researchers on long term responses to sudden high concentrations of pollutants, for 

example following an oil spill, metal contamination or industrial acidification (Esler et 

al., 2002; Pollard, Colbourne and Keller, 2003; Riffaut et al., 2005; Keller et al., 2007). 

1.11 Chernobyl as a natural laboratory 

The Chernobyl disaster occurred on the 26th April 1986. During an experiment to test 

how the electricity system would cope in the event of an emergency, a combination of 

faults led to the explosion of reactor four (Smith & Beresford, 1989; Warner & Harrison, 

1993). As a result of the Chernobyl disaster, approximately 1.85x1018 Bq of different 

radionuclides were released into the atmosphere at the time of the accident (IAEA, 

2006a). This resulted in high levels of contamination in the surrounding areas of 

Belarus, Russia and Ukraine and radionuclides were deposited more widely across 

Europe, after being transported by the weather and deposited through precipitation 

(Wheeler, 1988; ApSimon et al., 1989).  

Initial exposures from the accident were acute, dominated by short-lived radioisotopes 

such as 140Ba, 133Xe and 131I, and resulted in negative impacts on biota (Hinton et al., 

2007; Geras’kin et al., 2008). There were detrimental effects, ranging from increased 

mutation rate to high incidences of mortality across arrange of species following the 

initial phases of radiation exposure (Kozubov et al., 1987; Krivolutsky et al., 1990; 

Testov & Taskaev, 1990). An early concern for humans following the accident was 131I, 

which directly affects the thyroid gland through ingestion and inhalation pathways. 

Despite preventative efforts to avoid the uptake of iodine through contaminated dairy 

products and produce in the surrounding areas of Chernobyl, increased screening 

showed a significant increase in thyroid cancer in children (Warner & Harrison 1993; 

Nikiforov & Gnepp 1994; Pacini et al. 1997; Jacob et al. 1998).  

Overall radiation levels rapidly declined following the first year of the accident due to 

radionuclide decay of the short-lived radionuclides. The remaining radionuclides were 

transported through the environment by processes such as precipitation leading to 

migration into deeper soil layers. Approximately one year following the Chernobyl 

disaster, the chronic exposure phase began, dominated by long-lived radionuclides 
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such as 137Cs and 90Sr (UNSCEAR, 1996). The heterogenous radionuclide deposition 

across the CEZ makes it a useful site for studying radiation effects across a 

contamination gradient (Appendix A). 

Generally, studies in the literature have used dose rates measured on site when 

reporting effects on wildlife. However, it is inappropriate to report that these dose rates 

are directly responsible for the tested effects (or lack thereof) because organisms in the 

CEZ are not naïve to radiation and have experienced a complex evolutionary exposure 

history. This is explored further in Chapter two. As outlined previously, evolutionary 

processes such as selection and adaptation will have had an influence on wild 

populations that are present in the CEZ now.  

1.12 Objectives of the project  

This project uses Daphnia as a model organism to test whether current chronic and 

historic radiation doses in the CEZ impact on individual and/or population fitness. 

Firstly, assessment of fitness levels of natural Daphnia populations living across a 

gradient of contamination is assessed in the CEZ (see Chapter two). Population 

genetic diversity is then assessed in Chapter three to determine whether any 

underlying molecular variation contributes to the results on phenotypic differences in 

fitness. Wild Daphnia populations have experienced radiation exposure across multiple 

generations. It is therefore important to capture this in the laboratory through 

transgenerational exposure to Chernobyl relevant dose rates (see dose terminology in 

Box 1). An irradiation facility containing a 137Cs source was established at Stirling 

University in 2016. In order to conduct a transgenerational radiation study, the 

irradiation facility first needed to be characterised to determine doses for each 

treatment group and a dose response experiment (Chapter four) had to be conducted 

to determine appropriate dose rates for multiple generations of exposure. Results from 

the dose response study were used to inform the experimental design for 

transgenerational exposure of Daphnia to ionising radiation in Chapter five.  
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Box 1: Dose terminology 

This thesis focuses on dose rates that could realistically occur in a natural 

environment. Classification of exposure levels are specific to this thesis and have 

been categorised in the context of wildlife living within the CEZ (see Chapters two 

and three). 

Dose is the total amount of absorbed radiation (given in Gy throughout the thesis) 

Dose rate is the absorbed radiation dose over a given time period (usually an hour 

and given in µGy h-1).  

Chronic exposures describe a duration of radiation exposure that lasts for a 

substantial part of an individual’s lifespan. 

Acute exposures usually refer to high dose radiation exposures over a short period. 

In this thesis, acute exposures refer to radiation exposure that lasts for a fraction of 

an individual’s lifespan.  

Levels of exposure according to dose rate: 

Very low: < 1 µGy h-1 

Low: 1-10 µGy h-1 

Medium: 10 - 100 µGy h-1 

High: 100 - 200 µGy h-1 

Very high: 200 – 500 µGy h-1 
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2.1 Abstract 

Ionising radiation is a mutagen with known negative impacts on individual fitness. 

However, much less is known about how these individual fitness effects translate into 

population-level variation in natural environments that have experienced varying levels 

of radiation exposure. In this Chapter, I sampled genotypes of the freshwater 

crustacean, Daphnia pulex, from the eight inhabited lakes across the Chernobyl 

Exclusion Zone. Each lake has experienced very different levels of chronic radiation 

exposure since a nuclear power reactor exploded there over thirty years ago. The 

sampled Daphnia genotypes represent genetic snapshots of current populations and 

allowed me to examine fitness-related traits under controlled laboratory conditions at 

UK background dose rates. I found that whilst there was variation in survival and 

schedules of reproduction among populations, there was no compelling evidence that 

this was driven by variation in exposure to radiation. Previous studies have shown that 

controlled exposure to radiation at dose rates included in the range measured in the 

current Chapter reduce survival, or fecundity, or both. One limitation of this study is the 

lack of available sites at high dose rates, and future work could test life history variation 

in various organisms at other high radiation areas. My results are nevertheless 

consistent with the idea that other ecological factors, e.g., competition, predation or 

parasitism, are likely to play a much bigger role in driving variation among populations 

than exposure to high radiation dose rates. These findings clearly demonstrate that it is 

important to examine the potential negative effects of radiation across wild populations 

that are subject to many and varied selection pressures as a result of complex 

ecological interactions. 
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2.2. Introduction 

Populations are constantly challenged with selection from competitors, predators and 

parasites (Ball and Baker, 1996; McLaughlin et al., 2002; Auld and Brand, 2017). An 

increase in human activities means that natural populations are also at a higher risk of 

sudden, dramatic changes to their environment (from events such as oil spills, 

chemical releases and climate change) (Bickham et al., 2000; McLaughlin et al., 2002; 

Riffaut et al., 2005; Husseneder et al., 2016), which can have detrimental impacts on 

individuals and thus populations (e.g., Bickham & Smolen, 1994; Santos et al., 2013).  

Nuclear accidents such as those at Chernobyl and Fukushima are prime examples of 

human-induced dramatic environmental change. These accidents have resulted in 

widespread radioactive contamination of the surrounding areas. The levels of ionising 

radiation across these areas show considerable variation both over space, due to 

heterogeneity in radionuclide deposition and over time, as a result of radionuclide 

decay (Saxen et al, 1987; Saito et al., 2015). Whilst negative effects of radiation on 

individuals are known (Breimer, 1988; Morgan, 2003a; b; von Sonntag, 2007), it is 

difficult to extrapolate effects on individuals to the level of the population (Bréchignac, 

2016; Spurgeon, 2018). These difficulties arise because of two key issues: first, 

organisms living within high radiation environments (> 420 μGy h-1 Hinton et al., 2007) 

could exhibit a lower overall mean fitness due to physiological stress (Kimura and 

Maruyama, 1966) Second, strong selection for radiation-tolerant individuals could 

reduce differences in mean fitness between high- and low-radiation populations 

(Esnault et al., 2010; Galván et al., 2014) and thus mask the negative effects of 

radiation on individuals. Indeed, strong selection for radiation-tolerant phenotypes may 

explain how some natural populations can persist in high radiation environments 

(Baker et al., 1996; Murphy et al., 2011) 

Ionising radiation also generates mutations, which are the founding source of all 

genetic variation (Haldane, 1937; Kimura and Maruyama, 1966). Variation in fitness-

related traits in contemporary populations may therefore be exacerbated by exposure 

to radiation in the Chernobyl Exclusion Zone (CEZ). However, ionising radiation can 

also exert selection on populations, and the evolution of radiation tolerance may drive 

depletion in population genetic variation. Both the mean and variance in fitness-related 

traits can give valuable insight into the balance between mutation (which causes 

increased variance and lower mean fitness) (Kimura and Maruyama, 1966) and 

selection (reduced variance with either no difference or increased mean fitness) 

(Haldane, 1937; Crow, 1970). It is, however, important to note that whilst mutation is 
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the ultimate source of all genetic variation, radiation is just one of many possible agents 

of selection. Ecological factors such as parasitism, predation and competition are 

known to have impacts on population fitness and may outweigh any effects of radiation 

in wild populations (Brockelman, 1975; Lehmann, 1993; Creel and Christianson, 2008; 

Auld et al., 2013). Moreover, these ecological factors can influence fitness indirectly 

e.g., by selecting on the predators, parasites or prey of the focal organism rather than 

on the focal organism itself (Reznick et al., 1990; Ball and Baker, 1996). Still, by 

quantifying trait variation among organisms collected across a gradient of chronic 

radiation dose, the effects of radiation exposure on shaping fitness can be assessed at 

the population level.  

The CEZ provides a useful natural laboratory to test how variation in ionising radiation 

shapes life histories and fitness across wild populations (section 1.11). The spatial 

heterogeneity in chronic radiation across the CEZ (Figure 2.1, Table 2.1) provides an 

opportunity to test for dose-dependent effects of ionising radiation on natural 

populations. There are, however, major challenges associated with testing the fitness 

impacts of radiation exposure using natural populations. For example, individuals 

frequently move across a patchy landscape of radiation, making it difficult to estimate 

the overall absorbed dose they experience (Hinton et al. 2007). I overcame this 

problem by studying Daphnia pulex, a freshwater crustacean that inhabits discrete 

ponds and lakes (with low inter-population migration; Haag et al., 2006) where I could 

obtain reliable estimates of absorbed radiation dose. D. pulex provides other 

advantages (see section 1.9): it reproduces both sexually and asexually, where most 

reproduction is asexual, but sex is required to produce hardy resting eggs that can 

survive the winter (Zaffagnini, 1987). By collecting Daphnia from lakes and ponds 

across the Chernobyl area, I was able to obtain a genetic snapshot of populations that 

have experienced very different levels of chronic radiation (from < 0.1 to over 180 µGy 

h-1) and conduct a common garden experiment where fitness related traits could be 

quantified under UK natural background radiation levels. Specifically, I measured 

survival and asexual reproduction over the course of the Daphnia lifespan. I then used 

these data to calculate the instantaneous rate of population increase, r, for each 

genotype (a useful proxy for overall fitness). 

In this Chapter, I explore how Daphnia life-history traits reflect evolutionary responses 

to long-term radiation exposures across the CEZ, with particular focus on the opposing 

processes of selection versus mutational input. I tested whether selection played a 

primary role in shaping populations by examining whether the variation associated with 

population fitness (instantaneous growth rate, r) declines with dose rate. I also 
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examined whether radiation reduced mean population fitness by testing whether 

Daphnia fitness declines with dose rate, as would be consistent with previous studies 

that have demonstrated laboratory exposure to radiation reduces invertebrate fitness 

(Sarapultseva & Gorski, 2013; Nohara et al., 2014; Parisot et al., 2015).  

2.3. Materials and methods 

2.3.1 Study system 

Daphnia are sensitive to environmental change and have thus proven an excellent 

model for ecotoxicology (Pace et al., 2004; Flaherty and Dodson, 2005); indeed, 

Daphnia reproduction is used as an OECD guideline for testing the toxicity of various 

chemicals and pollutants (OECD, 2012). Furthermore, immigration of Daphnia between 

populations is generally limited to the diapausing stage of their reproductive lifecycle 

(Haag et al., 2006), so individual Daphnia phenotypes are likely to have been shaped 

primarily by the immediate environment. Finally, Daphnia are cyclical parthenogens, 

whereby they reproduce asexually throughout the spring/summer and sexually to 

produce resting eggs which remain dormant over the Autumn/Winter (Alekseev and 

Lampert, 2001; Decaestecker et al., 2009). This mixed reproductive mode means one 

can take advantage of their asexual reproductive stage to take genetic snapshots of 

wild populations and then examine clonal lines in replicated common garden 

experiments under controlled conditions (e.g., Auld et al., 2013). 

2.3.2 Field collections and radiation dosimetry 

I collected 38 Daphnia genotypes from the eight inhabited lake populations that were 

identified as appropriate for Daphnia sampling in June 2016 and maintained them as 

isofemale lines (henceforth called lines, see Table 2.2 for information on genotypes per 

lake). Each of the eight populations have experienced different levels of chronic 

radiation exposure (see Figure 2.1, Table 2.1). Daphnia samples were collected at one-

metre depths using a plankton net (net mesh: 0.25 mm, bag depth: 300 mm, outer 

frame: 250 mm diameter). The animals were transported to the laboratory in Chernobyl 

within three hours of sampling. Isofemale lines were then established by placing the 

Daphnia individually in 50 mL falcon tubes with water collected from the corresponding 

lake; these lines were allowed to propagate clonally. Daphnia lines were transferred to 

uncontaminated natural mineral water and fed Chlorella vulgaris algae for transport 

back to the laboratory at the University of Stirling (where the life history experiment 

took place). Once in Stirling, the Daphnia lines were maintained in a climate control 

facility under standard conditions without further exposure to radiation above UK 

natural background levels (20 °C on a 12:12 hour light: dark cycle in 80 mL of artificial 
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Daphnia media (ADaM, Klüttgen et al., 1994). Highest recorded UK background dose 

rate was 0.18 µGy h-1 in 2017 (RIMNET, 2017). I replaced the media and fed each 

genotype with 5 mL of Chlorella vulgaris three times weekly. Each line was maintained 

under standard conditions for three generations to minimise phenotypic variation due to 

maternal effects. 

To assess radionuclide concentrations at each sample site I extracted data, where 

available from the Ukraine atlas (Intelligence Systems GEO, 2008), for 137Cs and 90Sr 

(the dominant radionuclides in Chernobyl) and 241Am and 239Pu, which were considered 

representative of other radionuclides within the water column and upper sediment 

(IAEA, 2008). Where no data were available in the literature, sediment and water 

samples were taken at each sample site and transported to the Ukrainian 

HydroMeteorological Institute (UHMI) for analysis.  

Water samples were analysed as follows. First, 5 – 25 L of water was collected at each 

sample site and passed through an on-line filtration system using a combination filter 

(Petryanov’s FFP-15-1.5 prefilter + Blue Ribbon Grade paper filter) with a cartridge 

containing sorbent ANFEZH® to concentrate 137Cs and 90Sr. Following this, the 

cartridge was removed, and the filtered water was spiked with the radiochemical 

tracers 243Am and 242Pu and acidified to pH 2 with Nitric Acid followed by radiochemical 

separation. In the laboratory at the UHMI the filter and sorbent were dried at 105o C to 

a constant weight, thoroughly mixed and packed in container for gamma-spectrometry 

analysis. Where radioactivity levels were high enough, a sub-sample of water was 

taken for direct gamma measurement.  

Sediment samples were taken as sediment cores, using a Kayak type sediment corer 

(made at the UHMI) from the deepest lake location (verified by echo-sound 

measurements). Sediment core quality was assessed based upon two parameters; that 

there was no disturbance between the upper sediment along the core tube and that 

contrasting properties at the base of the core were present, indicating formation prior to 

the Chernobyl accident in 1986. In the UHMI laboratory, the sediment cores were 

sliced into sections (1-5 cm in size), freeze dried, homogenised and submitted for 

gamma spectrometry analysis. Representative subsamples from selected slices (0.5 - 

1.0g) were taken for radiochemical analysis.  

Radiometric analysis for 137Cs and 241Am was conducted using a gamma-spectrometer 

with HPGe detector GMX-40-LB (Ortec, USA). 90Sr and transuranic elements 

(238,239,240Pu and 241Am) were preconcentrated using carbonate/hydroxides precipitation 

followed by serial extraction chromatography separation on Sr-Resin and TRU-Resin 
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(Eichrom, USA) with 90Sr measured on a Liquid Scintillation Counter (TriCarb 2900TR, 

Perkin-Elmer, USA) according to established methods (Laptev et al., 2015) or alpha-

spectrometry on Alpha-8 instrument (BSI, Latvia) after electrodeposition in the case of 

transuranic elements. Combined uncertainty of the 137Cs, 90Sr and transuranic element 

activity measurements did not exceed 10%, 20% and 30% respectively (activity 

concentrations are given in Table 2.3).  

The dose rate from internal and external radionuclides was estimated using ERICA 

(version 1.2), a software program designed to estimate radiation risk to wildlife based 

upon a range of representative species (Beresford et al., 2007; Brown et al., 2008, 

2016; ICRP, 2009). ERICA assessments were made by calculating dose rates based 

upon the activity concentrations provided and data on environmental radionuclide 

transfer. My calculations were based on the default reference organism, Zooplankton, 

within ERICA. Zooplankton was selected on the basis of the geometry and size of 

Daphnia pulex collected. Occupancy (which refers to the location of the organism 

within the lake) was changed to 75% surface sediment and 25% water column 

reflecting the fact the Daphnia population lies dormant throughout the autumn/winter as 

resting eggs in the surface sediment, before hatching in spring (Alekseev and Lampert, 

2001), and that they vertically migrate throughout the water column (from sediment to 

water surface) to obtain food throughout the rest of the year (McLaren, 1963; 

Dawidowicz and Loose, 1992). These occupancy rates should have produced a 

conservative estimate of the dose rate as the majority of the radionuclides were 

expected to have accumulated within the lake sediment (Nazarov and Gudkov, 2009). 

Dose estimates are given in Table 2.1. 
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Table 2.1: The names of sampling sites, coordinates and estimated dose rates and 

radiation levels. Coordinates are given using the Universal Transverse Mercator 

(UTM) system using the WGS84 ellipsoid. Radiation level groupings are given for 

reference throughout the chapter.  

Lake name Co-ord N Co-ord E Total dose rate 

(µGy h-1) 

Radiation 

level 

Vediltsy 51.4352 30.83846 0.07 – 0.1 Very low 

Yampol 51.2095 30.17667 0.20* Very low 

Glinka 51.2174 29.93713 1.17* Low 

Buryakovka 51.3978 29.8931 1.77* Low 

Semikhody 51.4151 30.0502 17.52 – 18.04 Medium 

Krasnyansky 51.4429 30.07643 22.77 – 55.78 Medium 

Azbuchin 51.408 30.11102 115.57 – 115.65 High 

Gluboke 51.4454 30.06528 166.85 - 181.15 High 

*This is based on available data where in some cases calculation of range was not 

possible 

 

 

Table 2.2: Number of genotypes setup for each of the eight lake populations, number of 

non-reproducing individuals and the number of genotypes assessed in the experiment.  

Lake 

population 

Number of 

genotypes 

setup 

Number of non-

reproducing 

individuals 

Proportion of 

non-reproducing 

individuals 

Number of 

genotypes in 

the experiment 

Buryakovka 5 11 0.275 4 

Yampol 6 31 0.658 2 

Vediltsy 4 10 0.25 4 

Glinka 4 5 0.125 4 

Semikhody 4 21 0.525 4 

Krasnyansky 7 14 0.25 6 

Azbuchin 5 14 0.35 4 

Gluboke 3 10 0.417 2 

Total 38   30 
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Table 2.3: 137Cs, 90Sr, 241Am and 239Pu activity concentrations in water and sediment 

samples collected from each lake site. Water (w) concentrations are in Bq l-1 and 

sediment (s) concentrations in Bq g-1 (dry weight).  

Lake 

137Cs 

(w) 

137Cs 

(s) 

90Sr 

(w) 

90Sr 

(s) 

241Am 

(w) 

241Am 

(s) 

239Pu 

(w) 

239Pu 

(s) 

Buryakovka 

 

0.1 11 0.45   0.3 0  

Yampol 

 

0.23 3.5 0.22   0.2 0  

Vediltsy 

 

0.15 8 0.3   0.2 0  

Glinka 

 

0.22 5 0.45   0.3 0  

Semikhody 

 

0.5-1.0 90 
6.5-

7.5 
 

2.80E-

03 
4 

3.30E-

03 
 

Krasnyansky 

 

0.5-1.5 
3700-

7400 
14-28 

1480-

3700 
 40-100  

40-

100 

Azbuchin 

 

3.3-3.6 
7500-

20000 

80-

500 

4000-

7500 

8.00E-

04 

100-

200 

2.00E-

03 

100-

200 

Gluboke 

 

2.0-6.5 550 
90-

110 
200 

20-

80E-3 
20 

15-

50E-3 
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Figure 2.1: Log10 estimated total absorbed dose rates based on dose assessments 

made for each lake site, with ranges where appropriate (see Table 2.1). The black 

dotted line represents the highest estimated UK background dose rate of 0.18 µGy 

h-1 for comparison (Oatway et al., 2010; RIMNET, 2017). 

 

2.3.3 Life history experiment 

On day one of the experiment, Daphnia neonates were assigned to fresh jars and 

maintained under standard conditions. Offspring from the third clutch from the third 

generation of Daphnia were used as experimental replicates to minimise variation due 

to maternal effects. Where maternal lines did not produce their third clutch from the 

third generation of Daphnia on day one of the experiment, the neonates were assigned 

to fresh jars thereafter, and the experimental days were standardised for statistical 

analysis. I measured the fecundity and survival of females daily from each of the 30 

Daphnia isofemale lines from eight lake populations that had experienced different 

historical radiation doses. Fecundity was recorded as the day of each brood release 

and the number of offspring produced in each brood. Survival was measured by 

recording the day of death for each individual. There were eight replicates per line, 

where each replicate consisted of a single Daphnia in 50 mL of artificial Daphnia 

medium (ADaM; see Kluttgen et al., 1994). Replicate animals were fed 1.0 ABS 

Chlorella vulgaris algal cells per day (where ABS is the optical absorbance 650 nm 

white light) and the media was replaced when offspring clutches were released.  
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2.3.4 Statistical analysis 

Analyses were performed using R statistical software (R Core Team, 2017) version 

3.4.3. First, I tested the effects of dose rate and lake population on Daphnia survival. 

Specifically, I fitted mixed effects Cox’s proportional Hazards (CoxME) models to the 

survival data (using the coxme package; Therneau, 2015, 2018), where dose rate was 

fitted as a covariate and lake population was fitted as a fixed effect. Line nested within 

lake population was included as a random effect to account for the fact that I measured 

multiple genotypes per lake. Significant effects of lake population were further 

investigated using a post hoc Tukey test to determine which populations were different 

from each other (using the multcomp package; Hothorn et al., 2017).  

The effects of dose rate and lake population on the total number of offspring produced 

were tested using generalised linear mixed models with Poisson error distribution 

(GLMM, implemented the lme4 package; Bates et al., 2015), where replicate within line 

within lake population was included as a random effect. Significant differences 

identified between lake populations were tested using a Tukey’s range post hoc test. 

Using the same approach and random effects structure, but with a binomial distribution 

(as individuals were either identified as reproducing or not reproducing), I tested 

whether the number of non-reproducing individuals varied according to dose rate or 

lake population.  

Next, I examined how dose rate and lake population affected age-specific reproduction 

using generalised additive mixed models (GAMMs within the gamm4 package; Wood 

and Scheipl, 2017). GAMMs are semi-parametric models that are useful for predicting 

non-linear effects, where the linear predictor is dependent on a “smooth” function, 

which determines the level of smoothness in the fitted curve. This smooth function can 

depend on one or multiple non-parametric smoothers fitted to factors or covariates. I 

compared a model where smoothers were fitted to both experimental day and either 

dose rate or lake population to a model where a smoother was fitted to experimental 

day only. Random effects included replicate nested within line nested within lake 

population, to account for the fact that repeated fecundity measures were taken for 

each individual. In addition, I made pairwise comparisons of smoothed and 

unsmoothed models for combinations of pooled lake populations. The best fit model 

was determined using Akaike’s information criterion (AIC), where the model with the 

lowest AIC was considered the best model and models with an AIC difference of less 

than two were regarded as the same (Burnham and Anderson, 2002). 
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Finally, I assessed overall population fitness by calculating the instantaneous rate of 

population increase (r) for each genotype using the Euler-Lotka equation: 

1 = ∑𝑒−𝑟𝑥𝑙𝑥𝑚𝑥

𝑛

𝑥=0

, 

Where 𝑥 represents the age of each organism in days, 𝑙𝑥 is the proportion of surviving 

females at each age classification and 𝑚𝑥 is the number of offspring produced at each 

corresponding age (Birch, 1948; Grant and Grant, 1992; Cuco et al., 2017). I tested for 

variation in r across lake populations and by dose rate using generalised least squares 

models (GLS models using the nlme package, Pinheiro et al., 2018), where the 

intercept was allowed to vary by lake population. I tested for normality of distribution of 

r data using the Shapiro–Wilk and then performed a Bartlett's test to determine if 

variances in r differed according to lake population. Where dose rates were not 

normally distributed, a Fligner-Killeen test was performed to test if variance in r is 

associated with dose rate. 

2.4 Results 

2.4.1 Radiation exposure does not affect Daphnia survival 

I found no effect of dose rate on Daphnia survival (CoxME: coefficient= -0.001 ± 0.004, 

z=0.15, p= 0.88). There were significant differences in survival across lake populations 

(CoxME: χ2
7= 920.73, p < 0.0001, Figure 2.2. Median day of death in Vediltsy: 50, 

Yampol: 48, Glinka: 47, Buryakovka: 45, Semikhody: 59, Krasnyansky: 54, Azbuchin: 

50, Gluboke: 45). Summary data for this chapter are included in Appendix B. 
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Figure 2.2: Effect of lake population on Daphnia survival (Survival probability; shaded 

regions denote ± 95% confidence intervals [CIs]).  

 

2.4.2 Radiation exposure does not affect reproductive schedules 

There was a significant effect of dose rate (GLMM: χ2
1= 64.89, p < 0.0001) and lake 

population (GLMM: χ2
7= 995.99, p < 0.0001) on the total number of offspring produced, 

though the variation in total offspring was better explained by population (∆AIC= 

981.99). Tukey’s post-hoc test revealed that in all cases, this variation was driven 

entirely by lake Yampol (categorised as very low, p < 0.05 for comparisons between 

Yampol and all other lake populations. See Figure 2.3). The proportion of non-

reproducing Daphnia varied between 0.125 and 0.658 across lines. Analysis found a 

marginally non-significant effect of dose rate on the likelihood of individual failure to 

reproduce (GLMM: χ2
1= -3.6, p = 0.06); this suggests that if radiation-induced sterility 

does occur, it is unlikely to have a strong effect on population-level fecundity. By 

contrast, there were significant differences in the proportion of non-reproducing 

individuals among lakes (GLMM: χ2
8= -31.67, p < 0.001). Post hoc testing revealed that 
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this was driven by a high incidence of non-reproducers in Yampol lake (p < 0.05. See 

Table 2.2).  

Comparisons between models revealed that lake population explained more variation 

in age-specific reproduction than dose rate (see Table 2.4). Further, smoothing the day 

of reproduction by lake population significantly improved the model fit compared to 

fitting lake population as a parametric fixed effect (GAMM: ∆AIC = 482.18, χ2
14= 

510.17, p < 0.0001). The best fitting model included day by lake population as a non-

parametric smoother and showed that all lakes varied from one another (Table 2.5), 

and that the timing of reproductive peaks varies across populations (Figure 2.4). 

 

 

Figure 2.3: Boxplot showing the total number of offspring produced by each lake 

population. Populations are plotted in order of increasing dose rate. The box shows 

the upper and lower quartiles within the data and the line within each box shows the 

median value. The lines outside of each box show the range of the data.  
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Table 2.4: Summary for Generalised Additive Mixed Models (GAMMs) assessing 

age-specific reproduction. In all models, jar nested within line nested within lake is 

fitted as a random effect. N = 1899. 

Response Parametric/smoother Term AIC 

Offspring 

production 

Parametric Dose rate 15635.83 

Smoother Dose rate 17437.41 

Parametric Lake population 15635.83 

Smoother Lake population 15153.65 

Table 2.5: Generalised Additive Mixed Model (GAMM) fitting age-specific reproduction 

data by lake population. Day by lake population is fitted as a non-parametric smoother 

and jar nested within line nested within lake is fitted as a random effect. eDF is the 

estimated degrees of freedom. N = 1899. 

Response Parametric/smoother Term df 

(eDF) 

χ2 p 

Offspring 

production 

Smoother Day by Buryakovka 6.27 543.1 <0.0001 

Smoother Day by Yampol 6.11 463.4 <0.0001 

Smoother Day by Vediltsy 5.63 209.0 <0.0001 

Smoother Day by Glinka 6.78 607.3 <0.0001 

Smoother Day by Semikhody 7.28 221.6 <0.0001 

Smoother Day by Krasnyansky 7.08 382.4 <0.0001 

Smoother Day by Azbuchin 6.88 693.5 <0.0001 

Smoother Day by Gluboke 5.46 127.6 <0.0001 
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Figure 2.4: Age-specific reproduction according to Lake Population. The lines 

represent predictions based on a Generalised Additive Mixed Model (GAMM) fitting 

the number of offspring produced on each mean-centred day, smoothed by lake 

population. Jar nested within line nested within lake was fitted as a random effect. 

The shaded areas show 95% confidence intervals (CIs). The model was fitted using 

the visreg package (Breheny and Burchett, 2017). 

 

2.4.3 Radiation exposure does not affect overall fitness 

I found no effect of dose rate (GLS: F1,29= 0.001, p= 0.98; Figure 2.5A) or lake 

population (GLS: F7,23= 2.08, p= 0.09; Figure 2.5B) on r. Variation in r did not vary 

according to dose rate (χ2
7= 2.58, p = 0.92; Figure 2.5A) or lake population (Bartlett’s 

K2
7= 4.97, p= 0.66; Figure 2.5B).  
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Figure 2.5: Boxplot showing the instantaneous rate of population increase r (day-1) 

for each genotype within each lake population. Populations are plotted in order of 

increasing dose rate. The box shows the upper and lower quartiles within the data 

and the line within each box shows the median value. The lines outside of each box 

show the range of the data. 
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2.5 Discussion and conclusions 

In this Chapter I presented the results of an experiment designed to examine variation 

in Daphnia survival and fecundity across populations in Chernobyl that have 

experienced very different levels of exposure to chronic radiation. I found no overall 

effect of dose rate on Daphnia survival. Laboratory-based studies have previously 

demonstrated that ionising radiation negatively affects invertebrate (including Daphnia) 

survival (Sarapultseva & Gorski, 2013; Nohara et al., 2014; Parisot et al., 2015). 

Parisot et al., (2015) found elevated mortality in Daphnia under radiation exposure, but 

only when animals were exposed for multiple generations under very high dose rates 

(4.7 × 103 µGy h-1 and 3.54 × 104 µGy h-1) (Parisot et al., 2015); these are much higher 

doses than those found in the CEZ, (I estimated ~180 µGy h-1 in Gluboke lake, which 

experienced the highest dose rate). However, this is not to say that exposure to 

radiation cannot affect natural populations: for example, CEZ populations have been 

exposed over a considerably longer period and to a variety of additional stressors that 

may confounding impacts (Holmstrup et al., 2010). 

After a careful and detailed examination of Daphnia reproduction - from total offspring 

output to subtle changes in reproductive investment through age-specific reproduction 

and proportion of non-reproducing individuals - I found no evidence of radiation-

mediated effects. Variability in total offspring output was driven by lake Yampol 

(categorised as very low) only and each lake population had a unique pattern of 

offspring production with variable timing of peak reproduction, independent of dose 

rate. There is limited research on radiation-mediated life history shifts in wild 

populations; these studies found that irradiated groups invested in greater reproductive 

output but had similar overall population sizes. For example, due to differences in 

survival or reproductive schedules Blaylock (1969) Cooley (1973). The fact I find no 

effect of dose rate on Daphnia survival may explain why I observe no correlated effect 

on reproduction.  

Whilst reproduction and survival provide valuable measures of fitness, the timing of 

reproductive investment with respect to lifespan is also important. The instantaneous 

rate of population increase (r) is a particularly useful measure, because it accounts for 

the fact that offspring produced in early life make a greater contribution to the mother’s 

fitness than those produced later (Birch, 1948). I calculated r for each isofemale line 

and determined if mean or variance in r varied according to radiation dose rate. 

Specifically, I tested whether: (1) r declines and variation in r increases with dose rate, 

consistent with radiation-mediated supply of mutations reducing overall fitness whilst 
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increasing variation; or (2) that there would be no overall difference in mean r across 

populations, but variation in r would decline with increasing dose rate, consistent with 

stronger selection at higher radiation levels. Radiation dose rate was not associated 

with either the mean or variance in r, showing that historic radiation exposure is not the 

primary driver of variation in Daphnia fitness in these Chernobyl populations.  

It is important to acknowledge that lack of association between radiation dose and life 

history variation at the population level does not mean that radiation is not having any 

effect. Radiation-mediated effects on reproduction within individual Daphnia have been 

demonstrated in the laboratory at dose rates as low as 7 µGy h-1 (Parisot et al., 2015). 

However, in natural populations, a variety of ecological factors such as competition, 

predation or parasitism apply strong and often variable selection on populations 

(Brockelman, 1975; Lehmann, 1993; Creel and Christianson, 2008; Auld et al., 2013). 

These ecological factors are therefore likely to be bigger drivers of life history variation 

than current dose rates. This brings into sharp focus the fact that few studies consider 

how the effects of radiation on individuals might scale to effects at the population or 

ecosystem level. A notable exception is a conceptual model by Polikarpov that predicts 

the negative effects of radiation on individuals will be overshadowed by much stronger 

interactions between the population and the wider ecosystem at higher radiation doses 

(termed "ecological masking"; Polikarpov, 1998). Notably, the estimated dose rates in 

this Chapter (~0.10 - 180 µGy h-1) fall within those predicted to cause the “Ecological 

masking zone” in Polikarpov’s model.  

I tested whether key life history traits varied across Daphnia populations that 

experienced a wide range of chronic radiation exposure in the Chernobyl Exclusion 

Zone. I found no such effects. It is clear that although radiation is known to negatively 

affect individuals, one needs to view it as one of many sources of selection in 

ecologically complex communities. Future research needs to widen the focus to other 

highly contaminated areas such as Fukushima (Saito et al., 2015), and dissect the 

possible interactions between radiation and other stressors on individual fitness. The 

challenge now is to quantify the impacts of radiation relative to competition, predation, 

parasitism etc. in order to have a more complete understanding of the effects on 

radiation on the wider ecosystem. 
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Chapter three:  

 

Evolution under ionising radiation: The genetic 

structure of Daphnia populations in Chernobyl 
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3.1 Abstract 

Populations experiencing varying levels of ionising radiation provide an excellent 

opportunity to study the fundamental drivers of evolution. Radiation can supply 

mutations, and thus genetic variation; it can also select against individuals that are 

unable to cope with the physiological stresses associated with exposure to radiation. 

Since the nuclear power plant explosion in 1986, the Chernobyl area has experienced 

a spatially heterogeneous exposure to varying levels of ionising radiation. In this 

Chapter, I sampled Daphnia pulex (a freshwater crustacean) from lakes across the 

Chernobyl area, genotyped them at eleven microsatellite loci, and calculated the 

current radiation dose rates. I investigated whether the pattern of genetic diversity was 

consistent with either increasing levels of mutations, or increased selection pressure at 

higher dose rates. I found that measures of genetic diversity, including expected 

heterozygosity (an unbiased indicator of diversity) were significantly higher in lakes that 

experienced higher radiation dose rates; this is consistent with the hypothesis that 

there is higher mutational input at higher dose rates. I also found clear evidence for 

isolation by distance between populations, indicating that gene flow between nearby 

populations is breaking down population structure, and that mutational input in high 

radiation lakes could, ultimately, supply genetic variation to lower radiation sites. These 

evolutionary patterns can plausibly explain the lack of phenotypic variation associated 

with radiation dose rate in Daphnia in Chapter two. 
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3.2 Introduction 

The explosion of the Chernobyl nuclear power plant in 1986 released approximately 

1.85x1018 Bq of radionuclides into the atmosphere (IAEA, 2006a) that were 

subsequently deposited over the surrounding landscape (section 1.11). The deposition 

of this material was very heterogeneous, (Appendix A; Shestopalov, 1996), and wildlife 

populations in the Chernobyl area have thus experienced varying levels of radiation 

exposure depending on their locations (Hinton et al., 2007, Table 2.1); dose rates are 

also known to show considerable variation over very small spatial scales (Shestopalov, 

1996). Whilst it is known that high doses of ionising radiation have strong negative 

effects on organismal fitness (IAEA, 1992; Barnthouse, 1995; Real et al., 2004) and 

can cause genetic mutations (Breimer, 1988; von Sonntag, 2007) that can be passed 

on to future generations (Adewoye et al., 2015), very little is known of how chronic 

exposure to radiation over multiple generations affects the population structure and 

genetic diversity (and thus long-term health) of populations.  

Nuclear accidents like Chernobyl and Fukushima provide a window through which to 

view the three fundamental processes in evolutionary biology: mutation, selection and 

genetic drift (random changes in allele frequencies). Ionising radiation generates 

mutations (Breimer, 1988; von Sonntag, 2007) and can thus increase the supply of 

genetic variation to populations (Haldane, 1937; Kimura and Maruyama, 1966). This is 

important, because genetic diversity is the currency for both evolution and adaptation 

(Lande and Shannon, 1996). The dose rates across the CEZ have considerably 

declined since 1986, so if the current dose rates are sufficient to generate, radiation-

mediated mutational supply, it will manifest as a positive relationship between 

measures of within-population genetic diversity and dose rate. Populations living within 

Chernobyl have been subject to long-term chronic exposures, which will have had a 

selective impact upon populations. This could lead to the removal of individuals with 

inadequate mechanisms for protecting against radiation-mediated cellular damage 

(Ramana et al., 1998; Khodarev et al., 2004; Diehn et al., 2009; Smirnov et al., 2012) 

and thus reducing genetic variation within and among high radiation exposed 

populations as a selective sweep (Schlotterer et al., 1997). Finally, the initial fallout 

from the accident could have caused bottlenecks across the whole area, depleting 

diversity and causing non-selective differentiation, i.e., drift, among populations 

(Frankham et al., 2002); this would leave its mark in the form of strong population 

structure (Hartl and Clark, 1997), provided there was low gene flow (Slatkin, 1987; 

Gilpin, 1991).  
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In this Chapter, I used 11 microsatellite loci to examine the population genetic structure 

of the freshwater crustacean, Daphnia pulex, in seven Daphnia-inhabited lakes. Five of 

the lakes were within the Chernobyl Exclusion Zone (CEZ) and the other two were 

situated outside the CEZ. Daphnia are the ideal organism for such a study because of 

their habitat and cyclically parthenogenetic reproduction (Hebert, 1987; Colbourne et 

al., 2011). Daphnia populations are defined by the boundary of the water body that they 

inhabit and the heterogeneous nature of radionuclide deposition across the CEZ 

provides variation in radiation exposures that are independent of distance between 

populations (Shestopalov, 1996). In addition, migration between populations is limited 

to the dormant stage of sexual reproduction, where eggs (ephippia) can, on rare 

occasions, be transported between populations (Maguire, 1963; Alekseev and 

Lampert, 2001); this means gene flow is more restricted than in terrestrial species. 

I explored whether genetic diversity increased with dose rate, consistent with increased 

mutations at more contaminated sites. This would manifest as a positive relationship 

between dose rate and some, or all of the genetic diversity parameters (observed and 

expected heterozygosity, the number of alleles, the number of private alleles and mean 

allelic richness) (Figure 3.1A). Alternatively, Daphnia living in more contaminated 

regions may undergo radiation-mediated selection to cope with radiation stress, which 

would result in a negative relationship between dose rate and measures of genetic 

diversity (Figure 3.1B). I also tested whether there was any evidence of genetic 

bottlenecks across populations, which would have resulted from the acute exposures 

from the Chernobyl disaster in 1986. This would be evidenced by low genetic diversity 

across populations and high population structure (assessed as the fixation index, FST; 

see also Figure 3.1C, which outlines a potential multivariate view of dose-driven 

population structure). I also examined the possibility that ecological factors other than 

radiation are having a greater influence on genetic variation across Daphnia 

populations, as discussed in Chapter two. This would be evident as significant isolation 

by distance (Figure 3.1D). 
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Figure 3.1: Diagrams representing the predicted outputs for the following 

hypothesis: (A) genetic diversity increases with dose rate consistent with mutational 

input, (B) genetic diversity decreases with dose rate in response to selection, (C) 

dose level drives differentiation among populations, consistent with genetic drift, (D) 

there is evidence for isolation by distance across populations. Note that in (C), black 

populations are very low dose, blue are low dose, red is intermediate dose and gold 

is the highest dose of radiation.    

 

3.3 Materials and methods 

3.3.1 Sample collection 

Live Daphnia, sediment and water samples were collected from seven Daphnia-

inhabited lakes within and immediately outside the CEZ from the 7th – 16th July 2016. 
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Individual daphnids were immediately stored in 1.5 mL Eppendorf tubes in absolute 

ethanol at ambient temperatures and transported back to the UK, where they were 

stored at -20 °C before genotyping. A total of 93 samples were collected from seven 

lake populations (12-22 samples per lake; see Table 3.2). Radiation dose rate was 

calculated according to the protocol detailed in section 2.3.2, where I 

measured/extracted the environmental activity concentrations of the different 

radionuclides at each site and used the values to estimate the dose rates to Daphnia. 

In brief, concentrations for the dominant radionuclides in the CEZ (137Cs and 90Sr) and 

radionuclides that were considered representative of others present within the water 

column and top sediment layer (241Am and 239Pu) (IAEA, 2006a) were used to estimate 

dose rates. Where information was available, data on radionuclide concentrations was 

extracted from the Ukraine atlas (Intelligence Systems GEO, 2008). Where information 

was unavailable, water and sediment samples were collected at each sampling site 

and analysed at the Ukrainian Hydrometeorological Institute (see section 2.3.2 for 

protocol). 

To estimate dose rates experienced by Daphnia, I used the ERICA (version 1.2) 

software program. ERICA calculates dose rates to selected reference taxa based on 

information on radionuclide transfer through the environment and the activity 

concentrations given by the user (Beresford et al., 2007; Brown et al., 2008; ICRP, 

2009). In this case, I selected Zooplankton as the reference taxon. As previously 

detailed in Chapter two, section 2.2, the occupancy parameters which describe the 

location of the organism in the water body were changed to 25% water column and 

75% surface sediment to account for the dormant stages of the Daphnia lifecycle 

(Alekseev and Lampert, 2001). These percentages are conservative as the majority of 

radionuclides will accumulate in the surface sediment (Nazarov and Gudkov, 2009).  

3.3.2 DNA extraction and Microsatellite genotyping 

Microsatellite genotyping was used to identify differences in allele frequencies and 

population structure within and across lake populations following the protocol 

previously outlined by Auld and Brand (2017). First, genomic DNA was extracted from 

93 whole organism Daphnia samples from seven lake populations (see Table 3.2 for 

details) using protocols provided in NucleoSpin Tissue XS (Machery Nagel). I 

successfully amplified eleven microsatellite markers for each Daphnia across two 

multiplexes (Table 3.1, Jansen et al., 2011). Multiplex PCR reactions consisted of 5 µL 

2 ×Type-it Multiplex PCR Mastermix (Qiagen), 3 µL Nuclease Free H2O, 1 µL primer 

mix solution and 1 µL DNA to give a total volume of 10 µL per reaction. The PCR 
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programme was as follows: 15 minutes at 95 ºC for Taq activation, followed by 30 

cycles of 30 seconds at 94 ºC for denaturation of the DNA into separate strands, 90 

seconds at 57 ºC for annealing of the DNA strands to template DNA and 90 seconds at 

72 ºC for extension. The final extension was performed for 30 minutes at 60 ºC. The 

final PCR products were analysed with an ABI 3730XL DNA Analyzer using the 

GeneScan-500 LIZ size standard (Applied Biosystems). Microsatellite band scoring 

was completed manually using GENEIOUS software (Biomatters, version 9.1.8). The 

strongest peak(s) within the loci were selected to determine allele size.   
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Table 3.1: Information for the 11 microsatellite loci used for genotyping Daphnia 

samples. M = multiplex. 

Locus 

Size 

range 

NCBI 

accession 

number Primer sequence (5’-3’)  M 

Dye 

label 

B008 

150 - 

175 HQ234154 

F: TGGGATCACAACGTTACACAA  

R: GCTGCTCGAGTCCTGAAATC  1 VIC 

B030 

150 - 

176 HQ234160 

F: CCAGCACACAAAGACGAA  

R: ACCATTTCTCTCCCCCAACT  1 PET 

B050 

229 - 

248 HQ234170 

F: TTTCAAAAATCGCTCCCATC  

R: TATGGCGTGGAATGTTTCAG  1 6FAM 

B064 

135 - 

155 HQ234172 

F:  CTCCTTAGCAACCGAATCCA  

R: CAAACGCGTTCGATTAAAGA  1 6FAM 

B065 

323 - 

408 HQ234173 

F: AATCGCTCCCATCAACTCTG  

R: AGGCTCTCTTTCGTGTGAGG 2 6FAM 

B174 

330 - 

375 HQ234205 

F: CATATTGGCACGACGTTCAC  

R:  GTTCCCTCATTCCCGATTTT  2 NED 

B031 

196 - 

248 HQ234161 

F: GTTGGCGCTGGCATATGTA  

R: AAGAATTTTTGCAGCCGTTG  2 6FAM 

B075 

124 - 

150 HQ234175 

F: GCTTGGGATCTCGAGAAGAA  

R: ACTTGCTAGTGGCTGCTGCT  2 PET 

B088 

155 - 

170 HQ234179 

F: GGACAGTCGGCGTTCACT  

R: CCTGTCGTGTTTTGATTTCCT  2 NED 

B135 

170 - 

200 HQ234191 

F: AAAGAGGGAGAATGTTGTTAGGC  

R: TAAGGAGGGGGAAAAAGTGG  2 VIC 

B155 

290 - 

321 HQ234195 

F: GCGCATATGCAACAATTCAC  

R: ACCTCCCCCTCACTTTGATT  2 PET 
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3.3.3 Analysis 

The total number of alleles, mean allelic richness, the total number of private alleles, 

and observed and expected heterozygosities (respectively, HO and HE) were calculated 

(PopGenReport package; Adamack & Gruber, 2014, adegenet package; Jombart, 

2008; Jombart and Ahmed, 2011). Kruskal-Wallis rank sum tests were then used to 

assess any differences in HE, HO, mean allelic richness, the total number of alleles and 

the total number of private alleles and across populations. Linear models were used to 

test the relationship between each of these measures of genetic diversity and log10 of 

the dose rate.  

The number of multi-locus genotypes (MLGs) was determined (poppr package; Kamvar 

et al., 2014) and departures from Hardy-Weinberg equilibrium were assessed across 

loci (pegas package; Paradis, 2010). The index of unbiased association (𝑟̅D; Brown et 

al., 1980) was then determined in order to assess the level of linkage disequilibrium 

across populations; this was done using a permutation approach that estimates the 

levels of recombination in order to detect association between alleles (poppr package; 

Kamvar, Tabima and Grünwald, 2014).  

Fixation indices (F-statistics) were then used to quantify population structure. 

Specifically the inbreeding coefficient (FIS) and the fixation index (FST), were both 

calculated (adegenet package; Jombart, 2008; Jombart and Ahmed, 2011); these 

measure genetic differentiation within and among populations, respectively (Wright, 

1951; Weir and Cockerham, 1984). Confidence intervals for the FIS values for each 

population were computed by bootstrapping over loci, with 999 permutations using the 

hierfstat package (Goudet and Jombart, 2018). 999 permutations were used as it 

eliminates sufficient variation associated with resampling (Hesterberg et al., 2003).  

The next step was to test which populations were significantly different from each 

other. This was done by examining each pairwise FST comparison. To calculate the 

significance for each pairwise FST comparison, 999 permutations were used to 

randomly allocate populations and recalculate FST values to get a full reference 

distribution (ade4 package, which uses Monte Carlo simulations, Dray & Dufour, 2007; 

Bougeard & Dray, 2018). These values were then compared to the observed values to 

calculate a p-value for each FST comparison. This approach was also used to compare 

FST values when populations were grouped according to radiation exposure level 

(Chapter one, Box 1). I then tested whether populations in close proximity to each other 

were more similar than those separated by larger geographic distances (i.e., whether 

there was isolation by distance). This was done using a Mantel test, which tested for an 
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association between two matrices of pairwise Edward’s genetic distances (Edwards, 

1971) and pairwise Euclidean geographic distances between populations. Finally, an 

analysis of molecular variance (AMOVA) was used to partition variation within and 

between populations; the significance of these within- and among-population variation 

was then estimated using 999 permutations (ade4 package; Dray & Dufour, 2007; 

Bougeard & Dray, 2018). 

3.4 Results 

3.4.1 Genetic diversity and dose rate 

Estimated dose rates are given in Table 3.2 (see Appendix C for activity concentrations 

used to calculate dose rates in Smolin lake, located in Slavutych outside of the CEZ as 

Smolin was not included in Chapter two). There was a significant effect of dose rate on 

HE (F1,5= 7.01, p< 0.05. Figure 3.2A), but not of population on HE (population: χ2
6= 6.00, 

p= 0.42). There was no effect of either population or dose rate on HO (population: χ2
6= 

6.00, p= 0.42, dose rate: F1,5= 1.32, p= 0.30. Table 3.2, Figure 3.2B). Mean allelic 

richness did not vary across populations (χ2
6= 6.00, p= 0.42), but showed a marginally 

non-significant positive relationship with dose rate (F1,5= 5.91, p= 0.06. Figure 3.2C). 

The number of alleles per locus ranged from 29 to 45. Neither population or dose rate 

significantly affected the number of alleles (population: χ2
6= 6, p= 0.42, dose rate: F1,5= 

4.28, p= 0.09), or the total number of private alleles (population: χ2
6= 6, p= 0.42, dose 

rate: F1,5= 0.07, p= 0.80).  
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Figure 3.2: (A) The relationship between expected heterozygosity and log10 dose 

rate, (B) The relationship between observed heterozygosity and log10 dose rate, (C) 

the relationship between mean allelic richness and log10 dose rate. Points for figures 

A, B and C show the raw data and the shaded area shows 95% confidence intervals. 

The R2 value is indicated for each model fit. (D) FIS values and confidence intervals 

(computed using Monte Carlo simulations with 999 permutations) by population. 

 

3.4.2 Hardy–Weinberg and linkage disequilibrium 

I identified 92 multilocus genotypes (MLGs, Table 3.2) among the 93 individuals. The 

replicate genotype was removed from subsequent analysis as this was indicative of a 

clone (as a result of parthenogenetic reproduction). Observed heterozygosity ranged 

from 0.31 to 0.58 and expected heterozygosity ranged from 0.47 to 0.65 (Table 3.2). 

There were significant departures from Hardy-Weinberg equilibrium across the majority 

of loci (10 out of 11 loci, see Appendix D) and significant linkage disequilibrium was 

found in Yampol, Buryakovka and Krasnyansky lake populations (see Table 3.2).  
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3.4.3 Population structure and gene flow 

The FIS values ranged from -0.12 and 0.34 across lake populations (Table 3.2), but 

were significantly greater than zero (i.e., indicative of inbreeding) in only three 

populations, Glinka, Buryakovka and Krasnyansky (Figure 3.2D). Overall population 

structuring was low for Daphnia (Thielsch et al., 2009), where overall FST was 0.09 

(Figures 3.3 and 3.4A). There were no significant differences in pairwise FST values 

between Yampol and Vediltsy populations (p= 0.17. Figure 3.3), or Gluboke and 

Krasnyansky (p= 0.23). All other pairwise FST values were significant (p< 0.05). 

Pairwise comparison of FST by radiation exposure level (see Chapter one, Box 1) 

showed lower overall structuring than when grouped by population (FST by exposure 

level = 0.05, Figure 3.4B). All pairwise comparisons of FST by exposure levels showed 

significant differences (p< 0.05). There was a significant relationship between genetic 

and geographical distances, i.e., isolation by distance (p< 0.001. Figure 3.5). 

An AMOVA found that there was significant variation within populations (p< 0.01, Table 

3.3) and between populations (p< 0.01), confirming that there was significant 

population structure.  
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Figure 3.3: Genetic distance tree generated based on pairwise FST values using the 

ape package in R (Paradis and Schliep, 2018). The scale bar shows the scale of the 

branch lengths.  
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Figure 3.4: Principal component analysis (PCA) plots of the microsatellite frequency 

data. (A) Principal components based on microsatellite data from the seven lake 

populations specified in Table 3.2. (B) Principal components based on microsatellite 

data grouped according to the levels of exposure specified in Chapter one, Box 1. 
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Figure 3.5: Isolation by distance plot based upon a Monte Carlo simulation using 

999 permutations to test between two matrices of pairwise Edward’s genetic 

distances and Euclidean geographic distances (see Appendix E for relative 

distance estimates). The heatmap shows the data distributions using local density 

estimations using a two-dimensional kernel density estimation, implemented using 

the MASS package (Venables and Ripley, 2002).  

 

 

 

 

Table 3.3: Analysis of molecular variance (AMOVA) assessing the partitioning of 

genetic variation. Significant values are highlighted in bold.  

Source of variation df Sum of 

squares 

Variance % total p 

Between populations 6 27.16 0.2 9.43 0.001 

Within populations 86 164.52 0.191 90.57 0.007 

Total 92 191.67 2.11 100 0.001 
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3.5 Discussion and conclusions 

Ionising radiation supplies mutations and thus genetic variation to populations 

(Adewoye et al 2015; Breimer, 1988). This genetic variation is a substrate for evolution 

and potentially adaptation within populations (Muller, 1927; Haldane, 1937; Kimura and 

Maruyama, 1966). Radiation can also select against genotypes that are unable to cope 

with high radiation environments (Courtenay, 1965; Møller, 1993, 2002; Shestopalov, 

1996; Ellegren et al., 1997), and thus deplete variation. I previously found that there 

was no evidence for phenotypic fitness differences due to radiation exposure in 

Daphnia populations across the CEZ (Chapter two; Goodman et al., 2019). However, 

this does not mean radiation has no effect: evolutionary processes, such as radiation-

mediated selection, could continually eliminate phenotypic differences among 

populations, reduce genetic variation and thus limit the potential for adaptation in 

response to future selection (Lande, 1993). In this Chapter, I tested whether variation in 

exposure to ionising radiation was associated with increased genetic variation within 

populations, signatures of radiation-mediated selection, and genetic structure among 

populations. 

These data provide evidence consistent with radiation-mediated supply of genetic 

variation in wild populations (Geras’kin and Volkova, 2014). Higher doses of radiation 

are associated with increased genetic variation to populations, consistent with 

increased de novo mutational supply. This manifested as significant relationship 

between dose rate and expected heterozygosity across eleven microsatellite loci 

(despite having only examined seven populations). I also found a marginally non-

significant (p = 0.06) positive association between dose rate and mean allelic richness. 

Other studies have revealed significantly higher mutation rates in microsatellite loci 

from samples within the CEZ experiencing contamination from the Chernobyl accident 

compared to local control sites (Dubrova et al., 1996; Ellegren et al., 1997; Kovalchuk 

et al., 2000), even at very low dose rates (approximately 8.60 µGy h-1, Kovalchuk et al., 

2003).  

Microsatellites are neutral markers (Li et al., 2002), whereas selection acts directly on 

functional genes. As such, one must be careful not to over-interpret patterns of 

selection using microsatellites. Nevertheless, since most mutations are deleterious, it is 

highly likely that radiation-mediated selection, and thus genetic load, also correlates 

with the radiation dose experienced by populations. Any long-term directional selection 

associated with chronic exposure would deplete genetic variation (Mort and Wolf, 

1986) as genotypes with poor anti-stress mechanisms were removed from high but not 
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low dose populations (Ramana et al., 1998; Khodarev et al., 2004; Diehn et al., 2009). 

The data in this chapter are consistent with the hypothesis that mutational supply 

outweighs any radiation-mediated depletion of genetic variation in these Chernobyl 

Daphnia populations.  

Additionally, I tested whether the Chernobyl accident may have indiscriminately culled 

genetic diversity within populations, driving genetic drift (Frankham et al., 2004) and 

reducing the effective population size (Nei and Tajima, 1981). This is crucially 

important, as when effective population sizes are low, both beneficial and deleterious 

mutations are effectively neutral (Hartl and Clark, 1997), and there is little capacity for 

selection to drive adaptive evolutionary change (Lande, 1993; Hartl and Clark, 1997). 

As well as low diversity, genetic drift leads to greater differentiation among populations 

and strong population structure. There is little evidence for either: as discussed earlier, 

genetic diversity is surprisingly high and correlated with radiation dose, and measures 

of inter-population differentiation (pairwise FST values) are low (0.03-0.13: Appendix D). 

Further, the overall FST (summary measure of population structure) and is also low, and 

over 90% of the overall genetic variation is due to within-population differentiation and 

individuals do not cluster according to population (see Figure 3.4 and Appendix F). 

These results provide strong evidence that genetic drift is not a strong force among 

Chernobyl Daphnia populations. 

This Chapter uncovered evidence of inbreeding in three of the populations (at low / 

medium dose rates), and no evidence for heterozygote excess. This is in stark contrast 

to the related Daphnia magna, where heterozygote excess is the norm and systematic 

inbreeding is either rare or completely absent (Hebert, 1974a, 1974b; Hebert and 

Ward, 1976; Haag et al., 2006; Walser and Haag, 2012). One possible reason for my 

findings is that the sex ratios varied among lake populations. The production of males 

in Daphnia populations is known to be determined by environmental change (such as 

increased population density, light levels or high levels of toxins) (Hobaek and Larsson, 

1990; Eads, Andrews and Colbourne, 2008). Biased sex ratios are known to cause 

inbreeding, particularly in small populations (Mills and Smouse, 1994). Radiation is 

unlikely to be driving this, as inbreeding was not clearly linked to higher dose rates, 

suggesting that alternative ecological factors are responsible for inbreeding effects.  

It is important to consider the complex reproductive biology of Daphnia when assessing 

MLGs. Genetic recombination is followed by a period of asexual reproduction and 

asexual reproduction is often accompanied by clonal selection, where selection on any 

one trait involves selection on the whole genome (Lynch, 1987). Clonal selection 
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means the same MLG is represented in multiple individuals (Halkett, 2005), FIS values 

become negative within years as heterozygotes become overrepresented in the 

population and linkage disequilibrium can accumulate (this is in contrast to selection 

acting across bouts of sexual reproduction, which could generate positive FIS values). I 

find only one instance, in Gluboke lake, where the same MLG was collected twice and, 

as discussed earlier, there are no significantly negative FIS values for that population. 

This could be because the sampled populations are sufficiently large to host 

huge Daphnia populations where the frequency of sex is high (Allen and Lynch, 2012). 

Therefore, the sampled populations are effectively behaving as if they were purely 

sexual. However, I do find evidence of past linkage disequilibrium (𝑟̅D) and thus past 

clonal selection in Yampol, Buryakovka and Krasnyansky lakes. The strength of this 

past linkage disequilibrium is not, however, associated with dose rate, suggesting that 

past bouts of clonal selection are caused by other biotic/abiotic conditions. 

Finally, high radiation environments could potentially supply genetic variation to other 

nearby populations as Daphnia resting stages disperse, fuelling within-population 

evolution and adaptation (metapopulations, Hanski, 1998). I uncovered evidence, in the 

form of strong isolation by distance, that gene flow from dispersal from neighbouring 

populations is reducing levels of population structure. As such, it is likely that the lack 

of phenotypic variation among Chernobyl Daphnia populations (Goodman et al. 2019; 

Chapter 2) is concealing highly dynamic demographic and evolutionary processes that 

are associated with ionising radiation. 
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Chapter four: 

 

 How Daphnia pulex respond to Chernobyl 

relevant dose rates in a controlled irradiation 

facility, including the dose characterisation of 

the irradiation facility at Stirling University 
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4.1 Abstract 

Dose estimates made for wild populations living within high radiation environments are 

often complicated due to factors such as ingestion of additional radioactive material 

and movement across a heterogenous landscape of contamination, and inadequate 

dosimetry approaches can lead to false conclusions on radiation effects. Dose 

response experiments under controlled laboratory conditions therefore provide useful 

data for dissecting radiation responses at accurately measured dose rates, thus 

supporting field observations. In this Chapter, I characterise the irradiation facility at the 

University of Stirling by first using the Monte Carlo Code for Neutron and Photon 

Transport (MCNP) to simulate dose rates across the facility, followed by verification of 

actual dose rates using Thermoluminescent dosimeters (TLDs) and Electronic 

Personal Dosimeters (EPDs). I then assess radiation responses in a Daphnia genotype 

sampled locally to the Chernobyl Exclusion Zone (Slavutych, situated approximately 50 

km from the Exclusion Zone) to dose rates relevant to Chernobyl exposures (0.45 – 

350 µGy h-1, compared to estimated Chernobyl dose rates to Daphnia <~ 180 µGy h-1). 

I found that the MCNP simulations are consistent with dose rates measured using both 

the TLDs and EPDs. I then found a significant relationship between the total number of 

offspring produced and dose rate. There were no significant radiation effects across 

any other measures of Daphnia fitness (survival, time until first brood, age-specific 

reproduction). The subtle, sublethal nature of these results provide justification for 

using a single high dose rate treatment in the following Chapter, which explores 

transgenerational radiation effects.  
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4.2 Introduction 

Radiation exposure from the Chernobyl disaster can be separated into acute and 

chronic phases (Hinton et al., 2007). Whilst there is an abundance of research testing 

the biological effects of acute radiation exposure, there are still substantial knowledge 

gaps on the effects of chronic exposure at environmentally relevant doses, for 

example, within the Chernobyl Exclusion Zone (CEZ), (Copplestone et al., 2008; Salbu, 

2009; Fuller et al., 2015). Furthermore, controversies exist surrounding some of the 

conclusions made in the existing literature for chronic field exposures, where data show 

substantial negative biological impacts at very low reported dose rates (in some cases 

close to, or below, natural background dose rates seen in the UK) (Section 1.8, Møller 

and Mousseau, 2009, 2011; Mousseau and Møller, 2011). These studies are at odds 

with the literature from laboratory studies and some other field studies (Beresford and 

Copplestone, 2011; Garnier-Laplace et al., 2013). It is important to resolve these 

controversies in order to reduce uncertainty in our general understanding of radiation 

induced effects and also for establishing robust radiation benchmarks for wildlife for 

use in risk assessment. Laboratory-based studies can provide useful verification for 

results found in the field (Bréchignac et al., 2016) and address some of the uncertainty 

involving different dosimetry approaches used for field populations (Garnier-Laplace et 

al., 2013).  

Radiation impacts have been shown to transmit across generations, having long lasting 

lineage effects (Dubrova, 2003; Morgan, 2003a, 2003b) and, as radionuclides are 

continually decaying in the CEZ, it can therefore be difficult to be certain that observed 

biological impacts in the field are a direct result of current radiation doses, rather than 

an effect of historical radiation doses. For example such as those experienced in the 

immediate aftermath of the accident in 1986 (Omar-Nazir et al., 2018). Laboratory 

studies can help to elucidate this.  

Testing radiation effects in isolation also removes the influence of confounding factors, 

which may have synergistic or antagonistic effects with radiation, thereby exacerbating 

or reducing observed biological effects (Burkart et al., 1997; Folt et al., 1999; Vanhoudt 

et al., 2012). Conducting dose response experiments at environmentally relevant dose 

rates (i.e. dose rates ranging from natural background to those observed in the worst 

affected areas of accidental releases such as at Chernobyl and Fukushima) also 

bypasses extrapolation errors commonly associated with predicting chronic exposure 

impacts based on the results of acute high level exposures usually seen in laboratory 
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studies (IAEA, 2006b; Dauer et al., 2010; Garnier-Laplace et al., 2013; Mothersill et al., 

2019). 

Careful consideration needs to be given to the levels of biological organisation being 

studied, especially as laboratory studies generally focus on individuals whereas field 

assessments usually test populations. Individual assessments are likely to lose 

predictive reliability at the population level in the field due to a variety of factors, 

including sub-optimal conditions, multiple stressors in natural environments and 

population processes such as adaptation and selection (Bréchignac, 2003; Esnault, 

Legue and Chenal, 2010; Galván et al., 2014; Spurgeon, 2018). In addition, laboratory 

studies are often limited to assessment of a single generation, whereas wild 

populations in high radiation environments such as the CEZ will be exposed across 

multiple generations, resulting in the potential accumulation of effects. This includes 

effects such as genomic instability (Section 1.5; Mothersill and Seymour, 1998; 

Dubrova, 2003; Morgan, 2003a, 2003b; Barber et al., 2006). It is therefore important to 

remain aware of the factors that may compromise extrapolation to reduce uncertainty in 

estimating risk to wildlife (Spurgeon, 2018).  

This chapter describes the irradiation facility at Stirling University that was used to 

conduct the laboratory exposure experiments within this project. First, the irradiation 

facility at Stirling University was characterised by verifying the dose rates across the 

experimental area. Dose rates across the irradiation facility were predicted using the 

Monte Carlo Code for Neutron and Photon Transport (MCNP). MCNP is a general 

purpose code for simulating neutron, photon, and electron transport under specified 

conditions (Briesmeister, 1986; Hendricks et al., 2000). Different time dependencies 

and 3-Dimensional geometries can be specified to accurately predict dose rates for a 

variety of applications, including for medical purposes and environmental risk 

assessment (Whalen et al., 1991; Kiger et al., 2005; Szoke et al., 2014). These 

predicted dose rates were then verified using both Electronic Personal Dosimeters 

(EPDs) and thermoluminescent dosimeters (TLDs) to measure exact dose rates at 

different points throughout the irradiation facility. The same approach was also applied 

to assess the shielding effects of the glass jars containing Daphnia media that 

contained each experimental Daphnia.  

Second, preliminary data were generated on the effects of environmentally relevant 

dose rates to Daphnia under controlled laboratory conditions (in the context of the CEZ, 

dose rates to Daphnia estimated in chapter two ranged from ~ 0.10 – 180 µGy h-1), to 

inform the experimental design for a multigenerational assessment in Chapter five. 
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Literature examining radiation effects at dose rates relevant to those in the CEZ is 

scarce, however, one study by Parisot et al. (2015) revealed reproductive delays in 

Daphnia at dose rates as low as 7 µGy h-1 and no mortality within the ranges tested 

within the current Chapter (Parisot, et al., 2015). I hypothesise that there will be some 

negative effects on Daphnia reproduction (such as reproductive delays and a reduction 

in the total number of offspring produced), but no detrimental effects on survival. If this 

is the case across all examined dose rates, then I can be confident that Daphnia can 

survive to produce further generations in the following Chapter which will look at any 

potential transgenerational effects of radiation exposure.  

I hypothesise that there will be some negative effects on Daphnia reproduction 

associated with increased radiation dose rate, which should be evidenced by a 

reduction in the total number of offspring produced, delays in reproduction and 

negative effects on age-specific fecundity (Figures 4.1A, 4.1B and 4.1C). I predict that 

there will be no detrimental effects on survival, demonstrated by no difference in 

survival rate across treatment groups (Figure 4.1D). If this is the case across all 

examined dose rates, then I can be confident that Daphnia can survive to produce 

further generations in the following chapter which will look at any potential 

transgenerational effects of radiation exposure. 
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Figure 4.1: Example figures that show predicted results. (A) Negative effects of 

radiation dose rate on the total number of offspring produced, (B) delays in 

reproduction under a high dose rate treatment compared to a low dose rate 

treatment, (C) negative effects of dose rate on age-specific reproduction and (D) no 

effects of radiation dose rate on survival.  
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4.3 Materials and methods 

4.3.1 Dosimetry 

The irradiation facility at the University of Stirling (UoS) is built around an 18 GBq 137Cs 

sealed source and is equipped with a temperature and light control system. The 137Cs 

source (henceforth, source) is contained within lead shielding and operated via a 

computer within the instrument room. This moves the source from the active to the safe 

position with a radiation monitor showing when the source is exposed.  

Characterisation of radiation dose was conducted using three approaches: 

(1) Initial characterisation of the irradiation facility was conducted using the Monte 

Carlo Code for Neutron and Photon Transport (Briesmeister, 1986). Monte Carlo 

approaches are used to estimate particle transport based upon simulations of linear 

accelerators (Rogers et al., 1995). The MCNP approach accounted for the structure of 

the source housing, as well as different distances from the source where the 

experimental units were placed throughout the facility (Brown, 2003). Each 

experimental unit consisted of a 50 mL glass jar containing Daphnia media (ADaM, 

Klüttgen et al., 1994) and a single daphnid, so MCNP code was also used to estimate 

the shielding effect for each experimental unit.  

(2) Thermoluminescent dosimeters (TLDs) were placed throughout the irradiation 

facility to verify the dose received. TLDs were attached to the front and back of 12 jars 

containing media to assess the shielding effects for each experimental unit for 

comparison to MCNP predictions.  

(3) Electronic Personal Dosimeters (EPDs) were placed at each treatment group 

position to verify the dose received. The EPDs were used to verify that all jars within a 

given treatment group received the same dose rate. This was required because as the 

distance from the source increases, the position of treatment groups need to be at less 

of an angle to achieve a uniform radiation dose rate (Figure 4.2). 
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Figure 4.2: Illustration of radiation pathway through the irradiation facility from the 137Cs 

source. 

4.3.2 Study system 

The Daphnia pulex genotype used for this experiment was taken from Lake Vediltsy 

situated in Slavutych, just outside of the CEZ (see Chapter two, section 3.2 for details). 

The estimated dose rate range that Daphnia in Vediltsy lake were exposed to at the 

time of collection in June 2016 was 0.07 – 0.1 µGy h1, which is comparable to the 

highest average UK background doses at 0.18 µGy h-1 (RIMNET, 2017). Genotypes 

from Vediltsy lake have not recently been exposed to high radiation levels although 

they are situated close to the CEZ. Due to the proximity to the CEZ, their response is 

more likely to be representative of Chernobyl Daphnia populations than that of naive 

genotypes sourced elsewhere, such as in the UK. Using a genotype from Vediltsy 

therefore provides the best representation of whether the current dose rates seen in 

the CEZ could affect a wild contemporary population.  

4.3.3 Dose response experimental setup 

Based upon the results from the MCNP modelling approach, five dose rate treatments 

including the control treatment were selected for the dose response experiment (Table 

4.1).  

Five maternal lines of the selected genotype were setup to ensure that there were 

enough replicates to supply the experiment. Offspring from the third brood release of 

the maternal lines were randomly assigned to jars to ensure that there was no bias in 

the exposed and control treatments. All genotypes were setup on the same day 

(experimental day 1), so setup day was not a factor in experimental analysis. Twenty-

five replicates from each maternal line were randomly assigned to the control and each 
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of four exposure treatments, giving a total of 125 experimental units across the whole 

experiment).  

Daphnia media was replaced three times weekly or when broods were released. 

Daphnia were fed 1.0 ABS Chlorella vulgaris algal cells daily (where ABS is the optical 

absorbance 650 nm white light). Assessment of phenotypic traits, survival and 

reproduction was conducted daily for each individual. Reproduction was recorded for 

eight brood releases per individual and recorded as the number of offspring produced 

in each brood and the day of brood release. Survival was measured by recording the 

day of death for each individual.  

4.3.4 Statistical analysis 

All analysis of the dose response data was conducted using R statistical software 

version 3.4.3 (R Core Team, 2017). Summary data for this Chapter are included in 

Appendix G. First, the effect of radiation dose rate on the total number of offspring 

produced was tested using a generalised linear model (GLM), assessing the total 

number of offspring produced against dose rate. A Poisson distribution was used 

because count data were being analysed. Not all individuals assessed during the 

experiment produced all eight of the broods measured (for example, due to death), so 

the data were re-examined without these individuals included.  

Secondly, the effects of radiation dose rate on the time taken until first brood release 

was assessed using a Cox’s proportional hazard (CPH) model with day of first brood 

release as the survival object. This was conducted using the survival package 

(Therneau, 2015). Age-specific reproduction was assessed using linear mixed effects 

(LME) models to assess whether dose rate impacted the number of offspring produced 

on each experimental day, implemented using the lme4 package (Bates et al., 2015). 

Experimental days were mean-centred to enable testing of both the linear component 

(mean-centred day) and polynomial component (mean-centred day squared) of age-

specific fecundity; dose rate and various two-way interactions were fitted as fixed 

effects. A random regression term was included for each replicate, with experimental 

day as the intercept to allow the slope predictions to vary for each individual replicate. 

The models assessed the number of offspring produced on a given day, measuring 

dose rate as a fixed effect. The significance of factors included within the LME model 

were determined using Type II sums of squares assessments (using the Anova 

function within the car package) (Fox and Weisberg, 2019).The effects of radiation 

dose rate on Daphnia survival were measured by fitting a CPH model to the survival 

data, with the day of death for each individual as the survival object.  
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4.4 Results 

4.4.1 Dose estimates and verification  

MCNP modelling generated a heat map of the dose rate across the irradiation facility 

(Figure 4.3). “Binned” dose rates were extracted at each of the treatment group 

locations for comparison to TLD data (Table 4.1).  

Table 4.1 shows that under the ideal conditions of the MCNP modelling (i.e. that there 

was no shielding of any description in the facility and only the distance reduced the 

dose rates), the predicted dose rates were slightly higher than those measured by the 

EPDs. The EPDs were direct measurements of the radiation beam at the specific point 

of the dose rate treatment within the facility and there were plastic shelving units in 

place that will have provided a (limited) shielding effect on the radiation beam. 

Furthermore, the samples closer to the rear of the facility may have been subject to 

reductions in the radiation beam by the glass jars present at the higher dose rates.  

Table 4.1 also shows that the TLD data, averaged over the TLDs placed at each 

distance from the source. Generally, these are lower than the MCNP modelled dose 

rates for similar reasons to the EPD data but were reasonably consistent with the 

measured EPD dose rates.  

Table 4.2 shows the TLD measurements of the shielding effects of the glass jar 

containing media, where the average difference in dose rate between the front and the 

back of each jar was 31%. The MCNP modelled estimate of the reduction in the dose 

rate through a jar containing water is shown in Figure 4.4. The difference in the dose 

rate front to back of the jar with water was calculated to be 30%. When the base of the 

jar was considered the reduction in dose rate through the solid glass was calculated to 

be 60%.  
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Table 4.1: Distance from the source for each dose treatment and dose range estimates 

for each treatment group using MCNP modelling, EPD’s and TLD data. 

Distance from 

source (m) 

Modelled dose rate 

from MCNP (µGy h-1) 

Dose rate from 

EPD (µGy h-1) 

Dose rate from 

TLDs (µGy h-1) 

Control 1 0.45 0.3 

9 14 5 3 

7 29 15 Not measured 

4 96 84 87 

2.6 235 Not measured 224 

2 369 350 Not measured 

 

 Table 4.2: Shielding effects of the jars. 

Jar Front from 

TLDs (mGy) 

Back from 

TLDs (mGy) 

%∆ in TLD 

measurements 

1 3.6 2.5 30 

2 5.3 3.5 35 

3 5.0 4.6 8 

4 5.6 3.8 32 

5 4.1 2.8 31 

6 4.1 2.8 32 

7 4.2 3.3 21 

8 5.2 3.7 30 

9 5.2 3.1 41 

10 5.2 2.9 45 

11 5.4 4.3 21 

12 6.0 3.9 36 
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Figure 4.4: Figure showing the MCNP modelled dose rates at the front and back of the 

glass jar with A) representing a bird’s eye view of the jar and B) a cross section through 

the jar showing the effect of the glass at the bottom of the jar. 

 

  

A 

B 
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4.4.2 Dose rate significantly affects the total number of offspring produced 

There was a significant quadratic effect of dose rate on the total number of offspring 

produced (GLM: χ2
1= 61.08, p < 0.0001. Figure 4.5). This relationship was sustained 

after removing individuals that did not produce eight broods of offspring (GLM: χ2
1= 

20.22, p < 0.0001). 

 

 

Figure 4.5: Relationship between the total number of offspring produced and Log10 

dose rate. Points show the raw data. The line was fitted with a smoothing function in 

the ggplot2 package, based on a generalised linear modelling approach with a 

Poisson distribution. The grey shading around the line denotes 95% confidence 

intervals.  
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4.4.3 No effect of dose rate on time until first brood release 

The time taken until first brood release varied from experimental day 7 – 10. Dose rate 

did not have a significant impact on time taken until first brood release (CPH: 

coefficient =1.12 ± 0.78, p= 0.15. Figure 4.6).  

 

 

Figure 4.6: The effect of dose on the number of days until the first brood release.  

 

4.4.4 No effect of dose rate on age-specific reproduction 

There were no significant effects of dose rate (ANOVA: χ2
1= 2.79, p= 0.1) or the 

interaction between dose rate and experimental day (ANOVA: χ2
1= 0.03, p= 0.86) on 

age-specific reproduction (Figure 4.7).  
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Figure 4.7: The effect of dose treatment on age-specific reproduction. Each line 

represents the reproductive effort predicted by the best-fitting generalised linear mixed 

effects model.  
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4.4.5 No effect of dose rate on survival 

There was no effect of dose rate on Daphnia survival (CPH: coefficient = 0.07 ± 0.28, p 

= 0.81. Figure 4.8). 

 

Figure 4.8: The effect of dose treatment on survival (survival probability ± 95% 

confidence intervals [CI’s]). This graph shows the fixed effects only, calculated using 

Coxph models using the survival package (Therneau, 2015) and plotted using the 

survminer package (Kassambara et al., 2018). 

 

4.5 Discussion and conclusions 

In this chapter, I used MCNP modelling to simulate the dose rates across the irradiation 

facility at the University of Stirling, which were verified using TLDs. The effect of 

radiation on Daphnia fitness was then tested, to investigate whether dose rates 

relevant to those in the CEZ are sufficient to cause sublethal effects on Daphnia 

fitness, and hence provide provisional data to inform the optimal experimental design 

for a transgenerational experiment in the following chapter. I found that the dose rates 

measured by the EPDs were consistent with those predicted by MCNP modelling and 

measured TLD data as shown in Table 4.1. Within a jar, the dose rate variation front to 
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back was in the order of 15% as determined by the MCNP model due to both distance 

through the jar and the media absorbing some of the radiation. Daphnia were not 

restricted in their movement within jar and were expected to move around within the 

radiation field. It is therefore not possible to measure the precise dose received by 

each individual Daphnia, however it is reasonable to assume that the dose rate 

averaged across the jar is a good approximation of that received by the Daphnia. 

In the dose response experiment, there were significant effects of radiation on the total 

number of offspring produced, but on no other measures of fitness. Based on my 

current data and results shown in other experiments using Daphnia (Parisot et al., 

2015), it would be most appropriate to test transgenerational radiation effects using 

fewer dose treatments with increased replication, to maximise statistical power.  

There was a significant quadratic effect of dose rate on the total number of offspring 

produced. One possible explanation is that low levels of ionising radiation cause shifts 

in life history strategy, due to anti-stress responses (as a result of oxidative stress from 

ionising radiation) (Dowling and Simmons, 2009; Monaghan et al., 2009). It has been 

suggested that increased reproductive investment results in an increased susceptibility 

to oxidative stress (Alonso-Alvarez et al., 2004). These costs and exposure to higher 

dose rates could offer some explanation as to why a linear effect was not observed. 

There were no effects of dose rate on the timing of reproduction. The day of first 

reproductive event varied between 7 and 10 days, which is unlikely to have provided 

sufficient exposure to generate a significant response, particularly as the experiment 

only tested within a single generation. Similarly, no significant effects were identified on 

age-specific fecundity. A transgenerational experiment conducted by Parisot et al. 

(2015) testing radiation exposures on Daphnia did not identify any reproductive delays 

in the fifth brood release from exposure to dose rates ranging from 70 to 3.5 × 104 µGy 

h-1 until the second generation. Therefore, any effects on reproductive timings within 

the dose rate range tested in the current chapter are likely to be very subtle in future 

generations. In order to provide enough statistical power to detect any effects on the 

timing of reproduction, it would be beneficial to use fewer dose treatments with 

increased replication when testing exposure across multiple generations.  

Survival was also unaffected by dose rate. Other studies have not identified survival 

effects within single generation exposures at dose rates below 400 µGy h-1 (Gilbin et 

al., 2008; Parisot et al., 2015), so it is unsurprising that no effect of dose rate was 

identified within the current Chapter. However, transgenerational experiments have 

identified effects from the second generation at dose rates from 4.7 × 103 µGy h-1  
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(Sarapultseva and Gorski, 2013; Parisot et al., 2015). To conduct an experiment across 

multiple generations, it is important that the majority of replicates survive until the final 

generation to minimise data loss. Based upon the findings here, and data from other 

transgenerational radiation experiments, I will test exposure across multiple 

generations at the highest dose rate (350 µGy h-1) only, with the highest level of 

replication practically achievable (see Chapter 5). This will test the maximal number of 

replicates possible thus increasing statistical power for identifying any subtle radiation 

effects that might be observed.  

The results from the current chapter provided data to inform the experimental setup in 

Chapter five, with which to test transgenerational radiation effects on Daphnia at dose 

rates relevant to those seen in Chernobyl. I observed radiation effects on total 

offspring, but not in age-specific fecundity. There were no radiation effects on survival. 

This suggests that any radiation effects at Chernobyl relevant dose rates are likely to 

be subtle and may not appear until later generations. The lack of survival effects 

suggests that the maximum achievable dose rate can be used, without excessive loss 

of Daphnia replicates in my transgenerational experiment.  
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Chapter five: 

 

 Contrasting effects of ionising radiation within 

and across generations 
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5.1 Abstract 

Ionising radiation can affect both the supply of genetic variation by causing DNA 

mutations that are passed on to future generations in the germline and deplete 

variation by selecting against individuals that lack sufficient anti-stress mechanisms. 

Using multiple replicates of a single genotype of the facultatively sexual crustacean, 

Daphnia pulex, I dissect the effects of continuous exposure to ionising radiation on 

survival and fecundity across six asexual generations. I found that the effects of 

radiation exposure, in terms of reduced fecundity and shifts in reproduction, became 

apparent in the second generation of exposure, and that survival in radiation-exposed 

lineages declined over the generations. I also took offspring from radiation-exposed 

Daphnia and examined them in controlled conditions and uncovered different 

phenotypes to those Daphnia exhibited under continual exposure to radiation: 

continually-exposed animals shifted to early reproduction, consistent with a life history 

response to stress, whereas offspring from radiation-exposed mothers had delayed 

early reproduction, consistent with fitness decline due to mutation accumulation. 

Finally, I tested if exposure to radiation drove increased variation among radiation-

exposed lineages across the generations. I found no evidence for this increased 

variance; I instead found that radiation-exposed lineages were more likely to go extinct 

before the sixth generation, and that these lineages exhibited a different schedule of 

reproduction prior to extinction. These findings suggest that exposure to ionising 

radiation can both induce a life history response to stress and increase the supply of 

mutations to populations, but that radiation-mediated selection acts as a check on any 

supply of genetic variation associated with radiation-induced mutation accumulation. 

Radiation-mediated selection could thus explain the lack of association between dose 

and life history variation among natural high radiation populations in Chapter two.  
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5.2 Introduction 

Ionising radiation can potentially affect both the supply genetic variation to populations 

by causing mutation, and also deplete variation through selection. Radiation can cause 

mutations by damaging DNA directly; it can also cause mutations through indirect 

mechanisms such as the induction of reactive oxygen species (ROS) that subsequently 

cause DNA damage (Rhaese and Freese, 1968; Phillips et al., 1984; Halliwell and 

Aruoma, 1991; Riley, 1994; Box et al., 1995). Exposure to radiation also causes 

damage to other cellular machinery (cell membranes etc.) and can select against 

individuals that lack strong anti-stress mechanisms that decrease the number of 

damaging ROS molecules (Ramana et al., 1998; Khodarev et al., 2004; Diehn et al., 

2009). There is also compelling evidence that both direct and indirect radiation-

mediated effects can be transmitted to offspring and thus impact fitness-related traits 

such as reproduction, growth and survival of future generations (Dubrova et al., 2000; 

Dubrova, 2003; Morgan, 2003a, 2003b; Zaka et al., 2004; Barber et al., 2006; Buisset-

Goussen et al., 2014; Nohara et al., 2014; Parisot et al., 2015). So, in order to better 

understand how radiation exposure affects organismal, and ultimately population 

fitness, one must examine how both mutations and non-mutational effects (such as 

phenotypic plasticity or epigenetic effects) (Via and Lande, 1985; Ma et al., 2010; 

Antwih et al., 2013) can reach across generations to influence fitness-related traits.   

Mutations nearly always lead to a loss of fitness (Timofeeff-Ressovsky, 1940; Muller, 

1949, 1950). Muller’s Ratchet hypothesis predicts that the inevitable accumulation of 

mutations in asexual lineages leads to an inexorable loss of fitness over generations, 

eventually leading to extinction (Muller, 1964). This is because it is not possible for an 

asexual individual to produce offspring with fewer deleterious alleles than itself. Indeed, 

mutation accumulation is hypothesised to be as a major reason for why sex (and not 

asexual reproduction) is the dominant mode of reproduction, despite it being hugely 

costly (Muller, 1964; Kondrashov, 1988; Charlesworth, 1990). Sex results in genetic 

recombination, which breaks apart gene complexes and can shuffle mutations, 

exposing them to selection (Haldane, 1937); sex therefore allows a mother to produce 

offspring that are free from her mutations (Kondrashov, 1988; Charlesworth, 1990). It is 

also important to note that mutations can arise both in germline and somatic cells 

(Sturtevant, 1937; Baer et al., 2007). In sexually reproducing organisms, germline 

mutations are passed on to offspring while somatic mutations are only expressed in the 

affected generation. In contrast, the lack of recombination means that asexually 

reproducing organisms pass on both somatic and germline mutations to their offspring 

(Muller, 1964; Crow and Kimura, 1965). Sex can also affect inheritance independent of 
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genetic recombination. Sex can reset the elaborate set of switches that turn genes on 

and off (the epigenome), and thus influence the expressed phenotypes of offspring, 

i.e., transgenerational phenotypic plasticity (Shea et al., 2011; Rando and Chang, 

2012; Verhoeven and Preite, 2014). So, in order to dissect the how mutations and non-

mutational effects of radiation affect fitness, one must control for the effects of sex and 

recombination.  

I overcame these issues using an organism that can reproduce both sexually and 

asexually and which naturally inhabits a region with high levels of ionising radiation: 

Daphnia pulex. I established a genetically homogeneous Daphnia isofemale line by 

asexually propagating a single animal sampled from near the Chernobyl Exclusion 

Zone (CEZ). I was therefore able to bypass the confounding effects of genetic 

recombination and epigenetic resetting (Muller, 1964; Lynch et al., 1993; Feng et al., 

2010; Verhoeven and Preite, 2014) and quantify how exposure to ionising radiation 

shapes fitness across six (asexual) generations using a controlled laboratory 

experiment.  

I hypothesised that there would be an overall decline in the fitness of Daphnia exposed 

to radiation over multiple generations, due to increased mutational load. Fitness was 

assessed as survival, age-specific reproduction and total offspring production. Declines 

in survival would be demonstrated by earlier death in the radiation treatment compared 

to the control treatment across generations (Figure 5.1A). Decreased fitness would be 

shown in total offspring production as reduced offspring output across generations, 

compared to the control treatment (Figure 5.1B). Reduced fitness in age-specific 

fecundity would be represented by delays in brood releases (Figure 5.1C and D). 

 

I was further able to test the relative contributions of exposure in previous generations 

and within-generation continuous exposure on organism fitness, by comparing fitness 

in the offspring of radiation-exposed animals and control animals under background 

radiation dose rates. I predicted that the fitness of offspring of previously radiation-

exposed lineages would decrease across generations compared to unexposed 

lineages, consistent with mutation accumulation. Offspring from previously exposed 

lineages may exhibit higher fitness than radiation treatment Daphnia due to lack of 

within-generation exposure (Figure 5.1).  

Finally, I tested if there was divergence among lineages in radiation-exposed, but not 

control lineages. Mutation accumulation would be expected to generate more 

phenotypic variation in exposed lineages, whereas non-genetic fitness responses 
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would result in a decline in variation due to a similar phenotypic response. Increased 

divergence would be evident as increased variation in the responses of exposed 

lineages across generations, compared to unexposed lineages.    
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Figure 5.1: Predicted effects of treatment on Daphnia fitness. (A) Median day of death 

for Daphnia in control, radiation and recovery treatments in each generation. (B) Mean 

total number of offspring produced by each treatment group in each generation, error 

bars show the standard error values. (C) Median day of first brood release for Daphnia 

for each treatment group in each generation. (D) Median day of fourth brood release 

for Daphnia for each treatment group in each generation. 

 

5.3 Materials and methods 

5.3.1 Study organism 

I used a single Daphnia genotype for the experiment. This was collected from Vediltsy 

Lake in Slavutych, situated near the Chernobyl Exclusion Zone (CEZ, see Chapter 2, 

section 3.2 for information on sampling site and protocol). This genotype was 

geographically relevant for Chernobyl populations, but had not experienced high level 
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exposures (see Chapter 2, Table 2.1). The sampled Daphnia genotype was maintained 

as an isofemale line in a 60 mL glass jar containing 50 mL Daphnia media (ADaM; see 

Kluttgen et al., 1994) and fed 1.0 ABS Chlorella vulgaris algal cells per day (where ABS 

is the optical absorbance 650 nm white light). In preparation for the experiment, 20 

maternal lines were maintained for three generations to remove variation due to 

maternal effects. All Daphnia were maintained on a 12:12 hour light cycle at 25 °C in 

the irradiation facility at the University of Stirling.  

5.3.2 Dosimetry 

Daphnia were exposed to ionising radiation in the University of Stirling irradiation 

facility. The irradiation facility contains a 137Cs source which provides dose rates in the 

range of approximately 5 – 3500 µGy h-1 over a nine metre distance (see Figure 4.2). 

The source is surrounded by lead shielding, arranged to emit radiation in a single 

direction across the experimental area. Each experimental unit consisted of an 

individual daphnid within a 60 mL glass jar containing 50 mL Daphnia media. Where 

generations were not yet established or had already died out, jars containing media, 

but no daphnid were maintained to ensure that the same dose rate was achieved in all 

jar positions throughout the experiment. Experimental units were setup in one of two 

treatment areas, arranged in rows; the control area, situated outside of the radiation 

beam, at a dose rate of 0.45 µGy h-1, or the radiation treatment area, where the dose 

rate was 350 µGy h-1. Mrem Electronic Personal Dosimeters (EPDs, Ludum Model 23) 

were used to verify that an even dose rate was received across each row. Due to 

shielding effects, the experimental units were systematically rotated within each 

treatment group daily throughout the experiment, to ensure an average even dose rate 

was received. The dose rates received by each daphnid were predicted using the 

Monte Carlo Code for Neutron and Photon Transport (Briesmeister, 1986; Brown, 

2003). These were verified using thermoluminescent dosimeters (TLDs), including the 

front, back and within the jars to calculate the shielding effect of the glass and water as 

described in Chapter four.  

5.3.3 Experimental setup 

Six successive generations were maintained throughout the experiment, either in the 

control or in the radiation area. Generation one was established from the third brood 

release of a maternal line that was maintained under the environmental conditions 

described in section 5.3.1 for three generations. Fifty experimental units were set up in 

the control area of the facility (henceforth, control treatment) and fifty experimental 

units were setup in the radiation area (henceforth, radiation treatment).  
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As each replicate in generation one released its first brood, a single neonate was 

placed into a new jar to form an experimental unit in generation two within the same 

treatment area, which continued for successive generations until generation six (Figure 

5.2). A new treatment group, termed the “recovery” treatment was introduced by 

removing neonates from the radiation treatment and maintaining them in the control 

area. One additional neonate was taken from the radiation treatment in generations 

one, three and five and placed into a new jar to create a new experimental unit for the 

recovery treatment for generations two, four and six (Figure 5.2). Daphnia were 

checked daily for reproduction and mortality over 30 days in generations one, two, four 

and six. Reproduction was measured for the first four brood releases per individual and 

recorded as the day of brood release and the number of offspring per brood. Mortality 

was recorded as the day of death for each individual daphnid.  
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Figure 5.2: Experimental setup showing Daphnia taken from common maternal lines 

and setup in either the radiation or control treatment. Lines were maintained for six 

consecutive generations, labelled F1 – F6. Every second generation, Daphnia were 

removed from the radiation treatment and setup in the control area as a recovery 

treatment group. 
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5.3.4 Statistical analysis 

Analysis was conducted using R version 3.4.3 (R Core Team, 2017). Data for the 

control treatment across generations was assessed for variation in survival, total 

offspring production, the day of first and fourth brood release and age-specific 

reproduction according to the methodology below. Due to variation in the control 

treatment across generations (see results in Appendix I), each generation was 

analysed separately.  

First, I tested the hypothesis that Daphnia fitness would decline across generations in 

radiation-exposed, but not control treatments, consistent with accumulation of 

deleterious mutations. Specifically, I tested how treatment (control, radiation, recovery) 

affected Daphnia early survival using Cox’s Proportional Hazard’s (CPH) models 

(survival package; Therneau, 2015), with experimental day of death as the survival 

term. Next, analysis of how treatment affected age-specific reproduction was 

completed using linear mixed effects (LME) models for each generation (using lme4 

package; Bates et al., 2015). These tested the number of offspring produced on each 

experimental day, with treatment group included as a fixed effect. The experimental 

days were mean-centred so that both the linear component (mean-centred day) and 

polynomial component (mean-centred day squared) of age-specific fecundity could be 

included in the model.  A random regression term was included in the model, with 

experimental day fitted as the intercept for each replicate, to allow the slope to vary for 

each individual tested within the experiment. Type II sums of squares assessments 

were used to determine the significance of factors included in the model (using the 

Anova function within the car package) (Fox and Weisberg, 2019). Post hoc testing 

was performed using the Tukey test (glht function; Johnson and Omland, 2004). 

In addition to the age-specific reproduction analysis, I also separately examined the 

timing and size of individual broods. Brood size analysis was completed using LME to 

test the number of offspring depending on each brood; fixed effects included treatment, 

generation and interactions between brood and treatment and between generation and 

treatment. A random regression term was included to allow the slopes to vary for each 

individual, where brood was fitted as the intercept. Significant parameters were 

identified using Type II sums of squares testing. To assess the timing of each brood 

release, I first tested the normality distributions using a Shapiro–Wilk test and then 

examined the effects of treatment on the timing of the first and fourth brood releases 

using CPH models, with the day of first and the day of fourth brood releases 

respectfully fitted as the survival terms. I then tested how total early offspring 
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production (the first four broods) was affected by radiation treatment. This was done 

using generalised linear models (GLMs) assessing total offspring production by 

treatment group with a Poisson error distribution. 

Next, I tested my second hypothesis: that any radiation-mediated effects would 

disappear once lineages were transferred from radiation to control treatments (i.e., 

when they were placed in the recovery treatment). The same analysis for key fitness 

parameters was used as described for the first hypothesis (survival, total offspring and 

age-specific reproduction). Where significant effects were identified, pairwise post hoc 

comparisons were conducted using Tukey tests to determine which dose treatments 

were different from each other (using the multcomp package; Hothorn et al., 2017). 

I tested whether variation in lineages increased across generations in the radiation 

treatment but not in the control. Again, I used LMEs (using the lme4 package; Bates et 

al., 2015). I tested between two model fits which both contained the number of 

offspring per brood as fixed effects and a random regression term using brood as the 

intercept for each individual replicate. The first model contained a regression term for 

lineage, with a treatment by generation interaction fitted as the intercept. Whereas the 

random regression term in the second model contained generation only as the 

intercept. An anova was used to determine whether there was a significant difference 

between the models.  

Finally, I examined whether lineages destined for extinction, i.e., lineages that died out 

before generation six, had significantly different patterns of fecundity to those lineages 

that survived the duration of the experiment. I did this by fitting separate GLM models, 

with a Poisson distribution, testing whether the total number of offspring varied by 

treatment. I analysed generations one and four, with extinction status, treatment and 

their interaction included as fixed factors. I then analysed the effects of extinction on 

the timing of production of the first and fourth brood release. I did this by fitting 

separate CPH models to generation one and generation four data, with the respective 

day of first and fourth brood release as the survival term and extinction status, 

treatment and their interaction included as fixed factors. 

5.4 Results 

5.4.1 Radiation exposure reduces survival probability across generations 

There was no effect of radiation exposure on Daphnia survival in generation one (CPH: 

χ2
1= 0.62, p= 0.43. Figure 5.3A), where four out of fifty individuals died from each 

treatment group during the experiment. In generation two, there was an overall effect of 
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treatment on Daphnia survival (χ2
2= 8.85, p< 0.05. Figure 5.3A), where control Daphnia 

had a higher survivorship than radiation-exposed Daphnia, (CPH: coefficient = 1.43 ± 

0.56, z= 2.55, p < 0.05, see Appendix N), and recovery Daphnia (CPH: coefficient = 

1.26 ± 0.58, z=2.16, p < 0.05); there was no difference in survivorship between 

recovery and radiation-exposed Daphnia (CPH: coefficient = 0.00 ± 0.39, z= -4.4, p = 

0.66. Figure 5.3A). There was a total of four deaths in generation two for the radiation 

and recovery treatments and only one death in the control treatment during the 

experiment. Radiation and recovery treatments had a median lifespan of 16 and 17 

days respectively, whereas the median lifespan of the control treatment was 23 days. 

Summary data for this Chapter are included in Appendices H1-H4 and survival plots for 

each generation are included in Appendix J. 

Treatment also significantly affected survival in generation four (χ2
2= 20.59, p< 0.0001. 

Figure 5.3A), where both the radiation and recovery treatment groups had a lower 

survivorship than in the control treatment (radiation verses control, CPH: coefficient = 

1.81 ± 0.54, z= 3.35, p< 0.001. Recovery compared to control, CPH: coefficient = 1.85 

± 0.54, z= 3.43, p< 0.001). There were no significant differences between the radiation 

and recovery treatments in generation four (CPH: coefficient = 0.00 ± 0.29, z= 0.162, 

p= 0.87). Both the control and recovery treatments had a median lifespan of 29 days, 

whereas the radiation treatment had a median lifespan of 26 days. The longer lifespan 

in the control group shown in Figure 5.3A, is likely to be due to the low number of 

individuals that died during the experiment (n: control = 2, radiation = 6, recovery = 6). 

Survival effects of treatment were also present in generation six (χ2
2= 8.97, p< 0.05. 

Figure 5.3A). The control treatment also had a higher survival probability than in the 

radiation treatment (CPH: coefficient = 1.21 ± 0.56, z= 2.16, p < 0.05. Figure 5.3A). 

However, survivorship in the recovery treatment was significantly lower than the 

radiation treatment (CPH: coefficient = 0.0 ± 0.56, z=2.28, p < 0.05) but not the control 

(CPH: coefficient = -0.05 ± 0.71, z= -0.07, p = 0.95). Although the recovery treatment 

had a lower median lifespan of 19 days than in the radiation treatment with 22.5 

(median lifespan in the control treatment was 34 days), only one individual died from 

both the recovery and control treatments, whereas four individuals died in the radiation 

treatment.  
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Figure 5.3: Summary statistics showing the effects of treatment on Daphnia fitness. 

(A) Median day of death for Daphnia in control, radiation and recovery treatments in 

each generation. (B) Mean total number of offspring produced by each treatment 

group in each generation, error bars show the standard error values. (C) Median day 

of first brood release for Daphnia for each treatment group in each generation. (D) 

Median day of fourth brood release for Daphnia for each treatment group in each 

generation. 

 

5.4.2 Age specific reproduction 1: overall fecundity 

There was no difference between control and radiation treatments in age specific 

reproduction in generation one (ANOVA: χ2
1= 1.45, p= 0.23. Figure 5.4A). There was a 

significant effect of treatment in generation two (ANOVA: χ2
2= 31.37, p < 0.0001., 
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Figure 5.4B) where control Daphnia had consistently higher fecundity than both 

radiation (coefficient= -2.25 ± 0.47, z= -4.83, p < 0.0001) and recovery treatments 

(coefficient= -2.29 ± 0.48, z= -4.77, p < 0.0001) (see Figure 5.4B). Recovery and 

radiation treatments did not vary in the timing of reproduction from each other 

(coefficient= -0.04 ± 0.48, z= -0.09, p= 1.0) and both produced fewer offspring than the 

control. There was no variation in age-specific reproduction between treatment groups 

in generation four (ANOVA: χ2
2= 0.6, p= 0.75, Figure 5.4C). There was a significant 

effect of treatment in generation six (ANOVA: χ2
2= 11.31, p < 0.01, Table 5.1). 

However, post hoc testing revealed that treatment groups did not vary from each other. 

There was no significant treatment effect in generation six when examining control and 

radiation groups only (ANOVA: χ2
1= 0.31, p= 0.86. Figure 5.4D), so it is likely that this 

significance is due to delayed production of the fourth brood release in one of the 

replicates from the recovery treatment, as shown in Figure 5.4D. This is explored 

further in separate analysis for the timing of each brood release (section 5.4.3).  
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Figure 5.4: Age specific fecundity across five clutches for (A) generation one, (B) 

generation two (C) generation four and (D) generation six. Points show the raw data 

and lines were predicted using the GLM smoothing function with a Poisson 

distribution and show 95% confidence intervals. 
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5.4.3 Age specific reproduction 2: separate brood sizes and timings 

Analysis of separate brood sizes and timing showed that brood size did not vary 

depending on treatment group (LME, control and radiation: estimate= 1.17 ± 0.66, z= 

1.77, p= 0.18, LME, recovery and control: estimate= 0.83 ± 0.82, z= 1.01, p= 0.56. 

LME, recovery and radiation: estimate= -0.34 ± 0.94, z= -0.36, p=0.93).  

There were no significant differences between radiation and control treatments in time 

until first brood release in generation one (χ2
1= 1,15, p< 0.05. Figure 5.3C), where the 

median day of first brood release was day 7 in each treatment (The mean day of the 

first brood release was 6.8 ± 1.4 in the control treatment and 6.6 ± 1.2 in the radiation 

treatment.). However, the timing of the fourth brood release was significantly affected 

by treatment (χ2
1= 10.38, p< 0.01. Figure 5.3D), where the radiation treatment had a 

slightly later day of fourth brood release (CPH: coefficient= 0.74 ± 0.23, z= 3.24, p < 

0.01). The median day of the fourth brood release in both treatments was day 31. The 

mean day of the fourth brood release was 29.7 ± 1.4 in the control treatment and 29.7 

± 1.2 in the radiation treatment. Survival plots for the timing of the first and fourth brood 

releases for each generation are included in Appendices K and L respectively. 

There were significant differences in time until first brood release in generation two 

(χ2
2= 6.59, p< 0.05. Figure 5.3C), between the control and radiation treatments (CPH: 

coefficient= 0.52 ± 0.25, z= 2.34, p < 0.05) and the control and recovery treatments 

(CPH: coefficient = 0.5 ± 0.24, z= 2.06, p < 0.05), where the radiation and recovery 

treatments reproduced earlier than in the control treatment. However, there was no 

significant difference between the radiation and recovery treatment groups (CPH: 

coefficient = 0.0 ± 0.24, z= -1.1, p = 0.91. Mean day of first brood release, control = 7.7 

± 2.1, radiation = 7.1 ± 1.9, recovery 7.2 ± 2.0. Median day in all treatments was day 7).  

The timing of the fourth brood release in the second generation was also significantly 

affected by treatment (χ2
2= 12.76, p< 0.01. Figure 5.3D), where the radiation treatment 

was significantly different from both the recovery and control treatments (radiation 

versus control, CPH: coefficient= 0.86 ± 0.24, z= 3.63, p < 0.001. Radiation versus 

recovery, CPH: coefficient= 0.0 ± 0.24, z= -1.99, p < 0.05). There was no significant 

difference between the recovery and control treatments (CPH: coefficient = 0.37 ± 

0.24, z= 1.53, p= 0.13). The median day of the fourth brood release for generation two 

was 31 in all treatments. On average, the radiation treatment produced the fourth brood 

of offspring the earliest (mean number of offspring in radiation = 29.8 ± 1.7, control = 

30.64 ± 1.1, recovery = 30.3 ± 1.9), which is also evident in Figure 5.4B.  
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In generation four, treatment significantly affected age at first reproduction (χ2
2= 10.64, 

p< 0.01. Figure 5.3C), with significant differences between control and radiation 

treatments (CPH: coefficient= 0.9 ± 0.27, z= 3.31, p < 0.001), where the control 

treatment had a later average day of first brood release (control: 7.6 ± 2.0, radiation: 

6.7 ± 2). The recovery treatment was also significantly different from the radiation 

treatment (CPH: coefficient = 0.0 ± 0.27, z= -2.14, p < 0.05) but not the control (CPH: 

coefficient = 0.29 ± 0.27, z= 1.09, p = 0.28.). The mean day of first brood release was 

slightly later in the recovery treatment than in radiation (7.2 ± 2.3). The median day of 

first brood release in all treatments was day 7. 

The timing of the fourth brood release in generation four was also significantly affected 

by treatment (χ2
2= 17.22, p< 0.001. Figure 5.3D). The radiation treatment was 

significantly different from both the control and recovery treatments (radiation versus 

control, CPH: coefficient= 0.95 ± 0.27, z= 3.54, p < 0.001. Radiation versus recovery, 

CPH: coefficient= 0.0 ± 0.28, z= -3.93, p < 0.0001) and there was no difference 

between control and recovery treatments (CPH: coefficient = 0.17 ± 0.28, z= -0.6, p= 

0.55). The radiation and recovery treatments had a later median day for the release of 

the fourth brood of offspring at 32 days, compared to 31 in the control treatment. 

However, the mean day for the fourth brood release in the radiation treatment was 

earlier than that of both the control and recovery (mean day of fourth brood release in 

radiation= 30.4 ± 2, control = 31.3 ± 2.0, recovery = 31.1 ± 2.3. Also see Figure 5.4C). 

Age at first reproduction was also affected in generation six (χ2
2= 5.7, p< 0.05. Figure 

5.3C). There were no differences between control and radiation treatments in the 

timing of first brood release in generation six (CPH: coefficient= -0.05 ± 0.28, z= -0.17, 

p= 0.86). The recovery treatment was significantly different from both the control (CPH: 

coefficient = -0.63 ± 0.31, z= -2.03, p < 0.05) and radiation treatments (CPH: coefficient 

= 0.0 ± 0.3, z= -2.05, p < 0.05), with a later mean day of first brood release (recovery = 

8.4 ± 2.1, radiation = 7.5 ± 2.3, control = 7.6 ± 2.6). The median day of first brood 

release in the recovery treatment was day 8 and day 7 for both control and radiation 

treatments. There were no significant effects of treatment on the release of the fourth 

brood (χ2
2= 4.02, p= 0.13. Figure 5.3D) in generation six.  

5.4.4 Radiation effects on total offspring production 

There were no significant differences between radiation and control treatments in total 

offspring production in generation one (GLM: χ2
1= 0.4, p= 0.53. Figure 5.3B). In 

generation two, the control treatment produced significantly more offspring than both 

the radiation and recovery treatments (control and radiation treatments, GLM: χ2
1= 
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42.31, p < 0.0001. Figure 5.3B. Control and recovery treatments, GLM: Estimate = -

0.23 ± 0.03, z= -8.0, p< 0.0001. Mean total number of offspring in control: 72.3 ± 2.1, 

radiation: 60.2 ± 1.9, recovery: 57 ± 2.4). There were no significant differences 

between the radiation and recovery treatments (GLM: Estimate = -0.06 ± 0.03, z= -1.7, 

p= 0.19). See Appendix M for plots of total offspring produced by each treatment in 

each generation.  

In generation four the radiation treatment produced significantly more offspring than the 

control treatment (GLM: χ2
1= 17.59, p < 0.0001. Mean radiation = 65.6 ± 2.0, mean 

control = 57.1 ± 2.6. Figure 5. 3B). There were no differences between recovery and 

control (GLM: Estimate = 0.07 ± 0.04, z=-1.93, p= 0.13) or recovery and radiation 

(GLM: Estimate = - 0.07 ± 0.03, z= -2.18, p= 0.08, mean total number of offspring in 

recovery = 61.1 ± 2.3). 

 In generation six, the radiation treatment produced significantly fewer offspring than 

the control treatment (GLM: χ2
1= 20.71, p < 0.0001. Mean radiation = 50.7 ± 2.3, mean 

control = 60.1 ± 2.6. Figure 3B). The recovery treatment was significantly different from 

the control (GLM: Estimate = -0.16 ± 0.04, z= -4.1, p< 0.001) but not the radiation 

treatment (GLM: Estimate = 0.01 ± 0.04, z= 0.29, p= 0.96. Figure 5. 3B) where the 

control group produced the most offspring overall (mean total number of offspring in 

recovery = 51.3 ± 2.1). Variability in total offspring across generations is explained by 

the results shown in section 5.4.6. 

5.4.5 No difference in lineage variation between treatment groups across 

generations  

Variation in age-specific reproduction for each lineage across generations was 

assessed by examining the variance associated with the random effect containing 

lineage nested within either generation interacting with treatment or generation only. 

Including treatment interacting with generation did not improve the model fit (LME: 

χ2
15= 9.9, p= 0.83).  

5.4.6 Evidence for life history shifts in lineages that are destined for extinction 

A total of 11 lineages in the radiation treatment went extinct by generation six and 15 in 

the control treatment (see Appendix O). Note that lineages can still be maintained if 

organisms die during the experiment provided they produced offspring before they 

died. It is also important to note that all recovery animals originate from radiation-

exposed lineages. The total number of offspring produced was not affected by the 

extinction of Daphnia lines in generation one (GLM: χ2
3= 48.85, p= 0.92. Figure 5.5A). 
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However, there was a significant effect in generation four (GLM: χ2
4= 1792, p< 0.01), 

where Daphnia from lineages destined for extinction produced fewer total offspring 

than from non-extinct lineages (control extinct: 51.2 ± 4.3. Control non-extinct: 58.7 ± 3. 

Radiation extinct: 54 ± 10.0. Radiation non-extinct: 66.8 ± 1.9. Figure 5.5B). 

In generation one, the day of the fourth brood release was not affected by the 

extinction of Daphnia lineages across treatments (CPH: χ2
1= 3.14, p= 0.08. Figure 

5.5C). Extinction did significantly affect the day of fourth brood production in generation 

four (CPH: χ2
1= 5.35, p< 0.05). Daphnia from radiation-exposed lineages that went on 

to go extinct produced their fourth brood earlier than non-extinct lineages (non-extinct: 

13.5 ± 0.2. Extinct: 12 ± 1. Figure 5.5D). Whereas control lineages destined for 

extinction produced their fourth brood later than non-extinct control lineages (non-

extinct: 14.3 ± 0.1. Extinct: 15.2 ± 0.7).  
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Figure 5.5: Patterns of reproduction on lineages that either survived or went extinct 

before generation six. (A) The total number of offspring produced in generation one, 

(B) the total number of offspring produced in generation four, (C) the day of the 

fourth brood release in generation one and (D) the day of the fourth brood release in 

generation four. The box shows the upper and lower quartiles within the data and the 

line within each box shows the median value. The lines outside of each box show the 

range of the data. The dots show the raw data values. 

 

5.5 Discussion and conclusions 

Radiation has long been known to negatively affect fitness in many organisms (e.g. 

Phillips & Coggle, 1988; Zaka et al., 2004; Parisot et al., 2015). Daphnia populations 

living in natural environments experiencing high levels of radionuclide contamination 
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(such as the CEZ) still experience much lower levels of exposure than those that are 

usually tested in the laboratory (> ~180 μGy h-1 in Chernobyl [Chapter two], to upwards 

of approximately 2 x 105 μGy h-1 in these laboratory studies: Marshall, 1962; 

Sarapultseva and Gorski, 2013; Sarapultseva and Dubrova, 2016). Daphnia living in 

high radiation field populations (e.g. in Chernobyl) also have the potential to transmit 

the effects of radiation exposure across generations, either as mutations or through 

non-mutational epigenetic/plastic effects (Morgan, 2003a, 2003b). It is therefore 

important that transgenerational assessments of radiation effects include dose rates 

and exposure scenarios that could realistically occur in the environment, for example 

after a major radiological incident such as Chernobyl. I conducted such an experiment 

using a Daphnia genotype sampled from Slavutych, a city located approximately 50 km 

from the CEZ (Intelligence Systems GEO, 2008). This genotype will be representative 

of a similar geographical location to Chernobyl, without exposure to high dose rates 

(Table 2.1). In this Chapter, Daphnia were exposed to three treatments: control (0.45 

µGy hr-1), radiation (350 µGy hr-1; a Chernobyl-relevant dose) or recovery (where 

offspring from the radiation treatment were placed in control conditions, see Figure 

5.2), and quantified fundamental fitness-related traits across Daphnia generations. I 

found clear evidence that radiation exposure led to reduced survival in later 

generations, consistent with the accumulation of deleterious mutations. I also found 

evidence that radiation drives life-history shifts towards earlier reproduction. 

Furthermore, lineages that produced fewer offspring overall, or on days that deviated 

from the average were selectively removed from the experiment. In the control 

treatment, lineages that reproduced later than average became extinct by generation 

six, whereas in the radiation treatment lineages that were destined to become extinct 

reproduced earlier.  

Radiation-exposed Daphnia suffered reduced survival compared to Daphnia in the 

control treatment in generations two onwards (see Appendix N). This pattern of survival 

was also observed within the recovery treatment (except for generation six, where the 

generally low mortality meant that there was insufficient statistical power to test the 

hypothesis). Organism survival is dependent on complex mechanisms that regulate 

and maintain cell cycle and DNA damage repair that are governed by many genetic 

pathways (Elledge, 1996; Brown & Baltimore, 2000; de Klein et al., 2000; Takai et al., 

2000; Zhou and Elledge, 2000). So, where mutational frequency is high (increased 

DNA alterations have been observed at dose rates as low as 7 µGy h-1 in Daphnia 

consistent with increased mutational frequency, Parisot et al., 2015), there are 

numerous opportunities for disruption to such mechanisms, which could eventually lead 
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to organism fatality. This is consistent with the idea that mutation accumulation in 

asexual lineages will lead to eventual extinction (Muller, 1964; Lynch and Gabriel, 

1990; Charlesworth, Morgan and Charlesworth, 1993) and that DNA damage from 

ionising radiation will accelerate the process. 

Whilst it was difficult to determine a clear effect of transgenerational radiation exposure 

on overall age-specific reproduction, analysis of the timing of the first brood release 

revealed an increasing delay across generations within the recovery treatment group. 

This is consistent with mutation accumulation in the germ line. Indeed, there is 

abundant evidence that oxidative stress (an effect of ionising radiation) selects for a 

shift in life resource allocation to somatic maintenance and increased longevity, at the 

expense of reproductive investment in early life (Alonso-Alvarez et al., 2004, 2006; 

Dowling & Simmons, 2009; Monaghan et al., 2009). It is, however, important to note 

that there was no evidence of an increasing delay in first reproduction in radiation-

exposed Daphnia (though there was a delay in the production of the fourth brood in 

generations two and four). A possible explanation for these differences between 

radiation and recovery treatments is that the build-up of germline mutations across 

generations and the stress responses and somatic mutational damage associated with 

contemporary exposure to radiation have antagonistic effects which result in life history 

trade-offs. Indeed, it has been argued that physiological stress responses to 

environmental change can potentially limit effects on life histories and evolutionary 

responses (Ricklefs and Wikelski, 2002).  

There were no clear directional effects of radiation on total offspring production in the 

radiation or recovery treatment groups across generations. Careful consideration 

needs to be taken in dissecting any subtle variation in total offspring between 

treatments. If physiological changes associated with continuous mutational input and 

complex life-history trade-offs are having opposing effects as previously discussed, this 

could explain the absence of a clear effect. However, the questions addressed in the 

current Chapter did not generate appropriate data to support this with certainty.  

I also tested whether variation among lineages for age-specific reproduction increased 

across generations in radiation-exposed but not control lineages, as would be expected 

if mutations were causing increased genetic variation over time. I found no such effect. 

This led me to consider the possibility that mutationally compromised individuals in the 

radiation treatments either died before producing the subsequent generation (causing 

the extinction of inferior lineages from the experiment) or exhibited treatment-mediated 

life history changes that changes that differed between treatment groups. I found 
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compelling support for the second hypothesis. There was no evidence for radiation-

induced extinction, but lineages destined for extinction were quicker to produce their 

fourth brood in generation four (but not generation one). Daphnia in the radiation 

treatment were continuously exposed and it is hypothesised that this led to an elevated 

level of somatic mutations, and that early reproduction in these lineages could be a 

resulting stress response to this situation. Other stresses are known to cause a shift to 

early reproduction in Daphnia (e.g., infection with parasites: Chadwick and Little, 2005), 

and, whilst adaptive, such responses do not necessarily protect lineages from 

extinction (Hutchings et al., 2012). The findings of this Chapter demonstrate selective 

disappearance as seen in other studies (Vaupel, Manton and Stallard, 1979; van de 

Pol and Verhulst, 2006), and are also consistent with the idea that the build-up of 

mutations causes an inexorable loss of fitness over generations, leading to extinction 

(Timofeeff-Ressovsky, 1940; Muller, 1949, 1950).  

In summary, this Chapter examined the transgenerational effects of ionising radiation 

at dose rates equivalent to those seen in the CEZ, and the experimental design 

allowed me to dissect the effects of contemporary exposure to radiation from radiation 

exposure in previous generations. Using asexually reproducing Daphnia as a model 

organism, it was possible to bypass epigenetic resetting and the eradication of 

mutations through genetic recombination. I found evidence inferring mutation 

accumulation was occurring through my survival data and fecundity data. I also found 

evidence of phenotypic change consistent with the effects of continuous mutational 

input; these changes could plausibly counteract any life history trade-offs associated 

with parental exposure. Further analysis examining lineage extinction revealed that the 

selective disappearance of lineages that deviated from optimal reproduction, explaining 

why radiation-exposed lineages did not diverge over time. This selective 

disappearance is a prime explanation for the absence of radiation-driven variation 

observed in life history traits among contemporary populations in Chapter two. Future 

work should focus on molecular analysis of organisms exposed across generations, to 

further test the mutation accumulation hypothesis. In addition, further phenotypic work 

should be conducted to confirm whether continuous radiation exposure can limit life 

history responses.  
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 General discussion 
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In this thesis, I have combined laboratory and field approaches to test the effects of 

current dose rates across the Chernobyl Exclusion Zone (CEZ) on wildlife, using 

Daphnia as a model system. My first chapter outlined some of the current challenges in 

radioecology that have led to increased uncertainty with regards to whether current 

dose rates have a negative impact on wildlife (Beresford and Copplestone, 2011; 

Wickliffe and Baker, 2011; Garnier-Laplace et al., 2013). I highlighted that some of the 

disagreements have been attributed to dosimetry approaches and insufficient 

consideration of confounding factors (Beresford et al., 2008, 2012; Beresford and 

Copplestone, 2011; Garnier-Laplace et al., 2013). I argued that a promising approach 

to address these uncertainties is to combine laboratory and field experiments, to 

generate an accurate dose response curve and ensure the effects of ionising radiation 

are understood both in isolation, and with respect to additional stressors.  

Subsequently, Chapters two and three assessed the current state of Chernobyl 

Daphnia populations at both the phenotypic and molecular level respectively. Chapters 

four and five then focused on exposing Daphnia to dose rates relevant to those 

currently in the CEZ under controlled laboratory conditions, to determine the effects of 

ionising radiation on Daphnia lineages across multiple generations.  

6.1 Effects of selection across Chernobyl populations 

The data analysis for each chapter was conducted with the general hypothesis that 

Daphnia fitness would decrease with increasing dose rate. However, I found that 

radiation impacts were far more complicated than originally anticipated, due to different 

selective processes across levels of biological organisation. Initial examination of 

Daphnia sampled from across the CEZ in Chapter two showed that population fitness 

was not affected by dose rate and that other population-level factors had more of an 

influence on Daphnia fitness than radiation itself. Chapter three then confirmed that 

selection on Daphnia populations living within the CEZ was driven by factors other than 

dose rate. This was evidenced through inbreeding patterns that were independent of 

dose rate and significant correlations between genetic distance and Euclidian 

geographic distance. This suggested that geographical similarities and gene flow 

between nearby populations explained more genetic variation than dose rate.  

Chapter three also showed that, whilst selection was governed by ecological factors 

independent of radiation, radiation did still contribute to the supply of mutations, 

evidenced by increasing genetic diversity with dose rate. Continuous exposure to 

ionising radiation has been shown to result in increasing mutational load over time 

(Breimer, 1988; von Sonntag, 2007). In sexually reproducing populations, genetic 
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recombination purges the genome of some of these mutations (Kondrashov, 1988; 

Charlesworth, 1990). However, Daphnia reproduce on a cyclically parthenogenetic 

basis, where asexual reproduction takes place throughout the spring/summer (Berg, 

1931). Based on the time of sampling (7th – 16th July 2016), it is likely that the majority 

of Daphnia were reproducing asexually, meaning that both somatic and germline 

mutations should have been accumulating across lineages (Sturtevant, 1937; Muller, 

1964; Crow & Kimura, 1965; Baer et al., 2007, Chapter five). Daphnia sampled at this 

time are therefore likely to have accumulated a substantial mutational load. This is 

supported by the evidence for survival declines at 350 µGy h-1 (representative of high 

dose rates in the CEZ) over just six generations in Chapter five, consistent with 

mutation accumulation  

Mutations can affect a wide variety of genetic pathways that impact on cell cycle 

maintenance and DNA damage repair mechanisms, leading to reduced organism 

survival (Elledge, 1996; Brown & Baltimore, 2000; de Klein et al., 2000; Takai et al., 

2000; Zhou and Elledge, 2000). High mutation rates, including those driven by ionising 

radiation, are therefore likely to result in a shorter lifespan (as shown in Chapter five). 

However, early-life organism fitness is more valuable to a population than fitness in 

later life, because individuals are more likely to have reproduced in early life, supplying 

their genetic material to the population gene pool (Birch, 1948). Where multiple 

ecological pressures are acting on populations across the CEZ, selection is more likely 

to be driven by factors that directly influence early-life fitness (such as predation, food 

availability or sterility-inducing parasites, Lehmann, 1993; Anholt et al., 1998; Oro et al., 

2003; Creel & Christianson, 2008; Auld et al., 2013). This may offer some explanation 

with regards to why mutational input from ionising radiation is not the primary selective 

force observed in the sampled Daphnia populations, despite clearly providing some 

mutational input (Chapter three).  

6.2 Radiation-mediated selection in individuals 

Selection becomes more complicated at higher levels of biological organisation, due to 

confounding ecological factors and evolutionary pressures within populations 

(Kauffman, 1993; Brèchignac and Doi, 2009). I therefore explored radiation effects in 

isolation in Chapters four and five to understand radiation induced effects that were not 

confounded by other ecological pressures. I conducted a pilot experiment in Chapter 

four to justify the experimental design for Chapter five. Chapter four showed that 

radiation effects at dose rates relevant to those across the CEZ were subtle, with a key 

observation for informing the experimental design for Chapter five being that survival 
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was unaffected. This meant that Daphnia could be exposed across multiple 

generations without losing a high number of lineages during the experiment. The subtle 

nature of radiation effects on Daphnia also meant that a high number of replicates was 

required at fewer treatments (i.e. different dose rates) to increase statistical power in 

examining radiation effects in Chapter five. 

Chapter four demonstrated an overall decline in total offspring production within a 

single generation of exposure, which may seem inconsistent with Chapter five as this 

effect was not observed within the first generation of exposure. However, a simple 

explanation of this result is due to the fact that I counted the first eight brood releases 

for each individual in Chapter four but only the first four brood releases in Chapter five. 

Daphnia would have accumulated different doses due to differences in the duration of 

exposure in each experiment. Indeed, a reduction in total offspring in the radiation 

exposed treatment in Chapter five is seen in the second generation of exposure, 

consistent with the results in Chapter four. 

Other laboratory-based studies have tested radiation effects across generations in 

Daphnia (Alonzo et al., 2008; Parisot et al., 2015; Trijau et al., 2018), however, each of 

the studies only assessed radiation effects up until the third generation. Whilst this is 

standard practice in transgenerational assessment (Szyf, 2015), I recognised that 

effects at environmentally relevant dose rates (in the same order of magnitude as those 

in the CEZ) were likely to be subtle, such as delays in brood releases (Parisot et al., 

2015). My pilot experiment in Chapter four provided support for this and therefore 

prompted the experimental design in Chapter five, consisting of six generations and 

testing only two dose rates (350 µGy h-1 and 0.45 µGy h-1 as the control) to allow for 50 

replicates within each treatment group. This allowed me to identify selective 

disappearance of inferior lineages which would have not been detected in a three-

generation experiment.  

It is important to note that although the radiation treatment clearly affected reproduction 

(exposed Daphnia that died produced fewer offspring overall and released their final 

clutch earlier than exposed Daphnia that survived), Daphnia lineages in the control 

treatment were also selectively removed from the experiment (specifically, those that 

produced their final clutches later than those that survived). This suggests that this 

phenomenon was not specific to ionising radiation. This could however, help to explain 

why no variation in reproductive measurements was observed in the wild populations in 

Chapter two.  
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6.3 Important considerations for testing between the laboratory and the field 

One important consideration for laboratory studies to support field data, is to design 

experiments that reflect the types of exposures experienced by natural populations, as 

implemented in this thesis. Conducting studies that explore relevant dose rates to the 

same organisms in both the laboratory and the field allowed for realistic comparison 

between individual and population level effects. There are considerable data gaps for 

laboratory studies that investigate radiation-mediated effects at dose rates that 

represent environmentally relevant levels (Beresford. et al., 2004; Garnier-Laplace et 

al., 2004; Salbu, 2009). There is some evidence that extrapolation of effects to relevant 

dose rates does not provide an accurate representation of these effects due to the 

subtle nature of some of these changes (Brown, 1977; Tubina et al., 2009). By 

conducting laboratory studies at appropriate dose rates, using Daphnia sampled from 

control regions of the CEZ, I can be confident in making comparisons between my 

laboratory and fieldwork.  

Furthermore, by establishing a dose-response curve for the same organism in both the 

laboratory and the field (Garnier-Laplace et al., 2013), it is possible to explore different 

hypotheses for where discrepancies may have arisen. My research benefits from 

having both phenotypic and molecular data to explore evolutionary effects in wild 

populations, which can help to explain the differences from my laboratory data. 

Combining laboratory and field data would also be beneficial in identifying a situation 

where other stressors act synergistically or antagonistically with ionising radiation, 

resulting in an increased or reduced effect on wildlife (Holmstrup et al. 2010; Coors and 

De Meester 2008).  

My research provides further considerations for evolutionary processes that arise at the 

population level. My results are consistent with mutation accumulation in the laboratory 

(Chapter five) and the field (Chapter three). However, whilst negative fitness impacts 

were found in the laboratory, field organisms were unaffected due to population-level 

processes. This highlights the importance of varying evolutionary pressures across 

levels of biological organisation, as there are other agents of selection in ecologically 

complex communities (Kauffman, 1993; Brèchignac and Doi, 2009). In Chapter two, I 

discuss the relevance of my research to Polikarpov’s proposed concept of organism, 

population and ecosystem responses to ionising radiation (Polikarpov, 1998). The 

radiation effects shown in individuals in Chapters four and five provide further support 

for this concept, because the detectable effects are eliminated at the population level. 

My work also provides further support in favour of the current perspective that 
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radioecology needs to consider ecological networks and population processes when 

estimating radiation effects on wildlife (Bréchignac, 2003; Mothersill et al., 2019).  

One key consideration for other work focusing on alternative species is that due to the 

cyclically parthenogenetic reproductive patterns in Daphnia (Hebert, 1987), I had the 

benefit of preserving the exact genotypes found in the field by allowing lineages to 

propagate asexually following sample collection. The majority of study systems do not 

have this benefit, meaning that sexual recombination could remove some of the 

radiation-mediated changes following collection (Haldane, 1937; Kondrashov, 1988; 

Charlesworth, 1990). This is something that could be explored further using the 

Daphnia model (see section 6.5). 

It is also crucial to consider additional factors that affect population dynamics, for 

example population size. In Chapter three I identified that 92 out of 93 sampled 

individuals were multi-locus genotypes (MLGs) which indicated that populations were 

behaving as if they were purely sexual; it is therefore likely that Daphnia effective 

population sizes are very large (Allen and Lynch, 2012). Small populations are more 

likely to suffer following increased periods of stress that result in high mortality (such as 

high dose rates, Allendorf, 1983; Ellstrand & Elam, 1993). The large populations in the 

CEZ may have allowed Daphnia to cope with reduced survival resulting from ionising 

radiation (Chapter five). Particularly from higher past dose rates at the time of the 

accident, which were shown to cause reduced survival in a number of other species 

(Sokolov et al., 1993; Hinton et al., 2007; Geras’kin et al., 2008). This would be 

important to consider if replicate studies in highly contaminated landscapes sampled 

organisms from smaller lake populations.  

In the laboratory, I investigated mutation accumulation in asexual lineages that were 

continuously exposed to the same amount of radiation over the duration of each 

experiment. Natural populations have the opportunity to move freely across a 

heterogeneous environment (particularly in terrestrial populations) (Mccarthy & 

Zachara, 1989; Thiessen et al., 1999). It is important to consider that moving to a low 

radiation area, where there will be a reduction in mutational frequency, will provide a 

greater respite from any radiation-mediated selection and opportunity for successful 

DNA damage repair (Iliakis et al., 2003) and thus potential removal of radiation effects. 

6.4 Other anthropogenic stressors/major ecological changes 

Daphnia living within the CEZ have experienced a complex exposure history, with high 

acute exposures following the accident in 1986, transport of radionuclides through the 

environment, decay of short-lived radionuclides and long-term chronic exposures 
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(Hinton et al., 2007). However, this does not nullify the fact that research on organisms 

living within the CEZ can inform other researchers on the long-term effects of 

population responses to abrupt environmental change and chronic exposure to 

pollutants. My thesis offers useful insight to each of these situations: Chapters two and 

three assess the state of current populations over 30 years following the accident, and 

Chapters four and five dissect the contribution of current Chernobyl dose rates to 

effects on fitness. Collectively, Chapters two and three both show that whilst genetic 

diversity increased with dose rate, indicative of radiation-induced mutations, other 

ecological factors had greater selective impact on Daphnia populations than radiation 

itself. Daphnia are useful indicators of the state of aquatic ecosystems as they are 

primary consumers in food web dynamics (Miner, De Meester, et al., 2012). The fact 

that over 30 years following the Chernobyl accident, Daphnia populations are not 

detrimentally affected by ionising radiation demonstrates the potential for recovery in 

aquatic ecosystems from rapid environmental change. This is further supported by 

other research on aquatic invertebrates across the CEZ showing no detrimental 

radiation effects on populations (Fuller et al., 2017, 2018). 

By testing the impacts of dose rates relevant to the highest dose rates currently within 

the CEZ on Daphnia in the laboratory in Chapters four and five, I begin to dissect the 

relevant contributions of current dose rates on individuals to the combined effects of 

current dose rates and long-term responses to rapid environmental change seen in 

Chapters two and three. I find that dose rates within the high end of the current range 

within the CEZ do impact on Daphnia fitness at the individual level and the effects on 

survival in Chapter five are consistent with the theory of mutation accumulation. This 

suggests that current dose rates could be maintaining the increasing diversity seen in 

Chapter three.  

6.5 Scope for further research  

Whilst the research presented in this thesis provides useful insight into Daphnia 

responses to long-term radiation exposure and can offer some insight into work on 

other anthropogenic stressors (Sections 1.10 and 6.4), it has also highlighted potential 

new areas of research. For example, Chapters two and three demonstrated that 

ecological pressures other than ionising radiation drove variation in phenotypic and 

molecular data. In an alternative ecosystem experiencing different selection pressures 

alongside high dose rates, there is the potential for stressors that act synergistically 

with ionising radiation to play the dominant role in shaping populations. There is 

conflicting evidence in the literature on the synergistic and antagonistic effects of other 
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stressors in combination with ionising radiation (Vanhoudt et al., 2012). Therefore, it is 

important to test the effects of ionising radiation alongside other stressors that are likely 

to be present in natural environments.  

Chapter five demonstrated that mutations accumulate across lineages, negatively 

affecting survival and that Daphnia lineages with inferior reproductive outputs were 

selectively eliminated. Natural Daphnia populations switch to the sexual component of 

their reproductive cycle when conditions become unfavourable, so it would be 

interesting to explore the effects of sexual selection following exposure to ionising 

radiation. Furthermore, the hatching success of ephippia has been shown to be 

affected by other environmental contaminants (Navis et al., 2013; Möst et al., 2015; 

Rogalski, 2015), highlighting the potential to examine radiation effects on hatching 

rates.  

Chapter five used a single genotype to explore the opposing processes of mutation 

accumulation and selection. A similar experimental design could also be used to test 

the hypothesis that Daphnia from lake populations experiencing different dose rates 

are locally adapted to exhibit optimum fitness. This would involve exposing genotypes 

from different lake populations to the range of dose rates found across the CEZ.   

6.6 Overall Conclusion 

This thesis provides a detailed investigation on the effects of Chernobyl-relevant dose 

rates in both the field and the laboratory using Daphnia as a model system. I examined 

population-level fitness and the underlying population genetics in Daphnia 

representative of their respective lake populations collected from areas affected by 

Chernobyl derived radioactive fallout. I examined lakes that represented a radiation 

gradient in the CEZ and used two external controls for comparison. I found that 

although genetic diversity increased with dose rate, consistent with an increasing rate 

of genetic mutations, signatures of selection and population structure showed that 

alternative ecological factors were more dominant in shaping lake population fitness 

than radiation itself. In the laboratory, I found that constant exposure to ionising 

radiation across generations caused a reduction in Daphnia survival rate, also 

consistent with theory of increased mutation accumulation. However, close 

examination of reproductive fitness showed that inferior lineages were selectively 

removed across generations, stripping any reproductive variation. This could explain 

why no differences in fecundity were observed in field populations. Collectively, my 

work has demonstrated that ionising radiation does negatively impact individual 

Daphnia lineages at dose rates relevant to highly contaminated areas in the CEZ (350 
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µGy h-1 in the laboratory, ~ 180 µGy h-1 was the highest estimated field dose rate to 

Daphnia). However, any negative effects of radiation-mediated mutational input at the 

population level is eliminated by selection from other ecological sources.  

 

  



128 
 

  



129 
 

References 

  

Adamack, A. T. and Gruber, B. (2014) ‘PopGenReport: simplifying basic population 

genetic analyses in R. Methods in Ecology and Evolution’, Methods in Ecology and 

Evolution, 5(4), pp. 384–387. 

Adamowicz, S. J. Petrusek, A., Colbourne, J. K., Hebert, P. D. N. and Witt, J. D.S. 

(2009) ‘The scale of divergence: A phylogenetic appraisal of intercontinental allopatric 

speciation in a passively dispersed freshwater zooplankton genus’, Molecular 

Phylogenetics and Evolution, 50(3), pp. 423–436.  

Adewoye, A. B. Lindsay, S.J., Dubrova, Y. E. and Hurles, M.E. (2015) ‘The genome-

wide effects of ionizing radiation on mutation induction in the mammalian germline’, 

Nature Communications, 6(6684). 

Ageno, M., Chiozzotto, M. and Querzoli, R. (1950) ‘Scintillations in Liquids and 

Solutions’, Physical Review, 79(720). 

Alberts, B. (2003) ‘DNA replication and recombination’, Nature, 421(6921), pp. 431–

435. 

Alekseev, V. and Lampert, W. (2001) ‘Maternal control of resting-egg production in 

Daphnia’, Nature. Nature Publishing Group, 414(6866), pp. 899–901.  

Allen, D. E. and Lynch, M. (2012) ‘The effect of variable frequency of sexual 

reproduction on the genetic structure of natural populations of a cyclical parthenogen’, 

Evolution, 66(3), pp. 919–926. 

Allendorf, E. W. (1983) ‘Isolation, gene flow, and genetic differentiation among 

population’, in Genetics and Conservation: A Reference for Managing Wild Animal and 

Plant Population, pp. 51–65. 

Alonso-Alvarez, C., Bertrand, S., Devevey, G., Prost, J., Faivre, B. and Sorci, G. (2004) 

‘Increased susceptibility to oxidative stress as a proximate cost of reproduction’, 

Ecology Letters, 7(5), pp. 363–368.  

Alonso-Alvarez, C. Bertrand, S., Devevey, G., Prost, J., Faivre, B., Chastel, O. and 

Sorci, G. (2006) ‘An Experimental Manipulation of Life-History Trajectories and 

Resistance To Oxidative Stress’, Evolution, 60(9), pp. 1913–1924.  



130 
 

Alonzo, F., Gilbin, R., Gilbin, R., Zeman, F A. and Garnier-Laplace, J. (2008) 

‘Increased effects of internal alpha irradiation in Daphnia magna after chronic exposure 

over three successive generations.’, Aquatic toxicology (Amsterdam, Netherlands), 

87(3), pp. 146–56.  

Alonzo, F., Hertel-Aas, T., Hertel-Aas, T., Gilek, M., Gilbin, R., Oughton, D. H. and 

Garnier-Laplace, J. (2008) ‘Modelling the propagation of effects of chronic exposure to 

ionising radiation from individuals to populations’, Journal of Environmental 

Radioactivity, 99(9), pp. 1464–1473.  

Altermatt, F. and Ebert, D. (2008) ‘The influence of pool volume and summer 

desiccation on the production of the resting and dispersal stage in a Daphnia 

metapopulation’, Oecologia, 157(3), pp. 441–452.  

Ancius, D. Ridikas, D., Remeikis, V., Plukis, A., Plukiene, R. and Cometto, M. (2005) 

‘Evaluation of the activity of irradiated graphite in the Ignalina Nuclear Power Plant 

RBMK-1500 reactor’, Nukleonika, 50(3), pp. 113–120. 

Anholt, B. R. and Werner, E. E. (1998) ‘Predictable changes in predation mortality as a 

consequence of changes in food availability and predation risk’, Evolutionary Ecology, 

(12), pp. 729–738. 

Antwih, D. A. Gabbara, K. M., Lancaster, W. D., Ruden, D. M. and Zielske, S. P. (2013) 

‘Radiation-induced epigenetic DNA methylation modification of radiation-response 

pathways’, Epigenetics, 8(8), pp. 839–848.  

ApSimon, H. M., Wilson, J. J. N. and Simms, K. L. (1989) ‘Analysis of the dispersal and 

deposition of radionuclides from Chernobyl across Europe’, Proceedings of the Royal 

Society A: Mathematical, physical and engineering sciences, 425(1869). 

Arkhipov, N. P., Kuchma, N.D., Askbrant, S., Pasternak, P.S. and Musica, V.V. (1994) 

‘Acute and long-term effects of irradiation on pine (Pinus silvestris) stands post-

Chernobyl’, Science of the Total Environment, 157(1–3), pp. 383–386. 

Asselman, J., De Coninck, D. I.M., Vandegehuchte, M. B., Jansen, M., Decaestecker, 

E., De Meester, L., Vanden Bussche, J., Vanhaecke, L., Janssen, C. R. and De 

Schamphelaere, K. A.C. (2015) ‘Global cytosine methylation in Daphnia magna 

depends on genotype, environment, and their interaction’, Environmental Toxicology 

and Chemistry, 34(5), pp. 1056–1061.  



131 
 

Auld, S. K. J. R., Penczykowski, R. M., Ochs, J. H., Grippi, D C., Hall, S. R. and Duffy, 

M. A. (2013) ‘Variation in costs of parasite resistance among natural host populations’, 

Journal of Evolutionary Biology, 26(11), pp. 2479–2486.  

Auld, S. K. J. R. and Brand, J. (2017) ‘Simulated climate change, epidemic size, and 

host evolution across host–parasite populations’, Global Change Biology, 23(12), pp. 

5045–5053.  

Azzam, E. I., de Toledo, S. M. and Little, J. B. (2003) ‘Oxidative metabolism, gap 

junctions and the ionizing radiation-induced bystander effect’, Oncogene, 22(45), pp. 

7050–7057. 

Baer, C. F., Miyamoto, M. M. and Denver, D. R. (2007) ‘Mutation rate variation in 

multicellular eukaryotes: causes and consequences’, Nature reviews. Genetics, 8(8), 

pp. 619–631. 

Baird, D. J., Van den Brink, P. J., Chariton, A. A., Dafforn, K. A. and Johnston, E. L. 

(2016) ‘New diagnostics for multiply stressed marine and freshwater ecosystems: 

integrating models, ecoinformatics and big data’, Marine and Freshwater Research, 

67(391–392). 

Baker, R. J., Hamilton, M.J., Van Den Bussche, R.A., Wiggins, L.E., Sugg, D.W., 

Smith, M.H., Lomakin, M.D., Gaschak, S.P., Bundova, E.G., Rudenskaya, G.A. and 

Chesser, R.K. (1996) ‘Small mammals from the most radioactive sites near the 

Chornobyl nuclear power plant’, Journal of Mammalogy, 77(1), pp. 155–170.  

Balanov, M. I., Anisimova, L. I. and Perminova, G. S. (1999) ‘Strategy for population 

protection and area rehabilitation in Russia in the remote period after the Chernobyl 

accident’, Journal of Radiological Protection, 19(3), pp. 261–269. 

Ball, S. L. and Baker, R. L. (1996) ‘Predator-induced life history changes: antipredator 

behavior costs or facultative life history shifts?’, Ecology, 77(4), pp. 1116–1124. 

Barber, R., Plumb, M.A., Boulton, E., Roux, I. and Dubrova, Y.E. (2002) ‘Elevated 

mutation rates in the germ line of first- and second-generation offspring of irradiated 

male mice’, Proceedings of the National Academy of Sciences, 99(10), pp. 6877–82. 

Barber, R. C., Hickenbotham, P., Hatch, T., Kelly, D., Topchiy, N., Almeida, G. M., 

Jones, G. D.D., Johnson, G. E., Parry, J. M., Rothkamm, K. and Dubrova, Y. E. (2006) 

‘Radiation-induced transgenerational alterations in genome stability and DNA damage’, 

Oncogene, 25(56), pp. 7336–7342.  



132 
 

Barber, R. C. and Dubrova, Y. E. (2006) ‘The offspring of irradiated parents, are they 

stable?’, Mutation Research - Fundamental and Molecular Mechanisms of 

Mutagenesis. Elsevier, 598(1–2), pp. 50–60.  

Barnthouse, L. W. (1995) Effects of ionizing radiation on terrestrial plants and animals: 

A workshop report. 

Bates, D., Machler, M, Bolker, B. and Walker, S. (2015) ‘Fitting Linear Mixed-Effects 

Models Using lme4’, Journal of Statistical Software, 67(1), pp. 1–48. 

Beasley, A., Belanger, S. E., Brill, J. L. and Otter, R. R. (2015) ‘Evaluation and 

comparison of the relationship between NOEC and EC10 or EC20 values in chronic 

Daphnia toxicity testing.’, Environmental toxicology and chemistry / SETAC, 34(10), pp. 

2378–84.  

Beckerman, A., Benton, T. G., Ranta, E., Kaitala, V. and Lundberg, P. (2002) 

‘Population dynamic consequences of delayed life-history effects’, Trends in Ecology 

and Evolution, 17(6), pp. 263–269.  

Beresford., N. A., Broadley, M.R., Howard, B.J., Barnett, C.L. and White, P.J. (2004) 

‘Estimating radionuclide transfer to wild species—data requirements and availability for 

terrestrial ecosystems’, Journal of Radiological Protection, 24(4A), pp. A89-103. 

Beresford, N., Brown, J., Copplestone, D., Garnier - Laplace, J., Howard, B.J., Larsson, 

C. M., Oughton, D., Pröhl, G and Zinger, I. (2007) ‘D-ERICA: an Integrated Approach to 

the Assessment and Management of Environmental Risks from Ionising Radiation’, 

Description of purpose, methodology and application. EC project contract no. FI6R-CT-

2004-508847. Available from: www.erica-project.org.  

Beresford, N. A., Gaschak, S., Barnett, C L., Howard, B J., Chizhevsky, I., Strømman, 

G., Oughton, D H., Wright, S M., Maksimenko, A. and Copplestone, D. (2008) 

‘Estimating the exposure of small mammals at three sites within the Chernobyl 

exclusion zone--a test application of the ERICA Tool.’, Journal of environmental 

radioactivity, 99(9), pp. 1496–502.  

Beresford, N. A., Adam-Guillermin, C., Bonzom, J. M., Garnier-Laplace, J., Hinton, T., 

Lecomte, C., Copplestone, D., Della Vedova, C. and Ritz, C. (2012) ‘Response to 

authors’ reply regarding “Abundance of birds in Fukushima as judged from Chernobyl” 

by Møller, A.P., Hagiwara, A., Matsui, S., Kasahara, S., Kawatsu, K., Nishiumi, I., 

Suzuki, H., Ueda, K. and Mousseau, T. A. (2012)’, Environmental Pollution, pp. 139–

140. 



133 
 

Beresford, N. A. and Copplestone, D. (2011) ‘Effects of ionizing radiation on wildlife: 

what knowledge have we gained between the Chernobyl and Fukushima accidents?’, 

Integrated environmental assessment and management, 7(3), pp. 371–3.  

Berg, K. (1931) ‘Studies on the genus Daphnia 0. F. Muller with especial reference to 

the mode of repro ductio’, Viderisk. Med. fra Dansk. Natur. Forening, 92, pp. 1–222. 

Bickham, J. W., Sandhu, S., Hebert, P. D.N., Chikhi, L. and Athwal, R. (2000) ‘Effects 

of chemical contaminants on genetic diversity in natural populations: implications for 

biomonitoring and ecotoxicology’, Mutation Research, 263, pp. 33–51. 

Bickham, J. W. and Smolen, M. J. (1994) ‘Somatic and heritable effects of 

environmental genotoxins and the emergence of evolutionary toxicology’, 

Environmental Health Perspectives, 102, pp. 25–28. 

Bind, M.A., Baccarelli, A., Zanobetti, A., Tarantini, L., Suh, H., Vokonas, P. and 

Schwartz, J. (2013) ‘Air pollution and markers of coagulation, inflammation and 

endothelial function: Associations and epigene-environment interactions in an elderly 

cohort’, Epidemiology, 23(2), pp. 332–340. 

Birch, L. C. (1948) ‘The intrinsic rate of natural increase of an insect population’, 

Journal of Animal Ecology, 17, pp. 15–26.  

Bird, A. P. (1986) ‘CpG-rich islands and the function of DNA methylation’, Nature, 

321(6067), pp. 209–213. 

Blaylock, B. (1969) ‘The Fecundity of a Gambusia affinis affinis Population Exposed to 

Chronic Environmental Radiation’, Radiation Research, 37(1), pp. 108–117.  

Bos, A. J. J. (2001) ‘On the energy conversion in thermoluminescence dosimetry 

materials’, Radiation measurements, 33(5), pp. 737–744. 

Bougeard, S. and Dray, S. (2018) ‘Supervised Multiblock Analysis in R with the ade4 

Package’, Journal of Statistical Software. 

Box, H. C., Freund, H. G., Budzinski, E. E., Wallace, J. C. and MacCubbin, A. E. (1995) 

‘Free Radical-Induced Double Base Lesions’, Radiation research, 141(1), pp. 91–94. 

Bréchignac, F. (2003) ‘Protection of the environment: How to position radioprotection in 

an ecological risk assessment perspective’, Science of the Total Environment. Elsevier, 

pp. 35–54.  

Bréchignac, F., Oughton, D., Mays, C., Barnthouse, L., Beasley, J. C. Bonisoli-Alquati, 

A., Bradshaw, C., Brown, J., Dray, S., Geras'kin, S., Glenn, T., Higley, K., Ishida, K., 



134 
 

Kapustka, L., Kautsky, U., Kuhne, W., Lynch, M., Mappes, T., Mihok, S., Møller, A. P., 

Mothersill, C., Mousseau, T. A., Otaki, J., Pryakhin, E., Rhodes, O. E., Salbu, B., 

Strand, P. and Tsukada, Hirofumi. (2016) ‘Addressing ecological effects of radiation on 

populations and ecosystems to improve protection of the environment against 

radiation: Agreed statements from a Consensus Symposium’, Journal of Environmental 

Radioactivity, 158–159, pp. 21–29.  

Bréchignac, F (2017). 'Assessing ecological risk from radiation requires an ecosystem 

approach'. In V.L. Korogodina, C.E. Mothersill, S.G. Inge-Vechtomov, C.B. Seymour 

(Eds.), Genetics, Evolution and Radiation (pp. 207-223), the Netherlands, Springer. 

Brèchignac, F. and Doi, M. (2009) ‘Challenging the current strategy of radiological 

protection of the environment: arguments for an ecosystem approach’, Journal of 

Environmental Radioactivity. Elsevier, 100(12), pp. 1125–1134.  

Breheny, P. and Burchett, W. (2017) ‘Visualization of Regression Models Using visreg’, 

The R Journal, 9(2), pp. 56–71. 

Breimer, L. H. (1988) ‘Ionizing radiation-induced mutagenesis’, British journal of 

cancer, 57(1), pp. 6–18. 

Briesmeister, J. F. (1986) MCNP-A General Monte Carlo Code for Neutron and Photon 

Transport.  

Van den Brink, P. J., Choung, C.B., Landis, W., Mayer-Pinto, M., Pettigrove, V., 

Scanes, P., Smith, R. and Stauber, J. (2016) ‘New approaches to the ecological risk 

assessment of multiple stressors’, Marine and Freshwater Research, 67, pp. 429–439. 

Brockelman, W. Y. (1975) ‘Competition, the Fitness of Offspring, and Optimal Clutch 

Size’, The American Naturalist, 109(970), pp. 677–699.  

Brown, E. J. & Baltimore, D. (2000) ‘ATR disruption leads to chromosomal 

fragmentation and early embryonic lethality’, Genes and development, 14, pp. 397–

402. 

Brown, A. H., Feldman, M. W. and Nevo, E. (1980) ‘Multilocus Structure of Natural 

Populations of Hordeum Spontaneum’, Genetics, 96(2), pp. 523–536. 

Brown, F. P. (2003) ‘MCNP - A general Monte Carlo N-Particle Transport Code, 

Version 5’, Los Alamos National Laboratory, Oak Ridge, TN. 



135 
 

Brown, J. E., Alfonso, B., Avila, R., Beresford., N.A., Copplestone, D., Pröhl, G. and 

Ulanovsky, A. (2008) ‘The ERICA Tool’, Journal of Environmental Radioactivity, 99(9), 

pp. 1371–1383. 

Brown, J. E., Alfonso, B., Avila, R., Beresford, N. A., Copplestone, D. and Hosseini, A. 

(2016) ‘A new version of the ERICA tool to facilitate impact assessments of 

radioactivity on wild plants and animals’, Journal of Environmental Radioactivity. 

Elsevier Ltd, 153, pp. 141–148.  

Brown, J. M. (1977) ‘The Shape of the Dose-Response Curve for Radiation 

Carcinogenesis Extrapolation to Low Doses’, Radiation Research, 71, pp. 34–50. 

Buisset-Goussen, A., Goussen, B., Della-Vedova, C., Galas, S., Adam-Guillermin, C. 

and Lecomte-Pradines, C. (2014) ‘Effects of chronic gamma irradiation: a 

multigenerational study using Caenorhabditis elegans.’, Journal of environmental 

radioactivity, 137, pp. 190–7.  

Bureau International des Poids et Mesures (BIPM) (2006) The International System of 

Units (SI) 

Burkart, W., Finch, G. L. and Jung, T. (1997) ‘Quantifying health effects from the 

combined action of low-level radiation and other environmental agents: Can new 

approaches solve the enigma?’, Science of the Total Environment, 205(1), pp. 51–70.  

Burnham, K. P. and Anderson, D. R. (2002) Model Selection and Multimodel Inference: 

A practical Information-Theoretic-Approach. Second Edition. London: Springer, New 

York, NY. 

Chadwick, W. and Little, T. (2005) ‘A parasite-mediated life-history shift in Daphnia 

magna’, Proceedings of the Royal Society B: Biological Sciences, 272(1562), pp. 505–

509. 

Charlesworth, B. (1990) ‘Mutation-selection balance and the evolutionary advantage of 

sex and recombination’, Genetics Research, 55, pp. 199–221.  

Charlesworth, D., Morgan, M. T. and Charlesworth, B. (1993) ‘Mutation accumulation in 

finite outbreeding and inbreeding populations’, Genetics Research, 61(1), pp. 39–56. 

Chen, Q. M., Bartholomew, J.C., Campisi, J., Acosta, M., Reagan, J.D. and Ames, B.N. 

(1998) ‘Molecular analysis of H2O2-induced senescent-like growth arrest in normal 

human fibroblasts: p53 and Rb control G1 arrest but not cell replication’, Biochemical 

Journal, 332(Pt1), pp. 43–50. 



136 
 

Chen, Q. M., Liu, J. and Merrett, J. B. (2000) ‘Apoptosis or senescence-like growth 

arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal 

human fibroblasts’, Biochemical Journal, 347(Pt2), pp. 543–551. 

Chetty, I. G., Curran, B., Cygler, JE., DeMarco, JJ., Ezzell, G., Faddegon, B.A., 

Kawrakow, I., Keall, P.J., Liu, H., Ma, C.M., Rogers, D.W., Seuntjens, J., Sheikh-

Bagheri, D. and Siebers, J.V. (2007) ‘Report of the AAPM Task Group No. 105: issues 

associated with clinical implementation of Monte Carlo-based photon and electron 

external beam treatment planning’, Medical Physics, 34(12), pp. 4818–4853. 

Colbourne, J. K., Pfrender, M. E., Gilbert, D., Thomas, W. K., Tucker, A., Oakley, T. H., 

Tokishita, S., Aerts, A., Arnold, G. J. Basu, M. K., Bauer, D. J., Cáceres, C. E., Carmel, 

L., Casola, C., Choi, J. H., Detter, J. C., Dong, Q., Dusheyko, S., Eads, B. D., Fröhlich, 

T., Geiler-Samerotte, K. A., Gerlach, D., Hatcher, P., Jogdeo, S., Krijgsveld, J., 

Kriventseva, E. V., Kültz, D., Laforsch, C., Lindquist, E., Lopez, J., Manak, J R., Muller, 

J., Pangilinan, J., Patwardhan, R. P., Pitluck, S., Pritham, E. J., Rechtsteiner, A., Rho, 

M., Rogozin, I. B., Sakarya, O., Salamov, A., Schaack, S., Shapiro, H., Shiga, Y., 

Skalitzky, C., Smith, Z., Souvorov, A., Sung, W., Tang, Z., Tsuchiya, D., Tu, H., Vos, 

H., Wang, M., Wolf, Y. I., Yamagata, H., Yamada, T., Ye, Y., Shaw, J. R Andrews, J., 

Crease, T. J Tang, H., Lucas, S. M., Robertson, H. M Bork, P., Koonin, E. V., Zdobnov, 

E. M., Grigoriev, Igor V., Lynch, M. and Boore, J. L. (2011) ‘The ecoresponsive 

genome of Daphnia pulex.’, Science (New York, N.Y.), 331(6017), pp. 555–61.  

Cooley, J. (1973) ‘Effects of Chronic Environmental Radiation on a Natural Population 

of the Aquatic Snail Physa heterostropha’, Radiation Research. Radiation Research 

Society, 54(1), pp. 130–140.  

Coors, A. and De Meester, L. (2008) ‘Assessing ecological responses to environmental 

change using statistical models’, Journal of Applied Ecology, 45, pp. 1820–1828.  

Copplestone, D., Hingston, J. and Real, A. (2008) ‘The development and purpose of 

the FREDERICA effects database’, Journal of environmental radioactivity, (99), pp. 

1456–1463. 

Costa, R. (2003) ‘The eukaryotic nucleotide excision repair pathway’, Biochimie, 

85(11), pp. 1083–1099.  

Courtenay, V. D. (1965) ‘The Response to Continuous Irradiation of the Mouse 

Lymphoma L 5178Y Grown in Vitro’, International Journal of Radiation Biology and 

Related Studies in Physics, Chemistry and Medicine, 9, pp. 581–592. 



137 
 

Creel, S. and Christianson, D. (2008) ‘Relationships between direct predation and risk 

effects’, Trends in Ecology and Evolution. Elsevier Current Trends, 23(4), pp. 194–201.  

Crow J.F. (1970) Genetic Loads and the Cost of Natural Selection. In: Kojima K. (eds) 

Mathematical Topics in Population Genetics. Biomathematics, (vol 1, pp 32-78), 

Springer, Berlin, Heidelberg. 

Crow, J. F. and Kimura, M. (1965) ‘Evolution in Sexual and Asexual Populations’, The 

American Naturalist, 99(909), pp. 439–450. 

Cuco, A. P., Castro, B. B., Gonçalves, F., Wolinska, J. and Abrantes, N. (2017) 

‘Temperature modulates the interaction between fungicide pollution and disease: 

evidence from a Daphnia-microparasitic yeast model’, Parasitology, pp. 1–9.  

Dauer, L. T., Brooks, A. L., Hoel, D. G., Morgan, W. F., Stram, D. and Tran, P. (2010) 

‘Review and evaluation of updated research on the health effects associated with low-

dose ionising radiation’, Radiation Protection Dosimetry, 140(2), pp. 103–136. 

Dawidowicz, P. and Loose, C. J. (1992) ‘Cost of swimming by Daphnia during diel 

vertical migration’, Limnology and Oceanography, 37(3), pp. 665–669.  

Decaestecker, E., De Meester, L. and Mergeay, J. (2009) ‘Cyclical Parthenogenesis in 

Daphnia: Sexual Versus Asexual Reproduction’, in Lost sex: The Evolutionary Biology 

of Parthenogenesis, pp. 295–316.  

Dent, P., Yacoub, A., Contessa, J., Caron, R., Amorino, G., Valerie, K., Hagen, M.P., 

Grant, S. and Schmidt-Ullrich, R. (2003) ‘Stress and radiation-induced activation of 

multiple intracellular signalling pathways’, Radiation research, 159(3), pp. 283–300. 

Diehn, M., Cho, R.W., Lobo, N.A., Kalisky, T., Dorie, M.J.,, Kulp, A.N. Qian, D., Lam, 

J.S., Ailles, L.E., Wong, M., Joshua, B., Kaplan, M.J., Wapnir, I., Dirbas, F., Somlo, G., 

Garberoglio, C., Paz, B., Shen, J., Lau, S.K., Quake, S.R., Brown, J.M., Weissman, I.L. 

and Clarke, M.F. (2009) ‘Association of Reactive Oxygen Species Levels and 

Radioresistance in Cancer Stem Cells’, Nature, 458(7239), pp. 780–783. 

Dowling, D. K. and Simmons, L. W. (2009) ‘Reactive oxygen species as universal 

constraints in life-history evolution’, Proceedings of the Royal Society B: Biological 

Sciences, 276(1663), pp. 1737–1745.  

Dray, S. and Dufour, A. B. (2007) ‘The ade4 package: implementing the duality 

diagram for ecologists’, Journal of Statistical Software, 22(4), pp. 1–20. 



138 
 

Dubrova, Y. E., Nesterov, V.N., Krouchinsky, N.G., Ostapenko, V.A., Neumann, R., 

Neil, D.L. and Jeffreys, A.J. (1996) ‘Human minisatellite mutation rate after the 

Chernobyl accident’, Nature, 380(6576), pp. 683–686. 

Dubrova, Y. E., Plumb, M., Gutierrez, B., Boulton, E. and Jeffreys, A. J. (2000) 

‘Genome stability: Transgenerational mutation by radiation’, Nature. Nature Publishing 

Group, 405(6782), p. 37.  

Dubrova, Y. E. (2003) ‘Radiation-induced transgenerational instability’, Oncogene, pp. 

7087–7093.  

Eads, B.D., Andrews, J. and Colbourne, J. K. (2008) ' Ecological genomics in Daphnia: 

stress responses and environmental sex determination', Heredity, 100(2), pp 184-190. 

Edwards, A. W. F. (1971) ‘Distances between Populations on the Basis of Gene 

Frequencies’, Biometrics, 27(4), pp. 873–881. 

Eggen, R. I., Behra, R., Burkhardt-Holm, P., Escher, B.I. and Schweigert, N. (2004) 

‘Challenges in ecotoxicology’, Environmental Science & Technology, 38(3), p. 58A–

64A. 

Eisenbud, M. and Gesell, T. (1997) ‘Environmental Radioactivity from Natural, 

Industrial, and Military Sources’, in chapter 6 (Natural Radioactivity). 

Elledge, S. J. (1996) ‘Cell cycle checkpoints: preventing an identity crisis.’, Science, 

274, pp. 1664–1672. 

Ellegren, H., Lindgren, G., Primmer, C. R. and Møller, A. P. (1997) ‘Fitness loss and 

germline mutations in barn swallows breeding in Chernobyl’, Nature. Nature Publishing 

Group, 389(6651), pp. 593–596.  

Ellstrand, N. C. and Elam, D. R. (1993) ‘Population Genetic Consequences of Small 

Population Size: Implications for Plant Conservation’, Annual Review of Ecology and 

Systematics, 24, pp. 217–242. 

Esler, D., Bowman, T.D., Trust, K.A., Ballachey, B.E., Dean, T.A., Jewett, S.C. and 

O'Clair, C.E. (2002) ‘Harlequin duck population recovery following the “Exxon Valdez” 

oil spill: progress, process and constraints’, Marine Ecology Progress Series, 241, pp. 

271–286. 

Esnault, M.-A., Legue, F. and Chenal, C. (2010) ‘Ionizing radiation: Advances in plant 

response’, Environmental and Experimental Botany, 68(3), pp. 231–237.  



139 
 

Feinendegen, L. E. (2002) ‘Reactive oxygen species in cell responses to toxic agents’, 

Human & Experimental Toxicology, 21(2), pp. 85–90. 

Feng, S. H., Jacobsen, S. E. and Reik, W. (2010) ‘Epigenetic reprogramming in plant 

and animal development’, Science, 330, pp. 622–627. 

Flaherty, C. M. and Dodson, S. I. (2005) ‘Effects of pharmaceuticals on Daphnia 

survival, growth, and reproduction.’, Chemosphere, 61(2), pp. 200–7.  

Folt, C., Chen, CY., Moore, MV. and Burnaford, J. (1999) ‘Synergism and antagonism 

among multiple stressors’, Limnology and Oceanography, 44(3, part 2), pp. 864–877. 

Fox, J. and Weisberg, S. (2019). An {R} Companion to Applied Regression, Third 

Edition. Thousand Oaks CA: Sage. 

Frankham, R., Ballou, J. D. and Briscoe, D. A. (2004) A Primer of Conservation 

Genetics. Cambridge University Press. 

Frankham, R., Briscoe, D. A. and Ballou, J. D. (2002) Introduction to Conservation 

Genetics. Cambridge: Cambridge University Press. 

Fuller, N., Lerebours, A., Smith, J. T. and Ford, A.T. (2015) ‘The biological effects of 

ionising radiation on Crustaceans: A review’, Aquatic Toxicology, 167, pp. 55–67. 

Fuller, N., Smith, J. T., Nagorskaya, L. L., Gudkov, D. I. and Ford, A. T. (2017) ‘Does 

Chernobyl-derived radiation impact the developmental stability of Asellus aquaticus 

30years on?’, Science of The Total Environment, 576, pp. 242–250.  

Fuller, N., Ford, A. T., Nagorskaya, L. L., Gudkov, D. I. and Smith, J. T. (2018) 

‘Reproduction in the freshwater crustacean Asellus aquaticus along a gradient of 

radionuclide contamination at Chernobyl’, Science of The Total Environment. 628–629, 

pp. 11–17.  

Galván, I., Bonisoli-Alquati, A., Jenkinson, S., Ghanem, G., Wakamatsu, K., Mousseau, 

T. A. and Møller, A. P. (2014) ‘Chronic exposure to low-dose radiation at Chernobyl 

favours adaptation to oxidative stress in birds’, Functional Ecology. Edited by J. Blount, 

28(6), pp. 1387–1403.  

Garnier-Laplace, J., Gilek, M., Sundell-Bergman, S. and Larsson, C.M. (2004) 

‘Assessing ecological effects of radionuclides: data gaps and extrapolation issues’, 

Journal of Radiological Protection, 24(4A), pp. A139-155. 

Garnier-Laplace, J., Copplestone, D., Gilbin, R., Alonzo, F., Ciffroy, P., Gilek, M., 

Agüero, A., Björk, M., Oughton, D. H., Jaworska, A., Larsson, C. M. and Hingston, J. L. 



140 
 

(2008) ‘Issues and practices in the use of effects data from FREDERICA in the ERICA 

Integrated Approach’, Journal of Environmental Radioactivity, 99(9), pp. 1474–1483.  

Garnier-Laplace, J., Della-Vedova, C., Andersson, P., Copplestone, D., Cailes, C., 

Beresford, N A., Howard, B J., Howe, P. and Whitehouse, P. (2010) ‘A multi-criteria 

weight of evidence approach for deriving ecological benchmarks for radioactive 

substances’, Journal of Radiological Protection, 30(2), pp. 215–233. 

Garnier-Laplace, J., Geras'kin, S., Della-Vedova, C., Beaugelin-Seiller, K., Hinton, T. 

G., Real, A. and Oudalova, A. (2013) ‘Are radiosensitivity data derived from natural 

field conditions consistent with data from controlled exposures? A case study of 

Chernobyl wildlife chronically exposed to low dose rates’, Journal of Environmental 

Radioactivity, 121, pp. 12–21.  

Geiger, H. and Muller, W. (1928) ‘Die Naturwissenschaften’, Die Naturwissenschaften. 

Geras’kin, S. A., Fesenko, S. V. and Alexakhin, R. M. (2008) ‘Effects of non-human 

species irradiation after the Chernobyl NPP accident’, Environment International, 34(6), 

pp. 880–897. 

Geras’kin, S. A. & Volkova, P. Y. (2014) ' Genetic diversity in Scots pine populations 

along a radiation exposure gradient', Science of the Total Environment, 496, pp. 317-

327. 

Gilbert, M. R., Dudarev, S.L., Zheng, S., Packer, L.W. and Sublet, J. C. (2012) ‘An 

integrated model for materials in a fusion power plant: transmutation, gas production, 

and helium embrittlement under neutron irradiation’, Nuclear fusion. 

Gilbin, R., Alonzo, F. and Garnier-Laplace, J. (2008) ‘Effects of chronic external 

gamma irradiation on growth and reproductive success of Daphnia magna’, Journal of 

Environmental Radioactivity, 99(1), pp. 134–145.  

Gilpin, M. E. (1991) ‘The genetic effective size of a metapopulation’, in Metapopulation 

dynamics: empirical and theoretical investigations. Academic Press, London., pp. 165–

175. 

Giska, I., Babik, W., van Gestel, C.A.M., van Straalen, N. M. and Laskowski, R. (2015) 

‘Genome-wide genetic diversity of rove beetle populations along a metal pollution 

gradient’, Ecotoxicology and Environmental Safety, 119, pp. 98–105. 

Glémin, S. (2003) ‘How are deleterious mutations purged? Drift versus nonrandom 

mating’, Evolution, 57(12), pp. 2678–2687. 



141 
 

Gómez‐Martín, A., Altakroni, B., Lozano-Paniagua, D., Margison, G.P., de Vocht, F., 

Povey, A.C. and Hernández, A.F. (2014) ‘Increased N7‐methyldeoxyguanosine DNA 

adducts after occupational exposure to pesticides and influence of genetic 

polymorphisms of paraoxonase‐1 and glutathione S‐transferase M1 and T1’, 

Environmental and Molecular Mutagenesis, 56(5), pp. 437–445. 

Goodman, J., Copplestone, D., Laptev, G.V., Gashchak, S., Auld, S. K. J. R. (2019). 

Variation in chronic radiation exposure does not drive life history divergence among 

Daphnia populations across Chernobyl. Ecology and Evolution, 9, pp 2640–2650. 

Goudet, J. and Jombart, T. (2018) ‘hierfstat: Estimation and Tests of Hierarchical F-

Statistics’, R Foundation for Statistical Computing. 

Goussen, B. Price, O.R., Rendel, C. and Ashauer, R. (2016) ‘Integrated presentation of 

ecological risk from multiple stressors’, Scientific reports, 6(36004). 

Grant, P. R. and Grant, R. B. (1992) ‘Demography and the Genetically Effective sizes 

of Two Populations of Darwin’s Finches’, Source: Ecology, 73(733), pp. 766–784.  

Greening, J. R. (1985) ‘Fundamentals of Radiation Dosimetry’, in Hilger, A. (ed.) 

Medical Physics Handbook. No 15, Sec. Bristol. 

Haag, C. R., Riek, M., Hottinger, J. W., Pajunen, V. I. and Ebert, D. (2006) ‘Founder 

events as determinants of within-island and among-island genetic structure of Daphnia 

metapopulations’, Heredity, 96(2), pp. 150–158.  

Hakem, R. (2008) ‘DNA-damage repair; the good, the bad, and the ugly.’, The EMBO 

journal, 27(4), pp. 589–605.  

Haldane, J. B. S. (1937) ‘The Effect of Variation on Fitness’, The American Naturalist, 

71(735), pp. 337–349. 

Halkett, F. (2005) ‘Tackling the population genetics of clonal and partially clonal 

organisms’, Trends in Ecology & Evolution, 20(4), pp. 194–201. 

Halliwell, B. and Aruoma, O. I. (1991) ‘DNA damage by oxygen‐derived species Its 

mechanism and measurement in mammalian systems’, Federation of European 

Biochemical Societies, 281(1,2), pp. 9–19. 

Hanski, I. (1998) ‘Metapopulation dynamics’, Nature, 396, pp. 41–49. 

Harman, D. (1981) ‘The aging process.’, Proceedings of the National Academy of 

Sciences of the United States of America, 78(11), pp. 7124–8.  



142 
 

Harris, K. D. M., Bartlett, N. J. and Lloyd, V. K. (2011) ‘Daphnia as an emerging 

epigenetic model organism.’, Genetics research international, 2012.  

Hartl, D. L. and Clark, A. G. (1997) Principles of Population Genetics. Sinauer 

Associates. 

Hebert, P. D. N. (1974a) ‘Enzyme variability in natural populations of Daphnia magna 

II. Genotypic frequencies in intermittent populations’, Genetics, 77, pp. 335–341. 

Hebert, P. D. N. (1974b) ‘Enzyme variability in natural populations of Daphnia magna 

II. Genotypic frequencies in permanent populations’, Genetics, 77, pp. 323–334. 

Hebert, P. D. N. (1987) ‘Daphnia’, in Memorie dell’Istituto Italiano di Idrobiologia. 45th 

edn, pp. 439–460. 

Hebert, P. D. N. and Ward, R. D. (1976) ‘Enzyme variability in natural populations of 

Daphnia magna IV. Ecological differentiation and frequency changes of genotypes at 

Audley End’, Heredity, 36, pp. 331–341. 

Hefferin, M. L. and Tomkinson, A. E. (2005) ‘Mechanism of DNA double-strand break 

repair by non-homologous end joining.’, DNA repair, 4(6), pp. 639–48.  

Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., 

Slagboom, E. P. and Lumey, L. H. (2008) ‘Persistent epigenetic differences associated 

with prenatal exposure to famine in humans’, Proceedings of the National Academy of 

Sciences of the United States of America, 105(44), pp. 17046–17049. 

Hendricks, J. S., Adams, K. J., Booth, T. E., Briesmeister, J. F., Carter, L. L., Cox, L. J., 

Favorite, J. A., Forster, R. A., McKinney, G. W. and Prael, R. E. (2000) ‘Present and 

future capabilities of MCNP’, Applied Radiation and Isotopes, 53(4–5), pp. 857–861.  

Henriksen, T. and Maillie, D. H. (2003) Radiation and Health. 

Hesterberg, T., Monaghan, S., Moore, D. S., Clipson, A. and Epstein, R. (2003) 

'Bootstrap Methods and Permutation Tests' in Companion Chapter 18 to The practice 

of Business Statistics. 

Hinton, T. G., Alexakhin, R., Balonov, M., Gentner, N., Hendry, J., Prister, B., Strand, P 

and Woodhead, D. (2007) ‘Radiation-induced effects on plants and animals : findings of 

the United Nations Chernobyl Forum’, Health Physics, 93(5), pp. 427–440. 

Hobaek, A. and Larsson, P. (1990) 'Sex determination in Daphnia magna', Ecological 

Society of America. 



143 
 

Holmstrup, M., Bindesbøl, A. M., Oostingh, G. J., Duschl, A., Scheil, V., Köhler, H. R., 

Loureiro, S., Soares, A. M.V.M., Ferreira, A. L.G., Kienle, C., Gerhardt, A., Laskowski, 

R., Kramarz, P. E., Bayley, M., Svendsen, C. and Spurgeon, D. J. (2010) ‘Interactions 

between effects of environmental chemicals and natural stressors: A review’, Science 

of the Total Environment. Elsevier B.V., 408(18), pp. 3746–3762.  

Hothorn, T., Bretz, F. & Westfall, P. (2008) ‘Simultaneous inference in general 

parametric models’. Biometrical Journal. 50(3), pp. 346–363 

Hurem, S., Martín, L., Brede, D. A., Skjerve, E., Nourizadeh-Lillabadi, R., Lind, Ole C., 

Christensen, T., Berg, V., Teien, H. C., Salbu, B., Oughton, D. H., Aleström, P., Lyche, 

J. L. (2017) ‘Dose-dependent effects of gamma radiation on the early zebrafish 

development and gene expression’, PLOS ONE. Edited by G. E. Woloschak. Public 

Library of Science, 12(6), p. e0179259.  

Hussein, E. M. A. (2007) Radiation Mechanics Principles and Practice. 

Husseneder, C., Donaldson, J. R. and Foil, L. D. (2016) ‘Impact of the 2010 Deepwater 

Horizon oil spill on population size and genetic structure of horse flies in Louisiana 

marshes’, Scientific reports, 6(18968). 

Hutchings, J. A., Myers, R.A., García, V.B., Lucifora, L.O. and Kuparinen, A. (2012) 

‘Life‐history correlates of extinction risk and recovery potential’, Ecological Applications, 

22(4), pp. 1061–1067. 

IAEA (1992) ‘Effects of Ionising Radiation on Plants and Animals at levels implied by 

Current Radiation Protection Standards’, Technical Report Series No 332.  

IAEA (2006) Non-Linearity of dose-effect relationship on the example of cytogenetic 

effects in plant cells at low level exposure to ionising radiation. 

IAEA (2008) 'Annual Report 2008'. 

Ibrahim, H. A., Fawki, S., Abd El-Bar, M.M., Abdou, M.A., Mahmoud, D.M. and El-

Gohary, E.G.E. (2017) ‘Inherited influence of low dose gamma radiation on the 

reproductive potential and spermiogenesis of the cowpea weevil, Callosobruchus 

maculatus (F) (Coleoptera: Chrysomelidae)’, Journal of Radiation Research and 

Applied Sciences, 10(4), pp. 338–347. 

ICRP, 1955. Recommendations of the International Commission on Radiological 

Protection. British Journal of Radiology. Suppl. 6.  ICRP (1964) ‘Protection against 



144 
 

Electromagnetic Radiation above 3 MeV and Electrons, Neutrons and Protons’, Oxford: 

Pergamon Press, ICRP Publication 4. Pergamon Press, Oxford. 

ICRP (1977) ‘Recommendations of the International Commission on Radiological 

Protection’, Oxford: Pergamon Press; 1977. ICRP Publication 26. Annals of ICRP 1. 

ICRP (1990) ‘Recommendations of the International Commission on Radiological 

Protection’, ICRP Publication 60 (Annals of the ICRP 21 (1–3) 1991). Superseded by 

ICRP Publication 103. 

ICRP (2007) ‘The 2007 Recommendations of the International Commission on 

Radiological Protection’, ICRP Publication 103. Annals of the ICRP, 37(2-4). 

ICRP (2008) ‘Environmental Protection - the Concept and Use of Reference Animals 

and Plants’, ICRP Publication 108, Annals of the ICRP, 38, (4–6). 

ICRP (2009) ‘Environmental Protection: Transfer Parameters for Reference Animals 

and Plants’, ICRP Publication 114. Annals of the ICRP, 39(6).  

ICRP (2014) ‘Protection of the Environment under Different Exposure Situations’, 

Annals of the ICRP, ICRP Publication 124. Ann. ICRP 43(1). 

ICRP (2017) ‘Dose Coefficients for Non-human Biota Environmentally Exposed to 

Radiation’, ICRP Publication 136: Annals of the ICRP, 46(2), pp. 1–136. 

ICRU (1998) Fundamental Quantities and Units for Ionising Radiation. 

Iliakis, G., Wang, Y., Guan, J. and Wang, H. (2003) ‘DNA damage checkpoint control in 

cells exposed to ionizing radiation’, Oncogene. Nature Publishing Group, 22(37), pp. 

5834–5847.  

Iliakis, G. (2009) ‘Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle 

dependence.’, Radiotherapy and Oncology: Journal of the European Society for 

Therapeutic Radiology and Oncology, 92(3), pp. 310–5.  

Inostroza, P. A., Vera-Escalona, I., Wicht, A.J., Krauss, M., Brack, W. and Norf, H. 

(2016) ‘Anthropogenic Stressors Shape Genetic Structure: Insights from a Model 

Freshwater Population along a Land Use Gradient’, Environmental Toxicology, 50(20), 

pp. 11346–11356. 

Intelligence Systems GEO, L. (2008) ‘Atlas Ukraine Radioactive Contamination’, on the 

order of the Ministry of Ukraine of Emergencies and Affairs of Population Protection 

from the Consequences of Chernobyl Catastrophe. 



145 
 

International Atomic Energy Agency (2006) ‘Environmental Consequences of the 

Chernobyl Accident and their Remediation: Twenty Years of Experience’, IAEA, 

Vienna, p. 167.  

Jansen, B., Geldof, S., De Meester, L. and Orsini, L. (2011) ‘Isolation and 

characterization of microsatellite markers in the waterflea Daphnia magna’, Molecular 

Ecology Resources, 11, pp. 418–421. 

Johnson, J. B. and Omland, K. S. (2004) ‘Model selection in ecology and evolution’, 

Trends in Ecology & Evolution. Elsevier Current Trends, 19(2), pp. 101–108.  

Jombart, T. (2008) ‘adegenet: a R package for the multivariate analysis of genetic 

markers’, Bioinformatics, 24, pp. 1403–1405. 

Jombart, T. and Ahmed, I. (2011) ‘adegenet 1.3-1: new tools for the analysis of 

genome-wide SNP data’, Bioinformatics. 

Kada, T., Moriya, M. and Shirasu, Y. (1974) ‘Screening of pesticides for DNA 

interactions by “rec-assay” and mutagenesis testing, and frameshift mutagens 

detected’, Mutation Research/Fundamental and Molecular Mechanisms of 

Mutagenesis, 26(4), pp. 243–248. 

Kamvar, Z. N., Tabima, J. F. and Grünwald, N. J. (2014) ‘Poppr: an R package for 

genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction’, 

PeerJ, 2, p. e281. 

Karger, C. P., Jäkel, O., Palmans, H. and Kanai, T. (2010) ‘Dosimetry for ion beam 

radiotherapy’, Physics in Medicine and Biology, 55(21), pp. 193–234.  

Kassambara, A., Kosinski, M., Biecek, P and Fabian, S. (2018) ‘Drawing Survival 

Curves using “ggplot2”’, CRAN. 

Kauffman, S. A. (1993) The Origins of Order: Self-organization and Selection in 

Evolution. New York: Oxford University Press. 

Keller, W., Yan, N. D., Gunn, J. M. and Heneberry, J. (2007) ‘Recovery of acidified 

lakes: Lessons from Sudbury, Ontario, Canada’, in Acid Rain - Deposition to Recovery. 

Dordrecht: Springer Netherlands, pp. 317–322.  

Khodarev, N. N., Beckett, M., Labay, E., Darga, T., Roizman, B. and Weichselbaum, 

R.R. (2004) ‘STAT1 is overexpressed in tumors selected for radioresistance and 

confers protection from radiation in transduced sensitive cells’, Proceedings of the 

National Academy of Sciences of the United States of America, 101(6), pp. 1714–1719. 



146 
 

Kiger, W. S., Hochberg, A.G., Isreal, B., Albritton, J.R. and Goorley, T. (2005) 

‘Performance Enhancements of MCNP4B, MCNP5, and MCNPX for Monte Carlo 

Radiotherapy Planning Calculations in Lattice Geometries’, 11th International 

Symposia on Neutron Capture Therapy Boston, MA, USA. 

Kimura, M. and Maruyama, T. (1966) ‘The mutational load with epistatic gene 

interactions in fitness’, Genetics, 54(6), pp. 1337–1351.  

Kirkwood, T. B. (1977) ‘Evolution of ageing’, Nature, 270, pp. 301–304. 

Kirkwood, T. B. and Rose, M. R. (1991) ‘Evolution of senescence: late survival 

sacrificed for reproduction.’, Philosophical transactions of the Royal Society of London. 

Series B, Biological sciences, 332(1262), pp. 15–24.  

de Klein, A., Muijtjens, M., van Os, R., Verhoeven, Y., Smit, B., Carr, A. M., Lehmann, 

A. R. and Hoeijmakers, J. H. (2000) ‘Targeted disruption of the cell-cycle checkpoint 

gene ATR leads to early embryonic lethality in mice.’, Current Biology, 8, pp. 479–482. 

Klüttgen, B., Dülmer, U., Engels, M. and Ratte, H.T. (1994) ‘ADaM, an artificial 

freshwater for the culture of zooplankton’, Water Research, 28(3), pp. 743–746.  

Knoll, G. F. (1979) Radiation Detection and Measurement. New York: Wiley. 

Kondrashov, A. S. (1988) ‘Deleterious mutations and the evolution of sexual 

reproduction’, Nature, 334, pp. 435–440. 

Kortov, V. (2007) ‘Materials for thermoluminescent dosimetry: Current status and future 

trends’, Radiation measurements, 42(4–5), pp. 576–581. 

Koturbash, I., Rugo, R.E., Hendricks, C.A., Loree, J., Thibault, B., Kutanzi, K., 

Pogribny, I., Yanch, J.C., Engelward, B.P. and Kovalchuk, O. (2006) ‘Irradiation 

induces DNA damage and modulates epigenetic effectors in distant bystander tissue in 

vivo’, Oncogene, 25(31), pp. 4267–4275. 

Kovalchuk, O., Dubrova, Y. E., Arkhipov, A., Hohn, B. and Kovalchuk, I. (2000) ‘Wheat 

mutation rate after Chernobyl’, Nature. Nature Publishing Group, 407(6804), pp. 583–

584.  

Kovalchuk, O., Kovalchuk, I., Arkhipov, A., Hohn, B. and Dubrova, Y. E. (2003) 

‘Extremely complex pattern of microsatellite mutation in the germline of wheat exposed 

to the post-Chernobyl radioactive contamination’, Mutation Research/Fundamental and 

Molecular Mechanisms of Mutagenesis, 525(1–2), pp. 93–101. 



147 
 

Kozubov, G. M. Taskaev, A.I., Ladanova, N.V., Kusivanova, S.V. and Artemov, V.A. 

(1987) ‘Radioecological Studies of Coniferous Trees in the Area Exposed to the 

Chernobyl Contamination’, Syktyvkar, USSR Academy of Aciences, Moscow (in 

Russian). 

Krivolutsky, D.A., Pokarzhevsky, A.D., Usacheov, V. L., Shein, G.N., Nadvorny, V.G. 

and Viktorov, A.G. (1990) ‘Effect of radioactive contamination of environment on soil 

fauna in the area of Chernobyl NPP’, Ecology, 6, pp. 32–42. 

Kryshev, I. I. (1995) ‘Radioactive contamination of aquatic ecosystems following the 

Chernobyl accident’, Journal of Environmental Radioactivity. Elsevier, 27(3), pp. 207–

219.  

Kudryashov, Yurii, B. (2008) Radiation Biophysics (Ionizing Radiations). 

Kunkel, T. A. and Erie, D. A. (2005) ‘DNA mismatch repair.’, Annual review of 

biochemistry. Annual Reviews, 74, pp. 681–710.  

Lande, R. (1993) ‘Risks of Population Extinction from Demographic and Environmental 

Stochasticity and Random Catastrophes’, The American Naturalist, 142(6), pp. 911–

927. 

Lande, R. and Shannon, S. (1996) ‘The role of genetic variation in adaptation and 

population persistence in a changing environment’, Evolution, 50(1), pp. 434–437. 

Laptev, G. V., Pirnach, L. S. and Dyvak, T. I. (2015) ‘Determination of 90Sr in water by 

direct measurement using liquid scintillation counter’, Âderna Fìzika ta Energetika, 

16(2), pp. 177–182. 

Lehmann, P., Boratyński, Z., Mappes, T., Mousseau, T. A. and Møller, A. P. (2016) 

‘Fitness costs of increased cataract frequency and cumulative radiation dose in natural 

mammalian populations from Chernobyl’, Scientific Reports. Nature Publishing Group, 

6(1), p. 19974.  

Lehmann, T. (1993) ‘Ectoparasites: Direct impact on host fitness’, Parasitology Today. 

Elsevier Current Trends, pp. 13–17.  

Li, X. and Heyer, W. D. (2008) ‘Homologous recombination in DNA repair and DNA 

damage tolerance.’, Cell research, 18(1), pp. 99–113.  

Li, Y., Korol, A.B., Fahima, T., Beiles, A. and Nevo, E. (2002) ‘Microsatellites: genomic 

distribution, putativa functions, and mutational mechanism: a review’, Molecular 

Ecology, 11, pp. 2453–2465. 



148 
 

Lin, R. H., Lee, C.H., Chen, W.K. and Lin-Shiau, S.Y. (1994) ‘Studies on cytotoxic and 

genotoxic effects of cadmium nitrate and lead nitrate in Chinese hamster ovary cells’, 

Environmental and Molecular Mutagenesis, 23(2), pp. 143–149. 

Little, J. (1998) ‘Radiation-induced genomic instability’, International Journal of 

Radiation Biology, 74(6), pp. 663–671. 

Liu, J. and Wang, W.X. (2015) ‘Reduced cadmium accumulation and toxicity in 

Daphnia magna under carbon nanotube exposure.’, Environmental toxicology and 

chemistry / SETAC, 34(12), pp. 2824–32.  

Liu, L., Zhu, B. and Wang, G. X. (2015) ‘Azoxystrobin-induced excessive reactive 

oxygen species (ROS) production and inhibition of photosynthesis in the unicellular 

green algae Chlorella vulgaris’, Environmental Science and Pollution Research, 22(10), 

pp. 7766–7775. 

Lumey, L., Stein, A.D., Kahn, H.S., van der Pal-de Bruin, K.M., Blauw, G.J., Zybert, 

P.A. and Susser, E.S. (2007) ‘Cohort profile: The Dutch Hunger Winter Families Study’, 

International Journal of Epidemiology, 36(6), pp. 1196–1204. 

Lynch, M. (1987) ‘The Consequences of Fluctuating Selection for Isozyme 

Polymorphisms in Daphnia’, Genetics, 115(4), pp. 657–669. 

Lynch, M., Rger, R., Buthcer, D. and Gabriel, W. (1993) ‘The mutation meltdown in 

asexual populations’, J.Hered., 84(February), pp. 339–344. 

Lynch, M. and Gabriel, W. (1990) ‘Mutation load and the survival of small populations’, 

Evolution, 44, pp. 1725–1737. 

Ma, S., Liu, X., Jiao, B., Yang, Y. and Liu, X. (2010) ‘Low-dose radiation-induced 

responses: Focusing on epigenetic regulation’, International Journal of Radiation 

Biology, 86(7), pp. 517–528.  

Maguire, B. (1963) ‘The passive dispersal of small aquatic organisms and their 

colonization of isolated bodies of water’, Ecological Monographs, 33(2), pp. 161–185. 

Mangum, L. C., Borazjani, A., Stokes, J. V., Matthews, A. T., Lee, J.H., Chambers, J. 

E. and Ross, M. K. (2015) ‘Organochlorine Insecticides Induce NADPH Oxidase-

Dependent Reactive Oxygen Species in Human Monocytic Cells via Phospholipase 

A2/Arachidonic Acid’, Chemical Research in Toxicology, 28(4), pp. 570–584. 



149 
 

Mao, Z., Bozzella, M., Seluanov, A. and Gorbunova, V. (2008) ‘Comparison of 

nonhomologous end joining and homologous recombination in human cells.’, DNA 

repair, 7(10), pp. 1765–71.  

Mao, Z., Bozzella, M., Seluanov, A. and Gorbunova, V. (2014) ‘DNA repair by 

nonhomologous end joining and homologous recombination during cell cycle in human 

cells’, Cell Cycle. Taylor & Francis, 7(18), pp. 2902–2906.  

Marshall, J. S. (1962) ‘The Effects of Continuous Gamma Radiation on the Intrinsic 

Rate of Natural Increase of Daphnia Pulex’, Ecology. Wiley Ecological Society of 

America, 43(4), pp. 598–607.  

Mates, J. M. and Sanchez-Jimenez, F. M. (2000) ‘Role of reactive oxygen species in 

apoptosis: implications for cancer therapy’, The International Journal of Biochemistry & 

Cell Biology, 32(2), pp. 157–170. 

McCarthy, J. E. and Zachara, J. M. (1989) ‘Subsurface transport of Contaminants’, 

Environmental Science and Technology, 23(5), pp. 496–502.  

McLaren, I. A. (1963) ‘Effects of Temperature on Growth of Zooplankton, and the 

Adaptive Value of Vertical Migration’, Journal of the Fisheries Research Board of 

Canada, 20(3), pp. 685–727.  

McLaughlin, J. F., Hellmann, J.J., Boggs, C.L. and Ehrlich, P.R. (2002) ‘Climate 

change hastens population extinctions’, Proceedings of the National Academy of 

Sciences, 99(9), pp. 6070–6074. 

Meijering, M. P. D. (2003) ‘The long − lasting resistance of diapausing eggs from Arctic 

Cladocera frozen at – 18 ° C’, Polish Polar Research, 24(2), pp. 167–172. 

Meijvogel, B., van der Burg, B. and Bos, A. J. J. (1996) ‘Intrinsic efficiencies of TL 

materials’, Radiation Protection Dosimetry, 65(1–4), pp. 117–122. 

Mercer, T. R., Dinger, Marcel, E. and Mattick, John, S. (2009) ‘Long non-coding RNAs: 

insights into functions’, Nature reviews. Genetics, 10(3), pp. 155–159. 

Mills, S.L. & Smouse, P.E. (1994) 'Demographic consequences of inbreeding in 

remnant populations', The American Naturalist, 144(3), pp. 412-431. 

Miner, B. E., De Meester, L., Pfrender, M. E., Lampert, W. and Hairston, N. G. (2012) 

‘Linking genes to communities and ecosystems: Daphnia as an ecogenomic model’, 

Proceedings of the Royal Society B: Biological Sciences. The Royal Society, 

279(1735), pp. 1873–1882.  



150 
 

Mishina, Y., Duguid, E. M. and He, C. (2006) ‘Direct reversal of DNA alkylation 

damage.’, Chemical reviews, 106(2), pp. 215–32.  

Møller, A. P. (1993) ‘Morphology and sexual selection in the barn swallow Hirundo 

rustica in Chernobyl, Ukraine’, Proceedings of the Royal Society B: Biological 

Sciences, 252(1333), pp. 3–19. 

Møller, A. P. (2002) ‘Developmental instability and sexual selection in stag beetles from 

Chernobyl and a control area’, Ethology, 108, pp. 193–204. 

Møller, A. P., Hagiwara, A., Matsui, S., Kasahara, S., Kawatsu, K., Nishiumi, I., Suzuki, 

H., Ueda, K. and Mousseau, T. A. (2012) ‘Abundance of birds in Fukushima as judged 

from Chernobyl’, Environmental Pollution, 164, pp. 36–39.  

Moller, A. P. and Mousseau, T. A. (2011) ‘Efficiency of bio-indicators for low-level 

radiation under field conditions’, Ecological Indicators, 11(2), pp. 424–430. 

Møller, A. P. and Mousseau, T. A. (2006) ‘Biological consequences of Chernobyl: 20 

years on’, Trends in Ecology and Evolution, pp. 200–207.  

Møller, A. P. and Mousseau, T. A. (2007) ‘Species richness and abundance of forest 

birds in relation to radiation at Chernobyl’, Biology Letters, 3(5), pp. 483–486.  

Møller, A. P. and Mousseau, T. A. (2009) ‘Reduced abundance of insects and spiders 

linked to radiation at Chernobyl 20 years after the accident.’, Biology letters, 5(3), pp. 

356–9.  

Møller, A. P. and Mousseau, T. A. (2011) ‘Efficiency of bio‐indicators for low‐level 

radiation under field conditions’, Ecological Indicators, 11(2), pp. 424–430. 

Monaghan, P., Metcalfe, N. B. and Torres, R. (2009) ‘Oxidative stress as a mediator of 

life history trade-offs: Mechanisms, measurements and interpretation’, Ecology Letters, 

12(1), pp. 75–92.  

Morgan, W. F. (2003a) ‘Non-targeted and delayed effects of exposure to ionizing 

radiation: I. Radiation-induced genomic instability and bystander effects in vitro. 2003’, 

Radiation research, 159(5), pp. 567–581.  

Morgan, W. F. (2003b) ‘Non-targeted and delayed effects of exposure to ionizing 

radiation: II. Radiation-induced genomic instability and bystander effects in vitro.’, 

Radiation research, 159(5), pp. 581–596.  



151 
 

Morgan, W. F. and Sowa, M. B. (2007) ‘Non-targeted bystander effects induced by 

ionizing radiation’, Mutation Research/Fundamental and Molecular Mechanisms of 

Mutagenesis, 616(1–2), pp. 159–164. 

Mort, M. A. and Wolf, H. G. (1986) ‘The genetic structure of large lake Daphnia 

populations’, Evolution, 40, pp. 756–766. 

Möst, M., Chiaia-Hernandez, A.C., Frey, M.P., Hollender, J. and Spaak, P. (2015) ‘A 

mixture of environmental organic contaminants in lake sediments affects hatching from 

Daphnia resting eggs’, Environmental Toxicology and Chemistry, 34(2), pp. 338–345. 

Mothersill, C., Stamato, T.D., Perez, M.L., Cummins, R., Mooney, R. and Seymour, 

C.B. (2000) ‘Involvement of energy metabolism in the production of “bystander effects” 

by radiation’, British Journal of Cancer, 82(10), pp. 1740–6. 

Mothersill, C., Abend, M., Bréchignac, F., Copplestone, D., Geras’kin, S., Goodman, J., 

Horemans, N., Jeggo, P., McBride, W., Mousseau, T. A., O’Hare, A., Papineni, R. V.L., 

Powathil, G., Schofield, P. N., Seymour, C., Sutcliffe, J. and Austin, B. (2019) ‘The 

tubercular badger and the uncertain curve:- the need for a multiple stressor approach 

in environmental radiation protection’, Environmental Research, 168, pp. 130-140.  

Mothersill, C. and Seymour, C. (1998) ‘Mechanisms and implications of genomic 

instability and other delayed effects of ionizing radiation exposure’, Mutagenesis, 13(5), 

pp. 421–26.  

Mousseau, T. A. and Møller, A. P. (2011) ‘Landscape portrait: a look at the impact of 

radioactive contaminants on Chernobyl’s wildlife’, Bulletin of the Atomic Scientists, 67, 

pp. 38–46. 

Muller, H. J. (1927) ‘Artificial transmutation of the gene’, Science, 66(1699), pp. 84–87. 

Muller, H. J. (1949) ‘Redintegration of the symposium on genetics, palaeontology, and 

evolution’, in Jepson, G. L., Simpson, G. G., and Mayr, E. (eds) Genetics, 

Palaeontology and Evolution. Princeton, NJ: Princeton University Press, pp. 421–445. 

Muller, H. J. (1950) ‘Our load of mutations.’, American Journal of Human Genetics. 

Elsevier, 2(2), pp. 111–76.  

Muller, H. J. (1964) ‘The relation of recombination to mutational advance’, Mutation 

Research, 1, pp. 2–9. 



152 
 

Murphy, J. F., Nagorskaya, L. L. and Smith, J. T. (2011) ‘Abundance and diversity of 

aquatic macroinvertebrate communities in lakes exposed to Chernobyl-derived ionising 

radiation’, Journal of Environmental Radioactivity, 102(7), pp. 688–694.  

Nakanishi, T., Kato, Y., Matsuura, T. and Watanabe, M. (2014) ‘CRISPR/Cas-Mediated 

Targeted Mutagenesis in Daphnia magna’, PLOS ONE, 9(5), p. e98363. 

Nakanishi, T., Kato, Y., Matsuura, T. and Watanab, H. (2015) ‘TALEN-mediated 

homologous recombination in Daphnia magna’, Scientific Reports, 5(18312). 

Narayanan, P. K., Goodwin, E. H. and Lehnert, B. E. (1997) ‘Alpha particles initiate 

biological production of superoxide anions and hydrogen peroxide in human cells’, 

Cancer research, 57(18), pp. 3963–3971. 

Nathan, R. P., Thomas, P. J., Jain, M., Murray, A. S., and Rhodes, E. J. (2003) 

‘Environmental dose rate heterogeneity of beta radiation and its implications for 

luminescence dating: Monte Carlo modelling and experimental validation’, Radiation 

Measurements, 37(4–5), pp. 305–313. 

National Dose Assessment Working Group (NDAWG) (2009) Guidance on exposure 

pathways. 

National Research Council (NRC) (1999) Evaluation of Guidelines for Exposures to 

Technologically Enhanced Naturally Occurring Radioactive Materials. 

National Research Council, Division on Earth and Life Studies, Board on Radiation 

Effects Research, C. to A. H. R. from E. to L. L. of I. R. (2006) Health Risks from 

Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. 

Navis, S., Waterkeyn, A., Voet, T., De Meester, L. and Brendonck, L. (2013) ‘Pesticide 

exposure impacts not only hatching of dormant eggs, but also hatchling survival and 

performance in the water flea Daphnia magna’, Ecotoxicology, 22(5), pp. 803–814. 

Nazarov, A. and Gudkov, D. (2009) ‘Radiation monitoring of lake ecosystems within the 

Chernobyl accident exclusion zone’, Presented at 13th World Lake Conference, 

Wuhan, China (2009). 

Nazir, R., Khan, M., Masab, M., Rehman, H. U., Rauf, N. U., Shahab, S., Ameer, N., 

Sajed, M., Ulluh, M., Rafeeq, M. and Shaheen, Z. (2015) ‘Accumulation of Heavy 

Metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of 

physico-chemical parameters of soil and water Collected from Tanda Dam kohat.’, 

Journal of Pharmaceutical Sciences and Research, 7(3), pp. 89–97. 



153 
 

NEA (2002) ‘The release, dispersion and deposition of radionuclides’, in Chernobyl: 

Assessment of Radiological and Health Impact 2002 Update of Chernobyl: Ten Years 

On. 

Nei, M. (1972) ‘Genetic Distance between Populations’, The American Naturalist, 

106(949), pp. 283–292. 

Nei, M. and Tajima, F. (1981) ‘Genetic drift and estimation of effective population size’, 

Genetics, 98, pp. 625–640. 

Nikjoo, H., O'Neill, P., Wilson, W. E. and Goodhead, D. T. (2001) ‘Computational 

Approach for Determining the Spectrum of DNA Damage Induced by Ionizing 

Radiation’, Radiation Research, 156(5), pp. 577–583. 

Nohara, C., Taira, W., Hiyama, A., Tanahara, A., Takatsuji, T. and Otaki, J. M. (2014) 

‘Ingestion of radioactively contaminated diets for two generations in the pale grass blue 

butterfly.’, BMC evolutionary biology, 14, p. 193.  

Noyes, P. D. and Lema, S. C. (2015) ‘Forecasting the impacts of chemical pollution 

and climate change interactions on the health of wildlife’, Current Zoology, 61(4), pp. 

669–689. 

Oatway, W. B., Jones, A L., Holmes, S., Watson, S. and Cabianca, T. (2010) Ionising 

Radiation Exposure of the UK Population: 2010 Review.  

OECD (2012) Test No. 211: Daphnia magna Reproduction Test. OECD Publishing 

(OECD Guidelines for the Testing of Chemicals, Section 2).  

Okamoto, A., Yamamuro, M. and Tatarazako, N. (2015) ‘Acute toxicity of 50 metals to 

Daphnia magna.’, Journal of Applied Toxicology: JAT, 35(7), pp. 824–30.  

Olive, P. L. (1998) ‘The role of DNA single- and double-strand breaks in cell killing by 

ionizing radiation.’, Radiation Research, 150(5 Suppl), pp. S42–S51.  

Omar-Nazir, L., Shi, X., Moller, A. P., Mousseau, T., Byun, S., Hancock, S., Seymour, 

C. and Mothersill, C. (2018) ‘Long-term effects of ionizing radiation after the Chernobyl 

accident: Possible contribution of historic dose’, Environmental Research. 

165(February), pp. 55–62.  

Oro, D., Cam, E., Pradel, R. and Martınez-Abraın, A. (2003) ‘Influence of food 

availability on demography and local population dynamics in a long-lived seabird’, The 

Royal Society, 271(1537), pp. 387–396. 



154 
 

Ota, T. and Cockerham, C. C. (1974) ‘Detrimental genes with partial selfing and effects 

on a neutral locus’, Genetics Research, 23(2), pp. 191–200. 

Pace, M. L., Cole, J. J., Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., Van De 

Bogert, M. C., Bade, D. L., Kritzberg, E. S. and Bastviken, D. (2004) ‘Whole-lake 

carbon-13 additions reveal terrestrial support of aquatic food webs.’, Nature, 

427(6971), pp. 240–3.  

Paradis, E. (2010) ‘pegas: an R package for population genetics with an integrated-

modular approach’, Bioinformatics, 26, pp. 419–420. 

Paradis, E. and Schliep, K. (2018) ‘ape 5.0: an environment for modern phylogenetics 

and evolutionary analyses in R’, Bioinformatics. 

Parisot, F., Bourdineaud, J. P., Plaire, D., Adam-Guillermin, C. and Alonzo, F. (2015) 

‘DNA alterations and effects on growth and reproduction in Daphnia magna during 

chronic exposure to gamma radiation over three successive generations.’, Aquatic 

toxicology (Amsterdam, Netherlands), 163, pp. 27–36.  

Pérez, S., Rial, D. and Beiras, R. (2015) ‘Acute toxicity of selected organic pollutants to 

saltwater (mysid Siriella armata) and freshwater (cladoceran Daphnia magna) 

ecotoxicological models.’, Ecotoxicology (London, England), 24(6), pp. 1229–38. 

Phillips, B. J., James, T. E. and Anderson, D. (1984) ‘Genetic damage in CHO cells 

exposed to enzymically generated active oxygen species’, Mutation Research, 126, pp. 

265–271. 

Phillips, L. J. and Coggle, J. E. (1988) ‘The radiosensitivity of embryos of domestic 

chickens and black-headed gulls’, International Journal of Radiation Biology and 

Related Studies in Physics, Chemistry, and Medicine, 53(2), pp. 309–17. 

Pinheiro, J., Bates, D., DebRoy, S. and Sarkar, D. (2018) ‘Linear and Nonlinear Mixed 

Effects Models’. R package version 3.1-140. 

Pogribny, I., Raiche, J., Slovack, M. and Kovalchuk, O. (2004) ‘Dose-dependence, sex- 

and tissue-specificity, and persistence of radiation-induced genomic DNA methylation 

changes’, Biochemical and Biophysical Research Communications, 320(4), pp. 1253–

1261.  

van de Pol, M. and Verhulst, S. (2006) ‘Age‐Dependent Traits: A New Statistical Model 

to Separate Within‐ and Between‐Individual Effects’, The American Naturalist, 167(5), 

pp. 766–773. 



155 
 

Polikarpov, G. (1998) ‘Conceptual model of responses of organisms, populations and 

ecosystems to all possible dose rates of ionising radiation in the environment’, 

Radiation Protection Dosimetry, 75(1–4), pp. 181–185. 

Pollard, H. G., Colbourne, J. K. and Keller, W. (2003) ‘Reconstruction of Centuries-old 

Daphnia Communities in a Lake Recovering from Acidification and Metal 

Contamination’, AMBIO: A Journal of the Human Environment. Springer Royal Swedish 

Academy of Sciences, 32(3), pp. 214–218.  

R Core Team (2017) ‘R: A Language and Environment for Statistical Computing’, R 

Foundation for Statistical Computing. Vienna, Austria.  

Raiche, J., Rodriguez-Juarez, R., Pogribny, I. and Kovalchuk, O. (2004) ‘Sex and 

tissue specific expression of maintenance and de novo DNA methyltransferases upon 

low dose X-irradiation in mice’, Biochemical and Biophysical Research 

Communications, 325(1), pp. 39–47. 

Ramana, C. V., Boldogh, I., Izumi, T. and Mitra, S. (1998) ‘Activation of 

apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its 

correlation with their adaptive response to genotoxicity of free radicals’, Proceedings of 

the National Academy of Sciences of the United States of America, 95(9), pp. 5061–

5066. 

Rando, T. A. and Chang, H. Y. (2012) ‘Aging, Rejuvenation, and Epigenetic 

Reprogramming: Resetting the Aging Clock’, Cell, 148(1–2), pp. 46–57. 

Razin, A. (1998) ‘CpG methylation, chromatin structure and gene silencing-a three-way 

connection.’, The EMBO journal, 17(17), pp. 4905–8.  

Real, A., Sundell-Bergman, S., Knowles, J. F., Woodhead, D. S. and Zinger, I. (2004) 

‘Effects of ionising radiation exposure on plants, fish and mammals: Relevant data for 

environmental radiation protection’, Journal of Radiological Protection. IOP Publishing, 

pp. A123–A137.  

Reid, N. M., Proestou, D. A., Clark, B. W., Warren, W. C., Colbourne, J. K., Shaw, J. 

R., Karchner, S. I., Hahn, M. E., Nacci, D., Oleksiak, M. F., Crawford, D. L. and 

Whitehead, A. (2016) ‘The genomic landscape of rapid repeated evolutionary 

adaptation to toxic pollution in wild fish’, Science, 354(6317), pp. 1305–1308. 

Reynolds, G. T., Harrison, F. B. and Salvini, G. (1950) ‘Liquid Scintillation Counters’, 

Physical Review, 78(488). 



156 
 

Reznick, D. A., Bryga, H. and Endler, J. A. (1990) ‘Experimentally induced life-history 

evolution in a natural population’, Nature, 346(6282), pp. 357–359.  

Rhaese, H. and Freese, E. (1968) ‘Chemical analysis of DNA alteration, base liberation 

and backbone breakage of DNA and oligodeoxyadelylic acid induced by H2O2 and 

hydroxylamine’, Biochimica et Biophysica Acta, 155, pp. 476–490. 

Ricklefs, R. E. and Wikelski, M. (2002) ‘The physiology/lifehistory nexus’, Trends in 

Ecology & Evolution, 17(10), pp. 462–468. 

Riffaut, L., McCoy, K. D., Tirard, C., Friesen, V. L. and Boulinier, T. (2005) ‘Population 

genetics of the common guillemot Uria aalge in the North Atlantic: geographic impact of 

oil spills’, Marine Ecology Progress Series, 291, pp. 263–273. 

Riley, P. (1994) ‘Free radicals in biology: oxidative stress and the effects of ionizing 

radiation.’, International Journal of Radiation Biology, 65(1), pp. 27–33. 

Risom, L., Møller, P. and Loft, S. (2005) ‘Oxidative stress-induced DNA damage by 

particulate air pollution’, Mutation Research/Fundamental and Molecular Mechanisms 

of Mutagenesis, 592(1–2), pp. 119–137. 

Rogalski, M. A. (2015) ‘Tainted resurrection: metal pollution is linked with reduced 

hatching and high juvenile mortality in Daphnia egg banks’, Ecology, 96(5), pp. 1166–

1173. 

Rogers, D. W. O., Faddegon, B. A., Ding, G. X., Ma, C. M., We, J. and Mackie, T. R. 

(1995) ‘BEAM: A Monte Carlo code to simulate radiotherapy treatment units’, Medical 

Physics. Wiley-Blackwell, 22(5), pp. 503–524.  

Rutherford, E. (1910) ‘Radium Standards and Nomenclature’, Nature, 84(2136), pp. 

430–431. 

Saito, K., Tanihata, I., Fujiwara, M., Saito, T., Shimoura, Su., Otsuka, T., Onda, Y., 

Hoshi, M., Ikeuchi, Y., Takahashi, F., Kinouchi, N., Saegusa, J., Seki, A., Takemiya, H. 

and Shibata, T. (2015) ‘Detailed deposition density maps constructed by large-scale 

soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi 

Nuclear Power Plant accident’, Journal of Environmental Radioactivity, 139, pp. 308–

319.  

Salbu, B. (2009) ‘Challenges in radioecology’, Journal of Environmental Radioactivity, 

100(12), pp. 1086–1091. 



157 
 

Santos, E. D., Hamilton, P. B., Coe, T. S., Ball, J. S., Cook, A. C., Katsiadaki, I. and 

Tyler, C. R. (2013) ‘Population bottlenecks, genetic diversity and breeding ability of the 

three-spined stickleback (Gasterosteus aculeatus) from three polluted English Rivers’, 

Aquatic Toxicology, 142–143, pp. 264–271. 

Sarapultseva, E. I. and Dubrova, Y. E. (2016) ‘The long-term effects of acute exposure 

to ionising radiation on survival and fertility in Daphnia magna’, Environmental 

Research, 150, pp. 138–143.  

Sarapultseva, E. I. and Gorski, A. I. (2013) ‘Low-dose γ-Irradiation affects the survival 

of exposed Daphnia and their offspring’, Dose-Response. SAGE Publications, 11(4), 

pp. 460–468.  

Saxen, R., Taipale, T. K. and Aaltonen, H. (1987) ‘Radioactivity of wet and dry 

deposition and soil in Finland after the Chernobyl accident in 1986 Supplement 2 to 

Annual Report STUK A55’.  

Schlotterer, C., Vogl, C. and Tautz, D. (1997) ‘Polymorphism and Locus-Specific 

Effects on Polymorphism at Microsatellite Loci in Natural Drosophila melanogaster 

Populations’, Genetics, 146(1), pp. 309–320. 

Seeberg, E., Eide, L. and Bjørås, M. (1995) ‘The base excision repair pathway’, Trends 

in Biochemical Sciences, 20(10), pp. 391–397.  

Seymour, C. B., Mothersill, C. and Alper, T. (1986) ‘High yields of lethal mutations in 

somatic mammalian cells that survive ionizing radiation’, International journal of 

radiation biology and related studies in physics, chemistry, and medicine, 50(1), pp. 

167–179. 

Shaw, J. R., Pfrender, M. E., Eads, B. D., Klaper, R., Callaghan, A., Sibly, R. M., 

Colson, I., Jansen, B., Gilbert, D. and Colbourne, J. K. (2008) ‘Daphnia as an emerging 

model for toxicological genomics’, Advances in Experimental Biology, 2, pp. 165–219, 

327–328. 

Shea, N., Pen, I. and Uller, T. (2011) ‘Three epigenetic information channels and their 

different roles in evolution’, Journal of Evolutionary Biology, 24(6), pp. 1178–1187. 

Shestopalov, V. M. (1996) Atlas of the Chernobyl Exclusion Zone. 

Shevchenko, V. A., Pomerantseva, M.D., Ramaiya, L.K., Chekhovich, A.V. and Testov, 

B.V. (1992) ‘Genetic disorders in mice exposed to radiation in the vicinity of the 

Chernobyl nuclear power station’, Science of the Total Environment, 112(1), pp. 45–56. 



158 
 

Shinohara, A. and Ogawa, T. (1995) ‘Homologous recombination and the roles of 

double-strand breaks’, Trends in Biochemical Sciences, 20(10), pp. 387–391.  

Shirasu, Y., Moriya, M., Kato, K., Furuhashi, A. and Kada, T. (1976) ‘Mutagenicity 

screening of pesticides in the microbial system’, Mutation Research/Genetic 

Toxicology, 40(1), pp. 19–30. 

Shrivastav, M., De Haro, L. P. and Nickoloff, J. A. (2008) ‘Regulation of DNA double-

strand break repair pathway choice.’, Cell research. Shanghai Institutes for Biological 

Sciences, Chinese Academy of Sciences, 18(1), pp. 134–47.  

da Silva, J. and Crispim, V. R. (2001) ‘Moderator–collimator-shielding design for 

neutron radiography systems using 252Cf’, Applied Radiation and Isotopes, 54(2), pp. 

217–225. 

Slatkin, M. (1987) ‘Gene flow and the geographic structure of natural populations’, 

Science, 236(4803), pp. 787–792. 

Smirnov, D. A., Brady, L., Halasa, K., Morley, M., Solomon, S. and Cheung, V.G. 

(2012) ‘Genetic variation in radiation-induced cell death’, Genome research, 22(2), pp. 

332–339. 

Smith, J.T. and Beresford, N. A. (1989) ‘Chernobyl radiocaesium in an upland sheep 

farm ecosystem.’, The British veterinary journal, 145(3), pp. 212–9.  

Smith, J.T. and Beresford, N. A. (2005) Chernobyl: Catastrophe and Consequences. 

Springer Science & Business Media.  

Smith, J.T., Lerebours, A., Devonshire, M., Willey, N., Wood, M., Beresford, N., 

Copplestone, D., Raines, K., Jha, A. (2016) ‘Comment on: Lehmann, P., Boratyński, Z., 

Mappes, T., Mousseau, T.A. & Møller, A.P. 2016. Fitness costs of increased cataract 

frequency and cumulative radiation dose in natural mammalian populations from 

Chernobyl’. Nature Scientific Reports. 6: 19974. Nature Publishing Group. Available at: 

https://www.nature.com/articles/srep19974#article-comments [Accessed 30 Nov. 18] 

Sokolov, V. E., Ryabov, I. N., Ryabtsev, I. A., Tichomirov, F. A., Shevchenko, V. A. and 

Taskaev, A. I. (1993) ‘Ecological and genetic consequences of the Chernobyl atomic 

power plant accident’, Vegetatio, 109, pp. 91–99. 

Somers, C. M., Yauk, C. L., White, P. A., Parfett, C. L. and Quinn, J. S. (2002) ‘Air 

pollution induces heritable DNA mutations’, Proceedings of the National Academy of 

Sciences of the United States of America, 99(25), pp. 15904–15907. 



159 
 

von Sonntag, C. (2007) DNA Lesions Induced by Ionizing Radiation. In: O. G. 

Vijayalaxmi (eds) Chromosomal Alterations. Springer, Berlin, Heidelberg 

Spurgeon, D. J. (In Press, Corrected Proof) ‘Higher than … or lower than ….? 

Evidence for the validity of the extrapolation of laboratory toxicity test results to predict 

the effects of chemicals and ionising radiation in the field’, Journal of Environmental 

Radioactivity. 

Strepetkaitė, D., Alzbutas, G., Astromskas, E., Lagunavičius, A., Sabaliauskaitė, R., 

Arbačiauskas, K. and Lazutka, J. (2015) ‘Analysis of DNA methylation and 

hydroxymethylation in the genome of crustacean Daphnia pulex’, Genes, 7(1), pp. 1–

14.  

Struhl, K. (1998) ‘Histone acetylation and transcriptional regulatory mechanisms’, 

Genes and development, 12(5), pp. 599–606. 

Sturtevant, A. H. (1937) ‘Essays on evolution. I. On the effects of selection on mutation 

rate’, The Quarterly Review of Biology, 12(4), pp. 464–467. 

Suarez-Ulloa, V., Gonzalez-Romero, R. and Eirin-Lopez, J. M. (2015) ‘Environmental 

epigenetics: A promising venue for developing next-generation pollution biomonitoring 

tools in marine invertebrates’, Marine Pollution Bulletin, 98(1–1), pp. 5–13. 

Sung, P. and Klein, H. (2006) ‘Mechanism of homologous recombination: mediators 

and helicases take on regulatory functions.’, Nature reviews. Molecular cell biology, 

7(10), pp. 739–50.  

Szoke, I., Louka, M. N., Bryntesen, T. R., Bratteli, J., Edvardsen, S. T., RøEitrheim, K. 

K. and Bodor, K. (2014) ‘Real-time 3D radiation risk assessment supporting simulation 

of work in nuclear environments’, Journal of Radiological Protection, 34, pp. 389–416. 

Szyf, M. (2015) ‘Nongenetic inheritance and transgenerational epigenetics’, Trends in 

Molecular Medicine, pp. 134–144.  

Takai, H., Tominaga, K., Motoyama, N., Minamishima, Y. A., Nagahama, H., 

Tsukiyama, T., Ikeda, K., Nakayama, K., Nakanishi, M. and Nakayama, K. (2000) 

‘Aberrant cell cycle checkpoint function and early embryonic death in Chk1−/− mice’, 

Genes and development, 14, pp. 1439–1447. 

Taskaev, A. I., Testov, B. V., Materiy, L. D. and Shevchenko, V. A. (1988) ‘Ecological 

and Morpho-Physiological Consequences of Chernobyl Accident on Mice, Preprint’, 

Komi Scientific Center of the Academy of Sciences of USSR, Syktyvkar (in Russian). 



160 
 

Tekin, H. O. and Manici, T. (2017) ‘Simulations of mass attenuation coefficients for 

shielding materials using the MCNP-X code’, Journal of Nuclear Science and 

Technology, 28:95. 

Testov, B. V. and Taskaev, A. I. (1990) ‘Dynamics of mouse-type rodent populations in 

the zone of the Chernobyl NPP. In: Ryabov, I.N. and Ryabtsev, I.A.’, in Biological and 

Radio-ecological Aspects of the Consequences of the Chernobyl Accident. USSR 

Academy of Sciences, Moscow (in Russian), p. 86. 

The Radiation Incident Monitoring Network (RIMNET) (2017) Ambient gamma radiation 

dose rates across the UK - GOV.UK, 2013. Available at: 

https://www.gov.uk/government/publications/ambient-gamma-radiation-dose-rates-

across-the-uk (Accessed: 24 April 2018). 

Therneau, T. (2015) ‘A Package for Survival Analysis in R’.  

Therneau, T. (2018) ‘coxme: Mixed Effects Cox Models’.  

Thielsch, A., Brede, N., Petrusek, A., De Meester, L. and Schwenk, K. (2009) ' 

Contribution of cyclic parthenogenesis and colonization history to population structure 

in Daphnia', Molecular Ecology, 18(8), pp 1616-1628. 

Thiessen, K. M., Thorne, M. C., Maul, P. R., Pröhl, G. and Wheater, H. S. (1999) 

‘Modelling radionuclide distribution and transport in the environment’, Environmental 

Pollution, 100, pp. 151–177.  

Timofeeff-Ressovsky, N. W. (1940) ‘Mutations and geographical variation’, in Huxley, 

S. J. (ed.) The New Systematics. The Systematics Association, London, pp. 73–136. 

Trijau, M., Asselman, J., Armant, O., Adam-Guillermin, C., De Schamphelaere, K. A. C. 

and Alonzo, F. (2018) ‘Transgenerational DNA methylation changes in Daphnia magna 

exposed to chronic gamma irradiation’, Environmental Science & Technology, p. 

acs.est.7b05695.  

Tubina, M., Feinendegen, L. E., Yang, C. and Kaminski, J. M. (2009) ‘The Linear No-

Threshold Relationship Is Inconsistent with Radiation Biologic and Experimental Data’, 

Radiology, 251(1), pp. 13–22. 

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 

(1996) ‘Sources and effects of ionizing radiation’, Scientific annex within 1996 

UNSCEAR report to the general assembly. New York: United Nations. 



161 
 

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 

(1982) ‘Ionizing radiation: sources and biological effects’, United Nations Publication 

No. E.82.IX.8.  

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). 

2000. ‘UNSCEAR 2000 report volume I. Sources and effects of ionizing radiation’. 

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 

(2008) ‘Sources and Effects of Ionizing Radiation: Sources’, United Nations Scientific 

Committee on the Effects of Atomic Radiation. 

Valko, M., Morris, H. and Cronin, M. T. (2005) ‘Metals, toxicity and oxidative stress’, 

Current Medicinal Chemistry, 12(10), pp. 1161–208. 

Vanhoudt, N., Vandenhove, H., Real, A., Bradshaw, C. and Stark, K. (2012) ‘A review 

of multiple stressor studies that include ionising radiation’, Environmental Pollution. 

Elsevier Ltd, 168, pp. 177–192.  

Vaupel, J. W., Manton, K. G. and Stallard, E. (1979) ‘The impact of heterogeneity in 

individual frailty on the dynamics of mortality’, Demography, 16(3), pp. 439–454. 

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth ed. 

Springer, New York, NY. 

Verhoeven, K. J. F. and Preite, V. (2014) ‘Epigenetic variation in asexually reproducing 

organisms’, Evolution, Special se, pp. 644–655. 

Via, S. and Lande, R. (1985) ‘Genotype-Environment Interaction and the Evolution of 

Phenotypic Plasticity’, Evolution, 39(3), pp. 505–522. 

de Villemereuil, P., Gaggiotti, O. E., Mouterde, M. and Till-Bottraud, I. (2016) ‘Common 

garden experiments in the genomic era: new perspectives and opportunities’, Heredity, 

116(3), pp. 249–254. 

Vizoso, D. B. (2005) ‘Life Cycle and Development’, in Ecology, Epidemiology, and 

Evolution of Parasitism in Daphnia, p. 16. 

Waddington, C, H. (1957) ‘The strategy of the genes. A discussion of some aspects of 

theoretical biology. With an appendix by H. Kacser.’, The strategy of the genes. A 

discussion of some aspects of theoretical biology. With an appendix by H. Kacser, p. 

ix+-262. 

Waldren, C. A. (2004) ‘Classical radiation biology dogma, bystander effects and 

paradigm shifts’, Human & Experimental Toxicology, 23(2), pp. 95–100. 



162 
 

Walser, B. and Haag, C. R. (2012) ‘Strong intraspecific variation in genetic diversity 

and genetic differentiation in Daphnia magna: the effects of population turnover and 

population size’, Molecular Ecology, 21(4), pp. 851–861. 

Warner, F. and Harrison, R. M. (1993) Radioecology after Chernobyl. SCOPE 50. 

Weir, B. S. and Cockerham, C. C. (1984) ‘Estimating f-statistics for the analysis of 

population structure’, Evolution, 38(6), pp. 1358–1370. 

Whalen, D. J., Hollowell, D. E. and Hendricks, J. S. (1991) ‘MCNP: Photon Benchmark 

Problems’, LA-12212, Los Alamos National Laboratory, Los Alamos. 

Wheeler, D. A. (1988) ‘Atmospheric dispersal and deposition of radioactive material 

from Chernobyl’, Atmospheric Environment, 22(5), pp. 853–863. 

Wickliffe, J. K. and Baker, R. J. (2011) ‘Clarification and explanation of experimental 

design and mechanistic dose‐response effects for significant radioecological impacts’, 

Biology Letters, 5, pp. 356–359. 

Williams, G. C. (1957) ‘Pleiotropy, Natural Selection, and the Evolution of Senescence’, 

Evolution, 11(4), pp. 398–411. 

Wood, S. and Scheipl, F. (2017) ‘gamm4: Generalized Additive Mixed Models using 

“mgcv” and “lme4”’, CRAN. 

Workshop of the US Department of Energy (DOE), Washington, DC, and the National 

Institutes of Health (NIH). (2000) ‘Cellular Responses to Low Doses of Ionizing 

Radiation’, in Workshop of the US Department of Energy (DOE), Washington, DC, and 

the National Institutes of Health (NIH), Bethesda, MD, DOE Report Publication SC-047. 

Wright, S. (1951) ‘The genetical structure of populations’, Annals of Eugenics, 15(4), 

pp. 323–354. 

Yang, J. L., Wang, L.C., Chamg, C.Y. and Liu, T. Y. (1999) ‘Singlet oxygen is the major 

species participating in the induction of DNA strand breakage and 8-hydrocy-

deoxyguanosine adduct by lead acetate’, Environmental and Molecular Mutagenesis, 

33(3), pp. 194–201. 

Youngson, N. A. and Whitelaw, E. (2008) ‘Transgenerational Epigenetic Effects’, 

Annual Review of Genomics and Human Genetics, 9(1), pp. 233–257.  

Zaffagnini, F. (1987) ‘Reproduction in Daphnia’, Mem Ist Ital Idrobiol, 45, pp. 245–284. 



163 
 

Zaka, R., Chenal, C. and Misset, M. T. (2004) ‘Effects of low doses of short-term 

gamma irradiation on growth and development through two generations of Pisum 

sativum’, Science of the Total Environment, 320, pp. 121–129.  

Zhou, B. S. and Elledge, S. J. (2000) ‘The DNA damage response: putting checkpoints 

in perspective’, Nature, 408(6811), pp. 433–439. 

Zielske, S. P. (2015) ‘Epigenetic DNA methylation in radiation biology: On the field or 

on the sidelines?’, Journal of Cellular Biochemistry, 116(2), pp. 212–217.  

 

 

 

  



164 
 

  



165 
 

Appendices 

 
 

Appendix A: (A) map showing the location of Slavutych (where sites 1 and 2 are 

located) relative to the Chernobyl Exclusion Zone (CEZ). Adapted from 

(UNSCEAR, 2000). (B) Daphnia sampling sites across the CEZ.  
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Lake MNO 
B4 

Range 
B4 

MNO 
B5 

Range 
B5 

MNO 
B6 

Range 
B6 

MNO 
B7 

Range 
B7 

Vediltsy 18 4 - 42 21 5 - 36 21 4 - 46 22 6 - 46 

Yampol 26 8 - 46 33 18 - 47 35 20 - 52 32 19 - 54 

Glinka 27 14 - 41 31 14 - 45 32 10 - 48 26 6 - 49 

Buryakovka 23 4 - 38 27 5 - 46 30 8 - 53 27 5 - 55 

Semikhody 12 4 - 18 14 6 - 24 13 4 - 24 16 7 - 33 

Krasnyansky 19 6 - 39 19 4 - 41 22 4 - 55 23 5 - 49 

Azbuchin 25 10 - 41 29 4 - 46 31 6 - 58 28 7 - 46 

Gluboke 15 5 - 27 18 6 - 31 23 9 - 34 21 9 - 25 

 

 

Lake MNO 
B8 

Range 
B8 

MNO 
B9 

Range 
B9 

MNO 
B10 

Range 
B10 

MNO 
B11 

Range 
B11 

Vediltsy 23 6 - 46 20 7 - 50 21 6 - 45 15 5 - 35 

Yampol 31 13 - 52 23 9 - 42 21 6 - 41 23 10 - 49 

Glinka 21 8 - 45 22 5 - 39 18 4 - 33 18 5 - 32 

Buryakovka 21 6 - 59 23 8 - 49 21 5 - 44 22 10 - 55 

Semikhody 17 7 - 31 22 5 - 38 20 5 - 37 19 4 - 48 

Krasnyansky 22 5 - 57 21 4 - 49 21 4 - 35 18 5 - 34 

Azbuchin 23 5 - 46 16 4 - 40 20 5 - 42 13 4 - 24 

Gluboke 16 6 - 25 11 5 - 19 11 5 - 17 11 5 - 19 

 

  

Appendix B: Summary data for Chapter two. n = the number of genotypes tested in 

the experiment once non-reproducing individuals were removed, DOD = day of 

death, MNO = mean number of offspring, B = brood, the range is given in days. 

Lake n Mea
n 

DOD 

Range 
DOD 

MN
O 
B1 

Rang
e B1 

MN
O 
B2 

Rang
e B2 

MN
O 
B3 

Rang
e B3 

Vediltsy 4 51 37 - 62 8 3 - 18 10 4 - 22 13 4 - 30 

Yampol 2 51 45 - 67 8 4 - 14 12 6 - 20 19 9 - 33 

Glinka 4 48 32 - 71 7 4 - 12 13 5 - 21 19 4 - 27 

Buryakovka 4 45 24 - 61 7 4 - 13 11 5 - 17 19 9 - 33 

Semikhody 4 57 29 - 69 8 2 - 14 13 4 - 25 13 6 - 27 

Krasnyansk
y 

6 53 29 - 67 8 2 - 19 11 4 - 29 15 4 - 35 

Azbuchin 4 50 26 - 64 6 1 - 12 12 4 - 23 18 4 - 31 

Gluboke 2 47 28 - 62 7 4 - 10 10 4 - 19 15 4 - 19 
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Lake MNO 
B12 

Range 
B12 

MNO 
B13 

Range 
B13 

MNO 
B14 

Range 
B14 

MNO 
B15 

Range 
B15 

Vediltsy 19 4 - 42 15 10 - 21 11 4 - 17   
Yampol 26 4 - 52 21 8 - 40 15 15 - 15   
Glinka 13 4 - 27 17 10 - 33 13 13 - 13 20 20 - 20 

Buryakovka 17 6 - 49       
Semikhody 17 8 - 32 15 6 - 28 18 14 - 21   

Krasnyansky 19 4 - 43 19 8 - 35 22 10 - 34   
Azbuchin 15 3 - 26 15 5 - 31 17 10 - 24   
Gluboke 11 7 - 15 10 10 - 10     

 

Lake MNO 
B16 

Range 
B16 

Vediltsy   

Yampol   

Glinka 7 7 - 7 

Buryakovka   

Semikhody   

Krasnyansky   

Azbuchin   

Gluboke   
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Appendix C: 137Cs, 90Sr and 241Am activity concentrations in water and sediment 

samples collected from Smolin lake in Slavutych. The activity concentrations for 

239Pu are not provided as the levels were too low to measure. Water (w) 

concentrations are in Bq l-1 and sediment (s) concentrations in Bq g-1 (dry weight).  

137Cs 

(w) 

137Cs (s) 90Sr (w) 90Sr (s) 241Am (w) 241Am (s) 

0.03 0.13-0.59 0.03   0.002.0-0.015 

 

 

 

Appendix D: Hardy-Weinberg test for each locus. Significant values are highlighted 

in bold.  

Locus χ2 d.f* Pr(chi^2 >) p-value exact 

B064 76.61 6 < 0.0001 < 0.0001 

B050 139.73 6 < 0.0001 < 0.0001 

B008 84.22 6 < 0.0001 < 0.0001 

B030 252.93 21 < 0.0001 < 0.0001 

B031 164.07 21 < 0.0001 < 0.0001 

B065 323.3 36 < 0.0001 < 0.0001 

B135 10.04 1 < 0.01 < 0.0001 

B088 11.45 6 0.08 0.06 

B174 160.35 10 < 0.0001 < 0.0001 

B075 222.68 28 < 0.0001 < 0.0001 

B155 86.39 6 < 0.0001 < 0.0001 

*d.f = degrees of freedom 
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Appendix E: Relative lake distances from Gluboke (the lake with the highest level 

of contamination, estimated ~ 180 µGy h-1). Approximate distances are given in km.  

Lake Upper dose estimate Distance 

Smolin 0.12 70 

Vediltsy 0.10 54 

Yampol 0.20 27 

Glinka 0.17 27 

Buryakovka 1.77 13 

Krasnyansky 55.79 3 

Gluboke 181.15 0 
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Appendix F: Genetic distance tree generated based on Nei’s genetic distances 

(Nei, 1972), generated using the ape package in R (Paradis and Schliep, 2018). 
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Appendix G: Summary data for Chapter four. DOD = day of death, MNO = mean 

number of offspring, B = brood, the range is given in days. 

Dose 
rate 

(µGy h-

1) 
Mean 
DOD 

Range 
DOD 

MNO 
B1 

Range 
B1 

MNO 
B2 

Range 
B2 

MNO 
B3 

Range 
B3 

0.45 35 13 – 50 7 4 – 9 10 4 – 18 12 7 – 19 

5 40 20 – 50 8 2 – 17 10 6 – 14 14 2 – 25 

15 34 15 – 44 7 3 – 16 11 3 – 20 15 3 – 24 

84 39 11 – 50 6 3 – 10 8 3 – 14 12 2 – 17 

350 35 18 – 50 7 4 – 9 11 4 – 17 11 6 – 16 

 

Dose 
rate 

(µGy h-

1) 
MNO 
B4 

Range 
B4 

MNO 
B5 

Range 
B5 

MNO 
B6 

Range 
B6 

MNO 
B7 

Range 
B7 

0.45 15 8 – 20 20 11 – 26 26 13 – 34 24 15 – 40 

5 18 12 – 27 21 12 – 31 26 16 – 36 26 19 – 36 

15 18 2 – 27 17 2 – 29 21 5 – 32 26 18 – 33 

84 15 8 – 21 18 4 – 26 22 15 – 33 25 14 – 36 

350 15 6 – 25 20 14 – 28 22 13 – 30 27 17 – 49 

 

Dose rate 
(µGy h-1) 

MNO 
B8 

Range 
B8 

0.45 22 15 – 30 

5 26 17 – 37 

15 27 14 – 39 

84 25 16 – 35 

350 23 13 – 40 
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Appendix I 

Survival in the control treatment varied significantly across generations (COXPH: χ2
3= 

12.19, p < 0.01). Similarly, there was significant variation in the total number of 

offspring produced (GLM: χ2
3= 229.11, p < 0.0001), the day of production of the first 

and fourth broods (first brood, COXPH: χ2
3= 34.71, p < 0.0001. Fourth brood, COXPH: 

χ2
3= 37.72, p < 0.0001) and in age-specific fecundity (LME: χ2

3= 25.8, p < 0.001) 

across generations in the control treatment. I therefore analysed each generation 

separately throughout Chapter five.   
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Appendix J: Survival estimates with 95% confidence intervals for each treatment 

group in generations (A) one, (B) two, (C) four and (D) six. 
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Appendix K: Effect of treatment group on time until first brood release in generations 

(A) one, (B) two, (C) four and (D) six. Shaded regions denote ± 95% confidence 

intervals [CIs]).  
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Appendix L: Effect of treatment group on time until the fourth brood release in 

generations (A) one, (B) two, (C) four and (D) six. Shaded regions denote ± 95% 

confidence intervals [CIs]). 



178 
 

 

Appendix M: Boxplot showing the total number of offspring produced by each 

treatment group over five clutches in generations (A) one, (B) two, (C) four and (D) 

six. The box shows the upper and lower quartiles within the data and the line within 

each box shows the median value. The lines outside of each box show the range of 

the data. The dots show the raw data values. 
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Appendix O: Total number of lineages lost from each treatment in each 

generation. 

Generation Control Radiation 

1 - - 

2 5 6 

4 10 5 

6 7 1 

Total 22 12 

Appendix N: Total number of individuals that died in each treatment in each 

generation. 

Generation Control Radiation Recovery 

1 4 4 - 

2 1 4 4 

4 2 6 6 

6 0 4 1 

Total 7 18 11 


