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Abstract 

Rapid environmental changes are driving shifts in forest distribution across the globe 

with significant implications for ecosystem function and biodiversity. Despite the prevalence of 

forest range shifts across the globe, reliable estimations of changes in forest extent and 

structure at the elevational treeline (the elevational limit of forest distribution) are difficult to 

obtain due to limited access to mountainous environments. Remote sensing data is well suited 

to quantifying environmental change across large areas; however, a lack of published research 

that uses remotely sensed data in studies of mountain forests has led to uncertainty 

surrounding how much information about forest structure at the mountain treeline can be 

resolved in remotely sensed data. This uncertainty presents a major obstacle to landscape-scale 

quantification of forest range shifts and estimation of the impacts forest advance will have on 

ecosystem function and biodiversity in mountain systems. The distribution of high-elevation 

coniferous forests in the Central Mountain Range, Taiwan, has changed rapidly with increases 

in treeline elevation and forest density reported. Climate is considered to be the primary 

regulatory factor of the treeline in the Central Mountain Range. However, topography modifies 

the response of treeline advance to environmental change resulting in a structurally diverse 

treeline. This research combines a network of field observations across the Central Mountain 

Range, Taiwan, with aerial photography and multispectral satellite imagery to 1) determine 

which spectral features derived from multispectral satellite remote sensing best explain 

variation in mountain treeline structure and the effect of sensor spatial resolution on the 

characterisation of structural variation; 2) quantify variation in rates of forest advance; 3) 

quantify the accuracy of forest change assessments using a sample-based area estimation and 

classifying spectral trends identified in a time-series of satellite remote sensing data, and 4) 

quantify changes in above-ground woody biomass. The results presented here show that the 

green, red and short-wave infrared spectral bands and vegetation indices derived from these 

spectral bands offer the best characterisation of vegetation structure across the treeline 

ecotone with R2 values reported up to 0.723. Sample-based change assessment using repeat 

aerial photography shows a 295.0 ha increase in forest area and a 115.1 m increase in the mean 

elevation of forest establishment between 1963 and 2016. The rate of forest advance is spatially 

variable with forest establishment occurring most rapidly on east and south facing slopes with 

gradients of 0-20° and is also temporally variable with the rate of forest establishment peaking 

between 1980 and 2001. The classification of spectral trends in time-series analysis shows that 

Landsat-based change estimates underestimate the area of forest advance in the Central 

Mountain Range. However, the general pattern and direction of habitat change are consistent 
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with those derived from sample-based estimates of change using repeat aerial photography 

offering the opportunity for error adjustment. Consequently, the results presented within this 

thesis show a net gain in above-ground woody biomass of 4688.7 t C in areas above 2400 m 

a.s.l. in the Central Mountain Range, Taiwan, and a reduction in the area of alpine grassland. 

The methods presented in this thesis provide a major opportunity to improve the quantification 

of forest range shifts across mountain systems allowing the estimation of landscape-scale 

impacts of forest advance on biodiversity and ecosystem function in data-poor mountain 

regions. 
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This thesis is presented as a collection of papers. Details and the current status of each paper 

are shown below: 

 

 

Integrating remote sensing and demography for more efficient and effective assessment of 

changing mountain forest distribution 

Ecological Informatics 43: 106–115 

 

 

Quantifying structural diversity to better estimate change at mountain forest margins 

Remote Sensing of Environment 223: 291–306 

 

 

Identifying variation in patterns of forest advance in a high-elevation ecosystem 

Not yet submitted 

 

 

Forest range shifts are increasing carbon sequestration potential in a subtropical mountain 

region 
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Abstract 

Species range shifts have been well studied in light of rising global temperatures and 

the role climate plays in restricting species distribution. In mountain regions, global trends show 

upward shifts of elevational treelines. However, there is significant variation in response 

between geographic locations driven by climatic and habitat heterogeneity and biotic 

interactions. Accurate estimation of treeline shifts requires fine-scale patterns of forest 

structure to be discriminated across mountain ranges. Satellite remote sensing allows detailed 

information on forest structure to be extrapolated across mountain ranges, however, variation 

in methodology combined with a lack of information on accuracy and repeatability has led to 

high uncertainty in the utility of remotely sensed data in studies of mountain treelines. We unite 

three themes; suitability of remote sensing products, ecological relevance of classifications and 

effectiveness of the training and validation process in relation to the study of mountain treeline 

ecotones. We identify needs for further research comparing the utility of different remotely 

sensed data sets, better characterisation of treeline structure and incorporation of accuracy 

assessment. Collectively, the improvements we describe will significantly improve the utility of 

remote sensing by facilitating a more consistent approach to defining geographic variation in 

treeline structure, improving our ability to link processes from stand to regional scale and the 

accuracy of range shift assessments. Ultimately, this advance will enable better monitoring of 

mountain treeline shifts and estimation of the associated to biodiversity and ecosystem 

function. 
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1.1 Introduction 

Climate plays a key role in limiting plant species’ distribution (Pearson and Dawson, 

2003). Changes in temperature and precipitation will, therefore, lead to the exacerbation or 

alleviation of plant stress resulting in alterations to recruitment, growth rates, and adult 

mortality at climate-limited range edges (Lenoir et al., 2009; Peñuelas et al., 2007). Climate 

change scenarios predict a mean global temperature increase between 0.3-4.8 °C by 2100 

compared to the 1985-2005 mean (IPCC, 2013). Consequently, shifts in the geographical 

distribution of a wide range of species are expected as climate change contributes to range 

expansion, retraction or fragmentation (Lenoir and Svenning, 2013; Masek, 2001). Regional 

variation in temperature anomalies means mountain ranges are expected to experience a 

higher than average temperature increase than other areas of the globe, making them 

particularly important for research into the impacts of climate change (Dirnböck et al., 2011; 

IPCC, 2007).   

Understanding the role that contemporary climate change has played in species range 

shifts has been the focus of much activity over recent decades (Chen et al., 2011a; Gottfried et 

al., 2012; Lenoir and Svenning, 2015; Parmesan and Yohe, 2003). In mountain ranges across the 

globe, average elevational range shifts have been estimated between 6.1 m (Parmesan and 

Yohe, 2003) and 12.2 m (Chen et al., 2011a) per decade. Although global average values 

demonstrate a general uphill shift of species, they hide important variation in this response 

between species and geographical locations. For example, Chen et al. (2011a) report that 25% 

of species showed downhill shifts of elevational range limits while Harsh et al. (2009) report 

that of 166 treeline sites investigated 52.4% showed upward treeline shifts, 46.4% showed no 

change and 1.2% showed movement downslope. The scientific literature on this topic shows a 

significant bias in research effort towards North American and European mountain ranges. 

Southern hemisphere and Asian ranges are less well studied and, consequently, strongly under-

represented in the literature (Chen et al., 2011a; Harsch et al., 2009). The underrepresentation 

and omission of large mountain ranges combined with interspecific variation in range shifts 

results in high uncertainty in the extent and impacts of species distribution shifts in mountain 

ranges at a global scale.  

The altitudinal treeline has been used as an indicator for assessing species range shifts 

in mountainous regions for decades. The separation between closed-canopy subalpine forest 

and open vegetation at higher altitudes and the sensitivity to climatic change make mountain 

treelines ideal candidates for monitoring species range shifts across wide geographic areas. 

Changes in altitudinal treeline position such as those reported in the meta-analysis of Harsch et 
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al. (2009) tell only part of the story of how mountain forests respond to changes in climate. In 

areas where mountain treelines have not advanced upward, forests have been shown to 

respond to climatic change through increased tree density below the upper tree limit or by 

lateral expansion across mountain slopes (e.g. Bharti et al., 2012; Klasner and Fagre, 2002). 

Consequently, when assessing mountain forest range shifts there is a need to identify both 

lateral and altitudinal movement in the treeline. 

Non-uniformity in species range shifts is partly driven by high habitat heterogeneity in 

mountain areas. Temperature is routinely noted as the key limiting factor in plant species 

distribution (Chen et al., 2011a; Gottfried et al., 2012; Lenoir and Svenning, 2015; Parmesan and 

Yohe, 2003). At a global scale treeline position can be approximated by temperature alone with 

a mean growing season temperature between 5.5–7.5 °C limiting tree growth (Körner and 

Paulsen, 2004) and winter temperatures playing a key role in juvenile survival (Kullman, 2007; 

Rickebusch et al., 2007). However, in mountainous systems, topographic and geological controls 

play important roles alongside climate in limiting species distribution (Chen et al., 2011b; 

Forero-Medina et al., 2011; Pounds et al., 2006). Topography alters local temperature and 

precipitation regimes resulting in cooler conditions on poleward facing slopes (Malanson et al., 

2011; Suggitt et al., 2011). Rain shadows created on the leeward side of mountains may result 

in a moisture limited system where the response to climatic change would be expected to differ 

from systems where temperature is the primary limiting factor (Foden et al., 2007). Topographic 

modification of regional climate regimes leads to a variable treeline position in mountain 

regions that differs with slope and aspect at a landscape scale (e.g. Butler et al., 2007; Case and 

Buckley, 2015; Germino et al., 2002; Greenwood et al., 2014; Figure 1.1). Furthermore, at the 

plot level, differences in micro-climate arising from sheltering caused by slight topographic 

differences and neighbouring vegetation influences seedling establishment, leading to complex 

patterns of treeline advance or stasis (e.g. Germino et al., 2002; Greenwood et al., 2015). 

Non-thermal regulators lead to significant variation of within-species range shifts where 

42-50 % of species show inconsistencies in the direction of range shifts between different 

geographic regions despite similar warming trends (Gibson-Reinemer and Rahel, 2015). At the 

mountain treeline, non-thermal controls may restrict treeline response to climatic change or 

cause a downslope retreat due to local differences in resource availability (e.g. McNown and 

Sullivan, 2013; Sullivan et al., 2015), radiative stress (Bader et al., 2007), drought stress (e.g. 

Johnson and Smith, 2007; Leuschner and Schulte, 1991; Millar et al., 2007), competitive 

dynamics (Wardle and Coleman, 1992) and disturbance regimes (e.g. Cullen et al., 2001; Daniels 

and Veblen, 2003) despite increased temperatures. In some cases, the stand structure of the 
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treeline itself can modulate response to climatic change through constraint or facilitation of 

tree establishment, growth, and mortality within the ecotone (Camarero et al., 2016). We 

cannot, therefore, assume that treeline shifts will be uniform within or between mountain 

ranges. 

 

 

   

Figure 1.1: Treeline position varies over short distances on mountain slopes (a) with different 

structural treeline forms identified (b-d). Static forms (b) have a sharp boundary between old 

growth forest and grassland, abrupt advancing forms (c) are characterised by a high density of 

establishing juveniles over a short distance and diffuse advancing forms (d) have low-density 

juveniles spread over a long distance.  All photographs show mountain forests in Taiwan 

dominated by the Taiwan fir, Abies kawakamii. Photo credit (a) PJM (b-d) S. Greenwood. 

 

1.1.1 The impact of treeline advance 

Shifts in montane forest distribution, whether due to climatic change or release from a 

non-thermal control, are expected to impact on local biodiversity (Greenwood et al., 2014). The 

relative isolation of mountainous areas and highly heterogeneous habitats means that 

a) 

b) c) d) 
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mountain systems can harbour disproportionately high numbers of endemic species and retain 

many rare species (Steinbauer et al. 2016). Encroachment of forest into non-forested areas will 

threaten mountain plant species through alterations to competitive dynamics where grassland 

species are likely to be out-competed for space and substrate by tree species as the forest 

advances (Grabherr et al. 1994) resulting in a loss of species with narrow environmental 

tolerances (Jump et al. 2012). 

In addition to the loss of biodiversity, shifts in montane forest distribution are expected 

to impact on ecosystem function (Greenwood and Jump, 2014). High elevation forests are 

important areas for carbon storage and sequestration (Peng et al., 2009; White et al., 2000). 

However, there has been little research into the impacts mountain treeline advance will have 

on carbon storage potential (Greenwood and Jump, 2014).  Increased tree growth rates, 

density, and forest expansion are expected to increase biomass in montane forests and their 

ability to act as carbon sinks may be increased as a result (Devi et al., 2008).  

Ultimately, variation in montane forest distribution shifts and the associated impacts 

are driven by the speed and spatial distribution of establishing juveniles at a plot scale. 

However, changes in forest distribution accumulate across the landscape and as such the 

impacts are manifested to a greater degree across an entire mountain range (hereafter referred 

to as regional scale). Accurate estimation of treeline shifts and the impacts, therefore, requires 

complex patterns of treeline advance or stasis at the plot level to be discriminated at regional 

scales. The biggest challenge to characterising mountain treeline heterogeneity at a regional 

scale is the generally poor accessibility of mountain ranges. The best estimation of species range 

shifts would come from multiple fixed monitoring sites across a mountain range (e.g. Global 

Observation Research Initiative in Alpine Environments; Grabherr et al., 2000). However, poor 

access means many studies have been based on incidental historical records covering a limited 

number of sites (Gottfried et al., 2012). Regional estimations based on limited field surveys 

alone in highly heterogeneous systems increase the risk of highly inaccurate estimates of 

change in forest distribution. 

Remote sensing, a technique by which observations can be made without direct contact 

with a feature of interest, is ideally suited to capturing information across large geographic 

areas and its potential for studying environmental change is well recognised (Buchanan et al., 

2015; Donoghue, 2002; Kennedy et al., 2014; Kerr and Ostrovsky, 2003). Considerable 

investment has been made over recent decades to improve the precision and global coverage 

of remotely sensed data to aid monitoring of environmental change. While the use of remotely 
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sensed data in studies of mountain treeline shifts is not yet extensive, studies that have 

incorporated remotely sensed data have shown considerable potential for the characterisation 

of structural variation in the treeline (e.g. Allen and Walsh, 1996; Hill et al., 2007), assessment 

of distribution change (e.g. Bharti  et al., 2012; Luo and Dai, 2013; Mihai et al., 2017), and to 

better understand how environmental factors act to influence variation in treeline position and 

structure over differing geographic scales (Weiss et al., 2015). 

 The integration of spatially explicit data, derived from remotely sensed data, on 

treeline structural variation and location across entire mountain ranges has significant benefits 

to better understand patterns and processes that govern treeline movement or stasis. Bader 

and Ruijten (2008) identified the mountain treeline from a Landsat ETM image and 

subsequently modelled the role of topography to predict forest cover. By linking a classified 

map with a digital elevation model Bader and Ruijten (2008) identified altitude as the main 

determinant of forest cover, with aspect also having a significant effect and areas where water 

and cold air accumulate resulting in inverted tree lines. Greenwood et al. (2014) used repeat 

aerial photography to identify patterns of treeline advance, highlighting the major role of 

topography in controlling treeline advance and subsequently, the microsite characteristics 

influencing variation in tree establishment identified from remotely sensed data (Greenwood 

et al., 2015). Work that established temperature as the primary control of the treeline in field 

surveys (Baker and Weisberg, 1995) has been similarly advanced using remotely sensed data 

analysed over time with variability in treeline position shown to be attributable to topography 

at the regional scale (Allen and Walsh, 1996).  

It is evident that significant benefits can be gained by incorporating remotely sensed 

data into studies of mountain treelines; however, spatially explicit data detailing the location 

and structural variation of mountain forests at the treeline is lacking globally.  Our 

understanding of how processes operate at different spatial scales to influence the 

heterogeneity of mountain treelines will be advanced by incorporating spatially explicit data 

into analysis (Malanson et al., 2011). Additionally, our ability to monitor shifts in mountain 

forest distribution, identify the related impacts, and predict future changes in forest distribution 

should become more accurate as a result. Despite the considerable benefits gained by using 

remotely sensed data to monitor change in treeline position and structure, methodological 

approaches vary considerably in the literature. This variation has coincided with poor training 

and validation procedures which leads to uncertainty in the suitability of remotely sensed data 

to assess change in montane forest distribution. The consequent lack of consistency between 
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studies will present a barrier to accurate and integrated estimations of change and its impacts 

over coming decades. 

To advance our ability to accurately quantify and predict changes in forest structure and 

distribution in mountain regions, here we synthesise information from three core themes: the 

suitability of remote sensing data, the ecological relevance of classifications, and the 

effectiveness of the training and validation process specifically in relation to the study of 

mountain treeline ecotones. By identifying how we might improve the consistency of current 

approaches and the ability to relate results to the wider ecological literature, we aim to bridge 

the gap between global and plot-level studies. In doing so, we endeavour to provide new focus 

in the use of remote sensing data in mountain regions to improve: (1) our understanding of 

pattern-process relationships at the mountain treeline, and (2) estimates of species range shifts 

and the impacts to biodiversity and ecosystem function. 

1.2 Interpreting the mountain treeline in remotely sensed imagery 

1.2.1 Suitability of remotely sensed data 

When considering how appropriate an individual remote sensing data set is for treeline 

research three key requirements need to be considered. The first is the ability to characterise 

heterogeneity in forest structure that occurs over short distances; the second is the ability to 

quantify change that occurs over decadal periods; and the third is the need to capture a large 

area (i.e. a mountain range) repeatedly and consistently enough to allow for knowledge 

acquired in the field to be extrapolated across a mountain range. There is usually a compromise 

to be made between spatial, temporal and spectral resolution, geographic coverage and cost. 

Therefore, there is a need to identify which data set(s) are the most appropriate to address the 

need for characterisation of treeline structural heterogeneity and variable response rates across 

a mountain range. 

1.2.1.1 Sensor type 

Passive optical data are the primary choice of remote sensing data for use in 

mountainous regions. Passive optical sensors normally collect data in the visible and infrared 

spectrum during daylight when sunlight is reflecting off surfaces on the ground, recording 

different wavelengths of the spectrum into individual data bands. By capturing multiple spectral 

bands, the spectral properties of different vegetation types may be analysed by looking at the 

relationships between different bands. More bands may be beneficial for identifying subtle 

differences in vegetation structure, however, the increasing data complexity requires greater 

processing capacity and cost. Consequently, consideration should be given to determine 
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whether the increase in spectral information that comes with additional bands provides data 

that will be ecologically meaningful.  

There are significant challenges to overcome when using multispectral data in 

mountainous areas. The presence of cloud and cloud shadow in images frequently inhibits 

mapping from multispectral images. To overcome this problem, multiple images collected over 

a short time period may be mosaicked (stitching overlapping images together) to produce a 

single cloud-free image that can be used for analysis. Shadowing caused by steep terrain is also 

problematic in multispectral data. The effect of shadowing caused by mountain slopes can be 

reduced by topographic illumination correction, the use of spectral indices that take ratios 

between individual spectral bands, or by including shadow as a class during discrete 

classification procedures. It is also necessary to correct for differences in geometry between 

images that are used for mosaicking or for making comparisons between images of different 

resolution or ages. Differences in the sensor position at the time of acquisition relative to the 

area of interest can lead to differences in the relative distances between features within an 

image. This effect is magnified in mountainous terrain where slopes are stretched 

disproportionately depending on their aspect in relation to the sensor. Consequently, the 

resulting data sets may not overlay accurately despite being in the same coordinate system, 

causing problems in analysis or incorrect results if this distortion is not picked up early during 

data processing. 

Active sensors emit their own signal that interacts with and is received back from 

ground surfaces. Synthetic Aperture Radar (SAR) emits microwave signals that are able to 

penetrate cloud making SAR imagery attractive for the study of persistently or seasonally cloudy 

areas. However, SAR data suffers from geometric distortion and shadowing in areas with steep 

terrain because the sensors use directional signals, which when combined with high cost and 

the historically low spatial resolution of available data has restricted the use of SAR to monitor 

vegetation in mountainous environments (Halperin et al., 2016; Sinha et al., 2015). To our 

knowledge, SAR has not been used to study the mountain treeline. However, ongoing 

improvements in resolution and data availability make further investigation of the utility of SAR 

for this purpose a priority. 

Light Detection and Ranging (LiDAR) is an active optical sensor that is widely used for 

the characterisation of forest structure (e.g. Coops et al., 2013; Donoghue and Watt, 2006; van 

Leeuwen and Nieuwenhuis, 2010). Whilst there are significant benefits to using LiDAR data to 

characterise structural variation at the treeline, data accessibility is a major constraint. LiDAR 
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data is typically acquired from airborne or terrestrial platforms, is expensive to acquire and not 

routinely acquired in mountain ranges globally restricting the use of such data. Consequently, 

LiDAR has not been widely used to study mountain treelines and has only been used to study 

relatively small areas (e.g. Coops et al. (2013) covered approximately 700 ha of a valley in the 

Swiss Alps). Using the satellite-borne LiDAR Geoscience Laser Altimeter System (GLAS), Simard 

et al. (2011) produced a global forest canopy height dataset. However, while this dataset 

represents a significant milestone in mapping global forest canopy height, the 1 km resolution 

is not suitable for the application of characterising heterogeneity in the mountain treeline. The 

anticipated launch of the Global Ecosystem Dynamics Investigation (GEDI) LiDAR sensor in 2018 

will provide a significant improvement in resolution over the GLAS sensor (Dubayah et al., 2014; 

Coyle et al., 2015) and thus further investigation once data sets become available will be a 

priority to assess the potential suitability of LiDAR data sets from the GEDI sensor for 

characterisation of mountain treeline structure. 

1.2.1.2 Geographic coverage 

When seeking to monitor changes in species distribution across a mountain range, the 

platform on which a sensor is based has important implications for the geographic extent of a 

study. Sensors may be borne on satellite, manned aircraft, remotely piloted airborne systems 

(RPAS) or used on the ground. As terrestrial platforms must be set up in the field they are limited 

to sections of a mountain range with good access, consequently, they are useful for surveys of 

individual plots but have limited use in regional-scale studies. RPAS can provide very high-

resolution data, however, they are most suited to local scale studies, covering individual 

mountains, as they are limited by good weather conditions with light winds and short flight 

times. Aerial photography missions can cover a wide spatial area with high-resolution data 

captured. However, the use of aerial photography for regional-scale analyses is extremely 

limited since assembling a complete regional dataset is not only time consuming and costly but 

also logistically highly challenging due to the limited number of clear days available for survey 

and time required to fly each mission. Therefore, satellite-borne sensors are the preferred 

platform for detecting environmental change over wide geographic areas due to the repeatable 

and predictable orbit pattern that ensures frequent global coverage.  

1.2.1.3 Temporal resolution 

Changes in mountain vegetation distribution can be slow. Consequently, the longevity 

and consistency of a data source over decadal time periods is highly important when identifying 

historical shifts in distribution and accounting for variation in rates of advance. Where historical 

photographic records exist, aerial photographs often offer the longest time record of remotely 
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sensed data. However, the use of aerial photography is limited in regional scale assessments 

due to poor consistency of data between the dates of image acquisition and patchy geographic 

coverage that results in a small subset of a study region being covered by multiple records. 

Archives from satellite-borne sensors are preferable because of the data consistency and wide 

area coverage; however, while some historic declassified high-resolution spy satellite data are 

available in some parts of the world, most new commercial satellites have not been operational 

long enough to allow a robust assessment of change in mountain treelines. The Landsat archive 

is the most complete medium resolution satellite-borne archive, making 80 m pixel size imagery 

freely available dating back to 1973, and 30 m pixel size data available since 1982 (Wulder et 

al., 2016). The longevity and consistency of the Landsat archive means that landscape-scale 

changes in species ranges can be assessed and tracked as new acquisitions are made available. 

However, whilst remotely sensed data may be available, the lack of accompanying field data for 

each image in a series presents a major constraint on analysis utilising images from multiple 

dates. If only two images, spaced far apart in time, are used, the error around the classification 

of any individual image could lead to misinterpretation of change that may not be 

representative of ground conditions. The inclusion of multiple images, separated by shorter 

time periods, in an analysis will give a better indication of how treeline shifts respond over time 

and increase confidence in changes detected rather than taking two images at extremes of a 

study period (Kennedy et al., 2014). 

1.2.1.4 Spatial resolution 

The spatial resolution of a sensor is most easily understood as the size of a pixel, 

although one must be careful when interpreting the ecological meaning of boundaries between 

pixels (Fisher, 1997). When attempting to correlate field data on stand structure with remotely 

sensed data it is necessary to ensure that the pixel size is suitably matched to the plot size of 

interest because the resolution will affect the ability to accurately represent the boundary. For 

example, very high-resolution sensors allow for individual trees to be identified whereas coarse 

resolution data give a more general landscape pattern. There is high variation in the rate of 

mountain treeline advance; however, where advance occurs it is typically in the order of meters 

to tens of meters over decadal periods. To characterise treeline heterogeneity, we are primarily 

interested in sensors with resolutions capable of capturing stand-level characteristics that exist 

at these orders of magnitude. Coarse resolution (250-1000 m pixel size) MODIS or AVHHR 

imagery, therefore, lacks sufficient resolution for the accurate characterisation of vegetation 

heterogeneity in mountain systems.  
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Medium resolution imagery (circa 30 m pixel size), such as Landsat, has been shown to 

accurately classify mountain treelines into categories that recognised heterogeneity (Allen and 

Walsh 1996). However, others have raised concern that Landsat data may lack sufficient detail 

to detect subtle differences in the treeline that exist over a very short spatial scale (Bharti et al., 

2012; Buchanan et al., 2015; Chen et al., 2015). Consequently, there is uncertainty over the 

ability of data from the Landsat archive to adequately characterise variation in treeline 

heterogeneity. Imagery with a spatial resolution suitable for detecting features or variation of 

ecological relevance is widely available due to the development of many high-resolution sensors 

onboard satellites (Kennedy et al., 2014; Kerr and Ostrovsky, 2003). Indeed, higher resolution 

imagery (10 m pixel size or smaller) has been frequently used in studies of mountain treelines 

(Table 1.1). However, inconsistencies in the treeline definition used amongst the current 

literature mean that it has not been possible to quantify the spatial resolution at which defining 

features of treeline structural heterogeneity can be resolved 

1.2.1.5 Radiometric resolution 

The radiometric resolution of a data set is a technical aspect of data storage. 

Radiometric resolution determines the number of unique values that can be stored by a sensor. 

8-bit data hold 256 unique values where-as 16-bit data hold 65,536 values. Although considered 

of less relevance when choosing a data set, a higher radiometric resolution is beneficial for 

ecotone characterisation as the higher contrast that comes with a higher bit rate is likely to lead 

to better characterisation of vegetation heterogeneity and areas of diffuse boundary change. 

As data storage and processing capabilities improve, modern sensors are shifting to a higher 

number of bits for storage. A good example of this is Landsat 8 which is recorded in 12-bit data 

but has retained a 30 m pixel size to maintain consistency in spatial resolution with the previous 

sensors in the series. Consequently, whilst the spatial resolution of the sensor has not changed 

the greater radiometric resolution will result in a better characterisation of features with subtle 

differences. 

1.2.2 Ecological relevance of classification 

Remotely sensed data have great potential to enable the production of globally 

consistent maps that characterise variation in mountain treeline structure and would make 

significant contributions to resolving two major gaps in the literature. The first is the need for 

theoretically and methodologically consistent approaches to better define geographic 

variability in treeline pattern-process relationships (Malanson et al., 2011). The second is the 

need to monitor impacts of treeline shifts to biodiversity and ecosystem function across 

mountain ranges (Greenwood and Jump, 2014).  



Peter J Morley Chapter 1 
 

26 
 

1.2.2.1 Defining the treeline 

A variety of different definitions of the mountain treeline have been used in the 

literature. Single characteristics such as canopy cover (Hill et al., 2007; Král, 2009), species 

(Bharti et al., 2012; Luo and Dai, 2013) or height (Mathisen et al., 2014) have been used as well 

as combinations of such characteristics to return structural classifications of the treeline (Table 

1.1).  The definition of treeline ecotone used requires careful consideration since the choices 

made can impact on any interpretation of the change estimated and the subsequent utility of 

distribution maps. 

Identification of broad areas of change where forest patches share similar structure is 

important for improving consistency in the definition of geographic variation in treeline. 

Individual elements of forest structure return distinct information about the treeline; for 

example, canopy cover can describe the spatial distribution and density of trees within a plot, 

tree height indicates areas of forest establishment or growth limitation, and separating out 

species composition identifies species-specific responses to environmental conditions. 

However, definitions based on a single characteristic fail to recognise important features of 

treelines that capture variation in the rate of change within a mountain range (Figure 1.2).  

The benefit of definitions that consider multiple structural characteristics over those 

based on a single characteristic lies in the ability to assess variation in treeline response and 

ecosystem function. For example, a forest class defined as having a closed canopy may exist 

both in an old-growth forest and in an area of dense juvenile establishment. Without a 

distinction between the height of trees within a pixel, change is potentially misrepresented. 

Likewise, if the focus is solely on height, a better indication of change may be indicated by 

smaller, establishing trees but the underlying processes that drive differences in tree density 

within plots cannot be linked to maps classified on height alone (Figure 1.2). When considering 

a discrete separation of treeline structural properties, vegetation classes such as krummholtz, 

patch forest, continuous forest and forested scree have been successfully classified in 

multispectral imagery (Allen and Walsh, 1996; Klasner and Fagre, 2002; Resler et al., 2004). 

However, the separation has primarily been based on canopy cover and growth form with less 

focus on height and species. Incorporating height into the definition of vegetation classes would 

represent a significant improvement in the biogeographic and ecological use of the mapped 

forest classes because it would allow the additional separation of the continuous and patch 

forest classes into categories that identify differences in growth stage. Without the inclusion of 

height, reliable assessment of change in forest distribution can only be assessed through a 
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robust analysis over time, provided that remotely sensed images are available with good 

consistency, temporal and geographic coverage.  

Patterns of juvenile establishment have been successfully classified from aerial 

photographs by Greenwood et al. (2014), who defined different stages of treeline advance 

including categories where the spatial distribution and quantity of juveniles vary beyond the 

limit of old growth forest. Unfortunately, issues in the registration of remote sensing imagery 

meant that the treeline was manually delineated and so the method does not represent a 

practical solution for regional-scale studies. However, the work of Greenwood et al. (2014) 

demonstrates promise that such classification might be automated in the future. 

1.2.2.2 Classification techniques 

Ecotones can be difficult to delineate in remotely sensed imagery. By their nature, 

ecotones typically have no discrete boundary between the member classes at either end of a 

continuous scale (e.g. forest and grassland). Consequently, ecotones are often represented in 

satellite imagery as mixed pixels, a combination of membership to several different classes (e.g. 

a mixture of forest and grassland), raising the question of how best to classify such areas.  

Boundary detection techniques seek to identify where change in vegetation type occurs 

by seeking out the highest contrast in neighbouring pixel values, however, have not been used 

in the detection of mountain treelines from remotely sensed images as far as we are aware. 

Many techniques for boundary detection are well suited to the detection of abrupt changes in 

vegetation type, however, detection of areas with a gradual gradient between forest and 

grassland is often more challenging due to the reduction in contrast between neighbouring 

pixels (Fagan et al., 2003). In areas where the treeline is represented by an abrupt change, 

boundary detection techniques offer a good option for identifying the position of the treeline, 

however, they are not as well suited to defining variation in forest structural or function 

parameters. 

Discrete image classification techniques assign pixels to one of a pre-defined set of 

categories. In areas where the number of boundary pixels between classes is small, discrete 

classifications give a reasonable estimate of area coverage. However, the mountain treeline 

ecotone can exist over a long distance and so by assigning a pixel to a fixed category, discrete 

image classification techniques may not be suitable if the thematic resolution of vegetation 

classes is too coarse (i.e. forest and grassland only) (Settle and Drake, 1993). Discrete 

classifications are attractive for treeline research, particularly for the investigation of pattern-

process relationships, because of the ability to relate vegetation classes to existing literature 
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that underpins our current understanding of environmental influence on variation in treeline 

position and structure. Discrete classifications work best where there is an obvious relationship 

between the spectral data and the ground variable of interest. However, while discrete 

classification techniques are the most commonly used classification method in the literature 

(Table 1.1), there has not been a quantitative assessment to identify how much variation in 

treeline structure is captured in the spectral response.  

Soft classification (also known as fuzzy classification) techniques are an attractive 

alternative for ecotone mapping where no clear boundaries exist between vegetation classes 

because soft classification assigns individual pixels a score based on the degree of membership 

that pixel has to a given end member. The resultant data, therefore, describes a continuum in 

cover between different end members rather than a discrete classification of cover type. 

However, the resultant maps may not accurately represent actual vegetation cover depending 

on how the outcome of soft classifications are used (Hill et al., 2007). To describe areas of 

change, boundaries are often imposed onto soft classifications. However, when using a 

continuous definition of the treeline the process of defining the boundary requires careful 

consideration and should be based on detailed understanding of the ecological patterns since 

the subjective nature of imposing boundaries will impact on landscape metrics calculated from 

the chosen boundaries (Arnot et al., 2004). If not carefully considered, the utility of such 

methods may be reduced and the ability to relate classifications to the wider ecological 

literature may be lost. 
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Figure 1.2: Categorising mountain treelines using a single characteristic limits the interpretation 

of classified products. A forest classified by canopy cover alone may indicate how tree density 

differs over an area but both old growth forest and areas of new establishment can share the 

same forest class (e.g. closed forest top left, open forest top right). Similarly, if classification 

occurs by height alone then areas of establishment are identified but the processes that control 

differences in juvenile density cannot be interpreted. As such, classification based on multiple 

characteristics is required to capture both the spatial distribution and the size of trees/juveniles 

across the treeline ecotone. The Spatial resolution of remote sensing imagery plays an 

important role in separating out fine scale differences in forest structure. Coarse resolution 

(Solid lines) capture information across a wider area and consequently results in mixed pixels 

where the forested area is smaller than the area covered by a single pixel. Finer resolution 

imagery, represented by the dashed lines, reduces the error in classifying mixed pixels by 

capturing a smaller area allowing areas with a homogeneous structure to be identified.     

 

1.2.3 Training and validation 

Remote sensing data are highly valuable in mountain environments due to the ability 

to extrapolate information gathered from detailed surveys in accessible areas to largely 

inaccessible regions, thereby enabling us to fill the substantial knowledge gaps that we have of 

the pattern and rate of vegetation change in such regions. Classification of remotely sensed 

imagery typically uses data from pixel values where the ecological situation on the ground is 

well known to establish a rule, or set of rules, to extrapolate to pixels that appear spectrally 

similar. This supervised classification technique works best when there is a large sample of high-
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quality ground training data to match the imagery and an independent data set, derived from 

detailed sampling, against which to assess the accuracy of a classification. 

The benefit of good training and validation data and its importance for robust accuracy 

assessment has been well discussed elsewhere (Castilla, 2016; Olofsson et al., 2014, 2013). 

However, of the studies highlighted here, only seven (Allen and Walsh, 1996; Bharti et al., 2012; 

Dinca et al., 2017; Hill et al., 2007; Luo and Dai, 2013; Mihai et al., 2017; Resler et al., 2004) 

provide a quantitative accuracy assessment of the classification produced, either through a 

traditional confusion table with percent accuracy or through regression as in Hill et al., (2007). 

In some cases (e.g. Greenwood et al. 2014), despite the existence of detailed field data, a lack 

of quantitative accuracy assessment stems from issues registering remote sensing data and 

consequent manual classification. However, for most remaining cases, a lack of field data 

appears to be the root of qualitative assessments (Table 1.1).  

Limited access to mountain environments makes acquiring a robust field data set to use 

for training and validation extremely challenging. Consequently, a variety of approaches have 

been taken to construct a data set that can be used to train classification algorithms and validate 

maps. Allen and Walsh (1996) and Lou and Dai (2013) used field datasets that identified forest 

structural classes, bolstered by additional photo interpreted plots to train and validate their 

classifications. Mihai et al. (2017) took advantage of existing national forest inventory data in 

combination with data from the Global Forest Cover product (Hansen et al. 2013) to create their 

training and validation data. Greenwood et al. (2014) were unable to automate classification, 

however, classification was based on detailed field knowledge collected from forest inventory 

data split across pre-defined structural classes. However, the limited accessibility of mountain 

ranges means that many studies have either carried out classification manually, without the use 

of training data, or by substituting field data entirely with photo interpreted plots from 

terrestrial photography (e.g. Klasner and Fagre, 2002) or very high-resolution aerial or satellite 

images (e.g. Chen et al., 2015).  

Photointerpretation can be used to support good field data, especially where 

challenging terrain limits field campaigns. However, the use of photo interpretation as the sole 

source of training and validation data risks high uncertainty or subjectivity in classified products. 

The inclusion of novel remotely sensed data to assess the accuracy of a classified product can, 

however, be particularly useful in mountain areas where field sites cover a small area of a study 

region. Hill et al. (2007) used pan-sharpened SPOT 5 red and near-infrared bands to create a 

high-resolution NDVI product that could be used as a validation data set independently of a 
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classified 10 m resolution image. In doing so, the subjectivity imposed by photo interpretation 

is reduced and, if backed up by field assessments, offers a complementary approach to accuracy 

assessment.    
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Table 1.1: Summary of studies using passive optical remotely sensed data to study mountain treelines.  Studies using a discrete classification define discrete classes of vegetation 

type, those using a soft classification return a proportional representation of the criteria used for classification. Map accuracy assessment was considered quantitative if the 

authors returned a numerical indicator of accuracy either through a traditional accuracy assessment or through regression as was the case in Hill et al., (2007). However, lack of 

good quality training validation data limits the interpretation of some quantitative assessments and so the table is filtered top to bottom to indicate the relative robustness of the 

validation process based on the quality of validation data and type of accuracy assessment. 

Author Remote Sensing Data Spatial 

Resolution (m) 

Time series 

(Years) 

Criteria for treeline 

classification 

Method Training and Validation data Map Accuracy 

Assessment 

Allen and 

Walsh, 1996 

Landsat TM 30 12 Canopy cover and growth 

form 

Discrete 

Classification 

Field survey and photo 

interpretation 

Quantitative 

Luo and Dai, 

2013 

Aerial Photographs 

Quickbird 

0.5 

0.6 - 2.4  

44 Species and Height Discrete 

Classification 

Field survey and photo 

interpretation 

Quantitative 

Bharti et al., 

2012 

Landsat MSS 

Landsat TM 

60 

30 

30 Species Discrete 

Classification 

Field survey Quantitative 

Mihai et al., 

2017 

Landsat ETM 

Landsat OLI 

Sentinel 2 MSI 

30 

30 

10 

13 Species Discrete 

Classification 

Romanian National Forest 

Inventory, Global Forest Loss 

Product (Hansen et al. 2013) 

Quantitative 

Hill et al., 

2007 

SPOT 5 HRG 10 

 

NA Canopy cover Soft Classification 

 

Limited field assessment, 2.5 m 

NDVI 

 

Quantitative 

Greenwood 

et al., 2014 

Aerial Photographs 0.3 – 1 26 -33 Canopy cover and Height Discrete 

Classification 

Field survey Qualitative 

Resler et al., 

2004 

Digital Orthophoto 

Quadrangle 

2 NA Canopy cover and growth 

form 

Discrete 

Classification 

Photo interpretation Quantitative 

Dinca et al., 

2017 

Landsat TM 

Landsat ETM 

30 

30 

34 Canopy cover Discrete 

Classification 

Photo interpretation Quantitative 

Mathisen et 

al., 2014 

Aerial Photographs 

Quickbird 

Worldview 

2 

0.6 

0.5 

48-50 Height Discrete 

Classification 

Limited field survey Qualitative 
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Chen et al., 

2015   

Landsat TM 

 

30 20 Canopy cover and species Soft Classification Photo interpretation Qualitative 

Klasner and 

Fagre, 2002 

Aerial Photographs 

Digital Orthophoto 

Quadrangles 

1 

1 

46 Canopy cover and growth 

form 

Discrete 

Classification 

Photo interpretation Qualitative 

Král, 2009 Orthophoto map 0.9 NA Canopy cover Soft Classification None Qualitative 
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1.3 Research priorities 

A lack of clarity in the definition of treeline structural classes that identify areas 

indicative of forest expansion or stasis has compounded issues in assessing the effectiveness of 

imagery with different resolutions and pairing that imagery with the most appropriate 

classification method. Inconsistencies have been exacerbated by a lack of field training and 

validation data that hinder accuracy assessments and crucially, when combined with poor 

treeline definitions, the relevance of species distribution maps derived from remote sensing 

products to the wider community is lost (Figure 1.3). Accurate estimates of species range shifts 

are required if we are to provide information relevant to monitoring forest change with 

accompanying estimates of uncertainty. If such accuracy assessment is lacking, the validity of 

subsequent applications is compromised and potentially misrepresents the impacts that species 

distribution shifts are having on ecosystems, their function, and the ecosystem services that 

they provide. 
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Figure 1.3: Roadmap to advance regional scale monitoring of fine-scale variation in treeline 

advance by integrating remote sensing methods, ecological perspective, and robust field data. 

Whilst each of the three strands makes a modest advance in our ability to monitor treelines 

more effectively, when the individual themes are advanced in combination we significantly 

improve our ability to scale plot-level field data up to a regional scale consistently and in a way 

that allows results to be linked to the wider ecological literature and national monitoring 

schemes. 

1.3.1 Suitability of remotely sensed data 

The trade-offs between spatial resolution, temporal resolution and geographic 

coverage has meant that the literature to-date generally uses a single data type/resolution 

while a combined approach may be more suitable for mountain ecosystems. By combining 

recent high-resolution imagery with a time-series analysis of medium resolution imagery 

punctuated by historic aerial photography, an improved characterisation of the structural form 

and assessment of change may be possible. A key priority is, therefore, to identify the most 
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appropriate method or a combination of methods that will allow for accurate assessments of 

regional-scale shifts in montane forest distribution.    

In establishing the most appropriate methodologies for monitoring montane forest 

shifts, there is a need to determine the resolution at which defining biophysical characteristics 

of treeline form are unable to be resolved within satellite images of decreasing spatial 

resolution. The Landsat archives provide the most globally consistent remotely sensed data 

available with images available since the 1980’s at 30 m resolution. However, uncertainty 

remains over how well Landsat data can characterise structural variation in the treeline, when 

used either in a time series or as individual images. The recently available Sentinel 2 data 

represents an improvement in resolution over the Landsat archives giving a pixel size equivalent 

to 10 m at ground level, however, these data are only available since 2016. Establishing the level 

of detail discernible in Sentinel 2 data will be useful to identify the necessity of commercial 

imagery. Finer spatial resolution imagery is available down to sub-meter pixels, however, this 

comes with an increase in financial and processing costs and thus its utility must be weighed 

against the expenditure since the increasing level of detail may not be necessary for 

distinguishing between treeline forms.  Given the necessity of monitoring change over large 

areas, a key priority is then to identify the appropriate compromise between resolution and 

cost that still allows sufficient ecological and biogeographical information to be extracted and 

changes in treeline position that occur over decadal periods to be quantified.  

1.3.2 Ecological relevance of classification 

Ultimately the utility of remotely sensed images relies on the ability to separate 

vegetation into classes that hold ecological relevance. However, within the literature, we find 

an over-simplification of forest classes in studies of mountain treelines.  At the elevational limit 

of forest distribution, treeline shifts, both lateral and elevational, are predominantly reflected 

by changes to the growth and establishment of the few tree species present, rather than by 

complex changes in community composition as might be expected in more tree species-rich 

forests. Recognition of establishing juveniles is therefore required in classifications derived from 

remote sensing data as it is the quantity and spatial distribution of establishing juveniles that 

determine the direction and velocity of treeline advance.  

Treeline forms are broad structural categories based on patterns of tree and juvenile 

density, spatial distribution and size (Harsch and Bader, 2011; Figure 1.1). Structural classes 

include diffuse advancing, abrupt advancing, abrupt static, island and krummholtz (Greenwood 

et al., 2014; Harsch and Bader, 2011). A rich body of literature identifies the underlying controls 
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on the distribution of such classes. In a review by Harsh and Bader (2011) a hierarchy of 

mechanisms are described that are hypothesised to cause in variation in treeline form.  The 

diffuse form is primarily growth limited by low mean growing-season temperature whereas the 

krummholtz form incorporates dieback and regrowth of individuals. Abrupt forms are more 

extensively controlled by seedling mortality (Harsch and Bader, 2011). Identifying treeline forms 

that include local patterns of tree and juvenile density, distribution and size such as those used 

by Greenwood et al. (2014) and Harsch and Bader (2011), rather than classes based on adult 

distribution alone, will significantly advance our ability to characterise mountain treelines at a 

regional scale and study the impact that climate change is having on species distribution shifts. 

Whilst these forms will not appear in all mountain areas, they are sufficiently broad to allow a 

consistency in approaches that can be adapted to the local ground conditions.  

The use of treeline forms supports efforts to make classifications transferable to the 

wider literature and contribute to future monitoring programs in a consistent manner. Whilst 

carefully defined discrete categories may be linked to certain ecosystem functions, the ability 

to directly measure the function of interest would contribute significantly to the current 

knowledge gaps. Larger projects have identified variables to monitor the impacts of climate 

change including Essential Climate Variables from the Global Climate Observing System (Bojinski 

et al., 2014) and the more recently proposed Essential Biodiversity Variables (Pettorelli et al., 

2016). However, treeline definitions that directly quantify ecosystem function are lacking in the 

literature. One example of global importance is above-ground biomass, which is noted for its 

potential suitability as an Essential Biodiversity Variable (Pettorelii et al., 2016). Changing forest 

distribution and increased densification at the mountain treeline is expected to increase the 

carbon storage capacity of mountain forests. As a function of tree density, girth, height and 

species, above-ground biomass is an example of a continuous variable that measures both 

ecosystem function and accounts for variation in treeline structure. Whilst used extensively 

elsewhere, research is lacking quantifying changes in above-ground biomass at the mountain 

treeline, yet the classification of above-ground biomass from remotely sensed images would 

make a significant contribution to national monitoring projects.   

1.3.3 Training and validation 

Remote sensing classifications make assumptions about ground conditions based on 

the spectral signature observed. When monitoring inaccessible areas of mountain ranges, a 

robust validation data set is required to reduce subjectivity when training classification 

algorithms and to independently assess the accuracy of distribution maps. The importance of 

accuracy assessment has been highlighted previously (Bharti et al., 2012; Castilla, 2016; 
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Olofsson et al., 2014, 2013).  However, low incorporation of field data and a quantitative 

accuracy assessment is a persistent problem in the literature (Table 1.1). While Olofsson et al. 

(2014) made clear recommendations for sampling strategies to ensure a robust assessment, in 

practice, few studies of the mountain treeline either before or since have achieved this level.  

Consequently, there is a clear need to improve the integration of field and remotely sensed data 

to return a quantitative accuracy assessment and avoid misrepresentation of change in forest 

distribution.  

Improving the integration of existing forest inventory datasets (e.g. Mihai et al., 2017) 

with new field campaigns that target treeline structures indicative of forest advance or stasis in 

accessible areas will increase the representation of vegetation structures of interest. By taking 

a purposive approach to data collection to first identify how the biophysical properties of the 

treeline relate to the spectral properties of remotely sensed data, we will be able to develop 

more robust protocols for data sampling and hypothesis testing. Accuracy reporting may take 

multiple forms. Presentation of confusion tables that compare the predicted class against that 

assigned in the field data would be suitable where discrete categories are predicted. If using 

continuous variables to characterise variation in forest structure reporting and visualising the 

error of pixel assignment, for example as a range in confidence intervals or the standard error, 

would contribute to our ability to assess how much is noise versus real change. Ultimately, such 

improvements will increase the efficiency of subsequent analysis and lead to the robust 

measurement of accuracy.  

1.4 Conclusion 

Ongoing environmental changes demand that we monitor changes in species 

distributions and identify their impacts over wide geographic areas. Advances in remote sensing 

technology and data availability provide a major opportunity to achieve regional scale 

monitoring. However, in mountain regions, their application remains problematic due to high 

habitat heterogeneity, variable rates of environmental change and poor access that restricts 

the collection of field data. Considering key challenges for monitoring and predicting change in 

mountain forests, here we identify a need for further research that compares the utility of 

different remotely sensed data sets, better representation of variation in treeline structure, an 

improvement in the reporting of accuracy assessment and resource efficiency.  Together, these 

advances will enable a more consistent approach to characterising spatial variation in treeline 

structure and allow us to more accurately link pattern and process over different geographic 

scales (Figure 1.3). Ultimately, such improvements will enable us to meet a pressing need for 

better quantification and prediction of changes in species distribution and improved estimation 
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of the impacts such changes will have on biodiversity and ecosystem function in mountainous 

regions.   
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Thesis aims 

Three major research priorities have been identified where research is needed to 

improve the integration of remote sensing data into assessments of forest range shifts at 

mountain treelines to enable the quantification of the impacts that forest range shifts will have 

on biodiversity and ecosystem function (chapter 1). These priorities are the need to identify the 

suitability remote sensing data, the ecological relevance of maps derived from satellite image 

classifications, and the effectiveness of validation methods to achieve precise estimates of 

change. These priorities encompass a broad spectrum of research needs including 

methodological innovation as well as greater consistency in approaches taken to define 

geographic variation in forest range shifts in the broader research community. Therefore in this 

thesis, I focus on a set of research objectives that contribute toward filling the wider research 

gaps identified in chapter 1, enabling the quantification of forest range shifts and estimates of 

the impacts that forest advance will have on biodiversity and ecosystem function in the Central 

Mountain Range of Taiwan.  

This thesis aims to improve estimates of montane forest range shifts by combining field 

observations with repeat aerial photography and multispectral Earth observation data across 

the Central Mountain Range of Taiwan. In chapter 2 I determine which spectral features derived 

from multispectral satellite Earth observation data best characterise variation in forest 

structure at the mountain treeline and quantify the effect of sensor spatial resolution on the 

characterisation of forest structure. In chapter 3 I quantify changes in forest area and elevation 

and identify variation in the rate of forest advance using repeat aerial photography. The 

precision of estimates of forest range shifts derived from repeat aerial photography and from 

Landsat time-series data is assessed in chapter 4, thereby enabling the quantification of 

landscape-scale changes in above-ground woody biomass. The suitability of remote sensing 

data is investigated primarily in chapters 2 and 4 where the effect of sensor spatial resolution is 

quantified, and the precision of change assessments derived from repeat aerial photography 

and Landsat time-series data are quantified. By identifying the suitability of remote sensing data 

sets, this thesis makes recommendations that seek to improve the consistency in approaches 

to defining geographic variation in forest range shifts. The ecological relevance of classifications 

is assessed throughout this thesis by quantifying 1) the degree of structural information that 

can be identified in multispectral remote sensing data (chapter 2); 2) variation in forest range 

shifts and changes in habitat area using repeat aerial photography (Chapter 3) and 3) changes 

in above-ground woody biomass at the mountain treeline (chapter 4). To improve the validation 

of forest range shifts, the precision of changes assessments from repeat aerial photography and 
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Landsat time-series are quantified and recommendations made to reduce the uncertainty in 

landscape-scale assessments of forest range shifts in mountain systems (chapters 3 and 4). 

In chapter 5, I synthesise the knowledge gained in this thesis that aims to improve the 

application of remote sensing data in assessments of montane forest range shifts and provide 

some key directions for future research. By integrating remote sensing data into estimates of 

forest range shifts at mountain treelines, this thesis aims to provide much needed research that 

will improve our ecological and biogeographic understanding of forest range shifts and enable 

estimates of the impacts that forest advance will have on biodiversity and ecosystem function 

in mountain systems.
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Quantifying structural diversity measures to better estimate 

change at mountain forest margins 

  



Peter J Morley Chapter 2 
 

50 
 

 

Chapter 2 was published in Remote Sensing of Environment 223: 291–306. 2019.  

 

Title: Quantifying structural diversity measures to better estimate change at mountain forest 

margins 

 

Authors: Peter J. Morleya, Daniel N.M. Donoghueb, Jan-Chang Chenc, Alistair S. Jumpa 

aBiological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, 

Stirling, FK9 4LA, UK. 

bDepartment of Geography, Durham University, Durham, DH1 3LE, UK. 

cDepartment of Forestry, National Pingtung University of Science and Technology, Pingtung 

912, Taiwan.  

 

The following version of this publication was updated in June 2019 and table 2.3 varies slightly 

from the published paper in line with the recommendations of the thesis examiners. 

  



Peter J Morley Chapter 2 
 

51 
 

Abstract 

Global environmental changes are driving shifts in forest distribution across the globe 

with significant implications for biodiversity and ecosystem function. At the upper elevational 

limit of forest distribution, patterns of forest advance and stasis can be highly spatially variable.  

Reliable estimations of forest distribution shifts require assessments of forest change to 

account for variation in treeline advance across entire mountain ranges. Multispectral satellite 

remote sensing is well suited to this purpose and is particularly valuable in regions where the 

scope of field campaigns is restricted. However, there is little understanding of how much 

information about forest structure at the mountain treeline can be derived from multispectral 

remote sensing data. Here we combine field data from a structurally diverse treeline ecotone in 

the Central Mountain Range, Taiwan, with data from four multispectral satellite sensors 

(GeoEye, SPOT-7, Sentinel-2 and Landsat-8) to identify spectral features that best explain 

variation in vegetation structure at the mountain treeline and the effect of sensor spatial 

resolution on the characterisation of structural variation. The green, red and short-wave 

infrared spectral bands and vegetation indices based on green and short-wave infrared bands 

offer the best characterisation of forest structure with R2 values reported up to 0.723.  There is 

very little quantitative difference in the ability of the sensors tested here to discriminate 

between discrete descriptors of vegetation structure (difference of R2
MF within 0.09). Whilst 

Landsat-8 is less well suited to defining above-ground woody biomass (R2 0.12-0.29 lower than 

the alternative sensors), there is little difference between the relationships defined for GeoEye, 

SPOT-7 and Sentinel-2 data (difference in R2
 < 0.03). Discrete classifications are best suited to 

the identification of forest structures indicative of treeline advance or stasis, using a simplified 

class designation to separate areas of old growth forest, forest advance and grassland habitats. 

Consequently, our results present a major opportunity to improve quantification of forest range 

shifts across mountain systems and to estimate the impacts of forest advance on biodiversity 

and ecosystem function. 
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2.1 Introduction 

Rapid changes in global climate and land-use are driving shifts in forest distribution 

(Améztegui et al., 2016, 2010; Harsch et al., 2009). Mountain ecosystems are expected to 

experience higher than average temperature increases (Dirnböck et al., 2011; IPCC, 2013; Pepin 

et al., 2015) and are often subject to land abandonment as agricultural practices change 

(Haddaway et al., 2014; MacDonald et al., 2000). Naturally occurring elevational treelines (limits 

of forest distribution) are predominantly climatically determined (Körner and Paulsen, 2004), 

while the exact position of the treeline and response to environmental change varies due to 

topographic or geological controls (Butler et al., 2007; Malanson et al., 2011) as well as 

anthropogenic land-use (Améztegui et al., 2016, 2010). Consequently, shifts in mountain forest 

distribution have been used as indicators of the impacts of global environmental change (Martin 

and Bellingham, 2016). Increased forest area and tree growth rates in mountain areas are 

expected to alter ecosystem service provision, most notably increasing the carbon storage 

potential of montane forests (Devi et al., 2008; Peng et al., 2009; White et al., 2000). However, 

forest expansion is considered one of the most significant threats to grassland biodiversity 

world-wide (Bond and Parr, 2010) and is of concern in mountain ecosystems where 

disproportionately high numbers of endemic and rare species are found (Steinbauer et al., 

2016).  

There is limited understanding of how shifts in forest distribution will impact 

biodiversity and ecosystem function across entire mountain ranges due to variation in the 

response of mountain forests to environmental change both within-species and between 

geographic areas (Greenwood and Jump, 2014). A meta-analysis of forest responses at the 

upper elevational and latitudinal treelines, found that of 166 sites investigated, 52.4 % show 

upward or poleward migration of forest, 46.4 % show no change and 1.2 % show downslope 

movement (Harsch et al., 2009). In areas where change in treeline elevation is not exhibited, 

increased tree density below the upper limit of forest distribution and across-slope movement 

have been observed (e.g. Bharti et al., 2012; Klasner and Fagre, 2002). Accurately identifying 

geographic variation in mountain forest response to environmental change is, therefore, 

essential to improve the understanding of drivers of forest change and to enable assessments 

of the impacts of changing treeline position and structure on biodiversity and ecosystem 

function.  

Remote sensing provides an opportunity to expand the scope of field surveys which are 

often restricted to localised, easily accessible mountain areas due to high time and financial 



Peter J Morley Chapter 2 
 

53 
 

costs. However, characterising variation in forest structure from remote sensing data presents 

significant challenges for accurately quantifying variation in forest response to environmental 

change. In some areas, a sharp, well-defined boundary between the forest and the grassland 

exists. However, mountain treelines are often represented as an ecotone, with a gradual 

transition between forest and grassland habitats. Despite the prevalence of gradual forest 

changes globally, there is no optimal method for characterising structural variation in mountain 

forest-grassland transitions that lack clear boundaries between vegetation classes (Fortin et al., 

2000; Hill et al., 2007). 

The type of sensor and platform used to acquire remotely sensed data will impact the 

degree of forest structural information that can be identified and the geographic extent of 

investigations at mountain treelines. Airborne Laser Scanning (ALS) data are an attractive 

remote sensing data source for detecting vegetation boundaries across treeline ecotones 

because of the ability to determine 3-dimensional vegetation structure (Bolton et al., 2018; 

Coops et al., 2013; Ørka et al., 2012). ALS data have been used to describe vegetation structure 

within the treeline ecotone (Coops et al., 2013), have been integrated with multispectral 

satellite imagery to produce maps of vegetation cover types over large areas (Ørka et al., 2012) 

and have helped improve the interpretation of spectral trends identified from the Landsat data 

archive (Bolton et al., 2018). Despite the benefit of capturing 3-dimensional information on 

vegetation structure and the possibility of integrating ALS data with other remote sensing 

datasets, ALS data are not widely available in many mountainous areas and acquisition of new 

data sets can be prohibitively expensive. Consequently, there are relatively few published 

studies using ALS data in mountain treeline ecotones (e.g. Bolton et al., 2018; Coops et al., 2013; 

Næsset and Nelson, 2007; Ørka et al., 2012).   

Synthetic Aperture Radar (SAR) data are sensitive to vegetation structure and, 

combined with data available from satellite-borne platforms, are attractive for identifying 

variation in vegetation structure at the treeline ecotone across large areas. Despite the rapid 

expansion of SAR data availability and the reducing cost of data acquisition, with data from 

sensors such as Sentinel-1 freely available and high-resolution SAR data available from 

commercial providers, the use of SAR data in mountain ranges has been restricted due to 

challenges associated with image processing in mountainous regions.  The use of a directional 

signal in areas with complex and steep terrain often results in geometric distortion of the land 

surface and occultation due to layover and radar shadowing (Sinha et al., 2015). The capability 

of Synthetic Aperture Radar (SAR) to penetrate cloud presents obvious benefits for 

characterising forest structure at mountain treelines. However, there remain significant 
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difficulties in obtaining and processing SAR data with suitable geometric and radiometric 

properties (Shimada and Ohtaki, 2010) that could be used for large area assessments of forest 

distribution shifts in mountain ranges.  

The most common source of remote sensing data used in the assessment of mountain 

treeline change to date has been aerial photography or multispectral satellite remote sensing 

data (Morley et al. 2018). Many studies examine change in forest distribution by classifying 

multiple remotely sensed multispectral images into forest / non-forest classes, identifying 

changes in maximum elevation and forest extent over time (e.g. Dinca et al., 2017; Luo and Dai, 

2013; Mihai et al., 2017). The simple forest / non-forest definition is an efficient descriptor of 

the forest-grassland transition and can provide an accurate indicator of change in forest extent 

if assessed in images from multiple dates. The definition does not, however, capture sufficient 

information about forest structure to improve the characterisation or understanding of 

variation in forest response to environmental change (Table 2.1).  

Defining intermediate classes between areas of old-growth forest and treeless habitats 

improves the representation of structural variation contained within the treeline ecotone. 

Grouping forest margins into areas that share similar structural characteristics, such as tree 

canopy cover, density, size and growth form, allows classes to be identified that have reasonably 

homogeneous within-class forest structure while emphasising between-class variation. 

Underlying biotic and abiotic processes determine forest structural classes at the treeline 

(Greenwood et al., 2015, 2014; Harsch and Bader, 2011) and the impact of forest distribution 

change on biodiversity and ecosystem function will depend on the forest structure (Greenwood 

et al., 2016; Tomback et al., 2016). Consequently, using structural classes to represent 

heterogeneity in the treeline ecotone allows us to characterise variation in changes in forest 

extent and structure in a manner that improves our understanding of shifts in forest-grassland 

transitions and their implications (Table 2.1). However, this level of structural detail is 

uncommon in studies utilising remote sensing to examine mountain treelines (e.g. Allen and 

Walsh, 1996; Klasner and Fagre, 2002; Resler et al., 2004). This deficiency exists despite 

structural classes being sensible ecological units and being efficient to survey.  There is also the 

possibility to identify classes by image classification or by manual interpretation of aerial 

photography or satellite images with a spatial resolution of 2 m or better (Table 2.1; Allen and 

Walsh, 1996).  

Defining structural classes requires boundaries to be imposed onto the mountain 

treeline ecotone. The decision of where to define boundaries along a continuum of differing 
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tree density, size and spatial arrangement that vary over time is non-trivial (Arnot et al., 2004). 

Continuous variables can be used to map the mountain forest transition and offer an attractive 

alternative to structural classes due to the ability to represent vegetation heterogeneity on a 

continuous scale, avoiding the use of subjective boundaries (DeFries et al., 2000; Hill et al., 

2007). Indeed, classifications of continuous forest descriptors have been used to improve the 

structural representation of the treeline ecotone (Hill et al., 2007; Král, 2009) and to identify 

changes in vegetation abundance over time (Chen et al., 2015). However, canopy cover, the 

most commonly used descriptor, is not always appropriate for monitoring change in mountain 

treelines because of an inability to distinguish differences in tree size class (Morley et al., 2018).  

 

Table 2.1: Relative merits of different definitions of vegetation structure at the treeline ecotone 

for characterising variation in treeline response to environmental change and potential 

ecological interpretations.  

Treeline 

Definition 

Field 

survey 

effort 

Sources of Reference 

Data 

Characterisation 

of structural 

variation 

Ecological 

interpretations  

 

Confidence 

Forest / 

Non-Forest 

Low Photointerpretation 

Field Data 

LiDAR 

 

Low Distribution, Extent 

 

 

High 

Structural 

Classes 

Medium Photointerpretation 

Field Data 

LiDAR 

High Distribution, Extent, 

Average Tree Size,  

Area standardised 

Stand Density & 

Biomass  

 

High 

Above-

Ground 

Biomass 

High  Field Data 

LiDAR 

High 

 

Spatial arrangement,  

Area standardised 

Biomass  

 

Medium 

 

While multi-spectral sensors are the most commonly used source of remote sensing 

data used in studies of the mountain treeline; there are uncertainties in the ability of multi-

spectral sensors to resolve structural variation in mountain treelines. This uncertainty had led 

to a poor understanding of which spectral properties best characterise structural variation 

within the treeline ecotone (Morley et al., 2018). Vegetation indices are used to transform two 

or more spectral bands into indices that emphasise key biophysical characteristics of vegetated 

ecosystems. The Normalised Difference Vegetation Index (NDVI) correlates with Leaf Area Index 

(Wang et al., 2005) and fractional vegetation cover (Carlson and Ripley, 1997) and has been 
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used in estimates of tree canopy cover at the mountain treeline (Hill et al. 2007). Green-based 

indices, such as the Green Normalised Difference Vegetation Index (GNDVI) or the Green-Red 

Vegetation Index (GRVI), show an increased sensitivity to chlorophyll-a concentration, and 

consequently, have been suggested to improve the characterisation of subtle differences 

among ecosystem types (Gitelson et al., 1996; Motohka et al., 2010). The characterisation of 

forest structure has also been improved by using vegetation indices based on short-wave 

infrared due to an increased sensitivity to foliar moisture and vegetation density (Schroeder et 

al., 2011). Indices that make use of shortwave infrared bands have been used to monitor 

vegetation regrowth following disturbance events, with particular emphasis placed on 

monitoring post-fire recovery. While indices such as the Normalised Burn Ratio Index (NBRI) 

were first conceived for monitoring vegetation regrowth post-fire, the sensitivity to foliar 

moisture and vegetation density makes them potential candidates for characterising variation 

in vegetation structure in areas of ecological succession, such as across the treeline ecotone.  

In addition to remotely sensed vegetation indices, textural features that describe the 

statistical distribution of pixel data within a defined neighbourhood have been shown to 

correlate with forest structural variables, such as tree density or average stem diameter (e.g. 

Meng et al., 2016; Ozdemir and Karnieli, 2011). Sensors with a finer spatial resolution allow for 

textural features to be calculated at the scale of the individual plots. However, consideration is 

required to determine if the increased number of textural parameters that can be defined from 

imagery of higher spatial resolution results in data that will be ecologically meaningful if used 

in image classification algorithms given the high degree of collinearity present in spectral 

remote sensing data. Identifying spectral features that show the strongest relationship with 

forest structure is important to maximise the amount of structural information that can be 

resolved in multispectral remote sensing data.  

Delineation of structural variation at forest margins is required to improve our 

understanding of the underlying processes that govern variation in forest response to 

environmental change and to estimate the impacts of forest distribution shifts on biodiversity 

and ecosystem services. Here we focus on the use of multispectral satellite remote sensing data 

because it is the most accessible form of remotely sensed data for assessing mountain treeline 

change across large areas. However, the issue of how best to characterise variation in 

vegetation structure at the mountain treeline using multispectral satellite remote sensing data 

remains unresolved. To address this knowledge gap, this work aims to improve the 

characterisation of mountain treeline ecotones by i) determining which spectral features 

derived from multispectral satellite remote sensing best explain variation in vegetation 
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structure at the mountain treeline and ii) quantifying the ability of sensors with different spatial 

resolutions to resolve variation in vegetation structure at the mountain treeline. 

2.2 Methods 

2.2.1 Study location 

The Central Mountain Range of Taiwan has more than 200 mountains over 3000 m a.s.l., 

the highest of which, Yushan (Jade Mountain), reaches 3952 m.  Although Taiwan spans the 

Tropic of Cancer, the highest elevations experience temperate and alpine conditions. At the 

highest elevation of forest distribution, the canopy is dominated by four conifer species, 

primarily Abies kawakamii and Tsuga chinensis with areas of Pinus taiwanensis and Pinus 

armandii establishment. The adjacent grassland is dominated by the bamboo Yushania 

niitakayamensis which extends to the peaks with a low density of shrubby species, of which 

Juniperus spp. and Rhododendron spp. are the most common.  

Climate is considered to be the primary regulatory factor of the treeline in the Central 

Mountain Range, with temperature and topographic sheltering identified as two fundamental 

controls on treeline structure, position and advance (Greenwood et al., 2015, 2014). Natural 

disturbances caused by small-scale fires and landslides that result in a localised reduction of the 

treeline and removal of substrate affect the treeline sporadically. However, routine disturbance 

events are considered to be of low impact at the landscape scale, with little evidence to support 

widespread anthropogenic disturbance or grazing by large herds of herbivores (domesticated 

or wild).  

2.2.2 Field data 

To identify limitations to an accurate characterisation of structural variation this work 

considers three definitions of vegetation structure at the mountain treeline that have been used 

across the ecological, biogeographical and remote sensing literature. The forest / non-forest 

definition is based on the FAO Global Forest Resources Assessment (2018) criteria of a forest 

with at least 10 % canopy cover and trees higher than 5 m or able to reach these thresholds in 

situ. The FAO (2018) definition was chosen because the leading edge of forest expansion is often 

characterised by a few trees less than 5 m in height. Consequently, the FAO’s forest definition 

aligns with ecological and biogeographic studies investigating pattern-process responses of the 

treeline ecotone because it captures a greater area of the forest-grassland transition than forest 

definitions with a higher canopy cover threshold.  Six structural classes were identified based 

on criteria proposed by Harsh and Bader (2011) and subsequently adapted by Greenwood et al. 

(2014) for the A. kawakamii treeline in Taiwan. Areas of forest advance were first identified 
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using repeat aerial photography and subsequently defining the structural characteristics of 

forest plots in field surveys (Greenwood et al. 2014; Table 2.2). Structural classes are based on 

differences in stand density, average tree size and successional stage that the dominant canopy 

forming species belongs to and include classes that exhibit sharp boundaries as well as diffuse 

areas (Figure 2.1). Complete species separation was not possible due to insufficient field data 

for species that are sparsely distributed at high elevation in the Central Mountain Range. 

Consequently, two forest successional stages are defined; the late successional stage is defined 

as a canopy dominated by A. kawakamii or T. chinensis and the early successional stage 

dominated by P. taiwanensis or P. armandii. Above-ground woody biomass is investigated as 

the continuous variable in this analysis because of the correlation with tree size and density 

from which the categorical groupings are defined (Figure 2.1) and its importance for the 

estimation of global carbon storage as an Essential Climate Variable (Bojinski et al., 2014). 

Field data were collected in the Mt Hehuan area of the Central Mountain Range. A 

purposive sampling strategy was used to ensure representation of all forest sub-classes present 

at the Hehuan treeline. A total of 154 plots were sampled, split among the different vegetation 

classes (Table 2.2). Early successional species are only found in localised areas of low-density 

establishment, therefore, are only represented in a single structural class. Data from 

Greenwood et al. (2014) were combined with data from an additional survey conducted by the 

authors in 2016. To retain consistency in plot size, transect data from Greenwood et al. (2014) 

were split into 84 subplots measuring 20 x 20 m returning a sample area of 0.04 ha. The 70 plots 

surveyed in 2016 used a 10 m fixed radius design returning a sample area of 0.03 ha. Since 

quantity measures are area-standardised, this difference in plot size has no consequence for 

subsequent analyses. Field plot location were recorded using a handheld Garmin GPSMAP 62s 

(best accuracy +/- 3 m). All trees were measured for Diameter at Breast Height (DBH) at 1.3 m 

and the height of all live saplings less than 1.3 m in height was recorded in all plots. During the 

2016 survey, a sample of live trees within each plot was also measured for height. Height was 

related to DBH using nonlinear least squares regression, thereby allowing estimation of height 

for any plots where it was not recorded (data not shown). Stand above-ground woody biomass 

was calculated from stand basal area and median stand height, accounting for differences in 

specific wood gravity between species.  Sapling data were used to inform the designation of 

structural classes but were not used to calculate stand above-ground biomass values.   

Table 2.2: Description of full structural classes based on successional stage and stand structure 

identified in the Mt Hehuan region of the Central Mountain Range, Taiwan, and the number 

of sampling plots. 
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Vegetation Class 

(Number of plots) 

Description 

Late – Old growth forest 

(33) 

Canopy dominated by A. kawakamii or T. chinensis. Areas of the 

forest interior where the forest has persisted for many years and 

characterised by a few large trees. 

 

Late – Static treeline  

(12) 

Canopy dominated by A. kawakamii or T. chinensis. Forested 

areas at the forest-grassland boundary with trees representative 

of old growth and no signs of forest advance. Usually with a sharp 

boundary with the adjacent grassland. 

 

Late – Abrupt advancing 

treeline 

(24) 

Canopy dominated by A. kawakamii or T. chinensis. Areas of 

forest advance that have a high density of establishing trees 

usually over short distances and a sharp, well-defined boundary 

with the adjacent old growth forest and grassland.  

 

Late – Diffuse advancing 

treeline 

(32) 

Canopy dominated by A. kawakamii or T. chinensis. Areas of 

forest expansion with a low density of establishing trees usually 

over long distances and a diffuse, poorly defined boundary with 

the adjacent grassland.  

 

Early – Diffuse advancing 

treeline 

(22) 

Canopy dominated by P. taiwanensis or P. armandii. Areas of 

forest expansion with a low density of establishing trees usually 

over long distances and a diffuse, poorly defined boundary with 

the adjacent grassland.  

 

Grassland 

(31) 

Areas devoid of tree species but may include a low density of 

shrubs. 
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Figure 2.1: Definitions of structural classes are based on differences in tree size and tree density 

(median values for stand height and tree density are shown with standard error). The 

combination of tree size and density results in a significant difference in above-ground woody 

biomass between structural classes (ANOVA: F (5,148) = 55.96, p < 0.001), with the Early-Diffuse 

advancing and Late-Diffuse advancing treeline classes not separable due to a similar forest 

structure but defined by a different successional stage (median values for above-ground woody 

biomass are shown with standard error). 

 

2.2.3 Earth observation data 

To investigate the importance of sensor spatial resolution on the characterisation of 

treeline structural variation, data from four multispectral satellite-borne sensors are compared; 
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2 m pixel size GeoEye multispectral data captured in October 2012, 6 m pixel size SPOT-7 

multispectral data captured in October 2016, 10 m and 20 m pixel size Sentinel-2 MSI data 

captured in October 2016 and 30 m pixel size Landsat-8 OLI data captured in January 2017. 

Sentinel-2 and Landsat-8 are delivered as orthorectified products and GeoEye and SPOT-7 

images were orthorectified using a 30 m resolution SRTM DEM. The spectral bands were 

calibrated and converted to top-of-atmosphere reflectance in ENVI 5.3 using gain and offset 

values, accounting for solar irradiance, sun elevation and time of image acquisition. 

Atmospheric correction was not implemented as single date images are considered 

independently and pseudo-invariant features (roads and buildings) did not indicate differences 

in atmospheric conditions between individual images (Song et al., 2001; data not shown). All 

images were collected in the same season (Autumn-Winter) to avoid differences in vegetation 

phenology.  

Where available, up to seven spectral bands (blue, green, red, near infrared (NIR), red-

edge and two short-wave infrared (SWIR) bands) and four vegetation indices were considered 

(Table 2.3). The vegetation indices considered were the Normalized Difference Vegetation Index 

(NDVI), calculated as: 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝐸𝐷)/(𝑁𝐼𝑅 + 𝑅𝐸𝐷)      (1) 

where NIR and RED are the near infrared and red spectral bands respectively; the Green-Red 

Vegetation Index (GRVI), calculated as: 

𝐺𝑅𝑉𝐼 = (𝐺𝑅𝐸𝐸𝑁 − 𝑅𝐸𝐷)/(𝐺𝑅𝐸𝐸𝑁 + 𝑅𝐸𝐷)     (2) 

where GREEN and RED are the green and red spectral bands respectively; the Green Normalised 

Difference Vegetation Index (GNDVI), calculated as: 

𝐺𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁)/(𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁)     (3) 

where NIR and GREEN are the near infrared and green spectral bands respectively; and 

Normalised Burn Ratio Index (NBRI), calculated as: 

𝑁𝐵𝑅𝐼 = (𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅𝐼𝐼)/(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅𝐼𝐼)    (4) 

where NIR and SWIRII are the near infrared and second short-wave infrared (approx. 2200 nm) 

spectral bands respectively. While the calculation for each of the vegetation indices is the same 

for each sensor, differences in position and width of each spectral band between sensors (table 

2.3) mean that the value of the vegetation indices in any given place will vary between the 

sensors (Franke et al., 2006). Five measures of statistical distribution were considered as 
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textural features, the mean, two measures of dispersion (standard deviation and coefficient of 

variation) and two measures of shape (skewness, kurtosis) were calculated for each spectral 

band and vegetation index in all sample plots. Due to differences in spatial resolution of the 

different remote sensing images, we are unable to calculate dispersion and shape statistics for 

all sample plots. Consequently, the number of sample points that are used in the analysis of the 

dispersion and shape statistics varies; 154 plots for GeoEye and SPOT-7 and 101 for 10 m pixel 

size Sentinel-2 (Table 2.3). It was not possible to calculate dispersion and shape statistics at the 

plot scale from 20 m pixel size Sentinel-2 data or 30 m pixel size Landsat-8 data, consequently, 

only the mean spectral response is considered and no other descriptors of spectral response 

are investigated. Statistical descriptors of spectral response were calculated in R (R Core Team, 

2017) using packages raster (Hijmans, 2016) and rgdal (Bivand et al., 2016). 
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Table 2.3: Remote sensing spectral features used to investigate the relationship between the statistical distribution of spectral values and vegetation 

structure at the mountain treeline. The textural features of the centre (mean), dispersion (standard deviation, coefficient of variation) and shape (skewness, 

kurtosis) were calculated from the pixel values recorded within the boundary of field plots. 

Satellite 

 

Pixel size (m) Spectral Bands  Wavelength (nm) 

(min – max, centre) 

Vegetation Indices Textural features  

(Number of observations) 

GeoEye 2 Blue,  

Green,  

Red,  

Near-infrared  

450 – 510, 480 

510 – 580, 545 

655 – 690, 673 

780 – 920, 850 

NDVI, GNDVI, GRVI Mean (154),  

Standard Deviation (154), Coefficient of Variation 

(154), Skewness (154), Kurtosis (154) 

SPOT-7 6 Blue  

Green  

Red  

Near-infrared  

455 – 525, 490 

530 – 590, 560 

625 – 695, 660 

760 – 890, 825 

NDVI, GNDVI, GRVI Mean (154),  

Standard Deviation (154), Coefficient of Variation 

(154), Skewness (154), Kurtosis (154) 

 

Sentinel-2 

MSI 

10 Blue 

Green  

Red  

Near-infrared  

448 – 546, 497 

537 – 583, 560 

646 – 684, 665 

762 – 908, 835 

NDVI, GNDVI, GRVI Mean (154),  

Standard Deviation (101), Coefficient of Variation 

(101), Skewness (101), Kurtosis (101) 

 

 20 Red Edge 

Short-wave infrared I 

Short-wave infrared II 

731 – 749, 740 

1542 – 1686, 1614 

2081 – 2323, 2202 

NBRI Mean (154) 

Landsat-8 

OLI 

30 Blue  

Green,  

Red,  

Near-infrared, 

Short-wave infrared I 

Short-wave infrared II 

450 - 515, 482  

525 – 600, 561  

630 – 680, 655   

845 – 885, 865  

1560 – 1660, 1609   

2100 – 2300, 2201 

NDVI, GNDVI, GRVI, 

NBRI 

Mean (154) 
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2.2.4 Statistical analysis 

Each spectral feature was regressed independently to assess the strength of the 

relationship between each band or vegetation index and the forest biophysical properties due 

to the high degree of correlation between spectral bands. The relationship between the forest 

/ non-forest definition and spectral features was assessed using binomial logistic regression 

with a logit link function. Multinomial logistic regression was used to investigate the probability 

of separating different structural classes (Table 2.1) from the spectral data. The results from 

multinomial regression of the full structural classes indicated that some forest classes could not 

be separated and consequently, class simplification was carried out. The simplified class 

structure considered three vegetation classes in multinomial logistic regression: Old-growth 

forest (an amalgamation of the old-growth forest and static treeline classes), areas of forest 

advance (an amalgamation of the three classes of forest advance: Early-Diffuse, Late-Diffuse 

and Late-Abrupt advancing treeline classes) and the grassland class. Least squares regression 

was used to explore the relationship between above-ground woody biomass and spectral 

features. The inclusion of zero values of above-ground woody biomass from grassland plots 

caused heteroscedasticity in model residuals. Consequently, the analysis was conducted as a 

two-stage procedure, first considering the forest / non-forest definition through binomial 

logistic regression and subsequently conducting least squares regression on data points from 

the forest class with a log transformation on above-ground woody biomass.  

Multiple regression was carried out for each of the four definitions of vegetation 

structure (Forest / non-forest, full and simplified structural classes and above-ground woody 

biomass) to ascertain if the characterisation of structural variation at the treeline could be 

significantly improved by using multiple spectral predictors. Multi-collinearity was tested for 

using variance inflation factors and, where present, spectral variables were removed to reduce 

the severity of multi-collinearity. Model simplification was carried out using partial F-tests to 

identify the minimum adequate model required to explain variation in the response. To identify 

potential strengths or limitations of the different forest definitions, the probability of class 

assignment or above-ground woody biomass was estimated for a subset of the Mt. Hehuan 

study area using the GRVI derived from Sentinel-2 imagery. All statistical analyses were carried 

out in R (R Core Team, 2017) using packages boot (Canty and Ripley, 2016) and nnet (Venables 

and Ripley, 2002), variance inflation was tested for using the car package (Fox and Weisberg, 

2011). Statistical significance was considered at p < 0.05 and the coefficient of determination 

(R2) used to gauge the strength of the relationship (the reported R2 of the binomial and 

multinomial logistic regression is McFadden’s pseudo R2 - henceforth R2
MF). The reported R2 for 
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above-ground biomass are from least-squares regression of biomass against spectral properties 

in which zero values of biomass in grassland areas were excluded due to heteroscedasticity in 

the residuals. 

2.3 Results 

2.3.1 Textural features 

Of the textural features considered, the mean spectral response has the strongest 

relationship with the four treeline ecotone definitions investigated, particularly with the green 

and red spectral bands and the GRVI (Table 2.4). The dispersion measures (standard deviation 

and coefficient of variation) of the near-infrared band from the GeoEye sensor show a 

significant relationship with each of the four definitions of vegetation structure (Table 2.4). 

However, the strength of the relationship between dispersion measures and forest-grassland 

definitions is considerably lower when data from either SPOT-7 or Sentinel-2 are considered 

(e.g. the strongest measure for forest / non-forest: GeoEye NIR Coef. of Var. R2
MF 0.464, p < 

0.01; SPOT NIR Coef. of Var. R2
MF 0.200, p < 0.01; Sentinel-2 NIR Coef. of Var. R2

MF 0.086, p < 

0.01; Supplementary 1). Whilst the strength of the relationship between definitions of 

vegetation structure and the dispersion and shape features derived from the spectral bands are 

typically better than dispersion measures derived from vegetation indices, the dispersion 

measures of the GNDVI measured from GeoEye data have a comparable, significant relationship 

with above-ground woody biomass (St. dev. R2
 = 0.452, p < 0.01; Coef. of Var. R2 0.469, p < 0.01; 

Table 2.4). 
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Table 2.4: Coefficient of determination from the regression of four definitions of vegetation 

structure at the mountain treeline against texture features derived from four spectral bands 

and three vegetation indices from 2m pixel size GeoEye data in the Mt. Hehuan area of the 

Central Mountain Range, Taiwan. (* p < 0.05, ** p < 0.01). 

Forest / Non-forest (R2
MF; n = 154) 

 Blue Green Red NIR NDVI GRVI GNDVI 

Mean 0.562** 0.554** 0.587** 0.113** 0.417** 0.554** 0.124** 

St. dev. 0.032* 0.009 0.030* 0.417** 0.002 0.002 0.139** 

Coef. of Var. 0.009 0.097** 0.010 0.464** 0.012 0.105** 0.080** 

Skewness 0.011 0.044* 0.002 0.054** <0.001   <0.001   0.003 

Kurtosis <0.001   0.019 <0.001   0.003 0.021 <0.001   0.017 

 

Full Structural classes (R2
MF; n = 154) 

 Blue Green Red NIR NDVI GRVI GNDVI 

Mean 0.351** 0.375** 0.374** 0.213** 0.182** 0.329** 0.064** 

St. dev. 0.062** 0.052** 0.096** 0.167** 0.022* 0.033** 0.132** 

Coef. of Var. 0.043** 0.063** 0.049** 0.226** 0.017 0.079** 0.098** 

Skewness 0.107** 0.114** 0.117** 0.041** 0.071** 0.084** 0.034** 

Kurtosis 0.012 0.018 0.024* 0.073** 0.009 0.009 0.006 

        

Simplified Structural classes (R2
MF; n = 154) 

 Blue Green Red NIR NDVI GRVI GNDVI 

Mean 0.454** 0.489** 0.484** 0.299** 0.210** 0.407** 0.087** 

St. dev. 0.085** 0.055** 0.120** 0.221** 0.015** 0.045** 0.156** 

Coef. of Var. 0.055** 0.067** 0.051** 0.303** 0.015 0.109** 0.118** 

Skewness 0.018 0.030** 0.021* 0.044** 0.054** 0.021* 0.032** 

Kurtosis 0.004 0.012 0.006 0.078** 0.011 0.006 0.009 

 

Above-ground biomass, t C ha-1 (R2; n = 123) 

 Blue Green Red NIR NDVI GRVI GNDVI 

Mean 0.656** 0.704** 0.676** 0.449** 0.162** 0.586** 0.004 

St. dev. 0.057** 0.017 0.090** 0.303** 0.150** 0.016 0.452** 

Coef. of Var. 0.037* 0.024 0.010 0.561** 0.112** 0.208** 0.469** 

Skewness 0.171** 0.156** 0.201** 0.060** 0.366** 0.178** 0.260** 

Kurtosis 0.001 0.017 0.014 0.193** 0.014 0.004 <0.001   
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2.3.2 Spectral bands 

When considering the mean response of spectral bands from all the sensors 

investigated, the blue, green, red and shortwave infrared bands show the strongest relationship 

with the definitions of vegetation structure at the treeline ecotone (Highest R2
(MF) for forest / 

non-forest: Sentinel-2 Red 0.642, p < 0.01; Full structural Classes: SPOT-7 & Sentinel-2 Blue 

0.396, p < 0.01; Simplified structural Classes: Sentinel-2 Blue 0.531, p < 0.01; Above-ground 

woody biomass: GeoEye Green 0.704, p < 0.01; Table 2.5), whilst the near-infrared and red edge 

bands show a weak relationship (Table 2.5). The spatial resolution of the sensor has little effect 

on the strength of the relationship with either the forest / non-forest definition or full structural 

classes (difference of R2
MF within 0.06 and 0.09 respectively). When the simplified structural 

classes are considered the difference in R2
MF in the visible wavelengths is < 0.08, however, in 

the near-infrared this difference increases to 0.19 due to a reduced strength of the relationship 

between the mean response of the near-infrared band from Landsat-8 and the simplified 

structural classes. Similarly, the strength of the relationship between above-ground woody 

biomass and the visible and near-infrared bands from the Landsat-8 sensor are consistently 

0.12-0.29 R2 lower than the strongest relationship with the alternative sensors considered here. 

However, the difference in R2 among the remaining three sensors in the visible range is < 0.03 

and in the near-infrared there is a difference in R2 of 0.1 when above-ground woody biomass is 

used to describe the treeline ecotone (Table 2.5). 
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Table 2.5: Coefficient of determination from the regression of the four definitions of 

vegetation structure at the mountain treeline against the mean response of the spectral 

bands in the Mt. Hehuan area of the Central Mountain Range, Taiwan. (* p < 0.05, ** p < 0.01). 

Forest / Non-forest (R2
MF; n = 154) 

 Blue Green Red NIR Red Edge SWIR1 SWIR2 

GeoEye 0.562** 0.554** 0.587** 0.113** – – – 

SPOT-7 0.597** 0.584** 0.629** 0.126** – – – 

Sentinel-2 0.599** 0.575** 0.642** 0.090** 0.104** 0.471** 0.573** 

Landsat-8 0.604** 0.550** 0.618** 0.066** – 0.494** 0.547** 

 

Full Structural classes (R2
MF; n = 154) 

 Blue Green Red NIR Red Edge SWIR1 SWIR2 

GeoEye 0.351** 0.375** 0.374** 0.213** – – – 

SPOT-7 0.396** 0.389** 0.393** 0.165** – – – 

Sentinel-2 0.396** 0.378** 0.389** 0.157** 0.175** 0.300** 0.331** 

Landsat-8 0.343** 0.325** 0.339** 0.076** – 0.272** 0.298** 

        

Simplified Structural classes (R2
MF; n = 154) 

 Blue Green Red NIR Red Edge SWIR1 SWIR2 

GeoEye 0.454** 0.489** 0.484** 0.299** – – – 

SPOT-7 0.505** 0.505** 0.514** 0.219** – – – 

Sentinel-2 0.531** 0.516** 0.526** 0.214** 0.233** 0.408** 0.450** 

Landsat-8 0.518** 0.496** 0.514** 0.113** – 0.410** 0.451** 

 

Above-ground biomass, t C ha-1 (R2; n = 123) 

 Blue Green Red NIR Red Edge SWIR1 SWIR2 

GeoEye 0.656** 0.704** 0.676** 0.449** – – – 

SPOT-7 0.653** 0.681** 0.670** 0.345** – – – 

Sentinel-2 0.686** 0.681** 0.668** 0.349** 0.368** 0.582** 0.601** 

Landsat-8 0.552** 0.552** 0.559** 0.164** – 0.502** 0.521** 
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2.3.3 Vegetation indices 

When vegetation indices are considered, the mean response of the GRVI and NBRI show 

the strongest relationships with each of the four forest-grassland transition definitions 

considered (Highest R2 for forest / non-forest: Landsat-8 GRVI 0.623, p < 0.01; Full structural 

Classes: GeoEye GRVI 0.329, p < 0.01; Simplified structural Classes: SPOT GRVI 0.425, p < 0.01; 

Above-ground woody biomass: GeoEye GRVI 0.586, p < 0.01; Table 2.6). The strength of the 

relationship between the mean response of the Green-Red vegetation index does not depend 

on the spatial resolution of the sensors compared in this study when categorical definitions are 

used to describe vegetation structure across the mountain treeline (difference of R2
MF within 

0.07 for forest / non-forest; 0.04 for full structural classes; 0.05 for simplified structural classes, 

Table 2.6). However, when above-ground woody biomass is used the difference in R2 between 

sensors tested here increases to 0.12 (Table 2.6). 
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Table 2.6: Coefficient of determination from the regression of the four definitions of 

vegetation structure at the mountain treeline against the mean vegetation index response 

in the Mt. Hehuan area of the Central Mountain Range, Taiwan. (* p < 0.05, ** p < 0.01). 

Forest / Non-forest (R2
MF; n = 154) 

 NDVI GRVI GNDVI NBRI 

GeoEye 0.417** 0.554** 0.124** – 

SPOT-7 0.442** 0.600** 0.159** – 

Sentinel-2 0.510** 0.590** 0.272** 0.581** 

Landsat-8 0.451** 0.623** 0.173** 0.531** 

 

Full Structural classes (R2
MF; n = 154) 

 NDVI GRVI GNDVI NBRI 

GeoEye 0.182** 0.329** 0.064** – 

SPOT-7 0.170** 0.324** 0.056** – 

Sentinel-2 0.190** 0.287** 0.088** 0.283** 

Landsat-8 0.207** 0.302** 0.077** 0.273** 

     

Simplified Structural classes (R2
MF; n = 154) 

 NDVI GRVI GNDVI NBRI 

GeoEye 0.210** 0.407** 0.087** – 

SPOT-7 0.231** 0.425** 0.079** – 

Sentinel-2 0.271** 0.378** 0.133** 0.388** 

Landsat-8 0.258** 0.381** 0.090** 0.403** 

 

Above-ground biomass, t C ha-1 (R2; n = 123) 

 NDVI GRVI GNDVI NBRI 

GeoEye 0.162** 0.586** 0.004 – 

SPOT-7 0.146** 0.577** <0.001 – 

Sentinel-2 0.189** 0.468** 0.021 0.506** 

Landsat-8 0.275** 0.522** 0.047** 0.482** 
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2.3.4 Multiple regression 

When considering the GeoEye sensor, the use of multiple spectral bands as predictor 

variables leads to a significant increase in variance explained across all four of the definitions of 

vegetation structure considered here (Table 2.7). However, when considering the alternative 

sensors tested in this study the benefit of including multiple spectral bands as predictors 

depends on the definition used to describe vegetation structure across the treeline ecotone. 

For example, for SPOT-7 and Sentinel-2 the strength of the relationship between spectral bands 

and both the full and simplified structural class definitions increases when using multiple 

regression (Table 2.7). However, when a simple forest / non-forest or above-ground woody 

biomass definition is used to describe the vegetation structure at the treeline ecotone, linear 

models with R2 above 0.6 can be derived from a single spectral band such as the green or red 

spectral bands (Table 2.7). When spectral bands from Landsat-8 are used, the minimum 

adequate model uses only a single spectral band due to multi-collinearity in the spectral data. 

However, when vegetation indices are derived from Landsat-8 spectral bands, the combination 

of GRVI and the NBRI in regression models significantly improves the strength of the relationship 

with the full structural classes, simplified structural classes and above-ground woody biomass 

(Table 2.7). 
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Table 2.7: Coefficient of determination from the regression of the four definitions of vegetation 

structure at the treeline ecotone against multiple predictors derived from either the spectral 

bands or vegetation indicies in the Mt. Hehuan area of the Central Mountain Range, Taiwan. (* 

p < 0.05, ** p < 0.01). 

 

Forest / Non-forest  

Satellite Spectral Bands R2
MF Vegetation Indices R2

 MF 

GeoEye Red Mean + NIR Coef. of Var. 0.619** GRVI Mean  0.554** 

SPOT-7 Green Mean  0.645** GRVI Mean 0.600** 

Sentinel-2 Red Mean  0.642** GRVI Mean  0.590** 

Landsat-8 Red Mean 0.618** GRVI Mean 0.623** 

     

Full Structural classes 

Satellite Spectral Bands R2
 MF Vegetation Indices R2

 MF 

GeoEye Green Mean + NIR Coef. of Var. 0.413** GRVI Mean + GNDVI St. 

Dev 

0.351** 

SPOT-7 Red Mean + NIR Coef. of Var. 0.440** GRVI Mean 0.324** 

Sentinel-2 Green Mean + Red Mean + NIR 

Coef. of Var. 

0.451** GRVI Mean + NDVI Coef. 

of Var. 

0.341** 

Landsat-8 Red Mean 0.339** GRVI Mean + NBRI Mean 0.312** 

     

Simplified Structural classes 

Satellite Spectral Bands R2
 MF Vegetation Indices R2

 MF 

GeoEye Green Mean + Red Mean + NIR 

Coef. of Var. 

0.551** GRVI Mean + GNDVI St. 

Dev. 

0.431** 

SPOT-7 Green Mean + Red Mean + NIR 

Coef. of Var. 

0.564** GRVI Mean  0.425** 

Sentinel-2 Green Mean + Red Mean 0.554** GRVI Mean + NDVI Coef. 

of Var. 

0.413** 

Landsat-8 Red Mean 0.514** GRVI Mean + NBRI Mean 0.463** 

     

Above-ground biomass, t C ha-1  

Satellite Spectral Bands R2 Vegetation Indices R2 

GeoEye Green Mean + NIR Coef. of Var. 0.723** GRVI Mean + GNDVI St. 

Dev 

0.668** 

SPOT-7 Green Mean 0.682** GRVI Mean  0.577** 

Sentinel-2 Green Mean  0.681** GRVI Mean + NBRI Mean 0.526** 

Landsat-8 Red Mean 0.559** GRVI Mean + NBRI Mean 0.533** 
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2.3.5 Data visualisation 

The probability of class assignment and above-ground woody biomass were estimated 

to identify potential strengths or limitations of the different definitions of forest structure at 

the mountain treeline. Tables 2.5 and 2.6 indicate that several spectral bands or vegetation 

indices would be suitable for this purpose, with the green and red spectral bands and GRVI 

amongst the highest performing spectral variables considered. While the NBRI shows a similar 

strength of relationship to the GRVI, it is only possible to calculate the NBRI from two of the 

four sensors considered (Sentinel-2 and Landsat-8, Table 2.6). Therefore, the GRVI is used to 

compare definitions of forest structure at the mountain treeline because the GRVI is the best 

performing vegetation index that can be derived from all four of the sensors investigated in this 

study.   

The estimated probability of the forest / non-forest binomial logistic regression shown 

using the GRVI derived from Sentinel-2 imagery highlights significant areas of the grassland that 

would be estimated as forest under a definition based on 10 % canopy cover if a maximum 

probability classifier were implemented (Figure 2.2). The increased probability of forest 

occurrence in areas that can be visually identified as grassland coincides with increased 

standard error compared to neighbouring forested areas (Figure 2.2). Based on a maximum 

probability classification, the mean response from the GRVI would be expected to identify up 

to three of the six classes considered here: grassland, late-diffuse advancing treeline and old 

growth forest (Figure 2.3). This approach does not determine differences in community 

composition between the early- and late-successional stages in the diffuse advancing structure, 

areas of late-abrupt advance or differences between the static treeline and old growth forest 

(Figure 2.3). Simplifying intermediate classes, by amalgamating the late-static class with the old 

growth forest as well as combining the three classes indicative of forest advance, results in a 

better distinction between old growth forest and grassland areas as well as a reduction in the 

area of grassland that would be incorrectly classified as forested under a forest / non-forest 

approach (Figure 2.4). While the simplified class structure leads to better discrimination of areas 

of forest advance from areas of old-growth, this approach is unable to resolve heterogeneity in 

forest structure at the mountain treeline due to overlap in the spectral properties of forest 

structural classes (Figure 2.3). The estimation of above-ground biomass indicates an improved 

ability to estimate differences in structural heterogeneity at the mountain treeline showing 

good correspondence to the true colour image. However, the characterisation of areas with 

biomass values above 25 t C ha-1 are likely to be inaccurate due to a saturation effect that occurs 

in the relationship between biomass and the spectral properties (Figure 2.5). In addition, the 
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spectral signature of some grassland areas still results in an elevated above-ground woody 

biomass estimation in areas not undergoing forest expansion. However, estimated biomass 

values of these grassland areas are reduced when compared against the neighbouring forested 

areas (Figure 2.5). 
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Figure 2.2: The relationship (Binomial logistic regression) between GRVI derived from Sentinel-

2 (Oct 2016) and forest / non-forest response and 95 % confidence intervals (top-left, R2
MF = 

0.59, p < 0.01), true colour composite of the Mt Hehuan North Peak (top-right) and 

corresponding estimated probability of forest occurrence (bottom-left) and uncertainty in the 

estimated probability shown as standard error (bottom-right). 
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Figure 2.3: The relationship (multinomial logistic regression) between GRVI derived from 

Sentinel-2 (Oct 2016) and structural classes showing estimated class probability (top, R2
MF = 

0.287, p < 0.01) and the estimated probability of membership to each of the six structural 

classes in the Mt Hehuan North Peak (bottom). Based on a maximum probability approach, 

three of the six vegetation classes would be estimated while the early-diffuse advance, late-

abrupt advance and Late-static forest structural classes are unlikely to be identified. 
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Figure 2.4: The relationship (multinomial logistic regression) between GRVI derived from 

Sentinel-2 (Oct 2016) and simplified structural classes showing estimated class probability (top, 

R2
MF = 0.378, p < 0.01) and the estimated probability of membership to each of the three 

structural classes in the Mt Hehuan North Peak (bottom). Based on a maximum probability 

approach, all three vegetation classes would be estimated with an increased probability of 

forest advance occurring at the old growth forest margins. 
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Figure 2.5: The relationship (least-squares regression) between GRVI derived from Sentinel-2 

(Oct 2016) and above-ground woody biomass and 95 % confidence intervals (top-left; R2 = 

0.468, p < 0.01); true colour composite of the Mt Hehuan North Peak (top-right) and 

corresponding estimated above-ground woody biomass values (bottom-left) and uncertainty in 

the estimated probability shown as standard error (bottom-right). 
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2.4 Discussion 

Here we show that the ability to identify variation in forest structure at the mountain 

treeline using multispectral satellite remote sensing data is best achieved when above-ground 

woody biomass is used to describe variation in vegetation structure (Tables 2.4 – 2.7). 

Furthermore, we show that a simplified class structure that considers areas of forest advance 

separately to old growth forest improves the discrimination of areas indicative of forest advance 

or stasis. The relationships defined here between four definitions of vegetation structure at the 

mountain treeline and spectral features highlight little quantitative difference between the 

remote sensing sensors tested here (difference of R2 
(MF) within 0.03 for forest / non-forest; 0.11 

for full structural classes; 0.05 for simplified structural classes; 0.16 for above-ground woody 

biomass; Table 2.7). Consequently, effective use of multispectral satellite remote sensing data 

presents a major opportunity to improve the ecological understanding of range shifts in 

mountain forests and estimate their subsequent impacts to biodiversity and ecosystem 

function.    

The relationship between treeline definition and spectral variables is strongest when 

using above-ground woody biomass or the forest / non-forest definition to describe the forest-

grassland transition (strongest R2 for above-ground woody biomass: GeoEye Green mean & NIR 

Coef. of Var. 0.723, p < 0.01; strongest R2
MF for forest / non-forest: SPOT-7 Green mean 0.645, 

p < 0.01; Table 2.7). However, both definitions show limitations in the ability to characterise 

areas indicative of forest advance or stasis across forest-grassland transitions in mountain 

ecosystems. When using a forest / non-forest definition, thresholds of canopy cover used to 

delineate a forest boundary in an ecotone are difficult to define because areas of grassland and 

areas with a low forest canopy cover can have similar spectral responses which in turn 

influences estimates of forest extent (Figure 2.2; Arnot et al., 2004; Hill et al., 2007). Song et al. 

(2014) found that varying the threshold of canopy cover from 20 to 30 % resulted in 

considerable disagreement in forest cover estimates, resulting in a significant under-

representation of diffuse forest expansion when a threshold of 30 % canopy cover was used. 

Treeline ecotones are often characterised by areas with sparse and discontinuous tree cover 

and, consequently, assessments of change must be able to identify areas of diffuse forest 

expansion accurately. The sensitivity of the canopy cover threshold used to define the forest / 

non-forest boundary highlighted above not only leads to high uncertainty in estimates of forest 

expansion but also understates the variety of responses of the mountain treeline, restricting 

the ecological interpretation of forest change in mountain treeline ecotones (Holtmeier and 

Broll, 2017, 2007).  
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The representation of the mountain treeline ecotone is improved when using above-

ground woody biomass to characterise vegetation structure. However, using above-ground 

woody biomass to represent the treeline ecotone is likely to under-estimate biomass in areas 

of old growth forest because spectral reflectance has an asymptotic relationship with plant 

biomass, which leads to a saturation effect in dense vegetation (Figure 2.5; Asner et al., 2003; 

Huete et al., 1997). In upland plantations, Puhr and Donoghue (2000) highlighted that the 

spectral signature of conifer trees converges with increasing size and as the canopy approaches 

closure. Consequently, once coniferous forest stands approach 13 m in height and the basal 

area exceeds 40 m2 ha-1 identifying differences in forest structure is problematic, and 

predictions are likely to become unreliable (Puhr and Donoghue, 2000). The saturation of GRVI 

indicated in Figure 2.5 coincides with the class average biomass values of the abrupt advancing 

treeline where trees establish in high density and reach canopy closure quickly (Figure 2.1). 

Consequently, it may be possible to identify changes in above-ground woody biomass in areas 

undergoing forest expansion and so improve the characterisation of vegetation structure.  

However, characterisation of areas with biomass values above 25 t C ha-1 are likely to be 

inaccurate and thus limits the use of above-ground biomass as a single predictor of forest 

structure at mountain treeline ecotones. 

Structural classes that define intermediate classes between areas of old-growth forest 

and treeless habitats have not been widely used in studies using remote sensing data to identify 

shifts in mountain forests. Consequently, there was uncertainty surrounding the degree of 

structural information that multispectral satellite remote sensing is able to resolve (Morley et 

al., 2018). The high spectral similarity between the late successional - old growth forest, late-

static treeline and late-abrupt advancing treeline classes indicates a saturation in the spectral 

properties during the transition between the closed canopy, abrupt advancing treeline and old 

growth forest structures (Figure 2.3). Amalgamating the static treeline and old growth forest 

classes leads to an improvement in the ability to identify areas of old-growth forest (Figure 2.4). 

Similarly, amalgamating the early-diffuse, late-diffuse and late-abrupt advancing forest classes 

leads to an improved ability to separate areas at the leading edge of forest advance from areas 

of old-growth forest (Figure 2.4). Consequently, we find that the use of simplified structural 

classes improves the characterisation of areas indicative of treeline advance or stasis. However, 

overlap in the spectral properties means that it is not possible to identify variation in forest 

structure within areas of forest advance using discrete classes.  

The spectral similarity highlighted by the probability estimates of the forest / non-forest 

regression persists between areas of diffuse forest advance and some areas of the grassland 
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(Figure 2.3). At the leading edge of forest advance, the diffuse advancing treeline class is 

characterised by a few trees less than 5 m in height. Consequently, the size and density of 

establishing trees are not sufficient to provide a significant difference in spectral reflectance in 

some grassland areas when using a single date image, leading to an over-estimation in the 

extent of diffuse treeline advance (Figure 2.3 & 2.4). The spectral similarity between some 

grassland areas and the diffuse advancing treeline exists in areas where changes in forest extent 

and structure are occurring most rapidly. Consequently, the identification of areas of forest 

advance can be improved by comparing images over time (e.g. Dinca et al., 2017; Mihai et al., 

2017; Bharti et al., 2012). The Landsat archive offers the most consistent source of multispectral 

satellite data with images dating back to the 1980s at 30 m pixel size. Concerns had been raised 

over the potential suitability of data from the Landsat archive to characterise vegetation 

heterogeneity due to the spatial resolution of the spectral data (Bharti et al., 2012; Buchanan 

et al., 2015; Chen et al., 2015). It is often perceived that imagery with a high spatial resolution 

will improve the characterisation of habitat heterogeneity because of the ability to identify 

small objects, e.g. individual trees. However, we show that spectral features derived from 

Landsat-8 data have a comparable strength of relationship to higher resolution imagery when 

simple structural classes are used, despite the ability to include multiple measures of spectral 

texture at the plot scale from imagery with a high spatial resolution (difference of R2
MF between 

sensors tested within 0.03 for forest / non-forest and 0.05 for the simplified structural classes, 

Table 2.7; Donoghue and Watt, 2006). Consequently, exploiting the long-term, open-access 

Landsat archives to identify changes in forest extent over time will improve estimates of forest 

distribution change at the leading edge of forest-grassland transitions (e.g. Dinca et al., 2017; 

Mihai et al., 2017). 

While exploiting the Landsat archive is beneficial for identifying areas of treeline 

change, there are still difficulties in characterising variation in forest structure within areas of 

change using structural classes. Identifying change between simplified class assignment over 

time using archived Landsat data would allow estimation of the extent of forest change and 

stand age of advancing forest, however, this approach would not directly characterise forest 

structure. An alternative solution is to estimate above-ground woody biomass directly using 

imagery of higher resolution within areas identified as advancing forest. Whilst data from the 

GeoEye sensor returns the highest correlation coefficient with above-ground woody biomass 

(R2 = 0.723, p < 0.01), the difference in correlation coefficient using data from Sentinel-2 or 

SPOT-7 are within 0.04 (R2 = 0.681, p < 0.01; R2 = 0.682, p < 0.01 respectively). Consequently, 

there is an opportunity to make use of freely available Sentinel-2 data to estimate above-ground 
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woody biomass at the stand scale, thereby allowing variation in forest structure to be 

characterised within areas undergoing forest advance at the mountain treeline. This two-stage 

approach would allow variation in vegetation structure at the mountain treeline to be estimated 

with higher confidence than using either a forest / non-forest classification, which over-

estimates forest cover, or the direct estimation of above-ground woody biomass, which would 

give an unreliable estimate of biomass past a saturation threshold.  

Structural classes are broad enough to be used at a global scale, and while not 

necessarily present in every mountain forest, are suitably flexible to be adapted to the local 

community and structural composition. Here the spectral similarity of conifer species meant it 

was not possible to distinguish between the early successional – diffuse advancing treeline and 

the late successional – diffuse advancing treeline. However, Bharti et al. (2012) have shown the 

ability of multispectral Landsat imagery to separate coniferous and broadleaf species at other 

elevational treelines. Therefore, in other mountain areas, broader species differences could be 

incorporated to account for species-specific responses to environmental change providing 

suitable training data are available. When adapting structural classes, the spectral similarity 

between classes highlighted above emphasises the importance of independent accuracy 

assessments, the process by which image classification algorithms are trained and validated 

using subsets of the ground-truthing data set (see Castilla, 2016; Olofsson et al., 2014, 2013). 

While accuracy assessments are required of any study using remotely sensed data to estimate 

land-surface properties; they remain an element absent from many previous studies of 

mountain treelines (Morley et al., 2018). At the leading edge of mountain forest distribution, 

some areas respond to environmental change very quickly while other areas slowly or not at all 

(e.g. Greenwood et al., 2014; Harsch et al., 2009; Lloyd, 2005). Consequently, as the uptake of 

remote sensing technology in assessments of changing mountain forest distribution increases, 

there is a need to ensure that conclusions drawn about changes in forest extent and structure 

at forest margins are reliable when scaled up to assess entire mountain ranges.  

2.5 Conclusion 

Obtaining estimates of changes in forest distribution over large areas is challenging in 

mountain areas where steep terrain often restricts the geographical scope of field campaigns. 

Change assessments must account for variation in forest structure to make reliable estimations 

of the impacts of distribution shifts on biodiversity and ecosystem function. By comparing 

different satellite sensors against four definitions of vegetation structure at the mountain 

treeline that are widely used in the ecology, biogeography and remote sensing literature, we 

demonstrate that the identification of areas indicative of forest advance or stasis is best 
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achieved using a simplified class structure while variation in structure within areas of forest 

advance is best characterised in multispectral satellite remote sensing using above-ground 

woody biomass to describe forest structure. There is very little difference in the ability of the 

sensors tested here to discriminate between categorical descriptors of vegetation structure, 

and while Landsat 8 is less well suited to defining above-ground woody biomass there is little 

difference between the relationships defined for GeoEye, SPOT-7 and Sentinel-2 data.  The 

results presented here enable structural variation in mountain forest margins to be identified 

in multispectral satellite remote sensing, facilitating research in mountain areas where 

significant fieldwork is not possible. Consequently, the methods described in this paper will 

advance our understanding of the ecological mechanisms driving forest distribution shifts 

across mountain ranges and improve estimates of the impacts that changes in forest 

distribution will have on biodiversity and ecosystem function. 
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Supplimentary Information 1 

 

Table S1: Coefficient of determination from the regression of four definitions of vegetation 

structure at the mountain treeline against texture features derived from four spectral bands and 

three vegetation indices from 6m pixel size SPOT-7 data in the Mt. Hehuan area of the Central 

Mountain Range, Taiwan. (* p < 0.05, ** p < 0.01). 

Forest / Non-forest (R2
MF; n = 154) 

 Blue Green Red NIR NDVI GRVI GNDVI 

Mean 0.597** 0.584** 0.629** 0.126** 0.442** 0.600** 0.159** 

St. dev. 0.034* <0.001 0.021 0.111** 0.077** <0.001 0.013 

Coef. of Var. 0.007 0.061** 0.034* 0.200** 0.112** 0.163** 0.014 

Skewness 0.040* 0.016 0.034* <0.001 0.004 0.004 <0.001 

Kurtosis 0.019 0.005 0.007 0.011 <0.001 0.004 0.003 

 

Structural classes (R2
MF; n = 154) 

 Blue Green Red NIR NDVI GRVI GNDVI 

Mean 0.396** 0.389** 0.393** 0.165** 0.170** 0.324** 0.056** 

St. dev. 0.075** 0.083** 0.103** 0.063** 0.041** 0.050** 0.017 

Coef. of Var. 0.065** 0.092** 0.083** 0.096** 0.054** 0.130** 0.018 

Skewness 0.068** 0.060** 0.068** 0.025* 0.014 0.045** 0.006 

Kurtosis 0.009 0.008 0.010 0.015 0.007 0.008 0.014 

        

Simplified Structural classes (R2
MF; n = 154) 

 Blue Green Red NIR NDVI GRVI GNDVI 

Mean 0.505** 0.505** 0.514** 0.219** 0.231** 0.425** 0.079** 

St. dev. 0.097** 0.065** 0.101** 0.059** 0.057** 0.055** 0.008 

Coef. of Var. 0.066** 0.061** 0.057** 0.100** 0.075** 0.180** 0.008 

Skewness 0.022* 0.015 0.027* 0.014 0.004 0.007 0.001 

Kurtosis 0.010 0.005 0.006 0.006 0.000 0.003 0.004 

 

Above-ground biomass, t C ha-1 (R2; n = 154) 

 Blue Green Red NIR NDVI GRVI GNDVI 

Mean 0.653** 0.681** 0.670** 0.345** 0.146** 0.577** <0.001 

St. dev. 0.085** 0.063** 0.089** 0.005 <0.001 0.012 0.075** 

Coef. of Var. 0.053* <0.001 <0.001 0.127** 0.006 0.112** 0.067** 

Skewness 0.087** 0.103** 0.143** 0.045* 0.025 0.057** 0.029 

Kurtosis <0.001 0.009 0.009 0.002 <0.001 <0.001 <0.001 
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Table S2: Coefficient of determination from the regression of four definitions of vegetation 

structure at the mountain treeline against texture features derived from four spectral bands 

and three vegetation indices from 10m pixel size Sentinel-2 data in the Mt. Hehuan area of the 

Central Mountain Range, Taiwan. (* p < 0.05, ** p < 0.01).  

Forest / Non-forest (R2
MF; n = 101 (n Mean response = 154) ) 

 Blue Green Red NIR NDVI GRVI GNDVI 

Mean 0.599** 0.575** 0.642** 0.090** 0.510** 0.590** 0.272** 

St. dev. 0.023 0.003 0.012 0.053 0.048* <0.001 0.002 

Coef. of Var. 0.001 0.056 0.031 0.086* 0.082* 0.156** 0.008 

Skewness 0.008 0.020 0.039 0.011 0.015 0.009 0.051* 

Kurtosis 0.004 0.003 0.002 0.007 0.010 0.034 <0.001 

 

Structural classes (R2
MF; n = 101 (n Mean response = 154)) 

 Blue Green Red NIR NDVI GRVI GNDVI 

Mean 0.396** 0.378** 0.389** 0.157** 0.190** 0.287** 0.088** 

St. dev. 0.129** 0.155** 0.158** 0.051** 0.064** 0.038* 0.015 

Coef. of Var. 0.103** 0.135** 0.120** 0.055** 0.076** 0.104** 0.012 

Skewness 0.042* 0.031 0.055** 0.031 0.018 0.039* 0.027 

Kurtosis 0.007 0.007 0.012 0.011 0.008 0.016 0.006 

        

Simplified Structural classes (R2
MF; n = 101 (n Mean response = 154)) 

 Blue Green Red NIR NDVI GRVI GNDVI 

Mean 0.531** 0.516** 0.526** 0.214** 0.271** 0.378** 0.133** 

St. dev. 0.145 0.116 0.158 0.034* 0.089** 0.036* 0.007 

Coef. of Var. 0.101** 0.077** 0.085** 0.038* 0.110** 0.147** 0.009 

Skewness 0.009 0.018 0.070** 0.025 0.008 0.016 0.024 

Kurtosis 0.003 0.003 0.006 0.008 0.009 0.019 <0.001 

 

Above-ground biomass, t C ha-1 (R2;  n = 101 (n Mean response = 154)) 

 Blue Green Red NIR NDVI GRVI GNDVI 

Mean 0.686** 0.681** 0.668** 0.349** 0.189** 0.468** 0.021 

St. dev. 0.067* 0.052* 0.070* 0.010 0.007 0.001 0.036 

Coef. of Var. 0.048* <0.001 0.003 0.133** 0.025 0.030 0.023 

Skewness 0.072* 0.042 0.137** 0.036 0.010 0.035 0.006 

Kurtosis <0.001 0.001 <0.001 <0.001 0.020 0.010 0.018 
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Abstract: 

Changes in global climate and land-use are driving changes in species distributions. 

Mountain ecosystems are highly susceptible to global environmental changes because they are 

expected to experience higher than average temperature increases and are more susceptible 

to land-use change. Montane forests show a diverse response to environmental change with 

upward elevational shifts, increased tree density and across-slope movement all reported. 

However, there is variation in patterns of forest advance both between geographic regions and 

at local scales. Variation in forest range shifts must be accounted for when estimating changes 

in forest ranges because local variation in forest range shifts are expected to modify the 

landscape-scale implications that forest advance will on have montane biodiversity and 

ecosystem function. This study uses repeat aerial photography analysed with a sample-based 

change assessment to quantify changes in forest elevation and area and to quantify variation in 

the rate of forest advance over time and with topography. In the Mt. Hehuan study area of the 

Central Mountain Range, Taiwan, the non-forest area has declined by 29 % between 1963 and 

2016. The decline in non-forest area is driven by a 295.0 ha increase in forest area within the 

Mt. Hehuan area. While no change in mean forest elevation is reported, the mean elevation of 

establishing forest has increased at a rate of 2.2 m yr-1 lagging 0.5 m yr-1 behind the estimated 

change in isotherm position. Topography alters patterns of forest advance in the Mt. Hehuan 

area. East and south facing slopes have experienced the largest gains in forest area, and 0-20° 

gradient slopes show an increasing rate of forest establishment up to 2016. However, slopes 

facing west or with gradients of >46° show negligible increases in forest area. The integration 

of a probability-based change-sample assessment with repeat aerial photography has enabled 

the quantification of landscape-scale forest range shifts with high accuracy. The change-sample 

method offers an unprecedented opportunity to expand the geographic scope in change 

assessments, reduce uncertainty in future change assessments and make precise estimates of 

the implications of forest advance.  
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3.1 Introduction 

Changes in global climate and land-use are driving shifts in forest distribution 

(Améztegui et al., 2016, 2010; Harsch et al., 2009). Global temperatures are predicted to 

increase between 0.3 and 4.8 °C by 2100 compared to the 1985-2005 mean (IPCC, 2013). 

However, regional variation in temperature changes alongside elevation-dependent warming 

means that mountain ecosystems are expected to experience higher than average temperature 

increases (Dirnböck et al., 2011; IPCC, 2013; Pepin et al., 2015). Mountain ecosystems are also 

susceptible to land abandonment due to shifts in agricultural practices, local population 

demographics and socio-economic policies (Haddaway et al., 2014; MacDonald et al., 2000). 

Consequently, mountain ecosystems are highly susceptible to global environmental change.  

Uphill advances in the position of montane forests have been observed at the 

elevational limit of forest distribution (henceforth the treeline), attributable to increasing 

temperatures and land-use changes (Améztegui et al., 2016, 2010; Harsch et al., 2009). 

However, upward shifts in treeline position tell only part of the story of changing forest 

distribution in mountain ecosystems. There is variation in global patterns of forest advance with 

52.4 % of elevational and latitudinal treelines showing upward or poleward migration while a 

further 46.4 % show no change (Harsch et al., 2009). In areas that do not exhibit increases in 

forest elevation, increased tree density below the treeline and across-slope movement have 

often been reported  (e.g. Bharti et al., 2012; Klasner and Fagre, 2002). It is, therefore, necessary 

to quantify changes in both the elevation and area of forest distribution in mountain ecosystems 

to fully capture species responses to environmental change.  

At naturally occurring treelines, temperature has been identified as the global limiting 

factor on treeline position and advance (Körner and Paulsen, 2004). However, the complexity 

of controls on forest establishment and advance at the treeline results in local and landscape-

scale variation in forest range shifts. In mountain ranges, local climate regimes can be modified 

by topography causing some slopes to experience climatic conditions that may be cooler, drier 

or more sheltered than neighbouring areas (Malanson et al., 2011; Suggitt et al., 2011). 

Variation in resource availability (e.g. McNown and Sullivan, 2013; Sullivan et al., 2015), 

radiative stress (Bader et al., 2007), and drought stress (e.g. Johnson and Smith, 2007; 

Leuschner and Schulte, 1991; Millar et al., 2007) at the plot scale also play a role in controlling 

the establishment and growth patterns of advancing montane forests. Additionally, the 

structure of a forest stand itself can act as a feedback mechanism to facilitate or constrain 

patterns of tree establishment, growth and mortality through increased seed availability, 

modification of the micro-climate and alterations to competitive dynamics (Camarero et al., 
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2017). While the influence that individual factors have on forest advance or stasis is reasonably 

well understood, the role that interactions between individual factors and feedback process 

play in influencing treeline position and forest advance are less well understood. Specifically, 

there are needs to improve our understanding of variation in rates of forest advance to better 

understand how interactions and feedback processes lead to landscape-scale variation in 

patterns of forest advance (Holtmeier and Broll, 2017; Malanson et al., 2011).  

Quantifying variation in forest advance in mountain ecosystems is challenging as some 

areas show a rapid response to environmental change while others respond slowly or not at all. 

However, the ability to accurately quantify variation in patterns of forest advance in mountain 

ranges is crucial for assessing carbon sequestration & emissions, biodiversity conservation and 

resource management. The relative isolation of mountain environments and high habitat 

heterogeneity means that disproportionately high numbers of endemic and rare species are 

found at high elevations (Steinbauer et al., 2016). The upward or across slope advance of 

montane forests will likely cause a reduction in grassland area and change competitive dynamics 

in high-elevation ecosystems. Consequently, shifts in forest distribution are expected to result 

in the range contraction and extirpation of grassland species as species ranges are pushed 

towards mountain tops (Jump et al., 2012). While forest advance is considered a significant 

threat to grassland biodiversity, increases in forest area, tree density and growth rates are 

expected to increase the carbon sequestration potential of montane forests (Zierl and 

Bugmann, 2007). Therefore, increased forest area and tree growth rates in mountain 

ecosystems could act as negative feedbacks to global temperature increases through greater 

carbon sequestration, thus contributing to the mitigation of global climate change (Saxe et al., 

2001).  

Obtaining accurate estimates of the impacts that forest advance will have in mountain 

ecosystems is currently limited by our ability to quantify variation in forest range shifts at the 

landscape scale. Local variation in patterns of forest advance must be accounted for across large 

areas in order to avoid over- or under-stating the severity of the impacts that forest advance 

will have on biodiversity and ecosystem function. While rapid forest advance may result in the 

local extirpation of species with narrow environmental tolerances (Jump et al., 2012); if the 

ability for trees to establish is restricted in some areas within a mountain range due to non-

thermal controls, treeless areas may persist that provide refugia for species from alpine habitats 

and enable their continued persistence (Bruun and Moen, 2003; Greenwood and Jump, 2014). 

Consequently, the implications that forest advance will have at a landscape-scale will be 

dependent on local variation in forest range shifts.   
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Field observations have steered much of our current understanding of species range 

shifts and their associated impacts. The best estimates of change and the associated 

implications typically come from repeat surveys of fixed monitoring sites that are distributed 

across a mountain range (e.g. Global Observation Research Initiative in Alpine Environments; 

Grabherr et al., 2000). However, many studies are based on incidental historical records and 

limited field observations (Gottfried et al., 2012). Mountain ranges are difficult to access, and 

field surveys are often restricted to accessible sites and sample only limited areas. Assessment 

of the implications that forest range shifts may have on regional carbon budgets or biodiversity 

are subject to bias if change assessments rely on limited field data to identify regional patterns 

of forest advance. At a landscape scale, clustering of habitat changes and rare events that occur 

sporadically in time or space can skew estimates of change that are based on limited field 

surveys or incidental observations taken at snapshots through time (Fisher et al., 2008). 

Furthermore, at a global scale, North American and European mountain ranges have received a 

greater proportion of research effort than southern hemisphere and Asian mountain ranges 

which are subsequently under-represented in global estimates of species range shifts (Harsch 

et al., 2009; Malanson et al., 2011). Our ability to quantify uncertainty in landscape-scale forest 

range shifts and compare estimates of range shifts between geographic areas is therefore 

limited. Despite challenges in estimating forest range shifts in largely inaccessible mountain 

ranges, the development of theoretically and methodologically consistent approaches to 

defining variation in forest range shifts at a landscape-scale is essential to enable the 

quantification of uncertainty in change estimates and allow comparisons of range shifts 

between areas.  

The use of remote sensing data to assess changes in forest distribution is attractive to 

overcome limitations of field surveys imposed by poor accessibility to field sites in mountain 

ranges. Repeat vertical aerial photographic survey data has previously been used to assess 

change at mountain treelines by identifying the treeline in individual images and comparing the 

position of the treeline over time (e.g. Greenwood et al., 2014; Klasner and Fagre, 2002; Luo 

and Dai, 2013; Mathisen et al., 2014; Resler et al., 2004). Such studies often aim to identify 

changes in the maximum treeline elevation or tree density. However, many published studies 

do not provide quantitative estimates of uncertainty in the range shifts reported (Morley et al., 

2018). Given that some areas respond rapidly to environmental change while others respond 

slowly or not at all, the lack of quantitative uncertainty estimates limits the interpretation of 

the results that would allow for a landscape-scale estimate of changes in forest distribution in 

mountain ecosystems. 
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Sample-based change estimates are a long-established technique for assessing changes 

in habitat area and condition that have been widely adopted by forest monitoring programs 

interested in quantifying change in forest area and forest degradation (Cochran, 1977; Olofsson 

et al., 2013; Pickering et al., 2019). This approach to change assessment uses manual 

interpretation of remote sensing data at sample plots to estimate the area of each habitat type 

at each survey date and within a given terrain feature or geographic region of interest 

(henceforth stratum) alongside an uncertainty value for the area estimate. Sample-based 

change estimates are recognised as a more reliable method for estimating changes in habitat 

type or condition than change assessments derived from classified maps due to image 

classification errors (Olofsson et al., 2016, 2013; Stehman, 2013). Therefore, integrating a 

sample-based approach with repeat aerial photography enables changes in habitat to be 

identified over time with a high degree of confidence. This unification provides the opportunity 

to expand the geographic scope of change assessments and reduce uncertainty in estimates of 

montane forest distribution changes. Here aerial photography is combined with a sample-based 

change assessment to 1) quantify changes in forest elevation and area over time; 2) quantify 

the rate of forest advance and 3) identify how the rate of forest advance varies over time and 

with topography.  

3.2 Methods 

3.2.1 Study area 

This study was conducted in the Mt. Hehuan area of the Central Mountain Range, 

Taiwan (Figure 3.1). Despite Taiwan spanning the Tropic of Cancer, high-elevation areas of the 

Central Mountain Range experience temperate conditions that support conifer-dominated 

forests at elevations higher than 2400 m a.s.l. The high-elevation forests of the Central 

Mountain Range are dominated by four conifer species, primarily Abies kawakamii and Tsuga 

chinensis with areas of Pinus taiwanensis and Pinus armandii establishment. The Mt. Hehuan 

study area reaches a maximum elevation of 3560 m a.s.l. with a naturally forming treeline giving 

way to grassland dominated by the bamboo, Yushania niitakayamensis.  

Greenwood et al. (2015, 2014) found that the high-elevation treeline in Taiwan is 

predominantly temperature limited, with topography and local sheltering influencing treeline 

position, structure and advance through a modification of regional temperature regimes. The 

importance of local topographic controls on the treeline in the Central Mountain Range has 

resulted in a highly reticulate and structurally diverse treeline. As a consequence, patterns of 

forest advance within the study area show a high degree of variation over a short distance. 
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Localised reductions in the treeline position are caused by sporadic, naturally occurring small-

scale fires and landslides. However, routine disturbance events across the Central Mountain 

Range are considered of low impact at the landscape scale with limited evidence to support 

widespread anthropogenic disturbance or grazing by either domestic or wild herds.  

 

Figure 3.1: Colour aerial photography from 2016 showing the treeline of high elevation conifer 

forests in the Mt Hehuan study area. The Mt Hehuan study area is located in the North of the 

Central Mountain Range, Taiwan (the area above 2400 m a.s.l. is shown in black in the inset). 
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3.2.2 Aerial photography 

Black and white aerial photographs were captured in 1963 (0.3 m pixel size) and 1980 

(0.25 m pixel size), colour photographs in 2001 (0.5 m pixel size) and four-band multispectral 

images in 2016 (0.25 m pixel size). Aerial photographs from 1980, 2001 and 2016 were delivered 

as orthorectified image products by the Taiwanese National Archive and did not require further 

geometric corrections (minimum accuracy is 2.5 m). The aerial photographs from 1963 were 

georeferenced to the images captured in 2016 using a spline transformation in the QGIS 

Georeferencing plugin (Average number of tie points used was 128, ranging between 78 and 

207 between image pairs; the mean error in all image pairs was < 1 pixel).  

3.2.3 Change assessment 

3.2.3.1 Sample Design 

A proportional stratified random sampling design was used to assess change in forest 

distribution. To ensure adequate representation of the entire study area, slope orientation was 

used as a basis for stratification due to the major role topography has in mediating patterns of 

forest advance (Greenwood et al., 2015, 2014). Stratification was based on 12 categories of 

slope gradient and aspect attributes calculated from a high-resolution TanDEM-X Digital 

Elevation Model (12 m spatial resolution resampled to 15 m pixel size), using four cardinal 

compass directions (± 45° in either direction) and three slope gradient classes (0-20°, 21-45° and 

46°+). The number of samples taken in each stratum was proportional to the area of the study 

region occupied by the slope-gradient combination (Table 3.1, Figure 3.2). Following the 

removal of sample plots that had to be omitted due to a cloud or shadow impairing the 

interpretation, a total of 2785 sample plots were interpreted, equivalent to 1.54 % of the total 

study area. 

 

Table 3.1: The number of sample points from each of the 12 terrain categories used in the 

change assessment of forest advance in the Mt. Hehuan area of the Central Mountain Range, 

Taiwan. 

Gradient North East South West  

0-20° 67 298 132 59  

21-45° 370 706 499 430  

46°+ 79 47 48 50  
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Figure 3.2: The proportion of the Mt. Hehuan study area occupied by each of the four aspects 

or three gradient classes. 

 

3.2.3.2 Change attributes 

At each sample location, a sample plot measuring 15 x 15 m was created and 

interpreted manually for each epoch of change analysis (1963, 1980, 2001, and 2016). Each 

sample plot was assigned one of four vegetation classes at each survey period (Table 3.2) 

enabling change between vegetation classes to be tracked over time (Figure 3.3). Areas that 

meet the FAO Global Forest Resources Assessment (2018) criterion of a forest as an area with 

at least 10 % canopy cover and trees greater than 5 m in height are classified here as forest. 

Areas with small trees present within the plot that do not meet the thresholds of a forest as set 

out by the FAO definition were categorised as establishing forest. The scale of the aerial 

photography (≤0.5 m pixel size) is sufficient to discriminate differences in tree size based on 

crown size. Areas with partial removal of the forest canopy between time periods are 

categorised as disturbed and treeless areas are categorised here as non-forest areas. The 

distinction between the forest and establishing forest classes is important. Forest resource 

assessments rarely comment on areas of forest establishment that do not meet the pre-defined 

criteria for forest cover. However, ecological and biogeographic studies have a much broader 

interpretation, and the treeline is often defined by trees greater than 2 m in height and the 

species limit by the upper-most trees irrespective of tree height. Therefore, the establishing 

forest class recognises a greater area of the forest-grassland transition that is present at 

mountain treelines than a simpler forest / non-forest vegetation classification. 
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Table 3.2: Definitions of vegetation classes used here to assess forest change in the Central 

Mountain Range, Taiwan.  

Class Description 

Forest An area of trees that meet FAO (2018) criteria of a forest with at least 10 

% canopy cover and trees greater than 5 m in height.  

Establishing forest An area of forest establishment, small trees are identifiable in aerial 

photographs due to their small crown size. 

Non-forest An area that lacks trees. 

Disturbed An area of forest with a reduction in canopy cover but some trees 

remain. 

Omitted Unable to identify vegetation class due to cloud cover or shadow. 

 

Figure 3.3: Changes in vegetation class over time identified in repeat aerial photographic 

surveys using 15 x 15 m sample plots (red outline). The images above show non-forest in 1963 

(left) transitioning through the establishing forest class (1980 & 2001, middle) and the 

conversion to the forest class in 2016 (right). 

3.2.3.3 Change estimates 

Estimates of vegetation change were calculated in R (R Core Team, 2017) using the 

survey package (Lumley, 2018) to determine weighted estimates of the population total, 

returning estimated total area (ha) and proportional representation of class membership for 

each stratum and survey period. The survey package accounts for the effect of stratification by 

weighting observations according to the sampling probability. The elevation of each plot was 

identified from a Tan-DEM X Digital Elevation Model and the average elevation of each class 

calculated for each survey period to quantify the change in class elevation over time. The Tan-

DEM X Digital Elevation Model has a relative vertical accuracy of 2m and an absolute vertical 

accuracy of 10m. The estimated class area in each survey period was compared over time to 

identify changes in habitat area. Area estimates were calculated for the whole study area and 

for each terrain stratum to give the proportion of available area occupied by each vegetation 

class in each of the four aspect strata and three gradient strata. Variation in the rate of habitat 

change was investigated for three change classes: recent establishment, defined as a change 
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from non-forest to establishing forest within a change period; rapid establishment, defined as 

a change from non-forest to forest within a single change period; and advanced establishment, 

defined as a change from establishing forest to forest within a single change period. Rates of 

advance were calculated as the proportion of available area occupied by a change class divided 

by the length of the monitoring period (e.g. the proportion of the non-forest area in 1980 that 

has converted to forest in 2001 divided by 21 years, returns the rate of rapid establishment 

between 1980 and 2001). All uncertainty measures reported are at the 95 % confidence 

intervals unless otherwise stated and area estimates are reported in plan view. 

3.3 Results 

3.3.1 Landscape-scale change estimates 

This sample-based change assessment of the Mt. Hehuan study area reveals that 

approximately 20.6 % ± 2.3 % of the non-forest area in 1963 converted to establishing forest by 

2016 with a further 8.2 % ± 1.5 % of the non-forest area in 1963 lost to advancing forest by 2016 

(Table 3.3). Forest disturbance in the Mt. Hehuan study area is rare, 1.4 % ± 0.4 % of the forest 

area in 1963 has undergone conversion to non-forest while a further 0.7 % ± 0.3 % has 

experienced a reduction in canopy cover between 1963 and 2016 (Table 3.3). There was no 

evidence indicating anthropogenic causes for forest advance or loss in the Mt. Hehaun study 

area. In areas of forest loss complete removal of substrate was visible in the aerial photography 

suggesting that forest loss is primarily caused by landslide events with no direct evidence in the 

aerial photography to suggest fire caused a loss in forest area. Between 1963 and 2016 forest 

advance in the Mt. Hehuan study area has led to an estimated net increase in forest area of 

295.0 ha and an estimated net decrease in the non-forest area of 332.6 ha (Figure 3.4a). Despite 

the increase in forest area, the mean elevation of the forest has not changed over time 

(elevation in 1963 was 2917m ± 9 m and in 2016 was 2914 m ± 9 m; Figure 3.4b). However, the 

mean elevation of establishing forest has increased over time, rising 115 m in elevation from 

2887 m a.s.l. ± 26 m in 1963 to 3002 m a.s.l. ± 21 m in 2016. While there has been a change in 

the elevation of establishing forest, the increase in the area occupied by establishing forest is 

modest with an increase of just 20.1 ha between 1963 and 2016 (Figure 3.4). There has been 

continued tree growth within areas of establishing forest throughout the study period resulting 

in 77.8 % ± 5.4 % of the area occupied by establishing forest in 1963 converting to forest by 

2016 (Table 3.3). The conversion of establishing forest to non-forest is rare in Mt. Hehuan, just 

0.9 % ± 1.2 % of the area of establishing forest in 1963 returned to non-forest by 2016. However, 

21.3 % ± 5.3 % of the area of establishing forest in 1963 remained within the establishing forest 

class in 2016, indicating a limitation on tree growth in some areas (Table 3.3)  
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Figure 3.4: Temporal changes in the area occupied (a) and mean elevation (b) of each of the 

three vegetation classes (forest, establishing forest and non-forest) in the Mt. Hehuan study 

region of the Central Mountain Range, Taiwan. Uncertainty of the estimates is shown at the 

95 % confidence intervals.  
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Table 3.3: The proportion of changes in vegetation classes between 1963 and 2016. 

Uncertainty is shown as standard error alongside the estimated proportion of change at 

the upper (97.5%) and lower (2.5%) 95% confidence intervals.  

 

Class changes from Non-forest 

1963 2016 Proportion SE 2.5% 97.5% 

Non-Forest Non-Forest 0.7121 0.0132 0.6863 0.7379 

Non-Forest Establishing 0.2058 0.0117 0.1829 0.2288 

Non-Forest Forest 0.0821 0.0080 0.0663 0.0978 

      
Class changes from Establishing forest 

1963 2016 Proportion SE 2.5% 97.5% 

Establishing Non-Forest 0.0094 0.0063 -0.0030 0.0218 

Establishing Establishing 0.2125 0.0271 0.1595 0.2656 

Establishing Forest 0.7780 0.0275 0.7241 0.8320 

      
Class changes from Forest 

1963 2016 Proportion SE 2.5% 97.5% 

Forest Non-Forest 0.0142 0.0021 0.0100 0.0184 

Forest Forest 0.9787 0.0026 0.9735 0.9838 

Forest Disturbed 0.0071 0.0015 0.0041 0.0102 

 

3.3.2 Change estimates by terrain strata 

East and South facing aspects show the largest change in forest area between 1963 and 

2016 resulting in an estimated increase in the proportion of East and South facing slopes 

occupied by forest of 10.7 % and 8.3 % respectively (Figure 3.5a). Forest area has remained 

stable on west-facing slopes; however, the proportion of area occupied by establishing forest 

has increased by 4.3 % resulting in a decrease in the non-forest area over time (Figure 3.5a). 

When considering slope gradient, forest advance between 1963 and 2016 is greatest on 

gradients between 0-45° (Figure 3.5b). Gain in forest area over the study period is greater on 

slopes with 21-45° gradient (221 ha) rather than slopes with 0-20° gradient (76 ha) despite 

similar changes in the proportion of area occupied by forest. This discrepancy occurs because 

the 21-45° gradient stratum occupies a larger proportion of the Mt. Hehuan study area (Figure 

3.2). The proportion of area occupied by establishing forest has increased from 9.4 % ± 1.3 % in 

1963 to 12.4 % ± 1.5 % in 2016 on slopes with 0-20° gradients while there has been a decrease 

in the proportion of the area of slopes with 21-45° gradient occupied by establishing forest (9.7 

% ± 0.7% in 1963 to 6.7 % ± 0.6 % in 2016; Figure 3.5b).  
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Figure 3.5: Temporal changes in the proportion of aspect (a) and gradient (b) terrain strata 

occupied by each vegetation class (forest, establishing forest and non-forest) in the Mt. Hehuan 

area of the Central Mountain Range, Taiwan. Uncertainty of the estimates is shown at the 95 % 

confidence interval. 

3.3.3 Variation in the rate of change 

The rate of recent establishment (a change from non-forest to establishing forest within 

a single change period) peaked across the study area between 1980 and 2001 and remained 

stable between 2001 and 2016 (Figure 3.6a). For the majority of terrain classes, the patterns of 
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rates of recent establishment mirror that of the broader study area with only North facing 

aspects and slopes with gradient >46° deviating from the landscape pattern. Slopes facing North 

or with a gradient >46° show a sharp peak in recent establishment between 1980 and 2001 

followed by a decline in the rate of advance between 2001 and 2016 (Figure 3.6). On East and 

South facing aspects the rate of recent establishment remained stable following the 1980 and 

2001 change period with a small increase in the rate of recent establishment between 2001 and 

2016 (Figure 3.6b). The rate of recent establishment on West facing aspects also remains stable 

after 2001 but shows a slight decline in the rate of recent establishment between 2001 and 

2016. The rate of recent establishment on 0-20° slopes shows a small increase in the rate of 

recent establishment after the 1980-2001 change period while 21-45° slopes show a small 

decline in the rate of advance between 2001 and 2016 (Figure 3.6c).  
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Figure 3.6: Temporal variation in the rate of recent forest establishment, defined as the change 

from non-forest to establishing within a change period. Three change periods are considered: 

1963-1980, 1980-2001 and 2001-2016. Panel a shows the rate of recent forest establishment 

for the Mt. Hehuan study area as a whole, panel b shows the rate of recent forest establishment 

separated by aspect strata and panel c shows the rate of recent forest establishment separated 

by gradient strata.  The rate of change is shown as a proportion of available area per year. 

Uncertainty in the estimates in panel a are shown at the 95 % confidence intervals. 
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The rate of rapid establishment, defined as the conversion of non-forest to forest in a 

single change period, is declining over time in the Mt. Hehuan study area (Figure 3.7a). Although 

there are small variations among terrain strata, a majority of the terrain strata show a decline 

in the rate of rapid establishment over the whole study period, with the rate of rapid 

establishment on west facing slopes showing the only increase in rate of rapid establishment 

over the entire study period. East and South facing aspects show a small rise in the rate of rapid 

establishment between 1980 and 2001 followed by a subsequent decline in the rate of rapid 

establishment between 2001 and 2016 (Figure 3.7b). Despite the general trend in decline, the 

rate of rapid forest establishment increased on west-facing slopes between 2001 and 2016 

(Figure 3.7b). All of the slope gradient strata show a decline in the rate of rapid forest 

establishment between 1963 and 2016 despite a small rise in rapid forest establishment on 21-

45° slopes between 1980 and 2001 (Figure 3.7c). 
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Figure 3.7: Temporal variation in the rate of rapid establishment, defined as the change from 

non-forest to forest within a change period. Three change periods are considered: 1963-1980, 

1980-2001 and 2001-2016. Panel a shows the rate of rapid forest establishment for the Mt. 

Hehuan study area as a whole, panel b shows the rate of rapid forest establishment separated 

by aspect strata and panel c shows the rate of rapid forest establishment separated by gradient 

strata.  The rate of change is shown as a proportion of available area per year. Uncertainty in 

the estimates in panel a are shown at the 95 % confidence interval. 
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The rate of advanced establishment, defined as the conversion between establishing 

forest and forest within a single change period, peaks between 1980 and 2001 in Mt. Hehuan 

(Figure 3.8a). Aspect and slope gradient both show a deviation from the landscape-scale trend. 

The rate of advanced establishment on East and West facing slopes peaks between 1980 and 

2001 followed by a subsequent decline in the rate of advanced establishment between 2001 

and 2016 (Figure 3.8b). However, the rate of advanced establishment on North and South facing 

slopes is stable after 2001 with North facing slopes experiencing a marginal decline in the rate 

of change between 2001 and 2016 while South facing slopes show a small increase in the rate 

of advanced establishment between 2001 and 2016 (Figure 3.8b). Slopes with a gradient 

between 0-45° show an increase in the rate of advanced establishment between 1980 and 2001 

(Figure 3.8c). However, slopes with a gradient >46° show the inverse relationship with a strong 

decline in the rate of change between 1980 and 2001 and higher rates of advanced 

establishment during the 1963 - 1980 change period and the 2001 - 2016 change period (Figure 

3.8c).  
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Figure 3.8: Temporal variation in the rate of advanced establishment, defined as the change 

from establishment to forest within a change period. Three change periods are considered: 

1963-1980, 1980-2001 and 2001-2016. Panel a shows the rate of rapid forest establishment for 

the Mt. Hehuan study area as a whole, panel b shows the rate of rapid forest establishment 

separated by aspect strata and panel c shows the rate of rapid forest establishment separated 

by gradient strata.  The rate of change is shown as a proportion of available area per year. 

Uncertainty in the estimates in panel a are shown at the 95 % confidence interval. 
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3.4 Discussion 

Repeat aerial photographic survey data analysed with a sample-based change 

assessment, reveal that forest advance has led to a loss of 29 % of the non-forest area present 

in 1963 in the Mt. Hehuan area of the Central Mountain Range, Taiwan (Table 3.3). While there 

has been an increase in forest area of 295.0 ha between 1963 and 2016 in the Mt. Hehuan area, 

the mean elevation of the forest class has not changed over the study period. However, the 

mean elevation of the establishing forest class has increased 115 m between 1963 and 2016 

(equivalent to 2.2 m yr-1). Patterns of forest advance vary according to topography, with South 

and East facing slopes showing the most significant increases in forest area between 1963 and 

2016. Slopes with a 0-20° gradient indicate an increasing rate of recent establishment over time, 

while 21-45° gradient slopes show little change after 2001 and slopes with a gradient greater 

than 46° show a decrease in the rate of recent establishment following a peak in the rate of 

establishment between 1980 and 2001.  

The substantial increase in forest area, yet stasis in mean forest elevation reported here 

(Figure 3.4) is consistent with patterns of forest advance previously found in the Mt. Hehuan 

study region. Greenwood et al. (2014) found that forest advance in the Central Mountain Range, 

Taiwan, predominantly displays infilling below the upper treeline with only modest changes in 

maximum elevation (27-33 m gain in maximum elevation). The montane forests of the Central 

Mountain Range, Taiwan, have a highly reticulate treeline owing to strong topographic and 

micro-climatic controls on treeline position and seedling establishment (Greenwood et al., 

2015, 2014). The reticulated nature of the treeline means that the forest has reached its 

maximum potential elevation in some areas, as determined by mountain ridges, and so it is not 

possible for the forest to shift further upslope. While changes in treeline elevation are 

commonly used to indicate the response of montane forests to environmental change, the lack 

of elevation changes seen in forest cover yet 295 ha increase in forest area emphasises the need 

for future assessments of montane forest distribution shifts to account for changes in both 

elevation and area of forest cover. 

In the Central Mountain Range, Taiwan, Jump et al. (2012) report a rise in temperatures 

of 1.05 °C to 2009 compared to the 1934-1970 mean. Given the estimated temperature lapse 

rate for Taiwan calculated by Guan et al. (2009) of 0.5 °C 100 m-1, we could expect an increase 

in forest elevation to be around 200 m between 1934 and 2009 (2.7 m yr-1) if elevational change 

in forest cover was keeping pace with raises in isotherm position. With an estimated increase 

in elevation of 2.2 m yr-1, the estimated uphill advance of establishing forest is close to the 

expected elevation increases based on isotherm data alone and indicates that forest 
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establishment lags behind temperature increases at a rate of 0.5 m yr-1. If the establishing forest 

class was not considered separately, the 0.5 m yr-1 lag behind temperature increases identified 

would have been masked, and reported as a more extreme lag, due to the lack of elevation 

change reported for the forest class. The difference in elevation changes between the forest 

and establishing vegetation classes highlights the importance of considering growth stage when 

identifying elevational changes in mountain forests.  

The increases in forest area and mean elevation of establishing forest, reported for the 

study area as a whole mask important variation in patterns of forest advance within the Mt. 

Hehuan study region. East and South facing aspects show the largest increase in forest area 

between 1963 and 2016, resulting in an estimated increase in the proportion of East and South 

facing slopes occupied by forest of 10.7 % and 8.3 % respectively (Figure 3.5a). Similarly, forest 

advance between 1963 and 2016 is greatest on slopes with gradients between 0-45° (Figure 

3.5b). However, 0-20° slopes have shown a greater decline in the proportion of non-forest area 

dropping 15.4 % from 53.9 % ± 2.3 % non-forest in 1963 to 38.5 % ± 2.2 % non-forest in 2016 

(Figure 3.5b). This rapid decline in the non-forest area is substantially driven by an increase in 

the proportion of 0-20° slopes that are occupied by establishing forest. Slopes with a gradient 

of 0-20° are the only terrain stratum to show a large increase in the proportion of area occupied 

by establishing forest over the study period. As temperature thresholds are passed at a given 

elevation due to rising isotherms, a larger area of habitat is likely to be affected by 

environmental change when the slope gradient is shallow (Jump et al., 2009). Environmental 

changes are therefore likely to lead to greater forest establishment and rapid declines in 

grassland area once a shallow slope becomes favourable for seedling establishment.  

The rate of recent establishment (conversion from non-forest to establishing forest 

within a change period) has remained stable after an initial increase during the 1980-2001 

change period, with only North facing aspects and slopes with gradients >46° showing a decline 

in the rate of recent establishment between 2001 and 2016. However, the rate of rapid 

establishment (conversion from non-forest to forest within a change period) has declined over 

time, except on west-facing slopes that show a small increase in the rate of rapid establishment. 

The seemingly opposite trends in these two patterns of forest advance (recent vs rapid 

establishment) might be explained by differences in the factors that limit seedling 

establishment and subsequent growth. The controls on treeline advance in mountain 

environments are complex, with resource availability (McNown and Sullivan, 2013; Sullivan et 

al., 2015), radiative stress (Bader et al., 2007), drought stress (Johnson and Smith, 2007; 

Leuschner and Schulte, 1991; Millar et al., 2007), micro-climate (Greenwood et al., 2015), 
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competition (Wardle and Coleman, 1992), and topographic sheltering (Greenwood et al., 2014) 

all known to influence forest advance. However, the importance of any individual control or set 

of controls is likely to vary over the lifecycle of an individual tree. For example, soil temperature 

has a positive correlation with the abundance of establishing seedlings yet air temperature has 

a more important role in the promotion and control of subsequent growth (Greenwood et al., 

2015).  

While the initial establishment and colonisation of new areas in both recent and rapid 

advance scenarios are likely to be driven by a release from a temperature limitation, in order 

for non-forest to convert to forest within a short time period, the newly colonised areas must 

also have favourable conditions for rapid growth. Consequently, areas that undergo 

establishment within a change period but do not grow sufficiently to be classified as forest may 

exist in areas where a threshold for establishment has been surpassed, but the necessary 

conditions for rapid growth are not met. It is important to note that the conversion of non-

forest to forest is considerably less common than the conversion of non-forest to establishing 

forest within a single change class (there is an order of magnitude difference in the rate of 

advance; see figures 3.6 & 3.7). Therefore, the proportion of non-forest area that experiences 

conditions suitable for establishment and subsequent fast growth may be a limiting factor on 

rapid forest establishment in Mt. Hehuan. Ongoing increases in global temperature are 

expected by 2100 (IPCC, 2013), and consequently, expansion of this research to incorporate 

more information on soil nutrient availability, substrate depth and water availability within 

these two contrasting areas of forest advance would be a beneficial theme for new research. 

The ability to identify areas that are currently non-forest but match the physical attributes of 

areas that have undergone rapid establishment would make a significant contribution to our 

ability to predict future forest range shifts in mountain ecosystems.   

The ability to quantify variation in forest range shifts in mountain ecosystems is of 

critical importance to allow for the implications of forest advance to be predicted. Forest 

advance is expected to impact biodiversity of the alpine zone and alter ecosystem function in 

mountain environments (Greenwood and Jump, 2014). Jump et al. (2012) show that the 

elevation of mountain plant species distribution has increased, on average, by 3.6 m yr-1 in 

Taiwan during the last century. The rate of advance calculated by Jump et al. (2012) indicates 

that the forb and shrub species studied are advancing uphill more rapidly than the montane 

forest. Despite the rapid uphill advance of montane forb and shrub species reported by Jump 

et al (2012), forest advance in Mt. Hehuan has reduced the available area of non-forest habitats 

by 29 % and has caused a 20 - 32 m increase in the mean elevation of remaining non-forest 
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habitats through range contraction (figure 4; elevation gain increases to 32 m when landslide 

events are excluded). Given that the mountain peaks limit the maximum elevation of non-forest 

habitats and that there has been a decrease in the non-forest area across all terrain strata over 

the study period, the upward shift of montane forests is expected to lead to a reduction in 

biodiversity as the area, and elevational range of alpine habitats is reduced.  

Despite the general trend of declining non-forest area, variation in patterns of forest 

advance may reduce the impact that forest advance has on biodiversity at a landscape scale. 

Slopes with gradients of 0-20° are experiencing the most significant losses in non-forest area 

and show a continuing increase in the rate of recent establishment. However, the substantial 

increase in establishing forest on 0-20° slopes is not replicated in the other terrain strata 

considered here. Slopes with a gradient >46° or with a westerly aspect show the smallest 

reductions in non-forest area due to negligible gains in forest area (figure 5). Areas where 

establishment rates are low may allow for alpine species to persist despite ongoing forest 

advance in other areas (Bruun and Moen, 2003). Therefore, it is likely that the presence of 

refugia in areas of slow forest advance or growth limitation will play an increasingly vital role in 

the maintenance of alpine biodiversity in mountain systems as forest advance continues. 

However, even where such refugial areas occur, contraction in population size of alpine species 

is likely due to a reduction in the non-forest area, risking population loss and diminishing but 

not removing their risk of local extinction.  

Increases in forest area, tree density and growth rates are expected to increase the 

carbon sequestration potential of montane forests (Zierl and Bugmann, 2007). Morley et al. 

(2019) report a class average above-ground woody biomass of 60 t C ha-1 in mature forests in 

the Central Mountain Range, Taiwan. The reported increase in forest area of 295.0 ha means 

there will have been a considerable increase in above-ground woody biomass at high-elevations 

over the past five decades. Furthermore, alpine soils typically have low levels of carbon and 

treeline advance is expected to increase below-ground carbon accumulation in mountain 

systems (Körner, 1998; Michaelson et al., 1996) meaning the impact of forest advance on 

regional carbon storage and sequestration potential is likely to be significantly greater than the 

gain in above-ground biomass. However, quantitative data on carbon dynamics that would 

allow for an ecosystem scale assessment of the ability of montane forests to act as carbon sinks 

are lacking. To quantify carbon storage and sequestration potential of montane forests, further 

research is required that incorporates above- and below-ground processes as well as extending 

the scope of monitoring programs to identify changes across entire mountain ranges.   
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Despite locally excellent data availability, aerial photography is geographically limited 

and not a globally available resource. Satellite-borne Earth observation data offers an 

opportunity to expand the geographic scope of change assessments. However, previous studies 

that analyse Landsat data over time to estimate forest area change at mountain treelines do so 

without the benefit of data that provide high precision estimates of change and rates of change. 

Olofsson et al. (2013) and Stehman (2013) set out steps to reduce bias in area estimates derived 

from Earth observation data using information contained within image classification accuracy 

assessments, and highlight the importance of stratified sampling to improve the precision of 

area estimates. Using a sample-based estimator of change should be a pre-condition for using 

lower resolution imagery, yet few studies that use satellite-borne Earth observation data deliver 

quantitative assessments of the accuracy of reported changes in forest area or elevation at 

mountain treelines (Morley et al., 2018). Therefore, improving the unification of satellite-borne 

Earth observation data with detailed estimates of forest change is essential to enable large-area 

assessments of the impacts forest advance has on biodiversity and ecosystem function in 

mountain ecosystems.  

3.5 Conclusion 

Quantification of variation in forest range shifts in mountain systems is of critical 

importance to enable accurate estimation of the consequences of forest advance for 

biodiversity and ecosystem services.  The integration of a sample-based change assessment and 

repeat aerial photography reveals that non-forest area in the Mt. Hehuan study area of the 

Central Mountain Range of Taiwan has declined by 29 % between 1963 and 2016 due to a 295 

ha increase in forest area. The mean elevation of establishing forest has increased at a rate of 

2.2 m yr-1 lagging 0.5 m yr-1 behind the estimated change in isotherm position. Forest advance 

is not uniform within the study area, with slope aspect and gradient leading to variation in the 

rate of forest advance. Integration of a sample-based change assessment with repeat aerial 

photography permits the quantification of landscape-scale forest range shifts with high 

accuracy and reduces previous uncertainty surrounding estimates of forest advance in 

mountain ecosystems. Extending the sample-based change estimate by incorporating satellite-

borne Earth observation data and detailed field data offers an unprecedented opportunity to 

expand the geographic scope of change assessments, reduce uncertainty in change estimates 

and improve our understanding of the drivers and consequences of forest range shifts in 

mountain systems. 
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Abstract: 

Increases in forest extent in mountain regions driven by changes in global climate and 

land-use are expected to result in significant increases in above-ground biomass and hence 

carbon sequestration potential at high elevations. However, quantitative estimates of the 

impact that shifts in montane forest distribution will have on carbon sequestration potential 

have been limited because of the restricted scope of most field surveys. A further consequence 

of restricted field data availability is that the accuracy of estimates of change in montane forest 

area is poorly understood despite the prevalence of forest shifts globally and the potential to 

characterise forest range shifts using remote sensing methods. Focussing on the high-elevation 

forests of Taiwan, this study estimates change in forest area derived from Landsat time-series 

classification in combination with repeat aerial photography analysed using a sample-based 

change assessment.  By combining these methods, we quantify the accuracy of forest change 

assessments and estimate changes in above-ground woody biomass. Mapped area estimates 

derived from Landsat time-series classification underestimate forest advance by 141.9 ha, 

equivalent to 24.3 % of the area estimated using a sample-based change assessment. However, 

error-adjustment of mapped area estimates improves area estimates derived from Landsat 

spectral trends, and the classification of spectral trends reveals a realistic spatial pattern of 

forest advance in mountain ecosystems. Error-adjusted area estimates reveal that 587.8 ha ± 

64.4 ha of the 4070.8 ha study area is undergoing forest advance, leading to an estimated net 

increase in above-ground woody biomass of 4688.7 t C between 1987 and 2017. The ability to 

carry out error-adjustment of mapped area estimates relies on the close integration of change-

sample validation data with Landsat time-series data and is an important, yet under-utilised, 

step to improve the utility of the Landsat archive for estimating gradual forest advance. 

Integration of Landsat time-series data with high-quality validation and field data, leads to 

landscape-scale quantification of montane forest range shifts that enable robust estimation of 

the impacts of montane forest advance on carbon sequestration potential.  
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4.1 Introduction  

Ongoing changes in global climate and land-use are driving shifts in forest distribution 

(Améztegui et al., 2016, 2010; Harsch et al., 2009). Mountain regions are expected to 

experience higher than average increases in temperature (Dirnböck et al., 2011; IPCC, 2013; 

Pepin et al., 2015) and are susceptible to land abandonment (Haddaway et al., 2014; MacDonald 

et al., 2000) thus increasing the vulnerability of mountain ecosystems to global environmental 

change. At the elevational and latitudinal limits of forest distribution, upward or poleward shifts 

have been reported in 52 % of treelines driven by changes in climate and land-use (Harsch et 

al., 2009). In areas where elevational shifts in montane forest distribution have not been 

reported, increases in forest area and tree density have been observed below the treeline in 

response to environmental change (e.g. Bharti et al., 2012; Klasner and Fagre, 2002). 

Reported increases in forest area, tree density and growth rates at mountain treelines 

are expected to increase carbon accumulation in above-ground biomass at high-elevations, 

potentially increasing the ability of high-elevation forests to act as carbon sinks (Zierl and 

Bugmann, 2007). Despite this expectation, the impact that changes in montane forest 

distribution will have on carbon storage and sequestration potential in mountain ecosystems is 

poorly understood (Greenwood and Jump, 2014). To achieve quantitative assessments of 

changing carbon sequestration potential of montane forests, precise estimates of changes in 

forest area and density are required over large areas. However, estimating changes in montane 

forest area and forest biomass is challenging in mountainous areas because inaccessible terrain 

limits the scope of field surveys.  

Monitoring and mapping changes in forest canopy cover and biomass using Earth 

observation data is an intensive field of research, enabling repeat surveys of large areas that 

are often inaccessible to field surveys (Hansen et al., 2013, 2010). However, many existing 

methods for quantifying changes in forest area using Earth observation data are better suited 

to the detection of abrupt changes (e.g. deforestation) rather than gradual changes where the 

change from one habitat type to another may take several decades to complete (Vogelmann et 

al., 2016, 2012). At mountain treelines, patterns of forest advance can be highly variable due to 

the complexity of factors that control tree establishment and growth. In some areas, treelines 

respond to environmental change quickly and over a long distance but often display low-density 

establishment where the canopy may not close for several decades. This low-density pattern of 

forest advance leads to incremental changes in the spectral signature observed in Earth 

observation data over long periods. In other areas treeline response to environmental change 

can be limited to short distances (10–30 m) but with high-density tree establishment in 
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sheltered areas close to the old-growth forest. High-density establishment is likely to result in a 

relatively stronger response in the spectral signature but requires forest advance to be 

identified over short distances. Consequently, there is a need to identify forest advance in 

mountain ecosystems over several decades and at a fine spatial resolution to adequately 

account for variable patterns of forest advance, requiring Earth observation data sets to have a 

temporal and spatial resolution appropriate for the ecological phenomenon.  

Aerial photographic survey data offer a valuable source of reference data for identifying 

changes in habitat type in areas with poor accessibility due to the fine spatial scale at which 

data is collected and in many cases, aerial photographic data represent the earliest available 

remote sensing data. Repeat aerial photographic survey data have been used to identify 

changes in forest elevation and tree density in mountain ecosystems (e.g. Greenwood et al., 

2014; Luo and Dai, 2013; Resler et al., 2004) and integration with a sample-based change 

assessment (probability-based sampling is used to identify sample plots that are interpreted to 

identify changes in habitat across a study area)  offers an effective method to estimate changes 

in montane forest area precisely (Chapter 3). When used with repeat aerial photographic survey 

data, sample-based change assessments allow for changes in forest area to be estimated over 

time alongside a quantitative assessment of the accuracy of forest area change reported. If used 

in combination with detailed field assessment of the impacts that changes in forest distribution 

will have on biodiversity and ecosystem function, sample-based change assessments enable the 

robust estimation of the impacts that forest advance will have on ecosystem function at the 

landscape scale. However, local variation in data availability means that the use of aerial 

photography is often unfeasible for large area assessments of forest change. 

Satellite-borne Earth observation sensors offer frequent and repeat coverage of the 

Earth’s surface and as such offer globally consistent data sets for estimating changes in forest 

area in mountain systems. The Landsat program has the most extensive archive of satellite-

borne Earth observation imagery available, with data available since the 1980s at 30 m pixel 

size, offering an opportunity to expand change assessments and quantify changes across entire 

mountain ranges (Wulder et al., 2016). Landsat data are less well-suited to the sample-based 

change assessment technique when quantifying gradual forest advance because the spatial 

resolution of the data is not sufficient to manually identify small differences in tree 

establishment patterns. However, gradual habitat changes can be characterised by identifying 

trends in spectral indices over time (Vogelmann et al., 2012). While positive, long-term greening 

trends have been identified in mountain ecosystems using time-series Landsat data, many 

studies stop short of image classification and do not quantify changes in habitat area (Bolton et 
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al., 2018; Carlson et al., 2017; Gartzia et al., 2016). Consequently, the accuracy at which gradual 

changes in montane forest distribution can be resolved using spectral trends identified in time-

series Earth observation data is poorly described in the literature. 

The classification of spectral trends provides the potential to automate large area 

mapping and provide a visualisation of forest change. Quantitative estimates of area change 

determined from classified maps typically use a pixel counting technique which determines the 

number of pixels allocated to a given map class and multiplies this number by the area of an 

individual pixel. While pixel counting is a simple method for area estimation, bias in mapped 

area estimates occurs due to classification errors (Czaplewski, 1992; Stehman, 2005). It is, 

however, possible to correct for bias in mapped area estimates using information contained 

within an error matrix obtained during accuracy assessment if precise estimates of change are 

available for validation (Olofsson et al., 2013). However, few published studies that investigate 

forest change at mountain treelines provide sufficient information on their validation 

procedures or class-specific classification accuracy that would enable robust estimation of the 

area of forest change using satellite-borne Earth observation data.  

To enable the accurate quantification of changes in carbon sequestration potential of 

montane forests, here we combine aerial photography analysed with a sample-based change 

assessment with a time-series of Landsat data to 1) estimate the area of forest change from 

Landsat time-series classification; 2) estimate the area of forest change from a sample-based 

change assessment using aerial photography; 3) quantify the precision of forest change 

assessments and 4) quantify changes in above-ground woody biomass in high-elevation forests.    

4.2 Methods 

4.2.1 Study area  

The Mt. Hehuan study area is located in the North of the Central Mountain Range, 

Taiwan, and reaches a maximum elevation of 3422 m a.s.l. Despite spanning the tropic of 

Cancer, high-elevation areas of the Central Mountain Range experience temperate and alpine 

climatic conditions which support conifer-dominated forests above 2400 m a.s.l. The forest 

canopy at the highest elevations of forest distribution is dominated by four conifer species, 

primarily Abies kawakamii and Tsuga chinensis with areas of Pinus taiwanensis and Pinus 

armandii establishment. At the treeline, the conifer forests give way to grassland dominated by 

the bamboo Yushania niitakayamensis which extends to the mountain peaks with a low density 

of shrubby species, of which Juniperus spp. and Rhododendron spp. are the most common. The 

treeline in Taiwan’s Central Mountain Range is primarily temperature limited, with topographic 
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sheltering and microclimate causing variation in patterns of tree establishment and forest 

advance. Landslide events and small-scale fires affect the treeline sporadically, resulting in local 

reductions in treeline elevation and removal of the substrate.  However, routine disturbance 

events are of low impact at the landscape-scale, and there is little evidence to suggest 

anthropogenic controls on treeline position. 

4.2.2 Change assessment of forest area 

4.2.2.1 Sample-based area estimates 

Black and white aerial photography from 1980 and four-band multispectral images from 

2016 were captured in the Mt. Hehuan area of the Central Mountain Range, Taiwan and 

orthorectified by the Taiwanese National Archive (minimum accuracy 2.5 m). Stratified random 

sampling was used to assess vegetation change between 1980 and 2016. Stratification was 

based on slope and aspect attributes calculated from a TanDEM-X DEM (12 m pixel size). To 

ensure adequate representation of changes across the whole study area, terrain variables were 

binned into four cardinal compass directions (± 45° in either direction) and three slope gradient 

classes (0-20°, 21-45° and 46°+) resulting in 12 category combinations that provided a basis for 

probability-based sampling. A total of 2785 sample plots measuring 15 m x 15 m were 

interpreted in both aerial photography surveys (1980, 2016) and assigned one of five vegetation 

change classes (Table 4.1). Non-forest was defined as an area that remained treeless between 

1980 and 2016. Forest was defined as areas that met the FAO (2018) definition of a forest as an 

area with at least 10 % canopy cover and trees greater than 5 m in height with no evidence of 

new tree establishment between 1980 and 2016. Forest advance was defined as areas where 

trees were present and tree canopy cover and/or density has increased between 1980 and 

2016. Forest disturbance was defined as areas with a partial removal of forest canopy between 

1980 and 2016 and forest loss as areas with full removal of the forest canopy between 1980 and 

2016 (Table 4.1). Area estimates for each vegetation change class were carried out in R (R Core 

Team, 2017) using the survey package (Lumley, 2018) to calculate estimates of the population 

total, returning estimated total area (ha) and the uncertainty in the estimated area for each 

vegetation change class. The survey package accounts for the effect of stratification by 

weighting observations according to the sampling probability. 
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Table 4.1: Definitions of vegetation change classes used to assess forest change in the Central 

Mountain Range of Taiwan. 

Class  Definition 

Forest An area that meets the FAO (2018) definition of a forest with at least 10 

% canopy cover and trees greater than 5 m in height which show no 

evidence of new tree establishment between 1980 and 2016. 

Forest Advance An area with trees present that has undergone an increase in tree size 

and/or stand density. Small, establishing trees are identifiable in aerial 

photographs due to their small crown size.  

Non-forest Areas that remain treeless between 1980 and 2016. 

Disturbed Forest An area of forest that shows a reduction in canopy cover between 1980 

and 2016 but with some canopy cover remaining. 

Forest loss An area with complete removal of forest canopy cover within the study 

period. 

 

4.2.2.2 Mapped area estimates 

Two-monthly cloud free image composites were created between Jan 1987 and Dec 

2017 using all available images from Landsat TM (1987 – 2011), ETM+ (2012 – 2013) and OLI 

(2014 – 2017) sensors resulting in 186 composite images. Image composites were created in 

Google Earth Engine from Tier 1 surface reflectance data derived from the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS). Tier 1 LEDAPS data products are 

georeferenced, terrain-corrected and radiometrically calibrated across Landsat sensors and so 

enable direct comparison of individual pixels over time. A tasselled cap transformation was 

applied to each image composite to reduce the six spectral bands into three orthogonal indices 

using band weightings defined by Crist (1985). Each tasselled cap index emphasises distinct 

physical properties of the land surface. The brightness index is a measure of overall reflectance, 

the greenness index measures variability in vegetation greenness and the wetness index 

measures a combination of surface moisture conditions and vegetation moisture. 

Time-series analysis is carried out per pixel to identify linear trends in spectral response 

over time. Pixel time-series data were decomposed to remove the seasonal spectral signature 

in order to minimise the effect of seasonal variation of topographic illumination, however 

further illumination correction was not carried out (Appendix 4.1). Least-squares regression was 

implemented to regress each of the seasonally decomposed Brightness, Greenness and 

Wetness indices against time to estimate the intercept, slope and p-value of the linear spectral 

trend. A random forest classifier was implemented on the coefficients from the linear trend 

analysis using 1000 trees and class weightings to account for unbalanced sample sizes of the 

vegetation change classes. The random forest classifier was implemented in RStoolbox (Leutner 
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et al. 2018) using 5-fold cross validation with an out of the box error estimate of 15.14 % and a 

tune length of three. The cross validation identified the optimum number of variables to use as 

candidates at each split (mtry) as two. The classification model used 50 % of the sample plots 

interpreted from the aerial photography sample-based assessment for training and the 

remaining 50 % for validation of the classified map. Area estimates based on a pixel counting of 

mapped vegetation change classes are likely to be biased due to classification errors. 

Consequently, an error-adjustment was applied to the mapped area estimates using the 

validation data and information contained within the error matrix following the method 

detailed by Olofsson et al. (2013).   

4.2.3 Above-ground biomass estimation 

Above-ground woody biomass was estimated from 38 forest and 78 forest advance 

plots sampled from the Mt. Hehuan area of the Central Mountain Range, Taiwan. Data from 71 

plots collected by Greenwood et al. (2014) measuring 20 x 20 m were combined with data from 

an additional survey of 45 plots with 10 m fixed radius conducted by the authors in 2016. Across 

both field surveys, all trees were measured for Diameter at Breast Height (DBH) at 1.3 m, and 

in the 2016 survey, a sample of live trees within each plot were also measured for height. Height 

was related to DBH using nonlinear least squares regression to estimate tree height for plots 

where it was not recorded (data not shown). Stand above-ground woody biomass was 

calculated from stand basal area and median stand height, accounting for differences in specific 

wood gravity between species, from which average above-ground woody biomass values were 

calculated for each vegetation change class. An average class biomass of 0.0 t C ha-1 is assumed 

for non-forest areas because we only consider above-ground woody biomass in this study. Class 

average biomass values were estimated for the surface area and plan area covered by each plot. 

Biomass values expressed in plan area were used to calculate estimates of above-ground 

biomass for the whole study area because both remote sensing based change assessment 

methods report the area of each vegetation change class in plan view.  

4.3 Results 

4.3.1 Area change assessment 

The sample-based change assessment using aerial photography indicated that 584.7 ha 

± 29.4 ha of the Mt. Hehuan study area has undergone forest advance between 1980 and 2016 

(Table 4.2). The mapped area of forest advance from Landsat time-series classification is 442.8 

ha, underestimating forest advance by 141.9 ha which is equivalent to 24.3 % of the class area 

estimated using the sample-based change assessment method (Table 4.2). Map bias is high for 
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disturbed forest and forest loss classes, with the map bias equivalent to 76.7 % (13.5 ha) and 

51.3 % (17.2 ha) of the class area estimated by the sample-based change assessment 

respectively (Table 4.2).  

The map bias reported in Table 4.2 occurs due to classification errors in the vegetation 

change classes. The overall accuracy of the Landsat time-series classification is 85 % ± 2 % yet 

class specific accuracy measures deviate from this value. The producer accuracy (rate at which 

reference sample plots are correctly classified) for the forest advance class is 49 %, and the user 

accuracy (probability that a predicted value on the classification map is actually in the assigned 

class) is 67 % (Table 4.3); for the disturbed forest class both user and producer accuracies are 0 

%, and for the forest loss class the producer accuracy is 25 % while the user accuracy is 100 % 

(Table 4.3). Error-adjusted area estimates, calculated by correcting the mapped area estimates 

to account for classification errors, improve the similarity of class area estimates calculated 

from sample-based and Landsat time-series based assessment of vegetation change (Table 4.2). 

However, the margin of error associated with the class area estimates is higher for the Landsat 

error-adjusted area estimates than the sample-based area estimates (Table 4.2). The margin of 

error for forest advance increases from 5 % when using the sample-based change assessment 

to 11% in the error-adjusted Landsat time-series based area estimates. For the disturbed forest 

class the margin of error increases from 32 % when using the sample-based change assessment 

to 80% in the error-adjusted Landsat time-series based area estimates. For the forest loss class 

the margin of error increases from 23 % when using the sample-based change assessment to 

49 % in the error-adjusted Landsat time-series based area estimates. In the stable vegetation 

classes (forest and non-forest) the margin of error remains the same for the forest class and 

increases by only 2 % in the non-forest class due to higher class-specific classification accuracies 

(Table 4.2). Despite the low class-specific classification accuracies reported for forest advance 

and forest loss (Table 4.3), visual comparison between the aerial photography survey data and 

the map derived from Landsat time-series classification shows that the Landsat-based approach 

resolves a realistic spatial pattern of forest advance and loss in the Mt. Hehuan study area 

(Figure 4.1). 
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Table 4.2: Area estimates for each vegetation change class with 95 % confidence intervals and 

the margin of error (ratio of the confidence interval to area estimate expressed as a percentage) 

in the Mt. Hehuan study area derived from aerial photography sample-based change 

assessment and classification of Landsat time-series spectral trends. The mapped area is the 

area of each class estimated through pixel counting and map bias the difference between 

mapped and sample-based area estimates.  

 Aerial photography   Landsat time-series 

 

Vegetation Class 

Area 

(ha) 

MoE  Mapped 

Area (ha) 

Map 

Bias (ha) 

Error-adjusted 

Area (ha) 

MoE 

Non-Forest 921.1 ± 34.5 4 % 945.2 24.1 922.9 ± 57.3 6 % 

Forest Advance 584.7 ± 29.4 5 % 442.8 -141.9 587.8 ± 64.4 11 % 

Forest 2515.2 ± 39.4 2 % 2662.4 147.2 2507.1 ± 61.9 2 % 

Disturbed Forest 17.6 ± 05.7 32 % 4.1 -13.5 17.6 ± 14.1 80 % 

Forest Loss 33.5 ± 07.6 23 % 16.3 -17.2 35.3 ± 17.2 49 % 

 

 

Table 4.3: Error matrix from Landsat time-series classification of vegetation change classes in 

the Mt. Hehuan study area of the Central Mountain Range, Taiwan. The values expressed are 

pixel counts; overall accuracy is 85 % ± 2 % 

                                         Reference 

Prediction Non-Forest 

Forest 

Advance Forest 

Disturbed 

Forest 

Forest 

Loss Total 

Non-Forest 265 48 14 1 5 333 

Forest Advance 23 98 26 0 0 147 

Forest 26 54 813 5 4 902 

Disturbed Forest 0 0 0 0 0 0 

Forest Loss 0 0 0 0 3 3 

Total 314 200 853 6 12 1385 

Producer Accuracy 84 % 49 % 95 % 0 % 25 % - 

User Accuracy 80 % 67 % 90 % 0 % 100 % - 
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Figure 4.1: Map of vegetation change within the Mt. Hehuan study area of the Central Mountain 

Range, Taiwan, showing the aerial photography from 1980 (left) and 2016 (middle) with the 

Landsat derived classification of vegetation change (right). 

 

4.3.2 Above-ground biomass estimate 

The estimated area of forest advance (error-adjusted estimate of 587.8 ha ± 64.4 ha) 

indicates a gain in above-ground woody biomass in areas above 2400 m a.s.l. of 6877.3 t C ± 

1881.0 t C within the 4070.8 ha Mt. Hehuan study area (Table 4.4). Forest loss has resulted in 

an estimated reduction in above-ground woody biomass of 2188.6 t C ± 374.2 t C in the Mt. 

Hehuan study area between 1986 and 2017 (Table 4.4). It was not possible to quantify losses in 

above-ground woody biomass attributable to partial removal of the forest canopy because 

there is no biomass data available for areas of forest disturbance in the Central Mountain Range 

of Taiwan. The large area of forest advance and relatively small area of forest loss indicates a 

net gain in above-ground woody biomass of 4688.7 t C in the Mt. Hehuan study area of the 

Central Mountain Range, Taiwan, between 1986 and 2017 (Table 4.4).  
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Table 4.4: Estimated average above-ground woody biomass of each vegetation class, with 

estimated current above-ground woody biomass and estimated gain and loss of above-

ground woody biomass in the Mt. Hehuan study region between 1986 and 2017. Estimates 

for current biomass and gain and loss biomass values are calculated using mean class biomass 

values adjusted to plan area to allow for integration with the area estimates derived from 

error-adjustment of the Landsat time-series change assessment. Uncertainty is reported at 

the 95 % confidence interval.   

Vegetation 

Class 

Class 

biomass (t C 

ha-1) 

surface area 

Class 

biomass (t C 

ha-1) 

plan area 

Error-

adjusted 

area 

(ha) 

Current 

biomass (t C) 

Biomass 

gain/loss 

 (t C) 

Non-forest 0.0 0.0 922.9  

± 57.3 

0.0 0.0 

Forest 

advance 

10.7  

± 2.8 

11.7  

± 3.2 

587.8  

± 64.4 

6877.3  

± 1881.0 

6877.3 ± 

1881.0 

Forest 58.6 

 ± 10.2 

62.0  

± 10.6 

2507.1  

± 61.9 

155440  

± 26575.3 

0.0 

Disturbed 

forest 

– – 17.6  

± 14.1 

– – 

Forest loss 0.0 0.0 35.3 

 ± 17.2 

0.0 -2188.6 ± 

374.2 

Total – – 4070.8 162317.5 4688.7 

 

4.4 Discussion  

The ability to accurately quantify changes in forest carbon storage potential in 

mountain ecosystems relies, in part, on our capacity to accurately quantify changes in the area 

occupied by montane forests at a landscape scale. In the Mt. Hehuan area of the Central 

Mountain Range, an estimated 587.8 ha ± 64.4 ha of the 4070.8 ha study area is undergoing 

forest advance leading to an estimated net increase in above-ground woody biomass of 4688.7 

t C in areas above 2400 m a.s.l. A comparison of change assessment techniques indicates that 

mapped areas, derived from the classification of spectral trends captured in Landsat time-series 

data, underestimate the area of forest advance when compared against a sample-based 

estimate of forest change using repeat aerial photography. However, the classification of 

spectral trends shows a realistic spatial pattern of forest advance at the mountain treeline and 

error-adjustment of mapped area estimates improves the area estimates derived from 

classification of Landsat spectral trends. 

Mountain treelines can respond to environmental change slowly and over short 

distances (<30 m) thus requiring forest advance to be identified over decadal periods and at 

high spatial resolution. The <1 m scale of aerial photography used here is sufficient to identify 
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small differences in vegetation cover over time, such as the appearance of a few small trees or 

incremental increases in canopy cover. However, the contribution that small changes in tree 

density or canopy cover make to the reflectance recorded in an individual pixel in the Landsat 

data are likely to be small, resulting in the reduced classification accuracy reported in Table 4.3. 

Positive, long-term greening trends have been identified in both treeless areas of alpine 

grasslands and established montane forests (Bolton et al., 2018; Carlson et al., 2017; Gartzia et 

al., 2016). Consequently, separating greening trends that occur due to increased tree density 

from background trends of greening due to increased vegetation productivity will be 

challenging in image classification routines. At the mountain treeline, the spectral signature 

observed in satellite-borne Earth observation data saturates when above-ground woody 

biomass values exceed 25 t C ha-1  (Morley et al., 2019), yet mature forests have an average 

class biomass of 62.0 ± 10.6 t C ha-1 (Table 4.4). Consequently, in areas with very low-density 

tree establishment or in areas where forest stands undergoing advance exceed a biomass value 

of 25 t C ha-1 there may not be sufficient difference in the spectral trends to allow forest advance 

to be resolved during image classification.  

Inaccuracies in the classification of spectral trends from Landsat time-series result in 

mapped class area estimates showing a strong bias that underestimates the area of forest 

advance, despite producing a map with a realistic spatial pattern of forest advance and loss in 

the Mt. Hehuan study area (Figure 4.1). This bias in class area estimation would lead to 

erroneous estimates of changes in forest biomass in mountain regions if not corrected. Error-

adjustment of mapped vegetation classes is an important, yet underutilised, step to account for 

classification errors and improve the utility of satellite-borne estimates of area change in 

montane forests (Olofsson et al., 2013). However, the margin of error for the forest advance 

class associated with the sample-based change assessment is 5 % while the margin of error 

associated with the error-adjusted area estimates from Landsat-based classification of forest 

advance is 11 %. While the margin of error associated with Landsat-based area estimates is 

double that of the sample-based assessment, an error of 11 % might be considered acceptable 

given the gradual nature of forest advance and the subtly of differences at boundaries between 

areas of forest advance and old-growth forest or grassland habitats in mountain ecosystems.  

Detailed validation data is crucial to adjust area estimates for classification accuracy 

and quantify the accuracy at which Landsat-based time-series classification can estimate the 

area of gradual forest advance in mountain ecosystems. However, most studies that use Landsat 

data to study mountain treelines do so without the benefit of high-quality validation data that 

can provide precise estimates of change (Morley et al., 2018). The close integration of high-
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quality validation data with Landsat time-series based classification, as shown here, is necessary 

to improve the precision of large-area estimates of forest range shifts and should be a pre-

condition of any study using lower resolution imagery.  

Several methods exist to improve the spatial resolution of coarse resolution imagery 

that can provide a benefit to improving the spatial precision of image classification and might 

improve the precision of subsequent area estimates when using time-series Landsat data 

(Appendix 4.2). While methods for spatial resolution enhancement have the potential to 

provide additional information on sub-pixel scale change, they have not been extensively 

developed for use in time-series change analysis. Consequently, further investigation is required 

to identify if spatial resolution enhancement improves the precision of estimates of gradual 

forest change.   

Our capacity to estimate changes in the biomass of montane forests was previously 

limited by the ability to quantify gradual changes in forest area in mountain ecosystems 

precisely. While treeline shifts are often gradual, widespread shifts in forest distribution in the 

Taiwanese Central Mountain Range have led to an estimated 14 % of the study area (587.8 ha 

± 64.4 ha) undergoing forest advance between 1987 and 2017. Consequently, forest advance in 

high-elevation areas has led to an estimated increase in above-ground woody biomass of 6877.3 

± 1881.0 t C in the Mt. Hehuan study area suggesting that ongoing forest advance will increase 

the capacity of montane forests to act as carbon sinks (Devi et al., 2008).  

The role that tropical montane forests play in global carbon storage and the importance 

of range shifts at the elevational treeline have been poorly studied (Greenwood and Jump, 

2014; Spracklen and Righelato, 2014). Few studies have quantified changes in forest area or 

biomass at the elevational treeline compounding the challenge of quantifying the cumulative 

impact that forest advance at mountain treelines will have on global or regional carbon 

dynamics. Tropical montane forests represent a significant proportion of forest carbon in 

tropical regions, accounting for 8.3 % of total tropical forest cover (0.88 million km2) with an 

average above-ground biomass of 271 t ha-1 (circa. 135 t C ha-1; Spracklen and Righelato, 2014). 

In the Mt. Hehuan study area forest advance between 1986 and 2017 accounts for 23 % of the 

area of old growth forest surveyed, equivalent to a gain in forest area of 0.7 % of the old growth 

forest area per year. While studies that estimate the area of treeline advance are sparse this 

annual figure of forest advance is similar to other published literature. In the Himalaya, Bharti 

et al. (2012) estimate the increase in forest area dominated by Betula spp. is 0.5 % of the old 

growth forest area per year, while the increase in forest area dominated by Abies spp. is 0.1 % 
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per year. At test sites across Europe, Dinca et al. (2017) show considerable variation in forest 

with the area of forest advance varying from < 0.1 – 2.8 % of the old growth forest per year 

between study sites. Assuming a gain in forest area of 0.75 % of existing old growth forest area 

per year and a current forest area of 0.88 million km2 in tropical mountains, we could expect an 

increase in forest area of 6600 km2 (660000 ha) per year in tropical mountains which would 

represent a significant cumulative impact on the capacity of tropical montane forests to act as 

carbon sinks over decadal periods. However, in order to address the impact of variation in forest 

range shifts between regions, further studies are needed that quantify the area of forest change 

and forest biomass in other mountain regions to enable robust estimates of the impacts that 

forest advance will have on carbon dynamics in tropical mountain regions.      

This study has estimated an increase in above-ground woody biomass of 6877.3 ± 

1881.0 t C in the Mt. Hehuan study area due to increased forest area. However, above-ground 

woody biomass accounts for one component of total forest biomass which also includes below-

ground biomass, dead wood, forest floor litter and soil organic carbon. In boreal and temperate 

forests, soil organic carbon is estimated to account for 60 – 85 % of the total terrestrial forest 

carbon stocks with the proportion of total carbon stored in forest soils increasing with forest 

age (Dixon et al., 1994; Lal, 2005; Wei et al., 2013). Very little is known about how alpine soils 

will respond to temperature rises and how forest advance will affect carbon stored in alpine 

soils (Greenwood and Jump, 2014). In tundra sites beyond the arctic treeline, increased 

temperatures are resulting in greater rates of soil respiration and causing a release of carbon 

from the ecosystem as soil organic carbon decomposes (Dorrepaal et al., 2009; Rustad et al., 

2001). However, tundra soils have a higher proportion of organic carbon than alpine soils which 

tend to be thinner with a lower carbon content (Körner, 1998; Michaelson et al., 1996). 

Consequently, increased deposition of litter into alpine soils could lead to greater carbon 

accumulation within soils in high-elevation areas and further increase the potential of high-

elevation mountain areas to act as carbon sinks as the area of montane forests increase.  

Identifying gains and losses in forest biomass across entire mountain ranges is essential 

to identify how changes in a given direction affect landscape-scale carbon budgets. In the Mt. 

Hehuan study area most forest loss events were small with a single large forest loss event shown 

in Figure 4.1. When using Earth observation data to quantify forest loss, Milodowski et al. (2017) 

show that small scale forest disturbance events (2 – 10 ha) are identified with lower accuracy 

than large-scale clearances despite the areas of forest loss being larger than the spatial 

resolution of the Earth observation data used. Difficulties identifying small forest loss events 

are likely to contribute to the low classification accuracy (Table 4.3) and high margin of error 
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(Table 4.2) associated with the estimated area of forest loss and disturbed forest classes shown 

here. Inaccuracy in forest loss classification presents a significant challenge to precisely 

quantifying forest loss in mountain areas where natural disturbances are relatively rare and 

occur at a small scale. Consequently, the incorporation of sample-based assessment of habitat 

change using aerial photography is important to improve the precision of area estimates for the 

forest loss and disturbed forest classes despite the high margin of error.  

Error-adjusted area estimates reveal that 35.3 ha ± 17.2 ha of forest have been lost in 

areas above 2400 m a.s.l., leading to an estimated loss in above-ground woody biomass of 

2188.6 ± 374.2 t C between 1987 and 2017. There was no evidence to suggest that 

anthropogenic activities caused forest loss or disturbance and so small-scale disturbances and 

forest loss events are likely to be caused by natural phenomena. In the case of the large forest 

loss event identified in the Mt. Hehuan area, the complete removal of the substrate indicates 

that forest loss was caused by a landslide. Landslide events have a strong influence on the 

spatial distribution of biomass in montane forests, reducing tree biomass and increasing 

landscape heterogeneity (Dislich and Huth, 2012). However, the destination of carbon losses 

due to landslides is unclear. It is likely that a proportion of the carbon stored in above-ground 

woody biomass that is lost due to landslide events will stay within the system as dead wood and 

transfer to other terrestrial stores (e.g. soil organic matter), while a smaller portion of the forest 

biomass will be released to the atmosphere (Dislich and Huth, 2012). While landslide events 

were rare in the Mt. Hehuan area, hotspots of landslide activity exist in Eastern areas of the 

Taiwanese Central Mountain Range with a further hotspot developing in the Southern areas of 

the Central Mountain Range since 2008 (Lin et al., 2017). As the strength and frequency of 

extreme climatic events are expected to increase with ongoing climate change (IPCC, 2013), 

there is a pressing need to quantify spatial and temporal variation in forest loss as well as forest 

advance to fully understand the influence that landslides will have on long-term carbon 

dynamics in montane forests. 

4.5 Conclusion 

Ongoing shifts in the distribution of montane forests in response to climate and land-

use change are expected to increase the capacity of montane forests to act as carbon sinks. 

However, the capacity to quantify changes in the carbon sequestration potential of montane 

forests has, in part, been limited by our ability to accurately quantify forest advance in mountain 

regions and link area changes to forest biomass estimates. Areas undergoing forest advance can 

be identified using Landsat spectral trends but, high-quality validation data is required for error-

adjustment of mapped area estimates in order to improve the utility of Landsat time-series data 
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for estimating the area of gradual forest change in mountain systems. An estimated 587.8 ha ± 

64.4 ha of the area above 2400 m a.s.l. in the Mt. Hehuan area of the Taiwanese Central 

Mountain Range is undergoing forest advance, leading to a net increase in above-ground woody 

biomass of 4688.7 t C between 1987 and 2017.  Extension of the research presented here to 

incorporate changes in below-ground biomass and soil organic carbon as forests expand will 

enable a quantitative assessment of changes in total forest biomass of these high-elevation 

mountain ecosystems. The successful integration of Landsat time-series data with high-quality 

validation and field data, as shown here, offers a unique opportunity to achieve landscape-scale 

quantification of montane forest distribution shifts, enabling the robust estimation of the 

impacts that forest advance will have on carbon sequestration potential in mountain regions.  
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 Appendix 4.1: Topographic Illumination Correction 

 

Differences in terrain orientation can lead to substantial differences in radiance 

received from the sun resulting in slopes facing away from the sun receiving much less 

illumination than slopes facing toward the sun. In multispectral satellite imagery slopes that 

receive less illumination appear darker because the signal received by the sensor is lower than 

illuminated slopes and this difference can be very pronounced in mountainous regions due to 

the complexity of the terrain. Illumination differences between different aspects may mean that 

forest on an illuminated surface need not have the same reflectance value as forest on a non-

illuminated surface. Consequently, differences in reflectance values within a vegetation class 

due to variation in illumination can present a problem in image classification where a key 

assumption made of the data is that similar surface types will have similar reflectance values.  

A simple method to minimise topographic illumination differences is the use of ratio-

based spectral indices. Ratio-based indices assume that reflectance changes proportionally in 

the spectral bands being used to create the spectral index. Therefore, while the absolute 

reflectance values may vary according to illumination the relative values between the bands will 

be similar for the same land cover type. While ratio-based indices are effective in some 

instances, the effects of topographic illumination vary between spectral bands and therefore 

not all ratio-based indices have the desired effect of normalisation (Galvão et al., 2016). 

Alternative approaches to topographic illumination correction use a DEM to model surface 

illumination accounting for the solar geometry at the time of image acquisition and the slope 

gradient and aspect, subsequently seeking to modify the spectral values according the surface 

illumination model. In a recent evaluation of different correction methods, Sola et al. (2016) 

show that the C-correction and Sun-Canopy-Sensor + C (SCS + C) correction perform the best of 

ten different illumination correction algorithms tested.  However, the success of illumination 

correct methods vary between study location and application. Dorren et al. (2003) show that 

the use of the SCS topographic illumination correction with Landsat TM data improved the 

mapping accuracy of forest types in steep terrain. However, Adhikari et al. (2016) found that 

ratio-based indices were robust against topographic effects in tropical mountain regions when 

compared against data corrected using the C-correction method and concluded that 

topographically corrected data did not provide sufficient benefit to warrant the additional 

processing cost.  
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The extent of illumination differences between different aspects vary throughout the 

year due to seasonal differences in sun elevation. Images captured when sun elevation is low 

have more pronounced illumination differences than when sun elevation is high. This variation 

in surface illumination is of particular importance when attempting to identify change in a land 

cover class over time in mountain regions with pronounced seasonal differences in sun 

elevation. Temporal variation in sun elevation may lead to erroneous identification of change 

due to seasonal differences in surface illumination rather than changes in land cover type. 

However, a recent comparison addressing the benefit of using illumination correction in Landsat 

time-series analysis showed that the use of topographically corrected Landsat data provided no 

additional benefit over data that had not be corrected for illumination differences when 

assessing forest change (Chance et al., 2016). In addition, Chance et al. (2016) found that the 

use of illumination corrected data in spectral trend analysis negatively affected the detection of 

low magnitude changes in the landscape. Therefore, topographic illumination correction is 

unlikely to improve the accuracy of change assessments when Landsat time-series data are used 

to quantify gradual ecosystem change.        
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Appendix 4.2: Spatial Resolution Enhancement 

 

Changes in forest distribution at mountain treelines can occur within a short distance 

from the old growth forest (<30 m) and therefore may not be accurately captured in Landsat 

data with a 30 m pixel size. Inaccurate identification of sub-pixel changes may lead to error in 

land cover mapping and subsequent miss estimation of the area undergoing forest advance in 

mountain regions. Enhancing the spatial resolution of Landsat images might offer an 

opportunity to improve the spatial precision in land cover mapping in order to improve the 

precision of change estimates at the mountain treeline. Pan-sharpening is a method used to 

enhance the spatial resolution of medium resolution imagery using a higher resolution 

panchromatic band. Several methods exist for pan-sharpening that include colour-space 

transformations that convert spectral Red-Green-Blue (RGB) values into Hue-Saturation-

Intensity values and methods that reweight the RGB values according to the panchromatic band 

such as the Brovey transformation (Ehlers et al., 2010). While pan-sharpening approaches 

improve the spatial resolution of an image they often lead to colour distortions (Ehlers et al., 

2010). Consequently, the interference with reflectance values makes pan-sharpening better 

suited to image visualisation or visual interpretation rather than in use for time-series change 

detection where spectral data are required to have high consistency over time.  

An alternative method for spatial resolution enhancement is super resolution mapping 

where the geographic location of land cover class fractions are estimated within a pixel area. 

Super resolution mapping relies on unmixing the spectral response captured in a pixel to 

estimate the proportional representation of each land cover class within a mixed pixel (pixels 

that contain two or more land cover classes) and subsequently estimating the geographic 

location of each class within the pixel (Boucher and Kyriakidis, 2006; Tatem et al., 2001). Super 

resolution mapping methods are able to provide land cover representations that are more 

accurate and more realistic than standard discrete classifications (Muad and Foody, 2012). 

However, the apparent precise nature with which class proportions are estimated may be 

misleading in change detection as different combinations of class proportions can share a 

similar spectral response (Foody and Doan, 2007). The similarity in spectral response between 

pixels with varying class proportions means that the accuracy of the sub-pixel land cover 

composition can be low with a large disagreement in the estimated proportion of class 

composition between predicted and reference data. Consequently, an over reliance on the 

apparent precision of land cover representations rendered through super resolution mapping 

may provide misleading estimates of change due to inaccurate estimates of class composition 
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with a pixel at a given period in change detection (Foody and Doan, 2007). However, if used 

appropriately, super resolution mapping could lead to a richer data set to base change 

assessments on by utilising sub pixel information on class proportion and location to identify a 

range of plausible change scenarios (Foody and Doan, 2007).  
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5.1 Introduction 

Changes in global climate and land-use are driving forest range shifts in mountain 

regions (Améztegui et al., 2016, 2010; Harsch et al., 2009). At the elevational and latitudinal 

limits of forest distribution, 52 % of treelines show upward or poleward movement of the 

treeline (Harsch et al., 2009). In areas not showing elevation changes, increases in tree density 

and forest area below the upper tree limit have been observed (e.g. Bharti et al., 2012; Klasner 

and Fagre, 2002). Increases in forest density and shifts in montane forest distribution are 

expected to impact on biodiversity and ecosystem function in mountain regions (Greenwood 

and Jump, 2014). However, variation in patterns of forest range shifts must be accounted for 

over large areas to estimate  the impacts that forest range shifts will have on biodiversity and 

ecosystem function accurately.  

Significant benefits can be gained by integrating remote sensing data into studies of 

mountain treeline shifts to improve estimates of vegetation change (Chen et al., 2015; Luo and 

Dai, 2013), characterise forest structure at the treeline (Allen and Walsh, 1996; Hill et al., 2007; 

Resler et al., 2004) and improve the understanding of pattern-process relationships that control 

treeline position (Bader and Ruijten, 2008; Weiss et al., 2015). However, methodological 

inconsistencies and poor reporting of uncertainty in estimates of forest change in the existing 

literature have limited the effectiveness of integrating remote sensing data into assessments of 

forest range shifts in mountain systems. Challenges in reconciling trade-offs between different 

remote sensing data sets and quantifying the degree of structural information that can be 

identified in remote sensing data sets led to limitations in our ability to scale plot level data on 

forest range shifts. This limitation combined with challenges obtaining suitable data for 

validating change assessments in mountain systems introduced the potential to misestimate 

change and assess the subsequent impacts at the landscape scale.  

Given these challenges, this thesis set out to overcome limitations in our ability to 

characterise variation in patterns of forest range shifts and rates of forest advance at mountain 

treelines. By addressing these limitations this thesis presents new approaches that deliver 

revised estimates of change in forest area and elevation, variation in rates of forest advance, 

and quantifies the impact that forest advance will have on biodiversity and ecosystem function 

in the Central Mountain Range of Taiwan. The research presented here was structured around 

three research priorities identified in Chapter one, published as Morley et al., 2018. Specifically, 

Morley et al. (2018) identified needs to address the suitability of remote sensing data, the 

ecological relevance of maps derived from satellite imagery classifications, and the 

effectiveness of validation methods to achieve precise estimates of landscape-scale change. By 



Peter J Morley Chapter 5 
 

152 
 

combining improvements across each of the three research priorities, this thesis aimed to 

improve the integration of remote sensing data into forest range shifts to enable estimates of 

the impact forest advance has on biodiversity and ecosystem function in mountain regions. 

5.2 Suitability of remote sensing data 

Inconsistencies in the methodologies used to map and quantify changes in montane 

forest distribution in previous work that uses remote sensing data to study mountain treelines 

left uncertainty in the ability of different passive optical remote sensing data sets to resolve 

structural variation at the mountain treeline. There are trade-offs between the spatial 

resolution, temporal resolution and geographic coverage of individual data sets that must be 

considered when using remote sensing data to estimate changes in montane forest area. It is 

often perceived that imagery with a high spatial resolution will lead to an improved 

characterisation of habitat heterogeneity due to the ability to identify small objects, e.g. 

individual trees.  Consequently, in studies that use remotely sensed data to study mountain 

treelines, a majority used high-resolution aerial photography or satellite imagery (< 10 m pixel 

size) rather than open-access Landsat data (30 m pixel size) (Morley et al., 2018). The apparent 

preference for high-resolution remote sensing data led to uncertainty in the ability of Landsat 

data to adequately characterise heterogeneity in forest structure that occurs over short 

distances at the mountain treeline. However, a quantitative assessment of the ability of sensors 

with different spatial resolutions to resolve variation in forest structure at the treeline had not 

been carried out. Consequently, two key priorities were set out in Morley et al. (2018); the first 

to identify the appropriate compromise between spatial resolution and increasing cost that 

allows for sufficient ecological and biogeographical information to be extracted; and the second 

to identify the most appropriate method or combination of methods that allow for accurate 

assessments of landscape-scale shifts in montane forest distribution.   

In order to adequately characterise treeline shifts, change in forest cover must be 

quantified over decadal periods due to the gradual nature of forest advance at mountain 

treelines. Aerial photographic survey data is often the earliest form of remote sensing data 

available, yet prior uncertainty in the use of repeat aerial photography arose due to mapping 

by manual image interpretation and a lack of quantitative measures of uncertainty reported in 

the literature. However, when implemented with a probability-based sampling design, manual 

interpretation of aerial photography provides precise estimates of forest change (Chapter 3). 

Despite the high precision of change estimates, repeat aerial photography is a geographically 

limited resource, restricting the use of aerial photography as a sole source of data in large-area 

estimates of forest change. Therefore, it is important to assess the ability of satellite-borne 
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Earth observation data to capture structural variation at the mountain treeline that would 

enable the characterisation of spatial patterns of forest structural heterogeneity across large 

areas and to track change over decadal periods using archived satellite imagery. Despite prior 

concerns raised over the ability of Landsat data to adequately identify fine-scale heterogeneity 

in vegetation structure at the treeline (Bharti et al., 2012; Buchanan et al., 2015; Chen et al., 

2015), there is little quantitative difference between the relationships defined between discrete 

descriptors of vegetation structure and spectral measures from Landsat-8 and spectral 

measures from higher resolution sensors (GeoEye, SPOT-7 and Sentinel-2; Chapter 2 published 

as Morley et al. 2019).  Consequently, there is an opportunity to exploit the long-term open-

access Landsat archive to quantify gradual changes in montane forest position over large areas 

(Vogelmann et al., 2016, 2012).  

Positive, long-term greening trends have been identified in alpine grasslands, old-

growth montane forests and across the treeline ecotone using Landsat time-series data that 

indicate increases in vegetation productivity and woody biomass across the mountain treeline 

ecotone (Bolton et al., 2018; Carlson et al., 2017; Gartzia et al., 2016). Changes in forest position 

and structure at the mountain treeline have been investigated using images from the Landsat 

archive analysed over time (e.g. Allen and Walsh, 1996; Bharti et al., 2012; Dinca et al., 2017; 

Mihai et al., 2017). However, there is often a lack of reference data to validate estimates of 

change in forest area derived from satellite imagery. Consequently, the ability to distinguish 

between changes in spectral signatures identified in the Landsat archive that occur due to 

increases in woody biomass across the treeline and those that occur due to increased 

productivity in alpine vegetation above the treeline or in montane forests below the treeline 

was unknown. The classification of spectral trends, defined from a time-series of Landsat data, 

resolves a realistic spatial pattern of forest advance and stasis at the mountain treeline (Chapter 

4). However, when used to estimate changes in forest area, the classification of spectral trends 

shows a strong bias that underestimates the area of forest advance (Chapter 4). The ability to 

make precise estimates of change in montane forest distribution at a landscape-scale using 

time-series Landsat data is improved by combining time-series analysis of Landsat imagery with 

precise estimates of change from repeat aerial photography analysed using a sample-based 

assessment (Chapter 4). The ability of repeat aerial photography to obtain precise estimates of 

area change is vital to validate area estimates derived from Landsat time-series data and adjust 

for classification errors. Consequently, this combined approach to change assessment allows 

sufficient ecological and biogeographical information to be extracted and changes in treeline 

position that occur over decadal periods to be quantified, thereby enabling estimates of the 
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impacts of forest advance on biodiversity and ecosystem services in areas where access to field 

locations is challenging.  

5.3 Ecological relevance of classifications 

Two needs were identified to improve the current ecological and biogeographic 

understanding of mountain treelines; the need for theoretically and methodologically 

consistent approaches to better define geographic variation in pattern-process relationships at 

the treeline (Malanson et al., 2011) and to monitor the impacts treeline shifts will have on 

biodiversity and ecosystem function across mountain ranges (Greenwood and Jump, 2014). 

Within the previous studies that use remote sensing data to study treeline shifts, there is often 

an over-simplification of structural diversity in forest vegetation that limits the interpretation 

of pattern-process relationships and the impacts that treeline shifts will have on biodiversity 

and ecosystem function.  

Harsh and Bader (2011) have suggested treeline forms (discrete classes that separate 

forested areas at the treeline according to variation in forest/tree structure and growth form) 

as a method to improve the consistency of treeline definitions within the ecological and 

biogeographic literature. In Taiwan’s Central Mountain Range, Greenwood et al. (2015, 2014) 

have shown that similar treeline forms that describe areas of old-growth forest, areas of low-

density establishment and areas of high-density establishment, are important for 

understanding the processes that drive variation in response to environmental change with 

topography, microclimate and local sheltering all influencing the treeline form. Furthermore, 

community assemblage varies between treeline form and therefore, forest advance and 

changes in forest structure are likely to lead to changes in community composition and 

reductions in biodiversity (Greenwood et al., 2016). The ability to identify structural forms 

similar to those identified by Greenwood et al. (2014) across large areas would represent a 

significant contribution to addressing the two needs identified above. However, few studies 

that use remote sensing data to study mountain treelines have attempted to resolve variation 

in forest structure at the treeline using definitions of forest structure based on the treeline 

forms suggested by Harsch and Bader (2011).  

At the mountain treeline, the spectral similarity between areas of differing forest 

structure across the treeline ecotone presents a challenge to resolving structural classes 

identified by Greenwood et al. (2014) at the treeline in the Central Mountain Range of Taiwan 

(defined in Morley et al. 2019 as full structural classes). At the mountain treeline, saturation of 

the spectral signature occurs when the forest reaches an above-ground woody biomass value 
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around 25 t C ha-1. Consequently, resolving differences in forest structure between areas with 

above-ground woody biomass values greater than 25 t C ha-1 is problematic and fine-scale 

differences in forest structure described in the full structural classes cannot be resolved in 

multispectral satellite remote sensing data (Morley et al., 2019). Simplifying the structural 

classes to distinguish between areas of old-growth forest, establishing forest and non-forest 

allows for areas indicative of forest advance to be distinguished from areas of forest stasis in 

single date imagery (Morley et al., 2019). Furthermore, tracking changes in the simplified class 

structure over time using repeat aerial photography returns precise estimates of forest 

advance, thereby improving the understanding of mechanisms that drive variation in forest 

range shifts and enabling estimation of the impacts that forest ranges shifts will have in 

mountain systems (Chapter 3). 

Sample-based estimates of change at the mountain treeline in the Central Mountain 

Range of Taiwan using repeat aerial photography show that forest advance has led to a 29 % 

reduction in the area of non-forest habitats and an increase in the mean elevation of the 

establishing forest class at a rate of of 2.17 m yr-1 between 1963 and 2016 (Chapter 3). However, 

the rate of forest advance varies according to slope gradient and aspect. Variation in patterns 

of forest advance will likely lead to variation in the impacts that forest range shifts will have on 

biodiversity and ecosystem function (Greenwood et al., 2016; Greenwood and Jump, 2014). In 

the Central Mountain Range of Taiwan west facing slopes and slopes with a gradient > 46˚ show 

negligible increases in forest area between 1963 and 2016 (Chapter 3). Consequently, as forest 

advances, some areas may remain open and act as refugia that allow the persistence of alpine 

species below the upper limit of forest distribution. However, continued upward advance of 

establishing forest and increases in forest area will lead to a reduction in non-forest habitat, 

risking a reduction in alpine biodiversity and population loss at high elevations. Using forest 

structural classes as a basis for the classification of spectral trends identified in Landsat time-

series data, areas of old-growth forest, areas of treeline stasis and areas of forest advance can 

be identified at a landscape-scale (Chapter 4). The classification of spectral trends enables 

landscape-scale estimates of the impacts of forest range shifts, revealing that forest advance 

has led to a net increase in above-ground woody biomass of 4688.7 t C in areas above 2400 m 

a.s.l. in the Mt Hehuan study area (4070.8 ha) of the Central Mountain Range (Chapter 4). 

The ability to quantify changes in forest area accurately and estimate the impacts forest 

advance will have on biodiversity and ecosystem function at the landscape-scale, relies on the 

ability to resolve variation in forest structural characteristics from remotely sensed data. 

Assessments of forest change such as those based on the FAO (2018) definition used for the 
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Global Forest Resource Assessment rarely comment on areas that do not meet pre-defined 

criteria for forest cover. However, ecological and biogeographical literature use a much broader 

interpretation to characterise the treeline ecotone, describing the treeline as the uppermost 

areas where trees reach 3 m in height and the species limit as the location at the extremes of 

distribution irrespective of tree size (Harsch and Bader, 2011; Holtmeier and Broll, 2005). 

Identifying areas of establishing forest as a separate vegetation class ensures a greater area of 

the forest-grassland transition is represented than a simpler forest / non-forest vegetation 

classification. Differences between areas that meet the criteria of a forest as defined by the FAO 

(2018) and those defined as establishing forest in response to environmental change as shown 

in this thesis highlight the importance of accounting for differences in forest structure and 

growth stage when quantifying forest ranges shifts in mountain systems. While no change in 

the mean elevation of the forest class was identified, a substantial increase in the area occupied 

by the forest class was reported (Chapter 3). However, when considering the establishing forest 

class, a 115.1 m increase in mean elevation is identified but there was a negligible increase in 

the area occupied by the establishing forest class between 1963 and 2016 (Chapter 3). By 

considering changes in the forest class separately from changes in the establishing forest class, 

as used here, ensures that the results presented in this thesis are comparable to literature from 

both the ecological and biogeographic fields and forest resource assessments. Consequently, 

the results presented here offer a consistent approach to identifying variation in forest response 

to environmental change in multispectral remote sensing data, allowing for pattern-process 

responses to be better understood and for robust estimates of the implications forest advance 

will have on biodiversity and ecosystem function in mountain systems.  

5.4 Effectiveness of training and validation procedures 

Few studies that use remote sensing data to quantify treeline change report 

quantitative assessments of the precision of the change estimates reported or accuracy of 

classified maps. Field surveys provide the most accurate assessment of forest advance and 

interpretation of the subsequent impacts on biodiversity and ecosystem function. However, 

obtaining field data for validation of remote sensing data in mountain areas is challenging 

because complex terrain limits the collection of field data to accessible areas. Consequently, 

many studies that seek to identify changes in forest area or elevation do so without high-quality 

validation data that provide precise estimates of change and rates of change (Morley et al., 

2018).  

In areas where extensive fieldwork is not possible, repeat aerial photography analysed 

with a sample-based change assessment provide precise estimates of forest change and high-
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quality training and validation data that could not be achieved in the field (Chapter 3 & 4). Using 

sample data collected from repeat aerial photography to classify Landsat spectral trends offers 

an opportunity to improve the mapping and consistency of estimates of forest range shifts in 

mountain regions. However, it is necessary to adjust for errors that occur during the 

classification of spectral trends from Landsat time-series data in order to minimise map bias and 

calculate estimates of change in forest area reliably (Olofsson et al., 2013; Stehman, 2013). The 

process of error-adjustment requires high-quality sample-based assessments of forest change 

and so sample-based estimates of change should be a pre-requisite to using coarser resolution 

remote sensing data in forest change assessments. Consequently, complimenting field data 

with photointerpretation of high-resolution remote sensing data offers a compelling method to 

improve the reliability of change assessments and return quantitative measures of uncertainty 

in area estimates. 

5.5 An integrated approach to change assessments in montane forests 

Successful advances made in each of the three research priorities improves the 

platform for monitoring changes in forest extent, helps to characterise treeline structure and 

reduces the uncertainty in reported changes in forest range shifts at mountain treelines. The 

integration of advances across these three research priorities is essential to enable landscape-

scale monitoring of forest range shifts at mountain treelines that will lead to improvements in 

our understanding of pattern-process relationships at the mountain treeline and improve 

estimates of the impacts that montane forest range shifts will have on biodiversity and 

ecosystem function. 

Forest advance in the Mt. Hehuan area of the Central Mountain Range, Taiwan has led 

to a 29 % reduction in area of non-forest habitats present in 1963 (Chapter 3). However, 

topography alters patterns of forest advance in the Mt. Hehuan area, resulting in east and south 

facing slopes experiencing the greatest increases in forest area while slopes facing west or with 

gradients of >46° show negligible increases in forest area (Chapter 3). The role of topography in 

mediating patterns of forest advance shown in chapter 3 is consistent with the findings of 

Greenwood et al. (2014) in the same study area. Greenwood et al. (2014) showed forest 

advance in the Central Mountain Range of Taiwan predominantly displays infilling below the 

upper tree limit and estimated an elevation shift in treeline position of 27-33 m over 53 years 

in a subset of the study area considered in this thesis. While change in the mean elevation of 

the forest class and the role of topographic drivers of change found here are consistent with 

the findings of Greenwood et al. (2014), this thesis delivers a substantial advance beyond the 

work of Greenwood et al. (2014) by delivering precise estimates of forest area change and rates 
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of forest advance split between forest growth stages that improve our ability to characterise 

variation in forest range shifts. By considering different growth stages it is possible to identify 

that the mean elevation of the establishing forest class has increased by 115.1 m between 1963 

and 2016 (equivalent to 2.17 m yr-1) lagging 0.5 m yr-1 behind estimated changes in the isotherm 

position (Chapter 3). Accurate quantification of forest range shifts using repeat aerial 

photography analysed with a sample-based change assessment provide a foundation for 

Landsat based time-series classification, that enable the precise estimation of forest advance at 

a landscape-scale (Chapter 4). In the Mt. Hehuan area of the Central Mountain Range, an 

estimated 587.8 ha ± 64.4 ha of the 4070.8 ha study area has undergone forest advance 

between 1987 and 2017 leading to an estimated net increase in above-ground woody biomass 

of 4688.7 t C in areas above 2400 m a.s.l. (Chapter 4). Incorporating detailed field data on forest 

biomass with precise estimates of forest range shifts derived from remote sensing data 

improves our understanding of the capacity of montane forests to act as carbon sinks, 

highlighting the significant increase in woody-biomass associated with forest advance in high-

elevation areas.  

In combination, the advances presented here deliver revised estimates of non-forest 

habitat loss, identify variation in patterns of forest advance attributable to topography and 

growth stage, and enable estimates of changes in above-ground woody biomass at the 

mountain treeline in the Central Mountain Range of Taiwan. By bringing together methods from 

multiple fields of research, the results presented in this thesis demonstrate the benefit of 

integrating different sources of remote sensing data for assessing forest range shifts in 

mountainous areas. The methods used here can easily be adapted and implemented in other 

areas to improve the methodological consistency of change assessments in montane 

forests. Consequently, the framework provided in this thesis for estimating forest range shifts 

in mountain areas presents a major opportunity to improve the ecological understanding of 

forest range shifts and quantify the impacts that forest advance will have on biodiversity and 

ecosystem function in mountain systems. 

5.6 Future directions 

The work presented in this thesis offers a platform to improve our understanding of 

pattern-process relationships at the mountain treeline, enabling research into the factors that 

give rise to variable patterns of forest advance and stasis. Bader and Ruijten (2008) identified 

the position of the treeline in Landsat data and subsequently modelled the role that topographic 

variables have in controlling the present day position of the treeline. Similarly, Weiss et al. 

(2015) identified the treeline in Landsat data then characterised scale dependencies of the 
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patterns and controls on current treeline position. Both Bader and Ruijten (2008) and Weiss et 

al. (2015) use Landsat data to identify the mountain treeline allowing for environmental factors 

that explain the current position of the treeline to be identified at a landscape-scale. However, 

their work can be advanced by identifying landscape-scale variation in patterns of forest 

advance using remote sensing data. A detailed understanding of the controls that cause 

variation in patterns of forest advance or stasis is essential to predict how mountain treelines 

will respond to ongoing climate change. Therefore, by integrating assessments of forest change 

with environmental data to test hypothesised drivers of forest change at mountain treelines, 

predictions of future forest ranges shifts can be made with greater confidence. 

Greenwood et al. (2016) highlighted the importance that fine-scale differences in forest 

structure have in altering community composition, and the potential for ongoing changes in 

forest structure to cause community disassembly in alpine communities. Furthering the 

research presented in this thesis by improving the characterisation of forest structure would 

advance our understanding and the quantification of the impacts that forest range shifts will 

have on biodiversity in mountain systems. Incorporating satellite imagery with a finer spatial 

resolution into Landsat time-series based change assessments may improve the ability to 

quantify fine-scale changes in montane forest distribution. Sentinel-2 data show a better ability 

to resolve variation in forest structure at mountain treelines than Landsat-8 data when using 

above-ground woody biomass to define variation in forest structure (Morley et al. 2019). 

Consequently, it is likely that the 10-20 m pixel size of Sentinel-2 imagery would improve the 

spatial precision of change assessments in areas with complex patterns of forest advance. While 

Sentinel-2 data have been used to validate maps of forest change in mountain areas (Mihai et 

al., 2017), the integration of Sentinel-2 and Landsat data into time-series change detection 

methods is challenging due to slight differences in the position and width of each spectral band 

between the sensors that limits the direct comparison of spectral data between sensors 

(Claverie et al., 2018). Ongoing improvements in the harmonisation of Sentinel-2 and Landsat 

data are likely to reduce the data processing burden and make the integration of different data 

products easier (Claverie et al., 2018). Consequently, there is an opportunity to improve the 

spatial precision of mapped areas of forest change in ongoing monitoring efforts by integrating 

the long-term Landsat archive with recent high spatial resolution data from Sentinel-2.   

Despite improvements in the spatial precision that may be gained by integrating data 

from Sentinel-2, improved characterisation of forest structure may not be possible by using 

multispectral imagery alone due to the spectral similarities between structural classes. LiDAR 

data collected from airborne platforms have been used to describe vegetation structure within 
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the treeline ecotone (Coops et al., 2013), have been integrated with multispectral satellite 

imagery to produce maps of vegetation cover types over large areas (Ørka et al., 2012) and have 

helped improve the interpretation of spectral trends identified in time-series Landsat data 

(Bolton et al., 2018). Despite these benefits, LiDAR data are not widely available in many 

mountainous areas and the acquisition of new data sets can be prohibitively expensive. 

However, data from the Global Ecosystem Dynamics Investigation (GEDI) LiDAR sensor (Coyle 

et al. 2015; Dubayah et al. 2014), currently mounted on the International Space Station, is due 

to be released in 2019. While the above-ground biomass estimates from the GEDI LiDAR sensor 

will be delivered at a 1 km grid cell size and therefore unlikely to improve the characterisation 

of treeline structure, processed data characterising tree height and canopy cover from the laser 

footprint will be available with a 25 m diameter. The ability of the GEDI LiDAR sensor to provide 

high-resolution estimates of forest height and canopy cover offers a valuable data source for 

characterising 3-dimensional forest structure at the treeline enabling variation in forest 

structure to be quantified in remote mountain areas. Therefore, investigating the use of data 

quantifying tree height and canopy cover from the GEDI LiDAR sensor should be a priority when 

data becomes available. The successful unification of estimates of forest advance with detailed 

information on 3-dimensional forest structure would represent a significant improvement in 

the capacity of ecologists, biogeographers and resource managers to quantify variation in forest 

structure and estimate the impacts that forest ranges shifts will have on biodiversity, ecosystem 

function and carbon sequestration potential in mountain systems.  

5.7 Conclusion 

In this thesis, the close integration of field data, repeat aerial photography and Landsat 

time-series data has enabled precise estimation of changes in forest area and elevation, the 

quantification of variable patterns of forest range shifts and estimates of the impacts forest 

range shifts will have on biodiversity and ecosystem function. In the Central Mountain Range of 

Taiwan, there has been a 29 % reduction in the area of non-forest habitats due to increases in 

forest area and uphill advance of forest establishment. Declines in the area and contraction in 

the range of non-forest habitats risk the loss of alpine populations, as such ongoing increases in 

forest area are a severe threat to alpine biodiversity. Variation in the rate of forest advance 

means that some areas might experience sufficiently small gains in forest area or tree growth 

limitation that will lead to the persistence of refugial areas that will likely reduce, but not 

eliminate the risk of local extinctions. While increased forest area is likely to have negative 

consequences for alpine biodiversity, increased forest area has resulted in a net increase in 

above-ground woody biomass at high elevations. Ongoing monitoring of changes in forest 
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extent in mountain regions is vital given that further increases in forest area are expected with 

continuing changes in global climate and land-use. Therefore, embedding remote sensing data 

future assessments of species ranges shifts is essential to enable the robust estimation of the 

impacts that forest advance will have on biodiversity and ecosystem function in mountain 

systems globally.  
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