
On Refining Design Patterns for Smart
Contracts

Marco Zecchini1[0000−0002−2280−9543], Andrea Bracciali2[0000−0003−1451−9260],
Ioannis Chatzigiannakis1[0000−0001−8955−9270], and Andrea

Vitaletti1[0000−0003−1074−5068]

1 Sapienza University of Rome, Italy
(1,b,c)@diag.uniroma1.it
2 University of Stirling, UK

abb@cs.stir.ac.uk

Abstract. The need for a Blockchain Oriented Software Engineering
(BOSE) has been recognized in several research papers. Design Patterns
are considered among the main and compelling areas to be developed in
BOSE. Anyway, design patterns need to be enhanced with some addi-
tional fields to better support the specific needs of Blockchain develop-
ment. In this paper, we discuss the use of Solidity design patterns applied
to a water management use case and we introduce specific fields in their
description, aiming at offering to Blockchain developers more support in
the critical decisions to build efficient decentralized applications.

Keywords: Design Patters · Blockchain Oriented Software Engineering
(BOSE) · Use Case · Smart Contracts · Solidity

1 Introduction

Since the release of Ethereum, there have been many cases in which the execu-
tion of Smart Contracts managing Ether coins has led to problems or conflicts.
Probably, the most well known example of such issues is “The DAO” [15, 13].
The DAO, decentralized autonomous organization, was a concrete attempt to
implement a funding platform, similar to Kickstarter, running over Ethereum. It
went live in 2016 with between 10-20 thousand investors (estimation) providing
the equivalent of about US$ 250 million in funding and thus breaking all existing
crowdfunding records. However, after few months an unintended behavior of the
DAOs code was exploited draining the fund of millions of dollars worth of ETH
tokens. The DAO experience makes clear the importance of suitable Blockchain
Software Engineering (BOSE) techniques, capable to reduce the risks connected
to “poorly” designed and implemented smart contracts. However, a discipline of
Smart Contract and Blockchain programming, with standardized best practices
is yet in its infancy and requires new approaches since smart contracts rely on a
non-standard software life-cycle; as an example, once deployed applications can
hardly be updated or bugs resolved by releasing a new version of the software.

This is a post-peer-review, pre-copyedit version of a paper published in Schwardmann U, Boehme C, Heras DB, Cardellini V, 
Jeannot E, Salis A, Schifanella C, Reddy Manumachu R, Schwamborn D, Ricci L, Sangyoon O, Gruber T, Antonelli L & Scott SL 
(eds.) Euro-Par 2019: Parallel Processing Workshops. Lecture Notes in Computer Science, 11997. 2nd International Workshop on 
Future Perspective of Decentralized APPlications, Gottingen, Germany, 26.08.2019-29.08.2019. Cham, Switzerland: Springer, pp. 
228-239. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-48340-1_18

https://doi.org/10.1007/978-3-030-48340-1_18


2 M. Zecchini, A. Bracciali, I. Chatzigiannakis, A. Vitaletti

In [12] the authors discuss the need for BOSE and propose three main areas
for the initial development of this discipline: a) Best practices and development
methodology, b) Design patterns and c) Testing.

Our work is focused on the use of Design Patterns for the development of
Decentralized Applications (DApps) [25].

DApps are a new class of applications coded in programs running on the
blockchain. DApps may provide a variety of services over the underlying P2P
infrastructure that up to now have only been provided in the dominant Clien-
t/Server architectures. The Peer-to-Peer (P2P) nature of DApps and the lack
of a central authority as in the Client/Server paradigm, is the key ingredient to
implement infrastructures supporting new forms of democratic engagement of
the users. A recent report by Fluence Labs [17] presents the state of the DApps
ecosystem surviving 160 projects. The main findings can be summarized in the
following points: a) DApps is a modern trend: 72% of the projects started in
2018, b) 87% of the projects run on Ethereum c) A quarter of the surveyed
projects are gaming DApps. d) About half of the projects used a centralized
tools to connect to the Ethereum blockchain. e) Transactional fees prevailed as
the central monetization model for most projects. f) New user onboarding was
mentioned by more than three quarters of the respondents as the major obstacle
to adoption.

Problem Statement. Design Patterns are undoubtedly a useful tool to improve
the development of DApps. Due to the nature of the Blockchain, more than in
other contexts DApps are at risk of generating problems, which are hard to
recover from. However, most of the available Design Patterns for Blockchain do
not consider some useful information that can help the developer to implement
correct and efficient solutions.
Contribution of the paper. In this paper we analyse and evaluate best prac-
tices in the use of Design Patterns for a typical DApp. Moreover, we refine the
format description of design pattern specific for blockchain with other fields,
namely Cost of execution and Decentralization level and On-chain/Off-chain
components, capable to help developers in trading-off between critical design and
implementation choices. As a running example, we develop a DApp interacting
with Internet Of Things devices to monitor and manage resource consumption,
and encourage the democratic engagement and empowerment of citizens. In par-
ticular, our use case focuses on a DApp for the management of urban water
resources. However, the Design Patterns employed in this specific use case are
of general interest and can support a variety of other application scenarios.

2 Use Case: decentralized management of urban water
resources

The interactive statistics portal by the International Water Association (IWA)
[8] provides data on water consumption, tariff structure and regulation of water
services in 198 cities in 39 countries from all 5 continents. The IWA report



On Refining Design Patterns for Smart Contract 3

stresses the importance of adopting modern emerging technologies and smart
metering to improve the overall water management process in the city.

In nowadays cloud solutions, data on water consumption is collected by smart
meters and delivered to a cloud service allowing live monitoring of the consump-
tion and providing evidences on consumption patterns to the users in the hope
that citizens will consequently act to reduce their water consumption.

It is worth noting that the overall success of such resource management
strongly depends on the active and collective participation of citizens. The virtu-
ous behaviour of an individual is commendable, but the risk is that it is literally
“a drop in the ocean” if not accompanied by the joint action of the community.

Nowadays, the Client/Server paradigm dominates the cloud services market.
However, decentralized applications (DApps), an emerging P2P framework, have
the potential to revolutionize this market and democratize the whole process.
The hope is that the empowerment of the citizen, guaranteed by this democratic
process, will improve the participation and thus the overall chances of success of
smart cities initiatives. As observed in [22], smart cities often do not optimally
reach their objectives if the citizens are not suitably involved in their design.

We assume the availability of suitable Internet of Things (IoT) devices, i.e.
smart water meters, capable to measure the performance of a target process, i.e.
reducing water consumption. However, we want then to have citizens engaged
in pursuing behavioural changes. It is well-known that behavioural changes are
the effective way to better performances in resource management, e.g. closing
the water while brushing teeth can save up to 20 litres, and taking a shower can
save up to four times the water necessary for a bath.

To support the active engagement and democratic participation of users, our
proposed DApp will implement two main principles:

– Citizens propose smart contracts that encode measures of the effectiveness
of water management policies. Typically, such smart contracts relies on IoT
data to monitor the application of policies. Citizens also select a smart con-
tract by a fair vote. Such smart contracts, capable of attracting the greater
consensus from citizens, becomes currently operative. Selection may occur
regularly, on demand, or on specific conditions.

– To further encourage the participation of citizens, the operative smart con-
tract will also be in charge of distributing incentives to virtuous citizens,
namely citizens that most actively contribute to fulfill policies, i.e. success-
fully reduce the water consumption.

2.1 Reference Architecture

The full implementation of the Proof of Concept (PoC) is available in the GitHub
repository [2] and a simplified reference architecture is shown in figure 1.

Smart Contracts The smart contracts have been developed in Solidity [11],
the object-oriented, high-level language for implementing smart contracts on



4 M. Zecchini, A. Bracciali, I. Chatzigiannakis, A. Vitaletti

Fig. 1. A simplified picture of a DApp for water management. Contrary to central-
ized architectures the back-end of this architecture is implemented on smart contracts
running on the P2P decentralized blockchain infrastructure.

Ethereum, using Remix [4], the browser-based compiler and IDE that enables
users to build Ethereum contracts and to debug transactions.

The manager smart contract, implemented in the ManagerContract class,
is in charge to a) manage the interface with IoT sensors and safety of data, b)
manage the voting process at each occurrence of it, and c) make operational the
most voted proposal, which will monitor the application of policies and devolve
incentives accordingly. Several variations to this general scheme are possible,
of course, but for the sake of this paper such a general formulation will be
adequate. In the next section we discuss the design patterns involved in the
design of the proposed DApps for urban water management. The voting process
code is inspired by the example on ballot available on Solidity documentation
[5] . The vote starts and finishes, respectively, with the methods startVote and
winningProposal. The latter, takes also care of counting the votes and electing
the winner. The addProposalContract method allows users to propose a new
contract, while the method vote allows user to vote for a proposal. Note that
this method is payable because it has to collect the funding during the voting
process and to transfer the accumulated funding to the winning proposal using
the method trasferToWinner.

The proposal smart contract must essentially define a) how to measure the
contribution by each citizen to the reduction of water consumption as measured
by IoT sensors, and b) how to distribute incentives according to that contribu-
tion. Citizens are free to present proposals, namely alternative solutions that
are democratically voted by the citizens themselves. The class ProposalContract
represents a proposal of a citizen. The owner variable maintains the owner of the
contract (this is crucial for the implementation of the access restriction pattern,



On Refining Design Patterns for Smart Contract 5

see section 3). As already observed, the ManagerContract manages all the key
phases of the process and consequently, before starting the voting phase, ev-
ery participating contract should change its ownership to the ManagerContract
calling changeOwner method.

Fig. 2. Interaction with the Smart Contracts

Finally, the proposal that wins the election phase become runnable and the
corresponding smart contract is executed invoking the method runContract. This
results in a call to the smart contract in charge of collecting the data on water
consumption interacting with the oracle. This data are stored in the Proposal-
Contract by the insertConsumption method. Each citizen is allowed to access
only its own consumption data. The hash table consumers maintains the asso-
ciation between the user credentials that are used by the oracle to access the
data, and their address in the blockchain.

WaterOracle is the smart contract that collects the data on the water meters
from a source of data external to the blockchain.

The whole process, summarized in figure 2, which allows the citizens to select
the smart contract that will become operative can be divided in three phases:
1) the proposal phase, 2) the selection phase and 3) the running phase. During
the proposal phase, proposal contracts are submitted by the community. In the
selection phase, proposal contracts are voted by the community. For the sake of
simplicity, we assume that citizen can access the vote only by providing a fee
that is used to accumulate the incentives. More realistic fee policies are scope for
future work. The voted contract becomes operative in the running phase, and
will actually distribute the accumulated incentives according to its own policies.



6 M. Zecchini, A. Bracciali, I. Chatzigiannakis, A. Vitaletti

Web UI. Users can access the functions of the system by a web application
running on his/her premises that interacts with the blockchain. This app is
developed in Nodejs and web3.js[6], which is a collection of libraries allowing
to interact with a local or remote Ethereum node, through HTTP, WebSocket
and IPC connection. While in principle citizens can make their proposals in
the form of free smart contracts encoded in solidity, in this paper we focus on
a template smart contract where the proposals are characterized by different
parameters that users can freely select accessing the Proposal page of the Web
UI. Examples of the parameters defining the smart contracts are: What will be
monitored (e.g. apartment, building), the Criteria to distribute the incentive
(e.g. ≤ a given threshold) and the Interval in which the monitoring activity is
performed and incentives are distributed (e.g. semester).

Once a proposal has been formalized, it can be voted accessing the Vote page,
showed in figure 3, where users can inspect the proposals and finally vote for the
most liked one. After a suitable time interval, that allows each voter to express
their preferences, the winner proposal is elected and starts the running phase.

In the Run page the user can finally allow the selected smart contract to
access its data on water consumption. If the criteria defining a virtuous be-
haviour embodied in the smart contract are meet, the corresponding incentives
are automatically sent to the user.

Fig. 3. The Voting Interface



On Refining Design Patterns for Smart Contract 7

3 Smart Contract Design Patterns

We used some of the Solidity design and programming patterns [24, 9, 25] col-
lected by Franz Volland in his github repository [23]. The aim of this section is
double: to discuss how these design patterns have been employed to implement
the methods and the smart contracts in the proposed decentralized system for
water management; to describe how a design pattern is expanded in the case of
a blockchain design pattern (BDP).

The documentation for a design pattern describes the context in which the
pattern is used, the forces within the context that the pattern seeks to resolve,
and the suggested solution. A variety of different formats [14] have been used by
different pattern authors. [23] uses one of these approaches. We intend to add
two additional fields for describing a BDP:

– The first is cost of execution - gas, i.e. the unit to measure the amount of
computational effort to execute certain operations. Its presence is funda-
mental and necessary for public blockchains such as Ethereum: this in fact
avoids that an operation performs forever on the blockchain blocking the
entire network.

– Secondly, there are the blockchain specific features which are a set of prop-
erties that highlights how BDP are related with peculiar characteristics of
blockchains. We have identified decentralization and on-chain or off-chain
properties.

For the sake of space we don’t sketch the code of all patterns, the interested
reader is referred to [2] and we do not report the formal description of the pat-
terns already available at [23], but we focus our attention to the two additional
descriptive fields presented above.

Ownership and Access Restriction pattern During the proposal phase,
users make contract proposals. In order to participate to the next selection phase,
users have to release contract ownership to the manager smart contract. This is
done by implementing the Access Restriction pattern which allows the ownership
of a contract to be changed. The proposer invokes the changeOwner function ,
providing as input the address of the manager that consequently becomes the
owner. We stress here that at each instant in time there is only one owner for a
contract and some functions can be invoked only by the owner because they are
critical for the correct execution of the contract.

Cost of execution - gas.

changeOwner() 28595

Blockchain specific features

Decentralization of the BDP Decentralized BDP

On-chain or off-chain solution.
The owner is stored into a variable of the
smart contract, so it is an on-chain solution.



8 M. Zecchini, A. Bracciali, I. Chatzigiannakis, A. Vitaletti

State Machine pattern In each phase, a proposal contract can be in one
of three possible states: proposal, selection and running. Only the owner of a
contract can change the status of the contract.

The State Machine pattern [23] allows a contract to go through different
states, with different functions enabled in the different states. A function modifier
checks if the contract stage is equal to the required stage before executing the
called function. Note that the manager, becoming the owner of the contracts, is
the only one capable to change the state of a contract during the selection phase
(see Access Restriction pattern: onlyBy(owner)).

Cost of execution - gas.

nextStage() 27632

Blockchain specific features

Decentralization of the BDP Decentralized BDP

On-chain or off-chain solution.
It changes the internal state of a smart
contract that lives on-chain

Oracle pattern Once in a running state, the winning smart contract needs
to collect data from the smart meters to correctly dispense incentives to the
users. This requires the communication with an Oracle, a centralization point,
to gain access to data outside the blockchain. An Oracle is hence a trusted entity
providing a unique view on a source of data considered credible.

Each node in the blockchain has to validate every computation performed in
a smart contract. When this requires the interaction with off-chain sources of
data, as in our case with smart meters, this becomes unpractical because, due
to network issues (e.g. delays), there are not guarantee that all the node will
access the same information as expected thus leading to a possible break in the
consensus algorithm.

In our PoC, we use the oracle service provided by Oraclize [3], see listing 1
(recently Oraclize changed its name to Provable).

Listing 1. The call of an Oracle to acquire the water meter readings and send them
back to ProposalContract.
contract WaterOracle is usingOraclize {

uint public water;

function () public payable {}
function getWaterConsumption(string input_for_API)
public {

if (oraclize_getPrice ("URL") > this.balance) {
emit LogError ("Put more ETH");

}
else {

//call the oracle and save the request
}

}
function __callback(bytes32 myid ,

string _result) public
{



On Refining Design Patterns for Smart Contract 9

// update consumption

}
}

The function getWaterConsumption is invoked by the ProposalContract and
performs the query to the oracle. The fallback function is necessary to support
the necessary payments to the Oracle: only if the balance of the WaterOracle
smart contract is sufficient, the query is delivered to the Oraclize contract that
access the data interacting with the data source API. Once data are available
a callback function is called to store the values on the ProposalContract in
the public variable water. The value of water is finally used to distribute the
incentives.

Cost of execution - gas.

WaterOracle deployment
getWaterConsumtion()

1362206
144520

Blockchain specific features

Decentralization
of the BDP

Most oracles are points of centralization within
the network. However projects on decentralized
Oracles exists, such as ChainLink [1] which Provable,
the new brand behind Oraclize, now supports.

On-chain or off-chain
solution.

This pattern can be implemented either partly on-chain
and off-chain (an oracle smart contract with external
state injected by an off-chain injector) or totally
off-chain (external server signing transactions). [25]

3.1 Discussion

Design Patterns are descriptions or templates to solve problems that can emerge
in many different situations, and consequently are usually not a finished design
that can be transformed directly into code [14]. However, in the Blockchain,
the implementation details have direct consequences on the execution costs of a
given pattern that are crucial to determine the feasibility and the success of a
project. If the costs of running a system are higher than the expected benefits,
users will possibly not participate in the initiative.

As far as concerns the level of decentralization this is crucial to support the
democratization of an initiative and thus the active participation of the users,
but can have a cost. Let’s consider the oracle example. The simplest solution
that relies on a single “centralised” oracle is likely the most cost effective. We
can reduce the centralization requiring the same information to n independent
oracles, but even assuming that we can get the exact same information (e.f. time
and source) from all of them, this will result in a cost n-times higher.

The introduction of quantitative metrics (i.e. gas) to evaluate design patterns
is not novel (see [7] and [10]) and necessarily require the implementation of the
considered design patterns.



10 M. Zecchini, A. Bracciali, I. Chatzigiannakis, A. Vitaletti

4 Related work

The need for a blockchain-oriented software engineering (BOSE) is recognised
in [19] where the authors suggest that ensuring effective testing activities, en-
hancing collaboration in large teams, and facilitating the development of smart
contracts all appear as key factors in the future of blockchain-oriented software
development. Compared to traditional Software Engineering, BOSE is not yet
well developed and Smart Contracts rely on a non-standard software life-cycle.
As an example, once delployed, they can be hardly updated and even simple
bugs are difficult to fix. [12] suggests to focus on three main areas for the de-
velopment of BOSE: a) Best practices and development methodology, b) Design
patterns and c) Testing.

In [9] the authors quantify the usage of smart contracts on Bitcoin and
Ethereum in relation to their application domain and analyse the most com-
mon programming patterns in Ethereum.

Due to the inherent nature of blockchain based contract execution, missing
low level programming abstractions, and the constant evolution of platform fea-
tures and security considerations, writing correct and secure smart contracts
for Ethereum is a difficult task. In [24] the authors mined a number of design
patterns providing design guidelines and showed that those patterns are widely
used to address application requirements and common problems.

The literature on blockchain technologies in the smart cities has been recently
reviewed in [21]. The paper analyses a number of sectors where the blockchain
can contribute to build a smarter city, including water management. A privacy-
friendly blockchain-based gaming platform aiming at engaging users in reducing
water or energy consumption at their premises is proposed in [20], but this paper
does not explicitly use smart contracts.

In [18] the authors stress that lack of transparency and trust on a centralized
network infrastructure could be a key factor that hinders the true realization of
the citizen participatory governance model. Our proposed DApp is an example
of smart urban collaboration implemented over a P2P network thus overcoming
most of the limits of traditional centralized networks and guaranteeing an un-
precedented level of transparency and trust. In the blockchain, the trust shift
from a single and centralized third party to the whole P2P infrastructure, that
is decentralized in its nature.

Voting is considered among the most important application of the blockchain
technology in the public sector [16]. In our proposed approach, voting is used
to select which among the proposed contracts will become actually operative. A
fully aware vote requires the understanding of smart contracts and their implica-
tions and we cannot expect this is within everyone’s reach. The research on the
methods to wider the audience capable of understanding smart contracts is out
of the scope of this paper. In our implementation, we propose a smart contract
template where users can simply and freely select some of the key parameters
defining the contract.

.



On Refining Design Patterns for Smart Contract 11

5 Conclusion

In this paper we discussed the applicability of solidity design patterns to the
development of decentralized application (DApp) for urban water management.
The decentralized nature of DApp implements a democratic process that will
hopefully encourage the active participation of the citizen to the actions nec-
essary to reduce the water consumption. Design patterns are among the key
ingredients that have been identified to develop a blockchain-oriented software
engineering (BOSE) capable to reduce the risks connected to the unique life-cycle
of smart contracts. The main contribution of the paper can be summarized in
the following points:

– Moving from a centralized Client/Server architecture, typical of current im-
plementations of smart city service, to DApps will remove the necessity of
trusting central authorities, which is considered one of the most relevant fac-
tors that limit the true realization of citizen participatory governance [18].

– The code of the proposed DApp is available on the github repository [2].
– We propose an extension of the design patterns considering two additional

fields, namely cost of transaction and blockchain specific feature that helps
developers in implementing a more effective DApp.

– The proposed extension has been discussed in the implementation of the
three design patterns [23] employed in the proposed DApp.

References

1. Chainlink web site. https://https://chain.link/, 2019. [Online; accessed May-
2019].

2. Dapp water. https://github.com/marcozecchini/Dapp_Water, 2019. [Online;
accessed June-2019].

3. The provabletm blockchain oracle for modern dapps. https://provable.xyz/,
2019. [Online; accessed May-2019].

4. Remix. https://remix.ethereum.org, 2019. [Online; accessed May-2019].
5. Solidity documentation. https://solidity.readthedocs.io/, 2019. [Online; ac-

cessed May-2019].
6. web3.js - ethereum javascript api. https://web3js.readthedocs.io/en/1.0/,

2019. [Online; accessed June-2019].
7. Apostolos Ampatzoglou and Alexander Chatzigeorgiou. Evaluation of object-

oriented design patterns in game development. Information and Software Technol-
ogy, 49(5):445–454, 2007.

8. International Water Association. Water statistics. http://waterstatistics.

iwa-network.org/, 2019. [Online; accessed May-2019].
9. Massimo Bartoletti and Livio Pompianu. An empirical analysis of smart contracts:

Platforms, applications, and design patterns. In Michael Brenner, Kurt Rohloff,
Joseph Bonneau, Andrew Miller, Peter Y.A. Ryan, Vanessa Teague, Andrea Brac-
ciali, Massimiliano Sala, Federico Pintore, and Markus Jakobsson, editors, Finan-
cial Cryptography and Data Security, pages 494–509, Cham, 2017. Springer Inter-
national Publishing.



12 M. Zecchini, A. Bracciali, I. Chatzigiannakis, A. Vitaletti

10. Angelo Corsaro and Corrado Santoro. The analysis and evaluation of design pat-
terns for distributed real-time java software. In 2005 IEEE Conference on Emerging
Technologies and Factory Automation, volume 1, pages 8–pp. IEEE, 2005.

11. Chris Dannen. Introducing Ethereum and Solidity: Foundations of Cryptocurrency
and Blockchain Programming for Beginners. Apress, Berkely, CA, USA, 1st edition,
2017.

12. G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and R. Hierons.
Smart contracts vulnerabilities: a call for blockchain software engineering? In 2018
International Workshop on Blockchain Oriented Software Engineering (IWBOSE),
pages 19–25, March 2018.

13. Q. DuPont. Experiments in algorithmic governance a history and ethnography
of “the dao”, a failed decentralized autonomous organization. In M. Campbell-
Verduyn, editor, Bitcoin and Beyond: Cryptocurrencies, Blockchains, and Global
Governance, chapter 8, pages 157–176. Routledge, 2017.

14. Erich Gamma. Design patterns: elements of reusable object-oriented software. Pear-
son Education India, 1995.

15. Mehar M. I., Shier C. L., Giambattista A., Gong E., Fletcher G., Sanayhie R.,
Kim H. M., and M. Laskowski. Understanding a revolutionary and flawed grand
experiment in blockchain: The dao attack. Journal of Cases on Information Tech-
nology (JCIT), 21(1):19–32, 2019.

16. Nir Kshetri and Jeffrey Voas. Blockchain-enabled e-voting. IEEE Software, 35:95–
99, 07 2018.

17. Fluence Labs. Dapp survey results 2019. https://medium.com/fluence-network/
dapp-survey-results-2019-a04373db6452, 2019. [Online; accessed May-2019].

18. Albert Meijer and Manuel Pedro Rodrguez Bolvar. Governing the smart city:
a review of the literature on smart urban governance. International Review of
Administrative Sciences, 82(2):392–408, 2016.

19. S. Porru, A. Pinna, M. Marchesi, and R. Tonelli. Blockchain-oriented software
engineering: Challenges and new directions. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), pages 169–171, May
2017.

20. C. Rottondi and G. Verticale. A privacy-friendly gaming framework in smart
electricity and water grids. IEEE Access, 5:14221–14233, 2017.

21. C. Shen and F. Pena-Mora. Blockchain for citiesa systematic literature review.
IEEE Access, 6:76787–76819, 2018.

22. A. Simonofski, E. S. Asensio, J. D. Smedt, and M. Snoeck. Citizen participation
in smart cities: Evaluation framework proposal. In 2017 IEEE 19th Conference on
Business Informatics (CBI), volume 01, pages 227–236, July 2017.

23. Franz Volland. Solidity patterns. https://fravoll.github.io/

solidity-patterns/, 2019. [Online; accessed May-2019].
24. Maximilian Wohrer and Uwe Zdun. Design patterns for smart contracts in the

ethereum ecosystem. 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pages 1513–1520, 2018.

25. Xiwei Xu, Ingo Weber, and Mark Staples. Architecture for Blockchain Applications.
03 2019.




