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Abstract—Land cover classification is a task that requires
methods capable of learning high-level features while dealing with
high volume of data. Overcoming these challenges, Convolutional
Networks (ConvNets) can learn specific and adaptable features
depending on the data while, at the same time, learn classifiers.
In this work, we propose a novel technique to automatically
perform pixel-wise land cover classification. To the best of our
knowledge, there is no other work in the literature that perform
pixel-wise semantic segmentation based on data-driven feature
descriptors for high-resolution remote sensing images. The main
idea is to exploit the power of ConvNet feature representations
to learn how to semantically segment remote sensing images.
First, our method learns each label in a pixel-wise manner
by taking into account the spatial context of each pixel. In
a predicting phase, the probability of a pixel belonging to a
class is also estimated according to its spatial context and the
learned patterns. We conducted a systematic evaluation of the
proposed algorithm using two remote sensing datasets with very
distinct properties. Our results show that the proposed algorithm
provides improvements when compared to traditional and state-
of-the-art methods that ranges from 5 to 15% in terms of
accuracy.

Index Terms—Land-cover Mapping; Pixel-wise Classification;
Semantic Segmentation; Deep Learning; Remote Sensing; Fea-
ture Learning; High-resolution Images;

I. INTRODUCTION

Fully scene understanding is a primary task in a wide
range of applications and one of the most important in the
remote sensing community. It is typically referred as land
cover classification and is essential in a wide range of fields,
such as urban planning [1], crop and forest management [2],
and disaster relief [3].

The improvements in sensor technologies have significantly
increased the accessibility to high spatial resolution images.
Consequently, there is an increasing demand for new classifi-
cation techniques able to better exploit these data. In the last
decade, many approaches employing image segmentation were
proposed to better exploit the spatial information present in
high resolution images [4]. Accordingly, many works have dis-
cussed the advantages of region-based classification against the
classical pixel-wise approach. However, classification consid-
ering segmentation-based techniques is still an open task [5],

[6]. The main challenges are related to the semantic aspects in-
herent to the extraction of objects of interest, which is directly
related to the selection of the most suitable segmentation scale.
Tuning the segmentation parameters to effectively delineate
objects of interest is application-dependent and usually needs
some type of supervised learning or user interaction [7]. In the
attempt of improving the precision of the results and reduce
the impact of a non-optimal parametric configuration, many
segmentation approaches based on multiple scales have been
proposed [2], [8].

State-of-the-art methods [4] for land-cover classification
rely on supervised learning based on pre-designed features
extracted, for instance, from segmented regions of the original
image, which may contain enough information. However, in
a typical scenario, different descriptors may produce distinct
results depending on the data. Thus, it is imperative to design
and evaluate multiple feature descriptor approaches to find
the most suitable ones for each particular application [6].
This process is also expensive and does not guarantee an
accurate descriptive representation. A recent approach, called
deep learning [9], overcome this limitation, since it can learn
specific and adaptable spatial features and classifiers for the
images, all at once. In this paper, we propose a supervised
method to perform semantic segmentation on remote sensing
images based on deep learning.

Deep learning, a branch of machine learning that refers to
multi-layered neural networks, aims at learning features and
classifiers at once from raw input data, i.e., a unique network
may be able to learn features and classifiers (in different
layers) and adjust the parameters, at running time, based on
accuracy, giving more importance to one layer than another
depending on the problem. When compared to previous state-
of-the-art methods [10] (such as mid-level (BoVW) and low-
level color and texture descriptors), deep learning presents
a great advantage of end-to-end feature learning (e.g., from
image pixels to semantic labels), which allows the method to
effectively and adaptively learn features based on the input.

Amongst all deep learning-based networks, a specific
type, called Convolutional (Neural) Networks, ConvNets or
CNNs [9], is the most popular for learning visual features in
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computer vision applications, including remote sensing. This
type of network relies on the natural stationary property of
an image, i.e., the statistics of one part of the image are
assumed to be the same as those of any other part. In this
way, information extracted at one part of the image can also be
employed to describe other parts. Furthermore, deep ConvNets
can be considered as an inherently multiscale approach since
they usually obtain different levels of abstraction for the data,
ranging from local low-level information in the initial layers
(e.g., corners and edges), to more semantic descriptors, mid-
level information (e.g., object parts) in intermediate layers and
high level information (e.g., whole objects) in the final layers.

ConvNets have recently become the new state-of-the-art
solution for visual recognition applications, such as image
classification [11] and segmentation [1], depth estimation
and object detection. Given their success, they have been
intensively employed in several distinct tasks of different
domains [9], including remote sensing [12], [13]. In this
domain, the use of deep learning is growing very quickly,
since it has a natural ability to effectively encode spectral and
spatial information based on the data itself. Methods based on
deep learning have obtained state-of-the-art results in many
different remote sensing applications, such as agriculture [14],
oil spill [15], and poverty mapping [16].

In this work, we propose a novel technique to automatically
perform pixel-wise land cover classification. To the best of our
knowledge, there is no other work in the literature that perform
pixel-wise semantic segmentation based on data-driven feature
descriptors for high-resolution remote sensing images. The
main idea is to exploit the power of convolutional network
feature representations to learn how to semantically segment
remote sensing images. First, our method learns each label in
a pixel-wise manner by taking into account the spatial context
of each pixel. In a predicting phase, the probability of a pixel
belonging to a class is also estimated according to its spatial
context and the learned patterns.

In practice, we claim the following benefits and contribu-
tions over existing solutions:

• Our main contribution is a novel approach to create land-
cover mapping for remote sensing domains.

• Two new ConvNet architectures used to perform pixel-
wise image segmentation.

II. RELATED WORK

Deep learning is making its way to the remote sensing com-
munity based on the success in several computer vision tasks,
mainly due to the possibility of learning specific and adaptable
features and classifiers for the images, all at once. Previous
works using deep learning for remote sensing classification
can be arranged in two main groups: (1) pixel-based methods
for hyperspectral image classification; and (2) approaches for
entire high-resolution image scene classification.

Scene classification is the task of assigning a label to a patch
or to the entire image. In its context, Penatti et al. [12] show
that features extracted from ConvNets pre-trained on general
datasets (such as the one of The ImageNet Large Scale Visual

Recognition Challenge – ILSVRC) can successfully be used
to classify aerial and remote sensing images, outperforming
state-of-the-art descriptors. These results corroborate with the
suggestion of Razavian et al. [17], that features obtained from
deep learning should be the primary candidates in most visual
recognition tasks. Marmamis et al. [18] propose a two-stage
method that combines features extracted from a pre-trained
ConvNet and a supervised method trained over these descrip-
tors. They successfully deal with the limited-data problem
in an end-to-end processing scheme, mitigating overfitting
and achieving excellent results. Finally, Nogueira et al. [19]
evaluate three strategies to exploit ConvNets considering the
remote sensing domain: (i) using ConvNet as feature extractor,
(ii) fine-tuning a pre-trained network, and (iii) trained them
from scratch (with randomly initialized weights). Six well-
succeeded ConvNets were evaluated in each of these strategies
with the goal to classify aerial and remote sensing images.
They conclude that fine-tuning a pre-trained ConvNet is the
best strategy for aerial and remote sensing domain, achieving
state-of-the-art results in three datasets.

Girshick et al. [20] propose a method of object detec-
tion and segmentation based on features extracted from pre-
trained ConvNets. In this work, which is one of the first to
achieve state-of-the-art by using ConvNets to perform image
segmentation, they classify patches extracted from the images
(using selective search algorithm).Firat et al. [21] propose a
method that combines Markov Random Fields with convo-
lutional auto-encoders for object detection and classification
in high-resolution remote sensing images. Chen et al. [22]
perform pixel classification of hyperspectral and spatial data
by combining stacked auto-encoders and Principal Component
Analysis. Zhang et al. [23] propose a deep network based
on stacked auto-encoders that is used to classify patches
extracted from the images based on the saliency map, which
increases the overall accuracy. In [24], the authors perform
pixel labeling by combining ConvNets, hand-crafted (non
data-driven) descriptors, and conditional random fields. The
segmentation is carried out by classifying patches extracted
from the images.

Our work differs from literature since there is no other
one for land-cover mapping based on pixel-wise semantic
segmentation for high-resolution remote sensing images.

III. THE PROPOSED APPROACH

Our method uses the idea of context window, which is
described in Section III-A. In Section III-B, we present the
ConvNets we have proposed to perform this task and also
explain how they could be trained by using a set of labeled
pixels. Finally, in Section III-C, we explain how to employ
the ConvNets to create land-cover maps.

A. Context Windows

The proposed land-cover mapping method assigns an object
class to each pixel of an image by using sliding input context
windows, which produces a label hypothesis for each pixel.
Example of a context window is presented in Figure 1.



The overlapping windows centered on each pixel helps to
understand the spatial patterns around them.

pixel to be 
classified

context 
window

Fig. 1. Example of a context window. The pattern is represented by a large
window that is centered on the pixel of interest in order to include the context
of its neighborhood.

B. Learning to semantically segment

ConvNets [9] are deep learning architectures typically com-
posed of several layers (each layer composed of processing
units, also known as neurons) that can learn data-driven
features and classifiers at the same time adjusting the learning,
in processing time, based on the accuracy of the network. In
this paper, we propose ConvNets architectures to learn the
specific patterns from training pixels, which are represented
by their context windows.

The feature learning step may be stated as a technique that
learns a transformation of raw data input to a representation
that improves the class separability [9]. Since encoding the
spatial features in an efficient and robust fashion is the key for
generating discriminatory models, the feature learning step is a
great advantage of ConvNets when compared to conventional
methods. In fact, the multiple layers (responsible for encoding
spatial features automatically) learn adaptable and specific
feature representations in a data-dependent hierarchical way.
Thus, low-level descriptors are learned in initial layers of
the network and high-level features in the deeper ones. This
process learn all feasible information from the data, which
creates robust features and classifiers.

The process for learning to semantically segment remote
sensing images works as follows: given a set of labeled
sample pixels and their contextual windows, a ConvNet is
trained to learn the feature patterns that compose the class of
regions of interest. One can note that the ConvNet architecture
depends on the contextual window size. Applications with
objects with more complex patterns may require large window
size. Consequently, large window size requires more complex
ConvNets, i.e., more layers, filtering and pooling operations. In
this paper, we have proposed two networks named Small and
Large ConvNet architectures. They are presented in Figures 2
and 3, respectivelly. The Small ConvNet receives as input 7×7
pixels context windows and has two convolutional layers and
one fully-connected ones. The Large ConvNet receives as input
25 × 25 pixels context windows and has three convolutional
layers and two fully-connected ones.

We used different techniques between some of layers, as can
be seen in Figures 2 and 3, such as dropout regularization [25]
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Fig. 2. Small ConvNet architecture: 7× 7 context windows as input.

25x25
contextPwindow

ConvolutionP1
64PReLUs

ConvolutionP2
128PReLUs

ConvolutionP3
256PReLUs

convolutions

4x4Pkernel
StrideP1

4x4Pkernel
StrideP1

3x3
kernel

StrideP1

Max-PoolingP2x2 Max-PoolingP2x2 Max-PoolingP2x2 DropoutP
50%

F
ul

ly
PC

on
ne

ct
ed

P-
P1

02
4

C
la

ss
ifi

ca
tio

nP
La

ye
r

Fig. 3. Large ConvNet architecture: 25× 25 context windows as input.

and max-polling. The main difference between them is that
the Large ConvNet is used when larger context brings more
useful information and less noise, while the Small ConvNet
may be used in cases when larger context brings too much
noise, disturbing the results. It is important to emphasize that
Rectified Linear Unit (ReLU) [26] was the processing units
used in all layers of the proposed ConvNets because of its
advantages when compared to others, including: (i) prevents
saturation during the learning, (ii) induces the sparsity in
the hidden units, and (iii) does not face gradient vanishing
problem 1.

C. Creating land-cover maps

Given an input image, the process of creating a land-cover
map consists in classifying the context windows of each pixel
by using the trained ConvNet. It is important to note that
this process also works for a set of non-contiguous pixels.
A overview of the predicting process is presented in Figure 4.

ConvNet

...

Original 
Image

Probability 
Map

Context 
Windows

Fig. 4. A set of context windows are classified by an already trained
ConvNet, generating the probability map, which are pos-processed generating
the segmented image.

When a context window is classified by a ConvNet, the
probability function generated by this classification is, in fact,
associated with the pixel at the center of that window. This
process allows the method to create a probability map over the

1The gradient vanishing problem occurs when the propagated errors become
too small and the gradient calculated for the backpropagation step vanishes



entire image, which, after some pos-processing method, results
in a semantic segmented image. After obtaining the probability
map, several methods can be used to create the final segmented
image, such as classify the pixel with the highest probability
class, which was the method employed in this paper.

IV. EXPERIMENTAL SETUP

A. Dataset

To better evaluate the robustness and effectiveness of the
proposed method, we carry out experiments on datasets with
very distinct properties. The first one, named AGRICULTURE
dataset, is a multispectral high-resolution scenes of coffee
crops and non-coffee areas. The second, referred as URBAN
dataset, is a very high spatial resolution in the visible spectrum
and the objective is to map urban targets, such as roads and
buildings.

1) AGRICULTURE dataset: This dataset is a composition
of five images taken by the SPOT sensor in 2005 over
Monte Santo, a coffee grower county in the State of Minas
Gerais, Brazil. Each image has 500 × 500 pixels with green,
red, and near-infrared bands, which are the most useful and
representative ones for discriminating vegetation areas. More
specifically, the dataset has 1,250,000 pixels with 637,544
(51%) coffee pixels and 612,456 (49%) non-coffee pixels
annotated by specialists. Figure 5 shows each image and the
respective ground-truths.

(a) Image

(b) Ground-Truth

Fig. 5. The AGRICULTURE dataset. Multispectral images and ground-truth.
Black regions represent non-coffee areas while white pixels represent coffee
crops.

This is a very challenging dataset since intraclass variance
is high due to different crop management techniques. Further-
more, coffee is an evergreen culture and the South of Minas
Gerais is a mountainous region, which means that this dataset
includes scenes with plants at different stages of growth and/or
with spectral distortions caused by shadows.

2) URBAN dataset: Proposed in the IEEE GRSS Data
Fusion Contest 2014, this dataset is composed of a fine-
resolution visible image that covers an urban area near Thet-
ford Mines in Quebec, Canada, containing seven different
classes: trees, vegetation, road, bare soil, red roof, gray roof,
and concrete roof. In this work, we do not consider the
hyperspectral data available in this dataset. The training image
has 2830×3989 pixels while the testing one has 3769×4386

pixels of resolution. The images, as well as the respective
ground-truths, are presented in Figure 6.
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(a) Training

(b) Test

Fig. 6. The URBAN dataset. Training and test data and their respective
ground-truths.

B. Baselines

For the AGRICULTURE dataset, we consider a region-
based classification [27], which is the most common strategy
for high-resolution remote sensing. It is composed by the
following steps: (i) segmentation; (ii) feature extraction of
the regions; and (iii) supervised training with shallow learning
method. In this case, we have used SLIC [28], which usually
achieves good results for remote sensing images [29]. We
employed BIC [30] as feature extraction algorithm, which
is the most suitable descriptor to describe coffee crops, as
pointed out by [12]. We used Support Vector Machine with
Radial Basis Kernel (RBF-SVM) to perform the supervised
learning [31].

For the same dataset, we also considered the method pro-
posed by Nogueira et al. [14], called Cascade Convolutional
Neural Network (CCNN). This method employs a multi-scale
strategy allied to ConvNet to perform classification of fixed
size tiles towards a final segmentation of the image.

For the URBAN dataset, we used a diversity-based fusion
framework (DFF) proposed by Faria et al. [32] as implemented
in [33]. DFF combines image characterization and learning
methods using meta-learning approach, that is responsible for
assessing which methods contribute more towards the solution
of a given problem. DFF uses a selection strategy to pick the
less correlated classifier, yet effective, classifiers according to
a series of diversity measures analysis.

C. Experimental Protocol

For the AGRICULTURE dataset, we conduct a five-fold
cross validation to assess the overall accuracy of the proposed
algorithm. The results reported are the average accuracy of the
five runs followed by the standard deviation. For the URBAN
dataset, as introduced in Section IV-A2, an image is used for



training while the other is used for test. For both datasets,
the Kappa index [34], which measures the agreement between
the reference data and the classifier result, was reported. In
general, negative Kappa means that there is no agreement
between classified data and reference data while Kappa value
equals to 1 means “perfect agreement”.

The proposed method was built by using a framework called
Torch2. This framework is more suitable due to its support
to parallel programming using CUDA, a NVidia parallel
programming based on graphics processing units. Thus, in
this paper, Torch was used along with libraries as CUDA and
CuDNN3. All experiments were performed on a 64 bits Intel
i7 4960X machine with 3.6GHz of clock and 64GB of RAM
memory. Two GPUs were used: a GeForce GTX770 with 4GB
of internal memory and a GeForce GTX Titan X with 12GB
of memory, both under a 7.5 CUDA version. Ubuntu version
14.04.3 LTS was used as operating system.

The ConvNet and its parameters were adjusted by consid-
ering a full set of experiments guided by [35]. First, several
ConvNets with different layers and neurons were tested. Then,
the best one was selected, and a full experimental setup was
performed in order to choose the best parameters, such as
learning rate and weight decay. Finally, for the best parameters,
we also evaluated new architectures, close to the initial one, to
select the best architecture. After all the setup experiments, the
best values for the learning rate, weight decay, momentum and
number of epochs, for both architectures were 0.01, 0.0005,
0.9 and 20, respectively.

V. RESULTS AND DISCUSSION

In this section, we present and discuss the obtained results
of the proposed method. The proposed ConvNets (Small and
Large) were tested in all datasets, but only the best result were
reported for each dataset.

A. AGRICULTURE dataset

The results for the AGRICULTURE dataset are presented
in Table I. Although high standard deviation, all results were
verified by a fold-by-fold paired test with confidence level of
95%, presenting statistical difference between the proposed
method and the baselines. In this case, the Large ConvNet,
that takes as input context windows of 25× 25, achieve better
results, since coffee crops present homogeneous regions, and
larger context windows may bring more useful information.

TABLE I
RESULTS FOR THE AGRICULTURE DATASET.

Accuracy Kappa

SLIC+BIC+SVM-RBF 84.14±15.50 0.70±0.25
CCNN [14] 85.25±7.41 0.72±0.14
Proposed Method 89.51±4.18 0.75±0.08

2Torch is a scientific computing framework with wide support for machine
learning algorithms available at http://torch.ch/.

3It is a GPU-accelerated library of primitives for deep neural networks

According to Table I, the proposed method outperforms
the baselines. It is important to emphasize that the baselines
that uses BIC [30] and SVM-RBF require more efforts, since
features need to be extracted first to be, then, used with some
machine learning technique, which is the opposite direction
of the proposed network, that learns all at once. CCNN
method follows the same direction of the proposed algorithm,
since it uses multi-scale cascade composed of three ConvNets
to perform classification of patches generating, at the end,
a segmented image. Although CCNN method yield good
results, the proposed method is better and faster, since it only
uses one ConvNet. Furthermore, it is worth mentioning that
agricultural scenes are very hard to classify since the method
must differentiate among different vegetation types.

Figure 7 presents the probability maps obtained for each
image of AGRICULTURE dataset. Observe that most of coffee
pixels are corrected labeled in comparison with the ground
truth (Figure 5).

Fig. 7. Probability maps for the AGRICULTURE dataset. Black regions
represent non-coffee areas while white pixels represent coffee crops.

B. URBAN Dataset

The results for the 2014 IEEE GRSS Data Fusion Contest
Dataset are presented in Table II. In this case, the Small
ConvNet, that takes as input context windows of 7×7, achieves
better results, since urban regions present more shuttered areas,
and smaller context windows may bring more pure informa-
tion, i.e., less noise. The proposed ConvNet outperforms both
baselines. BIC and SVM-RBF is outperformed in, at least,
20% in terms of overall accuracy, and 30% in terms of kappa
index, while the DFF [32] method is outperformed in, at least,
10% in terms of overall accuracy and 15% in terms of kappa
index. Figure 8 presents the probability maps obtained by
the proposed method for the URBAN dataset. Most pixels
are corrected labeled in comparison with the ground truth
(Figure 6).

TABLE II
RESULTS FOR THE URBAN DATASET.

Accuracy Kappa

SLIC+BIC+SVM-RBF 72.15 0.58
DFF [32] 76.01 0.67
Proposed Method 91.27 0.88

VI. CONCLUSION

In this paper, we propose a new approach based on
Convolutional Neural Networks to perform pixel labeling in
remote sensing scenes. Experimental results show that our

http://torch.ch/
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Fig. 8. Probability maps for the URBAN dataset.

method is effective and robust. We have achieved state-of-
the-art performance, in terms of Kappa, for two different
application datasets, outperforming all baselines. Our method
also presented suitable results for aerial and remote sensing
datasets, which shows the robustness of our approach.

As future work, we intend to use different post-processing
methods, such as Conditional Random Fields, in order to
exploit the contextual information. Also, we intend to evaluate
the robustness of the proposed method by testing it in other
remote sensing applications.

ACKNOWLEDGMENT

This work was partially financed by CNPq (grant
449638/2014-6), CAPES, and Fapemig (APQ-00768-14).

REFERENCES

[1] M. Volpi and V. Ferrari, “Semantic segmentation of urban scenes by
learning local class interactions,” in CVPRW, 2015, pp. 1–9.

[2] J. A. d. dos Santos, P.-H. Gosselin, S. Philipp-Foliguet, R. d. S. Torres,
and A. X. Falao, “Multiscale classification of remote sensing images,”
Transactions on Geoscience and Remote Sensing, vol. 50, no. 10, pp.
3764–3775, 2012.

[3] D. Fustes, D. Cantorna, C. Dafonte, B. Arcay, A. Iglesias, and M. Man-
teiga, “A cloud-integrated web platform for marine monitoring using gis
and remote sensing,” Future Generation Computer Systems, vol. 34, pp.
155–160, 2014.

[4] V. Dey, Y. Zhang, and M. Zhong, A review on image segmentation
techniques with remote sensing perspective, 2010.

[5] J. Benediktsson, J. Chanussot, and W. Moon, “Advances in very-high-
resolution remote sensing [scanning the issue],” Proceedings of the
IEEE, vol. 101, no. 3, pp. 566–569, 2013.

[6] J. A. dos Santos, O. A. B. Penatti, P.-H. Gosselin, A. X. Falcão,
S. Philipp-Foliguet, and R. d. S. Torres, “Efficient and effective hier-
archical feature propagation,” Selected Topics in Applied Earth Obser-
vations and Remote Sensing, vol. 7, no. 12, pp. 4632–4643, 2014.

[7] H. Hichri, Y. Bazi, N. Alajlan, and S. Malek, “Interactive segmen-
tation for change detection in multispectral remote-sensing images,”
Geoscience and Remote Sensing Letters, vol. 10, no. 2, pp. 298–302,
2013.

[8] Y. Tarabalka, J. C. Tilton, J. A. Benediktsson, and J. Chanussot, “A
marker-based approach for the automated selection of a single segmen-
tation from a hierarchical set of image segmentations,” Selected Topics
in Applied Earth Observations and Remote Sensing, IEEE Journal of,
vol. 5, no. 1, pp. 262–272, 2012.

[9] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning,”
2016, book in preparation for MIT Press. [Online]. Available:
http://www.deeplearningbook.org

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[12] O. Penatti, K. Nogueira, and J. dos Santos, “Do deep features generalize
from everyday objects to remote sensing and aerial scenes domains?”
in CVPRW, 2015, pp. 44–51.

[13] K. Nogueira, W. O. Miranda, and J. A. Dos Santos, “Improving
spatial feature representation from aerial scenes by using convolutional
networks,” in SIBGRAPI, 2015, pp. 289–296.

[14] K. Nogueira, W. R. Schwartz, and J. A. dos Santos, “Coffee crop
recognition using multi-scale convolutional neural networks,” in CIARP,
2015, pp. 67–74.

[15] M. Fingas and C. Brown, “Review of oil spill remote sensing,” Marine
pollution bulletin, vol. 83, no. 1, pp. 9–23, 2014.

[16] M. Xie, N. Jean, M. Burke, D. Lobell, and S. Ermon, “Transfer learning
from deep features for remote sensing and poverty mapping,” arXiv
preprint arXiv:1510.00098, 2015.

[17] A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features
off-the-shelf: an astounding baseline for recognition,” in CVPRW, 2014,
pp. 806–813.

[18] D. Marmanis, M. Datcu, T. Esch, and U. Stilla, “Deep learning earth
observation classification using imagenet pretrained networks,” IEEE
Geoscience and Remote Sensing Letters, vol. 13, no. 1, pp. 105–109,
2016.

[19] K. Nogueira, O. A. Penatti, and J. A. d. Santos, “Towards better
exploiting convolutional neural networks for remote sensing scene
classification,” arXiv preprint arXiv:1602.01517, 2016.

[20] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in CVPR, 2014, pp. 580–587.

[21] O. Firat, G. Can, and F. T. Y. Vural, “Representation learning for
contextual object and region detection in remote sensing,” in ICPR.
IEEE, 2014, pp. 3708–3713.

[22] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based
classification of hyperspectral data,” Selected Topics in Applied Earth
Observations and Remote Sensing, IEEE Journal of, vol. 7, no. 6, pp.
2094–2107, 2014.

[23] F. Zhang, B. Du, and L. Zhang, “Saliency-guided unsupervised feature
learning for scene classification,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 53, no. 4, pp. 2175–2184, 2015.

[24] S. Paisitkriangkrai, J. Sherrah, P. Janney, and A. Hengel, “Effective
semantic pixel labelling with convolutional networks and conditional
random fields,” in CVPRW, 2015, pp. 36–43.

[25] S. Wager, S. Wang, and P. Liang, “Dropout training as adaptive regular-
ization,” in Advances in Neural Information Processing Systems, 2013,
pp. 351–359.

[26] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in ICML, 2010, pp. 807–814.

[27] T. Blaschke, “Object based image analysis for remote sensing,” ISPRS
journal of photogrammetry and remote sensing, vol. 65, no. 1, pp. 2–16,
2010.

[28] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk,
“Slic superpixels compared to state-of-the-art superpixel methods,”
TPAMI, vol. 34, no. 11, pp. 2274–2282, 2012.

[29] J. E. Vargas, P. T. Saito, A. X. Falcao, P. J. de Rezende, and J. A.
dos Santos, “Superpixel-based interactive classification of very high
resolution images,” in SIBGRAPI, 2014, pp. 173–179.

[30] R. de O. Stehling, M. A. Nascimento, and A. X. Falcao, “A compact
and efficient image retrieval approach based on border/interior pixel
classification,” in CIKM, 2002, pp. 102–109.

[31] G. Mountrakis, J. Im, and C. Ogole, “Support vector machines in remote
sensing: A review,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 66, no. 3, pp. 247–259, 2011.

[32] F. A. Faria, J. A. Dos Santos, A. Rocha, and R. d. S. Torres, “A
framework for selection and fusion of pattern classifiers in multimedia
recognition,” Pattern Recognition Letters, vol. 39, pp. 52–64, 2014.
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