
M E TA H E U R I S T I C S F O R S O LV I N G R E A L

W O R L D E M P L O Y E E R O S T E R I N G A N D S H I F T

S C H E D U L I N G P R O B L E M S

kenneth n. reid

Doctor of Philosophy

Division of Computing Science and Mathematics

University of Stirling

July 2019

[6th November 2019 at 15:04]

D E C L A R AT I O N

I hereby declare that this dissertation is the result of my own work and

includes nothing which is the outcome of work done in collaboration except

where specifically indicated in the text and bibliography.

I also declare that this dissertation (or any significant part of my dissertation)

is not substantially the same as any that I have submitted, or that is being

concurrently submitted, for a degree or diploma or other qualification at the

University of Stirling or similar institution.

I was admitted as a research student in May 2015 and a candidate for the

degree of Doctor of Philosophy in 2016. This dissertation is a record of the

work carried out at the University of Stirling between 2015 and 2019, under

the supervision of Dr Jingpeng Li, Prof Edmund Burke, Dr Jerry Swan, Prof

Amir Hussain, Dr Nadarajen Veerapen and Dr Alexander Brownlee.

I have read, and adhered to, the University’s plagiarism policy, as detailed at:

http://www.plagiarism.stir.ac.uk/

Stirling, July 2019

Kenneth N. Reid

ii

[6th November 2019 at 15:04]

http://www.plagiarism.stir.ac.uk/

A B S T R A C T

Optimising resources and making considerate decisions are central concerns

in any responsible organisation aiming to succeed in efficiently achieving their

goals. Careful use of resources can have positive outcomes in the form of fiscal

savings, improved service levels, better quality products, improved awareness

of diminishing returns and general output efficiency, regardless of field.

Operational research techniques are advanced analytical tools used to im-

prove managerial decision-making. There have been a variety of case studies

where operational research techniques have been successfully applied to save

millions of pounds. Operational research techniques have been successfully

applied to a multitude of fields, including agriculture, policing, defence, con-

servation, air traffic control, and many more. In particular, management of

resources in the form of employees is a challenging problem — but one with

the potential for huge improvements in efficiency.

The problem this thesis tackles can be divided into two sub-problems; the

personalised shift scheduling & employee rostering problem, and the roster

pattern problem. The personalised shift scheduling & employee rostering

problem involves the direct scheduling of employees to hours and days of

week. This allows the creation of schedules which are tailored to individuals

and allows a fine level over control over the results, but with at the cost of

a large and challenging search space. The roster pattern problem instead

takes existing patterns employees currently work, and uses these as a pool of

potential schedules to be used. This reduces the search space but minimises

the number of changes to existing employee schedules, which is preferable for

personnel satisfaction.

iii

[6th November 2019 at 15:04]

Existing research has shown that a variety of algorithms suit different prob-

lems and hybrid methods are found to typically outperform standalone ones

in real-world contexts. Several algorithmic approaches for solving variations

of the employee scheduling problem are considered in this thesis. Initially a

Variable Neighbourhood Search (VNS) approach was used with a Metropolis-

Hastings acceptance criterion. The second approach utilises Evolutionary Ruin

& Stochastic Recreate (ER&SR) controlled by the Exponential Monte-Carlo Ac-

ceptance Criterion (EMCAC), which has only been used in the field of exam

timetabling, and has not before been used within the domain of employee

scheduling and rostering. ER&SR was then hybridised with our initial approach,

producing ER&SR with VNS. Finally, ER&SR was hybridised into a matheuristic

with Integer Programming and compared to the hybrid’s individual compon-

ents.

A contribution of this thesis is evidence that the algorithm ER&SR has merit

outside of the original sub-field of exam scheduling, and can be applied

to shift scheduling and employee rostering. Further, ER&SR was hybridised

and schedules produced by the hybridisations were found to be of higher

quality than the standalone algorithm. In the literature review it was found

that hybrid algorithms have become more popular in real-world problems in

recent years, and this body of work has explored and continued this trend.

Problem formulations in this thesis provide insight into creating constraints

which satisfy the need for minimising employee dissatisfaction, particularly in

regards to abrupt change.

The research presented in this thesis has positively impacted a multina-

tional and multibillion dollar field service operations company. This has been

achieved by implementing a variety of techniques, including metaheuristics

and a matheuristic, to schedule shifts and roster employees over a period of

iv

[6th November 2019 at 15:04]

several months. This thesis showcases the research outputs by this project, and

highlights the real-world impact of this research.

v

[6th November 2019 at 15:04]

A C K N O W L E D G M E N T S

A PhD is self-evaluation on your mental resilience to stress and endurance. It

is an assessment of your ability to spin a dozen proverbial plates, while new

acquaintances ask you “So — will you get a real job after this?”

Without hyperbole - completing a PhD is an arduous undertaking. Imposter

syndrome mixed with a number of weekly working hours that — if we were

dubbed actual employees — would be illegal in most first world countries.

This journey is a cerebral trial by fire, which is fair to say after even glancing at

the mental health statistics for PhD students 1 2 (and, to be fair, it seems most

academic employees also suffer from mental and physical issues largely due

to a culture of — somehow socially acceptable — hazardous work-life balance

3). A student undertaking a PhD will tend towards solitude. Resilience against

this pull was, at least for me, the key to maintaining a healthy psyche during

my studies. My other advice would be to consider your work and free time

like yin & yang. It’s expected to work in your free time, and to procrastinate

at work, but aim for a healthy balance.

The last discouraging fact I feel obliged to share: if you enter academia

through a PhD, you will likely be paid less than your undergrad colleagues

even though you are more highly qualified, and you are most likely to join

1 Levecque, Katia, et al. "Work organization and mental health problems in PhD students."

Research Policy 46.4 (2017): 868-879.
2 Evans, Teresa M., et al. "Evidence for a mental health crisis in graduate education." Nature

biotechnology 36.3 (2018): 282.
3 Sang, Katherine, et al. “ ‘Being an academic is not a 9-5 job’: long working hours and the ‘ideal

worker’ in UK academia.” Labour & Industry: a journal of the social and economic relations

of work 25.3 (2015): 235-249.

vi

[6th November 2019 at 15:04]

them in industry with 3-6 years less experience 4. Regardless of the challenges

a PhD presents, I find great difficulty in dissuading wide-eyed undergraduate

students from following this path. It is a distinctly rewarding way to spend

half a decade. A PhD is a path of self-discovery, self-discipline and a sure

method of contributing to the pooled collection of all human knowledge —

which in my opinion make every challenge throughout well worth it.

Family, friends and pets are the often-unsung support who replenish your

spirits when low (be they metaphorical or consumable). They provide you

warmth and kindness, and you’ll often return this with apologies for missing

social events (your corrections need completing, and you can’t let your students

wait any longer for their essay marks). And so...

Thank you to my wife, Alexis, for being with me at the peaks and the dips of

this journey, as a constant inspiration and support. My parents (both biological

and in-laws) for their empathy and succour. My close friends, Graeme & Erin,

Wayne, Alexis & Creag for their support and understanding (how many times

have I said no to social events? How many shows did I forgo?). And of course

my sisters, thank you Aslynd, Eilidh and Skye.

For my close friends that I met (or became close to) during my PhD: Jason,

Paul, Saemi and Sarah. You helped me through this sine-wave-like bipolar-

symptom inflicting rollercoaster, and somehow made it enjoyable. We are a

team, a unit, a support network, coffee addicts anonymous and debaters of all

topics. I look forward to seeing you all at various conferences, while our own

PhD students follow us around and wonder why we get on so well.

To undertake a PhD is to become an apprentice scholar. You follow the

guidance of your supervisor and you find allies amongst your colleagues. I

learned much from my supervisor (thank you, Dr Jingpeng Li), who gave

me irreplaceable advice and space to flourish. My indispensable so-called

4 Moran, Karsten. https://www.nytimes.com/2016/07/14/upshot/so-many-research-scientists-

so-few-openings-as-professors.html

vii

[6th November 2019 at 15:04]

‘secondary’ and ‘external’ supervisors (Dr Jerry Swan, Dr Nadarajen Veerapen,

Dr Sandy Brownlee, Prof Edmund Burke) who went above and beyond any

reasonable expectation to support me. A special thank you to Sandy for putting

in weekly meetings with me, as well as all the additional support (helping

with my CV, employing me for 2 months, wise counsel regarding all things

research, not once moaning about knocking on his door with yet another

‘quick’ question!). Dr Jason Atkin also spent much of his free time assisting

me with the solver implementation in Chapter 6, which I’m so very thankful

for. As well as my academic supervisors I give my respect and thanks to Dr

Gilbert Owusu, Alistair McCormick and Dr Mathias Kern for their support

and counsel all the way from Ipswich (and Wales!). Dr Deepayan Bhowmik

- thank you for employing me during the run up to my viva, even though I

was a very distracted employee — and afterwards, too. I’m also grateful to

the staff of CS&M, Stirling, for the friendly support - especially the girls in

the office - Grace, Gemma, Linda. Thank you to Dr John Woodward for his

support even though he isn’t with Stirling anymore!

In aiding the retention of my sanity thank you to all the kindly people I

haven’t mentioned specifically: musical artists who helped block out distrac-

tions (Andy Mckee!); the otherwise welcome distractions of Reddit; baristas

and other distributors of my favourite legal substance across the UK, and the

not-technically-people, Tank & Brutus.

I’d like to extend gratitude to the following funders: British Telecommunica-

tions Plc and the UK’s EPSRC DAASE project (grant no. EP/J017515/1).

viii

[6th November 2019 at 15:04]

“All we have to decide is what to do with the time that is given us.”

—Mithrandir, 3019

ix

[6th November 2019 at 15:04]

L I S T O F P U B L I C AT I O N S

In satisfying the requirements outset in the thesis declaration: the chapters

below are based on publications output during this PhD. Each row indicates

the chapter and the relevant publication:

Chapter # Publication

3 Reid, K.N., Li, J., Swan, J., McCormick, A. and Owusu, G.,

2016, December. Variable Neighbourhood Search: A case study

for a highly-constrained workforce scheduling problem. In Com-

putational Intelligence (SSCI), 2016 IEEE Symposium Series

on (pp. 1-6). IEEE.

4 Reid, K. N., Li, J., Veerapen, N., Swan, J., McCormick, A.,

Kern, M., & Owusu, G. (2018, September). Shift Scheduling

and Employee Rostering: An Evolutionary Ruin & Stochastic Re-

create Solution. In 2018 10th Computer Science and Electronic

Engineering (CEEC) (pp. 19-23). IEEE.

5 Reid, K.N., Li, J., Brownlee, A., Veerapen, N., Swan, J., Kern,

M. and Owusu, G. 2019, July. A Hybrid Metaheuristic Approach

to a Real World Employee Scheduling Problem. In GECCO’19:

The Genetic and Evolutionary Computation Conference 2019.

ACM, 201

x

[6th November 2019 at 15:04]

C O N T E N T S

1 chapter 1 - overview 1

1.1 Introduction . 1

1.2 Hypothesis . 2

1.3 Thesis Structure . 3

2 chapter 2 - problem descriptions 5

2.1 Problem Terminology . 6

2.1.1 Personalised Scheduling 6

2.1.2 Roster Pattern Scheduling 8

2.2 Personalised Scheduling . 10

2.2.1 Integer Programming Model 10

2.2.2 Problem Description . 14

2.3 Roster Pattern Scheduling . 20

2.3.1 Integer Programming Model 20

2.3.2 Problem Description . 24

3 chapter 3 - literature review 28

3.1 Introduction to Metaheuristics 28

3.1.1 Variable Neighbourhood Search 30

3.1.2 Evolutionary Ruin & Stochastic Recreate 32

3.1.3 Simulated Annealing . 33

3.1.4 Hybrid Approaches . 34

3.1.5 Matheuristics . 36

3.2 Shift Scheduling & Employee Rostering Problems 37

3.2.1 Variable Neighbourhood Search 39

3.2.2 Simulated Annealing . 41

xi

[6th November 2019 at 15:04]

3.2.3 Hybrid Approaches . 41

3.2.4 Matheuristics . 43

3.3 Parameter Tuning . 44

3.3.1 Taguchi Methods . 45

3.3.2 irace Software Package . 46

3.3.3 Other Approaches . 47

3.4 Conclusion . 49

4 chapter 4 - personalised scheduling & rostering - vari-

able neighbourhood search 50

4.1 Implementation . 50

4.1.1 Greedy Algorithm . 50

4.1.2 Variable Neighbourhood Search 51

4.2 Results . 55

4.3 Discussion . 61

5 chapter 5 - personalised scheduling & rostering - evol-

utionary ruin & stochastic recreate 64

5.1 Implementation . 64

5.2 Results . 71

5.3 Conclusions . 73

6 chapter 6 - roster patterns - evolutionary ruin & stochastic

recreate hybridised with variable neighbourhood search 76

6.1 Implementation . 76

6.1.1 Evolutionary Ruin & Stochastic Recreate 76

6.1.2 Variable Neighbourhood Search 80

6.1.3 Order of Events . 81

6.2 Results . 84

6.3 Conclusions . 90

xii

[6th November 2019 at 15:04]

7 chapter 7 - roster patterns - evolutionary ruin & stochastic

recreate hybridised with integer programming 91

7.1 Introduction . 91

7.2 Implementation . 93

7.3 Results . 101

7.4 Conclusions . 114

8 chapter 8 - real world usage 115

8.1 Roster Generation . 115

8.2 Simulator . 119

9 chapter 9 - conclusions 124

9.1 Thesis Contributions . 124

9.1.1 Contribution 1: Problem Formulation & Improved Sched-

ules over Baseline . 124

9.1.2 Contribution 2: Re-purposing of Evolutionary Ruin &

Stochastic Recreate . 125

9.1.3 Contribution 3: Hybrid Algorithms 125

9.1.4 Contribution 4: Constraints and Problem Formulation to

Minimise Employee Dissatisfaction 125

9.1.5 Contribution 5: Literature Review 126

9.1.6 Contribution 6: ‘Keystone’ Allocations 126

9.2 Evaluation of Hypothesis . 126

9.3 Future Work . 127

9.4 Concluding Remarks . 131

a appendix a 1

a.1 Other Works . 1

a.1.1 Introduction . 1

a.1.2 Insider Knowledge Engine 1

a.1.3 Iterative Pattern Approach 2

xiii

[6th November 2019 at 15:04]

a.1.4 Conclusion . 3

b appendix b 4

xiv

[6th November 2019 at 15:04]

L I S T O F F I G U R E S

Figure 4.1 Diagrammatic Overview of Algorithm Flow 51

Figure 4.2 Intra-day Swap Mechanism 53

Figure 4.3 Inter-day Swap Mechanism 53

Figure 4.4 Delete & Regenerate Mechanism 54

Figure 4.5 Mean VNS Fitness Scatter Plot 58

Figure 4.6 Greedy Algorithm Q-Q Plot 59

Figure 4.7 VNS Q-Q Plot . 60

Figure 4.8 Greedy Algorithm Q-Q Plot with Outliers Removed . . . 61

Figure 4.9 VNS Q-Q Plot with Outliers Removed 62

Figure 4.10 Greedy Algorithm vs VNS Boxplot 62

Figure 5.1 Flow Diagram . 65

Figure 5.2 Box-Plot of Fitness for 6 Sample Parameter Configurations 73

Figure 5.3 Box-Plot of Fitness for the Best 5 Parameter Configurations 74

Figure 5.4 Fitness per Iteration of a Single Test. 74

Figure 6.1 Diagrammatic Overview of ER&SR & VNS Hybrid . . . 84

Figure 6.2 Box-Plot of Average Fitness (A-F) and Baseline Fitness (G) 88

Figure 6.3 Q-Q Plot of Config. A . 89

Figure 7.1 ERSR & IP Diagram . 94

Figure 7.2 Metaheuristic Based Skill Allocations 100

Figure 7.3 Run-time compared with Percentage of Employees CPLEX

Tasked With Scheduling 103

Figure 7.4 RP Changes Parameter Vs Starting Week Parameter . . . 104

Figure 7.5 RP Changes Parameter Vs Starting Week Parameter (Out-

liers Removed) . 105

xv

[6th November 2019 at 15:04]

Figure 7.6 Boxplot of Each Configuration Tested 30x With Tuned

Parameters . 108

Figure 7.7 Q-Q Plot of Configuration A 108

Figure 7.8 Q-Q Plot of Configuration B 109

Figure 7.9 Q-Q Plot of Configuration D 110

Figure 7.10 Average Absolute Percentage Difference Per Config . . . 111

Figure 7.11 Day Of Week Absolute Percentage Difference - Config A 112

Figure 7.12 Day Of Week Absolute Percentage Difference - Config B 113

Figure 7.13 Day Of Week Absolute Percentage Difference - Config D 113

Figure 7.14 Day Of Week Absolute Percentage Difference - Config E 114

Figure 8.1 Managerial Initialisation Screen 117

Figure 8.2 Managerial Schedule Overview Screen 118

Figure 8.3 Managerial Schedule Breakdown Screen 118

Figure 8.4 Employee View . 119

Figure 8.5 Cross-Project Data Flow 120

Figure 8.6 Simulation Analytics . 122

Figure 8.7 Additional Analytics for Simulator 122

Figure 8.8 Geographic Visual Screenshot 123

Figure 9.1 Alternate ER&SR Acceptance Criterion 129

Figure A.1 IKA Diagram . 2

Figure A.2 IPA Diagram . 3

xvi

[6th November 2019 at 15:04]

L I S T O F TA B L E S

Table 2.1 Single Employee Problem Type Example 7

Table 2.2 Example of Variable Data in Roster Patterns 9

Table 2.4 Hard Constraints for Personalised Scheduling & Rostering 17

Table 2.5 Soft Constraints for Personalised Scheduling & Rostering

- Variable Neighbourhood Search 18

Table 4.1 Shapiro-Wilk Tests . 59

Table 4.2 Shapiro-Wilk Tests (Outliers Removed) 60

Table 5.1 Top Five Mean Taguchi Test Results 72

Table 6.1 Parameters to be Tuned by irace 85

Table 6.2 Tuned Parameters . 86

Table 6.3 Average Fitness per Run Type 87

Table 6.4 Demand met per Config 89

Table 7.1 Parameters To Be Tuned by irace 106

Table 7.2 Top 5 Parameter Configurations 106

Table 7.3 Tuned Parameters . 107

xvii

[6th November 2019 at 15:04]

L I S T O F A C R O N Y M S

aco Ant Colony Optimisation

al Apprenticeship Learning

alns Adaptive Large Neighbourhood Search

asp Answer Set Programming

aspccgtk Answer Set Programming Combinatory Categorial Grammar Toolkit

cpu Central Processing Unit

cp Constraint Programming

emcac Exponential Monte-Carlo Acceptance Criterion

er&sr Evolutionary Ruin & Stochastic Recreate

fso Field Service Operations company

ga Genetic Algorithm

gi Genetic Improvement

hc Hard Constraint

hcs Hard Constraints

hthsa Hybrid Taguchi Harmony Search Algorithm

ike Insider Knowledge Engine

ip Integer Programming

ipa Iterative Pattern Approach

xviii

[6th November 2019 at 15:04]

mip Mixed Integer Programming

milp Mixed Integer Linear Programming

or Operational Research

pso Particle Swam Optimisation

rcpsp Resource Constrained Project Scheduling Problem

rp Roster Pattern

rps Roster Patterns

sa Simulated Annealing

sc Soft Constraint

scs Soft Constraints

smbo Sequential Model-Based Optimization

smac Sequential Model-based Algorithm Configuration

ui User Interface

vns Variable Neighbourhood Search

vnsh Variable Neighbourhood Search-Based Heuristic

vrp Vehicle Routing Problem

vrptw Vehicle Routing Problem with Time Windows

xix

[6th November 2019 at 15:04]

1
C H A P T E R 1 - O V E RV I E W

1.1 introduction

In the field of Operational Research (OR), the optimised allocation of resources

to activities is of widespread interest. Resources in this context can be ma-

chines, vehicles, raw materials, employees and so forth. Whenever resources

are not utilised or organised correctly there is an irrevocable associated loss

of efficiency. The most obvious loss in this perspective is economic loss, but

other concerns are commonplace and often more important. Examples include

more environmental damage, from say, additional carbon released into the

atmosphere from non-optimised routing patterns for motor vehicles, or ex-

cessive plastic wrapping on mass produced goods. Whether it be economical,

environmental, tactical improvements in military environments, time efficiency

for airports or meeting various objectives in designing a product, OR is the

search for techniques and algorithms which can yield high quality results

with minimal cost. Such techniques include: mathematical optimisation and

metaheuristics.

This thesis concerns a problem provided by a real-world telecommunications

company seeking more efficient means of scheduling employees. The bulk

of the content in this thesis is derived from works previously published in

various conferences and is in use in some manner by said company. This

chapter will provide an introductory insight into the objectives this thesis was

1

[6th November 2019 at 15:04]

written to meet, initial hypothesis, research questions, and an overview of the

structure of this thesis.

1.2 hypothesis

The main hypothesis of the work described within this thesis is as follows:

Thesis Hypothesis By using a variety of known metaheuristics and Integer

Programming (IP) techniques, a real-world shift scheduling & employee rostering

problem can be solved to feasibility and a higher level of quality than the baseline, as

provided by a field service operations company.

This hypothesis is challenged by addressing the following research ques-

tions.

1. Massive search spaces make finding optimal solutions in a realistic time

frame infeasible. Using evolutionary algorithms, is it possible to find a

solution of improved quality within the ideal time of “5 to 10” seconds,

or within the “maximum runtime” of 10 minutes? 1

2. The metaheuristic ER&SR has previously only been used in exam time-

tabling. Can this be used to solve the employee scheduling problem

which has a much larger search space?

3. Hybrid metaheuristic / matheuristic algorithms have been gaining in

popularity for real-world problems. Can a hybrid algorithm tackle the

employee scheduling problem provided to a higher quality than the

component algorithms composing the hybrid algorithm?

4. One of the greatest difficulties in OR, and management in general, is

finding methods to mitigate employee dissatisfaction in regard to change.

1 The time limits are requirements by the company providing the employee and problem data

— during testing of algorithms in the various chapters, more time is used than this, but

consideration is also always given to these requirements.

2

[6th November 2019 at 15:04]

Are there constraints which can be put in place to minimise change while

still improving quality in terms of overall objective targets and fitness?

1.3 thesis structure

In order to provide a structurally sound volume of work which can both

be read sequentially as well as used as reference material with the table of

contents, this thesis will be structured as follows:

• Chapter 1 — In this chapter the purpose of research is stated in the form

of a hypothesis and an introduction.

• Chapter 2 — An overview of the problem itself, and the distinction

between the sub-problems, is provided.

• Chapter 3 — The literature in the field is reviewed and showcased to

solidify the purpose of this research and highlight the niche wherein the

research written in this thesis lies. The research questions answered in

this thesis are compared to other work in the field.

• Chapter 4 — Personalised Scheduling & Rostering is one of the main

problem areas tackled with this research. In this chapter a case study

regarding the initial problem is defined and solved with VNS to provide

preliminary results of this problem and investigate the usage of a meta-

heuristic approach to the problem.

• Chapter 5 — A continuation of work in the previous chapter, the prob-

lem is redefined to be a more closely aligned with the Field Service

Operations company (FSO)s real-world problem. This is then solved with

ER&SR.

3

[6th November 2019 at 15:04]

• Chapter 6 — Roster Pattern scheduling is another problem tackled in

this thesis. In this chapter the problem is defined and tackled with a new

hybrid algorithm of ER&SR with VNS.

• Chapter 7 — A continuation of work in the previous chapter, the Roster

Pattern (RP) problem is redefined to be more closely aligned with the

FSOs real-world problem. This is then solved with a new matheuristic

which, through hybridisation, combines the strengths of ER&SR with IP.

• Chapter 8 — This penultimate chapter gives a brief insight into the real-

world applications that utilise the algorithms described in this thesis.

• Chapter 9 — The final chapter of this thesis refers to research questions

introduced in Chapter 1 and answers them, evaluates the hypothesis and

describes future work.

Additionally the appendices are as follows:

• Appendix A

– Other efforts made to solve the problems in this thesis are shown

here. These are not research in the strictest sense, and don’t quite fit

into other chapters. These approaches may provide insight into the

problem and how the problem is initially probed.

• Appendix B

– All graphics (such as charts, plots, etc.) in this thesis are displayed

in this appendix in full page format for easier viewing.

4

[6th November 2019 at 15:04]

2
C H A P T E R 2 - P R O B L E M D E S C R I P T I O N S

This chapter forms the first contribution chapter of this thesis. Further, this

chapter provides both an overview of the problems tackled in this thesis as

well as mathematical formulations of the problems, as interpreted from the

descriptions and data provided by the FSO.

The problems tackled throughout this thesis are all personnel scheduling

problems. Over the four content chapters (Chapters 4 through 7) there are two

sub-problems tackled, which are termed the personalised scheduling problem,

and the roster pattern scheduling problem. In this thesis, Chapters 4 and

5 describe methods for solving an instance of the personalised scheduling

problem, and Chapters 6 and 7 describe methods for solving an instance of

the roster pattern scheduling problem.

The structure of this chapter is as follows: in section 2.1 the terminology used

throughout this thesis regarding the sub-problems of personalised scheduling

and roster pattern scheduling are defined. Section 2.2 then describes the per-

sonalised scheduling problem in mathematical detail, followed by a discussion

of the problem. Next, section 2.3 follows a similar structure with an integer

programming subsection to define the roster pattern scheduling problem,

followed by a discussion.

5

[6th November 2019 at 15:04]

2.1 problem terminology

In this section the terms ‘personalised scheduling’ and ‘roster pattern schedul-

ing’ are described, to make sense of the two overarching problems tackled

across chapters 4 to 7.

2.1.1 Personalised Scheduling

The term “personalised scheduling” is one used internally at the FSO. This

is considered an idealistic future of scheduling within the company, where

employee schedules are flexible and malleable without the limitations of Roster

Patterns (RPs).

The flexibility of personalised scheduling means that any shift can be modi-

fied in any respect: length, start time, end time, or skill requirement. Person-

alised scheduling has many useful qualities: it allows flexibility in meeting

demand requirements, and theoretically allows employees to change shift

preferences easily (e.g. if an employee wants fewer Saturday shifts, or wants to

start later on Fridays). However, this approach is unlikely to generate schedules

where employees have a standard routine, which RPs ensure. An example of

what a personalised schedule could look like for a single employee compared

to a roster pattern schedule can be seen in Table 2.1 (please note the colour

contains no additional information in this table and is only used to emphasise

structural differences). Personalised schedules are more likely to be without

pattern or repeating structural elements, unlike roster patterns. This is the

main reason for the two distinct problems - the personalised scheduling is con-

sidered a potential future use, but the roster pattern schedules are considered

for a near-time replacement.

6

[6th November 2019 at 15:04]

Personalised Schedule Example

M T W T F S s

W1 9-5 8-4 10-6 9-5 9-5

W2 9-5 8-4 8-4 7-3 9-5

W3 8-4 9-5 9-5 8-4

W4 8-4 9-5 9-5 9-5 9-5

Roster Pattern Schedule Example

M T W T F S s

W1 9-5 9-5 9-5 9-5 9-5

W2 9-5 9-5 9-5 9-5 9-5

W3 9-5 9-5 9-5 9-5 9-5

W4 9-5 9-5 9-5 9-5 9-5

Table 2.1: Single Employee Problem Type Example

7

[6th November 2019 at 15:04]

2.1.2 Roster Pattern Scheduling

An RP is a set of shifts over days, weeks or months. These are not directly

related to specific calendar dates, and instead is an abstracted period of shifts

which can be applied to any calendar day, week or month. The characteristics of

an RP include the set of shifts with daily shift start times, shift end times, shift

length, but does not include any information about demand, skills required

nor expected on these shifts.

It is not possible to modify any element of an RP. For example, in a scenario

where fitness would improve if it were possible to have an employee begin

at 10am instead of 9am, this is not allowed, unless another RP exists that

the employee could be assigned to which begins at 10am. This constrained

problem is a reflection of a real-world scheduling problem at the FSO.

While it is not possible to directly modify shift times for an employee, there

are three other variables to consider. The below three variables can be shown

clearly in Table 2.2.

1. Which RP to which an employee is assigned to can be modified. This

can have drastic effects; from changing the number of days in which an

employee works per week, to number of hours per week, day shift to

night shift, etc. In order to maintain contractual considerations, there is

a set of roster pattern preferences per employee. In some workplaces,

any RP can be used, in others, preferences are required. This is taken

into consideration in section 6.1. The number of RPs available can vary

drastically from region to region. In Table 2.2, the leftmost column

contains four example RPs with example shift times per day over two

weeks. Changing RP can have large effects on the resulting schedule.

2. Of the weeks that exist in a pattern, the week the pattern begins on can

be modified. So instead of, say, having weeks 0, 1, 2, 3, the employee

8

[6th November 2019 at 15:04]

M T W T F S s M T W T F S s

RP1 9-5 9-5 9-5 9-5 9-5 9-5 9-5 9-5 9-5 9-5

RP2 9-5 9-5 9-5 9-5 9-5 9-5 9-5 9-5

RP3 8-4 8-4 8-4 8-4 8-4 8-4 8-4 8-4

RP4 9-5 8-4 1-5 1-5 8-1 9-5 9-5 9-5

Table 2.2: Example of Variable Data in Roster Patterns

could instead work 1, 2, 3, 0. Further, say an employee works a standard

9am-5pm shift (Monday to Friday) except every second week the em-

ployee works 10am-6pm on Mondays. If the employee’s starting week is

modified, it would change which hours they are working every Monday,

possibly improving the overall solution and meeting objectives. In Table

2.2 the days are labelled in the first row, over two weeks. While RP1

would be unchanged by changing the starting week from the first week

to the second, all the other RPs would be affected by this change.

3. The skills employees use on each shift are also mutable. Skills employees

are assigned for can drastically affect the fitness of a roster. This is because

for demand to be met, an employee needs to be assigned, regardless of

stated skill levels. However, employees have a set of skill preferences

which should be utilised as much as possible. So, in modifying which

skills they use on each shift, there is increased likelihood that employees

are working shifts they are either best suited for, or are using skills they

wish to use more to improve their abilities. In Table 2.2, the skills are

differentiated with colour. The names of the skills do not matter. Without

changing which RP or starting week an employee is working, there are

still a large number of changes that can be made to a schedule by simply

manipulating which skills are used.

9

[6th November 2019 at 15:04]

A combination of all three variables will be modified to improve rosters.

However, there can be restrictions on these variables, defined by Hard Con-

straints (HCs) and Soft Constraints (SCs).

2.2 personalised scheduling

2.2.1 Integer Programming Model

The following IP model refers to the problem tackled in Chapters 4 & 5.

Parameters

I Set of employees available

It Subset of employees that work A1, A2 and A1/A2 shift patterns

respectively. It where t ∈ 1, 2, 3 representing A1, A2 and A1/A2

J Set of days representing days in a week (1-7, i.e. Monday - Sunday)

W Set of all weeks in the scheduling period. W = W1 +W2, where

W1 represents the weeks with odd indices and W2 the weeks with

even indices

K Set of shift types equal to 1 or 2, which stand for day shift and late

shift respectively.

Z Set of skills, in order of preference when used in reference to an

employee, in order of demand priority when used in relation to

days or weeks

αij The maximum number of DAY types over the scheduling period

for an employee

βij The maximum number of DAY shift types over the scheduling

period for an employee

10

[6th November 2019 at 15:04]

γij The maximum number of LATE shift types over the scheduling

period for an employee

ζij The minimum number of DAY types allowed over the scheduling

period for an employee.

ηij The minimum number of DAY shift types over the scheduling

period for an employee

µij The minimum number of LATE shift types over the scheduling

period for an employee

lik The number of occurrences of shift type k for each employee i over

the scheduling period. li 6 5|W|

ki The least common shift type for employee i:

ki ∈ K. ki = 1 if li1 < li2, 2 otherwise

R Set of the day index for each occurrence of ki for employee i over

the scheduling period. |R| = lik

oi Ideal intermittence between the i-th employee’s ki:

oi = int(7|W|/likj)

pij Number of shifts worked for employee i on day j.

pij =
∑
k∈K

∑
w∈W

xijkw, and pij > 1

miki The number of occurrences of the least common shift type ki for

each employee i on day j.

miki < |W|

qi Ideal day intermittence for employee i:

qi = d|W|/mikie,qi ∈N/{0}

tjw Number of employees allocated per j across W:

11

[6th November 2019 at 15:04]

tjw =
∑
i∈I

∑
k∈K
xijkw, ∀j ∈ J,w ∈W

ujw Daily allocated employee spread fitness score per j across W,

ujw ∈ {0, 1}

vj Mean allocated employees per j,

vj =

{∑
i∈I

∑
k∈K

∑
w∈W

xijkw/|W|,∀j ∈ J

}

vj ± δ Acceptable upper / lower bounds of vj per j across W. δ > 0, δ is

an input to the algorithm, which depends on business preferences

at the time.

Decision variable xijkw is 1 if an employee i is assigned shift type k for day

j in week w, 0 otherwise, for all employees on day shifts on all weeks on all

shifts, defined as:

xijkw = 0 or 1,∀i ∈ I, j ∈ J,w ∈W,k ∈ K (2.1)

Slack / surplus variables are minimized and are used as the positive or

negative deviations from individual goals, defined as:

s1zjkw > 0, s2zjkw > 0,∀z ∈ Z, j ∈ J,k ∈ K,w ∈W (2.2)

s3ijw > 0, s4ijw > 0,∀i ∈ I, j ∈ J,w ∈W (2.3)

s5ti > 0, ∀rt ∈ R, i ∈ I (2.4)

s6i > 0,∀i ∈ I (2.5)

s7j > 0,∀j ∈ J (2.6)

Subject to:

HC1

∑
k∈K

xijkw 6 1, ∀i ∈ I, j ∈ J,w ∈W (2.7)

HC2

∑
k∈K

∑
w∈W

xijkw 6 αij, ∀i ∈ I, j ∈ J (2.8)

12

[6th November 2019 at 15:04]

HC3

∑
k∈K

∑
w∈W

xijkw > ζij,∀i ∈ I, j ∈ J (2.9)

HC4

∑
w∈W

xij1w 6 βij,∀i ∈ I, j ∈ J (2.10)

HC5

∑
w∈W

xxij1w > nij, ∀i ∈ I, j ∈ J (2.11)

HC6

∑
w∈W

xij2w 6 γij,∀i ∈ I, j ∈ J (2.12)

HC7

∑
w∈W

xij2w > µij,∀i ∈ I, j ∈ J (2.13)

HC8

∑
j∈J

∑
k∈K

xijkw = A1, ∀i ∈ I1,w ∈W (2.14)

HC9

∑
j∈J

∑
k∈K

xijkw = A2,∀i ∈ I2,w ∈W (2.15)

HC10

∑
j∈J

∑
k∈K

xijkw = A1, ∀i ∈ I3,w ∈W

∑
j∈J

∑
k∈K

xijkw = A2, ∀i ∈ I3,w ∈W

(2.16)

SC1

∑
i∈I

xijkw + s1zjkw − s2zjkw = dzjkw,∀z ∈ Z, j ∈ J,k ∈ K,w ∈W (2.17)

SC2

∑
k∈K

[xijkw + xi(j+1)kw] + s
3
ijw − s4ijw = 0, ∀i ∈ I, j ∈ J,w ∈W (2.18)

SC3 rt+1 − rt + s
5
ti 6 oj,∀rt ∈ R, i ∈ I (2.19)

SC4 [(

p−ε∑
p=1

w(p+ε)ijwpij
) + 1]/pij + s

6
i 6 qi, ∀i ∈ I (2.20)

where p+ ε is next pij after current pij across W

SC5 (
∑
w∈W

ujw)/|W|+ s7j = 1, ∀j ∈ J (2.21)

ujw = 1 if tjw ∈ [vj − δ, vj + δ], else ujw = 0

13

[6th November 2019 at 15:04]

2.2.2 Problem Description

In this subsection, the personalised scheduling problem is defined in further

detail. There are two chapters in this thesis which solve an instance of the

personalised scheduling problem: Chapter 4 and Chapter 5. There are slight

differences in the personalised scheduling problem, as it was refined by the

FSO over time. As such, subsection 2.2.2.1 refers to both chapters, and 2.2.2.2

refers to the refinements in Chapter 5.

2.2.2.1 Personalised Scheduling Problem Description

The term ‘shift’ refers to a length of time within a 24-hour period in which

a single employee can be allocated. Shifts can only exist within a single day,

and cannot span between two days (that is, a shift cannot breach the midnight

barrier). There is also an additional facet to this problem, in that as well as

rules about how employees are assigned shifts, there are requirements about

shift types. These are known as shift rules, and govern rules for the generation

of all shifts, regardless of which employee is allocated to each.

The constraints for this problem consider both employee preferences and

demand requirements, which are input by representatives of employee unions.

This means that the schedules produced are tuned to meet company require-

ments as well as the wants and needs of employees. This is an approach which

is not implemented in the workforce yet — but this research is being used for

simulation purposes and for considering future goals in the industry, and is a

part of a suite of tools offered by the research team to internal and external

clients in the FSO.

There are many employee scheduling examples which are found to be

NP-Hard problems [1]. Knowing that the optimal solution to the problems

presented cannot be found in polynomial time, a ‘good enough’ quality solu-

14

[6th November 2019 at 15:04]

tion is acceptable, if also feasible. The challenge is therefore to find the best

quality solution within a time constraint. The FSO requested “ideally 5 seconds

run time” of the algorithm to generate employee schedules, which is a very

short time frame for such a large-scale problem.

The data used for this study included around 25,000 employees, however

the actual number needing scheduled at any one point was up to around 200.

This is due to the shifts being scheduled at a regional level, and employees (for

the purpose of this study) never leave a region. The FSO selected a region which

was deemed typical for demand requirements and resource characteristics,

which was used for this study.

Below are the key characteristics of the problem, defined in partnership

with the FSO:

1. Due to the real-world data being provided by a UK based FSO, UK

Employment Law must be adhered to.

2. The objective of meeting demand includes not simply providing man-

power to cover number of employees required per shift, but skills re-

quired per shift, and per day, while still meeting HCs.

3. The shift creation process is structured by shift rules. Shift rules contain

parameters and requirements.

The problem is most easily defined with a set of HCs and SCs. HCs are a set

of requirements which must be clearly defined, as they are the rules by which

a generated schedule is deemed accepted or rejected. As such the nature of

these constraints are Boolean. If a single Hard Constraint (HC) fails, then the

schedule is deemed infeasible. A list of HCs for this problem can be found

in Table 2.4. In this list, ‘day type’ means a day of week which exists one or

more times in a schedule, for example all instances of Monday, or all instances

of Tuesday. ‘DAY’ shift refers to a simplified and undefined shift of working

15

[6th November 2019 at 15:04]

hours. ‘LATE’ shifts refer to shifts with later starting and end times than ‘DAY’

types.

Hard Constraints

HC1 Employees must have a either 0 or 1 shifts per day.

HC2 Employees have a maximum number of day types (Monday -

Sunday) in the scheduling period. A possible minimum is no restric-

tion or an integer which represents the enforced lower threshold (>

0).

HC3 Employees have a minimum number of day types (Monday -

Sunday) in the scheduling period. A possible minimum is no restric-

tion or an integer which represents the enforced lower threshold (>

0).

HC4 Employees has a maximum number of DAY shift type in the schedul-

ing period. A possible maximum is no restriction, no DAY shift

type allowed (0) or an enforced upper threshold (> 0).

HC5 Employees has a minimum number of DAY shift type in the schedul-

ing period. A possible minimum is no restriction, or an integer

which represents the enforced lower threshold (> 0).

HC6 Employees has a maximum number of LATE shift type in the

scheduling period. A possible maximum is no restriction, no LATE

shift type allowed (0) or an enforced upper threshold (> 0).

HC7 Employees has a minimum number of LATE shift type in the

scheduling period. A possible minimum is no restriction, or an

integer which represents the enforced lower threshold (> 0).

HC8 Employees with the A1 day shift pattern type must be allocated to

A1 shifts every week.

16

[6th November 2019 at 15:04]

HC9 Employees with the A2 day shift pattern type must be allocated to

A2 shifts every week.

HC10 Employees with the A1/A2 day shift pattern type must be allocated

to A1 shifts every second week and A2 shifts every other week.

Table 2.4: Hard Constraints for Personalised Scheduling & Rostering

SCs are used to describe a schedules quality, as opposed to its feasibility.

Technically any schedule can be assessed for quality, but it is only worthwhile

to consider the quality of a feasible schedule. When an algorithm is running

and attempting to decide which of various schedules to keep or to improve

upon, the SCs are used to judge each solution by a set of fitness values. The

SCs for this problem are defined in Table 2.5.

Soft Constraints

SC1 Shifts should cover the maximum amount of demand requirement

they possibly can. For example, if a shift is 8 hours long, then ideally

the shift would cover 8 ∗ 1 hours’ worth of demand.

SC2 Two consecutive rest days for employees every week.

SC3 Employees least common shift type (DAY or LATE shift) should be

spread as evenly as possible over the scheduling period to allow a

high as possible mean number of days between the least common

shift type allocations.

17

[6th November 2019 at 15:04]

SC4 Employees least common day types (Monday - Sunday) should be

spread as evenly as possible over the scheduling period to allow a

high as possible mean number of weeks between the less common

day type allocations. Not used if employee is scheduled for one,

less than one, or the maximum number of day type(s), as ideal

intermittency has already been achieved.

SC5 The number of employees allocated to each day type (Monday -

Sunday) should be spread as evenly as possible over the scheduling

period.

Table 2.5: Soft Constraints for Personalised Scheduling & Rostering - Variable Neigh-

bourhood Search

2.2.2.2 Personalised Scheduling Problem Refinements

The problem refined below is tackled in Chapter 5. First, the objectives were

rewritten into more focused points:

1. Due to the real-world data being provided by a UK based FSO, UK

Employment Law must be adhered to.

2. The ’meeting demand’ objective now considers skills required per shift

and per day, as well as a sufficient number of employees to satisfy shift

requirements.

3. The shift creation process is structured by shift rules. Shift rules contain

parameters and requirements.

The HCs and SCs have been modified in collaboration with the FSO. The

changes were made to better suit the needs of the company, and removing

peripheral constraints which were deemed either unimportant or potentially

negative. Of particular note is the removal of the concept of day shifts and

18

[6th November 2019 at 15:04]

late shifts. In this chapter, the shifts can be scheduled to any hour of a single

24-hour day (without overlap between days). This has both a positive and

negative effect: the search space has increased in size, but this also provides

more flexibility for potential employee allocation slots, meaning there is more

potential for improved schedules.

The HCs are as follows:

• HC1: Employees 0 or 1 shifts per day.

• HC2: Employees have a minimum and maximum number of allocations

per day of week (Monday - Sunday).

• HC3: Employees can have shift patterns A, B or A/B. A/B means in

one week they must do A shifts, in the next B shifts. Shift pattern is

synonymous with the number of shifts an employee works in a 7 day

week, Monday to Sunday.

• HC4: Employees must be allocated to shifts equal to or after their shift

time minimum, and before or equal to their shift time maximum.

• HC5: Employees must be allocated to shift lengths longer than or equal

to their minimum shift length allowed, and shorter than or equal to their

maximum shift length allowed.

• HC6: Shifts must begin within their shift rules designated start and end

times.

• HC7: Shift rules specify a minimum requirement of number of shifts

across the scheduling period. A possible minimum is no restriction or an

enforced lower threshold (> 0). Every shift rule also specifies a maximum

requirement of shifts across the scheduling period. A possible maximum

is no restriction, no shift rules of this type (0) or an enforced upper

threshold (> 0).

19

[6th November 2019 at 15:04]

• HC8: Shifts must be greater than or equal to the shift rules minimum

shift length and be lesser than or equal to its shift rules maximum shift

length, if specified.

The SCs are as follows:

• SC1: Shifts should cover the maximum amount of demand requirement

they possibly can.

• SC2: Employees should be allocated to shifts that meet their first skill

preference.

• SC3: Employees should be allocated to shifts that they meet the skill

requirement for.

• SC4: Two consecutive rest days for every employee on every week.

2.3 roster pattern scheduling

2.3.1 Integer Programming Model

In this section a mathematical model is provided to clearly define the problem

constraints of the roster pattern scheduling problem in a precise manner. The

following IP model refers to the problem tackled in Chapters 6 & 7.

Please note HC3 is handled solely by the metaheuristic part of the hybrid

algorithm in Chapter 7, not in the IP section, and is therefore not described in

this section.

20

[6th November 2019 at 15:04]

Parameters Description

I Set of employees available

T Set of all possible roster patterns t ∈ T

tjk Hour and days allocated to employees assigned roster pat-

tern t

|t| Cardinality of hours across all days in roster pattern t

J Set of days representing all days in a schedule j ∈ J

K Set of hours k ∈ {0, ..., 23}.

B Set of all skills

F Set of all original roster allocations fit ∈ F where i is an

employee and t is the original roster pattern

n Number of roster pattern changes that have occurred. This

is calculated as:

n =
∑
fit∈F

∑
t∈T
yit where t 6= fit∀i ∈ I

nmax The maximum number of roster pattern changes that are

allowed to occur. If there is no parameterised maximum,

nmax = |I|

G Set of all roster preferences git ∈ G

qc Weighting of each Soft Constraint (SC) where

0 6 qc 6 1, c ∈ {1, 2, 3, 4}
4∑
1

Qc = 1

Di Set of skill preferences dibs ∈ Di where

s is the skill preference index for employee i

1 6 s 6 5

21

[6th November 2019 at 15:04]

|b1| = 1

|b2| > 0

|b3| > 0

|b4| > 0

|b5| > 0

e Original total demand as input. Count of all hours and

skills where there is demand.

Decision variable wjkib is 1 if an employee i is assigned to hour k on day

j and skill b, 0 otherwise, for all employees on day shifts on all weeks on all

shifts, defined as:

wjkib = 0 or 1,∀j ∈ J, j ∈ K, i ∈ I,b ∈ B (2.22)

Decision variable xdkb is equal to a value of 0, or higher if there is demand

currently required on hour k and day d for skill b. This exists for all hour, day

and skill combinations:

xdkb = 0 or 1,∀d ∈ D,k ∈ K,b ∈ B (2.23)

Decision variable yit is 1 if an employee i is assigned roster pattern t for all

employees on day shifts on all weeks on all shifts, 0 otherwise. This is defined

as:

yit = 0 or 1,∀i ∈ I, t ∈ T (2.24)

Decision variable zjki is 1 if an employee i is available for potential allocations

on hour k for day j, 0 otherwise, for all employees, all weeks on all shifts,

defined as:

zjki = 0 or 1,∀j ∈ J,k ∈ K, i ∈ I (2.25)

22

[6th November 2019 at 15:04]

Target function:

Min ((SC1 ∗ q1) + (SC2 ∗ q2) + (SC3 ∗ q3) + (SC4 ∗ q4)) (2.26)

Subject to:

HC1:
∑
t∈T

yit = 1,∀i ∈ I (2.27)

HC2: n 6 nmax (2.28)

HC4:
∑
git∈G

yit = 1,∀i ∈ I (2.29)

HC5:
∑
b∈B

wjkib 6 1,∀j ∈ J,k ∈ K, i ∈ I (2.30)

HC6:
∑
b∈B

wjkib > yitjk ,∀i ∈ I, tjk ∈ t (2.31)

HC7:
∑
k∈K

∑
b∈B

∑
j∈J

wjkib =
∑
t∈T

∑
|t|∈|T |

yit ∗ |t|, ∀i ∈ I (2.32)

HC8:
∑
b∈B

wjkib = zjki,∀j ∈ J,k ∈ K, i ∈ I (2.33)

The following SCs are used in the aforementioned target function (Eq 2.26):

SC1 =
∑
j∈J

∑
k∈K

∑
b∈B

xdkb (2.34)

SC2 =
∑
j∈J

∑
k∈K

∑
i∈I

∑
dibs∈Di

wjkib (2.35)

SC3 =
∑
j∈J

∑
k∈K

∑
i∈I

∑
dibs∈Di

∑
b∈B

wjkib ∗ s (2.36)

SC4 =
∑
i∈I

∑
b∈B

(
1−
∑
j∈J

∣∣∣∣∣
∑

k∈Kwjkib

e −

∑
j∈J

∑
k∈Kwjkib

e

|J|

∣∣∣∣∣
)∗

(2.37)

* Note |J| is cardinality of days, while the other usage of the vertical lines denotes

absolute value

23

[6th November 2019 at 15:04]

2.3.2 Problem Description

In this subsection, the roster pattern scheduling problem is defined in further

detail. There are two chapters in this thesis which solve an instance of the

roster pattern scheduling problem: Chapter 6 and Chapter 7. There are slight

differences in the personalised scheduling problem, as it was refined by the

FSO over time. As such, subsection 2.3.2.1 refers to both chapters, and 2.3.2.2

refers to the refinements in Chapter 7.

2.3.2.1 Roster Pattern Scheduling Problem Description

Below are the key characteristics of the problem, defined in partnership with

the FSO:

1. Due to the real-world data being provided by a UK based FSO, UK

Employment Law must be adhered to. This means a maximum average

of 48 hour working weeks.

2. The objective of meeting demand includes not simply providing man-

power to cover number of employees required per shift, but skills re-

quired per shift, and per day, while still meeting HCs.

3. The shift creation process is structured by shift rules. Shift rules contain

parameters and requirements.

The HCs are as follows:

• HC1: Employees must have exactly one RP.

• HC2: An optionally specified maximum number of RP changes can occur.

• HC3: An optionally specified maximum number of starting week changes

can occur.

24

[6th November 2019 at 15:04]

• HC4: If RP preferences are provided, only RPs preferred by each em-

ployee can be explored.

HC1 is hard-coded; an employee cannot be given more than or less than

one RP outside of a single iteration of ER&SR or VNS (meaning that employees

do have RPs removed, but they are then given another RP, or potentially the

same one again).

HC2 and HC3 can optionally have the maximum number of changes set to

no maximum, zero (meaning no changes of this type allowed) or a specific

number. An example could be maximum of ten RP changes allowed. When

ten have occurred, only those modified RPs can be changed. If one of these is

returned to the original pattern, then the current number of changes is reduced

to nine, and another employee’s pattern could potentially be changed. In this

chapter HC2 and HC3 are set to infinite, meaning they are always satisfied.

HC4 can be set to on or off. If set to off, any employee could potentially

be given any RP. This is generally not realistic in many regions as certain RPs

are created for special circumstances, specific contractual requirements, etc. It

would also mean employees could be given the incorrect number of working

hours per week. However, in the case that available RPs are interchangeable,

then this is not an issue.

For most regions, employees have a number of preferred RPs, and HC4

would be toggled on. The preferred patterns will always meet contractual

obligations. These patterns are agreed upon by both employee and regional

managers. Every employee has at least one preferred RP which is their current

pattern. There is no maximum number of preferred RPs, other than the number

available in the pool, which is dependent on how many have been created by

managers in the past. In the region used for this chapter there are around 400

potential RPs employees could have in their preferred patterns list.

25

[6th November 2019 at 15:04]

The quality of a solution is judged with SCs. This is undertaken by consider-

ing elements that are important for the quality of life for engineers, for meeting

demand and for meeting customer satisfaction. These are important, but do

not break any laws or contractual requirements if not met. The following SCs

are considered to judge the quality of a solution:

• SC1: The total demand requirement met by all shifts should be maximised

• SC2: The number of employees assigned shifts that require one of their

skills should be maximised

• SC3: The number of shifts using employees preferred skills should be

maximised

• SC4: Variation in the percentage of demand met per hour, day and skill

should be minimised.

2.3.2.2 Roster Pattern Scheduling Problem Refinements

The characteristics of the roster pattern scheduling problem are refined below.

The problem refined below is tackled in Chapter 7.

1. Due to the real-world data being provided by a UK based FSO, UK

Employment Law must be adhered to. This includes maximum working

hours allowed per week, number of rest hours in between shifts, etc.

2. The employees described in the data have a variety of skills. Demand is

provided for the problem in skill-based manner. Demand may fluctuate

greatly across the scheduling period. The objective of meeting demand

includes not simply providing manpower to cover number of employees

required per shift, but also skills required per shift (and per day) while

still meeting HCs.

The refined HCs are as follows:

26

[6th November 2019 at 15:04]

• HC1: Employees must have only one roster pattern.

• HC2: An optionally specified maximum number of roster pattern changes

can occur.

• HC3: An optionally specified maximum number of starting week changes

can occur.

• HC4: If roster pattern preferences are provided, only roster patterns

preferred by each employee can be explored.

• HC5: Employees can use a maximum of one skill per hour per shift.

• HC6: Employees must be allocated to shifts which are described within

the roster pattern they are allocated to.

• HC7: Employees must only work the number of hours described by the

roster pattern they are allocated to.

• HC8: Employees must only be assigned to hours where they are not

already assigned.

The refined SCs are below:

• SC1: Employees should be assigned to shifts which have the highest

demand coverage in the set.

• SC2: Employees should have the skill required on each shift to which

they are allocated.

• SC3: Employees skill preferences should be met when possible.

• SC4: Variation in the percentage demand met per day, per skill, should

be as small as possible.

Combined weighted constraint violations are used to judge solution fitness.

Specific weightings are provided by the FSO; in this problem all weightings

are equal (25% per SC).

27

[6th November 2019 at 15:04]

3
C H A P T E R 3 - L I T E R AT U R E R E V I E W

This chapter identifies the niche this research fills in the literature. First is an

explanation of metaheuristics to set the scene for the methodologies chosen

to tackle problems in this thesis. After the explanation of metaheuristics and

significant literature relating to their real-world application in Section 3.1, the

related works to the problems tackled in this thesis — the shift scheduling

& employee rostering problem — are reviewed in Section 3.2. Penultimately

there is an overview of the tuning algorithms used in this thesis and how they

have been used in some other related works in Section 3.3. This chapter ends

with concluding remarks in Section 3.4, placing work explored in this thesis

neatly into the field.

3.1 introduction to metaheuristics

Before delving into an explanation of metaheuristics directly, first it is prudent

to define key terminology. An optimisation problem is one where it may be

fairly simple to produce a feasible output (that is, one which meets all crucial

requirements), but is difficult to find an output which improves quality (quality

is very much problem-specific, but can include minimisation of resources used,

efficiency of output, time taken to solve, surplus, etc.). The term ‘optimisation

problem’ is synonymous with the term ‘search problem’, as finding an optimal

solution to a complex problem is a search through many, and potentially all,

possible solutions. The various possible outcomes from applying a heuristic

to a problem create a search space. A different algorithm applied to the same

28

[6th November 2019 at 15:04]

problem creates a different search space. ‘Solution’ is a phrase used in the

literature which depending on context can have two meanings — one being the

heuristic being used, the other being the output of a heuristic. When a solution

(in this case meaning output from a heuristic) is being modified and fitness

values considered, nearby solutions are known as neighbours, and less similar

solutions are considered more distant neighbours. Fitness is a term used to

mathematically describe the quality of a solution (such as profit, meeting

demand, preventing waste, etc.). Finally, constraints are generally bundled

into two groups - HCs and SCs. HCs are Boolean, and absolutely required for a

solution (output from a heuristic) to be considered viable, or feasible. If even a

single HC fails out of thousands then a solution is deemed infeasible. HCs are

often implemented to adhere to laws, contracts or economic requirements. SCs

are used for measuring quality of feasible solutions.

The term ‘metaheuristic’ was first coined by Glover [2] in the celebrated

paper introducing tabu search. According to Genreau et al [3], metaheuristics

are high-level procedures designed to solve the problem of entrapment within

local optima when exploring complex solution spaces, particularly spaces

that employ one or more neighbourhood structures to define admissible

moves when transitioning between solutions. Metaheuristics are detached

from problem definitions: they are general solvers that can be applied to a

variety of distinct problems, spanning theoretical and real-world settings.

Instead of requiring a new heuristic for every problem, metaheuristics can

be used to create solutions to a variety of problems. Burke et al suggest meta-

heuristics are used when standard heuristic procedures have failed, or would

take too long (or expensive hardware) to run [4]. While alternative approaches,

such as mathematical programming or exhaustive search will ultimately find

the global optimum to a given problem, they will often fail to do so in a

practical length of time with the finite resources of a typical machine (this

29

[6th November 2019 at 15:04]

depends on the problem and resources available, but can tend into thousands

of years run-time). Many mathematical programming methodologies struggle

to provide good quality feasible solutions in short time bursts, similarly with

exhaustive search. However, the major drawback of metaheuristics is their

inability to definitively give optimal solutions, or reduce the search space [5],

so, the main use of metaheuristics is to provide fairly good quality solutions

fairly quickly.

There are thousands of derivations of metaheuristics. For example, a meta-

heuristic framework for Simulated Annealing (SA) can be customised for differ-

ent problem domains (e.g. Travelling Salesperson, Vehicle Routing, Scheduling

etc.) via the provision of domain-specific heuristics for solution neighbour-

hood and solution quality. Popular metaheuristics include SA [6], VNS [7], tabu

search [2], genetic algorithms, memetic algorithms [8] and many others.

3.1.1 Variable Neighbourhood Search

VNS is a methodology which is also commonly used in optimisation problems,

first proposed by Mladenovic et al [7]. VNS considers the incumbent solution

and its neighbours, and only moves if improvements are made. VNS first

searches for the local optimum, then when no further improvements can be

found locally, a perturbation occurs to escape the local search space, and

begin anew. This continues until a predetermined termination criterion is met.

There have been a huge number of variations made upon the original VNS

metaheuristic, frequently with the purpose of customising to specific problem

characteristics and required run times.

VNS has been successfully utilised for a variety of real-world problems. Many

such papers have been classified and categorised in the thorough literature

review by Hansen et al in 2008 [9], followed by an updated review in 2010 [10].

30

[6th November 2019 at 15:04]

However, no such real-world focused literature review of VNS exists in almost

decade hence. As such, a select number of the more recent and prominent

papers will be described here.

Both Vehicle Routing Problem (VRP)s and Vehicle Routing Problem with

Time Windows (VRPTW)s have been tackled by VNS as well as a variety of

algorithms in the literature, and are an important focus of research, as efficient

logistical schedules and pathways for transportation can lessen our carbon

footprint; save money for all involves parties and improve demand satisfaction.

Binhui et al present a VRPTW problem is tackled using VNS with Compound

Neighbourhoods [11]. The main difference between this and traditional VNS

approaches is that the independent operators have different lengths of ex-

change segments, as well as the traditional operation position. The results

show that local search tends to be less effective on the considered datasets,

and overall promising results when compared to the Solomon benchmarks

described in [12]. Another example of a VRP problem being solved using VNS

can be found in a paper by Drake et al [13] — however, the methodology is

entirely different. By using a grammatical evolution hyper-heuristic to gen-

erate a construction heuristic, this approach was found to, in the best cases,

find the optimal number of vehicles required. These tests were also run on the

aforementioned Solomon benchmarks [12].

A recent paper described a Variable Neighbourhood Search-Based Heuristic

(VNSH) approach to solve a theoretical problem modelled after real-world

instances of Resource Constrained Project Scheduling Problem (RCPSP). In this

paper it was found that traditional schedule generation schemes (including

serial & parallel) were ineffective compared to the enhanced activity swapping

among varied neighbourhood that is accomplished with the VNSH method

for single resource breakdown, and similar results were found for multiple

resource breakdown.

31

[6th November 2019 at 15:04]

A prominent paper in the literature by Pisinger et al [14] established a

derivative algorithm known as Adaptive Large Neighbourhood Search (ALNS).

The proposed algorithm works on structurally differentiating neighbourhoods,

while standard VNS algorithms (such as basic VNS, best improvement VNS,

reduced VNS) operate on one type of neighbourhood with variable depth. ALNS

was proposed to tackle five different variants of the VRP, which is possible due

to the metaheuristic nature of ALNS.

3.1.2 Evolutionary Ruin & Stochastic Recreate

ER&SR was first described in Li et al [15] then further explored as a theoretical

framework [16]. ER&SR is derived from the traditional Ruin and Recreate

algorithm by Schrimpf et al [17]. Ruin and recreate functions as described

by the name - first destroying some or all of a solution, then rebuilding the

solution. What is ruined and how depends on the problem encoding, and the

problem itself. Additionally, what is reconstructed and how depends greatly

on the same information. The flexibility of this algorithm is what makes

it a metaheuristic. ER&SR is an extension upon Ruin and Recreate, which

is differentiated by the addition of traditionally ‘evolutionary’ techniques.

Specifically, the ruin phase includes both a selection and mutation subphase,

and the recreate phase has a deterministic rebuild which attempts to somewhat

stochastically reintroduces solution components, pending approval from the

underlying improvement heuristic.

Prior to work described in this thesis, ER&SR had only been used to solve a

real-world complex exam timetabling problem by Li et al [16]. In this thesis

ER&SR is used on an employee scheduling problem for the first time (excluding

papers declared in the publications section of the beginning content of this

32

[6th November 2019 at 15:04]

thesis). This is described in Chapter 5, and ER&SR is also implemented in

Chapter 6 and Chapter 7.

No other works, other than those described in this thesis, have yet been

published on ER&SR, which makes a case for future work on this algorithm.

3.1.3 Simulated Annealing

SA is often described as a classical technique in the field of metaheuristics. SA is

a metaheuristic which is named after the metallurgical technique of annealing.

When moulding steel, iron, glass or another material, metallurgists or glass

smiths heat the substance to a high temperature, making the material malleable.

Similarly, in SA, at a high temperature exploration of the search space is more

likely, and at a lower temperature exploitation of the current neighbourhood

is more likely. This allows a customisable approach to exploring a search

neighbourhood, based on the parameters of cooling rate and temperature.

This metaheuristic is first described in 1953 by Metropolis et al [18] as

an adaptation from the metropolis-hastings algorithm, which itself is best

described in a later paper by Hastings et al [19].

SA has been used to solve a variety of real-world problem instances. For

example, in the 1992 paper by Teodorovic et al [20] an SA algorithm is imple-

mented to solve an instance of the VRP. While this paper does not concentrate

on a real-world problem, the authors do refer to potential real-world VRP

problems using SA, including planning the collection of materials such as

plastics, glass and textiles in urban areas. The authors also imply that the

lengthy run time of this algorithm could be an issue if used in real-time for

VRPs, however, if being planned in advance and a longer runtime is not an

issue, SA can provide satisfactory routing plans.

33

[6th November 2019 at 15:04]

SA has also been applied to the academic problem of project allocations. In

this instance by Chown et al [21] there are a number of projects that students

can indicate a preference for. There is a maximum workload per staff member,

and SA is used to maximise student project allocation preferences, while

ensuring no single staff member is overworked.

Efficient mobile network routing is a pressing real-world problem for most

countries across the globe. In a paper by Saha et al [22], the authors describe

the purpose for research in this area as being for lower latency, higher message

delivery rates, and a lower routing overhead. The authors explain that in many

scenarios a greedy methodology is utilised, causing entrapment in local optima.

Thus the authors introduce a new routing protocol which they dub ‘SeeR’.

SeeR is based on an SA algorithm, in order to improve the aforementioned

issues. It was found that SeeR either was near-equivalent in performance to

other protocols tested, or better (in particular latency was improved).

SA is used in Chapter 6 and Chapter 7 as a useful comparison to the results

produced by the other described algorithms.

3.1.4 Hybrid Approaches

As well as standalone algorithms being used for real-world problems, there are

many examples of hybridisation of algorithms. Hybridised algorithms are gen-

erally preferred when multiple features from various component algorithms

are desired. Such features can include solving speed, finding local optima,

escaping local optima, or transforming the search space. Hybrid algorithms

are somewhat ill-defined in the literature, and can be viewed liberally (all

algorithms contain some operators or components which are used in other

algorithms), or conservatively (only named algorithms which are combined

34

[6th November 2019 at 15:04]

can be defined as hybrid algorithms). In order to minimise uncertainty, the

conservative definition is preferred in this thesis.

A well-known paper in the VRP literature was written by Osman et al [23].

In this paper, SA is used in hybridisation with Tabu search. This hybridisation

is useful, as both SA and Tabu search have the advantage of being able to leave

local optima in further search of the global optimum, but Tabu search prevents

returning to already known solutions. This means that this hybridisation

allows further exploration with SA, while reducing computational runtime

with Tabu search. Further, there is a freeing strategy in place, so that if enough

time has passed, it is possible to return to know solutions to continue searching.

This ensures that the search does not halt in an inescapable solution, and does

not needlessly retrace steps. This hybrid was tested on seventeen standard

problems from the VRP literature. At the time of publication in 1993, this hybrid

algorithm performed significantly better than other published solutions in

both solution quality and number of vehicles required.

According to Yildiz et al [24], hybrid algorithms have shown outstanding

efficiency and reliability in regard to real-world engineering optimisation

problems. In [24], the authors combine harmony search (inspired by the

search a jazz musician undertakes seeking greater musical harmony) with the

Taguchi method (which has a proven track record in engineering optimisation).

This hybrid is dubbed Hybrid Taguchi Harmony Search Algorithm (HTHSA),

wherein the strengths of each approach can be fed back and forth - that is,

the harmony search can assist the Taguchi method, and vice versa. There is a

highly promising result from this paper, this hybrid approach outperforms all

other tested methodologies (including standalone Genetic Algorithm (GA) and

standalone harmony search) in both cost minimisation, maximisation of profit,

and in minimising iterations of function evaluations until convergence.

35

[6th November 2019 at 15:04]

Hybrid algorithms have also been utilised in military environments. The

authors, Lee et al, hybridise Ant Colony Optimisation (ACO) with a genetic

algorithm to improve weapon-target systems [25]. The authors found this

approach to have the best performance when compared to existing search

algorithms for this problem, in simulations.

3.1.5 Matheuristics

Matheuristics are a special type of hybrid algorithm, where a metaheuristic is

hybridised with a mathematical programming algorithm. Matheuristics can

be defined as an intersection between deterministic and non-deterministic

solvers. Implementations vary, but often a metaheuristic will provide a partially

complete solution and allow the exact solver to complete the rest of the

solution. As the size of problems exact solvers can complete in an acceptable

time frame are small to medium size search spaces, a matheuristic can exploit

the strengths of both metaheuristics to traverse vast search spaces, and exact

solvers to quickly find local optima, and ideally the global optimum.

Applications of matheuristics to VRPs have been compiled into two literature

reviews, as of writing: the 2010 Rich VRP paper [26] and the more thorough

2014 paper by Archetti et al [27]. This paper claims it is likely that due to

more accessibility in programming languages which support matheuristic

approaches; the frequency of matheuristic solutions to VRPs are likely to

increase.

The parallel machine scheduling problem has also been tackled with a

matheuristic approach by Fanjul et al [28]. Central to this problem is scheduling

a scarce resource among a number of machines. This paper adapts a Mixed

Integer Linear Programming (MILP) program originally described in [28] into

3 separate matheuristic approaches, based on successful strategies in the

36

[6th November 2019 at 15:04]

literature. The mathematical programming solver used in this paper was IBM

ILOG-CPLEX 12.6. The matheuristic approaches successfully improved the

number of jobs solved by the machines. Further, using matheuristic approaches

showed a clear improvement from the standalone CPLEX solver.

More recently, in 2017, a real-world irregular bin packing problem based

in Spain was solved using a matheuristic approach. Combining CPLEX with

various procedures for solving the assignment of pieces to bins. There are also

strategies in place for instances of infeasibility. The non-deterministic solutions

include Bin Packing with Greedy Decisions, First Fit algorithm and Partial

Bin Packing. Computational result highlights include lower computational

effort and better performance on average among the various implementations

(though some had higher costs related with better results).

Matheuristics are of relevance to this thesis, as Chapter 7 utilises IP with

ER&SR to solve an instance of a real-world scheduling problem. This literature

shows that hybrid algorithms, in particular matheuristics, have a proven

track record in a variety of real-world problems and further investigation is

warranted.

3.2 shift scheduling & employee rostering problems

OR is a discipline in which real-world problems are first modelled numerically

or programmatically. Then mathematical heuristics are applied to the model

to find solutions which can be used in the real-world. In this section a variety

of these problems, and their solutions, are showcased and discussed. As the

field of OR has been active for many decades, originating in World War II in

order to aid in military endeavours. This section will discuss the aspects most

applicable to this thesis, and focusing on the most predominant techniques

used to solve employee scheduling problems in recent history.

37

[6th November 2019 at 15:04]

Examples of employee rostering & shift scheduling problems come from

a variety of sectors and industries, including telecommunications technician

scheduling [29], airline crew scheduling [30], military personnel scheduling

[31], nurse scheduling [5], telephone call centre scheduling [32] and many

others [33].

The field of employee rostering has been extensively surveyed: one of the

first surveys of the state of the art was produced by Baker [34] in 1976. In

2004 Ernst et al produced a review of applications, methods and models [33],

which not only successfully highlighted some of the most influential research

in the field, but also correctly predicted future trends. Such trends include

employee scheduling in airlines, which has since been further examined by

several reports [35] [36], and the need for more robust frameworks to tackle

the complexity of these problems. The sub-topic of evolutionary scheduling

was reviewed by Hart et al in [37], providing thorough coverage of the years

1985 - 2004. The extensive 2013 review ‘Personnel Scheduling: A Literature

Review’ by Van Den Bergh et al [38], gives an exploration of the field, in which

papers are categorised by criteria such as personnel characteristics, decision

types, shift flexibility, coverage constraints (both hard and soft), whether or

not under- and over- staffing is permitted, by skills, and more. More recently

Arturo Castillo-Salazar et al produced a workforce scheduling and routing

problems literature review [39]. There have been several other notable domain

specific literature reviews, such as home care routing and scheduling by Fikar

et al [40] and physician scheduling by Erhard et al [41].

Scheduling vast numbers of employees while taking demand, location, skill

sets, preferences and contract types into consideration is a complex task which

cannot be completed optimally (or even close to optimally) manually for a

large real-world workforce. It is often impossible to exhaustively search for an

optimal solution in a timely fashion [4]. As such other approaches have been

38

[6th November 2019 at 15:04]

developed by operational engineers, computer scientists and employee man-

agers to generate optimal or close-to-optimal solutions, e.g. using evolutionary

computation approaches [42]. Improving labour costs by only a few percent

could prove very beneficial, since this is often the main expenditure for com-

panies according to Van den Bergh [38]. In the field of employee rostering there

is much motivation for obtaining high quality employee rosters. Managing the

shifts of a large number of employees is a complex task — optimisation of this

process is a necessity for efficient use of resources.

Rather than the expensive (and often impossible) alternative of analysing

every potential roster, an evolutionary algorithm can sample the solution space

for a result which is often at least close-to-optimal, within a reasonable time.

There are many examples of evolutionary algorithms and nature-inspired

approaches to solving real-world employee scheduling problems, from a

variety of industries.

3.2.1 Variable Neighbourhood Search

With a proven record of usage for over two decades as of writing, VNS is a

trusted and frequently used algorithm for real-world employee scheduling

problems across a variety of sectors.

In home healthcare, for example, VNS has been successfully applied by Pin-

heiro et al [43]. This particular scheduling problem is also a routing problem,

provided by an industrial partner of the authors. This VNS instance works

from an initial solution and searches locally within multiple neighbourhoods

in order to find improved solution quality. Then, to escape local optima, VNS

shakes the solution, possibly incurring a worse solution, at the end of every

iteration. Four configurations of VNS were considered during testing, with

various local search mechanisms and differing numbers of shaking neighbour-

39

[6th November 2019 at 15:04]

hoods. The results showed that the hill-climbing local search variant of VNS

performed worse than the proposed algorithm. Further, the proposed VNS

algorithm reached the optimal solution, whenever the optimal solution was

known.

Solos et al take on a different shift scheduling problem [44], in that tank

trucks as well as their drivers are scheduled using a version of VNS known as

Effective Stochastic VNS. This algorithm introduces three new swap mechan-

isms. Two of the new swap functions are based on what is known as a core

swap method, and themselves are named sorted successive row swap and ran-

dom row swap. The final novel swap is collapsible window stochastic swap. In

total, there are nine potential swaps that the implementation can utilise, three

of the nine are novel. The study concludes that this methodology successfully

found solutions which reduce costs to the oil company by reducing overtime,

while minimising changes to driver schedules.

Nurse rostering is a well-studied problem with important impacts on the

real-world. Maenhout et al apply VNS to an instance of the nurse rerostering

problem to solve sub-problems to optimality [45]. The subproblems are divided

into nurse schedule, day roster and combination of days. However, the final

roster quality is dependent on the order in which the sub-problems are solved,

and a dynamic guiding order is recommended in order to add consideration

to the holistic solution as well as the local. This concept of restructuring the

problem into sub-problems is not explored thoroughly in the literature, and

this example was found to improve upon current (in 2011) state of the art

heuristics.

VNS is implemented in works described in Chapter 4, controlled by Metropolis-

Hastings Acceptance. VNS is also used in a hybridised state with ER&SR, de-

scribed fully in Chapter 6.

40

[6th November 2019 at 15:04]

3.2.2 Simulated Annealing

SA was described in Section 3.1. In this section examples of shift scheduling

and employee rostering problems solved by SA are described. SA has been

used less in for solving personnel scheduling in recent years. However, it has

often been used as an acceptance criterion [46][47]. The cases where it has

been used for employee scheduling are discussed in this subsection.

In 2004 a US-based patent was filed for what is dubbed a “Dynamic Work-

force Scheduler” [48], which considers schedules a workforce while consid-

ering employee preferences, job skills, minimum and maximum hours per

employee, rules regarding employment of minors, break times, union con-

tracts, and more. At the core of this patent is an SA algorithm which provides

consideration to the various constraints while scheduling employees.

Brusco et al aim to minimise cost by creating only as many shifts as are

required in [49]. One of the novelties of this paper is the constraint relaxations:

up until this point, most of the literature assumed certain restrictions were

required, which increased caused an excess of labour, and cost. A novel

‘intelligent improvement routine’ is implemented which prevents unnecessary

lingering run-time. Near-optimal solutions were found for all problems tested.

SA is used in Chapter 5 and Chapter 6 as a useful comparison to the results

produced by the other described algorithms.

3.2.3 Hybrid Approaches

Hybridised approaches have much potential and a proven track record in

employee scheduling problems. This is due to employee scheduling problems

often being found to be NP-Hard (as described by Brucker et al in [50]), and

hybrid approaches have component algorithms selected which can swiftly

41

[6th November 2019 at 15:04]

converge and explore. Blum et al [51] note that hybrid approaches are loosely

defined, of which critics disapprove. However, the authors also state that this

yet ill-defined term provides space for research into previously unexplored

directions.

An example of a hybrid algorithm for shift scheduling can be found in

the 2018 study by Pour et al [52]. A preventive signalling maintenance crew

scheduling problem is solved using a Constraint Programming (CP) / Mixed

Integer Programming (MIP) framework, where the CP implementation allowed

a feasible starting point for the MIP application to improve upon.

In an example of a nurse rostering problem, Rahimian et al [53] utilise VNS

in hybridisation with IP. A greedy heuristic is employed to tackle the initial

problem and create a base solution, which is successfully improved upon

iteratively with VNS deep-embedded with IP.

In the third edition of the Handbook of Metaheuristics by Raidl et al [54],

there is a useful chapter on metaheuristic hybrid techniques and the various

approaches explored in the literature. Additionally, as found in this literature

review, the authors have also found hybrid approaches to be increasingly

popular in regard to real-world problems. Another useful survey on hybrid

approaches was written in 2011 by Blum et al [51], which can give histor-

ical context to the now more popular methodologies which come under the

moniker of ‘hybrid metaheuristics’.

In the Burke et al 2008 paper [55], VNS is hybridised with heuristic order,

and found that this hybrid approach significantly outperformed a commercial

genetic algorithm on the same data-set. In another paper of Burke et al [5],

VNS was again hybridised but with IP instead of heuristic ordering. However,

this new approach was compared to the previous hybridisation and found

improvements. This was, in part, the inspiration towards hybridisation of VNS

with ER&SR in Chapter 5 and the hybridisation of ER&SR with IP in Chapter 6.

42

[6th November 2019 at 15:04]

3.2.4 Matheuristics

Metaheuristics are generally viewed as black-box optimisers, but there are a set

of optimisers which come under the label of grey-box optimisers, which are a

hybridisation of mathematical programming (such as MIP) and metaheuristics,

known as matheuristics.

In [56] the authors solve a nurse rostering problem based in an Italian

private hospital using a VNS based matheuristic, combined with CPLEX and

separately combined with XPRESS. The solutions showed that the proposed

MathVNS procedure were equal to or better quality than those produced by

the XPRESS solver standalone. Moreover, this was found to be a solution of

satisfactory quality for use within the hospital.

A real-world data set problem provided by the French Operations Research

Society is solved by Chen et al [57]. The presented algorithm is known as

‘Forward Approximate Dynamic Programming Algorithm’, which uses a

mathematical algorithm in R in conjunction with the dynamic programming

component to produce a schedule for technicians. Interestingly, R is capable of

providing near instantaneous solutions, the dynamic programming element re-

quires longer run-time. However, the main focus of this study is not to improve

demand on a day-by-day basis, but to manoeuvre the workforce into a better

position for future customer service requests. This Approximate Dynamic

Programming based approach outperforms the so-called ‘myopic approach’

across all variants including the baseline problem, workforce disruption and

new task type introduction.

Matheuristic approaches appear to be increasing in popularity in recent

years, which is unsurprising due to the improved quality of quick solutions,

when compared to base metaheuristics.

43

[6th November 2019 at 15:04]

In this thesis the problems solved by the FSO are unlike most scheduling

problems due to the two main reasons. First, the FSO is involved in ongoing

negotiations with the employees union to ensure any changes made are fair

and meet expectations and requirements of the employees. As such, solutions

must provide a flexibility constraint to ensure change can be limited. Secondly,

due to the FSO having tens of thousands of existing employees with existing

contracts, all contracts must be respected as they currently exist. This means

that tens of thousands of constraints must be implemented as is. The simplest

mechanism for this is a direct import of RPs, which contain all shifts, days per

week, and so on. This provides a novelty to this research, as the unique large

set of constraints require creative considerations to provide new solutions to

optimising employee rosters, and problems of this nature with these specific

constraints have not been found within the literature.

3.3 parameter tuning

Due to a substantial impact on the quality of solutions produced by algorithms

of which have their parameters ‘tuned’ (the metaphor refers to guitar, piano, or

other stringed instruments having tension altered to correct tones), parameter

tuning has been rightly thoroughly investigated in a variety of real-world fields

and employee scheduling. There are two broad approaches: statistical analysis

and search-based optimisation. In the paper by Eiben et al [58], the authors

state various benefits of parameter tuning from their research, including salient

superior parameter values, insight into algorithmic performance, information

about the importance and interactions between parameters. They note that

automated parameter tuning is the transition from competitive to scientific

testing.

44

[6th November 2019 at 15:04]

3.3.1 Taguchi Methods

The Taguchi methods are a series of statistical tests and methodologies, de-

signed by Genichi Taguchi [59] originally for use in improving the quality of

manufactured products. In recent years, the Taguchi methodology has been

used in a variety of industries and research disciplines to solve a variety of

problems, including marketing, search design, machining problems, and so

on. The Taguchi method of design has also been applied to various search

problems, some of which are described below.

In a publication by Wang et al [60], the Taguchi design methodology was

used to tune a PSO algorithm applied to a motor design problem. It was

found that when Particle Swam Optimisation (PSO) is tuned by the Taguchi

design method, optimal solutions can be found in benchmark functions, and

the authors state that generally throughout testing, parameter design with

Taguchi method on PSO obtains the global optimum and is more robust.

Both SA and VNS are tuned using the Taguchi method in Maleki et al’s paper

[61] to solve an assembly flow-shop scheduling problem. The results of this

experiment show that the VNS implementation outperforms the SA algorithm

in terms of solution quality, but not in terms of CPU time to solve. When using

a tuner to compare two algorithms like this paper proposes, the tuner provides

an additional level of fairness to experimentation, as these algorithms have

stochastic elements, where default parameterisation may hinder the search

greatly depending on how direct the influence of parameters are on each

algorithm. Allowing each algorithm to run with closer to optimal run-time

parameters provide a comparison of best-case scenarios for each algorithm,

allowing a fairer comparison of goodness.

45

[6th November 2019 at 15:04]

3.3.2 irace Software Package

The renowned software package irace [62] allows automatic configuration

of parameters, regardless of implementation language or operating system.

Due to the ease of use, the well documented user guide and automatic tuning

nature of the software, there has been much attention given to this tuner in the

literature since its release. irace is based on the f-race algorithm, introduced

in [63][64].

One such example of irace being used as a parameter tuner for a search

problem can be found in Mascia et al’s paper [65]. This approach imple-

ments a grammar-based generation of stochastic local search heuristics using

irace. The authors found that replacing the evolutionary algorithm in the

grammatical evolution with irace provided an improved result.

The automated design of algorithms is a fairly recent field of study which

includes generating mutation operators for GAs by Woodward et al [66] and

for creating human competitive programs alongside Genetic Improvement (GI)

by Haraldsson et al [67]. A niche use for irace can be found in the automated

design of algorithms in Yarimcam’s 2014 paper [68]. In this problem items

are packed into bins, and require immediate decisions of where to go to

prevent overflow. As this implies, an optimal solution is unimportant, the

best solution available in the short time frame is the most important. irace

is used to train an algorithm which produces heuristics to solve the problem.

Generally irace, in the literature, is used for tuning algorithms which produce

solutions directly, not for tuning a method which produces heuristics itself.

Two classes of train-test sessions are considered in this study, categorised into

small (N = 104) and large (N = 105). These two sessions are compared to one

another, as well as to a GA and an Apprenticeship Learning (AL) algorithm.

46

[6th November 2019 at 15:04]

Policies produced by irace tuning are found to be effective and produce

competitive results against all but the GA method for policy production.

3.3.3 Other Approaches

In Rangel et al’s paper [69] an SA algorithm is tuned for an employee timetable

scheduling problem for call centres using covering arrays. A covering array is

a combinatorial object which is often used in software and hardware testing.

It is a method employed to find a fair set of test cases which cover a vari-

ety of potential situations or parameters that the hardware or software will

encounter in deployment. Covering arrays have been reused for parameter

tuning algorithms, due to the nature of considering a wide variety of inputs.

In the aforementioned study, the covering array allows consideration of some

parameters configurability in relation to other input variables. The authors

recommend further usage of covering arrays for parameter tuning, however,

there is a strong case to be made that covering arrays are substandard.

Statistical inference methods have also been used as parameter and operator

tuning tools in Petrovski’s publication [70]. It was found that factor tuning

has several disadvantages, including mistakes making sub-optimal or even

unsuccessful runs; trial and error approaches are impractical for real-world

scenarios due to factor interaction and optimal settings for one problem are

not necessarily the best for another. However, the methodology introduced in

this paper show that in situations where these methodologies are ‘worth the

effort’ the aforementioned problems can be addressed.

Hutter et al [71] produced a parameter tuner known as Sequential Model-

based Algorithm Configuration (SMAC) 1, which is considered state-of-the-art

for model-based automatic configuration according to Caceres et al [72]. SMAC

1 http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

47

[6th November 2019 at 15:04]

is based on Sequential Model-Based Optimization (SMBO) and builds a ran-

dom forest (a machine learning algorithm, itself built on the principles of

regression and classification) model to predict optimal parameters or settings.

SMAC has been successfully used as a surrogate models for aiding irace

configurations [72], tuning the specialised Answer Set Programming (ASP)

toolkit known as Answer Set Programming Combinatory Categorial Grammar

Toolkit (AspCcgTk) to provide linear improvements in run-time by Buddenha-

gen et al [73], improving quality of pathing algorithms in a robotics study by

Burger et al [74], and hundreds of other uses.

However, an alternative 2013 study by Arcuri et al [75] with over a million

experiments across various parameter tuning settings and various problems

has shown that there is not always a benefit to parameter tuning. As the no

free lunch theorem (first described in [76]) implies, there is a direct cost to any

algorithm. Arcuri et al state, and through various experiments can fairly argue,

it may not be worth the effort tuning the parameters of an algorithm. Instead,

simply using the default values may be in the long run more efficient. This

is particularly true for test data generation, but otherwise there is an implied

‘grey area’. That being said, if an algorithm is to be repeatedly used on similar

datasets, tuning is viable and certainly worthwhile. In this thesis various

real-world problem instances are solved, and created with the intention of

future use by the FSO. As such, parameter tuning is worthwhile.

Parameter tuning is a methodology investigated in this thesis. In Chapter 5

the Taguchi method is investigated as a parameter tuning tool for use with

ER&SR. In Chapter 6 as well as in 7, following best practice, irace is used to

tune parameters and is found to be a useful and powerful software for this

purpose. For further reading, the 2019 paper by Huang et al provides a recent

insight into trends regarding automatic tuning of metaheuristics [77].

48

[6th November 2019 at 15:04]

3.4 conclusion

This thesis contributes to the field of operational research by investigating the

use of metaheuristics and hybrids incorporating them for optimising employee

schedules for use within telecommunications. This chapter has provided an

overview of recent as well as critical developments in the field of employee

scheduling in Section 3.2, an overview of how algorithms implemented in this

thesis are used in the literature for other real-world problems in Section 3.1

and an overview of how the tuning algorithms utilised in this thesis have been

used in other problems in Section 3.3.

This literature review highlights the importance of hybrid approaches for

finding state of the art results for real-world problems, and notes the increase

in number of hybrid approaches for employee rostering problems. This thesis

focuses on using a combination of previously unseen characteristics in OR

literature to solve a real-world employee scheduling problem, and compares

them to the individual components as standalone tools for this problem.

49

[6th November 2019 at 15:04]

4
C H A P T E R 4 - P E R S O N A L I S E D S C H E D U L I N G &

R O S T E R I N G - VA R I A B L E N E I G H B O U R H O O D S E A R C H

This chapter provides preliminary results from the personalised scheduling

problem defined in Chapter 2. The purpose of this chapter is to 1) ascertain

whether the shift scheduling & employee rostering problem can be solved

using a known metaheuristic and 2) provide insight into further research to be

taken in proceeding chapters. This chapter first describes the implementation

of a Greedy Algorithm and VNS used to tackle the problem, initially described

in Chapter 2, is then described in section 4.1. Following this are the results

and a conclusive discussion.

4.1 implementation

The order of events for this section follow the steps of the algorithm. First,

the Greedy Algorithm is explained, which provides an initial solution for the

algorithm to work upon. Then the VNS implementation is defined, which is

controlled by a Metropolis-Hastings Acceptance criterion, that is also described.

The flow of events is visualised in Fig 4.1.

4.1.1 Greedy Algorithm

The first step of this solution is to create a set of neighbourhoods which satisfy

the HCs using a Greedy Algorithm. This will likely produce a poor quality

50

[6th November 2019 at 15:04]

Figure 4.1: Diagrammatic Overview of Algorithm Flow

solution in terms of meeting SCs, but this is only to act as a starting point

for the VNS algorithm. This process is demonstrated in Algorithm 4.1. The

counter c represents the current number of shifts still required to meet all

employees’ contractual obligations and therefore ensuring that HC3 is satisfied.

The statement “next highest priority demand” refers to a shift where the

highest amount of demand could be satisfied. This is so that some level of

quality can come from the Greedy Algorithm, and if the high-quality SC

placements repeatedly fail, eventually employees can be allocated to shifts

where there is no demand requirement as employees must work even if there

is no demand (contractual requirements are HCs).

4.1.2 Variable Neighbourhood Search

The VNS requires a solution, comprised of neighbourhoods, as a parameter. A

benefit of using the VNS is that, while the Greedy Algorithm limits the scope

of local optima, the VNS allows some movement around the solution space,

51

[6th November 2019 at 15:04]

Algorithm 4.1 Greedy Algorithm

1: infeasible← true

2: while infeasible do

3: k← getRandomShiftAmongstHighestPriorityDemand

4: e← getRandomEmployeeWithHighestSkillPreference(k)

5: if allocating e to k is feasible then

6: Allocate e to k

7: end if

8: if all contractual obligations are met then

9: infeasible← false

10: end if

11: end while

providing a higher chance of reaching the global optimum - or at least closer

to it.

The solution the VNS receives is a set of weeks with employees allocated

throughout. The VNS works in three steps as follows.

Firstly, by looking at a random day within the solution which has at least

two employees on different shifts (day shift and late). Then an HC check is

run, ensuring that swapping these two employees is acceptable. If they can

safely be swapped, the algorithm then analyses the current solution in terms

of fitness; how well the SCs are met. The swap occurs, and a second fitness test

is run. If the fitness has worsened, the swap is reverted, otherwise the change

is accepted. This intra-day swap mechanism can be viewed in Fig 4.2. Please

note L is short for ‘late’, D is short for ‘day’ and ‘e’ is short for ‘employee’.

The percentage chance of the next phase occurring is dependent on Metropolis-

Hastings acceptance, which is described in section 4.1.2.1. In this phase, a more

disruptive change occurs: instead of swapping employees on a single day, an

employee is moved shifts from one day to another in the same week. This is

52

[6th November 2019 at 15:04]

Figure 4.2: Intra-day Swap Mechanism

dependent on whether the HCs allow this swap (e.g. if an employee cannot

contractually work Sundays, they will never be given a Sunday). Similarly to

before, this change will occur, but only if fitness improves will the change

remain as part of the solution. This inter-day swap mechanism can be viewed

in Fig 4.3.

Figure 4.3: Inter-day Swap Mechanism

The final phase of the VNS is the least likely to occur as it is the most de-

structive, and is also controlled by Metropolis-Hastings acceptance, preventing

this from occurring as frequently towards the end of run-time. In this phase

a single employee has a week of allocations removed. The employee is then

53

[6th November 2019 at 15:04]

Figure 4.4: Delete & Regenerate Mechanism

given a new set of shifts which meet HCs, and to an extent SCs. Regardless

of improvement of fitness or not, this change remains. This is intentional, in

order to leave the current neighbourhood and potentially reach higher fitness

levels. This is visualised in Fig 4.4.

54

[6th November 2019 at 15:04]

4.1.2.1 Metropolis-Hastings Acceptance

In this instance the solution utilises the probabilistic acceptance criterion

of Metropolis-Hastings acceptance, similar to exponential Monte-Carlo or

Simulated Annealing, and embedding it within the VNS.

Unlike in more traditional methods, in this approach Metropolis-Hastings

acceptance is used to attempt to find a global maximum. Specifically, this

method of controlling the frequency of an event occurring over time is used to

reduce the likelihood of disruption the closer the algorithm is to ending. The

VNS should produce a better solution as time moves forward, but if the VNS is

not controlled by Metropolis-Hastings Acceptance there is increased chance of

losing a more highly rated fitness solution.

The goal of the Metropolis-Hastings Acceptance is to reduce the likelihood of

unnecessarily altering a good solution later in run-time, and allow exploration

of the solution space earlier in run-time. The rates mentioned henceforth are

used during testing but are parameterised and therefore malleable as the user

of the algorithm prefers (or as tuning tools or test design cases set). During

the inter-day swap mechanism, the probability of this going ahead is first

p = 100%, but this decreases by 0.99 ∗ p each iteration. The chance of a drastic

change through the delete & regenerate method is at first 10%, and this reduces

by 50% of the current likelihood every 10% of run-time (i.e. 10% at start, then

5%, then 2.5%, etc.) This means it’s still possible a change will happen later in

run-time but becomes much less likely, thus increasing likelihood of retaining

a good solution.

4.2 results

Whether a solution can be accepted as feasible or infeasible is determined by

the HCs being achieved, which ensure that legal and contractual requirements

55

[6th November 2019 at 15:04]

Algorithm 4.2 Variable Neighbourhood Search

1: s← greedyAlgorithmSolution()

2: r← parameterisedRuntime()

3: d← parameterisedDays()

4: d ′ ← randomDay()

5: iDS← 1.0 //Inter-day swap probability

6: dRG← 1.0 //Delete & regenerate probability

7: while getCurrentTime() < r do

8: if intra-day swap is feasible (d’) then

9: e← randomEmployee()

10: f← getFitness()

11: swap(d’)

12: f ′ ← getFitness()

13: if f > f’ then

14: swap(d ′) //undo

15: end if

16: end if

17: if iDS > randomDouble() then//Inter-day swap

18: e← getRandomEmployee()

19: f← getFitness()

20: d ′ ← getRandomDayEmployeeIsWorking(e)

21: d ′′ ← getDifferentRandomDayEmployeeIsWorking(d ′)

22: swap(d ′, d ′′)

23: f ′ ← getFitness()

24: if f > f ′ then

25: swap(d ′, d ′′) //undo

26: end if

27: end if

56

[6th November 2019 at 15:04]

28: iDS ∗= 0.99

29: if dRG > randomDouble() then //Delete & regenerate

30: e← getRandomEmployee()

31: w←getRandomWeek()

32: removeAllEmployeeAllocationsForThisWeek(e, w)

33: generateFreshAllocations(e, w)

34: end if

35: dRG ∗= 0.5

36: end while

are met. The quality of the feasible solutions is measured by how well the SCs

are met. Solutions produced by this algorithm always meet HCs, and meet SCs

to some extent. SCs are assumed to be of equal priority during testing, however

it should be noted that these can be modified before run time so certain SCs

can take a higher precedence and the final fitness results are weighted as such.

Fitness results are obtained from fitness functions, which each return a value

pertaining to the SC they represent. The fitness results are then averaged (this

can be parameterised to other weightings) to return an overall fitness value

for the current solution. The results in this section were tested on an oracle

enterprise Linux 6 OS server with a 12 core Xeon CPU for 1 hour. The tests

used real employee data and real demand forecast data, however it should be

stated that the number of shift types the employees work was increased as the

data provided was for an area where engineers worked a very small number

of late shifts per quarter.

There were 50 tests conducted, and the results are shown in Fig 4.5. These

results show the mean fitness of the solution after being processed by the

Greedy Algorithm compared to running variable neighbourhood search pro-

cesses for one hour. These values are calculated by taking the mean of all

fitness values carried out from the SCs. In practice the SCs can be weighted so

57

[6th November 2019 at 15:04]

the engine can be used to produce solutions which cater to specific intrigues,

for example increasing the weighting of SC1 being met.

The mean of all Greedy Algorithm fitness results is 0.681 and the mean of

all VNS fitness results is 0.784, which indicates that over fifty tests running

at 1 hour each, there is an average of 10.3% increase in fitness using the VNS

algorithm after the Greedy Algorithm sets up an initial solution. Metropolis-

Hastings acceptance is the technique used in order to prevent a closer to

optimal solution from being disrupted later in the run-time.

Linear regression analysis was conducted to analyse the relationship between

the Greedy Algorithm solution and the resulting VNS solution. The coefficient

of determination R2 is shown in Fig 4.5. This statistic gives useful information

about the goodness of fit. An R2 value of 1 would indicate the regression

line perfectly fits the model. In this instance the R2 value is calculated at 0.83,

this is a good indicator of positive correlation between the results of the VNS

algorithm and the Greedy Algorithm.

Figure 4.5: Mean VNS Fitness Scatter Plot

Further analysis was conducted on the normality of data. First, Shapiro-Wilk

tests were performed and found the normality of the data was rejected (values

can be found in Table 4.1).

58

[6th November 2019 at 15:04]

W p

Greedy Algorithm 0.726 2.484e-08

VNS 0.754 9.002e-08

Table 4.1: Shapiro-Wilk Tests

This prompted the need to visualise the data to find a reasoning for the lack

of normality. Two Q-Q plots can be seen — the Greedy Algorithm Q-Q plot

in Fig 4.6 and the VNS Q-Q plot in Fig 4.7. These visualisations show that the

non-normal distribution of data is due to outliers.

Figure 4.6: Greedy Algorithm Q-Q Plot

After removing outliers, a normal distribution of data emerges. For the

Greedy Algorithm tests this can be visually confirmed in Fig 4.8, and for VNS

in Fig 4.9.

With the outliers removed, it is also wise to visualise the spread of values for

both datasets. This can be viewed in Fig 4.10. Additionally, the Shapiro-Wilk

59

[6th November 2019 at 15:04]

Figure 4.7: VNS Q-Q Plot

W p

Greedy Algorithm 0.96546 0.1675

VNS 0.97789 0.4939

Table 4.2: Shapiro-Wilk Tests (Outliers Removed)

tests were run again to confirm normality after removing outliers. The results

can be viewed in Table 4.2. With the p value in both instances being above an

α level of 0.05, the Shapiro-Wilk tests now confirm normality in the data. The

null hypothesis — that the data are normally distributed — cannot be rejected.

While testing in this section allows the algorithm to run for 1-hour, in testing

with a 5 second upper limit (as a requirement of this algorithm by the FSO),

feasible solutions with fitness values much lesser than the 1 hour run-time

are produced (on the same employee region and demand set). However, these

still provided improvements upon the baseline, on average 3.7% improvement

60

[6th November 2019 at 15:04]

Figure 4.8: Greedy Algorithm Q-Q Plot with Outliers Removed

upon the greedy algorithm result, showing that the additional run-time given

to VNS is potentially worthwhile.

4.3 discussion

This chapter details a case study of using a variety of metaheuristics to solve a

highly constrained real-world shift scheduling and employee rostering prob-

lem. This was achieved using VNS, controlled with a probabilistic acceptance

criterion of Metropolis-Hastings acceptance, upon an initial solution generated

by a Greedy Algorithm.

This chapter has taken a real-world problem and used a combination of

algorithms to improve upon the current standard at the FSO (of manual roster-

ing) by producing a set of feasible schedules of good quality within 5 seconds,

as required by the FSO.

61

[6th November 2019 at 15:04]

Figure 4.9: VNS Q-Q Plot with Outliers Removed

Figure 4.10: Greedy Algorithm vs VNS Boxplot

62

[6th November 2019 at 15:04]

Potential future work could be to extend the Greedy Algorithm with extra

functionality which will provide a starting set of shift patterns which already

meet some HCs. This head-start should improve the time it takes for the

algorithm to run, as well as potentially improving fitness results since closer

to optimal patterns can be preset with this method. Alternatively, entirely

replacing the Greedy Algorithm with a more powerful heuristic could provide

a better starting point for the VNS. There is also the option of furthering

analysis on which days least meet fitness criteria, and attempting to focus on

those days in particular — this may improve fitness more quickly by solving

problem areas. Other acceptance criterion algorithms are available which could

be explored to provide further exploration and exploitation within the limited

5 second time frame.

Gratitude is extended to the FSO for providing this data and providing much

information during the constraints capture phase of this work.

63

[6th November 2019 at 15:04]

5
C H A P T E R 5 - P E R S O N A L I S E D S C H E D U L I N G &

R O S T E R I N G - E V O L U T I O N A RY R U I N & S T O C H A S T I C

R E C R E AT E

This chapter solves the refined personalised scheduling & rostering problem

as described in Chapter 2.

5.1 implementation

This section describes implementation — in particular, the changes to the

algorithm presented in Chapter 4 required to meet the specific requirements

of the problem. The order in which the algorithm is implemented to operate

has been changed from that of the theoretical framework [16] to meet the

requirements of the FSO problem. As suggested by Li et al [16], a different

control mechanism (EMCAC) is used to allow a halting operation; to prevent

overt disruption in the final iterations of the search; allow exploration of the

search space earlier in run-time; and if parameterised correctly to prevent

early convergence. A pseudocode overview of the modified algorithm is given

in algorithm 5.1, and a flow diagram can be viewed in Fig 5.1.

64

[6th November 2019 at 15:04]

Figure 5.1: Flow Diagram

65

[6th November 2019 at 15:04]

Algorithm 5.1 Evolutionary Ruin & Stochastic Recreate

1: t← getParameterisedTemperature()

2: δ← getParameterisedDelta()

3: cr← getParameterisedCoolingRate()

4: sr← getParameterisedSelectionRate()

5: mr← getParameterisedMutationRate()

6: a← greedyAlgorithmSolution() //Initialisation complete.

7: while t > δ do //Exponential Monte-Carlo Acceptance

8: b = a.copy()

9: f ← decomposition(W) //W are parameterised weightings. Solution de-

composition complete.

10: a = selection(a, sr)

11: a = mutation(a, mr) //Evolutionary ruin complete.

12: a = rebuild(a) //Stochastic recreate complete.

13: p← getAcceptanceProbability()

14: if p < r then //Random int

15: a = b.copy()

16: end if//Solution acceptance complete.

17: t ∗= cr

18: end while

5.1.0.1 Phase 0 - Initialisation

The first phase initialises the problem, including creating every potential

shift. This means after this phase has run, there is a shift of every potential

length, with every potential start and end time, for every particular skill

requirement, per shift rule. It is important to note that during initialisation,

shifts which are impossible are not created (for example no employees work

Sundays, so no Sunday shifts are created). This is important as it allows

66

[6th November 2019 at 15:04]

the algorithm to explore the search space without having to recreate shift

objects repeatedly, saving on potential processing costs. After initialising,

this phase also creates an initial solution by Greedy Algorithm. The Greedy

Algorithm in this section is simplistic, and calls on the fitness functions of

the Solution Decomposition phase to calculate preferred employee allocations.

See algorithm 5.2 for pseudocode. Having a greedily constructed solution

means that the second phase of evolutionary ruin has allocations to ruin

during the first cycle. After the initial solution creation, the algorithm cycles

through subsequent phases until the end criterion is met — specifically, until

the temperature is equal to or less than the delta.

Algorithm 5.2 Greedy Algorithm

1: infeasible← true

2: while infeasible do

3: k← getRandomEmployeeShiftAllocationAmongstHighestFitness()

4: if allocating e to k is feasible then

5: Allocate e to k

6: end if

7: if all contractual obligations are met then

8: infeasible← false

9: end if

10: end while

5.1.0.2 Phase 1 - Solution Decomposition

The solution decomposition consists of Employee Shift Allocation (eSA) objects

as the componential elements for analysis. These objects consist of a shift and

an employee. Each of the eSA objects across the scheduling and rostering

period are assessed for their fitness, which is derived from each objects ability

to satisfy the constraints. The calculation by which the overall object fitness is

67

[6th November 2019 at 15:04]

derived is dependent on the parameterised weightings per constraint. The SC

weightings are parameterised so that users of the algorithm can modify con-

straints to be worth more or less than other constraints, for use in real-world

scenarios (for trying different preferences, techniques etc.). This feature was

implemented for a more realistic business use case. By default the HC fitness

is worth 95% of the total and the final 5% is between the weighted SCs. Due to

the nature of this problem there is a separation of holistic constraints and lower

level constraints, which are described in the ER&SR algorithm. This is due to

the holistic constraints requiring knowledge of the whole solution, including

all shifts and employee allocations. The holistic constraints mentioned are HC2,

HC3, HC7 & SC4. In this implementation there is a deviation from the algorithm

presented in Chapter 4 to allow consideration of these holistic constraints. This

is achieved by measuring these constraints at a schedule-wide perspective,

then modifying the fitness values of individual eSA objects. If an object is

found to break these constraints (for example, scheduling an employee to

work a 6-day week when contracted for 5), then fitness of all offending eSA

objects is probabilistically modified. The schedule thus far is unchanged from

the initial solution construction, or since the previous iteration as this solution

decomposition phase only provides analysis of solution fitness.

5.1.0.3 Phase 2 - Evolutionary Ruin

The next phase is the evolutionary ruin section where every eSA object is

evaluated and employees are probabilistically removed from shifts. This phase

was named “Evolutionary Ruin” by Li et al [15] due to the introduction of the

selection and mutation operators. With all the fitness values obtained from

the Solution Decomposition phase, each eSA object is evaluated first in the

selection mini-phase. The selection mini-phase first calculates an acceptance

rate:

68

[6th November 2019 at 15:04]

P = r ∗ x1 (5.1)

Where P is the probability of acceptance, r is a random number between

0 and 1, and x1 is a parameter to tune the fastidiousness of the selection

mini-phase. Then P is compared to the fitness of the object: if the fitness is

higher than the random number, continue to the next eSA. If instead the fitness

is lower than P, then the employee is removed from this eSA.

After the selection mini-phase is the mutation mini-phase, which will prob-

abilistically remove an employee from every eSA object without regard to

fitness. This introduces an additional level of stochasticity by probabilistically

deallocating employees from eSA objects, allowing additional exploration of

the solution space. This phase solely targets the components which previously

were selected for retention in the selection phase (or rather, not selected for

deallocation). This proceeds without regard for fitness values. The ruin phase

causes the occasional removal of an employee from an individual shift. Careful

parameterisation of this phase is important as excessive ruination can hinder

exploitation. The chance of the ruination occurring is calculated as follows:

P = r ∗ x2 (5.2)

Where P is the probability, r is a random number between 0 and 1, x2 is the

parameter used to increase or decrease probability, and the subscript is the

parameter to control the rate of removal.

5.1.0.4 Phase 3 - Stochastic Recreate with Solution Acceptance

This now partially complete solution (which may even be empty if enough

components are destroyed) is reconstructed during the stochastic recreate

phase. This phase executes repeatedly until a full solution is available. First,

the list of employees is randomly ordered to prevent giving preference to the

first employees in the list repeatedly. An employee is taken from the list and

69

[6th November 2019 at 15:04]

the number of shifts worked per week is calculated. Every week where the

employee is not working enough shifts is allowed to rebuild. This is conducted

by selecting a random day in the week the employee is not currently working

then selecting a random shift that exists on this day, and the employee is

placed onto this shift. The fitness of this component is then analysed, and a

random floating-point number between 0 and 5 is generated. Due to the HCs

consisting of 95% of the fitness, the generated number becomes the allowed

SC fitness. If the allocation is above the acceptable limit (95% + r) then the

allocation is accepted. The recreation method repeats for all employees and all

weeks until a full schedule has been generated.

The stochastic recreate with solution acceptance phase is controlled by EMCAC

acceptance criterion, a frequently used methodology derived from statistical

thermodynamics. In this circumstance however it is used to control the ruining

capabilities of ER&SR as well as this phase. The acceptance probability is as

follows [6]:

P = exp((o−n)/t) > r (5.3)

Where P is the probability of accepting a worsened state, o is the original

solution energy cost, n is the energy cost, t is the temperature and r is a

random number between 0 and 1. This allows extensive exploration in the

early stages of run-time but turns to more exploitative measures later in run-

time. If the solution is accepted then the previous solution is overwritten, and

the algorithm enters the next iteration or ends if the temperature t < δ (where

δ is the parameterised end criterion). If the solution is rejected, the previous

solution is preferred, and the algorithm enters the next iterations or ends if

the temperature t < δ. Due to the nature of EMC acceptance criterion, the best

solution found is not necessarily the final solution at the end of run-time. As

such, this implementation saves the best solution found for actual use.

70

[6th November 2019 at 15:04]

5.2 results

The results in this section are derived from tests which ran on an oracle

enterprise Linux 6 OS server with a 2.3GHz Xeon CPU. Parameters were first

tuned using the Taguchi method, some of the results of these tests are also

presented in this section. The parameters which provided the best overall

fitness (as an unweighted average) are then discussed.

The effectiveness of metaheuristics is largely dependent on well-tuned

parameters [4]. There are many experimental designs which can be used for

tuning the parameters, such as grid search, random search, or more popular

recently; hyper-heuristics. However, the Taguchi method has not been used

in personnel scheduling, but has much success in the experimental design of

engineering methods [78], electrical engineering [79], designing test cases for

a open routing vehicle problem using neural networks [80], and others.

The Taguchi design of experiments evolved from orthogonal arrays and

Latin squares [81]. This design of tests allow experimentation with a variety

of parameters to find a combination of parameters to produce a high fitness

value with ER&SR, and reduce the testing time (which is deemed important

to the FSO).

The cooling rate is used as the EMCAC control mechanism which controls

the number of iterations. t is set at 10000 for all tests, and the testing included

6 potential cool rates, from 0.09 - 0.59.

An L16 (42) orthogonal array was designed consisting of 2 factors with 4

possible values and 16 runs - however, as having 0 selection and 0 mutation

rate is redundant, this was removed (so only 15 runs). This consisted of the

following parameters: the Selection rate (SR) is used during the evolutionary

ruin phase as is the mutation rate (MR).

71

[6th November 2019 at 15:04]

Table 5.1: Top Five Mean Taguchi Test Results

SC1 SC2 SC3 SC4 SR MR1 MR2
Mean

Fitness
σ

0 1 0 1 0.33 1 0 96.983 0.038

1 0 1 0 1 0.66 0 96.975 0.034

0 0 1 0 1 1 0 96.973 0.087

0 0 1 1 0.33 1 0 96.972 0.055

0 1 1 0 0.33 0.33 0 96.971 0.054

This is combined with an L8 (24) orthogonal array consisting of 4 factors

with 2 possible values and 8 runs. These parameters are simply toggles to turn

SCs (SC1 - SC4) on or off. Two tables were used due to the limitations in the

number of Taguchi designs that exist. It is likely other problems would require

different parameters from those given in Section 5.1, as these parameters are

tuned for this problem specification and dataset. The top five fitness results

from Taguchi testing are shown in table 5.1. Cooling rate is not shown because

all of the 5 results shown had a cooling rate of 0.09.

Testing included running each above Taguchi test 10 times on a demand set of

1 month for close to 200 employees. Fig. 5.2 highlights a sample of the testing

conducted (6 configurations out of 600 total configurations), showing that

there is a significant difference in the distribution of fitness levels obtained

using different parameter configurations. ANOVA testing also confirmed this.

However there was little difference between the top 5 results as shown in Fig.

5.3.

The best-case scenario can be seen in more detail in Table 5.1. The parameters

for the highest fitness are noteworthy, as it seems to be generally preferable to

have a maximum amount of selection rate and about 66% of mutation rate. It

also highlights that it is easier to forge a solution where SC2 and SC3 are met

72

[6th November 2019 at 15:04]

Figure 5.2: Box-Plot of Fitness for 6 Sample Parameter Configurations

rather than SC1 and SC4. Our recommendation to the FSO in this instance is

to test parameterising the SCs in a weighted format to find a balance that most

satisfies the company and employee requirements. An example of the fitness

throughout a single test with a single set of parameters can be viewed in Fig.

5.4.

This solution improves upon the current implementation of manually gener-

ated rosters. The improvements are found across all SCs when the best case

solutions of both the manual and the ER&SR implementations are compared.

5.3 conclusions

In this chapter a revised implementation of the ER&SR algorithm is presented

to tackle a real-world employee scheduling and employee rostering problem.

This approach is novel as it has not previously been used to tackle real-world

employee scheduling and rostering problems. The results have shown that this

73

[6th November 2019 at 15:04]

Figure 5.3: Box-Plot of Fitness for the Best 5 Parameter Configurations

Figure 5.4: Fitness per Iteration of a Single Test.

74

[6th November 2019 at 15:04]

approach is an improvement upon the current implementation for generating

employee rosters and schedules, and that ER&SR is capable of generating

near-optimal solutions for this type of problem.

However, there is scope for further research. In particular using modified

ER&SR algorithms to personnel scheduling and employee rostering problems

when compared to industry solvers such as CPLEX and state of the art solu-

tions. There is also scope for further research into alternative test case designs

and parameter tuners such as irace [62].

75

[6th November 2019 at 15:04]

6
C H A P T E R 6 - R O S T E R PAT T E R N S - E V O L U T I O N A RY

R U I N & S T O C H A S T I C R E C R E AT E H Y B R I D I S E D W I T H

VA R I A B L E N E I G H B O U R H O O D S E A R C H

In this chapter the sub-problem known as the RP scheduling problem is tackled.

The problem is different to the personalised scheduling problem tackled in the

previous two chapters. Both problem types are described in Chapter 2. Given

the additional constraints this problem places on the search, an extension

to the ER&SR approach is proposed and introduced using VNS. This chapter

begins by introducing the hybrid algorithm, before giving experimental results

with a real-world case study.

6.1 implementation

6.1.1 Evolutionary Ruin & Stochastic Recreate

This chapter proposes a hybrid extension of the algorithm described in Chapter

5. ER&SR was used to solve not only an employee rostering but also a shift

scheduling problem, without VNS in 4, however in this instance ER&SR is

hybridised with VNS to solve a real-world employee rostering problem, not a

shift scheduling problem.

The implementation was designed to be modular, with a VNS component

which can be called at any stage of the algorithm. This allows consideration of

a variety of approaches and how to best exploit the local search advantages

76

[6th November 2019 at 15:04]

from VNS in conjunction with the more exploratory ER&SR. As such the

following hybridised algorithms have been implemented:

(i) ER&SR with VNS running sequentially after ER&SR stopping criterion

(referred to as ‘ER&SR with VNS Sequential’)

(ii) ER&SR with VNS running after accepting a modified schedule (referred

to as ‘ER&SR with VNS Internal’)

(iii) ER&SR with both the above (referred to as ‘ER&SR with both VNS internal

and sequential’)

Pseudocode of ER&SR with VNS can be seen in Listing 6.1. Lines 19 and 25

reference VNS, of which is described more fully in subsection 6.1.2, with VNS

pseudocode available in Listing 6.2.

The following revisions to the algorithm have been made to tailor it to

this specific sub-problem. This enumeration refers to line numbers within the

aforementioned pseudocode in listing 6.1 in the format of [Listing Name -

Line Number].

1. The initial set up phase initialises the software and reads the current

hand-written solution in place by the FSO [6.1 - 1-9].

2. The EMCAC control mechanism is initialised with the parameterised

inputs, controlling the number of times ER&SR loops, as are the VNS

iterations parameterised.

3. Phase 1 - solution decomposition no longer considers HCs. This is

due to RPs which ensure contractual and legal requirements cannot

be breached. More precisely, the HCs considered in this chapter can

be temporarily breached during the evolutionary ruin phase, but are

all then restored during stochastic recreate. SCs are considered in the

solution decomposition [6.1 - 12], and the fitness evaluations can be

77

[6th November 2019 at 15:04]

Algorithm 6.1 Evolutionary Ruin & Stochastic Recreate

1: t← getParameterisedTemperature()

2: δ← getParameterisedDelta()

3: cr← getParameterisedCoolingRate()

4: sr← getParameterisedSelectionRate()

5: mr← getParameterisedMutationRate()

6: vnsInt← getVnsInternalIterations()

7: vnsSeq← getVnsSequentialIterations()

8: a = originalSolutionFromFSO()

9: t ′ = t

10: while t ′ > δ do //Exponential Monte-Carlo Acceptance

11: b = a.copy()

12: f ← decomposition(W) //W are parameterised weightings. Solution de-

composition complete.

13: a← selection(a, sr)

14: a← mutation(a,mr) //Evolutionary ruin complete.

15: a← rebuild(a) //Stochastic recreate complete.

16: p← getAcceptanceProbability()

17: if p < r then //Random int

18: a = b.copy()

19: if vnsInt > 0 then

20: beginVNS(vnsInt)

21: end if

22: end if//Solution Acceptance complete.

23: t ′ ∗= cr

24: end while

25: if vnsSeq > 0 then

26: beginVNS(vnsSeq)

27: end if

78

[6th November 2019 at 15:04]

completed by considering only the potential changes from the current

state (referred to by [16] as ‘componential’ fitness). This is necessary

as all four SCs consider the percentage of all individual shifts meeting

criteria. The solution decomposition serves the purpose of analysing

fitness during ER&SR run-time as well as after VNS swaps have occurred

to decide whether to keep or revert changes.

4. Phase 2 - evolutionary ruin is mostly unchanged from the algorithm

presented in Chapter 5. Instead of ruining individual shifts, both the

selection and mutation elements now ruin employee RPs, by giving a null

allocation. Selection [6.1 - 13] will destroy elements with the following

probability:

P(s) = r ∗ x1 (6.1)

where P(s) is the probability of acceptance, r is a random number

between 0 and 1, and x1 is a parameter to limit the stochasticity of

selection. If P is higher than the fitness of the employee allocated to

their current RP, then the employee has their RP removed for a new one.

After selection is complete, mutation [6.1 - 14] considers all non-affected

employees, and randomly removes employees from RP. This adds an

additional level of stochasticity to the search. Fitness is not considered

during mutation. Mutation can be overly destructive and hinder exploit-

ation, so careful parameterisation is important. The chance of ruination

is calculated as follows:

P(b) = r ∗ x2 (6.2)

where P(b) is the probability, r is a random number between 0 and 1, x2

is the parameter used to increase or decrease probability. This phase is

likely to break a number of HCs before the schedule is reconstructed and

made feasible in the next phase.

79

[6th November 2019 at 15:04]

5. Phase 3 - stochastic recreate [6.1 - 15] no longer finds random shifts to

allocate employees to, but instead allocates employees to random RPs

and starting weeks. Employees to be allocated a new shift pattern are

chosen randomly. This is so the search space can be explored if HC2 or

HC3 are enabled. These HCs are considered with every RP allocation

to ensure the maximum bound is not breached. If HC4 is toggled on,

only RPs the employee has selected may be considered for allocation.

Otherwise, any RP can be allocated.

6. Phase 4 - solution acceptance [6.1 - 16-22] will probabilistically accept the

changes. This is unchanged from the above-mentioned previous work,

and still uses the EMCAC. The acceptance probability is calculated as

follows:

P = exp((o−n)/t) > r (6.3)

where P is the probability of accepting a worsened state, o is the original

solution energy cost (modelled as inverse fitness), n is the energy cost of

the new solution, t is current temperature and r is a uniformly generated

random number between 0 and 1.

6.1.2 Variable Neighbourhood Search

In the same manner as the last subsection, code lines are referred to in the

following manner: [6.2 - Line Number].

After the ER&SR algorithm has accepted a new solution, VNS is called (if

parameters indicate to do so). The specific VNS method chosen is basic VNS

[3]. While more complex varieties of VNS are available (such as other hybrid

solutions [53], or with adaptive memory improvements [82]), ER&SR already

provides a feasible close-to-optimal solution. Therefore, VNS is used to search

80

[6th November 2019 at 15:04]

nearby neighbourhoods for minor improvements rather than building from

the baseline.

Assuming iterations left is above zero, VNS first finds the fitness of the

current schedule [6.2 - 7]. Each employee defines a neighbourhood. A random

employee is selected, and so is their RP [6.2 - 8-9]. If HC4 is enabled, only RPs

the employee has a preference for are considered for the next step, otherwise

all RPs are considered [6.2 - 12]. A random RP from the top ranked RPs in the

selected list is chosen [6.2 - 12 or 13] (for example, if there are 300 potential RP

changes, and 7 have equal fitness potential, one of them is chosen randomly).

Checking if no HCs are failed by a potential swap, then the swap goes ahead

[6.2 - 15-21]. Then fitness of this new schedule is determined [6.2 - 22]. If the

new fitness is lower than the original, then the schedule is reverted, otherwise

it is kept [6.2 - 23 - 25].

6.1.3 Order of Events

After the internal VNS has completed, ER&SR repeats until the completion

criterion is met. VNS can then run after ER&SR has completed, if parameterised.

This would allow the best solution found by ER&SR to be exploited further by

VNS. In this implementation VNS is run either a) during ER&SR (shortly after a

solution has been accepted) for a number of parameterised iterations, b) after

the ER&SR iterations have all completed, or c) both. This means this algorithm

can be run with ER&SR only, ER&SR with VNS Internal, ER&SR with VNS Sequen-

tial, and ER&SR with both. These are compared as separate configurations,

alongside others, in section 6.2.

81

[6th November 2019 at 15:04]

Fig 6.1 provides a visual overview of the hybrid algorithm. In the diagram,

the internal VNS (to the left) is shorthand for the same process to the right of

the diagram. Both the internal VNS and the sequential VNS are only active if

parameterised to run.

82

[6th November 2019 at 15:04]

Algorithm 6.2 Variable Neighbourhood Search

1: kmax← getKmax()

2: tmax← getTmax()

3: W ← getWeightings()

4: while getCurrentTime() < tmax do

5: k← 0

6: while k < kmax do

7: f← getFitness(W)

8: e← getRandomEmployee()

9: s← getRP(e) //RP is Roster Pattern.

10: s ′ ← null

11: if isHC4toggled() then

12: s ′ ← randomRPfromBestRPsFromPreferences(e)//Only consider

RPs that e can feasibly be allocated to.

13: else s ′ ← randomRPfromBestOfAllRPs() //Consider all RPs.

14: end if

15: if swapWouldBreakHC2() then

16: continue

17: end if

18: if swapWouldBreakHC3() then

19: continue

20: end if

21: giveEmployeeRP(e, s’)

22: f ′ ← getFitness(scWeightings)

23: if f ′ < f then

24: giveEmployeeRP(e, s)

25: end if

26: k = k+ 1

27: end while

28: end while

83

[6th November 2019 at 15:04]

Figure 6.1: Diagrammatic Overview of ER&SR & VNS Hybrid

6.2 results

In this section the results are discussed from tests run on an Intel i5 2.49GHz

CPU. The configurations tested were:

(A) ER&SR with both VNS Internal and VNS Sequential.

(B) ER&SR with VNS Internal.

(C) ER&SR with VNS Sequential.

(D) ER&SR only.

(E) VNS only.

(F) SA only.

(G) Baseline.

84

[6th November 2019 at 15:04]

Parameter Reference Type Range Additional Parameters

temp –a r (1,1000000)

cr –b r (0.0001,0.5)

sr –c r (0.0001,1.0)

mp1r –d r (0.0001,1.0)

mp2r –e r (0.0001,1.0)

vnsint –f c (“on")

vnsintr –g r (1.0,100.0) | vnsint %in% c(“on")

vnsseq –h c (“off")

vnsseqr –i r (1.0,2000.0) | vnsseq %in% c(“on")

Table 6.1: Parameters to be Tuned by irace

The baseline is also shown in the results for comparison (the baseline is the

fitness computed from the manually generated solution in place at the FSO).

The baseline solution is always feasible.

The effectiveness of metaheuristics are largely dependent on well-tuned

parameters [4]. This is particularly important in this instance as there are

many parameters and ranges to select from. Thus, the parameters for testing

were chosen by the irace parameter configuration tool [62], such automated

parameter tuning being preferable to onerous manual configuration [83].

During irace testing, the testing of elite configurations was enabled, meaning

that only the best configurations found during the run of irace, the final best,

will be used in the testing phase. The first elimination test value was set to the

default of five. The default statistical test configuration for irace was used

(F-test).

85

[6th November 2019 at 15:04]

Config1 Temperature CR SR MP1 MP2 VNSi VNSs SA

A 116621.6 0.045 0.434 0.041 0.353 35.951 743.145 N/A

B 33904.68 0.221 0.707 0.045 0.597 81.053 N/A N/A

C 711429.8 0.024 0.301 0.791 0.486 N/A 103 N/A

D 706984.6 0.007 0.881 0.721 0.696 N/A N/A N/A

E N/A N/A N/A N/A N/A N/A 1963 N/A

F 9189272 0.004 N/A N/A N/A N/A N/A 1

G N/A N/A N/A N/A N/A N/A N/A N/A

Table 6.2: Tuned Parameters

Each configuration had 30 iterations within irace. The parameters tuned by

irace are listed in Table 6.1: temperature, cooling rate, selection rate, mutation

phase 1 rate, mutation phase 2 rate, VNS internal iterations, and VNS sequential

iterations. All required parameters are tuned to each algorithm configuration:

e.g. cooling rate does not apply to ‘VNS only’ or the baseline; vnsintr only

applies when VNS Internal is enabled. Note that Table 6.1 shows the parameters

for irace for a single test (specifically ER&SR with VNS internally), as an

example.

These dependencies are reflected in Table 6.2, the tuned configurations

found by irace. Here, ‘N/A’ is used when a variable is not tuned. The cooling

rate was limited to a maximum of 0.5 due to previous observations during

testing finding that too few iterations caused by a higher cooling rate caused

poorer results. Similarly, the VNS internal number of iterations was capped at

100, as higher values caused a dramatic increase in run-time.

After the parameters were tuned with irace, the algorithms were then run

thirty times with these parameters. The mean values for these tests can be seen

in Table 6.3. A box-plot showing the range of fitness values can be viewed in

86

[6th November 2019 at 15:04]

Config ER&SR VNS Internal VNS Sequential Simulated Annealing Average Fitness

A 1 1 1 0 0.55993

B 1 1 0 0 0.54985

C 1 0 1 0 0.54227

D 1 0 0 0 0.51884

E 0 0 1 0 0.49834

F 0 0 0 1 0.44840

G 0 0 0 0 0.42987

Table 6.3: Average Fitness per Run Type

Fig. 6.2. The results shown in this chapter reference a single region and around

200 employees being scheduled. HC2 and HC3 have no maximum bound,

allowing any number of changes — which both increases the complexity

of the problem but also increases the chance of finding better SC compliant

allocations. The demand forecast data used for testing is provided by the FSO

and is calculated by an internal research team for the region the employees

tested work.

The SA metaheuristic, given by Config F, has the most variability in terms of

fitness provided by the SCs. Across all of the configurations that use ER&SR,

interestingly there is no solution generated which is worse than the baseline,

but that is likely due to the high number of iterations present in the run

configuration parameters provided by irace (both directly by VNS iterations

and indirectly via temperature & cooling rate values).

A non-parametric ANOVA test (Kruskal-Wallis) was applied to the results

and returned a p-value of p < 2.2e−16. The datasets were confirmed visually

as normally distributed in histogram plots as well as in Q-Q plots, which is a

plot of the quantiles of the two distributions. The Q-Q plot of Configuration

87

[6th November 2019 at 15:04]

Figure 6.2: Box-Plot of Average Fitness (A-F) and Baseline Fitness (G)

A can be viewed at Figure 6.3. The null hypothesis (that the results for each

configuration are drawn from the same distribution) can be rejected.

There is clear indication that ER&SR provides better schedules, and more so

when using the VNS module at any tested stage, than the schedules created by

SA or by VNS alone. The results show that the method this chapter provides

is an improved alternative for generating employee schedules compared to

the baseline solution for this dataset and demand forecast. The schedules are

improved in terms of average SC fitness, which is how the quality of a solution

is judged. View Table 6.4 for comparison of demand hours met.

The results also show that this algorithm can provide a small but relatively

quick improvement upon standard ER&SR, where using both internal and

sequential VNS have the highest rate of improvement on this dataset. The

results show that demand met is improved on average, based on an estimated

demand forecast from the FSO.

1 Table headers, in full, are as follows: Configuration - Temperature - Cooling Rate - Selection

Rate - Mutation Phase 1 Rate - Mutation Phase 2 Rate - Variable Neighbourhood Search

Internal - Variable Neighbourhood Search Sequential - Simulated Annealing

88

[6th November 2019 at 15:04]

Figure 6.3: Q-Q Plot of Config. A

Config
Original

Demand

Demand Hours

Met

Demand Hours

Not Met

A 80305 55426 24879

B 80305 55198 25107

C 80305 55180 25125

D 80305 54699 25606

E 80305 52980 27325

F 80305 51512 28793

G 80305 45373 34932

Table 6.4: Demand met per Config

89

[6th November 2019 at 15:04]

6.3 conclusions

This chapter presents a hybrid algorithm combining ER&SR with VNS and

compares it to a SA approach and a basic VNS approach. This is applied to

a real-world problem provided by an FSO company solving an instance of

the employee rostering problem. The novelty of this approach lies in the

improvement of the solution compared to standalone ER&SR. A further novelty

is application of hyper-parameter tuning to ER&SR (via the irace algorithm

configuration tool). This solution also provides an improved schedule for a

real-world application when compared to the approach currently in place.

There is also scope for further research on ER&SR, in particular when

hybridised with industry solvers such as CPLEX, which would include a math-

ematical formulation of the problem. There is also potential in replacing the

stochastic rebuild section of ER&SR with a different mechanism, for example

with an exact method with lowered bounds, other metaheuristics or matheur-

istics. While in this paper the number of VNS iterations are auto-configured by

irace, an interesting future development may be a reverse EMCAC to control

the depth of the search of the VNS so that more exploitative search can take

place towards the end of run-time. This may be particularly useful as it was

found during experimentation that the ruin method is very destructive early

in run-time, negating any benefits of VNS. Additionally, future work should

provide random seed trial search dynamics across methods tested to improve

replicability of these stochastic algorithms.

90

[6th November 2019 at 15:04]

7
C H A P T E R 7 - R O S T E R PAT T E R N S - E V O L U T I O N A RY

R U I N & S T O C H A S T I C R E C R E AT E H Y B R I D I S E D W I T H

I N T E G E R P R O G R A M M I N G

7.1 introduction

In this chapter a novel matheuristic is defined and applied to a real-world

instance of the employee rostering problem. The problem tackled is the roster

pattern scheduling problem as refined in Chapter 2. The matheuristic is

composed of ER&SR with IP. ER&SR was developed in [16] as an advancement

from the original Ruin & Recreate algorithm [17], and IP is a mathematical

optimisation technique derived from Linear Programming by Dantzig [84].

In Chapter 5 the personalised shift scheduling and employee rostering prob-

lem is solved using the ER&SR algorithm. Additionally ER&SR was hybridised

with VNS in Chapter 6 with improved results than the standalone ER&SR. Con-

tinuing this path of research, this chapter implements ER&SR but replaces

the stochastic recreate phase with an IP element. The precise data & specifica-

tions were provided by the FSO and specific problem details are intentionally

omitted.

This collaboration with the FSO resulted in the design of precise constraints

and fitness criteria. As this is a real-world problem, an empirically grounded

view of the algorithm effectiveness is obtained in this study.

When aiming to enhance employee satisfaction, improve demand satisfac-

tion and maximise the effectiveness of a workforce, optimising employee

91

[6th November 2019 at 15:04]

schedules is an important consideration. If employee schedules are feasible

but optimisation of the schedules is not considered, then an irrevocable loss

of efficiency is likely, with employees working skills they do not prefer, and

demand not being met.

Hybridisation of ER&SR with IP was chosen due to its proven record tackling

employee rostering problems in the past. Recently, a mixed IP approach was

utilised to tackle a skill mix and training schedule for aircraft maintenance

[85]. Similarly, a two-stage stochastic IP approach was implemented to tackle

integrated staffing and scheduling with application to nurse management [86].

Personnel scheduling is often used interchangeably with employee schedul-

ing and workforce rostering. In this chapter the term ‘employee rostering’ is

used to mean the allocation of an employee to a shift or set of shifts which are

preset and immutable.

Employee rostering and personnel scheduling has been tackled with a

variety of other evolutionary methodologies in the past. For example, VNS

was used to tackle a field service operations employee scheduling problem

in [87], and in [88] a memetic algorithm was employed to solve a personnel

scheduling problem that maximises employee substitutability. Metaheuristic

and evolutionary approaches are popular in personnel rostering problems due

to their ability to quickly find comparatively good solutions to problems. It is

also important to note that reaching an optimal solution is a worthwhile cause

academically, in real-world problems slight percentage differences in fitness

values are often not worth the computation time. Additionally, in the UK, an

average worker takes 4.3 sick days per year [89], meaning solutions produced

for employee schedules will rarely be worked as planned, especially in larger

workforces. Therefore, a near optimal solution is a worthy goal for real-world

applications. For further examination of IP and general hybrid solvers, there is

a more in-depth examination of the field in Chapter 3.

92

[6th November 2019 at 15:04]

Metaheuristic performance is heavily linked with well-tuned parameters [4].

As such the irace package [90] was utilised to search for the most appropriate

parameters during testing.

The contributions this chapter presents are detailed below:

1. Propose the hybridisation of ER&SR with IP;

2. Analysis of this hybrid algorithm’s application to a real-world scheduling

problem;

3. Comparison of the base ER&SR algorithm to the proposed hybrid, and

standalone IP.

This rest of this chapter is structured in the following manner: section 7.2

details the solution implementation, using the theoretical framework provided

by [16] as a basis, and the unique elements of this implementation are de-

scribed. The results of this approach are presented and analysed in Section

7.3. This chapter concludes with Section 7.4 where the research is summarised

and recognition to funders and partners on this project is given.

7.2 implementation

In this section the steps of ER&SR with IP are described. For a theoretical

framework of ER&SR (which this algorithm was derived from), see [16]. A

metaheuristic is well-placed to find a good result within the desired time-

frame. ER&SR is an evolutionary algorithm with a proven track record to solve

real-world scheduling problems. An IP rebuild method was implemented

within the ER&SR algorithm to enhance results produced by utilising the power

of an exact solver using IP. Before proceeding into written detail, a visual

overview can be referenced in Figure 7.1.

93

[6th November 2019 at 15:04]

Figure 7.1: ERSR & IP Diagram

As described in Chapter 2, this problem requires selection of one RP per

employee, from a set of RPs which each employee have indicated a preference

for — or at least be willing to work. In order to maintain HC4, the search space

is reduced to only ever allocate employees to these roster patterns, regardless

of potential improvements from selected others.

As the algorithm is executed the number of RP changes (defined as number

of employees not on their original RP), and the number of starting week

changes (defined as number of employees still on their original RP but not

starting the shift on the first week) increases. If this is capped (in order to

94

[6th November 2019 at 15:04]

remain feasible and satisfy HC2 and HC3) only currently modified employee

RPs and starting weeks can be again modified. This does not incur an additional

change, as even if employee has moved from their original RP to another, then

a third, the algorithm only counts number of employees not on their original

patterns. This logic also applies to starting week changes. If the algorithm

cannot escape a local optima due to this, or any other reason, the mutation

operator compensates for this.

RPs can be of varying lengths - generally ranging from one week to fifty-two

weeks in length. If an RP is too long for a scheduling period, for example say

|RP| = 52 but |demand| = 12, RP length would be reduced to 12 also. Similarly,

if the length of demand is for example |demand| = 52 but the |RP| = 12, then

RP days would be repeated until the internal representation of the RP would

be of length 52.

95

[6th November 2019 at 15:04]

The rest of this section will refer to sections of pseudocode in algorithm 7.1

in the following manner: [7.1 - Line Number].

The initial schedule is the handwritten schedule provided by the FSO. This

is imported into the algorithm along with the required parameters [7.1 - 1-6].

This original schedule comprises the original allocation for every employee, as

provided by line managers [7.1 - 6].

The fitness object f is declared [7.1 - 8]. The solution is analysed before the

acceptance criterion loop begins to prevent fitness of the same solution being

analysed more than once - this would be most inefficient as decomposition of

the schedule is the most costly segment of the metaheuristic. When fitness is

calculated, individual employee shift allocations are analysed componentially.

This information is stored for later use, and a weighted average of all SCs is

calculated.

After initialisation, the acceptance criterion loop begins. In the testing con-

ducted for this chapter, EMCAC is used (Li et al in [15] suggest that most

known acceptance criterion methodologies should suffice). A copy of the cur-

rent schedule is stored for instances when changes are not accepted and there

is a need to revert to the previous solution.

Exploration for a new schedule begins by selection [7.1 - 12]. The probability

of an employee being removed from an RP is as follows, where P is probability,

s is selection, r is a random number between 0 and 1, and x1 is a parameter

used to control the rate of selection based on user or researcher preference:

P(s) = r ∗ x1 (7.1)

Additionally, to the selection operator, mutation can also occur to ruin

elements of the schedule [7.1 - 13]. The probability of an employee being

removed from an RP is as follows, where m is mutation, r is a new random

number between 0 and 1 and x2 is a parameter allowing the user to control

rate of mutation:

96

[6th November 2019 at 15:04]

Algorithm 7.1 Evolutionary Ruin & Stochastic Recreate with Integer Program-

ming

1: t← getParameterisedTemperature()

2: δ← getParameterisedDelta()

3: cr← getParameterisedCoolingRate()

4: sr← getParameterisedSelectionRate()

5: mr← getParameterisedMutationRate()

6: a← originalSolutionFromFSO()

7: t ′ ← t

8: f← decomposition(W) //W are parameterised weightings. Solution decom-

position complete.

9: while t ′ > δ do //Exponential Monte-Carlo Acceptance

10: b← a.copy()

11: f ← decomposition(W) //W are parameterised weightings. Solution de-

composition complete.

12: a← selection(a, sr)

13: a← mutation(a,mr) //Evolutionary ruin complete.

14: a← rebuildWithCplex(a)

15: a← startingWeekModifier(a) //Stochastic recreate complete.

16: p← getAcceptanceProbability()

17: if p < r then //Random int

18: a← b.copy()

19: end if//Solution Acceptance complete.

20: t ′ ∗= cr

21: end while

97

[6th November 2019 at 15:04]

P(m) = r ∗ x2 (7.2)

At this point in run-time the schedule will be infeasible [7.1 - 14]. The key

novelty of this algorithm is in the implementation of the recreate phase. Due

to the massive search space being infeasible to solve using an exact solver by

an exact solver alone, or by exhaustive search, metaheuristics are generally

accepted as a preferable alternative. This approach is commonly termed a

matheuristic. The underpinning hypothesis for this approach is that using

a metaheuristic to mostly solve the problem and using an exact solver to

find the optimal solution to the sub-problem, would provide better solutions

than the metaheuristic alone. However, during implementation testing it was

found that running the solver for any more than 12 employees for a 3 month

scheduling period took an amount of time greater than 3 days run-time.

Considering the test data being around 180 employees, this was found to be an

impractical approach. Thus, a parameter was introduced to prevent too many

employees being scheduled by the exact solver portion of the matheuristic,

and allowing the metaheuristic to solve the rest. It should be noted that if

CPLEX is parameterised with a percentage of employees above 0%, it will

always schedule at least one employee per iteration, by design. These results

are described in detail in section 7.3.

In [7.1 - 14], CPLEX is called to solve the sub-problem consisting of the

employees grouped in i. Being an exact solver, CPLEX returns the optimal

solution to this sub-problem. Depending on the number of employees in

the region being analysed, and on the parameter N, this step is the most

computationally intensive (in terms of run-time and processor activity).

All other employees are returned to their original roster pattern, then given

a random starting week [7.1 - 15] by the metaheuristic. While the allocation of

starting weeks is random, the allocation of skills per hour follow a series of

preference based considerations. This will be described here textually, but the

98

[6th November 2019 at 15:04]

concepts are perhaps best understood graphically. As such, this process can

be viewed in Figure 7.2.

This rebuild component of the metaheuristic only considers employees

which are not already allocated by the IP solver, CPLEX, as the solver will also

assign optimal skills to shifts for the particular employees being considered.

First, all employees which have just been allocated fresh RPs are input

to this skill allocation function to provide ideal skills per hour. The choice

was between random allocation or something more intelligent. Due to the

fairly simple set-covering nature of the problem, a basic heuristic like this can

provide higher quality results than random allocations.

In order to not favour one employee over another, each repair involves

a single random employee, on a random hour needing allocated, on a ran-

dom day, and this selection is repeated until all employee hours have skill

allocations.

Once a random hour, day and employee are selected, a random skill required

in demand for that period is selected. If the employee has this skill, they

are assigned, and the process starts anew. Otherwise, another random skill

required on that hour and day is selected. This repeats until either the employee

is allocated a skill which there is demand for, or all demand has been tried.

If the employee has no suitable skills for current demand, the algorithm

begins considering all demand already fulfilled, as it is preferable to have an

overhead of employees available for specific skills, for considerations regarding

annual leave, sickness, etc. However, if the employee has no skills that have

been fulfilled as well as no skills currently needed, the employee is set to work

any skill they have at random. This fulfils the requirement for HC6, ensuring

they are assigned to all contractually required shifts, even if the fitness is not

improved by this action.

99

[6th November 2019 at 15:04]

If instead the employee does have skills which were originally required on

this day and hour, the employee is allocated one. If plural, the specific skill

chosen is dependent on a distributed random probability. This way, higher

demand has higher overhead than lower demand. Again, this is not a SC and

does not help fitness, but is an acknowledgement of the real-world nature of

this problem.

Figure 7.2: Metaheuristic Based Skill Allocations

Fitness of the newly ruined and rebuilt solution takes place [7.1 - 17], again

considering the SC weightings. The algorithm will then probabilistically accept

the changes [7.1 - 21-22]. This uses EMCAC, and is calculated as follows:

P = exp((o−n)/t) > r (7.3)

100

[6th November 2019 at 15:04]

P is the probability of accepting a worsened state, o is the original solution

energy cost (modelled as inverse fitness), n is the energy cost of the new

solution, t is current temperature and r is a uniformly generated random

number between 0 and 1.

If p is found to be less than a randomly generated number between 0 and

1, the schedule is reverted to the original state in the previous iteration (or

the original hand-written schedule, if the first iteration). Due to the nature

of EMCAC, the chance of a worsened solution being accepted at the start of

run-time is high, declining to nil chance towards the end of run-time. This

encourages exploration earlier in run-time, and exploitation later - depending

on parameter selection and data structure.

7.3 results

Presented in this section are the results from tests run on an Intel i7 2.20GHz

Central Processing Unit (CPU), using Java SE 1.8 to build the metaheuristic

and the CPLEX 12.8.0 exact solver in hybridity.

The Configurations tested were:

(A) ER&SR with IP

(B) ER&SR only

(C) IP only

(D) SA only

(E) Baseline

Initial testing included IP only and was conducted before the bulk of im-

plementation, as there is little need for a metaheuristic if an exact solver can

provide an optimal solution in an acceptable time. However, testing revealed

101

[6th November 2019 at 15:04]

that unless the constraints are relaxed to the point of no longer having any tan-

gible effect, CPLEX cannot provide optimal solutions to the problem described

in 2.

The baseline is also considered in the results for comparison; the baseline

is the fitness computed from the manually generated solution in place at the

FSO. The baseline solution is always feasible.

Metaheuristic effectiveness is largely dependent on well-tuned parameters

[4]. It is important to carefully select parameters to find solutions in a reas-

onable time-frame, as required by the FSO. In order to achieve a good quality

solution in short time frames the irace parameter configuration tool [62] was

utilised. Automated parameter tuning is preferable to onerous manual con-

figuration [83], especially when the parameters require specialist knowledge

to understand. During irace testing, the testing of elite configurations was

enabled, meaning that only the best configurations found during the run of

irace, the final best, will be used in the testing phase. The first elimination test

value was set to the default of five. The default statistical test configuration for

irace was used (F-test), and irace was allowed a 5000 experiment cap. 1

A time limit was tested, but found to be inadequate at controlling CPLEX

from the irace target runner. Instead, a cplex parameter was added, which

dictates the maximum percentage of employees to be scheduled by CPLEX in

a single iteration, and allows the base metaheuristic to schedule the remaining

employees. This solved the issue of excessive run-time, which can be seen

in Fig 7.3 where there is an exponential increase in run-time correlated with

the percentage of employees being scheduled by CPLEX. The reason for this

is likely due to percentage of employees being dependent on the number of

employees selected or ruined during the evolutionary ruin phase, and this

variance becomes more apparent with higher percentages.

1 A higher limit was tested, but the combination of R, Java and irace used excessive quantities

of RAM and crashed

102

[6th November 2019 at 15:04]

Figure 7.3: Run-time compared with Percentage of Employees CPLEX Tasked With

Scheduling

The specific parameters which were provided to irace for tuning are de-

scribed in Table 7.1. No optional parameters were necessary and are therefore

not displayed.

An interesting query raised by the FSO during testing — what has the

greatest effect on fitness, RP changes or starting week changes? 2 To test

this, every possible whole number percentage of changes allowed from each

parameter (excluding 0% RP changes and 0% staring week changes) were

compared. The initial results can be viewed in Figure 7.4. This showed that for

the most part the changes to fitness were not massively different — which is an

interesting find, and useful to the FSO, as it means fewer changes are needed

to attain a mostly good result. A small number of starting week changes are

more beneficial than a small number of RP changes.

However, when the outliers are removed (see Fig 7.5), there is a clear

correlation between fitness and percentage of changes allowed, for both RPs

2 We assume the FSO meant “In an ideal situation with tuned parameters over 30 tests, which of

the two variable changes performed the best?”

103

[6th November 2019 at 15:04]

Figure 7.4: RP Changes Parameter Vs Starting Week Parameter

104

[6th November 2019 at 15:04]

Figure 7.5: RP Changes Parameter Vs Starting Week Parameter (Outliers Removed)

105

[6th November 2019 at 15:04]

Parameter Reference Type Range

temp –a r (0.0001,1000000)

cr –b r (0.0001,0.99999)

sr –c r (0.0001,1.0)

mr –d r (0.0001,1.0)

delta –e r (0.000001, 10)

cplex –g r (1.0,815.0)

Table 7.1: Parameters To Be Tuned by irace

Temp CR SR MR δ CPLEX Fitness

388527.2672 0.2156 0.8845 0.3373 0.0234 7.6743 0.7498

679610.9251 0.3851 0.9654 0.5419 0.0101 7.4710 0.7421

289172.3473 0.2492 0.8991 0.3400 0.0129 7.5691 0.7402

301493.5945 0.2234 0.9235 0.4531 0.1617 7.4905 0.7389

421419.0231 0.4169 0.8846 0.2098 0.0335 7.2732 0.7330

Table 7.2: Top 5 Parameter Configurations

and starting weeks. Modifying employee starting weeks provides more fitness

improvement than RPs, but if both more RP changes and starting week changes

are allowed then fitness can reach a higher level.

After 5000 experiments, irace produced tuned parameters of the best con-

figurations found. The top 5 of these — in terms of fitness — for Configuration

A (the proposed hybrid algorithm) can be viewed in Table 7.2.

Similar testing was conducted for the other configurations (B & D) and the

results of the tests can be viewed alongside the best parameters found by

irace in Table 7.3.

106

[6th November 2019 at 15:04]

Config Temperature CR SR MR δ cplex

A 388527.2672 0.2156 0.8845 0.3373 0.0234 7.9197

B 136782.5277 0.7646 0.1065 0.9867 8.6166 N/A

C N/A N/A N/A N/A N/A 100

D 331916.4221 0.8934 N/A N/A 4.8860 N/A

E N/A N/A N/A N/A N/A N/A

Table 7.3: Tuned Parameters

Testing between the various configurations (except for the removed config-

uration C, as it is infeasible due to time limits) and the baseline can be viewed

in Fig 7.6. Unsurprisingly, the baseline ranked worst when compared to any of

the optimisation techniques. SA provided a significant improvement in fitness

values to the baseline, and ER&SR is a nearly equivalent improvement from

SA. Most noteworthy is the new hybrid ER&SR with IP, which has provided a

clear improvement from the base ER&SR, and the base IP (though any feasible

solution is better than no solution).

A non-parametric ANOVA test (Kruskal-Wallis) was applied to the results

and returned a p-value of 0.4651, therefore the null hypothesis (that the

results for each configuration are drawn from the same distribution) cannot

be rejected. In further investigation of normality, the data-sets were confirmed

visually as normally distributed using histogram plots as well as using Q-

Q plots, which is a plot of the quantiles of the two distributions. The Q-Q

plot of each configuration can be viewed in Figures 7.7 (configuration A), 7.8

(configuration B) and 7.9 (configuration C).

Unlike the results in Chapter 6, there is little to be gained showing the

demand met per configuration, as demand is met by every configuration

(except the baseline) fully due to the number of employees in the region tested,

107

[6th November 2019 at 15:04]

Figure 7.6: Boxplot of Each Configuration Tested 30x With Tuned Parameters

Figure 7.7: Q-Q Plot of Configuration A

108

[6th November 2019 at 15:04]

Figure 7.8: Q-Q Plot of Configuration B

109

[6th November 2019 at 15:04]

Figure 7.9: Q-Q Plot of Configuration D

110

[6th November 2019 at 15:04]

Figure 7.10: Average Absolute Percentage Difference Per Config

and the forecast demand being particularly low in this region. However, SC4

calculates the absolute percentage difference each day is from the average

percentage of demand coverage (absolute so that whether lacking employee

allocations, or having too many, these are equally undesirable). This is an

interesting perspective for quality of a schedule and can be viewed in Figure

7.10. The baseline has the most variability (see box-plot E in Figure 7.10) and

performs the worst on average across average absolute percentage demand

coverage. The proposed algorithm (Configuration A) performs the best, but

still has one outlier. This, and the outliers in Configuration B were identified as

being Saturdays, which are particularly difficult days to meet demand for. This

is due to most employee contracts specifying a maximum number of Saturdays

in a period, making the potential pool of preferred RPs for employees smaller

than would be necessary to reduce the number of outliers.

The same data is shown as averages per day of week in figure 7.11, figure

7.12, figure 7.13 and figure 7.14. Sundays (#7 in the plots) have some demand

which is only met by a small number of RPs. Generally, employees who are

111

[6th November 2019 at 15:04]

Figure 7.11: Day Of Week Absolute Percentage Difference - Config A

originally allocated these RPs do not have any other preferences, and therefore

the absolute percentage demand coverage is static on Sundays (these RPs also

have the same recurring one-week pattern, so changing starting week would

have no effect).

The testing completed in this chapter indicates that the proposed ER&SR

with IP algorithm can provide higher quality solutions than the standalone

base components, and better than SA-produced schedules, for the region of

employees and the forecast demand provided by the FSO. The higher fitness

values from the proposed algorithm correlate with a higher percentage of em-

ployee RP allocations being scheduled by CPLEX, but this also correlates with

a much higher computational time. For real-world usage, it is recommended

that a Pareto front of fitness compared to computation time is calculated in

order to select a preferred trade-off.

112

[6th November 2019 at 15:04]

Figure 7.12: Day Of Week Absolute Percentage Difference - Config B

Figure 7.13: Day Of Week Absolute Percentage Difference - Config D

113

[6th November 2019 at 15:04]

Figure 7.14: Day Of Week Absolute Percentage Difference - Config E

7.4 conclusions

In this chapter a hybrid algorithm combining ER&SR with IP is presented and

compared to its standalone components as well as to SA. The novelty of this

chapter lies in the improvements to the recreate phase of the ER&SR algorithm,

and providing improved schedule quality due to this. This matheuristic was

applied to a real-world employee scheduling problem as provided by an FSO.

There is a variety of future work which could be seeded from this chapter.

Hybridisation of metaheuristics in general is a field of work with much yet

to be explored (as discussed in Chapter 3), particularly for use in real-world

problems. In particular, this work has shown that a matheuristic approach can

provide higher quality results than a base metaheuristic, even with a capped

percentage of computation tasked to the exact solver. Additionally, there are a

number of potential acceptance criteria which have not been utilised within

the ER&SR algorithm, which may provide better results.

114

[6th November 2019 at 15:04]

8
C H A P T E R 8 - R E A L W O R L D U S A G E

The work described in this thesis was sponsored by a field service operations

company. Additionally, the problems described in Chapter 2 are formed from

various real-world scenarios faced by the field service operations company. As

such, the problem formulations — and the algorithms created to tackle said

problems — have the benefit adding to the literature of personnel scheduling as

well as providing solutions for real-world problems. In this chapter the various

real-world implementations and integration of the algorithms described in

this thesis are described. As with all previous chapters, the information in this

chapter has some facts and figures redacted in order to respect data privacy

laws and GDPR.

In this chapter two real-world uses of the research described in this thesis

are discussed and shown visually, where possible.

8.1 roster generation

Personnel schedules are generated by the various algorithms described in

chapters 4 through 7. These algorithms have been integrated into the FSOs

infrastructure, allowing input from databases of forecasted demand data,

employee skill; contract; preference data, and allow output of schedules for

engineer and managerial usage.

The User Interface (UI) in the following screenshots was developed by other

developers within the FSOs research team. In the examples within this section,

115

[6th November 2019 at 15:04]

I developed the underlying algorithms (which in the integrated context I will

refer to as the ‘engine’) and integrated the engine into the FSOs systems.

See Fig 8.1 for a view of the UI which is used mostly by managers of

personnel in a region, and by researchers.

On the left of Fig 8.1 under “Inputs” the interface allows the user to choose

from test data (synthetic data generated for the purpose of testing) database

data (from various FSO servers and personnel databases) or from spreadsheet

files. A pre-processing step of ‘shrinkage’ can be applied, which for the

purpose of research in this thesis has been deemed out-of-scope as it can be

applied to the input data before actually running the engine. Shrinkage in this

case changes the demand requirements, and does not affect the number of

employees available.

The “Tuning” section of Fig 8.1 allows the user to select the type of engine

variant, such as VNS or ER&SR. The number of attempts can be modified so that

the best schedule (according to weighted fitness) over multiple attempts can

be presented. There is also an additional external parameter which can force

the various algorithms to provide the best schedule found within a time-limit,

as opposed to the specified internal acceptance criteria. Other parameters

are available, based on the specific version of each engine selected (some are

simplified for easier usage, reading this thesis is not a pre-requisite of running

the software).

116

[6th November 2019 at 15:04]

Figure 8.1: Managerial Initialisation Screen

After generating a schedule, a manager can look at a number of analytics

and graphical overviews of the schedule. At this point the schedule is not

necessarily accepted, and this tool may be used for guiding the generation of

another schedule, or in testing various engine parameters before accepting a

schedule. Such analytics can be viewed in Fig 8.2. In this example, there is

a 3-month schedule which has been generated by the engine. The line / bar

combo chart by default shows demand in comparison to coverage by shifts,

for all skills. This view can be redrawn with a specific skill, or specific times or

shift types. This can be useful if a manager is considering how much overtime

would be required on specific days, for example.

117

[6th November 2019 at 15:04]

Figure 8.2: Managerial Schedule Overview Screen

If a manager wishes for a more detailed breakdown, the UI in Fig 8.3 would

be appropriate. The colour coding scheme is as follows: green means demand

has been satisfied on that time and day for a specific skill. Yellow means that

there are technically employees available that could work this shift and skill,

but would need shifts swapped with someone else (generally this is worse for

fitness, but may be useful since the algorithms are for all regions, not specific

unique circumstances). Red is used to tell the manager that it is impossible

to meet demand on the highlighted time and day for that skill, regardless of

rescheduling. The red shifts are where overtime is required, which is out-of-

scope for the algorithms in this thesis. This software merely highlights it after

the schedule generation.

Figure 8.3: Managerial Schedule Breakdown Screen

118

[6th November 2019 at 15:04]

Team leaders (who may oversee small teams of employees) or individual

engineers have use of a UI which is more relevant to their needs, as can be

seen in Fig 8.4. This includes an overview of the employees own schedule,

team schedule and shift types (such as late, or day shifts).

Figure 8.4: Employee View

As described in Chapter 2, there are two main problems tackled in this

thesis, the personalised scheduling problem and the roster pattern scheduling

problem. The personalised scheduling algorithms are not in active use for

creating schedules at the FSO, as they are a proof-of-concept for future business

opportunities. However, the solutions to the latter problem are applicable to

real-world use. As of writing, the schedule generation tool has been utilised

in test runs for creating rosters for thousands of employees, and discussions

between employee unions and the FSO are taking place to allow further usage

of this research in the real-world.

8.2 simulator

The research described in this thesis, which was implemented and integrated

into the FSOs systems, has been used as an input for another research project.

119

[6th November 2019 at 15:04]

This flow of data is shown visually in Fig 8.5 (iRoster contains the algorithms

and engines described in this thesis).

To be clear — the simulator described in this section was created by re-

searchers at the FSO, and is not an outcome of the work described in this thesis

in any manner. The simulator is described here as it uses results from the

algorithms arising from research described in this thesis as an input, and is

being described with explicit permission from the FSO.

Figure 8.5: Cross-Project Data Flow

The premise of the simulator is to receive a one or more what-if scenarios.

Such scenarios can include a variety of variables, such as new training budgets,

new hiring budgets, redeployment of personnel to different geographical

regions, modifications of team structure, new roster patterns, etc. In order to

judge the potential benefits or disadvantages of these scenarios, the algorithms

described in this thesis are provided with the tweaked data and run. This may

120

[6th November 2019 at 15:04]

include a range of changes, for example a question such as “Would training

3 employees in this region, or hiring 1 new employee be more beneficial in

regards to meeting demand?” could be asked, and would require multiple

testing instances from the algorithms.

The potential benefits of testing scenarios may be improved demand satis-

faction (which is beneficial for clients as well as the business), reduced carbon

emissions by reducing travel time (or reducing travel requirement in general),

reduced overtime requirement, improved employee satisfaction (by providing

higher personnel coverage in certain regions, some employees may be awarded

with less unfavourable shifts).

The scope of the work completed in this thesis schedules employees into

shifts where they work a single skill throughout a shift, or per hour. Tasks are

a non-abstracted view of this — if employees are working the shifts designated

by the algorithms in this thesis, which specific tasks, in different locations,

should be worked? iPatch, the tool utilised in the flow diagram in Fig 8.5,

calculates a task focused solution.

The simulator can use the output from both the algorithms in this thesis

in conjunction with output from iPatch to answer the what-if scenarios. An

example of the analytics available after running the simulator can be viewed

in Fig 8.6.

121

[6th November 2019 at 15:04]

Figure 8.6: Simulation Analytics

Additional information regarding travel statistics and task satisfaction can

be seen in Fig 8.7.

Figure 8.7: Additional Analytics for Simulator

Finally, a geographic visual can be viewed in Fig 8.8. This allows the user

to see travel routes from task to task for individual engineers, which can be

useful for visually verifying task allocations.

122

[6th November 2019 at 15:04]

Figure 8.8: Geographic Visual Screenshot

123

[6th November 2019 at 15:04]

9
C H A P T E R 9 - C O N C L U S I O N S

This thesis has provided solutions to the employee scheduling problem, spe-

cifically in two sub-problems: the personalised rostering problem, and the

roster pattern problem. An outline of the contributions made by this work fol-

lows, before evaluating the overall hypothesis, making suggestions for future

work, and finally drawing the thesis to a close with general conclusions.

9.1 thesis contributions

9.1.1 Contribution 1: Problem Formulation & Improved Schedules over Baseline

The problem provided by the FSO has been mathematically defined and for-

mulated into clearly defined structures. The algorithms described in this thesis

provide solutions of improved quality upon the baseline provided by the FSO,

as well as providing better quality solutions than other tested metaheuristics.

The algorithms were tested for two scenarios, one being a test of capability

with an extensive period of time, and in a shorter time frame (e.g. 5 seconds, 1

minute, 2 minutes, 5 minutes), and were found to produce improved results

in both scenarios.

124

[6th November 2019 at 15:04]

9.1.2 Contribution 2: Re-purposing of Evolutionary Ruin & Stochastic Recreate

ER&SR has been successfully re-purposed for the employee scheduling problem,

which has a much larger and more convoluted search space than the research

undertaken by Li et al [15][16], where the exam scheduling problem is tackled

with a much smaller number of variables and constraints. Thanks to the work

produced by Li et al in producing a theoretic framework and general baseline

to work from, this algorithm has been found to be novel in the field of shift

scheduling and employee rostering.

9.1.3 Contribution 3: Hybrid Algorithms

Hybrid algorithms have been tested in comparison to their base components in

this thesis, and found to provide higher quality solutions than their component

algorithmic parts. This is true for both the ER&SR & VNS hybrid algorithm, and

the ER&SR & IP hybrid. This aligns with other findings in the literature that

show improved results for hybrid methods for real-world problems.

9.1.4 Contribution 4: Constraints and Problem Formulation to Minimise Employee

Dissatisfaction

In discussions with the FSO and employee unions representing the engineers

whose schedules are to be generated, in part, by work in this thesis, a pro-

grammatic representation of ‘fairness’ has been explored. This required much

consideration in Chapters 5 & 6, where personalised schedules are generated.

For example, SC4 which gives higher fitness to schedules where employees

have consecutive rest days — this consecutive rest days attribute is ‘baked in’

to RPs in RP employee rostering problems in Chapters 7 & 8. Thus, in both the

125

[6th November 2019 at 15:04]

personalised scheduling problem and the RP scheduling problem, minimising

employee dissatisfaction has been successfully formulated and implemented.

9.1.5 Contribution 5: Literature Review

The literature review in Chapter 3 is in itself a contribution to the field. The

trend of hybrid metaheuristics & matheuristics increasing in popularity in

real-world problems was highlighted. The analysis on these optimisation tools

may aid in focusing efforts by researchers in future works. Additionally, there

has been no previous literature review on this intersection of topics.

9.1.6 Contribution 6: ‘Keystone’ Allocations

Observations of the data throughout this thesis highlighted an interesting

feature of the search space which may be exploitable. In both the personalised

scheduling problem and the RP problem, it was found that select allocations

of employees to RPs, and of employees to shifts, have a ripple effect on one

or more constraint satisfiers. This author has dubbed this characteristic a

‘keystone’ allocation, in that these allocations may in themselves have an

deceivingly average fitness level, but allow several other improved allocations

to be selected. An example of this may be a relatively unskilled worker being

assigned a Saturday shift; freeing up high skilled employees to work the high

demand Monday - Friday.

9.2 evaluation of hypothesis

Thesis Hypothesis By using a variety of known metaheuristics and integer pro-

gramming techniques, a real-world shift scheduling & employee rostering problem can

126

[6th November 2019 at 15:04]

be solved to feasibility and a higher level of quality than the baseline, as provided by

the FSO company.

This thesis utilised VNS, ER&SR (including one hybrid version and one math-

euristic version of ER&SR) to produce employee rosters. All the produced

employee rosters are feasible, so long as the parameters and data input rep-

resent physically possible outcomes. Additionally, the baseline is improved

upon in quality of schedule, as represented by fitness values, in all strategies

produced. I conclude that this thesis has provided sufficient evidence which

supports the aforementioned hypothesis.

9.3 future work

There is a variety of potential future work that could be derived from research

delivered in this thesis.

1. ER&SR could be applied to benchmark problems in other application

areas to evaluate against the state of the art in other fields. Additionally

it would be interesting to see the particular strengths of ER&SR, for

example if the ruinous nature of the algorithm makes it better suited for

search spaces with less uniformly distributed local optima.

2. ER&SR hybridisation is tested twice in this thesis, once with ER&SR com-

bined with VNS, and once with ER&SR combined with IP. More hybridisa-

tion attempts could be explored in both the rebuild phase, ruin phase, as

well as running after the final iteration.

3. ER&SR has never been tested with a hyper-heuristic, which would provide

insight into the suitability of ER&SR to solve other problems, by mining

which scenarios that a hyper-heuristic picks ER&SR to solve problems.

127

[6th November 2019 at 15:04]

4. ER&SR has never been considered outside the domain of scheduling

(exam timetabling in [16], and employee scheduling in this thesis). Us-

ing ER&SR in other problem domains could provide insights into the

effectiveness of this metaheuristic in other problems and search spaces.

5. ER&SR has never been evaluated against an exhaustively searched fitness

landscape. Visualising the search ER&SR makes could provide insight

into the best problem domains it is applicable for, as well as improved

parameterisation and possibly even improvements to the algorithm dir-

ectly.

6. There has been little investigation into how ER&SR performs when given

an initial solution compared to a random solution, or a blank solution.

While this is likely problem space dependent, it may be worthwhile

investigating, as it may improve run-time (and again, problem dependent,

may worsen run-time, or improve the quality of fitness).

7. Alternative methods for acceptance criterion could be considered. For

example Great Deluge (see Fig 9.1).

8. Parameter tuning is considered in this thesis, both with irace in Chapters

6 & 7, and with the Taguchi method in Chapter 5. As is described in

the literature review, parameter tuning is somewhat in its infancy, with

many researchers estimating good parameter values for their algorithms

through trial and error, and others using tools such as irace. In reality,

parameter tuning is useful for improving the quality of solutions, but

that minor improvement is often not worth the time taken to test. For

example, consider a real-world routing algorithm, which repeatedly

redirects a driver to specific tasks needing completed. Optimising the

route to maximise tasks completed would improve profit, if that was

the objective. However, if the driver had to wait several hours for an

128

[6th November 2019 at 15:04]

Figure 9.1: Alternate ER&SR Acceptance Criterion

ideal route to be calculated with ideal parameterisation, the solution

would become pointless. In short, there are diminishing returns for

parameterisation, depending on time constraints and problem domain.

Studies into whether parameterisation should take place, and to what

extent, in such constrained circumstances are warranted.

9. During the literature review (Chapter 3) writing for this thesis, it was

noted that there is a lack of literature reviews in the past 4 years for

real-world employee scheduling problems. A potential future work could

be an extensive literature review in the field for these recent years, and

discussing whether predictions made in previous reviews have come to

fruition or were predicted incorrectly.

10. During testing of various algorithms throughout this thesis, it was noted

that certain allocations of employees to RPs, or to specific shifts or hours,

had a major effect on fitness - potentially by freeing other employees

129

[6th November 2019 at 15:04]

to work more suited to their skill sets, or working RPs that are pre-

ferred rather than driven by demand. This ‘keystone’ characteristic of

certain allocations is an interesting point of research, and understanding

these specific turning points in search spaces could allow for further

exploitation of the structure of the search space.

11. Software which uses the fitness functions described in this thesis to

judge manual changes and assist in explaining why certain changes are

less preferable (for example — ‘changing employee A to RP 5 will cease

allocations to Saturday shifts, causing less demand to be met throughout

the schedule’).

• Furthering this — explainability is an interesting avenue for future

research in employee scheduling. The technology exists to automat-

ically schedule employees across most industries, yet there seems

to be a hesitation in uptake of the AI-driven scheduling. This au-

thor hypothesises that this is largely due to a lack of explainability

- fitness values are useful for operational researchers but not for

non-AI specialist personnel managers. Explainability, in the form of

highlighting keystone 1 allocations, visualising demand coverage,

or describing cause and effect of specific decisions, might encourage

more trust in automatic systems.

12. While there are many benchmarking instances of employee scheduling,

none were found which have a similar structure to this problem. A future

work could be in creating benchmark employee scheduling problems

with RPs, preferred RP constraints and starting week rotations.

1 This phrase is described in suggestion #10

130

[6th November 2019 at 15:04]

9.4 concluding remarks

In this thesis I have investigated the applicability of standalone metaheuristics

and hybrid metaheuristics for a real-world industrial optimisation problem. In

particular, the ER&SR algorithm has a firmer foundation in the literature than it

did previously, now spanning two real-world problems, and now implemented

in two hybrid forms. A real-world company now has multiple algorithms and

software products to use in scheduling employees, and related problems (such

as simulation, potential decision tree foundations, tailor made hyper-heuristic

components, etc.) Throughout all content chapters of this thesis, baseline

fitness has been improved upon, and several contributions to the literature

now exist in the form of scientific papers. An overview of the literature in

both recent years and specifically regarding real-world employee scheduling.

Finally, a variety of potential future works have been described, providing a

basis for further work by my colleagues in the field.

131

[6th November 2019 at 15:04]

B I B L I O G R A P H Y

[1] C. Heimerl and R. Kolisch, “Scheduling and staffing multiple projects

with a multi-skilled workforce,” OR spectrum, vol. 32, no. 2, pp. 343–368,

2010.

[2] F. Glover, “Future paths for integer programming and links to artificial

intelligence,” Computers & operations research, vol. 13, no. 5, pp. 533–549,

1986.

[3] M. Gendreau and J.-Y. Potvin, Handbook of metaheuristics. Springer, 2010,

vol. 2.

[4] E. K. Burke, G. Kendall et al., Search methodologies. Springer, 2005.

[5] E. K. Burke, J. Li, and R. Qu, “A hybrid model of integer programming

and variable neighbourhood search for highly-constrained nurse rostering

problems,” European Journal of Operational Research, vol. 203, no. 2, pp.

484–493, 2010.

[6] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated

annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983. [Online].

Available: http://science.sciencemag.org/content/220/4598/671

[7] N. Mladenović and P. Hansen, “Variable neighborhood search,” Computers

& operations research, vol. 24, no. 11, pp. 1097–1100, 1997.

[8] A. El-Yaakoubi, A. El-Fallahi, M. Cherkaoui, and M. R. Hamzaoui, “Tabu

search and memetic algorithms for a real scheduling and routing prob-

lem.” Logistics Research, vol. 10, no. 1, p. 7, 2017.

i

[6th November 2019 at 15:04]

http://science.sciencemag.org/content/220/4598/671

[9] P. Hansen, N. Mladenović, and J. A. M. Pérez, “Variable neighbourhood

search: methods and applications,” 4OR, vol. 6, no. 4, pp. 319–360, 2008.

[10] P. Hansen, N. Mladenović, and J. A. M. Pérez, “Variable neighbourhood

search: methods and applications,” Annals of Operations Research, vol. 175,

no. 1, pp. 367–407, 2010.

[11] C. Binhui, Q. Rong, B. Ruibin, and I. Hisao, “A variable neighbourhood

search algorithm with compound neighbourhoods for vrptw,” in The

2016 International Conference on Operations Research and Enterprise Systems

(ICORES’16), 2016, pp. 23–25.

[12] M. M. Solomon, “Algorithms for the vehicle routing and scheduling

problems with time window constraints,” Operations research, vol. 35,

no. 2, pp. 254–265, 1987.

[13] J. H. Drake, N. Kililis, and E. Özcan, “Generation of vns components

with grammatical evolution for vehicle routing,” in European Conference

on Genetic Programming. Springer, 2013, pp. 25–36.

[14] D. Pisinger and S. Ropke, “A general heuristic for vehicle routing prob-

lems,” Computers & operations research, vol. 34, no. 8, pp. 2403–2435, 2007.

[15] J. Li, R. Qu, and Y. Shen, “Evolutionary ruin and stochastic recreate:

A case study on the exam timetabling problem.” in ECMS, 2012, pp.

347–353.

[16] J. Li, R. Bai, Y. Shen, and R. Qu, “Search with evolutionary ruin and

stochastic rebuild: A theoretic framework and a case study on exam

timetabling,” European Journal of Operational Research, vol. 242, no. 3, pp.

798–806, 2015.

ii

[6th November 2019 at 15:04]

[17] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck, “Re-

cord breaking optimization results using the ruin and recreate principle,”

Journal of Computational Physics, vol. 159, no. 2, pp. 139–171, 2000.

[18] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and

E. Teller, “Equation of state calculations by fast computing machines,”

The journal of chemical physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[19] W. K. Hastings, “Monte carlo sampling methods using markov chains

and their applications,” Biometrika, 1970.

[20] D. Teodorović and G. Pavković, “A simulated annealing technique ap-

proach to the vehicle routing problem in the case of stochastic demand,”

Transportation Planning and Technology, vol. 16, no. 4, pp. 261–273, 1992.

[21] A. H. Chown, C. J. Cook, and N. B. Wilding, “A simulated annealing

approach to the student-project allocation problem,” American Journal of

Physics, vol. 86, no. 9, pp. 701–708, 2018.

[22] B. K. Saha, S. Misra, and S. Pal, “Seer: Simulated annealing-based routing

in opportunistic mobile networks,” IEEE Transactions on Mobile Computing,

vol. 16, no. 10, pp. 2876–2888, 2017.

[23] I. H. Osman, “Metastrategy simulated annealing and tabu search al-

gorithms for the vehicle routing problem,” Annals of operations research,

vol. 41, no. 4, pp. 421–451, 1993.

[24] A. R. Yıldız, “Hybrid taguchi-harmony search algorithm for solving

engineering optimization problems,” International Journal of Industrial

Engineering, vol. 15, no. 3, pp. 286–293, 2008.

[25] Z.-J. Lee and W.-L. Lee, “A hybrid search algorithm of ant colony op-

timization and genetic algorithm applied to weapon-target assignment

iii

[6th November 2019 at 15:04]

problems,” in International Conference on Intelligent Data Engineering and

Automated Learning. Springer, 2003, pp. 278–285.

[26] K. F. Doerner and V. Schmid, “Survey: matheuristics for rich vehicle

routing problems,” in International Workshop on Hybrid Metaheuristics.

Springer, 2010, pp. 206–221.

[27] C. Archetti and M. G. Speranza, “A survey on matheuristics for routing

problems,” EURO Journal on Computational Optimization, vol. 2, no. 4, pp.

223–246, 2014.

[28] L. Fanjul-Peyro, F. Perea, and R. Ruiz, “Models and matheuristics for the

unrelated parallel machine scheduling problem with additional resources,”

European Journal of Operational Research, vol. 260, no. 2, pp. 482–493, 2017.

[29] J.-F. Cordeau, G. Laporte, F. Pasin, and S. Ropke, “Scheduling technicians

and tasks in a telecommunications company,” Journal of Scheduling, vol. 13,

no. 4, pp. 393–409, 2010.

[30] M. Stojković, F. Soumis, and J. Desrosiers, “The operational airline crew

scheduling problem,” Transportation Science, vol. 32, no. 3, pp. 232–245,

1998.

[31] B. Feiring, “A model generation approach to the personnel assignment

problem,” Journal of the Operational Research Society, vol. 44, no. 5, pp.

503–512, 1993.

[32] G. B. Crockett and P. H. Leamon, “Skills-based scheduling for telephone

call centers,” Mar. 28 2000, uS Patent 6,044,355.

[33] A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier, “Staff scheduling

and rostering: A review of applications, methods and models,” European

journal of operational research, vol. 153, no. 1, pp. 3–27, 2004.

iv

[6th November 2019 at 15:04]

[34] K. R. Baker, “Workforce allocation in cyclical scheduling problems: A

survey,” Journal of the Operational Research Society, vol. 27, no. 1, pp. 155–

167, 1976.

[35] U. Benlic, E. K. Burke, and J. R. Woodward, “Breakout local search for the

multi-objective gate allocation problem,” Computers & Operations Research,

vol. 78, pp. 80–93, 2017.

[36] E. K. Burke, P. De Causmaecker, G. De Maere, J. Mulder, M. Paelinck, and

G. V. Berghe, “A multi-objective approach for robust airline scheduling,”

Computers & Operations Research, vol. 37, no. 5, pp. 822–832, 2010.

[37] E. Hart, P. Ross, and D. Corne, “Evolutionary scheduling: A review,”

Genetic Programming and Evolvable Machines, vol. 6, no. 2, pp. 191–220,

2005.

[38] J. Van den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester, and

L. De Boeck, “Personnel scheduling: A literature review,” European Journal

of Operational Research, vol. 226, no. 3, pp. 367–385, 2013.

[39] J. A. Castillo-Salazar, D. Landa-Silva, and R. Qu, “Workforce scheduling

and routing problems: literature survey and computational study,” Annals

of Operations Research, vol. 239, no. 1, pp. 39–67, 2016.

[40] C. Fikar and P. Hirsch, “Home health care routing and scheduling: A

review,” Computers & Operations Research, vol. 77, pp. 86–95, 2017.

[41] M. Erhard, J. Schoenfelder, A. Fügener, and J. O. Brunner, “State of the

art in physician scheduling,” European Journal of Operational Research, vol.

265, no. 1, pp. 1–18, 2018.

[42] M. Pinedo, C. Zacharias, and N. Zhu, “Scheduling in the service indus-

tries: An overview,” Journal of Systems Science and Systems Engineering,

vol. 24, no. 1, pp. 1–48, 2015.

v

[6th November 2019 at 15:04]

[43] R. L. Pinheiro, D. Landa-Silva, and J. Atkin, “A variable neighbourhood

search for the workforce scheduling and routing problem,” in Advances in

Nature and Biologically Inspired Computing. Springer, 2016, pp. 247–259.

[44] I. P. Solos, I. X. Tassopoulos, and G. N. Beligiannis, “Optimizing shift

scheduling for tank trucks using an effective stochastic variable neigh-

bourhood approach,” Int. J. Artif. Intell, vol. 14, no. 1, pp. 1–26, 2016.

[45] B. Maenhout and M. Vanhoucke, “An evolutionary approach for the nurse

rerostering problem,” Computers & Operations Research, vol. 38, no. 10, pp.

1400–1411, 2011.

[46] V. Pillac, C. Gueret, and A. L. Medaglia, “A parallel matheuristic for the

technician routing and scheduling problem,” Optimization Letters, vol. 7,

no. 7, pp. 1525–1535, 2013.

[47] V. Pillac, C. Guéret, and A. Medaglia, “A fast reoptimization approach

for the dynamic technician routing and scheduling problem,” in Recent

Developments in Metaheuristics. Springer, 2018, pp. 347–367.

[48] M. E. Bucci, J. A. Velazquez, and P. J. Piccolomini, “Dynamic workforce

scheduler,” Nov. 23 2004, uS Patent 6,823,315.

[49] M. J. Brusco and L. W. Jacobs, “A simulated annealing approach to the

solution of flexible labour scheduling problems,” Journal of the Operational

Research Society, vol. 44, no. 12, pp. 1191–1200, 1993.

[50] P. Brucker, R. Qu, and E. Burke, “Personnel scheduling: Models and

complexity,” European Journal of Operational Research, vol. 210, no. 3, pp.

467–473, 2011.

[51] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli, “Hybrid metaheuristics

in combinatorial optimization: A survey,” Applied Soft Computing, vol. 11,

no. 6, pp. 4135–4151, 2011.

vi

[6th November 2019 at 15:04]

[52] S. M. Pour, J. H. Drake, L. S. Ejlertsen, K. M. Rasmussen, and E. K.

Burke, “A hybrid constraint programming/mixed integer programming

framework for the preventive signaling maintenance crew scheduling

problem,” European Journal of Operational Research, vol. 269, no. 1, pp.

341–352, 2018.

[53] E. Rahimian, K. Akartunalı, and J. Levine, “A hybrid integer program-

ming and variable neighbourhood search algorithm to solve nurse roster-

ing problems,” European Journal of Operational Research, vol. 258, no. 2, pp.

411–423, 2017.

[54] G. R. Raidl, J. Puchinger, and C. Blum, “Metaheuristic hybrids,” in Hand-

book of Metaheuristics. Springer, 2019, pp. 385–417.

[55] E. K. Burke, T. Curtois, G. Post, R. Qu, and B. Veltman, “A hybrid heuristic

ordering and variable neighbourhood search for the nurse rostering

problem,” European Journal of Operational Research, vol. 188, no. 2, pp.

330–341, 2008.

[56] F. Della Croce and F. Salassa, “A variable neighborhood search based

matheuristic for nurse rostering problems,” Annals of Operations Research,

vol. 218, no. 1, pp. 185–199, 2014.

[57] X. Chen, B. W. Thomas, and M. Hewitt, “Multi-period technician schedul-

ing with experience-based service times and stochastic customers,” Com-

puters & Operations Research, vol. 82, pp. 1–14, 2017.

[58] A. E. Eiben and S. K. Smit, “Parameter tuning for configuring and analyz-

ing evolutionary algorithms,” Swarm and Evolutionary Computation, vol. 1,

no. 1, pp. 19–31, 2011.

vii

[6th November 2019 at 15:04]

[59] P. J. Ross and P. J. Ross, Taguchi techniques for quality engineering: loss

function, orthogonal experiments, parameter and tolerance design. McGraw-

Hill New York, 1988, no. TS156 R12.

[60] H. Wang, Q. Geng, and Z. Qiao, “Parameter tuning of particle swarm op-

timization by using taguchi method and its application to motor design,”

in 2014 4th IEEE International Conference on Information Science and Techno-

logy. IEEE, 2014, pp. 722–726.

[61] A. Maleki-Daronkolaei and I. Seyedi, “Taguchi method for three-stage

assembly flow shop scheduling problem with blocking and sequence-

dependent set up times,” Journal of Engineering Science and Technology,

vol. 8, no. 5, pp. 603–622, 2013.

[62] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and

T. Stützle, “The irace package: Iterated racing for automatic algorithm

configuration,” Operations Research Perspectives, vol. 3, pp. 43–58, 2016.

[63] P. Balaprakash, M. Birattari, and T. Stützle, “Improvement strategies

for the f-race algorithm: Sampling design and iterative refinement,” in

International workshop on hybrid metaheuristics. Springer, 2007, pp. 108–122.

[64] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “F-race and iterated

f-race: An overview,” in Experimental methods for the analysis of optimization

algorithms. Springer, 2010, pp. 311–336.

[65] F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, and T. Stützle, “Grammar-

based generation of stochastic local search heuristics through automatic

algorithm configuration tools,” Computers & operations research, vol. 51, pp.

190–199, 2014.

viii

[6th November 2019 at 15:04]

[66] J. R. Woodward and J. Swan, “The automatic generation of mutation op-

erators for genetic algorithms,” in Proceedings of the 14th annual conference

companion on Genetic and evolutionary computation. ACM, 2012, pp. 67–74.

[67] S. O. Haraldsson and J. R. Woodward, “Automated design of algorithms

and genetic improvement: contrast and commonalities,” in Proceedings

of the Companion Publication of the 2014 Annual Conference on Genetic and

Evolutionary Computation. ACM, 2014, pp. 1373–1380.

[68] A. Yarimcam, S. Asta, E. Özcan, and A. J. Parkes, “Heuristic generation

via parameter tuning for online bin packing,” in 2014 IEEE symposium on

evolving and autonomous learning systems (EALS). IEEE, 2014, pp. 102–108.

[69] N. Rangel-Valdez and J. Torres-Jimenez, “Solving employee timetabling in

a call center of a telecommunications company in mexico with simulated

annealing,” in 2009 Eighth Mexican International Conference on Artificial

Intelligence. IEEE, 2009, pp. 170–175.

[70] A. Petrovski, A. Brownlee, and J. McCall, “Statistical optimisation and

tuning of ga factors,” in 2005 IEEE Congress on Evolutionary Computation,

vol. 1. IEEE, 2005, pp. 758–764.

[71] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based op-

timization for general algorithm configuration,” in International conference

on learning and intelligent optimization. Springer, 2011, pp. 507–523.

[72] L. P. Cáceres, B. Bischl, and T. Stützle, “Evaluating random forest mod-

els for irace,” in Proceedings of the Genetic and Evolutionary Computation

Conference Companion. ACM, 2017, pp. 1146–1153.

[73] M. Buddenhagen and Y. Lierler, “Performance tuning in answer set

programming,” in International Conference on Logic Programming and Non-

monotonic Reasoning. Springer, 2015, pp. 186–198.

ix

[6th November 2019 at 15:04]

[74] R. Burger, M. Bharatheesha, M. van Eert, and R. Babuška, “Automated

tuning and configuration of path planning algorithms,” in 2017 IEEE

International Conference on Robotics and Automation (ICRA). IEEE, 2017,

pp. 4371–4376.

[75] A. Arcuri and G. Fraser, “Parameter tuning or default values? an empirical

investigation in search-based software engineering,” Empirical Software

Engineering, vol. 18, no. 3, pp. 594–623, 2013.

[76] D. H. Wolpert, W. G. Macready et al., “No free lunch theorems for op-

timization,” IEEE transactions on evolutionary computation, vol. 1, no. 1, pp.

67–82, 1997.

[77] C. Huang, Y. Li, and X. Yao, “A survey of automatic parameter tuning

methods for metaheuristics,” IEEE Transactions on Evolutionary Computa-

tion, 2019.

[78] G. Taguchi and G. Taguchi, “System of experimental design; engineer-

ing methods to optimize quality and minimize costs,” UNIPUB/Kraus

Internation, Tech. Rep., 1987.

[79] S. Mahapatra and A. Patnaik, “Optimization of wire electrical discharge

machining (wedm) process parameters using taguchi method,” The Inter-

national Journal of Advanced Manufacturing Technology, vol. 34, no. 9, pp.

911–925, 2007.

[80] R. Tyasnurita, E. Özcan, and R. John, “Learning heuristic selection using

a time delay neural network for open vehicle routing,” in Evolutionary

Computation (CEC), 2017 IEEE Congress on. IEEE, 2017, pp. 1474–1481.

[81] R. N. Kacker, E. S. Lagergren, and J. J. Filliben, “Taguchi’s orthogonal

arrays are classical designs of experiments,” Journal of research of the

National Institute of Standards and Technology, vol. 96, no. 5, p. 577, 1991.

x

[6th November 2019 at 15:04]

[82] L. Simeonova, N. Wassan, S. Salhi, and G. Nagy, “The heterogeneous

fleet vehicle routing problem with light loads and overtime: Formulation

and population variable neighbourhood search with adaptive memory,”

Expert Systems with Applications, vol. 114, pp. 183–195, 2018.

[83] H. H. Hoos, “Programming by optimization.” Commun. ACM, vol. 55,

no. 2, pp. 70–80, 2012.

[84] G. Dantzig, Linear programming and extensions. Princeton university press,

2016.

[85] P. De Bruecker, J. Beliën, J. Van den Bergh, and E. Demeulemeester, “A

three-stage mixed integer programming approach for optimizing the skill

mix and training schedules for aircraft maintenance,” European Journal of

Operational Research, vol. 267, no. 2, pp. 439–452, 2018.

[86] K. Kim and S. Mehrotra, “A two-stage stochastic integer programming

approach to integrated staffing and scheduling with application to nurse

management,” Operations Research, vol. 63, no. 6, pp. 1431–1451, 2015.

[87] K. N. Reid, J. Li, J. Swan, A. McCormick, and G. Owusu, “Variable

neighbourhood search: A case study for a highly-constrained workforce

scheduling problem,” in Computational Intelligence (SSCI), 2016 IEEE Sym-

posium Series on. IEEE, 2016, pp. 1–6.

[88] J. Ingels and B. Maenhout, “A memetic algorithm to maximise the em-

ployee substitutability in personnel shift scheduling,” in European Confer-

ence on Evolutionary Computation in Combinatorial Optimization. Springer,

2017, pp. 44–59.

[89] M. Comer, “Sickness absence in the uk labour market -

office for national statistics,” 2017. [Online]. Available: https:

xi

[6th November 2019 at 15:04]

https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/labourproductivity/articles/sicknessabsenceinthelabourmarket/2016
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/labourproductivity/articles/sicknessabsenceinthelabourmarket/2016
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/labourproductivity/articles/sicknessabsenceinthelabourmarket/2016

//www.ons.gov.uk/employmentandlabourmarket/peopleinwork/

labourproductivity/articles/sicknessabsenceinthelabourmarket/2016

[90] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari, “The irace

package, iterated race for automatic algorithm configuration,” IRIDIA,

Université Libre de Bruxelles, Belgium, Tech. Rep. TR/IRIDIA/2011-

004, 2011. [Online]. Available: http://iridia.ulb.ac.be/IridiaTrSeries/

IridiaTr2011-004.pdf

xii

[6th November 2019 at 15:04]

https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/labourproductivity/articles/sicknessabsenceinthelabourmarket/2016
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/labourproductivity/articles/sicknessabsenceinthelabourmarket/2016
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/labourproductivity/articles/sicknessabsenceinthelabourmarket/2016
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/labourproductivity/articles/sicknessabsenceinthelabourmarket/2016
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

A
A P P E N D I X A

a.1 other works

a.1.1 Introduction

While developing initial solutions for the FSO, several interim solutions were

used as proof of concepts. Of these, two are worth mentioning: the “insider

knowledge engine” and the “iterative pattern approach”. These mechanisms

are heuristics, in that they do not guarantee optimal solutions. They are useful

mechanisms for testing parameterisation of algorithms before completion

of implementation; for comparing the algorithms to quick solutions which

do little for fitness improvement; and useful for testing expected outputs of

algorithms before they are completed. In short, they are useful for integration

and prototyping. These two solutions are described in this appendix.

a.1.2 Insider Knowledge Engine

Shifts do not necessarily have to meet any demand in order to exist. Employees

can work shifts where there is no demand at all, which is important in order

to meet HCs. In this solution, it is fairly likely to have a number of allocations

which rank poorly when considering SCs. This is acceptable, so long as the

solution is feasible, and the Insider Knowledge Engine (IKE) ensures that every

solution is feasible by design.

1

[6th November 2019 at 15:04]

Figure A.1: IKA Diagram

This solution works by iterating through the list of all employees, assigning

them shifts which meet all contractual and legal requirements, with a prefer-

ence for shifts with higher demand. If no such shift exists, then any feasible

shift is chosen. No other SCs are considered (in this instance, see Chapter 2 for

the relevant constraints). This means there is a great likelihood that employees

will not have consecutive rest days, or work preferred skills. For a visual

representation of IKE see Fig A.1.

a.1.3 Iterative Pattern Approach

Similar to subsection A.1.2, this approach does not consider SCs, and always

produces feasible solutions (addressing all HCs). The constraints for this engine

are the same as in Chapter 2. This engine is an improvement upon the IKE.

The Iterative Pattern Approach (IPA) approach works by creating a set of

personalised rosters for employees, then using HC compliant patterns iter-

atively for multiple employees. The hypothesis was that by reusing already

functional patterns, run-time could be reduced. Fitness was not considered,

however more constraints were hard-coded, for example patterns which had

consecutive rest days were preferred over those without. This means the solu-

2

[6th November 2019 at 15:04]

Figure A.2: IPA Diagram

tions produced were more pleasing to the specifications, while no numerical

values were presented to prove performance (fitness, cost, etc.). This approach

has been visually represented in Fig A.2.

a.1.4 Conclusion

These approaches were useful for testing various approaches which were

not evolutionarily driven, and useful for testing integration with FSO systems.

Further, as these engines were first created early in my PhD, they proved useful

in developing my skillset in software development and becoming familiar

with the FSO’s specific problems.

3

[6th November 2019 at 15:04]

B
A P P E N D I X B

4

[6th November 2019 at 15:04]

List of Figures

1 Chapter 4 - Diagrammatic Overview of Algorithm Flow .
2 Chapter 4 - Intra-day Swap Mechanism .
3 Chapter 4 - Inter-day Swap Mechanism .
4 Chapter 4 - Delete & Regenerate Mechanism .
5 Chapter 4 - Mean VNS Scatter Plot .
6 Chapter 4 - Greedy Algorithm Q-Q Plot .
7 Chapter 4 - VNS Q-Q Plot .
8 Chapter 4 - Greedy Algorithm Q-Q Plot with Outliers Removed .
9 Chapter 4 - VNS Q-Q Plot with Outliers Removed .
10 Chapter 4 - Greedy Algorithm vs VNS Boxplot .
11 Chapter 5 - Flow Diagram .
12 Chapter 5 - Box-Plot of Fitness for 6 sample parameter configurations .
13 Chapter 5 - Box-Plot of Fitness for the best 5 parameter configurations .
14 Chapter 5 - Fitness per Iteration of a Single Test. .
15 Chapter 6 - Diagrammatic Overview of ER&SR & VNS Hybrid .
16 Chapter 6 - Box-Plot of Average Fitness (A-F) and Baseline Fitness (G) .
17 Chapter 6 - Q-Q Plot of Config. A .
18 Chapter 7 - ERSRIP Flow Diagram .
19 Chapter 7 - Metaheuristic Based Skill Allocations .
20 Chapter 7 - Run-time compared with Percentage of Employees CPLEX Tasked With Scheduling .
21 Chapter 7 - Run-time compared with Percentage of Employees CPLEX Tasked With Scheduling .
22 Chapter 7 - RP Changes Parameter Vs Starting Week Parameter (Outliers Removed) .
23 Chapter 7 - Boxplot of Each Config Tested 30x With Tuned Parameters .
24 Chapter 7 - Q-Q Plot of Config A .
25 Chapter 7 - Q-Q Plot of Config B .
26 Chapter 7 - Q-Q Plot of Config. D .
27 Chapter 7 - Average Absolute Percentage Difference Per Config .
28 Chapter 7 - Day Of Week Absolute Percentage Difference - Config A .
29 Chapter 7 - Day Of Week Absolute Percentage Difference - Config B .
30 Chapter 7 - Day Of Week Absolute Percentage Difference - Config D .
31 Chapter 7 - Day Of Week Absolute Percentage Difference - Config E .
32 Chapter 8 - Managerial Initialisation Screen .
33 Chapter 8 - Managerial Schedule Overview Screen .
34 Chapter 8 - Managerial Schedule Breakdown Screen .
35 Chapter 8 - Employee View .
36 Chapter 8 - Cross-Project Data Flow .

[6th November 2019 at 15:04]

37 Chapter 8 - Simulation Analytics .
38 Chapter 8 - Additional Analytics for Simulator .
39 Chapter 8 - Geographic Visual Screenshot .

[6th November 2019 at 15:04]

Figure 1: Chapter 4 - Diagrammatic Overview of Algorithm Flow

[6th November 2019 at 15:04]

Figure 2: Chapter 4 - Intra-day Swap Mechanism

[6th November 2019 at 15:04]

Figure 3: Chapter 4 - Inter-day Swap Mechanism

[6th November 2019 at 15:04]

Figure 4: Chapter 4 - Delete & Regenerate Mechanism

[6th November 2019 at 15:04]

Figure 5: Chapter 4 - Mean VNS Scatter Plot

[6th November 2019 at 15:04]

Figure 6: Chapter 4 - Greedy Algorithm Q-Q Plot

[6th November 2019 at 15:04]

Figure 7: Chapter 4 - VNS Q-Q Plot

[6th November 2019 at 15:04]

Figure 8: Chapter 4 - Greedy Algorithm Q-Q Plot with Outliers Removed

[6th November 2019 at 15:04]

Figure 9: Chapter 4 - VNS Q-Q Plot with Outliers Removed

[6th November 2019 at 15:04]

Figure 10: Chapter 4 - Greedy Algorithm vs VNS Boxplot

[6th November 2019 at 15:04]

Figure 11: Chapter 5 - Flow Diagram

[6th November 2019 at 15:04]

Figure 12: Chapter 5 - Box-Plot of Fitness for 6 sample parameter configurations

[6th November 2019 at 15:04]

Figure 13: Chapter 5 - Box-Plot of Fitness for the best 5 parameter configurations

[6th November 2019 at 15:04]

Figure 14: Chapter 5 - Fitness per Iteration of a Single Test.

[6th November 2019 at 15:04]

Figure 15: Chapter 6 - Diagrammatic Overview of ER&SR & VNS Hybrid

[6th November 2019 at 15:04]

Figure 16: Chapter 6 - Box-Plot of Average Fitness (A-F) and Baseline Fitness (G)

[6th November 2019 at 15:04]

Figure 17: Chapter 6 - Q-Q Plot of Config. A

[6th November 2019 at 15:04]

Figure 18: Chapter 7 - ERSRIP Flow Diagram

[6th November 2019 at 15:04]

Figure 19: Chapter 7 - Metaheuristic Based Skill Allocations

[6th November 2019 at 15:04]

Figure 20: Chapter 7 - Run-time compared with Percentage of Employees CPLEX Tasked With Scheduling

[6th November 2019 at 15:04]

Figure 21: Chapter 7 - Run-time compared with Percentage of Employees CPLEX Tasked With Scheduling

[6th November 2019 at 15:04]

Figure 22: Chapter 7 - RP Changes Parameter Vs Starting Week Parameter (Outliers Removed)

[6th November 2019 at 15:04]

Figure 23: Chapter 7 - Boxplot of Each Config Tested 30x With Tuned Parameters

[6th November 2019 at 15:04]

Figure 24: Chapter 7 - Q-Q Plot of Config A

[6th November 2019 at 15:04]

Figure 25: Chapter 7 - Q-Q Plot of Config B

[6th November 2019 at 15:04]

Figure 26: Chapter 7 - Q-Q Plot of Config. D

[6th November 2019 at 15:04]

Figure 27: Chapter 7 - Average Absolute Percentage Difference Per Config

[6th November 2019 at 15:04]

Figure 28: Chapter 7 - Day Of Week Absolute Percentage Difference - Config A

[6th November 2019 at 15:04]

Figure 29: Chapter 7 - Day Of Week Absolute Percentage Difference - Config B

[6th November 2019 at 15:04]

Figure 30: Chapter 7 - Day Of Week Absolute Percentage Difference - Config D

[6th November 2019 at 15:04]

Figure 31: Chapter 7 - Day Of Week Absolute Percentage Difference - Config E

[6th November 2019 at 15:04]

Figure 32: Chapter 8 - Managerial Initialisation Screen

[6th November 2019 at 15:04]

Figure 33: Chapter 8 - Managerial Schedule Overview Screen

[6th November 2019 at 15:04]

Figure 34: Chapter 8 - Managerial Schedule Breakdown Screen

[6th November 2019 at 15:04]

Figure 35: Chapter 8 - Employee View

[6th November 2019 at 15:04]

Figure 36: Chapter 8 - Cross-Project Data Flow

[6th November 2019 at 15:04]

Figure 37: Chapter 8 - Simulation Analytics

[6th November 2019 at 15:04]

Figure 38: Chapter 8 - Additional Analytics for Simulator

[6th November 2019 at 15:04]

Figure 39: Chapter 8 - Geographic Visual Screenshot

[6th November 2019 at 15:04]

	Declaration
	Abstract
	Acknowledgments
	Publications
	Contents
	List of Figures
	List of Tables
	List of Acronyms

	1 Chapter 1 - Overview
	1.1 Introduction
	1.2 Hypothesis
	1.3 Thesis Structure

	2 Chapter 2 - Problem Descriptions
	2.1 Problem Terminology
	2.1.1 Personalised Scheduling
	2.1.2 Roster Pattern Scheduling

	2.2 Personalised Scheduling
	2.2.1 Integer Programming Model
	2.2.2 Problem Description

	2.3 Roster Pattern Scheduling
	2.3.1 Integer Programming Model
	2.3.2 Problem Description

	3 Chapter 3 - Literature Review
	3.1 Introduction to Metaheuristics
	3.1.1 Variable Neighbourhood Search
	3.1.2 Evolutionary Ruin & Stochastic Recreate
	3.1.3 Simulated Annealing
	3.1.4 Hybrid Approaches
	3.1.5 Matheuristics

	3.2 Shift Scheduling & Employee Rostering Problems
	3.2.1 Variable Neighbourhood Search
	3.2.2 Simulated Annealing
	3.2.3 Hybrid Approaches
	3.2.4 Matheuristics

	3.3 Parameter Tuning
	3.3.1 Taguchi Methods
	3.3.2 irace Software Package
	3.3.3 Other Approaches

	3.4 Conclusion

	4 Chapter 4 - Personalised Scheduling & Rostering - Variable Neighbourhood Search
	4.1 Implementation
	4.1.1 Greedy Algorithm
	4.1.2 Variable Neighbourhood Search

	4.2 Results
	4.3 Discussion

	5 Chapter 5 - Personalised Scheduling & Rostering - Evolutionary Ruin & Stochastic Recreate
	5.1 Implementation
	5.2 Results
	5.3 Conclusions

	6 Chapter 6 - Roster Patterns - Evolutionary Ruin & Stochastic Recreate Hybridised with Variable Neighbourhood Search
	6.1 Implementation
	6.1.1 Evolutionary Ruin & Stochastic Recreate
	6.1.2 Variable Neighbourhood Search
	6.1.3 Order of Events

	6.2 Results
	6.3 Conclusions

	7 Chapter 7 - Roster Patterns - Evolutionary Ruin & Stochastic Recreate Hybridised with Integer Programming
	7.1 Introduction
	7.2 Implementation
	7.3 Results
	7.4 Conclusions

	8 Chapter 8 - Real World Usage
	8.1 Roster Generation
	8.2 Simulator

	9 Chapter 9 - Conclusions
	9.1 Thesis Contributions
	9.1.1 Contribution 1: Problem Formulation & Improved Schedules over Baseline
	9.1.2 Contribution 2: Re-purposing of Evolutionary Ruin & Stochastic Recreate
	9.1.3 Contribution 3: Hybrid Algorithms
	9.1.4 Contribution 4: Constraints and Problem Formulation to Minimise Employee Dissatisfaction
	9.1.5 Contribution 5: Literature Review
	9.1.6 Contribution 6: `Keystone' Allocations

	9.2 Evaluation of Hypothesis
	9.3 Future Work
	9.4 Concluding Remarks

	A Appendix A
	A.1 Other Works
	A.1.1 Introduction
	A.1.2 Insider Knowledge Engine
	A.1.3 Iterative Pattern Approach
	A.1.4 Conclusion

	B Appendix B

