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Abstract

This thesis explored the gaze monitoring abilities o f monkeys. A review o f 

previous studies indicated that the face is a valuable source o f information for nonhuman 

primates. When viewing faces, nonhuman primates can recognise conspecifics, 

individuals and emotional expressions. Within the face, the eyes are a particularly salient 

feature; nonhuman primates are extremely sensitive to the eyes and gaze is an integral 

component of all primate expressions. However, where another individual is looking 

potentially allows a primate access to a wealth of information about their environment; 

another’s visual orientation can indicate important objects or events. It is this 

informational value o f gaze, rather than responses to self-directed gaze, that is the focus 

of this thesis. Previous research has indicated that nonhuman primates’ responses to gaze 

are fairly inconsistent across tasks. Therefore, the studies reported here explored 

monkeys’ responses to gaze within a number of experimental paradigms in order to 

better evaluate their abilities. Approaches included spontaneous responses to another 

individual’s visual co-orientation, picture discrimination, object-choice tasks, a 

competitive task and a computer-based cueing paradigm.

The data reported in this thesis are consistent with previous research in this Held. 

Nonhuman primates spontaneously follow gaze within a simple visual co-orientation 

paradigm, but they do not readily use gaze as an informational cue within other 

paradigms, such as the object-choice task. Explanations o f this pattern o f results are 

suggested, and mainly focus on the ecological validity of the tasks and general procedural 

issues. In addition, nonhuman primates do not demonstrate preferential responding to 

eye gaze, in fact, head orientation seems to be the more salient cue. These findings are 

not readily accommodated by Baron-Cohen’s (1994) model that proposes that the eyes



are the pre-eminent source o f information regarding another individuals’ gaze direction. 

Directions for future research are identified. There is considerable need for further 

research on a wider range o f primate species, and for a consideration o f the ontogeny of 

behaviours. A more detailed analysis o f the role o f gaze in nonhuman primates’ natural 

interactions is considered desirable and other paradigms are also suggested.
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Chapter One 

Visual Communication in N onhum an Primates:

Looking at Faces and the Role of Gaze

‘Other people’s faces provide us with a wealth of social information. We are highly 

skilled at recognising the faces of people we know, and we can assess 

characteristics such as age or sex fairly accurately even when a face is unfamiliar. 

We are also adept at interpreting facial expressions and make much use of these in 

regulating patterns of social interaction’ (Ellis & Young, 1988, p 87).

While the above quotation refers to human social cognition, many nonhuman primates also 

inhabit complex social environments where the face is an important source of information 

about other individuals (van Hooff, 1967; Perrett & Mistlin, 1990). It has been proposed 

that the development of group living in primates was accompanied by a progressive 

increase in the utilisation of visual forms o f communication, with vision replacing olfaction 

and vocalisation as the primary means of transmitting social information (Allman, 1982; 

Anderson, 1998; Andrews, 1963; Brothers, 1996; Emery, 2000). Visually attending to 

conspecifics allows group living primates access to important social information (Kummer, 

1967) and attending to faces is likely to be an integral component of this social monitoring 

(Pascalis, Petit, Kim & Campbell, 1999; Perrett & Mistlin, 1990). Indeed, morphological 

changes in the primate face have enhanced its value as an information source; as Emery 

(2000, p 583) states, ‘the primate face has evolved an elaborate system o f facial musculature 

that aids in producing expressive facial movements.’
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As stated above, faces contain information concerning the identity and emotional 

states o f other individuals and this chapter will consider the evidence that nonhuman 

primates are able to recognise and respond to this information appropriately. Following a 

general overview o f nonhuman primates’ responses to faces, this review will present a 

detailed consideration o f the role o f the eyes in particular and examine responses to other 

individuals’ gaze. However, it is first necessary to offer a brief overview of the various 

methodologies employed within this field o f research as the issues raised are relevant to 

this and subsequent chapters.

1) H ow  has face processing in nonhuman primates been studied?

1.1) Responses measured

Studies investigating the face processing abilities o f nonhuman primates are somewhat 

eclectic in nature; approaches range from behavioural to neurophysiological and employ 

various forms o f stimuli. Behavioural methods may use either trained or untrained 

responses. Untrained measures are naturally occurring responses; amount o f attention, 

visual scanning patterns and emotional or behavioural responses may vary, and consistent 

variations in these measures reveal that subjects are able to discriminate perceptually 

between stimuli. Visual scan patterns may differ between two sets o f stimuli with subjects 

showing a preference for one type o f stimulus over another or displaying different 

inspection patterns in terms o f number, duration or areas fixated (Keating & Keating, 

1982; Swartz, 1983). Behavioural or emotional responses may differ according to the 

content o f the stimuli, for example, the intensity of a given behaviour, such as an 

appeasement gesture like lip-smacking, may differ according to the stimulus presented 

(Perrett & Mistlin, 1990; Plimpton, Swartz & Rosenblum, 1981; Sackett, 1966). Such 

patterns o f responding allow the conclusion that the individuals are perceiving salient 

differences between the stimuli presented (Bovet & Vauclair, 2000).
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Nonhuman primates may also be trained to make an arbitrary response to one 

stimulus and not another; again the capacity for differential responding reveals an ability to 

discriminate between the stimuli. Individuals may be required to discriminate between two 

stimuli according to some criterion in order to obtain a reward. Such a discrimination 

might take the form o f ‘respond to individual A’ (Rosenfeld & van Hoesen, 1979), or to 

match-to-sample by selecting a stimulus from the options presented that matches 

(according to some criterion) a sample stimulus, which can either precede or be presented 

simultaneously with the choice (e.g. Dasser, 1988; Parr, Winslow, Hopkins & de Waal, 

2000). Trained responses include lever-pressing in order to view an image. For example, 

one paradigm requires a lever press to view an image which then disappears when the lever 

is released, but depressing the lever again within 10 seconds leads to the same image 

reappearing, while a longer delay results in a new image being presented (Fujita & 

Matsusawa, 1986). This method provides two measures o f preference (amount o f time 

viewing the image and number o f times an image is viewed) and although dependent upon 

an arbitrary behaviour, it taps into an untrained measure o f preference for, and habituation 

to, stimuli.

Neurophysiological and physiological methods allow more direct measures of 

perceptual processing to be taken. At the neurophysiological level, the activity of visual 

neurons can be measured as a means o f exploring the cortical or subcortical mechanisms 

underlying face-processing abilities. As with behavioural measures, differential responses 

indicate that stimuli are perceived as distinct from one another in some manner. Cells may 

be sensitive to a single feature or to  a combination or configuration o f features. For 

example, neuronal responses may reveal selectivity for particular facial features which are 

generalisable across stimuli and are thus not explicable in terms o f other incidental aspects 

o f the stimuli presented, such as lumination or colour (Perrett, Mistlin, Chitty, Smith,

Potter, Broenniman & Harries, 1988). In addition to single cell recording, evoked related
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potentials (ERPs) have been used to examine brain activity in response to facial stimuli 

(Pineda, Sebestyen & Nava, 1994). Autonomic measures such as heart rate also may be 

indicative of differential psychophysiological responding to various stimuli; this measure 

can complement overt behavioural responses and offers additional insight into the affective 

salience o f the stimuli presented (Boysen & Bernston, 1986).

The dependent measure in face-processing studies with nonhuman primates can 

therefore be a natural (untrained response), an arbitrary trained response aimed at tapping 

some underlying ability and allowing overt measurements, or a neurophysiological or 

autonomic measure which is indicative o f covert processing.

1.2) The form and content of the stimuli presented

Most research into face processing in nonhuman primates has used two-dimensional 

stimuli, ranging from video images to various forms o f static image, while the content may 

be conspecific or human models. It is worth briefly considering how these variations might 

influence the results obtained.

The range o f stimuli employed to examine face processing varies considerably; line 

drawings (Dittrich, 1994), colour photographs (Tomonaga, 1994), black and white 

photographs (Keating & Keating, 1982) and video (Nahm, Perrett, Amaral & Albright,

1997) have all been used to allow the systematic presentation o f easily manipulated stimuli. 

However, the use of such two-dimensional images is based upon the premise that 

responses to these images somehow equate with natural patterns in primate facial 

perception (Keating & Keating, 1993; Nahm et al, 1997), a premise which has not gone 

unchallenged (see Bovet & Vauclair, 2000, Deregowski, 1999, & Fagot, Martin-Malivel & 

Depy, 1999, for recent reviews o f picture perception). The use o f two-dimensional stimuli 

in the study of primate social cognition raises certain issues; it has been highlighted that the 

ability to discriminate between two pictures does not necessarily mean that the subject is
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perceiving the image in any meaningful manner as opposed to a ‘complex artificial 

configuration devoid of any social significance5 (Zayan & Vauclair, 1988, p 92). However, if 

this were the case then subjects should not display socially appropriate behaviours in 

response to the stimuli (e.g. Overman & Doty, 1982). In addition, the wider social matrix 

o f the subject and stimulus individual should have no influence on the responses observed, 

but several studies have found that this is not the case. For example, an 

electrophysiological study on one chimpanzee (Pan troglodytes) found that heart rate 

measures differentiated responses to  photographs o f aggressive, companion and unfamiliar 

chimpanzees (Boysen & Bernston, 1989).

Even if these social stimuli are somehow meaningful, it is not clear at what level 

nonhuman primates understand the representational quality of the images (Bovet & 

Vauclair, 2000; Fagot, Martin-Malivel & Depy, 1999; Kyes, Mayer & Bunnell, 1992; Pascalis 

et al, 1999; Zayan & Vauclair, 1988). That is, do they realise that the stimulus is only a 

representation o f an individual, or do they perceive the picture as if it were the actual 

individual? Some o f the studies in which animals display socially appropriate behavioural 

responses to two-dimensional stimuli may be suggestive of image-object equivalence. For 

example, Overman and Doty (1982) reported that pigtailed macaques (Macaca nemestrina) 

displayed emotional responses to socially relevant colour photographs such as humans and 

monkeys, but not to less salient images (e.g. flowers, insects and landscapes). Furthermore, 

the social status o f the tested or stimulus primate may influence response patterns to 

socially meaningful stimuli. For example, colour slides o f potentially threatening stimuli 

elicited responses dependent upon Java monkeys5 (Macaca fascicularis) own social status; 

aggressive and submissive gestures for high and low ranking individuals, respectively (Kyes, 

Mayer & Bunnell, 1992). Indeed, social factors may even influence post-test social 

behaviours, suggesting that nonhuman primates may not show any meaningful distinction 

between real and pictorial stimuli (Capitano, 1987). In neurophysiological studies, so-called
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face cells are found to respond to both real, model and two-dimensional faces (Desimone, 

1991; Perrett, Smith, Potter, Mistlin, Head, Milner & Jeeves, 1985).

In contrast, it has been suggested that nonhuman primates may modify their social 

behaviours when presented with pictorial stimuli; the absence of a social context may allow 

subjects to become dis-inhibited, for example, displaying prolonged fixation even to images 

o f threatening conspecifics without fear of behavioural repercussions (Nahm et al, 1997). 

This could be explained in terms o f ‘interest’ being a more powerful determinant of 

viewing preferences than whether the images are associated with rewarding or aversive cues 

(Humphrey, 1972). However, if nonhuman primates do alter their behaviour as a 

consequence of the lack o f interactive contingency o f pictorial stimuli, then the validity of 

using photographs as a means of gaining insight into the social perceptions o f nonhuman 

primates may be questioned, except possibly at a very low level. O n the other hand, the 

absence o f interaction could allow animals to express their natural behaviours more freely; 

Nahm et al (1997) in their study o f viewing patterns, argue that the patterns observed are 

only quantitatively not qualitatively different from natural viewing behaviours; indeed, it 

may be parsimonious to assume that the underlying processes are similar.

The fact that nonhuman primates respond differentially to pictorial stimuli does 

not offer further insight into the representational status o f such stimuli; it may only be 

indicative o f the animal’s awareness that the ‘conspecific’ does not display contingent or 

congruent behaviour patterns, and not that they comprehend the representational nature of 

pictures at some level. A similar distinction has been made regarding nonhuman primates’ 

understanding o f reflections (Anderson, 1994). Neurophysiological studies indicate a 

considerable degree o f functional equivalence between real and two-dimensional faces; 

some cells respond in a qualitatively identical manner to real and two-dimensional faces. 

However, the presentation o f pictures produced a reduction in activity in the majority of 

cells in the superior temporal sulcus that were responsive to faces (Perrett et al, 1985). This
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suggests that although two-dimensional images are processed in a similar manner to real 

faces the two are not entirely equivalent. Conceivably, the absence o f perceptual cues such 

as stereoscopic disparity and motion reduce the activity o f cells which specialise in 

processing complex visual stimuli.

The medium of stimulus presentation itself may have some relevance to how the 

nonhuman primate perceives and processes the image. Three dimensional model heads 

have been used as a means o f studying face perception; stumptailed macaques (Macaca 

arctoides) were shown to display appropriate behavioural responses to such a model, 

suggesting that this is a salient, albeit neglected, form of stimulus for nonhuman primates 

(Mistlin, 1984). Intuitively, in terms o f examining social perception in nonhuman primates, 

video may seem the most complete two-dimensional stimulus form as the image includes 

motion and is therefore closest to a live model. Early research showed that monkeys prefer 

dynamic over static images (Butler, 1961). Moreover, neurophysiological studies have 

found emotion responsive cells in the superior temporal sulcus close to cells which are 

responsive to moving visual stimuli, underlining the importance o f motion in facial 

expressions; indeed some are identified as being responsive to dynamic components of 

expressions (Perrett & Mistlin, 1990). However, in one study o f the perception o f facial 

displays in rhesus macaques (Macaca mulatto.), there were no differences in scanning patterns 

for static and dynamic stimuli (Nahm et al, 1997); this finding suggests that photographs 

are valid as a means o f presenting social stimuli, although the effect could be due to the 

artificial and context-devoid nature o f the stimuli. Nonetheless, photographs are the most 

commonly used medium for presenting stimuli to nonhuman primates as a means of 

studying face processing, and as highlighted above, photographic stimuli generally do seem 

to produce meaningful behavioural, autonomic and neurophysiological responses (e.g. 

Boysen & Bemston, 1986; Kyes, Mayer & Bunnell, 1992; Perrett et al, 1985).
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Indenti-Kit faces have been presented to nonhuman primates as these materials 

allow controlled and systematic variations o f features and configuration. The use o f these 

composite photographic stimuli may be justified: rhesus monkeys spontaneously 

categorised these images as ‘faces’ as opposed to ‘non-face’ stimuli on initial presentations 

(Keating & Keating, 1993). Line drawings have also been used on the basis that these 

stimuli allow the information presented to be more stringently controlled; it has been 

argued that such control is crucial in feature analysis studies where systematic variation is 

required (Dittrich, 1994). A lexigram-trained chimpanzee was able to label familiar 

individuals presented as line drawings (Itakura, 1994), but the data suggest that the 

chimpanzee did not spontaneously respond to these stimuli as representations of familiar 

individuals. That is, the chimpanzee may simply have learned to label the line drawings with 

the symbols referring to familiar individuals without attributing any real meaning to the 

images. However, infant pigtailed macaques demonstrated a preference for normal faces 

over scrambled faces when these were presented as line drawings o f conspecifics; thus, 

even at a young age, line drawings o f faces seem to have some salience as social stimuli 

(Lutz, Lockard, Gunderson & Grant, 1998).

Dittrich (1994) reported that Java monkeys learned to discriminate schematic 

drawings o f four species o f monkey more quickly than geometrical or ‘non-natural’ stimuli, 

which indicates that the line drawings possessed some social salience. Furthermore, the 

monkeys generalised from lateral to frontal facial views o f the stimulus monkeys, and 

recognition was largely independent o f transformations in size and orientation. However, 

the stimuli differed in terms o f shape, texture depicted and shading, and the use of such 

physical cues as a basis for discrimination and generalisation may not be ruled out. 

Moreover, rhesus macaques were shown to attend less to schematic than photographic 

faces (Keating & Keating, 1982) and neurophysiological evidence shows that line drawings 

produce weaker neuronal responses (Perrett, Rolls & Caan, 1982), suggesting that the two



forms are not equivalent as ‘social’ stimuli. However, Dittrich (1994) has argued that the 

representational status o f the stimuli is not important in that even if nonhuman primates 

are unaware o f the relationship between reality and pictorial representations, the efficient 

classification and discrimination abilities displayed suggest a predisposition for processing 

these types o f stimuli regardless o f the manner o f presentation.

As highlighted above, studies o f nonhuman primate face-processing vary greatly in 

terms o f methods used and stimulus type; one variation o f the latter is the content of the 

stimuli. Studies use either human or nonhuman primate faces as discriminanda and it is 

important to consider whether this variable has implications for the outcomes. Studies 

utilising both forms o f stimuli have sometimes produced divergent results, perhaps 

suggesting that different species are not equivalent as stimuli. For example, studies of face 

recognition (Tomonaga, Itakura & Matsuzawa, 1993; Phelps & Roberts, 1994; Pascalis & 

Bachevalier, 1998) and physiological responses (Pineda, Sebestyen &c Nava, 1994) have 

reported variations according to whether a human or nonhuman primate face is presented. 

To increase validity, therefore, it would seem advisable to utilise conspecifics as stimuli 

whenever possible; if primate social perceptions are being examined then the use of more 

socially meaningful stimuli should be prioritised.

However, studies have found that nonhuman primates display appropriate 

behavioural responses (Overman & Doty, 1982; Perrett et al, 1985) and similar visual scan 

patterns (Nahm et al, 1997) to human and nonhuman primate stimuli. Rhesus monkeys 

performing a sequential same/different categorisation task produced errors which indicated 

that monkey and human faces were being placed in one category while fruits and flowers 

were placed in another, suggesting that the monkeys were perceiving some level of 

relationship between monkeys and humans (Sands, Lincoln & Wright, 1982). When 

interacting with humans, nonhuman primates often display behaviours which are 

homologous with those exhibited in conspecific engagement (Exline & Yellin, 1969;
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Kummer, Anzenberger & Hemelrijk, 1996; Thomsen, 1974) suggesting that nonhuman 

primates perceive humans as socially meaningful interactants. Moreover, physiological 

studies using both human and conspecific images found that a chimpanzee displayed 

differential pattern o f heart-rate responses according to the familiarity status o f the 

depicted individual (Boysen & Bernston, 1986; 1989). Pineda et al (1994), though 

highlighting differences in squirrel monkey (Saimiri sciureus) ERP responses to conspecific 

and human images, stated that both elicit qualitatively similar responses, with monkey images 

evoking enhanced responses. At the neurophysiological level, face cells in the macaque 

anterior superior temporal sulcus respond to both human and nonhuman primate faces, 

suggesting that the underlying neural mechanisms for processing these stimuli are similar 

(Desimone, 1991) though the strength o f some cell responses may be affected by stimulus 

species (Mikami, Nakamura & Kubota, 1994).

To summarise: several types of stimuli have been used in order to evaluate face 

processing in nonhuman primates. Though there is much debate concerning the nature of 

picture recognition in animals, it would seem that two-dimensional images are able to elicit 

appropriate behavioural and physiological responses; the representational status of the 

images is therefore of tangential interest here. However, it would seem adroit to use the 

most realistic form of stimulus available; while video and photographic images seem to be 

adequate modes o f presentation, the status of more degraded stimuli such as schematic 

drawings is less clear. While there is some evidence that humans and conspecifics are not 

entirely equivalent as social stimuli, it appears that both are capable o f eliciting behavioural 

and physiological responses in nonhuman primates.
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2) What information do faces provide?

‘Important visual signals arise from the face. The face provides a plethora of social 

information about an individual’s gender, age, familiarity, emotional expression 

and potentially their intentions and mental state’ (Emery, 2000, p 582).

As Emery (2000) identifies, the face can be a source of much information important to any 

group-living primate. The following sections will consider the role o f the face in the 

recognition o f identity and expressions in nonhuman primates, before examining the role 

o f the eyes in expression and communication.

2.1) Species level recognition

At the most basic level, nonhuman primates need to discriminate conspecifics from other 

species inhabiting their environment (Pascalis et al, 1999). Humphrey (1974), using a 

habituation paradigm, concluded that rhesus monkeys could distinguish pictures of 

members o f their own species from other mammals, that is, ‘rhesus macaques appear to 

perceive their own species as a separate perceptual category worthy o f more attention than 

other groups of animals’ (Perrett & Mistlin, 1990, p 194). For sympatric species, investing 

time and effort in an appropriate mate, for example, requires that conspecifics be 

distinguished from allospecific individuals. Many nonhuman primate species have 

idiosyncratic markings which differentiate one species from an otherwise similar species 

(Kingdon, 1980) and also demonstrate an ability to identify conspecifics visually 

(see Table 1).

Rhesus monkeys were successfully trained to discriminate pictures o f conspecifics 

from Japanese macaques (Yoshikubo, 1985). However, training in picture discrimination is 

not required for many examples o f species recognition. For example, Fujita (1987) found
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that four o f five species o f macaques, bonnet {Macaca radiata), pigtailed, rhesus and 

Japanese, discriminated pictures o f conspecifics from other macaques in terms of 

preferential lever-pressing to view images, (although one species, stumptailed macaques, 

showed a preference for pigtailed macaques and conspecifics were o f lesser interest).

Table 1: Studies of species level recognition

Task/M ethod Species Stimuli Results Author
Viewing preferences for Stumptailed Photographs Preference for Demaria &
conspecifics and other species. macaques conspecifics. Thierry,

1988
Discrimination of four different Java monkeys Line Successful Dittrich,
species of monkey. drawings discrimination 1994

Viewing preferences for 
conspecifics and other species.

Macaques 
(5 species)

Photographs Discrimination of 
species.

Fujita, 1987

Viewing preferences for 
conspecifics and other species.

Japanese and
rhesus
macaques

Photographs Discrimination o f two 
species of macaques.

Fujita, 1990

Viewing preferences for 
conspecifics and other species.

Pigtailed
macaques

Photographs Preference for viewing 
conspecifics.

Fujita, 1993

Viewing preferences for Sulawesi Photographs Preference for viewing Fujita &
conspecifics and other species. macaques conspecifics. Watanabe,

1995
Viewing preferences for Rhesus Photographs Preference only for Pascalis &
conspecifics and other species. monkeys and 

Humans
novel conspecific 
images.

Bachevalier,
1998.

Viewing preferences for Infant rhesus Photographs Preference for viewing Sackett &
conspecifics and other species. monkeys conspecifics. Rupenthal,

1973
Viewing preference for different 
species.

Infant
pigtailed
macaques

Photographs Differential viewing of 
different species.

Swartz, 1983

Viewing preference for different Rhesus Video Preference for viewing Swartz &
species. monkeys conspecifics. Rosenblum,

1980
Individual recognition o f human 
and chimpanzees.

Chimpanzee Photographs Advantage for 
conspecific faces.

Tomonaga, 
et al, 1993

Viewing preference for different Japanese Photographs Discrimination o f two Tomonaga,
species. macaques species of macaques. 1994

Discrimination o f conspecifics. Rhesus
monkeys

Photographs Successful 
discrimination of 
conspecifics.

Yoshikubo,
1985
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Sulawesi macaques (Macaca nigra, Fujita & Watanabe, 1995) and pigtailed macaques 

(Fujita, 1993) were also found to prefer to view pictures o f conspecifics using the same 

paradigm. Similarly, young adult pigtailed macaques discriminated three species of 

macaques (pigtailed, Java and stumptailed) in terms o f differential habituation to pictures 

(Swartz, 1983). Demaria and Theirry (1988) found a preference for images of conspecifics 

(over non-primates or even other macaque species) in female stumptailed macaques. 

Bonnet macaques pressed a lever to view a videotaped conspecific more than videos of 

other species; though only one example of each species was shown so that individual rather 

than species characteristics may be responsible (Swartz & Rosenblum, 1980). Moreover, 

three-month-old macaques displayed preferences for conspecifics, suggesting that this 

ability is innate or early to emerge in infant primates (Sackett & Rupenthal, 1973). In 

contrast to a straightforward preference for conspecifics, both Fujita (1990) and Tomonaga 

(1994) report that Japanese macaques showed a preference for viewing images o f rhesus 

monkeys over conspecifics; nevertheless, these results also demonstrate an ability to 

discriminate between species.

Within a face recognition paradigm, Tomonaga, Itakura and Matsuzawa (1993) 

found an advantage for conspecific faces in a recognition task with a language-trained 

chimpanzee (human participants were better with human faces). Rhesus macaques and 

humans demonstrated recognition of conspecifics, but not allospecific individuals, in a 

paired comparison task; sensitivity to recognition was inferred from the tendency to 

preferentially fixate a novel stimulus more than a familiar image (Pascalis & Bachevalier,

1998). While the face is not the only available source o f identification, it is probably the 

most important. Fujita (1993) examined preferences for photographic stimuli in pigtailed 

monkeys and found that the preference these monkeys showed for their own species over 

Japanese macaques diminished when head or head and tail regions, but not body, 

background or colour, were removed from the image. Similarly, the face was also found to
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be important in a study using line drawing to investigate species discrimination by Java 

monkeys (Dittrich, 1994).

2.2) Individual recognition

While differentiating alio- from intra-specific individuals is undoubtedly an important task 

for primates, a critical feature o f interactions among nonhuman primates is the ability to 

recognise individual conspecifics. This capacity confers an adaptive advantage for species in 

which social status is largely dependent upon kinship (e.g., Cheney, Seyfarth & Smuts,

1986). However, nonhuman primates may also form varyingly transient social units such as 

coalitions, alliances and friendships, making the primate social world an extremely complex 

environment (Cheney & Seyfarth, 1990a; Harcourt, 1988; de Waal, 1989). Thus, ‘as groups 

became larger, the ability to garner social knowledge by recognizing and remembering 

familiar individuals and their relationships with other group members became highly 

advantageous’ (Parr et al, 2000, p 47). The importance o f this relationship between efficient 

recognition and successful social manoeuvring has been highlighted by the finding that 

brain lesions which impair individual recognition can also lead to severely impaired social 

interactions (Hasselmo, Rolls & Bayliss, 1989).

General features such as gender, age and rank may be determined from another 

individual’s appearance. For example, Sackett (1966) found that isolation-reared rhesus 

macaque infants showed high levels of interest in slides o f infant conspecifics and that their 

behavioural responses to these images were distinguishable from those to other categories, 

such as images o f older conspecifics resting or exploring. Similarly, juvenile rhesus 

macaques’ viewing preferences were found to be particularly sensitive to images of coeval 

(in comparison to infant and adult) conspecifics with various facial expressions (Redican, 

Kellicut & Mitchell, 1971). Thus, identifying another individual’s age may be a function of 

face recognition. However, systematic variations according to the age and gender o f the
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stimulus conspecific are not frequently reported in face recognition tasks and this is an area 

that would benefit from experimental clarification.

The ability to  recognise individual conspecifics has been demonstrated in several 

nonhuman primate species (see Table 2). As noted previously, Itakura (1994) reported that 

a lexigram-trained chimpanzee recognised familiar individuals represented in line drawings. 

Capitano (1987) demonstrated that pigtailed macaques o f intermediate rank were able to 

recognise familiar conspecifics on video; exposure to images o f conspecifics showing 

behaviours that were inappropriate (in terms o f the dominance relationship between the 

subject and stimulus monkey) led to heightened levels of group aggression following 

experimental sessions. Hamadryas baboons (Papio hamadryad) presented with slides of 

familiar conspecifics displayed viewing preferences that were consistent with the 

dominance rank o f the depicted individual (Kyes & Candland, 1984). In addition, rhesus 

monkeys (Rosenfeld & van Hoesen, 1979) and Java monkeys (Bruce, 1982) discriminated 

faces o f individual conspecifics, and chimpanzees were able to match photographs of 

familiar conspecifics with their vocalisations (Bauer & Philip, 1983).

Two Java monkeys performing a simultaneous discrimination task identified novel 

views o f a familiar conspecific after a few trials, whether presented with pictures o f a full 

body or just the face, while another monkey was able to match images o f different body 

parts o f familiar group members (Dasser, 1987). Further research revealed that Java 

monkeys could also, after considerable training, match slides according to the relationships 

between the individuals depicted: two monkeys successfully identified mother-offspring 

pairs (Dasser, 1988). A face recognition study conducted with chimpanzees and rhesus 

monkeys showed that both species readily learned to match pairs of photographs o f several 

other unfamiliar individuals, with the chimpanzees performing above chance on their 

second exposure to the images (Parr et al, 2000). Chimpanzees were also able to match 

unfamiliar mother-son, but not mother-daughter or unrelated individuals pairings,
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providing some evidence for phenotypic matching based on physical, facial cues (Parr & de 

Waal, 1999). As highlighted above, identifying relationships between individuals is a crucial 

skill within complex primate societies (Cheney Sc Seyfarth, 1990a); further studies regarding 

these abilities and replication o f these initial findings would be welcome.

Physiological measures such as event-related potentials (ERPs) and heart-rate have 

also been used to investigate individual recognition in nonhuman primates. In a study with 

squirrel monkeys, ERPs were sensitive to the familiarity of conspecifics (but not humans) 

depicted in photographs (Pineda, Sebestyen Sc Nava, 1994). Boysen and Bernston (1986, 

1989) found that a chimpanzee’s heat rate differentiated between familiar and unfamiliar 

conspecifics and humans. Neurophysiological studies have also located a small number of 

cells that are responsive to an individual’s identity; these cells seem to be based upon 

feature combinations or configurations and generalise across viewing conditions 

(Hasselmo, Rolls Sc Bayliss, 1989; Perrett et al, 1984; Perrett & Mistlin, 1990). Thus, across 

a variety o f measures (behavioural and physiological) nonhuman primates have 

demonstrated acute sensitivity to identity.

T ab le  2: S tudies o f  ind ividual recogn ition

T a sk /M e th o d Species Stim uli R esu lts Author
Matching vocalisations to facial Chimpanzees Photographs Correct cross-modal Bauer &
images o f familiar conspecifics. matching. Philip, 1983

Heart rate measured in response Chimpanzee Photographs Differential response to Boysen &
to humans. familiar and unfamiliar Bemston,

humans. 1986
Heart rate measured in response Chimpanzee Photographs Differential response to Boysen &
to conspecifics. familiar and unfamiliar Bemston,

conspecifics. 1989
Individual recognition of Java monkeys Photographs Successful Bruce, 1982
conspecifics. discrimination.

Behavioural responses to Pigtailed Video Appropriate Capitano,
conspecifics. macaques spontaneous behavioural 1987

responses.
Matching various views of Java monkeys Photographs Correct matching. Dasser,
familiar conspecifics. 1987
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Task/M ethod______________Species______ Stimuli______Results_______________ Author
Identifying conspecific mother- Java monkeys Photographs Correct matching or Dasser, 1988
offspring pairs. categorisation of pairs.

Neuronal responses to Macaques Photographs Cells responsive to Hasselmo et
conspecific faces. (2 species) expression and identity 

of face stimuli.
al, 1989

Viewing preferences for various Rhesus Photographs Differential viewing of Humphrey,
stimuli. monkeys individuals and species. 1974

Recognition o f familiar 
conspecifics.

Chimpanzee Line
drawings

Successful recognition 
of individuals.

Itakura, 1994

Discrimination and visual scan Rhesus Identikit Successful Keating &
pattern of human face. monkeys faces discrimination. General 

fixation on eye-region.
Keating,
1993

Viewing preferences o f familiar Hamadryas Photographs Choice consistent with Kyes &
conspecifics. baboons status of conspecific. Candland,

1984
Simultaneous match to sample Pigtailed Photographs Correct discrimination. Overman &
and behavioural responses to 
humans and conspecifics.

macaques Appropriate
spontaneous behavioural 
responses.

Doty'-, 1982

Identifying mother-offspring 
pairs in unfamiliar conspecifics.

Chimpanzees Photographs Successful matching of 
mother-son, but not 
mother-daughter 
pairings.

Parr & De 
Waal, 1999

Recognition o f unfamiliar Chimpanzees Photographs Successful matching of Parr et al,
conspecifics (match-to-sample). Rhesus

monkeys
images. 2000

Neuronal responses to familiar Rhesus Photographs Cells sensitive to Perrett et al,
human faces. monkeys identity. 1984

Delayed match-to-sample and Squirrel Photographs Successful matching and Phelps &
discrimination learning of 
humans and nonhuman 
primates.

monkeys discrimination. Roberts,
1994

Event related potentials (ERPs) Squirrel Photographs ERPs differentiate Pineda et al,
in response to viewing faces of 
humans and monkeys.

monkeys familiar and unfamiliar 
monkeys but not 
humans.

1994

Picture discrimination of Rhesus Photographs Successful Rosenfeld &
unfamiliar conspecifics. 
Behavioural responses.

monkeys discrimination. 
Appropriate behavioural 
responses.

van Hoesen, 
1979

Individual recognition o f human 
and chimpanzees.

Chimpanzee Photographs Advantage for 
conspecific faces.

Tomonaga, 
et al, 1993
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2.3) Recognition of facial expressions

Face perception also facilitates the rapid perception of the emotional state o f conspecifics 

(see Table 3). Nahm et al (1997) investigated how monkeys looked at conspecifics and 

humans displaying various facial expressions. The eye movements o f four adult rhesus 

monkeys were recorded as they viewed photographic and video images; the face was 

foveated more than other body parts or surrounding objects, again highlighting the salience 

of facial stimuli (Fujita, 1993). The expressive content o f the images was found to affect 

viewing patterns with agonistic and affiliative images evoking different scan patterns. For 

example, the eye region was fixated more than the mouth region when threatening or fear- 

related stimuli were presented, but this pattern was not evoked by submissive expressions. 

Thus, according to the authors: ‘the emotional and behavioral salience of a facial 

expression can be delineated on the basis of viewing patterns — that is, how monkeys look 

at the face’ (Nahm et al, 1997, p 620). These results are also reflected in visual scan pattern 

studies with rhesus monkeys; when viewing human and conspecific faces, facial expression 

affects the pattern of eye movements observed (Keating & Keating, 1982). For example, 

on-face fixations increased when a human model was showing a threatening expression 

compared to a neutral expression (Sato & Nakamura, 2001).

Other studies have examined behavioural responses to the emotional content of 

images. Plimpton, Swartz and Rosenblum (1981) observed the responses of juvenile 

bonnet macaques to video recordings o f unfamiliar conspecifics. They reported appropriate 

behavioural responses to the images; for example, the monkeys behaved submissively when 

presented with a threatening male. Infant rhesus monkeys reared in isolation responded 

differentially to pictures o f conspecifics according to facial expression, exhibiting 

behavioural disturbance in response to threatening (but not neutral or fearful) expressions, 

and also reducing lever-pressing responses when this resulted in threatening images being



presented (Sackett, 1966). Thus, responses to facial expressions seem to be at least partially 

‘hard-wired5 and not dependent upon social learning.

Table 3: Studies of recognition of expressions

Task/Method Species Stimuli Results Author
Visual exploration of Infant Photographs Differential viewing of Anderson &
conspecifics in a choice 
chamber.

stumptailed
macaques

different expressions. Chamove,
1984

Discrimination of different Java monkeys Line Successful Dittrich,
monkey facial expressions. drawings discrimination. 1990

Neuronal responses to Macaques Photographs Cells responsive to Hasselmo et
conspecific faces. (2 species) expression and identity 

of face stimuli.
al, 1989

Visual scan patterns of Rhesus Photographs Differentiation of Keating &
conspecific, chimpanzee, human monkeys & schematic expressions and non Keating,
and schematic faces. drawings. face schematics receive 

less attention.
1982

Visual scan patterns of human Rhesus Video & Viewing differentiates Nahm et al,
and monkey faces. monkeys Photographs expression depicted. 1997

Neuronal responses to faces. Rhesus
monkeys

Photographs Cells sensitive to 
expression.

Perrett et al, 
1984

Neuronal responses to faces. Rhesus
monkeys

Photographs Cells sensitive to 
expression.

Perrett & 
Mistlin, 1990

Event related potentials (ERPs) Squirrel Photographs Sensitivity to perceived Pineda, et al,
in response to viewing faces of 
humans and monkeys.

monkeys threat of individual. 1994

Behavioural responses to Juvenile Video Appropriate Plimpton et
conspecifics. bonnet

macaques
spontaneous behavioural 
responses.

al, 1981

Viewing preferences for Rhesus Photographs Differential response to Redican et
conspecific facial expressions. monkeys expression for coeval 

conspecifics.
al, 1971

Viewing preferences and 
behavioural responses to 
conspecifics.

Infant rhesus 
monkeys

Photographs Viewing preferences. 
Appropriate
spontaneous behavioural 
responses.

Sackett, 1966

Socially reared juvenile rhesus monkeys decreased lever pressing in order to avoid 

pictures o f conspecifics of similar age displaying threat expressions relative to images of 

more affiliative or neutral expressions (Redican, Kellicut & Mitchell, 1971). Infant
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stumptailed macaques also showed differential responses to slide images o f conspecifics 

presented in a choice chamber; they demonstrated reduced exploration o f photographs 

depicting negative expressions (Anderson & Chamove, 1984). Within a discrimination 

learning paradigm, Java monkeys differentiated monkey facial expressions depicted in line 

drawings; however, the stimulus set consisted o f only four images and subjects had a 

considerable number of trials in which to learn the discrimination (Dittrich, 1990).

In an ERP study, the magnitudes o f the ERPs were taken by the authors to reflect 

the perceived threat o f the human and conspecific individuals presented on colour slides 

(Pineda, Sebestyen & Nava, 1994). At the neurophysiological level, a small number o f cells 

are sensitive to the facial expressions or elements o f expressions of both human and 

monkey faces presented as static images, while others respond to dynamic components of 

expressions, such as raising eyebrows (Perrett et al, 1984). Some cells in the superior 

temporal sulcus respond specifically to mouth movements; differentiating between 

threatening and appeasing mouth positions (Perrett & Mistlin, 1990). Hasselmo et al (1989) 

also identified cells primarily in the superior temporal sulcus which were responsive to 

expressions independent o f identity.

Summary

The abilities to recognise conspecifics’ identities and expressions involve interrelated but 

distinct processes: identity remains constant despite a wide range of expressions, while 

expressions must be interpretable over a range o f different individuals (Hasselmo, Rolls & 

Baylis, 1989). These capacities and their interactions are invaluable to any group-living 

primate with the need to respond appropriately to conspecifics in terms of both identity 

and emotional state. As the above review shows, at both the behavioural and physiological 

level, nonhuman primates make considerable use o f facial information in order to identify 

individuals and their emotional states.
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3) The role of gaze

‘Gaze, or looking, is of central importance in social behaviour. It is partly a non

verbal signal but more a means of perceiving the expressions of others, especially 

their faces. However, the act and manner o f looking also have meaning as signals, 

showing for example the amount of interest in another person, and are partly 

intended as signals. So gaze is both signal and channel, a signal for the recipient, a 

channel for the gazer* (Argyle, 1988, p 153).

When viewing faces, primates are particularly interested in the eye region. Visual scan 

patterns o f rhesus monkeys have shown that the eyes o f stimulus faces are an important 

feature during a recognition task (Keating & Keating, 1993). Performance o f a similar task 

was impeded by masking the eye region for chimpanzees, and when both eyes and mouth 

were masked for rhesus monkeys (Parr et al, 2000). In contrast, Dittrich (1990) found that 

the face outline was the most critical feature for Java monkeys performing a discrimination 

task with line drawings of conspecifics. However, the discrimination involved only 

identifying one o f four images, and the test to examine feature preferences may not have 

been a valid measure of the monkeys’ true viewing preferences. For example, they eyes 

depicted all signal direct gaze and seem to form two distinguishable pairs across the four 

faces, while the outlines show more variation and may present a better discriminative cue 

when only one feature is available. Moreover, adding the eyes to the outline improved 

performance more than the addition o f other internal features, suggesting that even within 

Dittrich’s (1990) paradigm the eyes were an important feature for discrimination.

The eyes received a disproportionate amount o f interest from hamadryas baboons 

viewing slides of a conspecific male; slide selection and viewing duration were highest for 

faces containing the eye region (Kyes & Candland, 1987). Although these results could be
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specific for viewing dominant male faces, Keating and Keating (1982) also found that 

rhesus monkeys fixated the eye region more than other facial features when viewing 

conspecific, chimpanzee, human and schematic faces. Sato and Nakamura (2001) replicated 

these findings; rhesus monkeys preferentially fixated, in terms o f both frequency and 

duration of fixations, the eye region o f a photographed human face. Infant pigtailed 

macaques were found to preferentially foveate a normal as opposed to scrambled line 

drawing face of a conspecific; the authors suggest that appropriate eye position may be a 

determining feature as simple displacement of the eyes diminished levels of looking (Lutz 

et al, 1998). This indicates that the macaque infants were sensitive to disruption in the eye 

region and were therefore attending to this feature when scanning conspecific faces. Thus, 

interest in the eye region seems to be a general phenomenon; ‘if the eyes are the window to 

the soul and forecast intent, they may be critical to monitor in the initial five seconds of 

face-to-face contact’ (Keating & Keating, 1982, p 218).

3.1) Primate eye morphology

Recent research suggests that reading the eyes of nonhuman primates may be difficult due 

to the morphology o f the eye. Nonhuman primates’ eyes have an external morphology that 

is considerably different to that o f the human eye: human eyes are elongated, have the 

largest ratio of exposed sclera in primates, and this exposed sclera is devoid of 

pigmentation (Morris, 1967; Kobayahi & Koshima, 1997; 2001). Kobayashi and Koshima 

(1997; 2001) used frontal full-face images to examine these features in 88 species of 

primate (10 species of prosimians, 26 species o f New World monkeys, 43 species o f Old 

World monkeys and 9 ape species). In addition to recording the coloration of the eyes and 

surrounding area, they measured the width/height ratio o f the eye outline (WHR) and also 

the amount o f visible sclera within the eye outline (SSI). Both WHR and SSI increased 

significantly across primate orders, prosimians having the least visible sclera and smallest
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WHR, followed by New World monkeys and then Old World monkeys, with apes having 

the greatest WHR and most sclera exposed. As identified above, humans have a particularly 

large WHR and SSI; these were significantly different even from other ape species 

(Kobayashi & Koshima, 2001).

The relationships between these eye morphology parameters and habitat and body 

size were examined to explore the possible function of these adaptations. SSIs were found 

to correlate well with a number o f measures o f body size, such as weight, crown-rump 

length, sitting height and walking height; that is, larger exposed sclera is associated with 

increasing body size (Kobayashi & Koshima, 2001). This may be explained by the increased 

efficiency o f eye movements compared to head or body movements in larger bodied 

primates; these adaptations allow increased mobility of the eye and thus the extension of 

the visual field. This is supported by the finding that the amount o f scanning by eye 

movement alone was correlated with SSIs in a study of 18 species o f primates. The amount 

o f eye movement used for visual scanning was exceptionally high in humans (with a mean 

o f 61% of horizontal scans being made with the eyes alone). For nonhuman primates, the 

highest amount of eye movement was found in chimpanzees, the largest species studied 

(20-35%), with the other primate species having a mean o f 10.6% (range 4.3% - 24.4%; 

Kobayashi & Koshima, 2001).

Kobayashi and Koshima (2001) hypothesise that elongated eyes (WHR) are an 

adaptation to terrestrial life, where the demand for horizontal scanning exceeds the need 

for vertical scanning. Elongation is significantly more pronounced in terrestrial primates 

than in semi-arboreal or arboreal species, with the former also having significantly higher 

WHR than the latter. In order to test this hypothesis, the frequency and durations o f both 

vertical and horizontal scanning were recorded during feeding in a number o f primate 

species. The ratio o f horizontal to vertical scanning was positively associated with the 

WHR and also differentiated between habitat types, with terrestrial species engaging in
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horizontal scanning more frequently and for longer than arboreal or semi-arboreal species. 

Thus, elongated eyes may be an adaptation for greater eye movement in larger bodied 

primates and also allows for the increased need for horizontal scanning which accompanies 

the adoption o f more terrestrial habitats (Kobayashi & Koshima, 2001).

While body-size and habitat type may account for the shape o f primate eyes (in 

terms o f WHR and SSI), these features do not explain the coloration o f primate eyes. 

Although humans have a white sclera, in almost all (95%) other species o f primate studied, 

the visible sclera is brown or dark brown in colour (Kobayashi & Koshima, 2001). Two 

explanations for the adaptive function o f coloured sclera have been proposed. Firstly, it has 

been suggested that pigmentation may serve to reduce glare, as coloration is absent in 

nocturnal species (Duke-Elder, 1985). However, recent research has found that nocturnal 

species also have pigmentation, and of course, diurnal humans have no pigmentation 

(Kobayahi & Koshima, 2001). Thus, it seems that the coloration of sclera observed in 

primates cannot be adequately be explained by an anti-glare hypothesis.

The second hypothesis focuses upon the communicative function o f the eyes (see 

subsequent sections); in addition to increased flexibility in terms of visual scanning, visible 

sclera may render eye movements more visible to others (as in humans). However, the 

sclera pigmentation in nonhuman primates and many other mammals suggests that the 

coloration may serve to obscure rather than highlight eye movements (Perrett & Mistlin, 

1990). For example, Thomsen (1974) noted that during a study of gaze in several species of 

primates, lower inter-observer reliabilities for squirrel monkeys in particular seemed to 

confirm a subjective impression that discerning direction of gaze was difficult for primates 

with small dark eyes.

In support o f the camouflaging hypothesis, Kobayashi and Koshima (2001) found 

that in over half o f 82 primate species studied, sclera coloration was similar to both the iris 

and surrounding face region making it difficult to determine the position o f both the eyes
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within the face and the iris within the eye outline. In a further 37 species, the surrounding 

face colour was readily distinguishable from that o f the sclera. For example, in some 

guenons the eye region (Cercopithecus morn, Cercopithecus cepbus cephus) or brow (Cercopithecus 

neglegtus) is highlighted with bright coloration (Kingdon, 1980) presumably reflecting the 

importance o f the eye region during social or sexual signalling (Emery, 2000). However, 

although the position o f the eyes may be visible due to different coloration, even in these 

species the iris and sclera were of similar coloration making it difficult to determine gaze 

direction (Kobayashi & Koshima, 2001). Thus, in all but one o f the nonhuman species 

studied1, the coloration suggests that eye movements are obscured with sclera of a similar 

hue to the iris and/or surrounding face.

It is argued that concealing eye direction could serve at least two adaptive functions 

in nonhuman primates: avoiding conflict with conspecifics and avoiding predation. 

Camouflaging eye direction could help nonhuman primates avoid agonistic encounters with 

conspecifics that may be precipitated by direct eye contact (Perrett & Mistlin, 1990). In 

addition, if nonhuman primates can conceal their gaze direction from predators this may be 

adaptive as predators will be unable to ascertain whether or not their approach has been 

detected (Kobayashi & Koshima, 2001). Interestingly, in an earlier smaller study, infants 

were shown to have more visible sclera than adults in all 14 species o f primates examined, 

perhaps suggesting that infant gaze serves some as yet undetermined function within 

primate species (Kobayashi & Koshima, 1997).

However, as shall be seen, nonhuman primates do detect direct gaze although the 

underlying mechanism may be a source of speculation: ‘in monkeys the sclera is not usually 

visible in eye-contact; same species eye gaze computation must therefore depend on other 

factors, e.g. the relative displacement o f the pupil in the (very dark) iris and reflections of 

incident light from the front of the eye probably determine perceptual sensitivity’

1 Ruffed lemurs, Varecia variegata, who only have a small amount o f  exposed sclera in any case, SSI =  1.08.
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(Campbell, Heywood, Cowey, Regard & Landis, 1990, p 1124). Povinelli and Giambrone 

(2000) suggest that sensitivity to gaze (in primates and other animals) may derive from the 

emergence o f at least two environmental conditions: predation and group living. The threat 

of predation would have selected for individuals who were able to detect the presence o f a 

set of eyes in their visual field and rapidly react accordingly. The evolution of sensitivity to 

gaze in response to increased group living is proposed to result from advantages gained 

from exploiting others’ gaze in order to identify information about the social and physical 

environment (Kummer, 1967). In the latter case, it is not merely the detection of eyes or 

direct gaze that is crucial, but a less egocentric form of gaze reading, that is, the 

identification of non self-directed gaze. Again, as group living is considered to have 

evolved in response to predation (van Shaik & van Hooff, 1983), it is proposed that gaze 

reading was initially beneficial in that it allowed reactions to predators detected by other 

group members (Povinelli & Giambrone, 2000). These two forms o f gaze will be discussed 

in more detail below. The next section will consider nonhuman primates’ responses to 

direct gaze: that is, when monitoring another’s eye region, are nonhuman primates sensitive 

to whether or not they are being looked at?

3.2) Detecting direct gaze

One of the most important things about another’s eyes is whether or not they are looking 

at you: sensitivity to the presence or absence o f eye-like stimuli is widespread within the 

animal kingdom (Baron-Cohen, 1994; Gomez, 1996a; Ristau, 1998). Sensitivity to direct 

gaze has been revealed through behavioural phenomena such as flight responses in 

sparrows (Hampton, 1994), injury feigning in plovers (Ristau, 1998), death feigning in 

snakes (Burghardt, 1991) and tonic immobility in chickens (Gallup, 1972). Some species 

actively exploit this sensitivity to eyes: for example, some insects (Lepidoptera) display false 

eye-spots as an innate antipredatory tactic (Blest, 1957; Scaife, 1976). It has been suggested
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that direct gaze may be a special form o f stimulus: a ‘distinct percept’ that receives rapid 

processing due to its salience (Kummer, Anzeberger & Hemelrijk, 1996). For example, in 

studies with humans using a visual search paradigm, straight gaze targets were detected 

faster than equivalent but less eye-like stimuli or averted gaze targets (von Griinau & 

Anston, 1995).

For nonhuman primates, gaze is an extremely important communicative signal; all 

their facial expressions include gaze direction as an integral component (Bertrand, 1969; 

Emery, 2000; van Hooff, 1967). Sustained eye contact has been identified as being central 

to threatening gestures for many primate species (Hinde & Rowell, 1962; Redican, 1975), 

while lateral gaze aversion is associated with submissive gestures (Chance, 1962). 

Disengaging gaze may serve to ‘cut-off aversive stimuli such as a threatening facial 

expression (Kummer, 1968; Altmann, 1967; Johnson, 2001). However, such a simple 

dichotomy is not sufficient to explain the social communicative role o f eye direction. For 

example, eye contact has also been implicated in triggering sexual arousal in stumptailed 

macaques (Iinnankoski, Gronroos & Pertovaara, 1993) and in appeasement gestures, such 

as lip-smacking (van Hooff, 1967). Within the great apes, eye contact serves a variety of 

social functions; it can be both a threat and part of an affiliative social interaction, such as 

reconciliation following an aggressive encounter in chimpanzees (de Waal, 1989). As 

Mitchell (1972, p 56) notes, ‘affection, fear and hostility... are differentially related to 

various frequencies and durations of looking.’ Thus, gaze may have various motivations 

and as a communicative gesture it should therefore be understood within the matrix of 

wider facial characteristics such as head posture and mouth configuration (van Hooff,

1967; Perrett & Mistlin, 1990).

Nevertheless, the importance o f direct gaze in social communication suggests that 

nonhuman primates are adept at detecting this facial feature and, indeed, there is 

considerable evidence to support this view. The eye region received a disproportionate
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amount o f attention from rhesus monkeys viewing conspecific and human faces, especially 

when threatening facial expressions were presented, leading Nahm et al (1997) to comment 

upon ‘the perceptually compelling nature o f direct eye contact/ Similarly, rhesus monkeys 

were shown to visually fixate images o f conspecifics displaying direct eye contact (even 

within neutral faces) more than those depicting averted gaze (Keating & Keating, 1982). 

Sato & Nakamura (2001) also reported that rhesus monkeys gazed for longer durations and 

more frequently when looking at a photograph o f a human face with direct gaze than when 

presented with averted gaze.

Like humans (Hains & Muir, 1996; Lasky & Klein, 1979; Vecera & Johnson, 1995), 

from early infancy nonhuman primates respond differentially to images or observers 

displaying eye contact or averted gaze. Very young rhesus macaque infants display 

considerable sensitivity to gaze (Mendelson, Haith & Goldman-Rakic, 1982). By week 

three, infants exhibited higher levels of emotional disturbance when confronted with 

images of conspecific faces exhibiting direct eye contact than faces in profile with averted 

gaze. Furthermore, during the first week o f life, the infants fixated monkey faces displaying 

direct and averted gaze an equal amount, but during weeks three and seven they inspected 

the direct gaze images less. However, visual scan patterns revealed that the monkeys 

foveated the eyes proportionally more during the direct gaze condition. While the authors 

suggest that this may simply be an artefact of the proximity o f the eyes to the central field 

location, it would be interesting to control for the actual eye position in order to examine 

whether the effect was due to direct gaze per se. Kalin and Shelton (1989) showed that six- 

to twelve-month-old rhesus monkeys (briefly separated from their mothers) responded to 

an observer’s gaze; staring with a neutral expression resulted in hostile responses, while an 

observer turned in profile with averted gaze produced behavioural inhibition and freezing. 

Similarly, a study with younger rhesus infants (aged nine- to twelve-weeks) identified 

differential responses to an observer’s gaze direction; frequency of barking and lip-
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smacking increased in a direct gaze condition, while freezing behaviours were highest when 

gaze was averted (Kalin, Shelton & Takahashi, 1991). In both these studies head 

orientation was confounded with eye direction, making it difficult to draw any conclusion 

regarding sensitivity to eye gaze alone, however, it seems reasonable to assume that eye 

direction played at least some role in invoking the behavioural responses observed.

Adult rhesus macaques are extremely sensitive to eye contact; in a forced-choice 

task with paired photographs o f a human model, the monkeys were able to discriminate 

direct gaze from gaze averted by as little as 5 degrees laterally (Campbell et al, 1990). Head 

orientation of the model was manipulated independently, but analysis revealed that 

responses were not made on the basis of head direction. In a subsequent study, rhesus 

monkeys were able to differentiate pairs of human eyes looking through a slit, indicating 

that eye gaze alone was sufficient for the discrimination (Eacott, Heywood, Gross &

Cowey, 1993). As with human participants, performance diminished as the degree of 

angular deviation from frontal gaze decreased. Furthermore, behavioural responses 

indicated that the monkeys perceived the human faces as salient social stimuli; initial 

presentations elicited lip-smacking responses (Campbell et al, 1990). Stumptailed macaques 

are also sensitive to both head and eye direction; they exhibited spontaneous behavioural 

responses to direct eye contact even when the head was turned laterally (Perrett & Mistlin, 

1990). Similarly, lesser mouse lemurs (Microcebus murinus) responded with gaze aversion 

when presented with eye-like stimuli but not when presented with various control images 

(Coss, 1978).

Adult male rhesus monkeys responded with mildly threatening behaviours when a 

human experimenter stared and tried to establish eye contact; these diminished if the 

human then lowered his gaze, but escalated if staring was maintained, and were absent in all 

but the most aggressive monkey in a control condition where the experimenter’s eyes were 

closed (Exline & Yellin, 1969). Moreover, direct gaze from a human wearing a hood also
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led to little reaction from the monkeys, suggesting that the eyes needed to be within a face, 

that is, in a meaningful context (Exline, 1971). Within a similar paradigm, Thomsen (1974) 

studied responses to a staring human in a few species o f nonhuman primates; readiness to 

engage in eye contact, measured in looking frequencies, not duration, varied across species. 

Overall, talapoins (Miopithecus talapoin), patas (Erythrocebuspatas) and Java monkeys all looked 

at the observer more than rhesus, stumptailed or squirrel monkeys. Gender and age also 

seemed to be influencing factors, for example, young rhesus monkeys looked as much as 

adult talapoins and patas monkeys, with young females being the most willing to engage in 

eye contact (nearly twenty cases o f eye contact recorded per minute at a distance of 61 

centimetres from the observer). However, because only frequency o f eye contact and not 

duration was recorded, it is difficult to interpret these differences in gaze patterns; frequent 

eye contact could suggests that the monkeys were monitoring the human, while prolonged 

bouts of eye contact might be indicative o f affiliative or agonistic gestures (Emery, 2000).

Finally, in a study of hiding behaviour in Java monkeys, a human observer first 

trained the monkeys by threatening them with a direct stare and vocalisation whenever they 

attempted to drink from two juice bottles (Kummer, Anzenberger & Hemelrijk, 1996). 

During this training phase, three o f the four male monkeys tested threatened the 

experimenter before drinking, or responded to his threats with lip-smacking. Although 

there were more general postural cues and vocalisations as components o f the human’s 

threat behaviours, it seems probable that the monkeys were responding at least partially to 

the observer’s direct stare.

Autonomic physiological responses to eye contact have been reported in macaques 

(Wada, 1961); the experimenter’s gaze was consistently found to depress EEG  responses.

In addition, neurophysiological research has identified cells in the anterior superior 

temporal sulcus respond to certain orientations of the head and to eye gaze (Desimone et 

al, 1984; Perrett et al, 1985; 1992; Perrett & Mistlin, 1990). For example, some cells were
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sensitive to profile views o f the face and their responses diminished as the face was rotated 

horizontally to a frontal facial view while others demonstrated the opposite response 

pattern (Perrett et al, 1985). Most face responsive cells were responsive to specific face 

views (such as a profile) rather than to all face views, suggesting that determining the 

direction o f another individual’s gaze may be the function o f these neurons (Perrett et al, 

1992). The majority (64%) o f cells responsive to head orientation have also been shown to 

be sensitive to eye direction (Perrett et al, 1985).

Sensitivity to gaze was compatible with, but could be independent of, 

responsiveness to head orientation; cells selective for frontal faces also responded to direct 

gaze, while cells sensitive to profile views were also selective for averted gaze. 

Responsiveness diminished according to angular deviation from the preferred orientation 

for both head and eyes, and for cells responsive to compatible head and eye direction, eyes 

in an incompatible direction had an inhibitory effect compared to the same face with eyes 

closed (Perrett et al, 1985). Furthermore, ablation in this area reduces the ability to 

discriminate efficiently between gaze aversion and direct eye gaze in stumptailed macaques 

(Campbell et al, 1990). However, lesions to this area do not only affect the discrimination 

o f facial stimuli but two-choice visual discriminations in general (Eacott et al, 1993).

Single cell recordings have also identified sensitivity to gaze information in other 

areas in the macaque brain; cells in the amygdala were also sensitive to direct gaze 

(Brothers, Ring & Kling, 1990; Brothers & Ring, 1992). As Perrett and Mistlin (1990, p 93) 

summarise ‘it is apparent that macaque monkeys are extremely sensitive to the direction of 

gaze o f another individual. They are also sensitive to the direction in which the head points 

and these two parameters interact in the signalling of expressive intent.’ Thus, at the 

neurophysiological level, there is evidence that the direction o f another individual’s gaze 

undergoes extensive processing, at least in terms of discriminating self-directed and averted 

gaze.

31



In summary, nonhuman primates demonstrate a particular interest in the eye region 

and are sensitive to whether or not they are the target o f another’s gaze; direct and averted 

gaze are differentiated in terms o f spontaneous behavioural responses, looking preferences, 

discrimination learning and neurophysiological activity.

3.3) Mutual gaze

‘Eye contact or looking into each other’s eyes seems to be a privileged 

way to transmit communicative intent, to turn any behaviour into an ostensive 

behaviour’ (Gomez, 1996b, p 133).

The previous section considered nonhuman primates’ sensitivity to direct gaze, however, 

eye contact need not simply be a component o f facial expressions to which nonhuman 

primates respond. Gaze could also play a more flexible role in communication; eye contact 

may also be an ostensive behaviour, both expressing and assessing communicative intent. 

According to Gomez (1991; 1996a; 1996b) great apes use eye contact in an ostensive 

manner, for example, in order to gain attention o f human interactants and make requests. 

Thus, gaze informs others of one’s intentions and also enables the attention of the other to 

be monitored; as highlighted above, gaze is both signal and channel (Argyle, 1988).

Within social interactions, nonhuman primates may monitor the gaze of 

conspecifics. Menzel (1974) remarked that when a knowledgeable chimpanzee was leading 

others to hidden food locations, looking into the addressee’s face was an important 

component o f communication; suggesting that establishing eye contact was necessary for 

the interaction. Similarly, captive chimpanzees utilised visual gestures only when 

conspecifics were oriented appropriately; when recipients were not visually oriented, 

chimpanzees made more non-visual gestures, such as touching the other individual or
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making noises to gain their attention (Tomasello, Call, Nagell, Olguin & Carpemter, 1994). 

However, both o f these studies only identify that chimpanzees respond to another’s 

general orientation and not necessarily that they are sensitive to the direction o f gaze per se. 

In another study, young chimpanzees demonstrated little appreciation o f another’s ability 

to see; only one o f four chimpanzees removed a blindfold from a human who was assisting 

with carrying a container across an enclosure (Premack, 1988).

Studies o f pointing abilities in nonhuman primates have also noted that nonhuman 

primates often spontaneously look to the trainer’s face during pointing, perhaps indicating 

sensitivity to another’s visual orientation. For examples, rhesus monkeys (Blaschte & 

Ettlinger, 1987) and chimpanzees (Leavens, Hopkins & Bard; 1996; Woodruff & Premack, 

1979) have all been reported to look towards a trainer when pointing. Furthermore, one 

orangutan with extensive experience of human interactions was found to point 

differentially according to whether or not the trainer’s eyes were open (Call & Tomasello, 

1994). However, these pointing studies do not generally examine mutual gaze per se (and 

do not identify the trainer’s responses to direct gaze) and it may simply be that captive 

nonhuman primates learn that a trainer’s face is a good indicator o f behaviour, for example, 

that when a trainer’s face is visible their behaviours are more likely to be contingent with 

one’s own.

Gomez (1996b) reports that hand-reared juvenile gorillas would engage in more 

attention getting behaviours when presented with an inattentive than attentive human, for 

example, eyes closed versus eyes open. However, as Povinelli and Giambrone (2000) 

identify, there is a crucial procedural bias in Gomez’s study. During inattentive trials, the 

human did not respond to the chimpanzees’ requests for food (and therefore attention- 

getting behaviours were prolonged) whereas during attentive trials the interactant 

immediately responded to any requests. In a similar study, chimpanzees were confronted 

with an experimenter engaging in one of four behaviours for a 20-second interval before
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awarding the chimpanzee a food item: making and maintaining direct eye contact, making 

direct eye contact and ‘attentive’ head movements, waiting with their eyes closed or looking 

above and behind the chimpanzee (Theall & Povinelli, 1999). The authors predicted that an 

appreciation of visual orientation would result in the chimpanzees making more non-visual 

attention getting behaviours (such as vocalising) when the interactant was not oriented 

appropriately. In contrast, if the chimpanzees were concerned only with behaviours and 

outcomes, there would be no differences between visual orientation conditions. The results 

supported the latter position as there were no differences between conditions with respect 

to the amount or latency o f attention-getting behaviours exhibited (Theall & Povinelli, 

1999).

In a systematic study o f gaze comprehension, Povinelli and Eddy (1996a) 

conducted a series o f experiments with a group of young chimpanzees (aged 5-6 years). In 

all experimental conditions, the chimpanzees were required to determine whether or not 

they were in a human interactant’s line o f regard. The chimpanzees were presented with 

two trainers, one looking at the chimpanzee and another not visually oriented towards 

them, and had to choose which trainer to make a begging gesture towards. For example, in 

one condition one trainer faced the chimpanzee while the other had his/her back turned; 

the chimpanzees displayed an immediate and consistent disposition to gesture to the trainer 

facing them. In contrast, during all other conditions, the chimpanzees failed to demonstrate 

any appreciation of whether or not the trainer could see them; that is, both trainers turned 

away with one looking over his shoulder, one trainer attending and the other distracted, 

eyes open versus eyes closed, and various conditions where the eyes o f one trainer were 

occluded with hands, a screen, a buckets or a blindfold.

The authors concluded that although the chimpanzees were able to improve their 

performances, they did so by learning a series o f simple associative rules such as ‘choose 

the experimenter with face visible or unobscured’ (Povinelli & Eddy, 1996a). The
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performance in the initial condition, where one trainer’s back and head were turned away 

from the chimpanzee, could feasibly have been the result o f having already learned through 

daily interactions that humans are usually unresponsive when their backs are turned 

(Povinelli & Eddy, 1996a). It should be noted that within this paradigm, the chimpanzees 

were required to respond on the basis o f two potential interactants’ behaviours, and that 

perhaps this made the task more cognitively demanding. Moreover, in all conditions, 

although one trainer could see the chimpanzee and the other could not, the trainers did not 

try to engage in eye contact: that is, they did not stare directly into the chimpanzees’ eyes 

but rather fixated a central target. Thus, although the task required that the attending 

trainer be distinguished, this is not the same as the mutual gaze described by Gomez 

(1996a, 1996b).

Povinelli and Eddy (1996a) suggested that the distinction between being able to see 

another and engaging in mutual gaze may be suitably be distinguished in terms o f ‘hot’ and 

‘cold’ social stimuli, with ‘hot’ social stimuli having an emotional valence and ‘cold’ stimuli 

being interpreted on a more cognitive level (Brothers & Ring, 1992). In a subsequent study, 

the chimpanzees were tested in a condition where one trainer tried to engage the 

chimpanzee in mutual gaze; they showed an immediate preference for the trainer engaging 

in eye contact, indicating that mutual gaze is a salient component of social interactions 

(Povinelli & Eddy, 1996b). However, further conditions demonstrated that head 

orientation and movements also influenced preferences, suggesting that there may be more 

to chimpanzees’ gaze monitoring abilities. One potential problem with these studies was 

the age o f the chimpanzees; perhaps they were too young to demonstrate the abilities being 

investigated. However, a follow-up study o f the same chimpanzees aged 7 years indicated 

that they were still responding on the basis of learned behavioural rules and did not seem 

to understand the role of visual orientation (Reaux, Theall & Povinelli, 1999).
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In a recent review, Povinelli and Giambrone (2000) propose that sensitivity to 

direct or mutual gaze does not necessarily indicate an understanding o f internal mental 

states. While Gomez (1991; 1996b) suggests that gorillas are utilising gaze ostensively in 

order to communicate intent, Povinelli and Giambrone (2000) argue that the behaviours 

reported reveal nothing more than a sensitivity to behavioural configurations. As identified 

above, it may be that these apes are demonstrating an awareness of the contingencies of 

successful interactions with humans, more specifically the relationship between orientation 

and probability of responses to the apes’ own behaviours.

In summary, these lines of research suggest that although nonhuman primates may 

effectively use and monitor eye contact during interactions, they may not understand that 

looking somehow connects the other to what is perceived. As Povinelli and Eddy (1996a, p 

126) state, ‘knowing that someone is looking at you might be one of the most primitive 

arenas in which we could expect to find a mentalistic appreciation of seeing if it existed. 

Notice, however, that the mere fact that attention to eye gaze and eye contact exists and 

play a causal role in social interactions does not by itself guarantee that such an 

understanding is present.’ While nonhuman primates seem to be sensitive to eye contact 

and may engage in mutual gaze, it is not clear what the underlying mechanisms o f such 

behaviours are. Moreover, all o f the research reported in this section pertains to the great 

apes, there is no comparative information available concerning the potential o f mutual gaze 

in monkey communication (Gomez, 1996a).
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3.4) Non-self-directed gaze

‘The ability to follow the direction of conspecifics* visual gaze would seem  to be a 

social skill with immediate adaptive benefits. Following the gaze of others might 

help individuals perceive important entities in the environment such as food, 

predators, and certain kinds of social interactions among group mates’

(Tomasello, Call & Hare, 1998, p 1063).

O f course, another individual’s gaze has the potential to impart a great deal more 

information than simply whether or not they are looking at you. Where another individual 

looks may signal important objects or events, so gaze monitoring could also enable 

nonhuman primates access to a wealth of information about their physical and social 

environment (Kummer, 1967; Povinelli & Eddy, 1996c; Tomasello, Call & Hare, 1998). 

Indeed, visual orientation is a function of social relationships: Chance (1967) identified that 

primate social groups display an ‘attention structure’ whereby looking preferences reflect 

the social structure of the group. Within this hierarchy, dominant individuals receive the 

greatest amount of visual interest but spend less time monitoring others, while the reverse 

pattern is observed for subordinate group members. Chance (1967) suggests than not only 

is this attention structure a function of a group’s hierarchy, but also that group members 

extrapolate information regarding rank from the amount of attention an individual receives. 

While this latter hypothesis would be difficult to examine, studies have addressed the 

attention structures o f nonhuman primate groups.

McNelis and Boatright-Horowitz (1998) measured social monitoring in patas 

monkeys and verified the pattern outlined by Chance (1967); subordinate monkeys spent 

more time looking at dominant individuals than vice versa. Watts (1998) found that female 

mountain gorillas {Gorilla gorilla berengeii) also monitored group members in a pattern
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consistent with the social relationships within the group; females looked at males more 

than other females, and looked more to females with whom they had antagonistic, as 

compared to affiliative, relationships.

Species differences in the attention structure of primate groups have also been 

examined. In an interspecies study, a dominant male gelada (Theropithecus gelada) monitored 

his harem more than a mandrill (Mandrillus sphinx) alpha male, and the gelada harem also 

looked at their male more than the mandrill harem (Emory, 1976). Although the author 

related this to the different social structures o f the two species, the study only examined 

one group of each species, and it may be that individual differences rather than species 

differences were responsible for the data obtained. However, the overall pattern of 

attention was similar to that found in studies with other species, that is, higher ranked 

individuals were monitored more than subordinate group members.

Moreover, species differences in the type of looking behaviours observed in 

relation to the attention structure have been identified. Two groups each o f red-capped 

mangabeys (Cercocebus torquatus) and grey-cheeked mangabeys (Cercocebus albigena) were 

studied (Blois-Heulin, 1999); again, status was related to social attention, with subordinates 

monitoring their group members more than dominant individuals. In addition, the type of 

looking used in social monitoring differed for the two species with grey-cheeked 

mangabeys glancing (very brief fixation) more and red-capped mangabeys usually fixating 

for longer durations.

Although the informational content of the attention structure of group members is 

difficult to examine, accurately determining the direction of another individual’s gaze would 

be invaluable for allowing a nonhuman primate to take advantage o f social and 

environmental information. The tendency to co-orient with conspecifics has been noted in 

wild nonhuman primates including hamadryas baboons (Kummer, 1967) and chimpanzees 

(Plooij, 1978). However, there are problems with these observations. Firstly, it is unclear
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what cue the nonhuman primates are responding to; for example, general bodily 

orientation, head orientation, eye direction, or some combination o f these, could all be the 

basis for co-orienting responses (Lorincz, Baker & Perrett, 1999). Secondly, in such a 

setting the possibility that the shift in visual orientation was caused by some external 

stimulus may not be excluded. Both individuals may simply be independently responding to 

a sound or movement which the human observer has not noticed (Tomasello, Call & Hare,

1998). Visual co-orientation has therefore been examined more systematically with captive 

primates (see Table 4).

3.4a) Gaze following

Itakura (1996) explored gaze following (Scaife & Bruner, 1975) in eleven species of 

primates, including two species of lemur, four macaque species, chimpanzees and a human- 

raised orangutan. A human experimenter stood in front o f the enclosure and waited for 

subjects to approach, the experimenter then attempted to gain eye contact before turning 

his head and eyes to look behind and to the side o f the nonhuman primate. When gaze 

shifts were accompanied by a pointing gesture, monkeys tended to either make no response 

at all, or to fixate the hand, or move in the direction gestured towards. In contrast, 

chimpanzees and the orangutan usually responded appropriately to a combination of 

looking with pointing, the orangutan doing so on all trials. In the head orientation only 

condition, only the chimpanzees and orangutan responded; the chimpanzees oriented in 

the correct direction on 20% of trials while the orangutan responded correctly on 70%.

This study therefore suggests that while monkeys do not co-orient with a human, 

great apes are able to do so, especially if they have had extensive experience o f interacting 

with humans. However, during this study motivation may have been a problem; the human 

observer did not attempt to engage and maintain the primates’ interest, for example, by 

feeding them. This may be an important consideration as amount of time spent oriented
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toward to the trainer was related to response rates. Moreover, although the observer 

attempted to obtain eye contact, it is not clear whether or not he succeeded or if this 

influenced performance. Indeed, this in itself may have impeded the performance o f the 

monkeys in particular; as highlighted above, monkeys may find such abrupt instances of 

direct gaze aversive.

In a similar study o f gaze following in response to a human interactant, stumptailed 

macaques, but not black lemurs (Rulemur Catta), showed visual co-orientation (Anderson & 

Mitchell, 1999). In  contrast with Itakura’s (1996) study, the experimenter attempted to 

engage the monkeys in a sustained interaction; the human fed small pieces o f fruit to the 

monkeys and alternated between mutual eye contact and fixating on the ground or food 

items. Within this context, the macaques were more likely to visually co-orient with the 

observer than not to respond, while the lemurs were more likely to make no response. 

Moreover, the authors report that on some trials the macaques displayed delayed co- 

orientation (more than 2 seconds following the experimenter’s gaze shift): after a short 

delay they clearly looked to the experimenter’s face before turning their head. In this study, 

as with the orangutan studied by Itakura (1996), the experimenters were familiar with the 

subjects and it may be that the social relationship between interactants influences visual co

orientation and other social behaviours (Anderson & Mitchell, 1999; Coussi-Korbel & 

Fragaszy, 1995).

In the only study to date to use conspecific interactants, Tomasello, Call and Hare

(1998) studied five species o f primate: chimpanzees, sooty mangabeys (Cercocebus atys 

torquatus), rhesus, stumptailed and pigtailed macaques. An experimenter (located in an 

observation tower) waited until two conspecifics were oriented appropriately; one facing 

the other and positioned so that one was oriented towards the experimenter and the other’s 

back was towards the experimenter. The experimenter then induced the individual facing 

toward them to fixate on a desirable food item (e.g. an orange) and then observed the
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response o f the other individual in the dyad. Control trials were identical except that the 

experimenter started a trial when only one individual was present, sitting with its back 

towards the experimenter. All five species responded to the conspecific’s change in visual 

orientation by immediately (usually within 1 second) co-orienting, while they did not turn 

during control trials. In  this study, because the models were conspecifics, the precise nature 

o f the initial orientation could not be controlled; for example, the primates may have been 

responding to a change in head orientation or more specifically to eye gaze (Tomasello,

Call Sc Hare, 1998). These authors also suggested that previous negative results with 

monkeys may reflect a motivational problem in interacting with a human, as some o f the 

same species who readily demonstrated gaze following had failed to do so in an inter

specific interaction (e.g. Itakura, 1996).

A study by Tomasello, Hare and Fogleman (2001) which used both cross-sectional 

and longitudinal methodology to examine the ontogeny o f gaze following, reported that 

both rhesus macaques and chimpanzees developed the capacity to visually co-orient with a 

human interactant’s orientation (head and eyes) during mid-late infancy (5.5 months and 3- 

4 years, respectively). This study also demonstrated that only older individuals (rhesus 

monkeys from 2-years old and chimpanzees from 4-years old) learned to ignore 

uninformative cues; when presented with successive trials, they were significantly less likely 

to co-orient during a second 5-trial block than during the initial presentation (Tomasello, 

Hare & Fogleman, 2001). The emergence of a capacity to visually co-orient could serve as 

an adaptive function as young animals become more independent and are at more risk 

from predation. It has been suggested that increasing predation risk may lead to the 

development o f a sensitivity to others’ direction o f gaze (Povinelli & Giambrone, 2000; 

Tomasello, Hare & Fogleman, 2001). However, while nonhuman primates may learn to 

visually co-orient with others at an early age, as they mature their behaviour becomes more 

flexible as they learn to control the co-orienting response.
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In Tomasello et al’s (2001) study there was no attempt to sustain an interaction 

between the experimenter and study animals, so Itakura’s (1996) negative results cannot be 

entirely explained by the absence o f any ongoing interaction. Perhaps an alternative 

explanation could be found in the environments the study animals were tested in. While 

Anderson and Mitchell (1999) and Tomasello et al (2001) used nonhuman primates housed 

in research facilities, Itakura (1996) tested zoo-housed primates; perhaps zoo-housed 

animals are so habituated to human observers who engage in non-contingent behaviours 

that they are unlikely to respond to the experimenter’s actions.

The role of eye gaze itself is unclear in these studies: gaze following was studied in 

response to changes in head direction and while the eyes may be a salient factor in evoking 

co-orientation these studies do not address this issue directly. The cues used by monkeys 

when co-orienting have been examined in more detail using photographic images of 

conspecifics (Lorincz, Baker & Perrett, 1999). The tendencies o f two rhesus monkeys to 

co-orient were studied in response to the body posture, head orientation and eye direction 

o f a static image of a conspecific. The monkeys responded to head orientation over body 

posture when these conflicted and although the monkeys responded to eye gaze alone, they 

were more likely to do so when head and eye orientation were consistent with each other. 

However, Sato & Nakamura (2001) failed to replicate the gaze following response to 

depicted eye direction; rhesus monkeys did not demonstrate more visual scanning of the 

area congruent with depicted eye direction.

Another recent study has also addressed the role o f eye gaze in visual co

orientation in macaque monkeys in response to a human interactant (Ferrari, Kohler, 

Fogassi & Gallese, 2000). The tendency to follow another’s gaze was assessed in 

juvenile/adolescent (2-6 years) and adult pigtailed macaques. Eleven monkeys were tested 

in their home cages and presented with the following four conditions: head and eye both 

oriented together, eye orientation alone, a postural cue (movement o f the experimenter’s
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trunk) and a non-social control (movement o f a box). Combined head and eye movement 

invoked a gaze following response more readily than eye gaze alone, although both were 

significantly likely to lead to co-orientation in adults (Ferrari et al, 2000). However, while 

juvenile monkeys also responded to the combined head and eye orientations, they did not 

respond to eye gaze alone. Correlations showed that tendency to respond to both head and 

eyes and eyes alone increased significantly with age. Moreover, the looking patterns of two 

head-restrained adult monkeys were measured in response to various gaze signals given by 

a human (head and eyes, eyes and a non-social control condition). Both monkeys reliably 

followed the experimenter’s gaze to look at the same quadrant of space in both the head 

and eyes and eyes alone condition, but not during the control condition. Thus, monkeys 

respond to both combined head and eye orientation and eye gaze alone when presented 

with images of conspecifics or a human interactant.

In their study into gaze comprehension in young chimpanzees (discussed above) 

Povinelli and Eddy (1996a) briefly reported that when the chimpanzees encountered a 

‘distracted’ trainer who was looking to one side rather than oriented towards the 

chimpanzee, they would turn to examine the area to which the trainer was oriented. Thus, 

these chimpanzees demonstrated visual co-orientation in response to a human’s static head 

direction. Povinelli and Eddy (1996c) explored chimpanzees’ gaze following further; a 

human trainer looked to a predetermined location, either moving both the head and eyes or 

simply changing the direction o f eye gaze alone. In both conditions, the chimpanzees 

changed their visual orientation more than during a control condition when the trainer 

looked directly at the chimpanzee. The direction o f the trainer’s gaze was above and behind 

the chimpanzee, this ability to follow another’s gaze to a location outside their own visual 

field is considered significant because human infants do not demonstrate this ability until 

they reach about 18 months of age and some interpret it as an important landmark in 

perspective-taking (Butterworth, 1995; Moore, 1999; but see Tomasello, 1995). In addition,
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the authors examined how the chimpanzees would respond to barriers which intersected 

the trainer’s line o f regard (Povinelli & Eddy, 1996c). When the trainer glanced toward the 

partition, the chimpanzees responded by attempting to examine the partition and not the 

wall behind themselves. That is, the chimpanzees acted as though they understood that the 

partition obstructed the trainer’s view, an ability that human children have developed by 

the age o f around two and a half years o f age (e.g. Flavell, Everrett, Croft & Flavell, 1981).

While the chimpanzees tried to examine the trainer’s side of the partition, perhaps 

indicative o f an appreciation that the target o f fixation was there, it could also be that this 

was simply an expression of interest in the partition generally (Tomasello & Call, 1997). 

Thus, although the responses to the partition may reflect a sophisticated level of 

understanding of gaze, it could also be that the chimpanzees simply co-orient in line with 

another’s change o f visual orientation and examine whatever they encounter visually while 

doing so. In this case, during the first experiment the chimpanzees continued to turn until 

reaching the back o f their enclosure simply because they failed to perceive anything of 

interest while turning, while in the second study they examined the partition because they 

encountered it while co-orienting (Butterworth & Jarret, 1991). In a replication and 

extension of their earlier study, Povinelli and Eddy (1997) addressed the selectivity o f the 

chimpanzee’s gaze following. Again, the chimpanzees responded to a trainer’s change of 

orientation (head and eyes) by turning in the same direction and more specifically to the 

same quadrant in space. In contrast, they did not visually scan their enclosure in response 

to a control ‘no glance’ condition nor in response to irrelevant movements by the trainer.

An ingenious experiment was conducted to further examine chimpanzees’ gaze 

following in response to a human’s change o f orientation; their appreciation o f a trainer’s 

perspective was addressed both by a more systematic study of responses to barriers and by 

introducing distractor objects (Tomasello, Hare & Agnetta, 1999). If  the chimpanzees 

simply followed another individuals’ gaze until they encountered something o f interest then

44



they should have fixated the barrier and the distractor object, while a more sophisticated 

level of gaze following would have led them to investigate the experimenter’s side of 

barriers and to continue co-orienting even after their gaze reached the distractor object. 

The chimpanzees looked around the barriers more during the experimental trials (when an 

experimenter was fixating them) than on control trials when the experimenter fixated an 

irrelevant location. In the distractor study, when the human was oriented towards the 

‘distractor’ object the chimpanzees also fixated this object. However, when the trainer 

fixated a location beyond the distractor the chimpanzees continued to co-orient after 

encountering the distractor object. The chimpanzees therefore demonstrated an ability to 

follow gaze ‘geometrically’, that is, to accurately project another’s line o f sight (Butterworth 

&Jarret, 1991).

Call, Hare and Tomasello (1998) report that when gaze following in response to a 

shift in head and eye orientation, chimpanzees would sometimes look back to the human’s 

face once they had co-oriented to a distal location and found nothing o f interest there, 

before co-orienting again. This ‘checking back’ is considered an important facet o f child 

socio-cognitive development, though there is some debate regarding its meaning; some 

consider it indicative of a mentalistic appreciation of gaze while others suggest that simpler 

processes may underlie this behaviour (Corkum & Moore, 1995). As the authors note, it is 

possible that the chimpanzees simply returned to a central orientation once they had 

finished gaze following, and the second gaze tracking observed was simply an independent 

co-orientation response (Call, Hare & Tomasello, 1998).
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Table 4: Gaze following studies

Task (cue) Species Method Results Author
VCO (head & eyes). Stumptailed 

macaques Black 
lemurs

Human
interactant

Only Stumptailed 
macaques showed VCO.

Anderson &
Mitchell,
1999

Visual scan patterns (head Rhesus Video of VCO to fixate target Emery et al,
& eyes). macaques conspecific object more than 

distractor object.
1997

VCO (head & eyes/eye Juvenile and Human VCO to head Ferrari et al,
gaze)
Visual scan patterns.

adult pigtailed 
macaques

demonstrator orientation. Only adults 
VCO with eye gaze 
alone.

2000

VCO (head & eyes). 2 Species lemur 
4 Species 
macaque 
Chimpanzees 
An orang-utan

Human
demonstrator

Only chimpanzees 
(20%) and the orangutan 
(80%) demonstrated 
VCO.

Itakura
(1996)

Visual scan patterns (head Rhesus Photographed Scanned location Lorincz, et
& eyes/eye gaze). macaques conspecific congruent with depicted 

gaze.
al, 1999

VCO (eyes). Chimpanzees Human
interactant

VCO with eye direction 
alone.

Povinelli & 
Eddy, 1996b

Gaze following (head & 
eyes).

Chimpanzees Human
interactant

Demonstrated 
geometric gaze 
following (barriers and 
to area behind them).

Povinelli & 
Eddy, 1996c

VCO (head & eyes). Chimpanzees Human
interactant

VCO to appropriate 
quadrant o f space

Povinelli & 
Eddy, 1997

VCO (head & eyes?). Sooty mangabeys 
3 Species 
macaque 
Chimpanzees

Conspecifics All species 
demonstrated VCO.

Tomasello et 
al, 1998

Visual scan patterns (eye Rhesus Photographed Did not scan area Sato &
gaze). macaques human face congruent with eye 

direction
Nakamura,
2001

Gaze following (head & 
eyes).

Chimpanzees Human
interactant

Demonstrated 
geometric gaze 
following (barriers and 
distractors).

Tomasello et 
al, 1999

VCO (head & eyes). Chimpanzees
Rhesus
macaques

Human
interactant

Develop VCO during 
infancy and habituate to 
uninformative gaze in 
adulthood.

Tomasello et 
al, 2001

Note: VCO = Visual Co-Orientation response.
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Emery et al (1997) used conspecific models and a video presentation to examine 

rhesus monkeys’ responses to another’s target directed gaze. The eye movements o f two 

monkeys were recorded while they viewed an image o f a conspecific looking at a target. In 

this study, there were several cues available to the monkeys; the eye and head direction and 

body posture o f the model monkey were all oriented towards the target object. The 

monkeys did fixate a target object that the model monkey was oriented towards more than 

an identical distractor object, and the authors state that their results identify an ability to 

follow gaze and engage in joint visual attention. However, the monkeys also fixated the 

target location before any objects appeared and failed to demonstrate maintained interest in 

the object once the model monkey was removed from the image. Thus, it may be that the 

results reflect an ability to follow gaze but it is not clear whether or not the monkeys were 

looking at the object specifically or simply fixating the location in space where the object 

was located.

3.4b) The object-choice paradigm

Another approach to studying gaze perception in nonhuman primates is the object-choice 

paradigm (Anderson, Sallaberry & Barbier, 1995). The object-choice task requires the 

nonhuman primate to use experimenter-given cues, such as pointing or looking, to locate a 

hidden food item in, under or behind one o f two objects presented. Ostensibly, this task 

could be solved using simple co-orientation, that is, looking where the experimenter looks 

should heighten the probability of choosing the first object encountered and retrieving the 

food item. Thus, while there may be a distinction between tracking another’s gaze to a 

location in space and following gaze to a perceived object (see Section 4 for a discussion), 

the former could be sufficient for successful performance in an object-choice task.

However, this does not seem to be the mechanism invoked by the object-choice task; in
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spite of their ability to track gaze, most primates tested have serious difficulties in 

mastering the object-choice task (Call, Agnetta & Tomasello, 2000; Hare 2001).

Anderson, Sallaberry and Barbier (1995) presented three capuchin monkeys (Cebus 

apella) with an object-choice task, with head and eye direction combined and pointing plus 

head and eye orientation as the experimenter-given cues. Pointing was found to be 

necessary and sufficient for the monkeys to perform the task successfully. After over 1000 

trials with head and eye orientation available as a cue, the monkeys failed to use this 

information to choose the correct container but were able to use pointing as a cue within 

300 trials. A study with rhesus monkeys reported similar results; none of the monkeys 

responded correctly to head and eye cues but two o f the three showed improved 

performance with manual gestural cues (Anderson, Montant & Schmitt, 1996). The study 

also addressed the possibility that reduced distance between cue and objects might explain 

the advantage for manual gestures; one monkey performed significantly above baseline 

levels when a gaze (head and eyes) cue was presented at a closer range, suggesting that 

some of the discrepancy between facial and manual cues may be due to the cue-stimulus 

distance. However, the monkeys did not perform above chance levels when presented with 

an eye gaze cue, even though this was also presented in close proximity (about 15cm) to 

the object.

In a single case object-choice study with a capuchin monkey (Itakura & Anderson, 

1996), the capuchin received scaffolding with manual gestures before proceeding to gaze 

cues, and a correction procedure and time-outs following errors were introduced. The 

monkey successfully mastered (80% correct criterion level) all o f the cues presented except 

for an eye gaze only condition: these included tapping, pointing and head and eyes oriented 

at both near and far proximity to the object (15cm and 60cm respectively). Thus, this 

explicit training seemed to facilitate cue use by a monkey up to but excluding eye gaze 

alone.
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In a similar study with great apes, Itakura and Tanaka (1998) reported an ability to 

respond to all cues including eye gaze. Two chimpanzees, an orangutan and a group of 

two-year old children were all tested in a succession of conditions, as used by Itakura and 

Anderson (1996), and responded successfully to all experimenter-given cues. However, 

although able to exploit eye direction, performance in this condition was lower than in all 

preceding conditions suggesting that this was a more difficult cue for these subjects to use. 

Gorillas were also able to use experimenter-given cues but did not respond to eye gaze 

alone; in fact, when presented with eye gaze alone, the gorillas failed to complete the task 

appropriately (Peignot & Anderson, 1999). Although it is conceivable that there is some 

underlying species difference which accounts for the failure o f gorillas to read eye gaze, it 

could be due to different amounts of experience of interacting with humans; while the 

other apes studied had extensive experience with humans, the gorillas in this study did not. 

Indeed, rearing histories and experience with humans have been highlighted as important 

factors in nonhuman primates5 responses to a human interactant (e.g. Call, Hare & 

Tomasello, 1998; Tomasello & Call, 1997).

Chimpanzees who had previously shown an ability to gaze follow in response to a 

shift in a trainer's head and eye orientation, were shown to use the same information less 

reliably in an object-choice task (Call, Hare & Tomasello, 1998). Interestingly, one o f the 

factors which appeared to determine performance was the container in which the food was 

concealed; while the chimpanzees used experimenter-given cues to locate food hidden in a 

tube or behind a barrier, they failed to do so when the objects were upturned bowls. These 

results exclude any simple gaze following mechanism (whereby nonhuman primates co- 

orient and are more likely to respond on the congruent side or continue co-orientating until 

encountering something o f interest) as the basis for performance, as this would lead to 

similar levels of performance across all conditions. It has been suggested that such a co

orientation in combination with foraging tendencies might be sufficient to explain the
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chimpanzees’ behaviour; perhaps the chimpanzees are accustomed to foraging in holes and 

behind natural barriers but not beneath objects (Call, Hare & Tomasello, 1998). However, 

it would be reasonable to assume that chimpanzees have experience o f looking under 

things, for example, beneath stones where insects can be found, making this explanation 

less feasible. In addition, the chimpanzees had participated in earlier experiments and thus 

had considerable experience of finding food under opaque containers.

The authors suggest that the crucial difference may be that in the former two 

conditions the experimenter could actually see the food item while giving the cue, while in 

the bowl condition the experimenter was unable to see the food item. According to this 

hypothesis, the chimpanzees have some understanding o f what others can and cannot see; 

they are able appreciate the experimenter’s perspective and understand that with certain 

occluders the experimenter can see things that the chimpanzee cannot. However, there is 

no evidence of an appreciation that seeing leads to knowing; the chimpanzees would have 

recognised that the experimenter witnessed the baiting procedure in all conditions and 

knew the location of the food item regardless of the type of occluder (Call, Hare & 

Tomasello, 1998). This study does raise interesting issues in that methodological details 

may have important implications for performance in the object-choice paradigm. For 

example, had only upturned bowls been presented, the conclusion might have been that 

the chimpanzees were unable to use experimenter-given cues, a conclusion that is incorrect 

given performance with the alternative occluders.

In addition to addressing the issue o f occluder type, Call, Agnetta and Tomasello 

(2000) considered the type o f cues that chimpanzees would use to find hidden food items. 

Vocalisations and other noises, or an experimenter approaching, touching or lifting and 

looking under the container, facilitated performance in a minority o f chimpanzees, but 

these factors did not enhance performance for most chimpanzees. Across the various 

conditions, seven chimpanzees responded to head and eye direction combined as a cue and
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only four responded at above-chance levels when only eye gaze was available. The authors 

suggest that the approach and vocalisation cues may assist some chimpanzees by engaging 

them in a ‘foraging mode’ and may change the functional context o f the task (Call, Agnetta 

& Tomasello, 2000). This is an interesting concept as there seems to be something about 

the object-choice task which nonhuman primates find particularly challenging; while able to 

gaze follow they do not seem to exploit gaze readily within this paradigm. Call et al (2000) 

state that gaze following may be a simple mechanism whereby nonhuman primates survey 

their environment for information, while the object-choice task is a communicative 

situation where the relevance of the trainer’s behaviour to the task at hand must be 

understood. Thus, the superiority of cue reading by nonhuman primates with considerable 

experience with humans may be due to greater understanding of communication and 

interactions with humans (Tomasello & Call, 1996).

In contrast to evidence that chimpanzees are fairly precise when following 

another’s gaze (see Tomasello, Hare & Agnetta, 1999), Povinelli, Bierschwale and Cech

(1999) report that chimpanzees were insensitive to whether or not a trainer was actually 

looking at a container presented during the object-choice task. Seven chimpanzees were 

tested in three experimental conditions: the trainer fixated the baited container with eyes 

alone, or oriented both head and eyes either towards or above the container. The 

chimpanzees performed at chance levels when eye gaze alone was available as a cue, but 

above chance in both head and eye orientation conditions. It is interesting that the 

chimpanzees did not use eye gaze as a cue as they had previously demonstrated an ability to 

visually orient in response to eye direction (Povinelli & Eddy, 1996b). In addition, the 

chimpanzees’ responses were not influenced by whether the cues were static or included 

motion; most object-choice studies present a static cue so any benefits for more active cues 

would have perhaps indicated that abilities had previously been underestimated. Thirdly, 

the authors suggest that responding to both on and off-target gazes (head and eyes)
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indicates that the chimpanzees do not have a high level appreciation of seeing (Povinelli, 

Bierschwale & Cech, 1999).

Conceivably, the chimpanzees either have an understanding o f attention which is 

amodal or independent o f gaze (Povinelli & Eddy, 1996a), or they respond to simple 

behavioural indicators (a low-level account of their abilities). The above chance 

performance in the above-object gaze condition could be a consequence of co-orienting 

with the trainer’s gaze direction which subsequently led to a response on the congruent 

side. Indeed, the authors suggest that success in both head orientation conditions (and 

failure in the eye gaze only condition) could have been due to bias towards the trainer’s 

face; if the chimpanzees were drawn to the human’s face this could result in the response 

pattern obtained (Povinelli, Bierschwale & Cech, 1999). It does seem that the chimpanzees 

were not insensitive to gaze direction as they consistently followed the trainer’s gaze during 

off-target trials and examined the direction to which the trainer was oriented (i.e. 

demonstrated visual co-orientation). Perhaps given the situation, the chimpanzees were 

making the only response to be expected; although the trainer was effectively not cueing 

either object, their orientation in the general direction of one container would at least seem 

to differentiate the objects on offer as it is unclear what alternative response was available. 

However, in a comparative study with human children (3 years old), the children responded 

randomly when presented with a ‘distracted’ trainer, that is, the author’s conclusions have 

some basis (Povinelli, Bierschwale & Cech, 1999).

As with gaze following, only one study has attempted to examine nonhuman 

primates’ responses to conspecific gaze cues within an object-choice paradigm. In a study 

that used both human and conspecific informants, chimpanzees performed similarly under 

both circumstances (Itakura, Agnetta, Hare & Tomasello, 1999). A local enhancement cue, 

whereby the informant approached the location o f the baited object and remained there, 

was used by all four chimpanzees when given by a conspecific and by three when the
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interactant was human. Only one chimpanzee successfully used a gaze (head and eyes) and 

point cue condition but only when this was presented by a human trainer. However, the 

chimpanzee’s initial performance was random, suggesting that an appreciation of the 

informative nature of the gesture was learned during the study (Itakura et al, 1999).

In addition, twelve chimpanzees were presented with a human informant who 

vocalised while cue-giving; the human made a vocalisation while giving a head and eye 

orientation cue which alternated between the chimpanzee and baited container for about 

10 seconds before the objects were presented. Vocalisations enhanced performance for six 

individuals, while three chimpanzees performed above chance even without any vocal 

component to cues. As previously stated, the authors suggest that vocalisations may 

facilitate gaze following by highlighting the foraging component o f the task (Itakura et al,

1999). While it may be that the perceived direction of the vocalisation (rather than the gaze 

cue) facilitates success on the object-choice task, this is unlikely as another study found that 

directed vocalisations alone were insufficient for above chance performance (Call, Agnetta 

& Tomasello, 2000). Overall, Itakura et al (1999) found that approaching or vocalising 

engaged the chimpanzees in the foraging task while gaze cues alone were less likely to 

facilitate correct choices. The authors propose an interesting hypothesis whereby gaze 

following is demonstrated in social monitoring rather than within a foraging context; 

locating food may require cues other than or in addition to gaze (Itakura et al, 1999).

3.4c) Alternative paradigms

In addition to the two main paradigms (gaze following and object-choice) outlined above, 

there have been some other approaches used in the study o f gaze comprehension in 

nonhuman primates (see Table 5). Santos and Hauser (1999) used an expectation violation 

paradigm (commonly used with pre-linguistic human infants) to study cotton-top tamarins’

(Saguinus oedipus oedipus) responses to a human’s gaze. The tamarins observed a human
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looking at one of two items presented before reaching for one of the objects; reaching for 

the looked at item is considered to be consistent with expectations while choosing the 

other item would be a violation of expectancies. The dependent variable was the amount of 

attention each event received from the tamarins, with greater amounts o f looking predicted 

when expectancies were not fulfilled; this was found for head and eye orientation 

combined but not to eye gaze alone (Santos & Hauser, 2000).

However, these results are weakened by the small amount of data collected; the 

effect was a less than 1-second increase in looking for sixteen subjects during one trial 

within a total o f five 12-second trials; perhaps the reliability of these results should be 

examined with further testing. In addition, Emery (2000) identifies another possible 

problem with this technique; duration of looking may not be the most appropriate measure 

of interest. Emery et al (1997), in their study o f gaze following in rhesus monkeys, found 

that frequency rather than duration was the significant measure and it is suggested that 

vigilance may result in a number of brief inspections rather than a prolonged bout of 

interest in an object. Emery (2000) also suggests that the tamarins may have been 

responding according to a specific rule rather than attributing mental states (more 

specifically, an intention to reach for the attended object) to the experimenter (Santos & 

Hauser, 2000). The tamarins received three familiarisation trials and may have simply 

associated head orientation (they did not respond to eye gaze alone) with a subsequent 

response to the congruent side/object. It is also possible that simple co-orientation led to 

the experimenter and monkeys being oriented towards the same object and the subsequent 

action with the alternative object led to increased visual exploration. Such a behavioural 

mechanism does not require an understanding of looking behaviour as a predictor of 

subsequent actions.

Studies of hiding in nonhuman primates have addressed the issue o f perspective- 

taking, on the premise that hiding requires an appreciation of what another can see. Field
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observations have suggested that hiding is one o f the more common forms o f ‘tactical 

deception’ displayed by nonhuman primates; for example, concealing mating behaviours to 

avoid conflict arising from dominance imposed restrictions on access to mates (Byrne Sc 

Whiten, 1988; Whiten & Byrne, 1997).

In a study o f hiding behaviour in Java monkeys, a human observer threatened any 

animal that tried to gain access to a desired drinking source. Subsequent testing involved 

the introduction of partitions that could conceal the monkeys when they were drinking, but 

the monkeys did not demonstrate any preference for concealed locations (Kummer, 

Anzenberger Sc Hemelrijk, 1996). Gygax (1995; 2000) also studied hiding in captive group- 

living Java monkeys; mating and aggressive situations were analysed in order to determine 

whether individuals concealed themselves from group members. Within the context of 

mating, low- and middle-ranking males and their partners were more likely to mate near 

occluders than in visibly open areas. However, Gygax (1995) suggests that trial and error 

learning may be the underlying mechanism as there was little evidence that the monkeys 

were appreciating another individual’s perspective; there was no preference for well 

concealed (solid partitions) over more poorly camouflaged locations (panels offering only 

partial concealment). In contrast, behaviour following aggressive encounters did not 

indicate any hiding tendency for either individuals or rank-sex classes (Gygax, 2000). Thus, 

evidence for hiding abilities in monkeys is limited, and may be limited to specific social 

situations such as mating. Furthermore, positive results are not necessarily indicative of 

perspective-taking as simpler mechanisms may be sufficient to explain the behaviours 

observed. For example, avoiding another’s direct gaze or simply moving so that the 

(perhaps threatening) other is no longer visible may lead to hiding behaviours without 

invoking any perspective-taking abilities.

Cheney and Seyfarth (1991) found that rhesus and Japanese macaques interacting 

with an infant were sensitive to whether or not the mother of the infant was visually
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monitoring the encounter. Behaviours were observed across three experimental conditions 

which differed according to the mother’s ability to perceive the interaction; the monkeys 

were separated by either a glass partition, an opaque barrier or a one-way mirror which 

allowed the monkey and infant to see the mother but not vice versa (a relationship which 

the monkeys had the opportunity to leam with prior exposure to the mirror). Measures of 

approaches, retreats and agonism revealed that interactions between monkeys and infants 

were not simply affected by the mother’s presence (one-way mirror) but rather by whether 

the mother was able to perceive the interaction (glass condition). The authors propose that 

the monkeys were sensitive to the mother’s visual orientation, whether in terms of general 

bodily, head or eye orientation, and altered their behaviour accordingly (Cheney & Seyfarth, 

1991). However, it is unclear what behavioural indices the monkeys were using; 

contingency between the interacting monkey’s behaviour and the mother’s responses 

would have been absent in the one-way mirror condition. This lack o f contingency may 

have been the determining factor rather than a response to the mother’s orientation, or an 

appreciation of what the mother could actually perceive (which was dependent upon 

understanding the nature of the one-way mirror).

A recent study examined whether chimpanzees are able to appreciate a 

conspecific’s line o f regard within a competitive situation (Hare, Call, Agnetta &

Tomasello, 2000). Two chimpanzees were put into competition over two desirable food 

items placed within a communal area; the food items were placed in various locations so 

that only the subordinate chimpanzee could see both items, and the behaviours of both 

chimpanzees when given access to the area were recorded. The behaviour o f subordinates 

suggests that they were aware o f their competitor’s visual perspective; subordinates 

consistently chose the food item which they could see but their rival could not rather than 

a food item which both chimpanzees could readily see. In contrast, dominants would first 

secure the openly visible item before taking one to which they alone had visible access.
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This finding was robust across a number of manipulations, for example, when tyres or 

barriers were used to conceal food items. These behaviours were not observed when a 

transparent barrier was introduced, that is, choices were not simply made on the basis of 

accessibility or proximity o f food items to objects.

Moreover, by manipulating pairings chimpanzees could be tested as both the 

dominant and subordinate individual, and their behaviours were dependent upon their 

status relevant to their competitor. Chimpanzees’ modified their choices according to 

whether or not they were dominant, rendering simple rule learning regarding occluders an 

improbable explanation for the behaviours observed (Hare et al, 2000). The ability to 

readily use a conspecific’s orientation to choose between two available food items contrasts 

with the results o f the object-choice study reported above (Itakura et al, 1999). This 

suggests that it is not the foraging situation per se which impedes sensitivity to another’s 

attentional status gaze, but that the context may be more important (Hare, 2001). 

Chimpanzees appear to readily use information regarding another’s looking behaviour as a 

means to solve a competitive food problem, but may not do so within the ‘co-operative’ 

context of the standard object-choice task. Thus, a paradigm shift from co-operative to 

competitive experimental contexts may lead to a productive new direction for research into 

nonhuman primates’ socio-cognitive abilities (Hare 2001, see Chapter Five for further 

discussion).

A recent study by Fagot and Duruelle (submitted) used a cueing paradigm, that has 

identified a gaze-induced reflexive orienting response in human adults, to examine 

baboons’ responses to gaze (e.g. Langton & Bruce, 1998; see Chapter 6 for further details). 

Schematic and photographic faces were presented in the centre o f a monitor before pupils 

were added to the eye outline in order to depict a direction o f eye gaze (left or right). After 

a brief interval (300ms), a target would appear either on the side congruent with the 

depicted eye gaze or on the opposite side of the monitor. In humans, responses to
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congruent targets (whether detection, localisation or identification o f targets) are 

significantly faster than responses to targets which appear in a location incongruent with 

the gaze cue. However, the baboons’ response times did not differentiate between cued 

and uncued targets (Fagot & Duruelle, submitted). In contrast, after extensive exposure to 

a condition in which gaze consistently predicted target location, the re-introduction of 

incongruent trials revealed that the baboons were faster to respond to congruent targets. 

That is, the baboons had learned to use the depicted eye direction to locate targets. These 

results do not therefore support the view that nonhuman primates reflexively orient to gaze 

as humans do, but rather that the baboons learned as association between the gaze cue and 

subsequent target location. Note that this association does not require that the baboons 

perceived the central images as faces at all (Zayan & Vauclair, 1998). Although the authors 

o f this study concluded that baboons did not demonstrate any inherent sensitivity to 

another’s direction of eye gaze, several methodological issues need to be considered before 

drawing strong conclusions (see Chapter 6 for further discussion).

At the neurophysiological level, while there is considerable evidence that gaze 

receives extensive processing, it is not clear whether this sensitivity extends beyond 

detecting self-directed gaze. While cells which are sensitive to another’s actions in the 

environment (such as walking towards or reaching for an object) have been located in the 

amygdala (Perrett et al, 1990), analogous cells coding another’s visual orientation towards 

an object have not yet been identified (but see Jellema, Baker, Wicker & Perrett, 2000). 

Emery (2000) investigated the responses o f single cells (in the area o f the brain containing 

gaze sensitive cells) when presented with head orientation in combination with a target 

object. The cells were tested with the profile view of the head alone, the object alone and 

the head and object together either in congruent or incongruent positions (head turned 

towards the target object or head turned in the opposite direction). None o f the four cells 

examined demonstrated any sensitivity to the relationship between head orientation and a
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target object. This suggests either that the number o f cells sampled was insufficient or 

possibly that a different area o f the brain, perhaps the amygdala, is implicated in the 

processing o f this level o f gaze (Emery, 2000).

Table 5: Alternative paradigms

Task Species Method Results Author

Behavioural observation Java monkeys
Rhesus
macaques

Various
partitions
introduced

Some evidence that the 
monkeys were sensitive 
to whether or not they 
could be seen by group 
members.

Cheney &
Seyfarth,
1991

Go no-go task with central 
gaze cues before targets.

Guinea
baboons

Computerised 
cueing task

Did not demonstrate 
reflexive orienting, but 
did show evidence of 
learning.

Fagot &
Duruelle,
submitted.

Hiding during mating Java monkeys Controlled
observations

Low and middle ranking 
couples preferred 
concealed locations.

Gygax, 1995

Hiding during aggression Java monkeys Controlled
observations

No preference for 
concealed locations.

Gygax, 2000

Competitive food 
acquisition

Chimpanzees Conspecific
competitor

Evidence that 
chimpanzees know what 
competitors can see.

Hare et al, 
2000

Hiding to gain access to 
desired drink source

Java monkeys Human
interactant

No evidence of any 
hiding behaviours.

Kummer et 
al, 1996

Expectancy violation, 
looking preferences

Cotton-top
tamarins

Human
interactant

Responses discriminated 
between objects based on 
looking behaviours.

Santos & 
Hauser, 1999

Gaze processing at a more sophisticated level than detecting direct gaze may 

require connectivity between gaze direction processing in the superior temporal sulcus and 

an area which processes spatial information, such as the intraparietal sulcus (Emery, 2000): 

there is some evidence for reciprocal connections between neurons in these areas (Harries 

& Perrett, 1991). Moreover, Emery (2000, p 595) suggests that ‘motion in relation to an 

object may provide a more salient cue for neural response, compared to the ambiguous
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relationship between two static objects (head and object)/ Thus, neurophysiological 

processing o f non-self directed gaze has yet to be adequately identified and explored.

3.4d) Seeing and knowing

D o apes know what they have seen? Initially, this may seem a somewhat strange question — 

but before advancing to whether nonhuman primates appreciate seeing as a mental state in 

other individuals, it is important to consider how their own perception influences 

subsequent behaviours. To date only one study has addressed this issue. Call and Carpenter 

(2001) examined the visual search patterns o f orangutans, chimpanzees and human 

children (aged 2 V2 years) looking for a hidden item; two or three tubes were presented but 

only one of these contained the desired item (food for orangutans and chimpanzees, 

stickers for the children). The study measured responses in two ways: choice o f tube (they 

could only indicate one) and looking behaviours, that is, did they visually inspect the tubes 

before making their choice? In some trials, the subjects witnessed the baiting procedure 

while in others baiting was concealed behind a screen. The results indicate that when they 

had witnessed baiting, apes and children were more likely to locate the reward and less 

likely to visually inspect the tubes. Thus, when they had inadequate information (concealed 

baiting condition), they gained information by visual exploration.

A study within the competitive paradigm (Hare et al, 2000) demonstrated that 

chimpanzees are also able to keep track of what competitors have previously seen; the 

chimpanzees responded differentially according to whether or not a dominant competitor 

had witnessed a food item being hidden or moved to a new location (Hare, Call & 

Tomasello, 2001). The subordinate chimpanzees obtained significantly more food items 

when their competitors were uninformed or misinformed about the location o f food items, 

but when dominants were informed o f the food’s location subordinates were less likely to 

approach the food items. Furthermore, chimpanzees demonstrated an ability to recognise
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what different individuals had seen by responding appropriately when knowledgeable 

competitors were replaced by naive dominant competitors (who had not witnessed the 

food items being concealed).

Other studies investigating the relationship between seeing and knowing (Premack, 

1988; Povinelli, Rulf & Biershwale, 1994; Povinelli, Parks & Novak, 1991; Call, Agnetta & 

Tomasello, 2000) have shown that chimpanzees and rhesus monkeys seem to be unable to 

discriminate those who have seen the baiting process (Knower) from those who have not 

(Guesser). Although an earlier study had reported that chimpanzees recognised the 

relationship between seeing and knowing (Povinelli, Nelson & Boysen, 1990), a critical 

review by Heyes (1994) led to a re-evaluation of the findings. The chimpanzees showed a 

preference for the Knower when the Guesser was not in the room during baiting, but did 

not demonstrate an immediate transfer to a condition in which both trainers remained in 

the room, but the Guesser wore a paper bag over their head (so that they could not see the 

baiting procedure). Although the chimpanzees quickly learned to use this new information 

to successfully perform the task, they did not discriminate between the trainers 

immediately.

It may be that the presence of two trainers simply makes the task overly complex 

(Povinelli & Eddy, 1996a). Alternatively, it may be that nonhuman primates do not 

understand seeing as an epistemic state, but rather use simpler rules. For example, after 

many trials chimpanzees could distinguish the Knower from Guesser in terms of 

recognising which individual was present when baiting occurred (Povinelli, Nelson & 

Boysen, 1990), but this does not require any appreciation o f seeing per se. A similar 

interpretation of the competitive study (Hare, Call & Tomasello, 2001) would be that the 

chimpanzees were sensitive to the presence, or proximity, o f individuals during baiting and 

not to what they could perceive (and thus know). In a further competitive experiment in 

which two food items were presented, the chimpanzees did not seem able to discriminate
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between those items which the dominants had seen hidden and those which they had not 

(Hare, Call & Tomasello, 2001). This suggests that any appreciation o f the seeing-knowing 

relationship was somewhat limited. It could be that the availability o f two food items 

reduced the level o f competition and changed the nature of the task or that this addition 

simply placed too many cognitive demands on the chimpanzees (Hare, Call & Tomasello, 

2001).

Other attempts to test whether nonhuman primates appreciate seeing as an 

epistemic state have also failed to provide positive evidence (see Table 6). Gomez (1998) 

offers a brief report of a ‘false-belief task that examined whether an orangutan was 

sensitive to the relationship between seeing and knowing. The orangutan witnessed a 

‘Provider’ bait a container with food before fetching a key to lock it, and then replacing the 

key. The orangutan would then indicate the baited container when a trainer (‘Giver’) 

entered; the trainer would then fetch the keys, open the box and reward the orangutan with 

its contents. For probe trials, the Provider would place the keys in a new location following 

the baiting procedure; the orangutan was therefore required to indicate the new location of 

the keys to the ignorant (did not see the relocation) trainer. That is, she had to recognise 

that the Giver’s knowledge about the key’s location were false. The orangutan failed to 

indicate the new location o f the keys to the Giver on the six trials presented. However, 

Gomez (1998) reports that having a third individual (stranger) relocate the keys may have 

enhanced performance, although learning over trials may also be a factor. Heyes (1998) 

argues that the flaw o f this study is that it does not promote using ‘seeing’ as a cue; for 

example, in the standard trials, the Giver knows where the keys are located even though 

they did not see them being placed there. This methodological issue could be circumvented 

by combining the role o f Provider and Giver and having a second individual to move the 

keys.



A similar study was conducted with orangutans (Call & Tomasello, 1994); a trainer 

would use a rake to reach a baited container, but on the crucial trials the rake would not be 

returned to its original location but instead would be ‘hidden’ behind a curtain. A naive 

trainer would then enter and be unable to reach the baited container without the rake: 

would the orangutans recognise their ignorance and provide information regarding the 

rake’s whereabouts? The authors report that both orangutans quickly learned to indicate 

the rake’s location. However, the results may indicate that the orangutans understood the 

relationship between trainer, rake and food; their responses do not necessarily indicate that 

they appreciated seeing as an epistemic state (Tomasello & Call, 1997). For example, would 

they have also pointed to the hidden rake if the experimenter who hid the tool returned 

and did not immediately start the task, that is, were they responding on the basis of 

knowledge states or simply indicating the rake’s location as a means of cueing food 

delivery?

Another attempt with a non-verbal false belief task also produced negative results. 

Call and Tomasello (1999) presented children (aged 4-5-years old), two orangutans and five 

chimpanzees with a trainer who would indicate where they had seen a food item placed by 

identifying the baited container with a marker. The task required subjects to recognise that 

when the containers were moved during the trainer’s absence, the placing o f the marker 

would not be informative. Using extensive pre-testing, the authors were able to ensure that 

subjects were able to perform the basic task requirements. Thus, they demonstrated an 

ability to use the marker to locate the food item, follow the movement o f the food item in 

both visible and invisible displacements, and to ignore the marker when they knew its 

location to be incorrect. However, only the children performed successfully on false-belief 

trials, that is, the apes did not ignore the marker when the trainer had not witnessed a 

displacement and therefore held a false belief regarding the reward’s location. In fact, the 

apes’ performance can be explained by the following: if they saw the location of a food

63



item then they would choose that location, if the food cue was unavailable they would use 

the marker. It may be that the pre-trial training actually reinforced these simple rules and 

therefore seeing was not identified as a relevant factor. Alternatively, although the apes 

were able to perform the pre-test tasks, perhaps the combination of tasks on the critical 

trials was too cognitively complex (Call & Tomasello, 1999).

Table 6: Studies of seeing and knowing

Task Species Method Results Author
Recognition of seeing- 
knowing relationship

Orangutans Human
interactants

Not convincing evidence 
of appreciation of 
ignorance.

Call &
Tomasello,
1994

Recognition of seeing- 
knowing relationship

Humans, 
orangutans and 
chimpanzees

Non-verbal 
false belief

Only children showed 
appreciation of seeing as 
epistemic state.

Call &
Tomasello,
1999

Recognition o f seeing- 
knowing relationship

Rhesus and
Japanese
macaques

Presence of 
food or 
predator

N o evidence o f an 
appreciation of seeing as 
epistemic state.

Cheney &
Seyfarth,
1990

Recognition of seeing- 
knowing relationship

Orangutan Human
interactants

N o evidence of 
appreciation of 
ignorance.

Gomez,
1998

Competitive food 
acquisition

Chimpanzees Conspecific
competitor

Evidence that 
chimpanzees know what 
competitors have and 
have not seen.

Hare et al, 
2001

Recognition of seeing- 
knowing relationship

Chimpanzees Human
interactants

Chimpanzees prefer 
knower over guesser.

Povinelli et 
al, 1990

Recognition of seeing- 
knowing relationship

Rhesus
macaques

Human
interactants

N o preference for 
knower over guesser.

Povinelli et 
al, 1991

Recognition o f seeing- 
knowing relationship

Chimpanzees Human
interactants

Failure to replicate 
preference for knower.

Povinelli et 
al, 1994

Cheney and Seyfarth (1990b) examined whether rhesus and Japanese macaque 

mothers would inform their offspring o f the presence o f either food items or a potential 

threat. While mothers witnessed the hiding o f food or a hiding trainer with a net in an 

adjoining cage, they did not try to communicate this information to their offspring who
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had not witnessed these events. That is, they failed to demonstrate that they had any 

appreciation o f the relationship between seeing and knowing as it applied to their offspring. 

Thus, to date there is no convincing evidence that nonhuman primates understand gaze as 

an epistemic state. As all the studies in this section highlight, designing an appropriate task 

to examine whether nonhumans appreciate that seeing leads to knowing is indeed 

challenging (Heyes, 1998).

Summary

To summarise: type o f occluder, vocalisations, experience with humans, relationship with 

interactant (familiarity, context) and context (competitive or co-operative) may all influence 

the visual co-orientation and gaze-reading abilities o f nonhuman primates. However, while 

nonhuman primates readily follow gaze, responses in object-choice tasks are far more 

variable. Moreover, explicit training in object-choice gaze exploitation may be required; 

nonhuman primates are usually given prior experience with manual gestures such as 

pointing before they master gaze orientation as a cue (Anderson et al 1995; 1996; Itakura &c 

Anderson, 1996; Itakura & Tanaka, 1998). What is apparent is that visual co-orientation is 

not the mechanism underlying behaviour during the object-choice task; while gaze 

following is a spontaneous response, responding to gaze as an informative cue is not so 

readily demonstrable in nonhuman primates. Alternative paradigms have also been 

outlined, the competitive task in particular seems to be an interesting approach to 

investigating nonhuman primates’ abilities to read other individuals’ attention. To date, 

attempts to determine whether nonhuman primates appreciate the relationship between 

seeing and knowing have produced negative results.
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4) Gaze, Attention and Theory of Mind

‘Evidence that visual attention is monitored and manipulated in self and others 

during primates’ social manoeuvring is of particular interest given the role currently 

ascribed to a capacity for shared attention in the ontogeny of the human 

mindreading system (Whiten, 1997, p 167).

Sensitivity to gaze has been identified as playing an integral role in the development of 

mental state attribution in humans. Baron-Cohen (1994) has proposed a model for mind- 

reading abilities which is based upon the interactions between separate modules, with 

sensitivity to the eyes and looking behaviours being the basis for the development of 

mental state attributions (see Figure 1). The Eye Direction Detection (EDD) module 

initially functions to detect the presence of eye-like stimuli and later to detect the direction 

of another’s gaze (eye direction) while the Shared Attention Mechanism (SAM), which 

represents whether the self and another individual are attending to the same object or 

event, emerges later (between the ages of 9-14 months). The Intentionality Detector (ID) 

processes another’s goal-directed behaviours, for example, movement towards an object.

O f particular interest is Baron-Cohen’s proposition that sources o f information other than 

eye gaze which may also indicate another’s direction o f attention (such as head orientation 

and postural cues) would be processed by ID and not EDD. That is, eyes are seen as a 

unique stimulus and ID and EDD are only integrated at the SAM level. Thus, Baron- 

Cohen’s model is based upon the precedence of eye gaze as ‘eye direction is a more reliable 

indicator o f attentional state than head-angle’ (1994, p 740).
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Figure 1: An adaptation of Baron-Cohen’s mindreading model (1994)

EDD
Eye-direction detector: 
Detects eye-like stimuli, 
computes direction of gaze.

ID
Intentionality detector: 
Inteprets self-propelled 
motion in terms of desires 
or goals.

SAM
Shared attention mechanism:
Links ID and EDD, identifies when self and 
other are attending to the same thing.

j
ToMM

Theory of mind mechanism: Infers mental states 
of others from observable behaviours and allows 
for a usable theory for predicting behaviours.

Baron-Cohen (1994) cites evidence for the detection of eye-like stimuli function; 

the eyes are extremely salient stimuli across wide genera of species and from early infancy 

in humans. However, it is not clear that the second function of EDD, namely, detecting 

the direction of gaze, is necessarily part of the same module. It has been proposed that the 

ED D  module may be inappropriate; while detecting eye-like stimuli may be one function 

of such a module, detecting the direction of another’s gaze could be based upon a range of



cues including not only eyes but also head and body orientation. Thus, it has been 

proposed that such a mechanism would be better described as a ‘Direction of Attention 

Detector’ (DAD, Perrett & Emery, 1994). For DAD, when various indicators o f attention 

direction are available their salience is hierarchical, with the eyes being more important than 

head direction, which in turn takes precedence over bodily orientation (Emery, 2000;

Perrett & Emery, 1994; Perrett et al, 1992).

Research with humans has demonstrated that sensitivity to gaze direction is 

influenced by information regarding head orientation (Gibson & Pick, 1963; Maruyama &c 

Endo, 1983; Vecera & Johnson, 1995). However, recent research has shown that these two 

features may be processed in parallel rather than in a hierarchical manner. Using an 

interference task, Langton (2000) found that both head and eye direction interfered with a 

task requiring directional responses to be made; this indicates that eye and head direction 

may be mutually influential when determining another’s direction of attention. Thus, while 

the available evidence seems to support Perrett and Emery’s (1994) DAD mechanism 

(rather than Baron-Cohen’s EDD), it does not support their hierarchical model. Whatever 

the precise mechanisms, sensitivity to eyes and others’ looking behaviour is proposed as 

‘foundational for the entire construct of theory o f mind’ (Povinelli & Giambrone, 2000, p 

19; Baron-Cohen, 1994; Premack & Dasser, 1991; Tomasello, 1995).

Are nonhuman primates able to understand what another individual sees? The 

capacity to comprehend another's perception is one of three levels of mental state 

attribution identified by Premack and Dasser (1991), the remaining levels being the 

attribution o f intentions (attributing desires or motivations to the other) and attribution of 

knowledge states (including beliefs). It is important to stress that responding to another’s 

gaze, for example, as in the gaze following studies discussed in the previous sections, in 

itself reveals very little about the ability to comprehend what another individual can ‘see’. 

Looking (or gaze or visual orientation) is an observable behavioural cue, that is, the eyes
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(and/or head) directed towards something. In contrast, ‘seeing’ is an internal mental state 

that connects the perceiver to what is being looked at (Csibra, 1998). "Seeing’ can be said 

to be an ‘overt’ mental state, because it is usually accompanied by observable behaviours 

(the eyes and other body parts oriented to an object), and in this sense you can see another 

organism ‘seeing” (Gomez, 1996a, p 333). However, although the behavioural states of 

looking and seeing are confounded, an appreciation o f another’s looking behaviours (i.e. 

using head and eye direction as sources of information) may not indicate an appreciation 

that the other individual is ‘seeing’ what is in their line of regard (i.e. that their looking 

behaviours also indicate an internal state of perception).

I f  co-orientation occurs in response to general postural cues, either related to or 

independent o f eye direction, the precise visual focus of the other may be irrelevant to the 

observer. For example, an association could be learned between another individual's head 

position and the detection of an interesting or salient object or event in the environment 

upon orienting in the same direction. In other words, head or eye direction is simply a 

discriminative cue to look in a given direction (Povinelli & Eddy, 1996b; Tomasello, Call & 

Hare, 1998). A distinction has been made between this kind of simple mechanism for 

following another's gaze to a location in space and the ability to follow another’s gaze to 

fixate the target of their gaze (Baron-Cohen, 1994; Moore, 1999; Corkum 8c Moore, 1995). 

That is, simply co-orienting in the same direction may lead an individual to fortuitously 

perceive an object, but this is not the same phenomenon as following the direction of gaze 

in order to mutually fixate an object (Emery, 2000; Povinelli & Eddy, 1996c). However, 

even sophisticated gaze following (for example, ignoring distractors and taking account of 

barriers) may not necessarily indicate that nonhuman primates appreciate what the other 

individual can ‘see’. It may be that they are sensitive to the observable gaze cues available 

and have learned through experience to use this information accurately to identify the 

focus of another’s gaze and how this may be influenced by context. That is, although



geometric gaze following may lead to both individuals looking at the same object, this does 

not mean that they appreciate that they are both ‘seeing’ a common object. As Csibra 

(1998, p 118) suggests, in order to use gaze effectively all that is required is ‘an 

understanding of a particular physical relation between the other person’s eyes and certain 

parts of the environment (similarly to the understanding o f the physical relation between a 

camera and the objects it can ‘see’) and an associative link between the presence or absence 

o f this relation and the behavioural dispositions of the person.’

In addition to the distinctions between looking and seeing, it is also important to 

consider what other functions gaze might serve. For example, it is also argued that seeing 

and attending are not the same phenomenon, and that likewise attention is not the same as 

seeing as an epistemic state. However, within developmental psychology, there is limited 

consensus concerning definitions and what various behaviours represent in terms of the 

underlying psychological abilities (see Dunham & Moore, 1995). Terms such as ‘gaze 

following’, ‘joint visual attention’ and ‘shared attention’ are often used interchangeably in 

the literature and in practice it is difficult to determine what different authors mean when 

using these concepts. For example, ‘joint attention’ has been defined in very conflicting 

terms; at one extreme, ‘at its most sophisticated level, joint attention is in effect a ‘meeting 

o f minds” (Bruner, 1995, p 6), while at the other, ‘deictic gaze, or joint visual attention as it 

is often called, may be defined simply as ‘looking where someone else is looking’ 

(Butterworth, 1995, p 29).

Baron-Cohen (1994) considers the ability to follow gaze in human infants to be 

indicative of an awareness that the other individual is seeing or attending to something. 

Others suggest that gaze following does not implicate an appreciation o f others as 

attentional beings. Tomasello (1995, p 104) suggests that understanding ‘attention’ requires 

that other individuals are seen as intentional agents: ‘attention should be considered as 

intentional perception.’ That is, attention is not the same phenomenon as simply ‘looking
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at’ or even ‘seeing’. For ‘seeing’, the primary representations of another individual and 

whether that individual is or is not perceiving (that is, whether or not the eyes are open or 

obstructed) in combination with simple geometric rules are sufficient. However, for any 

comprehension o f another’s attention (in Tomasello’s terms) it is necessary for some 

notion o f the 'aboutness' of perceiving (Baron-Cohen, 1995; Baron-Cohen & Cross, 1992; 

Premack & Dasser, 1991).

Tomasello and Call (1997, p 318) propose that simple visual co-orientation may be 

seen as demonstrating that nonhuman primates see others as ‘animate beings who are 

directed to particular entities in the world — based on readily observable actions.’ Thus, the 

ability to follow gaze (even eye gaze) allows nonhuman primates to predict (at a basic level) 

another’s subsequent behaviour and also to detect important events or objects in their 

environment. However, they draw a distinction between being able to use another’s gaze as 

an information source and appreciating that other’s gaze may indicate attention or even 

seeing. Such a distinction might help to explain divergent abilities in the simple co

orientation task and object-based paradigms; the former is based on gaze following while 

the latter may require some level o f appreciation that an object is being attended to (Call, 

Agnetta & Tomasello, 2000).

These distinctions may become less clear when sophisticated gaze following is 

considered, for example. Does fixating a target object despite the presence o f distractors 

simply indicate a high-level geometric appreciation of gaze or does it also suggest some 

understanding o f gaze as a perceptual or attentional state (Tomasello & Call, 1997)? 

Furthermore, as seeing and attention may only be deduced from external behaviours, then 

distinguishing seeing or attention from looking (or providing suitable cues in order to study 

understanding) is extremely difficult. That is, it may not be possible to differentiate 

sophisticated appreciation of gaze as a spatial signal, and its relation to subsequent



behaviours, from even a basic appreciation that the other is having any mental experience 

of perceiving (e.g. Butterworth & J arret, 1991).

A recent review o f this topic has suggested that nonhuman primates may indeed 

only understand gaze as a behavioural state, without being capable o f appreciating seeing as 

an epistemic state (Povinelli & Giambrone, 2000). This is not to say that nonhuman 

primates do not have a complex knowledge of other’s looking behaviours but rather that it 

is based upon appreciation o f behaviours and not internal mental states. While it has been 

suggested (e.g. Byrne & Whiten, 1988) that social complexity has resulted in the selection 

for a capacity to appreciate the minds of others (or theory o f mind), Povinelli &

Giambrone (2000) suggest that an extensive capacity for reasoning about behaviour is a 

viable alternative. Thus, behaviours which are overtly similar in human and nonhuman 

primates need not invoke the same covert mechanisms: ‘identical behaviours may be 

generated and/or attended by different psychological representations’ (Povinelli & 

Giambrone, 2000 p 50).

Although the distinctions between seeing as an observable behaviour state, an 

internal state of perception, or as attending are interesting, a fuller discussion of these 

issues is beyond the scope of this thesis (see Dunham & Moore, 1995). However, it is 

important to define some other common terms used in the literature. The following offers 

an interpretation of what the various labels represent (see Figure 2). ‘Gaze following’ is 

used to denote the act of visually co-orienting with another individual, while ‘joint visual 

attention’ is considered as involving both individuals focusing their attention on a common 

object (Tomasello, 1995). Further, ‘shared attention’ has been differentiated from joint 

visual attention; the former requiring that the individuals know that they are both attending 

to the same object and is therefore a combination o f joint and mutual attention and 

considered a triadic interaction (Baron-Cohen, 1994). This shared attention is probably 

closest to what Tomasello (1995) considers to be joint attention and is seen as providing



the appropriate context for the development of human infants’ communicative and other 

socio-cognitive abilities (Dunham & Moore, 1995; Flavell, 1999; Tomasello, 1995).

Figure 2 illustrates how these various definitions relate to each other in terms of the 

role o f Self (S), Agent (A) and Object (O). This figure is based upon Werner and Kaplan’s 

(1963) representation o f triadic interactions between the infant, mother and object of 

attention. The figure illustrates common uses of the terms given and therefore may not fit 

with all definitions o f a behaviour used in the vast literature on this topic. Although the 

ga2e following component o f the figure does not have a common object, this does not 

mean that gaze following cannot be a highly accurate means o f identifying the target of 

another’s gaze, but rather than this behaviour does not invoke an appreciation of anything 

more than the direction o f another’s gaze. That is, this response does not imply 

appreciation of attention or other internal mental states. Although joint attention is often 

used to denote visual co-orientation to a common object (e.g. Emery, 2000), the notion of 

‘attention’ does not accurately describe the phenomenon under consideration (e.g. 

Tomasello, 1995). Thus, geometric gaze following is a better definition o f visual co

orientation that accurately detects the target of another’s gaze.
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Figure 2: Illustration to clarify the nature of various gaze-related behaviours. 

A = agent, S = self, O = object

a) Detecting direct gaze b) Mutual gaze

d) Joint visual attentionc) Gaze following

e) Shared attention
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As all o f the phenomena outlined in this section are all represented by the same 

observable behaviour o f gaze, the studies reported in the following chapters will focus 

upon the abilities o f monkeys to respond to the gaze cues o f another individual; that is, to 

use the looking behaviours o f others as sources o f information. What mechanisms do 

monkeys have that enable them to use gaze to anticipate and explain behaviours (Gordon, 

1998)? Whenever other cognitive levels o f gaze are considered, terms will be used 

consistently with the definitions outlined above. Thus, although ‘the mental connection 

engendered by visual perception’ (Povinelli & Eddy, 1996a) is of theoretical importance, 

there is still a lack o f data concerning the use o f gaze cues in nonhuman primates, especially 

for non-apes (or rather non-chimpanzees). The following studies explore the sensitivity of 

monkeys to the looking behaviours of others; more specifically, what sources of 

information monkeys respond to and in what circumstances. By using a variety of 

approaches to examine these issues, it is hoped that a clearer picture of monkeys’ 

understanding o f gaze will emerge and that the strengths and weaknesses of the 

experimental procedures used will be identified.

Chapter summary

This chapter has reviewed literature concerning nonhuman primates’ ability to process 

faces and especially gaze information. Spontaneous and arbitrary behavioural responses, in 

addition to neurophysiological responses, indicate that nonhuman primates are able to 

discriminate faces on a number o f levels; they are able to recognise conspecifics, individuals 

and facial expressions. Nonhuman primates are also extremely sensitive to gaze, especially 

direct gaze, as indicated by behavioural and neuronal responses. While monkeys and apes, 

but not prosimians, readily respond to non-self directed gaze by visually co-orienting, they 

do not consistently use these same behavioural cues to solve object-choice tasks.

Alternative paradigms have also generally failed to convincingly demonstrate effective use
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of gaze as an information source, although competitive paradigms may be more conducive 

to gaze cue use. Although nonhuman primates are sensitive to the behaviour of others, 

there is no convincing evidence o f any awareness of seeing as a mental state and there are 

serious methodological problems with attempts to examine this issue (see Heyes, 1998). 

However, as nonhuman primates are so adept at monitoring the behaviours of others, 

whether mental attribution is involved or not (Cheney & Seyfarth, 1991), further 

investigation o f the cues used in such monitoring is of interest. Research to date has 

primarily focused upon chimpanzees5 responses to gaze and there are few comparable data 

for non-ape species. This thesis explores monkeys5 responses to other individuals5 gaze 

using a variety o f paradigms.



Chapter Two 

Spontaneous Responses to Gaze

This chapter will consider spontaneous behavioural responses to another’s visual 

orientation. The first study is an exploration of gaze following responses in olive baboons 

(Papio ambis), focusing on the cues which evoke visual co-orientation. Baboon responses to 

a human interactant’s changes of visual orientation were studied, more specifically the role 

o f the head and eyes in invoking visual co-orientation were explored. The second study 

examines whether monkeys are sensitive to qualitative aspects o f another’s looking 

behaviours, that is, does the amount o f visual interest in objects influence their own 

responses to the same objects? Novel objects that had received varying forms of visual and 

m anual exploration from a human interactant were presented to capuchin monkeys {Cebus 

apella) and olive baboons and their responses were observed.

Study 1: Visual co-orientation in baboons

As reviewed in the previous chapter (see Chapter One, section 3.4a), nonhuman primates 

are able to follow the gaze o f another individual. It is proposed that such an ability confers 

an advantage upon group-living primates as they gain access to information about their 

physical and social environment by monitoring the looking behaviours of others (Kummer, 

1967; Tomasello, Call & Hare, 1998). The ability to visually co-orient with another 

individual’s line o f regard has not been extensively studied in any species other than 

chimpanzees. There is evidence that nonhuman primates respond to another’s change in 

head direction (Anderson & Mitchell, 1999; Tomasello, Call & Hare, 1998; Tomasello,
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Hare & Agnetta, 1999; Tomasello, Hare & Fogelman, 2001). Chimpanzees have been 

shown to respond to a shift in a human interactant’s eye direction by visually co-orienting 

(Povinelli & Eddy, 1996b), and more recent evidence suggests that macaques are also able 

to respond to eye gaze alone (Ferrari et al, 2000; Lorincz, Baker & Perrett, 1999). It is 

interesting to study the salience of these information sources for nonhuman primates, as 

there is still some debate about their relative importance (Langton, 2000; Perrett & Emery, 

1994). As Corkum and Moore (1995, p 63) state, ‘functionally, head and eye orientation are 

often equally good predictors of direction of attention because they are frequently 

congruent (i.e., we usually turn head and eyes together). However, there are cases when the 

two cues are in conflict (e.g., the more subtle movement o f turning our eyes but not our 

head) and in these cases, eye orientation alone provides the most accurate information 

regarding attention.’ Studies with human infants suggest that head orientation is initially the 

more readily used cue, with sensitivity to eye gaze only emerging later in development 

(from around 18 months; e.g. Moore, 1999, but see Hood, Willen & Driver, 1998, for 

evidence o f sensitivity to eye direction in younger infants).

This study addresses whether olive baboons demonstrate co-orientation in 

response to a human interactant's change in direction o f visual orientation, and if so, do 

they respond to shifts in eye direction only? The study is an extension of Anderson and 

Mitchell’s (1999) paradigm with the trainer engaging the monkeys in an ongoing interaction 

and presenting trials within this context. However, in the present study, the baboons were 

presented with a variety of orientation cues in order to ascertain the salience of head and 

eye direction information.

Baboons are an extremely interesting species to study in terms of responses to 

visual orientation cues, not least because there is currently a complete lack o f data 

concerning their abilities. Although this applies to nearly all species except chimpanzees, 

baboons have been reported to exploit the visual orientation of others in ‘tactical
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deception’ (Byrne & Whiten, 1988). In addition, they have fairly elongated eyes and are a 

terrestrial species (Kobayashi & Koshima, 2001). This indicates that horizontal movement 

o f the eyes is important in their visual scanning, and also that such movements should be 

visible to others (relative to many other primate species). However, Emery (2000) also 

highlights the importance o f facial morphology; in contrast to the relatively flat faces of 

most primate species, baboons have an extended canine-like snout. It may be that this 

distinct feature is an excellent indicator of another individual’s visual orientation as head 

direction is very readily determined, even at a considerable distance.

Methods 

Subjects

Five olive baboons were studied: three males (Balthazar, Kiki and Stuart) and two females 

(Freya and Julie) housed at the CNRS Centre de Primatologie, Rousset-sur-Arc, France. 

Their ages ranged from 4 to 30 years and they had either been bom  at the centre or were 

transferred there from a safari park approximately three years before the study was 

conducted. All baboons were housed in indoor/outdoor enclosures in small social groups. 

For the purposes of testing, the baboons were restricted to the outside area; dominant 

baboons were tested in the presence of other group members, but during testing with 

subordinates, more dominant group members were closed indoors.

The monkeys were fed a diet of commercial monkey pellets, fruit and vegetables, 

with feeding being postponed until the daily testing sessions were completed. Standard 

food items (small pieces o f fruit and vegetables or grains o f maize) as well as dietary treats 

(nuts, raisins and cereals) were used to maintain the monkeys’ participation in the 

interaction with the experimenter. Sessions were conducted with each baboon at 

approximately the same time of day, two or three days a week.



Apparatus

A stopwatch was used to time the sessions and a video camera was positioned to record 

both the experimenter’s and monkey’s behaviours during the session.

Procedure

All sessions were videotaped and coded at a later date. The experimenter sat directly in 

front o f the baboon’s enclosure at a proximity o f around 50cm so that she was at the 

monkey’s eye level. The stopwatch was started and the session commenced. All the 

baboons were accustomed to interacting with humans and readily accepted food items 

from the experimenter. During each session, the experimenter gave small food items to the 

baboons at regular intervals (about every 15 seconds) and engaged in ‘natural’ behaviours: 

looking at the baboon, the food items and the immediate environment between the 

individuals (Anderson & Mitchell, 1999).

To test for gaze following, the experimenter followed a pre-determined schedule 

and interrupted the feeding bout in order to change their direction of gaze, looking 

between 60-90 ° to the left or right and maintaining the position for approximately 5 

seconds before returning to a central orientation. Three trial types were presented pseudo- 

randomly within each session: head and eyes both turned to the side, head turned with eyes 

closed and eyes only oriented to the side. For head only trials, the eyes were closed before 

the head was turned. All changes in orientation were performed calmly and the 

experimenter maintained a neutral posture and facial expression. Five test sessions were 

conducted with each monkey, with three trials within each 10-minute session. Trials per 

session were kept to a minimum in order to avoid habituation within sessions; as there 

were no targets, the baboons may have learned to ignore the experimenter’s gaze 

behaviours as uninformative (Tomasello, Hare & Fogleman, 2001).



Video Coding and Data Analysis

Preliminary viewing o f the videos was used to identify pre, during and post trial video 

segments (all o f 5 second duration, see Figure 1). These segments o f video were coded 

independently by two individuals (SJ V & REB) several months after the data were 

collected. During coding, the screen was partially covered in order to conceal the 

experimenter’s actions so that the observers were blind to the trial type and direction. All 

the monkeys’ changes in orientation to either the left or right of the central position were 

recorded. Inter-observer reliability was high (agreement for 253/276 behaviours recorded: 

91.67%). Disagreements were reviewed until a unanimous decision was reached by the two 

observers.

Figure 1: The intervals used for video coding.
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As each change in the monkeys’ orientation from the central position was recorded, 

this allowed each interval (pre- post- and during trials) to be re-coded into categories 

according to the baboons response pattern (see Table 1). One trial could not be coded due 

to human error.
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Table 1: Categories of responses and their definitions.

Category Definition
N o response The baboon did not turn from the central orientation during 

the interval.

Congruent response The baboon turned only in the direction congruent with the
human interactant.

Incongruent response The baboon turned only in the direction opposite to that of
the human interactant.

Both The baboon turned and looked in both the congruent and 
incongruent direction during the interval.

Results

As can be seen from Figures 2a -  c, the baboons’ behaviours differed between pre-, during 

and post trial intervals. Chi square tests were conducted in order to examine whether turns 

in the congruent direction were more likely during a given trial, that is, were the monkeys 

co-orienting with the experimenter? In both head orientation conditions, the baboons were 

more likely to look in the congruent direction during the trial than either immediately 

before or afterwards. For Head and Eyes: y2 = 6.609, 2df, p = 0.037; for Head only: y2 = 

8.857, 2df, p = 0.012. However, the same effect was not found for eye gaze alone: y2 = 

3.250, 2df, p = 0.197.

Although this could suggest that the baboons readily co-oriented with another’s 

change in head direction but failed to do so when presented with eye gaze alone, the 

analysis o f only the Congruent category data may underestimate the levels of visual co

orientation. That is, the data also clearly show that the category Both also seems to increase 

during the trial interval; in this category, the baboons did orient in the congruent direction 

but also looked in the opposite direction. If  these trials are also considered in the analysis 

the results show that all three conditions facilitated visual co-orientation in baboons: for
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Head and Eyes: %2 =  15.8, 2df, p < 0.001; for Head only: =  20.759, 2df, p < 0.001; for

eyes only: %2 = 8.727, 2df, p =  0.013.

Figure 2a) Stacked bar chart show ing frequency of response categories across tim e 

for head and eye direction.
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Figure 2b) Stacked bar chart showing frequency of response categories across time 

for head direction only.
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Figure 2c) Stacked bar chart showing frequency of response categories across tim e 

for eye gaze.
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D iscussion

The results show that baboons do respond to another’s shift in gaze direction by visually 

co-orienting in a congruent direction. However, it is apparent that gaze following in 

response to  eye gaze was not as readily demonstrable as gaze following in response to  head 

orientation; a broader definition o f  gaze following was required in order to observe the 

effect o f visual co-orientation in response to eye gaze alone. This broader measure (simply 

classifying cases according to whether or not the nonhum an primate looks in the congruent 

direction during a given interval) has been the unit o f  analysis in other studies (Anderson & 

Mitchell, 1999; Tomasello, Call & Hare, 1998; Tomasello, Hare & Fogelman, 2001). In  

contrast, a m ore conservative measure has been used by others who have chosen to record 

only the first look made by the monkey (Ferrari et al, 2000; Itakura, 1996). The data 

analysis combining the Congruent and Both data suggests not only that the baboons were
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likely to visually co-orient in response to another’s change in direction, but also that they 

were likely to show less specific looking behaviours.

It is worth noting that in contrast to the only other studies to report sensitivity to 

eye gaze in monkeys (Ferrari et al, 2000; Lorincz, Baker & Perrett, 1999), these baboons 

were tested in their home cages and in the presence o f conspecifics. That is, there were 

plenty o f other things which could have caught their interest during the testing session 

(Tomasello, Hare & Fogleman, 2001). Perhaps the visual co-orientation response generally 

leads to visual scanning of the environment, or the absence o f any target object within this 

paradigm simply led to general looking when the baboons failed to detect anything of 

significance following their co-orientation response. It would be interesting to test other 

species with paradigms previously used with chimpanzees, for example, incorporating 

target objects, or even targets and distractors, and examining responses to barriers 

(Povinelli & Eddy, 1997; Tomasello, Hare & Agnetta, 1999).

The baboons responded to head direction even when the experimenter’s eyes were 

closed, suggesting that head direction in itself is sufficient to provoke a gaze following 

response. This finding coincides with that reported for human infants (less than 18 months 

old); the infants did not distinguish between shifts in both head and eye direction and those 

in which only the head was turned and eyes remained centrally fixated (Corkum & Moore, 

1995). Thus, whether or not the interactant is actually able to see anything does not seem 

to be relevant to the visual co-orienting response o f baboons. This may suggest that the 

visual co-orientation response is simply a behavioural response which does not necessitate 

any understanding of the role of eyes in visual perception; it may even be a reflexive 

behaviour (see Chapter 6).

However, it could be that once the head is turned in profile, the eyes are a less 

visible and become a less salient feature (Perrett & Emery, 1994). In fact, perhaps a shift in 

head orientation renders eye movements fairly irrelevant, while small changes in visual
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orientation are usually achieved by eye movements, change in head orientation signals a 

larger shift in visual orientation (Freedman & Sparks, 1997). That is, if the shift in gaze 

requires a head turn, then the subtler movements o f the eyes may not be particularly 

informative. In addition, if the movement of the head itself caught the baboon’s eye, then 

they may have missed the closing of the eyes that preceded this action. In addition, the 

lower response rate to eye gaze alone may be partially due to the study’s mixed-trials 

design; the co-presentation o f a more salient cue (i.e., head direction) within sessions may 

have diminished the tendency to visually co-orient when eye direction alone was available. 

For example, Corkum & Moore (1995) found that human infants were less likely to 

respond to eye gaze when a mixed-trials design was used; Moore (1999) has suggested that 

these mixed blocks lead to the ‘de-emphasis’ of eye gaze.

The baboons did respond to eye gaze, indicating that they are sensitive to the eyes 

at some level. Perhaps both are reliable as social cues and invoke the appropriate response 

without any recourse to a consideration o f seeing per se. As Perrett and Emery (1994) 

highlight, there are several possible sources of information regarding another’s visual 

orientation (eyes, head and body orientation) and these can be used in combination or 

independently depending upon the circumstances. Indeed, nonhuman primate eye gaze 

may often be difficult to discern due to the morphology and coloration of their eyes 

(Kobayashi & Koshima, 1997; 2001), so sensitivity to alternative signs o f visual orientation 

would be adaptive. As noted in the introduction, baboons have an interesting facial and eye 

morphology and it may be that despite their eye morphology, they primarily rely on head 

direction as an indicator o f another’s visual orientation. It would be extremely interesting to 

test baboon responses to conspecific gaze cues; in order to allow for the control for head 

and eye movements, a paradigm such as that used with rhesus macaques by Perrett and his 

colleagues might be enlightening (Emery et al, 1997; Lorincz, Baker & Perrett, 1999).

86



The analysis used could be considered as underestimating the gaze following 

response somewhat; co-orientation during the 5-second post-trial interval could also be 

seen as gaze following. However, as Figures 2a-c reveal, there is little evidence o f the gaze 

cues having any sustained effect on behaviours in terms of visual co-orientation or general 

scanning in the post-trial interval. In fact, as the shift in attention occurred at the start of 

the trial interval, the during-trial data is in fact ‘post’ trial data in itself. That is, perhaps the 

post-trial 5-second interval is simply too long after the event (gaze shift) for there to be any 

sustained effects upon behaviour.

A potential problem with the methodology is the dependent variable measured: the 

baboons had to clearly shift their own visual orientation by turning their heads (Itakura, 

1996; Tomasello, Call & Hare, 1998; Tomasello, Hare & Fogleman, 2001). Other studies 

have measured eye movements and this may be a more accurate assessment o f a monkey’s 

responses (Emery et al, 1997; Ferrari et al, 2000; Lorincz, Baker & Perrett, 1999). Indeed, it 

could be argued that head direction seemed to be more effective than eye direction because 

o f the measure used; perhaps shifts in eye direction by the experimenter resulted in similar 

shifts in eye gaze by the baboons which were not observed and recorded. As Emery (2000) 

identified, discrepant results may be dependent upon the measure used (for example, 

duration versus frequency of looking) and it may be that more fine-grained and accurate 

measures of looking behaviours are desirable in an analysis of the gaze following 

phenomenon (see also Johnson, 2001).

Furthermore, the inability to successfully record eye direction may have led to 

another error in analysing gaze following; it was not possible to determine whether the 

baboon had actually perceived the interactant’s change in visual orientation. This measure 

has been used to filter data in previous studies; those cases where the monkeys did not 

fixate the interactant in order to see the gaze shift were excluded from subsequent analysis 

(Ferrari et al, 2000; Tomasello, Call & Hare, 1998). Moreover, recording the first head turn
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following the human interactant’s shift in visual orientation may be a more accurate means 

o f monitoring the gaze following response (Ferrari et al, 2000; Itakura, 1996). However, the 

difficulties in monitoring the baboons’ eye movements made determining when they 

actually noticed the change in visual orientation very difficult, and therefore may have 

made this an inappropriate measure. Thus, a more sensitive dependent measure, such as 

eye movement recordings, would better facilitate the study o f nonhuman primates’ gaze 

monitoring abilities.

Study 2: Gaze and stimulus enhancement

‘Reading the attention of others affords information of those aspects of the 

environment that will most probably affect their decision-making and thence 

determine future behaviour (Whiten, 1997, p 162).

When an individual observes another contacting with an object, this can influence the 

probability o f that object being approached or contacted by the observer: an effect known 

as stimulus enhancement (Spence, 1937). Such a behavioural phenomenon could benefit 

gregarious animals, such as primates, who are able to acquire information about their 

environments from observing conspecifics’ behaviour (Hall, 1963). For examples, learning 

to fear predators (Cook & Mineka, 1989), learning about a potential food source 

(Visalberghi, Valente, & Fragaszy, 1998) or learning about novel or potentially useful 

objects (Fragaszy & Visalberghi, 1989; Russell, Adamson & Bard, 1997; Wechkin, 1970; 

Zuberbeuhler, Gygax, Harley & Kummer, 1996), can be facilitated by observing other 

individuals’ responses to their environment.

At the neurophysiological level, cells have been identified which respond to 

another’s actions in relation to objects in the environment, such as walking towards or
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reaching for an object (Brothers, 1995; Perrett et al, 1990; Perrett & Emery, 1994). Thus, 

Perrett and Emery (1994, p 685) state that ‘there is neurophysiological support for the 

notion that the representation o f dyadic relationships underlies the visual analysis o f actions 

and intentional behaviours o f others/ Furthermore, ‘mirror cells’ have been identified in 

monkeys which respond within a purely observation/execution matching system; these 

cells respond both whether the subject or another individual performs a particular action, 

such as grasping an object (Rizzolatti, Fadiga, Gallesse & Fogassi, 1996; for a recent review, 

see Gallese & Goldman, 1998). This indicates that the actions executed upon the 

environment by other individuals undergo some sort o f categorical neural processing and 

that any resemblance with an individual’s own interactions is also encoded.

In addition to observing others interacting with their physical environment, 

monitoring the visual orientation o f others may be an alternative means o f acquiring 

information about objects or events in the environment. Nonhuman primates are highly 

sensitive to the behavioural status o f other individuals and will modify their own actions in 

response (Cheney & Seyfarth, 1991). Moreover, the phenomenon o f gaze following which 

has been demonstrated in several species of nonhuman primates (Anderson & Mitchell, 

1999; Ferrari et al, 2000; Povinelli & Eddy, 1997; Tomasello, Call & Hare, 1998; Tomasello, 

Hare & Fogleman, 2001) indicates that primates are responsive to the looking behaviours 

o f others; ran g in g  their own visual focus in order to co-orient with another individual. 

Thus, monitoring both the interaction and visual monitoring afforded to conspecifics, 

objects and events potentially exposes socially living primates to valuable information 

regarding their social and physical environment.

Recent neurophysiological research has suggested that visual orientation may 

indeed play a role in interpreting other individuals’ behaviours. Perrett and his colleagues 

have identified a population of cells (in the anterior temporal sulcus o f macaque monkeys) 

that selectively respond to the sight of another individual performing actions (such as
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reaching) only when the actor’s visual orientation is congruent with the action (Jellema, 

Baker, Wicker & Perrett, 2000). That is, these cells seem to be sensitive to combinations of 

intentional actions and visual orientation. However, there is no evidence to date that the 

object o f the action is also encoded within such a neural processing system (Emery, 2000); 

it may be that the function o f these cells encodes direction and actions.

Moreover, while gaze following in nonhuman primates is a fairly robust 

phenomenon, this response could be a simple reflexive response or a learned association 

between co-orienting with another and being rewarded by perceiving something of interest. 

That is, gaze following does not necessarily reflect an understanding o f gaze as an 

attentional state, or even a more basic appreciation of how seeing connects the perceiver to 

the perceived. Even at a behavioural level, gaze following does not indicate that nonhuman 

primates relate an individuars gaze behaviour to the object or event being looked at. For 

example, it is not clear whether visual co-orientation plays a role in social learning; can gaze 

alone lead to stimulus enhancement? I f  so, what type o f looking behaviours are relevant, 

does it matter what form of visual monitoring is witnessed? Would a brief visual inspection 

be sufficient or would more a more sustained visual exploration be more conducive to 

increasing the salience of an object? Moreover, if nonhuman primates use another’s visual 

orientation to predict behaviour, then it is important to distinguish ‘irrelevant’ looking 

behaviours from more prolonged visual monitoring which presumably identify more 

important objects or events: not all behaviours are o f predictive value (Montogomery, Bach 

& Moran, 1998).

Within a more mentalistic framework, although an individual may look at a given 

object, this does not in itself impart information concerning the intentional status of the 

perceiver, for example, whether or not the individual intends to act upon the object (as 

opposed to the object simply falling within the line o f regard). Knowledge about what 

another individual can perceive is only the first o f three levels of mental state attribution
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identified by Premack and Dasser (1991), with the attribution of intentions and attribution 

of beliefs being the remaining two. While much research concerning the presence o f a 

‘theory o f mind’ (Premack & Woodruff, 1978) in primates has focused upon visual 

perspective taking (Tomasello, Hare & Agnetta, 1999) and the relationship between seeing 

and knowing or believing (Call & Tomasello, 1999; Hare, Call & Tomasello, 2001; 

Povinelli, Nelson & Boysen, 1990), there has been less consideration o f the understanding 

of the relationship between perception and looking behaviours as an expression of 

intention or interest. Baron-Cohen and Cross (1992, p 182) propose that ‘visual perception 

possesses intentionality: it is always about something. Eye-direction signals this 

intentionality by specifying the target o f visual perception: what perception is about.’ 

However, it is not clear whether nonhuman primates, or even human infants, appreciate 

gaze at such a level (Corkum & Moore, 1995; Tomasello, 1995).

Santos and Hauser (1999) employed an expectation violation paradigm to 

investigate cotton top tamarins’ responses to a human interactant’s gaze. These authors 

suggest that increased looking reveals that the monkeys were sensitive to the relationship 

between looking behaviours and intention to act; the monkeys looked more when the 

experimenter reached for a previously ignored (as opposed to the looked at) object. 

However, alternative explanations for these findings have been identified, such as 

associative learning and simple co-orientation (see Chapter One, Section 3.4c). In contrast, 

if nonhuman primates responded differentially to various, qualitatively different forms of 

perceptual contact this could be seen to indicate that the relationship between gaze and 

intentions was indeed being processed on some level (as it is in human children, e.g. 

Montogomery, Bach & Moran, 1998). Returning to a consideration of observable 

behaviours alone, differential responses would indicate that nonhuman primates are 

sensitive to some o f the subtleties of other individuals’ looking behaviours; how various 

types of looking behaviours might relate to the salience o f an object or event.
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In order to avoid possible learning effects, the present study utilised a natural 

response of primates, namely exploration o f novel objects; many primate species display a 

seemingly intrinsic motivation to manually (and visually) explore novel objects (e.g.,

Harlow, Harlow & Meyer, 1950; Vauclair & Bard, 1983). Thus, the monkeys’ responses to 

novel objects were recorded to try and determine whether the monkeys would be 

influenced by the perceptual contact (touching/looking) of a human experimenter. A study 

with children reported an inability to distinguish ‘perception from attention’ until the age of 

six years old, but the task required a verbal response and an interpretation of scenarios 

regarding a model’s desires (Montgomery, Bach Sc Moran, 1998). It may be that a more 

simple method of recording monkeys’ preferences for objects might be able to 

demonstrate an ability to distinguish different forms of looking behaviours.

The present study aimed to answer three main questions. Firstly, would monkeys 

demonstrate differential responses to objects according to whether or not an experimenter 

exhibited perceptual contact with the objects? Would any preferences be independent of 

the objects themselves, that is, would there be any difference between preference patterns 

when identical and non-identical object pairs were presented? Finally, would monkeys 

distinguish between an experimenter having simple perceptual contact (i.e. brief looks or 

touches) with an object and engaging in more prolonged visual or tactile exploration?

Methods 

Subjects

The monkeys studied (see Table 2) were four capuchin monkeys and eight olive baboons. 

The capuchin monkeys were housed in a small social group at the Psychology Department, 

Kyoto University, and were all tested individually. The baboons were socially housed at the 

CNRS Station de Primatologie, Rousset, France, and these monkeys were tested in the 

presence of subordinate group members.
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Table 2: Subject characteristics of the three groups of monkeys studied.

Capuchins 

(Look/touch)

Olive baboons A  

(Look/touch)

Olive baboons B 

(Glance/look)

Heiji Amie Esperancea
(male, 6 years) (female, approx. 6 years) (female, 10 years)

Kiki-chana Gim Freya
(female, 5 years) (male, 6 years) (female, approx. 6 years)

Thetaa Katje Gasparda
(female, 5 years) (female, 5 years) (male, 9 years)

Zillaa Kikia Melchior
(female, 7 years) (male, 5 years) (male, 11 years)

a Monkeys with prior experience using a human experimenter’s head and/or eye direction 
as a cue within an object-choice paradigm (at least 9 months had elapsed before the present 
study commenced).

Apparatus

The apparatus consisted o f a wooden tray (measuring 90cm x 16cm for the capuchins and 

60cm x 40cm for the baboons) and a cardboard screen (approximately 100cm x 80cm). A 

wide variety of stimulus objects were used: for examples, small boxes, egg cartons, 

coloured plastic alphabet letters and shapes, plastic bottles, and metal nuts and bolts.

Procedure

Two stimulus objects were placed 30 to 40 centimetres apart on either side o f the midpoint 

o f the tray which was set 50cm back from the enclosures and so out o f the monkeys’ 

reach. The objects and their positioning were concealed from the monkeys by means of the 

cardboard screen. The objects were attached to a length o f string that was secured to the 

table upon which the board lay to prevent the monkeys from pulling the objects into the 

cage or enclosure. Small, light or rounded objects were secured to the board with
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transparent tape in order to avoid uncontrolled movement when the tray was pushed 

forward.

The stimulus objects presented varied randomly from trial to trial, but on one half 

o f the trials (distributed randomly) a pair o f identical objects was presented. In the case of 

identical objects, care was taken to position them so that the stimulus array appeared 

symmetrical to the monkey. For non-identical objects, the only constraint was that the 

objects were approximately similar in size. Some objects appeared in several trials across 

the forty trials presented to each monkey, but when this occurred the presentations were 

always separated by at least six intervening trials, and the objects were always paired with 

another non-identical object.

For the capuchin monkeys, two experimenters conducted each trial, while for the 

baboons, only one experimenter conducted the trials, both positioning and presenting the 

objects as described below. One experimenter positioned the two objects and removed the 

screen and then moved away from the stimulus presentation area. The second 

experimenter approached and sat down behind the table upon which the stimulus tray lay. 

The experimenter made eye contact with the monkey, and immediately upon establishing 

eye contact switched their orientation to one of the objects, either looking at it or touching 

it, according to the randomised test schedule for that monkey.

When looking at an object, the experimenter clearly oriented his or her head and 

eyes towards that object and when touching an object, the experimenter looked at it as 

above while also touching the object lightly with the index finger o f the ipsilateral hand.

For four of the baboons (Group B), touching the object was replaced with glancing at the 

object, that is, with the experimenter orienting only her eyes towards the object. With the 

exception o f the initial eye contact between experimenter and monkey, no eye contact 

occurred. The experimenter’s initial orientation to an object lasted for approximately 1 

second, after which the experimenter looked briefly at the central point o f the board before
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switching orientation again to one of the objects, this time glancing, looking or touching it 

for approximately 5 seconds. After this period o f prolonged orientation, the experimenter 

again briefly looked at the centre of the board before switching for a final time to one of 

the objects, glancing, looking at it or touching it for 1 second. After the final glance, look 

or touch, the experimenter looked at the centre of the board, pushed the board forward so 

that the objects were within the monkeys5 reach, then moved away.

The experimenter(s) then discreetly observed the monkey to see which o f the two 

objects was contacted first. As soon as one o f the items had been touched, the 

experimenter approached and retrieved both objects. The screen was put in place and the 

next trial proceeded after approximately two minutes. There were a total o f forty trials per 

individual; thirty-two experimental trials as described above and eight ‘control5 trials 

consisting of a single bout of looking or touching, directed to one of the two objects and 

lasting either 1 or 5 seconds. Two trials or two separate two-trial sessions (with at least an 

hour between sessions) were run with each monkey each day, in order to avoid the 

possibility of habituation to signs of experimenter5s actions in rapidly successive trials.

In addition to the 8 control trials, there were four trial types (see Table 3 for 

details), with presentations counterbalanced to the right and left and according to whether 

the pair o f objects was identical or non-identical. There were eight of each trial type 

presented (except for 1L1, n = 6, due to human error the data from the remaining two trials 

in this category could not be analysed). Note that for the second baboon group, ‘look5 

(head and eyes) and ‘touch5 were replaced with ‘glance5 (eyes only) and ‘look5.
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T able 3: Sequences of behaviour presented for each trial type.

Condition Sequence

look LO OK  look OH) Short look, long look, short look.

touch TOUCH touch (tTt) Short touch, long touch, short touch.

look TOUCH look (1T1) Short look, long touch, short look.

touch LO O K  touch (tLt) Short touch, long look, short touch.

D ata analysis

The data were analysed on three different levels; overall group data were examined in order 

to see whether the monkeys responded preferentially to a particular form of behaviour 

(touching, looking or glancing), group data were also analysed according to the four types 

o f trial, in d iv id u a l data patterns were then explored. Binomial tests were conducted in order 

to compare performances with chance responding; only control data and all significant or 

near-significant results are presented.

Results

Capuchins

Control trials: At the group level, the capuchins did not show any tendency to respond to 

the object that had been looked at or touched rather than the alternative object presented 

during control trials (see Table 4).

Experimental trials', when presented with a pair o f identical objects, the capuchins showed a 

tendency to respond to the object that was touched last. For one individual this response 

pattern was significant, Heiji consistently responded to the last object touched.
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T a b le  4: C a p u c h in  r e sp o n se s  at th e  g ro u p , trial an d  in d iv id u a l lev e l.

Control Group Trial type Individual

Look Same Same

Short look 3/8 Last touch: 21 /  32b Heiji, last touch: 7/8*

Long look 2/8

Touch

Short touch 4/8

Long touch 3/8

Same/different refers to identical and non-identical object pairings. Subscripts indicate 

probability (Binomial tests) a p < 0.05,b p = 0.055.

Baboons A (Look and touch).

Control trials'. As a group, the baboons did not show any tendency to respond to the object 

that was looked at or touched rather than the alternative object presented during control 

trials. During control trials, one individual demonstrated a tendency to respond to the 

object which had been touched; Amie chose the item which had been touched on all trials 

presented (see Table 5).

Experimental trials'. When presented with non-identical objects, the baboons showed a 

tendency to respond to the object which was touched for the longer duration and to 

respond to the object which had been touched last. On identical object trials, this group 

(like the capuchin group) demonstrated a preference for the last object touched. For tTt 

trials there was again a tendency to respond to the object which had been touched for the 

longer duration, when a pair o f non-identical objects were presented. When two identical 

objects were presented on lLt trials, the monkeys showed a preference for the item which 

had been looked at first or touched last. When presented with identical objects, one 

baboon (Katje) responded to the object, which was touched for the longer duration. On
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non-identical object trials, one baboon (Amie) chose the object that had been touched for 

the longer duration (see Table 5).

Table 5: Baboons Group A. responses at the group, trial and individual level.

Control Group Trial type Individual

Look Same Same lLt Same

Short look 5/8 Last touch: 21 /32 b First look: 12/16a Katje, long touch: 7 /8 a

Long look 3/8 Last touch: 12/16a

Touch Different Different tTt Different

Short touch Long touch: 21 /32 b Long touch: 12/16a Amie, long touch: 7 /8a

6/8 Last touch: 21/32b

Long touch Control

3/8 Amie, touch: 4 /4C

Same/different refers to identical and non-identical object pairings. Subscripts indicate 

probability (Binomial tests) a p < 0.05, b p = 0.055,c p =  .062.

Baboons B (glance and look)

Control trials'. As a group, the baboons did not show any tendency to respond to the object 

looked at or touched rather than the alternative object presented during control trials (see 

Table 6).

'Experimental trials-. When presented with a pair of identical objects, the baboons showed a 

tendency to respond to the object that was looked at (head and eyes) last. Esperance 

demonstrated a preference for the object within an identical pair that had been looked at 

(head and eyes) first or last within the trial sequence.

98



T a b le  6: B a b o o n s  G roup B . r e sp o n se s  at th e  g ro u p , trial a n d  in d iv id u a l lev e l.

Control Group Trial type Individual

Glance Same Same

Short glance 3/8 Last look: 21 /32b Espe, first look: 7 /8 a

Long glance 2/8 Last look: 7 /8 a

Look

Short look 4/8

Long look 3/8

Same/different refers to identical and non-identical object pairings. Subscripts indicate 

probability (Binomial tests) a p < 0.05, b p = 0.055.

Discussion

Firstly, during control trials the monkeys did not demonstrate differential responses to 

objects according to whether or not an experimenter exhibited perceptual contact with the 

objects; this suggests that even touching the objects failed to elicit any effect o f stimulus 

enhancement. While Call et al (2000) reported that touching an object in an object-choice 

paradigm failed to substantially increase subsequent choice o f that object, earlier object- 

choice studies found that manual cues (such as tapping or pointing) did enhance 

performance (Anderson, Montant & Schmitt, 1996; Anderson, Sallaberry & Barbier, 1995). 

The current results also contrast with pre-schooler’s responses; although young children 

did not discriminate different forms of perceptual contact they did differentiate between 

two items when only one had been acted upon by a model (Montgomery, Bach & Moran, 

1998). O f course, it may be that another individual’s (or at least a human experimenter’s) 

prior perceptual contact simply has no effect on monkeys’ responses to novel objects but 

there are alternative possible explanations for this result.

One consideration is simply that the short bout of contact (only 1 second for half 

the control trials) was too short and that perhaps the monkeys failed to engage in the 

interaction and thus monitor to the experimenter’s behaviour. A more extended control
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trial, for example, a three-action trial (like the experimental trials) with the experimenter 

only orienting towards or acting upon one o f the objects, might be a more appropriate 

means o f assessing sensitivity to these behaviours. Moreover, due to the small sample size 

and number o f trials the statistical power o f the tests were low; it would, therefore, be 

interesting to explore the influence of perceptual contact with further testing. In light of 

these weaknesses, it seemed adroit to analyse and consider the experimental trial data 

despite the lack of support (from the control trials) for the hypothesis that perceptual 

contact would influence responses to novel objects.

In contrast to the control data, during the more extended experimental conditions 

where both objects were involved, there were some consistent patterns in the responses of 

the monkeys at the group (but not at the trial or individual) level. For both the baboon and 

capuchin groups, the monkeys responded in a consistent manner according to the physical 

contact that the experimenter had had with an object, that is, which objects were touched 

and when. When two identical objects were presented, there was a preference for the last 

object touched, indicating that the human model’s behaviour influenced the levels of 

interest for two otherwise indistinguishable items. That is, although there was no consistent 

preference for touched objects observed during control trials, there was an overall bias 

towards the most recently touched object when a combination of behaviours were 

demonstrated.

Furthermore, for the capuchins and Group B baboons, at both the group and 

individual levels, the only preferences observed were for identical object pairings. The 

behaviours demonstrated by the experimenter reliably exerted an influence indicating that 

such social information was sufficient to manipulate levels of interest in an object 

independently of the object’s intrinsic qualities. Or conversely, that the experimenter’s 

behaviours had no influence when intrinsic levels of interest in the objects differed (i.e. on 

non-identical pairings). However, for the baboons in Group A there was also an effect
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when non-identical objects were paired; the monkeys initially manipulated the object 

touched last or for the longest duration. This suggests that social cues may have been more 

important than the objects’ properties in determining responses to the objects even when 

the objects presented presumably were of differing interest intrinsically.

For the baboons in the glance/look group, the results were generally similar; when 

presented with identical objects, the baboons initially contacted the last object which the 

experimenter had oriented towards (head and eyes). This suggests that while head 

orientation was ineffective when presented in combination with physical contact with an 

object, when only presented in combination with eye gaze, head direction became a salient 

action. As noted in Study 1, it may be that the presentation of mixed cues leads to the less 

salient source o f information simply being neglected (Moore, 1999). One means of 

counteracting such an effect would be to simply investigate one cue within each session. 

The results may also indicate that some level of visual co-orientation with the experimenter 

was occurring (at least in the absence of manual gestures from the experimenter), so that 

the monkeys were simply more likely to respond to an object presented to the side to 

which they were already oriented (Povinelli & Eddy, 1997). However, it would seem that 

responses were also determined by the intrinsic interest in the non-matching objects.

It is not clear whether the monkeys distinguished between an experimenter having 

simple perceptual contact (i.e. seeing or touching) with an object and engaging in more 

meaningful contact, such as sustained looking and manual exploration. The baboons in 

Group A did show a bias towards choosing the item in a non-identical pair which had been 

touched for the longer (5-second) duration, but they also demonstrated a preference for the 

object touched last. The other two groups demonstrated no preferences for items which 

had been the focus o f more extended bouts o f interest, making it difficult to draw any 

strong conclusions from the results obtained. However, it should be noted that all o f the 

actions performed by the experimenter were very definite and deliberate: they purposefully
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looked or touched both items, albeit briefly in most instances. Perhaps a more naturalistic 

sequence of behaviours could be used to investigate nonhuman primates’ responses to 

another’s interactions with objects, for example, using a scenario with glances or 

inadvertent touches to one object but more extensive visual or manual exploration o f the 

other (Montgomery, Bach & Moran, 1998). An interesting adaptation o f this study would 

be to manipulate the content of videos of conspecifics engaging with and looking at objects 

to varying degrees; these could be shown to the study animals prior to exposing them to 

the same objects (Cook & Mineka, 1989; Emery et al, 1997). That is, would a conspecific’s 

amount of interest in an object influence subsequent exploration of that object by a second 

animal?

Overall, the most consistent result was to respond to the last object oriented to 

with the most salient form of cue presented; for the capuchins and Group A baboons this 

was touching the object, while for Group B baboons this was head orientation. This 

recency effect suggests that the monkeys may have been monitoring the experimenter’s 

behaviours (or at least the more salient actions presented) and may have still been oriented 

towards the last object when presented with the objects to explore. It might, therefore, be 

interesting to vary the interval between the model’s demonstration and presenting the 

objects in order to examine this behaviour more fully. Simple co-orientation with the 

experimenter’s actions (gesture or head orientation) may be sufficient to explain the 

monkeys’ behaviour, at least with identical object pairings. This is interesting because visual 

co-orientation does not seem to facilitate the choice o f a baited object within the object- 

choice paradigm. Perhaps the presence o f food in the object-choice task somehow 

interferes with gaze following responses (Call, Agnetta & Tomasello, 2000).

It would be interesting to explore these findings further, for example, would latency 

to contacting the objects reveal any distinct patterns; it is possible that social cues were 

more readily (quickly) responded to when the objects had no discernible differences.
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Alternatively, visual scan patterns could be employed as a dependent measure; perhaps 

frequency or duration of looking at the objects (Emery et al, 1997; Emery, 2000) would 

reveal a different pattern to the measure used in the present study (first object explored 

manually). A further problem with the procedure is that the experimenter’s behaviour 

lacked any meaningful context; for example, although looking behaviours may indicate 

intention, the experimenter never actually proceeded to engage in any interaction with the 

objects. Perhaps an expectation violation paradigm similar to that used by Santos and 

Hauser (1999) could be employed as a means of exploring nonhuman primates’ responses 

to another’s gaze; that is, would responses differentiate different forms o f looking such as 

brief glances and extended fixation?

Turning to a consideration of these results within a more mentalistic frame-work, 

they could be seen as suggesting that nonhuman primates do not distinguish between 

simply looking at an object and attending to it (Tomasello, 1995). That is, although 

nonhuman primates may be able to compute the geometry o f gaze (i.e., visually co-orient) 

they may not share another’s attention (Baron-Cohen, 1994). Thus, it may be that 

nonhuman primates do not have any such sophisticated appreciation o f looking behaviours 

and do not distinguish between qualitatively (or even quantitatively) different gaze 

behaviours. However, an appreciation of looking behaviour at even the most basic level 

might allow for fairly reliable predictions of another’s subsequent actions. As Montgomery, 

Bach and Moran (1998, p 692) state in reference to young children, ‘looking at something 

may associate the protagonist with an object in a particularly salient fashion, and it is 

possible that it is this association, rather than conceptual understanding of how visual 

attention and goal are related, that influences pre-schoolers to infer goal on the basis of line 

o f regard.’ Nevertheless, it would be interesting to explore these issues further, whether the 

underlying mechanism were based upon observable behaviours or some form of 

appreciation o f seeing or attention, this line of research could examine nonhuman
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primates’ sensitivity to the subtleties o f other individuals’ interactions with their 

environments.

Chapter summary

Study 1 demonstrated that olive baboons are sensitive to a human interactant’s change in 

orientation; they changed their own visual orientation in response to shifts in head 

direction and eye gaze alone, albeit less reliably. In addition, the baboons demonstrated 

increased vigilance following a change in orientation by the experimenter. The baboons 

were insensitive as to whether the interactant was able to see anything; head direction was 

responded to even when the eyes were closed. This suggests that head and eye direction 

can be used independently when assessing another’s visual orientation.

In Study 2, nonhuman primates did not reliably distinguish between items on the 

basis o f a human interactant’s perceptual contact with one of the items (during control 

trials). However, during more prolonged trials there was some evidence o f sensitivity to the 

experimenter’s behaviours. The capuchin monkeys only demonstrated significant bias in 

responses when identical objects were presented, while the baboons showed a less clear 

pattern o f results making any meaningful interpretation of these findings difficult. The 

monkeys’ responses revealed a consistent preference for the object oriented towards last, at 

least when the experimenter’s last action was the more salient of the two actions within a 

session. Overall, there was little evidence o f an appreciation of the varying quality of 

looking or touching behaviours; the results may reflect some form of simple co-orientation 

response. This study had considerable methodological weaknesses that make drawing 

strong conclusions problematic; however, it would be interesting to further examine these 

issues using a different or at least improved methodology.



Chapter Three 

Gaze Discrimination by Olive Baboons

Anthropoid primates are extremely sensitive to eye gaze, or at least to one particular form 

o f eye gaze: direct eye contact (see Chapter One, Section 3.2b). From early infancy, humans 

and monkeys respond differentially to images or observers displaying eye contact or 

averted gaze (Hains & Muir, 1996; Kalin, Shelton & Takahashi, 1991; Mendelson, Haith & 

Goldman-Rakic, 1982; Vecera & Johnson, 1995). There is considerable sensitivity to small 

deviations in eye gaze from a central position: for example, Symons, Hains & Muir (1998) 

reported that 5-month-old human infants displayed less looking and smiling to adults who 

averted their gaze by 5 degrees horizontally (but not vertically). Similarly, infant rhesus 

monkeys discriminated direct from averted gaze (Mendelson, Haith & Goldman-Rakic, 

1982) and adult rhesus monkeys discriminated between photographs depicting direct gaze 

and gaze averted by 5 degrees (Campbell et al, 1990).

However, it is not clear whether the distinctiveness o f direct gaze as a percept 

reflects a more general capacity for discriminating gaze direction; that is, determining 

whether or not another individual is looking at you does not necessarily imply an ability to 

distinguish whether the individual is looking at an object based on eye direction, for 

example. It has been suggested that direct gaze may be a special form o f stimulus that 

receives rapid processing due to its social salience (Baron-Cohen 1994; von Grunau & 

Anston, 1995; Kummer, Anzenberger & Hemelrijk, 1996; Muir, Hains & Symons, 1994).

In nonhuman primates, direct and averted gaze are a critical element in many social 

situations; for example, maintained stare is a component o f threatening facial gestures in 

many species of monkeys (Chance, 1967; Perrett & Mistlin, 1991).
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At the neurophysiological level, there is evidence that specific areas o f the brain are 

specialised for the processing of gaze information. Single cell recordings in the superior 

temporal sulcus have identified cells that are sensitive to eyes directed towards the viewer 

and to averted gaze (Perrett et al, 1985). Furthermore, monkeys with lesions in this area fail 

to discriminate efficiently between gaze aversion and eye contact (Campbell et al, 1990). 

Thus, primates respond to direct gaze on both a behavioural and neurophysiological level. 

However, neurophysiological research has thus far only demonstrated sensitivity to direct 

and averted gaze (in terms of head and eye orientation) and has not revealed sensitivity to 

gaze in relation to the fixated object (Perrett et al, 1985, 1988; Emery, 2000). Thus, the 

function o f gaze monitoring in nonhuman primates may serve primarily to detect whether 

or not another individual is looking at you.

O n the other hand, where another individual looks may signal important objects or 

events, so gaze monitoring could also enable nonhuman primates to access information 

about their physical and social environment (Kummer, 1967). As reviewed in Chapter One, 

nonhuman primates do visually co-orient with conspecifics and humans; apes and monkeys 

but not pro simians have been shown to visually co-orient with another individual (e.g. 

Anderson & Mitchell, 1999; Emery et al, 1997; Tomasello, Call & Hare, 1998; Tomasello, 

Hare & Fogelman, 2001). While studies with chimpanzees have demonstrated an ability to 

co-orient to changes in another individual's eye direction alone (Povinelli and Eddy,

1996b), most studies with monkeys have not attempted to determine whether body 

posture, head or eye direction cues underlie co-orientation. However, Lorincz, Baker and 

Perrett (1999) used photographic stimuli in order to separate the cues available and 

reported that rhesus monkeys also co-orient with eye direction alone. In addition, a recent 

study has demonstrated that monkeys also respond to a human interactant's change in eye 

gaze direction (Ferrari, Kohler, Fogassi & Gallese, 2000).
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Nonhuman primates therefore appear sensitive to photographs depicting eye 

directions in that they respond to whether gaze is direct or averted and also visually co- 

orient with the direction of gaze presented (Mendelson et al, 1982; Lorincz et al, 1999). 

However, a complementary approach is to examine whether nonhuman primates are able 

to make less egocentric decisions about the direction o f others’ gaze. That is, rather than 

examining whether nonhuman primates distinguish direct from averted gaze or whether 

they exhibit active co-orientation, do they demonstrate any kind o f awareness of when 

another individual is fixating an object?

Study 3: Discrimination of depicted gaze

The present study uses a simultaneous discrimination learning paradigm to examine the 

ability of olive baboons to discriminate photographs on the basis of whether or not the 

portrayed model is looking at or away from a target object (Anderson & Doherty, 1997). 

While monkeys are known to be extremely sensitive to eye direction when detecting self

directed lo o k in g  it is unknown whether they are able to discriminate images on the basis of 

a concept o f visual orientation towards a target.

Methods 

Subjects

Four olive baboons were studied: two males (Kiki and Gaspard) and two females 

(Esmeralda and Domi) housed at the CNRS Centre de Primatologie, Rousset-sur-Arc, 

France. Their ages ranged from 3Vz to 10 years and they had either been born at the centre 

or were transferred there from a safari park approximately two years before the study was 

conducted. All baboons were housed in spacious indoor/outdoor enclosures in small social 

groups. For the purposes of testing, the baboons were restricted to the outside area;
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dominant baboons were tested in the presence of other group members, while for testing 

subordinate baboons more dominant members were closed indoors. The monkeys were 

fed a diet o f commercial monkey pellets, fruit and vegetables, with feeding being 

postponed until the daily testing sessions were completed. Standard food items were used 

as reinforcers (small pieces o f fruit and vegetables or grains o f maize).

Apparatus

The apparatus consisted o f a large opaque upright wooden panel (65cm x 80cm), which 

concealed the tester from the baboons’ view, with a clear perspex window (20cm x 50cm) 

at the bottom of the panel which allowed the stimuli to be presented. Two pieces of cord 

were threaded through holes in the panel and could be pulled from either side o f the 

apparatus, the cords were pulled to the experimenter's side before each trial and the 

baboons responded by pulling one of the cords towards them. The apparatus could be 

hooked onto a horizontal cage bar and secured into place with two nuts and bolts modified 

with small metal bars (see Figure 1).

Figure 1; The apparatus as seen by the baboons.
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Materials

Condition One — ‘Direct Gaze’: The stimuli were ten pairs o f colour photographs 

(15cm x 22.5cm) which had been enlarged using a colour photocopier. Each picture 

consisted o f a face-on head-and-shoulder view o f one adult person (viewer) in the centre 

(face approximately 8cm x 6cm), the identity o f the viewer changed with each new pairing 

presented. In each pair, one photograph depicted direct gaze, that is towards the observer, 

while the other depicted averted gaze (eyes 25° to one side). The positive stimulus was the 

direct gaze image (see Figure 2).

Condition Two - ‘Head Orientation5: In this set o f ten pairs o f photographs the 

viewer was again central. A red ball (diameter 7cm) was suspended with translucent thread 

approximately 50cm to one side, slightly in front of and above the eye level o f the viewer; 

the position of this target (to the left or right o f the viewer) was constant within pairs. 

Within each pair, the viewer was oriented towards the target in one picture and away from 

the target in the other so that the head was only seen in profile (see Figure 2). The 

photograph o f the viewer oriented towards the target was always the positive stimulus in 

this condition.

Condition Three -  ‘Eye gaze Fixation5: Ten pairs o f photographs again depicted a 

central viewer and the target object (located as in condition two). However, in the 

photographs used in this condition the viewer was always face-on, and one o f the pair 

showed the viewer's eyes fixated on the target while the second showed eye gaze averted 

from the target (both having 25°deviation from centre, see Figure 2). The picture depicting 

the viewer looking at the target was the positive stimulus in this condition.

Condition Four -  ‘Geometries5: Ten pairs of simple line drawings, the same size as 

the photographic stimuli, were used in this condition. The drawings consisted of a central 

geometric shape (e.g. ellipse, rectangle) which were approximately the same size as the
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average faces in the photographic conditions (8cm x 6cm). Two smaller symbols (e.g. 

diamonds or parallel lines, 1.5cm by 2.5cm, that is, approximately the same size as the eyes 

in the photographs) were placed in what would be the eye positions o f a human face. 

Within each pair, the large shape was constant but the small symbols were different; one 

member o f each pair was chosen to be the correct choice and was always rewarded (see 

Figure 2).

Design

The experiment was designed to allow the baboons to be presented with each o f the four 

conditions in turn, however, due to time constraints, not all the monkeys were tested in all 

four conditions (as shown in Table 1).

each baboon in  Studv 1.

Baboon

Condition

First Second Third Fourth

Gaspard Direct gaze Geometries Gaze Head

Male, aged 6 years Fixation Direction

Esmeralda Head Direct gaze

Female, aged 8 years Direction

Kiki Gaze Head Direct gaze Geometries

Male, aged 5 years Fixation Direction

Domi Geometries Gaze

Female, aged 10 years Fixation
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Figure 2. Examples of the stimulus pairs presented:

a) Direct Gaze b) Head Orientation c) Eye gaze fixation d) Geometries. The images on the 
right-hand side were the correct choices.
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Procedure

Training. Before commencing with the experimental conditions the baboons were 

trained to meet the response demands required by the task. Firstly, the baboons were 

trained to pull the cords, secondly, to pull the cords only when stimuli were presented in 

the window and finally, to perform a simple colour discrimination task using the cords to 

select one o f the two stimuli. Once colour discrimination had been mastered (80% correct 

for two consecutive 30-trial blocks), the baboons proceeded to the experimental 

conditions. For Gaspard, this took 2378 and 1950 trials, for Kiki 2284 and 2100 trials, for 

Esmeralda 1073 and 2794 trials and for Domi 1590 and 2585 trials, for the initial training 

and colour discrimination tasks, respectively.

Testing. Testing was carried out at approximately the same time each day for each 

subject but test sessions varied in length depending on the baboons' motivation to perform 

the task. Basic sessions consisted o f 30-trial blocks with the correct stimuli being pseudo- 

randomly presented to the left or right, with no more than three consecutive baitings to 

either side. For each trial, an opaque card screen was placed in the window and the pictures 

were put in place side by side behind this screen; the screen was then removed and the 

baboon responded by pulling one of the cords. Pulling on the cord next to the correct 

stimulus was rewarded by the experimenter who delivered a food item directly beneath the 

centre o f the apparatus. The stimuli were then concealed and arranged for presentation on 

the next trial.

An incorrect response was followed by the immediate replacement of the card 

screen and a short delay (approximately 10 seconds). Responses were recorded on a score 

sheet. A problem was considered mastered when the subject performed at 80% or above 

over two consecutive blocks; attainment of this criterion resulted in the next stimulus pair 

o f the set being presented in the next session. A condition was considered completed if a



baboon reached criterion within two blocks o f the problem, that is, 80% correct responses 

for the first 60 trials presented, for two consecutive stimulus pairs.

Results and D iscussion

All four baboons reached criterion in at least one of the photographic or line drawing 

discriminations. In each case the first condition was mastered only after many trials and 

with marked individual differences in performance. However, two baboons then required 

only between 2 and 11 sessions to leam subsequent problems. Thus, olive baboons were 

able to learn to respond selectively to photographs according to the eye and head 

orientations depicted and showed some evidence o f limited transference o f this 

discrimination to novel stimuli. Figures 3a-d shows development o f the baboons’ 

performances across sessions in the conditions presented.

Only two baboons (Gaspard and Kiki) completed all four conditions. They both 

quickly mastered all three conditions presented after the first condition. For Gaspard the 

first condition was Direct Gaze, which he mastered in 67 sessions; for Kiki the first 

condition was Eye gaze Fixation, mastered in 59 sessions. In contrast, Esmeralda and 

Domi both completed their first conditions but failed to complete the subsequent 

conditions presented even after 48 sessions and 76 sessions respectively. Thus, while able 

to master the ‘Geometric’ (Domi) and ‘Head Orientation’ (Esmeralda) conditions, 

respectively, these baboons did not reach criterion in a condition requiring that the 

direction o f gaze as indicated by eyes alone be discriminated. This suggests that eye gaze 

discrimination tasks may have been more demanding, or at least that previous learning 

during Head Orientation and Geometric conditions did not readily transfer to eye direction 

discriminations (whereas mastering eye direction problems did appear to facilitate 

performance on subsequent tasks).



Figure 3. Individual performance on the picture discrimination task for a) Gaspard 

b) Kiki cl Esmeralda ch Domi.

Solid data points represent above chance performance (Binomial tests, p <  0.05) and open 
data points represent chance performance.
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Both Gaspard and Kiki showed fastest learning in the ‘Geometric’ condition, which 

in addition to Domi’s ability to perform this discrimination is suggestive o f lesser cognitive 

demand in this task, perhaps because the stimuli were simpler. For example, there was no 

need to consider any target objects for successful responding and the physical differences 

between the images may have been more salient.

It is difficult to determine exactly how the baboons solved the problems presented. 

Gaspard and Kiki both showed gradual improvement across successive conditions. While 

their results could indicate that a concept of ‘looking at’ had been learned, they could also 

reflect simple improvement at discriminating complex visual images rather than responding 

to the photographs as meaningful images. That is, rather than learning to respond to 

photographs depicting visual orientation to objects, the baboons may have been 

responding according to more simple rules (Perrett et al, 1988; Vauclair & Zayan, 1988).

For example, the photographic problems could be solved using physical cues such as 

absolute head or eye orientation, or, for the Direct Gaze condition, the detection o f a 

highly salient image; namely direct gaze (e.g., von Grunau & Anston, 1996; Mendelson et 

al, 1982). However, the fact that even this image was not readily discriminated, requiring 67 

sessions for Gaspard and 13 sessions for Kiki, might suggest the absence of any attribution 

o f social meaning to the photographs.

Studies o f face processing in nonhuman primates have suggested that face 

discrimination can be processed in two distinct ways: either holistically or in a piecemeal or 

feature based manner (Perrett et al, 1988). Task demands have been identified as 

determining to some extent the method of processing engaged; for example, some face 

recognition tasks simply do not require any configurational processing and are easily 

performed on the basis of specific feature discriminations (Keating & Keating, 1993;

Perrett et al, 1988). It has been proposed that when monkeys are tested on categorisation 

tasks, larger stimulus sets preclude piecemeal strategies; the individual characteristics of
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images are not learned but rather a more general categorisation (e.g., Schrier & Brady, 

1987). The present study used a limited stimulus set for each condition, and only two 

images within any given problem, which leaves open the possibility that successful baboons 

may have learned to discriminate key features o f the photographs presented, rather than 

requiring a concept o f ‘looking at’ to guide their responses.

Study 4: Does gaze discrimination transfer to a live model?

Study 4 was designed to investigate further the possible strategies used by baboons 

showing gaze discrimination in Study 3. If  the baboons perceived the photographs as 

socially salient and encoded something about the looking behaviour (at any level) of the 

model, then this experience might facilitate subsequent performance on a related task using 

a real model. A task was presented so that a simple discrimination, such as consistently 

responding to the absolute orientation of the head or eyes (that would have sufficed for an 

individual problem in the first study) would not lead to mastering the new experimental 

conditions. The only way in which such simple rule learning could facilitate performance 

on the new task would be if it were based on the relationship between a cue and the 

location o f the target object in the photographs, (e.g., visible sclera away from target 

object). While this would also be simple visual discrimination, it is indistinguishable from 

identifying 'looking at the object’ and indeed such a simple mechanism may not be any 

different from how nonhuman primates perceive visual orientation. For example, a ‘low- 

level’ account o f gaze following simply requires co-orientation until something o f interest is 

encountered; eye direction may be a simple discriminative cue to look in a given direction 

(Tomasello, Call & Hare, 1998). Thus, visual orientation in others could be encoded by the 

direction of gaze as an arbitrary discriminative cue and the presence of an object or event 

in the congruent direction.
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A simple object-choice task was used in which an experimenter presented the 

baboons with gaze cues towards the target location (Anderson, Sallaberry & Barbier, 1995). 

This study aimed to compare the ability o f two baboons trained to discriminate the gaze 

direction o f humans in photographs (using head and/or eye direction as cues) with the 

performance of baboons without such prior learning.

Methods

Subjects

Four olive baboons were studied. Two males, Gaspard and Kiki, had learned to 

discriminate gaze direction in photographs in Study 3. Two females, Esperance (9 years 

old) and Ida (5 years old), had no experience of tasks involving facial stimuli but had 

extensive experience in an unrelated object and picture categorisation task using the same 

apparatus (Bovet & Vauclair, 1998). None of the baboons had any prior experience o f tests 

in which the experimenter communicated cues. Housing and feeding were as described for 

Study 3. Dietary treats (raisins) were used as reinforcers.

Apparatus

The apparatus was a wooden rectangular box (80cm x 20cm x 20cm) which could be 

hooked onto the outside wall o f the cage approximately 50cm above ground level. Two 

shallow food-wells (3cm diameter) were set 60cm apart in the top o f the box; these were 

each covered by a square piece o f wood (5cm x 5cm) and secured in one comer and could 

be rotated to reveal the wells. A large, hand held screen (50cm x 90cm) was used to conceal 

the baiting procedure.
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Procedure

Pre-training. The baboons were familiarised with the apparatus by the experimenter; 

food items were placed in the uncovered wells, which the baboons were then allowed to 

retrieve. Gradually, the well covers were moved so as to finally conceal the treats entirely, 

so that the baboons had to push the covers out o f the way to retrieve the food items. The 

baboons readily learned to do this within one training session.

Testing: During testing, the bating procedure was concealed from the baboons by 

the screen; experimenters always rotated the covers of both wells in the same order so that 

sound cues were not available. The location of the treat was pseudo-randomised between 

the left and right food-wells with no more than three consecutive baitings on one side. 

After baiting was completed, the screen was lowered so that the experimenter could be 

clearly seen by the baboon, while the two food wells remained concealed. The 

experimenter was already in a static posture according to the cue condition for that trial. 

Baseline trials showed the experimenter fixated on the centre point between the two food 

wells and therefore supplying no cue, while in cue conditions the experimenter had either 

head and eyes or eyes only oriented towards the correct side, according to condition (see 

Appendix A).

There was a m in im u m  5-second (extendable up to 10-seconds) observation period 

to ensure the baboon looked at the experimenter. The screen was then fully removed to 

allow the baboon to respond; a correct choice revealed a food item which they could 

retrieve and consume, while an incorrect response was immediately followed by the screen 

being reinstated and hence the end o f the trial. A 10-second time-out followed an incorrect 

response and a correction procedure was used with the treat remaining in the same location 

on correction trials until found. Responses were noted on a record sheet. Sessions 

consisted o f 30-trial blocks and the baboons completed one to four sessions a day.



Head orientation and eye direction were used as experimenter-given cues. Each 

naive female baboon was paired with an experienced baboon; all the baboons were first 

presented with one block o f baseline trials and subsequently one pair was presented with 

head (and eye) orientation as a cue, while the other pair received only eye direction as a cue. 

Criterion for mastering the task was set at 80% for two consecutive sessions.

Results and Discussion

None o f the baboons succeeded in reaching the 80% criterion level even after over 700 

trials (excluding correction trials) with experimenter-given cues available (see Figure 4). 

Gaspard's performance in the head orientation cue condition did rise significantly above 

chance levels (Binomial tests, p < 0.05) in 8 of the last 14 sessions. In contrast, Esperance, 

in the same condition, failed to respond above chance levels. While it may be tempting to 

attribute Gaspard's superior performance to his previous experience with photographic 

stim u li the results may simply reflect individual variation. It is clear that he did not perform 

above chance until after over 400 trials and, furthermore, that his performance remained 

fairly inconsistent thereafter. This trend is not suggestive of a positive transfer of 

information acquired in earlier testing to the new situation, but does suggest that he was 

learning to exploit head orientation as an experimenter-given cue within this new 

experimental paradigm.
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Figure 4. Individual performance in the object-choice task for a) head orientation b) 

eye gaze.

Solid data points represent above chance performance (Binomial tests, p < 0.05) and open 

data points represent chance performance. 
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In  the eye direction cue condition, neither baboon learned to use this cue in order 

to locate the food. For Kiki this suggests an absence o f positive transfer o f any 

comprehension o f  attention or gaze direction from his experience with photographic 

stimuli. Both Kiki and Ida failed to learn the task even after more than 700 trials (excluding 

correction trials). Although Ida was above chance during her very first session, her 

subsequent performance suggests that this was not indicative of a cue-reading ability but 

rather the high score was due to chance.

The results of Study 4 make it difficult to draw any strong conclusions regarding 

the salience o f head and eye direction as experimenter-given cues for baboons. The failure 

o f the baboons to master their initial cue conditions prevented any comparison of the 

baboons across conditions and therefore individual differences cannot be excluded. It is 

noteworthy that the only baboon to show signs of learning was tested in the head 

orientation condition; findings to date suggest that head orientation, rather than eye 

direction alone, is a more salient cue for nonhuman primates in object-choice tasks (Itakura 

& Anderson, 1996; Povinelli, Biershwale & Cech, 1999; see also Study 5). However, while 

head turns by a model may spontaneously produce visual re-orienting in monkeys 

(Anderson & Mitchell, 1999; Tomasello, Call & Hare, 1998), when it comes to object- 

choice even this cue may not be readily used without explicit training (Anderson, Montant 

& Schmitt, 1996; Anderson, Sallaberry & Barbier, 1995; Itakura & Anderson, 1996). While 

one baboon did learn to exploit head orientation as a cue this required a considerable 

number o f sessions, suggesting that the cue was learned and that the task was not tapping 

an underlying visual co-orientation mechanism.
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General D iscussion

A potential problem in integrating the results o f studies 3 and 4 concerns the use o f 

different tasks to assess the discrimination of visual orientation towards an object. For 

example, the target items were visually very different. However, it seems reasonable to 

expect that any natural ability to discriminate the object o f another individual’s gaze would 

be generalisable to a range of contexts, objects and even events, as long as the cues 

remained explicit. In other words, it could be argued that if the baboons in Study 3 had 

learned or used a strategy based upon ‘looking at’ at any level, they should have 

subsequently exploited the corresponding type of information presented in Study 4 to 

master the object-choice task.

However, the results of these studies can be interpreted in several ways. Firstly, 

although nonhuman primates may be adroit behaviour readers, this sensitivity to 

behavioural cues might not reflect an ability to attribute even basic attentional states, such 

as seeing, to others or to categorise a behaviour as ‘looking at’ (Cheney & Seyfarth, 1991; 

Whiten, 1996). I f  the visual co-orientation response observed in many primate species is a 

fairly automatic behavioural response, then maybe they are unable to form a concept such 

as ‘looking at’. Thus, the baboons solved the problems on a cue-leaming basis as this was 

the only means available to them. Alternatively, it may be that nonhuman primates are able 

to appreciate when another individual is looking at an object, but that the methods used in 

these studies did not invoke the use of this ability. For example, the relatively slow rates of 

acquisition and lack o f transfer may have been due to motivational problems; basic 

procedural flaws such as too short a time-out period may have led to less than optimal 

performances. Moreover, it may be that the use o f a small stimulus set in Study 3 favoured 

the use of a piecemeal processing strategy (Schrier & Brady, 1987; Perrett et al, 1988). 

Although the signs o f positive transfer displayed by two baboons within Study 3 could be



seen as contrasting with such a position, it may be that they had simply started to form 

learning sets (Drea & Wallen, 1995; Harlow, 1949; Miles, 1965; Schrier & Brady, 1987).

Furthermore, it is possible that the baboons did not perceive the photographs as 

representations o f real objects and could have processed them independently o f their 

representational content. Whether, and at what level, animals perceive a correspondence 

between objects and their pictorial representations is currently being debated (Bovet & 

Vauclair, 2000; Fagot, Martin-Malivel & Depy, 1999). It is also conceivable that during the 

object-choice task, the baboons did not consider the experimenter as a social interactant. 

However, as noted in Chapter One, nonhuman primates readily respond to humans with 

appropriate social gestures (Exline & Yellin, 1969; Kummer et al, 1996), so it is unlikely 

that the central problem was due to the inter-species nature of the interaction or the stimuli 

used.

A third explanation for the results obtained is that the baboons did use information 

concerning looking at versus not looking at in some manner (rather than simple physical 

cues) during Study 3 but failed to make explicit use of the related information in Study 4.

As discussed in Chapter One (Section 3.4b), the object-choice task has produced equivocal 

results concerning nonhuman primates' abilities in using gaze cues. While many species of 

primates have been shown to respond by visually co-orienting to the changes in head 

and/or eye direction of another individual (Anderson & Mitchell, 1999; Ferrari et al, 2000; 

Tomasello, Call & Hare, 1998; Tomasello, Hare & Fogleman, 2001), performance in the 

object-choice task often fails to reflect these abilities. For example, chimpanzees that 

demonstrated gaze following in response to shifts in eye direction alone were subsequently 

unable to use this same information to solve an object-choice task (Povinelli, Bierschwale 

& Cech, 1999). Nonhuman primates show at best inconsistent responses across variants of 

the object-choice task (Anderson, Montant & Schmitt, 1996; Anderson, Sallaberry & 

Barbier, 1995; Call, Hare & Tomasello, 1998; Call, Agnetta & Tomasello, 2000; Itakura et
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al, 1999). That is, it may be that the object-choice task was an inappropriate transfer task 

(Hare, 2001).

Thus, baboons were able to learn gaze discrimination using photographic stimuli, 

but it is difficult to ascertain whether this reflects an underlying concept o f ‘looking at’ as 

they did not demonstrate any positive transfer from picture discrimination to an analogous 

problem presented by a real model. However, several methodological problems with the 

present studies have been identified which may account for this failure. In spite of evidence 

suggesting that baboons may be sensitive to the visual orientation o f others (e.g. in “tactical 

deception”, Byrne and Whiten, 1998), it remains to be demonstrated that such behaviours 

are indeed based upon an ability to appreciate gaze, rather than an appreciation of 

behavioural contingencies that may or may not be related to their gaze behaviours.

Chapter summary

The ability to discriminate between pairs of photographs according to the portrayed 

model’s visual orientation in relation to a target object was examined in four olive baboons. 

Two baboons successfully managed to solve the problem, even when gaze was 

demonstrated by eye direction alone. A third showed an ability to discriminate head 

direction but not eye direction. In order to investigate further their ability to discriminate 

gaze, the two successful baboons and two naiVe baboons were presented with a simple 

object-choice task accompanied by experimenter-given cues. There was no evidence of 

transfer from the photographic stimuli to a real model; only one baboon showed signs of 

using the experimenter’s gaze to chose between two objects, and only after over 300 trials. 

These results could suggest that the baboons used simple physical cues rather than a 

concept o f ‘looking at’ to solve the picture discrimination but alternative explanations were 

also considered.
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Chapter Four

U se of Experimenter-Given Cues by Capuchin Monkeys 

in an Object-Choice Task

In parallel with work on primates’ responses to others’ changes in visual orientation, 

studies using an object-choice paradigm, in which the experimenter presents behavioural 

cues to indicate the location o f a hidden food item, have attempted to examine whether 

nonhuman primates can use gaze information in a problem-solving context. In addition, 

this paradigm has also attempted to identify the relative salience o f potential cues. Initial 

studies with capuchin monkeys (Anderson, Sallaberry & Barbier, 1995), and rhesus 

macaques (Anderson, Montant & Schmitt, 1996) found that while monkeys responded to 

gestural cues (pointing), they were unable to use a gaze cue which consisted o f both head 

and eyes oriented towards the correct object. One consideration in these studies was the 

differences in cue-stimulus spatial contiguity in the cue conditions presented. The study 

with rhesus monkeys addressed this issue in a second experiment; even when the 

experimenter’s head and eyes were positioned much closer to the objects, the monkeys did 

not readily use these cues to achieve above-chance performance levels (although one o f the 

three monkeys did show improvement relative to baseline sessions). Furthermore, a cue 

condition consisting of eye direction alone in similarly close proximity to the objects 

produced no improvement in performance above chance levels.

Itakura and Anderson (1996) trained a single capuchin monkey to use several 

behavioural cues in an object-choice task; the original object-choice procedure was 

modified to include correction trials and time-out periods following errors, and an enforced 

observation period. This monkey not only readily learned to use manual cues given by the
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experimenter but also learned to use combined head and eye direction presented both at 

close proximity to and at a greater distance from the correct object. However, when eye 

direction alone was presented, the capuchin's performance fell to chance levels.

In contrast to the largely negative data regarding the abilities o f monkeys to use 

eye-gaze cues in an object-choice task, there is some evidence, albeit inconsistent, o f such 

an ability in great apes. Itakura and Tanaka (1998) using the same object-choice paradigm 

as above, found that chimpanzees, an orangutan and human infants (2 years old) were all 

able to use experimenter-given cues up to and including eye direction alone to locate the 

baited object. However, a study which presented eye direction as probe trials within a 

session o f pointing trials, found that juvenile chimpanzees, (in contrast to 3 years old 

children), were unable to use eye direction alone as a cue. Although the chimpanzees were 

able to use head orientation, they did not differentiate between an experimenter looking at 

or above the target (Povinelli, Bierschwale & Cech, 1999). In addition, an object-choice 

study with gorillas found that while performance levels were high when manual gestures or 

combined head and eye direction were presented, the gorillas would not respond to eye 

orientation only (Peignot & Anderson, 1999).

The apparent inability of monkeys to use eye direction as an information source 

contrasts with abundant evidence identifying eye gaze as a highly salient feature of 

interactions both with conspecifics (Chance, 1967; Emery, 2000) and humans (Exline & 

Yellin, 1969; Exline, 1972; Thomsen, 1974). Thus, nonhuman primates’ display 

considerable sensitivity to other individuals’ visual orientation in general and to eye 

direction in particular, both in terms of behavioural and neurophysiological responses. This 

makes their responses to gaze within experimental paradigms intriguing; outside o f the gaze 

following context, there is less convincing evidence that they can make explicit use o f such 

gaze information. Although capuchin monkeys have not been tested within a gaze
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following paradigm, the studies reported here aimed to further explore the abilities of 

capuchins to use experimenter-given cues in an object-choice task.

In addition, the ability to use eye gaze was tested more thoroughly than in previous 

studies. While eye direction might be expected to be the most accurate means of 

determining what another individual is looking at (at least in humans, see Kobayashi & 

Koshima, 1997; 2001 for example), it may be that for monkeys less precise indicators are 

usually used. For example, following another individual's head orientation may be adequate 

for detecting important object or events (Perrett & Emery, 1994; Emery, 2000). This 

present study further examined the importance of various visual cues which monkeys may 

use to ascertain visual orientation. Gestural cues such as touching and pointing, head 

orientation and eye direction were presented as experimenter-given cues in a simple object- 

choice task, with additional conditions aimed at revealing whether monkeys are able to read 

eye gaze within the object-choice paradigm.

Study 5: An object-choice task

This experiment aimed to replicate and extend Itakura and Anderson's (1996) finding that a 

single capuchin monkey was able to learn to use cues given by a human experimenter up 

to, but excluding, eye direction. Might some modifications to the conditions presented 

reveal effective use o f eye direction alone as an experimenter-given cue during an object 

choice task? More specifically, would a reduction in the distance between the eyes and 

object or the addition o f eye movements be conducive to mastering the use o f eye direction 

alone as a cue?
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Methods 

Subjects

The monkeys tested were three captive-born, adult female capuchin monkeys: Zilla (6 years 

old), Theta and Kiki (both 4 years old), members o f a social group o f five. They were fed a 

daily diet o f fresh fruit and vegetables and commercial monkey pellets. During the study 

feeding was postponed until after the daily test sessions, with standard food items (small 

pieces o f fruit) being used as rewards during testing.

Apparatus

The monkeys were tested in a clear perspex test cage (47cm x 51cm x 47cm) in a room 

adjacent to the colony room. A hatch in the front panel (25cm x 27cm) could be secured by 

a small bolt so that there was a 3cm high horizontal opening along the bottom to allow 

monkeys to respond by reaching through to touch their chosen object. The test cage was 

secured on a 75cm high metal frame with a table (40cm x 80cm x 75cm) placed adjacent to 

the front panel. A wooden tray (40cm x 24cm) on which the objects were placed could be 

moved along the table; away from the test cage for baiting and toward it for presenting 

trials. Two identical transparent containers (8cm x 11cm x 6cm) were secured to the tray 

during pre-training, these were replaced by opaque brown containers during testing; each 

positioned 4cm from the front edge and 20cm apart. A screen (52cm x 46cm) was used to 

conceal the baiting process from the monkeys.

Procedure

Pre-training. The monkeys underwent preliminary training in which they learned the 

basic task o f choosing between two objects in order to locate a hidden food item. The 

experimenter baited one o f two transparent containers behind the screen, interposed 

between the apparatus and the cage front, always lifting and then replacing both containers
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in the same order to eliminate sound and movement cues. The screen was then removed 

and a 5-second observation period was allowed before the experimenter pushed the tray 

towards the test cage. During these training sessions the experimenter maintained a neutral 

posture with head and eyes remaining oriented toward the centre of the apparatus midway 

between the two containers. During the first session (30 trials) a food item was visible in 

one o f the two containers; the monkeys had to touch or push away the baited container in 

order to be given the reward. If the incorrect container was chosen the tray was withdrawn 

and a 20-second time out followed before the same trial was represented, that is, a 

correction procedure was used until a correct choice was made. All three monkeys learned 

to respond to the baited container and receive the treat within one session. For the next 

session an opaque brown container was introduced; during this session the clear container 

was always empty and the monkeys had to respond to the opaque container in order to 

obtain the food item. All monkeys learnt to do this task successfully (i.e. over 80% of trials 

correct) within the 30-trial session.

Testing. The baiting method for test sessions was identical to that used in training 

trials. For the testing sessions two identical brown containers (hereafter called ‘objects’) 

were presented; the location o f the food item was pseudo-randomised between sides so 

that there were equal baitings of the right and left object up to a maximum o f three 

consecutive trials on either side. Each experimental condition was preceded by a baseline 

session. During baseline trials the experimenter removed the screen then pushed the tray 

towards the monkey while maintaining a neutral posture, head facing forward and fixating 

midway between the objects. During experimental trials, the experimenter removed the 

screen to reveal the appropriate cue condition, then pushed the tray toward the monkey 

following the observation period. Again, the monkey had to choose the baited object in 

order to obtain the food item; an incorrect choice led to a time out and a correction trial 

(see Appendix B). Table 1 describes the cue conditions.
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The monkeys were tested in a given cue condition until a criterion of 80% correct 

choices on two consecutive sessions was reached or for ten sessions. However, flexibility 

was allowed to the extent that if a monkey appeared to be improving and was approaching 

criterion the condition continued for up to five extra sessions. If  a monkey failed to reach 

criterion with a cue presented near to the correct object (15cm) she was not tested in the 

far condition (60cm). Each session consisted of 30 trials (plus correction trials), with a 

maximum o f two sessions each day.

T able 1: Cue conditions used in Study 5.

1. Tap: The experimenter's head and eyes oriented towards the correct container; 
experimenter taps the top of the container with the index finger during the 5 second 
observation period.

2. Point: The experimenter looks towards (head and eyes) and points to the correct 
container; the index finger being approximately 15cm away from the object.

3. H ead  and  Eyes Near: Head and eyes oriented towards the correct container at a 
distance o f about 15cm.

4. H ead  and  Eyes Far: As in Condition 3, but at a greater distance (approximately 
60cm)

5. Eyes N ear3: The experimenter faces the experimental cage at a distance o f about 
15cm, with eyes only oriented towards the correct container.

6. Eyes Far: As Condition 5 but at a distance of about 60cm.

7. Glance N ear3: The experimenter's head oriented towards the test cage at a distance o f 
approximately 15cm, eyes fixated centrally between the two containers.. During the 
observation period the experimenter makes three to-and-fro eye movements between 
the correct container and the centre point, before presenting the stimuli.

8. Glance Far3: The experimenter follows the same procedure as in Condition 7 but at a
distance o f approximately 60cm._______

3 These conditions are additions to the Itakura and Anderson (1996) procedure.
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Results and Discussion

As can be seen in Figure 1, all three monkeys scored at around chance levels in all baseline 

sessions, when no explicit cue was displayed by the experimenter. Figure 1 also shows that 

all three monkeys successfully mastered conditions 1 - 4  (Tap, Point, Head and Eyes Near, 

and Head and Eyes Far), and met the criterion o f 80% on two consecutive sessions. This 

required the minimum of two sessions (Theta: conditions Point and Head and Eyes Far; 

Zilla: three o f the four conditions) and a maximum of twelve (Kiki: condition Head and 

Eyes Far). When eye direction became the only cue available, Theta continued to show 

consistently high levels of performance. She met the criterion o f two consecutive sessions 

with 80% of trials correct in all conditions involving only the eyes, although she took 

longer to do so in the Glance conditions. Zilla showed an initial decrease in performance 

in the Eyes Near condition. She performed at chance levels for eight consecutive sessions, 

before finally reaching criterion in this condition after 13 sessions. Her subsequent 

performance in Eyes Far and Glance conditions, while significantly above chance (binomial 

tests, p < 0.05), did not reach 80% correct for two consecutive sessions. Kiki's 

performance also diminished markedly in the eyes-only cue conditions; her performance 

did not rise consistently above chance levels in either of the two conditions in which she 

was tested (Eyes Near and Glance Near).

These results indicate that, allowing for individual differences, capuchin monkeys 

are capable of learning to use eye direction alone as an experimenter-given cue. Although 

this result contrasts with that reported by Itakura and Anderson (1996), the results of the 

earlier study (a single capuchin unable to master an 'eyes only far condition within a block 

of eight 30-trial sessions) are comparable to the performance of two monkeys in the 

present study tested on their first eyes only condition (Eyes Near). In the present study, 

the diminished performance of one monkey and the inability of another to use eye 

direction as a cue at all, suggests that while the eye-direction o f a human experimenter may
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become an effective cue, it may not be very salient for capuchin monkeys even after 

successful training with other cues, including head and eye direction together.

Figure 1: Individual performances across cue conditions 1-8.

Circles represent baseline sessions and filled data points represent above chance 
performance.
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One monkey showed above chance performance in the Eye Far and Glance 

conditions but she failed to reach 80% correct for two consecutive sessions, suggesting that 

despite some exploitation o f eye orientation she had not truly mastered the association 

between this cue and the stimulus. Conceivably, some degree of automatic orientation in 

response to the cue occurred (see Lorincz, Baker & Perrett, 1999) which then increased the 

probability o f a response to the cued side. However, her performance is more indicative o f 

cue learning than o f some untrained orienting mechanism as her performance improved 

over sessions. In contrast, Theta's consistently higher performance suggests that she was 

better able to exploit eye direction as a cue in a manner comparable to the earlier, more 

gross cues.

Zilla's diminished performance in the Eyes Far condition relative to the Eyes Near 

condition, and Kiki's similar decline in performance from Head and Eyes Near to Head 

and Eyes Far, indicates that reducing the cue-stimulus distance may facilitate the use of 

experimenter-given cues. The addition of movement to the eye cue in the Glance 

conditions seems to have been detrimental to performance for Zilla and, initially, for Theta 

(see Figure 1). This corresponds with Povinelli and Eddy's (1997) finding that movement 

did not improve gaze following to eye direction alone in chimpanzees or performance on 

an object-choice task with experimenter-given cues (Povinelli & Eddy, 1997; Povinelli, 

Bierschwale & Cech, 1999). In the present study, performance may have decreased in 

Glance conditions because the eye direction cue was available for a shorter overall duration 

within the observation period, thus making it potentially easier for the monkeys to miss the 

cue. In addition, the monkeys often continued to look at the experimenter while the tray 

was pushed forward; in all previous condition this would have revealed the cue condition 

but in Glance conditions the experimenter had returned their fixation to the centre o f the 

tray and subsequently offered no cue immediately prior to the monkeys response.



Study 6: Extents and limits of gaze reading

In view o f the varying levels o f performance attained by the three monkeys in Study 5, 

additional procedures were conducted in order to clarify the extent and limits o f the 

monkeys' use o f eye-direction as a cue.

As monkey Theta successfully mastered all the cue conditions up to and including 

Glance Far in the previous experiment, further sessions were conducted in order to assess 

whether she would transfer use o f this cue to a novel experimenter. As Kiki did not master 

any of the conditions involving eye direction as the only cue, she was tested again in the 

Eyes Near condition, but the experimenter wore a hood in order to remove facial features 

other than the eye region. The reasoning behind this modification was as follows: research 

with human infants has shown that removing the face may facilitate gaze following and 

while the authors suggest that it is specifically fixation on the eyes which prevents visual co

orientation occurring, the possibility that the face itself is distracting cannot be discounted 

(Hood, Willen & Driver, 1998). Furthermore, Povinelli and Eddy (1996a) found that 

chimpanzees discriminated more easily between two trainers' eyes (open versus closed) 

when faces were obscured using screens than when full faces were visible. However, 

another study reported that wearing a hood to obscure the face led to reduced responses 

from monkeys; suggesting that eyes need to be presented within the context of a face 

(Exline, 1972). Thus, it was not entirely clear whether concealing all facial features except 

the eyes would have a beneficial or detrimental effect on performance. Finally, Theta and 

Zilla, who had both demonstrated the ability to use eye direction alone as a cue in Study 5, 

were tested in a "mixed cues" condition for two sessions each (Corkum & Moore, 1995). In 

these sessions head and eye cues were varied in order to try and identify the relative 

salience of these cues (Emery et al, 1997; Langton, 2000; Lorincz, Baker & Perrett, 1999).
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Methods 

Procedure

For the transfer sessions conducted with Theta, the experimenter was an adult female 

highly familiar to the monkey; the procedure was the same as for condition 6 in Study 5 

(Eyes Far) and ten sessions were conducted. The procedure for the hood experiment with 

Kiki was the same as for the Eyes Near condition in the previous experiment except that 

the experimenter (the same as previously) wore a hood so that only the eye region o f the 

face was visible.

For the mixed cues condition presented to Zilla and Theta, four types o f trial were 

presented within each session, 10 each o f two new cue conditions and five o f two previous 

conditions. The order of these trials was pseudo-randomised with an equal number o f 

baitings to either side. The conditions were as follows:

A) Head only: As Condition 4 above but with the experimenter's eyes closed.

B) Head and eyes: As Condition 4 above; head and eyes both oriented towards the correct 

object.

C) Eyes only: As in Condition 6 above; head oriented forward with only eyes directed 

towards the correct object.

D) Head versus eyes: The experimenter's head oriented towards one object but her eyes 

fixated on the other. For these trials both objects were baited as both were effectively 

being cued.

Results and Discussion

Theta's performance on the sessions with a new experimenter was considerably lower than 

in previous conditions. She scored significantly above chance on six o f the ten sessions, but 

her performance on the final two sessions (68.3%), although significantly above chance
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(binomial test p < 0.049), was well below the 80% which she had achieved in the same 

condition in the previous experiment.

Figure 2 shows Kiki's performance when presented with the Eyes Near and Eyes 

Far conditions by the hooded experimenter. Kiki showed a considerable improvement in 

performance during the Eyes Near condition compared to her performance in the 

corresponding condition presented without the hood in the previous study. She was 

significantly above chance in eight out of the ten sessions (binomial tests, p < 0.05) 

although she did not reach 80% correct. Nevertheless, in view of the fact that she showed 

improvement, the experimenter proceeded to the Eyes Far condition again with the hood. 

When the cue-stimulus distance was increased her performance initially diminished and she 

performed at chance levels on seven of the ten sessions, however, in the two final sessions 

she was significantly above chance (binomial tests, p < 0.05).

Figure 2: Kiki’s performance in the ’hood1 conditions.

B represents baseline sessions and filled data points represent above chance performance.
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Kiki's results are difficult to interpret; while the removal of facial features except 

for the eyes might have facilitated performance, order effects cannot be ruled out, as these 

hood sessions directly followed 20 sessions in which eye direction was the only cue
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available. It would have been interesting to return to the non-hood eye direction conditions 

in order to see whether the improved performance levels were maintained, but 

unfortunately time constraints precluded this.

As shown in Figure 3, Theta and Zilla both readily used head direction as a cue in 

the absence o f  any eye cue (Condition A, Theta was correct on 17/20 trials p < 0.01, Zilla 

on 15/20 trials, p < 0.05). W hen head direction was presented in conflict with eye 

direction the results were less clear; both monkeys showed a preference for the object cued 

by head (rather than eye) direction although both objects were baited (Condition B, Theta 

16/20, p <  0.01, Zilla 14/20, p =  0.058), but at a lower level than in Condition C when 

head and eyes were oriented in a congruent manner (Theta 9/10, p < 0.05, Zilla 9/10, p < 

0.05).

Figure 3: Perform ance in the mixed cues condition.

a Percentage o f trials on which the object indicated by head rather than eye direction was 
chosen.
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Performance on trials in which only eye direction was presented as a cue 

(Condition D) were not significantly above chance for either Theta or Zilla (7/10, 

p = 0.2, 6/10, p = 0.3, respectively). As highlighted in Chapter Two, this reflects findings 

with human infants which led Moore (1999) to suggest that this type o f mixed-cues 

presentation may lead to diminished responses to eye-gaze. These results suggest that head 

orientation is more salient than eye direction as a cue; however, performance was best 

when head and eye cues were congruent. The apparent bias towards responding to head 

direction over eye direction, despite the fact that monkeys' most recent experience was with 

eye cue conditions, suggests that head direction may be the cue most readily used by 

capuchin monkeys. This finding is corroborated by the results of Study 5, in which eye 

direction was again a relatively difficult cue condition to master.

General Discussion

The m ain fin d in g  of these two studies is that capuchin monkeys are able to follow eye 

direction alone as an experimenter-given cue, but responding based on eye direction 

appears more fragile than that based on other cues, such as pointing or head orientation. It 

may be that the monkeys are simply learning associations between the cues given and the 

location of the food; head orientation is a more explicit cue and therefore the 

discrimination is more easily learned. Alternatively, the results may reflect a behavioural 

disposition for responding to head direction rather than eye direction; conceivably 

monkeys learn that head orientation in conspecifics is an adequate and reliable predictor o f 

environmental events (Tomasello, Call & Hare, 1998). For one monkey, eye direction 

discrimination was observed only after the model’s other facial features were removed, 

suggesting that eye direction may be confounded by the processing of other facial features 

(Hood, Willen & Driver, 1998; Povinelli & Eddy, 1996a).
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The monkeys predominantly followed head orientation when it conflicted with eye 

direction, although performance was best when the two cues were presented congruently. 

The former finding conflicts somewhat with those of Lorincz et al (1999) who reported 

that rhesus monkeys showed diminished levels of co-orientation to head orientation when 

this cue conflicted with eye direction. However, both studies indicate that head and eyes 

that are congruent is the most effective form of cue. Comparisons are difficult because in 

Lorincz et al’s (1999) study the stimuli were photographs, and the conflicting eye direction 

was directed towards the monkey; it is a more appropriate comparison to have neither head 

nor eyes directed at the monkey but oriented in different directions. In addition, they 

recorded eye-movements as a dependent measure and their procedure did not involve 

explicit responses to objects; these measures may yield very different results (e.g. Clements 

& Perner, 1994). Furthermore, the finding that congruent head and eye direction facilitates 

performance, complements neurophysiological evidence of cells which are sensitive to a 

particular head orientation also often being sensitive to congruent eye direction (although 

cells may also respond independently to head and eye orientations, Perrett et al, 1985).

The reduction of cue-stimulus distance generally enhanced performance in this 

study although the Far conditions still presented the cues within quite close range (less than 

100cm). It is worth noting that the change in distance had a considerable impact on the 

angular deviation of the eyes relative to the central position, and hence ratio of sclera to 

iris; the angle being greater when the cue is presented in Near conditions. Rhesus 

macaques discriminating direct from averted gaze have been shown to be sensitive to 

angular deviations; performance decreasing as the deviation is reduced (Campbell et al,

1990). It has been suggested that variability in this ratio has been selected for in humans; it 

allows more eye movement and therefore increases the visual range which can be scanned 

by eye movement alone, and also renders such movements more salient (Kobayashi & 

Koshima, 1997; 2001). Primate species that rely predominantly on head movements for
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visual scanning also display less visible sclera; as suggested above, in such species head 

movements may be a better indicator of attention. Whatever the precise reasons, the fact 

that monkeys' performance decreased over small changes in cue-object distance reinforces 

the view that monkeys were learning to discriminate cues rather exploiting an pre-existing 

ability in order to solve the problem. Moreover, while the ability to use eye direction alone 

showed some degree of transfer to a novel experimenter in one monkey, the diminished 

performance during these transfer trials is again suggestive of a fairly specific cue 

discrimination as opposed to a general ability to exploit gaze.

It might be argued that the task demands in these experiments simply favoured cue 

discrimination, and that perhaps monkeys did not see the experimenter as an interactant 

and therefore attached no meaning to their behaviour. However, previous research 

suggests that this is not the case as monkeys do respond to human experimenters, by 

responding to an experimenter with appropriate threat and appeasement behaviours, for 

example (Kummer, Anzenberger & Hemelrijk, 1996). Additionally, the task may have been 

somewhat unusual in that if the monkey followed the experimenter's gaze all she 

encountered was an uninteresting object, that is, the gaze did not identify a food item as 

such but rather a location. This line of argument was proposed by Call, Hare and 

Tomasello (1998) to account for chimpanzees' initial failure to use an experimenter’s gaze 

direction as a cue, but as an objection it is weakened by the fact that the monkeys clearly 

learned an association between the object and a food reward, responding appropriately by

pushing the container aside.

The monkeys in this study did not use the experimenter-given gaze cues as readily 

as chimpanzees, an orangutan or human infants tested with a similar methodology by 

Itakura and Tanaka (1998). While this discrepancy may reflect a sodo-cognitive divide 

between the great apes and other primates (e.g. Byrne, 1995), Peignot and Anderson (1999) 

report that gorillas also failed eye orientation cue conditions; the gorillas would not even

141



respond to eye-gaze cues, let alone exploit these to locate the baited object. However, the 

amount o f interaction the gorillas had with humans was far less than the apes in the Itakura 

and Tanaka (1998) study, and it may be that extensive human interaction is an important 

factor in whether nonhuman primates learn to use gaze cues, at least when presented by a 

human experimenter (contrast Gomez, 1991, with Peignot & Anderson, 1999, and Itakura 

& Tanaka, 1998, with Call et al, 1998).

As highlighted earlier, eye contact in nonhuman primates often has considerable 

emotional salience, which may mean that eye direction it is not readily monitored during 

interactions with a human experimenter. While the monkeys in this study did leam to use 

eye direction cues it was not a spontaneous event and seemed to require training.

Therefore, it would be interesting to examine the ability of relatively 'enculturated' (Call & 

Tomasello, 1996) monkeys (such as 'helping hands' capuchin monkeys) to use human gaze 

cues (see Herve & Deputte, 1993; Custance, Whiten and Fredman, 1999). It may be that 

rather than indicating a divide between great apes and other primates, the schism may be 

between primates habituated to humans and with extensive exposure to their non-verbal 

communication patterns and primates lacking such experience (Tomasello & Call, 1997).

In this study, as in Povinelli and Eddy's (1996b) study with chimpanzees, closing 

the eyes was not detrimental to the monkeys' performance, that is, monkeys were not 

deterred by the fact that the experimenter was not actually perceiving any object. This 

suggests that the monkeys did not appreciate the role of the eyes in visual perception. The 

capuchins may assess another's visual orientation but without using eye direction to do so, 

possibly using grosser postural cues instead, such as head direction. Thus, monkeys may 

not attribute seeing or states of mind at all but instead monitor contigencies between 

looking behaviours and the locations of important events or objects. Another possibility is 

that co-orientation reflects a reflexive visuospatial orienting mechanism whereby social 

cues, such as head direction, exert a reflexive influence over the observer's visual
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orientation, without any recourse to representations (see Chapter Six). Reflexive orienting 

and gaze following may produce the same result in that once the observer's orientation is 

congruent with the other individual's it is simply more likely that the target o f the latter's 

gaze will be perceived (Povinelli & Eddy, 1996b). A simple behavioural mechanism which 

leads to co-orientation could allow for the development o f more sophisticated appreciation 

o f others’ looking behaviours. For example, visual co-orientation could facilitate learning to 

accurately detect the object of another’s gaze, for example, ignoring distractors and 

accounting for occluders (Povinelli & Eddy, 1996c; Tomasello et al, 1999).

However, it may be that the object-choice task demands some further processing 

beyond the processing o f gaze. Chimpanzees which have been found to visually co-orient 

with a human experimenter's eye movements did not successfully use eye direction, but did 

use head orientation as an experimenter-given cue (Povinelli, Bierscwale & 6ech, 1999).

Call et al (2000) suggest that exploiting gaze direction within the object-choice paradigm 

may require an appreciation of the communicative intentions implicit in the task. For 

nonhuman primates, this aspect of the object-choice may explain their failure to exploit 

gaze cues in this context but not others, (i.e. visual co-orientation). Moreover, such an 

explanation allows for the discrepant findings of so-called enculturated apes and other 

primates as enculturation exposes primates to patterns of human behaviour including their 

communication strategies. Recent research that has circumvented this feature of 

communicative intent or co-operation (by using a competitive task) seem to be yielding 

more positive results regarding nonhuman primates abilities to use another individual s 

visual orientation in a problem-solving task (Hare, 2001).
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Chapter summary

The abilities o f three capuchin monkeys to use experimenter-given cues were investigated 

using an object-choice task. While the monkeys were able to use the eye direction of an 

experimenter to solve an object-choice task, the results suggest that the monkeys learned to 

use eye gaze as a simple discriminative cue. Reducing cue-stimulus distance and obscuring 

facial features other then the eyes were both conducive to eye-gaze use, while movement 

reduced the use o f eye direction as a cue. One individual’s ability to exploit eye direction 

did show some transfer to a novel experimenter although performance levels were reduced. 

Monkeys responded more readily to gestural cues (tapping and pointing) and head 

orientation. When the relative salience of head and eye direction cues were examined, the 

monkeys showed highest levels of performance in response to head orientation cues.

These present findings converge with other studies which indicate that nonhuman 

primates may be more adept at using more gross postural cues, such as head orientation or 

manual gestures (e.g. Itakura & Anderson, 1996), but also that they are able to learn to 

exploit subtler behavioural cues. The evidence that monkeys will spontaneously visually co- 

orient with another individual’s eye direction (Lorincz, Baker & Perrett, 1999; Ferrari et al,

2000) and yet are initially unable to exploit eye direction as an experimenter-given cue in an 

object-choice task, supports the view that these two tasks do not tap the same underlying 

processing mechanism. However, visual co-orientation has not yet been studied in New 

World monkeys, making drawing comparisons between these tasks difficult, and perhaps 

premature. Further research should aim to clarify why these two superficially related tasks 

reveal discrepant results (e.g. Hare, 2001).
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Chapter Five 

U se of Gaze Cues in a Competitive Task by Olive Baboons

Research has shown that animals are sensitive to human visual co-orientation, in as much 

as behavioural phenomena such as tonic immobility (Gallup, 1972), injury feigning (Ristau, 

1998) and flight responses (Hampton, 1994) are influenced by whether or not a nearby 

human is looking at the animal. However, research on animal’s abilities to co-orient to 

changes in non-self-directed gaze and to exploit the informational value of another 

individual’s visual orientation has been limited to a few species: primarily primates, but also 

domestic dogs and horses (Hare & Tomasello, 1999; McKinley & Sambrook, 2000;

Miklosi, Polgardi, Topal & Csanyi, 1998).

The study of nonhuman primates’ abilities to monitor and exploit the visual 

orientation of others is almost exclusively restricted to two experimental paradigms: gaze 

following and object-choice tasks. However, these paradigms have produced divergent 

results (see Chapter One, Section 3). Visual co-orientation with humans or conspecifics has 

been demonstrated in great apes and several species of monkeys; these primates are 

sensitive to variations in both head and eye orientation in terms o f visually inspecting 

locations congruent with another's gaze (Anderson & Mitchell 1999; Call, Hare & 

Tomasello, 1998; Emery et al, 1997; Ferrari et al, 2000; Lorincz, Baker & Perrett, 1999; 

Povinelli & Eddy, 1996b; Tomasello, Hare & Fogleman, 2001). Nonetheless, the second 

main experimental paradigm, the object-choice task, has revealed some unexpected 

limitations o f gaze following by primates; in spite of their ability to track gaze, most 

primates tested have serious difficulties in mastering the object-choice task.
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While some great apes and monkeys tested on object-choice are able to use 

experimenter-given cues up to and including eye direction alone (Itakura & Tanaka 1998; 

see Chapter Four), there are some complicating factors, including the type o f objects 

utilised (Call, Hare & Tomasello, 1998) the identity o f the cue-giver (Itakura et al, 1999), 

and the extent o f early social experience with humans (Call, Hare & Tomasello, 1998; 

Itakura & Tanaka 1998; Peignot & Anderson, 1999; Povinelli, Biershcwale & Cech, 1999). 

Moreover, for monkeys, explicit training in object-choice gaze exploitation may be 

required; monkeys are usually given prior experience with manual gestures such as pointing 

before gaze orientation cues are introduced (Anderson, Montant & Schmitt, 1996; 

Anderson, Sallaberry & Barbier, 1995; Itakura & Anderson, 1996).

It is conceivable that the apparent difficulty of the object-choice task is due to the 

fact that it is based on co-operation between the experimenter and subject; primates (or at 

least those with limited human contact) may be less likely to demonstrate their gaze 

monitoring abilities in such a context (Call et al, 2000). That is not to say that nonhuman 

primates fail to see human experimenters as interactants; they readily demonstrate 

appropriate behavioural responses to humans (Kummer, Anzenberger & Hemelrijk, 1996; 

Thomsen 1974). However, the object-choice task may neglect an important point: For 

nonhuman primates, access to resources is usually more a matter of competition than co

operation (Byrne & Whiten, 1988; Coussi-Korbel, 1994; Pelaez, Gil-Burmann & Sanchez, 

2000; Schaub, 2000). Viewed from this perspective, the interaction with a human 

experimenter sitting behind (and effectively controlling access to) food is intrinsically a 

competitive one (Hare, 2001; Ristau, 1998)

Thus, an alternative means to studying gaze monitoring is to adopt a competitive 

approach (see Chapter One for studies investigating hiding and competitive cue-reading in 

nonhuman primates). Nonhuman primates may display their abilities to monitor the visual 

orientation o f others more readily in other situations characterised by competition over
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resources, as suggested in reports of tactical deception (Byrne & Whiten, 1988), and in 

patterns o f social monitoring (Blois-Heulin & Girona, 1999) and behaviour (Hare et al, 

2000; Hare, Call & Tomasello, 2001) during food competition. As Hare (2001) states: ‘the 

lives o f all primates are dominated by intense competition with conspecifics. All 

environments have finite supplies of resources on which survival and reproduction are 

dependent.... In species as diverse as ring-tailed lemurs, squirrel monkeys, and 

chimpan2ees the majority of the day is spent in the company of one’s most intense 

competitors: conspecifics.’

Study 7: Can olive baboons use gaze cues to solve a competitive task?

The present study was derived from the object-choice approach, but the task was modified 

to become competitive rather than co-operative in nature. Instead of being required to 

follow the experimenter's gaze in order to locate and select a baited object, the baboons 

needed to monitor the experimenter's visual orientation in order to take the one of two 

visible food items presented that the experimenter was not looking at. Note that this also 

means that the task could not be performed on the basis of simple gaze following as this 

would lead to an incorrect response. As this experiment aimed to approximate naturalistic 

competition over food, the baboons were not explicitly trained to monitor the 

experimenter’s gestures as in previous object-choice studies with monkeys, instead they 

were simply presented with gaze behaviours: either head and/or eye directions. In Study 4, 

baboons were presented with these same cues in a standard object-choice task without any 

scaffolding with manual cues. The baboons did not exploit either head or eye gaze, 

although one baboon showed signs of learning to respond to head direction as an 

information source. Thus, this present study allows a comparison on the two tasks with the 

same study species; will a competitive context be conducive to using another’s gaze?
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Methods 

Subjects

The monkeys were four adult olive baboons: two captive born males, Sylvestre (18 years 

old), and Balthazar (15 years old), and two females, Green (7 years old, wild bom), and Ida, 

(6 years old). The baboons were housed in 2 groups (one with 9 members and the other 

with 7 members) in indoor/outdoor quarters (35 m2 each) at the CNRS Station de 

Primatologie in Rousset-sur-arc, France. They received their daily food ration (fruit, dried 

pellets and vegetables) at the end o f daily training and testing. Standard food items (pieces 

of fruit) and treats (nuts, raisins, cereals) were used during test sessions.

Apparatus

The apparatus consisted o f a wooden tray (60cm x 40cm) which rested upon a wooden 

base (50cm x 30cm x 40cm). The tray’s midline was marked from front to back and a small 

square (2cm x 2cm and 10cm in from the front and side of the tray) was marked on either 

side of the midline. A chronometer was used to signal 5-second intervals.

Procedure

The tray was placed about 50cm away from the enclosure for baiting. The experimenter 

(SJV) sat in a neutral posture behind the tray, and while fixating on the centre of the tray, 

placed a food item on each of the two squares simultaneously (the food items were the 

same type and size within each trial). The experimenter's head and eyes were approximately 

50cm from the food items. The experimenter then presented the cue condition for 5- 

seconds and then, maintaining the cue, pushed the tray against the mesh wall of the 

enclosure to allow the baboon to respond (see Appendix C).

Baboons were tested in the presence of other group members, with any individuals 

of higher dominance rank being restricted to the indoor area during the testing sessions.
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Each baboon was presented with 30-trial sessions with a baseline session preceding each 

block o f five cue-condition sessions. For baseline sessions, the experimenter looked down 

at the midline at the near-side of the tray, while for cue conditions she oriented head 

and/or eyes towards one of the food items. The ‘correct’ side was the side that the 

experimenter was not oriented and/or looking towards. The baboons responded by 

reaching towards one of the food items. If  they reached towards the non-fixated side they 

were permitted to take the food item and consume it. However, if they reached for the side 

that was oriented towards, the tray was quickly pulled away so that they could not take the 

food item and the experimenter then pretended to consume the food item.

The inter-trial interval was approximately 30 seconds. Both sides were oriented 

towards an equal number of times, with the constraint that no more than three consecutive 

trials were allowed in which the cue was presented to the same side. Two baboons 

commenced with a head and eye cue condition (Balthazar and Ida) while the other two 

(Sylvestre and Green) were first presented with eye gaze alone as the cue. Each baboon 

continued in a given condition until they reached a ‘mastery’ criterion of 80% correct for 

two consecutive sessions within a 5-session block (which they then completed) or until 

they had completed 25 sessions; the baboons were then presented with the alternative cue 

condition. One to three sessions were conducted daily with a minimum o f 15 minutes 

interval between sessions.

Results and Discussion

Individual performances are illustrated in Figures la-b and 2a-b. The baboons reached for 

one o f the two food items on every trial, showing their full participation in the competition 

for food. Only one baboon (Ida) reached the mastery criterion o f 80% correct in the first 

cue condition presented; in the head and eyes condition she was above chance 

performance in four of the five initial sessions (binomial tests, p < 0.05) and at 80 /o or
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above for all o f sessions 6-10 (all p < 0.01, see Figure la). Balthazar, presented with the 

same cue condition, performed consistently above chance (with the exception o f one o f the 

fifteen sessions) from session 11 onwards (binomial tests, p < 0.05) but he failed to meet 

the mastery criterion of 80% correct (see Figure la). In contrast, both subjects presented 

with eye direction alone as a cue were at chance levels throughout the 25 sessions (with the 

exceptions o f one cue and one baseline session for Sylvestre, see Figure lb).

In their second conditions two of the four baboons reached mastery criterion. Ida 

successfully mastered the eye direction only condition after 11 sessions (see Figure 2a), 

while Green reached criterion in the head and eye orientation condition after 7 sessions, 

though she performed significantly better than chance from session 3 onwards (with the 

exception o f session 6, binomial tests, p < 0.05, see Figure 2b). Balthazar and Sylvestre 

failed to reach criterion in the eye direction only and head and eyes orientation condition, 

respectively. Although Sylvestre did perform at above chance levels (binomial tests, p <

0.05) in eight out of ten sessions from session 6 onwards, he did not maintain a consistent 

level o f performance thereafter (see Figure 2b). These results establish that the competitive 

approach is an appropriate method for studying gaze monitoring; this is the first evidence 

of baboons demonstrating an ability to master gaze cues in a problem-solving interaction.
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Figure 1: a) Performance of Ida and Balthazar in their first cue condition: head 

orientation, b) Performance of Green and Sylvestre in their first cu e condition: eye 

direction.

B represents a baseline session. Open data points represent above chance performance (p 
< 0.05). The solid horizontal line represents chance performance; the dotted horizontal line 
represents the 80% correct level.
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Figure 2: a) Performance of Ida and Balthazar in their second cue condition: eye 

direction, b) Performance of Green and Sylvestre in their second cue condition: 

head orientation.

B represents a baseline session. Open data points represent above chance performance (p 
< 0.05). The solid horizontal line represents chance performance; the dotted horizontal line 
represents the 80% correct level.
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To summarise: one baboon mastered both the eye direction alone and head and eye 

orientation cues, one mastered head orientation but not eye direction and two failed to 

reach mastery criterion levels of performance in both conditions, although one of these did 

perform consistently above chance levels when presented with head and eye orientation as 

a cue. Combined head and eye orientation appears to be a more effective cue than eye 

direction alone; two baboons reached the mastery criterion and a third performed 

consistently above chance when head orientation was a component of the cue, while only 

one baboon mastered the eyes only cue condition. Moreover, although Ida mastered both 

conditions, she did so more rapidly in the head and eyes orientation condition even though 

this was the first condition she encountered (in session 6 compared to session 12 for eye 

direction alone). These results converge with other evidence that monkeys more readily use 

head direction than eye direction alone as experimenter-given cues in object-choice tasks 

(e.g. Itakura & Anderson 1996) and perhaps also within a gaze following paradigm (see 

Study 1).

The results of the Study 7 demonstrate that olive baboons are able to learn to use 

the gaze cues of a human experimenter without requiring prior training with more explicit 

gestural cues. While this could suggest that baboons are more adroit at reading gaze than 

other species, for which manual cues appear to be facilitating (Itakura & Anderson 1996), 

this seems an unlikely explanation. A previous object-choice study with olive baboons, 

which did not incorporate scaffolding in the form of manual cues, resulted in only one of 

four baboons learning to use (but not master) an experimenter-given cue (head orientation) 

after 700 trials (see Study 4). Table 1 presents details of previous object-choice tasks to 

allow for a better comparison between that task and this competitive task.
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Study 8: Further exploration of abilities

Study 7 showed that baboons are able to use indicators of looking behaviours in the 

context o f a competitive task. However, given the individual variability in performances of 

the baboons, further conditions were proposed in order to assess the extent and limitations 

of these monkeys’ abilities to exploit experimenter-given cues in a competitive task.

As Sylvestre had failed to master either experimental condition, he was presented 

with a pointing condition in an attempt to exclude any problems with motivation and to 

assess his sensitivity to a more explicit cue. Previous studies using the object-choice 

paradigm have repeatedly shown that monkeys are more readily able to use manual gestures 

such as pointing or tapping, than non-manual cues such as gaze (Anderson, Montant & 

Schmitt, 1996; Anderson, Sallaberry & Barbier, 1995; Itakura & Anderson, 1996). If  

Sylvestre were to learn to exploit the pointing cue, this would suggest that his performance 

in Study 7 reflected an inability to exploit the gaze cues presented rather than a lack of 

motivation.

Green's high level of performance in the second condition presented (head 

orientation) following chance performance during the eye direction condition could be due 

to order effects rather than indicating head orientation as a more effective cue. In order to 

assess this possibility, Green was presented with a further 25 sessions in which eye 

direction was the only cue given. Balthazar was not tested in Study 8 as during the eye gaze 

sessions in Study 7 he became increasingly difficult to work with (threatening the 

experimenter and attempting to monopolise the apparatus, similar to the responses of 

gorillas reported by Peignot & Anderson, 1999).

Ida's ability to use eye direction alone as a cue was explored using supplementary 

conditions used in previous studies with the object-choice paradigm. Both a novel 

experimenter condition and a glance (repeated short fixations) condition were presented;
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the former addressing the ability to transfer the use of the cue to a novel interactant and 

the latter to investigating how the addition of eye movement might affect performance. In 

addition, a mixed cues condition (Corkum & Moore, 1995) presenting a variety o f head 

and eye cue combinations was included in order to examine the relative salience o f these 

cues. In an object-choice study with capuchins (Study 6), limited transfer to a novel 

experimenter occurred, eye movements proved to be slightly detrimental to eye gaze 

reading, and in the mixed cues condition head orientation was found to be the more salient 

feature.

M ethods 

Procedure

The same apparatus and general procedure as in Study 7 were used. For the pointing 

condition (with Sylvestre), the experimenter oriented her head towards one item and also 

placed her left hand centrally on the nearside o f the tray with the index finger extended 

towards the item. For the eye gaze condition (with Green), the procedure was identical to 

that used in Study 7 for the same condition. For Ida, in the novel experimenter condition, 

the eye gaze condition was conducted as above by a female experimenter who was 

unfamiliar to the baboon (CB). In the glance condition, the same experimenter as in Study 

7 conducted sessions which were as in the eyes only condition but with the experimenter 

alternating fixation between a point in the centre of the tray's nearside and the food item 

being looked at. In the mixed cues condition, Ida was presented with four combinations of 

head and eye orientations within each of four 30-trial sessions.

Within each session were five trials each o f two previously encountered trial types 

in addition to ten trials o f two new cue conditions, with the order of trials randomised.
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Thus, the four conditions presented were as follows:

A) Head and eyes: head and eyes both oriented towards the food item (as in Study 7).

B) Eyes only: head in a central position with eyes oriented towards the food item (as in 

Study 7).

C) Head only: head oriented towards the food item with eyes closed (the eyes were 

always closed before the head was turned). Obviously, responses could not be 

directly observed in this cue condition; after 5 seconds the experimenter opened 

her eyes and the item removed by the subject was noted.

D) Head versus eyes: head oriented towards one food item but eyes oriented towards 

the other item. For these trials, as both sides were effectively being cued, the 

baboon was permitted to take either food item and her choice was noted. In 

alternate sessions, the head or eyes were directed first followed by the remaining 

cue. For example, in session 1 the eyes were oriented to one side and then the head 

turned to the other while in session 2 the head was turned first.

Baseline sessions were conducted between the novel experimenter, glance and mixed 

conditions.

Results and Discussion

In the pointing condition, Sylvestre avoided the indicated food item with significant 

regularity from the second session (binomial tests, p < 0.05), reaching an 80% avoidance 

level by session 7. As he reached mastery criterion with pointing as a cue, he was again 

presented with only the experimenter’s head and eyes oriented towards the food item forlO 

sessions, in order to see if he would show transfer from pointing to head direction.

Sylvestre's performance immediately fell to chance levels (mean 60.3%) when the pointing 

cue was removed; even after 300 trials he was unable to respond on the basis of head and 

eye orientation.

Green's performance in the second eyes only condition also remained at chance 

levels (mean 55.9%). That is, despite mastering the head orientation cue condition in Study
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7, she was unable to exploit eye direction alone as a cue after a further 25 sessions (750 

trials) in which only this cue was presented. This result rules out order effects as an 

explanation for her ability to read head orientation but not eye gaze as a cue in the previous 

study.

Ida continued to demonstrate mastery of the cues in all new conditions presented. 

In the session with a novel experimenter, she successfully transferred her performance with 

eye direction as the only cue (binomial test, p < 0.01), avoiding the fixated item in 25 of the 

30 trials presented. In the glance condition, Ida’s performance was above 80% correct in 

the first two sessions; testing with the glance cue was therefore discontinued. In the mixed 

cues condition, Ida again performed at mastery criterion levels in the head and/or eyes 

control condition. More interestingly, however, she continued to respond to head 

orientation even when the eyes were closed or in a incongruent direction, whether eye 

direction was presented before head orientation or vice versa (eyes before head, 16/20, p < 

0.06; head before eyes, 19/20, p < 0.001). Thus, even though Ida's more recently 

successful strategy was to avoid the food item being fixated with only eye direction as a 

cue, head orientation was a more salient attentional cue than eye gaze.

The results of Study 8 confirm those of Study 7: head orientation is the more 

salient cue to monkeys when performing a competitive food acquisition task. A similar 

predominance of head orientation over eye direction in the object-choice task has been 

reported in Chapter Four. Despite receiving a total of 1500 trials (combining Studies 7 and 

8), one baboon was still unable to master the eye gaze only cue and the individual who did 

exploit eye direction was shown to respond preferentially to head direction when the two 

sources o f information conflicted.
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Study 9: Influences of motion, objects and cue-type in a competitive task

Given that three baboons demonstrated an ability to use head and eye orientation as cue in 

Study 7 (two meeting the mastery criterion of 80% and a third performing consistently 

above chance levels), a final set of manipulations set out to further explore this ability. The 

first concerned the role of motion in head orientation as a cue. Object-choice tasks have 

typically presented static gaze cues (Anderson, Montant & Schmitt, 1996; Anderson, 

Sallaberry & Barbier, 1995; Itakura & Anderson 1996) and it could be that the presence of 

movement facilitated the exploitation of cues in the competitive situation used in Study 7. 

Call et al (2000) have proposed that motion may enhance performance by acting both as an 

‘attention getter’, emphasizing the experimenter’s actions, and providing directionality. 

However, the addition of movement to head and/or eye orientation cues in an object- 

choice task with chimpanzees did not improve performance (Povinelli, Bierschwale &

Cech, 1999; but see Povinelli & Eddy, 1996b, for contrasting evidence using a trainer- 

choice task); thus, it remains unclear whether motion is conducive to the reading o f visual 

orientation cues.

The second manipulation attempted to determine the baboons’ level o f 

understanding o f looking behaviour; although only one baboon used eye direction 

explicitly, was there any evidence o f a more implicit influence of the eyes (Moore, 1999), 

and also, how accurate were the baboons in discerning the focus of gaze? While all but one 

o f the baboons were unable to compete effectively on the basis o f eye gaze direction alone, 

it may be that the baboons would be sensitive to a grosser cue concerning the role o f eyes 

in visual orientation, that is, whether or not the eyes were open or closed (Corkum &

Moore, 1995; Povinelli and Eddy, 1996b). In terms o f actual focus o f gaze, it has been 

proposed that a ‘high level’ understanding of gaze predicts that subjects should respond 

differentially according to whether an experimenter is looking at or above an object. A ‘low
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level model, based on more general co-orienting responses to grosser behavioural indices, 

would not predict such accuracy in identifying the target of another’s gaze (Povinelli, 

Bierscwale & Cech, 1999).

The third manipulation was aimed at identifying possible sources of monkeys’ 

difficulty with the typical object-choice task. Is competition conducive to cue-reading or is 

the difficulty in object-choice at least partially due to other features of the procedure? For 

example, might the use o f objects and a screen somehow distract the baboons from the 

task o f monitoring experimenter-given cues? There are several ways in which the 

introduction o f screen and objects could change the task for the baboons. For example, 

concealing the food items might alter the motivational salience of the situation. In addition, 

previous studies have found that introducing a screen during delays diminishes 

performance on delayed-response tasks (Fletcher, 1965); the screen and objects might 

simply increase the complexity of the task and distract from cue-reading.

Methods 

Subjects and Apparatus

Three o f the baboons tested in Study 7 were tested: Balthazar, Green and Ida. The basic 

apparatus was the same as that used in Study 7. Additional items were: a cardboard screen 

(100 x 80cm) and two identical yellow plastic cups (6cm diameter x 6cm high).

Procedure

Four consecutive sessions were conducted with each of the three new manipulations 

(Movement, Cue and Objects), with baseline sessions separating each of these blocks. In all 

sessions, subjects were presented with ten trials of the previously mastered head and eye 

condition, pseudo-randomly mixed with ten each of two new trial types; that is, there were 

30 trials a session with the three conditions presented in a randomised order. However,
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because Ida had mastered use of eye gaze alone, in half of her sessions the control trials 

consisted o f the eye direction only cue, and with the exception of the eyes closed condition 

described below, during these sessions the new conditions were also eye direction only 

conditions.

In the Movement sessions, in addition to control trials the baboons were presented 

with a static cue; following the usual baiting procedure, a hand-held screen (100cm x 80cm) 

was interposed between the experimenter and the baboon to conceal the movement o f the 

experimenter's head or eyes towards one of the items; the screen was then removed and 

the trial proceeded as previously. To control for any effects of simple introduction o f the 

screen, a third trial type (movement and screen) was included which incorporated the 

screen as above but the experimenter did not move her head or eyes until after the screen 

was removed, producing a standard trial in which the screen was irrelevant.

In the Cue sessions, two novel types of trial were presented; an eyes closed 

condition, with the head oriented as in control trials but with the eyes closed before the 

head was turned, and a ‘general direction’ condition in which the experimenter oriented her 

head and eyes to the side but upwards (about 30 degrees from the neutral head position) 

instead o f down towards the food item. As the experimenter was not looking at the food 

item in either of these new trial types, she maintained the cue position for 5 seconds after 

presenting the tray and the baboon’s choice of food item was noted. Thus, the baboons 

received a reward regardless of their choice of food item.

In the Objects condition, two identical containers were used to conceal the food 

items; baiting was done as in standard trials and then the two cups were placed over the 

food items. For half the trials, the trial then proceeded as in control trials with the baboon 

simply having to move the object in order to retrieve the food item (which they readily 

did), while for the remaining trials (objects and screen) a screen was introduced once the
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cups had been put in place, held in place for 5 seconds and then removed before the trial 

continued.

Results and Discussion

As Ida's performance was significantly above chance in all conditions, whether head 

orientation or only eye direction was the cue, her data for the two session types were 

combined to give a mean score according to condition type and comparable with that of 

the other two baboons.

Movement. As can be seen in Figure 3, overall performance remained high in the 

control condition (mean 85%; all individuals p < 0.05), but deteriorated in both the static 

cue and movement plus screen conditions (means 65.8% and 72.5%, respectively). A 

Friedman's test indicated a marginally non-significant effect of condition (rF = 5.64, p = 

0.06). Consideration of individual scores revealed that while performance deteriorated 

when the cue was static (to chance levels for two of the three baboons, 22/40 and 21/40 

for Balthazar and Green, respectively; Ida, 36/40, p < 0.01), there was also a decrease in 

response to the introduction of the screen even if movement was retained, although 

performance did remain above chance levels for two baboons and approached significance 

for the third (Balthazar, p < 0.05, Green, p = 0.078, Ida, p < 0.01). That is, although the 

screen influenced performance levels whether the cue was static or dynamic, the absence of 

motion led to a greater deterioration in performance.

Cue-type. Overall, the baboons performed significantly above chance in the control 

condition (mean of 79%, all three individuals were above chance performance, p < 0.05) as 

well as in both o f the new conditions: eyes closed (mean 74.2%, individuals, p < 0.05, p — 

0.078 and p < 0.01 for Balthazar, Green and Ida, respectively) and looking above (mean 

73.3%, individuals: p < 0.01, p = 0.078 and p < 0.01, for Balthazar, Green and Ida, 

respectively). A Friedman test showed no significant effect of condition, the baboons
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continued to respond to the head orientation cue regardless o f  whether the eyes were open  

or closed and also when the experimenter was not directly looking at the food item (rF =  

0.055, p =  0.76). As the baboons were able to take either o f  the food items on the tray, a 

Friedman’s test was used to assess whether the baboons learned across sessions that the 

experimenter was not monitoring the food items. The results showed no effect o f  session 

on performance in these conditions (eyes closed: rF =  3.96, ns; looking above: rF =  3.0, ns).

Figure 3: M eans (and SEM bars) for performance in Movement. Cue-type and 

O bjects conditions.

The dotted horizontal line represents chance performance (50%).

100

Control Movement Static Control Eyes Above Control Objects Objects
+ Screen Closed + Screen

Condition

Objects. Performance in the control condition was above chance for all three 

baboons (mean 81.6%; for all individuals binomial tests, p < 0.05) but overall performance 

showed a considerable decrease in both the objects and objects plus screen conditions 

(means 72.5% and 68.3%, respectively). A Friedman's test showed a near-significant effect 

o f condition (rF =  5.64, p =  0.06). Analysis o f  individual performances revealed that with
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both the introduction o f the objects and the objects plus screen, performance remained 

above chance levels for both Green and Ida (both at p < 0.01) but only approached 

significance for Balthazar (both conditions, p = 0.078). An analysis o f performance across 

sessions addressed possible novelty effects, but the baboons showed no significant change 

across the four sessions (objects: rF = 2.78, p = 0.43; objects and screen: rp = 2.52, p = 

0.47).

The results o f Study 9 suggest that although the baboons had learned to take the 

experimenter’s head orientation into account when performing the competitive task, their 

performance was diminished by procedural modifications including concealing the food 

items with objects and a screen, and, to a lesser extent, by omitting movement from the 

cue. Previous negative findings for monkeys presented with gaze cues may therefore reflect 

the methods used in the object-choice task as much as an inability to use the cues 

themselves. For example, successful performance following training may at least partially 

reflect habituation to the objects and screens used, although as performance in the present 

study did not improve across sessions this appears more than a mere novelty effect. 

However, it is difficult to separate habituation from the alternative explanation that the task 

is simply made more complex with these additions; habituation to the set-up would be 

indistinguishable from learning a new, more difficult task.

The addition of movement may make gaze cues more salient, at least for head 

orientation, suggesting that presentation of static cues may also impede cue-reading by 

nonhuman primates. It has been proposed that changes in head direction may be a more 

effective cue (than eye gaze) because they provide a stronger motion transient (Hood,

Willen & Driver, 1998). Interestingly, the addition of movement within this competitive 

paradigm could not enhance performance merely by eliciting visual co-orientation with the 

experimenter (as might be the case in an object-choice task). Instead, head movement
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simply made the direction o f the head more salient for the baboons (see also Call, Agnetta 

& Tomasello, 2000).

The results o f the cue manipulations are noteworthy: the baboons continued to 

respond according to previously learned rules when the experimenter could not see the 

food item, that is, when the eyes were closed and even the orientation o f the head itself (or 

eyes in Ida’s case) was not aligned with one of the food items. It is conceivable that the 

baboons simply continued to respond in a manner that they knew to be successful. Even if 

they were aware o f the experimenter’s eyes being closed or that the head was oriented 

above rather than towards the food, they knew from past experience that choosing the 

food item not aligned with the experimenter’s head orientation was a guaranteed strategy 

for success. However, the baboons also failed to learn from their occasional 'errors' that 

food items could also be removed from the side congruent with head orientation in over 

half the trials presented. Overall, it appears that the baboons were responding on the basis 

o f past experience and not making any relevant assessment of the experimenter's visual 

orientation (as also suggested by Povinelli & Eddy, 1996a). Alternatively, the lack of 

sensitivity to eyes could also be due to the availability of head direction cues (see Chapter 

Two for discussion). That is, baboons may be sensitive to whether the eyes are open or 

closed, but not within a context where head direction is providing directional information 

(Moore, 1999). However, two of the three baboons also failed to respond to eye gaze when 

this was the only cue presented, suggesting that head orientation might simply be a more 

salient cue than eye direction.

General D iscussion

The results o f these studies suggest that while primates may co-orient with others as a 

means o f locating important events or objects, they are also sensitive to the gaze cues of 

others on another level, namely, that they can exploit this information competitively in
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certain circumstances (see also Byrne & Whiten, 1988; Hare, 2001). As with visual co

orientation, such a skill may be the result of simple associative learn in g ; for example, 

primates may learn that head orientation is a good signal of whether or not a dominant 

individual is likely to become aggressive over access to food or mating opportunities. As 

Cheney & Seyfarth (1991, p 193) state, modifying behaviour in response to other 

individuals’ orientation and direction of gaze ‘certainly demands that monkeys recognise 

that attentiveness can strongly affect actions,’ but it does not require any appreciation of 

the underlying mental states of attention.

The two baboons who quickly learned to exploit the experimenter's visual 

orientation, at least as indicated by head orientation, were females. Possibly, the males acted 

less upon gaze cues because they were less accustomed to losing competitions for 

resources; in this captive environment a single adult male can enforce exclusive access to 

receptive females and priority of access to food. Alternatively, it has been suggested that 

females perform better on delayed-response problems because they are less distractable 

than males, and this may offer some explanation for the gender differences observed 

(Fletcher, 1965). It would be interesting to consider responsiveness to gaze cues as a 

function o f social status in other contexts. While previous research has underlined the 

importance of the ‘attentional structure’ of groups (Chance, 1967; Watts, 1998), there may 

also be some relationship between gaze monitoring and social hierarchy (see Blois-Heulin 

& Girona, 1999, for patterns and targets of looking relative to rank in a species of Old 

World monkeys). Lower ranking individuals may gauge the visual orientation of dominants 

and thus assess the risk of approaching desirable social partners or food items, for example

(Hare, Agnetta & Tomasello, 2000).

The results o f this study converge with those obtained using a standard object- 

choice approach in that the baboons responded more readily to head orientation than to 

eye direction alone (Anderson, Montant & Schmitt, 1996; Itakura & Anderson, 1996;
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Peignot & Anderson, 1999). Furthermore, during supplementary testing with Ida using a 

combination o f head and eye cues, she preferentially responded to head direction when this 

conflicted with eye gaze, as also demonstrated in capuchin monkeys performing the object- 

choice task (see Study 6). It is possible that monkeys simply leam to respond to arbitrary 

cues in order to solve the problem presented (Povinelli & Giambrone, 2000). That is, they 

learn head or eye direction as a cue to respond to the appropriate side without any 

appreciation that these are indicators of another’s visual orientation (Tomasello, Call & 

Hare, 1998); as head direction is a more obvious cue, this association may be more readily 

learned. Alternatively, the advantage for head over eye direction cues may reflect an 

underlying tendency to attend to this form of cue; for many of species of nonhuman 

primates, head orientation may be a reliable signal of another individual's visual orientation 

(see Kobayashi & Koshima, 1997; 2001). Whatever the reason underlying the greater 

salience o f head orientation as a cue, it is important to note that the baboons were not 

sensitive to the actual focus of the experimenter's gaze; a similar finding has been reported 

in chimpanzees (Povinelli, Bierschwale & Cech, 1999). While these results may offer little 

to support the view that the baboons were accurately adopting the visual perspective of the 

experimenter in the competitive task, it is also possible that their responses were simply 

tempered by their experimental experience. A different experimental design, with looking 

above’ and ‘eyes closed’ trials integrated from the onset o f testing might be illuminating

(e.g. Povinelli Bierschwale & Cech, 1999).

Although the baboons learned to use gaze cues to perform the competitive task 

without explicit training, it is difficult to ascertain which features of these experiments were 

conducive to effective cue exploitation. Possibly, the competitive paradigm is more suited 

to revealing gaze reading than the more frequently used object-choice paradigm (Hare,

2001), but the results o f Study 9 suggest that the use o f screens and containers, both 

integral aspects in the object-choice task, may also hinder cue reading. Thus, while the
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relative speed o f acquisition (compared to the object-choice task) by the baboons could be 

seen as contradicting the learning of an arbitrary cue (as this would presumably apply 

equally to a co-operative task) and support the view that the competitive task was 

somehow more meaningful, it could be that the modified task simply had fewer sources of 

information (such as objects) to be processed in order to solve a discrimination task (see 

Hare, Agnetta & Tomasello, 2000; Povinelli & Giambrone, 2000). Counterbalancing the 

order o f presentation of an objects and no objects condition within the competitive 

paradigm might help clarify this issue.

In conclusion, the object-choice paradigm may not be the most appropriate means 

of assessing nonhuman primates' abilities to assess the visual co-orientation of other 

individuals. Performance on the object-choice task does not stem directly from a tendency 

to co-orient with others; although monkeys readily co-orient with other individuals 

(Anderson & Mitchell, 1998; Emery et al, 1997; Ferrari, Kohler, Fogassi & Gallese, 2000; 

Tomasello, Hare and Fogleman, 2001) they may require explicit training to master tasks 

which could be performed on the basis of co-orientation. The present study has identified 

features of the object-choice task that may hinder effective cue reading: the use of objects 

and a screen disrupted the performance of baboons already experienced at using 

experimenter-given cues to solve a task, and the presentation of static cues may also 

impede performance. While it is difficult to draw conclusions regarding the importance of 

the competitive rather than co-operative nature of the task used here, the baboons learned 

to make use o f experimenter-given cues in competition without the need for explicit 

training, and one individual did so fairly quickly. Finally, unlike the object-choice task, the 

competitive task could not be solved on the basis of a direct co-orienting response, that is, 

any learned or reflexive tendency to co-orient with other individuals could not have directly 

facilitated performance in this competitive task. Thus, complementary approaches to
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studying gaze monitoring abilities in nonhuman primates are required before strong 

conclusions regarding comparative abilities are reached.

Chapter summary

The ability o f four olive baboons to use human gaze cues during a competitive task were 

investigated; the baboons were allowed to remove only the non-fixated one of two 

simultaneously presented food items. Three baboons successfully learned to exploit the 

human’s head orientation as a cue to obtain a food item, and one also learned to use eye 

direction alone as a cue. However, the baboons were insensitive to whether the 

experimenter could actually perceive the food item and therefore use of visual orientation 

cues may not be indicative of visual perspective-taking abilities in baboons. Performance 

was disrupted by the introduction of a screen and objects to conceal the food items, but 

not by the absence of movement in cues presented. As the baboons did not receive prior 

training with gross gestural cues, their performance suggests that the competitive paradigm 

may be more conducive to gaze monitoring in nonhuman primates than the standard 

object-choice paradigm.
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Chapter Six

D o Tava Monkeys Reflexivelv Orient in Response to Case Cues?

Studies o f nonhuman primates’ abilities to use or understand gaze have been conducted 

using a number o f methods including object-choice (Anderson, Sallaberry & Barbier, 

1995), trainer-choice (Povinelli & Eddy, 1996a) and simple gaze following (Itakura, 1996; 

Tomasello, Call & Hare, 1998). A fundamental problem with the former two paradigms is 

that o f the primate learning to respond on the basis of simple associations during the 

course o f training. Povinelli and Eddy (1996a) in a series of studies to investigate young 

chimpanzees’ knowledge about seeing, suggested that these apes were responding on the 

basis o f learned associations, for example, between choosing a trainer whose face is visible 

and obtaining a reward. While such response strategies can be successful and may give the 

chimpanzees the appearance of being able to read another’s gaze (by choosing between a 

trainer with a bucket over their head as opposed to one holding the bucket, for example), 

there are much simpler associative learning explanations for the responses observed.

For example, within the object-choice paradigm, some studies have used 

scaffolding training with grosser gestural cues before exploring nonhuman primates’ 

abilities to respond on the basis of gaze information (head and eye direction or eye 

direction alone). While several species of nonhuman primates have succeeded in exploiting 

experimenter-given cues to locate hidden food items, some of these have taken a 

considerable number of trials to do so (Itakura & Anderson, 1996; Peignot Sc Anderson, 

1999; Itakura Sc Tanaka, 1998). Consequently, when a nonhuman primate responds to gaze 

cues it is unclear whether this ability is the result of learning of associative rules during 

training and testing, or rather that the training has simply been in terms of the task
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demands themselves and the sensitivity to the significance of gaze is a pre-existing ability 

(Povinelli and Eddy, 1996a). Thus, responses may be confounded by within-study learning 

o f which response strategies are successful. As Povinelli and Giambrone (2000, p 4 4 ) 

suggest, nonhuman primates may simply be responding on the basis of ‘arbitrary social 

stimuli with nothing more concrete than our reinforcement procedures unifying them /

Evidence from studies of spontaneous gaze following suggests that the problem 

may lie with the methods employed rather than the ability to respond to another’s gaze. 

Several species o f nonhuman primates have been shown to change their visual orientation 

and track the gaze o f another individual; to human or conspecific models and to head and 

eye direction or eye gaze alone (Anderson & Mitchell, 1999; Emery et al, 1997; Ferrari et al, 

2000; Lorincz, Baker & Perrett, 1999; Tomasello, Call & Hare, 1997; Tomasello, Hare & 

Agnetta, 1999). Thus, some of the other approaches used to date may have underestimated 

gaze-reading abilities in nonhuman primates (see also Hare, 2001).

A recent integration of methods used to investigate spatial orienting within the 

visual cueing paradigm with research into social cognition, such as gaze following, has 

produced some interesting results concerning human adults’ processing of social 

information. Studies employing a modified Posner cueing paradigm1 (Posner, 1980) with a 

central stimulus face looking to a peripheral location have demonstrated that participants 

are faster to respond to a location cued by the central face than to an incongruent location. 

This effect is found with both schematic and photographic stimuli and with both head and 

eye direction as the central cue (Driver, Davis, Ricciardelli, Kidd, Maxwell & Baron-Cohen, 

1999; Friesen & Kingstone, 1998; Langton & Bruce, 1999; Kingstone, Friesen &

Gazzaniga, 2 0 0 0 ).

1 In this paradigm, a peripheral location cue precedes a peripheral target. The cue may be valid, appearing 
in the same location as the cue; invalid, appearing in another spatial location to the target; or neutral, 
providing no information about the target’s spatial location. Response times are typically faster when the 
target is preceded by a valid cue (benefits) and slower following invalid cues (costs).
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The phenomenon has been interpreted as reflecting ‘an exogenous orienting 

mechanism which is engaged reflexively’ by social attention cues (Langton & Bruce, 1999). 

It is termed exogenous because it seems to be due to properties of the cue itself rather than 

voluntary (endogenous) processing of cue information (Driver et al, 1999). It is considered 

reflexive because it is unaffected by whether or not the cue is predictive (Jonides, 1981). 

Manipulating cue-target contingencies has demonstrated that even if the target is four times 

more likely to appear on the side which is incongruent with the gaze cue (and participants 

are explicitly informed o f these contingencies), participants still respond faster to congruent 

targets (Driver et al, 1999). In addition, this response has a time course that is seen as 

reflecting reflexive responses, peaking when cues precede targets by 100-150msecs, while 

endogenous or voluntary responses occur from around 300-400 msecs (Cheal & Lyon, 

1991).

However, there are some differences between studies in relation to time-course; 

while Langton & Bruce (1999) found an effect at a cue-target stimulus onset asynchrony 

(SOA) o f 100ms but not at 300 or 1000msec, Friesen & Kingstone (1998) report an effect 

from 105msec up to 600msecs and dissipating by 1005msec. Driver et al (1999) report that 

the effect was greatest at 700msec and absent before 300msecs, although decreasing the 

contingency between cue and target locations did result in the effect disappearing by 

700msec, suggesting that at this longer SOA the orienting may have been endogenous. 

Although it is unclear precisely what time-course this reflexive orienting has, it clearly 

emerges rapidly and dissipates at longer SOAs. The suggestion that cueing is exogenous 

rather than endogenous is of importance; previous research had suggested that only 

peripheral cues which drew the participant’s attention to a location could exert a exogenous 

shift in attention. The central face cues used are more akin to symbolic central cues, such as 

arrows, which are thought to engage the endogenous mechanism (Langton & Bruce, 1999).
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Thus, social attention cues may be a unique form of stimuli that are processed separately 

from other information sources.

Although termed exogenous, the response patterns obtained within his paradigm 

do not fit entirely with standard exogenous orienting. Reflexive orienting is n o rm ally 

characterised by a biphasic effect whereby at cue-target SOA’s of 300msecs and longer, 

responses to congruent targets are actually inhibited and reaction times (RTs) become 

longer to congruent than incongruent locations. This inhibition of return (IOR, for a recent 

review see Klein, 2000) phenomenon has not been found using central facial stimuli as cues 

(Friesen & Kingstone, 1998; Langton & Bruce, 1999; Driver et al 1999). Therefore, 

reflexive orienting to central, unpredictive social cues exhibits a unique combination of 

features:

a) Time course similar to standard exogenous pattern (emerges at very short SOA 

latencies, dissipates at longer SOAs).

b) N o IOR effect (unlike standard exogenous responses).

c) Effects not tied to cue location, that is, cue is not at target location (unlike standard 

exogenous orienting responses).

d) Unaffected by predictive value of cues (unlike standard endogenous responses).

e) Central cue influences responses to peripheral targets (like standard endogenous 

responses).

f) Benefits at congruent locations (compared to neutral and incongruent cues) but no 

attentional cost (RT at incongruent location is the same as RT to a neutral cue 

location).

Although gaze cues may be a unique form of stimuli, as Driver et al (1999, p 534) 

identify, ‘our gaze-cues differed in so many respects from standard central or peripheral 

cues (e.g. not only in their physical size and eccentricity, but also in the information that 

must be encoded to determine which side they should benefit), that fbrther work would be
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needed for any full understanding of the basis for these similarities and dissimilarities.’ For 

example, there is some uncertainty as to whether the orienting is overt or covert in nature 

(see Langton & Bruce, 1999); while traditional gaze following requires an overt response 

(change in gaze direction) this paradigm does not preclude covert shifts in attention. To 

date, eye movements during task performance have not been monitored and conclusions 

cannot therefore be made regarding the nature of participants’ orienting. It may be that 

covert shifts in attention occur; this would be extremely interesting as initial covert shifts 

would allow an individual to monitor their environment without signalling this fact to 

conspecifics by making overt gaze shifts (Driver et al, 1999). Such a mechanism would 

concur with recent hypotheses that nonhuman primate eye morphology may serve to 

camouflage gaze behaviours (e.g., Kobayashi & Koshima, 2001). However, this issue is of 

peripheral interest here as it does not undermine the claims of automaticity that are 

presently the central focus of this research. That is, despite such concerns, these studies 

have revealed a robust phenomenon using a variety of stimuli (photographs and simple 

schematic faces) and methods (identifying, locating or detecting target stimuli), identifying 

some form of automatic orienting in response to uninformative social cues.

The present study explored whether depicted gaze directions would induce 

attention shifts in Java monkeys. This method allows a number of issues to be addressed. 

This paradigm does not encourage the learning of simple associations; the cues are 

nonpredictive so that the monkeys are not rewarded according to whether or not they follow 

the gaze information (as in the object-choice task, for example). This does not necessarily 

mean that gaze-following responses are not based upon previously learned associations 

between others’ gaze direction and interesting events, for example, but any phenomenon 

observed is unlikely to be an artefact of the study itself (Langton & Bruce, 1999). The 

nonpredictive nature o f the cues would suggest that any tendency to orient in response to 

gaze cues is reflexive in nature, as identified in humans. Furthermore, reflexive orienting
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within this paradigm might indicate that gaze following in a natural context is also 

automatic and this could suggest different underlying mechanisms. Orienting in response 

to gaze shifts may be a special kind of orienting response, maybe innate, or perhaps an 

over-learned response which it is difficult to suppress (Langton & Bruce, 1999), rather than 

being based on a more cognitive evaluation of another’s shift in gaze (e.g., Baron-Cohen, 

1995).

A recent study (Fagot & Duruelle, submitted) used a paradigm similar to Friesen 

and Kingstone (1998) to examine reflexive orienting in baboons {Papio papio).

The study used a go no-go procedure and presented both schematic and photographic 

faces in addition to a pair of schematic eyes alone and scrambled-face controls; eyes 

oriented to either the left or right appeared either 300ms before a target letter appeared 

either to the congruent or incongruent side. This study found that the baboons did not 

demonstrate any reflexive orienting in response to the central images; both accuracy of 

target identification and response times failed to distinguish congruent trials from 

incongruent trials.

Several modifications were made in order to explore the baboons’ responses more 

fully; the SOA was increased to 800ms, the cue-target distance was reduced, and the 

baboons were trained to attend to the central area of the monitor. While none o f these 

changes had any impact on the results obtained, a final procedural modification did 

produce some interesting results. The predictive value of the central cue was altered so that 

the direction o f the eyes reliably indicated target location. After over 1000 trials with this 

new cue-target contingency, incongruent probe trials were reintroduced to the testing 

schedule; response times (but not accuracy) differentiated cued from uncued trials, that is, 

RTs were shorter when targets were cued. Thus, Fagot & Duruelle (submitted) conclude 

that for baboons, eye gaze may not be the most salient indicator of visual orientation and 

that visual co-orientation may not be an automatic response but rather a learned response.
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However, although the authors suggest that a learning mechanism may also underlie the 

development o f human infants’ visual co-orientation responses (e.g., Moore, 1999), the 

baboons were adults and therefore had extensive experience with others’ gaze behaviours.

While Fagot & Duruelle’s study is the first to report the use of this paradigm with 

nonhumans, the study has several limitations. For example, the study uses a single SOA of 

300ms (though 800ms is used in one experiment) and this may not be the most appropriate 

choice. This SOA is considered to signal the shift from exogenous to endogenous 

orienting; that is, after 300ms responses may be based upon voluntary shifts in attention 

(Cheal & Lyon, 1991). As the exact time-course for the responses in not yet known for 

humans, it may be that in order to explore this phenomena is nonhuman primates a range 

o f SOAs should be used. Moreover, the only cue presented is eye gaze, and it would be 

interesting to consider a variety of cues and their interactions (e.g. Langton, 2000; Perrett & 

Emery, 1994). That is, what features of social cues are critical for triggering the attention 

shifts observed (Driver et al, 1999)?

It may be that the baboons tested previously were over-trained with the go no-go 

task. The study demonstrated that initially they were not attending to the central region of 

the screen, and even though the task was modified to encourage them to monitor the 

whole screen, it may be that they were not processing the central stimuli. However, the fact 

that they did learn the contingency between eye direction and target in the final experiment, 

suggests that they were not impervious to the central image. Another potential problem is 

that they are so experienced with responding to images presented out of any context, that 

they have ceased to see the images as meaningful (e.g. Vauclair & Zayan, 1998). While it 

may simply be that baboons (and other nonhuman primates) do not exhibit the sensitivity 

to gaze that has been demonstrated in humans using this paradigm (Fagot & Duruelle, 

submitted), further studies are merited before strong conclusions are drawn.
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This computer-based paradigm allows the ability to respond to head and eyes or eye 

gaze alone to be studied using a central schematic or photographic face and peripheral 

target, somewhat similar to Emery et al (1997). However, the present study examines 

whether such responses are reflexive. Human interactants have presented gaze cues in 

almost all research into nonhuman primates’ tendencies to visually co-orient (exceptions 

being Emery et al, 1997; Lorincz, Baker & Perrett, 1999; Tomasello, Call & Hare, 1998); 

the computer based presentation removes the necessity to interact with a human 

experimenter. It is unclear how this might affect results because while inter-species 

interactions may not be the most conducive context for nonhuman primates to express 

their socio-cognitive abilities, the relatively context-free computer paradigm may also 

hinder such expression. However, as noted by Fagot & Duruelle (submitted), the computer 

paradigm eliminates the possibility of the human interactant giving unintentional cues. For 

example, the experimenter may give additional cues such as inadvertently making slight 

head movements when presenting an eye gaze only cue. While it may be assumed that all 

the human participants were both familiar with computer interactions and pictorial 

representations of social stimuli, these factors may influence the monkeys’ performances. 

Although the monkeys tested are familiar with using a computer set-up, picture perception 

in primates remains a moot issue (for recent reviews see Bovet & Vauclair, 2000 & Fagot,

Martin-Malivel and Depy, 1999).

In the present study, one departure from the procedure used in previous studies is 

the temporal separation of the central face cue and peripheral target. In most studies the 

central facial stimuli remain on the monitor when the target appears, the exception being 

Langton and Bruce’s (1999) procedure (Driver et al, 1999; Fagot & Duruelle, submitted; 

Friesen & Kingstone, 1998; Kingstone, Friesen & Gazzaniga, 2000). This procedural 

modification may be important: Hood et al (1998) reported that human infants responded 

more readily to gaze shifts when the central face was removed before the peripheral target



appeared. It may be that the face is such an engaging feature that human infants are unable 

to shift their attention in another direction; removing the facial stimuli allows infants to 

express their sensitivity to eye direction. Monkeys may have sim ilar difficulty 'disengaging 

fixation from a salient central stimuli’ (Hood, Willen & Driver, 1998, p 131); thus, in the 

present studies the central cue is always removed prior to target presentation.

Study 10: Responses to schematic faces

Study 10 examines whether Java monkeys demonstrate reflexive orienting in response to 

gaze cues depicted in schematic drawings. Human adults respond to schematic faces 

depicting eye direction, and this form of stimuli has certain advantages over more 

naturalistic stimuli; extraneous complexities such as facial asymmetries and hair are 

eliminated (Friesen & Kingstone, 1998). In addition, this study also employed a control 

condition which presented scrambled faces; this was aimed at determining whether 

responses were made on the basis of social information presented or on the basis of 

perceptual asymmetries in the stimuli (Langton & Bruce, 1999; Fagot & Duruelle, in press).

Methods 

Subjects

The monkeys were 9 Java macaques housed in a large social group (46 individuals) at the 

Ethology Station, University of Utrecht, The Netherlands (see Table 1). The group had 

access to a large indoor enclosure (80m2) and in good weather conditions, to an outdoor 

enclosure (200m2). The monkeys also had access to an observation room (16m2) in which 

the apparatus could be set up and individuals could be separated in a smaller experimental 

area (0 .5 m  x 1 .2 m) for testing purposes, while maintaining auditory and limited visual 

contact with their group. The monkeys were fed twice daily with commercial monkey
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pellets and twice a week this was supplemented with fruit or vegetables and grain. Grain 

and dietary treats such, as nuts, raisins and cereal were used as reinforcers during testing.

T able 1: D etails of monkeys studied: nam e, age and gender.

N am e Age Gender

Alfa 1 2 Female

Felix 26 Female

Freya 9 Female

Hoeba 1 1 Female

Kraa 9 Female

Milva 1 0 Female

Roza 17 Female

Vip 25 Male

Yudea 13 Female

A pparatus

A 14 inch Apple Macintosh monitor was secured in front of an opening in the mesh of the 

test area. The monitor was fitted with a Micro-Touch touch-screen and was connected to 

an Apple Macintosh computer which presented the trials and recorded responses using 

Authorware Professional software. Correct responses were rewarded by food items 

delivered by a Universal Feeder that was connected to the computer. A video camera was 

secured above the test area so that the experimenter could monitor the monkeys as they 

performed the task.

Procedure

Training. Although the monkeys had previously been trained and tested using this 

experimental set up (Veenema, 1998), the present study was conducted after approximately 

3 years in which no testing was undertaken with any members of the group. Therefore, the
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monkeys were re-habituated firstly to the experimental room and subsequently to the 

apparatus. The monkeys were encouraged into the testing area with food items and the 

amount o f time spent alone in the test area was increased gradually over a period o f a 

month. Most monkeys readily used the touch-screen to respond to a simple task (touching 

a geometric shape which appeared on the monitor) and obtain a reward.

Testing. Once the monkeys had demonstrated an ability to use the touch-screen and 

could be reliably separated from the group for a reasonable duration (at least 1 0  minutes), 

testing commenced. Once a monkey had entered the test area, the area was partitioned 

from the rest o f the enclosure using sliding doors. The computer program was then 

initiated and the experimenter observed the session from an adjacent room via the video 

link. Each monkey remained in the test area until a maximum of 50 trials had been 

presented or 25 minutes had elapsed. If  a monkey ceased responding for over 3 minutes or 

was clearly distressed (for example, when group fights broke out in the adjacent enclosure), 

the testing session was terminated and the monkey was released.

The task. Following a 30-second delay during which the monitor was uniformly 

black, the monkey was presented with a schematic face or control (scrambled face) 

st im ulus; and touching this central face initiated the trial. After a 500msec delay, pupils 

then appeared in the face or control image, positioned in one of five locations: up, down, 

left, right or central (a neutral condition which offered no directional cue towards 

peripheral locations). Following another delay of 100ms, 300ms or 1000ms, the central 

image was removed and a target square appeared in one of the four locations (up, down, 

left, right). See Figures 1 and 2 for stimuli and sequence of presentation. The monkey 

responded by touching the target, which then disappeared, and a reward was then delivered 

by the automatic feeder. The next trial commenced after a 30-second inter-trial interval. If  

the monkey faded to touch the initial image within 30 seconds, the image was erased and 

re-appeared after a 10-second time-out. If  the monkey touched the first image presented
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and initiated a trial but subsequently failed to touch the target within 30 seconds, the target 

was deleted and a new trial was presented without any reward being delivered.

The trials varied according to four factors: whether the image was a schematic face 

or a control drawing, the stimulus onset asynchrony (SOA), location of the target (up, 

down, left, right) and whether or not the depicted gaze direction predicted the location of 

the target. This resulted in 12 experimental conditions: Face (Face and Control), SOA 

(100ms, 300ms and 1000ms), and Cue condition (Congruent, Incongruent and Neutral); 

the four target locations were used to ensure that cues were uninformative and target 

location was not considered in subsequent analyses. Trials were pseudo-randomly 

presented with no more than three consecutive trials with the same stimuli type, SOA, 

target location or predictive value. The program allowed for the sequence to be initiated at 

four different points within the schedule so that the trials presented varied daily. Responses 

to each trial were recorded in terms of the time and the co-ordinates of each touch to the 

screen; response time (RT) was measured in milliseconds and timed from the target onset.

Data Analysis

Reaction times of less than 1 0 0 msec (anticipations) or greater than 3000msec (time outs) 

were excluded from the analysis. The percentage of trials eliminated by this procedure was 

11.6% (347/3003). Incorrect responses (touches to areas of the screen other than to the 

target area) were also excluded from analysis, removing a further 281 trials (9.4/o, only 16 

of these trials were responses to locations ‘cued’ on incongruent trials). Mean RTs were 

calculated for each individual in each condition; means were used instead of medians as 

trial numbers were unequal (Miller, 1998). Repeated measures Anovas were conducted on 

the mean RT data. A repeated measures analysis of variance was percentage errors was 

conducted in order to examine whether error rates varied systematically (Fnesen & 

Kingstone, 1998); there were no significant effects or interactions (p s 0 .1).
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Figure 1: Sequence presented on each trial. 

An example of a congruent Face trial.

An example of a congruent F ace trial.

Touch face to start trial

500ms delay b efore 
pupils appear in face

100ms, 300ms or 
1000ms delay 
before target 
appears

Touch target 
to obtain 
ravard.
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Figure 2: All central stimuli, faces and control images 

Faces

Controls



Results

Excluding, time-outs, anticipations and errors, the individual mean reaction times (RTs) 

and standard deviations are summarised in Appendix D. A 2 (Face) x 3 (Cue condition) x 3 

(SOA) repeated measures analysis o f variance was conducted on mean RTs. There were no 

significant main effects, that is, response times did not differ according to whether or not a 

face or control image was presented, the timing o f the cue or by the cue’s predictive value 

(see Table 2). Comparable studies with human subjects have not incorporated a control 

condition (e.g. Friesen & Kingstone, 1998), and as a means o f both increasing power and 

attempting a comparable analysis, face and control data were analysed separately in two 3 

(Cue condition) x 3 (SOA) analyses o f variance. When considered separately, neither the 

Control data nor Face data showed significant effects or interactions (see Table 2 & Figures 

3a & 3b).

Figure 3a: M ean response times to congruent, incongruent and neutral Control 

stim uli at 100ms. 300ms and 100ms SOAs.
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Figure 3b: M ean response tim es to congruent, incongruent and neutral Face stimuli 
at 100ms, 300ms and 100ms SOAs.
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T able 2: Anova table for analyses of overall. Control and Face data.

F values with d f given in brackets. F = Face, C = Cue, S =  SOA.

Face SOA Cue F x S F x C S x C F x S x C

Overall 0.001 0.770 2.765 1.515 1.830 0.888 1.119

(1, 32) (2, 32) (2, 32) (2, 32) (2, 32) (4,32) (4, 32)

Control 0.749 0.069 1.539

im ages (2,32) (2,32) (4,32)

Face 3.060 (2, 3.386 (2, 0.789

im ages 32) 32) (4,32)

In order to examine whether there were any consistent patterns in individual 

performances, each monkey’s data were subjected to an analysis o f variance (Kingstone, 

Friesen & Gazzaniga, 2000) with Face (x2), SOA (x3) and Cue condition (x3) as factors. 

N one o f the monkeys demonstrated a pattern of results that would indicate reflexive 

orienting and the results are summarised in Appendix E.
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Discussion

Overall, the results are very difficult to interpret. The absence of any significant effects at 

the group level (and also the absence of any consistent patterns at the individual level) 

could reflect several possible underlying causes for the failure to identify reflexive orienting 

in response to central, non-predictive social stimuli:

a) Unlike humans, Java monkeys do not orient reflexively to shifts in another’s gaze. 

Although this contrasts with Lorincz et al’s (1999) finding that rhesus monkeys 

responded to eye gaze cues alone, that study measured eye movements not response 

times and used photographic stimuli. Furthermore, these results are consistent with 

those recently reported by Fagot & Duruelle (submitted) which report that within the 

same paradigm, baboons do not demonstrate reflexive orienting in response to eye 

direction in schematic faces.

b) Alternatively, it might be that they do reflexively orient, but not in response to eye gaze 

information alone (the only cue information available in this study). Previous research 

has suggested that for nonhuman primates head orientation might be a more salient 

social cue than eye gaze alone. The salience of head and eye direction as indicators of 

another individual’s visual co-orientation is still under debate (Emery, 2000, Langton, 

2 0 0 0 ), but head orientation certainly does play a role in determining another’s gaze 

direction. Thus, Java monkeys might demonstrate reflexive orienting in response to 

grosser directional cues, such as head or bodily orientation.

c) Although nonhuman primates may reflexively orient in response to gaze cues (possibly 

even eye gaze), the Java monkeys tested in this study did not demonstrate the

behaviour due to methodological factors.
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While the present data do not allow any conclusive stance on these three alternative 

possibilities, there are aspects of the present study that may have impeded reflexive 

orientation. One potential problem with the study was the nature of the stimuli used; while 

humans have demonstrated reflexive orienting in response to schematic faces (Friesen & 

Kingstone, 1998; Kingstone, Friesen & Gazzaniga, 2000) nonhuman primates may not 

always interpret pictorial stimuli as meaningful (e.g., Perrett et al, 1998). Furthermore, even 

if they are able to interpret two-dimensional images in a representational manner, or as 

equivalent to real stimuli, it may be that for the monkeys these simplistic line-drawings 

were insufficiently salient to produce any social responses (including reflexive orienting).

The failure to demonstrate any overall significant differences in RTs to the face and 

control images could indicate that the monkeys did not discriminate between the images, 

perhaps suggesting that the stimuli lacked social salience for the monkeys. Study 11 

addresses the issues of stimuli type and also cue presented; using the same paradigm to 

investigate responses to more socially salient photographic images and to both head and 

eye direction. While Fagot & Duruelle (submitted) also used photographs and failed to 

report any differences between the findings with schematic and photographic images, there 

are procedural differences between that study and the current one which make the use of 

different image types an interesting modification nonetheless.

Study 11: Responses to photographic stimuli

Study 1 1  attempted to address (at least partially) two of the issues raised by the results of 

Study 10. The first concerns the nature of stimuli used; in an attempt to make the stimuli 

more socially meaningful photographed human faces were used. While there are 

undoubtedly still potential problems with using this type of stimuli, it seems reasonable to
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suggest that these more realistic images would be more effective than schematic drawings 

in eliciting social responses (see Chapter One, section 1.2). The second examines the nature 

o f the cue presented; the absence of reflexive orienting in response to eye-direction alone 

need not mean that the monkeys do not demonstrate such a phenomenon in response to 

other socially relevant information such as head orientation, for example. Thus, the present 

study used photographed faces and presented visual orientation using combination o f head 

and eye directions.

While Perrett & Emery (1994) have proposed a Direction of Attention Detector 

(DAD) hierarchy (whereby gaze information takes precedence over head orientation and 

head orientation takes precedence over postural cues), the relationship between these 

information sources need not be asymmetrical. It may be that these cues are used in a more 

integrated manner, that is, that they may be ‘mutually influential in the computation of 

social attention’ (Langton, 2000, p 834). Langton (2000) used a Stroop-type interference 

task (with adult humans) to explore the role of head and eye direction in determining 

another’s gaze. The results demonstrate that head and eye direction both influence the 

perception o f visual orientation. For example, when head and eye direction were both 

congruent with each other and a verbally given direction, responses were faster, however, 

this benefit was eliminated by presenting conflicting head and eye cues. Langton s results 

suggest that information regarding another’s direction of gaze may be better envisaged as 

channels processing various different signals (which all exert an influence on the judgement 

reached), rather than as a hierarchical structure. The present study therefore explores 

reflexive orientation in response to a variety of head and eye direction cues in order to 

examine the influence of these information sources on nonhuman primates perception o f 

another’s visual orientation (Driver et al, 1999).
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Methods

Subjects and Apparatus

The same monkeys as in Study 10 were tested using the same apparatus.

Procedure

Study 1 1  commenced a few days after the completion of Study 10. The general procedure 

was the same as that of Study 10. However, the task was modified slightly to accommodate 

the presentation of a new type of stimuli.

The task. The overall task was very similar to that used in Study 10 with a few 

notable changes. Instead of a schematic face or control image being presented before the 

subject started a new trial, the pre-trial stimulus was a white square that appeared in the 

centre o f the screen. Once the monkey touched this square, the square disappeared and the 

trial commenced after a 500ms delay with the stimulus appearing in the centre of the screen 

(see Figures 4 and 5). The SOAs and target were as described for Study 10. The trials were 

again pseudo-randomised and could be initiated at different points within the schedule.

The stimuli were a set of photographic images of a female human with her head 

and eyes oriented according to the cue condition (see below). The faces cued only along the 

horizontal axis, e.g. head and/or eyes to the right/left. However, there were still some 

incongruent targets on the vertical axis (in order to maintain the nonpredictive nature of 

the social cues presented and to deter any side preferences in responding). Each cue was 

presented as congruent and incongruent with the subsequent target at each of the three 

SOAs. In  addition, there was a neutral condition, with a straight-on face displaying direct 

gaze and a half-neutral condition with the head in half-profile and the eyes again showing 

direct gaze. Thus, the cues presented were as follows:

a) Head and eyes: head turned in profile to left or right.

b) Eyes only: eyes directed to either the left or right, or displaying direct gaze.
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c) Half profile: head turned 30 degrees from centre with eyes either congruent with 

head turn or fixated centrally (direct gaze).

As in Study 10, sessions consisted of 50 test trials or continued until 25 minutes had 

elapsed and all touches to the screen were recorded in terms of time and location.

Data Analysis

Reaction times o f less than 100msec or greater than 3000msec were excluded from the 

subsequent analysis. The percentage of trials eliminated by this procedure was 7% 

(226/3226). Incorrect responses (touches to areas of the screen other than to the target 

area) were also excluded from analysis, removing a further 368 trials (11.4%, only 14 of 

which were responses to a location cued by incongruent cue condition). Repeated measures 

analyses o f variance were conducted with the percentage errors and there were no 

significant effects or interactions (p’s > 0.05); errors did not vary according to 

experimental condition.

Results

Excluding time-outs, anticpations and errors, the individual mean RTs and standard 

deviations are summarised in Appendix F. Mean RTs were analysed using a repeated 

measures analysis o f variance. In order to compare face type as a condition, an overall 

analysis was conducted with face type as a factor and with only congruent and incongruent 

trials considered as a cue factor (as these were the only cue conditions common to all face 

conditions). Subsequent analysis examined each face type separately in order to allow all 

cue combinations to be more fully analysed. Individual responses were also examined; 

however, there were no consistent patterns and the results are therefore not presented here 

(see Appendix G for individual analyses).
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Figure 4: Sequence presented on each trial. 

An example of a incongruent Head trial.

Touch square to 
start trial

500ms delay before 
face appears



Figure 5: All central photographic stimuli, 

a) Head in profile, b) head half turned and c) eve direction.

a) Head in profile: 
looking left or right

b) Half turned head: looking to left 
and right, with eyes either congruent 
or displaying direct gaze

c) Eyes: displaying 
direct gaze or looking 
to left or right
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Overall

A 3 (Face) x 3 (SOA) x 2 (Cue: congruent versus incongruent) repeated measures Anova 

was conducted on mean RTs (see Table 3). There was a significant Face by SOA 

interaction; responses were fastest to Head and Eye images at the shortest SOA but fastest 

to  half-profile images at 300ms. There was also a significant Face x SOA x Cue interaction 

(p =  0.018). Figure 6 presents overall RT Costs (uncued RT minus cued RT) for each face 

type and SOA. Targets cued by a congruent head direction were located faster than 

incongruent targets at 300ms SOA, while they were located more slowly at 100ms and 

1000ms SOAs. Targets congruent with the direction of a face in half-profile were 

responded to  significantly more slowly than incongruent targets at the 300ms SOA, at 

100ms there was also a tendency for less efficient responding to congruent targets, but at 

the shortest SOA congruent targets were detected more rapidly than incongruent. In the 

eye gaze only condition, congruent targets were located faster than incongruent at 300ms 

and 1000ms SOAs, but slower than incongruent targets at the fastest SOA (100ms).

Overall, the interaction effect is not indicative o f a reflexive orienting response.

Figure 6 : RT costs for each condition and each SOA. Bars to the right indicate a 

positive RT value (RT cost =  RT incongruent —RT congruent).

Slower RT's to congruent targets Faster RTs to congruent targets

i l l  1 0 0 0 m s  

i l l  3 0 0 m s  

H I  1 0 0 m s

Half-profile

Rt cost (incongruent - congruent, msecs)
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T able 3.. Anova table for overall analysis of all conditions and separate analyses 

according to face type presented.

F values with df given in brackets. F = Face (Head, Half-profile or Eyes), SOA = Stimulus 

Onset Asychrony (100ms, 300ms or 1000ms), Cue condition (congruent or incongruent).

Face SOA Cue F x S F x C S x C F x S x C

Overall" 0.347 2.256 0.003 3.547 * 0.894 0.028 3.495*

(1,16) (2,16) (1,16) (4,16) (2,16) (2,16) (4,16)

H ead 3.106 0.316 2.317

direction (2,16) (1,16) (2,16)

Half- 0.615 1.511 0.7089

profile11 (2,16) (1,16) (2,16)

H alf 1.203 0.835 1.019

profile0 (2,48) (3,48) (4,48)

H alf 1.399 0.105 1.040

profile*1 (2,16) (1,16) (2,16)

Eye 4.190 * 0.0209 0.460

direction 6 (2,16) (1,16) (2,16)

Eye 3.1401 3.859 * 1.317

direction 1 (2,32) (2, 32) (4,32)

*= p < 0.05.
a Head, Half-profile and Eyes: congruent versus incongruent only. Anova table for 3 (Face) 

x 3 (SOA) x 2 (Cue condition)

b Half-profile condition only considering head orientation (congruent versus incongruent) 

c Half-profile condition accounting for eye direction: four cue types (congruent head and 

eyes, congruent head with direct gaze, incongruent head direction with direct gaze and both

head and eyes incongruent with target location). 

d Half-profile condition: eye gaze only (direct or averted gaze)

“Eye direction condition congruent versus incongruent only.

'Eye direction condition incorporating all three cue types (congruent, incongruent and 

neutral).
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Head direction

As head direction either cued or did not cue the target location, a 3 (SOA) x 2 (Cue) a 

repeated measures Anova was conducted on group data. There were no significant results 

at group level; RTs did not differ according to SOA or whether the target was congruent or 

incongruent (see Table 3 for Anova results and Table 4  for mean RTs).

Table 4: Mean reaction times and standard deviations imsecl for detecting targets 

cued by congruent and incongruent head direction.

Cue Condition

SOA Congruent Incongruent

100ms 959 (128) 928 (159)

300ms 988 (132) 1099 (145)

1000ms 1049 (201) 1028(186)

Half-profile

As head and eye direction could either be congruent or incongruent, the data were analysed 

on the basis o f head orientation alone (i.e. ignoring eye direction) and also taking account 

o f whether or not eye ga2 e was compatible. When the data were analysed on the basis of 

head direction alone in a 3 (SOA) x 2 (cue condition) repeated measures Anova, there were 

still no significant effects or interactions (p’s >0.05). In order to examine whether head and 

eye direction interacted, a 3 (SOA) x 4 (Cue condition: head and eye directions) repeated 

measures Anova was conducted on group data (see Table 3 for Anova summaries and 

Table 5 for mean RTs). There were no significant main effects or interactions; RTs did not 

differ according to SOA or cue type (p’s >0.05).
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T able 5: M ean reaction times and standard deviations (ms eel for detecting targets

cued bv congruent and inconpruent half-nrofile direction.

SOA

Cue Condition

Congruent Incongruent

1 0 0 ms

300ms

1 0 0 0 ms

991 (184) 

1 0 1 2  (1 0 1 ) 

1021 (103)

1041 (145) 

880 (76) 

997 (224)

These results suggest that a face turned in half-profile is not able to exert a reflexive

influence over the monkeys’ orienting. Furthermore, unlike direct gaze within a frontal face 

(see eyes section below) direct gaze as depicted within a half-turned face did not influence 

RTs even when data were analysed simply on the basis of whether the eyes were engaging 

in direct gaze or were averted (see Table 3). These results suggest that a half-turned face 

does not elicit orienting in Java monkeys and, further, that systematically varying the eye 

direction with the half-profile face does not influence response patterns.

Eyes
Eye direction was first analysed on the basis of cued versus uncued trials; a 3 (SOA) x 2 

(Cue: congruent or incongruent) repeated measures Anova was conducted on the mean 

RT’s. There was a significant main effect of SOA; the monkeys responded more quickly at

th e  sh o r te s t  SOA (m ea n  r e sp o n s e  time 100m s SOA = 9 3 8 m s , 3 0 0 m s SOA = 1 0 1 1 m s ,

1000ms SOA = 1008ms).

As eye direction could either be congruent, incongruent or neutral regarding the 

target location, a 3 (SOA) x 3 (Cue) repeated measures Anova was conducted on group 

data (see Table 3 for Anova results and Table 6  for mean RTs). There was a significant 

main effect for cue condition; RTs i d  not differ according to SOA but a d  vary according 

to whether the target was congruent or incongruent or neutral (p = 0.043). Fisher’s tests 

revealed that responses were faster to neutral compared with incongruent targets (p = 0.03;



neutral mean RT 946ms, incongruent — 1012) while responses to congruent targets were 

not significantly different from either (999ms). Overall, the data from the eye-direction 

conditions fail to replicate the evidence for reflexive orienting previously found with adult 

human subjects.

T able 6 : M ean reaction times and standard deviations tin seel for detecting taro-ets

cued bv congruent, incongruent and neutral eve direction.

Cue Condition

SOA Congruent Incongruent Neutral

1 0 0 ms 954 (125) 916 (132) 944 (109)

300ms 1033 (117) 1078 (95) 923 (100)

1 0 0 0 ms 1 0 1 0  (1 2 1 ) 1043 (159) 971 (130)

D iscussion

The results of Study 11 demonstrate than photographic images were no more effective

than schematic drawings in terms of invoking a response to depicted gaze. This finding 

reflects those reported for baboons (Fagot & Duruelle, submitted). In addition, head 

orientation was no more salient than eye direction within this paradigm. Thus, Java 

monkeys did not demonstrate a reflexive response to gaze in response to photographic

images depicting various gaze cues.

There are methodological issues that should also be considered. For example, it 

may be that introducing a neutral face (as used in the schematic faces study) before 

presenting the cue would have improved the procedure, Driver et al (1999) suggest that 

allowing for face-processing time, rather than suddenly flashing up a facial image, enhances 

performance. Furthermore, if done appropriately, this could lead to the appearance of 

movement in the images (Hood, Willen & Driver, 1998); it might be that a motion 

transient would invoke a reflexive response when a static image failed to do so.
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General D iscussion

The findings o f Studies 10 and 1 1  corroborate those of baboons tested with a similar 

methodology (Fagot Sc Duruelle, submitted), but contrast with the results found with 

human participants who have demonstrated reflexive gaze to both schematic and 

photographed faces (Friesen & Kingstone, 1998; Langton & Bruce, 1999; Driver et al 

1999). While a reflexive orienting mechanism would presumably be adaptive for any social 

primate, it may be that only humans reflexively orient to gaze. However, it may be that the 

methodologies used to date are unsuitable for nonhuman primate research.

There are various procedural modifications that could be made to these studies that 

could have implications for the results obtained. Firstly, the high percentage of time-outs 

and errors might suggest that the monkeys were not fully attending to the task. In order to 

reduce these numbers it might be adroit to introduce catch-trials (when no target appears) 

and time-outs for errors and failures to respond, that is, leave the monkeys with a shorter 

window in which to respond as this would encourage them to respond rapidly and 

accurately. Increased on-task attention would be more conducive to observing a 

phenomenon such as reflexive orienting (Fagot Sc Duruelle, submitted). Further issues 

which might be considered include the use o f pictorial stimuli (however, this is necessary 

for this paradigm), allospecific stimuli (but see Chapter One for discussion) and the 

absence o f a meaningful context. Perhaps the use of familiar conspecifics would be a 

means o f addressing these latter concerns, though of course, this could lead to subsequent 

complications concerning individual responses to significant others (see Chapter One, 

Section 2 ).

The present studies required that the monkeys make a preliminary response to the 

screen in order to initiate a trial; while this was included in order to try and ascertain that 

the monkeys were attending to the trial, it may have actually hindered performance. For 

example, a monkey may have still been completing a movement when the stimulus image
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appeared and their actions may have obscured the cue, or their posture may have 

influenced their response time to the subsequent target. It is difficult to think of an 

appropriate means of avoiding this problem. Manual initiation of a trial by the 

experimenter when the monkey is suitably attentive to the screen would be one rather 

cumbersome means, but a more practical solution might be to have each trial flash up for a 

very short duration so that a distracted monkey would miss the trial altogether unless they 

were attending. Within the present set-up the monkeys were free to move around the test 

area and it was therefore impossible to ensure that they remained centrally fixated. An 

alternative set-up whereby the monkey’s head is positioned upon a chin-rest to ensure that 

the head remains static and oriented forwards during testing might be a more appropriate 

means o f testing within this paradigm. However, this is the method used in a recent study 

with baboons that yielded the same results as the present studies (Fagot & Duruelle, 

submitted). Another possible modification would be to change the task requirements; for 

example, the localisation task used here would have been subject to any idiosyncrasies in a 

monkey’s position, posture or response action, while an identification or detection task 

which required a response to a central location would avoid this problem. However, this 

may not be the cause o f the results obtained as the findings coincide with those of Fagot 

and Duruelle (submitted) who used a joystick and therefore did not have problems due to

the baboons’ positions.

An alternative task could involve the introduction of a central facial stimuli on 

random trials within an ongoing discrimination task: would cue condition effect accuracy 

rates or response times on an already mastered discrimination task? Or could monkeys 

learn a complex discrimination task if the relevant factor were a short social cue (e.g., 

Lambert & Sumich, 1996), that is, would implicit learning occur more rapidly in response 

to such a condition than during a more abstract cue condition? In addition, studies using 

eye movement recording techniques could be used to investigate orienting response times
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to central social stimuli; response latencies to peripheral targets following a central facial 

cue could be explored in nonhuman primates (Hood, Willen & Driver, 1998). That is, 

rather than recording a manual response, a more sensitive measure such as latency to 

saccade might be informative. Thus, this general approach may prove to be a general basis 

for future research. In addition, social cues could be incorporated into a change-blindness 

paradigm (Langton & O’Donnell, submitted); the presence of social cues has been found 

to lead to more rapid detection of congruent changes in stimuli (such as the removal of 

objects from scenes). This method has the advantage of presenting more naturalistic 

images; instead of an artificial, isolated face appearing on a screen, visual orientation cues 

are depicted within a more meaningful context. This approach could certainly be adapted 

for use with nonhuman primates.

Chapter summary

The perception o f pictorial gaze cues was examined in Java monkeys. More specifically, a 

cueing paradigm was used to explore whether or not monkeys would exhibit an orienting 

reflex in response to the presentation of eye and head direction cues. Although this 

automatic gaze following has proven to be a robust phenomenon in humans, the present 

study did not provide evidence of an analogous behaviour in monkeys. Despite several 

methodological limitations, the findings coincide with those reported using a similar 

paradigm with baboons (Fagot & Duruelle, submitted). Thus, it may be that reflexive 

orienting is specific to humans or apes (who have not been tested using this paradigm), or 

that further methodological innovations may be needed to better examine this 

phenomenon in nonhumans. That is, although the results of the present study and that of 

Fagot and Duruelle (submitted) do not indicate any form of reflexive orienting in 

nonhuman primates, this paradigm may provide the general basis o f further exploration of

gaze monitoring in nonhuman primates.
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Chapter Seven 

Overview, Discussion and Future Directions

Chapter one: Literature review

This chapter outlined previous research findings and stated the aims of the present study. 

Nonhuman primates extract information from faces: they recognise conspecifics, individual 

identity and facial expressions. Primates are particularly sensitive to the presence of eye-like 

stimuli; responding to direct and averted gaze with spontaneous and trained behavioural 

responses and at the neurophysiological level. Research into non-self directed gaze has 

produced less consistent results; nonhuman primates may respond to another’s change in 

direction (visual co-orientation), but seem limited in their ability to use this same 

information within alternative paradigms, such as the object-choice task. This thesis set out 

to further explore monkeys’ responses to gaze and to examine whether varying 

methodologies have contributed to inconsistent findings regarding their abilities.

Chapter two: Spontaneous responses to gaze

Study 1  examined whether baboons would visually co-orient with a human experimenter’s 

shift in head and/or eye gaze direction. Baboons did change their visual orientation in 

response to a shift in head direction (even when the eyes were closed) and also 

demonstrated, albeit less reliably, a tendency to follow a shift in eye gaze only.

Study 2  presented various novel objects and explored whether varying perceptual contact 

would influence baboons’ and capuchin monkeys’ subsequent exploration of these objects. 

Results were inconsistent, although the monkeys did seem to prefer an object that had
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most recently been the focus of the more salient cue presented. Methodological concerns 

were discussed and refinement of the method was considered to be desirable before 

drawing strong conclusions.

Chapter three: Gaze discrimination in baboons

In Study 3, baboons were presented with a pictorial discrimination task, which required the 

categorisation o f whether depicted models were looking at or looking away from a target. 

The results of this study were ambiguous; baboons required extensive trials in order to 

categorise the stimuli successfully and furthermore, the baboons did not transfer the ability 

to a human model (Study 4). This suggested that either that baboons do not form such 

categories or that the approach was not tapping the ability which it had aimed to; it seemed 

that the baboons were responding according to simple perceptual rules and not processing 

the looking behaviour per se.

Chapter Four: An object-choice task with capuchins

It seemed that the object-choice task might offer a means of assessing the abilities of 

nonhuman primates to read gaze cues. Although capuchin monkeys were able to use cues 

up to and including eye direction alone (Study 5), further investigations suggested that they 

had simply learned rules in order to respond successfully (Study 6 ), a view also taken by 

PovinelH & Eddy (1996a) following extensive research with chimpanzees. In addition, head 

orientation was found to be more salient than eye gaze when these two cues were 

incongruent.

Chapter Five: A  Competitive task with baboons

The results from studies 5  and 6  (in addition to inconsistencies reported by others using 

the object choice task) led to a consideration of what features o f die object-choice task
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might be problematic for nonhuman primates. The idea that nonhuman primates are 

naturally competitive over resources and not co-operative, led to a modified task whereby 

baboons had to exploit a human experimenter’s visual orientation in order to remove food 

items that were not fixated. The results of this study suggested that a competitive approach 

might be a more fruitful one when investigating the gaze reading abilities of nonhuman 

primates; the baboons used cues fairly quickly and without explicit scaffolding training 

(Study 7). These abilities were explored further in Study 8 ; manual gestures were found to 

be more salient than head direction, and head direction was more effective than eye gaze 

(and was the preferred cue when conflicting head and eye directions were presented). The 

findings also suggested that the procedural details of the object-choice task adversely 

influence cue reading (Study 9).

Chapter Six: Reflexive orienting in Java monkeys

Chapter 6  described a computer-based approach to investigate processing of gaze 

information. A modified cueing paradigm was presented in which central gaze cues were 

presented immediately before the appearance of a target. Although cues were non- 

predictive o f the target’s location, research has shown that humans detect cued targets 

more rapidly than uncued targets. Study 10, using simple schematic drawings, found no 

differences in response times to cued and uncued stimuli. Study 11 used photographic 

stimuli but also failed to produce a response pattern characteristic of reflexive orientation. 

However, this paradigm could be modified in order to examine nonhuman primates’ 

responses to gaze more fully.
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1) H ow  do findings fit in with previous findings and theories?

It appears clear that different approaches to studying nonhuman primates’ responses to 

gaze may produce divergent findings, despite the fact that they are all purportedly aim to 

explore the same abilities. Nonetheless, consistencies are emerging from the plethora of 

studies published to date:

A) Many species of nonhuman primates reliably and spontaneously demonstrate 

visual co-orientation in response to changes of both head and eye direction (see 

Chapter One, Section 3.4a and Study 1).

B) Nonhuman primates do not readily demonstrate gaze reading abilities within 

other contexts, such as object-choice tasks. Nevertheless, they are able to leam 

contingencies between gaze information and outcomes, allowing them to solve 

the problems presented (see Studies 3, 5 and 7).

C) Competitive paradigms may be more conducive to gaze monitoring in 

nonhuman primates (Study 7).

D) Although nonhuman primates may respond to eye gaze alone, like young 

human infants, they respond more readily to head orientation (Studies 1, 4, 5, 6  

7 & 8 ).

The results reported in the above chapters confirm previous findings that 

performances in a simple visual co-orientation task diverge considerably from those 

obtained in all other paradigms (see Chapter One, Section 3). Baboons demonstrated 

spontaneous visual co-orientation but within other paradigms they did not demonstrate any 

immediate response to gaze. For example, the object-choice task could be successfully 

performed on the basis of simple co-orientation; being oriented to the correct side makes a 

correct choice more likely. However, it has been shown that the gaze following response 

does not facilitate performance on this task. There are two aspects that should be
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considered. What features of simple visual co-orientation situations elicit a gaze following 

response in nonhuman primates? What features of the other tasks presented are 

detrimental to gaze following?

Simple gaze followingmay be effective because, as Povinelli and Eddy (1996a) 

identify, this situation most resembles the ‘normal day to day interactions’ of nonhuman 

primates. The gaze following scenario often presents a human interactor in a fairly 

naturalistic context (e.g., Anderson Sc Mitchell, 1999); the experimenter typically engages in 

a contingent interaction with the subject, and trials are presented infrequently within each 

session. The other tasks presented were far more rigid and ‘unnatural’ and this maybe a 

significant difference between the studies and their outcomes. The reliability of the gaze 

following response could mean that it is some form of hard-wired response, or that it is the 

result o f considerable experience and learning of the contingencies between others’ visual 

co-orientation and the detection of objects and events. The failure to detect a reflexive 

orienting response in Studies 10 and 11 may favour the latter as a more appropriate 

explanation. However, Langton and Bruce (1999) proposed that an over-leamed response 

could also produce a reflexive orienting response. It may be that methodological 

weaknesses underlie the discrepant findings in between gaze following studies and the 

computer-based approaches tested to date.

When tested using paradigms other than simple gaze following, nonhuman 

primates do not seem to have an appreciation of the informative value of head and eye 

direction. The repeated failures to spontaneously respond to gaze in the other tasks 

presented are difficult to explain; null findings ‘seldom lend themselves to diagnosis* 

(Premack, 1988; Heyes, 1998; Zentall, 1998). However, it may be that the methods used to 

date have simply failed to reveal such an ability. Nonhuman primates are usually tested with 

human interactants (Povinelli & Eddy, 1996a) and in rather contrived experimental designs 

devoid o f any wider context (Hare, 2001; Matheson, Cooper, Weeks, Thompson &
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Fragaszy, 1998). Thus, nonhuman primates’ apparent reliance on simple procedural rules 

may be an outcome of the experiments themselves which may encourage such response 

strategies (Povinelli & Giambrone, 2000). Although comparative psychologists may 

consider the task demands to be fairly obvious, in the object-choice task for example, 

nonhuman primates are presented with a plethora of information and they are expected to 

extract the relevant information from the situation.

Perhaps the tasks presented lack ecological validity; many cues are presented in 

quick succession and the experimenter’s behaviour lacks contingency (with the animal’s 

own behaviours). Repetitive trials may lead to habituation to otherwise salient gaze 

behaviours (Povinelli & Eddy, 1996a; Tomasello, Hare & Fogleman, 2001). However, this 

seems improbable, as initial trials would be successful and the association between gaze and 

consequent location of food would presumably reinforce the response (Corkum & Moore, 

1995). An example of noncontingency is found in the observation period in an object- 

choice task; although the monkeys may initially co-orient with a gaze cue, the delay 

between their co-orientation and object presentation may be too long (see Study 1).

Conceivably, human interactants may be unsuitable models, as nonhuman primates 

may only be sensitive to the behaviour of conspecifics (Gomez, 1998; Povinelli & Eddy, 

1996a; Tomasello, Call & Hare, 1998). This argument is weakened by the fact that 

nonhuman primates respond to human gaze shifts within the gaze following (Study 1, 

Anderson & Mitchell, 1999; Ferrari et al, 2000; Povinelli and Eddy, 1996b; Tomasello, Hare 

& Fogleman, 2001). They also respond to human gaze behaviour in and other paradigms 

(Exline & Yellin, 1969; Kummer, Anzenberger & Hemelrijk, 1996; Thomsen, 1974).

Another possible explanation for the relatively poor performance o f nonhuman 

primates in many gaze paradigms is that studies have focused upon using gaze to locate 

food items (Studies 4-9) and perhaps nonhuman primates do not naturally use gaze 

information in this context (Itakura et al, 1999; Povinelli & Eddy, 1996a). Gaze monitoring
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may be important for monitoring social events and for predator detection (Povinelli & 

Giambrone, 2000), but perhaps location and direction of conspecifics is a sufficient cue for 

identifying food sources. The location of group members and their direction is probably a 

very reliable indicator of food sources (Menzel, 1974). However, the gaze following 

response presumably occurs regardless of what the actual target of gaze might be; that is, 

the target is not known until after co-orienting! Moreover, recent research using a 

competitive paradigm, suggests that chimpanzees do readily use another’s visual orientation 

to obtain food items; this has led to the suggestion that it is the co-operative nature of 

object-choice tasks, rather than the foraging context, that is important in interpreting 

negative results (Hare et al, 2000; Hare, Call & Tomasello, 2001; Hare, 2001).

A potential fundamental flaw with most paradigms is that they do not reflect the 

competitive nature o f nonhuman primate interactions (Byrne & Whiten, 1988; Coussi- 

Korbel, 1994; Schaub, 2000). In addition to recent findings with chimpanzees (Hare, 2001), 

the competitive alternative to the object-choice task (Chapter 5) suggests that a competitive 

approach may indeed be more conducive than the object-choice task to gaze monitoring in 

nonhuman primates. However in addition to the co-operative context, there are other 

features o f the object-choice task, such as the presence of screens and objects, that may be 

detrimental to performance (see Study 9). Moreover, Hare and colleagues approach 

benefits from being more ecologically valid in terms of using conspecific interactants, and 

from presenting a more naturalistic task than most previous studies. Studying nonhuman 

primates in such controlled but ‘naturalistic’ interactions with conspecifics, whether 

competitive or not, may be a more valuable approach than experiments which involve 

interactions with human experimenters (see Section 3.3, Blois-Heulin & Girona, 1999,

Hare, 2001; Tomasello, Hare & Call, 1998; Johnson, 2001).

O f particular theoretical interest are the findings that eye gaze does not appear to 

take precedence over other cues for nonhuman primates (Studies 1, 4, 5, 6 , 7 & 9). These
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data correspond with previous research suggesting that head direction is the more readily 

used cue (Anderson, Montant & Schmitt, 1996; Itakura & Anderson, 1996; Itakura & 

Tanaka, 1998). This conflicts not only with Baron-Cohen’s (1994) original concept o f the 

ED D  and its functions, but also with Perrett and Emery's (1994) modified DAD (which 

although incorporating alternative information sources, still proposes that the eyes take 

precedence when determining visual orientation). That is not to say that the eyes are not an 

important component of nonhuman primate interactions (see Chapter One, Section 3). It is 

clear that direct gaze is a highly salient signal for primates (and many other animals) and 

that Baron-Cohen’s (1994) model may be correct in identifying an EDD that detects eye

like stimuli. However, accurately detecting direct gaze and using another’s gaze as an 

information source regarding non-self directed targets, also requires that head orientation 

be taken into account. Thus, it would seem that Perrett and Emery’s (1994) DAD is a more 

appropriate model, although recent research has suggested that various information sources 

may be processed in parallel rather than in the hierarchical manner proposed (Langton, 

2000).

The finding that head orientation takes precedence over eye direction, and an 

insensitivity as to whether eyes are open or closed, may indicate that Baron-Cohen s (1994) 

model is also incorrect in proposing that EDD incorporates an appreciation of seeing. 

N o n h u m a n  primate data are not accommodated by the model in this respect and, 

furthermore, young human infants may also fail to respond to non-self-directed eye 

direction until around the age of 18 months (Corkum & Moore, 1995; Moore, 1999; but 

see Hood, Willen & Driver, 1998). Nonhuman primates do not seem to show any 

appreciation of ‘seeing5 per se, unless this is amodal and it is simply that the role o f the eyes 

is not critical (Povinelli & Eddy, 1996a). To date, there is no compelling evidence that 

nonhuman primates’ responses to gaze are based upon an appreciation of the 

‘connectedness’ of perception (Flavell, 1999). Moreover, an appreciation o f ‘seeing would
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have to be deduced from differential responses to the status of another’s eyes (such as 

open, closed, occluded or looking away); such responses could only identify a sensitivity to 

another s looking behaviours and would not conclusively identify whether or not ‘seeing’ 

was understood (see Chapter One, Section 4). Even an appreciation of the seeing/knowing 

relationship would only identify an awareness of the association between looking 

behaviours and subsequent actions. However, sensitivity to eye gaze would at least indicate 

a possibility that nonhuman primates understand that visual perception somehow connects 

the perceiver to what is seen.

Research to date does not indicate that nonhuman primates proceed to the shared 

attention (SAM), let alone Theory of Mind (TOM), level of Baron-Cohen’s (1994) model. 

While gaze is undoubtedly a highly salient feature of nonhuman primate interactions, and 

they may be capable of sophisticated geometric gaze following, these could all be processed 

by a Direction of Attention (DAD) mechanism (Perrett & Emery, 1994). If  Tomasello’s 

(1995) hypothesis is correct, then the absence of an appreciation of intentionality would 

preclude any recognition of ‘attention’. That is, nonhuman primates may lack an 

Intentionality Detector (ID). However, nonhuman primates certainly see others as both 

animate and directed (Jellema et al, 2000; Tomasello & Call, 1997). Baron-Cohen’s model is 

not particularly precise regarding the nature of the putative ID mechanism, he attributes it 

with identifying self-propulsion and direction, but this does not necessarily mean it 

identifies ‘intention’. Tomasello (1995) suggests that both nonhuman primates and children 

younger than one-year old, do not see others as intentional agents; that is, even the gaze 

following o f infants should not be interpreted in a mentalistic manner (Butterworth &

Jarret, 1991). As Povinelli and Giambrone (2000, p 25) suggest, for young infants and 

nonhuman primates, gaze following may be understood ‘not as a projection o f an internal 

psychological state of attention, but as a directional cue (i.e. a vector leading away from the 

eyes and face).’ Tomasello (1995) suggests that during their second year, human infants
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begin to appreciate intentionality and subsequently start to appreciate looking behaviour as 

intentional attentional states; if nonhuman primates do not develop this understanding of 

intentionality then they cannot progress beyond a geometric appreciation of gaze.

Although nonhuman primates have yet to demonstrate any mentalistic appreciation 

o f others5 looking behaviours, this is not to say that their responses to gaze must be simple 

learned associations. Johnson (2001) has suggested that viewing nonhuman primate social 

cognition as either mentalistic or based on simple rule learning may not be constructive, as 

it ignores many possibilities in between; behaviour may be complex without the capacity 

for mental state attribution (Povinelli & Giambrone, 2000). Whiten (1997, p 144) favours 

an interpretation based on mental state attribution, which he considers to be highly 

advantageous for social primates; ‘one of the most powerful ways to succeed in a complex 

social world is to read the very minds of one5s companions, and get one step ahead in 

whatever competitive or co-operative games are at stake.5 In contrast, Povinelli and 

Giambrone (2 0 0 0 ) propose a reinterpretation hypothesis whereby linguistic abilities allow 

humans to label behaviours in terms of mental state attribution although the behaviour 

itself preceded such labelling and need not be seen in such terms. That is, gaze following 

and other social behaviours are simply behavioural responses and do not need recourse to 

internal mental states: reading behaviour is sufficient even for sophisticated social 

behaviours. Povinelli and Giambrone (2000) draw support for such a position from 

findings o f computer simulations of chimpanzee social groups; these virtual chimpanzees 

behave in behaviourally sophisticated manners and inhabit a socially complex environment, 

but they do not reason about other individuals5 mental states, responding instead to

behavioural contingencies alone.

An example o f a complex but non-mentalsitic intetptetation of nonhuman primate

social cognition is given for recent findings regarding the gaze following abilities of 

chimpanzees (the species studied most extensively). Tomasello, Hare and Agnetta (1999, p
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776) conclude that ‘chimpanzees do not follow the gaze direction of others genetically, and 

they do not just learn gaze direction as a simple discriminative (arbitrary) cue; they actually 

understand something about the visual activities of other animate beings/ Thus, 

chimpanzees (and some other nonhuman primates) may have a tendency to gaze follow, 

but experience allows them to develop an understanding of other’s gaze across a wide 

variety o f situations (for example, how perception is affected by barriers) and how gaze 

relates to subsequent behaviours. As Heyes (1998, p 112) proposes, ‘it should be 

recognized that alternatives to theory of mind hypotheses are not necessarily ‘behaviorist’ 

or derived from learning theory. The social behavior of primates may be based on abstract, 

symbolic representations of nonmental categories.’

2) Methodological issues

Hare (2001) highlights three general methodological issues that affect research with captive 

nonhuman primates in general, and all of these are directly relevant to the studies reported 

in the preceding chapters. Firstly, sample sizes are usually small; consequently, subjects are 

often tested in several experimental conditions in repeated-measures designs. Even if 

counterbalanced designs are used, there are still problems relating to order effects so that 

learning effects become an important consideration when interpreting results. Secondly, 

not only are sample sizes small but as a direct result, individual variations may have a 

disproportionate influence on outcomes and therefore interpretation (Boysen, 1994). For 

example, in Study 4 , only one baboon was tested in each experimental condition; thus, each 

baboon’s performance had implications for how each condition was evaluated.

Many factors may influence a nonhuman primate’s motivation to perform a task 

As most tasks use food as reinforcers, the most obvious is how hungry an animal is; 

fortunately, maintaining a regular feeding routine is a fairly straightforward matter.

However, even small disruption in husbandry routines (delayed feeding, cleaning and
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temporary removal o f animals from groups) can affect nonhuman primate behaviour 

(Waitt & Buchanan-Smith, in press; Weinberg & Levine, 1980). In addition, social 

dynamics, such as agonism within groups, undoubtedly influence performance. For 

example, male baboons can be impossible to test when females in adjacent enclosures are 

visibly in oestrus (personal observation). Larger sample sizes would allow more freedom in 

experimental design and render the results more resistant to individual idiosyncrasies.

Thirdly, experimental design is tightly limited by logistical constraints. Researchers 

usually cannot physically interact with their study animals, it is often impractical to 

manipulate interactions between conspecifics (for example, most gaze following studies 

have used human interactants), and enclosure design largely determines what experiments 

can be conducted (Hare, 2001). For example, Hare et al’s (2000; 2001) studies with 

chimpanzees required very specific enclosure arrangements; conspecifics needed to see 

each other from either side of a communal test area, to which both had access during 

testing. Any replication o f this study with monkeys would require similar facilities.

The studies reported in this thesis also had some more specific methodological 

problems. One potential criticism concerns baseline trials in which the experimenter 

maintained a neutral posture (Studies 5 — 9); perhaps these trials resulted in the monkeys 

initially learning that the experimenter provided no information about the location of the 

food. This could be a serious design flaw as during the initial session when the monkeys 

were attempting to solve the problems, no relevant gaze information was available. The 

experimenter’s non-contingent behaviour might have reduced the clarity o f the task 

demands. However, any such effect was clearly limited to the earliest conditions presented; 

the monkeys did learn that the experimenter could provide effective cues and they used 

this information whenever possible, within their limits. The removal of initial baseline 

sessions might allow a better understanding of the nonhuman primates’ spontaneous 

responses when presented with these tasks.

213



As already mentioned, perhaps the tasks presented were too contrived for the 

nonhuman primates to make sense of. For example, in addition to the often non

contingent behaviour of the experimenter, there were also arbitrary rules such as limiting 

choices to one per trial (Hare et al, 2000). This clearly does not reflect any natural foraging 

tendencies o f nonhuman primates, who would presumably continue looking for food 

items. The constantly changing location of the hidden food in the object-choice task might 

be problematic; nonhuman primate search patterns are based upon location (e.g. Ristau, 

1998; Tomasello & Call, 1997). In addition, the presence of food may in itself be 

detrimental to performance. For example, in a study of self-control, chimpanzees were 

unable to respond appropriately (they had to indicate the smaller quantity) when presented 

with food items, but were successful when food was replaced by symbolic representations 

o f quantities (Boysen & Bernston, 1995). The presence of food and the fact that the task 

requires a suppression of natural search preferences may both be problematic; these factors 

may help to account for the divergence between simple visual co-orientation studies and

other tasks assessing nonhuman primate responses to gaze.

A serious issue for most of the studies reported in this thesis is that of differential 

reinforcement; the monkeys received feedback on each trial and this contributed to the 

learning of gaze cues, but the monkeys* responses may not have corresponded to 

behavioural predispositions (Hare, 2001; Heyes, 1998; Povinelli & Eddy, 1996a, Povinelli & 

Giambrone, 2000). It is unclear whether the monkeys needed to learn more about the task 

demands or the cues themselves; but the latter seems unlikely as monkeys readily respond 

to gaze cues in the visual co-orientation paradigm. What the results do demonstrate is that 

despite the methodological problems highlighted, and a lack of ecological validity for many 

o f the situations presented, monkeys are able to learn to exploit the behaviours o f a human 

interactant to good effect, showing that they are flexible learners. However, although 

performances were often indicative of learning strategies rather than some sort o f general



gaze appreciation, this does not necessarily mean that nonhuman primates do not have 

such an ability: the methodologies employed may have been inadequate (Hare, 2001).

3) Future directions

Despite the plethora of studies in recent years, further research of n o n h um an primates’ 

responses to gaze is indicated; some directions for future research are proposed in the 

following sections. Although these may appear contradictory, for example, suggesting both 

greater ecological validity and the use of computer-based paradigms, these directions would 

serve distinct purposes. More naturalistic studies allow the exploration of sensitivity to gaze 

in relation to the nonhuman primates’ natural environment. At the same time, the use of 

controlled experimental paradigms, such as computer-based approaches, allows extremely 

sensitive measures o f nonhuman primates’ gaze processing to be made. It is through such 

research that the psychophysics and neurocognitive processing of gaze can be explored.

3.1) Study species

Tomasello and Call (1997) highlighted the lack of data on the cognitive abilities o f most 

primate species and their comments are still pertinent a few further years on. Concerning 

research on gaze perception, the only species that has been extensively studied is the 

chimpanzee; even other ape species have received far less attention. Monkeys have been 

neglected, with most research being conducted on macaques; little is known about New 

World monkeys and nothing is known about colobines. In addition, prosimians have been 

the focus o f only two studies (takura, 1996; Anderson & Mitchell, 1999). Thus, there is a 

paucity o f data concerning the responses of most nonhuman primates to gaze. For 

example, only chimpanzees have been tested on their understanding of their own looking 

behaviour (Call & Carpenter, 2001). Comparative data on a wider range o f species would 

be informative for constructing a phylogenetic picture of these skills (Byrne, 1995; Povinelli
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& Eddy, 1996a; Tomasello & Call, 1997). They would also be usefhl for determining how

2-nd in what circumstances the various species respond to gaze.

Some authors have advocated a division between the great apes and other species 

o f primates in terms of their social cognitive abilities (e.g. Anderson, 1996; Byrne, 1995); 

however, the data from gaze studies do not yet support such a position (Tomasello & Call, 

1997). Chimpanzees have certainly demonstrated sophisticated responses to gaze, but the 

abilities o f other species have not been tested in comparable studies. Where comparable 

data is available, there is no evidence that the responses of apes differ from those of 

monkeys (further research is necessary for an evaluation of prosimian abilities). For 

example, both apes and monkeys readily gaze follow but have difficulties within other 

paradigms, such as object-choice tasks. Where differences are found these may be due to 

what Tomasello and Call (1996) term ‘enculturation’; as highlighted in Chapter One, 

nonhuman primates with extensive interaction with humans usually out-perform 

conspecifics without such experience. As yet it is unclear whether extensive exposure to 

human interactants results in ‘species-atypical competencies’ (Tomasello & Call, 1997) or 

individuals who will more readily interact with a human experimenter and have a better 

appreciation o f human behaviours in general. Cross-species comparison of this issue is 

impossible at this time, as monkeys have not been raised within a human environment in a 

manner comparable to the so-called ‘enculturated apes. However, as noted in Chapter 

Four, studying ‘helping hands’ capuchins’ responses to human looking behaviours might be

informative (Custance, Whiten and Fredman, 1999; Herve & Deputte, 1993,).

Kobayashi and Koshima’s (1997; 2001) recent work indicates that eye morphology 

is directly related to the amount o f visual scanning with eye movements alone. This leads to 

testable hypotheses regarding gaze following in nonhuman primates. For example, do 

species vary in their sensitivity to eye gaze according to the external morphology o f the 

eyes? That is, if elongation o f the eyes increases the visual Held with eye movements alone,
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does sensitivity to eye movements increase accordingly? Furthermore, if coloration 

(especially o f the sclera) serves to camouflage eye position and direction, does this correlate 

with abilities o f different species to detect eye movements?

Moreover, while gaze following has been recorded in several primate species (e.g. 

Tomasello et al, 1998) the phenomenon has only been well studied in two primate species, 

namely humans and chimpanzees (Butterworth & Jarret, 1991; Moore, 1999; Povinelli & 

Eddy, 1996b, 1997; Scaife & Bruner, 1975; Tomasello, Hare & Agnetta, 1999). Both human 

infants and chimpanzees have demonstrated sophisticated abilities when responding to 

another individual's visual orientation (Povinelli & Giambrone, 2000). In humans, although 

there is some disagreement regarding the precise time course of the development of gaze 

following, it emerges early in infancy and is well consolidated by 18 months (Moore, 1999). 

The only study o f the ontogeny of gaze following in chimpanzees indicates that they 

reliably follow gaze from late infancy (3-4 years old). Like human infants, chimpanzees are 

able to:

1) Follow another’s gaze to targets outside their own visual field (Povinelli &

Eddy, 1996b).

2) Accurately locate the target of gaze, for example, scanning past distractors

(Tomasello et al, 1999).

3) Respond to changes in another’s eye gaze only (Povinelli & Eddy, 1996b).

In addition, chimpanzees also show an appreciation of opaque barriers when following

gaze (Povinelli &c Eddy, 1996b; Tomasello et al, 1999).

It is noteworthy that, with the exception of responses to eye gaze (Study 1; Emery 

et al, 1997; Ferrari et al, 2000; Sato & Nakamura, 2001), this type of research Into gaze 

following abilities has yet to be conducted other primate species; the abilities listed above 

need to be explored in a wider range of species. For example, are non-ape species able to
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follow gaze geometrically, that is, beyond their own peripheral vision and past distractor 

objects to locate the target of another’s gaze? Until research has been broadened, 

conclusions regarding the evolutionary origins and phylogenetic distribution o f gaze 

following may be premature.

3.2) Developmental studies

Another area that has been largely neglected is ontogeny. Although the emergence of 

spontaneous gaze following has recently been explored in pigtailed and rhesus macaques 

and chimpanzees (Ferrari et al, 2000; Tomasello, Hare & Fogleman, 2001), it would be 

valuable to have further information on more species. In addition, it would be interesting 

to further explore the emergence of some of the forms of visual co-orientation recorded in 

human infants and chimpanzees. For example, human infants respond to head orientation 

rather than eye gaze until they reach around 18 months (Moore, 1999). The results with 

nonhuman primates are as yet unclear. Pig-tailed macaques tested as juveniles (2-6 years 

old) and rhesus monkeys tested in infancy (5.5 months onwards) were shown to respond to 

head and eye orientation, but only the pigtailed macaques were tested with eye gaze alone; 

while adults responded to shifts in eye directions, juveniles did not (Ferrari et al, 2000). 

However, the broad age-range of the monkeys studied (2 - 6  years) does not give much

indication o f when this ability emerges.

I t remains to  be determined whether the emergence of various gaze following

abilities in nonhuman primates follows a comparable time course to that observed in

human infants. Tomasello et al (2001) suggest that once chimpanzee gaze following

emerges as a reliable response, it may already be at a sophisticated level; those chimpanzees

who reliably visually co-oriented had also performed well in an earlier study which

examined their abilities to accurately locate the target of another’s gaze (Tomasello, Hare &

Agnetta, 1999). However, these conclusions are based on the performance of only four
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chimpanzees. Studies into human infants’ visual co-orientation abilities offer a plethora of 

methods that could be adapted for nonhuman primate studies (see Moore & Dunham, 

1995, & Moore, 1999).

3.3) Ecological validity

A recent paper by Johnson (2001) suggests that research into primate social cognition has 

been too constrained by the concept o f mental representations and associated experimental 

paradigms. She proposes that rather than hypothesising about the complexity of the mental 

state underlying behaviour, the complexity of the behaviours themselves may be more 

informative. This alternative, distributed-cognition model (e.g. Fogel, 1993) bases analysis 

on the complexity of ongoing observable behavioural contingencies; as Johnson (2001) 

puts it, it focuses upon ‘micro-level dynamics of particular interactions within that 

situation’. For example, research into gaze could be conducted using a micro-analysis of 

where and when an individual looks, and how this related to the ongoing situation, such as 

when and where other individuals look. Some studies with nonhuman primates have 

already considered some aspects of gaze behaviour within ongoing social interactions 

(Carpenter, Tomasello & Savage-Rumbaugh, 1995; Russell, Bard & Adamson, 1997), but 

further research in this area is desirable. These types of studies benefit from the fact that 

these interactions are occurring naturally, that is, results would not be unduly influenced by 

the methods imposed (Hare, 2001; Povinelli & Eddy, 1996a). That is not to say that the 

context could not be controlled experimentally, for example, competitive contexts could be 

created and interactions then recorded (e.g. Blois-Heulin & Girona, 1999). Focusing upon 

behaviour rather than representations need not result in a reduced richness of 

interpretation. Indeed, even for those who focus upon mental state attribution, their 

methods depend on observable behaviours on which their interpretations are based: as
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mental states can only be inferred from behaviours; perhaps behaviour is both necessary 

and sufficient for an analysis o f even complex social interactions.

The divergence between nonhuman primates’ spontaneous gaze following and their 

responses in alternative experimental paradigms suggests that the latter may lack external 

validity. Surprisingly, gaze research with nonhuman primates is only now undergoing a 

paradigm shift from co-operative to more competitive contexts (Hare, 2001). Theories to 

explain primate behaviour have for some time focused on the social environment and the 

need to compete with conspecifics (e.g. Byme & Whiten, 1988; Dawkins & Krebs, 1978).

As Whiten (1997, p 162) states, ‘to a Machiavellian primate, an entry level approach to 

mindreading through sensitivity to attention makes sense, insofar as reading the attention 

o f others affords information of those aspects o f the environment that will m ost probably 

affect their decision-making and thence determine future behaviour.’ Preliminary evidence 

indicates that competitive contexts may be conducive to exploring gaze perception in 

nonhuman primates (Study 7; Blois-Heulin & Girona 1999; Hare et al, 2000; Hare, Call & 

Tomasello, 2001; Hare, 2001). To date, only chimpanzees have been tested in direct 

competition with conspecifics with the focus on sensitivity to visual co-orientation.

Nevertheless, further exploration o f co-operative contexts may also prove valuable. 

Although co-operative situations with human experimenters do not appear to be conducive 

to gaze monitoring in nonhuman primates (or at least those with limited experience with 

humans), it would be interesting to study gaze patterns within co-operative situations 

involving conspecifics. For example, nonhuman primates reportedly use gaze when 

soliciting support from conspecifics by alternating their gaze between their potential ally 

and antagonist (Cheney & Seyfarth, 1990a; Kummer, 1967; de Waal, 1989). This form o f 

gaze alternation should be studied in finer detail as it involves a sophisticated visual co

orientation interaction. Other co-operative situations, including social learning, food 

sharing, or studies employing tasks designed to elicit co-operation, may reveal insights into
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nonhuman primates5 use and appreciation o f gaze cues. In a co-operative task, do 

individuals simply focus upon the task, or do gaze patterns alter as the individual becomes 

aware that assistance from others is required for successful performance? Gaze may be an 

important component o f all o f these interactions, and fine-grained analysis o f interactions 

may reveal complex and sophisticated gaze behaviours (Johnson, 2 0 0 1 ).

Direct comparisons of performance in co-operative and competitive situations 

might lead to a better understanding o f how and when nonhuman primates use 

information from others5 gaze. For example, Blois-Heulin &c Girona (1999) examined 

mangabeys5 social looking patterns in competitive and non-competitive contexts; non

food-related attentional structures were compared with patterns o f gaze monitoring within 

a competitive situation. Introducing a co-operative dimension to this paradigm would allow 

a comparison of gaze patterns in the two contexts.

Another area that has been neglected is the role o f rank on gaze monitoring 

behaviours. While rank is known to influence visual monitoring within social groups 

(Chance, 1967), does it also influence their sensitivity to other individuals5 visual 

orientation? One approach might be to present group-living primates with both 

competitive and co-operative situations in order to assess whether the monkeys reveal 

different levels o f sensitivity to the visual orientation o f others. Previous research suggests 

that subordinate individuals spend more time monitoring others than dominant group 

members do (e.g. Blois-Heulin & Girona, 1999; Watts, 1998). It may be that gaze 

monitoring has emerged as a response to social competition within groups. For example, 

when approaching a valuable resource, it would be adaptive for a lower-ranked individual 

to  be aware o f the location and also the visual orientation o f dominant group members.

It may also be asked whether general vigilance also varies with rank; that is, are 

subordinates simply more vigilant in general or do they just spend more time monitoring 

their social environment (i.e., Chance's attention structure, 1967)? Does it matter whether
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an event is intra-group or external, for example, a copulation as opposed to a predator? 

This could be explored using playbacks o f vocalisations related to predators and social 

events, which could then be matched with control non-playback data collection (e.g. 

Cheney & Seyfarth, 1990a). This might offer some insight into the function o f visual 

attention within group-living primates, that is, is it primarily due to pressures to deal with 

the intra-group or external environment, or both (Povinelli & Giambrone, 2000)

With regard to context, it could be argued that subordinates should display similar 

patterns o f gaze monitoring even when they (as opposed to dominant individuals) have 

access to food items, for example. I f  a subordinate individual is fortunate enough to locate 

a desirable food source, it would still be important to monitor other group members, in 

order to assess whether a dominant is visually oriented in their direction (and potentially 

aggressive). Alternatively, it may be that the location o f other individuals and not their 

visual orientation is important. For example, subordinates may respond similarly when a 

dominant individual is in close proximity, even if they are oriented in another direction and 

therefore not looking. Measures o f visual monitoring could take into account the location 

and orientation of other individuals, amount of time spent looking at other individuals, and 

the type o f look (for example, scanning, glancing or visual tracking; Blois-Heulin and 

Girona, 1999).

3.4) Alternative methods

Further research into the psychophysics o f gaze monitoring is desirable. Many species are 

extremely sensitive to direct gaze, but it is not yet clear what features determine this 

detection. For humans, it has been suggested that ratio o f sclera to iris is crucial (Baron- 

Cohen, 1994) and that this may be a robust cue, even though head direction may influence 

perception o f gaze direction (Langton, Watt & Bruce, 2000). In other words, computations 

based on scleral contrast might be inaccurate when the face is not centrally oriented, but
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this would only lead to small errors in judgements about direct versus averted gaze (Anstis, 

Mayhew & Morley, 1969; Thayer, 1977). However, at more extreme angles o f head 

directions, scleral contrast may not be sufficient; a head turned in profile but with direct eye 

gaze has a contrast pattern that is similar to that of averted gaze in a frontal-face. Thus, 

detecting direct gaze presumably requires information regarding eye direction to be 

processed within a framework that also processes head orientation (Emery, 2000; Langton, 

2000; Perrett & Emery, 1994).

Moreover, scleral contrast might be a less appropriate measure in nonhuman 

primates, due to eye morphology and coloration (Kobayashi & Koshima, 2001). 

Nonetheless, eye direction is perceptible in nonhuman-primates (see Chapter One, Section

3.2), and an exploration o f the features underlying this process is lacking. For example, is 

the iris/sclera relationship crucial (albeit less apparent), or perhaps the position o f the 

pupils? D o eye-like stimuli (regardless o f gaze direction) produce a ‘pop-out’ effect in 

nonhuman primates or is it only direct gaze that shows this pattern (von Griinau &

Anston, 1995)?

More sensitive measures could be informative regarding nonhuman primates’ 

responses to gaze. For example, response times and eye movements might be more 

effective than using grosser behavioural or manual responses. Although studies reported 

above (Studies 10 & 11) used response times (but did not identify reflexive orienting to 

gaze), there were methodological problems with these and Fagot and Duruelle’s 

(submitted) studies. This paradigm is a likely direction for future research as it allows the 

detection o f spontaneous and subtle behavioural responses to gaze. Although it is 

conceivable that reflexive orienting may be a consequence o f a mentalistic appreciation o f 

gaze (Driver et al, 1999), it may instead be foundational to future developments o f  visual 

co-orientation; research with nonhuman primates could help to clarify what underlies 

reflexive orienting responses in humans.
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Moreover, Fagot and Duruelle (submitted) reported that baboons learned to use 

the eye-direction information to predict target location; it would be interesting to explore 

these trained abilities further. For example, how would such predictive cues influence the 

learning o f a discrimination task? Within an implicit learning paradigm (e.g. Lambert 6 c 

Sumich, 1996), would ‘social’ cues such as eye and head direction be any more effective or 

readily learned that equivalent non-social stimuli? Another possible approach for use with 

nonhuman primates is a ‘flicker’ paradigm used to examine change blindness (for a recent 

review see Simons, 2000); this is the phenomenon whereby changes to visual scenes (or 

even real interactions) go unnoticed. The flicker paradigm presents two almost identical 

images in very quick succession; in one an object may be missing or have changed colour; 

these images can be repeatedly presented until the subject eventually ‘spots the difference’. 

A change blindness paradigm incorporating social cues as to the location o f change led to 

adult humans detecting changes more rapidly; the disappearance o f an object was detected 

more quickly if an individual was oriented towards that object in the preceding scene 

(Langton 6 c O ’Donnell, submitted). For nonhuman primates, images could be manipulated 

to show a stimulus monkey oriented towards or away from the location o f the changed 

item in the image; in addition, variables such as cue type (head, eyes or posture), cue- 

stimulus distance and identity of the model could be manipulated. This would allow 

exploration o f critical features; would mere proximity of a conspecific be an effective cue, 

or is visual orientation (head and/or eyes) also important?

Eye movements are a sensitive dependent measure. Research with human children 

has revealed that implicit behaviours, such as gaze, are sometimes dissociable from explicit 

verbal responses; in fact, gaze identifies the correct response on a false-belief task despite 

the children giving erroneous answers (Clements 6 c Perner, 1994). Nonhuman primates 

could be tested with the methods used by Hood, Willen and Driver (1998); the gaze o f a 

central face presented immediately prior to a peripheral target influenced the latency o f 1 0 -
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week-old infants’ orientation to the target. This method may be more effective than the 

cueing paradigms used with nonhuman primates to date because it does not require a 

manual response (such as joystick or touch-screen responses). In addition, the images used 

by Hood et al (1998) appeared to have motion, perhaps making them more realistic than 

the static images presented in the computer-based studies with monkeys.

A few studies have recorded frequency and duration o f monkeys’ visual inspection 

of scenes depicting gaze (Emery et al, 1997; Lorincz, Baker & Perrett, 1999; Santos & 

Hauser, 1999), but latency to respond to gaze information has yet to be explored. Emery 

(2 0 0 0 ) has highlighted how different eye movement measures, such as duration and 

frequency o f fixations, can lead to different results and interpretations (see also Mitchell, 

1972). Detailed data on visual scan patterns would allow saccade latency and duration and 

frequency o f fixations to be analysed. Hood et al (1998) suggest that traditional gaze 

following methodologies (e.g. Scaife & Bruner, 1975) may have underestimated infants’ 

perception o f gaze behaviours because of infants’ tendency to fixate on facial stimuli; 

perhaps nonhuman primates are similarly constrained by "sticky fixation’. Thus, although 

several species have been shown to follow gaze, in response to both head and eye 

direction, applications of Hood et al’s paradigm with nonhuman primates would allow 

increased sensitivity of the dependent measure (saccade latency) and potentially conducive 

conditions (removal o f central face).

It would also be interesting to attempt to distinguish between location-based 

responding, such as gaze following to a location in space, and some form o f object-based 

responding which would indicate that the target o f the gaze had also been noted in some 

way. One approach might be to move previously fixated objects to a new location prior to 

the animal’s response on a modified object-choice task. I attempted to conduct such a 

study with baboons but did not proceed beyond the training phase. Nonhuman primates 

exhibit a strong position preference and did not master the task of choosing an object that
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they had seen baited when its position was swapped with a non-bajted object, bather than 

using visual cues to guide their searches, nonhuman primates often exhibit a styong 

position preference (Ristau, 1998; Tomasello & Call, 1997)- Study 2, wftiph looked at levels 

o f interest in previously fixated items, could also be taken further by adapting the 

procedure so that nonhuman primates watched conspecifics attending to various objects in 

qualitatively and quantitatively different manners (using video, for example) ppiop to 

introducing various novel objects. This would allow a fuller exploration of how another’s 

visual orientation to an object m ight influence behaviours.

Even a simpler exploration o f how visual orientation influences subsequent 

responses to objects would be informative. For example, visual orientation could be 

explored using a similar paradigm to that used in Cook Ac Mineka’s (19b9) study o f social 

referencing. Although this study has been cited as identifying the role o f gage in social 

learning (Emery, 2000); it is not clear what role visual orientation plays in nonhuman 

primates’ social referencing. Would visual co-orientation influence which objects 

nonhuman primates linked the emotional signals with (Baldwin, 1995)? That is, would they 

specifically identify the object o f another’s emotional response, or display a more general 

•response to any nearby objects? Young children show specificity in their social referencing, 

rather than displaying a simple mood-contagion response, children ( 1 2  months old) 

showed differential responses according to which objects and adult had been oriented 

towards (Homik, Risenhoover & Gunnar, 1987; Walden & Ogan, 1988). Such paradigms 

could be readily adapted for use with nonhuman primates (Russell, Bard&  Adamson,

1997). In addition, the social relationships of the demonstrator and observer could be taken 

-into account (e.g., Coussi-Korbel & Fragaszy, 1995).

Study 3 attempted to examine whether baboons could form a concept of ‘looking 

at’ using a simple discrimination task. A better alternative might be to use a 

habituation/dishabituation paradigm, asking whether nonhuman primates perceive changes
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in depicted visual orientation. Human neonates are sensitive to direct gaze within a 

habituation paradigm, and this paradigm could be readily adapted for nonhumans (Batki, 

Baron-Cohen, Wheelwright, Connellan & Ahluwalia, 2000). Moreover, using paired images, 

this paradigm would also allow investigation of whether nonhuman primates perceive the 

relationship between models and the focus of their gaze. Pairs o f images that are the same 

in terms o f visual orientation in relation to target objects, for example, both depicting 

individuals looking toward an object (AA) or both showing models looking away from 

objects (BB), could be presented in sequence with pairs o f images depicting different visual 

orientations (e.g. AA > AB or BB > AB). If  subjects are sensitive to differing relationships 

between visual orientation and targets, then their interest should increase when a sequence 

o f pairs o f ‘same’ images is interrupted by a pair of ‘different’ images (and vice versa). 

Premack and Dasser (1991) recommend this paradigm for exploring cognitive abilities, as 

they draw a distinction between performing at a perceptual and a conceptual level. For 

example, relational matching to sample requires responses at a conceptual level, while a 

habituation/dishabituation paradigm simply requires recognition o f perceptual changes.
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C hapter sum m ary

The data reported in this diesis are consistent with previous research in this field. 

Nonhuman primates spontaneously follow gaze within a simple visual qo-orientation 

paradigm, but they do not readily use gaze as an informational cue within other paradigms, 

such as the object-choice task. Explanations o f this pattern o f results have been suggested, 

mainly focusing on the ecological validity o f the tasks and general procedural issues. In 

addition, nonhuman primates do not demonstrate preferential responding to eye gaze, in 

fact, head orientation seems to be a more salient cue. These findings are not readily 

accommodated by Baron-Cohen’s (1994) model in which the eyes are the pre-eminent 

source of information regarding another individual’s gaze direction. Directions for future 

research are identified. There is considerable scope for further research on a wider range of 

primate species, and for a greater consideration o f ontogenetic aspects. A more detailed 

analysis o f  the role of gaze in nonhuman primates’ natural interactions is desirable, but 

experimental paradigms are also worth pursuing.
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Appendix A:

Testing Olive baboons with an object-choice task.

Figures show experimenter (AV) oriented to the left (head and eyes) and 

the baboon (Gaspard) making a correct response.



Appendix B:

Testing capuchins with an object-choice task.

Figures show experimenter (SJV) oriented to the left (head and eyes) 

and the capuchin (Theta) making a correct response.



Appendix C:

Testing baboons with a competitive task.

Figures show experimenter (SJV) oriented to the right (head and eyes) 

and the baboon (Sylvestre) making a correct response.
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A ppendix E:

Individual Analyses for Schem atic Im ages.

In order to examine individual performances, each monkey’s data were subjected to  an 

analysis o f variance (Kingstone, Friesen & Gazzaniga, 2000) with Face (x2), SOA (x3) 

and cue condition (x3) as factors, the results are given in Table A. One monkey showed a 

main effect o f SOA; Yudea was significantly faster to respond at the 300ms SOA (100ms 

SOA mean RT — 1050ms, 300ms = 930ms, 1000ms mean = 1040ms, p = 0.043). There 

were no other significant main effects.

T able A: Overall Anova table for individuals w ith schem atic im ages.

Face (Control ad Face) x Soa (100ms, 300ms, 1000ms) x Cue condition (Congruent and 

Incongruent). F values with df given in brackets.

Subject Face SOA Cue F x S F x C S x C F  x S x C

Alfa 0.158 0.027 0.254 0.145 1.870 1.740 0.968

(1,130) (2,130) (2,130) (2,130) (2,130) (4, 130) (4,130)

Felix 0.079 0.654 0.195 2.146 0.862 2.980* 0.708

(1, 241) (2, 241) (2, 241) (2, 241) (2, 241) (4, 241) (4, 241)

Freya 0 . 0 1 2 1.974 1.411 2.896 0.163 0.992 0.874

(1,178) (2,178) (2,178) (2,178) (2,178) (4, 178) (4,178)

Hoeba 0 . 0 2 1 0.420 0.712 0.770 0.704 1.624 2.191

(1, 575) (2, 575) (2, 575) (2, 575) (2, 575) (4, 575) (4, 575)

Kraa 1.819 0.871 0.501 0.798 1.267 2.330 1.561

(1,124) (2,124) (2,124) (2,124) (2,124) (4,124) (4,124)

Milva 0.009 0.136 0.488 3.556* 0.669 0.497 3.481*

(1,155) (2,155) (2,155) (2,155) (2,155) (4,155) (4,155)

Roza 0.313 1.938 0.440 2.441 0.954 0.882 1.168

(1, 78) (2, 78) (2, 78) (2, 78) (2, 78) (4, 78) (4, 78)

Vip 0.373 0.167 0.178 0.498 0.518 1.290 1.463

(1, 356) (2, 356) (2, 356) (2, 356) (2, 356) (4, 356) (4, 356)

Yudea 0.918 3.165* 1.249 0.538 1 . 2 1 0 0.479 0.373

(1,376) (2, 376) (2, 376) (2, 376) (2, 376) (4, 376) (4,376)

* = p<0.05.



Two monkeys showed significant interactions. Felix showed an SOA x cue 

condition interaction (p = 0.02); at the 1000ms SOA there were significant differences in 

RT according to cue condition with neutral (direct gaze) targets being responded to 

significantly slower than incongruent targets (p = 0.019, congruent mean RT = 1046ms, 

incongruent = 952ms, neutral = 1254ms, and showing a trend in the same direction 

compared with congruent trials, p = 0.074). In other words, she was significantly slower 

to respond to neutral stimuli but only at the longest SOA.

Milva’s results indicate significant interactions between stimulus type and SOA (p 

= 0.031); she responded more slowly to the schematic face than to the control, but only 

at the 1000ms SOA, at shorter SOAs the face condition produced faster RTs (100ms 

SOA face mean RT = 1340ms, control == 1410ms; 300ms SOA face = 1180ms, control 

= 1430ms; 1000ms SOA face = 1420, control = 1250ms). Milva also showed an 

interaction between stimulus type, SOA and cue condition (p = 0.009); she responded 

more quickly when presented with a neutral schematic face at 300ms SOA, than to a 

neutral control image at the same SOA, was faster to respond to an incongruent target 

th a n  to a congruent or neutral target with the control stimuli at 300ms SOA, but was 

slower to locate a incongruent target than a congruent or neutral target with a schematic 

face presented at 1 0 0 0 ms.
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Appendix G:

Individual Analyses for Photographic Stimuli

All face types: congruent versus incongruent:

Supplementary individual Anovas were conducted. Three monkeys showed 

significant main effects and two others demonstrated interactions. Freya’s results indicate 

a significant effect o f face type (p = 0.035); she was significantly faster to respond to the 

head than half-profile condition (p = 0.01, mean RT head = 823ms, half-profile =

975ms, eyes = 903ms), Kraa showed a significant main effect for SOA (p = G.Q16), 

responses in the 1000ms SOA condition were significantly slower than in the two shorter 

SOA conditions (100ms mean = 981, 300ms mean 1024,1000ms mean 1166, both p < 

0.05). There was an effect of cue condition for one monkey; Vip was significantly faster 

to locate congruent targets compared with incongruent targets (p = 0 .0 1 2 , mean 

congruent = 1012ms, incongruent = 1123ms).

Felix demonstrated a face type by SOA interaction (p - 0.044); she was faster to 

respond to eye stimuli at 100ms and to the half-profile at 300ms, but was slower to head 

stimuli at IQQQms (see Appendix F for mean RTs). Milva showed a SOA by cue 

condition interaction (p = 0.008), she was faster to respond to a congruent location at 

IQOms SQA (mean congruent = 910, incongruent = 1060) and at 300ms SOA (mean 

congruent =10QQms, incongruent = 1040) but she was slower to respond to  congruent 

$ 1m  incongruent targets at the longest SOA (mean congruent = 1220ms, mcongruent =



T able A; All cues (head, eyes and  half-profile) congruent versus incongruent.

Anova table for Soa (100ms, 300ms, 1000ms) x Cue condition (Congruent and 

Incongruent). F values with df given in brackets.

Subject Face SOA Cue F x S F  x C S x C F  x S x 

C

Alfa 0.090 

(1,193)

1.163 

(2,193)

0.748 

(2,193)

1.033 

(4,193)

1.621

(2,193)

1.155 

(4,193)

1.188 

(4,193)

Felix 1.482 

(1,179)

1.118

(2. 179)

0.314 

(2,179)

2.510* 

(4,179)

2.028 

(2,179)

2.028 

(4,179)

0.293 

(4,179)

Freya 3.386* 

(1, 296)

2.294 

(2, 296)

2.560 

(2, 296)

0.943 

(4, 296)

0.718 

(2, 296)

0.332

(4,296)

0.355 

(4, 296)

Hoeba 0.443 

(1, 315)

0.223 

(2, 315)

2.751 

(2, 315)

0.447 

(4, 315)

2.044 

(2, 315)

0.265 

(4, 315)

0.683 

(4, 315)

Kraa 0.454 

(1 , 82)

4.204* 

(2 , 82)

0.505 

(2 , 82)

1.104

(4, 82)

0.895 

(2 , 82)

0.428 

(4, 82)

0.669 

(4, 82)

Milva 1.702 

(1, 213)

1.205 

(2, 213)

1.867 

(2, 213)

1 . 1 0 0

(4, 213)

0.143 

(2, 213)

4.997* 

(4, 213)

1.629 

(4, 213)

Roza 0.125 

(1, 224)

1.337 

(2, 224)

0.265 

(2, 224)

0.132 

(4, 224)

0.082 

(2, 224)

0.475 

(4, 224)

1.721

(4, 224)

Vip 0.203 

(1,194)

1.638 

(2,194)

6.390* 

(2,194)

0.377 

(4,194)

0.699 

(2,194)

2.609 

(4,194)

0.771 

(4,194)

Yudea 0.228 

(1, 290)

1.027 

(2, 290)

0.937 

(2, 290)

1.826 

(4, 290)

0.753 

(2, 290)

1.177 

(4, 290)

0.805 

(4, 290)

* = p<0.05.

Stim ulus Type:

a) H ead

As head direction either cued or did not cue the target location, a 3 (SOA) x 2 

(Cue) Anova was conducted on the individual data (see Table B).



Table B: Head: congruent versus incongruent.

Anova table for SOA x Cue condition. F values with d f given in brackets.

Subject SOA Cue SOA x Cue

Alfa 1.840 0.098 0.359

(2,64) (1,64) (2, 64)

Felix 0.080 0.523 0.433

(2,59) (1,59) (2, 59)

Freya 3.165* 4.154* 1 . 1 0 0

(2,98) (1,98) (2, 98)

Hoeba 0.499 7.451* 0.399

(2,105) (1,105) (2, 105)

Kraa 2.997 0.425 1.206

(2,65) (1,65) (2, 65)

Milva 3.400* 1.739 2.323

(2,69) (1,69) (2,69)

Roza 0.457 0 . 1 1 2 2.007

(2,74) (1,74) (2,74)

Vip 0.755 2.253 0.433

(2 ,6 6 ) (1 ,6 6 ) (2 , 6 6 )

Yudea 2.123 0 . 0 0 1 4.14

(2,89) (1,89) (2, 89)

* = p<0.05.

At the individual level, Freya showed significant main effects for both SOA (p = 

0.047) and cue (p = 0.044). Her responses were faster at the shortest SOA (720ms) and 

increased with longer SO As (300ms SOA mean RT = 890ms; 1000ms SOA = 860ms). 

Freya showed a cueing benefit, being faster to locate a target congruent with the head cue 

(mean RT = 760ms) than to detect an incongruent target (mean RT = 890ms). Hoeba 

showed a significant main effect of cue condition (p = 0.007), being faster to detect 

targets at locations incongruent with head direction (congruent mean RT = 950ms, 

incongruent -  810ms). Milva’s data reveal an effect o f SOA (p = 0.039); like Freya, her 

RTs increased as SOA increased (mean RTs = 860ms, 1050ms, 1140ms for 100ms,



300ms and 1000ms SOAs, respectively). Thus, two monkeys showed slower response 

times to longer SOAs, one monkey showed signs o f a cueing benefit for head direction 

but another showed a cost o f cueing. Overall, there is little evidence that head direction 

cues were inducing reflexive orienting responses in the monkeys; while one monkey 

showed both an SOA and cue condition effect, there was no interaction: she did not 

demonstrate the characteristic response pattern for reflexive orienting. There was no 

significant overall benefit (in terms o f RT) for targets that were preceded by a congruent 

rather then incongruent head, nor was there any significant interaction between the SOA 

and cue condition.

b) Half-profile

As the half-profile face could either be congruent or incongruent and congruent 

or incongruent with neutral eyes (direct gaze), a 3 (SOA) x 4 (Cue) Anova was conducted 

on the individual data (see Table C). At the individual level, two monkeys showed 

significant main effects and a third showed an interaction. Kraa’s responses were 

influenced by the SOA; she was significantly slower to respond at the longest SOA (p= 

0.014: mean RT 100ms SOA = 1020ms, 300ms = 1040ms, 1000ms = 1350ms). Milva 

showed a significant effect of cue (p = 0.004); she was slower to respond a incongruent 

half-profile with direct gaze (mean RT = 1270ms) than in either the congruent or 

incongruent condition (congruent =  1 0 0 0 ms, p = 0.018, incongruent = 1 0 2 0 ms p = 

0.034), but not significantly so in relation to the other direct-gaze cue condition (half- 

cueing =  1070ms, p = 0.086). Hoeba showed an SOA by cue interaction (p = 0.021); she 

was slower to respond to the neutral condition at 1 0 0 0 ms (mean 1080ms) than at 

100ms (760ms) or 300ms SOA (820ms).



T able C: H a lf  profile: Anova table.

SOA (100ms, 300ms, 1000ms) x Cue condition (congruent head and eyes, incongruent 

head and eyes, congruent head, neutral eyes, incongruent head, neutral eyes. F values with 

df given in brackets.

Subject SOA Cue SOA x Cue

Alfa 1.039 1.936 1.256

(2,123) (3,123) (4,123)

Felix 2.012 1.462 0.494

(2,110) (3,110) (4,110)

Freya 1.135 0.338 0.609

(2,191) (3,191) (4,191)

Hoeba 0.355 0.364 2.546*

(2, 203) (3, 203) (4,203)

Kraa 4.387* 0.545 1.436

(2,121) (3,121) (4,121)

Milva 1.567 4.581* 1.918

(2,146) (3,146) (4, 146)

Roza 1.621 0.874 0.659

(2,139) (3,129) (4,129)

Vip 0.332 0.696 0.839

(2,123) (3,123) (4,123)

Yudea 2.386 1.100 0.604

(2,190) (3,190) (4,190)

* =  p<  0.05.

c) Eyes

As eye direction could either be congruent, incongruent or neutral regarding the 

target location, a 3 (SOA) x 3 (Cue) Anova was conducted individual data (see Table D). 

At the individual level o f analysis, only one monkey demonstrated any significant effect; 

Felix showed an SOA x cue interaction (p = 0.018). At the 100ms SOA she was faster to 

locate an incongruent target than those preceded by congruent or neutral faces (mean RT 

incongruent = 679ms, congruent — 1003ms, neutral = 1011ms), at 300ms SOA she was



considerably faster when presented with a neutral face (congruent = 1232ms, incongruent 

=  1136ms, neutral =  741ms) and at the longest SOA she was faster to locate congruent 

targets than during incongruent or neutral trials (congruent = 673ms, incongruent = 

957ms, neutral 765). The pattern o f responses demonstrated are not typical o f those of 

reflexive orienting, however, her responses at 1000ms SOA could suggest that she was 

endogenously orienting in line with the eye-gaze cues and was thus faster to congruent 

locations and slower when targets were incongruent with eye direction.

Table D: Anova results for individuals in  eye direction conditions.

SOA (100ms, 300ms, 1000ms) x Cue condition (Congruent and Incongruent and 

Neutral). F values with df given in brackets.

Subject SOA Cue SOA x Cue

Alfa 0.421 0.098 0.359

(2,90) (2,90) (4, 90)

Felix 2.713 0.774 3.167*

(2,82) (2,82) (4, 82)

Freya 1.169 1.230 0.103

(2,139) (2,139) (4,139)

Hoeba 0.190 0.097 0.539

(2,157) (2,157) (4,157)

Kraa 2.656 0.193 0.558

(2, 89) (2,89) (4, 89)

Milva 0.831 0.950 1.912

(2,97) (2,97) (4, 97)

Roza 0.530 0.269 0.293

(2,105) (2,105) (4,105)

Vip 0.955 2.127 0.582

(2, 92) (2, 92) (4,92)

Yudea 0.070 0.426 1.159

(2,146) (2,146) (4,146)

* = p<0.05.


