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Summary

After a discussion of the behaviours that are found to occur
under various common schedules of reihforcement, a mathematical
model of learning is proposed, which covers those schedules where
reinforcement can be prescribed.as a function of the time between
successive responses.

'~ There are several possible conceptualisations of the model.

The one considered most often is one that uses the basic notions of
Stimulus Sampling Theory. The predictions of the model are tested
against the known properties of ratio, interval and DRL schedules
of reinforcement. In only one case do the predictions of the model
run counter to accepted experimental fact.

The model is also tested against specific data from human
subjects on ratio, interval, and DRL schedules. The model fits well
to the asymptotic interresponse time distributions for these schedules.,
However the fit of the model to distributions conditional on the
previous response being reinforced, or the previous response not being
reinforced, range from good to very bad, suggesting that sequential
effects are‘more complex than implied by the model.

vi



Chapter 1

INTRODUCTION

1.1 The Experimental Background

The statement that responses take place in time expresses a
fundamental characteristic of behaviour, (Skinner, 1938, pp 263-264).
Responses occur at different rates, in different sequences, and with
different temporal patterns, depending on the relations between the
responses and other events.,

Outside the experimental laboratory, responses and erviromments
are usually highly complex, making it difficult to describe and
measure the temporal relationships hetween events. Tome of these
problems can be overcome in the artificial simplicity of the
laboratory. This thesis will be concerned with a set of simple
situations that may be loosely described as "Free Onerant Schedules
of Reinforcement". To an observer, such situations can be summarised
as follows:-

A subject is placed in a simple enviromment (e.g. an
almost empty cubicle) where he may make some response, (Emit an
operant - Tor an analysis of the term 'operant', see Schick, 1971).
When this response has been emitted, a stimulus (the reinforcement)
is then delivered to the subject by the experimenter, in accordance
with some rule the experimenter has devised. (The schedule of
reinforcement).

This description is of necessity rather vague and generalised,
A complete description of the specific situvation used is given in

section 3.3, on experimental procedure.

Responses can be characterised by any one of their many propert
-ies, e.g. speed, intensity, duration, or location., The time that
net? that zre

considered to be the same, . for the purposes of experiment, is taken

elapses between between two responses, Rn and R

(on somewh=zt arbitrary grounds) to be a property of the later of
these two responses, Rn’ and is referred to 2s an Interressonse Time
(IRT). Regarded as a property of a response, it is obvious that the
IRT can be chozen zs the nronerty unon which reinforcement is made

contingent, The earliest exampleg of this can be found in Skinner



(1938), Wilson ~nd Keller (1953), and Sidman (195€), To follow the
usage in the literature, the phrase 'reinforcement of ar IRT' will

be used to refer to the reinforcement of the response that terminates
the given IRT, whenever the effects of reinforcement on IRT's are
being discussed, However, since responses are always separated by

time periods, any schedule of reinforcement, accidentally as it

were, reinforces some IRT's, but not others. Does this reinforcement
affect, in any systematic way, the patterns of responding on schedules
where an IRT contingency is8 not a specific part of the schedule?

- The answer seems to he that it does, and the elucidstion of a
specific mechanism to account for the precise patterh of results is
the aim of this thesis, At a verbal level, Skinner himself (1938),
used this effect to account for the different rates of responding on
variable ratio (VR) and variable interval (VI) schedules, when the
average number of reinforcements obtained per unit time were equalised.
(A VR schedule is one where reinforcement is contingent on a
variable number of responses being emitted. The only constraint is
that over a long period of time, the number of responses ser
reinforcement must average to some predetermined valve. A VI schedule
'is one where reinforcement is contingent on a variable amount of
time having elapsed since the nrevious reinforcement, The only
constraint is that over a long period of time, the number of
reinforcements per unit time must average to some predetermined
value.) Briefly, Skinner thought that since on VR, the faster a
subject responds, the more often he is reinforced, and hence a VR
schedule favours short IRT's., (A high rate of responding). On a VI
however, the longer a subject waits before responding, the more
likely he is to be reinforced, and this favours long IRT's. (A low
rate of responding). The weakness of this seems to te the casual
assumption of the equivalence in effeet of number of reinforcements
and probability of reinforcement,

The occurrence of both deliberste and accidental IRT reinforcement
- has ledto the establishment of two separate, but overlapping fields of
investigation with respect to IRT's. The results obtaine! from each
section will be considered separately, as follows:- v

a) Schedules of IRT reinforcement,
b) Analyses of other schedules of reinforcement, in terms of the IRT

¢+  Adistribution they produce,



a) Schedules of IRT reinforcement.

The simplest examples of reinforcement schedules that impose an
IRT requirement are usually described as 'differential reinforcement
of low rates of responding' (DRL). Here reinforcement is made
contingent on the duration of an IRT exceeding some specified value
x seconds (DRIx)., If the IRT is less than x seconds, no reinforcement
is given, and the timing period is begun again. (Figure 1.1.1). The
most general schedule on this pattern would be one where the two

probability values of the schedule were not 1.0 and 0.0, but p and q.

Figure 1.1,1 -- A DRL Schedule.

1.0'

Probability -
of Reinforcement
0.0

b 4 IRT in seconds

Such a schedule could be described as a DRLx;p,q. On such a schedule
if ﬁhe IRT exceeds x seconds it is reinforced with probability p. If
it is less than x seconds it is reinforced with probability q.
Normally it would be expected that p>q.

A variant on this type of schedule is the DRL with limited hold
(DRL 1H). Here the reinforcement is only msde available for a period
of y seconds, after the waiting period x has elapsed. IRT's of
greater than x+y seconds are not followed by reinforcement.
(DRIx IHy). (Figure 1,1.2).

Pigure 1.1.2 -- A DRL IH Schedule,

1.01

- Probability

of Reinforcement
- ) O.o h

X Xey IRT in s;conds

DRL type schedules are often regarded apart from other IRT

reinforcement schedules in that the learning to respond under such



schedules is customarily treated as the acguisition of a temporal
discrimination, and work is often centred around how subjects
acquire this discrimination,

The type of result usually obtained for the IRT distribution
under training on a DRI schedule is illustrated in Pigure 1.1.3,
which is hypothetical, in the sense that it does not illustrate the
results of any particular experiment. Its chief characteristics are
the two peaks, one for very short IRT's, and the other sround the

cutoff n»oint x.

* Figure 1.1.3 -~ Exemple of a typical IRT distribution obtained under

1.0 a DRLx Schedule,
Relstive
frequency of E
IRT's .
i
0.0 X IRT in seconds

The existence of a peak sround the value zero has not been
confirmed by all experimenters, (e.c. Kelléher, Fry and Cook 1959,
Veiss 1270) but is of fairly common occurrence and is difficult to
eliminate in animal subjects.

¥alott and Cumming (1964) suggest that its presence is simply
due to response bias and may represent some process that is distinct
from the actuel conditioning process. E.g. a generalised tendency
(VYorman 1966) for reinforcement to produce more responses,

Millenson (1966) has argued that the effect is one ue to the
different susceptability to reinforcement of shiort IRT's. However,
d=ta by Shimp (1967) on the reinforcement of short I3iT's do not
clearly indicate a susceptability greater than that of long IRT's.

Sidman (1956) has offered the plausible explanation trat in
some way these short IRT's help set the tinternsl clock' that times
the long INT's. He observed that short I=iT's often occurred in
bursts that followed a non-reinforced IRT that was only slightly
less thzn the critical value reqguired. Such hursts were then often
followed by a reinforced response, It is as if such bhursts of short
IRT's accurstely gsets the zero of some timing mechanism, Unfortunat
-ely, such bursts could equally he regarded sas evidence of a

failure to reset 2 timing mechanism, The response fails to reset



a timing mechanism, If a response fails to set the mechanism

timing the intervals between responses, then it will be read a=s if
the res)onse had not occurred. If such a failure, or series of
failures, occurs around the crucial cutoff point, then a series of
responses will ensue, as the 'clock' reads 'time to respond® and will
continueto do so until reset. These explanations are only valid if
the existence of some appropriate internal 6lock is taken for

granted,

There is evidence that the second peak is not, in fact, determi
-ned always by the use of an internal clock, but is fixed by what is
usually referred to as collateral behaviour.

Collateral behaviour is a term used to describe stereotyped
patterns of behaviour that have been observed to occupy the periods
between operant responses in animals (llodos, Ross and Brady 1962,
Kelleher, Fry and Cook 1559, laties, Weiss, Clark and Reynolds 1965)
and also in humans (Brunner and Revusky 1961)., It is suggested that
in the process of learning to respond on DRI schedules, subjects
build up an adventitious chain of responding that occupies the
waiting period and leads to an accurate performance on the schedule
without the need for a specific timing mechanism. Although
disruption of collateral behaviour does cause a deteriorstion in
performance on DRL schedules (Laties et al. 1965), there is
evidence that collateral behaviour is in some cases not sufficient
to account for the continued accuracy of DRL performance. (Laties,v
Weiss and Weiss 1969, Zuriff 1969).

The difficulty with the use of collateral behaviour as a
mediator in timing processes, is that it does not provide, by its
mere existence, evidence that it is used as a timing mechanism. In
a DRL schedule, & subject is set the task of obtaining reinforcement,
and the solution, to the subject (who does not possess the
experimenters blinkers) is non-unique. The schedule reinforces
timing behaviour, so timing behaviour may occur. On the other hand
it also (even if the experimenter did not plan it) reinforces many
other behaviours, and these behaviours persist because they are
reinforced, not because they mediate timing. Viewed in this light,
statements that disrupting eollateral behaviour lowers performance
on DRI schedules becomes the simple truisn that disrupting behaviour

disrupts behaviour,



Congiderations that cast doubt on the hypothesis that collateral
behaviour mediates timing behaviour, (e.g. how does it account for
the temporal properties of behaviour under schedules where temporal
discrimination is not an explicit part of the schedule), raise the
question of why it must be assumed that timing behaviour is
mediated. Under the proper set of reinforcement contingencies,
‘properties of a response such as its force, location and duration
can be selected and shaped. The IRT of a response can be treated as
a conditionable property of a response (Korse 1966, p67) and timing
can be regarded as-tﬁe successful shaping of selected IRT's,

Timing can alternatively be interpreted as temporal discriminat
-ion., Under the proper set of circumstances, the behaviour of an
organism can be bhrought under the control of varicus features of a
stimulus., Duration is also a discriminable feature of a stimulus
(Stubbs, 1958) and timing can be regarded as the succesgsful
discrimination of stimulus duraztion. The complicated stimulus from
which timing is extracted by a subject orn a DRI schedule is usually
unidentified, and may be unidentifiable, There is no reason to
suppose that the stimulus whose duration may be the discriminative
stimulus for timing behaviour, must be either an internal stimulus
(though this seems the most obvious source, as Anger (1963) suggests)
or a chain of responses, as the collateral behaviour hypothesis
maintains, Any stimulus - external, internal, or generated by
behaviour - might possibly serve as the stimulus from which duration

can be abstracted.

Attempts have been made by Schoenfeld, Cumming and Hearst (1956)
and Hearst (1958) to define temporal analogues of the VR and VI
schedules in the following maimner.

A time cycle of two components, tD and t& is defined, The periods
tD and tA alternate. The first response that occurs in a tD period is
reinforced. All other responses are not reinforced.

T= tD+tA is the cycle length, and T = tD/T is the »roportion
of a cycle in which reinforcement may occur. If T is short, then short
IRT's are likely to be reinforced, (cf., VR) and if T is moderately
long, then long IRT's are likely to be reinforced, (cf, VI), Thus
as T increases, there is a tra:rsition from ratio-like schedules to
interval-=like schedules,

Schoenfeld et al, appear to have hoped that in this manner they



would be able to bring ratio and intervel performance into a
coherent system. However, work by other experimenters, (lillenson
1958, Clark 1959, Cumming and Schoenfeld 1959, Farmer 1963) have
failed to produce such a system. Small T values do produce IRT
distributions rather like those obtained from ratio schedules, and
larger T values do produce IRT distributions like those_obtained from
interval schedules, but these cyclic schedules also appear to have
peculiar properties of their own, especially when the experimental.
subject detects the cyclic property. This approach does not seem to
have produced any really helpful insights into how the characteristic

patterns of VR and VI reéponding are produced by the schedule,

b) inalysis of Schedules of reinforcement in terms of the IRT

distributions they produce.

The first report of a serious attempt at the analysis of
responding under VI or VR schedules in terms of IRT's was mede by
Anger (1956), More recent attempts were those of lorse (1966) and
Catania and Reynolds (1968). Other experimenters have contributed
some experimental results, notably Ray and McGill (1964), Kintsch
(1965), Blough and Blough (1968), and Shimp (1968, 1969), The
experimental results can be summarised briefly in the following
sketches, (Figures 1.1.4 and 1.1.5). The actual results are affected
by the classification system used to record the IRT's and estimate
the relative frequencies. lany experimenters have used class intervals
of four seconds.width, which readily obscures the fiuer points of the

distribution,

Figure 1.1.4 -~ Example of a typical IRT distribution obtained under
a VR Schedule,

1.0 1
Relative
frequency of
IRT's

2.0
IRT in seconds

Althoush it is possible in a gross ws; to account for the

differences tetween the IRT distributions for VI and VR schedules,



(e.g. Skinner 1932) researchners such as Anger (1956), Morse (196F)
and Catania and Reynolds (1968), have been concerned with accounting
for the specific nature of the IRT distributions, but with notable

lack of success,

Figure 1;1.5 -~ Example of a typical IRT distribution obtained under
a VR Schedule,
1.0
Relative
frequency of
IRT's

0.0

IRT in seconds,

Both Anger and "orse, using data from experiments by Anger,
conclude that what matters is specifically which IRT's are reinforced.
They differ on the choice of which aspects of the IRT distribution
are affected by the distribution of reinforced IRT's. Morse chooses
the IWT distribution itself, while Anger opts for a conditionsl
function of the IRT distribution. (This he terms the IRT/0Ops. function.
A definition of this is given in the next paragraph). Since the
IRT/Ops distribution is essertially a logarithmic transform of the
complement of the cumulative IRT distribution the difference in
choice can scarcely be regarded as trivial. (Contrary to iorse's
opinion, footnote, !orse 1966, p67). That the data can be construed
as supporting both points of view is an indication of their
unrelability, Indeed, it is possible to prove that the conclusions

drawn by both Anger and Morse must be false,

To do this, some notation and terminology must first bve

defined.

i) r(t) : the density distribution of IRT's, i.e.,
Pr(t<IRTste+st) = r(t)6t.

1i) u(t) s the reinfofcement schedule, i.e.,
“r(reinforcement occurs | t<I?Tst+§t) = u(t)f

8



iii) IRT/0Oop.

This is an abbreviation for the interresponse time per
opportunity, and is the conditional probability of an IRT in interval
(ayb) given that it is longer than a,

It follows that,

IRT/Op.

for interval (a,b)

"
§ 2

r(t)dt

r(t)dt

&7

R{(b) - R(a), (14142)
1 - R(a)

where R(t) is the cumulative probability distribution corresponding
to I‘(t)o

iv) Reinfs/Hr.

This is the relative reinforcements per hour for IRT's
in a given interval (a,b), and is the number of IRT's whose
durations ore between a and b that are reinforced per hour,

Reinfs/Hr. .
= E2

for interval (a,b)

einforcements per IRT fof
interval (a,b)

Number of IRT's in interva
X (a,b) per hour :

Now,
Reinforcements/IRT = Sbu(t)r(t)dt
2 (1.1.0)
for interval (a,b) b ’ ‘ ol
ar(t)dt

and the average total time required for I IRT's is given by,

N Y;tr(t)dt = Tpg

where Mo is the mean IRT. Of theNIRT's, a proportion (R(b) = R(a))
will be in intervsl (a,b), and the number of IRT's in interval (=,b)

is thus, for vnit time, given by,



K(R(b) = R(a))
TS

= (R(®) - &a) . (1.1.¢)

My

Multiplying equation (1.1.c) by equation (1.1.b) gives,

b
Reinfs/Hr. _ R(b) - R{a) . Kau(t)r(t)dt

for interval (a,b) }ﬁ! XZ r(t)dt

&gu(t>r(t>at | (1.1.4)

With these definitions clear, it is now possible to quote Anger's

main conclusion:

"The agreement of the IRT/Op. curves with the Reinfs/Hr ‘curves
indicates that relative Reinfs/Hr., not the relative Reinfs/IRT,
determines-the IRT/Op. curve," Since these two curves are interdepen
~dent, Anger concludes that, "Relative stability would result when
the IRT/Op curve generates a Reinfs/Hr, curve that produces the same
IRT/Op. curve," This conclusion is then tested by changing the
reinforcement schedule and noticing its effect on both curves and
",... soon the IRT/Op. curve changes until it is in rough agreement
with the Reinfs/Hr. curve,"

It is possible to argue as to what Anger meant by the terms
"determine", and "in rough agreement™, but generally they seem to
have meant that the graphs of the IRT/Op. and Reinfs/Hr, functions
looked very similar to the eye. The simplest mathematicai equivalent
of this is to =2ssume that the functions are the same to within some
linear transformation of -the co-ordinates. (I.e, it is possible
with at most, changes of scale and a shift of origin to weke graphs
of the functions look exactly alike). If it is assumed that the
only implication is that there is some functional relationship, then

the result is trivial., There must be some such relatissship if the

10



functions are reasonably well behaved. The result is only non-trivial
if some simple relation is specified, However, Anger seems to imply

a restriction on the relationship which is greater than that of a
linear transformation of the co-ordinates. This is a linear transform
-ation of only one of the co-ordinates, as the same time axis is
required for both functions. The statement:-

"Analysis of the reinforcements given different interresponse
times by the schedules shows that the Reinforcements/Interresponse
time are greatest for long interresponse times, but that Reinforcements
/Hr. are greatest for short interresponse times, The agreement. .
between the greater Reinforcements/Hr. for shorter interresponse
times and ... "

indicates that the time axis is assumed to correspond for all
the functions used., Anger's conclusion can thus be restated as, 'at
asymptote the functions IRT/Op. and Reinfs/Hr., are the same to

within a linear transformation'. I.e. using (1.1.8) and (1.1.4),

b
l.Sau(t)r(t)dt = A(R(b) - R(a)) + B N (1.1.8)

P 1 - R(a)

where A and B are both constants.

Relation (1.1.e) must hold independently of the values chosen
for a and b, as these are simply the result of the experimenter's
choice, I.e. (1.1.e) must hold for some A and B, for any choice of
a and b, Let (a,b) be the small interval (t,t+8t).

(1.1.e) becomes,

ugtzrst2§t Ar(t)§t + B .
)JT 1 = R(t)

Simplifying this gives,

u(t)r(t) = ¢or(8) . 4 ' (1.1.1)
1 - R(Y) e

where C = Qy& and D = By&/&t.

11



Now,

oo o
o< Kou(t)r(t)dt‘ Lr(t)dt =1,

as, O u(t)==1 (u(t) is a probability), r(t) is a probability
density function, and assuming both U(t) and r(t) are non-zero for
some overlapping set of t-values,

Thus, from equation (1.1.f)

1 - R(t)

[
@
0< | cr(t)dt + Xol)dt =1,
t,

bu

o0 e %
X Cr(t)at -+ oDdt E-log(‘l - R(t)) + Dﬂ. o
©

o 1 - R(Y)

e if B g ~C

0if D= -C ,

neither of which lie in the required range.

Thus equation (1.1.f) cannot be true for all values of t and
hence equation (1.1.e) must be false for some values of t. Anger's
conclusion is necegsarily false,

Morse (1966) proposed a variant on the kind of matching effect
suggested by Anger. This time the actual IRT distribution and the
distribution of reinforced IRT's are supposed to produce an asymptotic
match, "The relative rate of reinforcement of different IRT's will
in turn have an effect on the subject so that he tends to produce a
distribution of total IRT's approximating the distribution of
Reinforced IRT's". In a2 manner analogous to that used to examine
Anger's (1956) statement, that of Morse may be analysed and shown to
be only trivially true.

Let v(t) denote the distribution of reinforced IRT's. Then,

12



v(t) = u(t)r(t)
o0
0u(z)r(z)dz

Morse states that, if A and B are constants, then,
r(t) = Av(t) + B.

Integrating both sides of this equation, between zero and infinity

gives,

o o0
j;r(t)dt S:ZV(t)dt + I;Bdt,

A+ B[t]:,

or,

-
"

which implies that A @« 1.0 and B = 0.0, if the relation is true,
I.e, that,

r(t) = v(t)

u(t)rgtz .
(-]
jou(z)r(z)dz

Therefore,

[ ]
Xou(z)r(z)dz

which is only true if u(t) is a constant. Morse's description of the
determination of the IRT distribution of reinforced IRT's is true only

for a special and trivial case.

Catania (1970, p7) has stated "the fundamental determinant of
differentiated responding is rate of reinforcement (reinforcements
per unit time) rather than the frequency of reinforcement (reinforce
-ments per response). This assumption agrees with the general
consensus in the literature."” The preceeding analysis of this
assumpﬁion, applied to the specific versions espoused by Anger and

Morse, suggests that this assumption is rather suspect.

13



Catania and Reynolds (1968) were much more cautious in their predict
-ions. They were content to illustrate that the more probable it is
that an IRT will be reinforced upon termination, the more likely

it is to be terminated. Even their conclusions however, are limited
by the assumption that the initistion of an IRT is equally likely

to occur during any part of the schedule. There is some evidence that
this is true for the initial exposure to certain schedules, (Anger
1965, Mueller 1950, Revusky 1962). With continued exposure to a
schedule, the unqualified assumption that the initiation of IRT's is
independent of the schedule becomes less and less tenable. (This must
be true if the schedule is to affect the distribution of IRT's).

The conclusion of this section is clear, The nature of the IRT
distribution produced by the most common schedules of reinforcement
is known, but there is no firm theoretical formulation to suggest
why certain schedules produce the particular IRT distributions that
they db produce., The next section déals with some applications of
existing mathematical models of learning to this problem and
examines their strengths and weaknesses, to assess whether or not

they cen be used to provide an appropriate theoretical foundation.

1.2 Mathematical Background

To study fhe way in which the IRT distribution is contrelled by
the reinforcement of different IRT's it is necessary to consider how
reinforcement schedules can be defined in terms of pure IRT reinforce
-ment, Attention has so far being restricted to VR and VI and DRL
schedules, How can these be defined solely in terms of IRT's and their
reinforcement?

Let u(t) denote a function selected by an experimenter such that
u(t) gives the probability that an IRT t (or more strictly an IRT in
interval (t,t+&t)) is reinforced, if it occurs. Can such a u(t) be
defined for VR, VI and DRL schedules of reinforcement? The answer is
'yes', and it is done'as follows.

i) Ratio Schedules
u(t) = p, Vt. p is a constant.

{Brandauer, 1958)

14



This is a special kind of ratio schedule. Ratio schedules are
usually generated by selecting a set of numbers, whose mean fixes the
ratio, E.g. the get 1,3,6,7,9,4, has a mean of 5. This set of numbers
is then randomised and used to determine which responses are reinforced.
They could be used in order 3,9,6,4,1,7 and the subject has to produce
3 responses for a reinforcement, then 9 etc. The cycle is repeated
when the end is reached. On average, 5 responses have to be emitted
for each reinforcement, On average each response has a probability
of 0.2 of being reinforced. What the Random Ratio schedule does is
make this an exact prbperty rather than'an average one, Under the
parallel Random Ratio (RR) schedule, each response would have a
probability of 0.2 of being reinforced.

ii) Interval Schedules
u(t) = 1 - exp(-¥t) Yt.
(Millenson, 1963)

¥is a constant. 1/¥ gives the mean interreinforcement time for the
scheduling (not obtaining) of reinforcements,

- The problem in interval schedules has always been how to specify
the nature and distribution of the intervals used. Many methods have
been tried. In an Arithmetic variable interval schedule, a series of
intevals of the form a~-d, a-2d, ... a-kd, arranged in random order
are used., (a and 4 are constants, k is some integer. The mean interval
is given by %kd). In Gaometric variable interval schedules a series
of intervals of the form a, ad, adz, veos adk, arranged in random _
order are used, (a and 4 are constants, k is some integer. The mean
interval is given by (a(1 - dk'1))/((k-1)(1-d))). Many complex
relationships among the intervals are possible. (E.g. Fibonacci
series have been used.) All the different methods of prescribing the
intervals produce slightly different patterns of behaviour. Recently
interest has been aroused in what is often termed the constant
probability interval achedule, This is a schedule where the probabili
-ty of a reinforcement being scheduled at a time T since the previous
reinforcement was scheduled, given that a period of at least T has

elapsed since the previous reinforcement, is a constant. I.e.
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Probability reinforcement scheduled at T
Probability reinforcement scheduled at T

a constant.

or at some later time

This conditionel probability is oftem referred to in the literature
as, rather confusingly, 'the probability of reinforcement'., A better
term, and one which illustrates the parallel with the IRT/Op. of
1.1.b(ii1) is 'reinforc :ment per opportunity'.

The function which satisfies this relation is,
1 - exp(~-¥T) (Millenson, 1963),

I.,e. the probability that a reinforcement is scheduled in the
interval (0,T) since the previous reinforcement is 1 - exp(-¥T).
(For an approximation to this see Fleshler and Hoffman, 1962),

The specific choice of intervals chosen to generate the interval
schedule is of importance, as Catania and Reynolds (1968) have shown
that in variable interval schedules, the rate of responding at a time
T since the previous reinforcement seems to be proportional to the
reinforcement per opportunity at that time. Thus constant probability
schedules can be used to produce very uniform rates of responding. This

is then often used as a baseline rate for other studies,

The constant probability schedule is of especial importance in
the present context, as Norman (1966) has proved that an interval
schedule, with intervals defined in accordance with the constant

probability relationship, is also the pure IRT reinforcement schedule
u(t) = 1 - exp(=¥t),
given at the beginning of this section., -
This schedule will in future be referred to as the Random
Interval schedule CRI), followihg Millenson's usage.

iii) Differential Reinforcement of Low Rates of Respording (DRL)

Py t=d
u(t) '

q, t<d,
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where p, q, and 4 are constants, d is the cutoff value and p»q. In
practice, the only valuesof p and q used are 1.0 amd 0.0 respectively.
The DRL schedule is naturally an IRT schedule. With the traditional
values for p and gq, é response is reinforced if its IRT equals or
exceeds d, and not reinforced if its IRT is less than d., This
schedule is naturally an IRT reinforcement schedule, and so there

are no problems in fﬁaming an appropriate definition in terms of IRT
reinforcement.

In the light of the above definitions of the various u(t)'s,
Ratio, Interval, and DRL schedules can all be brought into the same
classificatory framework. They are all schedules of interresponse
time reinforcement. The only attempts to analyse all schedules as
IRT schedules are the experimental works of Malott and Cumming (1964)
and the chiefly theoretical paper by Norman (1966).

Malott and Cumming suggest that it is possible to analyse the
effect of an arbitrafy schedule u(t) by regarding it as a complex
one-key concurrent IﬁT schedule (Shimp, 1968, 1969), The effect of
the overall u(t) schedule is described in terms of the effects that
the various simple schedules, into which u(t) is decomposed, have
upon performance, The basic components seem to be various DRL IH
schedules. Malott and Cumming provide a large amount of data on
the various DRL LH schedules, but unfortunately give no examples of
how these results are to be integrated to predict the outcome of
some arbitrary u(t). They further omit to describe how it is decided
into what basic elements 'a given u(t) is divided. It appears that the
predictive aspect of the study breaks down under the complexity of the
proposed task. ‘

Norman (1966) has a radically different approach. He makes
three very basic assumptions about the effects of reinforcement and
non-reinforcement on performance. These assumptions are then translated
into their mathematical equivalents, and the resulting equations
subjected to extensive manipulation in order to discover the properties
the model possesses.,

Norman's three assumptions are,

i) Reinforcement has a general tendency to increase the rate of

responding.
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ii) Reinforcement of an IRT t, increases the tendency to emit IRT's
of length t.
iii) Non-reinforcenent has a tendency to reduce the rate of

responding.,

These very simple assumptions - it is hard to think of a: weaker
set - are ttrmed, in their mathematical form, the Linear Free
Responding Model, by Norman. The central problem of the paper is that
the very weakness and generality of the assumptions leads to very
great difficulty in manipulating the equations to produce any
predictions. Norman surmounts these problems to some extent, by
making assumptions about the smallness of the parameters involved
and produces some approximate results. The final conclusions about
the relationship between the mean rates of responding and the mean
rates of reinforcement scarcely seem worthy of the preceeding
mathematics, Unfortunately the model is too difficult to handle with

ease,

Let r(t) denote the asymptotic IRT distribution. (I.e. the
probability of an IRT whose duration lies between t amdt+8t is
approximately r(t)St.) The problem is, very simply stated,

Given a reinforcement function u(t), what is the asymptotic

IRT distribution, r(t), that a subject will eventually produce?

Norman's model - the linear free responding model - has been
rejected as a solution to this problem, as it makes the problem
too intractable, Can an alternative be found? Norman essentially
considered that the iIRT was itself the response reinforced, and
that as such the response could take any value between zero and
infinity. Thus the response is esséntially a response on a continuum,
This suggests that other models for responding on a continuum may be

applicable to the oresent problem. These are:-

a) Linear models for Responses Measured on a Continuous Scale,
(Anderson 1964),
This model deals only with the mean response on a given trial,
It is thus a model for group effects. The function r(t) is an
individual function., This model is thus unsuitable for application to
the problem hefe.
18



b) linear Model for a Continuum of Responses.
(Suppes 1959, Suppes and Rouanet 1961, Suppes and Zinnes 1961,
Suppes, Rouanet, Levine and Frankmann 1964).

Formally, this model can be regarded as a simple version of the
Linear free responding model of Norman, Essentially it is the Norman
model without assumptions (i) and (iii). Briefly the model can be
described as follows; (For a complete formal specification, see the
paper by Suppes, 1959).

An experiment consists of a sequence of responses (xn) and
reinforcements (yn), denoted by S, upto and including the nth

trial. (The nth response followed by the nth reinforcement.) I.e.
n - (ynixniyn_1 ,xn_1. R y1,x1).

Sn is & history of responses x and reinforcements y. On any
trial i, the subject made response Xs and a reinforcement ¥y followed,
indicating that ¥y would have been the correct respcnse, The basic

axiom of the model is,

jnH(xlsn) = (1-0)j (xis _,) + €k(x;y ), (1.2.2)
where jn+1(x|sn) is the density distribution of the response x on
trial n¢t, given a history S, ® is a constant between zero and one,
and k(x;y) is a density distribution on x with a mode at y, the point
of reinforcement. k(x;y) is known as the smearing distribution,
because it smears the effect of a reinforcement at y over the portion
of the x-continuum around the value y. The basic axiom simply states
that the effective density distribution of x on trial ny1 is the
weighed average of the density distribution on trial n, with a
tendency to repeat responses around the reinforced response I

The model assumes that every trial is followed by a reinforcement,
so to keep matters simple, consider the application of the model to
the case of continuous reinforcement. When the continuum x is the

time ¢, this is a random ratio schedule with p =« 1.0. I.e,
u(t) = 1.0 V.

The conditional probability density distribution, on trial n,is

thus,
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fn(ylt)St = Pr(Reinforcement occurs at y
response is in interval (t,t+8t))

u(t)s(t-y)8t

§(t-y) 8¢, VWn,

where €(t) is the Dirac &function.

The mezn response distribution on trial n+1 is given by,

i. e, jn*1(t,sn) is summed over all possible past histories s . ( 3Cess)
is used as an omnibus function. It denotes the density distribution

of whatever appears inbetween the brackets,)

Now,

anﬂ (t’sn)dsn S;nn (t’yn’tn Sn-1 )dyndtndsn_1

Xjn+1(tlyn’tn’sn-1)an(yn'tn’sn-1)dyndtndsn-1

(1-0)§3n(tlsn_1)jn(yn.tn.sn_1)dyndtndsn_1

+ Oyk(t;yn)jn(yn,t )dyndtnds

n*5n-1 n-1

(from basic axiom)

(1-0)Xa‘n(tl Spq)3(s,_)ds,

+ OKk(t:yn)fn(ynltn),;jn(tn,sn_1)dyndtndsn_1

(1-0)r (t)

+ OXk(t:yn)S(tn-yn)jn(tn,sn_1)dyndtndsn_1
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= (1-0)r (1) » Ojk(t;y)rn(y)dy-

At asymptote this becomes,

r(t)

(1-0)r®) + ka(t;y)r(y)dy,
therefore,

r(t) Jk(t;y)f(y)dy. (1.2.b)

- - - e = e o e - ——

This equation is a homogeneous Predholm equation of the
second kind. Solution of this equation, in the traditional manner,
by series expansion of k(t;y) yields the obvious and trivial
solution,

r(t) = a constant, Yt,

as k(t;y) is a probability density function, When the further
constraint, that r(t) be a probability density function is added,

it can be seen that no such r(t) exists with the required properties.
The difficulty stems basically from the following property of the
model, viz., that all responses t are on some trial reinforced and
hence ultimately all responses are equally likely. As the response
continuum is the interval (0,o), the actual probability associated
with a particular response is arbitrarily close to zero. Thus instead
of the high rate of responding actually found under continuous
reinforcement, the model predicts a near zero rate of responding. The
model does not seem directly applicable to the description of

behaviour under schedules of interresponse time reinforcement,

¢) Stimulus Sampling Theories for a Continuum of Responses,
(Suppes 1959, Suppes and Frankmann 1961, Suppes and Zinnes 1966),
For simplicity consideration will be limited to the one-element
model, and as far as possible the notation will be the same as that
used in section (b).
The stimulus element has associated with it a smearing distribution
k(x3y) which is a density distribution with a mode at y, and a
variance independent of y. If’a response tn is made and is followed
by a successful reinforcement Ypo on trial n, then the mode of the

smearing distribution shifts from its previous value to Ve Note
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that,

r(t|mode of smearing =  k(t;y).
distribution at y)

Let response tn occur on trial n, followed by reinforcement Yoo
Let gn(z) denote the density distribution of the probability that .
the mode of the smear’ ' ng distribution is at z on trial n. The model
states that, if conditioning is not effective, (with probability
1-9), then,

n+1(2|t ) = g (z),

and if reinforcement is effective, (with probability @),

g, (218) = £ (z]%),

where fn(zltn) has the same meaning and form as in section 1.2.(b).
Combining these equations gives,

n+1(z|t ) = (1-0)gn(z) + Ofn(zltn). (1.2.c)

Now r, (t) satisfies,

(t)

r
ne1

[ n+1(tlz t ) (zltn)rn(tn)dtndz

[k(t;z)gn+1(z|tn)rn(tn)dtndz

= (1-O)Ik(t;z)gn(z)rn(tn)dtndz
+ qlk(t;z)fn(z|tn)rn(tn)dtndz,
(using equation 1.2.c).

(1-8)r_(t)

+ Oik(t;z)fn(z)dz,
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when fn(z[tn) = S(z—tn), as in section 1.2.(b). (I.e. it is again
assumed that the schedule of reinforcement is the continuous
reinforcement schedule, or RR 1.0).

At asymptote,

r(t) = (1-0)r(t) + G§k(t;z)r(z)dz,
therefore,
r(t) = lk(t;z)r(z)dz.
R N (1.2.4)

This result is of the same form as that found in section 1.2.(b).
Again the result is meaningless in the present context. The difficulty
is similar to that found with the linear model. All responses have
the same probability of reinforcement, and hence sre finally all

equally likely to be the mode of the smearing distribution.

d) Stimulus Sampling Theory for Continuous-Time Processes: Extension
to a continuum of responses,
(Suppes and Donio 1967).

This model is a model for tasks such as monitoring a particular
tone, or tones. Thé response 'listening for frequency f' can be
regarded as responding on a continuum, ‘as the frequencies f form a
continuum, The model is concerned with predicting the response mzde
at a given time, There are conceptual difficulties in applying this
model to schedules of interresponse time reinforcement, as time is
both the response, sand the period in which the response takes place,
(E.g. it is not easy to spezk of an IRT of duration t being made at
time T, since an IRT is not actually specified until it terminates.
However, it is possible to think that each time the subject sets out
to wait until a period t has elapsed since the previous response,
This waiting could be underway at some time T.)

Let T be some baseline time, running say, from the beginning of
the experiment. Let t denote the IRT. For simplicity agein restrict
the model to a single element, Let g(z,T) denote the density
distribution of the mode z, of the smearing distribution k(t;z),
at time T. This pafallels the function gn(z) of section 1.2.(c).

The continuous parameter T replaces the discrete parameter n.
r(t,T) parallels rn(t) and denotes the density distribution of the

probability that an IRT of duration t is in the process of passing

23



at time t,

Obviously,
r(t) = Lim r(t,T),
T
and,
r(toT) = Xk(t'z)g(on)dz-

Consider a small interval (T,T+§T). In this interval a reinforcement
will occur, provided a response terminating an IRT occurs. The
probability that this has been of duration t is, r(t,T)§T. Thus if

reinforcement is effective, with probability o,

gz, T+6T t) = f(z,T)t)

f(Z|t)o

(f(zlt) has the same meaning as before. It is the conditional
reinforcement function. This function does not depend on T).
If reinforcement is not effective, with probability (1-Q),
then,
g(z,T+8T|t) - glz,7lt).
Finally, if no response occurs, with probability (1-r(t,T)§T),
g(z,T+8T|t) s g(z,Tlt).
Combining these equations gives the mean result,
g(z,™+86TIt) = g(z,T{t) + or(t,T)(£(z}t)-g(z,T|t))§T,

which as 8T tends to zero, becomes the partial differential equation,

(FERIDEE +or(t,7)(£(z1t)-g(z,TIt)).
T

With an inital boundary condition denoted by g(z,olt) this equation

has the solution,
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g(z,T|¢) f(z|t) + (£(zlt)-g(z,0lt))

T
-exp(-OIOr(t.y)d.v) .
At asymptote,
Lim g(z,TIt) = g(zlt)
Toe )
= f(z“;)v
(from above).
Hence,
r(t) = Lim r(t,T)
Ty
= ILim SL(t,z)g(z,T)dz
T
= Ik(t,z)g(z)dz
\3
= k(t,z)r(z)dz,
because, -
| g(z) = g(z|t)r(t)dt
= £(zlt)r(t)dt
but, N
£(zlt) = §(z-t)
- (the schedule is RR 1.0).
Therefore,
8(2) - r(z)o
Thus the result is again,
r(t) = jk(t;z)r(z)dz.

This model must also be rejected, as again, like (b), and (c)
it predicts results which do not in any way correspond to the

experimental evidence available,
In conclusion, all the models outlined above, in various amounts

of detail, face (with the exception of Norman's model) one central

problem when applied to IRT schedules.- of reinforcement, They predict
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that at asymptote, responses that are equally likely to be reinforced
are equally likely to occur. The simplest example of an IRT
reinforcement schedule, RR 1.0 has been used to illustrate this.

Here every response is equally likely to be reinforced. It is well
known however, that on such schedules, very short IRT's vastly
outnumber long IRT's.

As well as having this common failing, the models above all
make a common assumption, that the IRT is itself the response.IIn
the next chapter a model is developed, which , while related to
the stimulus sampling models outlined above, does not make this
agssumption. Finally, in the ensuing chapters, this model is put to

test against experimental data.
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Chapter 2
THE MODEL
2.1 The Stimulus Process

"Animals have available some events, either internal or in
their behaviour, that change in a consistent way with time after the
last response, reinforcement, etc. These events function like
external stimuli, at least to the extent that differences in
responding can be conditioned to these organism differences,"

The above quotation is taken from Anger, (1963). In a very basic
way, all that follows is rooted in the assumption that this statement

is essentially true,

Assume that any response generates, or is associated with a
pattern of stimuli X that change over time, If t denotes the time
since the last response occurred, the pattern found at time t will
be called X(t). The changing pattern X(t) can be conceptualised in
many ways -- a stimulus trace, the reading of some internal clock,
the position in a chain of collateral responses -- the particular
conceptualisation is not important. What is required however, is
that changes in X(t) are consistent, in the sense that, after two
responses, R1 and R2, which are considered to be the same, then the
patterns X(t) are the same for each value of t, for each response.
(It is possible to weaken this assumption, without seriously affect
-ing the results that follow. It does however introduce a somewhat
needless complexity. The weakening is done by partitioning X(t) into
two parts, a consistent part, and a randomly varying part.) Perhaps
the most general way to envisage the situation is to consider that
X(t) consists of a set of stimuli, Changes in X can then be described
as the appearance, or disappearance of stimuli from this set, The
following diagram may help clarify the ideas about the stimuli X(t).
(Pigure 2.1.1).

A stimulus is available as a component of a pattern for a
period of time. E.g. stimulus f (figure 2.1.1) is available during
interval (O,to). At any time t, since the last response, a characteris
-tic set X(t) of all the then zvailable stimuli exists. These sets
are not all unique. E.g. X(t3) = X(t4). The set actually detected by
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a subject at any time t will be called x(t), and is a subset of the
total available set X(t). E.g. (figure 2.1.1)

Figure 2.,1,1 -- A diagramatic interpretation of the Stimulus Patterns

available after each Response,

: o P
Stimuli R t !

available ® i H 53

for : : b : | n
sampling. E — : :
' : c i)
[] v ¥ N
£ } d : e: :j; Time since
0 to i1 tz t3 t4 previous response. .

Stimuli crossed by a vertical dotted line indicate the particular

stimuli available at that particular time to form X(t).

X(t1) = (a,b,c,d), while
x(t1) = (a,b,c), or possibly
x(t1) - (a,b,d), etc.

Differences in sets x(t) can be used to discriminate among

values of t, but not perfectly reliably. E.g. if,

X(t1) = (a,b,c,d)
and

x(tz) - (a,b,c,e),
then t1 is distinguished from t2, but if,

X(t1) = (aob’c)
and

x(tz) = (a,b,c)

28



then t1 will not be distinguished from t,. The overall pattern X(t)
is the same after every response, but the associated pattern x(t),
that is the one detected, can vary within limits. Variations in
x(t) describe trial by trial variations in the accuracy. of temporal
discrimination, while the actual nature of X(t) fixes an upper limit

to the accuracy of temporal discrimination,

2.2 The Response Process

Given that there exists this continuum of patterns X, indexed
by t, how is the occurrence of a response, at a time t since the
previous response, determined. Let each pattern X(t) have associated
with it a probability of responding, @. This value of @, @(x(t)),
can be regarded as the proportion of the stimulus elements in the
pattern x(t) that are conditioned to the appropriate response., The

average value of #(x(t)) at a given t will be denoted by @(t), i.e.,
g(t) - Pr(response] some pattern x(t)).

Although @(t) is a response probability, it does not directly
determine the occurrence of z response, as it is really a conditional
probability., To reduce confusion, B(t) will usually be referred to
as the response strength function., It is to be assumed that the set
of patterns X(t) does not in any way affect responding unless the
subject is actually sampling from the stimulus set X(t). This
assumption is very important, as it enables the model being developed

to avoid the pitfalls of the models discussed in section 1.2.

It is 2 truism that organisms do not spend ell their time on a
single activity. It will be zssumed that there are many different
sources of stimuli, and that the organism samples from these different
sources, or continua, in accordance with some rule. The occurrence
of a response depends both on the appropriate continuum being
sampled and the local response probability for the pattern found
upon sampling. It will be assumed, for simplicity, though perhaps
unrealistically, that the response considered always has a zero
probability of occurrence for continua othen than X(t). Let WA(t)
denote the »robability thet the continuum X is sampled at time t

since the previous response, i.e.,
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YW(t)8t = Pr(sampling occurs in interval (t,t+§t)).
Notice that @#(t) can now be redefined as,

#(t) = Pr (response occurs | sampling occurs
in interval (t, t+8t)).

With §(t) and Y(*) defined, it is important to realise that
the response considered is essentially regarded as an instantaneous
process, In the next paragraph a prediction for the distribution
of times between successive responses is developed. A crucial
difference between this model and other models of interresponse
times may be stated here. The interresponse time is not of itself
the response. The existence of interresponse times is the result of,
i) Responses themselves take time to occur. (This aspect is being
temporarily neglected here.)

ii) Organisms 4o not spend all their time exeeuting a single response,
(Though sometimes they may try hard to!). Behaviour is variable,and
between any two responses, regarded as being identical, other

responses occur,

Let r(t) denote the density distribution of IRT's. I.e.,

Pr(t<IRTst+bt) = r(t)§t,

and let R(t) be the corresponding cumulative distribution., Then if

a response occurs in period (t, t+8t),
R(t+€t) ~ R(t) = (1 = R(EI (L) EtB(2),

as a response must not have occurred in the interval (0,t), with a
probability (1 - R(t)), a sampling must have occurred in ’eriod
(t,t+8t), with a probability W(t)8t, and ziven a sampling occurred,
the response actually occurred with a probability @#(t). As ¢t tends

to zero, this equation becomes,

dRr

dat

= (1 - R(t)PEIG(¢),

which has solution,
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R(t) 1 - exp(- oWy B(y)ay)

L exp(-j&(y)ﬂ(y)dy)

If it is assumed that, as is quide likely, the integral
given in the exponent in the denominstor does not comverge, then

the denominator is sirply one, and,

t
r(t) = 'V(t)ﬂ(t)eXp(-XOW(y)ﬁ(y)dy) (2.2.2)

If #(t) - k, say, a constant, and'W(t) = p, as a simple example,
it is possible to see easily the effect that the introduction of

sampling has on the model. It makes,
r(t) = pk exp(-pkt).
By allowing the possibility of not responding, even if k were
1.0, it transforms a constant response probability into an exponential

distribution of interresponse times.

2.3 The Learning Process

Having established how a response probability @#(t) can be
translated into details about the time between responses, it
becomes appropriate to ask how the values of #(t) are determined.
P(t) is determined by the conditioning history of the subject in

the following manner,

The experimental situation can be described as consisting of
2 series of trials, i = 1,2,3,e00s 5, the trials being demarcated by
the subjects behaviour. Responses and reinforcements are assumed to
be instantaneous events., A particular trial, q;s can be described

by an ordered pair,

qi - Qci't?r

where the suffix i indicates that this is the ith trial, i.e the
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interval ti between the (i-1)th and the ith response., If the

response that terminated the trial after time t;, is reinforced, ki

i

is one; if otherwise it is zero. Thus ki tells whether or not the
ith response was reinforced.

Let,
5 = [yoqedypr e3P

i.e. the history upto the ith trial. Then ¢i(t|si) gives the
response strength function after a particular history of responding
and reinforcing, described by 8y
Initially it will be assumed that non-reinforcement has no
effect., Thus, if a response is not reinforced on trial i,

” (t'tiys ) - ¢i(t'sl). . (2‘30391)

ie1
If reinforcement occurs on trial i, but is not effective,

By tltyes) = £, (s), (2.3.8,i1)

ied

and finally if reinforcement occurs and is effective,

B, (tltus) = B Gtls) & (1 - g, (tls))w(tst,).
(243.2,1iii)

This rather complex looking equation needs explanation of its
origin., Remember that at time t, there is a pattern of stimuli X(t)
available for sampling. X(t) is regarded as a set of stimuli. Let
a proportion of these stimuli, (which proportion gives the response
probability) pi(t) be conditioned on triszl i. Let the sample x(t)
taken from X(t) contain a proportion & of the total stimulus elements
of X(t), Then, if @ is the probability that a sampled element is
conditioned, given the response is reinforced,

Pi (8 = p ()« ((1 - p,(£))6)s,

i1
on average, for (1 - pi(t))d' represents the proportion of
unconditioned elements in the sample x(t), and © is their probability
of becoming conditionead.

The exactly snalogous equation is, using the present notation,
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B, b1, = ACtls) (1 - 4(ty]s ),

iet
where w = &
However, this is an inadequate model of the conditioning
nrocess as it restricts the effect of reinforcement only to the
point t = t,. Consider in practice the pattern X(ti+8ti), a pattern
adjacent to X(ti). This will contain some stimuli common to X(ti).
(See figure 2.1.1). Thus reinforcement in the presence of x(ti)
affects not only the future response probability at ti, but also
at ti+$ti. Thus the equation must be modified to spread out the
effect of reinforcement, i,e, it becomes,

i+
w(t;ti) ig termed the spread function. It takes valies between
0.0 and 1.0, and is assumed to have a maximum at ti’ the point of

reinforcement.

The following diagrammatic explanation may help clarify these
ideas. Assume that the subject is on a DRL5 schedule, and that
figure 2.3.1 represents the stimulus configuration and its state

of conditioning at some time early in exposure to this schedule,

Figure 2.3.1 ~- Representation of an early state of

Conditioning.

Stimuli

available

+ 5 t Time

EE;ZZZ} Conditioned Stimulus [::::] Unconditioned Stimulus
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Suprose that a sampling of stimuli takes place at t1 and all
the elements available are sampled. There is one element conditioned
so that figure 2.3.1 shows a response probability of 1/5. Assume no
response is made, but that a further sampling is mnde at t2, where
the response probability can be seen to be 1/4 (figure 2.3.1).
Assume this time that a response is made, As té=5, a reinforcement
will occur,and it will be assumed that reinforcement is effective for
all the elements available at t,. The state of conditioning becomes

2
ag in figure 2.3.2.

Pigure 2.3.2 -- Representation of state of Conditioning after

Reinforcement at t2.
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Notice that in figure 24.3.2,not only does reinforcement affect
the stimulus complex at t2, but also at adjacent values of t, as the
conditioned stimuli occupy finite periods of time, Thus the effect of
conditioning is spread out, This spreading effect is the effect
described by the function w(t:ti) in the learning equation,

It is obvious that after a lot of responding and reinforcing
under a DRL5 schedule that the state of conditioning should be as
illustrated in figure 2.3.3. In this figure, all the stimuli that
are available when t»5 have become conditioned. In this situation,
if a sample is taken for any t greater than 5, then a response will
be made, Note that although responses with IRT's less than 5 seconds
are not, and will not be reinforced, such responses will still be

emitted, This is because they represent responses to stimuli that
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Figure 2.3.3 == Representation of the final state
of Conditioning.
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were conditioned before the start of training, or they represent
responses to stimuli that overlap the cutoff value 5, and which have
thus been reinforced as parts of samples taken for IRT's greater than
5 seconds.

Equation 2.2.a says roughly that the IRT distribution is an
exponential transform of P(t), the response strength function.
Using figure 2.3.3, #(t) can be found for any t. (It is the
proportion of stimuli conditioned). The exponential transform is
graphed roughly in figure 2.3.4. This result is, qualitatively at

least, like the known experimental results, which were illustrated

Figure 2.,3,4 -- IRT distribution corresponding to the state of
Conditioning illustrated in Figure 2,.3.3.

r(t)

wm

Time
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in figure 1.1.3,.

Before the previous equations for the trial by trial transforma
-tions of @(t) (equations 2,3.,a,i,ii,iii) can be combined to give
a mean equation, two further functions need to be defined. These

are,

i) ci(t).
This is the probability that reinforcement will be effective
on trial i, following an IRT of duration t.

ii) ui(t).

This is the reinforcement schedule,

ui(t) = Pr(Reinforcement occurs on trial if
t<IRTgt+ §t).

It is the dependence of ui(t) upon t that makes the schedules
congidered interresponse time reinforcement schedules, though
under the model explicated here it is not actually the interresponse

times that are reinforced, Examples of IRT schedules are,

Random Ratio

ui(t) Py Vi,t-

Random Interval

u, (+) 1 - exp(-¥t), Vi, t.

Differential Reinforcement of Low Rates of Responding
' p if t2d
u; () = . Vi,t.
q if t<d,
P,q,¥ and 4 are constants in the above equations,
With this notation,

¢1+1(tlti’si) = ¢i(t|si) with probability,

(1 - ui(ti)) -- Non-reinforcement occurs.
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'} (tlti,si) = ¢i(t|si) with probability,

is

(1 - ci(ti))ui(ti) -~ Reinforcement occurs, but is not effective.

'ﬁm(tlti.s?) = g (tlsy) & (1 - g, (tls;))wltst,)
with probability, ci(ti)ui(ti) -- Reinforcement occurs and is
effective.

Combining these equations gives,

B, 1 (k] 58)) B (tls) + (1 - 8, (81 ) (8, e, (8, Iw(t;8,),

If j(si) gives the distribution of histories s,, then taking

i!
expectations over S5 gives,

jﬁi“(tlti.si)j(si)dsi Xﬁi(tlsi)j(si)dsi
+ XU = #(t]s;))u, (8,)e, (1 )wltst,)i(s,)ds, .

Therefore,

Byq(t15) = B(6) = (1= By (0))oy (b Duy (b Iw ity )

If ri(t) is the distribution of interresponse'times t on trial

i, taking expectations over ti gives,

0 ‘0
So¢i+1(t'ti)ri(ti)dti = [nomepay
' K;(1'¢i(t))ui(ti)ci(ti)w(t;ti)ri(ti)dti'
Therefore,
(a8 = 802 0 - A0t (23
where, , o
zi(t) = Xoui(ti)ci(ti)ri(ti)w(t;ti)dti.
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If this equation is written in the form,

B...(8) = (1 -2 ()8 (8) + 2, (8),

it can be compared with equations 1.2.a and 1.2.c of chapter 1., The
important distinction lies in the replacement of the (1-0) of these
equations, by the (1 - zi(t)) of the above.‘The replacement of the
constant parameter @ by the function zi(t) represents a change frpm
the fixed set of stimuli, and the fixed conditioning process, to
one where the stimuli, and the conditioning process, change with

time.,

If asymptotic convergence for ¢i(t) is assumed, then as i

tends to infinity, 2.3.a2 becomes, dropping the suffixes,

g(t) = g(t) + (1 - B(t))z(t),
so that,
0 = z(t)(1 - #(¢t)),
and either,
z(t) = o,
or,
gty = 1.

z(t) will not in geueral be zero, though it may be so, if for
some values of t, the component functions have ranges where they
are zero, and these ranges overlap to occupy the whole continuum,
Essentially z(t) will he zero for those regions where reinforcement
is not effective. These regions are not those where u(t) is zero,
(no reinforcement given to tiiese IRT's) but regions where reinforce
-ment has no influence, Some regions, although associated with non
-reinforcement, have the effects of reinforcement spread into them
by the action of the w(t;t') function. In general, z(t) will be

zero whenever,
<0
u(t*)w(t;t*)dt’ = o,
for all other regions, @#(t) will be one. This conclusion produces

the slightly unrealistic prediction that all u(t), such that u(t)>0.0C

for all t, produce the same asymptotic response strength function,
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and hence the same type of IRT distribution. This contradicts the
available evidence somewhat, e.g. Random Ratic and Random Interval
schedules of reinforcement produce rather different types of IRT
distribution.

This suggests that the model requires modification, and an
obvious and interestirg modification would be to allow non
-reinforcement to have an effect similar, but in the opposite
direction to reinforcement. All the functions in the following
development have the same meanings as indicated in the previous
sections. The superfix 1 is used to show when they refer to
reinforcement, and the superfix 0 to show when they refer to non-
reinforcement. The equations for the effect of reinforcement

become,
¢i+1(t|ti'8i) - ¢i(t|si)'

with probability (1 - cl(ti))ul(ti) -- Reinforcement occurs and
is not effective,

8. . (tlt.,s) = B.(tls.) - (e - B, (t]s,))w (458, ),
i1 i?" i i i’ i i i

with probability c;(ti)ul(ti) -= Reinforcement occurs and is
effective.

The analagous equations for non-reinforcement are,

B (bt 8) = B (t]sy),

i+

with probability (1 - cg(ti))ug(ti) - Non-reinforcement'occurs and
is not effective,

- 0 (0]
. eee 0, 40O . |
with probability ci(ti)ui(ti) -- Non-reinforcement occurs and is
effective,
Notice that in these equations,

0 - 1
ui(ti) - 1 - ui(ti).
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A further modification (in excess of the introduction of a
non-reinforcement effect) will have been noticed in the previous
equations. This is the introduction of d1 and 49. The d1 replaces
a previous 71" and “O an expected "0". The interpretation of these
two terms is simple. As will be proved later, they form bounds on

g(t), for,

The psychologicel interpretation of dp and aﬂ can be as follows,
Every stimulus set X(t) can be divided into two parts, in the
proportions, a consistent proportion, (aﬂ - 49), and a random
fluctuation proportion, (1 = aﬂ * do). (E.g. see Estes and Burke
1953, Estes 1956). Only the proportion (d1 - ap) is generally
manipulable, in practice, by the conditioning and deconditioning
nrocess, Of the remainder, a proportion A?/(1 - oJ + AP) is always
conditioned to the response, (e.g. this could be the 'operant level')
and a proportion d1/(1 -a - do) are effectively never conditioned.
The proportion (1 - dT - do) is assumed to vary randomly from trial
to trial, so that even if some of these stimuli are conditioned on
any one trial, they are unlikely to be present on the next trial to
affect the response strength,

These two parameters are useful at a verral level to account
for temporary, but not very short-term,fluctuations in behaviour,

E.E,. 4

i) Spontaneous recovery:-

Intensive non-reinforcement may drive @P(t) below the normal
levels of qp, by forcing out of the X(t) patterns, all conditioned
stimuli, Cessation of training may allow a substantial cunange in
the fluctustion proportions, and some of these stimuli may be
conditioned to the response, Responding may thus start again, or

move to levels higher than that when extinction was discontinued.

ii) Patigue:-

Patigue may have the effect of flooding sets Z(t) with non-
conditione? stimuli, thet vary from trial to trial. Thus ﬂ1 will
fall, but as the organism recovers, the @(t) values can re-zssert
themselves, and responding begins again,

There are Lowever other ways of explaining the effects of fatigue.
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It could be suggested that fatigue affects AY(t), to reduce the

rate of sampling, and Lence the rate of responding.

iii) Satiation:-

Parts of the sets X(t) may be deprivation associated stimuli.
As reinforcement is obtained, these stinmuli may disappear, thus
lowering the effective value of dﬁ. The behaviour will then become

less probable and the rate of responding decrease,

Let,
1 if reinforcement occurs on trial i
kg =9
L 0 if reinforcement does not occur on triel i,
and,
" 1 if conditioning/deconditioning is effective
on trial i
1, o= 9
0 if conditioning/deconditioning is not effective
" on trial i.
Let,
k.0 k
i - i
ci (t) - 1 - ci (t),
ang K, 1 K,
cy (t) = cy (t).

With this notation, the equations describing the various
possible transformations of ¢i+1(t|ti'si) can be summarised by the
single equation,

k k.,
B (bleaey) = Blbleg) = (7 - 40t 0,)1,w Histy),

ky kyly
with probability, ug (ti)ci (ti).
Taking expectations over 1,, k;, s,, and t, gives,
i41

k »
i ki ki k1 ki
B.,,(t) = 2,(t) ¢ S -, (1) RRGER R CA LR CREACARLUE
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Assuming the asymptotic convergence of ¢i(t), then,

k o0
2(«1‘-¢<t))Xow“(m)uk(y)c“(y)r(y)dy = 0.0

and hence,

® i
Sa W (tsy)u" (7))  (3)r(y)ay

R K, \ k
Swilt;y)u(y)e (y)r(y)ay

p(t) = (2.3.1)

To obtain a feel for the kind of function @(t) is, for a given
u(t), put, o

(] = cost! Vt,
)
and
1if t =y
k -
w (t;y) =
0if t £ y.

(This value of wk(t;y) is obviously unrealistic in terms of the
psychological background of the model as it makes the spread effect
zero, This does not matter for the moment however, as it can be
regarded simply as an approximation used only to givé an idea

of the nature of #(t).) '

Introduction of these values gives,

#(t) = _aC0(1-u(t)) & alu(t) .
e(1-u(t)) + u(t)

If @ = 0,0, (i.e. non-reinforcement is not effective) then,

g(t) = .

0

(Unless u(t) = 0.0 also, when #(t) = &)
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If @ =0, (i.e. reinforcement is not effective) then,

g(t) = &,

Otherwise; P(t) lies between these two values, If these two values

are in fact zero and one, then,

#(t) u(t)

o(1-u(t)) + u(t)

u(t) .
0 + (1-0)u(t)

For the special value @ = 1,0, this gives #(t) = u(t). It is
only under these very restrictive conditions that any kind of

matching will occur. Since, (equation 2.2.a)

%
r(t) = Y/(t)¢(t)exp(-XOV(Y)¢(y)dy).

this suggests that it is highly unlikely that any simple matching law
will relate the forms of r(t) and u(t).

Equations (2.2.a) and (2.3.b) are the fundamental results
derived from the model. These two equations give implicit determinations
of the functions #(t) and r(t), Only for very simple u(t) do these
equations have explicit solutions for @(t) and r(t)., Before even
these cases can be considered however, it is necessary to investigate

in greater detail the spread function w(t;t') and the sampling function

yit).

2.4 The Spread Function

From the heuristic description of the conditioning process
given in figures 2.3.1 to 2.3.3,it is obvious that the spread function
is highly variable in form, depending on how the various stimuli
available are assumed tc intersct with one another., It would seem
likely that w(t;t') could be related to the limiting form for the
generalisation gradient for temporal discrimianztion. It is still a

matter for controversy &s to whether or not generzlisation gradients
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(Generalisation gradients give the protalility of a stimulus s

eliciting a response that o sulbject has been trained to produce to
stimulus s', when s ands' lie on some common continuum. The response

to s' is said to generalise to s.) are innate or learned. (Terrace

1966). However it would not “e unreasonable to consider that w(t;t')
might be the function that described the sharpest possihle stimulus
centrol available at t'. If this were so, then experimental investigetion
of temporzl discrimin.iion could elucidate the spread function.

In the =bsence of any adequate data to specify the spread function,
it would ap;ear best to choose some function that is either extremely
tractable, or which satisfies some assumed theoreticel constrzints.,
Several possibilities are open. For example, an interesting and

relatively simple choice might be,

P, (1-X)t'st=(1¢k)t?
w(t;t") =

0, otherwise,

where p and k are constants,

The spread effect then occupies a region kt' in width on
either side of t'. The sprerd effect is directly proportional
to t', This is equivalent to saying that the greater the time since
the last response, the greater the persistence of a presgnt stimulus,
Since discrimination is dependent on changes in X(t), this is
equivalent to saying that discrimination becomes more difficult =s
time pesses. At fime t since the last response, a period of kt
must elapse, on average, before X(t) changes, and hence before a
discrimination of time passage is made. This is similar to
proposing that temporal discriminations follow a Weber's Law with
parameter k,

Another possibility would be to choose,

' p.exp‘[-gt-t'z ]
wit;t') = VAN 2y skt
1 ¢ kt' /2w

where k and p are agein positive constants. (The constant Dy in
both these examples gives the ratio of the number of elements in

the sampled set x(t), to the maximum number of elements available,
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which is the number of elements in X(t)). The spread effect is here
normally distributed :round ~ mean of t' and with a standard
deviatiou of (1 + ktV/2w)A/Zn. (The 1//7x factor is simply to malke
w(N3;0) = p. This is the maximum value w(t;t') can take for any pair
of values (t,t').) Making the standard deviation of the spread
effect proportional to t' is again equivalent to making a Weber's
tyoe law hold for temporel discriminations. Also however, as t'
~increases, the maximum value of w(t;t') falls in accordznce with
o/(1 + kt'/2n). Thus reinforcements for smzll t values have =
proportionally greater effect than those for large t values,
(This is an effect that has been suggzested by WMillenson, 1963,
to account for the persistence of short IRT's on some DRL schedules.)
It is not necessary that w(t;t') should te sym-etric about t',
though thiz is usually conveuicnt, The simplest symmetric function

is,

p t'-agtSt'+a
w(t;t') =

0 otherwise,

where p and a are constants,

This is merely a rectangular function of fixed width 2a., It
is chosen for its mathematicel simplicity and tractability. In
terms of figure 2.3.1, all the stimuli are assumed to be roughly
equivalent in duration, =nd sny pattern x(t) contains a large
number of stimuli, ,

In all the applications of the model, the following further

simplifications and notations will be used,
wiestr) = wO(est0),
The sprerd effect is the same for hoth conditiouing and decorditioning.

This is tlie natural assumptiou to muke, as they are presumel to

refer to the same sets of stimuli,

1]
—

¢l (t)
and
co(t) co.

The effectiveness of conditioning and deconditioning is a constant,
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independent of tlhe velue of t.

Let,

"
©

1
pc
and

1]
L2

0
pc

Bquation (2.3.b) now bucomes,
t+a i "
a0, u (y)r(y)dy T
-3 - . . (‘213QC)

+2 k T
zoku“(y)r(y)dy
-a

#(t)

This form for P(t) will be used in all further developments
of the model,

2.5 The Sampling Function

So Tar, very little has been said atout the sampling function
\d(t), except to assume that it is independent of the previous

response history, and of the trial number. I.e.

Y, (tls) = W) Wi,s,,

end thus YW(t) is not menipulated by the learning process, This assum
-ption is made on the following grounds.

If the szmpling process is manipulated ty learning, samnpling
must be regarded as the response coi:ponent of some process, This
response (sampling from X(t)) is a response to certain stimuli,
These stimuli are themselves presumably sampled by some higher
(nigher in th= sense of more distant from the observed responses)
mechanism. However, could not this sampling also be manipulated hy
learning? This leads to an infinite hierarchy of stimuli and
sampling, which is undesirable. It appears better to assume that
sampling is not affected by learning.

The chief Adifficulty in accepting this arjumnent is that it is
rot intuitively unreasonable, on other grounds, to let Y(t) bve
affected by = learning process. In some sense, Y($)8t could be said

to give tle probsbility of atteading to the zppropriate stimulus
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dimension in the interval (t,t+8t). Tainking of the sampling

srocessg in terms of an attentional process reedily suggests that

any parameters of Y(t) might easily be manipulated by factors such

as learring, previous exposure to IRT sciedules, etc. This ettenticnal
idea of sampling seems closely related to the notion of an

observing response, and obgerving responses can be conditioned.
(Wyckoff, 1952).

The final choice of W(t) rests chiefly on its simplicity. In
many ways, t is not the natural variable to index W with., When
desling with responses, IRT's are easier to manipulate than other
variables which could be used to describe the distribution of
responses in time. (E.g. it would be possible to use time since
the start of the experiment, and investigate this distribution, or
to use time since reinforcement, etc.) Similarly, it is preferable
for the sampling process to use, if possible, intersampling times,
rather than time since the last response, to specify VY.

Let T denote an interssmpling time, and let VP(T) denote the
density distribution of intersampling times., The basic assumption
is that,

Vi) = .exp(-0T),
P

i.e. that intersampling times follow a poisson process with paraméter
.2 :

Let the probability that the kth sampling takes plesce. in
interval (t,ts8t) be denoted by ¥, (t)&t. Then,

Evi(t).

However, 1ﬂi(t) is the coavolution of'vﬁ(T) with itself k times, and
thus,

W)

p(,ot)k"1Exp(-pt) .
(k-1)1

Vi(t)

Therefore,

Qo
z/o(et)k'1Exp(-,ot)

k=1 (=1

- W)
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pg(et)kkp(-pt)
k!

= 7

Thus the assumption that intersampling times are exponentizlly
distributed (i.e. random in time) leads to the very simple expression
for (t). Y(t) is a constant for all t. This assumption will be
utilised in the following applications of the model, end p Will
always refer to the parameter of the sampling distribution.

With this value of Y(t) the expression for the IRT density
distribution becomes, '

t
r(t) = pﬁ(t)EXp(-Xo,olﬂ(y)dy) (2.5.8)

2.6 Some Asymptotic IRT Distributions

It is perhaps convenient to collect together here the basic
equations for the asymptotic IRT distribution. Their present simple

form, accepting the conclusions of the previous two sections,is,

0 t+a 1 tea
a0 (1-u(y))r(y)dy + & & u(y)r(y)dy

-a

g(t)y = - , (2.6.2)
t+a t+a
0& (1-u(y))r(y)dy + l u(y)r(y)dy
-a -8

wnhere © = 00/01, and represents the relative effectiveness of

reinforcement and non-reinforcement, arnd,

t
r(t) pﬂ(t)mp(-x_fﬁ(y)dy). (2.6.b)
0
The difficulty with these equations is that r(t) is defined
in terms of P(t) and P(t) is defined in terms of r(t). This pair
of equations is not, in general, soluble for r(t), for an arbitrary
reinforcement schedule u(t), though solutions do exist for certain

u(t), An iterstive method was devised, for finding r(t), given u(t),
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0 :
Y(t), w(t;t') end x°, ¢1, and @. This wss set u»n as an algol
programme, SAGENAR, which is, together with some comments as to its

mode of operation, given in Appendix I.

Table 2,6,1 -~ Model and Schedule parametérs used to calculate the -
curves of FPigure 2.,6.1. Values of © were variable (V) and are gliven

on corresponding curves.

Schedule | Schedule Parameters Model Parameters
o 41 e a P
RR p p = 0.1 D.0 1.0 ¥V 0.5 5,0
RI ¥ ¥ = 1/60 0.0 1.0 V 0.5 5.0
DRL d;p,q |d=5.0 p=0.5 g=0.0 0.01.0 ¥ 0.5 5.0
DRL d;p,q [|d=5,0 p=0.5 q=0,0 0,02 1.0 Vv 0.5 65,0

Pigure 2,6.,1 gives some IRT distributions calculated for
various reinforcement schedules from equations 2.,6.,2 and 2.fF.b,
Table 2.6.,1 zives the details of the parameter values used, These
graphs can be used to give an idez as to the general properties of
the model, It can be seen that as @ increazses, (non~-reinforcement
becomes more effective, or reinforcement less effective) that the
overall riate of responding falls, illustrated by the general
flattening of the curves,

A comparison of ratio and interval predictions shows that
interval schedules favour longer IRT's than do ratio schedules,
Ratic schédules always have their mode at zero, while interval
schediiles have a mode at progressively larger values of t as @
increases,

The predictions for the DRL schedules show a striking peak
in the region of the cutoff point. The interesting point to notice
is that if the effect of reinforcement is greater than that for
non-pvéinfércement,; then the peak tends to lie to the left of the
cutoff value. A large number of the IRT's emitted are just less thanu
the required value for reinforcement, and performance is relatively
inefficient, If however the effect of non-reinforcement is greater
then the effect of reéiuforcement, then the peak tends to lie to
the right of the cuteff value, most IRT's are reinforced and
performance is relstively efficient. One of the characteristic

43



differences between pigeon z2nd rat performance on DRL schedules is
that pigeons tend to produce an IRT distribution whose peak is to
the left of the cutoff point, while rats tend to produce a
distribution whose peak is to the right of the cutoff point.
Interpreted through the framework of the present model, this indicates
that rats are relatively more sensitive to the effects of non-reinforce
-ment than are pigeons, and suggests for example that superstitious
conditioning (Herrnstein 1966) should be more frequent in occurrence
for pigeons, where the effects of the occagsional spurious reinforcem
-ent will only slowly extinguish through non-reinforcement, than for
rats.

The attempt to account for the pezk near zero in the IRT
distribution from a DRL schedule (by setting'dp # 0,0) does not
appear too successful, as the gradient of this region is too small.

On the whole, the model seems promising,however,

2.7 Some Conditional Statistics

Generally,

t .
r(ts;) =  pB(t Isi)EJcp(-Xo rB(yls;)ay),

so that finding conditional statistics for the IRT distribution
reduces to the problem of finding conditional statistics for the
response strength function. Conditional statistics of particular
interest are those distributions of IRT's which foliow reinforcement
or non-reinforcement, The following section proves an interesting

property of the means of these distributions,

Let,
1 if reinforcement occurs,
k =
0 if non-reinforcement occurs.
Then,
k tea
gtlk) = A(t) ¢ (« - A(£))6 \ r(y)dy.
-a
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Now if reinforcement has no effect, i.e. @
(2-603)’

1 = 0.0, then from equation

gty = O,

Similarly, if non-reinforcement has no effect, i.e. 00 = 0.0, then
from equation (2.6.a),

g(¢) = &,

Thus,
L=pt)=d,
and hence,
L - pt)= 0= d - #(1).
As,

e =0.0,

and, , tea
r(y)dy ==0.0,

-8,

then the three previous results taken together imply that,

P(tlk) = p(t)=sB(511) | (2.7.2)

At asymptote, the mean IRT is given by,

t
iaxr(t)dt S.t/OO(t)Exp(-g pe(y)dy)at
0 0 0

t .}
[—tExp(-K LBy )dy)]
0 0

t
+ X:Exp(-xo PB(y)ay)dt.

The first term on the RHS is zero, giving,

«© t
Mean IRT = X Exp(-Xoloﬁ(y)dy)dt.
0

By analogy,

"} t
Mean (IRT|k) z X Exp(-L,oﬁ(ylk)dy)dt (2.7.b)
0
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From 2.T.a, as P ig always positive,

LB(t10) s pB(t) = pp(t1).

Integrating this inequaslity over the interval (0,t) gives, as
the functions are szlways uositive,

t

t t
X pﬁ(le)dysg pﬂ(y)dysx rB(gl1)at.
o 0 )

Therefore,
t t ' t
Exp(- pﬁ(le)dy)?-Exp(-X PB(y)ay) =Exp(-| p8(yl1)ay),
0 0 .
and as these are olways positive valued,
0 " ot t @ %
Exp(-x POyl 0)dy)it = OEXp(-XO/oﬂ(y)dy)dt; ngp(-x PB(y11)ay)dt,
0 0 ‘ 0 0

fience,

1Zean(IRT[0) > ean IRT =Iliean(IRT|1).

Thus, on average, responses which follow reiuaforcement tend to
have shorter IRT's than responses which follow non-reinforcement.

Thus a general effect of reinforcement is to speed up responding,

Table 2,7.1 —- Model and Schedule parameters used to calculate the

curves of Figure 2.7.1.

Schedule Schedule Parzmeters Vodel Parameters
0 1
o ol QO 01 a P
RR p p = 0,1 2.0 1.2 3.5 0.5 0.5 5,0
RI bl 1/60 ').O 1.0 '3.5 0.5 0.5 5.0
DRI 4;p,q d=5.0 p=0.5 g=w0,0 0.0 1.0 0.5 0.5 N5 5.0

while a general effect of non- reinforcement is to slow down
responding. These two effects have often been noticed in operant
conditioning procedures. Indeed, Norman (1966) used these specific
. characteristics as the starting point for his linear model for free
responding, In the present ..odel these effects arise snaturally from

the propertiecs of the learning process,.
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A graphical illustration of this effect is given in figure
2.7«1. (These distributions were calculated by an algol programme
SACONDAR (see Appendix 1) a modification of the SAGENAR programme.)
A1l the schedules (Table 2.,7.1i gives details of the schedules and
the parameter values used.,) show quite clearly the general slowing
down effects of non-reinforcement, and the speeding up effects of

reinforcement.

2.8 Other Measures of the IRT Distribution

Anger (1956) introduced the IRT/Op. function as a measure of the
IRT distribution, and defined it as the conditional probability
of an IRT in interval (a,b), given that it is longer than a,

It follows that,

b
IRT/Op. X r(t)dt
for interval (a,b) = 2 —
1 - K r(t)dt
0

The use of the interval (a,b) was simply a practicél artifact
to estimate r((a-b)/2) and so the function is really of the form,

() = =)
' 1 = R(t)

Care must be taken when dealing with I(t) in this form, as it

obscures the origin of the function somewhat. I(t), considered as a
function of t is not a probability density function, for t occupies
not only the role of the random variable, but also the role of the
condition applied. Anger thought that this function might yield
a clearer understanding of the nature of interresponse time
reinforcement, as he felt that it was difficult to speak of the
effects of reinforcement unless the IRT's considered had had the
opportunity to occur.

In terms of p and #(t),

. 4
I(t) = pﬂ(t)EXP(-SO PB(y)ay)

t
1 - (1 - Exp(-X 28(y)dy))
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ERTRaAET T

= pB(E) .

At the end of section 2,3, conditions were given under which
#(t) could equal u(t). This suggests thot if it is desired to find
aspects of the IRT distribution which match the reinforcement function,
then the function I(t) is the one to look at.

The relationship between I(t) and #(t) is deceptively simple,
and suggests that the function I(t) would be much easier to work
with than r(t). In practice however, serious problems arise in the
estimation of I(t).

Consider a sample of N IRT's, which for estimation purposes
are grouped into intervals of one second width. Let n, be the

k
number of IRT's of duration between (k-~1) and k seconds..Then,

IRT/Op..
for interval (k-1,k)

7, =

The calculation of Ik in this manner is like calculating a

binomial parameter on a sample size of Nk’ where,

Nk N"gnin

The variance of this estimate of Ik is given by,

:var(?k) = fk(1 - ?k)

N

K
(Kendall and Stuart 1952, Vol 2,
p11.) :
Now,
fk(1 - Tk) = nk(N - nk) .
. k=1
Kk N - )

Thus as the value of k increases, the estimate of Ik becomes
orogressively more unrelimble. (Its variance increases.) E.g. if

I(t) is in fact a constant, then the variance grows geometrically
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as k increases. In practice, if the time range used, (the longest
IRT) is not long,compared with the intervel width used to group

the IRT's for estimation purposes, then the increase in variance of
the estimates of I(%t) is a serious problem. For this reason, the
I(t) function will not be used in chapters 3-5 to describve the IRT

distribution.

Weiss (1970) introduced what he termed the *'dwell function' to
characterise the IRT distribution. The dwell function is the
proportion of the total time occupied by IRT's of duration t. The

function D(t) is thus, simply,
D(t) = tr(t).

The usze of the dwell function is simply one of many possible
ways of giving increased weight to long IRT's. It does not however
seem to possess any especial properties which might make it of

particular interest.
249 Conclusion

The model developed in this chapter seems to possess appropriate
properties for a model of learning under schedules of interresponse
time feinforcement. The following three chapters deal in detail with
the predictions of the model for specific IRT schedules aznd with
experimental tests of these predictions. The first schedule to be

examined is the especially simple case of the Random Ratio schedule,
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Chapter 3

THE RANDOM RATIO SCHEDULE

3.1 Previous Lxperimental Findings

Ratio schedules have not been very extensively studied for
their IRT distribution properties. The general observation is that,
under ratio schedules, IRT's are very short (Kintsch 1965, Ray and
McGill 1964). The response rate, (reciprocal of the mean IRT)
appears to be very insensitive to quite large changes in the
probability of reinforcement (Sidley and Schoenfeld 1964). Williams,
(1968) found little evidence of sequential effects among the IRT's,
suggesting that IRT's were independent of one another. However his
data was restricted, in that all the IRT's were very short.

The next section will show that all these results are predict

-able from the model developed in chapter 2.

3.2 Predictions from the liodel

The random ratio schedule is one where,
u(t) = p, vt.
p is the probability that a response will be reinforced.

If this u(t) function is inserted in equation 2.6.a, it gives,

0 ftea ’ tea
X OX (1-p)r(y)dy + « pr(y)dy
t-a \-t‘a

g(t)

"

(t+a t+a
QX% (1=p)r(y)dy + X pr(y)dy
Mg,

t-a

This result is of particular importance, as it is indepemdent
of the parameter a. Indeed, it is independent of any cheoice for
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w(t;x), the spread function, and hence provides a valuable test for
the model. This test is independent of any specific assumptions
made about the stimulus distribution,
Let,
k = uzom-p)o + alp.
(1-p)e + p

If @ is close to zero, i.e., non-reinforcement has little effect,
then,
kK = o,

Thus, for small @ values, $(t) is insensitive to the value of
p. Insensitivity to p values was noted by Sidley and Schoenfeld,
1964,

Further, if, as suggested in section 2.5,

2

Vit

then,

r(t) PKExp(- pkt). (3.2.8)

The IRT distribution is thus exponential, and shows a preponder
-ance of very short IRT's. (As reported by Kintsch (1965), and Ray
and McGill (1964)).

Sequential statistics are fairly simple to derive, as the
expression for the asymptotic IRT distribution (3.2.a) is so simple
in form,

Let the notation,
r(tl1) = r(t|previous response was reinforced)
r(tl10) = r(tiprevious response was not reinforced),

be introduced. Let @#(tl1), B(t10), etc. have similar interpretations.
Then,

t+a

p(tin) = ¢(t)+(«1-¢(t))o1§ r(y)ay

t-a
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~ Thus,

t+a
SkExp(- pky)dy
a

B(t) + (4 - B(1))0, &t

tea

k4 (- k)e, [—Exp(-/aky)Lc
-a

k ¢ (&'-k)0, (ExpG- pk(t-2))-ExpC- pk(t+a)))

k + (&'-k)0, Exp(~ okt) (Exp( joka)-Exp(-pka))

k + («'-k)0,2sh( oka)Exp(- okt).

. Put,
2(«' - k)0, sh( pka),

k,

this makes the above equation take the form,

#(t]1) =k + k Exp(- pkt).
Now,
\ o - s p],
(k¢k, Exp(- pky))dy = ky + k. Exp(- pk
L r Pl 1 ok o
=
= kt - k,Exp(- pkt) + k
,0- 1 /ok —'l-:-]
= pkt + %1(1 - Exp(~ pkt)).

r(tl1) = ( pk+pk Exp(- pkt) )Exp(-( pktsCk,/k) (1-Exp(- pkt))),

and by analogy,
r(tjo) = (/ok o-,okoExpC- /oktD)Exp(-( ,okt*('.ko/k:)('J-Exp(-/okt)_')),

0
where, k, = 2(d” - k)Oosh( pka).

If the two parameters, k, and k., are inspected, the conditions

1 0
under which sequential effects are small can be found.
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"

2(at' - k)9 sh( pka).

ko

2(¢° - k)0 sh( pka).

There are no sequential effects, if,

i) a % 0,0. I.e the spread effect is zero., This seems unlikely in
view of the psychological interpretation of the spread function.
ii) °O 20,0. If @ is close to zero, non-reinforcement has very
little effect. When Oo is approximately zero, then ko is likely to
be close to zero also. However, @ 2 0,0 also implies that, k & o
and hence that k1 2 0.0. Thus sequential effects after reinforcement
are small, when the effects of non-reinforcement are small.

Since many unreinforced responses are emitted on ratio schedules,
with apparently little effect on the rate of responding, the
asgsumption that 00 is close to zero is not unreasonable. This single
assumption thus leads directly to the predictions that rates of
responding are insensitive to reinforcement probability (Sidley and
Schoenfeld, 1964) and that sequential effects are likely to be
small (Williams, 1968),

It is interesting to note that the parameters k1 and ko are
very simply related, for,

k, 2(el' - kSO, sh( pka)
ko 2(L° - k)0, sh( oka)

. (£'001-p) + &'p ~ «%(1-p) - 4'p)
(«%0(1-p) + &% - Lo(1-p) - 'p)o

e 0(1-p)(& - &

p(® - ')e

-51 - 22 ° | (2-30b)
P

I.e. the ratio of k1 to ko is equal to minus the inverse of
the ratio of the probability of reinforcement to non-reinforcement,
Bquation (3.2.b) is a simple version of a more complex relation

.
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between the results of reinforcement and non-reinforceneht.
Define,

tea :
X (1-u(y))x(y)dy
'(t) - t-a .

t+a , :
u(y)r(y)dy
t-a

Then, for any u(t),

M) = °_‘.o£!.(.".)_#_£'~1_

“ov(t) +1

Generalising the constants k, and k, to functions k1(t) and
ko(t), defined by,
1 tea |
k(t) = (o - g(t))0,| = r(y)dy,
t-a
(k,(t) thus describes the effect of a reinforcement on §(t)) and,

tea

@ - ¢(t))00§ r(y)ay.

t-a

Then, T
K (8) = (@& - 8(t))
k() (o - 4(£))0

.1t 1_O°v - d

(Pov(t) + < - Lov(t) - yo
s vt \ - .
(& - &)

_ . - "'(‘t)o

Thus,
: : tsa

k() = -L_.U-u(y))r(!)u

t4+a
ky(t) u(y)r(y)ay
t-a
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This relation states that for any value of t, the ratio of the
effects of reinforcement and non-reinforcement on the value of @(t)
at that point is given by minus the inverse of the ratio of the
probabilities of reinforcement and non-reinforcement influencing the
value of #(t) at that point t. The relative effects of reinforcement
and non-reinforcement are thus closely tied to the actual probabilities

of occurrence of reinforcement and non-reinforcement.

The next section deals with an experiment set up to obtain
IRT distributions from an actual random ratio schedule. Data from
this experiment is then used to obtain values for parameters such
as k, k
parameters, whose estimates are denoted by putting a hat ¢\) over

10 and ko. The values found are given in section 3.4. The

the appropriate symbol, are usually estimated by computing least
square fits to certain sets of data. Unless specifically stated
otherwise it is to be assumed that a parameter is estimated by a
least squares method. The estimations are usually done by search
procedures. It is possible in simple cases to derive exactly
expressions for the estimates of some parameters, (E.g. the
maximum likelihood estimate forpk is given by the reciprocal of
the mean IRT). However, to maintain uniformity of method acrosa{
all reinforcement schedules, least square fits were used as the’
basic method throughout.

3.3 The Experiment

In order to test the predictions of the model more closely,
some experiments with Random Ratio reinforcement were undertaken,
Two values of p were used, these being 0.5, and 0.,1. Four subjects
were run under each schedule. '

The subjects were all students at the University of Stirling.
In most experiments on Operant behaviour, it has been customary to
use animal subjects, chiefly rats and pigeons. When human subjects
- have been used, the commonest form of response chosen as the operant
response has been the observing response. E.g. subjects have to
monitor & meter, to check its deflection (Laties and Weiss, 1960,
1963). Pressing a button illuminates the meter, and if the needle
is seen to be deflected on illumination, this is regarded as a
reinforcement. The most extensive investigations of human operant
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behaviour have been undertaken by Weiner (1962, 1964a, 1969). Most

of Weiner's experiments have been ofi fixed interval schedules, (1964b),
However, one experiment (1964c) did consider a fixed fatio schedule.
The performances obtained by Weiner, ého also used an observing
response, are closely similar to those found in work with animal
subjects, suggesting that the use of human subjects is not unreason
-able, or likely to produce any highly unexpected results,

Apart from the possible intrinsic interest of using human
subjects, in contrast to animal ones, the choice was influenced by
pracfical considerations, Reinforcement can be made relatively
instantaneous for human subjects, (flashing lights were used).
Animals, in contrast, are usually food reinforced, and the consumption
of the food fakes a relatively long time. Since it is times that are
to be recorded, this *eating time' would confound the results and is
better eliminated if possible.

Prom the subject's point of view, the experimental situation
closely resembled that of the ubiquitous Skinner Box, used in
animal experimentation. Subjects were seated at a table in a small
sound-protected room, approximately & ft. by 8 ft. by 7 f£t. The
table was equipped with a small box, on which were mounted a
push-button, a red pilot light, a green pilot light and a digital
counter, (See figure 3.2,.,1). The following instructions were given
to the subject,

"You are asked to try and score points by pressing and releasing
this button in some fashion. The counter will record your score. If
you make a correct response the green light will come on to inform
you of this, and the counter will add one. If you make an incorrect
response then the red light will come on. You cannot score points by
holding the button down. When you have pressed the button you must
release it and not make the next response until the light haq gone
out.

Please pay close attention to the lights and the counter,so
that you can score as many points as possible. o 5

You will be allowed five minutes to settle in to the experiment. I
There will then be a short pause. The rest of the session will
follow without a break. ’

If you have any questions, please ask them now."
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Questions were answered in as vague a manner possible, to

avoid giving the subject any idea of what was expected. Essentially,

the only constraints placed on the subjects were injunctions to
score points somehow, and not to respond while any of the display

lights were 1it. These lights were on for 100 msec. This instruction
was inserted because IRT's shorter than this occasionally caused the

recording apparatus to jam. This does not seem to have imposed any
real constraint on the subjectd behaviour, as it was substantially
lower than most of the IRT's emitted by any of the subjects,

Subjects came for 10 sessions in all. They came daily, at any
convenient time of the day until they had completed all their
gessions. (Subjects did not however come at weekends). They were
paid at the rate of 30p per session, but had to complete all the
sessions to receive payment. Each session ran for 45 minufes,
excluding the five minute warm-up session,

At the start of each session, the subject was told his score
from the previous session. This was done to try and maintain the
subject's interest, by giving him a comparison against which to
work. At the end of each session, subjJects were also asked to say
what they thought determined whether or not they obtained a
reinforcement.

Subject's Cubicle Experimenter's Cubicle

- . wn - -

| Reinforcement
control

Reinfordement

code
Paper
Response Data Transfer L Tape
box Unit Output
Re
Stone Tige

Sampling Digital
store clock

\
:
| !
Bnapnn?a,
‘
\
|
'

Pigure 3.3.2 -- Block diagram of the layout of the Experimental
apparatus,
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The control and recording equipment were placed in a cubicle
adjacent to the experimental cubicle. Figure 3.3.2 gives a block
diagram layout of the system. A digital clock reads continuously

into the sampling store. The subjects response triggers (a) the

reinforcement, which is shown to him as a coloured light and which

is also output to the data transfer unit, and (b) causes the data

transfer unit to read the time off from the sampling store. The

time, and a code for reinforcement/non-reinforcement are output onto

paper tape by the data transfer unit. The use of the sampling store
as a buffer between the data transfer unit and the digital clock
prevents the 'read' pulse from the data transfer unit from resetting

the digital clock and has the following adventage. No allowance

needs to be made for the reset time of the clock and the record time
of the data transfer unit when calculating the IRT's. The time
readings are cumulative and IRT's are given by the difference between

two consecutive readings. The clock ran in milliseconds. An example

isi=

b d
O © © O ©

Leading zero. This occurs
evefy third number. It is
used to check that the

data is aligned. If

any set of three numbers
does not begin with zero,
the analysis programme reads
on until this is so. This
misalignment is caused by
occasional punching errors
from the data transfer unit,
The number of such errors
was in fact small.

001352 - 200
008473 - 100
013289 - 100
017984 - 200 <
022839 - 100

Code for reinforcement (100),
or non-reinforcement (200).

Times in milliseconds. Zero
— time is the start of the
experimental session,

Differences between successive
times give IRT in
milliseconds.,

Figure 3.3.3 -- An example of the data output format,
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3.4 The Results

Figure 3.4.1 gives the session by session IRT distribution
for subjects 1-4. (p = 0.5). The term session O is used to denote
the warm-up period of the very first session. In this experiment
every other response was reinforced, on average. Due to a fault in
the data transfer unit, this experiment had to be abandoned after
the sixth session, and data from that session scrapped. The IRT's for
each session were classified into intervals of one second width
(0-1, 1-2, etc.) and the description Pr(IRT) is used as an abbreviation
for the probability of an IRT lying in one of these intervals,

All the subjects 1-4 show the same kind of session by session
changes in the IRT distribution. Initially the mean IRT is in the
region of 1.5-2.0 seconds, but rapidly shortens to around 0.5 seconds,
and all subjects have over 95% of their IRT's less than one second
long by the fifth session. (The rate of responding is around 100
per minute, which is very high.)

In view of the high rate of responding, it was decided to use
the fifth session data as asymptotic data for parameter estimation.
Figure 3.4.2 shows the data from the fifth session, for subjects
1-4, compared with the predicted values, The predicted values are
calculated from the least squares fit of the model to the data., Table
3.4.(1) gives the value of the exponential parameter ,k and the
least squares error (LSE). These figures confirm the visual
impression obtained from figure 3.4.2. The fits are very close.

A 6 No. Data
Subject Pk ISE.10 Points
1 4.99 6 4
2 3.33 601 4
3 2.98 1670 4
4 4.21 172 4

Table 3.4.,(i) ~- Estimates of the exponential parameter pk and a
list of the least square errors (LSE) between the obtained and
predicted values of the asymptotic IRT distribution for subjects
1-4. The last column gives the number of data points used in the

parameter estimation.
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Pigure 3.4.3 gives data for the asymptotic distridbution of ‘
.IRT's, given that the preceeding response was reinforced, The least
square fit is also shown, and again is very close. Table 3.4.(ii)
gives the parameter estimates (k1/k) and the least squares error,
Generally, the fits to this seguential statistic are better than
that to the asymptotic IRT distribution. The values of (k1/k) are
all positive and apparently (see section 3.5) illustrate the
general speeding up effect that reinforcement has on responding,.

AN\ 6 No,., Data
Subject k,/k LSE.10 Points
1 0.14 3 4
2 1.98 1 4
3 1.33 801 4
4 0.29 37 4

Table 3.4.(ii) -~ Estimates of k, /k for subjects 1-4. The LSE
column gives the least square error between the obtained and
predicted values of the IRT distribution conditional on the previous
response being reinforced. The last column gives the number of data
points used in the parameter estimation.

Figure 3.4.4 gives a comparison of the obtained and predicted
results for the distribution of IRT's that followed a non-reinforced
response. Unlike the previous figures (3.4.2 and 3.4.3), the predicted
values were not calculated by the method of least squares, The
egtimate of (ko/k) was made by using the appropriate estimate of
(k1/k) and the relation given in equation 3.2.b. The parameter (k1/k)
seems to be very sensitive to quite small changes in the IR? o
distribution. E.g. compare subjects 1 and 2, in figure 3.4.3, where.
the results look very similar, to the paraméter valués in table
3.4.(ii)). This aeisitivity seems to be reflected in the poor fits
.obtained; for subjccté 2 and 3,to the IRT distribution given the
previous response was not reinforced, which is illustrated in
figure 3.4.4. Table 3.4.(iii) gives the parameter values calculated
from equation 3.2.b, together with the square error between the data
and the predicted values .

Better fits can actually be obtained by estilating (kO/k) from
the data. However it seems more interesting to use equation 3.2.b.
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—~
O/k SE.106 No. Data

Subject k Points
1 -0.14 14 4
2 -1.98 81260 6
3 -1.33 47223 5
4 -0.29 546 4

Table 3.4.(iii) =~ Estimates of the parameter ko/k for subjects

1-4. SE column gives the square error between the obtained and
predicted values of the IRT distribution conditional on the previous
response not being reinforced. The last column gives the number of
points used in the calculation of SE. The values of kO/k given

here are not estimated from the conditional IRT distribution, but

P
from k1/k.

The relatively poor fit obtained overall, suggests that sequential
effects are more complex than outlined in the model, though it is
not clear to what extent a different choice of the spread function

w(t;x) influences these conditional results.

The results for subjects 5-8 are similar to those obtained for
subjects 1-4., In fact the fits to various aspects of the data are, on
the whole, rather better. This may be due to the fact that subjects
5-8 received the full 10 sessions of training and hence the results
from session 10 are much closer to the asymptotic values, than those
obtained from subjects 1-4.

Figure 3.4.5 gives the session by session results for subjects
5-8, where p = 0.1, I.e., on average every 10th response was reinforced.
‘As for subjects 1-4 (figure 3.4.1), these results show a gradusal
shift from a fairly low rate of responding, to a very high rate of
responding, by the 10th session. As might be expected with the less
frequent reinforcement, the trend towards shorter IRT's appears to
be much slower for these subjects, than for subjects 1=-4. (Subject 7
seems to be an exception. For this subject the rate of responding
was very high from the beginning. Given the simple nature of the
task, it might have been expected that a decrement in performance
would appear, across sessions, due to boredom. However a very high
rate was maintained throughout.) Subject 6 shows clearly the pattern
of session by session changes in the IRT distribution. The subject
begins by first eliminating the very long IRT's, giving a distribution
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with a sharp cutoff around 2 seconds. There is then a general trend
towards shorter IRT's, illustrated by the increasing number that
fall in the interval 0.0-1.0 seconds, and the decreasing number in
the interval 1.0-2.0 seconds. Sessions 6 and 7, for subject 6 show
clearly the changeover of the mode of the IRT distribution from the
1.0-2,0 second interval, to the 0.0-1.,0 interval., This is followed
by a further shortening of the IRT's, when the subjects push their
rates into the regions of the highest that it is physically possible
to make.

Figure 3.4.6 shows the data from the 10th session for subjects
5-8, compared with the least squares fit of the model to this data.-
As for subjects 1-4, the fits are very good. Table 3.4.(iv) gives
the estimates of /ok for this data, as well as the least square
error. The values of /gi for subjects 5-8 are of the same order
as those for subjects 1-4, the chief difference between the two
groups being the high value of subject 7, compared with the rather

low value for subject 3.

A 6 No. Data
Subject ,ok LSE.10 Points
5 4.96 1 4
6 3.12 8 4
7 5.30 0 4
8 4.35 21 4

Table 3.4.(iv) -~ Estimates of the exponential parameter /ok and
a list of the least square errors (LSE) between the obtained and
predicted values of the asymptotic IRT distribution for subjects
5-8., The last column gives the number of data points used in the

parameter estimation.

Figure 3.4.7 gives the IRT distribution conditional on the
previous response being reinforced., These fits to sequential
statistics are again very good, with the rather striking exception
of subject 6. This subject shows a strong trend in the opposite
direction to that predicted by the model. After a reinforcement
his IRT's are in general longer, rather than shorter. Whether or
not this effect would disappear with further training is difficult
to say. This subject did in fact comment that when he obtained a
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) A\ 6 No. Data
Subject k1/k LSE.10 Points

5 0.85 18 4

6 0.00 86564 4

T 0.00 18 4

8 0.24 2 4

Table 3.4.(v) -~ Estimates of k1/k for subjects 5-8, The LSE
column gives the least square error between the obtained and
predicted values of the IRT distribution conditional on the previous
response being reinforced. The last column gives the number of data

points used in the parameter estimation.

reinforcement that he waé pleased, and "stopped for a second" to
wonder why he had received one.

Table 3.4.(v) gives the estimated values of the parameter (k1/k),
and the least square errors. If the anomalous subject 6 is ignored,
then the parameter values are very small on average, suggesting that
the response strength function @(t) was very close to its maximum
value 'x1 .

Figure 3.4.8 gives a comparison of the data and predictions for
the asymptotic distribution of IRT's that followed a non-reinforcement.
As for subjects 1-4, these predicted values are.based not on the least

A\ 6 No. Data
Subject ko/k SE.10 Points
5 =0.,09 1 4
6 -0.00 1054 4
7 -0.,00 2 4
8 -0.03 21 4

Table 3.4.{(vi) -- Estimates of the parameter ko/k for subjects

5-8, SE column gives the square error between the obtained and
predicted values of the IRT distribution conditional on the previous
response not being reinforced. The last column gives the number of
data points used in the calculation of SE. The values of kO/k given
here are not estimated from thg conditional IRT distribution, but

from k1/k.
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square fits, but are based on the parameter values of (ko/k)
calculated from equation 3.2.b.

The fits this time are all quite good, in contrast to the
results for subjects 1-4. As might be expected, the fit for subject
6 is the poorest., Generally all the fits for subjects 5-8 are
better than those obtained for subjects 1-4, perhaps reflecting the
extra training subjects 5-8 had. The good fits to the sequential
statistics, and the amall values of the parameters k1/k and ko/k,
taken together seem to suggest that the sequential effects are on
the whole small, so that @#(t) must lie close to its maximum value
of &',

It is possible that the very good fits obtained so far are
partially due to the small number of data points available for
parameter estimation. (Usually four points were used, and a single
parameter estimated.) The small number of data points result from
the very high rate of responding produced by all the subjects, It
may thus be of interest to investigate the data when it is class
-ified on the basis of intervals smaller than one second. The
data was thus reclassified into half second intervals, (0.0-0.5,

0.5-1,0, etc.) and subject to a re-analysis,

Fas
Subject Pk ISE.10° N;; ig::a
1 1.54 278172 T
2 1.52 523164 7
3 1.35 492529 7
4 1.39 765236 7

Table 3.4.(vii) -- Estimates of the paremeter pk and a list of

the least square errors (LSE) between the obtained and predicted
values of the asymptotic IRT distribution for subjects 1-4 when the
data is classified into half second intervals. The last column
gives the number of data points used in the parameter estimation,

Pigure 3.4.9 gives the data from subjects 1-4 when it is class
-ified into half second intervals. (Asymptotic date only). These
results are distinctly different from those given in figure 3.4.2.
They show a peak, not in the first interval, but in the second
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interval, Table 3.4.(vii) shows the parameter values and the least
squares fit of the model to this data. The parameter values /ok
are characterised by their uniformity and the atrocity of the fit
to the data.

Not surprisingly, attempts to fit the conditional statistics
(figure3.4.10) are equally poor. Table 3.4.(viii) gives estimates of
‘k1/k. These are all zero. showing the insensitivity of the model to
variations in the data points, when the fit is intrinsically so

poor,
Subject m LSE.10° N;; ig‘t‘:a
1 0.00 | 344540 7
2 0.00 | 650323 7
.3 0.00 379789 7
4 0.00 | 748492 7

Table 3.4.(iii) -~ Estimates of k1/k for subjects 1-4. The LSE
column gives the least square error between the obtained and
predicted values of the IRT distribution conditionsl on the previous
response being reinforced, when the data is classified into half
gsecond intervals. The last column gives the number of data points

used in the parameter estimation,

When the data for subjects 5-8, with half second grouping is
inspected, a slightly different picture appears., (Pigure 3.4.11).
Subjects 5 and 8 still show a peak in the first interval, while
subjects 6 and 7 are like subjects 1-4 (figure 3.4.9) in having
a peak in their IRT distribution in the second interval. Attempts
to fit the model now fall into two categories. Fits to the data
from subjects 6 and 7 are very poor, (see table 3.4.(ix)) while
those to data from subjects 5 and 8 are still quite good. However
the fits for subjects 5 and 8 are worse under the half second
analysis than they were under the one second analysis.

When the conditional statistics are inspected (figure 3.4.12)
the picture becomes more confused. A good fit is still obtained
for subject 8, but subject 5 is now classified with subjects 6 and
7 and shows a peak in the second interval, rather than in the first.
Table 3.4.(x) gives the estimates of k1/k and the least square
errors. The parameters are again all zero (compare with table 3.4.(viii))
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Subject Pk 15E.10° | NO. Date
5 3.27 685 7
6 1.36 | 753855 7
7 1.38 | 721189 7
8 5.18 434 7

Table 3.4.(ix) -~ Estimates of the parameter pk and a list of

the least square errors (LSE) between the obtained and predicted
values of the asymptotic IRT distribution for subjects 5-8 when
the data is classified into half second intervals. The last column
gives the number of data points used in +the parameter

estimation,

though presumably the zero obtained for subject 8 arises from a
different source than those obtained for subjects 5=7,

In view of the generally poor fits to the data, further
conditional statistics are not investigated. It is obvious from
the half second analysis of the data that the IRT distribution in
the random ratio éase contains substantial contributions from.
sources apart from those considered in the model. The following
section investigates a particular, and probably the most important,

source for this contribution.

Subject E:;i 1SE.10° N pate
5 0.00 559419 7
6 0.00 510182 7
7 0,00 810817 7
8 0.00 41 7

Table 3.4.(x) -- Estimates of k1/k for subjects 5-8, The LSE

column gives the least square error between the obtained and
predicted values of the IRT distribution conditional on the previous
response being reinforced, when the data is classified into half
second intervals. The last column gives the number of data points

used in the parameter estimation.

A ——————————————
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3.5 Response Speed Effects

Ray and McGill (1964) studied the changes in the IRT distribution
obtained from pigeons on a random ratio schedule when the intervals
by which the IRT's were classified were progressively reduced in
size. They found that as the intervals grew smaller, that the
distribution finally settled out into one with two peaks, both
close to zero, and tentatively ascribed these two peaks to two
different response movements: a very short movement involving only
the head, and a slightly longer one involving both the head and
the shoulders. These results, considered together with the very high
rates of responding obtained from most of the subjects used in the
present experiments, suggest that an important characteristic of the
IRT distribution in the random ratio case 1is described by the time
it takes to actually make the response. This suggests that an
allowance for the effects of response time should be added to the
model,

The simplest approach seems to be to assume that the time taken
to execute the response is basically constant, but subject to
random fluctuations., A distribution with approximately these qualities
is the gamma distribution. Thus, if s(t) denotes the density

distribution of response times, then

s(t) = ALAL)" TExp(~ ), (3.5.2)
I'(v)

where 3 and v are constants.

The IRT is now considered to have two components: a basic
response time part - i.e. a time between the decision to initiate a
response and its actual termination - and a 'decision' component,
due to the learning process. (See figure 3.5.1). The 'decision’
component is that described by the model given in chapter 2. This
component is termed the 'decision' component because at each
sampling the subject "decides”, albeit in a probabilistic sense,
whether or not to respond. This part of the IRT will be denoted
as having density distribution r(t).

The response time is assumed to depend only on the physical

parameters of the actual response required, and is independent of
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the decision time. It is assumed to be unaffected by learning, at
least after a short practice period. The decision time is that
aspect of the IRT that is affected by the reinforcement schedule.

IRT IRT
A A\

L4 v N AJ

r(t) s(t)
A Ay

v ? bl g q g qA,‘I.‘ime
! |
Decision to Response ends

repond

Figure 3.5.1 -~ Diagramatic representation of how each IRT is
divided into two components,

It is manipulated by learning, in the way given in chapter 2.
Notice that the decision time is not the time required to make a
choice between respond/not respond, but the time to a decision to
respond, from the end of the previous response,

If q(t) is the density distribution of the IRT's, it is
given by the convolution of r(t) and s(t). I.e.,

t
q(t) = g s(x)r(t-x)dx.
0

Since the random ratio schedule is being used,

r(t) = ,okExp(-/okt).
Thus, '

—————

t
q(t) = S ﬁvxv_1Exp(-/jx)pkExp(-/)k(t—x))dx
o 1(v) : ,

- t
= Y okExp(- kt)’y xv-1Exp(-( [~ pk)x)ax,
Assuming that /3 ﬂi Pk then this is,
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- t
o) = |4 | kExp(-,okt)Xo(/s- k)"x' " Exp(~( 3 - pk)x)dx
P PO B (= -

LB =Pk |
- v ( A 'Pk)t va1

= ) PKEXp(- pkt) : — _Exp(-y)dy
| B =PE] 0 v

t
Now X v"‘lExp(-y)dy is the normalised incomplete gamma function
oT (V) ‘

which will be denoted by Gv(t)‘ Thus,

(t) = V' pkExp(- pkt)G_(( A =pk)t),
at [%_&;]pppvﬂp))

when S # pk.

and,

q(t) = /BS_(%E%EXP(-ﬁt),'

when B = pk.

To obtain an idea of the relative importance of the response
speed effects on the overall IRT, it is of interest‘ to look at the
contribution of the response speed to the theoretical mean and
variance of the IRT distribution, and compare the theoretical
mean and variance of the IRT distribution with the values
actually obtained.

The calculation of the predicted values of the mean and
variance, in terms of pk, f, and v ig quite simple. Let Mq(x),
Mr(x), and Ms(x) denote the moment generating functions of, q(t),
r(t), and s(t), respectively. Then the Faltung theorem says,

Mq(x) = Mr(x)Hs(x) .

In the present case, from the well-known property of the

gamma distribut ion,

Ms(x)

n
F—
kv
'F
LI
<

and,
M(x) = __pk .
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From the properties of moment generating functions,

B(q(t)) = 4M (x) '
dx x=0
and,
Var(q(t)) = _dqu(X) - B(a(t))2.
dx2 x=0
This gives,
E(q(t)) = 1 - v ,
pE P
and,
Var(q(t)) = 1 -v_.
(,ok)2 /32

T.e. the means and variances are the sums of the means and

variances of the two components.,

The parameters pk, /3, and v were estimated from the asymptotic
IRT distribution by the method of least squares., Figures 3.5.2, and
3.5.3 1illustrate the comparison of the obtained and predicted IRT
distributions for subjects 1-8. In all cases, whether or not the

Subject pk A v | 1sB.10°%| Mo, Data
1 21.22 27.78 | 15.02 22 7
2 31.31 32.50 | 20.28 90 7
3 35.68 37.61 23.38 334 7
4 58.12 61.26 | 41.42 18 7
5 6.23 | 6.28 | 1.10 190 7
6 61.31 64,55 | 50.65 4 7
7 65.99 74.80 | 53.78 53 7
8 5.97 5.97 | 1.19 39 7

Table 3.5.(i) -- Estimates of the parameters pk, /3, and v,

together with a list of the least square error (LSE) between the
obtained and predicted values for the asymptotic IRT distribution
when allowance is made for the response speed. The data was classified
into half second intervals. The last column gives the number of data
points used in the parameter estimation.

e —————————————————

76



gpuUoddg AT

Spuooss THI

0°¢ 0°*¢ o“r 0,;0 0°¢ 0*c oL 030
COO . 0
G0 PG 0
(I¥1)d (I¥1)xd
"0°L "0°L
spuodeg JuI Spuodsg. A1
o°¢ 0°2 0°L 030 0°¢ 0°2 0°L 0
0 00
60 60
(I81)3d (I¥I)d
2 30efang ﬁo.r L 309fqng * 0L

*YIPTA

PUOOSS JTBY 9UO JO STBAISQUT UT pednodd ode s,Iy] °*SeNTeA ©4E¥p PAUTRLQO SYjJ NJIEW SeSSox) °SonTeA pejorpead sy3
Sutat8 sjutod ay3 utol seutry PITOg °4-l S30efqnse Jo3 ¢s3093J¢ peads esuodsea JoJ SOUEBMOTTE UB YJTM UOTINQTIISTP

INT o1203dukse oyz J0J suorjorpead pue eyep 9y3 Jo uostaedwod y °Ge°0 = d °aInpayds OT3BI UWOPURY =- 2°G*¢ SINITJ

76.1



SpuUodIS TUT

0°0

0°¢ .0°2 o°L
g 29sfqng
Spuoddg INI
o* 0°

9 399lqng

*0

bG°0

(I¥1)ad

(I¥1I)ad

0°L

Spuodes AT

0°0

cxe

(T¥I)Id

oy

0°¢ 0°2 o°L
4 39o9lqng
sSpuooeg JYI
o* 032 0oL
¢ 3o9fang

1w.o

(I¥1)ad

0°L.
*YIpTM

puooes JTEY UO JO STBAIe3UT ur pednoa8 oxe s,JNT °Sen[eBA B}Ep PoUTE}qO S} NJew S9SSoJ) *senTeA pajdoTpead 9y3

Suta18 sjutod ey3 utol SBUTT PITOS °Q-G S309[qne J0F 9309330 peeds ssuodssed JOF SOUBMOTTE UE Y3T UOTINQTIISIQ

I¥T o1303dufse oyj3 Jo0J suor3orpead pue elep Yz Jo uostredwop y °L°0 = d *aInpayos Oﬂpmn wopuey -- ¢°*Ge¢ oandTg

76.2



T

distributions have a peak in the second interval (all subjects

except subjects 5 and 8), the fits are excellent. Table 3.5.(i) gives
the obtained values of the parameters, and lists the least square
error. In all cases, the errors are small, All the parameters fail

to show any kind of uniformity however, and the range of values is
large.

Sub|E(r(t))] E(s(t))]E(q(t))|E(IRT)|V(r(t))|V(s(t))|V(a(t))|V(IRT)
0.047 | 0.541 | 0.588 | 0.523] 0.002 | 0.019 | 0.021 | 0.010
0.032 | 0.628 | 0.660 | 0.579| 0.001 | 0.019 | 0.020 | 0.139]
0.028 | 0,631 | 0.659 | 0.613| 0.000 | 0.017 | 0.017 | 0.125
0.017 | 0.661 | 0.678 | 0.642| 0.000 | 0,011 | 0.011 | 0.096
0,161 | 0,175 | 0.336 | 0.463| 0.026 | 0.028 | 0,053 | 0.027
0.016 | 0.809 | 0.825 | 0.759| 0.000 | 0.013 | 0.013 | 0.018
0.015 | 0.699 | 0.714 | 0.696| 0.000 | 0.009 | 0.009 | 0.006
0.168 | 0.032 | 0.200 | 0.422| 0.028 | 0.001 | 0,028 | 0.020

X N ANV bW NN

Table 3.5.,(i) == Comparison of the theoretical and actual means (E)
and variances (V), together with the breakdown of the theoretical

values into their two components, for subjects 1-8,

The comparison of the predicted means and variances with the
ones actually obtained are given in table 3.5.(ii). They reveal’
some interesting details, On the whole, the obtained and predicted
mean values are very close, with the largest component been given by
the response time. In contrast, the variances show a large discrepancy
in a number of cases, where the obtained value is much larger than
the theoretical one. Close inspection of the data suggests this is
due to the persistence of a small number of relatively long IRT's
(about 0.5%), which few IRT's contribute substantially to the variance

of the IRT distribution.

Sequential effects can be investigated with little further

work, as most of the required equations are already set up. It has

been shown that, (section3.2)
r(t|i) = (,ok-i-/okiExpC- /okt))Exp(-( pktoclci/k)G-Exp(-,okt))),
(where i = 1 means that the previous response was reinforced, and
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i = 0, that it was not reinforced, and,

k= 26t - )9, sh( pka).)

The response speed effect has been defined as,

s(t) = Q(t))v-1Exp(-ﬁt).
v

Since the response speed is presumed unaffected by reinforcement
or non-reinforcement, the total conditional IRT is given by,

a(tji) = Xtr(xli)s(t-x)dx.
0

Table 3,5, (iii) gives values of k1/k calculated by the method
of least squares, for subjects 1-8, Comparison of table 3.5.(iii)
with table 3.5.(1) shows that the fits to the asymptotic IRT
distribution conditional on the previous response being reinforced
are worse than the fits to the asymptotic IRT distribution. (Only
subject 7 shows an improvement). Some subjects, e.g. 5 and 6
have data which shows a massive deterioration in the fit. Part of

Subject | K, /k 15E.10° N;;igiza
1 0.00 4108 7
2 0.00 7076 7
3 34.74 1162 7
4 2.09 86 7
5 0.00 539837 7
6 0,00 | 77958 7
7 0.00 21 7
8 0.00 85 7

Table 3.,5.,(iii) -~ Estimates of k1/k for subjects 1-8, after
allowance for response speed effects. LSE column gives the least
square error between obtained and predicted values of the IRT
distribution conditional on the previous response being reinforced.
The lagt column gives the number of data points used in the parameter

estimation.
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the deterioration can be accounted for through the large number
of zero entries in table 3.5.(ii1) for 5:7}. These represent not,
as might be expected, no sequential effects, but for subjects 1, 2,
5, and 6, situations where the sequential effects are in the opposite
direction to that predicted in the model. The effect of reinforcement
is, on average, predicted as a speeding up of the rate of responding,
but subjects, 1, 2, 5, and 6 in fact slowed down after a
reinforcement. Better fits could have been obtained by allowing
k1/k to become negative, but this would be meaningless within the
framework of the model. This finding, of a slowing down effect of
reinforcement stands in strong contrast to what is commonly
presumed to be one of the chief effects of reinforcement, an
increase in the rate of responding.

Figures'3.5.4 and 3.5.5 give a graphical illustration of the
results shown in table 3,5.(iii). A comparison of these figures,
with those of 3.5.2 and 3.5.3 shows clearly the slowing down
effect after reinforcement, for subjects 1, 2, 5, and 6, The effect
is especially striking for subject 5, where the peak moves from

subject | Kk | sma0® | Moo R
1 -0.00 4732 T
2 -0.00 9500 7
3 -34.74 1922 7
4 -2.09 474 7
5 -0,00 13102 7
6 -0.00 1202 7
7 -0.,00 34 7
8 -0.00 38 7

Table 3.5.(iv) -- Estimates of kO/k for subjects 1-8, after
allowance for response speed effects. SE column gives the square
error between obtained and predicted values of the IRT distribution
conditional on the previous response being reinforced. The last
column gives the number of data points used to calculate the SE.

between 0,0-0.5 séconds to between 0.5-1.0 seconds for responses

that follow reinforcement.

" .
The parameter ko/k can be found from k1/k by the use of relation
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3.2.b, and the appropriate results are given in table 3.5,(iv).
These values were used to calculate the asymptotic IRT distributions
conditional on the previous response not being reinforced, and

these distributions are illustrated in figures 3.5.6 and 3.5.7.
Table 3.5.(iv) also gives the square error between the obtained and
the predicted values. (These are not fitted curves. ko/k is not
estimated from this data). On the whole, the fits are in fact better
than those for the distribution conditional on the previous response
being reinforced. This may in part be a reflection of the fact that
for subjects 5-8, there are approximately nine times as many non-
reinforcements as reinforcements, and thus the probabilities
estimated from the data for IRT's conditional on non-reinforcement
have a much lower variance than those probabilities estimated for
IRT's conditional on a reinforcement for these subjects.

3,6 Conclusion

A number of points arise from the previous sections, The first
is that when dealing with a data continuum (in this case time), .
decisions as to how to separate the data up into class intervals
can seriously affect the character of the results obtained. In
general, the finer the interval width, the better. However,
constraints are placed upon this by the accuracy of the observations
and the number of observations available.

The second point is that, at least for the schedule values
used here, (0.5 and 0.1) the time taken to produce the response
occupies by far the largest part of any measured IRT. This means
that effects dealt with by the model, are, at best, very small,
This in turn implies that so long as the response speed effects
are adequately described, almost any model that has negligable
significance for some values of its parameters may produce a
reasonable fit,

Viewed in this light, it is difficult to assess the model.
With allowance for response speed, the fits are good. However,
if attention turms to the conditional statistics, the results are,
on the whole mediocre. The worst of the conditional fits describe

cases where the effects of reinforcement and non-reinforcement

seem to have been inverted, and the experimental results do not

seem to lie in line with any previous reports, particularly of
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animal behaviour. It may be possible however to ascribe this
effect to some temporary influence on the sampling behaviour.
(Immediately after a reinforcement 'don't bother looking. (sampling)
for a while, while after a non-reinforcement, 'look harder'.,)

The overall conclusion is that the results are reasonable, and
interesting, but not outstanding.
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Chapter 4

DIFFERENTIAL REINFORCEMENT OF LOW RATES OF RESPONDING

4.1 Previous Experimental Findings

The differential reinforcement of low rates of responding form
the most obvious class of IRT reinforcement schedules. They are
usually defined by,

1.0, t2d
o.o. t<d’

where d is a constant. Such a schedule essentially reinforces
pauses of duration d, to produce low rates of responding, hence the
name,

These schedules are part of a more general class of discontinuous
schedules, which may be defined as follows,

P, t=2d
u(t) =
q, t<d,

where 4, p, and q are constants, This schedule will be written in
the form DRILd;p,q. The form DRLd;p will imply that q=0.0, while the
form DRI4 will iﬁply that p=1.0, and q=0.0. When p=q, the schedule ‘
is simply a random ratio schedule. It is to be assumed that p=aq.
If p<q, the schedule is usually feferred to as the differential
reinforcement of high rates of responding, (DRH), (Shimp, 1967).
Early work on DRL schedules was done by Sidman (1956)., His
initial observation of the development of a mode in the IRT
distribution near to the cutoff value d has since been confirmed
by many other experimenters., The other characteristic of DRI4
schedules is the persistence of a maximum close to t=0.0 in the
IRT distribution. Not all experimenters have observed this
phenomenon, though the mejority seem to have done so.
Little work has been done on the properties of sequential
effects in DRL schedules. However, Farmer and Schoenfeld (1964)
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have reported that reinforced responses are more likely to be
followed by a reinforced response than non<reinforced responses
by a reinforced response, and this has been confirmed by Ferraro,
Schoenfeld and Snapper (1965).

4,2 Predictions from the Model

The derivation of the asymﬁtotic IRT distribution is complicated
in the DRL case by the discontinuity in the reinforcement function
u(t) at 4. Using the same spread and sampling functions as
previously, then r(t) takes different forms, depending on the value
of t,

i ) tsd‘a .
From equation 2.6.Db, .
t+a ltea
0 t+a 1 t+a
& Q (1=q)r(y)dy + & qr(y)dy
t-a t=a

p(t) =

t+a t+a
0 (1=q)r(y)dy + qr(y)dy
t-a t-a

= atoc(?-q) + ot1q

0(1-q) + g

This is a constant, that will be denoted by k(q). r(t) is then
given by,

r(t) = pk(q)Exp(~ pk(a)t).
ii) t2dea.

Here the situation is parallel to that for t=d-a,

except that p replaces q. Hence,

k(p),

p(t)

and,

r(t) A pk(p)Exp(- pk(p)(t-d+a)),
where A is a constant given by,
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gd-a
A = Exp(- #(y)dy).
P 0 /3 yay

iii) d-a<t<d+a. _
From equation 2.6.b, and dividing each integral
into two parts at the discontinuity 4,
d tsa d tra
20| (1-@)r(y)ay+e®| (1-p)r(y)aysd'| ar(y)ayed'| pr(y)ay
#(t) = t-a ' d t-a d

d tea d tea
0| (1-q)r(y)dy+0| (1-p)r(y)dy+| qr(y)dy+| pr(y)dy
-8 d It-a d '
Let,

then P(t) can be written,

g(t) = «90((1-3_)3(1:»(1-9)2 + 51(9(1(1:24-22 . 4.,2.a
0((1=q)a(t)+(1=p)) + (qd(t)+p)

This is not explicitly soluble for @#(t). For the interval
d-ac<t<ed+a, r(t) must be found by using a version of the SAGENAR
programme, described in appendix I.

Since #(t) is a constant, outside (d-a,dea), and,

t
r(t) = /oei('c)Exp(-[0 PE(y)dy),

then on interval (0,d-a), r(t) has a maximum at t=0.0 and a minumum

at t=d-a., Likewise, on interval (dea,m), r(t) has a maximum at dea

and a mimumum at infinity. This means that r(t) as a whole has

maxima at t=0.0 and at some point in the interval (d-a,d+a), including

its end points. I.e. there are maxima around zero and around the

cutoff point d. Thus r(t) has the required kind of bimodality.
However, the situation is not as good as it might appear,
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Pigure 2,7.1 illustrates a predicted IRT distribution where dp=0.02
and q=0.0. Although the distribution is bimodal, the slope of the
curve from t=0.0 to t=4.5 is far too gentle, and the values of r(t)
in the range t=1.5 to t=4.5 are too high to reliably describe the
short IRT's which occur in practice on DRL schedules, It thus seems
likely that they arise from other sources than the one considered
in the model, (Essentially the model accounts for their existence
by setting d9>0.0.)

There appears to be at least two other ways in which it is
possible to account for the peak at short IRT's. These are,

i) Suppose that any sample of stimuli can be divided into two
parts, these being,
a) Stimuli generated by the preceeding response.
b) Other stimuli. (Background stimuli.)

It is possible to consider that the background stimuli consist
of stimuli from a whole series of preceeding responses, and which .
are thus characteristic of 'long' IRT's. If a sample happens to
contain a large proportion of these stimuli, which are presumably
conditioned to the response, then a response will be made, as the
subject effectively misreads the time., To some extent the
assumption that 49>0.0 is equivalent to this. However if most of
the background stimuli are specifically presumed to come from
the preceeding one or two responses, then the result of a bdburst
of short responses is to effectively wipe out the stimuli
concerned with long IRT's. Regarded in this way, this idea is then
very similar to the idea of Sidman (1956) that a burst of short
IRT's resets the internal clock.

ii) An alternative way of tackling the problem is to look at the
idea of 'resetting the internal clock' in a somewhat different

light than above. The model described in chapter 2 assumed that
after each response, that when the subject next samples, the sample ‘
is taken from near X(0). (I.e. the clock 'resets', or the new
stimulus trace wipes out the old one.) This need not happen however,
This may fail to happen and the next sample be taken from X(tet'),

(t is the previous IRT, t' is the time since the last response.)
rather than from X(t'). If t%d, then a response is likely to

follow very shortly, as at the next sampling of stimuli, @#(t) is

85



likely to be large. A burst of responses could ensue before the
subject reverts to the beginning of the X-continuum,

If say the two previous IRT's were t1 and t2, then the effective
value of @(t), ¢e(t), is either g(t), or ¢(t+t1), or ¢(t+t1+t2),
or, etc. If these are averaged over all the possible values of t

1'
t2, etc., they become,

) 0
g(t), or X ﬂ(t+t1)r(t1)dt1, or X ¢(t+t1+t2)r(t1)r(tz)dt1dt2,
0 0

etc,

Let z be the probability that the ‘clock is reset'. The average
value of §_(t) is then given by, '

0
¢e(t) = z@(t) « (1-z)§ ¢(t+t1)r(t1)dt1 + ... etc,
0

Thus in general,
Q0 o X .
k
g (t) = 2z@(t) + (1-2)7) #(t + )] ITr(t,)at,.
¢ ; ) Xo g t g 373

When #(t) is a constant, as in the random ratio case, this
simply reduces to,

B (t) = (1-2-22)p(%),
2

which is also a constant. In this situation, the proposed effect

is undetectable. Consider the DRL case however with d9=0.0 and
q=0.0. In this case, @(t) is zero when t<d-a, and the simple model,
(z=1,0) predicts that no IRT's are less than d-a long. When the

case z ¥ 1,0 is considered, however, the limits of integration become
(d-a-t,%) in the expression for ¢e(t). Inspection of the expressions
given for #(t) at the beginning of this section show that @#(t) is
monotonic non-decreasing. Thus, as t increases from 0.0 to d-a, the
range of integration in the expression for ﬂe(t) increases, and so
does ¢e(t). Thus over interval (0,d-a), ¢e(t) is monotonic

non-decreasing. Hence r(t), which is now given by,
t
r(t) = pf (+)Exp(- Opﬁe(y)dy).
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is monotonic decreasing on this interval. I.e. there is a peak
for short IRT's, even if dp:0.0 and q=0.0.

The introduction of the z-effect into the model introduces
great difficulties into the mathematics, and must unfortunately
be ignored in later sections. It was included here to illustrate
along with (i), the many ways in which it is possible to account
for certain aspects of a given set of experimental results. This

particular explanation will be neglected from now on.

One aspect of DRL performance that has received a great deal
of attention is the problem of collateral hehaviour. Many researchers
have suggested that the timing behaviour (i.e. a maximum hear to
t=d in the IRT distribution) is not a true timing behaviour, but
a by-product of a stereotyped chain of responses that have grown
up more or less fortuitously. The model in use here makes no
predictions or comments about collateral behaviour. The existence:
of collateral behaviour simply implies that the subject has never
learnt to sample from the appropriate stimulus continuum, It has
been assumed throughout that subjects do select the appropriate
stimulus continuum. If they do not, then the model makes no

predictions about the ensuing behaviour,

As @#(t) and r(t) are not capable of explicit description,
the derivation of explicit formula for the sequential probebilities
is also impossible. It is, though,possible to derive expressions
for r(t|1) and r(t)0) solely in terms of r(t) and the parameters
of the model . This is done by eliminating @#(t) from among
the following relationms.

B(t) = _,,?_L_)t S
POI=R(E))
i t+a
g(tli) = @(t) - (¢ - ¢(t))giXt r(y)dy, i=0,1,
: -a
and using, %
r(t]1) = ,omtii)zxp(-go P8(y11)4y), 1=0,1.

For practical calculations of these conditional IRT distributions,
the programme SACONDAR (appendix I) can be used.
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It is possible to derive conditions under which the observations
of Farmer and Schoenfeld (1964), that reinforced responses are more
likely to follow reinforced responses than non-reinforced responses
is true. The situation considered was one where p=1.0 and =0,.0.

Let the cutoff value be d. Farmer and Schoenfelds conclusion is
thus restated as,

of'd
X:S“’r(m-)r(t')at-at X g r(E1E0)r(t1)atrat 4.2.b
a Jd 30

>
(1 - R(d)) R(4)

Now let,
B,(£:8') =l -p(£))0 w(tstr).

(B1(t;t') thus represents the effect of a reinforced IRT of duration

t', multiplied by /o.)

Then, % »

r(t]t) = (pB(t)e B1(t;t'))Exp(-go/o¢(y)+31(y;t')dy).

and,

bez;(tlt')r(t')dt'dt
d

w0 t
= X r( pﬂ(t)fB.l(t;t’))Exp(-Xo PE(F)+B, (y;t')ay)r(t')at at,
ala

Integrating with respect to t gives,

had t 0
-Ex (-K B(y)eB,(y;t*)ay | r(t*)dt?
[ L[| ppnes,aienas]]

= (1-R(d))§ l?-xp(-SOB1 (ys;t')dy)r(t')at’.
d

Now the value of the above integral depends on the value of the
exponential term, and the value of the exponential depends in turn
on the function chosen for w(t;t'). The exponential has its largest
value if w(t;t') is everywhere zero, except for t=t', when it must be
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one, In this case,

- 1 ;
Iiex = X:Exp(-/o(« -8(£)0,))r(t’)ats,
Now the smallest value of the exponential is given when, w(t;t') is
one everywhere. In this case,

%o d
. S EXP(-XO/D(ot1-¢(y))°dY)r(t')dt'.

min d

However, the smallest value of @(y) is¢xo. Thus the above integral

is minimised with respect to variation in @(y) if @#(y) is set equal
0 _

to &7,

In this case,

Iin ® (1-R()Exp(- po, («'-d)a).

min

Putting together the various terms, it can be seen that the
lower bound of the LHS of equation 4,2,b is given by,

L., = (1-R(d))Exp(- po («'-a)a).

Considering now the right hand side of equation 4.2.b, by
analogy with the previous paragraph, the maximum value of

4a d
X Exp(jj Bo(y;t')dy)r(t')dt'.
0 0]

where Bo(t:t') is obtained from B1(t;t') by replacing all the '1?
indices by the index '0'. Now, as before,

©o(d a
Iax = XoExp(-Xo Pl -g(y))e dy)r(t!)at’.

Put ¢(y)=¢?, as this maximises this integral with respect to
variation in #(y), then,

I = R(Q)Exp(- po(a’-a)a).

Thus the maximum value of the RHS of equation 4.2.,b is given by,

o1
R, ® (1-R(4))Exp(- po(s-ol )a),
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Inequality 4.2.b holds under the condition that,

Lmin > Rmax’

I.eog

Bxp(- pQ(« -o0)a) > Exp(- 0, (ol-a )a)
(p0,(x'-)a) < (po,(s-a'ya)

9 < %

Since both 01 and OO are always positive, then the opposite of
this inequality holds. I.e. the model predicts the opposite of the
FParmer and Schoenfeld results. It predicts that reinforced responses
are more likely to follow non-reinforced responses, than reinforced
responses, The model makes this prediction because the general
effect of reinforcement is to shorten following IRT's (buf short IﬁT's
are not reinforced) and the general effect of non-reinforcement is to
lengthen following IRT's (making them more likely to be reinforced).

Thus although the model makes reasonable predictions about
the asymptotic IRT distributions, its predictions about conditional

statistics do not seem to agree with previous experimental findings,

4.3 The Experiment

To test more closely the predictions of the model, subjects were
run on a DRL schedule. Four human subjects were used., They were all
undergraduates at the University of Stirling and they were paid at
the rate of 30p per session. The experimental situation was exactly
the same as described in section 3.3. Only the reinforcement schedule
was changed. A trial run under DRL5 proved to be too easy, and the
two test subjects refused to come for further sessions. The schedule
was thus changed to DRL5;0.5 ( a post hoc analysis shows p to have
been 0.48), Two new subjects were found, and the four subjects run

for 10 sessions each.
4.4 The Results

Figure 4.4.1 gives the session by session results from subjects

9-12, These results can be classified into two groups, a first group
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containing subjects 9-11, and subject 12. Subjects 9-11 all show
similar characteristics. An initially high rate of responding
(session O, which is the first five minutes of session 1) rapidly
switches (session 1) to a very low rate of responding. Some subjects
e.g. subject 10,virtually stop responding at this point. The next
two sessions show quite marked speeding up of responding until
the majority of IRT's lie between 5 and 10 seconds duration. This is
then followed by a gradual sharpening of the IRT distribution
until the vast majority of IRT's are around 5 seconds duration.,

It is interesting to note, that noneof subjects 9«11 have
any responses within the first three seconds of the IRT distribution,
and show no sign of a peak close to zero that has been characteristic
of many animal experiments. A1l the subjects became aware that some
kind of time constraint was operating, in the sense that very rapid
responding was 'no good', but noneof them ever characterised it
exactly. This belief (in the uselessness of rapid fesponding) does
however seem to have removed completely all the very short IRT's from

these subjects' performances.

Subject 12 distinguishes himself from the others by his poor
level of peformance, in terms of the obtained rate of reinforcement.,
There is in his results, a definite trend in the direction of
responding at around 5 second intervals, but by session 10, his
performance is still not very good. Whether or not the subject would
have improved with more training is impossible to say. It does not
seem unreasonable to assume this however, as the results do.seem to
be moving in the appropriate direction, and it may not be unfair to
describe this subject's data as non-asymptotic.

Subject 12 also differed from subjects 9-11 in that he did
show evidence of a peak at short IRT's. The graph scale (figure
4.4,1) is too small to show it. In the interval 0,0-0.5, the
probability of an IRT was, for session 10, 0.002, in interval 0.5
-1.0 seconds it was 0.003, and in interval 1.0-1.5 seconds, it was
0.002, making approximately £% of responses in this region. Although
the total effect was small, it is of interest that this behaviour

should be shown by the worst performer on this schedule.

The data from sessions 9 and 10 was pooled to provide a

substantial number of responses, and this data was regarded as
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Subject 2 0 2 | 1sB.10° | WO Data
9 1.65 | 0.38 | 0.31 | 1509 9
10 3.01 | 2.81 | o.28 52 8
1 3.31 | 0.00 | 0.1 | 4591 8
12 0.41 | 1.3 | 1.72 | 15845 14

Table 4.4.(i) -- Estimates of the parameters p,
subjects 9-12, together with a list of the least square errors (LSE)
between the obtained and predicted values of the asymptotic IRT

@, and a for

distribution for these subjects, The last column gives the number
of data points used in the parameter estimation. The IRT's were

classgified into half second intervals.

asymptotic and used for parameter estimation. There are three
parameters to estimate for the IRT distribution, these being, p,
@, and a. (In view of the failure to find a substantial peak near to
t=0,0, the parasmeters dp and «J were set equal to 0.0 and 1.0
respectively. This simplifies considerably the search programme
required to estimate p, @, and a, and reduces substantially the
computing time required.) A minumum search technique was used to
estimate the parameters, the criterion being the least squares fit,
Table 4.4.(i) gives a list of the parameter values obtained, and the

least square error.

Subject C 1sE.10°| No. data
Points
9 1.00 5662 10
10 0.35 30850 9
1 - 5486 8
12 0.45 8050 12

Table 4.4.(ii) -~ Estimates of 01 for subjects 9-12. The LSE
column gives the least square error between obtained and predicted
values of the IRT distribution conditional on the previous response
being reinforced for these subjecte. The last column gives the
number of data points used in the estimation of the parameter 6,.
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The fits for subjects 9-11 are quite good, while that for
subject 12 is at least an order of magnitude worse. This poor fit
to the data from subject 12 is, in a way, reassuring, for a good
fit here would tend to imply‘that the model was so flexible that it
would fit almost anything. This is not an especially desirable
property for any model, as it would make it impossible to put the
model to any real test of its validity. Figure 4.4.2 gives a
graphical comparison of the data and the predicted values based
on a least squares fit. These graphs confirm the impression
obtained from table 4.4.(i), that the fits are good for subjects
9-11, but bad for subject 12.

The results of an attempted fit to the IRT distribution
conditional on the previous response being reinforced are given in
Pigure 4.4.3. The fits, as expressed by the least square error
(Table 4.4.(ii)) are quite reasonable, with the exception of subject
10, Comparison of table 4,.4.(ii) with table 4.4.(i) will show that
the best fit of subject 10 to the asymptotic IRT distribution
becomes the worst fit to the conditional IRT distribution, It
would be possible to obtain a better fit for subject 10 if the
constraint applied to the value of 01 by the value of @ were
ignored. (The value of @ is the one obtained from the asymptotic
IRT distribution.) This constraint is,

for,

and,
0.0 - 00 - 1.0.

For subject 10, the value of 01 found by the method of least
squares is 1/0. If 01 were allowed outside this range, a better
fit could be found. The problem that then arises is one of what
¢, and the corresponding €, (= 0.01) would represent.

In contrast to the very bad fit to the data of subject 10,
the IRT distribution conditional on the previous response being

reinforced from subject 12's data shows & much improved fit
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over that for the corresponding asymptotic IRT distribution. This
appears to be due chiefly to the bimodality of subject 12's
asymptotic IRT being somewhat less pronounced in the case of the
conditional IRT distribution.

It will have been observed that there is no entry for @, for
subject 11, This is because, in the asymptotic IRT distribution,
© = 0.0. This result implies that 6, = 0.0 and that, §(t) = «,
for t » d-a. Since the conditional IRT distribution requires a
term of the form (d1 - ¢(t))01, which is obviously zero in this
case, for any value of 01, then a value for 01 cannot be extracted..
The asymptotic conditional IRT should be the same as the asymptotic
IRT. This is used to generate the entry in the least squarés column
of table 4.4.(ii).

As O, = 0.6,, it is possible to use the data from tables 4.4.(i)
and 4.,4,(ii) to calculate 00 for each subject. This was done, and the
results appear in table 4.4.(iii).

subject | O, sg.10° | No. Data
Points
9 0.38 4432 8
10 1.00 1765 8
11 0.00 9433 7
12 0.51 | 24651 13

Table 4.4.(iii) =-- Estimates of OO for subjects 9-12. SE column
gives the square error between the obtained and predicted values
of the IRT distribution conditional on the previous response not
being reinforced. The last column gives the number of data points
used to calculate the SE.

Figure 4.4.4 illustrates the fit of the model to data for the
IRT distribution conditional on the previous response not being
reinforced. No parameters are estimated from this data. The fits
are on the whole quite good, with the not unexpected exception of
the data from subject 12.

’

4,5 Conclusion

The results obtained from the analysis of the DRL schedule
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are on the whole quite reassuring. If subject 12 is ignored, on the
grounds that these results do not represent asymptotic performance,
then the model'gives good fits to the asymptotic IRT distribution,
and moderate fits to the asymptotic IRT distributions conditional
on either reinforcement or non-reinforcement.

The actual values obtained for the various parameters show
quite a wide range from subject to subject and reveal no particular

pattern that might imply any special significance for particular
values,

3
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Chapter 5

THE RANDOM INTERVAL SCHEDULE

5.1 The Experimental Background

A random interval schedule is one where the reinforcement
function is defined by,

u(t) = 1 - Exp(-¥t),

where ¥ is a constant. Most variable interval schedules can be
regarded as approximations to this schedule. Although a large
amount of research has been done on interval schedules, relatively
little has been done on random interval schedules as such. Most of
the properties of interval schedules that are usually investigated
turn out to be rather intractable from a mathematical point of
view, There are however a number of general discussions of the
nature of the IRT distribution, e.g. Anger (1956), Catania and
Reynolds (1968), Farmer (1963), and Kintsch (1965).

The simplest characteristic of the IRT distribution obtained
from interval schedules is given by Farmer (1963), who states that
the IRT distribution is unimodal, and that the mode tends to move
towards longer IRT values, as ¥ decreases. (I.e. lowering the
mean rate of reinforcement lowers the rate of responding.)

Much of the work done, e.g. by Catania and Reynolds, concerns

such relations as those between rate of responding and time-

since-reinforcement. Unfortunately, while it is possible to

set up expressions with time-since-reinforcement as the temporal

variable, the expressions are so cumbersome and complex that they

have not yet yielded to manipulation. The conclusions that can

be drawn from the model that relate to present knowledge of

properties of behaviour under interval schedules are thus rather

few. However the next section discusses some properties of the
model in the random interval context, and is followed by a look

| at the fit of the model to some actual data. '
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5.2 Predictions from the Model

Prom equation 2.6.a, the asymptotic response strength is given

by,
0 tea 1 t+a
0| Exp(-¥y)r(y)dy + (1-Bxp(=¥y))r(y)dy
- t-a t-a
#(t) =
tea tea
e Exp(-¥y)r(yl)dy + X (1-Exp(~¥y))r(y)dy
t-a t-a

Note first that if @ = 0.0, (non-reinforcement has no effect),
then, @#(t) = aa. I.e. #(t) is a constant and independent of §. In
this case, r(t) is simply exponential,

To investigate #(t) and r(t) further, it is necessary to make

some assumptions and approximations, If it is assumed that a is
small, then,

g(t) = dOQExp(=¥t) & d1(1-ExQ§—!tn .
QExp(-¥t) + (1-Exp(-¥t))

For simplicity, let, «° = 0.0 and o = 1,0. Then, if ¥ is small,
expanding the exponential, gives,

Exp(-3t) = 1 - ¥t,

or,
u(t) = Y.
Hence,
#(t) = 3t
o(1-%t) + ¥t
s ¥t
0+ (1-0)¥t
L
9

fhis approximation for @(t) will be used in the rest of this
section.
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The mode of the IRT distribution is found by setting dr = 0.0,
dt

and solving for t.

t
r(t) = /Oﬂ(t)EXP(-S PB(y)dy).
0

Therefore,

t
dr = pdf(t)E (-X B(y)dy)
at '03% e o/c> Ve

2,012 ¢
- p B(t)"Exp(- opﬁ(y)dy)‘.

The mode is thus given by the solution of,

ag(t) - oB(t)° = 0.0.
ag P

Using the approximate value for @(t), this gives,

- p¥i? = 0.0,
(*] O2
and therefore,
t =

3

Thus as ¥ decreases, t increases. I.e, this is in agreement

with Farmer's 1963 results.

The relation between the rate of responding and the rate of
reinforcement has been discussed by a number of researchers, and
particularly by Herrnstein (1970).

Herrnstein was considering initially the law of effect, as
exemplified by choice behaviour in a two response concurrent schedule,
(A concurrent schedule is simply one with two or more responses
available, each response being independently reinforced. Ferster
and Skinner (1957, p724) define concurrent operants as, "Two or
more responses, of different topography at least with respect to
locus, capable of being excecuted with little mutual interference,
at the same time or in rapid alternation, under the control of

separate programming devices.") If the two suffixes L and R

98



are used to differentiate the two responses, (Left and Right)
then matching is said to take place if,

b A )
Pa Ry
or,
Py = Ry
1]
PL + PR RL ¥ RR

where P denotes the rate of responding (for Pecks, pigeons were
usﬁally the subjects in the experiments discussed by Herrnstein) and
R is the rate of reinforcement.

The above relationships can be discussed in the context of a
single response, by allowing one response (L) to be the response
under investigation, and the other response (R) to be the set of all
other possible responses, excluding L. In this simple situation,
the law becomes,

P = kR, 5.2.a

(x is some constant, and the redundant suffix L has been dropped.)
As long as the total number of reinforcements (RL + RR) is

constant, there is no way to distinguish, in a single experiment,

b@s long as the total number of reinforcements (RL + RR) is

v

P = kRL 502.b

Ry ¢ Rp °

When the sum (RL-+ RR) is a constant, the only difference between
equation 5.2.a and equation 5.2.b is in the value of k, which is an
arbitrary constant in either case. The two equations make divergent
predictions only when (RL + RR) is not a constant, which is actually’
more typical. The difference is that equation 5.2.b predicts a
"contrast effect", between responses, rather than a strict independence
effect, as in equation 5.2.a. Generally experiments support equation
5.2.b, for contrast effects are often found, especially in concurrent
procedures. (Catania, 1966).

If the suffixes are dropped in equation 5.2.b, then the matching
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law takes the form,

B
*
.

where k and A are constants.

Now Herrnstein also points out that an alternative matching
law is the probability matching law, in contrast to the ﬁumbgr
matching law given above. In a probability matching law, the relative
rates of responding equals the relative probability of reinforcement,
rather than the relative rates of reinforcement. I.e.,

Ry
i S A
Py Ry
PR
or,
PL . Ry

If the same arguments are applied to the probability matching
law, as were applied to the numbers matching law, above, then in
the single response case, the law takes the form,

where k and A are again constants, though not necessarily the same as

before,

The strong attachment to rates of responding found amongst
operant researchers conceals the gimplicity of these relationships.
If they are transformed into statements about mean interresponse
tines,

m

rgl—-

P =

Aand mean interreinforcement times,
L 4

IIR =

- ] B
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then they take extremely simple forms, These are,

Number matching law,

P bmaq-c,

Probability matching law,

b b’;R +c,
where b and c are constants, though not necessarily the same in
the two laws,

The point of concern here is whether or not the model used to
describe random interval schedules favours either of these laws,
rather than any other. To do that it is necessary to calculate
values for my and mp in terms of the model's parameters.,

Now,
@D
mP = L’tr(‘t)dt’
o0
= X t,o]_tExp(-p&z)dt.
0 (- 20
Put, ,
= ¥t<,
x IOEO-
therefore, 3
it = ZO x “dx.
2 p¥
Thus, | L]
>
m,, ~ fl‘x Exp(-x)dx,
0810
but, 7
Xox"%zxp(-x)dx s (b = '?' v
so that,

mrﬂjﬁ

This is thus the approximate value of the mean interresponse time.
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mp is somewhat more difficult to calculate, as it is not
possible to calculate directly the distribution of interreinforcement

times., However, if m_  represents the mean probability that a

Q
response is reinforced, then,

mp = Hp
mq
mQ is given by,
40
0
200
e )g ¥t p¥tExp(- pﬁz )at
40 e 20
Y” 2,2 2
= -J_t:ExP(' o8t 7,)%‘.“"
.OP‘”O ,2:_20'
Puat,
2
x = 153
P
“therefore,

4t = ? ”X‘-%

~Ehus,

~Zherefore,




This is the result to be expected, for if the reinforcements
had been scheduled as in an ordinary interval schedule, the intervals
between the scheduled reinforcements would have been distributed
according to §Exp(-3T). Scheduled reinforcements are usually
collected shortly after scheduling, thus the mean interreinforcement
time is expected to be about 1/¥.

Using the above expressions for mP and mR,

[ %
P T b

Since in practice my will contain components not accounted

+d
"

or,

for in the model (e.g. a response speed component) this expression
may be modified to read,

my, = bJE; +$ C.

Thus the model suggests that a probability matching law is
more likely to fit data on the relationship between my, and Dps
than is a number matching law. Herrnstein (1970) is of the opinion
that the number matching law in fact gives the best representation
of the data he possesses. However, he féils to make any attempts
to fit the probability matching law to his data, being content to
show pictorially that the number matching law gives a tolerable
fit. (No measures of fit are given.)

The probability matching prediction is not only characteristic
of the random interval schedule, under this model, but it is also
(again approximately) characteristic of the randomvratio schedule,

In the random ratio schedule, it is obvious that,

- Up |
"R -+

‘where p = u(t), the reinforcement function.
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Now,

_ (See chapter 3)
and, taking dp = 0.0 and oﬂ = 1.0, in the expression for k,

m, = 9(l-p) + p
/PP
but,
P = .m_Pv
mpy
therefore,
pop = TR - 1) 41,
m.
P
Hence,
2
prop = GnR-OmP.g-mP
0.0 = pu - (1-0)m, - om_.
Thus, ;
m, = (1-0) + /(1-0)° + 4 pom
2o o
= (1-0) 1 - JT1 + 4/00mn)
20 (1_0)2

Now if, 4 p@ me is large compared with 1.0, this becomes,
(1-9)2
approximately,
") 1-0
or,

L o bJEi #C .

This relationship between my and my thus seems to partly
. characterise the model rather than the particuler schedule, provided

always, that @ # 0.0.

It did not prove possible (see results, section 5.4) to
investigate this relationship experimentally, as only one value qf
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¥ was used in the experiments described in the following section,

In many ways this is a pity. Perhaps this interesting point can

be pursved experimentally at a later date. If the probability
matching law is found to hold for a given subject, across changes in
the schedule parameter, then this implies the following:-

The model parameters, (in this case @ and /o) must be constant
across changes in the schedule parameters. I.e. they must be
psychological invariants that in some way partially characterise the
subject. |

Such real invariants have proved notably elusive in psychology.

Sequential statistics are extremely difficult to handle
analytically, as the small a approximation for @#(t) can no longer
be used. The programme SACONDAR (Appendix I) is available for
numerical‘investigation‘(e.g. see figure 2.7.1) of the IRT distribution
conditional on either the previous response being reinforced, or not
reinforced.,

53 The Experiment

The same experimental apparatus as described in section 3,3
was used, Only the reinforcement schedule was changed, so that a
random interval schedule was in operation. The values of the
components in the schedule control were chosen so that 1/fwas
approximately 30 seconds. An analysis of the distribution of
reinforcements actually preduced by the schedule established that
1/5 was best described by 27.40 seconds, and this value was used
in all calculations. Four human subjects were used. As previously,
they were paid at the rate of 30p'per session, Subjects came
daily for 10 sessions, excluding weekends. One subject dropped
out after the firsf three sessions and his results are not included

in the following analysis.

5.4 The Results

Figure 5.4.1 gives the session by session results for subjects
13-15, The IRT's were analysed by grouping into intervals of one
second width. The distinguishing feature of these results appears
to be their variety between subjects. Subject 13 begins with a
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rapid rate of responding and slows down gradually over sessions 1-4.
This is then followed by a slow increase in the rate of responding
with the IRT distribution developing a marked bimodality. Over
sessions 7-10, the peak associated with longer IRT's moves slowly
toward that for short IRT's, which peak remains relatively fixed in
position, but increases in magnitude. This suggests that further
sessions may have resulted in the merging of the two peaks to
produce a unimodal distribution,
In contrast to this, subject 14 always has a relatively

high rate of responding. However, as session number increases, the
number of short IRT's decreases and the IRT distribution develops
a long tail. This process continues upto session 9, when there is
a sudden return to the very high initial rate of responding, which
is then exceeded in session 10,

Subject 15 is different again, though in some ways this subject
is similar to subject 13, The first session is characterised by a
very low rate of responding - almost no responding. The IRT distrib
-ution then begins to shift its peak from long IRT's to short IRT's,
so that by session 10, the mode is in the region of 1.5 seconds.
This trend is quicker and more uniform than the corresponding
process for subject 13, and only a slight trace of bimodality
(session 5) is to be found.

The results from session 10, for each subject, were taken as
asymptotic data and re-analysed into half second intervals. The
Parameters dp and -8 were set at 0.0 and 1.0 respectively, to
reduce the number of parameters to be estimated to a minumum, and
the values of P 9, and a were estimated, to two places of decimals,
by the method of least squares, The programme SAGENAR (Appendix I)
was used to generate the IRT distribution, rather than use the
epproximations develope& in the previous section. Table 5.4. (i)
gives the values of these parameters, for each gubject, together
with the least squares error,

The parameters vary widely between subjects. As is perhaps
expected, ¢ is large for subject 13, i.e. this subject is heavily
affected by nonereinforcement, and hence has a low rate of
responding, while @ is small for subject 14, i.e. this subject is
not much affected by non-reinforcement and so has a high rate of
responding. Subject 15 lies between these two extremes. The fits
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obtained also range widely, being very good for subject 14, moderate
for subject 15 and bad for subject 13, although 13 could be perhaps
explained away by allowing that this subject’s date is not really
asymptotic.

Subject p 0) 2 1SE.10° | No- Date
Points
13 5.29 4.09 1.07 16259 20
14 8.74 0,10 4.11 150 9
15 17.50 1.29 0.00 2322 13

Table 5.4.(i) -- Estimates of the paremeters P ©, and a for
subjects 13-15, together with a list of the least square errors (ILSE)
between the obtained and predicted values of the asymptotic IRT
distribution for these subjects. The last column gives the number

of data points used in the parameter estimation.

Figure 5.4.2 shows graphs of the data for session 10 for each
subject, compared with the predicted values., The reasonable results
for subjects 14 and 15 can be seen., It is obvious that the poor fit
to the data from subject 13 results chiefly from the bimodality of
this subjects results.

No predictions or fits are made to the asymptotic conditional
data, as sufficient time was not available to run a parameter search
programme,

5.5 Conclusions

It is unfortunate that it was not possible to collect sufficient
data to investigate the relationship between the mean rate of
reinforcement and the mean rate of responding, for individual
subjects. The restrictions were chiefly practical. The rather tedious
nature of the task led subjects to decline the offer of further sets
of 10 sessions, and, in any case, there would not have been
sufficieht time available to cover a whole range of ¥ values. One of
the characteristic difficulties subjects associated with this schedule
(they were not told before hand what the schedule was) was the
relative insensitivity of the rate of reinforcement to their patterns
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of responding. The subjects did not themselves feel very successful
and after a few sessions just wanted to get the whole lot finished
off as quickly as possible. Perhaps it will be possible however to

test the model against some animal data at some future date.

For the data obtained from a reandom interval schedule, the
model seems to have done fairly well. It does not seem unreasonable
to view the fit of the model to the data from subject 13 as partly
a reflection of the non-asymptotic aspects of this subjects data.
This then leaves the two reasonably good fits of the model to data
from subjects 14 and 15 to characterise the success of the model
in accounting for the general properties of the IRT distribution
produced by random interval schedules of reinforcement.
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Chapter 6

CONCLUSION

6.1 Pinal Remarks

The preceeding three chapters contain a fairly detailed
attempt to describe the commonest types of operant reinforcement
schedules‘by a single mathematical model. Ratio, interval and DRL
schedules have all been described as special examples of schedules
that preseribe reinforcement as a function of interresponse time.,

In describing the relatively wide varieties of behaviour these
schedules produce, only three parameters have been really necessary
and each of these parameters characterise a particular aspect of
the model:- |

i) The response process -- P the sampling parameter,
ii) The stimulus process -- a, the spread parameter.

iii) The learning process -~ @, the relative effectiveness of
reinforcement and non-reinforcement
parameter,

This appears to be the minumum number of parameters that could
possibly be used, in any moderately complex model.

The predictions of the model are generally in accord with the
known experimental results, with one exception. This exception is
that result reported by Farmer and Schoenfeld (1964), that under
DRL schedules, reinforced responses are more likely to follow a
reinforced response than to follow a non-reinforced response. This
model predicts the opposite, a prediction more in accord with the
generally accepted belief that one effect of reinforcement is to
speed up responding.

In most cases the fit of the model to the asymptotic IRT
distribution were good. In the random ratio case however, it was
found that the most important component of the IRT was the time
required to produce the response, The DRL and the random interval
results each produced one example of a poor fit to the asymptotic
IRT distribution, but they seem to have been due to the non-asymptotic
qualities of these particular sets of data. Otherwise the fit of the
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model to the data from these two schedules was good,

In contrast to the overall good fit to the asymptotic IRT
distribution, the fits to the asymptotic conditional IRT distributions
ranged from good to very bad, and show no particularly consistent
patterns of fit. This suggests that sequential effects are more
complex than those proposed by the model,

Taking all the results together, the model does not seem to
have suffered too badly in its first confrontation with experimental
data. It does at least appear to provide a reasonable theoretical
foothold in the highly experimentally orientated field of operant
research,

Stephen Ambler
8 November 1972
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APPENDIX I

This appendix contains two very general Algol programmes that

can he used to calculate asymptotic IRT distributions. It also

contains examples of their output. Comments are inserted in the

programmes to make them reasonably self-explanatory. The various
procedures are discussed in a little more detail in the next few
paragraphs,

i) SAGENAR.

This calculates the asymptotic IRT distribution for a

given reinforcement schedule, sampling function, and spread function,
The procedures specifying these functions need modifying, depending
on the functions actually used.

a)

b)

c)

u(T) ,
This gives the reinforcement schedule. The programme is in
fact set up for a random interval schedule with ¥= 1/30,

PSI(T)

This is the sampling function. The actual function used
here is'ﬁ(t) = M, in line with the choice made in section 2.5.
Lo is set at 5.0.

OMEGA(T,X) and SETLIMITS(AL, AU, T)

These two functions together
specify w(t;x), the spread function. For any value of T,
SETLIMITS makes OMEGA assume values only between AL (lower limit),
and AU (upper 1imit). Here they are both sel equal to 0.05. In
éerms of section 2,4, a = 0.05. OMEGA(T,X) fixes the value of
OMEGA, given that it is constrained by SETLIMITS. In the present
case, OMEGA is set equal to 1.0. Thus together, SETLIMITS and
OMEGA specify,

1.0 x-astsxea,
w(t;x) =
0,0 otherwise,

where a = 0.05,
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The details of these four procedures are up to the user. The

programme can be used to investigate geveral aspects of the model
by varying these procedures. E.g. holding U(?) and PSI(T) fixed
OMEGA(T,X) and SETLIMITS(AL, AU, T) could be varied to study the
effects different spread functions have on the asymptotic IRT
distribution.

.d)

e)

f)

IRTDENSITY(ALPHAO, ALPHA1, THETA)

This procedure is the core of
the programme, ALPHAGC and ALPHA1 are the response strength limits
-and 'THETA the learning parameter. Essentially the procedure tries
to find an r(t) that satisfies equations 2.2.a and 2.3.b. The
procedure works in the following manner.

A finite set of values of r(t) are arbitrarily specified,
,(51). Bquation 2.3.0 is then used to calculate valués of #(t),
(This is done in the local procedure PHI(T).) using the set 3
of supposed values of r(t) st differsnt values of t. #(t) is
then used to caleculave a new set of values for the set of

points of r(t), (32). In general, s, and s, are different. As a

.measure of this difference, the total square error between

corresponding points of s1 and s, is calculated. If this

square error (SQERR) is less than a critical value, then the

points of s, are taken to represent points of r(t). If this is

2

not so, the s, values are dumped and replaced by the s, values

1 2

~and the process repeated. This is continued until the difference

between two consecutive sets is less than the critical value,
or until the iteration has gone through 25 cycles.

-R(T)
This takes the set of values output by IRTDENSITY and

_uses linear interpolation tovprovide aApontiquougwgggqu}mation

to the IRT distribution.

DIVISOR
This computes the integral of r(t) over the total range

ey T <y

_used, and this is then prlnted out, If IRTDEKSITY has produced

W““‘ P 1.

gl T

a reasonable approxlmatlon, then DIVISOR should be close to 1.0,

"""'"‘3’;'
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DATA

The data must be inserted in the following order.

'TITLE' This is space for up to 100 letters or spaces. It is
meant for the name of the reinforcement schedule, but
may be used for any purpose, This inputwpﬁst be enclosed
in string quotes. |

UL This is the time range (0-UL seconds) over which r(t) is
calculated, The initial values of (t) at the start of the
iteration are taken to be 1/UL.

S This is the increment used in selecting the finite set
of r(t) values. Values of r(t) will be computed every Sth
of & second, starting at zero. There are thus UL/S values
1n all, The critical value of SQERR in the iteration is
S /2.

ALPHAO, These are the response strength limits of ¢(t).”Most often
ALPHA1 they will be 0.0 and 1,0 respectively.

~THETA This is the lesrning parameter. It is the relative effectiv

-ness of non-reinforcement to reinforcement.

At the end of the programme is an example of the data layout.
This is followed by an example of the output.

ii) SACONDAR.

- This calculates IRT distributions conditional on the
~Rrevious response being either reinforced or non—relnforced. Most
of the procedures are common to SAGENAR and so are notﬂgiven in

”,Qetail.

a) . PHI(T) :
This is the response strength function. Once R(T) has
_been calculated a range of #(t) values are calculated and
B stored for further use in array OUTPHI At the same time,

w’values of \w(t;x)r(x)dx are stored in array ROMEGA”
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b) CR(T,K}
This calculates the conditional IRT distribution,
Interpolation is used on OUTPHI and ROMEGA to provide a

continuous result.

Finally the pregramme outputs a set of values for r(t|0), r(t),
~and r(t|1) at half second intervals,

_DATA
-This must be inserted in the following order. It ;gﬁyergw§imilar to
~that: for SAGENAR. :

“TTITLE!
UL

s >> As for SAGENAR.
_ALPHAO
_TKELPHAM

—THETAO, These. are_ the learnlngugggameters. zHETAO is the effeqt of
—THETA1 non-reinfgnsement,uwhllemmHETA1 is the. effect ofhiginforcement.
They must be between 0.0 and 1.0,

At the end of the _programme 19 an example of the data 1nput.
- This is followed by an example of the output.
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SAGENAR3;

"COMMENT" THIS PROGRAMME CALCULATES A SET OF VALUES ON
RANGE @-UL OF THE IRT DISTRIBUTIONe. THE POINTS
ARE TAKEN AT INTERVALS OF S APART. THE RESULTS
ARE OUTPUT IN ARRAY OUTSRI@:UL/S3s

"BEGIN"
"REAL'" UL, S
"INTEGER'™ Js
"INTEGER""ARRAY'" TITLE[1:2533;

J:=1;
INSTRING(TITLE,J);
"READ'" UL, Ss

Ji=1;
OUTSTRINGCTITLE,J)
"PRINT" *°L2%°;

“PRINT" *°L*‘, SAMELINE. ALIGNED(2s2)>s * TIME RANGE:
D.00-"sUL>s
*’L**» SAMELINEs, ALIGNED(153)» * INCREMENT IN

ITERATION: *, Ss3
"PRINT'" “‘L2*%;
"BEGIN"
""REAL'"'"ARRAY' OUTSRI@:(UL)/5+21]3

"REAL'""PROCEDURE" U(T)3
"VALUE"™ T3
"REAL" T3

“COMMENT" GIVES REINFORCEMENT PROBABILITY:
"BEGIN'
Us=1-EXP(-T/30)3
"END' OF U;
"REAL'"""PROCEDURE" PSI(T);
"VALUE" T;
“REAL" T3
"COMMENT" SAMPLING DISTRIBUTION;
 "BEGIN"

PSI:=5.0;3
"END'" OF PSIs
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"“"REAL""PROCEDURE' OMEGA(T»X);
"VALUE'" T»>X3
"REAL'" TsX3

""COMMENT'" SPREAD FUNCTION. THIS FUNCTION IS ASSUMED TO BE
ZERO UNLESS X-AL<T<X+AUs

"BEGIN'I
OMEGA:=1.03
“END" OF OMEGA;

""PROCEDURE"™ SETLIMITSCAL,AU>T);
"VALUE" ALs>AU>T;
"REAL'" AL,AU>T;

"COMMENT" FIXES RANGE OUTSIDE WHICH OMEGA IS ZERO3

"BEGI Nl'
AL:=AU:=0.053 .
""END" OF SETLIMITS:

"PROCEDURE'" IRTDENSITY(ALPHA®, ALPHAl, THETA):
"VALUE' ALPHA®, ALPHAl1, THETAS
""REAL'" ALPHAB, ALPHAl> THETA;

""COMMENT' OUTPUTS A FINITE NUMBER OF VALUES OF THE IRT
DENSITY DISTRIBUTION ON 8.0 TO UL C(UPPER
LIMIT) AT POINTS S APART.

THIS IS OUTPUT FROM ARRAY OUTSRI[OQ:UL/S1.
THE FOLLOWING FUNCTIONS ARE NEEDED:-
UCT) -- THE REINFORCEMENT FUNCTION-
PSICT) -- THE SAMPLING FUNCTION.
OMEGA(TsX) -- THE SPREAD FUNCTION.
SETLIMITSC(AL,AU>T)> -- GIVES LIMITS OF SPREAD
FUNCTION.
THE FOLLOWING CONSTANTS ARE GLOBAL AND
MUST BE GIVEN VALUES BEFORE IRTDENSITY IS
CALLED =-=~=- UL,S.
ARRAY OUTSRL@:UL/S] MUST BE DECLARED
AFTER THESE;

“BEGIN"
“"REAL" A, AU, AL3
“"INTEGER" I, L3
SETLIMITSCALsAU>UL) S
-As=AU;3
$=ENTIERCCUL+A)Y/S)+1;
SETLIMITSCAL,AU>@)3
A:=ALs
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"BEGIN™
"REAL""ARRAY' SRAL-CA/S+2):L1;

"REAL'"PROCEDURE" PHI(T);
"VALUE'. T;
""REAL™ T3

""COMMENT'" RESPONSE STRENGTH FUNCTION;

"BEGIN' ‘
"REAL" X» Y»> X1 Y13
"“"INTEGER' 1INC:s
X:=Y:=0.93

"IF" A<Q.000001 "THEN®
"BEGIN"
Xe=1.0;
e=UCT)s
""END"
"ELSE"
"BEGIN"
SETLIMITSCAL,AU>T)s
"FOR'" INC:=(T-AL)>/S "STEP" 1 "UNTIL' (C(T+AU)>/S-1) "DO"
""BEGIN"
X=X+
(OMEGACT> INC*S)*SRALINCI+OMEGAC(Ts CINC+1)%*S)
*SRALINC+11)%S/2;
Ye=Y+(OMEGACT, INC*S)*UCINC*S)*SRALINCI1+
OMEGACTs CINC+1)*S)*UCCINC+1)%S
J*SRACINC+11)*%S/23
"END'"3
""END'3
X1:=ALPHABG* THETA*(X-Y) + ALPHA1xY3;
Y1:=THETA*(X-Y) + Y3
"IF" Y1<0.000001 "THEN'" PHI:=ALPHAQ
"ELSE'" PHI:=X1/Y13;
*"END'* OF PHI3s

“"FOR'" I:=-(A/S+2) "STEP' 1 "UNTIL'"™ @ 'DO"
SRALI3:=0.0;5 :

“FOR'" I:=0@ '"STEP'"™ 1 'UNTIL' L "DO"
SRALIJ:=1/ULs

"COMMENT' FROM THE IMPLICIT RELATION IN SR THAT
SR MUST SATISFYs A SET OF VALUES OF SR
AT POINTS S APART ARE CALCULATED.
ASSUMING THAT THE VALUES SRA ACTUALLY
SPECIFY SR. THE SETS SRA AND SRAl1 ARE
THEN COMPARED. IF THEY ARE ALIKE IT IS
ASSUMED THAT THEY GIVE POINTS OF SR.

117




IF THEY ARE NOT ALIKE», SRA1 IS USED AS
A NEW SRA AND THE PROCESS IS REPEATED.
THIS CONTINUES UNTIL A STABLE SET OF
VALUES IS FOUNDs OR MORE THAN 25 CYCLES
IS MADE, WHICHEVER IS THE SOONER:

"BEGIN'"

"REAL' SQERR», Z, Pl, P2;

"INTEGER' COUNT:

""REAL''" ARRAY" SRAI1[D:L1;
Z:=Pl1:=P2:=0.0;

COUNT:=0.03

"PRINT'" * SERR VALUES ARE: *, “*°L2*‘;

LOOP:

COUNT:=COUNT+13;
"IF" COUNT>25 "THEN"
"BEGIN"
“PRINT" “°L*‘, SAMELINE, : I
‘NO STABILITY AFTER 25 LOOPS, SQERR IS *,
SQERR, “°L*‘;
"GOTO" FINISH;
"END"';

"FOR'" I:=@ "STEP"™ 1 "UNTIL"™ L "DO"
"BEGIN'
P1:=PHICI*S)*PSIC(I*S);
"IF' I=0 "THEN'" Z:=8 "ELSE"
Z:=Z+(((P1+P2)/2)%S);
SRA1LI1:=PI*EXP(=-Z)3;
P2:=P13;
"END";

SQERR:=0.0;

"FOR'" I:=0 "STEP" 1 "UNTIL'" L "DO"
SQERR:=SQERR+(SRALI1-SRA1LIJ)>*(SRACII-SRAI[I1);
"PRINT' SAMELINE, SQERR3;

"IF'" SQERR<S*S/2 "THEN'

""GOTO'"™ FINISH:;

“FOR'"™ 1:=0 "STEP" 1 'UNTIL'" L "DO"
SRALIJ:=SRA1[I1];

""GOTO'" LOOP;

FINISH:
“FOR'" I:=0@ "STEP'" 1 '"UNTIL'"™ UL/S *DO'"
OUTSRLIJ:=SRAI[I];
""END'" OF LOOP;
"PRINT" "L\‘;
IIENDII;
"END' OF IRT DENSITY:;
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%:: .

"FOR" J:=0 "STEP"™ 1
OUTSRLJ1:=0.0;

"UNTIL™

"BEGIN"
"REAL' ALPHAQ>ALPHA1, THETA»E;
"REAL"'"PROCEDURE" R(T)3;
"VALUE" T
“REAL" T3
"COMMENT" LINEAR INTERPOLATION
APPROXIMATI®N TO THE

“"BEGIN"

"REAL'" X3

"INTEGER"™ 13
s=ENTIERC(T/S);

llIF"l T < @0 HTHENH
Ki=0.03
MIF-H T HGEM Gel "AND" T HLE"
“BEGIN"
“IF" I=ENTIERCUL/S) "THEN"

t=0UTSRIII-OUTSRIII*(T/S-1)

ENTIERCCULI/S)+1

IlDOIl

OF OUTSR. R IS A CONTINUOUS
IRT DISTRIBUTION;

UL "THEN"

“ELSE"

Xe=0UTSRCIJI+(OUTSRLI+11-0OUTSRIIII*(T/S-1);

"END'"3
“IF'" T > UL "THEN"
"BEGIN'
"PRINT'™ “°“L* CAUTION BOUNDS OF R EXCEEDED “‘L*‘:
t=0.03
“END' 3
R:=X3
"END' OF R3
"READ'" ALPHAR, ALPHA1, THETA:;
“"PRINT" ““L**, SAMELINE, ALIGNED(1»3), ‘* RESPONSE
STRENGTH LIMITS: *»
* ALPHA® *, ALPHAB, *°S2**, * ALPHA1l ‘., ALPHA1l,
*’L**s SAMELINE, ALIGNED(C1,3>, * LEARNING
PARAMETER: ts
* THETA *> THETA,
"La‘(;

IRTDENSITYCALPHA®> ALPHAL, THETA)

"BEGIN"
“"REAL“
"INTEGER"™

DIVISOR;
Js
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"COMMENT' DIVISOR SHOULD BE APPROXIMATELY 1.0. THIS PROVIDES
A CHECK ON THE ACCURACY OF THE PROGRAMME:

DIVISOR:=0.0;
FOR' J:=@ "STEP" 1 "UNTIL" ENTIERCUL/S) "DO"
DIVISOR:=DIVISOR+OUTSRLJI*S;

"PRINT™ *°L**;

"PRINT" SAMELINE, ‘DIVISOR®, DIVISOR, °°L2%%;
"END"3

UQPRINTI' 'OL\\ ;

"PRINT'™ * T R(TY s, *°L2%°*;
"FOR" E:=0.000 '"STEP"™ ©.5 "UNTIL' 10 "DO'"
IIBEGIN"

"PRINT" SAMELINE, ALIGNED(3,3), E, ““S3°‘, RCE), “°L2%‘;
“IF" RCE)<@.0085 "AND" E>UL/2 "THEN"

"BEGIN"

"PRINT" *“L*‘, °STOP*, ““L*‘;

"GOTO" STOP;

"END'3
"END";

"END"'3
“END"'3
STOP:

"PRINT" *°L10%°%;
"END" OF PROGRAMME;

THE DATA LAYOUT IS AS FOLLOWS

SCHEDULE IS
* RANDOM INTERVAL SCHEDULE, GAMMA IS 1/38 °

TIME RANGE
19 SECONDS

INCREMENT
P.31 SECONDS

RESPONSE STRENGTH LIMITS
0.0 1.0

LEARNING PARAMETER
1.0

END OF DATA LAYOUT.
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AN EXAMPLE OF THE OUTPUT IS:

RANDO#¥ INTERVAL SCHEDULE. GAMMA IS 1/30

TIME RANGE: DeDB =~ 10.00
INCREMENT IN ITERATION: (.010

RESPONSE STRENGTH LIMITS: ALPHAD 0.000 ALPHA1 1.000
LEARNING PARAMETER: THETA 1.000

SQERR VALUES ARE:
7.5607990 00000000 ‘ |
DIVISOR .99943031 ‘ T ﬁ“«;“‘;\“* '

T RCT) S . " :‘;{,§; ”5
2.000 .000 | f;, |
0.500 0.081 !
1.000 9.151
1.500 .203
2.000 0.233 - ,~‘.i G y;'EV@fff{,giﬁ;;
2.500 P.241 TR N ST ‘ ?" |
3.000 2.230 ”

3.500 9.206 ) S
4.000 2.174

4.500 0140 . %
5.000 2.107 .

5.500 2.078 R i 1"'}3;’f;1.[ ;?f}{a3if+

6.000 2.055 | : KIS o
6+500 @.037 ;{.}‘{
7.000 P.024 \ ,,»f;~ﬂ; 2z%¢"f  f3x fi?7 ji;if:';
7.500 2.015 | S ."='/

8.000 2.009

8.500 B.005

9.000 0.083 y

9.500 n.002 |

10.000 0.000 )
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SACONDARS

"COMMENT"™ THIS PROGRAMME CALCULATES A SET OF VALUES AT
POINTS OF THE IRT DISTRIBUTION, ON g -iL
AT INTERVALS S APART AND PUTS RESULTS IN
ARRAY OUTSRI@:UL/Sl. THESE RESULTS ARE THEN
USED TO CALCULATE THE IRT DISTRIBUTIONS
CONDITIONAL ON THE PREVIOUS RESPONSE BEING (A)
REINFORCED> AND (B) NOT REINFORCED:
BEGIN"
"REAL"™ UL, S3
"INTEGER" Js
"INTEGER''"ARRAY" TITLE[1:251]3

1=13
INSTRING(TITLE>J)
"READ" UL, Ss

Je=13

OQUTSTRINGCTITLE»J)

""PRINT"™ *°‘L2**;

"PRINT" ““L**, SAMELINE, ALIGNED(2,2), * TIME RANGE:
BP0 -5 UL> -

*fLtY, SAMELINE, ALIGNEDC(153)», “ INCREMENT IN

ITERATION: *, S3

“PRINT™ “°‘L2‘*‘;

"BEGIN"
"REAL""ARRAY' OUTSRL@:(UL)>/S5S+21]3;

"REAL'''""PROCEDURE'" U(T);

"REAL'""PROCEDURE" PSI(T);

“REAL'""PROCEDURE" OMEGA(T,X);

"“"PROCEDURE' SETLIMITSCAL,AU>T);

“"PROCEDURE' IRTDENSITYCALPHA@, ALPHAl» THETA) 5

“FOR" J:=@ "STEP' 1 "UNTIL' ENTIERCCUL)>/S>+1 "DO"
OUTSREJ1:=0.0;5 -

"BEGIN'"
. “"REAL" ALPHA@, ALPHA1, THETA®@, THETAl, THETA, E;

"INTEGER"™ I35
"“"REAL''"ARRAY' ROMEGA, OUTPHI([@:UL/S+21, RFLD:113

122



"COMMENT" OUTPHI STORES VALUES OF THE RESPONSE STRENGTH
' FUNCTION PHI AT INTERVALS OF S APART ON THE RANGE
2-UL.
ROMEGA STORES VALUES OF THE INTEGRAL
R(X)*OMEGA(Ts>X) WITH RESPECT TO X BETWEEN @ AND UL.
VALUES ARE STORED AT INTERVALS S APARTs AS T RANGES
BETWEEN 9 AND UL3

"REAL""PROCEDURE" R(T)3;

"REAL''"PROCEDURE'" PHI(T):;
“"VALUE" T3
""REAL' T3;

"COMMENT' RESPONSE STRENGTH FUNCTIONS;

“"BEGIN'
“REAL'" X» Y» X1s Y1s> AL, AU, Aj
“"INTEGER'™ INC3
SETLIMITSCAL,AU>T);
A:=AL+AU;
Xe=Ys=0.03
"IF'" A<@.000001 '"THEN"
"BEGIN" ‘
::10@3
e=UCT)s
“END"
"ELSE"
“"BEGIN"
“FOR'" INC:=(T-AL)>/S "STEP' 1 'UNTIL"™ ((T+AUJ)/S-1) "DO"
"BEGIN"
Xe=X+
(OMEGACTs INC*S)*RCINC*S)+OMEGACT» CINC+1)%S)
*RCCINC+1)%S))%5/23 '
e=Y+(OMEGACT, INC*¥S)*UJCINC*S)*RCINC*S) +
OMEGACTs CINC+1)*S)*UCCINC+1)%*S)
*RCCINC+1)%S8))%S/23
"END";
"END';
X1:=ALPHAQ*THETA*(X-Y) + ALPHA1%xY;
Y1:=THETA*(X-Y) + Y3
“IF" Y1<0.000001 "THEN' PHI:=ALPHAD
"ELSE"™ PHI:=X1/Y13;
"END'" OF PHI3
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"REAL' "PROCEDURE' CR(TsK)3;
“"VALUE" TsK3 '

"REAL" T3 ‘

"INTEGER" K3

"COMMENT' CALCULATES THE IRT DISTRIBUTION CONDITIONAL
ON REINFORCEMENT (K=1)s OR NON-REINFORCEMENT -(K=@)
OF THE PRECEEDING RESPONSE; S

"BEGIN" _

""REAL' CONDPHI, FPHI, FPHI1, FPHIZ2;
"INTEGER"™ I.,L3;
FPHI:=FPHI1:=FPHI2:=0.03
CONDPHI:=0.03

L:=ENTIER(T/S);

“IF' K=1 '""THEN"

"BEGIN'"

"FOR'™ I:=0 '"STEP'" 1 "UNTIL'" L-1 '"DO"

CONDPHI :=CONDPHI+PSI(I*S)*
(OUTPHICIJI+(ALPHA1-0OUTPHILI])
*THETA1*¥ROMEGALI1)*S/2
+ PSICCI+1)%S)*
(OUTPHICI+11+(ALPHA1-0QUTPHI[I+11)
- *THETA1*ROMEGALI+11)%S/2;

FPHI1:=QUTPHICL1+(ALPHA1-OUTPHILL1)*THETA1*ROMEGALL 13
FPHI2:=OUTPHILL+131+(ALPHA1-OUTPHILL+131)*THETAI*ROMEGALL+1)3
“END'3 ~

"IF" K=@ "THEN"

"BEGIN"

“"FOR'" I:=@ '"STEP" 1 "UNTIL' L-1 "DO"

CONDPHI :=CONDPHI+PSICI*S)%*
(QUTPHICIJI+(ALPHAB-OUTPHILI )%
THETAG*ROMEGALI1)*S/2
+ PSIC(I+1)%S)*
(OUTPHICI+11+(ALPHAG-QUTPHICI+1]
Y*THETAOXROMEGALI+11)*S/2;3

FPHI1:=0OUTPHILL+(ALPHA®-QUTPHICL] )*TH‘ETAG*ROMEGA[L];
FPHI2:=QUTPHILL+11+(ALPHA@-QUTPHILL+11)*THETAG*ROMEGALL+11;

llEND":

FPHI:=FPHI1+(FPHI2=FPHI1)*(T/S-L)s
FPHI :=FPHI*PSI(T)}
CONDPHHI :=CONDPHI+FPHI*C(T/S-L)#§;
CR18FPHI*EXP(-CONDPHI) 3
"END' OF CR3
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""READ'" ALPHA®, ALPHA1, THETA®, THETAI1;

THETA:=THETAB/THETA1:;

"PRINT' “‘L*%, SAMELINE, ALIGNED(1,3)s * RESPONSE
STRENGTH LIMITS: )
* ALPHAQ *, ALPHABG, °*°S2**, “* ALPHA1 *, ALPHA1l,
‘’L**> SAMELINEs ALIGNED(153)» “ LEARNING
PARAMETERS: %,

* THETA® *», THETA®@, *°’S2**, * THETA1 *», THETAl, *’S2**,

* THETA ‘> THETA. ‘
"LsQI; !

“FOR" I:=0 "STEP" 1 "UNTIL' UL/S "DO"
OQUTPHI[IJ:=ROMEGA[I1]1:=0.0;

IRTDENSITY(ALPHAG, ALPHA1, THETA) S

"BEGIN"

""REAL' DIVISOR:

"INTEGER'" J3

DIVISOR:=0.03

RFL11:=RFL@1:=0.03

“FOR'™ Je:=@ "STEP' 1 '"UNTIL" ENTIERCUL/S)> ''DO"
"BEGIN™ : .
DIVISOR:=DIVISOR+0UTSRLJ1*S3
RFL11:=RFL1J+0UTSRIJI*UCJ*S)*S3
QUTPHILJl:=PHIC(J*S);
“"BEGIN'
""REAL' P,Q3
"INTEGER'" KsL,sM;
SETLIMITS(PsQsJ%S);
IR (J-P/S+1)<@ "THEN'" L:=1 "ELSE"™ L:=(J-P/S+1);
YIF" (J+Q/S-1)>CUL/S) "THEN' M:=UL/S "ELSE"™ M:=(J+Q/S-1);
"FOR" Ks:=L '"STEP'" 1 'UNTIL' M "Dg"
ROMEGAL J] :=ROMEGALJ]+

OMEGA(J*S>K*S) : *OUTSRLKI*S5 -
ROMEGACLJl:=ROMEGAL[J] _
+ OMEGAC(J*S, (L=-1)*S)*QUTSRLL-11%S/2
+ OMEGACJ*S, (M+1)*S)*QUTSRIM+11%5/2;

“END"';
"END"3

RFL®1:=1 - RFL11;

llPRINTlI "L\Q; .

"PRINT" SAMELINE, ‘DIVISOR's DIVISOR, “°L2'°%; .

“PRINT" SAMELINE, * MEAN PROBABILITY OF REINFORCEMENT: *.,
ALIGNED(153), RFL11, *°L2%%;: |

l'ENDl';

"PRINT" *°L**;

125



“PRINT' * T CRCT> 1D R(T) CR(T>@)*s *°L2%°;
"FOR" E:=0.000 'STEP'" 6.5 "UNTIL" UL "DO" ' :
"BEGIN" ‘ '
"PRINT" SAMELINE, ALIGNED(3,3)» E» *°S3**, CR(E»1)» *°S3**,
RCE)» *°S3**, CR(E»B), *°L2**; L

“IF'" RCE)<B.08005 ""AND'" E>UL/2 ""THEN"

"BEGIN'

“PRINT'™ ‘““L**, “*STOP*, “°L*‘;

""GOTO'" STOPs »

"END'"3
"END''3

o

'UENDI';
"END'"3
STOP:

"PRINT" *°L10°*;
“END' OF PROGRAMME;

AN EXAMPLE OF THE DATA LAYOUT FOLLOWS

SCHEDULE IS ' .
* RANDOM INTERVAL SCHEDULE, GAMMA 1S 1/3@1.‘_ Cam st

TIME RANGE
19 SECONDS

INCREMENT , [
0-01 i i x T TR B A I s

RESPONSE STRENGTH LIMITS . K
Be0 1.0 C

LEARNING PARAMETERS
DeS Be5

END OF DATA LAYOUT
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