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Summary

After a discussion of the behaviours that are found to occur 
under various common schedules of reinforcement, a mathematical 
model of learning is proposed, which covers those schedules where 
reinforcement can be prescribed, as a function of the time between 
successive responses.

There are several possible conceptualisations of the model.
The one considered most often is one that uses the basic notions of 
Stimulus Sampling Theory. The predictions of the model are tested 
against the known properties of ratio, interval and DR1 schedules 
of reinforcement. In only one case do the predictions of the model 
run counter to accepted experimental fact.

The model is also tested against specific data from human 
subjects on ratio, interval, and DRL schedules. The model fits well 
to the asymptotic interresponse time distributions for these schedules. 
However the fit of the model to distributions conditional on the 
previous response being reinforced, or the previous response not being 
reinforced, range from good to very bad, suggesting that sequential 
effects are more complex than implied by the model.
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Chapter 1

INTRODUCTION

1 *1 The Experimental Background

The statement that responses take place in time expresses a 
fundamental characteristic of behaviour, (Skinner, 193B, pp 263-264). 
Responses occur at different rates, in different sequences, and with 
different temporal patterns, depending on the relations between the 
responses and other events.

Outside the experimental laboratory, responses and environments 
are usually highly complex, making it difficult to describe and 
measure the temporal relationships between events. Some of these 
problems can be overcome in the artificial simplicity of the 
laboratory. This thesis will be concerned with a set of simple 
situations that may be loosely described as "Free Operant Schedules 
of Reinforcement”. To an observer, such situations can be summarised 
as follows

A subject is placed in a simple environment (e.g. an 
almost empty cubicle) where he may make some response. (Emit an 
operant - for an analysis of the term 'operant', see Schick, 1971). 
When this response has been emitted, a stimulus (the reinforcement) 
is then delivered to the subject by the experimenter, in accordance 
with some rule the experimenter has devised. (The schedule of 
reinforcement).

This description is of necessity rather vague and generalised.
A complete description of the specific situation used is given in 
section 3.3, on experimental procedure.

Responses can be characterised by any one of their many propert
-ies, e.g. speed, intensity, duration, or location. The time that
elapses between between two responses, Rn and R^ ^, that are
considered to be the same,.for the purposes of experiment, is taken
(on somewhat arbitrary grounds) to be a property of the later of
these two resoonses. R , and is referred to as an Interresronse Timen r
(IRT). Regarded as a property of a response, it is obvious that the 
IRT can be chosen as the property upon which reinforcement is made 
contingent. The earliest examples of this can be found in jkinner
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(193B), V/ilsoTi nnd Keller (1953)» and Sidm.nn (I9r;̂ ). To follow the 
usage in the literature, the phrase ’reinforcement of an IRT* will 
he used to refer to the reinforcement of the response that terminates 
the given IRT, whenever the effects of reinforcement on IRT’s are 
being discussed. However, since responses are always separated by 
time periods, any schedule of reinforcement, accidentally as it 
were, reinforces some IRT’s, but not others. Does this reinforcement 
affect, in any systematic way, the patterns of responding on schedules 
where an IRT contingency i3 not a specific part of the schedule?

The answer seems to be that it does, and the elucidation of a 
specific mechanism to account for the precise pattern of results is 
the aim of this thesis. At a verbal level, Skinner himself (1938), 
used this effect to account for the different rates of responding on 
variable ratio (VR) and variable interval (VI) schedules, when the 
average number of reinforcements obtained per unit time were equalised. 
(A VR schedule is one where reinforcement is contingent on a 
variable number of responses being emitted. The only constraint is 
that over a long period of time, the number of responses per 
reinforcement must average to some predetermined value. A VI schedule 
is one where reinforcement is contingent on a variable amount of 
time having elapsed since the previous reinforcement. The only 
constraint is that over a long period of time, the number of 
reinforcements per unit time must average to some predetermined 
value.) Briefly, Skinner thought that since on VR, the faster a 
subject responds, the more often he is reinforced, and hence a VR 
schedule favours short IRT’s. (A high rate of responding). On a VI 
however, the longer a subject waits before responding, the more 
likely he is to be reinforced, and this favours long IRT’s. (A low 
rate of responding). The weakness of this seems to be the casual 
assumption of the equivalence in effect of number of reinforcements 
and probability of reinforcement.

The occurrence of both deliberate and accidental IRT reinforcement 
has led to the establishment of two separate, but overlapping fields of 
investigation with respect to IRT’s. The results obtained from each 
section will be considered separately, as follows;-

a) Schedules of IRT reinforcement.
b) Analyses of other schedules of reinforcement* in terms of the IRT 
* distribution they produce.
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a) Schedules of IRT reinforcement.

The simplest examples of reinforcement schedules that impose an 
IRT requirement are usually described as ’differential reinforcement 
of low rates of responding* (DRL)• Here reinforcement is made 
contingent on the duration of an IRT exceeding some specified value 
x seconds (DRLx). If the IRT is less than x seconds, no reinforcement 
is given, and the timing period is begun again. (Figure 1.1.1). The 
most general schedule on this pattern would be one where the two
probability values of the schedule were not 1.0 and 0.0, but p and q.

Figure 1.1.1 —  A DRL Schedule.
1.0J ------------------

Probability 
of Reinforcement

x IRT in seconds

Such a schedule could be described as a DRLx;p,q. On such a schedule
if the IRT exceeds x seconds it is reinforced with probability p. If 
it is less than x seconds it is reinforced with probability q. 
Normally it would be expected that p>q.

A variant on this type of schedule is the DRL with limited hold 
(DRL 1H). Here the reinforcement is only made available for a period 
of y seconds, after the waiting period x has elapsed. IRT’s of 
greater than x+y seconds are not followed by reinforcement.
(DRLx LHy). (Figure 1.1.2).

Figure 1.1.2 —  A DRL LH Schedule.
i.oi -------

Probability 
of Reinforcement

0.0 ̂ .x X4-y IRT in seconds

DRL type schedules are often regarded apart from other IRT 
reinforcement schedules in that the learning to respond under such
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schedules is customarily treated as the acquisition of a temporal 
discrimination, and work is often centred around how subjects 
acquire this discrimination.

The type of result usually obtained for the FiT distribution 
under training on a DRL schedule is illustrated in Figure 1.1.3* 
which is hypothetical, in the sense that it does not illustrate the 
results of any particular experiment. Its chief characteristics are 
the two peaks, one for very short IRT's, and the other around the 
cutoff point x.

* Figure 1.1.3 —  Example of a typical IRT distribution obtained under
a DRLx Schedule

Relative 
frequency of 

IRT's
0.0 IRT in seconds

The existence of a peak around the value zero has not been 
confirmed by all experimenters, (e.g. Kelleher, Fry and Cook 1959, 
Y.'eiss 1970) but is of fairly common occurrence and is difficult to 
eliminate in animal subjects.

Malott and Cumming (1964) suggest that its presence is simply 
due to response bias and may represent some process that is distinct 
from the actual conditioning process. E.g. a generalised tendency 
(lorman 1966) for reinforcement to produce more responses.

Millenson (1966) has argued that the effect is one due to the 
different susceptability to reinforcement of short IRT’s. However, 
deta by Shimp (1967) on the reinforcement of short IRT’s do not 
clearly indicate a susceptability greater than that of long IRT’s.

Sidman (1956) has offered the plausible explanation that in 
some way these short IRT’s help set the ’internal clock’ that times 
the long IRT’s. He observed that short IRT’s often occurred in 
bursts that followed a non-reinforced IRT that was only slightly 
less then the critical value required. Such bursts were then often 
followed by a reinforced response. It is as if such bursts of short 
IRT’s accurately sets the zero of some timing mechanism. Unfortunat 
-ely, such burst? could equally be regarded as evidence of a 
failure to reset s timing mechanism, The response fails to reset
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a timing mechanism. If a response fails to set the mechanism 
timing the intervals between responses, then it will be read as if 
the response had not occurred. If such a failure, or series of 
failures, occurs around the crucial cutoff point, then a series of 
responses will ensue, as the 'clock* reads 'time to respond' and will 
continue to do so until reset. These explanations are only valid if 
the existence of some appropriate internal clock is taken for 
granted.

There is evidence that the second peak is not, in fact, determi 
-ned always by the use of an internal clock, but is fixed by what is 
usually referred to as collateral behaviour.

Collateral behaviour is a term used to describe stereotyped 
patterns of behaviour that have been observed to occupy the periods 
between operant responses in animals (Ilodos, Ross and Brady 1962, 
Kelleher, Fry and Cook 1959* Laties, Weiss, Clark and Reynolds 1965) 
and also in humans (Brunner and Revusky 1961). It is suggested that 
in the process of learning to respond on DRL schedules, subjects 
build up an adventitious chain of responding that occupies the 
waiting period and leads to an accurate performance on the schedule 
without the need for a specific timing mechanism. Although 
disruption of collateral behaviour does cause a deterioration in 
performance on DRL schedules (Laties et al. 1965), there is 
evidence that collateral behaviour is in some cases not sufficient 
to account for the continued accuracy of DRL performance. (Laties, 
Weiss and Weiss 1969, Zuriff 1969).

The difficulty with the use of collateral behaviour as a 
mediator in timing processes, is that it does not provide, by its 
mere existence, evidence that it is used as a timing mechanism. In 
a DHL schedule, a subject is set the task of obtaining reinforcement, 
and the solution, to the subject (who does not possess the 
experimenters blinkers) is non-unique. The schedule reinforces 
timing behaviour, so timing behaviour may occur. On the other hand 
it also (even if the experimenter did not plan it) reinforces many 
other behaviours, and these behaviours persist because they are 
reinforced, not because they mediate timing. Viewed in this light, 
statements that disrupting collateral behaviour lowers performance 
on DRL schedules becomes the simple truism that disrupting behaviour 
disrupts behaviour.
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Considerations that cast doubt on the hypothesis that collateral 
behaviour mediates timing behaviour, (e.g. how does it account for 
the temporal properties of behaviour under schedules where temporal 
discrimination is not an explicit part of the schedule), raise the 
question of why it must be assumed that timing behaviour is 
mediated. Under the proper set of reinforcement contingencies, 
properties of a response such as its force, location and duration 
can be selected and shaped. The IRT of a response can be treated as 
a conditionable property of a response (Morse 1966, p67) and timing 
can be regarded as the successful shaping of selected IRT*s.

Timing can alternatively be interpreted as temporal discriminat 
-ion. Under the proper set of circumstances, the behaviour of an 
organism can be brought under the control of various features of a 
stimulus. Duration is also a discriminable feature of a stimulus 
(Stubbs, 1958) and timing can be regarded as the successful 
discrimination of stimulus duration. The complicated stimulus from 
which timing is extracted by a subject on a DHL schedule is usually 
unidentified, and may be unidentifiable. There is no reason to 
suppose that the stimulus whose duration may be the discriminative 
stimulus for timing behaviour, must be either an internal stimulus 
(though this seems the most obvious source, as Anger (1963) suggests) 
or a chain of responses, as the collateral behaviour hypothesis 
maintains. Any stimulus - external, internal, or generated by 
behaviour - might possibly serve as the stimulus from which duration 
can be abstracted.

Attempts have been made by Schoenfeld, Cumming and liearst (1956) 
and Hearst (1958) to define temporal analogues of the VR and VI 
schedules in the following manner.

A time cycle of two components, and tA is defined. The periods
t^ and tA alternate. The first response that occurs in a t^ period is 
reinforced. All other responses are not reinforced.

T “ t^+tA is the cycle length, and T = t^/T is the proportion 
of a cycle in which reinforcement may occur. If T is short, then short 
IRT's are likely to be reinforced, (cf. VR) and if T is moderately 
long, then long IRT’s are likely to be reinforced, (cf. VI). Thus 
as T increases, there is a transition from ratio-like schedules to 
interval-like schedules.

Schoenfeld et al. appear to have hoped that In this manner they
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would be able to bring ratio and interval performance into a 
coherent system. However, work by other experimenters, (Millenson 
1953, Clark 1959* Cumming and Schoenfeld 1959, Parmer 1963) have 
failed to produce such a system. Small T values do produce IRT 
distributions rather like those obtained from ratio schedules, and 
larger T values do produce IRT distributions like those obtained from 
interval schedules, but these cyclic schedules also appear to have 
peculiar properties of their own, especially when the experimental 
subject detects the cyclic property. This approach does not seem to 
have produced any really helpful insights into how the characteristic 
patterns of VR and VI responding are produced by the schedule.

b) Analysis of Schedules of reinforcement in terms of the IRT 
distributions they produce.

The first report of a serious attempt at the analysis of 
responding under VI or VR schedules in terms of IRT's was made by 
Anger (1956). More recent attempts were those of Morse (1966) and 
Catania and Reynolds (1968). Other experimenters have contributed 
some experimental results, notably Ray and McGill (1964), Kintsch 
(1965), Blough and Blough (1968), and Shimp (1968, 1969)* The 
experimental results can be summarised briefly in the following 
sketches. (Figures 1.1,4 and 1.1.5). The actual results are affected 
by the classification system used to record the IRT's and estimate 
the relative frequencies. Many experimenters have used class intervals 
of four seconds width, which readily obscures the finer points of the 
distribution.

Figure 1.1.4 —  Example of a typical IRT distribution obtained under
a VR Schedule,

Relative 
frequency of 

IRT's
0.0

IRT in seconds

Although it is possible in a gross way to account for the 
differences betv/een the IRT distributions for VI and. VR schedules,
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(e.g. Skinner' 1933) researchers such as Anger (1956), Morse (1966) 
and Catania and Reynolds (1968), have been concerned with accounting 
for the specific nature of the IRT distributions, but with notable 
lack of success.

Figure 1.1.5 —  Example of a typical IRT distribution obtained under
a VR Schedule.

1.0
Relative 
frequency of 
IRT’s

0.0
IRT in seconds.

Both Anger and • ••orse, using data from experiments by Anger, 
conclude that what matters is specifically which IRT’s are reinforced. 
They differ on the choice of which aspects of the IRT distribution 
are affected by the distribution of reinforced IRT’s, Morse chooses 
the IRT distribution itself, while Anger opts for a conditional 
function of the IRT distribution. (This he terms the IRT/Ops. function. 
A definition of this is given in the next paragraph). Since the 
IRT/Ops distribution is essentially a logarithmic transform of the 
complement of the cumulative IRT distribution the difference in 
choice can scarcely be regarded as trivial. (Contrary to Morse’s 
opinion, footnote* Morse 1966, p67)* That the data can be construed 
as supporting both points of view is an indication of their 
unrelability. Indeed, it is possible to prove that the conclusions 
drawn by both Anger and Morse must be false.

To do this, some notation and terminology must first be 
defined.

i) r(t) : the density distribution of IRT’s, i.e.,

Pr(t<IRT«t<t-6t) ■ r(t)fct.

ii) u (t) : the reinforcement schedule, i.e.,

^r(reinforcement occurs | t<[ RT§t*$t) s u(t).

8



iii) IRT/Op
This is an abbreviation for the interresponse time per

opportunity, and is the conditional probability of an IRT in interval 
(a»t>) given that it is longer than a.

It follows that,

where R(t) is the cumulative probability distribution corresponding 
to r(t).

iv) Reinfs/Hr.
This is the relative reinforcements per hour for IRT*s 

in a given interval (a,b), and is the number of IRTfs whose 
durations ore between a and b that are reinforced per hour.

IRT/Op. 
for interval (a,b)

R(b) - R(a). 
1 - R(a)

(1.1. a)

Reinfs/Hr. 
for interval (a,b)

Reinforcements p 
L interval (a,b)
Reinforcements per IRT for1
(Number of IRT*s in interval 
[_ (a,b) per hour

Now
Reinforeements/IRT 

for interval (a,b)for interval (a,b) fb
Jar(t)dt

and the average total time required for N IRT*s is given by

tr(t)dt

where is the mean IRT. Of theNIRT’s, a proportion (R(b) - R(a)) 
will be in interval (a,b), and the number of IRT’s in interval (e,b) 
is thus, for unit time, given by,



N.(R(b) - R(a)) 

%

( 1 . 1 . c )

Multiplying equation (1.1.c) by equation (1.1.b) gives,

Reinfs/Hr. 
for interval (a,b)

R(b) - R(a)

— s

u(t)r(t)dt

Ja r(t)dt

u(t)r(t)dt ( 1 . 1 . d)

With these definitions clear, it is now possible to quote Anger’s 
main conclusion:

"The agreement of the IRT/Op. curves with the Reinfs/Hr 'curves 
indicates that relative Reinfs/Hr., not the relative Reinfs/IRT, 
determines the IRT/Op. curve." Since these two curves are interdepen 
-dent, Anger concludes that, "Relative stability would result when 
the IRT/Op curve generates a Reinfs/Hr. curve that produces the same 
IRT/Op. curve." This conclusion is then tested by changing the 
reinforcement schedule and noticing its effect on both curves and 
"... soon the IRT/Op. curve changes until it is in rough agreement 
with the Reinfs/Hr. curve."

It is possible to argue as to what Anger meant by the terms 
"determine", and "in rough agreement", but generally they seem to 
have meant that the graphs of the IRT/Op. and Reinfs/Hr. functions 
looked very similar to the eye. The simplest mathematical equivalent 
of this is to assume that the functions are the same to within some 
linear transformation of-the co-ordinates. (I.e. it is possible 
with at most, changes of scale and a shift of origin to make graphs 
of the functions look exactly alike). If it is assumed that the 
only implication is that there is some functional relationship, then 
the result is trivial. There must be some such relationship if the
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functions are reasonably well behaved. The result is only non-trivial 
if some simple relation is specified. However, Anger seems to imply 
a restriction on the relationship which is greater than that of a 
linear transformation of the co-ordinates. This is a linear transform 
-ation of only one of the co-ordinates, as the same time axis is 
required for both functions. The statement:-

"Analysis of the reinforcements given different interresponse 
times by the schedules shows that the Reinforcements/Interresponse 
time are greatest for long interresponse time?, but that Reinforcements 
/Hr. are greatest for short interresponse times. The agreement, 
between the greater Reinforcements/Hr. for shorter interresponse 
times and ... **

indicates that the time axis is assumed to correspond for all 
the functions used. Anger’s conclusion can thus be restated as, *at 
asymptote the functions IRT/Op. and Reinfs/Hr. are the same to 
within a linear transformation*. I.e. using (1.1.a) and (1,1.d),

where A and B are both constants.
Relation (1.1.e) must hold independently of the values chosen 

for a and b, as these are simply the result of the experimenter’s 
choice, I.e. (1.1.e) must hold for some A and B, for any choice of 
a and b. Let (a,b) be the small interval (t,t*£t).

(1.1.e) becomes,

A(R(b) - R(a)) + B , 
1 - R(a)

( 1 . 1 . e)

u(t)r(t)St + E .
1 - R(t)

Simplifying this gives,

u(t)r(t) M i } -  + D
1 - R(t)

where C = A*r and D «

11



Now,

0 <  J0u(t)r(t)dt ̂  jQr(t)dt s 1,

as, 0 ^  u(t) ̂  1 (u(t) is a probability), r(t) is a probability 
density function, and assuming both ii(t) and r(t) are non*-zero for 
some overlapping set of t-values.

Thus, from equation (1.1.f)

rC°Cr(t)dt + L
Jo 1 -

,UDdt s  1.

but,

Soo Coo _ _.O0
Cr(t)dt + LDdt = l-log(1 - R(t)) + Dtt

0 1 - R(t) J0 L O

"fic if D j< -C 

0 if D - -C ,

neither of which lie in the required range*
Thus equation (1.1.f) cannot be true for all values of t and 

hence equation (1*1*e) must be false for some values of t, Anger's 
conclusion is necessarily false.

Morse (1966) proposed a variant on the kind of matching effect 
suggested by Anger. This time the actual IRT distribution and the 
distribution of reinforced IRT's are supposed to produce an asymptotic 
match. "The relative rate of reinforcement of different IRT's will 
in turn have an effect on the subject so that he tends to produce a 
distribution of total IRT's approximating the distribution of 
Reinforced IRT's". In a manner analogous to that used to examine 
Anger’s (1956) statement, that of Morse may be analysed and shown to 
be only trivially true.

Let v(t) denote the distribution of reinforced IRT's. Then,

12



v(t) = u(t)r(t)
90 *

Qu(z)r(z)dz

Morse states that, if A and B are constants, then,

r(t) s Av(t) 4- B.

Integrating both sides of this equation, between zero and infinity 
gives,

£r(t)dt
or,

1

which implies that A ■ 1.0 and B * 0*0, if the relation is true,
1,6, that,

r(t) . v(t)
>•

r u(t)r(t) .
f°°JQu(z)r(z)dz

Therefore,
1 - , .. u(t.)T3JQu(z)r(z)dz

which is only true if u(t) is a constant, Morse's description of the 
determination of the IRT distribution of reinforced IRT's is true only 
for a special and trivial case.

Catania (1970, p7) has stated "the fundamental determinant of 
differentiated responding is rate of reinforcement (reinforcements 
per unit time) rather than the frequency of reinforcement (reinforce 
-ments per response). This assumption agrees with the general 
consensus in the literature.** The proceeding analysis of this 
assumption, applied to the specific versions espoused by Anger and 
Morse, suggests that this assumption is rather suspect.

£ o |W
Av(t)dt + ^Bdt,

A ♦ B[t]“

13



Catania and Reynolds (1968) were much more cautious in their predict 
-ions. They were content to illustrate that the more probable it is 
that an IRT will be reinforced upon termination, the more likely 
it is to be terminated. Even their conclusions however, are limited 
by the assumption that the initiation of an IRT is equally likely 
to occur during any part of the schedule. There is some evidence that 
this is true for the initial exposure to certain schedules, (Anger 
1965, Mueller 1950, Revusky 1962). With continued exposure to a 
schedule, the unqualified assumption that the initiation of IRT’s is 
independent of the schedule becomes less and less tenable. (This must 
be true if the schedule is to affect the distribution of IRT’s).

The conclusion of this section is clear, The nature of the IRT 
distribution produced by the most common schedules of reinforcement 
is known, but there is no firm theoretical formulation to suggest 
why certain schedules produce the particular IRT distributions that 
they do produce. The next section deals with some applications of 
existing mathematical models of learning to this problem and 
examines their strengths and weaknesses, to assess whether or not 
they can be used to provide an appropriate theoretical foundation.

1.2 Mathematical Background

To study the way in which the IRT distribution is controlled by 
the reinforcement of different IRT’s it is necessary to consider how 
reinforcement schedules can be defined in terns of pure IRT reinforce 
-ment. Attention has so far being restricted to VR and VI and DRL 
schedules. How can these be defined solely in terms of IRT’s and their 
reinfore ement?

Let u(t) denote a function selected by an experimenter such that 
u(t) gives the probability that an IRT t (or more strictly an IRT in 
interval (t,t+£*t)) is reinforced, if it occurs. Can such a u(t) be 
defined for VR, VI and DRL schedules of reinforcement? The answer is 
•yes’, and it is done as follows.

i) Ratio Schedules

u(t) = P» Vt. p is a constant.

(Brandauer, 1953)

14



This is a special kind of ratio schedule. Ratio schedules are 
usually generated by selecting a set of numbers, whose mean fixes the 
ratio. E.g. the set 1,3,6,7,9,4, has a mean of 5. This set of numbers 
is then randomised and used to determine which responses are reinforced. 
They could be used in order 3»9|6»4,1t7 and the subject has to produce 
3 responses for a reinforcement, then 9 etc. The cycle is repeated 
when the end is reached. On average, 5 responses have to be emitted 
for each reinforcement. On average each response has a probability 
of 0.2 of being reinforced. What the Random Ratio schedule does is 
make this an exact property rather than an average one. Under the 
parallel Random Ratio! (RR) schedule, each response would have a 
probability of 0.2 of being reinforced.

ii) Interval Schedules

u(t) m 1 - exp(-Wt) Vt.

(Millenson, 1963)

IS is a constant. 1/X gives the mean interreinforcement time for the
scheduling (not obtaining) of reinforcements.

The problem in interval schedules has always been how to specify
the nature and distribution of the intervals used. Many methods have
been tried. In an Arithmetic variable interval schedule, a series of
intevals of the form a-d, a-2d, ... a-kd, arranged in random order
are used, (a and d are constants, k is some integer. The mean interval
is given by £kd). In Geometric variable interval schedules a series

2 kof intervals of the form a, ad, ad , ... ad , arranged in random
order are used, (a and d are constants, k is some integer. The mean

k—1interval is given by (a(1 - d ))/((k-1)(1-d)))• Many complex 
relationships among the intervals are possible. (E.g. Fibonacci 
series have been used.) All the different methods of prescribing the 
intervals produce slightly different patterns of behaviour. Recently 
interest has been aroused in what is often termed the constant 
probability interval schedule. This is a schedule where the probabili 
-ty of a reinforcement being scheduled at a time T since the previous 
reinforcement was scheduled, given that a period of at least T has 
elapsed since the previous reinforcement, is a constant. I.e.

15



Probability reinforcement scheduled at T 
Probability reinforcement scheduled at T 

or at some later time
a constant.

This conditional probability is often referred to in the literature 
as, rather confusingly, 'the probability of reinforcement*. A better 
term, and one which illustrates the parallel with the IRT/Op. of 
1.1.b(iii) is 'reinforcement per opportunity*.

The function which satisfies this relation is,

1 - exp(-XT) (Millenson, 1963).

I.e. the probability that a reinforcement is scheduled in the 
interval (0,T) since the previous reinforcement is 1 - exp(-YT).
(For an approximation to this see Fleshier and Hoffman, 1962).

The specific choice of intervals chosen to generate the interval 
schedule is of importance, as Catania and Reynolds (1968) have shown '• 
that in variable interval schedules, the rate of responding at a time 
T since the previous reinforcement seems to be proportional to the 
reinforcement per opportunity at that time. Thus constant probability 
schedules can be used to produce very uniform rates of responding. This 
is then often used as a baseline rate for other studies.

The constant probability schedule is of especial importance in 
the present context, as Norman (1966) has proved that an interval 
schedule, with intervals defined in accordance with the constant 
probability relationship, is also the pure IRT reinforcement schedule

u(t) = 1 - exp(-ft),

given at the beginning of this section.
This schedule will in future be referred to as the Random 

Interval schedule (RI), following Millenson*s usage.

iii) Differential Reinforcement of ’ Low Rates of Responding (DRL)

, t^d
u(t) - -

q, t<d,
16



where p, q, and d are constants, d is the cutoff value and p>q. In 
practice, the only values of p and q used are 1.0 anAO.O respectively. 
The DRL schedule is naturally an IRT schedule. With the traditional
values for p and q, a response is reinforced if its IRT equals or
exceeds d, and not reinforced if its IRT is less than d. This 
schedule is naturally an IRT reinforcement schedule, and so thereiare no problems in framing an appropriate definition in terms of IRT 
reinforcement.

In the light of the above definitions of the various u(t)*s, 
Ratio, Interval, and DRL schedules can all be brought into the same 
classificatory framework. They are all schedules of interresponse 
time reinforcement. The only attempts to analyse all schedules as 
IRT schedules are the experimental works of Malott and Humming (1964) 
and the chiefly theoretical paper by Norman (1966).

Malott and Cumming suggest that it is possible to analyse the
effect of an arbitrary schedule u(t) by regarding it as a complex 
one-key concurrent IRT schedule (Shimp, 1968, 1969). The effect of 
the overall u(t) schedule is described in terms of the effects that 
the various simple schedules, into which u(t) is decomposed, have 
upon performance. The basic components seem to be various DRL LH 
schedules. Malott and Cumming provide a large amount of data on 
the various DRL LH schedules, but unfortunately give no examples of 
how these results are to be integrated to predict the outcome of 
some arbitrary u(t). They further omit to describe how it is decided 
into what basic elements a given u(t) is divided. It appears that the 
predictive aspect of the study breaks down under the complexity of the 
proposed task.

Norman (1966) has a radically different approach. He makes 
three very basic assumptions about the effects of reinforcement and 
non-reinforcement on performance. These assumptions are then translated 
into their mathematical equivalents, and the resulting equations 
subjected to extensive manipulation in order to discover the properties 
the model possesses.

Norman’s three assumptions are,

i) Reinforcement has a general tendency to increase the rate of 
responding.
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ii) Reinforcement of an IRT t, increases the tendency to emit IRT's 
of length t.
iii) Non-reinforcenent has a tendency to reduce the rate of 
responding.

These very simple assumptions - it is hard to think of a.,weaker 
set - are termed, in their mathematical form, the Linear Free 
Responding Model, by Norman. The central problem of the paper is that 
the very weakness and generality of the assumptions leads to very 
great difficulty in manipulating the equations to produce any 
predictions. Norman surmounts these problems to some extent, by 
making assumptions about the smallness of the parameters involved 
and produces some approximate results. The final conclusions about 
the relationship between the mean rates of responding and the mean 
rates of reinforcement scarcely seem worthy of the preceeding 
mathematics. Unfortunately the model is too difficult to handle with 
ease.

Let r(t) denote the asymptotic IRT distribution. (I.e. the 
probability of an IRT whose duration lies between t ar&t*£t is 
approximately r(t)£t.) The problem is, very simply stated,

Given a reinforcement function u(t), what is the asymptotic 
IRT distribution, r(t), that a subject will eventually produce?

Norman's model - the linear free responding model - has been 
rejected as a solution to this problem, as it makes the problem 
too intractable. Can an alternative be found? Norman essentially 
considered that the jIRT was itself the response reinforced, and 
that as such the response could take any value between zero and 
infinity. Thus the response is essentially a response on a continuum. 
This suggests that other models for responding on a continuum may be 
applicable to the present problem. These arej-

a) Linear models for Responses Measured on a Continuous Scale. 
(Anderson 1964).

This model deals only with the mean response on a given trial.
It is thus a model for group effects. The function r(t) is an 
individual function. This model is thus unsuitable for application to 
the problem here.
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b) Linear Model for a Continuum of Responses.
(Suppes 1959» Suppes and Rouanet 1961, Suppes and Zinnes 1961,
Suppes, Rouanet, Levine and Frankmann 1964).

Formally, this model can be regarded as a simple version of the 
Linear free responding model of Norman. Essentially it is the Norman 
model without assumptions (i) and (iii). Briefly the model can be 
described as follows. (For a complete formal specification, see the 
paper by Suppes, 1959).

An experiment consists of a sequence of responses (*n) a-ncl 
reinforcements (yn )9 denoted by sn, upto and including the nth 
trial. (The nth response followed by the nth reinforcement.) I.e.

sn = (W * n - 1 - xn-1....... V x1>*

Sn is a history of responses x and reinforcements y. On any 
trial i, the subject made response x^ and a reinforcement y^ followed* 
indicating that y^ would have been the correct response. The basic 
axiom of the model is,

' W / X,sn^ = ^1“° ^ n âE*sn-1) Gk(x;yn)» (1.2.a)

where 3n+-j(x lsn) density distribution of the response x on
trial n+1, given a history sn , 0 is a constant between zero and one, 
and k(x;y) is a density distribution on x with a mode at y, the point 
of reinforcement. k(x;y) is known as the smearing distribution, 
because it smears the effect of a reinforcement at y over the portion 
of the x-continuum around the value y. The basic axiom simply states 
that the effective density distribution of x on trial n+1 is the 
weighed average of the density distribution on trial n, with a 
tendency to repeat responses around the reinforced response yQ .

The model assumes that every trial is followed by a reinforcement, 
so to keep matters simple, consider the application of the model to 
the case of continuous reinforcement. When the continuum x is the 
time t, this is a random ratio schedule with p ■ 1.0. I.e,

u(t) : 1.0 V*.

The conditional probability density distribution, on trial n, is 
thus,
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fn(y|t)8t - Pr(Reinforcement occurs at y
response is in interval (t,t*£t))

- u(t)£(t-y)St

z Rt-y)8tf Vn»

where S(t) is the Dirac S-function.

The mean response distribution on trial n+1 is given by,

r ..(t) s u „(t,s )ds ,n-»-1 J n+1 * n n*

1. e. ^t,sn) surame<i over all possible past histories sn * ( j(...) 
is used as an omnibus function. It denotes the density distribution 
of whatever appears inbetween the brackets.)

Now,

y W l (t’sn )dsn =

• J ^ I ^ ' V V W y V V V l ^ V 3!!-!

= (1-©)l3 (t|s ,)j (y ,t ,s .)dy dt ds .'pn ' n-v^n'^n* n* n-1' •'n n n-1

+ Oik(t;y )j (y ,t ,s „ )dy dt ds „• \ »*n'«inw nf n» n-1 Jn n n-1

(from basic axiom)

= (1-0)\j (tjs .)j(s .)ds .\ * n-1/0 n-17 n-1

5k(t:y )f (y It )j (t ,s «.)dy dt ds „' ''n nw n' n/t;n n* n-17 ^n n n-1t 0

(1-0)rn(t)

t eSk(t:y )S(t -y )j (t , s -)dy dt ds „ ^n n t'n/V  n* n-17 Jn n n-1
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(1-©)rn(t) ♦ © k(t;y)rn(y)dy.

At asymptote this becomes,

therefore,

This equation is a homogeneous Fredholm equation of the 
second kind. Solution of this equation, in the traditional manner, 
by series expansion of k(t;y)s yields the obvious and trivial 
solution,

as k(t;y) is a probability density function. When the further 
constraint, that r(t) be a probability density function is added, 
it can be seen that no such r(t) exists with the required properties.
The difficulty stems basically from the following property of the 
model, viz. that all responses t are on some trial reinforced and 
hence ultimately all responses are equally likely. As the response 
continuum is the interval (0,°®), the actual probability associated 
with a particular response is arbitrarily close to zero. Thus instead 
of the high rate of responding actually found under continuous 
reinforcement, the model predicts a near zero rate of responding. The 
model does not seem directly applicable to the description of 
behaviour under schedules of interresponse time reinforcement.

c) Stimulus Sampling Theories for a Continuum of Responses.
(Suppes 1959, Suppes and Frankmann 1961, Suppes and Zinnes 1966).

For simplicity consideration will be limited to the one-element 
model, and as far as possible the notation will be the same as that 
used in section (b).

The stimulus element has associated with it a smearing distribution 
k(x;y) which is a density distribution with a mode at y, and a 
variance independent of y. If a response t is made and is followed 
by a successful reinforcement y , on trial n, then the mode of the 
smearing distribution shifts from its previous value to yn « Note

r(t) a constant, Vt,

21



that,

r(t|mode of smearing - k(t;y).
distribution at y)

Let response t occur on trial n, followed by reinforcement y , 
Let Sn (z) denote the density distribution of the probability that . 
the mode of the smear‘ng distribution is at z on trial n. The model 
states that, if conditioning is not effective, (with probability 
1-©), then,

g „(z|t ) a g (z),&n+1 ' n &n *

and if reinforcement is effective, (with probability ©),

g *(z|t ) m f (zlt ),°nf1 1 n n 1 n *

where fn (z |t ) ^as same meaning and form as in section 1.2.(b). 

Combining these equations gives,

Sn4i(zltn) = 0-®)sn(z) ♦ W n(z|tn). (1.2.c)

Mow satisfies,

rn+1(t) Jrn+1(t<z'tn )sn*1(z,tn )rn(tn )dtnd2

|k(t;z)gn+1(z|tn )rn (tn)dtndz 

(1-e)jk(t;z)gn(z)rn (tn)dtndz 

+ e[k(t;z)fn(z|tn )rn (tn )dtndz, 

(using equation 1.2#c)

(1-0)rn(t)

+ ©|k(t;z)rn(z)dz,
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when f (zlt ) - £(z-t ) as in section 1.2.(b). (I.e. it is again n * n n ’
assumed that the schedule of reinforcement is the continuous 
reinforcement schedule, or RR 1.0).

At asymptote,

r(t) s (1-G)r(t) + ©jk(t;z)r(z)dz,
therefore, r

r(t) = lk(t;z)r(s)dz.
— ---------- *--------------  (l.2.d)

This result is of the same form as that found in section 1.2,(b). 
Again the result is meaningless in the present context. The difficulty 
is similar to that found with the linear model. All responses have 
the same probability of reinforcement, and hence are finally all 
equally likely to be the mode of the smearing distribution.

d) Stimulus Sampling Theory for Continuous-Time Processes: Extension 
to a continuum of responses.
(Suppes and Donio 1967).

This model is a model for tasks such as monitoring a particular 
tone, or tones. The response listening for frequency f* can be 
regarded as responding on a continuum,'as the frequencies f form a 
continuum. The model is concerned with predicting the response made 
at a given time, There are conceptual difficulties in applying this 
model to schedules of interresponse time reinforcement, as time is
both the response, and the period in which the response takes place.
(E.g. it is not easy to speak of an IRT of duration t being made at 
time T, since an IRT is not actually specified until it terminates. 
However, it is possible to think that each time the subject sets out 
to wait until a period t has elapsed since the previous response.
This waiting could be underway at some time T.)

Let T be some baseline time, running say, from the beginning of
the experiment. Let t denote the IRT. Por simplicity again restrict 
the model to a single element. Let g(z,T) denote the density 
distribution of the mode z, of the smearing distribution k(t;z), 
at time T. This parallels the function Sn(z) of section 1.2.(c).
The continuous parameter T replaces the discrete parameter n. 
r(t,T) parallels rn(^) and denotes the density distribution of the 
probability that an IRT of duration t is in the process of passing
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at time t•
Obviously,

r(tj - Lim r(t,T),
T-»*©

and, f
r(t,T) s \k(t,z)g(z,T)dz.

Consider a small interval (T,T+ST). In this interval a reinforcement 
will occur, provided a response terminating an IRT occurs. The 
probability that this has been of duration t is, r(t,T)$T. Thus if 
reinforcement is effective, with probability 0,

g(z,T*$T t) s f(z,T)t)

= f(z|t).

(f(zlt) has the same meaning as before. It is the conditional
reinforcement function. This function does not depend on T).

If reinforcement is not effective, with probability (1-0),
then,

g(z,T*6T|t) = g(z,Tlt).

Finally, if no response occurs, with probability (1-r(t,T)$T),

g(z,T+ST|t) - g(z,T|t).

Combining these equations gives the mean result,

g(z,T+6T|t) = g(z,T|t) + ©r(t,T)(f(z|t)-g(z,T|t))^T,

which as fcT tends to zero, becomes the partial differential equation,

$L&(z,T|t) = fOr(t ,T)(f.(z It )-g(z,T|t)) •
'b?

With an inital boundary condition denoted by g(z,0|t) this equation 
has the solution,
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g(z,T|t)

At asymptote,
Lim g(z,TIt) 

T-*o*

Hence,

because,

but,

r(t)

g(z)

f(z|t) f (f(z|t)-g(z,0|t))
•expC-oJ^rCt,y)dy).

g(zlt)

f(zlt),

(from above).

Lim r(t,T)
T-*«o

z)g(z,T)dz

f(z|t)

T-*«o r
Lim lk(t,

Jk(t,z)g(z)dz 

Jk(t,z)r(z)dz, 

jg(z|t)r(t)dt 

Jf(z|t)r(t)dt 

S(z-t)

Therefore,
g(z)

(the schedule is BR 1.0).

r(z).

Thus the result is again,

r(t)
h i :

z)r(z)dz.

This model must also be rejected, as again, like (b), and (c) 
it predicts results which do not in any way correspond to the 
experimental evidence available.

In conclusion, all the models outlined above, in various amounts 
of detail, face (with the exception of Norman’s model) one central 
problem when applied to IRT schedules of reinforcement. They predict
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that at asymptote, responses that are equally likely to be reinforced 
are equally likely to occur. The simplest example of an IRT 
reinforcement schedule, RR 1.0 has been used to illustrate this.
Here every response is equally likely to be reinforced. It is well 
known however, that on such schedules, very short IRT's vastly 
outnumber long IRT*s.

As well as having this common failing, the models above all 
make a common assumption, that the IRT is itself the response. In 
the next chapter a model is developed, which , while related to 
the stimulus sampling models outlined above, does not make this 
assumption. Finally, in the ensuing chapters, this model is put to 
test against experimental data.

• • ■■ ■ ■'& ■ r -&  v  - .

- • -* r

.=■ ■j’r-pyj. i '
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26



Chapter 2

THE MODEL

2.1 The Stimulus Process

"Animals have available some events, either internal or in 
their behaviour, that change in a consistent way with time after the 
last response, reinforcement, etc. These events function like 
external stimuli, at least to the extent that differences in 
responding can be conditioned to these organism differences."

The above quotation is taken from Anger, (1963). In a very basic 
way, all that follows is rooted in the assumption that this statement 
is essentially true.

Assume that any response generates, or is associated with a 
pattern of stimuli X that change over time. If t denotes the time 
since the last response occurred, the pattern found at time t will 
be called X(t). The changing pattern X(t) can be conceptualised in 
many ways —  a stimulus trace, the reading of some internal clock, 
the position in a chain of collateral responses —  the particular 
conceptualisation is not important. What is required however, is 
that changes in X(t) are consistent, in the sense that, after two 
responses, and R^, which are considered to be the same, then the 
patterns X(t) are the same for each value of t, for each response.
(It is possible to weaken this assumption, without seriously affect 
-ing the results that follow. It does however introduce a somewhat 
needless complexity. The weakening is done by partitioning X(t) into 
two parts, a consistent part, and a randomly varying part.) Perhaps 
the most general way to envisage the situation is to consider that 
X(t) consists of a set of stimuli. Changes in X can then be described 
as the appearance, or disappearance of stimuli from this set. The 
following diagram may help clarify the ideas about the stimuli X(t). 
(Figure 2.1.1).

A stimulus is available as a component of a pattern for a 
period of time. E.g. stimulus f (figure 2.1.1) is available during 
interval (O^t^). At any time t, since the last response, a characteris 
-tic set X(t) of all the then available stimuli exists. These sets 
are not all unique. E.g. X(t^) 5 X(t^). The set actually detected by
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a subject at any time t will be called x(t), and is a subset of the 
total available set X(t). E.g. (figure 2.1.1)

Figure 2.1,1 —  A diagramatic interpretation of the Stimulus Patterns
available after each Response.

for
sampling,

Stimuli -I---,--1-- L_
I i

i • , 
« !

available a • •, .I _ ! > 8

'0 V1 \  w3 v4
Stimuli crossed by a vertical dotted line indicate the particular 
stimuli available at that particular time to form X(t).

i i
» 1 b_J— i-----

. , Time since
t‘ z. previous response.

x ( t 1)

x(t1)

x(t1)

(a,b,c,d), while 

(a,b,c), or possibly 

(a,b,d), etc.

Differences in sets x(t) can be used to discriminate among 
values of t, but not perfectly reliably. E.g. if,

x(t1)
and

x(t2)

: (a,b,c,d)

- (a,b,c,e), 

then is distinguished from but if,

- (a,b,c)

: (a,b,c)

x(t1)
and

x(t2)
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then will not be distinguished from t^. The overall pattern X(t) 
is the same after every response, but the associated pattern x(t), 
that is the one detected, can vary within limits. Variations in 
x(t) describe trial by trial variations in the accuracy, of temporal 
discrimination, while the actual nature of X(t) fixes an upper limit 
to the accuracy of temporal discrimination.

2,2 The Response Process

Given that there exists this continuum of patterns X, indexed 
by t, how is the occurrence of a response, at a time t since the 
previous response, determined. Let each pattern 3c(t) have associated 
with it a probability of responding, 0. This value of 0, 0(x(t)),
can be regarded as the proportion of the stimulus elements in the 
pattern x(t) that are conditioned to the appropriate response. The 
average value of 0(x(t)) at a given t will be denoted by 0(t), i.e.,

0(t) s Pr(response| some pattern x(t)).

Although 0(t) is a response probability, it does not directly 
determine the occurrence of a response, as it is really a conditional 
probability. To reduce confusion, 0(t) will usually be referred to 
as the response strength function. It is to be assumed that the set 
of patterns X(t) does not in any way affect responding unless the 
subject is actually sampling from the stimulus set X(t). This 
assumption is very important, as it enables the model being developed 
to avoid the pitfalls of the models discussed in section 1.2.

It is a truism that organisms do not spend all their time on a 
single activity. It will be assumed that there are many different 
sources of stimuli, and that the organism samples from these different 
sources, or continua, in accordance with some rule. The occurrence 
of a response depends both on the appropriate continuum being 
sampled and the local response probability for the pattern found 
upon sampling. It will be assumed, for simplicity, though perhaps 
unrealistically, that the response considered always has a zero 
probability of occurrence for continua othen than X(t). 
denote the probability that the continuum X is sampled at time t 
since the previous response, i.e.,
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Y(t)£t - Pr(sampling occurs in interval (t,t+£t)).

Notice that 0(t) can now be redefined as,

0(t) - Pr (response occurs | sampling occurs
in interval (t, t+£t)).

With 0(t) axi&yX + ) defined, it is important to realise that 
the response considered is essentially regarded as an instantaneous 
process. In the next paragraph a prediction for the distribution 
of times between successive responses is developed. A crucial 
difference between this model and other models of interresponse 
times may be stated here. The interresponse time is not of itself 
the response. The existence of interrespDnse times is the result of,
i) Responses themselves take time to occur. (This aspect is being 
temporarily neglected here.)
ii) Organisms do not spend all their time executing a single response. 
(Though sometimes they may try hard to!). Behaviour is variable,and 
between any two responses, regarded as being identical, other 
responses occur.

Let r(t) denote the density distribution of IRT's. I.e.,

Pr(t<IRTst*£t) = r(t)£t,

and let R(t) be the corresponding cumulative distribution. Then if 
a response occurs in period (t, t+6t),

R(t+tft) - R(t) = (1 - R(t))V(t)St0(t),

as a response must not hove occurred in the interval (0,t), with a
probability (1 - R(t)), a sampling must have occurred in period
(t,t+*$t), with a probability ty(t)£t, and given a sampling occurred, 
the response actually occurred with a probability 0(t). As t tends 
to 7,ero, this equation becomes,

dR - (1 - R(t))>(t)0(t),
dt

which has solution,

30



R(t) = 1 - exp(-Jg\*f(y)0(y)dy)

1 - exp(- J^V(y)0(y)dy)

If it is assumed that, as is quite likely, the integral 
given in the exponent in the denominator does not converge, then 
the denominator is simply one, and,

If 0(t) - k, say, a constant, and"y/(t) = yo, as a simple example, 
it is possible to see easily the effect that the introduction of 
sampling has on the model. It makes,

By allowing the possibility of not responding, even if k were 
1.0, it transforms a constant response probability into an exponential 
distribution of interresponse times.

2.3 The Learning Process

Having established how a response probability 0(t) can be 
translated into details about the time between responses, it 
becomes appropriate to ask how the values of 0(t) are determined.
0(t) is determined by the conditioning history of the subject in 
the following manner.

The experimental situation can be described as consisting of 
a series of trials, i = 1,2,3»«*** » the trials being demarcated by 
the subjects behaviour. Responses and reinforcements are assumed to 
be instantaneous events. A particular trial, q^, can be described 
by an ordered pair,

where the suffix i indicates that this is the ith trial, i.e the

r(t) s y(t)0(t)exp(-\V/(y)0(y)dy) (2.2.a)

r(t) = yok exp(-yOkt).
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interval t^ between the (i-1)th and the ith response. If the 
response that terminated the trial after time t^ is reinforced, kn 
is one; if otherwise it is zero. Thus k^ tells whether or not the 
ith response was reinforced.

Let,

®i = ^i-1 * ̂ i-2 * * * * * * ̂ 1̂  *

i.e. the history upto the ith trial. Then 0^(t|s^) gives the 
response strength function after a particular history of responding 
and reinforcing, described by s^.

Initially it will be assumed that non-reinforcement has no 
effect. Thus, if a response is not reinforced on trial i,

^ii./t®ti,si^ = 0i(t|si). (2.3.a,i)

If reinforcement occurs on trial i, but is not effective,

^i4.1^tlti,si^ = tf s±), (2.3.a,ii)

and finally if reinforcement occurs and is effective,

0 i+1 (t h i ^ i )  r 0i(t|si) 4- (1 - 0±(t |si))w(t;ti).

(2.3.a,iii)

This rather complex looking equation needs explanation of its
origin. Remember that at time t, there is a pattern of stimuli X(t)
available for sampling. X(t) is regarded as a set of stimuli. Let 
a proportion of these stimuli, (which proportion gives the response 
probability) p^(t) be conditioned on trial i. Let the sample x(t) 
taken from X(t) contain a proportion <T of the total stimulus elements 
of X(t), Then, if Q is the probability that a sampled element is 
conditioned, given the response is reinforced,

Pi*1(t) = pi(t) + ((1 “

on average, for (1 - pi(t))(T represents the proportion of 
unconditioned elements in the sample x(t), and 0 is their probability 
of becoming conditioned.

The exactly analogous equation is, using the present notation,
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= 4 (tilsi 5 * (1 - 4(ti K ))w>

where w - 61
However, this is an inadequate model of the conditioning 

process as it restricts the effect of reinforcement only to the 
point t = t^. Consider in practice the pattern XCt^+^t^), a pattern 
adjacent to X(t^). This will contain some stimuli common to X(t^). 
(See figure 2.1.1), Thus reinforcement in the presence of x(t^) 
affects not only the future response probability at t^, but also 
at t±4 yti. Thus the equation must be modified to spread out the 
effect of reinforcement, i.e. it becomes,

% 4-1 ̂  ̂ i *Si^ = (1 1 ) + (1 - 0i(t|si))w(t;ti).

w(t;t^) is termed the spread function. It takes values between
0.0 and 1.0, and is assumed to have a maximum at t^, the point of 
reinforcement.

The following diagrammatic explanation may help clarify these 
ideas. Assume that the subject is on a DRL5 schedule, and that 
figure 2.3.1 represents the stimulus configuration and its state 
of conditioning at some time early in exposure to this schedule.

Figure 2.3.1 —  Representation of an early state of
Conditioning.

Stimuli
available

Timet t

Conditioned Stimulus Unconditioned Stimulus
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Suppose that a sampling of stimuli takes place at t̂  and all 
the elements available are sampled. There is one element conditioned 
so that figure 2.3*1 shows a response probability of 1/5* Assume no 
response is made, but that a further sampling is made at t^» where 
the response probability can be seen to be 1/4 (figure 2.3.1).
Assume this time that a response is made. As ^^5, a reinforcement 
will occur,and it will be assumed that reinforcement is effective for 
all the elements available at t^. The state of conditioning becomes 
as in figure 2.3.2.

Figure 2.3.2 —  Representation of state of Conditioning after
Reinforcement at t^.

Stimuli
available

Time

Conditioned Stimulus Unconditioned Stimulus

Notice that in figure 2,3.2>not only does reinforcement affect 
the stimulus complex at t^, but also at adjacent values of t, as the 
conditioned stimuli occupy finite periods of time* Thus the effect of 
conditioning is spread out, This spreading effect is the effect 
described by the function w(t:ti) in the learning equation.

It is obvious that after a lot of responding and reinforcing 
under a DRL5 schedule that the state of conditioning should be as 
illustrated in figure 2.3.3. In this figure, all the stimuli that 
are available when t»5 have become conditioned. In this situation, 
if a sample is taken for any t greater than 5, then a response will 
be made. Note that although responses with IRT*s less than 5 seconds 
are not, and will not be reinforced, such responses will still be 
emitted. This is because they represent responses to stimuli that
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Figure 2.3*3 —  Representation of the final state 
of Conditioning.

Stimuli

Time

Unconditioned Stimulus£1 Conditioned Stimulus

were conditioned before the start of training, or they represent 
responses to stimuli that overlap the cutoff value 5» and which have 
thus been reinforced as parts of samples taken for IRT*s greater than 
5 seconds.

Equation 2.2.a says roughly that the IRT distribution is an 
exponential transform of 0(t), the response strength function.
Using figure 2.3.3, 0(t) can be found for any t. (It is the 
proportion of stimuli conditioned). The exponential transform is 
graphed roughly in figure 2.3.4. This result is, qualitatively at 
least, like the known experimental results, which were illustrated

Figure 2.3*4 —  IRT distribution corresponding to the state of 
Conditioning illustrated in Figure 2.3*3*

Time5
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in figure 1.1.3.

Before the previous equations for the trial by trial transforma 
-tions of 0(t) (equations 2.3.a,i,ii,iii) can be combined to give 
a mean equation, two further functions need to be defined. These 
are,

i) c±(t).
This is the probability that Reinforcement will be effective 

on trial i, following an IRT of duration t.

ii) u±(t).
This is the reinforcement schedule,

u.(t) = Pr(Reinforcement occurs on trial ii
t<IRT^U$t).

It is the dependence of u.̂ (t) upon t that makes the schedules 
considered interresponse time reinforcement schedules, though 
under the model explicated here it is not actually the interresponse 
times that are reinforced. Examples of IRT schedules are,

Random Ratio
u±(t) = p, Vi,t.

Random Interval
u^t) = 1 - exp(-Ht), V i tt.

Differential Reinforcement of Low Rates of Responding
f p if t^d 

u±( t) = S Vi,t.1 [̂ q if t^d,

p,q,tf and d are constants in the above equations.

With this notation,

^i+1(tIti»si^ s 0±(t|s±) with probability,

(1 - ui(ti)) —  Non-reinforcement occurs.
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0i4<1 (t l̂ i * s±) = ^(tls.) with probability,

(1 - c.(t.))u.(t.) —  Reinforcement occurs, but is not effective,1 i i 1 *

0i4.1 (tlt^s.) = 0i(t|si) 4- (1 - 0i(t|si))w(t;ti)

with probability, c^(ti)u^(t^) —  Reinforcement occurs and is 
effective.

Combining these equations gives,

^i«-1 t i * si^  = C"fcl s± ) 4- (1 -  0 i ( t | s i ) ) u i ( t i )c i ( t i ) w ( t ; t i )

If j(si) gives the distribution of histories sif then taking 
expectations over s^ gives,

|0i4.1(t|ti,si);3(Si)dSi = |0i(t|si)j(si)dsj,

+ J(1 - 0(t|si))ui(ti)ci(ti)w(t;ti)j(si)dsi

Therefore,

0i4_1 (t 11±) = 0±(t) - (1 - 0i(t))ci(ti)ui(ti)w(t;ti)

If r^(t) is the distribution of interresponse times t on trial 
i, taking expectations over ti gives,

Therefore,

0i+1(t) = 0i(t) * (1 - 0i(t))zi(t), (2.3.a)

where,
Z± (t) a J ui(ti)ci(ti)rjL(ti)w(t;ti)dti .
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If this equation is written in the form,

S (1 - zi(t))0i(t) + Zi(t),

it can be compared with equations 1.2.a and 1,2.c of chapter 1. The 
important distinction lies in the replacement of the (1-0) of these 
equations, by the (1 - z^t)) of the above. The replacement of the 
constant parameter 0 by the function z^Ct) represents a change from 
the fixed set of stimuli, and the fixed conditioning process, to 
one where the stimuli, and the conditioning process* change with 
time.

If asymptotic convergence for 0^(t) is assumed, then as i 
tends to infinity, 2.3«& becomes, dropping the suffixes,

0(t) ■ 0(t) * (1 - 0(t))z(t),
so that, 

and either,

or,

0 = z(t)(1 - 0(t)),

z(t) = 0,

0(t) = 1.

z(t) will not in general be zero, though it may be so, if for 
some values of t, the component functions have ranges where they 
are zero, and these ranges overlap to occupy the whole continuum. 
Essentially z(t) will be zero for those regions where reinforcement 
is not effective. These regions are not those where u(t) is zero, 
(no reinforcement given to these IRT's) but regions where reinforce 
-ment has no influence. Some regions, although associated with non 
-reinforcement, have the effects of reinforcement spread into them 
by the action of the w(t;tf) function. In general, z(t) will be 
zero whenever,Eu(t*)w(t;t*)dt* = 0,

for all other regions, 0(t) will be one. This conclusion produces 
the slightly unrealistic prediction that all u(t), such that u(t)»0.C 
for all t5 produce the same asymptotic response strength function,
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and hence the same type of IRT distribution. This contradicts the 
available evidence somewhat, e.g. Random Ratio and Random Interval 
schedules of reinforcement produce rather different types of IRT 
distribution.

This suggests that the model requires modification, and an 
obvious and interestirg modification would be to allow non 
-reinforcement to have an effect similar, but in the opposite 
direction to reinforcement. All the functions in the following 
development have the same meanings as indicated in the previous 
sections. The superfix 1 is used to show when they refer to 
reinforcement, and the superfix 0 to show when they refer to non­
reinforcement. The equations for the effect of reinforcement 
become,

with probability (1 - c^(t^))u^(t^) 
is not effective.

Reinforcement occurs and

with probability c.(t.)u.(t.) —  Reinforcement occurs and iswith probability ^(^Ju^Ct^) Reinforcement occurs and is 
effective.

The analagous equations for non-reinSorcement are

$i+ 1 ("t l̂ i* sf) = 0i(t|si)

with probability (1 - ^(t.^) )u*?( t^) —  Non-reinforcement occurs and 
is not effective.

with probability c.(t.)u.(t.) —  Non-reinforcement occurs and iswith probability c^(t^)u^(t^) —  Non-reinforcement occurs and is 
effective.

Notice that in these equations,

u?(t±) = 1 - u|(t±).
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A further modification (in excess of the introduction of a
non-reinforcement effect) will have been noticed in the previous

1 0 1equations* This is the introduction of d and d • The d replaces 
a previous *1" and oP an expected ”0”, The interpretation of these 
two terns is simple. As will be proved later, they form bounds on 
0(t), for,

*° SS0(t)«S <A1 .

0 1The psychological interpretation of d and oi can be as follows.
Every stimulus set X(t) can be divided into two parts, in the

1 0proportions, a consistent proportion, (d. - d ), and a random
1 0fluctuation proportion, (1 - + d ) • (E.g. see Estes and Burke

1 01953* Estes 1956). Only the proportion (d - 4 ) is generally
manipulable, in practice, by the conditioning and deconditioning

0 1 0process, Of the remainder, a proportion d /(1 - d + d ) is always
conditioned to the response, (e.g. this could be the ’operant level')

1 1 0and a proportion d /(1 - * - d ) are effectively never conditioned.
The proportion (1 - d 1 - d^) is assumed to vary randomly from trial 
to trial, so that even if some of these stimuli are conditioned on 
any one trial, they are unlikely to be present on the next trial to 
affect the response strength,

These two parameters are useful at a verval level to account 
for temporary, but not very short-term*fluctuations in behaviour.
B.C.,

i) Spontaneous recovery:-
Intensive non-reinforcement may drive 0(t) below the normal 

levels of c*P, by forcing out of the X(t) patterns, all conditioned 
stimuli. Cessation of training may allow a substantial change in 
the fluctuation proportions, and some of these stimuli may be 
conditioned to the response. Responding may thus start again, or 
move to levels higher than that when extinction was discontinued,

ii) Fatigue:-
Fatigue may have the effect of flooding sets X(t) with non-

1conditioned stimuli, that vary from trial to trial. Thus d will 
fall, but as the organism recovers, the 0(t) values can re-assert 
themselves, and responding begins again.

There are however other ways of explaining the effects of fatigue.
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It could be suggested that fatigue affects V(  t), to reduce the 
rate of sampling, and hence the rate of responding.

iii) Satiation:-
Parts of the sets X(t) may be deprivation associated stimuli.

As reinforcement is obtained, these stimuli may disappear, thus
1lowering the effective value of d  . The behaviour will then become 

less probable and the rate of responding decrease.

Let,

and,

1 if reinforcement occurs on trial i

0 if reinforcement does not occur on trial i,

1 if conditioning/deconditioning is effective
on trial i

0 if conditioning/deconditioning is not effective 
on trial i.

Let,

and

k 0 
c /  (t)

k 1 
C. (t)

1 - c^Ct),

C± (t).

With this notation, the equations describing the various 
possible transformations of 0 ^ ^ ( i l can summarised by the 
single equation,

lc 1c
^i+1 (t lti*si) s 1 - si>)i±w X(t;ti).

k k 1
with probability, u^(t^)c^ ^(t^).

Taking expectations over 1^, k^, s^, and t^ gives,
k,
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Assuming the asymptotic convergence of 0^(t), then,

and hence,

'«kwk(fc;y)uk(y)ck(y)r(y)dy

w(t;y)uk(y)ck(y)r(y)dy

(2,3.b)

To obtain a feel for the kind of function 0(t) is, for a given 
u(t), put,

psychological background of the model as it makes the spread effect 
zero. This does not matter for the moment however, as it can be 
regarded simply as an approximation used only to give an idea 
of the nature of 0(t).)

Introduction of these values gives,

0 * p.°LU Vt,
c1 (t)

and
1 if t S y

0 if t f y.

(This value of w (tjy) is obviously unrealistic in terms of the

0(t) s *°Q(1-u(t)) +» fli1u(t) .
0(1-u(t)) + u(t)

If Q s 0,0, (i.e. non-reinforcement is not effective) then

0(t) ,1

(Unless u(t) * 0.0 also, when 0(t) =
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If 0 =oo, (i.e. reinforcement is not effective) then,

0(t)

Otherwise, 0(t) lies between these two values. If these two values 
are in fact zero and one, then,

For the special value Q ■ 1.0, this gives 0(t) = u(t). It is 
only under these very restrictive conditions that any kind of 
matching will occur. Since, (equation 2.2.a)

this suggests that it is highly unlikely that any simple matching law 
will relate the forms of r(t) and u(t).

Equations (2.2.a) and (2.3.b) are the fundamental results 
derived from the model. These two equations give implicit determinations 
of the functions 0(t) and r(t). Only for very simple u(t) do these 
equations have explicit solutions for 0(t) and r(t). Before even 
these cases can be considered however, it is necessary to investigate 
in greater detail the spread function w(t;t*) and the sampling function

2.4 The Spread Function

From the heuristic description of the conditioning process 
given in figures 2.3.1 to 2.3.3*it is obvious that the spread function 
is highly variable in form, depending on how the various stimuli 
available are assumed to interact with one another. It would seem 
likely that w(t;t’) could be related to the limiting form for the 
generalisation gradient for temporal discrimination. It is still a 
matter for controversy as to whether or not generalisation gradients

0(t)
0(1-u(t)) + u(t)

u(t)
© * d-©)u(t)

r(t) V'(t)0(t)exp(-\ y(y)0(y)dy),

w  t).
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(Generalisation gradients give the probability of a stimulus s 
eliciting a response that a. subject has been trained to produce to 
stimulus s', when s ands1 lie on some common continuum. The response 
to s’ is said to generalise to s.) are innate or learned. (Terrace 
1966). However it would not be unreasonable to consider that w(t;t*) 
might be the function that described the sharpest possible stimulus 
control available at t*. If this were so, then experimental investigation 
of temporal discrimin.cion could elucidate the spread function.

In the absence of any adequate data to specify the spread function, 
it would appear best to choose some function that is either extremely 
tractable, or which satisfies some assumed theoretical constraints. 
Several possibilities are open. For example, an interesting and 
relatively simple choice might be,

w( t; t * ) = <
p, (1-k)t'st5(1+k)t» 

0, otherwise,

where p and k are constants.
The spread effect then occupies a region kt’ in width on 

either side of tf. The spread effect is directly proportional 
to t*. This is equivalent to saying that the greater the time since 
the last response, the greater the persistence of a present stimulus. 
Since discrimination is dependent on changes in X(t), this is 
equivalent to saying that discrimination becomes more difficult as 
time passes. At time t since the last response, a period of kt 
must elapse, on average, before X(t) changes, and hence before a 
discrimination of time passage is made. This is similar to 
proposing that temporal discriminations follow a Weber’s Law with 
parameter k.

Another possibility would be to choose,

p.exp*r-(t-f) 1
w(tst*) * .1 k  irr *kt'.

1 + kf/2^*

where k and p are again positive constants. (The constant p, in 
both these examples gives the ratio of the number of elements in 
the sampled set x(t), to the maximum number of elements available,
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which is the number of elements in X(t)). The spread effect is here 
normally distributed around a mean of t’ and with a standard 
deviation of (1 + kt (The 1//!!^ fact or is simply to make
w(0;0) = p. This is the maximum value w(tjt') can take for any pair 
of values (t,t*).) Making the standard deviation of the spread 
effect proportional to t' is again equivalent to making a Weber’s 
type law hold for temporal discriminations. Also however, as t* 
increases, the maximum value of w(t;t*) falls in accordance with 
p/(1 + kt»/2^). Thus reinforcements for small t values have a 
proportionally greater effect than those for large t values.
(This is an effect that has been suggested by Millenson, 19&3, 
to account for the- persistence of short IRT's on some DRL schedules.)

It is not necessary that w(t;tf) should be symmetric about t*, 
though this is usually convenient. The simplest symmetric function 
is,

w( t;t *)
p t’-a^t^t’+a

0 otherwise,

where p and a are constants.
This is merely a rectangular function of fixed width 2a. It 

is chosen for its. mathematical simplicity and tractability. In 
terms of figure 2.3.1, all the stimuli are assumed to be roughly 
equivalent in duration, nnd any pattern x(t) contains a large 
number of stimuli.

In all the applications of the model, the following further 
simplifications and notations will be used.

w^(t;tf) = w^(t;t’).

The spread effect is the same for both conditioning and deconditioning. 
This is the natural assumption to moke, as they are presumed to 
refer to the same sets of stimuli.

and
-  1c (t) - c

0 /, » _ 0c (t) = c .

The effectiveness of conditioning and deconditioning is a constant,
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independent of the vplue of t.

Let,
1pc

and
0pc

Equation (2.3.b) now becomes,

0(t)
;#©vUk(y)r(y)dy

(2.3.c)
!©kuL(y)r(y)dy

This form for 0(t) will be used in all further developments 
of the model.

2.5 The Sampling Function

So far, very little has been said shout the sampling function 
y c  t), except to assume that it is independent of the previous 
response history, and of the trial number. I.e.

and thus V(t) is not manipulated by the learning process. This assum 
-ption is made on the following grounds.

If the sampling process is manipulated by learning, sampling 
must be regarded as the response component of some process. This 
response (sampling from X(t)) is a response to certain stimuli.
These stimuli are themselves presumably sampled by some higher 
(higher in the sense of more distant from the observed responses) 
mechanism. However, could not this sampling also be manipulated by 
learning? This leads to an infinite hierarchy of stimuli and 
sampling, which is undesirable. It appears better to assume that 
sampling is not affected by learning.

The chief difficulty in accepting this argument is that it is 
not intuitively unreasonable, on other grounds, to let V(t) be 
affected bp a learning process. In some sense, could be said
to give the probability of attending to the appropriate stimulus
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dimension in the interval (t,t*-5t). Thinking of the sampling 
process in terms of an attentional process readily suggests that 
any parameters of V(t ) might easily be manipulated by factors such 
as learning, previous exposure to IRT schedules, etc. This attentional 
idea of sampling seems closely related to the notion of an 
observing response, and observing responses can be conditioned. 
(Wyckoff, 1952).

The final choice of rests chiefly on its simplicity. In
many ways, t is not the natural variable to index V  with. When 
dealing with responses, IRT's are easier to manipulate than other 
variables which could be used to describe the distribution of 
responses in time. (E.g. it would be possible to use time since 
the start of the experiment, and investigate this distribution, or 
to use time since reinforcement, etc.) Similarly, it is preferable 
for the sampling process to use, if possible, intersampling times, 
rather than time since the last response, to specify V»

Let T denote an intersampling time, and let y e n  denote the 
density distribution of intersampling times. The basic assumption 
is that,

y h T )  = jb. exp(-^oT),

i.e. that intersampling times follow a poisson process with parameter 
/>•

Let the probability that the kth sampling takes place in 
interval (t,t+St) be denoted byy^(t)Ft. Then,

However, t) is the convolution of with itself k times, and
thus,

^ ( t )  =

( k - 1 ) !

Therefore
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/>fe$(/>t) Exp(-yOt) 
k!

Thus the assumption that intersampling times are exponentially 
distributed (i.e. random in time) leads to the very simple expression 
for (t). V( t) is a constant for all t. This assumption will be 
utilised in the following applications of the model, end yO Will 
always refer to the parameter of the sampling distribution.

With this value of HKt) the expression for the IRT density 
distribution becomes,

r(t) = yO0(t)Exp(-| yO0(y)dy) (2.5.a)

2.6 Some Asymptotic IRT Distributions

It is perhaps convenient to collect together here the basic 
equations for the asymptotic IRT distribution. Their present simple 
form, accepting the conclusions of the previous two sections, is,

cP q
ft+a rt+a
I (1-u(y))r(y)dy + <* I u(y)r(y)dy 
}t-a Jt-aSt+a ft-t-a

(1-u(y))r(y)dy + l u(y)r(y)dy 
t-a Jt-a

0(t) = *>"‘x_______________________ ____________  » (2.6.a)

e !

where e = V ° 1  • and represents the relative effectiveness of
reinforcement and non-reinforcement, and,

r(t) = yo0(t)Exp(-J ^>0(y)dy). (2.6,b)

The difficulty with these equations is that r(t) is defined 
in terms of 0(t) and 0(t) is defined in terms of r(t). This pair 
of equations is not, in general, soluble for r(t), for an arbitrary 
reinforcement schedule u(t), though solutions do exist for certain 
u(t). An iterative method was devised, for finding r(t), given u(t),
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0 1^r(t), w(t; t*) and x'-, a( » and ©. This whs set up as an algol 
programme, 3AGENAR, which is, together with some comments as to its 
mode of operation, given in Appendix I.

Table 2.6.i —  Model and Schedule parameters used to calculate the 
curves of Figure 2.6.1. Values of © were variable (V) and are given

on corresponding curves.

Schedule Schedule Parameters Model Parameters

HR p 
RI
DRI d;p,q 
DRL d;p,q

p = 0.1 
* 1/60 

d*5.0 p=0.5 q=0.0
d*5.0 p»0.5 q=0,0

tC 0 a yo
0.0 1.0 7 0.5 5.0 
0.0 1.0 7 0.5 5.0 
0.0 1.0 7 0.5 5.0 

0.02 1.0 7 0.5 5.0

Figure 2.6.1 gives some IRT distributions calculated for 
various reinforcement schedules from equations 2.6.a and 2.6.b.
Table 2.6*i gives the details of the parameter values used. These 
graphs can be used to give an idea as to the general properties of 
the model. It cqn be seen that as 9 increases, (non-reinforcement 
becomes more effective, or reinforcement less effective) that the 
overall rate of responding falls, illustrated by the general 
flattening of the curves.

A comparison of ratio and interval predictions shows that 
interval schedules favour longer IRT*s than do ratio schedules.
Ratio schedules always have their mode at zero, while interval 
schedules have a mode at progressively larger values of t as © 
increases*

The predictions for the BRL schedules show a striking peak 
in the region of the cutoff point. The interesting point to notice 
is that if the effect of reinforcement is greater than that for 
non-reinforcement* then the peak tends to lie to the left of the 
cutoff value. A large number of the IRT’s emitted are Just less than 
the required value for reinforcement, and performance is relatively 
inefficient. If however the effect of non-reinforcement is greater 
than the effect of reinforcement, then the peak tends to lie to 
the right of the cutoff value, most IRT*s are reinforced and 
performance is relatively efficient. One of the characteristic
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differences between pigeon end rat performance on DRL schedules is 
that pigeons tend to produce an IRT distribution whose peak is to 
the left of the cutoff point, while rats tend to produce a 
distribution whose peak is to the right of the cutoff point.
Interpreted through the framework of the present model, this indicates 
that rats are relatively more sensitive to the effects of non-reinforce 
-ment than are pigeons, and suggests for example that superstitious 
conditioning (Herrnstein 1966) should be more frequent in occurrence 
for pigeons, where the effects of the occasional spurious reinforcem 
-ent will only slowly extinguish through non-reinforcement, than for 
rats.

The attempt to account for the peak near zero in the IRT 
distribution from a DRL schedule (by setting dp t 0.0) does not 
appear too successful, as the gradient of this region is too small.
On the whole, the model seems promising,however.

2.7 Some Conditional Statistics

Generally,

so that finding conditional statistics for the IRT distribution 
reduces to the problem of finding conditional statistics for the 
response strength function. Conditional statistics of particular 
interest are those distributions of IRT's which follow reinforcement 
or non-reinforcement. The following section proves an interesting 
property of the means of these distributions.

Let

1 if reinforcement occurs
k

0 if non-reinforcement occurs.

Then,

r(y)dy
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Now if reinforcement has no effect, i.e. 0̂  = 0.0, then from equation
(2.6.a),

0(t) = «°.

Similarly, if non-reinforcement has no effect, i.e. = 0.( 
from equation (2.6.a),

0(t) ■ <1.

Thus,

and hence,

As,

and,

<° - 0 ( t ) ^ o «  cj - 0(t). 

© SeO.O,

tt+ar(y)dy ^ 0 . 0 ,a
then the three previous results taken together imply that,

0( t l k )  ^ 0( t ) s 0( t  M  )
At asymptote, the mean IRT is given by,

J tr(t)dt = j**t ̂ >©(t)Exp(-| />0(y)dy)dt 

= £-tExp(-| />0(y)dy)J

+ ^Exp(-|o />0(y)dy)dt

The first term on the RHS is zero, giving,

f *  f *Mean IRT « I Exp(-1 />0(y)dy)dt.
JO Jo

By analogy,

■ Mean (IRT|k) = j Exp(-j^ /50(y|k)dy)dt
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Prom 2.7.a, as /> is always positive,

yO^(tfO)^: t) ^  /o0( t |1 ) .

Integrating this inequality over the interval (0,t) gives, as 
the functions are always positive,

^ /30(ylO)dy^T^ / > 0 ( y ) d y ^ |  /O0(y|1)dt.

Therefore,

Exp(-l />0(ylO)cly) ̂  Exp(-[ />0(y)dy) ̂ Exp(-i />0(y|l)dy),
Jo Jo Jo

and as these are always positive valued,

f ° °  r t  f° ° f t  f *  f t
J Exp(-J yO0(yl 0)dy)dt ̂  J Exp(-j^ /O0(y )dy )dt ̂  J Bxp(-J /O0(y 11 )dy )dt 

Kence,
EeanClRT |0) ̂  Mean IRT ̂ Mean(IRT |1 ) .

Thus,on average^responses which follow reinforcement tend to 
have shorter IRT*s than responses which follow non-reinforcement• 
Thus a general effect of reinforcement is to speed up responding,

Table 2,7.i —  Model and Schedule parameters used to calculate the
curves of Figure 2.7.1.

Schedule Schedule Parameters Model Parameters

RR p 
RI
DRL d;p,q

p = 0.1 
- 1/60 

d=5.0 p—0.5 q-0.0

0 1« a ^
0.0 1.0 0.5 0.5 0.5 5.0 
0.0 1.0 0.5 0.5 0.5 5.0 
0.0 1.0 0.5 0.5 0.5 5.0

while a general effect of non- reinforcement is to slow down 
responding. These two effects have often been noticed in operant 
conditioning procedures. Indeed, horman (1966) used these specific 
characteristics as the starting point for bis linear model for free 
responding. In the present ...od.el these effects arise naturally from 
the properties of the learning process.
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A graphical illustration of this effect is given in figure 
2.7.1. (These distributions were calculated by an algol programme 
SACONDAR (see Appendix I) a modification of the SAGENAR programme.) 
All the schedules (Table 2.7.i gives details of the schedules and 
the parameter values used.) show quite clearly the general slowing 
down effects of. non-reinforcement, and the speeding up effects of 
reinforcement•

2.8 Other Measures of the IRT Distribution

Anger (1956) introduced the IRT/Op. function as a measure of the 
IRT distribution, and defined it as the conditional probability 
of an IRT in interval (a,b), given that it is longer than a.

It follows that,

IRT/Op. 
for interval (a,b)

The use of the interval (a,b) was simply a practical artifact 
to estimate r((a-b)/2) and so the function is really of the form,

I(t) = r(t)
1 - R(t)*

Care must be taken when dealing with I(t) in this form, as it 
obscures the origin of the function somewhat. I(t), considered as a 
function of t is not a probability density function, for t occupies 
not only the role of the random variable, but also the role of the 
condition applied. Anger thought that this function might yield 
a clearer understanding of the nature of interresponse time 
reinforcement, as he felt that it was difficult to speak of the 
effects of reinforcement unless the IRT’s considered had had the 
opportunity to occur.

In terms of yo and 0(t),
t
>o0(y)dy)

0__________
t
/O0(y)dy))

0
1 - (1 - Exp(

-

I(t) = />0(t)Exp(-

r(t)dt

-  r
k

1 - l r(t)dt
Jo



= />0(t) .

At the end of section 2.3, conditions were given under which 
0(t) could equal u(t). This suggests that if it is desired to find 
aspects of the IRT distribution which match the reinforcement function, 
then the function I(t) is the one to look at.

The relationship between I(t) and 0(t) is deceptively simple, 
and suggests that the function I(t) would be much easier to work 
with than r(t). In practice however, serious problems arise in the 
estimation of l(t).

Consider a sample of N IRT's, which for estimation purposes 
are grouped into intervals of one second width. let n^ be the 
number of IRT's of duration between (k-1) and k seconds..Then,

IRT/Op. = f  m nk .
for interval (k-1,k) k N - ^gjn^

The calculation of 1^ in this manner is like calculating a 
binomial parameter on a sample size of N^, wher$,

* N - n± .

The variance of this estimate of Ifc is given by,

var(?k) * I|c(1 “

Hk
(Kendall and Stuart 1952, Vol 2, 

p11.)
Now,

= V K - V
" k-1

Nk N(N - S n^

Thus as the value of k increases, the estimate of 1^ becomes 
progressively more unreliable. (Its variance increases.) E.g. if
I(t) is in fact a constant, then the variance grows geometrically
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as k increases. In practice, if the time range used, (the longest 
IRT) is not long,compared with the interval width used to group 
the IRT’s for estimation purposes, then the increase in variance of 
the estimates of I(t) is a serious problem. For this reason, the 
I(t) function will not be used in chapters 3-5 to describe the IRT 
distribution.

Weiss (1970) introduced what he termed the ’dwell function’ to 
characterise the IRT distribution. The dwell function is the 
proportion of the total time occupied by IRT’s of duration t. The 
function D(t) is thus, simply,

D(t) * tr(t).

The use of the dwell function is simply one of many possible 
ways of giving increased weight to long IRT's. It does not however 
seem to possess any especial properties which might make It of 
particular interest.

2.9 Conclusion

The model developed in this chapter seems to possess appropriate 
properties for a model of learning under schedules of interresponse 
time reinforcement. The following three chapters deal in detail with 
the predictions of the model for specific IRT schedules and with 
experimental tests of these predictions. The first schedule to be 
examined is the especially simple case of the Random Ratio schedule.
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Chapter 3

THE RANDOM RATIO SCHEDULE

3.1 Previous Experimental Findings

Ratio schedules have not been very extensively studied for 
their IRT distribution properties. The general observation is that, 
under ratio schedules, IRT's are very short (Kintsch 1965* Ray and 
McGill 1964). The response rate, (reciprocal of the mean IRT) 
appears to be very insensitive to quite large changes in the 
probability of reinforcement (Sidley and Schoenfeld 1964). Williams, 
(1968) found little evidence of sequential effects among the IRT's, 
suggesting that IRT's were independent of one another. However his 
data was restricted, in that all the IRT's were very short.

The next section will show that all these results are predict 
-able from the model developed in chapter 2.

3.2 Predictions from the Model

The random ratio schedule is one where,

p is the probability that a response will be reinforced.

If this u(t) function is inserted in equation 2.6.a, it gives,

This, result; is qt particular importaRQe^. as it is 
of the parameter a. Indeed, it; is independent of any choice for

u(t) = p, Vt

pr(y)dy

pr(y)dy

4pQ( » gt/P •
Q(Up0 r- p

5:6;



w(t;x), the spread function, and hence provides a valuable test for 
the model. This test is independent of any specific assumptions 
made about the stimulus distribution.

Let,
k = o<P(l-p)Q * <rt1p .

(1-p)© + p

If Q is close to zero, i.e. non-reinforcement has little effect, 
then,

Thus, for small Q values, 0(t) is. insensitive to the value of 
p. Insensitivity to p values was noted by Sidley and Schoenfeld, 
1964.

Further, if, as suggested in section 2.5»

V*(t) =
then,

r(t) = ^>kExp(-/t>kt). (3*2.a)

The IRT distribution is thus exponential, and shows a preponder 
-ance of very short IRT's. (As reported by Kintsch (1965), and Ray 
and McGill (1964)).

Sequential statistics are fairly simple to derive, as the 
expression for the asymptotic IRT distribution (3.2.a) is so simple 
in form.

Let the notation,

r(t|l) = r(t|previous response was reinforced)

r(t|0) * r(t|previous response was not reinforced),

be introduced. Let 0(t f1), 0(t|O), etc. have similar interpretations. 
Then,

1 ft4,a0(111) « 0(t) ♦ (c* - 0(t))© I r(y)dy
Jt-a
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1 fu a0(t) ¥ (4 - 0(t))O \ /OkExp(-/>ky)dy
Ut-at-a

t+a
k + (*1 - k)©1 j^-Exp(-/>ky)j

k i- (<K1-k)G1 (ExpG- /Ok(t-a)}-ExpC- yok(t*a)3) 

k t (*1-k)e.|Exp(-^okt)(Exp( ̂ oka)-Exp(-yoka)} 

k * (tf^-kJe^shC ̂ >ka)Exp(-yokt).

Put,
k1 = 2(411 - k)G,jSh( /Oka),

this makes the above equation take the form,

0(111) = k k^xpC-yokt).

Now,

J >o(k*k1Exp(-/oky))dy = / ^ ky + ^ Exp.C- j*ky)jQ

= yojkt - k1Exp(-^okt) ♦ J^_j

= /Okt + k-(1 - Exp(- /Okt)) 
k

Thus,
r(111) = ( yOk^yo^ExpC- /OktD)Exp(-( yokt+Qe.,/10 0-Exp(-/>kt)3),

and by analogy,
r(t| 0) = ( yok *^ok0ExpC- yokt))Exp(-( />kt+(kQ/kI)0 -Exp(-yoktD) ,

where, kQ = - k)©gSh( yoka).

If the two parameters, k̂  and k^, are inspected, the conditions 
under which sequential effects are small can be found.
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k. = 2(b(1 - k)01sh( ̂ ka). 

kQ = 2(«t° - k)eosh(/>ka).

There are no sequential effects, if,
i) a — 0.0. I.e the spread effect is zero. This seems unlikely in 
view of the psychological interpretation of the spread function.
ii) —  0.0. If 9 is close to zero, non-reinforcement has very 
little effect. When is approximately zero, then kQ is likely to 
be close to zero also. However, 9 ^  0.0 also implies that, k —
and hence that k1 — 0.0. Thus sequential effects after reinforcement 
are small, when the effects of non-reinforcement are small.

Since many unreinforced responses are emitted on ratio schedules, 
with apparently little effect on the rate of responding, the 
assumption that is close to zero is not unreasonable. This single 
assumption thus leads directly to the predictions that rates of 
responding are insensitive to reinforcement probability (Sidley and 
Schoenfeld, 1964) and that sequential effects are likely to be 
small (Williams, 1968).

It is interesting to note that the parameters k̂  and kQ are 
very simply related, for,

k^ 2(«*1 - k)©.jSh( yoka)
k0 2(*° - k)0Qsh( yoka)

- U 1o (i-p ) ♦ *1p - «t°od-p) - i 1p )
(«°e(i-p) + «i0p - J^cO-p) - «<1p)e

. 0(1-pH*1 - <P)
p(«° - «1)0

- -(1 - p) . (2.3.b)
p

I.e. the ratio of k̂  to k^ is equal to minus the inverse of 
the ratio of the probability of Reinforcement to non-reinforcement. 

Equation (3.2.b) is a simple version of a more complex relation
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between the results of reinforcement and non-reinforcement• 
Define*

▼(t) =

ft+aL:(1-u(y))r(y)dy
it4>a t-a

n(y)r(y)dy

Then* for any u(t)* 

0(t) - » oc1
Ov(t) + 1

Generalising the constants k̂  and kQ to functions k^(t) and
kQ(t), defined by,

[-(t) « (o* - 0(t))O1\ r(y)dy,
1 1«t-a

(k^t) thus describes the effect of a reinforcement on 0(t)) and*

Then*

k2(t) s (<*° - 0(t))QQ^  r(y)dy.

k^t) . (*' - 0(t))
k0(t) (otu - 0(t))O

. «t1»r(t) + d} - - <t1
(«^®r(t) ♦ <° - «Pftr(t) - J )0

U ° -  J )

Thus*

k1£t>

V*)

ft+a

•L'(1-u(y))r(y)dy
t+a

u(jr)r(y)dy
►t-a
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This relation states that for any value of t, the ratio of the 
effects of reinforcement and non-reinforcement on the value of 0(t) 
at that point is given by minus the inverse of the ratio of the 
probabilities of reinforcement and non-reinforcement influencing the 
value of 0(t) at that point t. The relative effects of reinforcement 
and non-reinforcement are thus closely tied to the actual probabilities 
of occurrence of reinforcement and non-reinforcement.

The next section deals with an experiment set up to obtain 
IRT distributions from an actual random ratio schedule. Data from 
this experiment is then used to obtain values for parameters such 
as k, k1, and kQ. The values found are given in section 3*4. The 
parameters, whose estimates are denoted by putting a hat over 
the appropriate symbol, are usually estimated by computing least 
square fits to certain sets of data. Unless specifically stated 
otherwise it is to be assumed that a parameter is estimated by a 
least squares method. The estimations are usually done by search 
procedures. It is possible in simple cases to derive exactly 
expressions for the estimates of some parameters. (E.g. the 
maximum likelihood estimate for/>k is given by the reciprocal of 
the mean IRT). However, to maintain uniformity of method across| 
all reinforcement schedules, least square fits were used as the 
basic method throughout.

3*3 The Experiment

In order to test the predictions of the model more closely* 
some experiments with Random Ratio reinforcement were undertaken.
Two values of p were used, these being 0.3* and 0.1. Four subjects 
were run under each schedule.

The subjects were all students at the University of Stirling.
In most experiments on Operant behaviour, it has been customary to 
use animal subjects, chiefly rats and pigeons. When human subjects 
have been used, the commonest form of response chosen as the operant 
response has been the observing response. E.g. subjects have to 
monitor a meter, to check its deflection (Laties and Weiss, 1960,
1963)* Pressing a button illuminates the meter, and if the needle 
is seen to be deflected on illumination, this is regarded as a 
reinforcement. The most extensive investigations of human operant
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behaviour have been undertaken by Weiner (1962, 1964a, 1969)* Most 
of Weiner*s experiments have been oh fixed interval schedules, (1964b), 
However, one experiment (1964c) did consider a fixed ratio schedule.
The performances obtained by Weiner, who also used an observing 
response, are closely similar to those found in work with animal 
subjects, suggesting that the use of human subjects is not unreason 
-able* or likely to produce any highly unexpected results.

Apart from the possible intrinsic interest of using human 
subjects, in contrast to animal ones, the choice was influenced by 
practical considerations, Reinforcement can be made relatively 
instantaneous for human subjects, (flashing lights were used).
Animals, in contrast, are usually food reinforced, and the consumption 
of the food takes a relatively long time. Since it is times that are 
to be recorded, this 'eating time' would confound the results and is 
better eliminated if possible.

From the subject's point of view, the experimental situation 
closely resembled that of the ubiquitous Skinner Box, used in 
animal experimentation. Subjects were seated at a table in a small 
sound-protected room, approximately 6 ft. by 8 ft, by 7 ft. The 
table was equipped with a small box, on which were mounted a 
push-button, a red pilot light, a green pilot light and a digital 
counter. (See figure 3.2.1). The following instructions were given 
to the subject.

"You are asked to try and score points by pressing and releasing 
this button in some fashion. The counter will record your score. If 
you make a correct response the green light will come on to inform 
you of this, and the counter will add one. If you make an incorrect 
response then the red light will come on. You cannot score points by 
holding the button down. When you have pressed the button you must 
release it and not make the next response until the light has gone 
out.

Please pay close attention to the lights and the counter,so 
that you can score as many points as possible.

You will be allowed five minutes to settle in to the experiment. 
There will then be a short pause. The rest of the session will 
follow without a break.

If you have any questions, please ask them now."
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Questions were answered in as vague a manner possible, to 
avoid giving the subject any idea of what was expected* Essentially^ 
the only constraints placed on the subjects were injunctions to 
score points somehow, and not to respond while any of the display 
lights were lit* These lights were on for 100 msec* This instruction 
was inserted because IRT's shorter than this occasionally caused the 
recording apparatus to jam* This does not seem to have imposed any 
real constraint on the subjects behaviour, as it was substantially 
lower than most of the IRT's emitted by any of the subjects*

Subjects came for 10 sessions in all* They came daily, at any 
convenient time of the day until they had completed all their 
sessions. (Subjects did not however come at weekends). They were 
paid at the rate of 30p per session, but had to complete all the 
sessions to receive payment* Each session ran for 45 minutes, 
excluding the five minute warm-up session*

At the start of each session, the subject was told his score 
from the previous session* This was done to try and maintain the 
subject's interest, by giving him a comparison against which to 
work. At the end of each session, subjects were also asked to say 
what they thought determined whether or not they obtained a 
reinforcement*

Subject's Cubicle j Experimenter's Cubicle

Reinforcamapt

Reinfor<ement 
cot e

Paper
Tape
Output

Reed
Stoze Tine

Digital
clock

Reinforcement
control

Data Transfer 
Unit

Sampling
store

Figure 3*3*2 —  Block diagram of the layout of the Experimental 
apparatus*
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The control and recording equipment were placed in a cubicle 
adjacent to the experimental cubicle. Figure 3.3.2 gives a block 
diagram layout of the system. A digital clock reads continuously 
into the sampling store. The subjects response triggers (a) the 
reinforcement, which is shown to him as a coloured light and which 
is also output to the data transfer unit, and (b) causes the data 
transfer unit to read the time off from the sampling store. The
time, and a code for reinforcement/non-reinforcement are output onto
paper tape by the data transfer unit. The use of the sampling store 
as a buffer between the data transfer unit and the digital clock 
prevents the 'read' pulse from the data transfer unit from resetting 
the digital clock and has the following advantage. No allowance 
needs to be made for the reset time of the clock and the record time
of the data transfer unit when calculating the IRT's. The time
readings are cumulative and IRT's are given by the difference between 
two consecutive readings. The clock ran in milliseconds. An example 
i s : -

0 - 001352 - 200
0 - 008473 - 100

------------ > 0 - 013289 - 100
0 - 017984 - 200 4------
0 - 022839 - 100

Leading zero. This occurs 
every third number. It is 
used to check that the 
data is aligned. If 
any set of three numbers 
does not begin with zero, 
the analysis programme reads 
on until this is so. This 
misalignment is caused by 
occasional punching errors 
from the data transfer unit.
The number of such errors 
was in fact small.

Figure 3.3.3 —  An example of the data output format.

Code for reinforcement (100), 
or non-reinforcement (200).

Times in milliseconds. Zero 
—  time is the start of the 

experimental session. 
Differences between successive 
times give IRT in 
milliseconds.
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3.4 The Results

Figure 3.4.1 gives the session by session IRT distribution 
for subjects 1-4. (p = 0.5). The term session 0 is used to denote 
the warm-up period of the very first session. In this experiment 
every other response was reinforced, on average. Due to a fault in 
the data transfer unit, this experiment had to be abandoned after 
the sixth session, and data from that session scrapped. The IRT's for 
each session were classified into intervals of one second width 
(0-1, 1-2, etc.) and the description Pr(IRT) is used as an abbreviation 
for the probability of an IRT lying in one of these intervals.

All the subjects 1-4 show the same kind of session by session 
changes in the IRT distribution. Initially the mean IRT is in the 
region of 1.5-2.0 seconds, but rapidly shortens to around 0.3 seconds, 
and all subjects have over 95% of their IRT's less than one second 
long by the fifth session. (The rate of responding is around 100 
per minute, which is very high.)

In view of the high rate of responding, it was decided to use 
the fifth session data as asymptotic data for parameter estimation. 
Figure 3.4.2 shows the data from the fifth session, for subjects 
1-4, compared with the predicted values. The predicted values are 
calculated from the least squares fit of the model to the data. Table
3.4.(i) gives the value of the exponential parameter ^ok and the 
least squares error (LSB). These figures confirm the visual 
impression obtained from figure 3.4.2. The fits are very close.

Subject A/>k LSE.106
No. Data 
Points

1 4.99 6 4
2 3.33 601 4
3 2.98 1670 4
4 4.21 172 4

Table 3.4.(i) —  Estimates of the exponential parameter yok and a 
list of the least square errors (LSE) between the obtained and 
predicted values of the asymptotic IRT distribution for subjects 
1-4. The last column gives the number of data points used in the 
parameter estimation.
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Figure 3*4.3 gives data for the asymptotic distribution of 
IRT's, given that the proceeding response was reinforced. The least 
square fit is also shown, and again is very close. Table 3.4.(ii) 
gives the parameter estimates (k^/k) and the least squares error. 
Generally, the fits to this sequential statistic are better than 
that to the asymptotic IRT distribution. The values of (k^/k) are 
all positive and apparently (see section 3.3) illustrate the 
general speeding up effect that reinforcement has on responding.

Subject k ^ k LSB.106
No. Data 
Points

1 0.14 3 4
2 1.98 1 4
3 1.33 801 4
4 0.29 37 4

Table 3.4.(ii) —  Estimates of k^/k for subjects 1-4. The LSE 
column gives the least square error between the obtained and 
predicted values of the IRT distribution conditional on the previous 
response being reinforced. The last column gives the number of data 
points used in the parameter estimation.

Figure 3.4.4 gives a comparison of the obtained and predicted 
results for the distribution of IRT’s that followed a non-reinforced 
response. Unlike the previous figures (3.4.2 and 3.4.3), the predicted 
values were not calculated by the method of least squares. Che 
estimate of (kQ/k) was made by using the appropriate estimate of 
(k,j/k) and the relation given in equation 3.2.b. The parameter (^/k) 
seems to be very sensitive to quite small changes in the IRT 
distribution. E.g. compare subjects 1 and 2V in figure 3.4.3, where 
the results look very similar, to the parameter values in table
3.4.(ii)). This sensitivity seems to be reflected in the poor fits 
obtained, for subjects 2 and 3,to the IRT distribution given the 
previous response was not reinforced, which is illustrated in 
figure 3.4.4. Table 3.4.(iii) gives the parameter values calculated 
from equation 3.2.b, together with the square error between the data 
and the predicted values •

Better fits can actually be obtained by estimating (EqA )  from 
the data. However it seems more interesting to use equation 3.2«b.
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Subject V * SE.106 No. Data 
Points

1 -0.14 14 4
2 -1.98 81260 6
3 -1.33 47223 5
4 -0.29 546 4

Table 3.4*(iii) —  Estimates of the parameter kQ/k for subjects 
1-4, SE column gives the square error between the obtained and 
predicted values of the IRT distribution conditional on the previous 
response not being reinforced. The last column gives the number of 
points used in the calculation of SE. The values of k^/k given 
here are not estimated from the conditional IRT distribution, but 
from k.j/k.

The relatively poor fit obtained overall, suggests that sequential 
effects are more complex than outlined in the model, though it is 
not clear to what extent a different choice of the spread function 
w(t;x) influences these conditional results.

The results for subjects 5-8 are similar to those obtained for 
subjects 1-4. In fact the fits to various aspects of the data are, on 
the whole, rather better. This may be due to the fact that subjects 
5-8 received the full 10 sessions of training and hence the results 
from session 10 are much closer to the asymptotic values, than those 
obtained from subjects 1-4.

Figure 3.4.5 gives the session by session results for subjects 
5-8, where p « 0.1. I.e. on average every 10th response was reinforced. 
As for subjects 1-4 (figure 3.4.1X these results show a gradual 
shift from a fairly low rate of responding, to a very high rate of 
responding, by the 10th session. As might be expected with the less 
frequent reinforcement, the trend towards shorter IRT’s appears to 
be much slower for these subjects, than for subjects 1-4. (Subject 7 
seems to be an exception. For this subject the rate of responding 
was very high from the beginning. Given the simple nature of the 
task, it might have been expected that a decrement in performance 
would appear, across sessions, due to boredom. However a very high 
rate was maintained throughout.) Subject 6 shows clearly the pattern 
of session by session changes in the IRT distribution. The subject 
begins by first eliminating the very long IRT’s, giving a distribution
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with a sharp cutoff around 2 seconds. There is then a general trend 
towards shorter IRT's, illustrated by the increasing number that 
fall in the interval 0.0-1.0 seconds, and the decreasing number in 
the interval 1.0-2.0 seconds. Sessions 6 and 7, for subject 6 show 
clearly the changeover of the mode of the IRT distribution from the 
1.0-2.0 second interval, to the 0.0-1.0 interval. This is followed 
by a further shortening of the IRT's, when the subjects push their 
rates into the regions of the highest that it is physically possible 
to make.

Figure 3.4.6 shows the data from the 10th session for subjects 
5-8, compared with the least squares fit of the model to this data. 
As for subjects 1-4, the fits are very good. Table 3.4.(iv) gives 
the estimates of yok for this data, as well as the least square 
error. The values of yok for subjects 5-8 are of the same order 
as those for subjects 1-4, the chief difference between the two 
groups being the high value of subject 7, compared with the rather 
low value for subject 3.

Subject ✓NyOk LSE.106
No. Data 
Points

5 4.96 1 4
6 3.12 8 4
7 5.30 0 4
8 4.35 21 4

Table 3.4.(iv) —  Estimates of the exponential parameter yOk and 
a list of the least square errors (LSE) between the obtained and 
predicted values of the asymptotic IRT distribution for subjects 
5-8. The last column gives the number of data points used in the 
parameter estimation.

Figure 3.4.7 gives the IRT distribution conditional on the 
previous response being reinforced. These fits to sequential 
statistics are again very good, with the rather striking exception 
of subject 6. This subject shows a strong trend in the opposite 
direction to that predicted by the model. After a reinforcement 
his IRT's are in general longer, rather than shorter. Whether or 
not this effect would disappear with further training is difficult 
to say. This subject did in fact comment that when he obtained a
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Subject k p k LSE.106
No. Data 
Points

5 0.85 18 4
6 0.00 86564 4
7 0.00 18 4
8 0.24 2 4

Table 3.4.(v) —  Estimates of k ^ k  for subjects 5-8. The LSE 
column gives the least square error between the obtained and 
predicted values of the IRT distribution conditional on the previous 
response being reinforced. The last column gives the number of data 
points used in the parameter estimation.

reinforcement that he was pleased, and "stopped for a second" to 
wonder why he had received one.

Table 3.4.(v) gives the estimated values of the parameter (k^k), 
and the least square errors. If the anomalous subject 6 is ignored, 
then the parameter values are very small on average, suggesting that 
the response strength function 0(t) was very close to its maximum 
value .

Figure 3.4.8 gives a comparison of the data and predictions for 
the asymptotic distribution of IRT's that followed a non-reinforcement. 
As for subjects 1-4, these predicted values are based not on the least

Subject / \
V k SE.106

No. Data 
Points

5 -0.09 1 4
6 -0.00 1054 4
7 -0.00 2 4
8 -0.03 21 4

Table 3.4.(vi) —  Estimates of the parameter kQ/k for subjects 
5-8. SE column gives the square error between the obtained and 
predicted values of the IRT distribution conditional on the previous 
response not being reinforced. The last column gives the number of 
data points used in the calculation of SE. The values of kQ/k given 
here are not estimated from the conditional IRT distribution, but 
from k.j/k. ___________
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square fits, but are based on the parameter values of (k^/k) 
calculated from equation 3.2.b.

The fits this time are all quite good, in contrast to the 
results for subjects 1-4. As might be expected, the fit for subject 
6 is the poorest. Generally all the fits for subjects 5-8 are 
better than those obtained for subjects 1-4, perhaps reflecting the 
extra training subjects 5-8 had. The good fits to the sequential 
statistics, and the small values of the parameters k^/k and k^/k, 
taken together seem to suggest that the sequential effects are on 
the whole small, so that 0(t) must lie close to its maximum value 
of * 1.

It is possible that the very good fits obtained so far are 
partially due to the small number of data points available for 
parameter estimation. (Usually four points were used, and a single 
parameter estimated.) The small number of data points result from 
the very high rate of responding produced by all the subjects. It 
may thus be of interest to investigate the data when it is class 
-ified on the basis of intervals smaller than one second. The 
data was thus reclassified into half second intervals, (0.0-0.5»
0.5-1.0, etc.) and subject to a re-analysis.

Subject pis LSE.106 No. Data 
Points

1 1.54 278172 7
2 1.52 523164 7
3 1.35 492529 7
4 1.39 765236 7

Table 3.4.(vii) —  Estimates of the parameter pis and a list of 
the least square errors (ISE) between the obtained and predicted 
values of the asymptotic IRT distribution for subjects 1-4 when the 
data is classified into half second intervals. The last column 
gives the number of data points used in the parameter estimation.

Figure 3.4.9 gives the data from subjects 1-4 when it is class 
-ified into half second intervals. (Asymptotic data only). These 
results are distinctly different from those given in figure 3.4.2. 
They show a peak, not in the first interval, but in the second
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interval. Table 3.4.(vii) shows the parameter values and the least 
squares fit of the model to this data. The parameter values yok 
are characterised by their uniformity and the atrocity of the fit 
to the data.

Not surprisingly, attempts to fit the conditional statistics 
(figure3.4.10) are equally poor. Table 3«4.(viii) gives estimates of 
k^/k. These are all zero, showing the insensitivity of the model to 
variations in the data points, when the fit is intrinsically so 
poor.

Subject k^/k LSE.106 No. Data 
Points

1 0.00 344540 7
2 0.00 650323 7
3 0.00 379789 7
4 0.00 748492 7

Table 3.4.(iii) —  Estimates of k ^ k  for subjects 1-4* The LSE 
column gives the least square error between the obtained and 
predicted values of the IRT distribution conditional on the previous 
response being reinforced, when the data is classified into half 
second intervals. The last column gives the number of data points 
used in the parameter estimation.

When the data for subjects 5-8, with half second grouping is 
inspected, a slightly different picture appears. (Figure 3.4.11). 
Subjects 5 and 8 still show a peak in the first interval, while 
subjects 6 and 7 are like subjects 1-4 (figure 3.4.9) in having 
a peak in their IRT distribution in the second interval. Attempts 
to fit the model now fall into two categories. Fits to the data 
from subjects 6 and 7 are very poor, (see table 3.4.(ix)) while 
those to data from subjects 5 and 8 are still quite good. However 
the fits for subjects 5 and 8 are worse under the half second 
analysis than they were under the one second analysis.

When the conditional statistics are inspected (figure 3.4.12) 
the picture becomes more confused. A good fit is still obtained 
for subject 8, but subject 5 is now classified with subjects 6 and 
7 and shows a peak in the second interval, rather than in the first.
Table 3.4.(x) gives the estimates of k^/k and the least square
errors. The parameters are again all zero (compare with table 3.4.(viii))
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Subject /\yok LSE.106 No. Data 
Points

5 3.27 685 7
6 1.36 753855 7
7 1.38 721189 7
8 5.18 434 7

Table 3.4.(ix) ~  Estimates of the parameter yok and a list of 
the least square errors (LSE) between the obtained and predicted 
values of the asymptotic IRT distribution for subjects 5-8 when 
the data is classified into half second intervals. The last column 
gives the number of data points used in the parameter 
estimation.

though presumably the zero obtained for subject 8 arises from a 
different source than those obtained for subjects 5-7.

In view of the generally poor fits to the data, further 
conditional statistics are not investigated. It is obvious from 
the half second analysis of the data that the IRT distribution in 
the random ratio case contains substantial contributions from 
sources apart from those considered in the model. The following 
section investigates a particular, and probably the most important, 
source for this contribution.

Subject k^/k LSE.106 No. Data 
Points

5 0.00 559419 7
6 0.00 510182 7
7 0,00 810817 7
8 0.00 41 7

Table 3.4.(x) —  Estimates of k.,/k for subjects 5-8. The LSE 
column gives the least square error between the obtained and 
predicted values of the IRT distribution conditional on the previous 
response being reinforced, when the data is classified into half 
second intervals. The last column gives the number of data points 
used in the parameter estimation.
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3.5 Response Speed Effects

Ray and McGill (1964) studied the changes in the IRT distribution 
obtained from pigeons on a random ratio schedule when the intervals 
by which the IRT's were classified were progressively reduced in 
size. They found that as the intervals grew smaller, that the 
distribution finally settled out into one with two peaks, both 
close to zero, and tentatively ascribed these two peaks to two 
different response movements: a very short movement involving only 
the head, and a slightly longer one involving both the head and 
the shoulders. These results, considered together with the very high 
rates of responding obtained from most of the subjects used in the 
present experiments* suggest that an important characteristic of the 
IRT distribution in the random ratio case is described by the time 
it takes to actually make the response. This suggests that an 
allowance for the effects of response time should be added to the 
model.

The simplest approach seems to be to assume that the time taken 
to execute the response is basically constant, but subject to 
random fluctuations. A distribution with approximately these qualities 
is the gamma distribution. Thus, if s(t) denotes the density 
distribution of response times, then

s(t) = /3( /3t)T~1Bxp(-/?t). (3.5.a)
H v )

where /3 and v are constants.
The IRT is now considered to have two components: a basic 

response time part - i.e. a time between the decision to initiate a 
response and its actual termination - and a 'decision* component, 
due to the learning process. (See figure 3.5.1). The 'decision' 
component is that described by the model given in chapter 2. This 
component is termed the 'decision* component because at each 
sampling the subject "decides", albeit in a probabilistic sense, 
whether or not to respond. This part of the IRT will be denoted 
as having density distribution r(t).

The response time is assumed to depend only on the physical 
parameters of the actual response required, and is independent of
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the decision time* It is assumed to be unaffected by learning, at 
least after a short practice period. The decision time is that 
aspect of the IRT that is affected by the reinforcement schedule*

IRT IRT

a b L J l i -»Time

Decision to Response ends
repond

Figure 3.5*1 —  Diagramatic representation of how each IRT is 
divided into two components*

It is manipulated by learning, in the way given in chapter 2* 
Notice that the decision time is not the time required to make a 
choice between respond/not respond, but the time to a decision to 
respond, from the end of the previous response*

If q(t) is the density distribution of the IRT's, it is 
given by the convolution of r(t) and s(t). I.e.,

q(t) = \ s(x)r(t-x)dx
30

Since the random ratio schedule is being used

r(t) = yokExp(-yokt).
Thus

/3Vx E xp(- fix) yokExp(- yok(t-x))dx

Assuming that 0  £  y0kf then this is

74

■air ,



£xp(-( /5 -yok)x)dx

Iv** 1y ^Bxp(-y)dy is the normalised incomplete gamma function

which will be denoted by Gy(t). Thus,

<!(*) * — lV />kExP(-/>kt)Gy(( /3 -/>k)t),
L/> - H

and,
when /3 f yok

q(t) S ^Lfit^ExpC-^t),

when /3 = yok.

To obtain an idea of the relative importance of the response

contribution of the response speed to the theoretical mean and
variance of the IRT distribution, and compare the theoretical
mean and variance of the IRT distribution with the values
actually obtained.

The calculation of the predicted values of the mean and
variance, in terms of yok, y3, and v is quite simple. Let Mq(x),
M (x), and M (x) denote the moment generating functions of, q(t), r s
r(t), and s(t), respectively. Then the Faltung theorem says,

In the present case, from the well-known property of the 
gamma distribution,

speed effects on the overall IRT, it is of interest to look at the

M (x) « M (x)M (x)•q r s

Ms(x) V

and,
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Prom the properties of moment generating functions,

B(q(t)) ■ jLM„(x )| ,

and,
dx q I x»0

Var(q(t)) = _df M (x)
dx2 q

- E(q(t))2.
x—0

This gives,
E(q(t)) • - v ,

/ok /9
and,

Var(q(t)) = 1 - __v_ •
( /sfc)2 /}2

I.e. the means and variances are the sums of the means 
variances of the two components.

The parameters yok, /3, and v were estimated from the asymptotic 
IRT distribution by the method of least squares. Figures 3.5.2, and 
3.5.3 illustrate the comparison of the obtained and predicted IRT 
distributions for subjects 1-8. In all cases, whether or not the

Subject /Ok fl V LSE.106 No. Data 
Points

1 21 .22 27.78 15.02 22 7
2 31.31 32.50 20.28 90 7
3 35.68 37.61 23.38 334 7
4 58.12 61 .26 41.42 18 7
5 6.23 6.28 1.10 190 7
6 61.31 64.55 50.65 4 7
7 65.99 74.80 53.78 53 7
8 5.97 5.97 1.19 39 7

Table 3.5.(i) —  Estimates of the parameters /ok, /3, and v, 
together with a list of the least square error (LSE) between the 
obtained and predicted values for the asymptotic IRT distribution 
when allowance is made for the response speed. The data was classified 
into half second intervals. The last column gives the number of data 
points used in the parameter estimation.



ft c/3

P iOO4)
09
«HrHa
4)
PiO

«Ho
CQ (—I ctf > 
Pi 4) 

-P

•H
Pi•H
T34)ft3O
PihO
4>
P.Ctf

§

094)S3
rH

§
CB-PctfT3

-P

IA

M
Pift

CQTJ
§O4)

C/3
Ehft

-P

O

09■OP!Oo4>W

OJ M

EHft

4)
-p

T3•H* Pift
P4ft

76.1

IRT
 
Se
co
nd
s 

IRT
 
Se
co
nd
s



EHft
O•H•PO-Pft
0
ns
00-p
0o<H
IQ0O•H■PO*HT300ft
'0
§
0-p0TJ
«>0•P
«Ho
§CQ•rl00ft&oo

o

ft
0)rH3T3V0oCQ
O•H-P
030
6OT3
ft
II
IA•
A•
IA
003bO•Hft

bo0•rl>•rlbO
10-p0•HOft
©0-P
0•rHO•o
(000•rl

r—I

TS•rl
rHOto

coIIA
10-Po0•rs
X310
0O«H
10-po4)«H
4)
T304)ftCO
(0CQ
gftCQ4)0
0O
©O

5OrHrH0

*0-P
•g
g•H-P3
X•H0-PCO•rlQ

'O0OO4)
(0

$
0O
«HO
(0 I—I
20<D-P0•rl
0•H

ft3O
bO
4>00

Ehft

IQ4)3rH
0>
0-P0T3
T300•H0-P
XO
00-P

150
B
U30
0<0o0o
003rH0>
•n0+>o•H
r3
0
0ft
00-P

VO

■o

H
0ft

0TJ0OO0
CO

§

0 .•P M

0
§O0

CO

§

CO
-p

c o

£

•n

(5 O

H
TJ•H 0ft

0ft

76.2

IRT
 
Se
co
nd
s 

IRT
 
Se
co
nd
s



distributions hare a peak in the second interval (all subjects 
except subjects 5 and 8), the fits are excellent. Table 3.5.(i) gives 
the obtained values of the parametersy and lists the least square 
error. In all cases, the errors are small. All the parameters fail 
to show any kind of uniformity however, and the range of values is 
large.

Sub E(r(t)) E(s(t)) E(q(t)) E(IRT) V(r(t)) V(s(t)) V(q(t)) V(IRT)
1 0.047 0.541 0.588 0.523 0.002 0.019 0.021 0.010
2 0.032 0.628 0.660 0.579 0.001 0.019 0.020 0.139
3 0.028 0.631 0.659 0.613 0.000 0.017 0.017 0.125
4 0.017 0.661 0.678 0.642 0.000 0.011 0.011 0.096
5 0.161 0.175 0.336 0.463 0.026 0.028 0.053 0.027
6 0.016 0.809 0.825 0.759 0.000 0.013 0.013 0.018
7 0.015 0.699 0.714 0.696 0.000 0.009 0.009 0.006
8 0.168 0.032 0.200 0.422 0.028 0.001 0.028 0.020

Table 3#5.(i) —  Comparison of the theoretical and actual means (E) 
and variances (V), together with the breakdown of the theoretical 
values into their two components, for subjects 1-8.

The comparison of the predicted means and variances with the 
ones actually obtained are given in tahle 3.5.(ii). They reveal' 
some interesting details. On the whole, the obtained and predicted 
mean values are very close, with the largest component been given by 
the response time. In contrast, the variances show a large discrepancy 
in a number of cases, where the obtained value is much larger than 
the theoretical one. Close inspection of the data suggests this is 
due to the persistence of a small number of relatively long IRT*s 
(about 0.5#), which few IRT*s contribute substantially to the variance 
of the IRT distribution.

Sequential effects can be investigated with little further 
work, as most of the required equations are already set up. It has 
been shown that, (section3.2)

r(t|i) = ( /ok+yokjExpC- />kO)Exp(-( /Okt+C^/kDO-ExpC- / * t X ) ) ,  
(where i = 1 means that the previous response was reinforced, and
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i * 0, that it was not reinforced, and,

= 2(«l* - lOO^hC yoka).)

The response speed effect has been defined as,

s(t) = y3(y3t)v"*1Exp(- /3t).
(v)

Since the response speed is presumed unaffected by reinforcement 
or non-reinforcement, the total conditional IRT is given by,

ft
q(11i) s 1 r(x|i)s(t-x)dx.

io

Table 3.5. (iii) gives values of k^/k calculated by the method 
of least squares, for subjects 1-8* Comparison of table 3*5.(iii) 
with table 3.5.(i) shows that the fits to the asymptotic IRT 
distribution conditional on the previous response being reinforced 
are worse than the fits to the asymptotic IRT distribution* (Only 
subject 7 shows an improvement)* Some subjects, e.g* 5 and 6 
have data which shows a massive deterioration in the fit. Part of

Subject k^k LSE.106 No. Data 
Points

1 0.00 4108 7
2 0.00 7076 7
3 34.74 1162 7
4 2.09 86 7
5 0.00 539837 7
6 0.00 77958 7
7 0.00 21 7
8 0.00 85 7

Table 3.5.(iii) —  Estimates of k ^ k  for subjects 1-8, after 
allowance for response speed effects. LSE column gives the least 
square error between obtained and predicted values of the IRT 
distribution conditional on the previous response being reinforced. 
The last column gives the number of data points used in the parameter 
estimation.
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the deterioration can be accounted for through the large number 
of zero entries in table 3.5.(iii) for k^/k. These represent not, 
as might be expected, no sequential effects, but for subjects 1, 2,
5, and 6, situations where the sequential effects are in the opposite 
direction to that predicted in the model. The effect of reinforcement 
is, on average, predicted as a speeding up of the rate of responding, 
but subjects, 1, 2, 5» and 6 in fact slowed down after a 
reinforcement. Better fits could have been obtained by allowing 
k^/k to become negative, but this would be meaningless within the 
framework of the model. This finding, of a slowing down effect of 
reinforcement stands in strong contrast to what is commonly 
presumed to be one of the chief effects of reinforcement, an 
increase in the rate of responding.

Figures 3.5.4 and 3.5.5 give a graphical illustration of the 
results shown in table 3.5.(iii). A comparison of these figures, 
with those of 3.5.2 and 3.5.3 shows clearly the slowing down 
effect after reinforcement, for subjects 1, 2, 5» and 6, The effect 
is especially striking for subject 5» where the peak moves from

Subject SB.106 No. Data 
Points

1 -0.00 4732 7
2 -0.00 9500 7
3 -34.74 1922 7
4 -2.09 474 7
5 -0.00 13102 7
6 -0.00 1202 7
7 -0.00 34 7
8 -0.00 38 7

Table 3.5.(iv) —  Estimates of kQ/k for subjects 1-8, after 
allowance for response speed effects. SE column gives the square 
error between obtained and predicted values of the IRT distribution 
conditional on the previous response being reinforced. The last 
column gives the number of data points used to calculate the SE.

between 0.0-0.5 seconds to between 0.5-1.0 seconds for responses 
that follow reinforcement.

The parameter k^k can be found from £j/k by the use of relation
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3.2.b, and the appropriate results are given in table 3.5.(iv). 
These values were used to calculate the asymptotic IRT distributions 
conditional on the previous response not being reinforced, and 
these distributions are illustrated in figures 3.5.6 and 3.5.7.
Table 3.5.(iv) also gives the square error between the obtained and 
the predicted values. (These are not fitted curves. kQ/k is not 
estimated from this data). On the whole, the fits are in fact better 
than those for the distribution conditional on the previous response 
being reinforced. This may in part be a reflection of the fact that 
for subjects 5-8, there are approximately nine times as many non­
reinforcements as reinforcements, and thus the probabilities 
estimated from the data for IRT’s conditional on non-reinforcement 
have a much lower variance than those probabilities estimated for 
IRT's conditional on a reinforcement for these subjects.

3.6 Conclusion

A number of points arise from the previous sections. The first 
is that when dealing with a data continuum (in this case time), . 
decisions as to how to separate the data up into class intervals 
can seriously affect the character of the results obtained. In 
general, the finer the interval width, the better. However, 
constraints are placed upon this by the accuracy of the observations 
and the number of observations available.

The second point is that, at least for the schedule values 
used here, (0.5 and 0.1) the time taken to produce the response 
occupies by far the largest part of any measured IRT. This means 
that effects dealt with by the model, are, at best, very small.
This in turn implies that so long as the response speed effects 
are adequately described, almost any model that has negligable 
significance for some values of its parameters may produce a
reasonable fit.

Viewed in this light, it is difficult to assess the model.
With allowance for response speed, the fits are good. However, 
if attention turns to the conditional statistics, the results are, 
on the whole mediocre. The worst of the conditional fits describe 
cases where the effects of reinforcement and non-reinforcement 
seem to have been inverted, and the experimental results do not 
seem to lie in line with any previous reports, particularly of
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animal behaviour. It may be possible however to ascribe this 
effect to some temporary influence on the sampling behaviour.
(I namediately after a reinforcement 'don't bother looking, (sampling) 
for a while, while after a non-reinforcement, 'look harder'.)

The overall conclusion is that the results are reasonable, and 
interesting, but not outstanding.
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Chapter 4

DIFFERENTIAL REINFORCEMENT OF LOW RATES OP RESPONDIHG

4.1 Previous Experimental Findings

The differential reinforcement of low rates of responding form 
the most obvious class of IRT reinforcement schedules. They are 
usually defined by,

u(t) = <
1.0, t&d 

0.0, t<d,

where d is a constant. Such a schedule essentially reinforces 
pauses of duration d, to produce low rates of responding, hence the 
name.

These schedules are part of a more general class of discontinuous 
schedules, which may be defined as follows,

u(t) = <
t&d

t<d,

where d, p, and q are constants. This schedule will be written in 
the form DRLd;p,q. The form DRI»d;p will imply that q»0.0, while the 
form DRLd will imply that p=1.0, and q=0.0. When p«q, the schedule 
is simply a random ratio schedule. It is to be assumed that p*q.
If p<q, the schedule is usually referred to as the differential 
reinforcement of high rates of responding, (DRH), (Shimp, 1967).

Early work on DRL schedules was done by Sidman (1956). His 
initial observation of the development of a mode in the IRT 
distribution near to the cutoff value d has since been confirmed 
by many other experimenters. The other characteristic of DRLd 
schedules is the persistence of a maximum close to t*0.0 in the 
IRT distribution. Not all experimenters have observed this 
phenomenon, though the majority seem to have done so.

Little work has been done on the properties of sequential 
effects in DRL schedules. However, Farmer andSchoenfeld (1964)
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have reported that reinforced responses are more likely to be 
followed by a reinforced response than non«reinforced responses 
by a reinforced response, and this has been confirmed by Ferraro, 
Schoenfeld and Snapper (1965)*

4.2 Predictions from the Model

The derivation of the asymptotic IRT distribution is complicated 
in the DRL case by the discontinuity in the reinforcement function 
u(t) at d. Using the same spread and sampling functions as 
previously, then r(t) takes different forms, depending on the value 
of t.

i) tsd-a.
From equation 2.6vb,

•<?©! (1-q)r(y)dy + \ qr(y)dy

This is a constant, that will be denoted by k(q). r(t) is then 
given by,

0(t)

qr(y)dy(1-q)r(y)dy +

s c( ©(1-q) 4* ot q

©(1-q) 4- q

r(t) * /ok(q)Exp(-yok(q)t)

ii) tjd+a.
Here the situation is parallel to that for t^d-a 

except that p replaces q. Hence,

0(t) = k(p),
and

r(t) * A yok(p)Exp(- yok(p)(t-d+a)),

where A is a constant given by,

83



iii) d-a<t<d+a.
From equation 2.6.b, and dividing each integral 

into two parts at the discontinuity d,
xd ft+ a  Pd f  t * a

(1-q )r(y)dy+d? l (1-p)r(y)dy+«(1 1 qr(y)dy*«l1l pr(y)dy
t - a  Jd J t-a  Jd0(t) =

Let,

d f t*a
©I (1 -q )r(y)dy+© l (1 -p )r(y )d y+  

;-a Jd

d ft+a
qr(y)dy*l pr(y)dy 

t-a Jd

d(t) = t-a
r(y)dy

t+a
r(y)dy

then 0(t) can be written,

0 ( t )  = «P © ((1 -g )d (t)» (1 -p ))  » rt?(qd(t)+p) . 4 .2 .a
© ((1 -q )d ( t )+ (1 -p ) ) ♦ ( q d (t)*p )

This is not explicitly soluble for 0(t). For the interval 
d-a<t<d+a, r(t) must be found by using a version of the SAGENAR 
programme, described in appendix I*

Since 0(t) is a constant, outside (d-a,d+a), and,

r(t) = yo0(t)Exp(-J />0(y)dy),

then on interval (0,d-a), r(t) has a maximum at t=0.0 and a minumum 
at tsd-a. Likewise, on interval (d+a,o>), r(t) has a maximum at d+a 
and a mimumum at infinity. This means that r(t) as a whole has 
maxima at t=0.0 and at some point in the interval (d-a,d+a), including 
its end points. I.e. there are maxima around zero and around the 
cutoff point d. Thus r(t) has the required kind of bimodality.

However, the situation is not as good as it might appear.
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Figure 2*7.1 illustrates a predicted IRT distribution where * P = 0 . 0 2  
and q=0.0. Although the distribution is bimodal, the slope of the
curve from t^O.O to t=4.5 is far too gentle, and the values of r(t)
in the range t»1.5 to t=4.5 are too high to reliably describe the 
short IRT’s which occur in practice on DRL schedules. It thus seems 
likely that they arise from other sources than the one considered 
in the model, (Essentially the model accounts for their existence 
by setting o(°>0.0.)

There appears to be at least two other ways in which it is 
possible to account for the peak at short IRT*s. These are,

i) Suppose that any sample of stimuli can be divided into two 
parts, these being,
a) Stimuli generated by the proceeding response.
b) Other stimuli. (Background stimuli.)

It is possible to consider that the background stimuli consist
of stimuli from a whole series of preceeding responses, and which
are thus characteristic of 'long* IRT’s. If a sample happens to 
contain a large proportion of these stimuli, which are presumably 
conditioned to the response, then a response will be made, as the 
subject effectively misreads the time. To some extent the 
assumption that o&O.O is equivalent to this. However if most of 
the background stimuli are specifically presumed to come from 
the preceeding one or two responses, then the result of a burst 
of short responses is to effectively wipe out the stimuli 
concerned with long IRT’s. Regarded in this way, this idea is then 
very similar to the idea of Sidman (1956) that a burst of short 
IRT’s resets the internal clock.

ii) An alternative way of tackling the problem is to look at the 
idea of ’resetting the internal clock’ in a somewhat different 
light than above. The model described in chapter 2 assumed that 
after each response, that when the subject next samples, the sample 
is taken from near X(0). (I.e. the clock 'resets’, or the new 
stimulus trace wipes out the old one.) This need not happen however. 
This may fail to happen and the next sample be taken from X(t+t’),
(t is the previous IRT, t* is the time since the last response.) 
rather than from X(t’). If t<*d, then a response is likely to 
follow very shortly, as at the next sampling of stimuli, 0(t) is
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likely to be large, A burst of responses could ensue before the 
subject reverts to the beginning of the X-continuum,

If say the two previous IRT*s were t̂  and t2, then the effective
value of 0(t)y 0 (t), is either 0(t), or 0(t+t1), or 0(t+t,l*to),© 1 1 £
or; etc. If these are averaged over all the possible values of t^, 
t2» etc., they become,

0(t), or J 0(tft1 )r(t1 )dt1, or | 0(t+t1+t2)r(t1 M t ^ d ^ d t g ,

etc.
Let z be the probability that the <jlock is reset1. The average 

value of 0e(t) is then given by,

f*0e(t) s z0(t) «■ 0(t«>t1 )r(t1 )dt1 + ... etc.

Thus in general,
<*>

0 (t) = z0 (t) + + ^ M T T r< V dV
e k=1 Jo $1  1 3=1 3 3

When 0(t) is a constant, as in the random ratio case, this 
simply reduces to,

0 (t) = (1-z-z2)0(t),
z

which is also a constant. In this situation, the proposed effect
is undetectable. Consider the DRL case however with o( =0.0 and
q=0.0. In this case, 0(t) is zero when t<d-a, and the simple model,
(z=1.0) predicts that no IRT's are less than d-a long. When the
case z 0 1.0 is considered, however, the limits of integration become
(d-a-t,«) in the expression for 0e(t). Inspection of the expressions
given for 0(t) at the beginning of this section show that 0(t) is
monotonic non-decreasing. Thus, as t increases from 0,0 to d-a, the
range of integration in the expression for 0e(t) increases, and so
does 0 (t). Thus over interval (0,d-a), 0 (t) is monotonic e ®
non-decreasing. Hence r(t), which is now given by, 

r(t) = />0e(t)Exp(-^/>0e(y)dy),



is monotonic decreasing on this interval. I.e. there is a peak 
for short IRT*s, even if <rf?=0.0 and q=0.0.

The introduction of the z-effect into the model introduces 
great difficulties into the mathematics, and must unfortunately 
be ignored in later sections. It was included here to illustrate 
along with (i), the many ways in which it is possible to account 
for certain aspects of a given set of experimental results. This 
particular explanation will be neglected from now on.

One aspect of DRL performance that has received a great deal 
of attention is the problem of collateral behaviour. Many researchers 
have suggested that the timing behaviour (i.e. a maximum near to 
t*d in the IRT distribution) is not a true timing behaviour, but 
a by-product of a stereotyped chain of responses that have grown 
up more or less fortuitously. The model in use here makes no 
predictions or comments about collateral behaviour. The existence 
of collateral behaviour simply implies that the subject has never 
learnt to sample from the appropriate stimulus continuum. It has 
been assumed throughout that subjects do select the appropriate 
stimulus continuum. If they do not, then the model makes no 
predictions about the ensuing behaviour.

As 0(t) and r(t) are not capable of explicit description, 
the derivation of explicit formula for the sequential probabilities 
is also impossible. It is., though*possible to derive expressions 
for r(t|1) and r(t|0) solely in terms of r(t) and the parameters 
of the model • This is done by eliminating 0(t) from among 
the following relations.

. 0( t)

U(tli)

and using,
r(t|i)

For practical calculations of these conditional IRT distributions, 
the programme SACOKDAR (appendix I) can be used.

r(t) .
/o(1-R(t))

r u a
* 0(t) - (* - 0(t))©,\ r(y)dy, i=0,1,J t

s yo0(t| i)Exp(-^ /O0(y|i)dy), 1*0,1.
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It is possible to derive conditions under which the observations 
of Farmer and Schoenfeld (1964), that reinforced responses are more 
likely to follow reinforced responses than non-reinforced responses 
is true. The situation considered was one where p=1.0 and q=0«0«
Let the cutoff value be d. Farmer and Schoenfelds conclusion is 
thus restated as,

n dr(tlt*)r(t*)dt*dt I \ r(tIt*)r(t»)dt»dt 4.2.b
d id iO

 ;  ^  .

(1 - R(d)) R(d)

Now let,
B^tit') = /9(<<1-0(t))eiir(t}t').

(B^Ctjt*) thus represents the effect of a reinforced IRT of duration 
t*, multiplied by yo.)

Then, ft
r(t| t') s ( />0(t)+ B1 (t;t• ))Exp(-J /O0(y)+B1 (y;t* )dy),

and,

^ ( t . M t . d t . d t

rx ft
( yo0(t)fB1(t;t»))Exp(-l /o0(y)tB1(y;t»)dy)r(t»)dt»dt,

Integrating with respect to t gives, 

jj*Exp(-J /o0(y>4«B1(y;t' )dyj rCt^dt'

= (1-R(d))^Exp(-j^B1 (y;t* )dy)r(t* )dt».

Now the value of the above integral depends on the value of the 
exponential term, and the value of the exponential depends in turn 
on the function chosen for w(t;t*)« The exponential has its largest 
value if w(t;t*) is everywhere zero, except for t=t*, when it must be



one* In this case,

imax =

Now the smallest value of the exponential is given when, w(t;t') is 
one everywhere. In this case,

*min
_ f Exp(-\ /jCci^^Cy^GdyJrCt* )dt* •

Jd J0

However, the smallest value of 0(y) is 0C°, Thus the above integral
is minimised with respect to variation in 0(y) if 0(y) is set equal

0 • •
In this case,

to *°.

imin ■ (i-R(d))ExP(-/0e1u 1-«c°)d).

Putting together the various terms, it can be seen that the 
lower bound of the LHS of equation 4,2,b is given by,

Lmin = (1-R(d))Exp(-/>01(A1-«l0)d).

Considering now the right hand side of equation 4,2,b, by 
analogy with the previous paragraph, the maximum value of

fd Pd
\ Exp(-I Bn(y;
Jo ^0

t')dy)r(t')dt»,

where B^Ctit1) is obtained from B^tjt') by replacing all the • 1 • 
indices by the index *0'. Now, as before,

*max

Put 0(y)=* , as this maximises this integral with respect to 
variation in 0(y), then,

I = R(d)Exp(->o©(*0-<*1 )d).max ’

Thus the value of the RHS of equation 4,2»b is given by,

R » (1-R(d) ) E x p ( - ) d ) .max '
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Inequality 4.2.b holds under the condition that,

I . ^  Rm m  max *
I • e «,

Exp(- o(1- o?)d) >  Exp(-yO©0(rt°-rt! )d) 

(/p©1(o<1-o^))d) C  (/>©0(rt°-a1 )d)

°1 <  ~Q0

Since both and ©^ are always positive, then the opposite of 
this inequality holds. I.e. the model predicts the opposite of the 
Parmer and Schoenfeld results. It predicts that reinforced responses 
are more likely to follow non-reinforced responses, than reinforced 
responses. The model makes this prediction because the general 
effect of reinforcement is to shorten following IRT's (but short IRT’s 
are not reinforced) and the general effect of non-reinforcement is to 
lengthen following IRT’s (making them more likely to be reinforced).

Thus although the model makes reasonable predictions about 
the asymptotic IRT distributions, its predictions about conditional 
statistics do not seem to agree with previous experimental findings.

4.3 The Experiment

To test more closely the predictions of the model, subjects were 
run on a DRL schedule. Pour human subjects were used. They were all 
undergraduates at the University of Stirling and they were paid at 
the rate of 30p per session. The experimental situation was exactly 
the same as described in section 3*3. Only the reinforcement schedule 
was changed. A trial run under DRL5 proved to be too easy, and the 
two test subjects refused to come for further sessions. The schedule 
was thus changed to DRL5;0.5 ( a post hoc analysis shows p to have 
been 0.48). Two new subjects were found, and the four subjects run 
for 10 sessions each.

4.4 The Results

Figure 4.4.1 gives the session by session results from subjects 
9-12. These results can be classified into two groups, a first group
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containing subjects 9-11, and subject 12. Subjects 9-11 all show 
similar characteristics. An initially high rate of responding 
(session 0, which is the first five minutes of session 1) rapidly 
switches (session 1) to a very low rate of responding. Some subjects 
e.g. subject 10,virtually stop responding at this point. The next 
two sessions show quite marked speeding up of responding until 
the majority of IRT's lie between 5 and 10 seconds duration. This is 
then followed by a gradual sharpening of the IRT distribution 
until the vast majority of IRT's are around 5 seconds duration.

It is interesting to note, that none of subjects 9-11 have 
any responses within the first three seconds of the IRT distribution, 
and show no sign of a peak close to zero that has been characteristic 
of many animal experiments. All the subjects became aware that some 
kind of time constraint was operating, in the sense that very rapid 
responding was 'no good', but noneof them ever characterised it 
exactly. This belief (in the uselessness of rapid responding) does 
however seem to have removed completely all the very short IRT's from 
these subjects' performances.

Subject 12 distinguishes himself from the others by his poor 
level of peformance, in terms of the obtained rate of reinforcement. 
There is in his results, a definite trend in the direction of 
responding at around 5 second intervals, but by session 10, his 
performance is still not very good. Whether or not the subject would 
have improved with more training is impossible to say. It does not 
seem unreasonable to assume this however, as the results do.seem to 
be moving in the appropriate direction, and it may not be unfair to 
describe this subject's data as non-asymptotic•

Subject 12 also differed from subjects 9-11 in that he did 
show evidence of a peak at short IRT's. The graph scale (figure 
4.4.1) is too small to show it. In the interval 0.0-0.5, the 
probability of an IRT was, for session 10, 0.002, in interval 0.5 
-1.0 seconds it was 0.003, and in interval 1.0-1.5 seconds, it was 
0.002, making approximately of responses in this region. Although 
the total effect was small, it is of interest that this behaviour 
should be shown by the worst performer on this schedule.

The data from sessions 9 and 10 was pooled to provide a 
substantial number of responses, and this data was regarded as
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Subject A
P

A© Aa LSB.106 No. Data 
Points

9 1.65 0.38 0.31 1509 9
10 3.07 2.81 0.28 52 8
11 3.31 0.00 0.11 4591 8
12 0.41 1.13 1.72 15445 14

Table 4.4.(i) —  Estimates of the parameters ©, and a for 
subjects 9-12, together with a list of the least square errors (LSE) 
between the obtained and predicted values of the asymptotic IRT 
distribution for these subjects. The last column gives the number 
of data points used in the parameter estimation. The IRT's were 
classified into half second intervals.

asymptotic and used for parameter estimation. There are three
parameters to estimate for the IRT distribution, these being, y©,
©, and a. (In view of the failure to find a substantial peak near to

0 1t*0.0, the parameters oC and ot were set equal to 0.0 and 1.0 
respectively. This simplifies considerably the search programme 
required to estimate yo, ©, and a, and reduces substantially the 
computing time required.) A minumum search technique was used to 
estimate the parameters, the criterion being the least squares fit. 
Table 4.4.(i) gives a list of the parameter values obtained, and the 
least square error.

Subject *1 LSE.106 No. data 
Points

9 1.00 5662 10
10 0.35 30850 9
11 — 5486 8
12 0.45 8050 12

Table 4.4.(ii) —  Estimates of for subjects 9-12. The LSE 
column gives the least square error between obtained and predicted 
values of the IRT distribution conditional on the previous response 
being reinforced for these subjects. The last column gives the 
number of data points used in the estimation of the parameter 0̂ .
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The fits for subjects 9-11 are quite good, while that for 
subject 12 is at least an order of magnitude worse. This poor fit 
to the data from subject 12 is, in a way, reassuring, for a good 
fit here would tend to imply that the model was so flexible that it 
would fit almost anything. This is not an especially desirable 
property for any model, as it would make it impossible to put the 
model to any real test of its validity. Figure 4.4.2 gives a 
graphical comparison of the data and the predicted values based 
on a least squares fit. These graphs confirm the impression 
obtained from table 4.4.(i), that the fits are good for subjects 
9-11, but bad for subject 12.

The results of an attempted fit to the IRT distribution 
conditional on the previous response being reinforced are given in 
Figure 4.4.3. The fits, as expressed by the least square error 
(Table 4.4.(ii)) are quite reasonable, with the exception of subject 
10. Comparison of table 4.4.(ii) with table 4.4.(i) will show that 
the best fit of subject 10 to the asymptotic IRT distribution 
becomes the worst fit to the conditional IRT distribution. It 
would be possible to obtain a better fit for subject 10 if the 
constraint applied to the value of 0̂  by the value of G were 
ignored. (The value of G is the one obtained from the asymptotic 
IRT distribution.) This constraint is,

0.0
for,

G

and,
0.0 s  ©0 1.0.

For subject 10, the value of found by the method of least 
squares is 1/G. If ©1 were allowed outside this range, a better 
fit could be found. The problem that then arises is one of what 
G^ and the corresponding Gq ( s G.G1) would represent.

In contrast to the very bad fit to the data of subject 10, 
the IRT distribution conditional on the previous response being 
reinforced from subject 12fs data shows a much improved fit
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over that for the corresponding asymptotic IRT distribution. This 
appears to be due chiefly to the bimodality of subject 12*s 
asymptotic IRT being somewhat less pronounced in the case of the 
conditional IRT distribution.

It will have been observed that there is no entry for 0^ for 
subject 11. This is because, in the asymptotic IRT distribution,
© ■ 0*0. This result implies that ©Q * 0.0 and that, 0(t) s oO , 
for t d-a. Since the conditional IRT distribution requires a 
term of the form (of1 - 0(t))©1f which is obviously zero in this 
case, for any value of ©^, then a value for cannot be extracted. 
The asymptotic conditional IRT should be the same as the asymptotic 
IRT. This is used to generate the entry in the least squares column 
of table 4.4.(ii).

As ©Q = ©.©^, it is possible to use the data from tables 4.4.(i) 
and 4.4*(ii) to calculate ©Q for each subject. This was done, and the 
results appear in table 4.4.(iii).

Subject A
°0 SE.106 No. Data 

Points
9 0.38 4432 8
10 1.00 1765 8
11 0.00 9433 7
12 0.51 24651 13

Table 4.4.(iii) —  Estimates of ©^ for subjects 9-12. SE column 
gives the square error between the obtained and predicted values 
of the IRT distribution conditional on the previous response not 
being reinforced. The last column gives the number of data points 
used to calculate the SE.

Figure 4.4.4 illustrates the fit of the model to data for the 
IRT distribution conditional on the previous response not being 
reinforced. No parameters are estimated from this data. The fits 
are on the whole quite good, with the not unexpected exception of 
the data from subject 12.

4.5 Conclusion

The results obtained from the analysis of the DRL schedule
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are on the whole quite reassuring. If subject 12 is ignored, on the 
grounds that these results do not represent asymptotic performance, 
then the model gives good fits to the asymptotic IRT distribution, 
and moderate fits to the asymptotic IRT distributions conditional 
on either reinforcement or non-reinforcement•

The actual values obtained for the various parameters show 
quite a wide range from subject to subject and reveal no particular 
pattern that might imply any special significance for particular 
values.
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Chapter 5

THE RANDOM INTERVAL SCHEDULE

5*1 The Experimental Background

A random interval schedule is one where the reinforcement 
function is defined by,

u(t) = 1 - Exp(-Xt),

where is a constant. Most variable interval schedules can be 
regarded as approximations to this schedule. Although a large 
amount of research has been done on interval schedules, relatively 
little has been done on random interval schedules as such. Most of 
the properties of interval schedules that are usually investigated 
turn out to be rather intractable from a mathematical point of 
view. There are however a number of general discussions of the 
nature of the IRT distribution, e.g. Anger (1956), Catania and 
Reynolds (1968), Parmer (1963), and Kintsch (1965)*

The simplest characteristic of the IRT distribution obtained 
from interval schedules is given by Parmer (1963), who states that 
the IRT distribution is unimodal, and that the mode tends to move 
towards longer IRT values, as X decreases. (I.e. lowering the 
mean rate of reinforcement lowers the rate of responding.)
Much of the work done, e.g. by Catania and Reynolds, concerns 
such relations as those between rate of responding and time- 
since-reinforcement. Unfortunately, while it is possible to 
set up expressions with time-since-reinforcement as the temporal 
variable, the expressions are so cumbersome and complex that they 
have not yet yielded to manipulation. The conclusions that can 
be drawn from the model that relate to present knowledge of 
properties of behaviour under interval schedules are thus rather 
few. However the next section discusses some properties of the 
model in the random interval context, and is followed by a look 
at the fit of the model to some actual data.
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5.2 Predictions from the Model

Prom equation 2.6.a, the asymptotic response strength is given
by,

0(t) =
n 1 ftfaot©\ Exp(-}fy)r(y)dy ♦ •< I (l-Bxp(-tfy))r(y)dy

Jt-a Jt-a
it+a ft*a

Exp(-Xy)r(y)dy *■ \ 0-Bxp(-*y))r(y)dy
t-a Jt-a

Note first that if 0 = 0,0, (non-reinforcement has no effect), 
then, 0(t) = • I.e. 0(t) is a constant and independent of If. In
this case, r(t) is simply exponential.

To investigate 0(t) and r(t) further, it is necessary to make 
some assumptions and approximations. If it is assumed that a is 
small, then,

0( t) —  ri.°9Exp(-¥t) ci} (1 —Exp(— Kt)) .
QExp(-fct) ♦ (1-Exp(-Kt))

0 1Por simplicity, let, oC = 0.0 and ot = 1.0. Then, if & is small, 
expanding the exponential, gives,

Exp(->t) *  1 - it,
or,

u(t> *  yt.
Hence,

0( t) *  *t
+  art

Kt
Q +  ( 1 - © ) X t

Si Xt ,
9

This approximation for 0( t) will he used in the rest mt this 
section.
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The mode of the IRT distribution is found by setting dr - 0.0,
dt

and solving for t.

r(t) = t)Exp(-^ />0(y)dy).

Therefore,
dr s />d£(t )Exp(-l />0(y)dy) 
dt dt JO

t
/O0(y)dy).

0

The mode is thus given by the solution of,

M ( t )  -  />0(t)2 -  o.o.
dt

Using the approximate value for 0(t), this gives,

0.0,

/ h -

Thus as J( decreases, t increases. I.e. this is in agreement 
with Parmer’s 1963 results.

The relation between the rate of responding and the rate of 
reinforcement has been discussed by a number of researchers* and 
particularly by Herrnstein (1970).

Herrnstein was considering initially the law of effect, as 
exemplified by choice behaviour in a two response concurrent schedule. 
(A concurrent schedule is simply one with two or more responses 
available, each response being independently reinforced. Perster 
and Skinner (1957, p724) define concurrent operants as, "Two or 
more responses, of different topography at least with respect to 
locus, capable of being excecuted with little mutual interference, 
at the same time or in rapid alternation, under the control of 
separate programming devices.") If the two suffixes L and R

1 “ P %212
e e2

and therefore,

- ^>20(t)2Exp(-
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are used to differentiate the two responses, (Left and Right) 
then matching is said to take place if,

or,

where P denotes the rate of responding (for Pecks, pigeons were 
usually the subjects in the experiments discussed by Herrnstein) and 
R is the rate of reinforcement.

The above relationships can be discussed in the context of a 
single response, by allowing one response (L) to be the response 
under investigation, and the other response (R) to be the set of all 
other possible responses, excluding L. In this simple situation, 
the law becomes,

(k is some constant, and the redundant suffix L has been dropped.)

constant, there is no way to distinguish, in a single experiment, 
between this prediction, and the following,

When the sum (R, + R,,) is a constant, the only difference betweenX* K
equation 5.2.a and equation 5.2.b is in the value of k, which is an 
arbitrary constant in either case. The two equations make divergent 
predictions only when (R^ + RR ) is not a constant, which is actually 
more typical. The difference is that equation 5.2.b predicts a 
"contrast effect", between responses, rather than a strict independence 
effect, as in equation 5.2.a. Generally experiments support equation 
5.2.b, for contrast effects are often found, especially in concurrent
procedures. (Catania, 1966).

If the suffixes are dropped in equation 5*2.b, then the matching

P kR. 5.2.a

As long as the total number of reinforcements (R^ * R^) is 

5*2.b
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law takes the form,

where k and A are constants*

Now Herrnstein also points out that an alternative matching 
law Is the probability matching law, In contrast to the number 
matching law given above* In a probability matching law, t^e Relative 
rates of responding equals the relative probability of reinforcement, 
rather than the relative rates of reinforcement• I.e*,

ft = A .
PR

PR
or,

PL - RL

If the same arguments are applied to the probability matching 
law, as were applied to the numbers matching law, above, then in 
the single response case, the law takes the form,

P = kJff .
T s m

where k and A are again constants, though not necessarily the same as 
before•

fhe strong attachment to rates of responding found amongst 
operant researchers conceals the simplicity of these relationships•
If they are transformed into statements about mean interresjponse 
times,

s I #
* P

and mean interreinforcement times,»

«p « 1 .
R
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then they take extremely simple forms* These are,

Number matching law,
mp = * c,

Probability matching law,
mp * b/ip * c,

where b and c are constants, though not necessarily the same in 
the two laws*

The point of concern here is whether or not the model used to 
describe random interval schedules favours either of these laws, 
rather than any other* To do that it is necessary to calculate 
values for mp and mp in terms of the model's parameters*

Now,

mp = J tr(t)dt

Put,

therefore,

Thus,

but,

so that,

This is thus the approximate value of the mean interreeponse time*

—  \ t yojft£xp(- />|t2)dt, 
40 0 20

x » /tft , 
20

dt « / j T ~ >  dx*
h p t

mp Oi J^x**Exp(-x)dx, 

^x*^Exp(-x)dx * p(l) z $

m, *  P P M
JZfii
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mR is somewhat more difficult to calculate, as it is not 
possible to calculate directly the distribution of interreinforcement 
times. However, if mn represents the mean probability that a 
response is reinforced, then,

"■u = «P
mA

is given by,

;But,

u(t)r(t)dt

"  1 *U|kP.(- #it2XdtJ o  ~~© ~2Q

fioo
= I /> >2t2Exp (- />lt2)dt 

JO ~©  2©

x = jolt2, 
~~2Q

therefore,



This is the result to be expected, for if the reinforcements 
had been scheduled as in an ordinary interval schedule, the intervals 
between the scheduled reinforcements would have been distributed 
according to &Exp(-$T). Scheduled reinforcements are usually 
collected shortly after scheduling, thus the mean interreinforcement 
time is expected to be about 1/tf.

Using the above expressions for m_. and mD,Jr K

»P =

or,
mp a b ^ .

Since in practice mp will contain components not accounted 
for in the model (e.g. a response speed component) this expression 
may be modified to read,

mP “ bJSR *

Thus the model suggests that a probability matching law is 
more likely to fit data on the relationship between mp and m^, 
than is a number matching law. Herrnstein (1970) is of the opinion 
that the number matching law in fact gives the best representation 
of the data he possesses. However, he fails to make any attempts 
to fit the probability matching law to his data, being content to 
show pictorially that the number matching law gives a tolerable 
fit. (No measures of fit are given.)

The probability matching prediction is not only characteristic 
of the random interval schedule, under this model, but it is also 
(again approximately) characteristic of the random ratio schedule.

In the random ratio schedule, it is obvious that,

mR " —  ’P
where p = u(t), the reinforcement function.
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Now,
mP = JL »

(See chapter 3)
and, taking tP • 0.0 and J  s 1#of in the expression for k,

but,

therefore,

Hence,

mp = Q(1-p ) + p 
/OP

P = ,
“r

yomp = Q(%. - 1) + 1 .
mP

2/>mp b Qa^ - 0mp + mp

Thus,
0.0 = /mb2 - (1-©)mp - ftUjj.

■j = (1-0) * ^(1-©)^ * 4 /Jtojj
2 7

= (1-©) 1 - /(1 ♦ 4 /o©mR )

2 /° (1-0)2

Now if, 4 yOQ m_ is large compared with 1.0, this becomes,
(1-©)2

approximat ely,
■» =

or,
mp -  bja^ + c

This relationship between and mR thus seems to partly 
characterise the model rather than the particular schedule, provided 
always, that 0 0.0.

It did not prove possible (see results, section 5.4) to 
investigate this relationship experimentally, as only one value of
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was used in the experiments described in the following section.
In many ways this is a pity. Perhaps this interesting point can 
be pursued experimentally at a later date. If the probability 
matching law is found to hold for a given subject, across changes in 
the schedule parameter, then this implies the following:-

The model parameters, (in this case © and p) must be constant 
across changes in the schedule parameters. I.e. they must be 
psychological invariants that in some way partially characterise the 
subject.

Such real invariants have proved notably elusive in psychology.

Sequential statistics are extremely difficult to handle 
analytically, as the small a approximation for 0(t) can no longer 
be used. The programme SACONDAR (Appendix I) is available for 
numerical investigation (e.g. see figure 2.7.1) of the IRT distribution 
conditional on either the previous response being reinforced, or not 
reinforced.

5.3 The Experiment

The same experimental apparatus as described in section 3*3 
was used. Only the reinforcement schedule was changed, so that a 
random interval schedule was in operation. The values of the 
components in the schedule control were chosen so that 1/ywas 
approximately 30 seconds. An analysis of the distribution of 
reinforcements actually produced by the schedule established that 
1/d was best described by 27.40 seconds, and this value was used 
in all calculations. Pour human subjects were used. As previously, 
they were paid at the rate of 30p per session. Subjects came 
daily for 10 sessions, excluding weekends. One subject dropped 
out after the first three sessions and his results are not included 
in tha following analysis.

5-4 The Results

Figure 5.4.1 gives the session by session results for subjects 
13-15. The IRT’s were analysed by grouping into intervals of one 
second width. The distinguishing feature of these results appears 
to be their variety between subjects. Subject 13 begins with a
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rapid rate of responding and slows down gradually over sessions 1-4, 
This is then followed by a slow increase in the rate of responding 
with the IRT distribution developing a marked bimodality. Over 
sessions 7-10, the peak associated with longer IRT's moves slowly 
toward that for short IRT's, which peak remains relatively fixed in 
position, but increases in magnitude. This suggests that further 
sessions may have resulted in the merging of the two peaks to 
produce a unimodal distribution.

In contrast to this, subject 14 always has a relatively 
high rate of responding. However, as session number increases, the 
number of short IRT*s decreases and the IRT distribution develops 
a long tail. This process continues upto session 9, when there is 
a sudden return to the very high initial rate of responding, which 
is then exceeded in session 10.

Subject 15 is different again, though in some ways this subject 
is similar to subject 13. The first session is characterised by a 
very low rate of responding - almost no responding. The IRT distrib 
-ution then begins to shift its peak from long IRT's to short IRT's, 
so that by session 10, the mode is in the region of 1.5 seconds.
This trend is quicker and more uniform than the corresponding 
process for subject 13, and only a slight trace of bimodality 
(session 5) is to be found.

The results from session 10, for each subject, were taken as 
asymptotic data and re-analysed into half second intervals. The 
Parameters and J  were set at 0.0 and 1.0 respectively, to 
reduce the number of parameters to be estimated to a minumum, and 
the values of yo* 0, and a were estimated, to two places of decimals, 
by the method of least squares. The programme SAGENAR (Appendix I) 
was used to generate the IRT distribution, rather than use the 
approximations developed in the previous section. Table 5*4. (i) 
gives the values of these parameters, for each subject, together 
with the least squares error.

The parameters vary widely between subjects. As is perhaps 
expected, 9 is large for subject 13, i.e. this subject is heavily 
affected by non-reinforcement, and hence has a low rate of 
responding, while 0 is small for subject 14* i.e. this subject is 
not much affected by non-reinforcement and so has a high rate of 
responding. Subject 15 lies between these two extremes. The fits
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obtained also range widely, being very good for subject 14, moderate 
for subject 15 and bad for subject 13, although 13 could be perhaps 
explained away by allowing that this subject’s data is not really 
asymptotic.

Subject A
P

A
0 Aa LSE.106 No. Data 

Points
13 5.29 4.09 1.07 16259 20
14 8.74 0.10 4.11 150 9
15 17.50 1.29 0.00 2322 13

Table 5.4.(i) —  Estimates of the parameters yo, 0, and a for 
subjects 13-15, together with a list of the least square errors (LSE) 
between the obtained and predicted values of the asymptotic IRT 
distribution for these subjects. The last column gives the number 
of data points used in the parameter estimation.

Figure 5*4.2 shows graphs of the data for session 10 for each 
subject, compared with the predicted values. The reasonable results 
for subjects 14 and 15 can be seen. It is obvious that the poor fit 
to the data from subject 13 results chiefly from the bimodality of 
this subjects results.

No predictions o* fits are made to the asymptotic conditional 
data, as sufficient time was not available to run a parameter search 
programme•

5.5 Conclusions

It is unfortunate that it was not possible to collect sufficient 
data to investigate the relationship between the mean rate of 
reinforcement and the mean rate of responding, for individual 
subjects. The restrictions were chiefly practical. The rather tedious 
nature of the task led subjects to decline the offer of further sets 
of 10 sessions, and, in any case, there would not have been 
sufficient time available to cover a whole range of K values. One of 
the characteristic difficulties subjects associated with this schedule 
(they were not told before hand what the schedule was) was the 
relative insensitivity of the rate of reinforcement to their patterns
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of responding. The subjects did not themselves feel very successful 
and after a few sessions just wanted to get the whole lot finished 
off as quickly as possible. Perhaps it will be possible however to 
test the model against some animal data at some future date.

For the data obtained from a random interval schedule, the 
model seems to have done fairly well. It does not seem unreasonable 
to view the fit of the model to the data from subject 13 as partly 
a reflection of the non-asymptotic aspects of this subjects data. 
This then leaves the two reasonably good fits of the model to data 
from subjects 14 and 15 to characterise the success of the model 
in accounting for the general properties of the IRT distribution 
produced by random interval schedules of reinforcement.
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Chapter 6

CONCLUSION

6.1 Pinal Remarks

The preceeding three chapters contain a fairly detailed 
attempt to describe the commonest types of operant reinforcement 
schedules by a single mathematical model. Ratio, interval and DRL 
schedules have all been described as special examples of schedules 
that prescribe reinforcement as a function of interresponse time.

In describing the relatively wide varieties of behaviour these 
schedules produce, only three parameters have been really necessary 
and each of these parameters characterise a particular aspect of 
the model

i) The response process —  ô, the sampling parameter,
ii) The stimulus process —  a, the spread parameter,

iii) The learning process —  0, the relative effectiveness of
reinforcement and non-reinforcement 
parameter.

This appears to be the minumum number of parameters that could 
possibly be used, in any moderately complex model.

The predictions of the model are generally in accord with the 
known experimental results, with one exception. This exception is 
that result reported by Parmer and Schoenfeld (1964), that under 
DRL schedules, reinforced responses are more likely to follow a 
reinforced response than to follow a non-reinforced response. This 
model predicts the opposite, a prediction more in accord with the 
generally accepted belief that one effect of reinforcement is to 
speed up responding.

In most cases the fit of the model to the asymptotic IRT 
distribution were good. In the random ratio case however, it was 
found that the most important component of the IRT was the time 
required to produce the response. The DRL and the random interval 
results each produced one example of a poor fit to the asymptotic 
IRT distribution, but they seem to have been dua to the non-asymptotic 
qualities of these particular sets of data. Otherwise the fit of the
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model to the data from these two schedules was good.

In contrast to the overall good fit to the asymptotic IRT 
distribution, the fits to the asymptotic conditional IRT distributions 
ranged from good to very bad, and show no particularly consistent 
patterns of fit. This suggests that sequential effects are more 
complex than those proposed by the model.

Taking all the results together, the model does not seem to 
have suffered too badly in its first confrontation with experimental 
data. It does at least appear to provide a reasonable theoretical 
foothold in the highly experimentally orientated field of operant 
research.

Stephen Ambler 
8 November 1972
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APPENDIX I

This appendix contains two very general Algol programmes that 
can be used to calculate asymptotic IRT distributions. It also 
contains, examples of their output. Comments are inserted in the 
programmes to make them reasonably self-explanatory. The various 
procedures are discussed in a little more detail in the next few 
paragraphs.

i) SAGENAR.

given reinforcement schedule, sampling function, and spread function. 
The procedures specifying these functions need modifying, depending 
on the functions actually used.

This gives the reinforcement schedule. The programme is in 
fact set up for a random interval schedule with 1/30.

b) PSI(T)
This is the sampling function. The actual function used 

here i s ’ytt) = yo, in line with the choice made in section 2.3* 
/b is set at 3.0.

c) OMEGA(T,X) and SETLIMITS(AL, AU, T)

specify w(t;x), the spread function. For any value of T,
SETLIMITS makes OMEGA assume values only between AL (lower limit), 
and AU (upper limit). Here they are both set equal to 0.05. In 
terms of section 2.4, a = 0.05. 0MEGA(T,X) fixes the value of 
OMEGA, given that it is constrained by SETLIMITS. In the present 
case, OMEGA is set equal to 1.0. Thus together, SETLIMITS and 
OMEGA specify,

This calculates the asymptotic IRT distribution for a

a) U(T)

These two functions together

w(t;x)
0.0 otherwise

where a = 0.05.
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The details of these four procedures are up to the user. The 
programme can he used to investigate several aspects of the model 
by varying these procedures. E.g. holding U(T) and PSI(T) fixed
OMEGA(T„X) and SETLIMITS(AL, AU, I) could be varied to study the
effects different spread functions have on the asymptotic IRT 
distributiono

d) IRTDENSITY(ALPHAO, ALPHA1, THETA)
This procedure is the core of 

the programme. ALPHAO and ALPHA1 are the response strength limits 
_and:THETA the learning parameter. Essentially the procedure tries 
to find an r(t) that satisfies equations 2.2.a and 2.3.b. The 
procedure works in the following manner.

A finite set of values of r(t) are arbitrarily specified, 
(s^). Equation 2.3•b is then used to calculate values of 0(t),
(This is done in the local procedure PHI(T).) using the set ŝ
of supposed values of r(t) at different values of t. 0(t) is 
then used to calculate a new set of values for the set of 
points of r(t), (s^). In general, ŝ  and Sg are different. As a 
measure of this difference, the total square error between 
corresponding points of and Sg is calculated. If this 
square error (SQERR) is less than a critical value, then the 
points of Sg are taken to represent points of r(t). If this is 
not so, the ŝ  values are dumped and replaced by the Sg values 
. and the process repeated. This is continued until the difference 
between two consecutive sets is less than the critical value, 
or until the iteration has gone through 25 cycles.

e) R(T)
This takes the set of values output by IRTDENSITY and 

uses linear interpolation to provide a continuous approximation 
to the IRT distribution.

f) DIVISOR
This computes the integral of r(t) over the total range 

used, and this is then printed out. If IRTDEHSITY has produced
a reasonable approximation, then DIVISOR should be close to 1.0.

-• ...... - . ... *  ,■ .... - "• » ■' '*
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DATA
The data must be inserted in the following order.

’TITLE' This is space for up to 100 letters or spaces. It is 
meant for the name of the reinforcement schedule, but 
may be used for any purpose. This input must be enclosed 
in string quotes.

UL This is the time range (0-UL seconds) over which r(t) is 
calculated. The initial values of r(t) at the start of the 
iteration are taken to be 1/UL.

S This is the increment used in selecting the finite set
of r(t) values. Values of r(t) will be computed every Sth 
of a second, starting at zero. There are thus UL/S values 
in all. The critical value of SQERR in the iteration is 
S2/2.

ALPHAO, These are the response strength limits of 0(t). Most often
ALPHA1 they will be 0.0 and 1*0 respectively.

THETA This is the learning parameter. It is the relative effectiv
-ness of non-reinforcement to reinforcement.

At the end of the programme is an example of the data layout. 
This is followed by an example of the output.

ii) SACONDAR.
This calculates IRT distributions conditional on the 

-previous response being either reinforced or non-reinforeed• Most 
of the procedures are common to SAGEEAR and so are not given in 
detail•

a) PHI(T)
This is the response strength function. Once R(T) has 

been calculated, a range of 0(t) values are calculated and 
stored for further use in array OUTPHI. At the same time, 
values of Jw(t;x)r(x)dx are stored in array ROMEGA.
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b) CR(T,K)
This calculates the conditional IRT distribution. 

Interpolation is used on OUTPHI and ROMEGA to provide a 
continuous result.

Pinallyvthe programme outputs a set of values for r(t|0), r(t), 
and r(t|1) at half second intervals.

- DATA
J?his must be inserted in the following order. It is^yery similar to 

-that forSA5ENAR.

TTITLE*
UL 
S
ALPHAO 

_rALPHA1

- THETAO, These, are., the. l e a r n i n g ers.JgHETAO is the^effect of 
— THETA1 non-reinforcement, while -THETA1 is the effect of reinforcement. 

They must bejopjween 0.0_ and 1.0.

At the, end of the pro^anime is an example of the^data input,
-This is followed by an example of the_output.

V  As for SAGENAR.
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SAGENAR;

"COMMENT" THIS PROGRAMME CALCULATES A SET OF VALUES ON 
RANGE 0-UL OF THE IRT DISTRIBUTION. THE POINTS 
ARE TAKEN AT INTERVALS OF S APART. THE RESULTS 
ARE OUTPUT IN ARRAY OUTSRC 0:UL/S3 >

"BEGIN"
"REAL" ULj S;

"INTEGER" J;
"INTEGER""ARRAY" TITLE!1:25];

J: = 1;
INSTRINGCTITLE*J);
"READ" UL* S3

J: = 1;
OUTSTRINGCTITLE*J ) 3 
"PRINT" " L 2 " ;

"PRINT" " L " *  SAMELINE* ALI GNEDC 2* 2) * ' TIME RANGE:
0.00-'* UL*

* * L K '  > SAMELINE* ALIGNED!1*3)* ' INCREMENT IN

ITERATION: '* S3 
"PRINT" " L 2 " ;

"BEGIN"
"REAL""ARRAY" OUTSRC 0: ( U D / S  + 2 3;

"REAL""PROCEDURE" U!T);
"VALUE" T;
"REAL" T 3

"COMMENT" GIVES REINFORCEMENT PROBABILITY;

"BEGIN"
U:=l-EXP(-T/30); ; f v
"END" OF U;

"REAL""PROCEDURE" PSI!T>;
"VALUE" T;
"REAL" T;
"COMMENT" SAMPLING DISTRIBUTION;

"BEGIN"
PS I : = 5•0;
"END" OF PSI;
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"REAL"'*PROCEDURE” OMEGACT, X);
"VALUE" T> X;
"REAL" T*X;

"COMMENT" SPREAD FUNCTION. THIS FUNCTION IS ASSUMED TO BE 
ZERO UNLESS X-AL<T<X+AU;

"BEGIN"
OMEGA:=1.0;
"END" OF OMEGA;

"PROCEDURE" SETLIMITSCAL* AU* T) ;
"VALUE" AL*AU>T;
"REAL" AL*AU>T;

"COMMENT" FIXES RANGE OUTSIDE WHICH OMEGA IS ZERO;

"BEGIN"
A L :=AU:=0•05;
"END" OF SETLIMITS;

"PROCEDURE" IRTDENSITY(ALPHA0* ALPHA1* THETA);
"VALUE" ALPHA0* ALPHA 1 * THETA;
"REAL" ALPHAO* ALPHA1* THETA;

"COMMENT" OUTPUTS A FINITE NUMBER OF VALUES OF THE IRT 
DENSITY DISTRIBUTION ON 0.0 TO 1JL (UPPER 
LIMIT) AT POINTS S APART.

THIS IS OUTPUT FROM ARRAY OUTSRC0:UL/S]•
THE FOLLOWING FUNCTIONS ARE NEEDED:- 

UCT) -- THE REINFORCEMENT FUNCTION.
PSICT) -- THE SAMPLING FUNCTION.
OMEGAC T> X ) -- THE SPREAD FUNCTION.
SETLIMITSCAL*AU*T) -- GIVES LIMITS OF SPREAD

FUNCTION.
THE FOLLOWING CONSTANTS ARE GLOBAL AND 

MUST BE GIVEN VALUES BEFORE IRTDENSITY IS
C A L L E D  UL* S«

ARRAY OUTSRC0:UL/S] MUST BE DECLARED 
AFTER THESE;

"BEGIN"
"REAL" A* AU> AL;
"INTEGER" l >  L;
SETLIMITSC AL* AU* U L );
A: =AU;
L:=ENTIER((UL+A)/S)+l;
SETLIMITSCAL> AU* 0);
A: =AL;
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"BEGIN”
"REAL,,,,ARRAY" SRAC - C A/S + 2 ) : L ] ;

"REAL""PROCEDURE" PHI(T )5 
"VALUE" T;
"REAL" T;

"COMMENT" RESPONSE STRENGTH FUNCTION;
"BEGIN"
"REAL" X* Y* XI* Yl;
"INTEGER" INC;
X:=Y:=0.0;

"IF" A<0.000001 "THEN"
"BEGIN"
X := 1 . 0;
Y:=UCT);
"END"

"ELSE"
"BEGIN"
SETLIMITSCAL*AU*T);
"FOR" INC:=CT-AL)/S "STEP" 1 "UNTIL" (<T+AU>/S-1> 

"BEGIN"
X : =X +
COMEGACT*INC*S)*SRACINC3+OMEGAC T*(INC+1>*S> 
*SRACINC + 1])*S/2;

Y := Y +(OM EGACT*INC*S)*UCINC*S>*SRACINC1 +
OMEGAC T* CINC+1>*S>*U(CINC+1)*S 

)*SRACINC+1])*S/2;
"END";

"END";
X 1:=ALPHA0*THETA*(X-Y) + ALPHA1*Y;
Yl:=THETA*(X-Y) + Y;
"IF" Y1<0.000001 "THEN" PHI:=ALPHA0 
"ELSE" PHI:= X 1/ Y 1;
"END" OF PHI;

"FOR" I:=-(A/S+2) "STEP" 1 "UNTIL" 0 "DO"
SRACI]:=0.0;

"FOR" I :=0 "STEP" 1 "UNTIL" L "DO"
SRACI 3: = 1/UL;

"COMMENT" FROM THE IMPLICIT RELATION IN SR THAT 
SR MUST SATISFY* A SET OF VALUES OF SR 
AT POINTS S APART ARE CALCULATED*
ASSUMING THAT THE VALUES SRA ACTUALLY 
SPECIFY SR. THE SETS SRA AND SRA1 ARE 
THEN COMPARED. IF THEY ARE ALIKE IT IS 
ASSUMED THAT THEY GIVE POINTS OF SR.

"DO"
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IF THEY ARE NOT ALIKE, SRAl IS USED AS 
A NEW SRA AND THE PROCESS IS REPEATED. 
THIS CONTINUES UNTIL A STABLE SET OF 
VALUES IS FOUND, OR MORE THAN 25 CYCLES 
IS MADE, WHICHEVER IS THE SOONER*

"BEGIN"
"REAL" SQERR, Z, PI, P2*
"INTEGER" COUNT*
"REAL""ARRAY" SRAl[0:L3*
Z : = P 1: = P2: = 0.0*
COUNT:=0•0*
"PRINT" ' SOERR VALUES ARE: " L 2 * * *

LOOP:

COUNT:=COUNT+1 *
"IF" C0UNT>25 "THEN"

"BEGIN"
"PRINT" " L " ,  SAMELINE,

'NO STABILITY AFTER 25 LOOPS, SQERR 
SQERR, " L " *

"GOTO" FINISH*
"END"*

"FOR" I :=0 "STEP" 1 "UNTIL" L "DO"
"BEGIN"
Pl:=PHICI*S>*PSICI*S>*
"IF" 1=0 "THEN" Z:=0 "ELSE"
Z : = Z + (C(P1+P2)/2)*S)*
SRAlCI]:=P1*EXPC-Z)*
P2:=P1*
"END"*

SQERR:=0.0*
"FOR" I: = 0 "STEP" 1 "UNTIL" L "DO"
SQERR: = SQERR+(SRACI3-SRAlCI 3>*CSRACI 3-SRAlCl 3)* 
"PRINT" SAMELINE, SQERR*
"IF" SQERR<S*S/2 "THEN"
"GOTO" FINISH*
"FOR" I :=0 "STEP" 1 "UNTIL" L "DO"
SRACI 3: = SRA1CI 3*
"GOTO" LOOP*

FINISH:
"FOR" I : = 0 "STEP" 1 "UNTIL" UL/S "DO"
OUTSRCI 3: = SRA1C13*
"END" OF LOOP*

"PRINT" " L " *
"END"*

"END" OF IRT DENSITY*



"FOR" J:=0 "STEP" 1 "UNTIL" ENTIERC(UL)/S)+1 "DO"
OUTSRCJ3:=0.0;

"BEGIN"
"REAL" ALPHA0, ALPHA 1, THETA, EJ

"REAL""PROCEDURE" RCT);
"VALUE" T;
"REAL" T;

"COMMENT" LINEAR INTERPOLATION OF OUTSR. R IS A CONTINUOUS 
APPROXIMATION TO THE IRT DISTRIBUTION,*

"BEGIN"
"REAL" X;
"INTEGER" I;
I :=ENTIERCT/S>;
"IF" T < 0.0 "THEN"
X:=0.0;
"IF" T "GE" 0.0 "AND" T "LE" UL "THEN"

"BEGIN"
"IF" I=ENTIER<UL/S) "THEN"
X :=OUTSRCI3-OUTSRCI3+CT/S-I) "ELSE"
X : = OUTSRCI] + COUTSRCI + 13-OUTSRCI 3)*CT/S-I>J 
"END";

"IF" T > UL "THEN"
"BEGIN"
"PRINT" "L' CAUTION BOUNDS OF R EXCEEDED ' L " 5  
X :=0.0;
"END",*

R:=x;
"END" OF R;

"READ" ALPHA0, ALPHA 1, THETA;
"PRINT" " L " ,  SAMELINE, ALIGNEDC 1,3), ' RESPONSE

STRENGTH LIMITS:
' ALPHA0 *, ALPHA0, " S 2 "  , # ALPHA1 ', ALPHA 1,

''L'', SAMELINE, ALIGNEDC1,3), ' LEARNING
PARAMETER:
' THETA THETA,
' 'L3'';

IRTDENSITYCALPHA0,ALPHA 1,THETA);

"BEGIN"
"REAL" DIVISOR,*
"INTEGER” J,*
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"COMMENT” DIVISOR SHOULD BE APPROXIMATELY 1.0. THIS PROVIDES 
A CHECK ON THE ACCURACY OF THE PROGRAMME;

DIVISOR:=0.0;
FOR” J :=0 "STEP” 1 "UNTIL” ENTIERC UL/S) ”DO” 
DIVISOR:=DIVISOR+OUTSRCJ]*S;
"PRINT” " L " ;
"PRINT” SAMELINE, 'DIVISOR', DIVISOR, " L 2 "  ; 
"END”;

"PRINT” " L " ;

"PRINT” ' T RCT)', " L 2 "  ;
"FOR” E:=0.000 "STEP” 0.5 "UNTIL” 10 "DO” 
"BEGIN”
"PRINT" SAMELINE, ALI GNEDC 3, 3 ) , E, " S 3 " ,  RC E) , 
"IF” RC E)<0.0005 "AND” E>UL/2 "THEN”

"BEGIN”
"PRINT” " L " ,  'STOP', " L " ;
"GOTO” STOP,*
"END”;

"END”;

"END” ;

"END";

STOP:
"PRINT” " L 1 0 "  ;
"END" OF PROGRAMME;

THE DATA LAYOUT IS AS FOLLOWS 

SCHEDULE IS
' RANDOM INTERVAL SCHEDULE, GAMMA IS 1/30 '

TIME RANGE 
10 SECONDS

INCREMENT 
0.01 SECONDS

RESPONSE STRENGTH LIMITS 
0.0 1 . 0

LEARNING PARAMETER 
1 . 0

END OF DATA LAYOUT.

" L 2 " ;
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AM e x a m p l e : o f  THE OUTPUT I S :

RANDOM INTERVAL SCHEDULE:. GAMMA IS 1/30

TIME RANGE: 0.00 - 10.00
INCREMENT IN ITERATION: 0.010

RESPONSE STRENGTH LIMITS: ALPHA0 0.000 ALPHA 1
LEARNING PARAMETER: THETA 1.000

SQERR VALUES ARE:

7*5607990 .00000000

DIVISOR .99943031

T RCT)

0 • 000 0.000

0. 500 0 • 08 1

1 .000 0. 151

1 . 500 0.203

2.000 0.233

2. 500 0.241

3.000 0.230

3. 500 0.206

4 • 000 0. 174

4.500 0. 140

5.000 0. 107

5. 500 0.078

6.000 0.055

6. 500 0.037

7 .000 0.024

7. 500 0.015

8.000 0.009

8.500 0.005

9 * 000 0.003

9 . 500 0. 002

10.000 0. 000

STOP 121

1 . 000



SACONDAR*

••COMMENT" THIS PROGRAMME CALCULATES A SET OF VALUES AT 
POINTS OF THE IRT DISTRIBUTION, ON 0 -UL 
AT INTERVALS S APART AND PUTS RESULTS IN 

ARRAY OUTSRC0:UL/S3. THESE RESULTS ARE THEN 
USED TO CALCULATE THE IRT DISTRIBUTIONS 

CONDITIONAL ON THE PREVIOUS RESPONSE BEING (A) 
REINFORCED, AND CB) NOT REINFORCED*

BEGIN"
"REAL" UL, S*
"INTEGER" J*
"I NTEGER""ARRAY" TITLEC1:253*

J: = 1 *
INSTRINGCTITLE, J)*
"READ" UL, S*

J: = 1;
OUTSTRINGCTITLE, J)*
"PRINT" " L 2 "  *
"PRINT" " L " ,  SAMELINE, ALI GNEDC 2, 2> , ' TIME RANGE!

0.00 , UL,
" L " ,  SAMELINE, AL I GNEDC 1, 3 ) , ' INCREMENT IN

ITERATION: %, S*
"PRINT" " L 2 " *

"BEGIN"
"REAL""ARRAY" OUTSRC0 : CUL)/S + 2 3 *

"REAL""PROCEDURE" UCT)*

"REAL""PROCEDURE" PSI(T)i 

"REAL""PROCEDURE" OMEGAC T, X ) *

"PROCEDURE” SETLIMITSCAL,AU,T)*

"PROCEDURE" IRTDENSITYCALPHA0, ALPHA1, THETA)*

"FOR" J:=0 "STEP" 1 "UNTIL" ENTIERC<UL)/S)+1 MDOM 
OUTSRCJ3:=0.0*

"BEGIN"
"REAL" ALPHA0, ALPHA1, THETA0, THETA1, THETA, E* 
"INTEGER" I*
"REAL""ARRAY" ROMEGA, OUTPHIC0:UL/S+23, RFC0:13*
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"COMMENT” OUTPHI STORES VALUES OF THE RESPONSE STRENGTH
FUNCTION PHI AT INTERVALS OF S APART ON THE RANGE 
0-UL.

ROMEGA STORES VALUES OF THE INTEGRAL 
R(X)*OMEGACT* X ) WITH RESPECT TO X BETWEEN 0 AND UL. 
VALUES ARE STORED AT INTERVALS S APART* AS T RANGES
BETWEEN 0 AND UL*

"REAL”"PROCEDURE" RCT);

"REAL""PROCEDURE" PHICT);
"VALUE" t ;
"REAL" T;

"COMMENT" RESPONSE STRENGTH FUNCTION;

"BEGIN"
"REAL" X* Y* XI* Yl* AL* AU* A;
"INTEGER" INC;
SETLIMITSCAL*AU*T);
A: = AL + AIJ;
X: = Y : = 0•0;
"IF" A<0.000001 "THEN"

"BEGIN" v
X : = 1 • 0;
Y :=UC T ) ;
"END"

"ELSE"
"BEGIN"
"FOR" INC: = C T-AL ) /S "STEP" 1 "UNTIL" C < T+.AU)/S-1 ) "DO"

"BEGIN"
X : =X +
COMEGAC T*INC*S)*RCINC*S)+OMEGACT* CINC+1)*S>

*RC CINC+1) *S ))* S/2;
Y:=Y + C OMEGAC T* INC*S)*1JC INC*S)*RC INC*S)+

OMEGAC T* CINC+1)*S)*UC CINC+1)*S>
*RC CINC+1)*S))*S/2;

"END";
"END";

XI:=ALPHA0*THETA*CX-Y) + ALPHA 1*Y;
Y l := TH ETA* C X-Y) + Y;
"IF" Y1<0.000001 "THEN" PHI:=ALPHA0 
"ELSE" P H I := X 1/ Y 1;
"END" OF PHI;
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"REAL” "PROCEDURE" CR(T*K);
"VALUE" T>K;
"REAL" T;
"INTEGER" K;

"COMMENT" CALCULATES THE IRT DISTRIBUTION CONDITIONAL
ON REINFORCEMENT (K=l), OR NON-REINFORCEMENT <K=0) 
OF THE PRECEEDING RESPONSE;

"BEGIN”
"REAL" CONDPHI » FPHI, FPHI1, FPHI2;
"INTEGER" I,L;
FPHI:=FPHI1:=FPHI2:=0.0;
CONDPHI: = 0.05 
L:=ENTIER(T/S) ;

"IF" K = 1 "THEN”
"BEGIN"
"FOR" I : = 0 "STEP” 1 "UNTIL” L - 1 "DO"
CONDPHI:=CONDPHI + PSI(I*S)*

(OUTPHICI3+(ALPHA1-OUTPHI Cl3)
* THETA1*ROMEGAC I 3)*S/2 

+ PSI((1+1>*S>*
(OUTPHIC1+13+CALPHA1-OUTPHICI + 1 3)

* THETAl*ROMEGAC1+1])*S/2;

FPH I 1: = OUTPHICL]+(ALPHA 1-OUTPHICL 3)*THETA1*ROMEGACL3;
FPHI2:=OUTPHIC L + 13 + CALPHA1-OUTPHICL+13)*THETAl*ROMEGACL+l3; 
"END";

"IF" K= 0 "THEN"
"BEGIN"
"FOR" I:=0 "STEP" 1 "UNTIL" L-l "DO"
CONDPHI:=CONDPHI+PSI(I * S) *

(OUTPHI CI 3 + ( ALPHA0-OLJTPHI C I 3 ) *
THETA0*ROMEGAC13)*S/2 
+ PSI((1+1>*S>*
(OUTPHI C I + n  + (ALPHA0-OUTPHI CI + 1 3 
)*THETA0*ROMEGACI + 13 >*S/2;

FPHI1;=OUTPHICL3 + (ALPHA0-OUTPHIC L 3)* THETA0+ROMEGACL 3 ;
FPHI2 s =OUTPHICL+13+(ALPHA0-OUTPHICL+13>*THETA0*ROMEGACL+13; 
"END";

FPHI:ssFPHI 1+CFPHI2-FPHI 1>*< T/S-L);
FPHIs=FPHI*PSI<T)J 
CQNDPHHI s = CONDPHI + FPHI*CT/S-L>#-$i 

GRt»FPHI*EXP( - CONDPHI) l 
"END" OF CRi
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"READ” ALPHA0* ALPHA 1* THETA0* THETA1;
THETA:=THETA0/THETA1;
"PRINT" " L " *  SAMELINE* AL I GNEDC 1 * 3 ) * ' RESPONSE

STRENGTH LIMITS:
' ALPHA0 '* ALPHA0* " S 2 "  * ' ALPHAl '* ALPHA1*
" L " *  SAM ELINE* AL I GNEDC 1*3)* ' LEARNING
PARAMETERS: '*

' THETA0 '* THETA0* " S 2 "  * ' THETA1 '* TH E T A 1 * " S 2 "  * 
' THETA '* THETA*
" L 3 " ;

"FOR" I :=0 "STEP" 1 "UNTIL" UL/S "DO"
OUTPHICI3:=ROMEGACI I: = 0* 05

IRTDENSITYC ALPHA0* ALPHAl* THETA)*

"BEGIN"
"REAL" DIVISOR;
"INTEGER" J;
DIVISOR:=0.0;
RFC 13: = RFC03: = 0.0;
"FOR" J :=0 "STEP" 1 "UNTIL" ENTIERC UL/S) "DO"

"BEGIN"
DIVISOR:=DIVISOR+OUTSRCJ3*S;
RFC 13: = R F C 13+OUTSRCJ3*UCJ*S)*S; '
OUTPHICJ3:=PHICJ*S);
"BEGIN" '
"REAL" P*Q;
"INTEGER" K*L*M;
.SETLIMITSCP* Q* J*S);
"IF" C J - P / S + 1 X 0  "THEN" L : = 1 "ELSE" L :=CJ-P/S+1)*
"IF" CJ+Q/S-1)>CUL/S) "THEN" M:=UL/S "ELSE" M :=CJ+Q/S-1); 
"FOR" K :=L "STEP" 1 "UNTIL" M "D0"
ROMEGACJ3:=ROMEGACJ3+

OMEGACJ*S*K*S):*OUTSRCK3*S*
ROMEGACJ3:=ROMEGACJ3

+ OMEGACJ*S* CL - 1)*S)*OUTSRCL-l3*S/2 
+ OMEGAC J*S* CM+1)*S)*OUTSRCM+13*S/2;

"END";
"END";

RFC 03:= 1 - RFC 13;

"PRINT" * * L A * ;
"PRINT" SAMELINE* 'DIVISOR** DIVISOR* " L 2 "  ;
"PRINT" SAMELINE* * MEAN PROBABILITY OF REINFORCEMENT: ** 

ALIGNEDC 1*3)* RFC 1 3 * ' #L2% * S
"END";
"PRINT" "L"**
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"PRINT" ' T CRC T* 1 ) RC T) CRCT*0>'* "L2 *  * ;
"FOR" E: = 0.000 "STEP" 0.5 "UNTIL" UL "DO"
"BEGIN"
"PRINT" SAMELINE.* ALI GNEDC 3* 3>* E* ' 'S3*' * CRCE*1>* "S3*** 

RCE)* " S3".* CRCE*0>* "L2* ' ; (
"IF" RC E)<0.0005 "AND" E>UL/2 "THEN"

"BEGIN"
"PRINT" " L *** 'STOP* * " L *  * ;
"GOTO" STOP*
"END";

"END";

"END"; '

"END";

STOP:
"PRINT" " L  10*' ; 
"END" OF PROGRAMME;

AN EXAMPLE OF THE DATA LAYOUT FOLLOWS V

SCHEDULE IS
' RANDOM INTERVAL SCHEDULE* GAMMA IS 1/30 '

TIME RANGE 
10 SECONDS

INCREMENT
0 . 0 1

RESPONSE STRENGTH LIMITS 
0 . 0  1 . 0

LEARNING PARAMETERS 
0.5 0.5

END OF DATA LAYOUT

' 'i '  ̂ : '
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