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ABSTRACT

Collisions between various charged particles and excited hydrcgenic 
atoms and ions are described using the binary-oncounter (classical- 
impulse) approximation and the exact-classical orbit-integration 
technique. In particular,, emphasis is made on strong collisions such 
as rearrangement and ionization processes, rather than excitations.
The classical methods have been justified rigorously by Abrines and 
Percival (1966b) for the cases in which all the initial and final 
quantum numbers of the target atom are large and all changes in the 
initial quantum numbers are also much greater than unity. In these 
regions quantal methods are particularly complicated and unpractical, 
whereas the classical approach can often be applied without having to 
make additional dynamical approximations. This approach is complementary 
to the standard quanta1 techniques, which are most useful for low initial 
and final quantum numbers, and the correspondence-principle methods of 
Percival and Richards (l970a,b, 1971a,b) which work best when the 
initial quantum numbers are large and all changes are small.

Because the classical techniques, which have been used to calculate 
total cross sections, enable simple scaling lav/s to be applied, these 
cross sections can also be compared with quantal and experimental values 
for states with low initial quantum numbers including the ground state. 
Although there is no solid theoretical justification for applying 
classical theories in this region, a considerable amount of empirical
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evidence is presented, which suggests that accurate classical theories 
can he superior to quantal approximations for intermediate energies of 
the incident particle, provided that the changes in quantum number are 
large. Specific failures at low or high energies must, however, he 
expected since purely-quantal effects such as harrier penetration and 
interference are often dominant here.

Many of the cross sections are of importance in the study of 
astrophysical and laboratory plasmas. The exact-classical results 
can also he used to test the validity of an existing dynamical 
approximation, or possibly to suggest a new simple model.
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CHAPTER I

A GENERAL DISCUSSION OF CLASSICAL METHODS IN ATOMIC COLLISION THEORY 

Introduction

The central theme of this thesis is the description of simple 
atomic collision phenomena in terms of classical mechanics rather than 
quantum mechanics* The latter, though superior theoretically, is so 
complicated to apply exactly in practice that serious dynamical approx
imations have to he made, whereas in the classical treatment, once the 
approximation of replacing quantum mechanics hy classical mechanics has 
heen made, it is often possible to obtain a solution without the need 
to invoke further dynamical approximations.

The main arguments in favour of the classical approach are outlined 
in section (l*2) and a brief survey of the historical development of 
this approach is presented in section (l*3)*.

The early sections of chapter 2 contain the basic theory of the 
classical-impulse or binary-encounter theory. The later sections deal 
with the results for ionization, electron loss and excitation of 
hydrogenic atoms and ions by incident charged particles, and the comparison 
with the exact-classical results for singly-charged particles incident 
upon neutral hydrogen atoms. Estimates of the electron exchange and 
interference contributions to ionization of hydrogenic atoms and ions 
by electron impact are made using the symmetric binary-encounter model 
based on the Mott scattering formula (see for example Burgess 19&3,
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1964-j Vriens 1966 b).
The first two sections of chapter 3 are devoted to the exact- 

classical theory necessary to treat collisions involving more than two 
particles. In the later sections the exact-classical theory of Abrines, 
Percival and Valentine for three particles is applied to collisions of 
protons with hydrogen and helium target atoms. The ranges of incident 
proton velocities selected correspond to regions in which the binary- 
encounter theory and the classical adiabatic theory of Bates and Reid 
(196915) are not necessarily valid. Where relevant these simplified 
classical theories are compared with the exact-classical results.

Chapter 4 contains miscellaneous points which arise from the 
theory and results of chapters 2 and 3.

Throughout this work the classical results are contrasted with 
experimental and quantal results. Semi-classical WKB theories and 
extensions of the classical approach to include quantal effects using 
classical path expansions are not reviewed or used in this work. The 
latter theory has been discussed by Percival (l97l)> who also displays 
several of the results obtained in this thesis. Relativistic effects 
are ignored throughout.



1.2 Justifications for the Classical Approach

As pointed out in section (1.1) the first justification for using 
the classical approach is a purely-practical reason arising, from the 
present impossibility of solving quantal treatments without making 
serious dynamical simplifications.

A second justification arises from correspondence principle arguments. 
Abrines and Percival (1966b) have shown that purely-classical methods are 
valid when all the quantum numbers associated in the problem are large and 
when the changes in all quantum numbers resulting from the collision are 
also large. • Percival and Richards (l970a,b) have shown that classical 
mechanics can also be used when all quantum numbers are large and when the 
changes in all quantum numbers are sma^l, but in this region Fourier 
components of the motion must be used rather than dynamical variables 
themselves. The region, in which all quantum numbers are large, some 
changes are small and others are large, has not yet been treated 
consistently. Quantal methods work best when all quantum numbers and 
all changes in quantum numbers are small. A classical treatment of 
the region in which all quantum numbers are initially small, but some or al 
changes are large, cannot be justified, but empirical evidence particularly 
from the exact-classical results suggests that even here exact-classical 
results are often surprisingly accurate, especially for intermediate 
incident energies for which the incident and target velocities are 
comparable.

One possible reason for the good agreement in the last region of 
the previous paragraph is that correspondence identities hold for just
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two distinguishable charged particles. These and other related 
identities have been the subject of a thesis by Horcliffe (1970) and 
a review by Percival (19^9)* These identities consist of the Rutherford 
scattering identity which states that the quantal and classical centre- 
of-mass angular differential cross sections for distinguishable charged 
particles are identical, the Bohr-Sommerfeld identity, which states 
that the quantal discrete bound-state energy spectrum of hydrogenic 
atoms and ions is given exactly by the Bohr-Sommerfeld model, and the 
Pock identity, which states that quantal momentum distribution for the 
ground state or any uniformly-populated excited level of a hydrogenic 
atom or ion is identical to the classical momentum distribution derived 
from the classical microcanonical statistical distribution of the same 
binding energy. Thus, although no correspondence identities are known 
for more than two charged particles, the two-particle identities may be 
a factor contributing to the good agreement of the exact-classical 
approach.

A final justification of the exact-classical method adopted here is 
that powerful scaling laws can be used to obtain classical cross sections 
corresponding to different uniformly-populated levels of atomic hydrogen 
from the results at one level, which may be taken conveniently as the 
ground state. For sufficiently high levels the classical approach is 
valid.

1.3 Historical Development
The historical development of the classical approach has been
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outlined by several authors. Burgess and Percival (1968) and Valentine 
(1968) give genera^ reviews with greater emphasis on exact-classical 
methods. Vriens (19^9) stresses the connection Between binary-encounter 
and first-Born calculations, particularly for differential cross sections 
which provide a more stringent test of a theory than the total cross 
sections alone. Recent advances in heavy particle collisions have been 
reviewed by Bates and Kingston (l970)» Classical, path-integral and 
correspondence-principle theories have been discussed by Percival (l97l)* 
A section on heavy-particle classical scattering has also been included 
by McDowell and Coleman (1970)*

The simplest binary-encounter treatment of excitation and ionization 
of atoms by fast charged particles was first employed by Thomson (1912). 
He assumed that the orbital speed of the electron(s) in the target atom 
could be neglected for collisions with fast charged particles with 
incident energy E, . The Thomson (and all other realistic purely- 
classical) ionization and excitation cross sections exhibit a E/ high 
energy law, in disagreement with experimental and later quantal values^ 
which generally obey a E . Lo3e i high energy law, apart from optically 
forbidden excitations. This specific failure of the classical approach 
was one of the main reasons for the decline in its popularity after the 
introduction of the quantum theory and probably accounted for the fact 
that improvements over the crude Thomson model made by Williams (1927) 
and Thomas (1927a, b) were overlooked until very recently. Indeed, 
their model, in which allowance is made for the motion of the atomic 
electron, forms a basis for the presently-accepted binary-encounter

theory.
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After the development of the quantum theory the first important 

revival of the classical approach was made hy Williams (1945)* 
particular he compared and contrasted the classical and quantal first- 
Born theories of the scattering by simple central potentials and showed 
that each approach was valid in separate extremes and hence that the 
theories were complementary. For the special case of a coulomb 
potential of the form he showed that the classical treatment
was valid when the dimensionless parameter S - i.pLj.eVW, , where V, 
is the incident velocity, k * 27ffc is Planck's constant and e is the 
charge on a proton, satisfied 3 » I and that in contrast the quantal 
first-Bom approximation was valid when S ^ l  (the parameter £ occurs 
explicitly in the exact quantal treatment of the scattering of two 
identical’particles, outlined in chapter 2 of this thesis).

The revival of classical methods was greatly stimulated by the 'work 
of Gryzinski (1959)- However the binary-encounter theory was developed 
more carefully by Thomas (1927a), Ochkur and Petrunkin (1963)* Stabler 
(1964), Kingston (1966) and McDowell (1966) using the unsymmetric model 
for incident electrons, by Thomas (1927a), McDowell (1966) and Vriens 
(1967) for incident protons, by Gerjuoy (1966) for arbitrary masses, 
and by Burgess (1963, 19^4) and Vriens (1966a, b) for the symmetric 
treatment of incident electrons.

In a parallel development Abrines and Percival (1966 b), Abrines, 
Percival and Valentine (l?66) and Percival and Valentine (1967) obtained 
exact-classical results for ionization and charge-changing collisions 
in which singly-charged incident particles were in collision with neutral
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target hydrogen atoms. The theory described in Ahrines and Percival
(1966a) is sb'uRar to related classical work in the field of
chemical kinetics (see Burgess and Percival (1968) and the references 
therein). The exact-classical results for ionization demonstrated 
that the agreement with experiment was improved even for .ground-state 
targets when the binary-encounter approximation was relaxed. For 
incident protons the results for charge transfer were also in remarkably 
good agreement with available experimental data over the energy ranges 
considered. The scaling laws and generalised correspondence principle 
derived in Abrines and Percival (1966I?) implied that the related exact- 
classical results for ionization and charge-changing collisions obtained 
by scaling the results for the ground state would be accurate for target 
atoms in sufficiently highly-excited initial levels.

In another approach Percival and Richards (l97Qa,b, 1971a,b) have 
developed correspondence principles which resolve the failure of purely- 
classical methods at high energies, in the case of weak excitations of 
highly-excited hydrogenic atoms and ions by fast charged particles. By 
using Fourier components of classical variables, rather than the values

(SpmS)
of the variables directly, they/obtain excitation cross sections which 
exhibit the correct high energy behaviour, which agree here to within a 
few per cent with the more complicated calculations of the first-Bom 

theory. " “ . - i



CHAPTER 2 

THE BINARY-ENCOUNTER APPROXIMATION

2.1 general Remarks on the Geometry of an Individual Classical
Binary Encounter.

(a) A Standard Derivation Given the Initial Velocities of the
Particles.

Consider a system of two mutually-interacting particles in the 
absence of any external force field. Suppose that the motion of the 
particles can be adequately described by classical mechanics. Then 
the interaction experienced by one particle is equal and opposite to 
that experienced by the second particle, but is not necessarily 
directed along the line joining them. Suppose that one particle is 
called the incident particle and is labelled by 1 and that
the other particle is termed the target particle and is labelled by 

2  • Lst particle 1 of ' mass nn, have an initial
velocity \ru and particle 2  of mass Ttl1 have an 
initial velocity Ucl in 80me Calilean frame of reference L  , 
termed the laboratory or observation framê  and suppose that the 
particles are sufficiently far apart initially for their mutual 
interactions to be negligible (the frame dependence of any dynamical 
variable is stressed here by the use of a subscripted Roman capital 
letter to denote the particular Galilean frame of reference in which 

the variable is measured). Now let the particles approach one another,
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collide and then separate so that their interactions can again he 
neglected. Let the final velocities in the frame L  he 

and V,^ respectively.
Such a collision or scattering event is here termed an individual 

classical binary encounter. Many of the properties of such a collision 
can he determined for general forms of particle-particle interaction. 
These properties arise from hasic conservation laws.

Firstly; the law of conservation of total linear momentum holds 
throughout the encounter and so, as a special case,

m,vrL| + rrvvLj. = m,vt' + . (2.1.1)
In velocity space the encounter is therefore completely described 

by the moment urn-transfer vector which may he defined as

% - = m,\ru -m .v ; '  _ (.2.1.2)

The vector is particularly suitable because it is a Qalilean
frame invariant. Further, remains well-defined and finite
in the important limiting cases in which either Vr», , or ,
but not both, tend to infinity. However, the collision may often be 
described in terms of other dynamical variables which may be frame 
dependent. The most important alternatives are various scattering 
angles and energy transfers. These variables are particularly 
suitable for measurement in an experiment.

Scattering angles can be defined by any distinct pair of the
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A  A A  / y\ /
velocity directions \ f , V LX , yi, and VL% . The

polar scattering angles may be written 0|.U » ®LIT

where
-I0LIJ = COS ( yLT. VLi) for T = 3-1 and 1*1,2- ,

9 lM - cos'c y£r. ULI> for I and T  = 1,2. ,
and

0^13-= cos“'C 0 ^ . Vli) ^or J -  3-1 and I- 1*2. .
Obviously these polar angles do not depend upon the order of the 
subscripts X and T  . However, for each polar scattering
angle there is an associated azimuthal angle, which will depend upon 
which of the two unit vectors, used to define the polar angle, is 
selected as the reference 2  axis. The azimuthal scattering angles 
corresponding to 0 |_ij- j 0 Lu  and may be written ^uo-

an<* respectively. The polar angles are always
defined in the range (O.IT) and so are uniquely determined by the
corresponding velocity directions. The azimuthal angles must be 
defined over a complete period 2.1Y, so the corresponding range may 

or (o,otf) , say. Further, the azimuthal angles can 
only be defined with respect to additional arbitrary axes.

The appropriate polar scattering angles become indeterminate if 
one or more of the initial or final velocities is zero. An azimuthal 
scattering angle is indeterminate when its corresponding polar angle 
is O or Tt ; that is, when the appropriate velocity directions 
are parallel or anti-parallel.
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The energy transfers ^ E u  and. a e l,. are here defined by

A P  r JL (Y| _ _L m  TT^ ■“ XT, - <3 <4* J— o’* (2.1.3)^^-LX 2. "'z^LX 2 2.rf)2 J
and

A E L1=  i M iv u " i ^ V w '  = Y u . 3 , (2-M)

In many applications of the binary-encounter theory the 
particle-particle interactions are conservative. This implies that 
the law of conservation of energy holds throughout the collision. In 
particular, if this law is applied initially and finally, the potential 
energy terms may be neglected and so

£rnxv L* =  * £ n v u &  . (2.1-5)

Prom this it follows that

AEut= A E tx= A E U » (2.1.6)
say. So, if energy is conserved in the collision, the kinetic energy 
gained by the target particle is equal to the kinetic energy lost by 
the incident particle.

The law of conservation of energy places a heavy restriction upon 
the permitted values of the momentum transfer vector , namely

( V u - v u ) . *  =  i  . (2a-7)
which follows from equations (2.1.3), (2.1.4) and (2.1.6). This
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restriction can "be explained simply, if the laboratory velocities U ’L,
and are combined to form the centro**of~mass velocity
and a relative velocity 17^ , where

( W(+mx) vL<; = m,yu + m̂ vLi , (2.1.8)
and it is convenient to choose

¥ *  ” ¥ u  }£l.x # (2*1*9)

By.equation (2*1.1) with the usual notation for corresponding 
final velocities

” ¥-(# 9 (2.1.10)
and, by the law of conservation of linear momentum, the velocity of
the centre of mass is conserved throughout the collision. The 
relative velocity V R is a frame invariant. Henceforth the 
subscript R will be used to denote a quantity defined in a frame 
moving with a particle even though the variable may be a Qalilean frame 
invariant.

Equations (2.1.8) and (2*1*9) can b® solved directly for V L, 
and V L1_ in terms of AJu(j and V R • The resulting
expressions are

Yu = Yus + ̂  Y« = VLc + v-,, . (2.1.11)0 v m 4)
and

Vlx = Vui -  Y r  = Y-S +  -urqx (2.1.12)
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where the velocities and are proportional to v R
and are the initial velocities of the colliding particles as measured 
in the centre-of-mass frame Gj • Let the respective final

velocities he \T^ , V</, and y/qz • Then

Y u = + V*i , (2-1.13)
and

If these expressions for V Li * \TLi > J/lj and V l x  
are substituted into equation (2.1.5) and the result (2.1.10) is used, 
the following equality is obtained:

V * = V * *  - (2.1.15)

Hence the law of conservation of energy implies that the relative 
speed is unaltered by the collision. Further,

\T ,X -  \ r ' x (2.1.16)v S i - v <n ,
and

ViX = Vet . (2.1.17)

Thus the speed of each particle in the centre-of-mass frame is 
unaltered by the encounter.

The restriction upon arising from equation (2.I.7) can be
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written

V -  C2- %) = O  , (2.1.18)

where

"Wr = >■»>. TT1,. /( m.+ Wi) (2.1.19)

is the reduced, mass of particles 1 and 2.
Equation (2.1*18) is the equation of the surface of a sphere 

in momentum-transfer space. The sphere passes through the origin 
C^= O and through the diametrically opposite point •= 2 •

The momentum transfer may also he expressed in terms of
the velocity transfers ULr( and W 2 where

m.-ur, =-«t (2.1.20)
and

so that
= % (2.1.21)

and

Y u  =  Y u . +  Ufi , (2.1.22)

Yl2 = Y lt. +  V z  . (2.1.23)

In figure (2.1.1) the velocity vectors \TU  , ]SL% , ,
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and Tjj^ are represented

by , or, , o q  , ^  , 0 , , , Pi?'
and respectively, where 0  is the origin (that is, the
rest point of the velocity space). The final velocities ,

tfcx * Y u  and xrCx are represented by Q P/ 9 Cj RL/ > 

OP/ and OPzy •
-  /The laboratory angle i*3 also displayed. By equations

(2.1.10) and (2.1.16) p/ must lie on a unique sphere J\ 

centred at Q  and passing through P, . Equations (2.1.11), 
(2.1.12), (2.1.13) and (2.1.14) imply that P / must lie diametrically 
opposite Pt on the concentric sphere ̂  passing through Pz .
As a consequence it is impossible for the velocities V UJ and V L-̂
to be exactly exchanged by the collision unless YTi,- m z .

The collision is commonly parametrized by the standard spherical- 

polar angles = 0q > say> ^  ^qi|* 2fr* " ^  9
say, with respect to (J P, - as *2: axis, when the collision is
viewed in the centre-of-mass frame. These angles may be used to 
determine or any other scattering variable in any other frame of
reference L  . Thus, given <  . <K it is easy to show
that

1 - 2  -m„xr„ sin f (2.1.24)
and

A E L -  ^ ^ ( c o s t ^ C o S S j /s in X ^ ’-  Cos X LX) (2.1.25)

+  J -  Q 1
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by equation (2.1.3), or equivalently^
AE(_ = ( cos ie ^  cos s inXu + sin-iefc'cosX,,)

_  J_ Qi (2.1.26)
by equation (2.1.4), where the angles X^u| and are given by

cos XLI = Y u  . Yr 9 (2.1.27)
and

COS X l x  — 1/, {f (2.1.28)~L2* - R  • ̂
Conversely it is possible to express 0^ and in terms of
and A EU • In fact

6 < = 2. sin' { a  /( 2 % v r)} , (2.1.29)

and
^  = cos- ' { (  AEl + V U 1  s in ie ' cos X La) /  (2a<3Q)

( c°5 X0q s i n X L l ) }  9
or, equivalently,

^  = Cos',{(AEu+ 2̂ iax - v-tlq, s.niê  cosXu )/ (2a>3l)
c o s i e ^  t i n % LI)} .

Because the range of 0q is only is uniquely
prescribed by equation (2.1.29). However, since the range of (j>̂

is ( o ,1* )  , say, there are two possible values of (f>^ for each
value of and Exceptional cases occur when A e l  is
independent of the azimuthal angle . This is only true if U^,
and Vi_2, are parallel or anti-parallel, but it does include all
collisions both in the centre-of-mass frame Q  (since A E , is
always zero) and in the simplest laboratory frame S  defined by

ir — o , for by equation (2.1.3) A P  - ~  is always _S2. — 2 m 2
zero.
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It should he noted that these inverse transformations are not defined 
for arbitrary values of the momentum-transfer magnitude and
the energy transfer , but only for

O 4 <1 £ 2rT7*vR f

and

-ULi<̂ cosiê  sin, Xtl ̂  sirtiê  co sX LZ

£  ‘V ’li.c^coS S,/lTt/i y

or, equivalently,

Equations (2.1.1) to (2.1.31) have been derived using olassioal 
mechanics alone* However, since only relations between velocities, 
momenta and kinetic energies, before and after the collision, have been 
employed, the uncertainty principle has not been violated, and so these 
formulae remain valid in a quantal treatment of an individual collision 
of two distinguishable particles* In particular, the variables Cĵ 
and AE:^ are subject to the same restrictions as in the classical 
theory treated here. If the particles are identical, then they may be 
treated firstly as if they were distinguishable and then all variables 
can be symmetrised by interchanging the velocities and .



(b) An Alternative Approach Given the Initial and Final Velocities 
of the Incident Particle.

In the preceding section the range of allowed values of the 
momentum-transfer vector was determined for elastic collisions from 
prescribed values of Tr\, > 7Y\z , V LJ and . It is
also possible to find the restriction on the values of the initial 
velocity V LX of the target particle, given the values of TO, ,

, V^, and y~L' (and hence ). This resriction can
be used to infer properties of an unknown initial velocity distribution 
of a thin gas of target particles. Alternatively, if the initial 
velocity distribution of the target particle(s) is known then any 
function 5 of Yu  and can be averaged over all values
of consistent with VTLl and • This is especially
important if J is a quantum-mechanical scattering amplitude when 
the average will include interference effects.

The restriction upon V Ll can be obtained immediately, once the 
equations (2.1.1) to (2.1.31) have been presented. Since v*L| and 
are known, then by equation (2.1.4) the energy transfer A E ^  also 
prescribed. However, for elastic collisions A E UI - A. E A Ei (_ • 
Hence by equation (2.1.3)

V*La# fL ~  A E l  ~ ~ c.°nstdn‘t < (2.1.32)
This equation is the required restriction on \TLl_ » and is just



the equation in velocity space of a plane \rLl , perpendicular
to the direction and with its shortest distance (that is, speed)
from the origin given by

Vuxmin -  I C AEL- 2- j j j ^  ) /< ^  |  ̂ (2.1.33)

These relations have been used by Vriens and Bonsen (1968) and by 
Banks, Vriens and Bonsen (19^9) in their comparisons between binary- 
encounter and first-Bom double-differential eross sections for the ejection 
of electrons from various levels of atomic hydrogen by fast charged 

particles.



27

2.2 The Dynamics of Two Particles in a General Observation Frame L

In this section the classical and quantum-mechanical methods of 
solution of the two-particle problem are outlined. In both theories 
it is convenient to change the representation so thaî  instead of solving 
for the motion of the individual particles in frame L  , the free 
motion of the centre of mass and the relative motion can be solved 
inde pendent1y•
(a) Classical Dynamics.

In section (2.1a) the conservation laws were used to determine the 
domain of the scattering variables of interest, for example ^
However it was not possible to say which value of was obtained
in a given collision, since in a classical treatment more information 
is required. If the initial positions ru and of the two
particles at the initial time 
of motions

tl-’ = V 'dt"

are also known, then Hewton's equations

Tnrii d V Lx _ F //

dt"
17

for >7-3 -T and I - 1̂ 7-
(2.2.1)

// //where rLI and V LI are the position and velocity of particle
at a general time "t and is the force on particle I
exerted by particle CT > together with the boundary conditions!

r /f = r  Ilz lux
Ylx' -  Y ul

- ■for 1 = 1,7-. It t = t 9 (2.2.2)
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have a unique solution^which may he determined (possibly numerically) 
at any time ■fc// • The scattering parameters of the encounter may
be obtained from the given initial positions and velocities fL1 ,

, V L1 9 V LX and from the final coordinates , rL̂ _ ,
9 which are the solutions of equations (2.2.1) for

sufficiently large t . Equations (2.2.1) constitute twelve coupled
i / /ordinary first-order differential equations with *0 as the independent 

variable. These twelve equations can be transformed into the equations 
of motion of the centre of mass and the independent equations of
motion of the frame-invariant relative position and velocity vectors

- Jfu - and ~ Y l.1 ~ x * The separation
can be achieved because the force ±xxr = *” ' 7 1  only depends upon 
the relative position and velocity and not upon the position and 
velocity of the centre of mass, since there are no external forces present. 

The transformed equations for the motion of the centre of mass are:

=  <
d t"
. h
dJT«s -  o
<it" ~ ~ J

where the position of the centre of mass satisfies

(2.2.3)

+ ■+rYy > * .  , (2-2.4)
with the boundary conditions4 ' -r« ) .t e - t  , ,Y4  = j * (2-2-5)
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These equations have the solutions

rU' = rue, + (t"-t) vL<v
yi* = v 4

The equations of relative motion are:

-for a lt  t  .

where

dt"
m *  d  = f k

it"

Fa' =

//

f  ,a c r;, y fc*)

(2.2.6)

(2.2.7)

(2.2.8)
together with the boundary conditions

at t" = t
(2.2.9)

These last three equations are equivalent to the equations of
motion of a fictitious particle of mass W  at the position r = 1T̂

* -v r-'V * //\ j-r & hand moving with velocity V  •= in a fixed force field r j — r
centred at the origin. Further the relative momentum transfer

=: Tf)a\T> - Yr\aijJ I® sa®e as the original momentum transfer QK  •pC K  K  Jĵ

2.2(b) The Quantal Solution of Two Particles Moving in a General 
Observation Frame L.

In a quantal treatment it is not possible to know simultaneously 
the exact positions and velocities of the particles at any time "t!* 

because of the uncertainty principle. However, the Schrodinger equation 
may also be transformed so that the centre-of-mass motion and the relative
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motion may be solved independently. The solution of the centre-of-mass
motion is trivial and the solution of the relative motion again leads 
naturally to the reduced-mass problem. A more complete discussion is 

given in Mott and Massey (1965* PP* 286 - 9)*

’V"?.' v;;“.

cr-lvlv; it-
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2*3 Scattering of a Particle by a Fixed Centre of Force.

(a) Classical Theory

F ty * O A* v f— ^ ̂( r ?\ r  ) -  r f r  ; .

Then it is easy to show that the angular momentum \z ~ of* the
particle about the centre of force is constant for any orbit. It is
convenient to choose a cartesian coordinate system located with origin 
at the centre of force and oriented so that w - t *  i t 1 1  and

. . Athe initial velocity V  - |V'J tj . The orbit then lies wholly in the
- A  A «( XjU) plane and^if the interaction were negligible3 the trajectory

" Aof the particle would be a straight line parallel to the y axis and
cutting the X  axis in the point b = (b,o,o) , where

m b  v  = i- , (2-3.1)
with V  - I VI and -L- I'Ll The vector b is called the
impact-parameter vector and would be the shortest position vector of the 
particle from the centre of force if the force could be neglected. Obviously

V\fe = o  . (2-3.2)
If the interaction is fully included each orbit is still completely 
characterised by b and V  . Hence, any scattering parameter, for 
example , may be determined uniquely from b and V  . Because
the orbit is planar, lies in the plane defined by b and XX .
In an alternative approach V  and yr/ and hence may be prescribed 
instead of b and V  . In such cases the orbit is uniquely determined



only if there is a -unique b for each value of q  . For many forms 
of central force3 different values of b can lead to the same value of 
and so there may he more than one orhit leading from the given initial 
velocity \j to the given final velocity \fl . This alternative 
approach is used in semi-classical path-integral theories and can lead 
to simple interference phenomena (see for example Percival 1971)•

(b) Quantal Theory
The solution of this problem is standard and may be found in many 

general works on atomic scattering theory (see for example Mott and 
Massey 19^5> chapters II-VIl). The most important points for contrast 
are that the outcome of an individual collision cannot be predicted and 
that the impact parameter can no longer be accurately defined.

(c) The Classical Angular Differential Cross Section djT   ^

Consider a uniform beam of incident particles all of which are
scattered independently by the centre of force. The angular differential 

£
cross section dp. djl may be defined as the flux of particles scattered 

djfl
into an element of solid angle d a  divided by the flux of particles per 
unit area in the incident beam. The cartesian frame of reference 
defined in section (2.3a) is no longer suitable because different particles 
in the incident beam will have different impact-parameter vectors b 
Choose a new frame so that y /;= £  and with origin at

A  / A  /the centre of force. Let the X  and % axes be fixed in space.
In this frame the incident velocity has coordinates \jr— (o,\T,o) 

as before, but the coordinates of the impact-parameter vector are
b = C b sin ̂ , 0 , b cos where is the angle between b and
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/\/the 2. axis. Classically, all particles in the element of area
b db in the incident beam are scattered into the solid-ahgle element

dil = dfcos8/)(̂ ^/ where and are the polar and azimuthal
scattering angles. Hence,

doT |b  calb

Oil 'clCeos9 0  d-4 • (2-3.3)
For central forces dkrC is independent of and d — d  A'

dSL
so that

- 2.tr  c h c __ 2-TTb I d_b 1
dCcoseO diI I d © O '  . (2.3.4)

How, is uniquely determined by b , but there may be more
than one value of b which leads to the same value of 0 7 . In
this case

^ £ C - T l r r b  I fik I
dfeosBO " aUbriKheJ dCCoseO I *

0V ( b >  (2.3-5)
For Rutherford scattering f  ( )  s  «* ^

“ “P a "  *
It is easy to prove that

b Cot i 0/ * (2.3.6)
(see, for example, Corben and Stehle 1966, p. 102). Since b

_/is uniquely determined by ©  . Hence
dcTc__ ^  I
dSL s i n ^ 0 /

This result is known as the Rutherford scattering law and is
identical for both attractive and repulsive fields.

(2.3.7 )
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j
(d). The Quantal Angular Differential Cross Section r-  — -------------------------   dJi

The quantal angular^-differential cross section is defined in
c

exactly the same way as 4$ . However it is not possible to equate
the number of particles in the element of area bdbdj^ of the incident 
beam with the number of particles scattered into an element of solid 
angle dJl . Nevertheless it is possible to obtain an angular 
differential cross section which in general will be different to the 
corresponding classical result. One of the strange properties of the 
Coulomb potential is that the quantum-mechanical angular-differential 
cross section is identical to the classical Rutherford formula.
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2*4 Angular-Differential Cross Sections in the Centre-of-Mass Frame Cj

(a) Classical Scattering
The scattering in the centre-of-mass frame-may be directly related

to the scattering in the reduced-mass system since the polar scattering
angles are the same in both problems. Hence, for distinguishable
particles the centre-of-mass angular-differential cross section d&q

dflc,
is given by

b<r£ _ ^<rc
A a Q “ fsi * (2-4a)

where djlq= d (cos ) d and 2krc is the corresponding classical
angular-differential cross section for the reduced-mass system. If,
however, the particles are identical, the classical angular-differential 
cross section b j g  must be symmetrised to allow for contributions 

ddlg
from both the particles. The correction is trivial because the centre- 
of-mass polar scattering angles 0<./|( = 0 / and A h  of the two particles 
are supplementary. So,

£̂■“ ( 0 , )  =  ^ ‘ (0 0  + i°c(Xr-Q') ,
dJXc, bSL in (2.4.2)

if the interaction is central. The first term on the right-hand side
of equation (2*4*2) is known as the direct scattering term and may be 

\ CDwritten "Jfc, • The latter is known as the exchange scattering
eg

term and may be written <£ST<« . If in an individual encounter the
orbits are specified by the positions and velocities of both particles 
then there is no uncertainty over which particle is scattered into a
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solid angle Jji, . However,, the uncertainty cannot he avoided if 
the orhits are prescribed by the initial and final velocities,

(b) Quantal Scattering
Analogously, for distinguishable particles the quantal centre-of-mass

angular-differential cross section is given by

q dxiq 4/1 (2.4*3)
where is the corresponding quantal angular-differential
cross section for the reduced-mass problem. Again, equation (2.4*3) must
be modified if the particles are identical and the symmetrised quantal

qs
angular-differential cross section may be defined by

y ?  _  + 2 c o SfF(e/; l } ^ ' } ^ V - e /3 ^
aa* a n . 1 t o  1 J L * 1 (2.4.4)

where, as in the classical case, the direct scattering term *s"’= & V ;
. t bSLcf &Q-

and the exchange scattering term = <£? . The third
« a ilterm is called the interference term and is written — * . Itdil^

is present because it is not possible to say which particle is scattered
into the solid angle dil, and has no analogue in a purely-classical
approaoh. The interference term oontains a factor 2. 57? '

, OIB L 9XLti J
which may be written and which is often useful as a
bound on the magnitude of the interference term. The function F (9*)

is a phase factor which depends not only upon the relative phase of
the direot and exohange scattering amplitudes but also upon the type



of particle involved. The interference tent! may be positive or negative 
but the inequality

[{ re'/ Q ')
bfl

ih l  v as 

*  ° n<,
^ ( i r - e ' Y
a n

is always satisfied, so that 9 is never negative. In the-
oil̂

classical limit | F (80) becomes very large. The interference term 
then oscillates very rapidly^ so it can be approximated by its zero mean 
value.

(c) Rutherford Scattering
Suppose particle 1 has charge Z  and particle 2. has 

charge ^  . Then for distinguishable particles

dcrZ _ <)<r'izu
dSlf dfLc,

For identical particles,

. J —  
si"+i < (2-4-5)

CS
dcrc —
bile i y? easel's, (2.4*6)

For unpolarised beams of electrons or positrons (im, — Pl-̂ - The and 
2-,x = ex ) the symmetrised quantal angular-differential cross 

section is
N $5 . cs -v QXF
6<r2 -  ^  _  ^ 9^ 9  ^  - 9
BSlq bllq ail

(2.4.7)

where
«IF A rr*Qlfe
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and \ diB

(2.4.9)

In equation (2.4*8) eVli is the atomic unit of velocity;
Equation (2*4*7) has a different interference term to that in equation 
(2.4*4)* The interference term in equation (2*4*7) and the bound in 
equation (2.4*9) are obtained by averaging over ainglet and triplet 
orientations of the resultant spin of the two particles in the collision 
(see for example Vriens 1969).

There is an important difference between the interference term in 
equation (2.4*6) and the remaining terms, since the phase factor contains 
a unit of velocity. Hence, unlike the remaining terms, the interference

which may be termed the extreme quantal limit, the interference term
tends to the bound, which scales classically, even though it is not a
classical term. The classical limit is obtained if XT «  \fl .8. 0

term does not scale classically. However, in the limit V 0 ,-J
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2*5 The Effective Differential Gross Section in the
Frame L. dAEL

The classical or quantal effective differential cross section
per unit momentum transfer magnitude and per unit

d<^dAEu
energy transfer A E X he defined as the differential cross section
for the scattering of the incident particle 1 by a fictitious
stationary target which yields identical scattering results to that of
the original moving target beam. Now the differential rate
of a reaction is a Qalilean frame invariant so that the effective
differential cross section “-STl. may be related to the centre-of-mass

x
differential cross section EJTs b>y

v u  dVu (v:u ,v-L1) = ^ 0( _ 1TR aVS _ (2.5.1)
d^dAE,. 3<J,d/lEL dq,b&Ej_

This relation has been used by Ochkur and Petrunkin (1963), Stabler (1964)
Gryzinski (l9^5a)> Gerjuoy (1966), Vriens (1966b), Burgess and Percival 
(1968), Vriens (1969) and McDowell and Coleman (1970)* An alternative 
formula, given by equation (2.5»l) without the velocity factors V LI 
and and without using the rate as an intermediate step, was used by
Burgess (1963) and by Percival and Valentine (1966). It was pointed 
out by Vriens (1967) after discussion with Percival that, when the 
differential cross sections in the latter approach were averaged over

Arandom orientations of , the resulting expressions did not
correspond to the scattering of a beam of incident particles by a -thin 
monoenergetic target gas, as it should. How if ‘V  »■ yj_x1the



two methods converge. For V LX Valentine (1968) compared the
two binary-encounter approached with exact-classical three-body 
calculations for ionization of atomic hydrogen 'by electron impact.
He concluded that the "invariant rate" approach yielded simpler and 
more accurate results. This approach is adopted here.

V*-_CThe classical centre-of-mass differential cross section dj'q
dq d&E,is defined by

2__Caz<r
9(tO 

311 branches
In section (2.1a) it was shown that 9/

^  dAEL (2.5-2)
and hence Cos 0̂  was

uniquely determined in the range (O^Tt) by but that there were
two values of and , say) in the range (O

for each value of a e l . Thus there are two branches of the 
transformation from to an<̂  80

TV

( * U ) . .1 +  < % ) .
<Hd&EL JY^'a) •

where
I ^  dAE<-(0 Q  I
6 (cos 9^) o<j>J

(2.5.3)

(2.5.4)

Now is given by equation (2.1.26) and is given by equation
(2.1.24) and it is easy to show that

T ( ^ )  - 4 * W ' ' L , ‘l  I cosie^ 5in Xli sin ^  I
Sin.ie '̂ 1

Hence and thus for central interactions
v*«-cdOq
^(^adEL

si Cd  cr̂
(T ^(cosd/) drf/

(2.5.5 )

(2.5.6 )



It follows immediately that for central interactions

*%dAE^ ^  # (2.5.7)

However, if x — *  ̂,/ depends upon <AC , there will be additional aceosepa^
interference contributions to — - ** . The Jacobi an CT can be
expressed in a simpler form, if certain geometrical relations of the

2.triangle O P , d e f i n e d  by the initial velocities Vj[_( , irL 

and V*  9X0 used* Now Cos > c ° S ^ Li s
A  Aand C°S 6L a -y^ryL% and so

Y.’Z 51 n ®ui. ~ V ^ s i n X L|  ̂ (2.5.8)
and hence

ZT = bnj \rM U L^{ jcosi©^ § m  9Lli sin ̂  j 

But, it is easy to show that

Y u  x Y ts t '%  -  c o s 4 eq a i n & u x  s in  4 ^  f

and so

CT e  r" ^ Vi<vi.xVj«-|.lXV-t a . ^ | '  (2.5.9)
mm *

Hence

< X K . , Y L P  j .  _ 2 _
H  dA£<- ’ (2.5.10)

which is valid both classically and quantally for central interactions.
In the special ease of eharged-partiele collisions

d V r ^   W —    — (o t; ‘j 1 1
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for distinguishable particles and so

* l C v « , v l o  _

y : X i i 4 • (2.5.12)

This result has not been given previously and shows that the effective 
differential cross section is inversely proportional to the volume of

/\ A Athe parallelepiped bounded by the unit vectors and
For electrons or positrons,

£<•(*., s o  = = ! _ £ l _  , (2.5.13)
H  SAE, ^  ^  ̂  ^  (

- . - - L -  (2 5X4)
bid&c, »

and
.1 QJ0/. v * *

io a^ el " L * u (2.5.15)

Kt't' ('Meuft-cC) • (2.5.16)
In equations (2*5»10) and (2.5.12) to (2.5.16) not all values of 
and AEU are simultaneously physical. The allowed ranges of 

^  and are given by the inverse transformations defined in
equations (2.1.29) and (2.1.31). Thus

2-m RV k  ,

and | A E L +  ̂ iaa - ‘uL,<lsi''les''c°s,)tL)|4lti(|/coSie<i,S'n X *-> ,

are the required restrictions on and 4 E U .
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X

(V_, VloJ)2.6 The Effective Double-Differential Cross Section dqaAEi 3 .
averaged over different orientations of the target velocity

(a) Geometrical Restrictions on the Momentum-Transfer Vector

For fixed initial velocities and and for any
conservative interaction it was shown in section (2.1a) that the 
physically-allowed values of lie on the sphere

. f 2 m RV(s.- = 0 (2.6.1)
Since = V,., , this result may be written in the form

,̂.y"Li =  2 fogVLi .̂.lTi.1 - %  f (2.6.2)
2  n v v u

provided . If all orientations of are allowed then must
lie inside the region bounded between the surfaces V  and /ATmax.
whose equations are

£ m i »  5  f  + 1 = °J =  j V  r | 4 . ) - 2 W x } , (2‘6‘3)
and

T  = ° } S [ t = 2 m (t'rM ( i ^ i ) + 2 m RvLXj . (2.6.4)

Let a rectangular cartesian coordinate system with origin ^ = 2
have i axis along and suppose has spherical-polar
coordinates 0W| ? <£> ) s° that COS 8 t= * In this framecq cqi *
the surfaces X  • and A^/,v are independent of the azimuthal^  |ffl I fV MlU'V

angle and hence are symmei/nc ahon"t * Le*fc rm in, and
_

V! , be plane curves from which the surfaces • and T1'WaX ^ a-1 m m  jyiclX
aare obtained by revolution about y u . The equations of S\r\{a 

and in ■ plane-polar coordinates C , ®tql) are

f ’mia s  [ t = a w ^ ’ b } 9 (2.6.5)
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and
V W *  - { *t ~ ^  Cos ? (2.6.6)

where

a  = 2m Rv L, i (2*6*7)
and

b = 2% %  . (2.6.8)
Equations (2.6.5) and (2.6.6) are of limacon form, the properties of
which depend upon the relative magnitudes of a  and b . If ct^b
(that is, if trLl< ) ^m ;n has no real points and F oul*

is an oval curve enclosing the origin. Thus if may

take any value v/ithin the surface of revolution whichJ mar
encloses the origin.

In the case CL=b (that is, S w *irt ha8 ^ * 2  as
its only real point and V^moX simplifies to a cardioid, The 
allowed region for <£ is a cardioid of revolution with cusp at the 
origin.

If a>b (that is, U^> has real points for

Cos®L<t*̂  ^ flL ^  ha3 real points for CoS0Lqt*~b/<L *
The branches r̂nirv. an& Vmiuc are complementary in that the
slopes of the tangents at the origin are equal in magnitude and
opposite in sign. Thus, for ‘V̂ ,>Vj_x , must lie inside the surface
of revolution 57 but outside the interior surface of revolution *-J max
^7^.^ . This case is illustrated in figure (2.6.l)? where the

velocity transfer w; = 11818 been used instead of the momentum
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transfer itself. In the extreme limit U"LI y> # snail values of
are directed almost perpendicular to the incident velocity direction.

( b) The Geometrical Restrictions in K , a e q  Space.
Since the accessible values of satisfy

0 4 1 4  2 m„ CuL1 +vLV) _
Further, A £ L = <£/2tr\, = +■ ctL/2|r11i , 30 that it; is
obvious that

^  ^  - 2i  a2-,
and that

a e u  i  'un<i + ^ 2‘l *
Let the parabolae » anc* r »  be defined by

r tl H { iXq,1 *  l v u  + A E L = ° }  , (2>6 9)

’ <2-6-10>
r*. = { a r f i , ^ - t ^ + A E ^ o ]  , (2.6.U)

and

t h  S ( 2W12CL + 'l-VLi ' 4Eu= ° }  • (2.6.12)

Let A I7 be the point of intersection with <1 * 0  .
Each of the four points Ajg- is uniquely determined for all positive
values of m, , tn2 , VM and qjj_x . It is easy to show that the
coordinates ( , AELiy)of Ajj are

= ~ 2. Wg (U~u ~ ? (2.6.13)
“ <tl2. = <lxi - 2 % ( tTm + V lx) , (2.6.14)

AE. 1, =  A E ta, = Z. ^ m  .CvL.-Vu2)(wi,iru +Tnivi.i) (2.6 .15)
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and

A E U1 = JSE^, = (vu+vl.Ofw1vu -Tn1irtx)  ̂ (2.6.l6)

The physically-allowed region space is hounded by a "polygon"
whose sides consist of segments of parabolae and whose vertices are 
the origin (which corresponds to a collision with negligible 
interaction) together with those points A Ia- ?0T which Stisr 
satisfies Since none of the is
larger than 2 m R(irLI+\rtl.) only those for which is
negative need be rejected. Now is always negative and
or is negative according as is less than or greater than V L1_.
Let A 4 he the point ( I *lrlU ' The accessible region in

space is therefore a "triangle" with vertices C°,°) . A +
and A ZI . The case in which TTtt> m x and is shown in
figure (2.6.2) and corresponds to that in figure (2.6.1), approximately.

The following additional remarks on the relative positions of the 
three vertices are useful. Firstly, since I 9.^1^ > the point
A2, always has the largest value of . Further, the ordinate 
AEj_2| is positive, zero or negative according as V u is greater 

than, equal to or less than > an& similarly the ordinate a  Elm.
is positive, zero or negative according as TY1,V|_| is greater than, 
eqjial to or less than 'Wx"Lri.i • Finally, the energy-transfer 
difference

AEl2i- AElw = 4- v-u xrL1_ (2.6.17)
is positive, zero or negative according as Hrj, is greater than, equal
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to or less than VY\± •
The condition that the incident particle may transfer all its 

initial kinetic energy to the target is that the point ( ‘TTl,trLI 5 
on ^2.1 accessible, which is true only if

2 " V  ( V u - v u )  * "I.VL. £ 2 m ieCvu +Tr1.T.).
Similarly, the condition that the target may transfer all its initial 
kinetic energy to the incident particle is that the point ( 
on is accessible, which is true only if

2 TO* ( \Tj_i - V u  ) ^ Tn̂ VL-2. (v u •+■ 'ULx).
( °) Axis along the Incident-Velocity

Direction
ALet described by the spherical-polar angles

and a rectangular cartesian coordinate system with ^
axis along \TL| , and suppose that is the distribution

A  /Afunction describing the orientations of 'KT̂ x with respect to 'UX.,

section i?t(vu ,VLx) is given by
The classical orientation-averaged effective double-differential cross

£<£(vl 
>ld* EL

2TY* A*= fcldL. 1 ctfcosG,,,.)
^  .(2.6.18)

#Oi (vLt̂ )  ■= f d ^ ( fc/<cos6L11) ff9L2i,̂ L2l) 
a^>AEL Jo 1, a<?s*E -(2-6-:

In the quantal approach the orientation average should be performed on
the scattering amplitude so that interference effects^ arising from the

Auncertainty over which is involved in a particular collision^ can
be incorporated. The interference effect which arises here must be 
distinguished from the special interference properties arising from the 
scattering of identical particles, but is similar to that mentioned in
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section (2.1b) and. occurs for all particles and. all conservative 
interactions.

If this interference is included., the integrals involved cannot 
usually be treated analytically. However, with the approximation 
that cross sections - not amplitudes - can be averaged over different 
initial conditions, an equation identical to (2.6.18) is obtained 
for LTi- • Henceforth it must be remembered that the
results for qjuantal scattering by this method are only approximate 
whereas the results for classical scattering remain exact.

C'Vu.Ulz) be the approximate quantal result obtained 
using the approximation of averaging over cross sections. Equation 
(2.6.18) can be simplified since

Iv -u x y ^ A f  = X 1 - ^
=  I -  ,

= 1 + 2 (Y..-S2VYu.t)(1̂  (2.6.19)
However, from equations (2.1.3) and (2.1.4 )

<̂ .0̂ , = cos eL<L, 9 say
= ( = constant,

and
A  A = COS 8 ^  9 say

= ( d £ u - ^  - constant. (2.6.21)
Thus the function X may be written

X 2 = ( H-max" Cos0tw )(Co*^.x.-H»Sii) , . (2-6>22)



where

p m a x  ~ cos ( 0^, - 6 l^2.) , (2.6*23)
and

Pmirv =  C°S C Bu^, + 0L^2.) . (2.6.24)
Further, since X ^ O  then

 ̂ ^  Mmin ^ Cos <. I *
otherwise and AEU are not physically accessible.
Let

where

Thus

COS 0t2,, -  C O S ^  + Hmcoc S i n \   ̂ (2.6.25)

0 ^  T l ^  7

(2.6.26)

L2I h^Ll

d. (o°s 6^,) _ z dr>
X

Hence, for distinguishable particles
2fy

^E^fvu,vLa) = r d^u r dn fd ifa
d^a*EL &lpdEL ^ lX - u<?+ ° (2-6.27)

For an isotropic distribution of V ]_2  ̂ $_2l ) “  ̂/^fT r
and so

- <L??(v li>xtL2_) -  4 - i r ^ i 
d%dAEL VJ"UL-L<{f (2.6.28)
This equation is an important intermediate result and was first 
obtained by Thomas (1927a), though his method was not explained in 
detail.

For unpolarised electrons or positrons

, ^ W u )  = ^ , (2.6.29)d<^dA£u a<^dA£L VL,rULxc^
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as “before. Further t

^  - ^ £A 4j
dc^A EL d<idaeL ^ V L d  %** ( * .6 .3 0 )

where

3 f c , v » , w , 1 , ^ , 0 .  K¥?-̂ r
with

(K + 0  *  = 4tI , (a.6.33)*5

and
_ 1f ̂ 0 = *̂ Li + ̂L*J- f /̂ mirv C°S T| ■+• K xjcl*: 51 a *1 ) - (2*6,34)

Let
1

3 =  mfvf-q> ’ (2.6.35)

so that J ̂  9 if ‘fciie phase factor 
Vii - Vo CoQ ^

v* 3 f m ^ - < e )
is zero. Then it can he shown that

r ' ~  =  2  _ -------
j-1 vh '  2 m eAF^)

and so

=  t ! L ^  • -i

(2.6.36)

(2.6.37)

d<i&4eL v j t r ^ ¥  H e ¥ - ^ X l - 2 ^ A E L) (2 ̂38)
Equations (2.6.30) and (2.6.37) can he derived from the expressions



(V-n\o-iL + H-m'irv) and f t-W-*. p-mi'a) without having to solve equation 
(2 .6.22) for X = 0 to obtain both and | l , However,
in equation (2.6.31) the integral cannot be handled analytically and 
so it is necessary to solve for and separately.
Equations (2.6.30) and (2.6.38) agree with those of Vriens (1966b).

U) £V«-(Vu,VU) with %  Axis .along the Momentum-Transfer Direction 
b<i 6AtL

An alternative derivation is convenient for this case.
Let the centre-of-mass angular-differential cross section.— ■ * ,aftose^ )3<fc;

for an arbitrary conservative particle - particle interaction be 
denoted (Ĵ  (Cos 0^ , ) . The magnitude of the momentum-transfer
vector | is related to the polar scattering angle 8<- by equation 
(2.1.29)* Hence

=  —  °c hosfid S') H f l - —  'I
a^d(P' s (2.6.39)

where for X<o and n a ) = i  for X ^ O  . Suppose
has spherical-polar coordinates in a rectangular cartesianv #9.
frame of reference with axis along . Then, without loss of
generality^ <j) may be taken equal to if)* and so

if*- _  o-cfcose' d>') H / l -  1  \  ,
’ °;

Since, for a conservative interaction
C0S y (2.6.4 1)

v/hich follows from equation (2.1.18)

<ict(CosQc,,4cl)^ ( C0S% )  ^2-6-42)
bCcos %<f)

lr
O>
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Equations (2.6.40) and. (2.6 .4 2) can be conveniently combined by
clcfc 
dv<

defining a generalised triple-differential cross section
per unit volume of momentum-transfer space by

4̂  = ^  - A  cr, (c°sBc Jd). &
(2.6.4 3)

which reduces to equations (2.6.40) and (2.6.4 2) on integrating over 
the relevant variables. The generalised triple-differential cross 
section 9̂** is not defined uniquely off the conservation-of- 
energy shell but off-shell values will not be required
in subsequent averaging and integrating operations. The differential 

cross section <Ĵ  (CoS^ />4,̂/) written Then

4?“ =  -  . S f a v ^ . i - q 7-) , „ .d x ^  M i ^  7 • (2.6.4 4)
As in the previous section the centre-of-mass differential cross 

section 2r^ ma^ re^aiie<̂  e^ Qctive differential cross
section cl^frr , \r-) in a general laboratory frame of . reference I■I i*» * M  H  ] L r ^ i  1,M1-
by

d(TL (2S-» XT* d(Tc 2 k-/ s /-/
o[tt " d x % ~ tr̂ vi, q fai& J'tk 2.6.45)

since dLt^ is frame invariant.
In the case of charged-particle collisions

0"<i<'YR,^)= + 1± t Z ? I*1
I 4- (2.6 .4 6)

and so

^ f y u y . 0  = « n j & l  S(Zn }
d r i VLt 4̂- -* i I ' • (2.6.4 7)



A
By choosing a rectangular cartesian frame of reference with axis

along Yu is possible to rederive equation (2.5*10) since in this
case

cLt^ -  ^ d ld({ru .\)d$L V =  (2.6.48)

by equation (2.1.4), and
a  _ 2.TV" -
igi _ \ d<j>

Jq ‘■I1 ^  %A £L ! # (2.6.49)
AHowever, if the 12. axis is chosen along  ̂ the differential cross

section r~}~ Ĉ Li /^x) averaged over all possible orientations of \TU1_
d x ^  1

with V~l \ fixed is given by
wr 1

. ?  K .  ,VLx) =  2 6 ^ 1 f c o s e y ? > 0
at,». 1* « *■* fC^ykri-<c-) >

where Cos 0. - 14.7. d , "^e corresponding azimuthal angle,
and £  is the required distribution function of

A Aorientations of \Jla with respect to
It was shown in section (2.1b) that for fixed values of \fLI and

* 'V'l'l was res^ricted to the plane TT<^vTm with equation

U,0 - 9. =  ACl~-L- <£ =: constant. (2.6.51)

The argument of the delta function in equation (2 .6.50) may be written 
in the form

~2 m lt\rL, . i - 2 (AE --j- cf)-v (̂ c o s e  y . 6.52)
Hence

x 'ltr 1
dOl (Vtl (vl̂ ) = J  d ^ L1 [ d fo,s8?u.) /  ( c ° s x

dC,t <5 f2hV°l».<l(htL-c°s|}}>( 2-6.53)



where I -
H-ll = A E l ~ Trn̂  .

ircz * (2.6.54)

How <J(CLX)= S (*.)({*] and. so
nr

(2.6.55)
For isotropic orientations of , and so

,  2 J ^  H f i - u M
VL,\rL^<is • (2.6.56)

How d x ^  and thus
<.0. °Li

as before, where

rHt» - xji, 1 # (2.6.58)

How suppose that -f fc°50̂ tX ,<̂ u ) =3 coj 0 ^ jWhich is the case for any f2^o) 
angular state of an atom.
Then it is easy to show that

_ ,2J H l 5 1  f ^  H (,-fA ) h (1- f a )
d<ldtfL V l X r f  I ^  J > ™ ' n i

(2.6.59)
which is zero at A£L~ ^  cĵ  and non-zero around this region.

This result has been used by Banks, Vrlens and Bonsen (1969) for 
the special case of hydrogenic target atoms.
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2*7 The Effective Differential Cross Section
Averaged oyer Uniformly-Distributed. Orientations of the 
Target Velocity for Charged-Particle Collisions.

( a) Distinguishable Particles

Henceforth, unless otherwise stated, the arbitrary frame of
reference L. will be chosen to be that for which the target velocity
distribution is spherically distributed, corresponding in the case of
charged-particle atom collisions to the frame in which the target nucleus
(assumed to be of infinite mass) is at rest. The subscript L may
therefore be omitted. It is also convenient to define dcr , dcr^ d v Q

dAE 3a e  dTixe.
for distinguishable charged particles.

The effective differential cross section is obtained byctAE
integrating the Thomas formula (see equation (2.6.28) over the momentum- 
transfer magnitude q in the range Q . 4 q <q for a given value

Oil f t L M a x
of AE  in the range - E w h e r e  E,r rn,V*,x and E 3_= ̂
are the respective initial kinetic energies. Hence

^  [ i  — L  l .....
3-u^Ui. t i (v10.xJ ’

where the integration limits lie on the boundary of the accessible 
region in (q AE J space for fixed A E  • In general dt<T is a

cTa e
function of , )nI , , V x and AE .

For positive A £ the relevant boundaries are

A E  = VJ<1 - 2-Ut <C , (2.7.2)

I
(2.7.3) 

and
AE - -Vi-I + ^  t • (2.7.4)
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Since o the possible values of O . and Q are

+
'̂TOW' l =  ( Z r n . E ^1 - { 2.m, ( E | - ) V 2 » (2.7 .5)

/iima.x 1 *  (lm, +  [ 2 ^ ( 5 , - A E ) ^ / 2 ^ (2.7 .6)

- f2roi(£2+^IEy5j2'- (2.7.7 )
and

£̂ max x ■= (2.7 .8 )
Then

*Ljnifu
and

- m a x  ( L̂min. 1 ? in 2 ) , (2.7 .9)

%mctx - m<ru ( Ifnaxi , Ipiftxx) . (2.7.10)
The appropriate values, in any particular case are determined hy the
relative values of A E  » A £ 3.1 and- > 'fĉie last ‘tw0 wiiich
are defined by equations (2.6.15) and (2.6.16). Let

=
die

4 -Trx,2it r j _  _  1 7 /orX.j
s ^ v ,  I £ * , . r ^  T  J ’ .

= 1,2 
(2.7 .11)

Then
dGj.3 -

d u e (2.7.12)
where

r  -  I rru\'Vi E. _ J.U e.-AErA / E, _ J\/ E, \V2- 
Vra,) I 3 ^  & A  E2 J <• m, / (3 &  l)\ 9

(2.7 .13)»

(2.7 .14)

F 21 ~ f —* + ~^ -+• /* — ■+ — \{ 2̂'*"AE\̂ (2 .7.15)

and
(
"2- £>• *. J. ̂  - fiEi+i-X/Ei-t-AEX^ (2.7 .16)
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The regions of validity of the different formulae are shown shaded

in figure (2*7»la) for TT),>mx and in figures (2.7«lh) for Y¥l,<fTl2
In "both diagrams the dimensionless variable AB./E\ , which is the fraction
of the initial incident kinetic energy transferred to the target, is
plotted against the dimensionless ratio 'Ui/'lT\ • Since A E  is assumed
positive and is always less than or equal to £j the permitted values of
a e /e , lie only in the range In contrast there is no

ol<rupper bound on the ratio \Jx/u7 . The region of validity of
is denoted by the symbol " £;j "• T îe "boundary separating the regions 
of validity of case and separating
c[0"|, and in case (b) is that segment of the parabola
ct&t fZz , , ,,A E ^ A E  \3&e equation (2.6.15)/ lying in the positive quadrant in

f—*•« space and passing through the points / Q , 4’Tnlm ^/('lr,̂â -M25)i}■
and 0 > ° )  • Similarly the boundary separating the regions of
validity of and ^iT u in case (a) and that separating

<*a€ . &££
and ĵTzz in case (b) is that segment of the parabola 

cihB
(see ©quation (2 .6.16) ) which lies in the positive 

quadrant and passes through the points )- and •
The two parabolae are complementary in the sense that each is the
reflection of the other in the AE/e, axis. The greater of the two 
parabolae has its maximum at the point (’lmrvnul/2roi ,l) and the 
region between this point and the ae/e, axis lying above the larger of 
the two parabolae and below the line AE=E| is excluded by the conditions

4- M.v; 4: 2 m ft(V,+'Uv')
which were derived in section (2.6b) after equation (2.6.17).



Figure 2.7 *1 Regions of validity of ^  in the space
defined hy the dimensionless parameters Asr/tt and Vx/ir, for
positive AE - The regions for each value of X and T  are shaded 
differently and are denoted by II , ta. , CM and 22. respectively. 
Case a) vt\, > m x ; b) <  t̂ x. ; c) mn, infinite ( £, has been
replaced by inn* v,* )j d) inj. infinite.
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In the limit as Tr /\T tends to zero Qxix tends to the expression
1 1  d&e.

d,d£ I P  / \fci*E (2.7.17)— O , otherwise ,
which is the result first obtained by Thomson (1912) for a target particle
initially at rest.

The differential cross sections and regions of validity for < o
may be obtained from the stated results for using the detailed—
balance relation

V  <!SST(m,,m„v,,vi -\AE\)= v* 4 ir3-i,3-J-('Wz,m1Iu2)^ jA E l) r
d|AE| -for X , J - =>,2, (2-7-l8)

since, for £JE<0 the relevant boundaries in space are

A E  = V tl , (2.7.19)

^  * ~ v i t -*«,*£ , (2-7*2°)
and

M  = , (2.7.21)
and so the possible limits of integration over are

^ m i = (2m,E,)V2= U e l), (2-7,22)

O l i f o f  (2*,Ei)3’- (2'7 ‘23)

CiiA* = C l(v,K,T!i,(AeO,(2'7‘24)
and f

W =  (Zmr E,.)2+ [2m1('Ez-IAEl')3 = (2.7.25)
Note that on the right-hand side of equation (2.7»l8) the particles 
have been interchanged.
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The general formulae for and their regions of validity
dAE

presented in this section are more explicit versions of the results 
obtained by Gerjuoy (1966) using a different method. In some special 
cases the results have been used to obtain simple approximate analytical 
formulae for the excitation and ionization of atoms and ions by incident 
electrons, positrons and ions. These results are presented below for 
completeness and convenience.

(i) Distinguishable Particles of Equal Mass 
For equal masses the two parabolae separating the different regions 

of validity of ^  coincide and so the expressions and

which was first given by Stabler (1964) should be emphasised that 
many authors including Stabler label the target particle by j and

(2.7 «26) reduces to equation (2.7*17) when E^ = 0
(ii) Infinite-Mass Projectile

Since the initial incident kinetic energy E, is infinite it is

9̂ 12. defined between them are irrelevant. The results for A E > 0  
dAE

are

-for

which was first given by Thomas (1927a) and

•for m a x f z),oĵ AE ̂ £, t
(2.7.27)

the incident particle by 2  )•
Equation (2.7*27) has no analogue for a stationary target. Equation

convenient to define the equivalent incident energy by
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In (c^y AB) space the "boundaries derived from the mass and velocity of 
the incident particle hecome

AE - v{<i y (2.7.28)
and

AB ~ . (2.7.29)
The physically-accessible region in (Vzlv, ,*£/e,) space for At B > O  
is shown in figure (2.7*lc)* The differential cross sections are

?!?iz _ TT /. . -l-ea.N -for ^ i»ix.fo)2w2v,Cvrv1.)J y
e . A E M  3Z e ' ’ (2-7-30)dAB

which waB also first derived by Thomas (1927a) and

d-AE z£ ,a e i L  3 VV ' a e ' ■s ' ae/  ' (2.7.31)
■for ^ 4 2mzv l (v ;+ v i)  )

which was first given by Vriens (1967)*
Note that equation (2.7*30) is identical to equation (2*7.26) if £

is replaced by E  > though the regions of validity are different.
Equation (2.7*31) demonstrates that the general results for djr

ctAe
can become extremely tedious and illustrates the danger that direct 
evaluation can lead to large numerical errors for A E  2^ *
(iii) Infinite-Mass Target

As in case (ii) it is convenient to introduce the equivalent initial 
kinetic energy Ez - • The boundaries derived from the target
particle become

AB - ? (2.7.32)

and

A B  - . (2.7.33)
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The physically-allowed region in J space is shown in figure1Tt E,
(2.7.Id). The relevant differential cross sections are

ekr„ g  r +e, _ j, \ / e,-ae ]'/2-
<*AE E, AE2-' 3h£ 3 )\ El ) ’

f o r  o  £  A t  $  Max. 2m,ir* (v;-Vv)l » (2.7-34)
and
doi, _ irtfzi f ti2 + ( - J.U f er4e) i /e, \ *71
<Ta e " L  3*e 1 34E 6'1 1 ^  ' f o 1 JJ ’

• f , , c (2.7.35)
fo r Zn.UifVj-vDj ■£ *  t-| *

Equations (2.7*34) and (2.7*35) have not been given previously.

( h) Identical Electrons or Positrons
It was shown in sections (2.7 a(i) ) that for equal masses- AE^ ̂

__ jrj-Ej. * ^or ^a^er applications it is necessary to choose
Et > E 2 80 that the relative velocity is never zero. The full 
range of AE can be divided into four intervals, only two of which 
are physically distinct because the energy transfers A E  — E-[~E^ 

say, and A E , - E 2 cannot be distinguished. Since E^-E^-bE the 
energy transfers AE  and E,-Ex-AE lead to identical final conditions. 
The two distinct energy-transfer ranges may be chosen to be

O ^ E  4 E e =  ± C E,-Hi) ,
which is equivalent to

a e0* a e 4? zae0= & r £z ,
and secondly

2 A E 0 £  A E  4- B t ,
which is equivalent to

- E ,  ^ AE ^  O



65

A collision in which O ^ A E i 4 £ 0 may be described as an "excitation” 
because the final kinetic energies of both particles are greater than 
the initial kinetic energy of the target particle. A collision for 
which A E = 4 £ 0 is such that the final kinetic energies are.equal. A 
collision in which - AE 4 o may termed a "de-excitation" since
the final kinetic energy of one particle is greater than the initial 
incident energy Hj • The excitation region will now be considered 
in detail.

is*Let d 0j_ _ 
d AE L

1 ?L =
dA£L

d<rD
dAE 5

4 f “  =
dA£L 1

dots - dacs 4 fu'B = dcr<5,e
dAE L dAE Ct4£L d/JE

and
,~QS Q5 , cs a<Tt __ ot(T — d(T
C*a£l dAE C*AE

-  a_cr^F
0AE Then

show that for ^ O < A E  < ae0
dcr* _
dAE Ej A£2

( l •+ “ti*' 3A£ )

and

d f*  -
d AE

tre*
Ei f 1 +

+  Ez

dieL. dAE ’

Then it is easy to

(2.7*36)

2.7.37)

dtr^ _ tre* *
E -~ ,2.i  1 , ^ 1 -  /,dJf 9 (2.7.38)1 2 IMtrt -7

where ,A£?X) is defined by equation (2.6.32). The
expression for can only be evaluated numerically, however,

dLE
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it can be transformed so that its convergence properties are improved ?

by replacing the variable ĉ  by the dimensionless parameter x  where

J. -  ~L _
I  • (2-7-39)

Then
^  = 5  d x  , ,

z & £ ’ (2.7.40)
and the range Q is transformed into the range

rxifii
Hence for O  ^ ^ A E e

dtrw  tre4 'iJ Ax J dKy (vhvltv0)x t A f jV )
C U E  2E , A E  '< J-i • (2-7-41)

The bound. is obtained by replacing o (‘\rl l-vr, •o-0 ^ A E  H)
d &g  <J * > j ) >

by its approximate value 9 =  ' / { < t £  (*)-<*>)$ in equation 
(2.7*4l)* The integrals can now be evaluated analytically giving,

o
/ Q IB w  ACLOT _  7T 6

E",^ ’ (2.7 .4 2)

Equations (2.7.37) and (2.7*42) were first obtained by Vriens (1966b) after 

pioneering work by Burgess (1963)* in equations (2.7*36), (2.7*37)
and (2.7.42) E 2 is replaced by zero the corresponding "Thomson" 

symmetrised formulae are obtained, namely
, (2.7.43)

1 (2.7*44)

and

dc® __ n  e 4
dAE E, A E 5-
d<re ^ TT&4
d AC £, (E.-AEV

Q >B 4do- _ jrrê
d AC E, AC fE,- (2.7.45)



67

These results are valid for AE and can be obtained directly
from the centre-of-mass angular-differential cross sections (see equations 
(2*4 *6) to (2*4*9))* Further, in this case the result for the interference 
term can also be obtained, for

ac _  TT e r 1r .. , AC ^ .
E,4£fE.-aE) COS I v , ^  ^ J  ’ (2-7-46)

provided O ^ A E  ̂ ^£1 * It is interesting to note that equation
(2*7 *4 6) simplifies to equation (2*7*45) when A E  - AE0 - \  E j

In the case in which ^  is not zero Vriens (1966b) approximated

J7 — ) Loj )1
L'£r e J  J 'zr Zi-Ae'J ,

d ? Q 'f by 
dAE

=  ^ iecoS|l ,   yi
d A E  d A £  l'£r Ei' ’E-rEi-A^J , (2.7.4 7)

where UQ - * Equation (2*7*47) reduces to equation (2*7*42)
for A E =  A£„ • An alternative approximation for A £  close to 

is QlB
d f ’ %  -  f A* +
dAE dAE C 1 ^-£*2. '  J 5 (2*7*48)

where Ao and 80 are dimensionless parameters which can be
determined only by fitting to the numerical values. In particular A 0 

A ^,fri3 determined by & &  at A E ~ A E q • If A0 is not close to
dAE

unity then the approximation ^yi\ has little value. The
dAE

parameter Ae measures the extent to which the interference is coherent.
In the accelerated symmetric model (see Thomas 1927a, Vriens 1966b ) 

the incident electron is assumed to gain energy before it collides with a 
target electron in an atom or ion.. In the case of a hydrogenic target^

is set equal to U+Ej.  ̂wnere \̂ao the true incident energy
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and (J is the ionization potential of the target atom. However no 
correction is included for the kinetic energy of the target electron and 
focus-ing effects are ignored. Nevertheless, the improvement in the 
agreement with more accurate results.is significant. The relevant 
differential cross sections are

d ? 0 =  (  | +  \
d A E  ' 3A£ ' ’ (2-7-49)

= _J[S ___ J  , „ +  7 (2>7>50)

d<r(,ir_ —  [ W  f'dil .L  L  J (2.7.51)d A E  ( E ^ + d  + Ei) A E  -I
and

QlB
d ?  =  _
d A £  Ae  > (2.7.52)

ail of which are valid for 0-£AE.< provided £ \oo is greater
than U j the ionization potential. A complication arises if E J<>0
is less than U . In this case those energy transfers in the range

result in both incident and target electrons being
temporarily trapped by the target nucleus to form a classical H atom.
In such collisions the two electrons repeatedly collide until one of them
is free to escape. This means that the contributions to the differential
cross section in the closed-channel range f \ +

S a e  1 J
should be redistributed over the two open-channel ranges j^OjE,^ and
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- B z *A€£o . The possibility of such collisions was not discussed by 
Vriens (1966b). In the unsymmetric model of Stabler (1964) these 
complicated collisions are ignored because the incident electron is 
regarded as free from the influence of the target nucleus.

'31
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etial Cross Section __
dAE

Spherical Distribution of Target Velocities for Charged-Particle Collisions.
2.8 The Effective Diffe^ntial Cross Section da* (vj) Averaged, over a

The velocity-averaged effective differential cross section
may he obtained by averaging dc,rJ over a given spherical velocity distributio:

dAE
0(ui) using the relevant regions as indicated in figures (2#7«la) to 
(2.7»ld). The resulting formulae are extremely complicated for all but 
the simplest of expressions for

In many applications the target particle is an atomic electron whose 
velocity distribution is usually spherically distributed in the frame of 
reference in which the atomic nucleus is at rest. In all but the simplest 
cases the exact expression for 0(\£) is not known. Commonly used 
approximations are the stationary target model pCy*) = &(Vx) where 
ftx) is the well-known Dirac delta function and the circular-orbit 

model =■ where v  is some velocity characteristic of the
particular target electron. In the exceptional case in which the target 
atom is hydrogenic the exact target electron velocity distribution, termed 
the Pock distribution, is given by

32 V SVx
6  ̂ “ Tf ? (2.8.1)

for both the ground state and all uniformly-populated excited levels

(see Pock 1935) 1 *here i'V''2'= *
Vriens (1966b). proposed an approximate formula for 4$ (vi)

dAE
averaged over the Pock distribution in the case of the accelerated model 
for identical electrons. However, he also incorporated some additional
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approximations in order to eliminate less important collisions and 
obtained (see equation (28) of Vriens 1966b)

£r?(xr' l -  T̂ -  (0-22.4- + 2.U 1 . n .
(Ei«.+2.u) L 3 A E 3) ’ (2.8.2)

do-p<v^_ ire4- p y
dAE ’ CE..+ ZU) » (2.8.3)

and
Q1B

1?dC^>- q.924- ire
(Ew + 2 U K E 1co + U-z\£)AE (2.8.4 )

all being valid for 04 AE ̂  i/£|<l0+U) . The interference term quoted in 
equation (28) is incorrect since it contains • An expression of
the same type is

-  i T T c o s  f r — ^ —  a
dAE dAE (.'E,+U^ ^ E ^ + U - A g ) )  . (2.8 .5 )

In the same case, but without excluding particular collisions ,
Valentine (1968) computed d£’*> and numerically for comparisonsdAE. dAE
with more accurate classical calculations.

The analytical results in this case are for E Ja)

. *> 4.drfuy - ire
(2.8 .6)

_tre4— (f,_T) + +u O+T-ayO) , „
d A E  3 r E , „ + u -A E )  J  * (2 ,8 ,7 )
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and

' |VV / —1 111 \ <J
« AE E|„ AE (■£,„+ U-AEJ (2.8.8)

all being valid for O* AE^F+ulwhere £ ' V C  and the dimenaionle3s
quantities X^to/u) and Tfe /u) are given by

X(E,»/u)= 4 (|tj[i-2(|j{fl+!!»r-l3] , (2.8.9)
and

TfE(./u)= 2. (Ilo.){*- XfWu)} . (2.8.10)
As in previous cases, the interference term can only be integrated
numerically. It can be seen that the exact integrations differ from

d?p"
11AE
. p

the approximations of Vriens, especially in the second term of
d<r£and o . However, no analytic results can be obtained for

the interference term.
These differential cross sections should be modified for E joo<-U f 

because of the complications caused by temporary trapping of both 
electrons as discussed at the end of section (2.7).

In the general-mass case and even in the special limiting cases of 
interest no other explicit results are available for averaged
over the Pock distribution or over any comparable velocity distribution 
for non-hydrogenic targets.



2*9 Total Effective Cross Sections for Charged-Particle Collisions

It is convenient to classify the total cross sections into four
types. Firstly, ionization cross sections may be defined as cross
sections which include all collisions with energy transfers in excess
of a fixed positive amount (J • In contrast excitation cross sections
may be defined as cross sections which include all collisions with
energy transfers lying between two positive values U, < Ux , even if
part of this energy-transfer range may be inaccessible. By a suitable
choice of M>. ionization cross sections can be included in excitation
cross sections, but to avoid possible confusion they will be treated
separately. De-excitations (collisions for which A E  is negative)
will not be considered here but can be handled in a similar way.

Both excitation and ionization cross sections may be further classified
according to whether they have been averaged over the magnitudes of the targe-
velocities. The unaveraged total cross section CTCv,,^) may be
obtained by integrating df over the relevant range of AE .

dAE
The averaged total cross section O'(v;) may be obtained either by
averaging <T(V\,Vx) over pfui) or by integrating dO'fx/;) over

*r d A Ethe relevant range of At
(a) Unaveraged Total Cross Sections.

The most important cases of physical interest are listed below.
(i) Infinite-Mass Projectile.
The ionization cross section is
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X. X
1b E i 3 - f |  +  f l i r ’ v 3_ A r \ . i U ? n
2£,u L 2m2v,(vl+Vj.) 3Vjty t  1 ' * " v j J

fo r  2 m^v, Cv, -û ') ^ U £ in^ir, ('vr+ir2) (2.9.2)

and

(2.9-3)
These results were first given by Vriens (19^7) though the invariant 
cross sections of Percival and Valentine (1966) had the same regions of 
validity and the same high incident energy form in the important region 
given hy equation (2*9*l)*

The excitation cross section <r(v„vi,u,,U1) is more complicated. 
The simplest and most important result is

<r^ , v l,u1Ju2) = f i + 1 (.uj +J!zLe*I 3
e.u.Ui, t 3 u,u2 J

for O g  U, 4 Ux 4 2 m x\r,(v,-v 2) (2.9-4)
The other cases are considerably more complicated but may be obtained 
directly by integrating equation (2.7*31) over ^JE and by investigating 
the respective magnitudes of U, , Ux > 2ni\ir, f'uj-Vi) anci 2rnxVjCv;-t-V̂ ) „

(ii) Equal-Mass Distinguishable Particles 
The ionization cross section is

W L f  - i t  + 2 E
;*}fE,-Ej) 3 U J  (2-9-5)

<r (v,,vx,U) - TT Hi a2
E, U

for E,-Ex 5. U t
(T (v, ,irZjU) = Z T r ^ i  ( E - V f

3E:,U U E *  
for E,-E2 ^ U ^ E, , (2.9 -6)

3..a.
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and

O ' K ^ U ' )  -  o , -for u > e , .
(2.9.7)

Equations (2*9*5)> (2.9*6) and (2.9*7) were first given "by Stabler (1964)) 
though. Thomas (1927a) had derived expression (2.9-5) an& Ochkur and 

Petrunkin (1963) had obtained equivalent numerical results-
The excitation cross section has also been given

by Stabler. He considered four separate cases together with another 
added in the footnotes- The simplest and most important result-is

f r K v i  u, u , )  =  f  1 -f x E i f o - n M l ,
’ Ej qu, I 3 U ,0 , J

(2.9.8)
J~or O  i U, ^  ^  E  |-E^ ,

(iii) Identical Electrons
The ionization cross sections can be obtained from equations 

(2.7.36), (2.7.37), (2.7.41) and (2.7.42) and may be written

*W>« ^Kt-JD +
’ J e,u I f i - f O  (Vq-»)J (2.9.10)

cs \ ,o  e Tre 1 1 -  —  ]  n  +  1+ J L — 7-j
(T fv.-Ui.UJ - ff +<r = r~  I  rcrf2.->J)J L 3u t  (Er£i-uwJ, 

' (2.9.11)
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u ) =  ^  r d-ie r ' d x [ c i i 3
1 “ 11 1 jZE, Ju AE J, J, ^  » (2-9.12)

and

4
i r W f . n r  y ) -  (■«) (E,-E2-d)

1)Uj- E,fe,-£a) ^  u  ' (2.9.13)

all tieing valid for O ^  U  ^ f£i~£z) .
Equations (2.9*9)> (2*9*10) and (2.9*13) were obtained by Vriens 

(1966b), though the last equation was given incorrectly in Vriens 
(1966a). The interference term has not been given previously, but 
cannot be evaluated analytically. Vriens (1966b) proposed an 
approximati on

1/
/.. lF.-C._U) 7

,14)= (rQ'6 cos • (2.9.:

Two other approximations can be obtained by integrating the approximate 
expressions in equations (2.7*47) and (2.7.48) for “ST . The
former cannot be integrated analytically. The latter is easily 
integrated, but it is more convenient to use the value obtained from 
equation (2.9.12) to fix the value of the parameter B0 in equation
(2.7.48).

In the accelerated treatment for ionization tj is replaced by
Ei, so that the modified cross sections are valid for100 2. I®®

For convenience these cross sections are also listed below.

<r V^uk.U) = JI^ T  v f 1 '1 *  Su~ f 1 + ,
(F^+u+EijU *

(2.9 .15)
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(2-9.16)

- r ' f w , ,  u )  = (e- ^ j  ( I -  % _ )  [  I *  W  ( I *  V ]  ’

(2-9.17)

I S Z  —  loj E
k » +u+Ei)(’E .«+^3 (J ’ (2.9.18)

0" (V, v* l>) =  f  r dt.f<A){q(v(2.9.19)
2  f^+tftE,.) Jw ^£-1. I  &ana

o’<ss^ « , v z,i>) - . <rcy -  «rG!,F
(2.9.20)

The excitation cross sections in the symmetric unaccelerated model
can he treated in a similar way and if required they can he derived
from the expressions for the accelerated model treated helow*

Firstly, suppose that Ejoo is greater than {J . Then the
excitation cross sections for A E lying between Uj and
are given hy 

D(T
. % TTe*YlVlM  r J -ZE2 7

crE =
iren^ i )  ____ f l +  2 Ez 0 ^ 2o-u ,-wQj

r ^ +  u ) s fE,„+o-u, )(e i-+^ 2.9.22)
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<rCSfv U.,'«r2, U|, l/r) =  <rP + f f E , (2.9.23)

<D>R, rre* i f  L U £ - + u -l/' H >
/r . c x/’c j../) d U yi (Elw + U-^l ' S(2.9-24)

QlP/- ii n A f f^xf dlju ,
<J r   -~ J 4 e [, 1, ? (2-9 -25)
,Qifv„ ,| ,,  ̂ rr€.’ J jplxj~

.............. l(Et# 0 +Et,) " /1C
and

C5 ^-QiF
> (2.9.26)

all being valid for O^-^i ̂ “^2 ĵoo •
If U- and then should be replaced

*2_
in equations (2.9*2l) to (2.9.26). liquations (2.9*21) 

to (2.9*24) were given by Vriens (1966b), but the condition U z > { ( E*,+v) 

was not considered.
Now suppose that E (OQ is less than the ionization thresholdU 

If E > U-, equations (2.9*21) to (2.9*26) are unchanged, but iflc* X-
y2 < E .« » U* should be replaced by E |oe , since the

remaining range leads to temporary capture of
both electrons (see section (2.7b) ). The contribution to the excitation 
cross sections from this capture region could be obtained using a random 
walk procedure (see for example Hammersley and Handscomb 19&4) but the 
additional effort would^not be justified because even the symmetrised 
accelerated binary-encountor model considerably overestimates the exact-
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classical excitation cross section for incident energies below the 
ionization threshold (see for example Valentine 1968). A simple 
analytic estimate for this correction can be obtained by assuming 
that a fraction oC of "the capture collisions is redistributed 
uniformly in the excitation range Ejô J an<̂  that the remaining
fraction c{ leads to de-excitations.. How the total, capture cross 
section can be obtained from equations (2*9«2l) to (2.9*26) with (Jj 

and (J replaced by E |oo and respectively. The
contributions to the required excitation cross sections can be determined 
by multiplying the total capture cross section by the factor o< 

if and hy the factor if 0, < ^,w <  .
For most purposes o(~ should suffice.

Clearly, all excitation cross sections are zero if 
and all ionization cross sections are zero if E . < 0  .loo
(b) Averaged Total Cross Sections

In the general-mass case the results are too tedious to be presented 
in detail, but the more important special cases are considered below.

(i) Infinite-Mass Projectile
The total ionization cross section averaged over the Fock distribution 

given in equation (2.8.l) was calculated numerically both by Percival and 
Valentine (1966^ using invariant cross sections, and by McDowell (1966) 
using invariant rates. Vriens (1967) obtained an analytic formula for 
the incident velocity region > though the expression is so
complicated that it is not immediately obvious what high incident velocity 
form the cross section takes. Ho formula was given for the low incident
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velocity region \Tj <  ̂ 'U' in which the corresponding Thomson formula is 
zero. The low-velocity form of the ionization cross section can be 
obtained by expanding the terms in equation (2.9*2) for small \Tt and 
simultaneously *0^ ̂  and then averaging over
Direct evaluation of equation (2.9*2) for numerical integration, say, can
lead to numerical errors for small VJ since the expansion of the

—4 -2. oseparate terms contains leading terms of order Vj j "iTj and V,
all of which exactly cancel when they are collected together. The 
low incident velocity form of the ionization cross section averaged over 
the Pock distribution is

c(v;/'vr) =  fe ( v,/-u-)'1 +  O f f a / v ) 1̂  . (2.9 .27)

Fairly accurate * target electron velocity distributions have been 
used to obtain total ionization cross sections for non-hydrogenic atoms 
by proton impact (see for example Catlow and McDowell 1967 and Bates 
and Kingston 1970)> but, in contrast, no exact results are available for 
averaged proton-excitation cross sections for any atomic targets.

(ii) Equal-Mass Distinguishable Particles.
Pock-averaged electron-hydrogen ionization cross sections have 

been evaluated numerically by Kingston (1966) arid analytically by 
McDowell (l966). In this case the result is simpler than the corresponding 
expression derived by Vriens (19^7) for infinite-mass projectiles.
McDowell obtained ,
(rfE U) =  X ' V ^ O ' 4 f ^ X + + l 5 x 3- 3 X i- 7 x  +  G)f2-l) 1
1 ,J 1 3 o lir L ,,

+  ( Sx?A 17**+ )5x3- 2 5  ad+ ZOx.) tan-' fx~l) i
—  24- **«■ U  I I  if, urrfjL X -  . (2-9,28)



81

Kingston (1968) has also obtained, numerical values for electron-hydrogen
ionization cross sections in which the atom is initially in different
excited levels (n,l) which are obtained by averaging uniformly over
all orientations . The first non-hydrogenic targets were considered
by Gatlow and McDowell (1967) ionization only. Flannery (197^ has
presented some numerical values for Fock-averaged electron-hydrogen
excitation cross sections in the special case of ft fl-hl transitions
with Yl — ,2,0 and YI-/OO.

(iii) Identical Electrons
The totai ionization cross section averaged over the Fock distribution

for the symmetric accelerated model was evaluated numerically by Valentine
(1968). The analytic results can be obtained very simply from the
averaged differential cross sections in equations (2.8 .6) to

GfAE(2.8.8). The results may be written

W ~ [J2- I £ )|_t (2.9.29)

(2.9.30)

n * * , *  1 ( I -  p r.*T -»x> ],
(2.9-31)

J Jco (J
and

(E^O)

(,,.33)
0 (E|»+U+E0  0 &E I, i, * '

fi-
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where x o w u )  and are defined in equations (2.8.9 ) and
(2.8.10) respectively. Vriens (1966b) obtained the approximate formulae

( e U+ Zo ) [ 0'C’2^ ,' 0 + 3 ( ,''£;^],(2'9.34)
I CO

AU) - O.̂ Ẑ r f — —  V — - \ toq 5,i*»
e ( J u * U , u  > (2.9.35)U" l CO 10'.

and

^ “Y e ^ u ) =  <reQ  cos jj , (2>9>36)

where U 0 is the ionization potential of the ground state of atomic 
hydrogen (that is, U 0 is eqpal to the Rydberg unit of energy).

The total excitation cross sections can also be obtained from equations
(2.8.6) to (2.8.8) and may be written

a %  v u V= H * f ' U u- ^ J U ( V T)+  l u ^ ^ Q + r - 2^)l
0 J -  u V U l  u,u, J r  3 (4 ( 4  , V »

(2-9.37)

X«t fE V U , ) '  i f t H l f . O l W  - -  l.lfi
' J u* ' c J V ^ u - u . ^ u - u j j  I y£i.**-MO

0 + - T - 2 * ) }  } (2.9.38)

<TC!,6Ce^, Ul)D1) -  1 1 ^ ^ )  Lo o  f ^  l
U * 1 f j  V 0'  1 1  u- J (2>9 39)

“ d *» . u I \
* T f  efarJ f  f  dz fo ty  9 ,

4  45 "  (2,9*40)

$ U, £ E leo then Mi should be replaced by i (5-+»0 in
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equations (2*9*37) to (2*9*40)* This region was not considered correctly
by Vriens (1966b). The results for E < J are less reliable because
of the difficulty in treating the capture region B 4  A £  <  — ( E1« 2. i %  ' *
Nevertheless, if this region is neglected then the results are unchanged 

.if Uz and can be obtained from equations (2*9 *37) to (2.9.4 0)
by replacing [Jx by E ioo . An approximate formula for the correction 
arising from the redistribution of capture orbits can be derived in a 
similar way to that described in section (2*9a(iii) ) except that in the 
present case the total capture cross section can be derived from equations 
(2*9*37) to (2.9.4 0) by replacing (j, and U2 by and 2 ( EJoe>-»-(j)
respectively.

The symmetric accelerated model has been applied to ionization and 
excitation of non-hydrogenic atoms tty Tripathi et al. (l969).

(iv) A Semi-Empirical Decelerated Model for Total Ionization of 
Hydrogen Atoms by Incident Positrons

The accelerated symmetric model for identical electrons is obtained

from the unsymmetric case by substituting E,0o+ ^ ‘*'E2. ^or
this way, the region Ej , which is important for low incident
energies in the unsy. ihctric treatment, is automatically excluded in the
symmetric model. Suppose that for incident positrons a decelerated
model is defined by replacing by E Jo0~ ot\)-(2Ex in the unsymmetric
case, where oC and are positive constants. Now, the region
£ -P £[)■£■ £ is enhanced rather than excluded and the threshold ener.w t- 2. *“ | ~ ‘-
for ionization is given by (\+<*)U+/3Ex • The natural choice o( - I
and yS=| therefore leads to the wrong threshold energy. In fact
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c(-o 5 but yS nsed not necessarily be zero since may assume a
range of values including zero. By comparison with the symmetric 
treatment -̂c.\ is used henceforth. Finally, the modified total 
ionization cross section obtained from equations (2.9*5) - (2.9-7) 
vjith E, - E —  rnay averaged numerically over the Fock velocityI | OO J-

distribution of the atomic electron 2. •
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2.10 Comparison of Binary-Bncounter Total Ionization Cross Sections 
with Exact-Classical Results

In the special case of charged particles incident upon hydrogen 
atoms which are initially in a uniformly-populated level fc, the binary- 
encounter results for ionization can be compared with exact-classical 
calculations. It is obvious from the explicit formulae for the binary- 
encounter ionization cross sections ,u) for incident energy
and target binding energy |J that, with the exception of the 
interference contribution, obeys the classical scaling law

( T f E l , U )  =  8 Z( J Y 9 £ , ,  -for arb itrary  0  > 0  . ( 2. 10. 1 )

Abrines and Percival (1966b) have shown that the same law applies to 
cross sections derived from the exact-classical approach for three 
interacting charged particles. Hence all comparisons can be made at 
a single value of the binding energy (J which can be conveniently set 
equal to the ionization potential of the ground state of atomic hydrogen. 
Cross sections from any other level n can be obtained from those for the 
ground state via equation (2.10.1) with 8 =  71 •

Various types of incident particle have been employed in exact- 
classical calculations. Abrines and Percival (1966b) considered the 
case of incident protons, Abrines, Percival and Valentine (1966) 
investigated electron collisions and Percival and Valentine (1967) 
studied incident positrons. In all three cases the mass of the proton 
was not taken to be infinite. Electron collisions have also been 
studied by Brattsev and Ochkur (1967) using a very similar technique
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but with an infinitely-massive target nucleus. Each of these processes 
is compared separately "below.

( a) Infinite-Mass Pro.jectile
averaged
Hbj|binary-encounter results for finite-mass incident protons are 

available. However, at incident proton energies H, above I ,
the approximation of replacing the incident proton by an infinite-mass 
projectile moving with the same speed should have a negligible effect 
on the binary-encounter ionization cross sections. A very convenient 
approximate relationship between the incident proton energy Ej in 

and the equivalent incident energy m eur,2' for the
infinite-mass projectile is given by

E, =  I— ). 2.5 Keir. ,1 I U l  ' (2.10.2)
The relevant cross sections are displayed in figure (2.10.1) in 

the form of a Bethe plot ( <r£, versus (ô  £| ) so that the high
incident energy form of the ionization cross section

<r(e.) - ^  (^)ir<C , (2.10.3)
can be demonstrated clearly.

The simplest of the binary-encounter results is the Thomson formula 
given by equation (2.9*1) with B2-O . By comparison with more refined 
binary-encounter models and with the exact—classical results the Thomson 
formula is too small by a factor 5/3 at high incident energies and so 
the Thomson formula scaled up by the factor has been plotted.
The reason for this disagreement at high incident energies is that the 
neglected term in equation (2.9*l) contains a factor ^z/U whose
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average over the initial target velocity distribution is equal to unity 
by the Virial Theorem for charged particles. The neglected term is 
therefore of the same order of magnitude as the first term in equation 
(2.9*l) even for high incident energies. It is clear from equation
(2.7.30) that the Thomson model is only accurate if

The circular-orbit model given by equations (2*9*l)j (2.9*2) and 
(2.9*3) with Bj= U and the Pock-averaged model of McDowell (1966) and 
Vriens (196?) are also displayed. The incident energy range below 
about 6,25 Kev: was not covered by Vriens and McDowell but was 
determined numerically and was found to agree at low energies with 
the threshold law given by equation (2.9*27).

The exact-classical results of Abrines and Percival (1966b) have 
been supplemented at lower incident energies (see section (3*3) )• It 
was pointed out by Percival and Valentine (1966) that the binary- 
encounter results should be interpreted as electron-loss cross sections 
rather than purely ionization values. For this reason both ionization 
and electron-loss results are displayed in figure (2.10.1). It is 
worth noting that the 7 points with highest incident energy were 
obtained from the same pseudo-random numbers so that the shape of the 
curve in this region is more reliable than the absolute values.

(b) Incident Electrons
In this case there are more possible binary-encounter ionization 

models. The cross sections in units of IYqJ are listed in table 
(2.10.2) as functions of the incident energy £ lce> in units of the 
ionization potential of the ground state of atomic hydrogen and are
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E"/u (not) O O ( ) flro*) (rrai)
*4

fr<£)
<r7 *9

fr O
1.05 0.181 0.028 0.144 0.047 0.098 0.155 0.132 -
1 .10 0.331 0.077 0.267 0.122 0.183 0.289 0.245 0.19*04
1.15 0.454 0.135 0.372 0.208 0.256 0.404 0.342 -
1.20 0.556 0.199 0.463 0.296 0.319 0.505 0.426 -
1.25 0.640 0.267 0.542 0.384 0.375 0.593 0.499 0.34*04
1.30 0.710 0.337 0.610 0.469 0.423 0.669 0.562 -
1.40 0.816 0.482 0.720 0.627 0.502 0.794 0.665 -
1.50 0.889 0.629 0.804 0.763 0.563 0.889 0.743 -
1.60 0.937 0.775 0.868 0.879 0.610 0.962 0.803 0.61*06
1.80 0.988 1.060 0.953 1.055 0.675 1.058 0.883 -
2 .00 1.000 1.333 1.000 1.170 0.712 1.111 0.928 0.81*06
2.50 0.960 1.600 1.031 1.292 0.741 1.143 0.960 0.83*02
3.20 0.859 1.515 0.992 1.275 0.720 1.091 0.926 0.79*04
4.00 0.750 1.333 0.917 1.175 0.670 1.000 0.859 0.76*04
6.40 0.527 0.926 0.711 0.873 0.526 0.760 0.672 0.67*04
8 .00 0.437 0.762 0.613 0.732 0.455 0.648 0.581 -

10.00 0.360 0.622 0.520 0.605 0.387 0.545 0.496 0.51*02
12.00 0.306 0.525 0.451 0.515 0.336 0.470 0.432 -
16.00 0.234 0.400 0.356 0.395 0.266 0.368 0.343 0.35*02
20.00 0.190 0.323 0.294 0.320 0.220 0.302 0.284 -
25.21 0.152 0.258 0.239 0.256 0.179 0.244 0.232 0.25*02
40.00 0.097 0.164 0.156 0.164 0.117 0.159 0.153 0.16*01
60.00 0.066 0.110 0.106 0.110 0.080 0.107 0.105 -

100.00 0.040 0.066 0.065 0.066 0.049 0.065 0.064 *

Table 2.10.2 Total reduced classical e-H ionization cross sections 
as a function of the incident energy in units of the target ionization
potential U- Binary-encounter values; O’ -to cr7 (see text). 
Exact-classical values cr% . Errors in afc represent approximate 
statistical V s  confidence limits.
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defined, below.

(Tj is the unsymmetric Thomson formula given by equation 
(2.9»5) with E.-Ef, and E, = oI 10© ■*-
is the unsymmetric circular-orbit model of Stabler given 
by equations (2.9*5) and (2.9*6) with £ r Ef|aa and E ^ - U  •

(Tj is the accelerated symmetric circular-orbit model of 
Vriens given by equation (2.9*17) with E^i) •

(T is the Pock-averaged unsymmetric model given by equation 4* (2.9 .28).
is the approximate Fock-averaged accelerated symmetric 
model given by equation (2.9*34)*

CT is the scaled accelerated symmetric Thomson model givenO
by equation (2.9*17) with E2-0 and then multiplied

One should expect the binary-encounter results for incident electrons 

or positrons to be no better than the proton results at the same velocity 

since in the proton cane the motion of the incident particle is not 

affected by the collision. At high incident energies the electron 

binary-encounter cross sections should approach the exact-classical values. 

In order to emphasise the high energy form, the binary-encounter cross 

sections may be expanded in inverse powers of the incident energy as 

follows:

by 5/3
<Xf is the exact Pock-averaged accelerated symmetric model 

given by equation (2.9*31)*
Cl is the exact-classical ionization cross section with its 
%

associated statistical error taken from Valentine (1968) .

cr.
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<r4 =

and

As expected the Thomson result CTj is too small by a factor 5 /3

at high energies. All other approximations apart from the Vriens 

result 6~s  agree with the leading term in the high-energy expansion of 

the exact-classical values. Vriens obtains 0^ by omitting certain 

regions of integration for which this approximation is poor. However, 
either this operation Iv in  not boon carried out correctly, or else his 

assumptions are wrong, since such modifications should not affect the 

leading term in the expansion if the unmodified term agrees with the 

exact-classical value. For this reason <Tff may be regarded as empirical 

and may be eliminated from the rest of this discussion. It is interesting 

to note that the first two leading terms of the velocity-averaged cross

(2.10.5)

(2.10.6)

(2.10.7)

(2.10.8)

(2.10.9)

(2.10.10)

(2.10.11)



sections (T and C-j ageee with those of the corresponding unaveraged
formulae (Ĵ  and , showing that the velocity-averaging procedure
gives different results only for intermediate or low incident energies*
It is not difficult to show that this result is also true for incident 
protons. The statistical errors in the exact-classical results are 
too large to accurately specify the second term in the expansion, hut, 
by comparison in table (2.10.2) appears to agree best, yet 0^ is
also v/ithin the statistical errors.

Although none of the binary-encounter models should be accurate just
above the ionization threshold, it is interesting to compare the behaviour
of the various models here. The unsymmetric models <J and (T have ar

power lav; at threshold, as also does the q'uantal first-Bom calculation 
(see for example Rudge and Seaton 1965), whereas the Thomson model <J| ,
the symmetric models , <5̂ and have a linear threshold lav;,
favoured by Rudge and Seaton in the quantal case. It is now known that 
the exact-classical threshold law is neither a linear nor a power law
(see Banks, Percival and Valentine 19^9 , Peterkop and Tsukerman 1969), but 
is close to the unusual power 
for the classical case. This law has also been derived in the semi-classical 
WKB approximation (Peterkop and Liepinsh 19^9, Peterkop 197l)*

The unsymmetric models 0^ and are worse than the symmetric
models at low and intermediate incident energies for two reasons. Firstly, 

in the unsymmetric treatment the effect of the nucleus on the incident 
electron^after the collision with the target electron^is ignored. Thus, 
at low and intermediate energies, if the incident electron loses all its

) -  Ij *£1. IT7 derived by Wannier (1953)
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initial energy to the target electron, the incident electron should be 
captured by the nucleus, whereas in the unsymmetric treatment the collision 
is counted as an ionization. A second reason is that the unsymmetric 
treatment does not distinguish between incident electrons or incident 
positrons, whereas, for low and intermediate energies the two cross sections 
(see, for example, Valentine 1968 and figure (2.10.3)) are quite different. 
The empirical symmetric model > based on the symmetrised Thomson model
is extremely simple yet is superior to both unsymmetric treatments for 
£|«o> 2 U • The symmetric models 0"3 and (T7 are surprisingly close 
to exact-classical values for all incident energies above ^
The better model is the velocity-averaged cross section CTj , but both 
models must be regarded as semi-empirical since, in the symmetrisation 

the incident energy £ is replaced by w*iereas ’tiie initial
kinetic energy of the target electron is unchanged. nevertheless, if a 
binary-encounter model is to be used at all, then it should be the 
symmetrised velocity-averaged model, rather than an unsymmetric treatment, 
as is used by Catlow and McDowell (1967) ^or non-hydrogenic target atoms 
and by Flannery (l970&)for excitation of atomic hydrogen.

(c) Incident Positrons
The cross sections (J", , <Ĵ and 0̂  defined in the previous

section are equally valid for incident positrons. The exact-classical 
ionization cross section is tabulated in Percival and Valentine (1967).
As in the case of incident protons the binary-encounter results for 
positrons can be interpreted as electron-loss values rather than purely
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as ionization. The exact-classical electron and positron results are 
compared in figure (2.10.3) with the Fock-averaged unsymmetric model 0^ 

of McDowell, with, the Fock-averaged symmetric model Cy for incident 
electrons alone and with the semi-empirical decelerated model for 
incident positrons (see section (2.9(b)iv) ). The improvement over 
the unsymmetric model <5 is remarkable.

4•



96

2.11 Binary-Bncounter Estimates of the Interference Contribution to

Hydrogenic Ions.

In quantal calculations exchange and interference effects are 
particularly difficult to treat exactly and are therefore often neglected. 
At intermediate incident energies the inclusion of exchange in the 'binary- 
encounter model reduces the total ionization cross sections hy as much as 
3o% for target classical hydrogen atoms (see for example figure 

(2.10..3) )• This suggests that exchange and interference contributions 
to the quantal ionization cross sections are not negligible hero, hut 
are sufficiently small to be estimated using a binary-encounter model.

The ionization potential U  of a target hydrogenic ion with 
general nuclear charge in an arbitrary uniformly-populated initial 
level Yl may be written

The direct, exchange and interference-bound contributions to the total

hydrogenic ions may be calculated from the reduced cross sections for 
ionization of the ground-state neutral hydrogen atom using .the scaling 
lav/ given by equation (2.10.1), apart from a focusing factor F  which

on the incident electron. A simple expression for F has been given 
by Percival (1966), who took

Total Ionization Cross Sections for Electrons Incident upon

(2.11.1)
where Uc is the binding energy of the ground state of atomic hydrogen.

psymmetrised binary-encounter ionization cross sections of the target

partially allows for the effect of the net charge of the target system

5 (2.11.2)
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for I and p r J for rr j . This factor is identical for all 

initial levels Vt • In equation (2.11.2) £ is the ratio of incident 

energy E to the binding -energy. U

The binary-encounter interference contributions do not satisfy this 

classical scaling law. The corresponding reduced contributions are 

therefore functions, not of £  alone, but of £  and or some

equivalent parameter, say •£, =r 71 , but not of Tl and

separately. For -fc, close to zero ̂  is much larger than rt , the

interference is maximal and the extreme quantal limit is approached.

For *b close to unity tl is much larger than J: , the interference

is destructive■and the classical limit is approached.

In order to avoid additional averages over the magnitude of the 

velocity of the target electron the accelerated symmetric unaveraged circular 

orbit binary-encounter model was selected firstly to study the effects of 

including interference exactly using numerical integration. In this 

comparison is replaced by £ *+20 and E- by U  • Then P  isI I oo
defined as / u  .

clThe differential contribution — " given by equations (2-7*4l)
dAE *

and (2.6.32) was evaluated using Gaussian numerical integration for
’ j — QiF

different values of £ , t  and A t . The approximations -n? A *
1 «.F d * £given by equation (2.7.47), and CUT e given by equation (2.7.48) can be

dAE
gauged from the symmetric case A t  s  for which both electrons

have the same kinetic energy finally. By construction the approximation

^P'b  is exact here, whereas reduces to the bound
dAE dAE dAE 7
given by equation (2.7*42). The coefficient A 0 is the ratio

evaluated at The approximation A of Vriens
1 dAE



98

is therefore accurate only if A 0 is close to unity. The function 
cos'fA.) is plotted against the variable £  for various values of £ 
in the range I< U i  in figure (2.11.1). It is apparent that A 0 is 
only close to unity for small t  • For the function Cos' ■YA.)
is not particularly complicated and could possibly be approximated 
sufficiently simply to allow further analytic integration over A E  • 
However the region ̂ ^ 4  I contains rapid oscillations close to | > 
which suggests that analytic approximations may not be easily obtained.
For other values of A E  the coefficient in equation (2*7*48) is

d<r,QIFalso required. A comparison with the Vriens approximation Qg0 a
cjUT/. Q i f

is not made here since it was found that 2L9/\ was poor except where
A 0 was close to unity. The value of was chosen so that exact
integration over AE of equation (2*7*48) lead to the correct value of

Qlfthe total interference contribution O’ obtained by an equally-spaced 
numerical integration of —  over AE • The approximation

dAE q»F S a E
is therefore only accurate when B0 is small and when varies
smoothly with AE • Values of A© and 8 e for the particular case £=2- 
are listed in table (2.11.2) as functions of -fc, . The approximation
d« r  is poor for £>/ l/% over the complete ionization range
cFa£ % x r \

<££{g+UJ but is always accurate close to ££ ~s [E^+U) since
d<r£»'F has a stationary value here, as E ^ o )  — -
CUE , ciF r  n ***by symmetry arguments. Table (2.11.2)
also contains the ratio R  of the total interference contribution <7

QI0 Q9to its bound CT , the total ionization cross section <7 given by
o 0 1equation (2.9.20), and the ratios and of two approximations B
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n/£n*1)

QSorin R K a Kc A 00 B0
o/l 0.769 1.000 1.000 1.000 1.000 0.000l/n 0.770 0.997 1.000 0.999 0.998 -0.017
i/6. 0.772 0.988 0.999 0.997 0.990 -0.0673/3.3 0.775 0.973 0.998 0.993 0.978 -0.148
1/4 0.777 0.966 0.997 0.991 0.973 -0.183
2/7 0.780 0.952 0.996 0.987 0.961 -0.259
1/3 0.786 0.925 0.993 0.980 0.940 -0.397
3/8 0.794 0.893 0.990 0.971 0.914 -O.558
2/5 0.799 0.869 0.988 0.965 0.895 -0.677
1/2 0.833 0.721 0.974 0.921 0.772 -1.345
3 /5 0.897 0.445 0.941 0.825 0.530 *
5/« 0.919 0.349 0.927 0.786 0.441 *
2/3 O.96I 0.168 0.897 0.696 0 .263T *
5/7 1.011 -0.048 0.841 0.540 0.014 *
3/4 1.039 -O.I67 0.777 0.362 -0.170 *

10/13 1.044 -0.193 0.729 0.235 -0.245 *
5/6 1.003 -0.013 0.454 -0.417 -0.092 *
l/l 1.000 — — — *

Table 2.11.2 The accelerated circular-orbit binary-encounter 
reduced ionization cross section <rqiF for e-H and e-(H-like ion) 
collisions together with several interference parameters versus 
t=rt/fn+2) for the case £ = £ . See text-
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of Vriens to the interference bound # R^ is the ratio of the
QlF GiB Qipinterference term C to the hound. $  9 where 0^ is

obtained, by integrating — A numerically over using an
<Xk& ^

equally-spaced formula. R r is the ratio of the expression (J / <f^,e
proposed by Vriens. and given by equation (2.9*14)* It should be 
noted that the ratio Rg given by G ^ /  G ^ ^  is just R  
construction.

Again, the ratios RA and R c are accurate only over a limited 
range of small "fc where the bound itself is probably sufficiently 
close. For values of *t close to unity R c oscillates rapidly 
between -j and I whereas the exact values of R  oscillate with 
a damped amplitude. The behaviour of R  is similar to that of A 0 •
Hence for no simple analytic approximations may be expected to
be found.

The Fock-averaged symmetrised accelerated total interference 
contribution for*i=j^ is given by equation (2.9*33). This term 
has an analytic bound given by equation (2*9*32). Numerical values 
of this interference term have been calculated using the crude and 
control Konte-Carlo estimates of the four-dimensional integrals required. 
These estimates are given by equations (3.1*5l) and (3.1.74) respectively, 
where the bound obtained by replacing the function g , given by equation 
(2.6.32), by the simpler expression ^ , £iven equation (2.6.35), has 
been used as the control. At each incident energy five hundred function 
values corresponding to less than five in each dimension were selected.
The statistical errors from the control method were found to be smaller
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than those of the crude estimate by approximately a factor of three, 
yielding a reduction by a factor of nine in computing time over the crude 
method of comparable accuracy. The results are shown in figure (2.11.3)• 
Also displayed are the velocity-averaged bound, the unaveraged interference 
estimate and the empirical bound obtained by symmetrising the Thomson 
formula, given by equation (2.9*18) with E2 -0  .

It is worth noting that for large £. the high-energy limit of the 
direct, interference and exchange contributions given by equations (2.9 *29), 
(2*9*32) and (2.9*30) are if e-' , ’V  and respectively, in
units of fTd*, so that the interference contribution is larger here than 
the exchange term. This is expected since the interference bound in 
the basic Mott formula given by equations (2.4*6), (2.4*7) and (2.4*9), 
is the geometric mean of the direct and exchange contributions.

The equations of the unaveraged symmetric accelerated model of
Vriens (1966b) have been applied by Tripathi, Mathur and Joshi (1969)
to ionization and excitation of several non-hydrogenic atoms. However,

QlFsince the interference term <TC , which they usê  is not reliable, and 
since they did not compare either with the unsymmetric model of Stabler 
(1964) or the direct, exchange and interference contributions separately^ 
it is difficult to assess the significance of including the exchange and 
interference contributi ons.
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CHAPTER 3
M0NTE-CARL0 CHBIT-IHTE GRATIOH THEORY

3*1 A Re view of the Theory

In the important special case of three charged particles the 
theory is described fully by Abrines and Percival (1966a,b) and by 
Valentine (1968}. This theory has also been outlined by McDowell and 
Coleman (l970)» The more general theory for arbitrary particle-particle 
interactions is revieired by Burgess and Percival (1968). In order to 
avoid excessive cross-referencing the relevant parts of the theory are 
discussed below, using a terminology developed by Banks, Percival and 
Wilson (1971, 1972b,c).

(a) The Geometry of an N — Particle System.
In this theory a particle is supposed to have no shape or internal 

structure which affects its interaction and all N particles are assumed 
to be distinguishable. In order to describe the positions and velocities 
of all the particles at any time it is convenient to define a body as a 
non-empty set of particles. In particular a simple body is a particle, 
a composite body consists of two or more particles and a j<- particle 
body has exactly K particles. Two bodies are distinct if there is a 
particle in one body which does not belong to the other. Two bodies 
are disjoint if there are no particles belonging to both. Since the 
empty set of particles is not a body and since each particle may or may 
not belong to a body there are M g  = 2. - I distinct bodies in an

N - particle system and there are distinct K — particle bodies
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where / V  is the well-known binomial coefficient.K *
Each body may be labelled by a positive integer J where 

i 4 I « NB • In particular the labels may be ordered so that the label 
of a K, ~  particle body is smaller than the label of a Kz~~ particle 
body if K,< ^  there is no natural order but, once
the particles have been arbitrarily ordered with labels I -  , a
particular order within the particle bodies may be suggested by
symmetry arguments. Thus, in the 3 “" particle system the seven bodies
can be labelled so that I , 2. and 3  are the particles, f an<̂- 6
are the 2. —  particle bodies ( 2 ,*) , (3,1) and and 7
is the 3 — particle body

In the N  —  particle system each body X  kas a mass 7T5j which is 
defined a3 the sum of the masses of its constituent particles. At a
given time each body I  also has a position and a velocity ^TLl
in an arbitrary Galilean rectangular cartesian frame of reference L  .
The position and velocity of a composite body are defined as the position 
and velocity of the centre of mass of its constituent particles.

In addition to the laboratory coordinates h i  > of each
body I  it is also convenient to introduce relative coordinates between 
disjoint bodies. The relative coordinates between bodies which are not 
disjoint are not usually required since these bodies overlap. The number 
NR of sets of relative coordinates of position and velocity is not

trivial to obtain, but can be determined by considering the square array of
distinct-body labels against distinct-body labels. The value of N R  is 
Obviously less than the number of array elements lying above the diagonal
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of this square array. Since the hody contains all the particles,
it is not disjoint with any other hody and hence the final row and column 
of the array can also he deleted. Then

n r ^  (a"'1 - 0 ( ^ “ *) -
The precise value of N R  can he found hy considering the possible
number of relative coordinates between Kt —  particle bodies and disjoint 

particle bodies. Then t .r~ [ {i ' i r;r«.
where the binomial factor ( j  ) is zer0 for T<J and 27 CL̂

■ I
is to be interpreted as zero if The factor multiplying
the term ( is necessary avoid counting cases in which
twice. For N ®  I *2. , 3  9 4r and 5  values of N R  are
O  , | , ( , 2 5  and 90 .

As in the case of the laboratory coordinates, the relative coordinates
may be labelled by R I  , I  = l; N R  . The labelling may be 
arranged so that the label for a relative coordinate between a |Ĉ—  particle 
body and a disjoint (k,+kJ- particle body is less than the label for a relative 
coordinate between a Ky- particle body and a disjoint ^-particle body 
if < * > * !  . If K^rK, then IC^Ki . If K,sr Ka and R 2 * K ^
there is no natural order, but as in the laboratory-coordinate case, a 
particular ordering may be suggested by symmetry arguments. In the

particle system the six relative-coordinate labels are defined by 
the pairs of disjoint bodies

and Hence
r*> - - jcv> i  f *“ 1 9  (2.1.2)
y*, = J
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etc. The convention governing the signs in equation (3.1.2) is arbitrary, 
but must be used consistently.

Each set of relative coordinates RI has an associated relative 
body X whose mass is equal to the reduced mass of the two disjoint
bodies from which the relative body is formed.

It can be seen that the list of useful bodies and relative bodies and 
their positions and velocities at any instant may be formidable. However, 
not all these vectors are required to determine the motion of the |\) —— particle 
system at all times. The motion of the system can be obtained if a time *1/ 
and the positions and velocities of all the particles at that time are 
prescribed^for then Newton's equations of motion can be solved, provided 
all the particle-particle interactions are known. The set of ( 6 N - H )  
real numbers defines the classical state of the N —  particle system in 
the laboratory representation. This state may be regarded as a point in 
a £610+1) dimensional space. The motion of this point is determined 
by Newton's equations of motion. Any equivalent set of or more
real numbers which also defines this point defines the state. Useful 
alternative sets of numbers may be termed representations. In particular 
the standard representation may be defined as the set consisting of the 
time t  , the laboratory position and velocity of body (2-1) together 
with all the relative positions and velocities of the particles. The 
equations of motion are simpler in this representation^ since the motion 
of the centre of mass may be solved independently of the relative
motion and since the particle-particle interactions depend on the relative
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positions and. velocities only. The laboratory and standard representations 
are extreme cases of the useful representations. The laboratory represe
ntation is most useful when the particles are all sufficiently far apart 
from one another for the interactions to be negligible. Intermediate 
cases are also possible. To describe the intermediate cases it is convenient 
to define an arrangement of the N  —* particle system as an exhaustive set 
of mutually disjoint bodies. Thus, no particle is common to any two bodies, 
yet every particle is included in some body. For each distinct arrangement 
a representation can be defined by the set of real numbers consisting of the 
time and standard representations of each of the disjoint bodies at that 
time where, for this purpose, each body rnay be regarded as an independent 
K — particle systenijwhere K is equal to the number of particles in 

the relevant body. In the special case in which N»| the standard 
representation is identical to the laboratory representation. The total 
number of such representations can be determined as the number of ways N 
distinguishable particles can be placed independently into H  boxes 
without regard to the order of the boxes or the order of the particles 
within each box. total number of representations N  —
particle system under this scheme is therefore given by

N KEf *  2  ( N  •" »a “ ) , (3.1.3)au msc$ ai juch r<n = ’
where ,Q.|a) is the multinomial coefficient defined and
tabulated by Abramowitz and Stegun (19^5 PP* 823 and 831). is
also given by

Cm)cm;
=  2 L . ,  ,i m - » (3.1.4)
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(m)
-where Vd is a Stirling number of the second kind and defined

and tabulated by Abramowitz and Stegun (19^5? PP» 824 o,nd 835).
Alternative representation schemes are possible but may not generalise 

easily and efficiently for systems of more particles. The present scheme 
is identical to that used by Abrines and Percival (1986a) for M = 3 in 
the case of the standard and laboratory representations, but is different 
for the intermediate f £ -H ) —  particle representations, though the 
arrangements are identical. They chose the f a+O- particle representation J 
to consist of the laboratory position and velocity of the centre of mass *7 
at time -fc, together with the relative positions and velocities ^  and 

"VTflx between particles J" andK, and JT^j+3)an<̂  V]z. (1+3) between 
particle X  body (r+3) , where X  , 0* and K  are cyclic permutat
ions of (\jX)3') , which will be written henceforth in the form £( X ,T, KV] . 
In the natural extension of their scheme to the J\j —  particle system the 
representation of a general arrangement of disjoint bodies consists of the 
relative positions and velocities between all particles in each disjoint 
composite body, as in the present scheme, together with the relative 
positions and velocities between all disjoint bodies at some time p and, 
finally, the laboratory position and velocity of the centre of mass (2^-1) 
of tho |sj — particlo systom at that time. This scheme has the advantage 
that all important relative positions and velocities are immediately 
available for computational purposes, but suffers from the disadvantage 
that the intermediate representations do not factorise into a sum of 
independent standard representations for each, disjoint body.

The case M  = ;l is also identical in both schemes and



has "been treated in Chapter 2 where the symbol Cj has been used in place 

of 3  for the centre of mass of the two particles.
Neither of these schemes is exhaustive in the sense that certain 

laboratory or relative vectors are excluded from all representations for

can be determined from linear geometrical relations.

(*) The Equations of Motion
Given the forces between the particles and given prescribed initial 

conditions, the equations of motion of the M  —  particle system can be 
solved exactly (usually numerically) in any representation, though, in 
practice, the equations are simpler in certain representations.

Thus, in the case of an isolated system of three particles with 

charges j an<i 3 tiie eQ.ua‘fci°ns motion in the laboratory
representation are

all N » 3  However, given a representation in either scheme, all
other representations and all laboratory and relative vectors of significance

A t  • y«.t

A t  " t . u  ili +  fur + ^l i k  T iL t K i C K (3.1.5)
where

V * * . .  2
(3.1.6)1

(3.1.8)

(3.1.7)
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jf*x - JflT -  J£l k . , (3.1.9)
and

N t =  > / W j  , (3.1.10)

for X  = lj A  and 3  and all £  ̂  ^  / 1  . Equations
(3.1.5) constitute eighteen coupled first-order non-linear differential
equations, which partition into three independent sets of six coupled
equations of motion for each particle separately, if the nine functions
T  ̂ / satisfy the conditions•'LHM j

^ L M  ( y^LM^ 1 (3.1.11)
for all M  and M ' s  1,2,3 , where is the well-known Kronecker
delta symbol* These conditions are equivalent to the condition that the 

nine coupling terms 3 l M m ' ̂ ^  v/kere

3i.n«/ c  —  ^ m m / ’ (3.1.12)
•for all â e all identically zero, which is only true
either if the charges are all zero or else the masses are all infinite.
In either case the particles move uniformly since then ^Lm f e n )  is 
also zero for M » I , 2 9 • Even if the coupling terms are not all
zero the equations of motion (3*1*5) partition approximately if the ^ M l i 7 
are all sufficiently small, which is true when the distances between all 
three particles are sufficiently large.

In the standard representation the equations of motion are

*  «■*ru1 I

O  J (3.1.13)

for the uriform motion of the centre of mass / together with the
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independent equations of motion of particle J relative to K , and. K  

relative to X > say,

~ V k r  1 (3.1.14)
and

where

and

}-Tfccr " V r t

Hftjr -  i*;rx V^x •+ fit* J  9 (3.1.15)

+ Tr*? *+ Jrk - Y r i +V~£K - £  , (3.1.16)

Nlj (3.1.17)
r*ax 3 ^

_ hJK "Zk ^ i---=- J (3.1.18)y- w

M x — -- «, (3.1.19)
v & n 3rfi?l

-f f r  Z A  ^  hJr ^ * (3.1.20))- JL_J^ x ’

^ R J  ~ > (3.1.21)

for The twelve coupled equations of relative motion
(3.1.14) and (3.I.I5) are simpler to solve than the laboratory form (3.1.5). 
They partition into two independent sets of six coupled equations for the 
motion of particles CT and K  separately relative to particles K and I , it 
the coupling terms

3 R M M / Ofti, fgy) - ~ ^nri/ j (3.1.22)
■£or M. M X  CT
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all are zero, which is true as in the laboratory cases, and in the two 

additional cases "Zj-^  = 0  with  ̂ and ^g* - 0 with
N x ^ o  , which correspond respectively to uniform motion of particle 
J or cr relative to particle K  ? of infinite masŝ  together with

solution of the latter two-particle problem is discussed in chapter 2. 
Even if the coupling terms are not all zero, the equations of relative 
motion partition approximately, if all the coupling terms are sufficiently 
small. These conditions are satisfied by a classical model of a highly- 
charged helium-like ion when /rj /v' ^  ̂ 3

The equations of motion in the fa + i)  - particle representation J

of Abrines and Percival may be written

as above, together with the equations of motion of particle CT relative

non-uniform motion of particle £T or X  relative to K. . The

to particle K , particle X relative to body
of mass of X  and 1C ,

81 (1+3) 1 R&T+3) (3.1.23)

and
S r fI+3) = X V  f 1+3)

X^^T+3) ~ (I+3')X /n .9 \fr*.9 \Ser (r+3)i^Rr * (3.1.24)
where

(3.1.25)

"S ~ R I ~ S r V (3.1.26)
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^R(r+3il RI ■> JTitfc+3> (3.1.29)
and

XU+i)lr+i)U r t & A t e & l a d  =  2 y s +  * '’W
for all [ 4 i ,  j , .

^ y (3.1.30)
* **

The twelve equations of relative motion (3.1.23) and (3.1*24) 
partition into two independent sets of six coupled equations for the

for M.m'= r,(l+3), are all zero, which is true , as in the laboratory and
standard representation caseŝ  and in the additional case Zx - 0  (without
the restriction ) which corresponds to uniform motion of particle
I  relative to hody (I 4- 3) • Even if the coupling terms are not all
zero, these equations of relative motion partition approximately when the

90^ / are all sufficiently small, as is the case for a classical KM M
hydrogenic atom or ion weakly perturbed by a distant charged particle.

The system of twelve coupled equations of relative motion (3.1.14) 
and (3.1.15) in the standard representation was selected by Abrines and

motion of particle \T relative to particle K and, separately, of 
particle X  relative to body (lV3) if the four coupling terms

dHnn'fax ,fkririo} = (3.1-31)
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Percival for direct numerical computation. Although these equations can 
be reduced to a system of only six coupled first-order non-linear differential 
equations by elimination of the constants of the motion and the time 
(Yfaittaker 19^5j chapter 13), the resulting differential equations are 
considerably more complicated and so may not be more efficient for numerical 
work.

In the general case of an )s| — particle system the coupling terms of 
the equations of motion in any representation may be. defined similarly. If 
the coupling terms are sufficiently small the solution of the equations of 
motion may be determined to any degree of accuracy by direct numerical methods 
or by perturbation expansions (see, for example, Born i960) of which the zeroth- 
order expansion is the exact solution when the coupling terms are all zero.
In general the exact numerical solution and the perturbation expansion of any 
finite order will differ, even if only insignificantly, and so it is convenient 
to distinguish them by introducing the concept of a classical channel of an 
f>| — particle system as an arrangement of the system together with prescribed 

coupling terms, possibly approximate. In particular, for each arrangement 
there are two important channels, the full-interaction channel, in which all 
the coupling terms are calculated exactly from the prescribed particle-particle 
interactions, and, in the other extreme, the non-coupling channel, in which 
the coupling terms are neglected. Intermediate channels, in which some 
coupling terms may be included exactly, but others only included approximately 
or even neglected, may also be useful. tfhus given the state of an ^  — particle 
system at some time t , each distinct channel may lead to a different state 
at any time . A selection of channels, including a full-interaction
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channel, is particularly useful for numerical work, since it is possible, 
in principle, to choose an optimum channel at any time t* ? so that the 
error in the solution satisfies prescribed error bounds,and so that the 
evolution of the state is most easily achieved. After a finite time 
interval the error in the solution in the optimum channel may exceed the 
error conditions, since the coupling terms will generally vary with time. 
However, a different optimum channel can now be chosen and the solution can 
be extended in this way to any time .

In the case of a collision between two disjoint bodies A and. B the 
error in the corresponding non-coupling channel tends to zero as the time t/ 
tends to minus infinity. In this initial scattering channel the bodies A  
and B form two separate isolated particle systems, each of which may have 
well-defined constants of the separated motion. The initia^ scattering 
state can then be subdivided according to the values of such constants of 
the motion. After the collision between bodies A and B, the system will 
usually partition into a disjoint set of bodies C , D each of which
will form an isolated particle system as the time t  tends to infinity.
The corresponding non-coupling channel is termed the final scattering channel, 
which can also be subdivided according to the values of the constants of the 
separated motion.

In the case of a collision between a charged particle I and a bound
pair of charged particles , in which particle 2. has a charge of
opposite sign td that of particle I , say, the possible final scattering
channels are the direct channel denoted by

I •+ ( 2 > V  I ^   ̂ (3.1.32)
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the ionization channel

1 +  (2 ,3 )  — »■ 1 +  Z  1-3 (3.1.33)
and the exchange channel

| ■+■ (2,3) — * d,z)  +  3  . (3.1.34)
It is useful to distinguish the direct-ionization channel, in which 
particle 2. remains closer to particle 3  > and the exchange-ionization
channel, in which particle 2 . is finally closer to particle j . Each 
of the final channels can "be subdivided according to the relative velocities 
of the disjoint bodies and the binding energy and angular momentum of the 
closest pair of particles.

(c) Formal Classical Scattering Theory
The formal classical scattering theory described by Burgess and 

Percival (1968) is useful for numerical work. Let the classical state 
at time "t be X(t) • Let (j(tjfc') be the classical evolution operator, 
that is,the operator which relates the exact solution XCt) at time fc to 
the exact solution X W )

(3-1.35)
Let the evolution operator in the non-coupling channel J
Then the classical scattering operator , which relates the initial
scattering channel I to the final scattering channel may be defined

*y

I im
t^oo
£_-*-oo
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Apart from "border-line cases the final channel P  can be determined 
uniquely. The classical scattering operator is well-behaved in
the limits — «o and 00 9 provided the long-range forces
between the disjoint bodies in the initial and final channels fall off 
faster than the inverse-square law. If this is the case, relates
two artificial states x x hc) and , the initial and fina^
reference states, say, at the same arbitrary time ta by

XF( tc) -  S r x X x a j .

If the long-range forces do not fall to zero faster than the inverse-square 
law, the difference between the coordinates in the states Xrflr.) and 
X F (t0) vail usually be infinite, corresponding to an infinite time delay 
in the collision. For such forces it may be possible to construct modified 
evolution operators and to incorporate the long-
range behaviour exactly. Thus, for example, in the case of charged 
particles incident upon target classical hydrogenic ions, <  M . )  may 
be chosen to treat the separate motions of the bound ion system and of the 
incident particle in the overall charge of the target non. This motion does 
not correspond to an exact non-coupling channel, but rather to an approximate 
non-coupling channel for large separations of the disjoint bodies. In 
terms of these modified evolution operators the classical scattering operator.

Spj- be constructed similarly and is well-defined.
If the coupling terms in the initial channel X  negligible

throughout the collision then may be replaced by u x (fc+ ,t_)
in equation (3*1.36) ^nd hence

SfI - (3.1.38)
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,nd the system passes through, the artificial reference state X  (io) a^X
time td .

It should be noted that the limits in equation (3.1.36) are only 
taken after all three successive evolutions have been achieved. Hence 

only approximate initial and final scattering states X ^ ft.) ancL X F (t+) 

are needed to obtain XF f t . )  from , where

M u  = x a . )  = U t f a Q W i . )  , (3.1.39)
and

X F ( k + )  -  X f t + ) =  . (3.1.40)

Indeed, if or includes any internal coordinates which are
not conserved in the respective non-coupling channel, it is meaningless to 
consider exact initial or final scattering states, since the limits of 
such internal coordinates do not exist. The initial conditions for an 
individual orbit are therefore prescribed in the initial reference state 
Xj( i e) , which may be used to generate sequences of initial and final 
scattering states which lead to a convergent sequence of final reference 
states. In spite of the fact that the limit of the sequence of final 
reference states cannot be evaluated in numerical work, the formal theory 
affords a practical method of determining numerical solutions for 
individual orbits.

The time i in equation (3.1.36) is arbitrary, but, in practice, 
the initial conditions in the initial reference state may be used to 
predict approximate properties of the collision, if fc is chosen to be 
the time of closest approach of the colliding disjoint bodies A and B 
in the non-coupling initial channel X  •
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(d) Classical Models and Cross Sections*
In applications of classical orbit-integration techniques to atomic 

and molecular collision processes the uncertainty principle prevents an 
accurate knowledge of any classical state. In the quantum theory this 
uncertainty leads naturally to a statistical interpretation of atomic 
and molecular phenomena. Since the classical theory leads to definite 
results, once the initial conditions have been specified, the desired 
statistical properties must be introduced into the initial conditions.
This is achieved by treating the classical collision model as an ensemble 
of similar collisions in which the initial conditions are selected from 
suitable distributions.

In the important case of collisions of a uniform monoenergetic beam 
of disjoint bodies A with a stationary target body B t a general 
expression for the distribution e O O  of initial conditions has been 
given by Burgess and Percival (1968). They obtained

1̂ 9 ) (3.1.4 1)
~ 'Ua *

where the position of the centre of mass Jfg of the target system is chosen 
at the origin of a fixed laboratory cartesian frame of reference whose ^  

axis is oriented along the direction of the incident velocity . The
distributions Pa (/<*) and are the distributions of initial
conditions specifying the internal motion of the respective isolated 
systems. These, distributions are chosen to represent the physical systems 
as reasonably as possible. In most cases and are
stationary and isotropic. In the case of a hydrogenic atom or ion the



121

distribution is taken to be the classical microcanonical model

' (3>1>42)

where KYI , t~ and \T are respectively the reduced mass, the relative 
distance and relative speed of the electron and nucleus of the hydrogenic 
atom or ion, Ze is the charge on the nucleus, E is the total energy 
and K  is a normalisation constant. Other models are possible. In 
particular, the Bohr-Sommerfeld model has also been widely used. The 
contrasting merits of such models are discussed in section (4 *1)•

The distribution is defined at the approximate initial
scattering state X j  (t-) • corresponding distribution at the
initial reference state is simple to determine if the force between 
bodies and Q  falls off faster than the inverse-square law. In

this case for stationary

• (3.1.43)
Otherwise }

,re,1fc,V6) , (3.1.44)
where the distribution defined at time may be
derived from the standard distribution S ( i B) -L £ ( V A - v * i )

j. Adefined in the limit as tends to minus infinity, using the classical
theory of scattering of two bodies ^  and B  whose motion is governed by the

evolution operator U'x f a , * - ) - '

In the absence of any interaction body A will cross the ( x , y ) 
plane at the impact-parameter vector b = ( fa Costfy-, b Scyv ĵ >̂ ) •
IV
% ( t „ )  be the set of initial conditions, which, together with the
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time b0 , the variables b and. (J)̂ and any constants of the 

distributions and Ps (^e) (such as the binding energies),
make up the initial reference state xr ( t0) .
be the mean probability that the prescribed initial channel J  leads
to a final channel F for fixed b and (j)̂  . Then

P b ^ b l ( F ) =  J  ^  , (3.1.45)

where W(FjI) is unity if leads to channel F 5 and is zero
otherwise. The total cross section for the production of channel F  
from initial channel I  is given by

oo ZTi
<rx (F ) =  Jo c i b b j d ^  Pb ^ bI (f ) . (3.1.46)

Let C be any function of the initial and final reference states.
Then the differential cross section for the variable C is given by

( W J 7 )

where

~ H f f j l )  ^{Co- 3.1.48)
«

Equations (3.1.47) an& (3»1» 48) may be generalised to include multiple- 
differential cross sections C f o r  prescribed values

of Cl jC-i ? ....... .
If either A or 6  is composite then, in general, H(F)l) is 

an unknown function of Xj-fto) * since it is necessary to determine 
the solution of a three-or-more particle problem in order to evaluate
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Thus the cross sections «i(F) . fj c) and
^x (F ' ) mus  ̂ determined numerically. Numerical methods
hased upon Simpson, Gauss-Laguerre and related techniques (see for 
example, Buckingham 1962) are unsuitable for two important reasons.
Firstly, if the number of dimensions of integration J) in equation
(3»1.46) is large, then the rate of convergence for such methods is of

*Vdorder N  where N  * is the number of function evaluations and c* is
a fixed parameter, close to unity and dependent upon the numerical formula
used (see, for example, Schreider 1964* chapter II). Secondly, in order
to determine the differential cross sections, an elaborate and time-
consuming search procedure may be required to find orbits with prescribed
values of . In contrast, the Monte-Carlo method of numerical
integration (see, for example, Hammersley and Handscomb 1964 and Schreider

-V2
1964) has a rate of convergence of order N  for large N  and all 
values of D  • Furthermore, the function values used to determine the 
total cross section may also be utilised to determine all differen
tial cross sections in the form of approximate unbiased differential dis-

2-tributions, whose characteristic parameters are accurate to order ,
where n f is the total number of orbits whioh result in final channel F . 
Thus, in the Monte-Carlo method, the delta-function restrictions for the 
differential cross sections may be relaxed with the result -&hat the time- 
consuming search procedures are not required.

(e) The Monte-Carlo Method of Numerical Integration
The method is fully described by Schreider (1964) and by Hammersley

and Handscomb (1964)* Various refinements have been applied by Abrines



Percival and Valentine in order to reduce the statistical errors. In 
order to discuss the relative merits of such refinements the theory is 
outlined helow.

Suppose that

0. = d x  1 6 0  , (3.1.49)

and

Jo f  f ^ ) - S . 3 l =  £  ^  , (3.1.50)

both exist. Let ^ be a random variable which is uniformly (rectangularly)
distributed in the interval • Then the unbiased crude Monte-Carlo
estimate b l of 9, is given by

t ,  = J; i f  fill) . (3.1.51)

The corresponding unbiased estimate of the variance 00, is given by

N YffC \l~ ..I L̂
(3.1.52)I

The standard error <St, of the estimate tj is given by

ftl- l^ ' ) ' 4  *  r e f  . (3.1.53)
For large N the values of are distributed normally about 9, with
standard deviation <5t, The standard error <5fc, in therefore
represents approximate ^/3 confidence limits on •

The integral e. may be regarded as the area between the curve
t a n d  the X axis. This area is a special case of an area 0^

bounded by an arbitrary rectifiable curve V7 with equation
The hit-or-miss Monte-Carlo estimate is particularly useful

for determining the area when the boundary f1 is of complicated
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form. Suppose that ^  is enclosed in the unit square and that

(3.1.54)
exists, where H [•f(>.^)3=i ifd.y) lies inside V7 and is zero otherwise. 
Then

= t d* ( i x  [ “ 8 $  =  %  (1-8,) } (3.1.53)
also exists. The unbiased hit-or-miss estimate of is given by

t *  =  N = n ” ’ (3.1.56)

where M is the number of points /) which lie inside P
The true distribution of ih is binomial. The standard error <ffc,2 2-

in fc2 is given by

fl f 82
* iz  ~ I  n  J  1 (3.1.57)

where 9^ is, of course, unknown, in general. V/hen N  is large and 
0^ is not too extreme?the binomial distribution of may be

approximated by the normal distribution about 0^ with standard deviation

■a f h  ( tt) 7 ,/x
2 "  l  “ n Z P  J • (3.1.58)

However, even when N  is large, if is sufL'iciently close to zero
or unity, the normal distribution does not approximate the binomial dis
tribution. The error estimates are then no longer symmetric about 

because of the boundary conditions \ . If it were true that
M  tended to a finite value as N  tended to infinity, then the dis
tribution of M  would be of Poisson form. Although this is not the

case, for large N and M M  , the Poisson lav/ suggests an error
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estimate of the form
fi -£U _L

2 H  ’ (3.1.59)
In the region between the normal and Poisson limiting forms of the binomial 
distribution, approximate error estimates are given by Hays (l9^3> p. 291) 
and may be written, for small t 2 and large N  , in the form

+  -  ±  2  -T M h h h2 (N+i1-) 1 2fJ I n  J , (3.1.60)
where ^  is the number of standard deviations required to yield prescribed 
confidence limits for the normal distribution. Hence, the case |
corresponds to approximate 2/3 confidence limits. It is easy to see that 
equation (3.1.60) has the correct form in the three limiting cases 
tends to zero, ~%l tends to infinity and N » M » 1  . if is close
to unity, then equation (3.1.60) should be applied to •
The arcsine transformation (see for example, Zubin 1935) has also been 
applied to the case of extreme probabilities in order to obtain error 
estimates which are approximately independent of 02 . However, the 
transformation introduces a small bias of order IJbX into the estimate ,

Any integral of the form Dj defined in equation (3.1.49) may be 
expressed in the form 02 , given by equation (3.1.54) by choosing

where for X ^ O  and otherwise.
However, Hamrnersley and Handscomb (1964) show, in this case, that the hit- 
or-miss estimate has a larger standard error than the crude estimate i {.
Thus, the hit-or-miss techinque should only be applied in preference to the 
crude method either when the boundary -O cannot be handled easily,
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or when several additional integrals of the type

0z(ci,c2 r-  ,c*) = j'ay i.6i)
0 0 *have also to be evaluated.

~,/zIn both cases, since the convergence rate is only Nj , it is 
important to investigate possible ways of reducing the variance CO 3- 
and hence the standard error 8tt of an estimate . Hammersley and
Handscomb (1964) and Schreider (1964) discuss several methods of variance 
reduction for the crude estimate . These methods should only be
applied with extreme caution to [) — dimensional integrals of the crude or 
hit-or-miss type. Thus, for example, for D=6 (as is the case for many 
of the integrals treated later in this thesis), one-dimensional rules 
employing 2, 3 or 4 function values, become rules employing 64, 729, and 
4096 function values respectively.

In stratified sampling the range of integration of the integral Qj 
is divided into K  intervals î j) » where 0 i
and, in each interval, the crude estimate is calculated independently.
Hence

K o< K \

r-i °<j~t x-1
(3.1.62)

has an unbiased stratified estimate ’bj given by

1 = 1 rr j ~ 1 (3.1.63)
where {sj is the predetermined number of function values to be selected
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in each interval • Z* each is proportional to h-j- 5 the
stratification is uniform and the standard error of t’>e estimate

is never worse than the error . A non-uniform stratification may-

lead to better or to worse results. \7hen each Nr is large an 

estimate "W!^ of the variance is given by
^ hi V* ̂  - 2 .

n1(mx- i )  a  ( ^x3- " 4 ' , (3.1.64)
K.

where n - r * r is the total number of-function evaluation
x~i

J'lT • J  ( °<z_, +  §x3-) , (3.1.65)
and _  t̂ r

*X =  N x K = >  ‘ (3-1-66)
The standard error is therefore given by

^ 3 ~  ( -  (3.1.67)
For an integral of the form 0^ , both integration ranges may be

stratified simultaneously. Suppose that the range of X is divided

into K intervals h* , and- that the range of is divided into L

intervals h j  s (/S? wher@ 0 I * In ^  stratum fl^j)
of area h k T suppose that N^j function values are chosen. Then an X j
unbiased hit-or-miss stratified estimate ■i of the integral

e2 >  Z  Z  f I <**
T=| r"‘ K-,

~  r L’ fcT .'I K hx , (3.1.68)
T -< x — I 0

where X r ^ .  + ̂ x '  ®"d J/= & _  + kj ̂  ^  given by

i -  T L k V  h r III (3.1.69)4- K? l  a  — 7- 5J5 | N u
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where is the number of points satisfying in the
stratum (T^Zf) • When all the Nj-y are large and all the M u  a**e
not too extreme, an estimate of the variance may he written

~ 4 -  Z \  l \ .  ”■ # * ? ? * ' >  '> » • “ " »T 7=' 1-1 ^ r a - f ^ u - O

so that

l t ) ' ‘ . (3-1-71)

If several are extreme with all NJjj- large,then the contributions
to 6t+ from such strata may be calculated using equation (3«1.6o) instead 
of equation (3.1.58). However, in practice, it is also possible to select 
a stratification scheme in which each unity. In this case
equation (3*1.7 0) does not apply, but an upper bound to rnay be
obtained by substituting "fĉ  for in equation (3.1*58), or else in
equation (3.1.60) for extreme . This scheme is usually more accurate
than the hit-or-miss technique, since the density of points, at which the
function is evaluated, is more stringently controlled, and,
since the contributions to the area from all strata which do not intersect 
the boundary £(%0y)z:O are determined exactly by just one function 
evaluation.

The technique of stratification may be regarded as a particular case 
of importance sampling. In this approach for the integral 0, , a function 

is sought so that for 0^x<.l and,so the indefinite
integral

1-1.72)
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where y(o)ro and y(i)-l , is known analytically. Then, since 

y(x) can he inverted, in principle, to obtain X(y) and as

0 i -  f c L x h * )  -  f ' < h H x C M / 3 l * - w }  >J o o
the crude importance estimate b s of d t together with the standard

error & t 5 are given by substituting f f W & ) 3 / 9 f * ( 5 d 3  for 

Mi) in equations (3.1.52) and (3.1.53). The combined uniform- 

stratified and importance estimates "t^ together with the standard 

error <st6 are given by the corresponding substitution into equations

(3.1.63) and (3*1.64). Importance methods will produce more accurate 

results than the crude estimate when the variation of ■ f M / g c x )  is 

less than the variation of alone. However, a poor choice of

Cj(x) can lead to less accurate estimates.

Importance campling methods may also be applied to integrals of the 

form , but it must be remembered that each function value then has

its own weight ' / g O o y )  •
In the method of control variatec let f ( x )  be an approximation to 

f c o ,  with known integral 0 * Then, the.crude control estimate
and the uniformly-stratified control estimate £g can be derived 

from the identity

0, -  ® +  , (3.1.74)
where the second integral in this equation is estimated by crude or 
uni formly— stratified methods •

The control-variate techiiique is particularly simple in th& case of
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/V
the integral 0^ . Let he an approximation of known area

6 to the boundary • Then

In this equation the value of the integrand of the second integral is 

zero when [ the.,$)>,<> and , or when and
fv .
f o > y )  C p j  , is unity when and , and has

value — I when I'd)*0  and Suppose that the second

integral in equation (3.1.75) is evaluated by the hit-or-miss technique. 

In the .sample of N  points suppose that the numbers of points lying 

inside the four mutually-exclusive regions defined above are 0. , d  , 

b and C  respectively. Then the hit-or-miss estimate of the 

original integral 9 2 r given by equation (3.1«54)> is obtained by 

setting 1*1= CL+b . However, the hit-or-miss control estimate ^

is given by
j. -  fl +

(3.1.76)

with

i f  I  ( h ± y  -
^ L N f N H j  *

(3.1.77)
provided b and C are not too extreme. Similar results will be 
obtained if hit-ornni&s sampling is replaced by uniformly-stratified 
sampling.

Of the remaining variance-reduction techniques the regression method 
generalises simply for higher*dimensional integrals. In this approach
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several independent unbiased estimates of the unknown integral must.
be available. . Then, since any weighted arithmetic mean pf estimates
is also an unbiased estimate, it is possible to determine one set of
weights for which the variance is.least. As an example, the least-
variance estimate "th • obtained from the hit-or-miss and hit-or-missmin,
control estimates of the integral 0 is given by

, , (ab+2bc + c °0  (a + b ) + (W-bcj §  +. (bj?) j
<?rW (A ‘ ~  ~ iJ fZ T c ) ( b * c L ) ~ ' (3.1.78)

with

St • ‘n- ' ^  (c+d} 4- 7
N(tsl-'l)/‘a+c)rb^) J ’ (3.1.79)

provided Cu , b , C and oi are not too extreme.
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3.2 Collisions between Charged Particles and ITeutral Kydrogenic Atoms

(a) Geometry
Let Incident particle | have charge and mass 7Y1( . Suppose

the target atom 4  consists of two particles 2 and 3 of mass ')ryjx 
and 7^3 and charges - + 6 and “Z^-srid, respectively. If the 
magnitudes of the three charges are different, then the theory must he 
modified to allow for a long-range Coulomh attraction or repulsion in a 
rearrangement collision in which particles | and 2  form a hound 
system 6  and particle 3  is free. However, there is no restriction 
upon the masses of the particles.

(t) Initial Conditions
In the initial reference state the target hody 4  is located at 

rest at the origin 0 of a laboratory Qalilean coordinate system
) . Let the reduced mass associated with the motion of

particle 2. with respect to particle 3 be Yfi and let the relative 
position and velocity vectors at time he jf’ and IT •
1'Teglecting relativistic effects the total energy £ ~U , where

J «  E  Xr ■tn-ir 3 (3.2.1)
the angular-momentum vector L. , where

(3.2.2)
and the Runge—Lenz (perihelion) vector

3

where

(3.2.3)
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are all constants of the unperturbed motion (see, for example, Landau and 
Lifschitz i960). The orbit of the bound relative motion is an ellipse. 
For a prescribed total energy -(J the seminmajor axis CL of the
ellipse is given by

CL —
a(J (3.2.4)

The plane of the ellipse is perpendicular to the angular-momentum vector 
whose magnitude is bounded by Lftflix > 't̂ie angular-momentum magnitude 
in the circular orbit of the same total energy. Obviously,

L mcLX -
(3.2.5)

The eccentricity £. of the orbit is given by

^  ■ 1 -  ! £
i-mML ' (3.2.6)

The parameter , defined as
L*
Lrr\<\x (3.2.7)

is a convenient alternative to €> • The period "T" of the bound
motion is independent of the angular momentum for a fixed energy. Hence

"r =  ^  • (3.2.8)
In a cartesian coordinate system oriented so that ■g
lies along L and x y lies along N  , the relative position 
and velocity vectors t 1 and are conveniently parametrised by
the eccentric anomaly IL in the form

t ' -  ^  (3.2.9)



Y/here the eccentric anomaly It and the time t  relative to the 
time at the perihelion distance are related by Kepler’s equation

6 Sin U. . (3.2.11)
T

Formally, Kepler' s equation has the following explicit solution for U. (/O

U(i>= Tli£i) s , a ^ t  5
5 = 1 5 ‘

where is the ordinary Bessel function with argument X  and
integral order Vi . However, for simple numerical work, equation 
(3.2.1l) can be solved directly (see Abrines and Percival 1966a).

O r ̂  / yW /\.\( j'i / with respect to the 
laboratory frame o(*,3,2) may be compounded from three successive 
rotations through the positive Euler angles , 0 and (f>

A yy yA
about the fixed and 2 axes respectively, where

0 < 0  < TT an(̂  <f> . The parameter jl where
n =:Cos9 ; x
^  (3.2.13)

is a convenient alternative to 0 •

The state of relative motion may therefore be completely specified 

by the variables U , fi , t =  V t  , <j> , f  and
u. . Abrines and Percival (1966a) show that if the variables ,

and are all selected independently 

from a uniform distribution for , the microcanonical
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ensemble defined by equation (3.1.42) is generated with total energy 
E--U • Tb© specification of the initial reference state is completed 
by prescribing the time -fc0 and the position V~u  and velocity of
the incident particle.

For convenience, the time t is chosen to be zero. The velocity 
of the incident particle is chosen, by convention, along the axis.
It will be shown that this convention together with the 3ule.r-angle 
conventions obscures a dynamical condition,which helps to discriminate 
between different possible final channels. The position of the incident 
particle may be fixed by the unmodified impact parameter b which may 
be chosen by convention along the y axis, since the target distribution 
is spherically symmetric. Hence

5-i =  (.Ojbjo) , (3.2.14)

y i.  = (3.2.15)

and the initial reference state is completely specified. Apart from 
border-line cases each initial reference state leads to a unique final 
reference state with a definite final channel. Abrines and Percival 
(1966a) have shown that total cross sections are obtained when the 
variable is distributed in the range [o/ /] ,
where is chosen sufficiently large to include all collisions
of relevance. It is not difficult to show that the most efficient choice 
of is the smallest possible value if Monte-Carlo methods are
used to evaluate the cross sections. However this smallest value can
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only be determined precisely from the results of a large number of 
orbits. In practice a guess for b mcoc is made. If it appears 
that the guess is too small,then it is always possible to choose 
additional orbits with fc> lying between the original guess and some 
larger value. Since the statistical errors in the total cross sections 
are proportional to is important to determine whether an
alternative coordinate to b can be used.

Suppose that the target atom consists of an electron and a much 
heavier nucleus. Then, if the velocity of the incident particle is 
much greater than the velocity in the circular orbit of the target atom, the 
energy transferred to the atom in a collision is given approximately by the 
energy transferred to the electron, treated as free from the nucleus 
during the collision, when the energy transfer is comparable to or 
greater than the ionization energy (J • Thus, the energy transfer 
depends not upon the position of the nucleus relative to the position 
of the incident particle, but upon the position of the electron relative 
to the incident particle. The modified impact parameter ]/ is 
therefore measured from the projection of the position of the target 
electron in the (iity) plane at the initial reference state. Hencp

~ , °) , (3.2.16)

where the position of the electron is ILe at the initial reference state. 
It is not immediately obvious that b'* is uniformly distributed. 
However, suppose that the atomic state is held fixed, apart from the final 
Euler angle of rotation about the ^  axis. Then, if instead ,

the rotation is performed upon the incident particle in the opposite sense,
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the orbit is essentially unchanged. The distribution of the plane - 
polar coordinates 0>, 0) of the incident particle corresponds to 
a uniform beam of particles crossing the (id). plane. This beam 
could be described equally-well by coordinates relative
to the projection of the position of the electron in this plane. Since

/ i 2.is also uniformly distributed, then b must be uniformly dis-
tributed. Finally, if b is uniformly distributed for one atomic
configuration, it is uniformly distributed for all atomic configurations.

,/2For high incident velocities D ma,x. should be smaller than 
b max 5 and hence the standard errors in the total cross sections 

for strong collisions, such as ionizations, should be reduced. For 
extremely weak collisions the cross sections are dominated by large 
impact parameters and the distinction between modified and unmodified 
impact parameters is negligible. For intermediate impact parameters it 
is not clear which technique yields more accurate results. The surprising 
accuracy of binary-encounter theory for strong collisions at lower incident 
velocities suggests that the strong collisions will be more concentrated in 
the modified impact parameter than in the unmodified impact parameter.
The modified impact parameter is therefore preferable for strong collisions 
and all incident velocities of the order of V 0 and greater.

It is now clear why the restriction upon the mass ratio of the two 
target particles was made. If the two target particles have comparable 
mass?then both particles can receive significant energy transfers and 
hence orbits with large energy transfers may be grouped about either of 
the projections of the target particles in the plane. Fortunately
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this complication does not usually arise in practice.
It should he noted that the impact-parameter modification is taken 

relative to the projection of the position of the target electron in the 
plane passing through the centre of mass of the target atom and oriented 
perpendicular to the incident velocity. A vector modification is also 
possible, but, in order to prevent correlation between the projections of 
the positions of the incident particle and the target electron parallel 
to the incident velocity, it is necessary to introduce an additional time
variable which is uniformly distributed in some unit
range, say Qo, ij , since the unperturbed motion of the target system
has period t  . Then, the vector impact-parameter modification is
achieved if the incident particle is located at the point

in the initial reference state.
This technique suffers from the fact that an additional variable is 

needed to specify the initial reference state, but is essential for 
special applications in which arbitrarily close encounters between the 
incident particle and target electron are required.

The approximate initial scattering state is controlled by the 
dimensionless error parameter $ • The time tM)  at the initial
scattering state is given by

p-i - ( x ue » yLe-,‘ t , '£|_e+ Pcel ) , (3.2.17)

■fc (3.2.18)
The initial scattering state is obtained by evolving the initial reference 

state in the initial non-interacting (2+0 -particle channel | through
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the time interval ft.- t„) • It is easy to show that the potential-energy
terms between the incident particle and each of the target particles in 
the approximate initial scattering state is bounded by

(c) The Numerical Solution of the Equations of Motion.
In the. present work the approximate final scattering state is computed 

from the approximate initial scattering state by solving the equations of 
relative motion (3*1.23) and (3*1*24) approximately. The solution is 
advanced step-by-step using a standard fourth-order Runge-hutta formula 
(see for example, Buckingham 1962, p.242, equation 8 .41) with a time 
step which is recalculated at each step according to the formula derived 
by Abrines and Percival (1966a, equation 31') until an approximate final 
scattering state is attained. The overall accuracy is controlled by a 
dimensionless error parameter £ . The time-step formula is based ppon 
the classical scaling laws for Coulomb interactions and is a generalisation 
of a simplified formula for the relative motion of two charged particles 
based on a Taylor expansion.

The most serious disadvantage of this method is that an absolute 
potential-energy error can become large if a relative distance becomes 
very small,even though the relative error may remain approximately constant. 
For weak collisions large potential-energy errors arise predominantly from 
highlyeccentric orbits of the target system. These errors can be 
moderated by multiplying the time step by an additional factor A  which 

is constant for a given orbit. A more detailed investigation by

(3.2.19)
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Valentine (1968) showed that in any close approach of two particles^the
absolute potential-energy error could be moderated by multiplying the

time step by a factor Yj^ ̂  instead of /+ 9 where Y^j is the
appropriate relative distance. Hov/ever, Valentine claimed that the

refinement improved only j °/o or 2 %  0f the individual orbits with
increased computing time. In the present work the time step with the 

1/factor ft * has therefore been used, though neither method is really 
as satisfactory as a perturbation expansion method, say.

(d) Exit Tests
The approximate final state is attained when prescribed exit tests 

are satisfied. These tests are listed in Abrines and Percival (1966a). 
For final direct and exchange channels the error parameter $ is used 
in a similar way to that in the construction of the approximate initial 
scattering state. For final ionization channels an additional 
dimensionless error parameter 8 is employed. The approximate final 
state in an ionizing orbit is attained when, for each pair of particles, 
the absolute ratio of the potential energy to the binding energy is less 
than 8 . Other simple exit tests are required to prevent orbits
stopping prematurely.

(e) Scattering Parameters
In principle^ the approximate final scattering state should be evolved 

backwards in time without interaction to determine the final reference 
state. All scattering parameters can then be calculated from the initial 
and final reference states. This procedure would be essential if, for
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example, the final value of the modified impact parameter or the final 
value of the eccentric anomaly were required in a direct or exchange 
collision. However, in practice, the scattering variables of interest 
can be calculated from the initial and final scattering states.

(f) Determination of Suitable Error Parameters ft , £ , &
The values of the error parameters must be chosen with regard to 

the conflicting demands of time of computation and of accuracy.
The-error parameter £ is important only for ionizations. Owing

to the form of the adjustable time-step formula;the computing time is 
insensitive to large changes in S . The value of S may therefore 
be selected to yield errors of the same order of magnitude as those 
introduced by £ and

The error parameter $ controls the initial potential-energy error 
bound defined in equation (3.2.19) and a similar final potential-energy 
error bound for final direct and exchange channels.where (J is replaced 
by the corresponding final binding energy. In contrast, the round-off 
error in the numerical solution of the equations of motion is approximately 
inversely proportional to )f since J( is roughly inversely proportional 
to the total time interval of evolution.

The truncation error in the■numerical solution of the equations of
Amotion is approximately proportional to £ , provided that the error is 

not too large. Hov/ever, for small £ the round-off error is also 
approximately inversely proportional to £ • Thus, if the computing
time were irrelevant, the most accurate choices of K , £ and £ would 

be the smallest values above the limits of round-off error.
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In practice the computing time is important. Usually, the total 
computing time is dominated by the time required to solve the
equations of motion. Neglecting complicated collisions

- t  ^  k h L  , vO '  ’ <3.2.20)

where Vĵ { is the initial velocity of the incident particle, N  is the 
total number of orbits and is approximately a constant^whose value
depends upon the computer available. If complicated collisions are 
important then this value of “tc is probably too small. For incident 
protons the value of k was found to vary by only about 2 0 1 for 
incident velocities in the range O.^XTq £ 'UL, 'X.\rQ .

In the present work the values of the error parameters , £ and
S  are chosen by trial and error using a small sample of orbits. The

usual criterion is that K and £ are chosen as large as possible ,
subject to prescribed error bounds in the scattering variables of 
interest and in the constants of the motion. The value of S is not 
normally critical. In this way a fixed computing time is used to 
calculate as many orbits as possible.

(g) Generation of Pseudorandom Numbers.
The uniform distribution of random numbers is generated from the 

pseudorandom sequence

£. = ex £•_. -+• C ( Modufo rYb) .5t ' ‘ 7 * (3.2.21)
with Cl- 12.7 , r*l - 2. and C - O  . Some of

the properties of this sequence and of other similar formulae are



discussed by Hammersley and Handscomb (19&4)*



3-3 &xact—Classical Total Cross Sections for Protons Incident upon 
Atomic Hydrogen.

(a) Introduction

The earlier results of Abrines and Percival (1966b) were obtained 

using an 3MA computer program which was run on the University of London 

Atlas computer. Their results are extended in this work to lower incident 

proton energies using the more general and flexible FORTRAN computer 

program developed by Percival and Valentine (see Valentine 1968). All 

computations have been performed on the Chilton Atlas computer.

All cross-section data are presented for target atoms in the ground 

state. Using the classical scaling laws the corresponding cross-sections 

for target atoms initially in a uniformly-populated (mi crocanonical) level 

%  may be readily obtained. Although atomic units have been used 

throughout, it is convenient to express the incident proton energy in 

Kev. and also to use incident velocities for comparisons with infinite- 

mass models. The approximate relations that a proton moving with an 

atomic unit of velocity has an incident energy of about 918 a.u., which 
is approximately equivalent to 25 Kev., have been used.

(b) Calculations

In table (3.3.l) the incident energies in Kev., the maximum value of 

the square of the impact parameter in Q , the error parameters £ , 

and $  , the total number of orbits successfully integrated, the

total numbers in each of the mutually-exclusive final channels for direct 

excitation, ionization and charge transfer, and the approximate computing
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in
7
10
20
68

ftm

18
20
17
11*

0.16 
0.17 
0.18 
0.25

0.04
0.04
0.04
0.10

0.005
0.005
0.005
0.005

500
699
1499
2500

384 j 0 
580 1

1139 34
1986 406

116
118
326
108

T
id

3.0
3.6 
5.3
1.6

Table 3*3*1 Preliminary data for exact-classical p-H results.
A * in the first column indicates modified impact parameter? other
wise unmodified. See text.

E,
in
Kev.

Oinrai)
r  ...........

7* 0 +03 4.18 T 34 4.18 T 34
10* 0.03 * 03 3.38 T 28 3.40 ? 28
20* 0.39 * 07 3.70 ¥ 18 4.08 * 19
38.1 1.35 * 13 2.19 * 18 3.54 * 22
54.4 1.69 * 12 1.07 ? 12 2.76 ? 16
68 1.81 ? 13 0.55 T 09 2.36 T 15
68* 1.79 T 08 0.48 T 05 2.26 * 09
81.6 1.63 * 12 0.31 T 08 1.94 *F 14
95.2 1.57 * 11 0.17 * 04 1.74 12
108.8 1.39 *F 10 0.07 * 03 ; 1.46 T 10
136 1.13 T 09 0.01 ¥ 01 1.14 ¥ 09
1.63.2 0.96 r 06 0 +01 0.96 v 06
217.6 0.73 * 05 0 +01 0,73 w 05 

........... ...

Table 3«3»2 Total reduced exact-classical p-H cross sections,' 
csh (ionization); <*k (charge-transfer); (electron-loss).

Srrors represent approximate statistical V 3 confidence limits. A 
in the first column indicates present calculations; otherwise, those 
of Abrines and Percival (1966b).
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time in hours are all listed.

The orbits with incident energy 68 Kev. were computed in order to 
check the improved FORTRAN program against the available results from 

the SKA program, since the FORTRAN program had not been used previously 

for production runs.

At incident energies below about 4 Kev. the computing time required 
to obtain reasonably accurate cross-sections is prohibitive with the 

present version of the program. Fortunately, below this incident 

energy,ionizing collisions are rare and the charge-transfer collisions 

have been treated approximately by Bates and Reid (1969bfusing a 
classical adiabatic model together with the Bohr-Sommerfeld quantization 

rules for the hydrogen molecular ion. Thus, the present work fills the 

gap between the exact-classical results of Abrines and Percival (1966b) 
and the calculations of Bates and Reid.

(c) Results for Total Cross Sections.

The exact-classical total cross sections may be calculated using 

equations (3.1.46) and (3.1*56) with standard errors given by equations 
(3.1.58) or ( 3.1.60) In nrtrewe Q & m n.

The exact-classical total oroas aeotiona <TX , <Tfc and ss for

ground-state targets are listed in table (3*3.2) in TT'ag together 

with the earlier results of Abrines and Percival (1966b). It should be

recalled that <f£ includes capture into all final states. The exact-

classical electron-loss cross - section CLoss -*-s just the sum of the 

ionization and capture (charge-transfer) cross sections 0̂  and <Tg
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*?The statistical errors represent approximate /3 confidence limits.

Note that the statistical error in may he derived directly by

using the sum of orbits resulting in electron loss, rather

than by combining the separate statistical errors in (Ĵ. and ? in 

which case a larger estimate may be obtained. The cross sections 

and î-oSS are compared with various classical binary-encounter 

approximations in figure (2.10.1).

In figure (3.3.3) <7̂  is compared with the averaged binary-encounter 

results of Vriens (1967) and the exact-classical ionization cross section 
of Percival and Valentine (19^7) for incident positrons of zhe same 
velocity. Also displayed are the first-Born calculation of Bates and 

Griifing (1953) and the experimental values of Fite et al. (i960) and 
of Gilbody and Ireland (1964-) in the specific case of ground-state 

target atoms.

In figure (3*3.4) <5g is compared with the classical adiabatic 

resonant ground-state charge-transfer cross section of Bates and Reid 

(1969b) and with the corresponding averaged scaled cros3 sections for 
the initial level Xi , since their cross sections do not scale classically. 

Also shown are the exact-classical results of Percival and Valentine (1967) 
for incident positrons of the same velocity, the two-state quantal 

calculation of McElroy (19^3) and the experimental results of Gilbody and 

Ryding (19S6), both of which apply specifically for ground-state target 

a b oms.
If is an exact-classical total cross section for an

incident charged particle moving with initial velocity , and

is the root-mean-square velocity of the electron in the .ground state of
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Figure 3-3-3 Ground-state p-H ionization cross sections. Curves”
A (first-Born); B (binary-encounter). Experimental valuesj full circles 
(Bite et al.); open circles (Gilbody and Ireland). Exact-classical 
results; full squares (protons); open circles (positrons of same 
velocity). Error bars in exact-classical results represent approximate 
statistical confidence limits :it



X

/  /  >- k oV0

- o

T

I
cO( 
_L

>'qj*
0 V ,

u f
M o00

150

. o

- r*

- in

fO

i/i <0 t* o
P
b “

N

■d O
• O

0 O0 P • <rx
ft d̂-
r j r.'i 0">jj £ qb 0

Th •prH ;Tj 0d I—( H
C ♦H r-'i•H ,£« '
«ft •H

CO CO
rH s./ 0rH 1—1
c3 FQ 0

P
O •H
ft • r. O
fl•H <73 rHJ-D rHCO P . r—1q f t0 b•H c3
-P ft n.s
O CO
0 0 0
CO ft qrH
CO f t d
b 00 >
0 1
h 'rJ rH0 q cC

0 O0 0 •H
g ?ht.o

CO0
-p Crj
ft P 1—1
G1 O OO ft 1-P►~»H rd O•H 0
P h 0 Mft r -i
rH

© &tn Q 
? JQ
ft r? 00V

V)
<Ao

m w ftc3 0 0r—1p >O r! 0
ft ftf t0 ft ftOq
O
8>ft f t p0 0 0P ft ft

rH OJO LT\0
. . 0 O IIb ftEh ft qd,b 1—1/■rt

•h ft• ft ftrn q ft•
go •H
0 ft P
£j • r\ O

OhQf 00
•rH 0 1—1

> 0

O
ftO
S

f-l Ou .
n £ftP
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the target hydrogenic atom, then the corresponding cross section 
a'fv/vu-1) -or an incident particle of velocity \f/ and for a 

target atom in a uniformly-populated excited level Tl with root-rr.ean- 
square velocity \fj is given hy the classical scaling lav/

where

md

f __
h it ;  = v i .  , (3.3.2)

-n, up _  ̂ (3.3.3)

The exact-classical results for incident protons in the low veloĉ t-- 
range show a marked disagreement with experimental and quantal
values for both ionization and total capture in the case of ground-state 
target atoms, in contrast to the excellent agreement at intermediate 
velocities 1T0 < qjr < , .  say. It is now well-established (see 
for example, Bates and Reid, 1969a,b) that for l^<iT0 Carrier penetration 
plays a dominant role in charge-transfer processes and consequently also 
in ionisations. The exact-classical results are, therefore, not 
surprisingly, too small in this region. However, for corresponding 
■•itoms in an excited level Yb , the range of scaled velocities,over 
which barrier penetration is significant, should decrease as Yt 

increases and hence for sufficiently large Yl , the exact-classical cross 
sections should be accurate for the velocities considered. These results 
indicate clearly the danger of extrapolating experimental or quantal 
cross sections by classical scaling laws.



(d) The Validity of the Classical Model of Bates and Reid
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The Bates and Reid model (196913) is based upon the classical theory
of the hydrogen molecular ion and employs only those.classical orbits 
allowed by the Bohr-Sommerfeld quantization rules. Nevertheless, for 
large Yu 5 the averaged scaled cross sections should approximate the 
exact-classical microcanonical results, though for lo.w fly the models do 
not correspond. Apart from these differences Bates and Reid make two 
important assumptions in the low velocity limit which can be tested 
directly, although, it may be argued that the present exact-classical 
results are not sufficiently low in incident velocity for the classical 
adiabatic theory to be valid. Firstly, they assume that for each 
allowed orbit, charge transfer takes place with probability if the 
nuclear separation R  is less than R(n ,(Yi ,Xj where YU is the initial 
level of the hydrogen atom and TO and X are subsidiary molecular 
quantum numbers. Secondly, they assume that non-resonant transfers are 
negligible. The scaled averaged low-velocity limit of the classical 
resonant charge-transfer cross section (T (n) is given by

excellent agreement with the exact-classical cross section for capture 
into all states, though the apparent structure in the exact-classical 
cross section for higher incident velocities is not reproduced in their 
model. The extent of the agreement is demonstrated by the comparison 
between the exact-classical charge-transfer probability as a function of

(3.3.4)

As can be seen from figure (3.3-4) the croon section <3^(5) is in



the square of the unmodified impact parameter b and the contributions 
from equation (3*3-4) with

R(n,n»,i) = n.x b ,
(3.3.5)

as shown in figure (3«3*5)*
However, in the exact-classical results, the spread in the dis

tribution of final binding energies is not negligible at the incident 
velocities considered. At lower incident velocities the spread should 
decrease, but this is just the region where barrier penetration becomes 
more significant. The classical resonant capture cross sections of 
Bates and Reid for large Yt are therefore too large at higher incident 
velocities, because capture into different final levels is significant, 
but is not included, and are too small at lower incident velocities, 
because barrier penetration is neglected.

The reasons for the failure of classical methods in treating weak 
excitations at high incident velocities have been discussed by Percival 
and Richards (1970a). They claim that classical methods may only be 
applied if all quantum numbers and all changes in the quantum numbers 
are large compared with unity. The failure of the classical resonant 
capture cross sections of Bates and Reid even for large 71 may be due 
to similar reasons. Nevertheless, if these cross sections are interixreted 
as capture cross sections into all states, the values are accurate for 
sufficiently large n  and for incident velocities above the region of 
importance of barrier penetration, but low enough for their approximate 

theory to be valid.
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Figure 3»3*5 Reduced classical p-H capture probability versus the 
square b* of the unmodified impact parameter at the incident energy 
7 Kev. Pull curve (exact-classical)$ dashed curve (adiabatic model 
of Bates and Reid for initial n = 5 level).
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(e) f̂'ne Validity of the Binary-Bncounter Approximation

It is evident from figure (2.10.1) that the binary-encounter 
approximation to 0̂ . seriously overestimates the exact-classical 
values for low incident proton velocities, even though such collisions 
involve close encounters. If, on the other hand, the binary-encounter 
ionization cross section is interpreted as. an electron-loss cross section > 
then the exact-classical cross section is seriously underestimated
"by the binary-encounter model at low proton velocities. The latter 
result suggests that charge-transfer may take place at low incident 
velocities in collisions for which the predicted binary-encounter energy 
transfer is small. Since the binary-encounter results for'total electron 
loss and total ionization are seriously in error for low incident proton 
velocities5the binary-encounter results for excitations by slow incident 
protons are likely to be even worse than the results for the stronger 
collisions. A similar discrepancy between binary-encounter and exact- 
classical total and differential ionization cross sections for incident 
electrons was found by Abrines, Percival and Valentine (1966), even for 
incident velocities larger than, but comparable to, the initial root-mean- 
s qua re velocity of the target electron.

ix-In the previous and preasnt exact-classical work the value of
was chosen to include virtually all ionizing and charge-transferring
collisions. Since contributions to the exact-classical continuous
differential excitation cross section 0 occur with impact parameters

(t&E
outside this range, the estimate of 4$’d impact parameter*belowaf&E

is a lower bound subject to statistical fluctuations. Ifevertheless
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for eacn individual collision I/he exact—classical and "the binary—encounter
values of the energy transfer AE may be computed. The exact-classical
and binary-encounter contributions to are sketched in figure

aA£
(3*3.6) for the incident energies 68 Kev. and 20 Kev. The striking
disagreement at 20 Kev. may be even worse, since small errors in the
exact-classical orbit integration will tend to broaden the true results for
small AB . The region of validity of the binary-encounter approximation
as a classical model has been given by Percival and Richards (1967). They
argue that the theory is valid when the collision time t - >lb/v» isCol '
short compared with the natural period T-rwo./vi of the target atom, 
where CL is ^ie radius and is the speed of the atomic electron in
the circular orbit of the same binding energy. For low incident velocities 
Xr<<ir and so the region, in which the. binary-encounter approximation isI © /
valid, yields a negligible contribution of order TTD = rr<M_L| to the 9 J 0 0 cot W
total electron-loss cross section (Tgoss , which is comparable to ff CL2" .

For the first time the binary-encounter theory has been compared 
with exact-classical results for individual orbits, using the theory 
described in sections (2.1), (2.2) and (2.3) for the particular case of 
an incident finite-muss proton and a target electron. •The comparison is 
made using the coordinates defined at the initial reference state, rather 
than those at the approximate initial scattering state, because, in the 
exact-classical model, the target electron is evolved backwards in time 
from the initial reference state to the initial scat tiering state on an 
elliptic orbit instead of a straight-line orbit, as required in the binary- 
encounter theory. Although, in principle, either state, or any intermediate
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state may be used, the correlation between the exact-classical and binary- 

encounter results should be greatest at the initial reference state, since 

the incident proton is at its position of closest approach relative to the 

centre of mass of the target atom.for each orbit at this state. Only at 

very high incident velocities will the correlation be insensitive to the 

initial state at which the comparison is made.

Each orbit must result in one of four mutually-exclusive final channels 

or cells according to whether the exact-classical final channel is electron- 

loss or direct excitation (or possibly de-excitation) and to whether the 

binary-encounter model predicts electron-loss or direct excitation (or 

possibly de-excitation). In this approach it is still possible for the 

energy transfer A E  calculated by each theory to differ widely within the 

same cell.

At the incident energies 10 Kev. and 68 Kev. all- exact-classical 
orbits have been used in the comparison. At the incident energies 7 Kev. 

and 20 Kev. only the first 500 and 600 orbits respectively have been 

compared. A particularly attractive feature of this approach is that the 

binary-encounter results, together with a variety of other predictors, may 

be evaluated in a separate computer program with little additional computing 

time, since the initial conditions can be regenerated quickly. Then, all 

that is required from the exact-classical orbit3 is the value of the final 
channel. In chis way all earlier exact-classical orbits may be compared 

with binary-encounter predictions, provided that the exact initial conditions 

can be reproduced and that the exact—classical channels are Known.
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The total numbers of orbits, which fall into each cell, are presented 

in the first column of two-by-two contingency tables in table (3.3.7).
The results, which'would be expected if the binary-encounter- theory were 

not correlated with the exact-classical values, are presented in the 

second column. In this case the number-in each cell is given by the 

product of the appropriate row sum and column sum, divided by the total 

number of orbits. The results in the second column have been rounded 

to the nearest integer. The numbers, which would be expected if every 

orbit, for which the binary-encounter model predicts electron-loss, 

results in electron-loss, are listed in the third column. In this case 

the region of initial conditions, for which the binary-encounter model 

predicts electron-loss, is contained within the corresponding exact- 

classical region. Since, for each contingency table, there is only one 

degree of freedom, a measure of the relevance of the binary-encounter 

model can be derived by noting that any cell total selected from

the first column may be written in the form

Njcrt “ 0 “ *) N I J 1 +  5C N t73  ̂ (3.3.6)

whore N  and NL nro the corresponding coll totals in the second and X73 £«T 3
third columns respectively, and where X  depends only upon she incident 

velocity. The factor 0 -x) may be regarded an a measure of the random 
component in the comparison and the fraction X  may be interpreted as 

a measure of the significance of the approximate theory. Approximate 

standard errors in X  may be,gauged by adding to, and subtracting from, 

the smallest cell total its own souare root. Negative values of x  are 

permissible though unlikely since this would imply a negative correlation
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l>)i O fce*

C)Zo Ke±

BL BD T BL BD T BL BD T

EL 8 108 116 EL 6 11C 116 EL 24 92 116

ED 16 368 384 ED 18 366 384 ED 0 384 384

T 24 476 500 T 24 476 500 . T 24 476 500

BL BD . T BL BD T BL BD ,T

EL 19 IOC 119 EL 10 109 119 EL 61 58 119

ED 42 538 580 ED 51 529 580 ED 0 58C 580

T 61 638 699 T 61 638 699 T 61 638 699

BL BD T BL BD >T BL BD ,T

EL 55 78 133 EL 21 l i d 133 EL 94 39 133

ED j 3 9 1 428 467 ED 73 394) 467 ED 0 467 467

-T| 94 506 600 T 94 503 600 JT 94 506 600

BL BD BL BD BL BD

EL

ED

T

305 209 514 EL 96 418j 514 EL 469 45 514

164 1822 1986 ED 373 1613 1986 ED 0 198€ 1986

469 2031 2500 T 469 2032 2500 7T 469 2031 2500

Table 3*3*7 P-H contingency tables at various incident 
energies for comparisions between exact-classical values (3) 
and binary—encounier predictions of the final channels of 
electron-loss (L) and of direct excitation (D) for sets of 
individual orbits. Row and column totals are denoted by T. 
The actual results obtained are presented in the first 
column of contingency tables. See text for the remaining 
tables.
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between the two models.

The binary-encounter comparison may be used to determine a control 

estimate of the exact-classical cross section ^Loss , using equation 
(3.1.76) with standard error given approximately by equation (3*1*77), 
though there is no guarantee that the results will be more accurate than 
the direct hit-or-miss estimates in table (3.3.2). In order to obtain 
a control estimate, the Fock-averaged binary-encounter electron-loss cross 
section for a finite-mass incident proton must also be known. Howeveaj, 
since the difference between the finite-mass and infinite-mass binary- 
encounter models is small at these incident velocities, the simpler 
infinite-mass results may be employed, particularly since the standard 
error of the control estimate is independent of the approximate analytic ' 
integral.

The theoretical values for the infinite-mass binary-encounter 
electron-loss cross section are 1.93 ft'U? at 68 ICev. and 1-75
rra„ at 10 ICev. The hit-or-miss estimates of (£oSS are 2.061 QftTVCt̂ ’ 

and 1.75- 21 ft'CL̂ respectively, and the control estimates of the exact- 
classical <TLoSi are 2.13± 09 fra^ and 3.4*0± 34 tTO^ respectively. If any 
bias in the random sample of initial conditions at 68 Eev. affects CLoSS 
and (T similarly, then this work suggests that the hit-or-miss value

L- OSS
listed in table (3.3*2) is larger than it should be. However, the earlier 
independent estimate by Abrines and Percival (1966b) is then even larger. 
Although the control-estimate approach is more satisfactory aesthetically, 
the statistical errors are, at both incident energies,at least as large, for 
these cases, as the original hit-or-miss errors. Thus the binary-encounter 

model for individual orbits is not sufficiently close to the exact-classical



model, to reduce the statistical errors at these incident velocities. 
Although this approximation may be more useful at higher velocities, 
the exact-classical and binary-encounter electron-loss cross sections are 
known.to agree closely (at least statistically) in this region. 
Nevertheless, the individual-orbit binary-encounter model is useful in 
comparisons with exact-classical results, especially when subsamples of 
initial conditions are selected for investigation by the exact-classical 
technique. In such cases the analytic binary-encounter results may not 
have been determined, for example, a sub-sample o£ orbits with fc? dis
tributed uniformly in the range (<v)<£ only, say.
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3*4 Bxact~Cla_ssical Charge-Transfer Probabilities in Close Collisions 
of Protons with Hydrogen Atoms.

(a) Introduction

The first measurement of the charge-transfer probability in close 
collisions of protons and ground-state hydrogen atoms was made by 
Lockwood and Everhart (1962). Their results for incident proton energies 
in the range 0*7 ICev. to 40 Kev. at a fixed scattering angle of 3° 
revealed that the charge-transfer probability p was an oscillating function 
of incident energy. More recently Helbig and Everhart (1965) repeated 
and extended these measurements to include incident energies from 0.13 Kev 
to 150 Kev. and scattering angles between 0.2° and 6°. It was found 
that was also a resonant function of scattering angle. However,
over the range 4 Kev. to 150 Kev. |?E was independent of the scattering 
angle, provided the angle was at least 2°.

Early quantum-mechanical calculations failed to predict the location 
of the maxima and overestimated the amplitude of the oscillations in p£

(see, for example, V/ilets and Gallaher, 1966, and the references therein). 
However the Sturmian close-coupling calculations of Gallaher and Wilets 
(1968) and the variable screened nuclear-charge model of Cheshire (l968) 
are in better agreement with experiment.

There are two simple explanations for the resonant behaviour of p£ .
The first explanation is easy to formulate within the framework of quantum j
mechanics, since the symmetry of the field experienced by the electron j
leads naturally to both gerade and ungerade molecular wave functions.

’'l
Then, the interference between these states can give rise to resonant
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phenomena in . Since this process has no analogue in a purely-
classical description, such resonances are non-classical and cannot he 
reproduced by a purely-classical model.

A second mechanism was proposed by Cheshire (1968) and may be worded 
in the following way At high incident-proton energies the atomic 
electron does not have enough time to "jump" to the passing proton 
during the collision and therefore Js>£ should be small. As the 
incident energy is decreased, |0£ should increase until an optimum 
incident energy is reached (at about 25 Kev.) at which the atomic 
electron has sufficient time to "jump" to the passing jjroton, but not 
enough time to return to the target proton. In the neighbourhood of 
this incident energy, Jô should have its first maximum in terms of 
decreasing incident energy. At lower incident energies multiple transfers 
are possible and a series of maxima and minima in p may be expected.

Unlike the first explanation Cheshire’s mechanism may be interpreted 
classically. In this section the exact-classical values of p£ are 
determined to discover whether the Lockwood and Everhart effect has a 
classical explanation. The exact-classical results are also useful 
as a test for possible approximate classical collision models.

(k) Calculations
The preliminary data for the calculations is displayed in table 

(3.4.1). The range of incident energies is chosen to correspond to 
the experimental range over which pg was found to be insensitive to 
scattering angles about 3°. Scattering angles close to 3 are selected

because of the large amount of experimental and quantal theoretical



Elif*
Kev.

b*if!
a j

£ 8 h n t N* Nx TinHours
4 1.667 0 .1 5 0 .04 0 .005 597 318 11 268 5 .4
5 1 .067 0 .1 6 0 .04 0 .005 498 261 11 226 3 .9
7 0 .5 4 4 0 .16 0 .04 0 .005 499 273 23 203 3 .1
8 0 .4 1 6 0 .16 0 .0 4 0 .005 700 404 22 274 4 .1

10 0 .2 6 7 0 .1 7 0 .04 0 .005 700 381 33 286 3 .6
14 0 .137 0 .1 6 0.04 0 .005 400 166 31 203 1 .9
20 0 .0 6 7 0 .18 0 .0 4 0 .005 1000 245 103 652 3 .4
30 0 .0 2 9 0 .1 7 0 .04 0 .005 600 129 105 366 1 .8
50 0 .0 1 0 0 .1 7 0 .04 0 .005 700 209 207 284 1 .7

100 0 .003 0 .1 7 0 .04 0 .005 600 299 247 54 1 .4 *
a ) 100 0 .0 0 3 * 0 .2 0 0 .1 0 0.005 300 230 69 1 1 .9
b )100 0 .0 0 3 * 0 .20 0 .1 0 0.005 266 95 127 44 1 .6

Table 3.4.1- Preliminary data for close p-H collisions. A * in 
the second column denotes impact parameters modified relative to the 
target proton; otherwise, unmodified. A * in the final column 
indicates the value to be multiplied by a factor of ten. Data at 
100 ICev.; a) initial conditions v/ith X in the range (0.25,0 .6) only; 
b) X  in the range (-0.4,0.25) only. The marked differences in these
two. cases indicate that X is a significant initial variable at high 
energies. See section (4*2).
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results available for comparison.

It is not practical to determine the appropriate initial conditions 

which yield a scattering angle of exactly 3° for each individual orhit. 
Instead, as in the calculation of Cheshire (1968) and Gallaher and 
V/ilets (1968), the impact parameter relative to the centre of mass of the 
target system is chosen to be a function of the incident energy alone. ■ 

The Rutherford formula for the scattering of the protons, alone, yields

b E, =  0 . 5 m  , (3.4 .1)
where b is expressed in q o and E, in Kev. Since this formula 

does not allow for the screening of the target proton by the atomic 

electron, a more accurate value of b was found by trial and error at 

7 Kev. This value may be used to obtain impact parameters at different 

incident energies employing the- approximate relation

b£, = 0.516 . (3.4 .2 )

The corresponding values of are listed in table (3.4 .1 ). In all

cases, except at the highest energy 100 Kev., the spread in the angles 

of scattering close to 3° is less than, but comparable to, the angular 
resolution quoted by Lockwood and Everhart (1962). For incident energies 

of 100 Kev. and above the excessive spread in scattering angle is caused 

by b being not much larger than the unperturbed radius of the orbit of 

the target proton. The spread is reduced by choosing b  relative to 

the target proton rather than to the centre of mass*

The incident energies in the range 4 Kev. to 50 Kev. inclusive were 

computed on the Chilton Atlas* The calculations at 100 Kev. were
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performed on the University of Stirling ICL 4130.

(c) Results for the Exact-Classical Probabilities.

The values of the exact-classical probabilities of total direct 

excitation j?D , of total ionization px and of total charge transfer 

h  are shown in figure ,(3.4.2). The error bars represent approximate 
confidence limits. Smooth curves have been drawn through the 

points by hand to avoid possible confusion. The upper horizontal scale 

is non-linear and shows the incident energy E, in Kev. The lower 

horizontal scale is linear in a convenient dimensionless parameter , 

which is the ratio of the incident energy Ej in Kev. to the incident 

energy f E i + a s )  in Kev. The value b  ~ corresponds to the 

incident energy 25 Kev. at which the incident proton velocity \T, and 

the root-mean-square velocity V~Q of the atomic electron are almost 

equal. Uote that the incident energy range considered is therefore 

approximately equivalent to the incident velocity range

0 -4  £ v; 2 v „

It is immediately apparent that the charge-transfer probability p>£ 

is an undulating function of £, , and has a maximum value of about 0.68 
close to 25 Kev. • There is also strong evidence for a minimum value of 

about 0.39 close to 8 Kev. There appears to be no further significant 

structure below 7 Kev. Since there is no significant structure below 

7 Kev.,the maxima and minima for the high-order transfers predicted by 

Cheshire (1968) are rapidly damped in the classical approach. In this 

region any strong oscillations in jp£ must be purely—quantal m  origin.

In contrast, above 7 Kev* significant oscillations are present in the
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classical results and hence the purely-quantal effects may not be 
dominant•

In figure (3*4*3-) the exact-classical results for jp£ are compared 
with the quantal calculations of Cheshire (1968) and of Gallaher and 
?/ilets (1968) and with the experimental values of Lockwood and Everhart 
(1962). Unlike early quantal theories, the exact-classical results 
are Min phase,f with the experimental values for incident energies above 
7 Kev. The classical amplitudes are too small by approximately the 
same factor as the quantal results of Cheshire and of Wilets and Gallaher 
are too large.

As in other exact-classical calculations, an important advantage of 
the classical method is the ability to discriminate between phenomena 
which are purely-quantal and those which can be described equally-well 
classically. This leads, not only to a better understanding of the 
mechanisms involved, but also enables more accurate extrapolations for 
corresponding processes involving initially excited levels. A second 
advantage of the classical approach is the possibility of testing approx
imate hypotheses used either in classical or in quantal treatments. In 
the present case the failure of the hydrogenic expansion of Wilets and 
Gallaher (1966) and of the calculation of Cheshire (1968) at incident 
energies above 7 Kev. is not surprising since they neglect ionization 
channels. As can be seen from figure (3.4*2) the exact-classical 
ionization probability is not negligible in this energy range and it is 
therefore not unreasonable to expect the true ionization probability to

be significant here. If this is so, the results of Wilets and Gallaher
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and of Cheshire are too large at higher incident energies. In contrast 
the results of Gallaher and Wilets (1968) contain the possibility of 
ionization implicitly in the Sturmian expansion. Their results are in 
best agreement with experiment.

(a) Differential Distributions
The continuous differential probabilities and (ft

show little structure as a function of the initial angular-momentum 

parameter t= contrast the differential probability
indicates a complete reversal of bias over the incident 

range considered^ can be seen in figure (3.4 .4 )*

The distributions fp(Uf) and of final binding energy (Ĵ
for direct and charge-transfer collisions are, of course, also continuous. 
The distributions may be characterised by their means and standard 
deviations, though since and are not equal to the
normal distribution, higher moments; may also be important. The means 
and standard deviations are plotted in figure (3*4*5) as a function of 
the incident energy. The error bars represent approximate %  confidence 
limits in the values determined from the finite samples of orbits. Again, 
smooth curves have been drawn through the points by hand to avoid possible 
confusion. At low incident energies, as expected, the distributions
?o (Of) and e* (Of) are very similar. Over the energy range 

considered5the apparent structure in the distributions is extremely 
complicated. It would therefore appear that the possibility of finding 
an approximate classical theory in this energy range is extremely unlikely.



cQ
£
r®

Co

lo  Kev

2o Kev.

-a
-O
OUo-
a>>
fO■n)
0)
Cg

J

5o Ke.v.

,5 ft ' A - m a x  ^

Figure 3*4*4 Sxact-classical relative differential ionization 
probabilities in close p-H collisions versus the initial angular- 
momentum parameter for incident energies 10 Kev.? 20 ICev.j and
30 Kev.



173

&

0  o

Q

I- 0to

-  j r

. O 
•

• r*

• IP 

■ «•

r4

t
>
£

w .«■ ©Lit rH ^  O?H
•HO
i—1
rH

0\
r ^ &
— ' © P- cjID ©
1 +3
   rot- ■ *H^  oS3. •Hm 

53 o•H+s©
•£©'d 
, H- rd —s h -J ©rd M 

S3 ©

-p So©  ̂© 53 ©
fciO' 53

O•H
•P©+3•HO
M©
+3o©u
•H’•d

? ; d
X  S3<+* 'HID

rH M © 
S3 S3 
© <H 
% **4
rH© O 
•Hm m © rH01-P
O© M ©
<H O

ir\

m©
rHOu•HO
S3
S.O

©
§
ft©o
rH©•PO
-P

00 sO N



However, both below and above this energy range approximate theories 

appear feasible.

The continuous differential distribution , where P r  is
jt- / 3--the final angular-momentum ratio L  /L mavc » is insensitive to ft? for 

low and intermediate energies, but for incident energies of 50 Kev* and 
above, electrons are captured preferentially into orbits with low angular 

momenta, as was found by Abrines and Peroival (1966b) in the case of 
total charge transfer. Again, as in their work, the results for low 

arising from orbits with large initially may not be accurately 
determined.



3*5 Simultaneous Angle and ISnargy Biatrihutipna of ThLectrons I!;j acted
from Ground-State Helium Atoms by Protous of Intermodiate Hnergy,

The 3-particle exact-classical ll)RTRM computer program of Peroival 

and Valentine (see Valentine 1968) has ‘been used to investigate classical 
collisions of protons incident upon ground-state helium atoms*

A direct classical treatment of the 4^-partiole problem was not 

attempted for two important reasons* Firstly,, it would iiaye been 

difficult, if not impossible, to construct a stable classical model of 

an isolated ground-state helium atom with two orbiting electrons, since 

it is always possible for such a classical system to autoionijse, In 

order to avoid autoionication the two-electron model was approximated by 

two independent one-electron models* The second main reason for reducing 

the 4-particle problem to a 3-particle problem was that extenaiye 
modifications to the computer program would have been required t-o treat 

four* particles*

Two alternative classical one-electron models of ground-state helium 

atoms were considered* The former was an extremely simple but crude 

scaded-hydrogenic model, in which the atom was represented as an electron 

orbiting around a structureless particle whose mass and charge were taken 

to be that of a singly-charged helium ion. This model, therefore, implied 

that the single electron was completely screened by the other electron 

from the doubly-charged nucleus* Hence this model was most realistic for 

high singly-excited states of helium rather than for the ground state * 

Bevertheleas, this model had the advantages that equivalent approximations 

had been made in the first-Born calculations of Rudd, Sautter and Bailey (1966),
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and that the classical computer program could he used without modification.

A more realistic variable-nuclear-charge model was also investigated 

using a simple expression

the advantage that a variation in the screening of the nuclear charge was 

incorporated, hut the main disadvantages were that, since the period of 

the hound motion of the electron was no longer independent of its angular 

momentum for a fixed binding energy, the wind-hack-procedure was more 

complicated than the Kepler motion, that the hest choice of angular- 

momentum distribution to represent the ground state was not obvious, 

that several parts of the classical computer program required modification, 

and that the solution of Hewton*s' equations of motion using equation (3o»l) 
was probably more time-consuming owing to the need for a smaller time-step.

For these reasons,- the simpler model was selected for a preliminary 

investigation, but the necessary modifications to the computer program were 

also carried out for the more realistic model, in the event that the 

classical results using the simple model were not in satisfactory agreement 

with the experimental results of Rudd and Jorgenson (19^3) and of Rudd, ;

Sautter and Bailey (1966), especially for small angles of ejection, where 
the experimental results are typically larger than the binary-encounter 

results of Bonsen and Vriens (1970) and the Born calculations of Rudd et al. ; 

by at least a factor of ten.

(3.5-1)

for the effective nuclear charge l i t )  as a function of the radius of

the electron orbit, where J£ was a suitable constant. This model had
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The details of this calculation, the results and the comparison 

with experiment and with Born and binary-encounter theories have been 
published by Bonsen and Banks (l97l) (see, for example, the end of this 
thesis).. The results obtained from the simple classical model are in 

such close agreement with experiment at low ejection angles that a further 
investigation using the more sophisticated model is not justified,because 
the remaining discrepancy could be due predominantly to the classical 
approximation itself#

Since the binary-encounter results are too low at low angles, genuine 
three-body effects must be responsible for the enhancement at low ejection 
angles. The remarkable agreement using the simple classical model 
suggests that the effect depends crucially on the final long-range 
interactions between the three bodies, rather than upon specific initial, 
atomic properties.

In contrast, at large angles of ejection, the Bom calculations are 
considerably larger than the results of the accurate-classical and 
binary-encounter models, and are in much better agreement with experiment. 
In this region, since the accurate-classical and binary-encounter results 
are similar, three-body effects are not important. The failure of the 
classical results has been attributed by Percival (l97l) to the dominance 
of a purely-quantal two-body mechanism,termed super-barrier reflection, 
between the ejected electron and the helium ion.

This work again demonstrates that simple quantal theories (in this 
oase the first-Born approximation) and accurate-classical models are 
complementary, even for low quantum numbers, and that the complementarity
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may not be evident unless a sufficiently-accurate classical model ia 
used.
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CHAPTER 4 

A3DITI0KAL AHD C0ITCLUDI1JG REMARKS

4• 1 Classical ?Todels for Hydrogenie Atop..?/ and Ions

There are two similar hut distinct classical models of Lydrogenic

atoms and ions. In the Bohr-Sommerfeld model (see, for example, Born

19^0) a direct correspondence is made between the quantum numbers
of a quantal excited state of a hydrogen!c atom or ion in

spherical-polar coordinates, and discrete values only of the classical

action variables spherical-polar coordinates. The Bohr-

Sommerfcld model, therefore, consists of a classical ensemble of similar

orbits each with prescribed classical action variables.but with ** ✓
arbitrary values of the canonically-conjugate angle variables, by virtue 

of the uncertainty principle. The natural distribution, from which to 

select the angle variables independently, is the uniform rectangular 

distribution defined over a range [o,2JTj , say. This ensemble may be 

generalised to treat the two cases in which firstly atoms in a given 

level (n,l) are uniformly populated in the ( 2 l + i )  m -  states and

secondly, in which atoms in a given level n are uniformly inoculated 

in the Tlx (k^) - states. However, the classical ensembles which 
represent these levels are not usually spherically symmetric, unlike the 

quantal treatment; for example, the ensemble representing the level 

( Tlts2,Lc= I) averaged uniformly over the W-states > mac = -1, 0 , I , 

is not spherically symmetric, since the orbits with W t-ii lie entirely
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in the plane3whereas orbits with m c=rO are spherically distributed.

Only in the limit of large y\L and L c will these distributions approach 

a spherical form for non-zero values of lc ,

A well-known alternative to the Bohr-Sommerfeld model for a uniformly- 

populated level 11 is the classical microcanonical model. However, no 

alternative to the Bohr-Sommerfeld model for a uniformly-populated level 

(«,0 ' has previously been given. A possible model is formulated in 

this section. In the classical microcanonical model a correspondence 

is made between Y[ and Tic , as in the Bohr-Sommerfeld case, but not 

between ( t,W\) and discrete values of ( Lc , m c) • Instead, the level n. 

is represented by a different average of ensembles of the Bohr-Souimerfeld 

type with prescribed (fie , • This average is taken over all

values of Tnc in the complete continuous range art{̂  °ver

all Lc in the complete continuous range [ o ^ ^ i n  such a way that the 

dimensionless variables ft - t< /ft* and | A - W C / Lc are independently 

and uniformly distributed in the ranges co, a  and [-1,0 respectively.

The classical microcanonical model is therefore the approximation to the 

Bohr-5ommerfeld model for a level Y\ , obtained by replacing the 

summations' by integrations. However, the classical microcanonical 

model lias two advantages over the Bohr-Sommerfeld model. Firstly the 

classical ensemble is spherically distributed for a U n  , as in the quantal 

treatment. Secondly, the momentum distribution derived from the 

microcanonical ensemble is correct for all levels Y* • For these 

reasons, the classical microcanonical model for a uniformly-populated



level TV is more attractive than the 3ohr-Soiamerfeld model. A similar 

model of a uniformly-populated levelfai) is sought with the same additional 
properties.

The key to this construction is the correspondence between the 

quantum numbers Yl and L and a classical distribution function

This can be seen from the fact that for any level ( H , t) 

the spherical quantum momentum distribution is defined over the entire 

range of magnitudes of momentum, whereas in the classical case barriers 

exist unless straight-line orbits are permitted. By comparison with 

the known microcanonical model in which ?the distribution

£nl(£^ must satisfy the Pock identity, namely

n' ( C2UI)2 . V 
.1-0

for all Yl . In particular, for Kl- J, C -  0

e m  (.£) =  » .  (4 .1.2 )
The simplest possible postulate for 3 81 polynomial of degree
( V  i) with coefficients which depend upon Yl and L . For a given 

value of p  the classical ensemble of orbits, obtained by averaging over 

the three angle variables and the variable jx , leads to the classical 

moment um di 31 ributi on given by

c f u\ J&L . ^ \ , v
=  .Tr fl'-iS/ySmMt)*- (4 3)

where jcf - 2 m  U and ~ ^ ^ • This distribution may

be obtained from she position distribution defined by SJapleton ( 1966) for
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a fixed classical angular-momentum magnitude, by using the energy 
equation

J_ b2- 2_e1= - U = - J-
2 m  t 2 m  (4-1.4)

The precise analytic form of ^ Ay is essential to the correspondence 
with the quantal momentum distributions. The physical reason for the 
upper bound yŜ ,ax ? which is never greater than unitysis that if £ is 
different to |do , then a circular orbit must be forbidden and hence 
cannot be unity.

The distribution is normalised according to

/ » (4-1-5)
where bn

and

t w  *  h ,  ( ,  u . i . «

I * .  -  ft ( f c i ) *  . <4-1-7>

fe = ( I-/5)4 , (4-1-8)
is the eccentricity of the ensemble of orbits.

It is not difficult to show that the classical microcanonical 
momentum distribution is generated by

e ch C r t  =  j [ V  e ^ >

where e « p > s * • Then

p 5  (J>) = v>. m  it

(4-1-9)

(4-1-10)
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Let

e « « - J >  ? ■ « < / «  e * o o  .  (4 . i . n )

“be the classical momentum distribution derived from •

In particular, if = 2 /8 then

= * p - p  •

giving

P \ ( b )  =  B . t i - t 2 . b L k 1
^  v  C b ' + f t )  3  i p + r t ) x  ’ ■ (4 . 1 .12)

which is the exact quanta! momentum distribution for.the level.
Similarly, if then

c ✓ 32 t l k *  - ^ / 3 3^
e « f t ) »  ?r ( T ^ } ^  L ^ k o t  * (

which is also the exact quantal momentum distribution for the 2 s level. 
As a check, note that

"7 fas Cf t ) + pi Jo -  I i (4.1.14)
and

^ ‘ 0 0 *  = r i . « =

Further, the following1 simple relations hold
f'dspnCp) = f'c/̂ ŝ/ys)- f'dPfrtfp) = *
o 0 0

fa(P')
and | (4 *1 *16)

I

o

rp

£  d/3 /S f „ ( p

here remains only one awkward problem. For yS*>■ V 3 ,
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negative* The explanation is, however, extremely simple. Since 
the quantal raomentum-space wave functions for the Is and 2.S states 
must be orthogonal in their “radial11 part,the latter must have a simple 
zero at a finite but non-zero value of jo , and so the momentum dis
tribution for this level must have a node at this point. Clearly, the 
node occurs at , where the distribution takes the form k (tp-hr.

In order to reproduce this behaviour some classical contributions near 
jo = Jb0 must be subtracted, not added. It may be argued that such 
negative distributions are unacceptable, yet they do not arise inherently 
from classical distribution theory,but are consequences of the correspondence 
between classical and quantal systems. In spite of this difficulty it is 
extremely surprising that such a simple extension gives exact results.

For an arbitrary level the quantal momentum distribution
Q may be written

<A ! ) V * - h )I, V  i r M  ft )]Z .
( V ( W -  (n+c).i '(4.1.:

where
•17)

e « a x  =  „(4 .1J.8 )
and

/Smax =  1 ~  ' (4.1.19)
(see for example Bethe and Salpeter 1957? Vol. 35? PP* 12p-6).

yThe function f \  (x) is the Gegenbauer polynomial of degree X) with r? 1
parameter V and argument X  (see, for example, Abramowitz
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and Stepan 1965? PP* 773-803 ). How, since is even or odd

according to whether VI is even or odd, the function f 

is a polynomial in X Z and hence also a polynomial in ( i - X x ) . Thus, 

by equation (4 *1 «19) the expression £ C  a ŵays a
polynomial in of degree j = n-L-l , the number of zeros in the
"radial” momentum-space wave function. Hence, it is always possible 

to write
•i

/ r  \ XT-* ̂ k
. n-L-i max ] “ ’ (4.1.20)

k-o
so that

« , . 32 (2l t'fjjn N p V  a k+ L

tr (J>*4 kz)4 ' (n+D! ‘ ' ma*- ’ (4-1-2l)
In order to reproduce this quantal distribution in the classical models

n”‘ k
suppose e ni(p) - T-A nlkfi • Use this in equation (4«l«il) Then

k-o

E A nLk/S ,
30 that

&  f  W  =  W 2 =o W^ >  ’ U . ! . 2 2 )

where w 2fe+l=  lzh hlf/Uk+i)l Hence is identical

to ^nhf3) 'the ^nlte are cll0sen 'fc0 satisfy

A n t a - r - . )  =  O  , -for r *  0 , 1 - 1 ;

. x _ (2l l!)a i-n D-Ul I" (4*1' 23)Ania+r) = ;h-rrn  • V  • 1(n+i)* W2l+2t. +l
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The coefficients Pj ̂  are assumed to he known from the quantal model

and so the classical polynomial distribution e m ( £ )  is uniquely
h.+ldetermined. Since the coefficient Pjy* depends upon properties of 

the Gegehbauer polynomials, an explicit expression is not necessarily 

easy to obtain. However a direct guess h*-r with

A — (-I) C n+l + r )l y\t-Hr ~ --- — rr-p » * (4 .1 .2 4)(n-t-r-t)l (21+r+Oi r !
satisfies the necessary constraint given by equation (4*1*1) arid has 
been checked in many cases. This guess leads to the expression

' < « • « >
where Fn O a , * )  is the Jacobi polynomial defined by Abramov/it2 and
Stegun (1965, pp. 773-603). The orthogonality relations for these
polynomials imply automatically that 

i *
J  &f* ̂ >nt {ft) ~t -for ad n,t 

and S ‘dP 4 . = O f o r a V n . J  (4.1.26)0

It further appears that
* * . . 4
O

In particular

J d ?  f n l ( ^ )  fnl? ( p ) * 9  -f»r I'd (,. (4 .1.27)

a-i (fi) -  Y\ , (4 .1.28)

and
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fn n-z(£) = anfn-n/s"- ,

are completely consistent with equations (4*1*25) - (4*1*27)

3.

(4.1.29)
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4•2 Iliscellaneous Initial Variables

In rjrinciple, the initial conditions of an exact-classical orbit 
can be generated from any alternative set of initial variables 

equivalent to the original set. If, however, exact-classical orbits 
with known initial conditions are available from previous work, then 
there are two main reasons why, in practice, it is important to 
investigate whether there are alternative significant initial variables. 
In this work a significant initial variable may be defined as one for 
which orbits of a similar type, say ionisation, are significantly 
concentrated in limited regions of the allowed range of the variable, 
even when the orbits have been averaged over all other initial variables. 
In contrast, an insignificant initial variable may be defined as one for 
which the concentration of orbits of a similar type is insensitive to 
the value of the initial variable over its entire range, once the orbits 
have been averaged over all other initial variables.

The first important reason for such an investigation is chat the 
significance (or even the lack of significance) of a particular initial 
variable can suggest (or even reject) the possibility-of a simplified 
treatment of the collisions. Such a procedure may therefore provide 
insight into the classical mechanisms Involved in si>ecific many-particle 
collisions. Further, the success (or failure) of a classical dynamical 
approximation may be used to suggest (or criticise) an equivalent quant al 
dynamical approximation.
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The second reason applies particularly to the Monte-Carlo methods
of integration. The more refined techniques, such as stratification,
importance sampling and control-variate methods (see, for example, 

section (3.l) ), only have increased efficiency over the crude and 
hit-or-miss methods,if as many as possible of the initial variables 
are significant, otherwise the gain in efficiency is usually small.

A detailed investigation of ionization and charge-transfer collisions 
was made at the incident proton energy 68 Kev. (see section (3*3) )• The 
dependence of these strong collisions was sought as a separate function 
of each of the original and of several simple alternative initial 
variables, though dependences for two or more variables at a time were 

postponed until significant variables could be found.
The results of the investigation were, in general, disappointing,

but perhaps it was too much to expect that all the original initial 
variables could be replaced by alternative simple significant initial 
variables.

The first of the significant variables was found to be the square 
of the modified impact parameter, which was already known from 

earlier work. Strong collisions were indeed more closely grouped than
in the corresponding unmodified square b^ at this incident energy.

Jt.The significance of b is suggested from the binary-encounter theory. 
Indeed, in the Thomson model, the energy transfer is a simple function 
of b and is independent of the other five initial variables. However, 
in the Thomas model, in which allowance is made for the motion of the



target electron, the energy transfer is a complicated function of
and of the other initial variables. In fact, only four of these five
variables are required, since the Thomas energy transfer is invariant
under rotations of the position of the target electron about the axis
through the centre of mass of the atom in the direction of the incident
velocity. Unfortunately this angle is not one of the original set of
initial variables. Since b is measured along a fixed axis, and not
radially, different values of this angle produce different unmodified
impact parameters b so that the exact-classical orbits are not
invariant under this rotation, though the angular dependence of strong
collisions was not found to be sufficiently significant to be useful in
later work. The Thomas binary-encounter model was found to be
particularly disappointing, as the gain over the Thomson model was only
marginal at this energy. nevertheless, the binary-encounter theory does
provide the variable P

A second significant variable was suggested originally by Percival
and Richards (1971st,b).where they found that their analytic work for
weak excitations simplified if the incident-velocity direction is chosen
along ^ axis instead of the \ axis. They found that the Euler
rotation-matrix elements were more symmetric and that the expression

x- sin8 could be entirely eliminated with this choice of
incident-velocity direction. Since, in the exact-classical work the

/\incident direction had been chosen by convention along the ■?. -axis, it 
was. decided to investigate the dependence of strong collisions on each of
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the rotation-matrix elements. This had not been considered previously.
It was found5 surprisingly that the dependence on the element 

( s - cos^> S»n0 in terms of the original variables) was significant 
for both ionization and charge transfer. Further, the dependence was 
found to be very close to that predicted by the classical first-order 
dipole perturbation theory of Percival and Richards (1967) for the 
special case of circular orbits and large values of the adiabaticity 
parameter cobV^j • The element is simply the scalar product
/\ /V .L.x in the original coordinate system where L_ is the initial
orbital angular-momentum of the target electron. If the impact parameter 
is unmodified, or even if it is modified, but much larger than the mean

Aatomic radius CL , then X  is directed along the initial angular 
momentum Lrt of the incident .particle, though this is not true for small 
modified impact parameters. For this reason the dependence of strong

A  /scollisions was also investigated as a function of Lj.L but it was found
A Ato be so close to the dependence with respect to L. .x that the simpler 

uniformly-distributed variable .x. could be used in preference. If
/\ A ^the velocity is directed along the axis, then L-X is simply the

new initial Ruler-angle variable yf . Hence the classical adiabatic
perturbation theory provides the significant variable p  . Physically^ 
this means that for large impact parameters^strong- collisions are 
concentrated in the region where the orbits are almost planar, as might 
have been expected from first principles.

l/2 L2-At lower incident energies D is less significant than 0 , but



the significance of yf persists* as can be seen from figure (4 • 2.1), 
where the dependence of charge transfer (ionization being negligible in 

this case) is displayed simultaneously as a function of the variables 

bV tw*. and * using the first ^00 orbits of the exact-olassicalO.
results for 7 Kev. incident protons. The dependence is extremeiy 
striking at such a low incident energy. It should be noted that each 
cell would be expected to contain approximately the same number of 
charge-transfer orbits,if these variables were insignificant. In this 
case the shape of the distribution suggests that an alternative product 
variable b*(t-y) / would be even more significant. However, 
first, care is needed, since the product of the two independent and 
uniformly-distributed variables 'X and y say, is not uniformly 
distributed, even though all are defined in the range [0,0 . Instead, 

the variable th,s. is uniformly distributed on this range. In
the above case, all charge-transfer orbits possess values of a  in the 
restricted range [p, 0. approximately, which implies that the remaining 
4o?o of the total orbits could have been omitted,if the significance 
of this variable and its precise cut-off value were known beforehand.
The only difficulty which could arise from using this variable is that 
itg value depends upon * It is therefore probably better to
use this variable pnly if is known to include all orbits of
interest and is not to be varied.

Of the remaining distributions the dependences upon the variables 
and the electron phase parameter X/lSt are probably most 

significant at intermediate and high incident energies, but only for
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Table 4.2.1 Double-plot of p-H charge-transfer 
probability versus the initial variables bV'bXot 
and (I-/*9/a. for 7 Kev. protons. Case a) orbits 
resulting in charge-transfer only? b) all orbits.



charge-transfer* not for ionization. These two variables are just those 

needed to define the initial radius IT of the electron and hence also 

its speed, using the energy equation. It would appear that the variable 

9 (f) , where

= l u* (̂ .Jt r^a.occ^)pa-ni,% ^  ̂
which is uniformly distributed in the range £ o  l] , is a convenient 

alternative to the pair ( f i r t  • It is interesting miut this variaole 

arises naturally in the approximate classical treatment of charge 

transfer at high incident energies (see, for example, Thomas 1927c,

Bates and Kingston 1970)•
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Abstract. A detailed comparison has been made between the binary-encounter and 
Bethe theories for ionization of the (2p, 0) hydrogen atom by a fast incident charged 
particle. For this purpose we have mathematically reformulated the binary-encounter 
theory to treat the non-isotropic velocity distribution in the initial state of the atom 
considered. The pronounced dip found before in the Bethe theory is reproduced in 
the binary-encounter theory and is shown to be caused solely by the angular part of 
the initial-state wave function. Good agreement between the theories is found for 
energy transfers e >  1 ryd. Applications to other initial states and other atoms are 
discussed.

1. Introduction
A new wave of interest in binary-encounter collision theory was created by the publica

tion of Gryzinski’s (1959) paper, where remarkably good agreement between classical total 
cross sections and experiment was found for a vast range of charged-particle-atom collisions. 
However, these formulae contained certain errors which were corrected by Stabler (1964) 
and as a result the agreement with experiment suffered. The agreement was improved for 
electron—atom collisions by Burgess (1963) and Vriens (1966) by formulating a symmetric 
collision model and partly allowing for electron exchange by using a quantal instead of a 
classical treatment. Kingston (1968) gave a quantitative comparison between the binary- 
encounter collision theory and Bethe (first Born) theory for ionization of ground-state and 
excited hydrogen atoms by fast charged particles, and so studied the range of validity 
of the binary-encounter collision theory for total cross sections. His results agree with the 
qualitative results afforded by the correspondence principle (see e.g. Abrines and Percival 
1966, Burgess and Percival 1968, Vriens 1969). This approach was extended to a compari
son of the differential cross sections by Vriens and Bonsen (1968, to be referred to as I) for 
ionization of atomic hydrogen from the initial ‘configurations’ Is, 2s, 2p and 2. Here Is 
and 2s are single states, 2p is the arithmetic mean of (2p, 0), (2p, +1) and (2p, — 1), and 2 
is the arithmetic mean of 2s, (2p, 0), (2p, + 1) and‘(2p, — 1). All of these ‘configurations’ 
have isotropic velocity distributions. 2s and 2p have the same ionization energy, but differ 
in the form of the velocity distributions. It was shown in I that, by using the quantal 
velocity distribution in the binary-encounter collision theory, good agreement was found 
with the corresponding Bethe results. This established how ‘initial-state I quantization’, 
as we have called it, should be accounted for in the binary-encounter collision theory. In 
this paper we extend the comparison to include ‘initial-state m quantization’. This intro
duces a new feature, viz. non-isotropic initial velocity distributions, and we have modified 
the binary-encounter collision theory accordingly. This work was also motivated by the 
pronounced ‘dip’ which develops in the Bethe generalized oscillator strength f ^ K )  for 
ionization from the initial (2p, 0) state of hydrogen. We have hereby completed the quanti
zation in the initial state. In contrast no consistent method has yet been found to account 
for final-state quantization (necessary, for example, in excitation and charge transfer). 
Throughout this paper we neglect exchange effects, and hence for the case of incident 
electrons the formulae only apply for sufficiently high incident energies. We also neglect 
all relativistic effects.

2. Binary-encounter theory
In a binary encounter the differential cross section 83<jjdE 8P 0(cos %), abbreviated 

hereafter by kcrE PiX, for an energy transfer E and a simultaneous momentum transfer P
976
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from an incident particle of charge z xe and velocity v1 to a target electron with velocity v  
is given by Vriens (1966) for incident electrons only, Banks (unpublished) for arbitrary 
masses; Banks’s method is described by Vriens (1969)

_ $ z 1*e* H (X)  

aB,F,x ~  v x2vP* X 112 ^
where

X =  1 +2{v1 .P) (v.P){v1 . v ) - ( v 1 . P) * - ( v . P ) * - ( v l .v)* (2)
H{X) =  1 for X  ̂  0 and H(X) =  0 otherwise, and v x . v =  cos y.

In applications to charged-particle-atom collisions equation (1) must be averaged over 
the velocity distribution f(v )  of the atomic electron(s) relevan tto the target atoms considered, 
i.e. /*°° /»1 /»2jj

<*e.p =  v2 dvfv( v ) \  d(cos x)fx(x) & (3) 
J  0 J  - 1  J  0

where rj is the azimuthal angle of v  around v x and

/»00 /»1 /•2jl

v2 dvfv(v) d(cos x)fx(x) d v M v )  =  (4)
J  o J  -  i J  o

For isotropic velocity distributions//^) =  1/2-rfand f x(x) =  | ,  so that the angular integra
tions in equation (3) yield (see Thomas 1927, Vriens 1966, 1967)

47r z 2ê
a E , P , V  =  O m  (3)vx vP^

and
r* 00

>P =  v2 dv f v{v)oE P 'V. (6)
J o

For non-isotropic velocity distributions equation (3) will first be expressed in a more 
convenient form.

A A A  A
Let 0 (X , Y, Z) be a Cartesian frame of reference oriented so that Z is in the direction 

of vx and so that P  lies in the (Z, X )  plane. Then v is conveniently described by the usual 
spherical polar angles x and rj, where cos x =  &i •

Let 0 (x , p, z) be another Cartesian frame of reference oriented so that x  coincides
with Y  and so that z  lies along P  (see figure 1). In this frame v  is described by the spherical
polar angles 6 and <f>, where cos 6 =  v  . P.

A A , 0

It can easily be shown (Vriens 1966, 1969) that t)1 . P  and v . P  are uniquely determined 
by vx, P, E  and v, all of which are here considered fixed in the integration over angles (the
integration over v being the final one). Let cos a =  . P. Geometrically the condition
& . P  is a constant means that v  is restricted to a circle F whose Centre lies on P  and whose
plane is normal to P. The angles x> $■> /  and a are related by

cos x — s in a s in ® s*n <f> +  cos a cos (7)
Now

X 112 =  sin 6 sin a cos /  (3a)
and

d(cosx) . . (Sb)------------=  sin v sin a cos <b
d<j>

so that

^  = d*. (9)xm

°E
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Figure 1. Velocity space diagram for the binary encounter. When P, E, V1 and the

magnitude of V are all fixed, the vector ©(OA) must lie on the circle T, whose plane is 
perpendicular to P  and whose centre lies on P.

Hence, for the case of isotropic velocity distributions, we can replace the non-uniform 
integration over cos x by a uniform and much simpler integration over </>, where <j> is the 
most convenient representation for v. Thus we can write

47rzx2e2-4

where »2jt
— f dcf> aE

J o

vx2vP±

1 f 1.?.<*> = - J  d(cosx)

(10)

For non-isotropic distributions of v, because 6 is fixed,

877'Z2e*
g e , p,o,<t> =  2 m  S(cos 6 —  p)vxvP*

where 8(») is the well-known Dirac S-function and

2 mPE - P 2

(11)

(12)
2 mevP

where me is the electron mass.
Equation (10) is a simpler and more elegant version of equation (1). Equation (11) is 

fully normalized in that

r x r 2jl 1 4tt.
I i  d(cos 0) —— d(f> aEi P g  ̂ =

J _ 1 J 0 Z t t  v x

\Trz2ex

With equation (11) we have reproduced a formula derived by Nijboer (1968, private 
communication) in an entirely different way. He used the first Born matrix element for 
charged-particle-atom collisions as a starting point and not relations for scattering of free- 
moving particles. Nijboer’s method is described in the review by Vriens (1969).
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Let the velocity (momentum) space wave function $ nim(v) of the hydrogen atom in the 

initial bound state be written
0w/m(®) ' Pnlip) i) 

where pni(v) is the radial velocity space wave function,

(13)

J"
J  (

v2 dv\Pnl{v)\2 =  1

and Y lm(9, <j>) is the normalized spherical harmonic (see Bethe and Salpeter 1957, p. 91, 
pp. 122-5). Then

/ Snz^e^
< nlm — ~ - ~ 8 { c o s 8 - p )  

vx vP*
E,P ^nlm

87TZ^e^
^ P r

nlm

nlm
1

8(cos 6 — p) nlm^ . (14)

3. The generalized oscillator strength in binary-encounter theory
The ‘binary-encounter generalized oscillator strength’ f E{K)  (denoted before in I as 

d/(0)/de) is related to the high incident velocity limit of the binary-encounter cross section 
ge,p by

P E v 2
• <?E,P

8>TTa2z 2v^

where K  — Pjh (hence K a 0 is dimensionless) and v Q — e2jh. Hence

(15)

EjR /
U K )  = —  < nlmm  ’ (K a af  \

EjR
2v

8(cos 8 — p) nlm

E j R  /  /
—— — /  nlm 8 I 
(K a Q)2 \  \

E - h K  . v - W K ^ S m ,________ ■j n lm 'y (16)

where R  is the Rydberg energy (mee ĵ2ti2). Here we used the relation \a\8{ax) =  8(x). 
Equation (16) is actually the formula derived by Nijboer and mentioned before. Using the 
notation Q — (K a0)2 and e =  EjR,

-  H!2.
** ~ 2Q112 v

and, since p 2 ^ 1, v2 >  vmin2 where

2Q X!2 Z°'

In particular for the (2p, 0) initial hydrogenic state

3 ^1/210

P2l(v) =

cos 8

128 v0ll2v
(3tt)XI2 (4v2+ v / f i  

%arforming the angular integration only, we obtain

210€ ( e -Q ) 2 v0xov
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It can immediately be seen that f EtV( K ) is zero for e =  Q and non-zero around this 
region. Performing the integration over v, we obtain

128 eQ5l2(* — Q)2

Similarly, for the (2p, ±1) initial state
/  3 \ 1/2

Yi  ± i(^  <f>) =  ( ^ j  sin d exp( ± 4 )  

and the complete integration yields
16 eO5'2

f ^ K ) =  r „ {{' - Q T + Q y - (19)
Now

f v . 2 p { K )  =  3 {/b.(2p.0)(-̂ ) +  2/e.(2p. ± 1)(^)}

/ m  = F l  <Q*I2{ * - Q ) 2+ Q }  a m
J 15it {{‘ - Q f  + Q? '

f

which is in agreement with equation (7c) of I.

4. The generalized oscillator strength in Bethe theory
The generalized oscillator strength f E(K)  is defined by

(0r|exp(iK . r)\ijjnlm) (21)

where, as before, ipnlm is the initial-state wave function of the target atom, ifjt is the final 
wave function and r is the position vector of the atomic electron. For ionization of the 
hydrogen atom from the initial state (n, I, m) (see I and the references therein)

/ * ( * ) - f - j 1 - “ P ( X ) |  e x p g a r c ta n ( ^ - ^ i/a2) ) (22)

where kn2 — e — 1 jn2. In particular, for ionization from the (2p, 0) hydrogen atom

4e£210 = -------------(7(e - 0)4 + (640  + 4)(e - Q f1 5 { (e -g )2+(3}5

+ (19202 + 540)(e -  Q f  +  80 g 2(e - Q )  + 15Q \  (23)

5. Comparison of the theories
We used equations (18), (22) and (23) to calculate the K  dependence of f EX2p,o){K) f°r 

different values of E. The results are displayed in figures 2, 3 and 4. The most striking 
feature of the Bethe theory formula is the gradually developing dip at Q =  e which deepens 
with increasing e. For this state the binary-encounter theory approach gives an exact 
zero at Q =  e for all e. The differences in the two theories arise from the fact that the effect 
of the nucleus on the atomic electron is only partly allowed for (initial state) in the binary- 
encounter approach, whereas the Bethe theory contains the full effect of the nucleus (initial 
and final state) on the atomic electron. In both theories the effect of the nucleus on the 
incident particle is ignored. This is valid provided the incident velocity is sufficiently large. 
It can be seen that there is remarkable agreement for e =  15 (see figure 4) and that reason
able agreement is already found for e ^ 1, which exceeds the threshold energy for ioniza
tion by a factor of 4. As in I, we find that the binary-encounter theory gives an incorrect 
description of the collision process for small K.
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\C

—

Jn 0

Figure 2. Bethe (full curves) and binary-encounter (broken curves) generalized 
oscillator strengths for ionization of the hydrogen atom from the n — 2,1 — \ , m = 0  
state for different energy transfers. Curve A, e =  0-25 and f s{K)  =  f E' (K) ; curve B, 
€ = 0-4 and f E(K) = 0-5(fE' ( K) - 2 ) ;  curve C, <r = 1 and f B{K)  =  0-2(/E'(K )-4 ) .

/70-6

0-4

/ " * \

0-2

In Q

Figure 3. Bethe (full curve) and binary-encounter (broken curve) generalized oscillator 
strengths for ionization of the hydrogen atom from the « = 2, I — 1, m =  0 state for

e = 3 .
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Figure 4. As in figure 3 for e =  15.

6. m-quantization axis
In both theories the axis of m quantization was taken along the direction of the momen

tum transfer vector P, which is fixed once vx and vx , the final velocity of the incident 
particle (energy loss and direction of scattering), are chosen (e.g. in an experiment). Hence 
the cases considered are realistic in that it is experimentally possible to make a beam of

A
atoms with m either 0 or 1 along the P  direction. In principle one can thus observe the 
pronounced dip found here.

It is interesting to note that, if in the binary-encounter theory we choose the initial 
state m-quantization axis along the direction of vx, then for the (2p, 0) state of atomic hydro
gen we obtain equation (19) which equals the result arising from the (2p, ±1) state with 
the m-quantization axis along P.  This is surprising because, even though

A 2mxE  +  P 2 
v  i . P = --------------

2 mxv xP

is small for large v x and therefore P  is almost perpendicular to vx, the resulting angular 
distributions are different. The former distribution has axial symmetry about the z>x direc-

/A,
tion, whereas the latter has toroidal symmetry about the P  direction.

7. Additional remarks
Because of the simple structure of equation (16), the method can easily be extended to 

higher excited states of hydrogen and to other target atoms. The zeros (or minima) in the 
binary-encounter generalized oscillator strength for large E and P  give the location of 
possible dips in the Bethe and experimentally measured generalized oscillator strengths. 
The nature of these dips arises essentially from the angular integration and thus from the 
angular part of the initial-state wave function, as can be seen from equations (16) and (17). 
The dips (troughs) recently discussed by Kim et al. (1968) arise in a different way. They 
considered excitation to bound states and ionization with small E. In their cases the dips 
arise from the radial parts of the initial- and final-state wave functions.
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Abstract. Differential cross sections for the ejection of electrons from helium 
by 100 and 300 keV protons are calculated using a classical three body collision 
theory. Comparisons are made with the experimental and quantum mechanical 
results. For not too large angles of ejection the classical orbit integration cross 
sections agree very well with the experimental values, in contrast to the quantum 
mechanical Born calculations.

1. Introduction
The energy and angular distribution of electrons ejected by 100 to 300 keV 

protons from helium has been measured by Kuyatt and Jorgenson (1963),
: Rudd and Jorgenson (1963, to be referred to as RJ) and by Rudd, Sauter and Bailey 

(1966, to be referred to as RSB). RSB also performed Born calculations (hydrogenic, 
scaled on the ionization energy) for this process. An extension of the Born calculations 
was made by Salin (1969) for atomic hydrogen. He took into account the interaction 
of the ejected electron with the scattered proton by introducing a velocity dependent 

i effective charge. Macek (1970) took account of the final state wave distortion due to 
j the proton by calculating the first term of the Neumann expansion of the solutions of 
j the Faddeev equation. Another theoretical approach, the binary encounter theory, 
:i has been employed by Bonsen and Vriens (1970). From their comparison of the 
i (simple) binary encounter theory with the experiment and Born calculations of RSB, 
j they concluded that (i) the binary encounter theory and all classical theories fail in 
j describing the backward ejection, since this is caused by a purely quantum mechanical 
j interaction of the ejected electron with the rest of the atom and (ii) for velocities of 
j the ejected electron which are of the same order of magnitude as the velocity of the 
I incident proton a three (or more) body theory has to be used to describe the 
\ experimental results in the forward direction.

These conclusions encouraged us to calculate the cross sections for small angle 
ejection of electrons by protons from helium using the classical three body theory 
developed and applied to collisions of protons with hydrogen atoms by Abrines and 
Percival (1966 a,b, to be referred to as AP). Abrines et at. (1966) also applied the 

( original Ema program developed by AP to collisions of electrons with hydrogen 
■ atoms. The total p-H  ionization cross sections, obtained by AP had normal statistical 

errors of about 10% and agreed with experiment to within 15% over the entire 
* range of incident proton energies (40-225 keV). In their treatment, the only approxi

mation was the classical one, whereas in all other classical theories (Gryzinski 1959, 
Purgess 1964, Stabler 1964 and Ochkur and Petrun’kin 1963) a second approximation 
(the impulse or binary encounter approximation) was also made. Our program was 
dased on the more general and flexible Fortran three body Monte Carlo program of
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Percival and Valentine (see Valentine 1968, Banks, et al. 1969 and Banks and 
Valentine 1969).

In this paper we make extensive comparisons with the experiment and Born 
calculations of RSB and RJ, and with the binary encounter theory. Double differ
ential cross sections are calculated so that we are able to test the validity of the classical 
approximation in detail.

2. Classical m odel for the helium  atom
Because of the fact that the atom contains two electrons, an additional 

approximation has to be made. The two electrons will be described as independent 
scattering centres, so the four particle collision can be replaced by two independent 
three particle (p-H) collisions. The classical microcanonical velocity distribution in 
the field of the nucleus can be written as

8^05
ptV) , --------- -̂-----  (1)

1 t t V  + ̂o2)4
in which rnvf- =  —2E0, E0 being the binding energy. This distribution has also 
been shown by Bonsen and Vriens (1970) to represent the quantum mechanical 
velocity distribution of the electrons in the helium atom very well if E0 was chosen 
to be equal to the mean kinetic energy of the electron (39-49 eV). However, since 
the ionization threshold is equal to E0 in the classical model, we had to choose E0 
equal to the ionization energy (24-58 eV). This represents the same scaling as has 
been performed in the Born approximation.

3. N um erical method
We used the program described by Valentine (1968) to construct the classical 

proton-helium atom system and obtained the differential cross sections for ejection 
of electrons for two incident energies (100 keV and 300 keV). The values of the 
error parameters e, y  and S defined by AP were chosen to be 0-3, 0-2 and 0-005 
respectively. With these error parameters the statistical errors were larger than the 
numerical and truncation errors arising from the Runge Kutta integration of the 
equations of motion and from the neglect of the asymptotic interaction. Although a 
very small value of 8 was used the extra computing time was relatively short. The 
range of modified impact parameters was chosen to be y d -37 a0 for 100 keV proton 
impact and y 3  a0 for 300 keV proton impact. From a sample of orbits uniform in the 
whole range of modified^impact parameters (3000 orbits in the case of 100 keV impact 
and 1000 orbits for 300 keV impact) the following remarks could be made:

(i) In order to obtain normal statistical errors less than 20% for the small angle 
ionization cross sections in the interesting ejection energy range (40-200 eV for 
100 keV impact and 100-600 eV for 300 keV impact), the total number of orbits 
necessary with a uniform impact parameter distribution would be 25 000 for 100 keV 
and as many as 75 000 for 300 keV proton impact.

(ii) For all ejection angles, large ejection energies arose from collisions in which 
small modified impact parameters were involved.

To reduce the computing time, which was about thirty seconds for each orbit on 
the Stirling University ICL 4100 as well as on the Utrecht University EL-X8 we 
made use of (ii) and used a weighted distribution of modified impact parameters for 
the calculations of the cross sections (Abrines and Percival 1966 b). By taking the
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distribution of figures la  and lb for 100 and 300 keV proton impact respectively, we 
obtained normal statistical errors less than 20% for the cross sections in the interesting 
range of energy and angle with 8000 orbits in the case of 100 keV proton impact and 
9300 in the case of 300 keV proton impact.

100 keV
<3100-

0-75-

0-50-

300 keV

62Cc7q2)

Figure 1. Impact parameter distribution used for the calculations of collisions 
of 100 and 300 keV protons on helium.

4. Statistics
The impact parameter distributions used to calculate the double differential cross 

sections can be written as:

p(b2) =  m
7 =  1

(2)

in which 6(x) is the unit step function; so between two values bi_1 and b{ of the 
modified impact parameter the distribution is uniform. For the range of impact 
parameters between bi_ 1 and bt we can calculate the contribution.o^E, 6) to the double 
differential cross section <j(E, 8). Suppose that n{ collisions take place with impact 
parameter between and bu then n{ =  in which N  is the total number of
orbits. Further let the number of collisions resulting in ionization of the atom with the 
ejected electron moving in a direction between 8 — iAd  and 8 +  |A 8 with respect to the 
incident proton and with an energy between E — \AE  and E +  %AE be denoted by 
nt(E} 8). Then the contribution crt(jE, 6) to the double differential cross section a(E, 8) 
can be written as: t

nAE, 6)
ai(E> 6) =  J ■ n (bt ~ bt - 12) where &o =  0. (3)2nA8AE sind

Assuming that no ionization takes place for impact parameters larger than bn, the 
double differential cross section u{E, 8) for ejection of an electron is simply

a(E,«)=  2
i = 1

Since in practice n{ >  nt(E, 8) the standard error is given by

Aa{E,8) = -----   1 f  — ^ - ( 6 i2- 6 i_ 12)2)1/2-
V ’ 2A8AE sin^ 1 { x  n? V M

(4)

(5)
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In our calculations we choose Ad = 1 0 °  for both incident energies. We took 
AE =  25 eV for 100 keV proton impact and AE =  50 eV for 300 keV proton impact. 
The standard errors were found to be of the order of 20%, except for very large 
ejection energies and large ejection angles where the errors may be as large as 100%.

Note that to obtain good statistics from an economical number of orbits we require 
fairly large tolerances in energy and angle. This may result in a smoothing of the 
double differential cross section. Experimentalists are faced with similar difficulties 
but in this case our tolerances are larger than those of RSB. However for a given 
atomic model we have 100% counting efficiency so that we do not have additional 
normalization problems.

5. Double differential cross sections
For ejection angles smaller than 90° we calculated the cross sections o(E, 6) and 

compared our values with the corresponding experimental cross sections of RSB, the 
binary encounter results of Bonsen and Vriens (1970) and the Born cross sections of 
RSB, which agree with the binary encounter cross sections to within 10%. For 100 keV 
proton impact on helium the results are given in figure 2.

,-19

rfO

x 100 -

x 10

1-23.

,-24
3 0 0200100 

£el CeV)

Figure 2. Energy distributions of electrons ejected from helium at various angles 
with respect to 100 keV proton beam. The sets of data for 10° and 20° ejection 
are multiplied by a factor of 100 and 10 respectively. ■  our calculations;

O experiment of RSB; full curve, Born approximation.

The three sets of data have been displaced along the ordinate axis. In the upper 
set the ejection angle is 10°. The agreement between the experiment and the classical 
results is extremely good. The remaining discrepancies may be due to the approxi
mate velocity distribution. In the energy region where both Born and binary encounter
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theory give results which are about a factor of six smaller than the experiment, the 
Monte Carlo results are somewhat larger even than the experimental ones. This is 
rather surprising since the omission of quantal tunnel effects should produce the 
opposite. This discrepancy is unlikely to be due to the approximate velocity distribu
tion since Bonsen and Vriens (1970) demonstrated that (in the binary encounter 
approximation) the use of a more accurate velocity distribution raised the cross 
sections in this energy region. The calculated energy distribution for 20° ejection 
(the middle set of data) agrees completely with the experimental cross section over 
the whole range of energy to within the statistical errors. For higher ejection angles 
(see for instance the lower set for 50° ejection) it can be seen that the classical 
approximation no longer holds.

The Monte Carlo results for 300 keV proton impact on helium are presented in 
figure 3 together with experimental and Born results of RSB. The results for 10°

,-20.
300 keV H on He 

a C£,0)

x 100

r24

>-2 5

100 200 300 400 50 0 600 
fe t CeV)

Figure 3. Energy distribution of electrons ejected by 300 keV protons from 
helium at various angles. The set of data for 20° and 30° ejection are multiplied 
by a factor of 100 and 10 respectively. ■  our calculations; O experiment of 

RSB; full curve, Born approximation.

ejection are not presented since the statistical errors are too large to make decisive 
conclusions. For 20° ejection the cross sections are given in the upper part of the 
figure. Though the statistical errors are not small the agreement between the classical 
theory and the experiment is extremely good. This is also the case for 30° ejection. 
For higher ejection angles the classical theory underestimates the cross sections but 
even for 70° ejection (see the lower set of data of figure 3) the calculated energy dis
tribution is in quite good agreement with experiment.

Comparison with the Born (as well as the binary encounter) approximation 
shows that the interaction between the projectile and the atom in the region where the
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velocity of the incident proton is about the same as the velocity of the ejected electron 
(50 eV for 100 keV protons and 150 eV for 300 keV protons) is essentially a four' 
particle interaction, which can be described very well classically by two independent 
three particle collisions.

6. Single differential cross sections
In figures 4 and 5 the cross sections a(d) are presented and compared with the 

corresponding experimental results of RSB and RJ and with JBorn and binary

b

1-23

,-24

Figure 4. Angular distribution of electrons ejected by 100 keV protons from 
helium. ■  our results; □  experiments of RJ; O experiments of RSB; full 

curve, Born approximation; broken curve, binary encounter theory.

encounter calculations. From these figures it is clear that the classical approach is not 
valid for backward ejection as has been explained previously by Bonsen and Vriens 
(1970). In the forward direction the angular distribution calculated using the Monte 
Carlo method is in very close agreement with experiment. For lower angles the 
statistical errors become large owing to the small size of the ionization channel. For 
higher impact energies the range of validity of the classical theory approaches 90°. 
The results of RJ seem to be somewhat more realistic than the measurements of RSB.

In figure 6 the energy distributions of the ejected electrons are presented for both 
incident energies. The agreement between all experiments and theories is close for all 
ejection energies. It is clear that large angle ejection does not contribute significantly 
to a(E) for ejection energies larger than about 30 eV. For very small ejection energies 
(<  20 eV) the results of RJ are in closer agreement with our calculations than the 
measurements of RSB. In the energy range where the velocities of ejected electron 
and incident proton are about equal, the classical cross sections are slightly better 
than Born and binary encounter values which follows directly from the double 
differential cross section calculations.
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300 keV H on He
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Figure 5. Angular distribution of electrons ejected by 300 keV protons from 
helium. ■  our results; O  experiments of RSB; full curve, Born approxi

mation; broken curve, binary encounter approximation.
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Figure 6. Energy distributions of electrons ejected by 100 and 300 keV protons 
from helium. The 300 keV sets of data have been multiplied by 10. ■  our 
results; □  experiments of RJ; O experiments of RSB; •  binary encounter 

theory; full curve, Born approximation.



Angular distribution of ejected electrons: III 713
7. Total ionization cross sections

In table 1 the classical total ionization cross sections are presented for both 
incident energies and compared with previous results.

Table 1. Total ionization cross sections for ionization of helium  by
protons

E P RSB RJ Born Binary Our
(keV) encounter results
100 11-9 10-0 11-0 11-9 9-25 ±0-25
300 7-13 — 5-47 5-74 5-44 ±0-25

All cross sections are in units of 10-21m2.

It can be seen that the classical result, which is in very close agreement with 
previous calculations of AP for p-H  collisions, in both cases is about 20% smaller 
than the RSB results. The cross sections of RJ for 100 keV protons agree to within 
7% with our calculations. The main difference between classical theory and both 
experiments is due to small energy (<  20 eV) large angle (>  70°) ejection as can be 
seen from figures 4 to 6. For 100 keV proton impact a fortuitous agreement exists 
between the quantum mechanical (Born as well as binary encounter) theories and the 
experiment of RSB. From figure 4 it can be seen that a compensation of the errors 
occurs in forward and intermediate angles. For 300 keV proton impact this com
pensation does not occur to the same extent and the total cross section in both theories 
is smaller than the experimental value.

8. Conclusion
The classical three body approximation describes the angular and energy 

distribution of electrons ejected by protons from helium very well for small and 
intermediate ejection angles and for all ejection energies. In this region the classical 
approach is even superior to the Born approximation. For large ejection angles a 
quantum mechanical approach has to be used. To calculate total cross sections for 
intermediate energies of the proton the classical three body approximation is as good 
as any quantum mechanical approach. However to obtain good statistics within 
reasonable time a fast computer has to be used for the Monte Carlo program.

The proton and electron ionization cross sections obtained by Abrines and 
Percival (1966 b) and by Abrines et al. (1966) were determined as functions of 
incident energy only. It is possible, that the agreement between Monte Carlo and 
experiment on ground-state atoms is fortuitous. Particularly since the experiments 
of Lassettre and his collaborators there is increasing insistance that comparisons of 
the differential cross sections should be required before theory and experiment are 
said to agree. On this basis the present results for double differential cross sections 
show that classical orbit integration methods are valid in important regions of incident 
energy, energy transfer and ejection angle even for low quantum numbers.
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Nature of the physical problem
Flexible representation of the classical relative 

motion of two particles interacting through a general 
central force.
Method of solution

A general terminology of states and frames is in
troduced which allows changes from one state or frame 
to another to be defined. The frame changes are ana
lytic. The state changes are made by solution of 
Newton's equations of motion using a fourth-order 
Runge-Kutta formula. [1].

R estrictions on the complexity of the problem  
Limited to central forces.

Typical running time
This depends on the form of the potential, the 

boundary conditions and the integration time specified.

Reference

[1] R. A. Buckingham, Numerical methods (Pitman, 
London, 1962).
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L O N G  W R I T E - U P

1. INTRODUCTION

Program s for the num erical solution of the 
newtonian equations for the relative motion of 2 
p articles interacting through a central force have 
wide application. Frequently solutions are r e 
quired as part of the solution of a problem in 
volving 3 or more particles.

This package is  designed to provide a flex ib le , 
com prehensible and m achine-independent set of 
routines for the 2 -particle relative-m otion p ro
blem , rather than routines which compute quick
ly, although speed has not been neglected. Some 
of the conventions adopted may appear unneces
sary, but their significance becom es apparent in 
using the package as part of a larger problem.

Because the problem of the relative motion of 
2 particles is  equivalent to that of the motion of 
a single particle (with their reduced m ass) in a 
given external field [ l ,p.  29], the m a sses , co 
ordinates and velocities of the individual par
ticles are not relevant to this package. Further
more this package may be used directly to ob
tain solutions of the equivalent problem of a 
single particle in a given fixed external field.

Although most computing tim e is  spent in in 
tegrating equations of motion, in practice, much 
programming is  concerned with setting up initial 
conditions and analysing data. We have found that 
this programming is  greatly a ssisted  by the in
troduction of a terminology of c la ssica l fram es  
and states. The routines of the package are con
cerned with changes in fram e in addition to the 
integration of equations of motion, which is  r e 
quired for changes in state. The latter is  carried  
out using a fourth-order Runge-Kutta method [2] 
with a step length which is  recalculated at each 
step.

Provision is  made for obtaining and working 
in a frame of reference {%', y \  z') for which the 
relative motion is  in the x ',y '  plane, but no a t
tempt is  made to separate the radial and angular 
motions, since the use of sim ilar integration 
methods for 2 -particle and 3 -particle system s  
should reduce certain num erical errors accumu
lated along orbits. The form of the force field  is  
chosen so that the u ser may include his own force  
terms. There is  a lso  special provision for the 
mverse-square force term . The package may be 
used for both bound system s and scattering pro
blems.

The programming standards adopted in this 
package are comparable to those proposed by 
Roberts in ref. [3].

2. BODY AND STATES

There is  only 1 body in a 2 -particle re la tive- 
motion system . This is  called  the reduced m ass.
It is  labelled by any of

IBODR, JBODR, . . . ,  NBODR, (IBODR = 1), 
BODR (abbreviation).
This body has a m ass EMR2(IBODR).

The
2 (abbreviation) 

as for EMR2(IBODR) is  used to denote a variable 
or routine associated  specifically  with a 2 -par
tic le  system . This is  convenient when the package 
is  used as part of a larger package or program.

Time (epoch) for the 2-particle re lative-m o-  
tion system  is  denoted by TIMR2 and is  m easured  
(in som e system  of units which must be used 
consistently throughout) with respect to a standard 
origin of tim e which is  supposed fixed.

At a given time TIMR2 the body has a position  
R  and velocity V  relative to the standard (labora
tory or LAB) co-ordinate system  whose origin  
coincides with the centre of force. R  and V  are 
represented co llectively  by 6 num erical co -o r 
dinates (in som e system  of units which must be 
used consistently throughout).

The 6 co-ordinates constitute the R V -vec to r  
of the body and are labelled by any of

IRV, JRV, . . . ,  NRV, (IRV = 1 to 6), in which 
IRV = 1, 2, 3 label the position co-ordinates 
and
IRV - 4 ,  5, 6 label the corresponding velocity  
co-ordinates.

The
RV (abbreviation) 

refers to co-ordinates of position and velocity.
We have found that velocity is  preferable to m o
mentum for numerical computation of orbits.

The motion of the system  at all tim es, or 
evolution of the system , can be obtained if a 
tim e TIMR2 and the RV-vector of the body (with 
respect to the standard cartesian axes at that 
time) are defined. This set of 7 real numbers de
fines a state of the 2 -particle relative-m otion  
system  in the standard fram e, or a point in the 
7 -dim ensional RVT-space. Any equivalent set of 
7 or more real numbers which defines this point 
also defines the state. States are labelled by any 
of

ISTR, JSTR, . . ., NSTR, (ISTR = 1 to KRSTM2), 
ST (abbreviation).
A typical state might be that at the beginning 

of an integration of the equations of motion, 
called the in itial s ta te , labelled ISTR = JSTR, or 
the state after integration, called the final sta te ,
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labelled  ISTR = MSTR. When different form s of 
interaction or different stages in the integration  
are introduced, m ore states are needed. The 
choice of num erical values of ISTR labels is  left 
to the user. We have made provision for 7 states  
but this maximum number 7 may be altered by 
changing dimension statem ents and redefining 
KRSTM2.

The tim e at which the system  reaches state 
ISTR is  denoted by

TIMR2 (1, ISTR) .
As the calculation proceeds, the R V -vectors are 
stored in a 3-dim ensional array:

RVREL2 (IRV, IBODR, ISTR) 
with locations for each of the 6 co-ordinates IRV 
of the RV-vector of the body IBODR in each state 
ISTR.

3. FRAMES

At a given stage in a computation not all of 
the elem ents of the RVREL2 array w ill be ob
tained. For a given state ISTR only the time 
TIMR2 and the 6 values of RVREL2 defining the 
position and velocity of the body are required to 
define the state. But any equivalent set of 7 or 
m ore real numbers also  defines the state. Only 
som e of these equivalent sets are significant or 
useful and we call th ese fra m es ,  which may be 
considered as particular co-ordinate system s  
in the 7-dim ensional RVT-state space. If more 
than 7 numbers are given by a fram e, then they 
are related and the fram e is  reducible. Such 
fram es are nevertheless significant.

The fram es are labelled by any of 
IFRAM, JFRAM, . . ., NFRAM,
(IFRAM = 1, 2, 3, 4, 5),
IFRAM (abbreviation).
The fram e IFRAM = 1 has been defined above 

and is  the standard f r a m e . Thus, in a given state 
ISTR, for IFRAM = 1:

give TIMR2(1, ISTR) ,

RVREL2(IRV, 1, ISTR), IRV = 1 to 6. 
(That is  to say, if TIMR2(1,ISTR), 
RVREL2(IRV,1,ISTR) are given then IFRAM = 1 
is  available.)

The frame IFRAM = 2 is  the ro ta tion -m atrix  
fram e. In this frame a new set of axes with unit 
vectors x ', y ' , z ' is  defined with standard ca r
tesian  co-ordinates

XDASH2(IR, 1, ISTR), IR = 1 to 3 ,
YDASH2(IR, 1, ISTR), IR = 1 to 3 ,
ZDASH2(IR, 1,IST R), IR = 1 to 3 ,

respectively. The nine values constitute a 3 x 3

rotation m atrix M which relates co-ordinates in 
the two co-ordinate system s. The components 
with IR = 4 are described in routine AXES2.

In the dashed co-ordinate system  the x ', y' 
plane is  taken to be the plane of relative motion 
so that the angular momentum vector is  in the 
direction of the z' axis. For the Coulomb force  
the x' axis is  taken to be in the direction of the 
perihelion vector (shortest radius vector). When 
no Coulomb force is  present the x' axis is  taken 
perpendicular to the initial velocity vector so  
that the y' axis is  parallel to this velocity vector. 
Combinations of Coulomb and non-Coulomb forces 
and the special ca ses  that a rise  when som e of the 
quantities are very large or sm all, are de
scribed in the com m ents of routine AXES2.

In the dashed co-ordinate system  only the co
ordinates 1 , 2 , 4  and 5 are required to define 
the RV-vector as the z  '-com ponents are zero.

The RV-vector is  called  
RVRXV2(IRV, 1, ISTR) , 

where RXV denotes the vector R_ x V  which is  
used to define the new fram e. The values for 
IRV = 3 and IRV = 6 are always zero.

Both this RV-vector and the rotation matrix 
are needed to define the given state ISTR of rela
tive motion, so that for IFRAM = 2:

give TIMR2(1, ISTR), XDASH2(IR, 1, ISTR),

YDASH2(IR, 1, ISTR), ZDASH2(IR, 1, ISTR),

IR = 1 to 3 , ^

RVRXV2(IRV, 1 , ISTR),IRV = 1, 2, 4, 5.

C learly this fram e is  very reducible.
The reducibility is  lessen ed  by defining the 

rotation in term s of the Euler angles instead of 
the matrix. With the definition given by Whittaker 
[4, p. 9] of the Euler angles ( 4 > ~
(PHI2, THETA2, PSI2) or with P2 = EMU2 = 
cos 02 as a useful alternative param eter, the 
E uler-angle f ra m e s  are defined as follows. For 
IFRAM = 3:

give TIMR2(1, ISTR), PHI2(1, ISTR),

THETA2(1,ISTR), PSI2(1, ISTR), (3)

RVRXV2(IRV, 1 ,ISTR), IRV = 1, 2, 4, 5 .

For IFRAM = 4 : 

give as IFRAM = 3 ,

but EMU2(1, ISTR) in place of (4>

THETA2(1, ISTR) .

The fifth fram e requires an alternative defi
nition of the rotation in term s of the complex
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C ayley-K lein param eters [4, p. 12] (a2>i32>>'2» ®2̂  
= (ALPHA2, BETA2, GAMMA2, DELTA2) so that 
for IFRAM = 5:

give TIMR2(1, ISTR), ALPHA2(1, ISTR),

BETA2(1, ISTR), GAMMA2(1, ISTR), 

DELTA2(1, ISTR), RVRXV2(IRV, 1,ISTR),

IRV = 1, 2, 4, 5.

The equations of relative motion are usually  
integrated in the rotation-m atrix fram e, but 
since only TIMR2 and RVRXV2 are required, 
any but the standard fram e would do.

Initial conditions are som etim es set up in the 
Euler angle fram e [5], The Cayley-Klein fram e 
is included for com pleteness.

4. SIGNALS AND SIGNAL RULES

These play a key role in the operation of the 
package. At the beginning of a run for a given o r 
bit none of the fram es w ill be available for any 
state of that orbit. The initial state (say ISTR = 1) 
for the relative motion may then be set up by the 
user in any one of the 5 fram es, but it may be 
required at a later stage in any other fram e. A 
routine UFRAM2 is  provided for obtaining one 
frame from another, but th is w ill not work un
less a record is  kept of which particular fram e 
or fram es is  available. This serv ice  is  provided  
by a signal a rray .

KSFRM2(IFRAM, 1, ISTR) , 
whose value for each IFRAM, ISTR is  either 0, 
which is  called  red , or 1, which is  called green. 
The package w ill function properly only if the 
signal ru les  are strictly  kept by the user.

At the beginning of the run for a given orbit 
the whole signal array must be set to red (zero) 
by the user. For a given state ISTR, if the user  
provides the fram e IFRAM without using the 
package, say to set up the initial conditions, he 
toust set the appropriate signal to green (1). If 
the package routines are used to obtain fram es, 

i they set the signals automatically.
I As each frame is  obtained the corresponding 

signal is set to green. If a routine of the package 
requires a particular fram e it first observes the 
corresponding signal. If it se e s  green it proceeds. 
If it sees red it means that the required fram e is  

J not available, and either it obtains the fram e 
irom an available fram e, or, if none is  available, 
a ^AULT routine is  called. If the u ser w ishes to 
^rite routines using particular fram es he is  ad
vised to use the signal KSFRM2 in the sam e way.

The signal arrays KSCAL2 and KSAXE2 will 
be described in the context of the routines that 
use them.

The signal ru les described above must be 
obeyed by the u ser, or the routines of the package 
may produce nonsense, using R V -vectors with 
incorrect components as data. When the rules 
are obeyed they allow rapid and relatively sim ple 
programming.

5. EQUATIONS OF MOTION, ERROR PARAM
ETERS

The fram es are derived from one another 
using analytic relations. A state ISTR can in 
general only be obtained from  another by num eri
cal integration of the equations of motion, called  
num erical evolution.

The equations of relative motion are

R  = V ,  V = ± F R  , (6)

where M  is  the m ass of the body, F R  is  the e x 
ternal central force acting upon it, and the dot 
denotes differentiation with respect to time. We 
call F  the scalar central force. F  d iffers from  
the magnitude of the force by the inclusion of a 
sign (negative if attractive).

The 6 equations of relative motion are first  
order differential equations for RVREL2 with 
respect to TIMR2. The 4 equivalent equations for 
the corresponding co-ordinates RVRXV2 are  
solved (by routine USTR2) in fram e 2 by a step- 
by-step  procedure.

Numerical integration, like many other com 
putations, requires a judgement to be made on the 
conflicting demands of speed of computation and 
accuracy of the resu lts. Unfortunately this judge
ment often cannot be made without many test 
runs, so in this and later packages and pro
gram s speed and accuracy of computation are 
under the control of e r ro r  param eters  

ERRP (abbreviation) , 
which are part of the input data.

Normally if an error param eter is  sm all the 
accuracy is  relatively good, but the speed of 
computation is  relatively low, and vice versa.

For a given accuracy we like the speed to be 
as high as possible. For the equations of relative 
motion the speed depends critically  on the opti
mum length of the tim e-step  STEP2 in the step- 
by-step integration, which is  a function of the 
current force, and thus of the stage of integra
tion.

We find it appropriate to recalculate STEP2 at
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every step, norm ally according to the formula

STEP2 - ± ERRP2(1)
s q r t ( | k -f / m |) (7)

where ERRP2(1) is  an error param eter, and 
have for this reason used fourth-order Runge- 
Kutta integration and not a nominally faster  
num erical integration procedure for which a 
change of step length is  difficult.

In exceptional circum stances, e.g. near a 
singularity or zero of the force, STEP2 as de
fined above may approach zero or infinity, and 
the routine STEPL2 which calcu lates STEP2 
then keeps its  magnitude within specified  bounds.

6. SUBROUTINES AND FUNCTIONS

In writing routines it is  advisable to allow for 
exceptional occurrences, such as position and 
velocity vectors being in the sam e direction. We 
have found that such exceptional ca ses  require 
considerable program m ing, which detracts 
from  the clarity of the routines of the package.
We have therefore separated many routines into 
norm al m odes and specia l or exceptional m odes. 
At first reading the special modes should be ig 
nored. However, it should be pointed out that 
analytically "simple" orbits, such as circular  
and straight line orbits frequently require special 
modes of operation of the routines.

The general flow through the routines is  given 
in fig. 1.

USTR2(WTIM,JSTR, MSTR) and i ts  daughters 
USTR2 is  the most important routine of the 2 -  
particle relative-m otion package and, with the 
aid of its descendants, carries out the num erical 
evolution.

Explicitly, USTR2 obtains the final state  
MSTR of the relative motion in the standard 
fram e from the initial state JSTR, in any fram e, 
and the tim e interval WTIM.

USTR2 u ses UFRAM2 to obtain the co-ordin 
ates of relative motion in the dashed co-ordin
ate system , and then normally carries out step-  
by-step  evolution with full interaction in that 
frame. For each step, USTR2 calculates the 
current tim e step STEP2 (increment or d ecre
ment) using STEPL2 and evolves the state ap
proximately for that step in tim e using RUNGE2. 
When the tim e interval WTIM has lapsed (over
shoot is  automatically prevented) USTR2 sets  
KSFRM2(2,1, MSTR) = 1 and u ses UFRAM2 to 
obtain the co-ordinates of relative motion in the 
standard fram e IFRAM = 1. If during evolution

0STR2

|RUNGE2| [STEP12|

[lNVAR 2 |

[UFRAM21

A X E S2 1 fc)T N L 2 | |f O RC E2] [r EDKR2|

[ATAN2A | |CYCLIC

|FAULTG

|FA U L T 2|

Fig. 1. Package structure. Each (mother) routine shown 
at the tail of each arrow calls (daughter) routines at the 
head of the arrow, which in their turn call further 

(descendant) routines.

the number of steps exceeds a given tolerable 
maximum number KINTM2, USTR2 ca lls  
FAULT2(2, JSTR).

Exceptional m odes are described in the com
ments of USTR2.

RUNGE2
RUNGE2 carries out a single step in the numeri
cal evolution using ACVEL2 to obtain the vector 
accelerations and velocities (derivatives of ve
loc ities  and positions) as functions of position 
and velocity. The 4th-order Runge-Kutta method
[2] is  used.

STEPL2
STEPL2 calcu lates the current step in tim e for 
the step-by-step  num erical evolution using eq. (7)>

ACVEL2
ACVEL2 obtains the current relative vector ac
celeration and velocity in the dashed co-ordinate 
system , using FORCE2 to calculate the required 
current scalar force as a function of the current 
radial distance.

FORCE2
FORCE2 obtains the current scalar central 
force FRC2(1) which acts on the body (negative 
if attractive).

It is  used to obtain the vector forces for
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num erical integration and for calculation of the 
current step length.

FORCE2 is  used and operates in 3 different 
m odes, which we describe separately.

FORCE2 (in verse-squ are mode)
Only the in verse-square (or Coulomb) force is  
present. For u se , se t SCALE2(1,1) equal to the 
force constant (product of the charges), and 
KSCAL2(1,1) and KSCLM2(1) equal to 1. Before 
each call ensure R2(l) is  equal to the distance 
from the force centre and then call the routine 
FORCE2 to obtain the sca lar inverse-square  
force.

FORCE 2 (general mode)
Central force (chem ical) term s are present which 
are not in versely  proportional to RSQ2(1). The 
total scalar force is  a sum of KSCLM2(1) (10 or 
less) term s. For use in this mode the routine 
must be m odified by the p ro g ra m m er  as de
scribed in the com m ents of FORCE2. In addition 
to the modification KSCLM2(1) must be set to the 
number of term s in the force, KSCAL2(1, LPTL) 
set to 0 if the term  LPTL is  zero; and 1 other
wise, where the term  LPTL = 1 is  always of in 
verse-square form. The sca le factors  
SCALE2(1, LPTL) must be assigned by the user. 
Also KSHPM2(1) must be set to the number (10 or 
less) of shape param eters and SHAPE2(1, LSHP) 
must be set to their correct values.

FORCE2 obtains the scalar force by calculat
ing the KSCLM2(1) force term s (using the 
KSHPM2(1) shape param eters) and adding them  
together.

FORCE2 (chem ical mode)
As in the general mode but the inverse-square  
term is  never present.

VFRAM2 and AXES2
These form a different branch of the USTR2 
family from those considered in the previous 
section. They are often used on their own, in- 

i dependency of USTR2.

I ijFRAM2(MFRAM2, JSTR)
UFRAM2 is  used to obtain a required fram e 
MFRAM2 for a given state JSTR of the relative  
lotion of a 2 -particle system  if any of the 5 
frames is  available.

! For instance the in itial conditions of relative  
Motion may be known in the standard fram e 
jFRAM = i 5 that is  the vectors of relative p o si
tion and velocity in the co-ordinate system  of

that fram e. They are required (by USTR2) in one 
of the other fram es in which the motion is  in the 
x \  y' plane in order to perform the num erical in
tegration of the equations of motion.

The signal ru les must be obeyed for UFRAM2 
to work.

UFRAM2 looks at the signal 
KSFRM2(MFRAM2,1, JSTR) and if it is  green, 
UFRAM2 assum es fram e MFRAM2 is  available 
and returns. If that signal is  red, UFRAM2 looks 
at the other signals KSFRM2 for the state JSTR 
of relative motion to see if any one is  green, and 
if so assum es the corresponding fram e IFRAM2 
is  available. From fram e IFRAM2 it then c a l
culates the variables of MFRAM2, and of any 
interm ediate fram es that it may be convenient to 
use. It sw itches KSFRM2 to green for MFRAM2 
and for any such interm ediate fram e of state 
JSTR and returns. If KSFRM2(IFRAM, 1, JSTR) 
is  red for all five fram es, UFRAM2 calls  
FAULT2(4, JSTR) and returns.

AXES2(JSTR)
AXES2 obtains the standard co-ordinates (d irec
tion cosines) of the dashed axes x ', y ', z '  for the 
state JSTR from the relative position and ve loc i
ty RV-vector RVREL2. It also finds the following 
sim ple dynamical fram e invariants in the state 
JSTR:

1) the relative distance RST2(1, JSTR),
2) the relative speed VST2(1, JSTR),
3) the magnitude of the angular momentum 

vector ZDASH2(4,1, JSTR) (if possib le),
4) the magnitude of the Runge-Lenz vector 

XDASH2(4 ,1 , JSTR) (if possible).
It has 3 normal modes of operation which we 

describe here and many exceptional modes which 
are needed for singular conditions and which are 
described only in the detailed comments of 
AXES2. In all normal modes the motion is  con
fined to the x ',y '  plane.

AXES2 (inverse-square mode)
This is  the normal mode when only ^n in verse-  
square force is  present. The x' axis is  in the d i
rection of the perihelion of the orbit of relative 
motion, that is , in the direction of the Runge- 
Lenz vector [1, eq. (15.17)] of relative motion

M V  x ( R x  V ) + K R / \ R \  , (8)

where K  = SCALE2(1,1) is  the inverse-square  
force constant.

The Runge-Lenz vector is  a constant of the 
motion and is  approximately so during numerical 
evolution.
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AXES. 2 (chem ical mode)
This is  the non-singular mode when chem ical 
term s (see  FORCE2, chem ical mode) but no in
v erse-sq u are term  is  present. The x ' axis is  in 
the direction of the f ir st term  in form ula (8). 
During num erical evolution the x' axis rem ains 
constant at its  in itia l-sta te  value.

AXES 2 (general mode)
Both chem ical and in verse-square term s are  
present. The x' ax is is  in the direction of the 
vector (8) but th is is  not usually the direction of 
the perihelion of the relative motion. The same 
applies to num erical evolution as for the chem i
cal mode. However, if the chem ical term s are 
relatively  sm all, the x 1 axis is  approximately in 
the direction of the perihelion and AXES2 may be 
used to investigate the p recession  of the p er i
helion.

7. AUXILIARY ROUTINES AND FUNCTIONS 

PO TN L2
POTNL2 obtains the potential energy of the body 
(reduced m ass). It has the sam e general stru c
ture as FORCE2.

INVAR2 (JSTR)
INVAR2 obtains som e of the sim ple dynamical 
fram e invariants of the relative state JSTR.

FA UL TG (JFA UL T)
FAULTG w rites fault m essages for faults de
tected in ATAN2A or CYCLIC into the output 
stream  labelled by KOUT.

Common blocks  
Block name Contents
C2ANGL ALPHA2(1,7), BETA2(1,7),

DELTA2(1, 7), EM U2(1,7),
GAMMA2(1,7), PHI2(1,7),
PSI2(1, 7), THETA2(1, 7)

C2AXES KSAXE2(1,7), RVRXV2(6,1 ,7 ),
XDASH2(4,1 ,7 ), YDASH2(4,1, 7), 
ZDASH2(4,1,7)

C2BODR KSFRM 2(5,1 ,7 ), RVREL2(6,1, 7), 
TIMR2(1,7)

C2FCPT FRCN2(1,10), PTLN2(1,10)
C2INPR EMR2(1), ERRP2(5), KINTM2,

KRSTM2, KSCAL2(1,10), 
KSCLM2(1), KSHPM2(1), 
SCALE2(1,10), SHAPE2(1 10)

C2INVR EKST2(1, 7), ETST2(1,7),
FRCST2(1, 7), PTLST2(1, 7), 
RST2(1,7), VST2(1,7)

C2USTR FF2(4), FRC2(1), KINT2, PTL2(1),
R 2(l), RSQ2(1), RV2(4), STEP2, 
TIME2, V 2(l), VSQ2(1)

CINOUT A ZERO, KIN, KOUT
For definitions of common block variables 

see  dictionary.

REDKR2
REDKR2 se ts  to red (0) all the signals which can 
be altered by this package.

FA UL T2 (JFA UL T, MFA UL T)
FAULT2 w rites fault m essages for faults de
tected in the 2 -particle relative-m otion package 
into the output stream  labelled by KOUT.

ATAN2A(W Y, WX)
The function ATAN2A obtains the plane polar 
angle ATAN2A (in radians) in the range (0,27r) of 
a point in a plane with cartesian co-ordinates  
(WX,WY). This function is  n ecessary for 
machine-independent operation, as the range of 
definition of ATAN2(X, Y) can be different for 
different installations. ATAN2A(WY, WX) r e 
quires the standard tangent function ATAN(X) for 
X  in the range (0,7r/2) only.

CYCLIC(JI, MJ, MK)
CYCLIC makes (JI, MJ,MK) a cyclic permutation 
of (1,2,3)  if possib le, given JI only.

8. ESSENTIAL INFORMATION REQUIRED BY
THE PACKAGE

The package w ill function correctly  if the fol
lowing instructions are obeyed.

1) Include all common blocks of the package 
in the calling routine.

2) Define a ll the input constants. These con
stitute the common blocks CINOUT and C2INPR-

3) Call REDKR2.
4) Define any of the 5 fram es for som e state 

JSTR and set the corresponding signal (s) to 
GREEN (1).

5) Define WTIM if a new state MSTR is  to be 
obtained by num erical evolution.

9. TEST RUN

The package is  tested  with the aid of the 
driver program REL MOTION TEST which con
s is ts  of the main routine MAIN TEST and 4 auxi
liary  routines ZEROR2(JSTM2),
INOUT2( JSTR, JIN, WNAME),
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OUTST2(JSTR, WNAME) and OUT2(WNAME). 
Using the package, the driver program carries  
out the num erical evolution of the motion of an 
electron  relative to a proton with a non-rela- 
tiv is t ic  inverse-sq uare attractive force between 
them , using atom ic units. It then includes a 
harmonic perturbation term .

The first step of the main routine is  to set all 
the common variables in the package for the 
sta tes 1, 2, 3, 4, and 5 to zero. This is  achieved  
by routine ZEROR2. The input constants and 
the initial state of the atom in the standard 
fram e 1 are assigned  in INOUT2, which also  
reads and w rites the nam es QNAME of a ll the 
common variables. INOUT2 then w rites out the 
com plete common lis t ,  showing the input con
stants and the initial state of the atom in a 
standardised form . The output variables for 
state 1 are then calculated and written out. The 
main program  next evolves state 1 for a com plete 
period QWTIM of the bound motion, placing the 
resu lts into state 2. The values of the common 
variables of state 2 are determined and written 
out. As the system  has been evolved for a com 
plete period, exact integration should return all 
the variables save WTIM to their original values. 
A good approximation to this situation can be ob
tained by choosing a sufficiently sm all ERRP2(1). 
At tim e QWTEM a perturbing term  of the form  
+ ia) r  (where -  a? = SCALE2(1,2)) is  added to 
the existing potential and the corresponding term  
-u)2r is  added to the scalar force. As a resu lt, 
some of the values of the common variables are 
altered and so the state is  renamed state 3 and 
the com plete common lis t  written out again. The 
system  is  evolved from  state 3 for a further 
time interval QWTIM forwards in tim e to state 4 
and then backwards in tim e (time interval 
- QWTIM) to state 5. The values of a ll common 
variables are written out for the states 4 and 5 
as each state is  obtained. The resu lts are not

identical because the perturbed system  has a 
different period to that of the unperturbed s y s 
tem . A fully com prehensive test of the package 
has been made but is  too long for presentation. 
This program tests  only those branches of 
routines which are required in a typical applica
tion of the package.

Data for the test run
The data con sists of the nam es of all of the 

common variables.

Output from the test run
This con sists of the listing of the input data 

followed by six  pages showing the progression  
through the five states as described above. The 
input data and the first three of these pages are 
reproduced below.
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T E ST  RUN O U TPU T

A T A CARPS

A/FRj K I KO-'T r-RKP? KpiTM?KSCAL.?KSCLM?KSMPM?qCALF?SMAPP2rRCK‘? PTl *? 
FF? FRf;2 K i n ?  PTl? R2 RSR2 RV? STFP? TIME? V? VSQ? FMR? 
KRST*-!2 KSrHM?K‘V;'FL2 Tl MR 2 kS A XF 2R VR X V2XO A S!«? vp ASM 2 7 0 A SU? AL PH A 2PF T A 2 Pfrt TAP 
EMU? GAMMA2PH12 PSI2 THFTA2FKST2 FTST2 FPCST2PTLST2RST2 VST?

INPUT VALUE* OF ALL COMMON VAR I ARLES IN THE RELATIVE 5TATT 1 ARF AS FOLIO~‘S.

INPUT CONSTANTS

A/EWO
KIN
k o u tFRRP2
K IN T m?
KSCAL2
KSCLM?
KbiHPM?
s c a l e ?
s h a p e ?

o . i n o o o n E - o v

p . o s o n o o F « n o  o . o p n o n n p ^ n o  n . i o o n o n p - o i  o . i o o o o o r * n ?

- o . i n o o o n E * o t
o . o o o o o n t * o u

TRAMF VARIABLES

EHR?
KRST m ?
KSFRM?
h v r e l ?
T I MR?

0 . 9 9 9 4 6 0 E * 0 0

n . 2 0 0 0 0 0 E * o o  o . o n n n n n E ^ o n f l.OOOOOO.MOO p, uoo'ioOF ♦on

K SA X t?
RVRXV?

0
0 t 0 0 0 0 0 f ) E * 0 0 o . o o o o n o F * o o 0 .  OOOOOOF *0 0 0 .  OOOOOOE * 0 0  O .OOOOOOF*On o . o o o o o o f * oo

XPASH? 0 . 0 0 0 0 0 0 E * 0 0 t i . O o n n n o E * o n n . o n o o o n F ^ n o o . o o n n o n F ^ o n  
0 . OOOOOOE * 0 0YDASH? o . o n o o o o E « o n O.OOOOOOE^OO 0 • OOOOOOE + OQ

ZOASM? 
ALPHA?
BC-TA2

o . o n o o o n t * o o  
o , o o o o o o e * oo
0 . OOOOOOF^OU

n. OOOOOOE*on
o . o o o o o o e * oo
n . n o o o o o F ^ o n

o . o o p n o c E ^ o o c . o o n n o n F ^ p n
- i ~  V  - - -  -.r— - -  - -  -  i -  -

d e l t a ? 0 • OOOOOOE *0 0 0 . 0 0 0 0 0 0 E « 0 0
EMU?
GAMMA?

o . o o o n o n £ * o o
o . o n o o o o E ^ o o 0 , o o o o o o t * 0 0

P H I ? 0 . p n 0 l» 0 i1 F + 0 0
PS  12 o . o o o n o n E ^ o n
THETA? 0 t 0 0 0 U 0 0 E » G 0
EKST2 O.OOOOOnE^OO '
E T ST ? o . o o o o o o f ^ oo
FR CS T ? o . o o o n o n E * o o
P T L S T ? o . o o n o o o E ^ o o
RS T? O.OOOOOOE*00 S S S B E S S S S l i i i i i i  1  ~ ' W  _ L  l  — 1 8 1 1  - -  -  —
VST? o . o n o o o n E * n n

i n t e r a c t i o n  t f r m s

FRCN2 o , o o o n o o E * o o o . o o o o o o E ^ o n M l - Z - W L ' J . ........  -  jL
PTLN2 n . o n o o o n t * o n n . o o o o o o F * o o

c u r r e n t V A PI A8 L E S  OF S T E P - B Y - S T E P  EVOLUTION

F r 2 o . o n o o o n E « o o o . o o o o o o e * oo 0 • QOOOOOE«QO f l .OOOOOOE+OO
FRC2 0 • OOOOOOE'OO
K IN T2 0 1=^- :  r J J  J j  .
PTL2
R?

0 • o n o n o f ) E « o o
o . o o o n o o E * o o

RSQ2 O t O n o o o n E « o o
RV2 o . o o o o o o e * oo O.OOOOOOE«00 0 • 0 0 0 0 0 P F « 0 0 O.OOOOOOEfOO
STE P ? o . o n o n o o E * o o
T1ME2 o . o n o o o o E * o o
V2 0« O 0U 00 OE «0 O
v s o ? 0 , 0 0 Q 0 0 Q E * 0 0

OUTPUT VALUFS OF ALL COMMON VA R|ARLr S IN THF RELATIVE STATF 1 ARF AS FOLLOWS.
S3IIH Ztxxst 31 Its 89SSSS ItlltStSC 83 8SS 39BBSSSB 818S8 B 888 St ISS8SB88

INPUT CONSTANTS :
O O E - 0 9A7ER0  0 . 1 0

KIN 7
KOUT ?
EPR P2  Q . 4 0 0 0 0 0 E - 0 1
KINTM? 1 0 0 0
KSCAL2 1
KSCLM? ?
KSMPM? 1
s c a l e ?  - o . i o o o o o e * o i
shape? o . o o o n o < ) E * o o

FRAMF VARIABLES

O.OQOOOOE*OQ

D. 100000E-01

n.innnont-oi o.ioo/mnF.o?   “
.  ~ " ‘ -
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FMR?
KKSTM?
KSFRH?
RVRFL?
T1MR2
K S A X 6 ?
RVRXV?
XDASH?
YUASH?
ZDASH2
ALPHA?BFTA2nELTA?
EMU?
GAMMA?PH I ?
P S I ?
t h e t a ?
6 K ST2
ETST2
FR O ST?
P T L S T ?
RST ?
VST2

1N T6 RAC TK

0 . 9 9 9 4 6 0 6 * 0 0

0 . 2 0 0 0 0 0 E *
o . o n o o o n t *
o . o o o o o q e *0i10OPOQE*
o . s o o o o q e *
0 • 5 0 0 0 0 0 6 *  
0 . 5 0 0 0 0 0 E *
o . o o o o o o e *

- 0 . 5 0 0 0 0 0 6 *  O.OOOnonE* 
0 • 1 5 7 0 8 0 6 *  
0 . 1 5 7 0 0 0 6 *  
0 ♦ 4 * 0 0 0 0 6 *  

- Q . 5 0 0 0 0 1 E *  
- 0 . 2 5 0 0 0 0 6 *
- o . s o o o o o e *  

0 * 2 0 0 0 0 0 6 ♦  
0 . 3 0 0 0 8 1 E *  

N TERMS

o . 2 o o o o o e * oo o . o o o o o o e * oo n . o o n o o o F * Q 0 0 . < ' 0 0 0 0 0 6 * 0 0

O . 0 0  0 0 0 0 6 * 0 0
o . i o o o o o e * o i  
0 . 0 0 0 0 0 0 6 * 0 0  
0 . 0 0 0 0 0 0 6 * 0 0  
0 . 5 0 0 0 0 0 E * 0 0  
n . 5 0 0 0 0 0 6 * 0 0  

- 0 . 5 0 0 0 0 0 6 * 0 0

0 . 5 0 0 0 0 0 6 * 0 0

0 . 0 0 0 0 0 0 6 * 0 0
0 . 0 0 0 0 0 0 6 * 0 0
0 . 1 0 0 0 0 0 6 * 0 1
O . O O O p o n E * o n

O.OOOOOOE*OD 0 . 3 0 0 8 8 1 6 * 0 1
0 . 0 0 0 0 0 0 6 * 0 0  
0 . 1 0 0 0 0 0 6 * 0 1  O.5PO0306*on

1 , 3 0 0

O.OOQGO0E*O0

0 . 0 0 0 0 0 0 6 * 0 0  
PTL N2  - 0  1 5 0 0 0 0 0 E  *0 1  0 . 0 0 0 0 0 0 6 * 0 0

CURRENT VA RIABLES OF S T 6 P - R Y - S T 6 P  EVOLUTION

F F 2
F.BC2
K IN T2
PTL 2R?
RSQ2
RV2
ST EP 2
TIM E2
V.?
VS0 2

0 . 0 0 0 0 0 0 6 * 0 0
- 0 . 2 5 0 0 0 0 6 * 0 20
- 0 . 50OCOOE*O1  

0 . 2 0 0 0 0 0 6 * 0 0  
0 . 4 0 0 0 0 0 6 * 0 1  
0 . 0 0 0 0 0 0 6 * 0 0  
0 • 0 0 0 0 0 0 E * 0 0  
0 . 0 0 0 0 0 0 6 * 0 0  0.00000J6*00 
0 . 0 0 0 0 0 0 6 * 0 0

0 . 0 0 0 0 0 0 6 * 0 0

0 . 0 0 0 0 0 0 6 * 0 0

OUTPUT VALUES OF ALL COMMON VARIABLES IN THF RFLATIVF STATE ? ABE AS FOLLOWS.

a . i o n o o o F - o i  o . i n o n o P E * g ?

KIN 7
KOUT ?
ERRP2  
K 1 NTH?

0 . 4 8 0 0 0 0 6 - 0 1 0 . 0 0 0 0 0 0 6 * 0 0 0 . 0 P 0 0 o p E * 0 0

KSCAL2 1 0
KSCLM? 2
KSHPM?
s c a l e ?

1
- 0 . 1 0 0 0 0 0 6 * 0 1 - 0 . 1 OOOOOE-Ol

SHAPE2 0 . 0 0 0 0 0 0 6 * 0 0
FRAME VARIABLES

6MR? 0 . 9 9 9 4 6 0 E * 0 0 ~ - -
KRSTM?
KSFRH?

5
1 1 1

RVRFL?
T1MR2

o . o o o o o o e * oo
0 . 6 2 0 1 4 9 6 * 0 1

0 . 2 0 0 0 0 0 6 * 0 0 0 , 1 1 0 0 0 1 F - 0 3

KSAXE? 4
RVRXV? 0 . 2 0 0 0 0 0 6 * 0 0 0 . 1 1 7 8 5 6 6 - 0 3 0 . 0 0 0 0 0 0 6 * 0 0
XDASH?
VOASH?

o . o n o o o P 6 * o n 0 . 1 0 0 0 0 0 6 * 0 1  
- 0 . 7 2 8 3 0 2 6 - 0 6

0 . 7 ? 8 3 0 ? F - 0 6  
0 . 1 0 0 0 0 0 6 * 0 1

z d a s h ? 0 . 1 0 0 0 0 0 6 * 0 1 0 . 0 0 0 0 0 0 6 * 0 0 o . O P O o n n F * o o
ALPHA?
BFT A2

0 . 5 0 0 0 0 0 6 * 0 0
0 . 5 0 0 0 0 0 E * 0 0 0 . 5 0 0 0 0 0 6 * 0 0

d e l t a ?
EMU? 
GAMMA? 
PHI  2 
P S I  2

0 . 5 0 0 0 0 0 6 * 0 0  
0 . 0 0 0 0 0 0 6 * 0 0  

- 0 • 5 0 0 0 0 0 P  * 0 0

- 0 . 5 0 0 0 0 0 6 * 0 0

0 . 5 0 0 0 0 0 6 * 0 0

0 . 1 5 7 0 8 0 6 * 0 1
THETA? 0 . 1 5 7 0 8 0 E * 0 1
EK ST2 0 . 4 5 0 0 0 0 E * 0 1
6 T S T 2
FR CS T ?

- 0 . 5 0 0 0 0 1 E * 0 0
- 0 . 2 5 0 0 0 0 E * 0 ?

P T L S T 2 - 0 . 5 0 0 0 0 0 6 * 0 1
RS T 2 0 . 2 0 0 0 0 0 6 * 0 0

......... _. ._ .

VST? 0 . 3 0 0 0 0 1 6 * 0 1
INTERACTION TERMS

- -  - - - - -
FRCN2 - 0 . 2 5 0 0 0 0 6 * 0 2 0 . 0 0 0 0 0 0 6 * 0 0
PTLN2 - 0 . 5 0 0 0 0 0 E * 0 1 0 . 0 0 0 0 0 0 6 * 0 0

CURRENT VA RIABLES OF S T E P - R Y - S T E P  EVOLUTION

F F 2
f r c ?
K IN T ?

- 0 . 9 0 4 9 9 2 6 - 0 3
- 0 . 2 5 0 0 0 0 E * 0 ?

1 6 8

0 . 3 0 0 0 9 1 6 * 0 1 - f l . 2 5 0 i 3 5 E . 0 ?

PT L 2 - 0 . 5 0 0 0 0 0 6 * 0 1
R? 0 * ?O0OOOE*OQ 

0 . 4 0 0 0 0 0 6 - 0 1
■ ■ '

RSQ2
RV2
ST E P 2

0 . 2 0 0 0 0 0 6 * 0 0
0 . 6 O 5 3 0 f t E - 0 3

O . 1 1 0 O O 1 E - O 3 - 0 . 9 8 . 5 8 1 E - 0 3

TIME2
V?

0 . 6 ? 8 t 4 9 E » 0 1
0 • 3 0 0 0 7 7 E  *0 1

V S0 2 0  * 9 0 0 4 6 5 6  * 0 1

Of OOP0 0 0 6 * 0 0

- 0 . 9 8 2 3 9 5 6 - 0 3
p . f l PO O O OF *n n  
0 . 1 0 0 0 0 0 6 * 0 1  0.so903RF*nn

- O ,9 P 4 5 0 1 F - ( M

0 . 3 0 0 0 0 1 6 * 0 1

0 . 3 0 0 r « i H * n i
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