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LB3TRACT

Collisionz between various charged particles and excitsd hydrcgenic
atoms and iong are described uging the binary-cncounter (classical-
impulse) approximation and the exact-classical orbit-integration
techniqﬁe. ‘In particular,. emphasis is made on strong collisions such
as rearrangement and icnization processes, rather than excitations.

The classical methods have been justified rigorously by Abrines and
Percival (1966b) for the cases in which all the initial and final

guantum numbers of the target atom are large and all changes in the
initial quantum numbers are also much greater than unity. In these
regions quantal methods are particularly complicated and unpractical,
whereas the classical approach can often be aprlied without having to
make additional dynamical approximations. This approach is complementary
to the standard quantal techniques, which are most useful for low initial
and final quantum numbers, and the correspondence-rrinciple methods of
Percival and Richards (1970a,b, 1971a,b) which work best when the

initial guantum nuvbers are large and all changes are small.

Recauge the clascical techniques, which have been used to caleulate
total cross sections, enable simple scaling laws to be applied, these
cross sections can alzo be compared with quantal and experimental values
for gtates with low initial -uwantum nusbers including the ground state.
Although there is no solid theoretical Justification for applying

classical theories in this region, a considerable amount of empirical



evidence is presented, which suggests that accurate classical theories
can be superior to guantal approximations for intermediate ehergies of
the incident particle, provided that the changes in quantum number are
largs. Specific fa*lures at low or high energies nust, however, be
expected since purely-quantal effects such as barrier penetration and
interference are often dominant here.

Many of the cross sections are of importance in the study of
astrophysical and laboratory plasmag. The exact-classical results
can also 5e used to test the validity of an existing dynamical

apprbxiﬁation, or possibly to suggest a new gimple model.
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CHAPTER I

A GENFRAL DISCUSSION OF CLASSICAL METHODS IN ATOMIC COLLISION THEORY

1.1 Introduction

The central theme of this thesis is the description of simple
atomic collision phenomena in terms of classical mechanics rather than
quantum mechanics. The latter, though superior theoretically, is =0
complicated to apply exactly in practice that serious dynamical apirox—
imations have to be made, whereas in the classical treatment, énce the
approximation of replacing quantum mechanics by classical mechanics has
been made, it is often pogsible to obtain a solution witﬁout the need
to invoke further dynamical approximations.

The main arguments in favour of the classical approach are outlined
in section (1.2) and a brief survey of the historical development of
this approach is presented in section (1.3).

The early sections of chapter 2 contain the basic theory of the
classical~impulse or binary-encounter theory. The later sections deal
with the results for ionization, electron logs and excitation of
hydrogenic atoms and ions by incident charged particles, and the comparison
with the exact-classical results for singly-charged particles incident
upon neutral hydrogen atoms.  Estimates of the electron exchange and
interfereﬁce contributions to ionization of hydrogenic atoms and ions
by electron impact are made using the symmetric binary—ehcouﬁter‘model

bagsed on the Mott scattering formula (see for example Burgess 1963,



1964, Vriens 1966 b).

The first two sections of chaptér 3 are devoted to the exact-
ciassical‘theory'neCessary to treat.collisions involving more than two
particles. In the later sections the exact-classical theory of Abrines,
Percival and Valentine for three particles is applied to collisions of
protons with hydrogen and helium target atoms. The ranges of incident
proton Qelocities gelected correspond to regions in which the binary-
encounter theory and the classical adiabatic theory of Bates and Reid
(1969b) are not necessarily valid. VWhere relevant these simplified
classical theories are compared with the exact-classical results.

Chapter 4 contains miscellaneous points which arise from the
theory and results of chapters 2 and 3.

Throughout this work the classical results are contrasted with
experimental and quantal results. Semi-classical WKB theories and
extensions of the classical approach to include quantal effects using

"classical path expansions are not reviewed or used in this work. The
latter theory has been discussed by Percival (1971), who also displays
several of the results obtained in this thesis. Relativistic effects

are ignored throughout.



1.2 Justifications for the Clagsical Approach

As pointed out in section (1.1) the first justification for using
the classical approach is a purely-practical reason arising from the
present impossibility of solving quantal treatments without making
serious dynamical simplifications.

A second justification arises from correspondence principle arguments.
Abrines and Percival (1966b) have shown that purely-classical methods are
valid when all the quantum numbers associated in the problem are large and
when the changes in all quantum numbers resultiné from the collision are
also large. - Percival and Richards (1970a,b) have shown that classical
mechanics can also be used when all quantum :aumbers are large and when the
changes in all quantum numbers are smajl, but in this region Fourier
components of the motion must be used rather tﬁan dynamical variables
themselves. The region, in which all quanfum numbers are large, some
changes are small and others are large, has not yet been treated
consistently. Quantal methods work best when all quentum numbers and
all changes in quantum numbers are small. A classical treatment of
the region in which all quantum numbers are initially small, but some or al
changes are large, cannot be justified, but empirical evidence particularly
from the exact-classical results suggests that even here exact-classical
results are often sﬁrpfisingly accurate, especially for intermediate
‘incident energies for which the incident and target velocities are
comparable.

One possible reason for the good agreement in the last region of

the previous paragraph is that correspondence identities hold for Just
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two distinguishable charged particles. Thése and other related
identities have been the subject of a thesis by Norcliffe (1970) and
a’réview by Percival (1969). These identities consist of the Rutherford
scattering identity which states that the quantal and classical centre-
of—massvangular differential cross sections for distinguishable charged
particles are identical, the Bohr-Sommerfeld identity, which states
that the quantal discrete bound-state energy spectrum of hydrogenic
atoms and ions is given exactly by the Bohr-Sommerfeld model, and the
Fock identity, which states that quantal momentum distribution for the
ground state or any uniformly-populated excited level of a hydrogenic
atom or ion is identical to the classical momentum distribution derived
from the classical microcanonical statistical distribution of the same
binding energy. -Thus, although no correspondence identities are known
for more than two charged particles, the two-particle identities may be
a factor contributing to the good agreement of the exact-classical
approach.

A final justification of the exact-classical method adopted here is
that powerful scaling laws can be used to obtain classical cross sections
corresponding to different uniformiyhpopulated levels of atomic hydrogen
from the results at one level, which may be taken conveniently as the
ground state. For sufficiently high levels the clagsical approach is

valid.

1.3 Historical Development

The historical development of the classical approach has been
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outlined by several authors. Burgess and Percival (1968) and Valentine
(1968) give genefal reviewé with greater emphasis on exacti~classical
methods. Vriens (1969) stresses the connection between binary-encounter
and first-Born calculations, particularly for differential cross sections
which provide a more stringent test of a theory than the total cross
sections alone. Recent advances in heavy particle collisions have been
réviewed by Bates and Kingston (1970). Classical, path-integral and
correspondence-principle theories haveé been discussed by Percival (1971).
A section on heavy-particle classical scattering has also been included
by HcDowell and Coleman (1970).

The simplest binary-encounter treatment of excitation and ionization
of atoms by fast charged particles was first employed by Thomson (1912).
He assumed that the orbital speed of the electron(s) in the target atom
could be neglected for collisions with fast charged particles with
incident energy E, . The Thomson (and all other realistic purely-
classical) ionization and excitation cross sections exhibit a E;. high
energy law, in disagreement with experimental and later quéntal values,
which generally obey a E:'LogE, high energy law, apart from optically
forbidden excitations. This specific failure of the classical approach
was one of the main reasons for the decline in its popularity after the
introduction of the cuantum theory and probably accounted for the fact
. that improvements over the crude Thomson model made by Williams (1927)
and Thomas (1927a, b) were overlooked until very recently. Indeed,
their model, in which allowance is made for the motion of the atomic

electron, forms a basis for the presently-accepted binary-encounter

theory.



After the development of the quantum theory the first important
revival of the classicalvapproach was made by Williéms (1945). 1In
partiéulaf'he compared and contraéted the classical and quantal first-
Born theories of the scattering by‘simple central potentials and showed
that each approach was valid in separate extremes and hence.that the
theqries were complementary. For the special case of a coulomb
potential of the form 212261/T he showed that the classical ireaiment
wag valid when the diménsionless parameter S = i.lze’/fnr, s where <,
is the incident velocity,}1=,2ﬁt is Planck's constant and e 1is the
charge on a proton, satisfied S>> snd that in contrast the quantal
first-Born approximation was valid when S<<| (the parameter S occurs
explicitly in the exact quantal treatment of the scattering of two
identical narticles, outlined in chapter 2 of this thesis).

The revival of clﬁssical methods was éreatly stimulated by the work
of Gryzinski (1959). However the binary-encounter theory was developed
more carefully by Thomas (1927a), Ochkur and Petrunkin (1963), Stabler
(1964), Kingston (1966) and McDowell (1966) using the unsymmetric model
for incident electrons, by Thomas (1927a), HMcDowell (1966) and Vriens
(1967) for incident protons, by Gerjuoy (1966) for arbitrary masses,
and by Burgess (1963, 1964) and Vriens (1966a, b) for the symmetric
~ treatment of incident electrons.

In a parallel development Abrines and Percival (1966 b), Abrines,
Percival and Valentine (1966) and Percival and Valentine (1967) obtained
exact-classical results for ionization and charge-changing collisions

in which singly-charged incident particles were in collision with neutral



barget hydrogen atoms. The theory described in Abrines and Percival
- (1966a) is simitar to related classic#l work in the field of
chémical kinetics (sce Burgess and Percival (1958) and the references
therein). The exact~classical results for ionization demonstrated
that the agresment with experihent was improved even for Jround-state
targets when the binary-encounter approximation was relaxed. For
incident protons the results for charge transfer were also in remarksbly
rood agreement with available experimental data over the energy ranges
considered. The scaling laws and gencralised correspondence nrincinle
derived in Abrines and Percival (1965b) implied that the related exact-
classical results for ionization and charge~changing colligions obtained
by scaling the results for ithe ground state would be accurate for target
atoms in sufficiently highly-excited initial levels.

In another approach Percival and Richards (1970a,b, 197la,b) hyve
developed correspondence principles which resolve the failure of purely-

N

clasgsical methods at high energies, in the case of weak excitations of
highly—excited hydrogenic atoms and ions by fast charged particlez. By
uasing Fourier componants of clasasical variables, rather than the values
of the variables directly, they/ ohtain excitation cross sections which

exnibit the correct high energy behaviour, which agree here to within a

few per cent with the more complicated calculations of the first-Born

theory. ) y .
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CHAPTER 2

THE BINARY-ENCOUNTER APPROXIMATION

2.1 General Remarks on the Geometry of an Individual Classical

Binary Encounter.

(a) A Standard Derivation Given the Initial Velocities of the

Particles.

Consider a system of two mutually-interacting particles in the
absence of any external féfce field. Suppose that the motion of the
particles can be adequately'descrihed by classical mechanics. Then
the interaction experienced by one particle.is equal and opposite to
that experienced by the second particle, but is not necessarily
directed along thevline'joining them. Suppose that one particle is
called the incident particle and is labelled by 1 and that

the other particle is termed the target particle and is labelled by

2 . letparticle 1 of ° mass m,  have an initial
velocity | v, and particle 2 of mass m, have an
initial velocity Va in some Galilean frame of reference L. ’

termed the laboratory or observation frame and suppose that the
particles are sufficiently far apart initially for their mutual
interactions to be negligible (the frame dependence of any dynamical
variable is stressed here by the use of a subsdripted Roman capital

letter to denote the particular Galilean frame of reference in which

the variable is measured). Now let the particles approach one another,



collide and then separate so that their interactions can again be
neglected. Let the final velocities in the frame L. be
' YL/, and Y,_.,,_ - respectively.

'Such' a collision or scattering event is here termed an individual
classical bina‘.x-‘y,en‘coun'ter, Many of the properties of such a collision
can be determined for general forms of particle-particle interaction.
These properties a.z;ise from basic. conservation laws.

Firstly, the law of conservation of total linear momentum holds
throughout the encounter and so, as a special case,

ML+ MV, = M) + mVis . (2.1.1)

In velocity space ‘the encounter is therefore completely described

by the momentum-transfer vector 9 which may be defined as

- ’ (2.1.
Q= MYUL-mV, = my, -my, (2.1.2)

The vector q‘ is particularly suitable because it is a Galilean

frame invariant. Further, qQ remaing well-defined and finite
in the important limiting cases in which either W, , or m, ,
but not both, tend to infinity. However, the collision may often be
described in terms of other dynamical variables which may be frame

dependeﬁt. The most important a.iternatives are various scattering

angles and energy transfers. These variables are particularly

suitable for meagurement in an experiment.

Scattering angles can be defined by any distinct pair of the
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‘ A A Ay A/
velocity directions V, » VYo i, and Vi, - The

”

/ .
polar scattering angles may be written eLIJ - el.l:.f and eLIa’

‘where _ _
al -l , A A
BLiy = €05 (Vig.Viy) for J=3-I and I=1,2

,
eLIJ = COS-'( \:}:ﬂ'o ‘_’_}LI) ‘FOY I ﬁl‘\d J- = l,l 3

Qnd ”

Oy = cos™( Q’l’r'i"&) for 3=3-1 and I=12,
Obviously these polar angles do not depend upon the order of the
subseripts I and J . However, for each polar scattering
angle there is an associated azimuthal angie, whiéh'will depend upon
which of the two unit vectors, used to define the polar angle, is
selected as the reference 2 axis. The azimuthal scavtfc‘ering angles
corresponding to 8.,y s ©OL1y and 0,5 may be written | ¢u3

¢:13, | and ¢:z:r respectively. . The polar angles are always
defined in the range (O,7) and so are uniquely determined by the
correspénding velocity directions. The azimufhal angles must be
defined over a complete period 2T, so the corresponding range may
be (-ﬂ,ff) or (0,2M) , say. Further, the azimuthal angles can
only be defined with respect to additional arbitrary axes.

The apprdpriate polar scattering anglgs become indeterminate if
one or more of the initial or final velocities is zero. An azimuthal
scattering angle is indeterminate when its corresponding polar angle
is O or Y 5 that is, when the appropriate velocity directions

are parallel or anti-parallel.
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The energy transfers AE,, and AE , are here defined by

o 12 2 e 2 (2.1. ‘
AEL'L' '2‘: MV, - émzv[_l = lfn.z.q, ""'i‘l‘rﬁ q ’ ( 3)
- 2
and ‘
- 3 /z- _ 'Y
AEL‘-‘ %.mlvld - -gl:ml VL' - Yu'ql - —L (201-4)

S 2m v -

In many applications of the binary-encounter theory the
particle-~particle interactions are conservative. . This implies that
the law of conservation of energy holds throughout ‘the collision. In
particular, if this law is applied initially and finally, the potential

energy terms may be neglected and so

i 2 2 / /
imlvl.l + ‘QJ:ma.qu_ = %mlvuz"' %_mi'\f:i . (201‘5)

From this it follows that

AELI=AE~L1_= AEL ’ (2.1.65

say. S0, if energy is conserved in the collision, the kinetic energy
gained by vthe target particle is equai to the kinetic energy lost by
the incident particle. |

The law of conservation of energy plaées a heavy restriction upon

the permitted values of the momentum transfer vector Q, s namely

-

) (my+m 2 V |
(\_J_’Ll-t-\_rx_g.)cg’ = 3 -;'—’-'—r;‘-f)q’ " » (2.1.7)
which follows from equations (2.1.3), (2.1.4) and (2.1.6). This



restriction can be explained simply, if the laboratory velocities U,
and V,, are combined to form the centre-of-mass velocity Vi
and a relative velocity VU, , . where

( m.+ ml)-‘—‘r‘-q = m]l’l. + m?_\IL“_ . (2‘1'8)

2

and it is convenient to choose

Ve = V, =V, (2.1.9)

By .equation (2.1.1) with the usual notation for éorresponding

final velocities

_ , A
Vig = Vg , (2.1.10)

and, by the law of conservation of iinear momentum, the velocity of
the centre of mass is conserved throughout the 'coAllision. The
relé.tive velocity Vp is a frame invariant. Henceforth the
subscript R will be used to denote a quantity defined in a frame
moving with a particle even though the variable may be a Galilean frame
invariant.

Equations (2.1.8) and (2.1.9) can be solved directly for Vi,
and Vi, in terms of V. and Vg + The resulting

expressions are

Vo, = Vg + 2 Uyg = Vg + Ve (2.1.11)
(mem,) ‘ : ’
and
Via = Vg - 2 Vg = Vig + Ve (2.1.12)
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where the velocities Vg, and \Z@L are proportional to Vg
and are the initial velocities of the colliding particles as measured
in the centre—of—mass'frame! (; « Let the respective final

velocities be Uy , V¢, and Uéa - Then

’U’,_: = v+ T g/ - V. + U {2.1.13)
- =2 LS (M.+mz) R Vg U P)

-and
- = (m,+my)~ -LG =62 -

/
If these expressions for Vi » Vi o 913 and 1IL1

are substituted into equation (2.1.5) and the result (2.1.10) is used,

the following equality is obtained:
vR = VR . . (2-1015)

‘Hence the law of conservation of energy implies that the relative

speed is unaltered by the collision. Further,

k8

/ .1.16

/.
Vey (2.1.17)

i B
Ve

Thus the speed of each particle vin. the centre-of-mass frame i‘»s
unaltered by the encounter.

The restriction upon CL arising from equation (2.1.7) can be
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written
| ‘} (Zmal_r,,;- ‘3,) =0, | (2.1.18)

where

Mg = mym, /(im+my) ’ (2.1.19)

is the reduced mass of particles 1 and 2 .
Equation (2.1.18) is the equation of the surface of a sphere
in momentum-transfer space. The sphere passes through the origin

Q=9 and through the diametrically opposite point Q= P_mr'v‘l'l_rR .

The momentum transfer q ‘may also be expressed in terms of

the velocity transfers W, and W, where

mw, _—.:-3, ', (2.1.20)
and | |
mw, = 9 : (2.1.21)
so that
and
’ . ‘
Viz = Vip +W, (2.1.23)

In figure (2.1.1) the velocity vectors Ve » VYia s Vi
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TIR ’ '@._J’m s Vg2 w, and W, are represented
— — — e — — —
by Oi ? OP}_ 1 OC H P2.P| H qP| b qu [} P|P‘
and R B’ respectively, where O 1is the origin (that is, the
rest point of the velocity space). The final velocities YE': ,
’ v/ d / e represented b C,_I;' P/
.L."qz » V4 an gl.l are represen y 4 sy QR
— —
OP‘I' and. OPzI .
/
The laboratory angle 9,_17_ is also displayed. By equations
(2.1.10) and (2.1.16) P,' must lie on a unique sphere Z.
centred at ayd passing through F, . Equations (2.1.11),
(2.1.12), (2.1.13) and (2.1.14) imply that P, must lie diametrically
¢
opposite P, on the concentric sphere Z, 7 passing through Pz ’
As a consequence it is impossible for the velocities YV, and Vi,
to be exactly exchanged by the collision unless WmM=m, .
The collision is commonly parametrized by the standard spherical -
L v / _ 1/ _ 47
polar angles Gq“ = ?ﬁ’l = Qq y say, and ¢QII'2‘Y'¢QTL' ¢q ’
- A
say, with respect to QF = Vg, as 2 axis when the collision is
viewed in the centre-of-mass fré.me. These angles may be used to
determine Q  or any other scattering variable in any other frame of

/ / ,
reference | . Thus, given eq ’ ¢q it is easy to show

that

. Vs
Q = 2mev, sin 16, | (2.1.24)

and

AE, = Vv, q (cosi@é <os¢q'53nxm_-— sin %_eé cos ‘X,u_) (2.1.25)

+ 'lm,_q' ’



by equation (2.1.3), or equivalently,
: /! . N /
AE_ = U, q ( cos 48 cos g sinX,, + Sini6 cosAy))

- L ot (2.1.26)
im % s
by equation (2. 1 4), where the angles 'X/u and ’X/m_ are given by
. A
cos X = ULI-Vn (2.1.27)
and
A A

co -— 201-28
S qu_ ‘Q'L y' ( )

/
Conversely it is possible to express eq and ¢9 in terms of

q end AEL . In fact

B, = 2 sin {‘L /( Zmn‘fnj} ) (2.1.29)
and )
g = cos” '{(oE. - "‘:. T ¥ Viag sinde cos X,,)/ (2.1.30)
or, equivalently, (Viaqees18] sinda)§
¢, = cos ' {(AE * 2':'?;, Q" - vy, q, sing8; cosLy)/ (2.1.31)

(ULiq cosidd sinky)]
7/
Because the range of 6q is only (O’Tf) ’ 8‘{ is uniquely

prescribed by equation (2.1.29). However, since the range of ¢<‘1’
is (0,21’() , say, there are two possible values of ¢(-: | for each
value of q and AEL . Lxceptional cases occur when AEL is
independent of the azimuthal angle ¢c/' . This is only true if ‘,fu
and YLZ. are parallel or anti-parallel, but it doeas include all
collisions both in the centre-of-mass frame G  (since AEq' is
always zero) and in the simplest laboratory fraue -S defined by

V.. = 0 s for by eqguation (2.1.3) AES 2m is always

=S2 -

ZEeT0.
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It should be noted that these inverse transformations are not defined
for arbitrary values of the momentum-transfer magnitude Q and

the energy tramsfer AE, , but only for

O£ q & 2mguy

o/ o | 2 . /
~Vi2q cos 48 sin X, £ AEL”z_IFnzq’ + Va9 sm.%eq cos Ky,

/ .
€ Viaqeesi® sinkiy

or, equivalently,
18, sir - AE L qt —v,q sinkB. cosX
—VLq cos 2.6 sinX,, € LY g —Vnq Sniby L
. , i
. / -
$ ‘U—L'q, COS{Bq'Sln'X,“

Equations (2.1.1) to (2.1.31) have been derived using classical
mechanics alone. Hoirever, since only relations between velocities,
moments and kinetic energies, before and after the collision, have been
employed, the uncertainty principle haé not been violated, and so these
formulae remsin valid in a quantal treatment of an individual collision
of two dimtinguishable particles. In particular, the variables q,
and AE, are subject to the same restrictions as in the classical
theory treated here. If the particles are identical, then they may be
treated firstly as if ithey were distinguishable and them all variables

can be symmetrised by interchanging the velooities 'y;_’, and \_g"_’,_ .



(b) An Alternative Approach Given the Initial and Final Velocities

of the Incident Particle.

Ih the preceding section the range of allowed values of the
momentum-transfer vector was detérmined for elastic collisions from
prescribed values of m, y My y VU, and YV, . It is
also possible to find the restriction on the wvalues of the initial
velocity Vi, of the target particle, given the values of ™™, .

™m, , V, and 1_._)',_1 (and hence Q ). This resriction can
be used to infer properties of an unknown initial velocity distribution
of a thin gas of target particles. Alternatively, if the initial
velocity distribution of the target particle(s) is known then any
function f of V., and ‘\_J’L/. can be averaged over all values
of 7V, consistent with V;, and :L_J'L’, . This is especially
important if f is a quantum-mechanical scattering amplitude when
the average will include interference effects.

The restriction upon V,, can be obtained immediately, once the
equations (2.1.1) to (2.1.31) have been presented. Since v,, and q
are lnlowh, then by equation (2.1.4) the energy transfer AEL! is also-

prescribed. However, for elastic collisions AE_ = AE ;= AE, -

Hence by equation (2.1.3)

V,-9 = AEL"’ELM,_%’L'—’- constant | (2.1.32)

Thig equation is the required restriction on /7

L2 ? and is just



R L L

the equation in velocity space of a plane TTQ v, ’ pe:épendicular

to the direction Q’ ~ and with its shortest distance (tha,t is, speed )

from the drigin given by
Viamin = l (AEL'Z"Lrﬁch )/Q, | . (2.1.33)

These relations have been used by Vriens and Bonsen (1968) and by
Banks, Vriens and Bonsen (1969) in their comparisons between binary-
encounter‘ and Pirst-Born double-differential cross sections for the ejection
of electrons from various levels of atomic hydrogen by fast charged

particles.
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2.2 The Dynamics of Two Particles in a General Observation Frame L .

In this section the classical and quantum-mechanical methods of
golution of the two-particle problem are outlined. In both theories
it is convenient to change the representation so that instead of solving
for the motion of the individual particles in fra.me L., the free
motion of the centre of mass a.zid the relative motion can be solved
independently.

(a) Classical Dynamics.

In section (2-18.) the conservation laws were used to determine the
domain »of the scattering variables of interest, for example 3_, .
However it was not possible to say which value of Q  was obtained
in a given collision, since in a classical treatment more information
is required. If the initial positions ¥, and K, of the two

particles at the initial time ¥ are also known, then Newton's equations

of motion:

dT” v
-—'-,';1 = Vg
dt For T=3-T and 1= ,5').
" v '
my :_E:—I = f;[y o, (2.2.1)

” " : .
where riy and U,y are the position and velocity of particle I

P u
at a general time t and .FI? is the force on particle T
exerted by particle J s together with the boundary conditions:

ML for I=1,2 ae t=t
Vir = Viz (2.2.2)
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have a unique solution which may be determined (possibly numerically)
at any time -{',” . The scattering parameters of the encounter may
be obtained from the given initial positions and velécities o
ez s VU, o ‘1_)‘._7_ and from the final coordinates _Y‘L/, ’ fl_,7_ ’
1_]._’, , Yl-'/z which are the solutions of equations (2.2.1) for
sufficiently large t” . Equations (2.2.1) constitute twelve coupled
ordinary first-order differential equations with t” as the independent
varié.ble. These twelve equations can be transformed into the equations
of motion of the centre of mass { and the independent equations of
motion of the i’fame-invaria.nt ‘relative position and velocity vectors

" 174 4 _ 174 i .
_r-R = o - F and Ve = Vo -V, The separation
n

/4
can be achieved because the force F17 = - sz only depends upon

n
- L2

the relative position and velocity and not upon the position and

velocity of the centre of mass, since there are no external forces present.

The transformed equations for the motion of the centre of mass are:

ar vl

dt” -

du. ’

dt - : '

where the position _Y_]:'q of the centre of mass satisfies

I/4 /4
(m,+ m,_),r,_q = M, .¢.m=_:._';_ , (2.2.4)
with the boundary conditions
s
r = r
-LG Iig ab /=t )
Yig = g (2.2.5)
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These equations have the solutions
Y,

fig = Fig + (t”—tws'} for alL t°
o .

174
Vg = VYig (2.2.6)
The equations of relative motion are:
7
L R
174 2.207
dug' = Fe
" de’ )
where
V4
...FR = Foq_ (-K’ ) ’ (2-2.8)
together with the boundary conditions
&
R= e "
U’I a‘l'. ‘t :‘t -

These last three equations are equivalent to the equations of

motion of a fictitious particle of mass mM =My at the position r"= r‘g”
. a u

” i Yo,
and moving with velocity VU = Up in a fixzed force field F (riuy”)= F (rm‘fft

centred at the origin. Further the relative momentum transfer QR

- / . P
= m e Ve ~ Mg Vg is the same as the original momentum transfer qQ -

2.2(b) The Quantal Solution of Two Particles Movirig in a General

Observation Frame L .

In a quantal treatment it is not possible to know simultaneously
' "
the exact positions and velocities of the particles at any time t
because of the uncertainty principle. However, the Schrddinger equation

may also be transformed so that the centre-~of-mass motion and the relative



:
§
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motion may be solved independently. The solution of the centre-of-mass
motion is trivial and the solution of the relative motion again leads
naturally to the reduced-mass problem. A more complete discussion is

given in Mott and Massey (1965, pp. 286 - 9).
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2.3 Scattering of a Particle by a Fixed Centre of Force.

(a) Classical Theory

Suppose that the force field is central; that is, F”( ryv')= fé’r”) .
Then in is easy to show that the angular momentum 1___”'—‘ m_v:')(‘\_{” of the
particle about the centre of force ig constant for any orbit.e It is
convenient to choose a cartesian coordinate system located with origin
at the centre of force and oriented so that 1:”“‘L = |1 | % and
the initial velocity V = ) g . The orbit then lies wholly in the

( 'g,g) plane and if the inéraétilon were negligible, the trajecfory
of the—particle would be a straight line parallel to the g axis and

N
cutting the X axis in the point b=(b,0,0) , where

mbv = L (2.3.1)

I
with v =]v] and L =14l . The vector b is called the
impact-parameter vector and would be the shortest position vector of the

particle from the centre of force if the force could be neglected. Obviously
‘U'.b:: O . (20302)

If the interaction is fully included each orbit is still completely
characterised by _lg and V . Hence, any scattering parameter, for

example Q , may be determined uniquely from _b and V¥V . Because

the orbit is planar, ¢ lies in the plane defined by b and VU .

In an alternative approach W and \_}" and hence q may be prescribed

ingtead of _}3 and WV . In such cases the orbii is uniquely determined



only if there is a unique l.’_) for each value of q .« For many forms

of central force different values of b can lead to the same value of q
and so there may be more than one orbit leading from the given initial
velocity U to the given final velocity 'V /.  Tnis alternative

approach is used in semi-classical path-integral theories and can lead

to simple interference phenomena (see for example Percival 1971).

(v) Quantal Theory

The solution of this problem is standard and may be found in many
general works on atomic scattering theory (see for example Mott and
Massey 1965, chapters II-VII). The most important points for contrast
are that the outcome of an individua.l collision cannot be predicted and

that the impact parameter can no longer be accurately defined.

(¢) The Classical Angular Differential Cross Section (:I%_c

Consider a uniform beam of incident particles all of which are
scattered independently by the centre of force. The angular differential
cross sectikon C_Ld‘c dfl may be defined as the flux of particles scattered
into an element of solid angle dfl  divided by the flux of particles per
unit area in the incident beam. The cartesian frame of reference
defined in section (2.3&) is no longer suitable because different particles
in the incident béa.m will have different impacit-parameter vectors _b .

Choose a new frame 0(21922') go that 9/=3 and with origin at

-/\
the centre of force. Let the ic' and 27

axes be fixed in space.
In this frame the incident velocity has coordinates v = (0,V,0)
as before, but the coordinates of the impact-parameter vector are

_l:_» = (bsin ¢b,o, bcos ﬁ) where ¢b is the angle between b and

p—
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ns ‘ .
the Z axis. Classically, all particles in the element of area

bdbd@ in the incident beam are scattered into the solid-angle element
dn = d(cose')ddlwheré ®’ and (f’ are the polar and azimuthal

scattering angles. Hence,

do* — lb db dg, I

dfl d(cos®) d ¢’ (2.3.3)
For central forces. ql_g‘ is independent of ¢’ and d‘f&‘—'- d ¢'
d
so that
C
dg = 2mdeS _ awp , l
d (cos®”) o fl dleos®D! . (5.5,

/ .
Now, O is uniquely determined by b , but there may be more
than one value o_f b which leads to the same value of 8’ . In

this case

da = Z%rr b | db l
d (cos 8’) AW branches d(cosB’)
(b (2.3.5)
For Rutherford scattering F ”( r) = %” Y‘” ‘
3 — L 4

It is easy to prove that

2 o | 2, a7
b = rﬁ-‘-"l)'* cot 18 ’ (2.3.6)

(see, for example, Corben and Stehle 1966, p.102). Since oO¢ <tr,b

/
is uniquely determined by © . Hence
dg®_ ot?* N
dsL 4+m*v¥  sin -‘-6

This result is known as the Rutherford scattering law and is

(243.7)

identical for both ‘attra.ctive and repulsive fields.
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Q
(a). The Quantal Angular Differential Cross Section 3—.?1-.
The quantal angular-differential cross section d_g @ is defined in

o df
. . X S
exactly the same way as 3‘_;1 . However it is not possible to equate

the number of particles in the element bf area bdbdﬂ of the incident
beam with the number of particles scattered into an eleinent of solid
angle d_n_A . Nevertheless it is possible to obtain an angular
differential cross section which in general will be different to the
corresponding classical result. One of the strange properties of the
Coulomb potential is that the quantum~mechanical angular-differential

cross section is identical to the classical Rutherford formula.




2.4 Angular-Differential Cross Sections in the Centre—of-Maés Frame (;

(a) Clagsical Scattering

'The scatterihg in the centre-of-mass frame may be directly felated
to the scattering in the reduced-mass system since the polar scattering
angles are the samé in both problems. Hence, for distinguishable
particles the centre-of-mass angular-differential cfoss gsection QQ:

ofl¢
is given by

o00¢ _  dc¢
SA . in (2.4.1)
BYo an 4
where dJf) =d(cos8.) d¢q/ and B_C_Tc is the corresponding classical
S q n
angular-differential cross section for the reduced-mass system. If,
however, the particles are identical, the classical angular—differehtial
cs :
cross section égh must be symmetrised to allow for contributions

oflg

from both the particles. The correction is trivial because the cenfren

: 7 /
of-mags polar scattering angles eq“-'ec: and 9q2 i of the two particles

are supplementary. So,
cs / C I's
90°(8;) = 90 (8') 4 I (w-67)
001 ) o0 (2.4.2)
if the interaction is central. The first term on the right-hand side

of equation (2.4.2) is known as the direct scattering term and may be

<b '
written ég;v o« The latter is known as the exchange scattering
ofL g cE v ~ ‘
term and may be written an « If in an individual encounter the

orbits are specified by the positions and velocities of both particles

then there is no uncertainty over which particle is scattered into a
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solid angle dJ‘Lq . However, the uncertainty cannot be avoided if

the orbits are prescribed by the initial and final velocities.

(b) Quantal Scattering
.Analogously, for distinguishable particles the quantal centre-of-mass
angular-differential cross section 3_(_1': is given by-
bﬂ.q
v aog égg , ,
a d, o (2.4.3)

where gﬁ is the correspondmg quantal angular-differential

. cross section for the reduced-mass problem. Again, equation (2.4.3) must

be modified if the particles are identical and the symmetrised quantal

Qs
angular-differential cross section aé_«_r ¢ may be defined by
{Lg

33’ _ 9" 6') + 9 =6 +2 cos{F©) "“R(B)“%ﬂ- ’{\
3.(): = an ( ) N a0 cos{ }[ L (2.4.4)

whére, ag in the classical case, the direct scattering term :_(_Tq = g..?:(@’)

QE Q
and the exchange scattering term %’?—f = aég (wv-9') . The third

’ G L1 ad.u?
term is called the interference term and is written ‘a_q . It

is present because it is not possible to say which particle is scatt.eréd

into the solid angle dﬂ.q and has no analogue in a purely—classical
03”367 1%
Mg 3T n_q

approach. The interference term contains a factor 2 [
a GQIB

which may be written 3. and which is often useful as a
g .

bound on the magnitude of the interference term. The function F( 9’)
is a phase factor which depends not only upon the relative pha,se of

the direot and exchange scattering amplitudes but also upon the type
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of paxrticle involved. The interfersnce ter: may be positive or negative
but the inequality

[ 2o} { geen e 3 LU 370"

' :‘JGQS
is always satisfied, so that =G

ig never negative. In the.
classical limit ‘F(G')l becomes very large. The interference term
then oscillates very rapidly, 80 it can be approximated by its zero mean

value.

(¢) Rutherford Scattering

Suppose particle 1 has charge #, and particle 2 has

charge 2%, . Then for distinguishable particles

daf - dep o BE L L
e A, ‘Hn‘\f‘" sin’ 18, (2:4-5)
For identical particleég '
o0 & — %'4 A -+ L
g | 4mavd (SM‘%{ fo%”%%) © (2.4.6)

Por unpolarised beams of electrons or positrons (‘m,:m?_: Me and
2.'7': ‘-) the symmetrised guantal angular-differential cross

section is

csS ' QIF |
3oy - oo 9% (2.4.7)
Me o an,g ’
where '
QLF Qi®

20, = 30“ cos § Y5 Lo n* el } (2.4.8)
2N, AILq t A 2( %))
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and
ac_:IB B 4_e4' . ——i—_- .
\ - . Z) A/ ,
on, me Ud  sin®40. cos 30 . (2.49)

In equation (2.4.8) V,= ei/ﬁ is the atomic unit of velocity.
‘Eqﬁation (2.4+7) has a different interfefence term to that in equation
(2.4.4). The interference term in equation (2.4.7) and the bound in
equafion (2.4.9) are obtained by averaging over singlet and tripiet
orientations of the résultant gpin of the two particles in the c&llision
(see for example Vriens 1969).

| There is an important differenbe between the interference term in
equation (2.4.6) and the remaining terms, since the phése factor contains
a unit of velocity. Hence, unlike the remaining terms, the interference
term does not scale classically. However, in the limit Ve >> VY, ;g,
which may be termed the extreme quantal limit, the interference term
tends to the bound, thch scales classically, even though it is not a

classical term. The classical limlt is obtained if ,‘Lfﬂ <<'\J’° .
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2.5 The Bffective Differential Cross Section 09 (%, ;,) in the
Frame L. ) a(L JAE,

The classical or quantal effective differential cross gection
. 2. ‘- -
3_6,'_ (1.’“,‘!..1) per unit momentum transfer magnitude q' and per unit
a%aAEL _ : .
energy transfer ISEL may be defined as the differential cross section

for the scattering of the incident particle 1 ‘by ‘a8 fictitious

stationary target which yields identical scattering results to that of

s
the original moving target beam. Now the differential rate &
| " xqasE,
of a reaction is a Galilean frame invariant so that the effective
S
differential cross section da may be related to the centre-of-mass
9qJdAE,. o
differential cross section 8_<.fc, by
\2 2 LY
Vi 90 (VL Uia) = 9 = V99 (2.5.1)

This relation has been used by Ochkur and Petrunkin (1963), Stabler (1964),
Gryzinski (1965a), Gerjuoy (1966), Vriens (1966b), Burgess and Percival
(1968), Vriens (1969) and McDowell and Coleman (1970). An alternative
formula, given by equation (2.5.1) without the velocity factors VL,'

and Vv, and without using the rate as an intermediate step,was uséd by
Burgess (1963) and by Percival and Valentine (1966). It was pointed

out by Vriens (1967) after discussion with Percival that, when the
differential cross séctions in the latter approach were averaged over
random orientations of Q;_,_ s the resqlting expressiong did not
éorrespond to the scattering of a beam of incidept particies by a thin

monoenergetic target gas, as it should. Now if ‘U’L'» Vt_‘u the
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two methods converge. For V;,~V,, Valentine (1968) compared the
two bina.ry—-encoxmtér approaches with exact-classical three-body
calculations for iomization of atomic 'hydrogen by electron impact.
He concluded thaf the "invariant rate" approach yielded simpler and
more 'accu_rate resulte';'. This approach is adopted here.

. . c
The classical centre-—of-mass differential cross section a__ffq

E
is defined by 9 O0E,
4 /
b_z_g-é = Z aqu NYAC Lot 2
3q,94E, Q(Cosﬂq)é(fq dq JdAE,

atlL branches

(2.5.2)
/ 4 ’
In section (2.13,) it was shown that 9.;' and hence coseq was
uniquely determined in the range (0O, TY) by q but that there were
’ / ' / . .
two values of ¢q (Séc,.q and @ o= 2W’¢q:; s say) in the range (O, 27TV}
for each value of AEL . Thus there are two branches of the

transformation from Cq_ ,AE,) to (cos 9;7 ¢c,/) and so

e o T (A L 4 TSl 1
QAEL  dwedd  T(H) e T(dl) '

T(g) = l a&_‘?_ﬁ‘fl-(?’t:) l :
d(cos8]) og . (2.5.4)

Now AE, is given by equation (2.1.26) and q, is given by equation

(2.1.24) and it is easy to show that

py _ | , < "‘9, . . /
J(9s) = 2 MeVR VL q 9526 Sin Xy, sin ¢ )
Sinﬁe": * (2.5.5

Hence J—(¢q’,\) =J(¢G’B) and thus for central interactions

d'og - 2 g (2.5.6)
dqA4E, T oos9y) Id
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It follows immediately that for central interactions

2 Q 2 ®
é—gq = g—_ é.....dq , ‘
P .
3q 0AE, 9(cos 6 ) dgg, . (2.5.7)
oo ) ’
However, if “ depends upon there will be additional
" 7 d(cos 0L A% P . o P *
1n‘cerference contributions to &= "« The Jacobian J  can be
Q,JAEL

expressed in a simpler form, if certain geometrical relations of the
triangle OFRP, defined by the initial velocities Vi, , V.,

) A

: ’ A n

and Vg are used. DNow cCos X,L,gjgrua___;; y €COS Xy = Vi, Up
A A 4 '

and CcCos BL = ’_\_{J Y, &nd so

and hence ,
— a L .
J_ - Mﬁ VL'W’Z}{ ‘GOﬁJiec: Sin BL(Z S5ih ¢(: l ]
But, it is easy 1o show that
A » A . . /
1&;' xg‘:"'q/ = CDSJqu’ 5in 9‘_"1‘ 3N ¢q
and so
J = mg, [ e AL ,
= MR VL VLY Vax v, . q ) (2.5.9)

Hence

o, () . 20 Ya

- »

qu, OBE, uvu Vi 3(40‘-“9/ )3¢q H" w"‘"’i.z*'?,' ’ (2.5.10)

which is valid botk classically and gquantally for central interactions.

In the special case of charged-particls collisimé

-3
X oS¢ = "?,:Z;Z - 4"!!),5 12 ?;,,

eos®))ay]  Fmyudsidie/ *

s {2.5.11)
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for distinguishable particles and so

30 (Vs Vi) 822, -
dq JAE, v, qf |00, -9 -9 . (2.5.12)

This result has not been given previously and shows that the effective

differential cross section is inversely proportional to the volume of

. A A A
the parallelepiped bounded by the unit veetors Vi, , V,, and q .

For electrons or positrons,

<D

90, (vii,uia) = 301 (Vi Vi) = 8 e* (2.5.13)
, (2.5.
29, 30E, 0q 2BE, Vv ¢ BV G
é}.’fE(Uu V"-) = go.l-QE(U:. Y.) - 3e '4- |
dqdhE, = yq d i) = 2 alia A L(2:5:14)
1 L 31 by ‘ U:.?Va_z('m;"fg"‘t) hfc.ax‘{u A, ’
2 QIF Z. Q:
é_o-l. (yl,{’gl_l) = b ("fu ,’U}_‘,) COS[‘E’ Log{‘b /(""'eU—1 -:.)}
3q 3AE, dqaaE, #9115
and ax6 4
816' (Vi Via) = _?__e_____ R
aq,aAEL VL');’U';_.L{'(ME‘U:-QT) hzuxg’u:\q" - (2.5.16)

In equations (2.5.10) and (2.5.12) to (2.5.16) not all values of
Q and AEL are simultaneously physical. The allowed ranges of
q and AQE L are given by the inverse transformations defined in
équati’ons (2.1.29) and (2.1.31). Thus
0€9q € 2m Vv

. . / ta’ .
and | AE—L*E‘{,;"Q?" L,q Sin30g cosA | & Vi cos2by sinX,,

are the required restrictions on q and AE, .
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2
) [o] VAR T T
2.6 The Effective Double-Differential Cross Section %L—SAEL( L, Vi)
gveragzed over different orientations of the target velocity

( a) _ Geometrical Restrictions on the Momentum-Transfer Vector q}

For fixed initial velocities W, and <, and for any
conservative interaction it was shown in section (2.1a) that the

physicaliy—allowed values of 'q' lie on the sphere

9-(2meg-9) = 0 . (2.6.1)

Since Vg =V, -V, , this result may be written in the form

A . N A ;
Q‘,‘-}_Li = 2 mRU-LI 3_/-1-_5-! - ‘L , (2-6.2)
- 2 mR.U'LQ_

provided V440 . If all orientations of \, are ajlowed then q must
lie inside the region bounded between the surfaces Z . and Z'
: min max

whose equations are

Ty 14
min = 1.v.+1=0

ZMLE [@-@14: o} = {‘l=2mg‘fuu(§-‘i.)+2mkvm_} . (2.6.4)

let a rectangular cartesian coordinate system with origin Q=0

it

[ 4= 2men (450,)-2mer, } , 6

and

have ‘2 axis along Vi and suppose q has spherical-polar

AN i
coordinates (qd e‘-‘l' , ¢'-‘l') so that ¢€oS 9‘_” QY + In this frame

the surfaces Zrh'm« and max Ore independent of the azimuthal

A v :
angle ¢'-‘L' and hence are symmetric about 1\, . Let me and

\_’Mar be plane curves from which the surfaces Zm in oand Zlma.'r_

' A
are obtained by revolution about V., . The equations of Phn n

and dex in plane-polar coordinates ( q_ ’ 9,_?_,) are

i

Uinin { Q= acesBy - b} ) (2.6.5)



and -
Tmax = {47 acos O +“b} 9 (2.6.6)
ﬁJhere |
a = 2mgu, o B 0 (2.6.7)

 and
b = 2mgVi, | . (2.6.8)
Equations (2.6.5).and (2.6.6) are of limacon form, the properties of
which depend upon the relative magnitudes of a and b . If q<b
(that is, if V< Vi, ) Umin has no real points and Tmay
is an oval curve enclosing the origin. Thus if V[ ,<V[, s & may
take any value within the surface of revolution Zm‘az which
| encloses the origin. v
In the case @=b (that isy. V[ ,=\[,) zmin. has Q=0 as
its only real point and -qu,x gimplifies to a cardioid, ’i‘he
allowed region for q is a cardioid of revolution with cusp at the
origin.
I adb (that is, WDV, ) Vi, has real points for
(osgul'; bfa. and Vmw:. haz real points for cos 'e,_‘v;—b/a, .
The branches Vmin and vmu are complementary in that the
slopes of the tangents at the origin are equal in magnitude and
opposite in‘ sign. Thus, for V>V, @ must lie inside the surface -
of révolution Zm“ but outside the interior surface of revolution

Z‘min . This case is illustrated in figure (2.6.1), where the

&elocity transfer w; = =q/m, has been used instead of the momentum
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transfer itself. In the extreme limit VU, »» Vi, , small values of q

—

are directed almost perpendicﬁlar to the incident velocity direction.

(b) The Geometrical Restrictions in (LsAE) Space.

Since q_‘-:zmer&sinﬁeql’the accessible values of q satisfy

, 0 < q & 2mg (U, +V,) |
Further, AEL= YLP%’Q}/?"\. = l’h-i"” q_’-/zmz , %0 that it is

obvious that

— - 2
Vol m, V€ QB € Vg gL @,
and that '

i 2
~Vag + o ¢ AEL & Vg v,

Let the parabolae {7, 17, T, and [3; be defined by

Ve = { z"ﬂ;,‘l"‘*‘ qu, + AE = O} s (2.6.9)
s (€ sy a0
. = { flr_n,q.z‘ L +AEL=O} > (2.6.11)
and )
| 2
0,2 {am2+ L € =0F . (2.6.12)

Let AIV be the point of intersection r]’:,ﬂ ‘}2 with q #0
Bach of the four points AIJ' is uniquely determined for all positive
values of m, , My, Vi and VY9 - It is easy to show that the

coordinates ( q-IJ" AELIT) of Ay ave

U= Rz T 2Me(Vu-Tia) , (2.6.13)
“Qp = Q. = 2mr (Vi + VL) (2.6.14)
2mg

AE,, = AE5, = (VL -Vi2) (Mg, + ™M) ’ (2.6.15)

( THT:M,_)
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and

_  AMe _
AE’L!?.: AEL?.I - (RIW)(V”+VL") (m,v,_, mlelt) e (2.6.16)

The physically-allowed region (Q,AE,_) space is boundsd by a '"polygon"

whose sides consist of segments of parabolae and whose vertices are

the origin (which corfesponds to a collision with negligible

interaction) together with those points Ars for which Qqg

satisfies  O¢ Qp; £ 2me(Y#Y). Since none of the 9,5 is

larger than Z2mg (Vi+ U'u_) only those Aygy for which Qry i

negative need be rejected. Now q’n‘ is always negative and q,”

or q'm. is negative according as U, is less ‘than or greater than VU, .

Iet A N be the point ( lq'zz" AEL?.‘L) . The accessible region in
(q_,AEL) space is therefore a "triangle" with vertices (0,0) y A*

and Ay, . The case in which ™M, M, and V>V, is shown in

. figure (2.6.2) and corresponds to that in figure (2.6.1), approximately.

The following additional remarks on the relative positions of the

three vertices are useful. Firstly, since an[ < q'u s the point
A,, always has the largest value of qQ . Further, the ordinate
AEL‘).I is pogitive, zero or negative éccording as V., 1is greater

than, equal to or less than VU, , and similarly the ordinate AELL?_

is positive, zero or negatiye according as WM,V is greater than,

equal to or less than M,V;, . Finally, the energy-transfer

difference

AE , - BE,; = 4*?%“%_;_;_';“;)%1&1 : (2.6.17)

is positive, zero or negative according as W, is greater than, equal
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to or less than M, .
The condition that the incident particle may transfer all its
initial kinetic energ& to the target is that the point (m,v,_,, .i.m.vﬁ)
on 1}, is accessible, which is true only if
2my (Vi -Via) € MU, € 2me (U, +Up,) .
Similarly, the condition that the target may transfer all its initial
kinetic ‘energy to the incident particle is that the point (M, Vi, ;5My3)

on \, 1s accessible, which is true only if

2ma (Vi - Un) € MU, £ 2mg (U, + Vi),

() & (vuw,) With 2 Axis along the Incident-Velocity
3q JAE,
Direction

A .
Let Y, be described by the spherical-polar angles 6.__7_‘

and ¢m_. in a rectangular cartesian coordinate system with 2
A
axis along 4, , and suppose that f (6L2|,¢u,4) is the distribution
’ A AN
function describing the orientations of AJ, with respect to VU, .

The classical orientation-averaged effective double-differential cross

2 ¢ .
section O ( 0. (\,,v;,) is given by
3q 04E,

2%y ) L
9q AAE, ° = QOAE,  +(2.6.18)

In the quantal approach the orientation average should be performed on
the scattering amplitude so that interference eéffects arising from the
uncertainty over which 'Q'm. is involved in a particular collision, can
be incorporated. The interference'effect which arises here must be
distinguished from the special interference properties arising from the

scattering 6f identical particles, but is similar to that mentioned in



gection (2.1b) and occurs for all particles and all conservative
interactionse.

If this interference is included, the integrals involved cannot
usually be treated analytically. However, with the approximation
that crbss sections = not amplitudes - can be averaged ovér different
initial conditions, an equation identical tb (2.6.18) is obtained

. :
for é_o.bl‘.: S(VL"le) . Henceforth it must be remembered that the
resuits f:r aquantal scattering by this method are only approximate
whereas the results for classical scattering remain exact.

Let aigA (VLi,Uiz2) be the approximate quantal result obtained
using the approximation of averaging over cross sections. Equation
(2.6.18) can be simplified since

l x'u;._‘__ql’ = Xz y Say
{ ( ?L.X“}..z)x q_ }1

3
e

’ -+ Z(V“. ;_7_)(13'“.%)('\-’7.1- ) (G.' (i};-l'é) YLz_"/é,;, (2.6.19)

However, from equations (2.1.3) and (2.1.4)

A A
Q-V., = cos Bq s 83y
= | AEL+2-an q*)/q Vi = constant , (2.6.20)
: '
and
§ V2 = cos Bgn s say
= (4E.- i’?na_ %z)/‘i""a.; = constant. (2.6.21)

2
Thus the function X may be written
2
X" = ( Hmax = €°S 6.2, )(COSBL,_,-—,.Lmin) , (2.6.22)



wn
-t

where

and
MHmin = CoS ( GLLU + BLQ_)_) . (2-6.24)
Further, since Xz)o then
=g Hmin € €058, & Mmox £ K

otherwise q and AE, are not physically accessible.

Let
2 . .2 .
cos B5, = Mmia cos + Hmax Sin M , (2.6.25)
where
o¢n¢ I .
Thus

d.(c"’vs BLa1) - 2 dTI.

Hence, for distinguishable particles

. (2.6.26)

2 ¢ 24Q 12 2 ™ .
é_gl- (‘U’,_.,’lfm_) = a__q‘- (’Lﬁ.uquyl) = ‘62‘22 Jd‘fu'J‘ dTl Z"{ﬂ(et.zbg@u.a)"

dq ALE, dq 0AE, i g (2.6.27)

. A
For an isotropic distribution of Vi, , f("lﬂ bz, ) = | /4-17‘ .
and so :

2 C 20 Q N

00 (W via) = A0 (v v,y = ATEE

dq J4E, g 28E, v, ¢t (2.6.28)
This equation is an important intermediate result and was first
obtained by Thomas (1927a), though his method was not explained in
detail.

For unpolarised electrons or positrons

2 4 2 }D 4
00 (v via) = 3G o ATED (2.6.29)
aibAE‘— 3q 0AE, ViV, q:‘.

L]
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as before. PFurther,

2 CE 2., QE FoNA
o 0.;_ (‘U’L‘ ’U.L'l—) = 5__9’,_ (le )UL’L) —_ 4-1:;'8‘1‘ {meﬂf *UL-L; j.. alf’}\eﬁ{d JL 3 s
OqALE, dqO8EL VTV G6 gt (2.6.30)
QIF 17’&4
_.a_?g" (‘U',_.’UL‘L)- 2 dx 3 Y, A
bV, V%, 45 8E, ¥ ,(2.6.31)

where

b cos{¥ Lo __.___..._.:S »
(v,_.,m,\n@, L) = (ror-) L e 3 e (2.6.12)
with -

(}+) ™= 4m (2.6.33)
and
2 - Z 2 .
Ug(X) = Uu + UL -—-21}1,.1)17_(#;".'“ C051TL+ Hwax sm_l‘ll) . (2.6.34)
let.
~ }
I = mavi-qr ? (2.6.35)
so that §=9 if the phase factor
2
¥y = Yo L°3 " - " , (2.6.36)
| Ve (meug- )
is zero. Then it can be shown that
! 2
~ S
f g = > riomiul -2 ) (2.6.37)
(meull—mtv“l“- meAE,_
and so
'z.~q13 4
b (-U-“ 'U-L'L) 4.r e .- } -
2 2 2 _ -
QOAEL ViV g (maUL: MgV, ZmQAEL) (2.6.%8)

Equations (2.6.30) and (2.6.37) can be derived from the expressions



(}imax,“'P«m'm) and (Hmom Pmig) Wwithout having to solve equation
(2.6.22) for X'=0 to obtain both oy, 504 fpmey -  However,
in equation (2.6.31) the integral cannot be handled anazlytically and
go it is necessary to solve for MKmip and Hmox sepa,ratély.
Equations (2.6.30) and (2.6.38) agree with those of Vriens (1966b).

. A -
() aa g (U;_‘ Uia) with % Axis along the Momentum-Transfer Direction %’
q —

An alternat:.ve derivation is convenlent for this case.

’2.
Let the centre-of—ma.ss angular—dlfferentlal cross section

0' :
d(Cos Gq )ad)q
for an arbitrary conservative particle - partlcle interaction be
denoted T (cos eq ’ ¢c.) = The magnitudeé of the momentum-transfer

' /
véctor [%l is related to the polar scattering angle eq by equation

(2.1.29). Hence

J'o, Q 2
— = — (COS ¢ ) H ( l-—
dq d¢/ MUk 4 ;u,?g) (2.6.39)
where H(X)=0 for x<o0 and H(x)=l for X200 . Suppose ¢

has spherical-polar coordinates ((L 1% % ¢q.) in a rectangular cartesian
frame of reference with '_1_ axis along Y, . Then, without logs of

generality, ¢ﬂl may be taken equal to 154 and so

bffq = _?’_. O¢ (cos® ,¢q) H (|- i

). \

3‘1,34’.{% Mg U 4,,,:“-3 (2.6.40)
Since, for a conservative interaction

qQ = 2mgUp cos Bgq y (2.6.41)

which follows from equation (2.1.18)

- ) 0, _ 4 cos gkcl ] O’Q(Cosec/”ch’)l-l ( cos BR%')' (2.6.42)
A(COS %)a¢qu



Equations (2.6.40) and (2.6.42) can be conveniently comtined by

defining a generalisged triple-differential cross section 0;4_9?1

| dtg, |
per unit volume of momentum-transfer space by
3 ,
ddq = 304 | = £ U'Q(CosBé)qq’).8(23"&\.&-&*%1)1

which reduces to equations (2.6.40) and (2.6.42) on integrating over
the rele;fant variables. The génera.lised triple-differential cross
section doq is not defined uniquely off the conservation-of-
energy shell 6(2!'1&%.1-{") but off—shell values will not be required
in subsequent averaging and integrating operations. The differential
cross section O (Cosaq’),¢cl‘) may be written @ (Ve ,&) . Then
3% = ,,iu.& T (%,0) . 8 (M2 - ) |

As in the previous section the centre-of-mass differentiazl cross

(2.6.44)

section %g:q‘l, ‘may be related to the effective differential cross

section do",_(q_ru.)u;_ 2) in a general laboratory frame of. reference | _
t - -—

by ‘?,

do,(Vi,V) v do, ,
R L 2 O¢, (y; & >
Ir, %, dty ey, Y S g fhe.6.05)

gince dtq is frame invariant.

In the case of charged-particle collisions

0 (Ve ,4) = 42rz;m

2

¢+ (2.6.46)
and so
da, » - 1,2
ISR Ao S
i UL q - (2.6.47)



A
By choosging a rectangular carigaian frame of reference with 2 axis
along V., it is possible to rederive equation (2.5.10) since in this

case

dtg = Cdqd(ddd,, = %ldeAELd¢Lt‘,(2.6.48)
by equation (2.1.4), and
2%
do. j dg a_a._.c;_
dq 20, ~ “t q daE, CL (2.5.49)

A .
However, if the ¥ axis is chosen along qQ, the differential cross

-
—

A
section dde. (‘U’U"ul,_) averaged over all possible orientations of Vi,

dty

with Vg, fixed is given by

Cil_q—" ('U;.;, ) = ¢ mazt 13 fd¢ [d(Cos eq'u.) 5’(‘3“6‘{&#2
dTq _ Uiy ?,+ <) J(zms‘fn-"l_, -q*)
where cos @ = L_rn-% ’

21"
1%.6.50)
is the corresponding azimuthal angle
and ’_'F(Coseim_,%n) is the required distribution function of

PaS
orientations of 1:1;_1 with respect to @ .

It was shown in section (2.1b) that for fixed values of Y, and

T ’1__;;.,,_ was restricted to the plane ﬂ-i' u, with equation

Ua-9 = 4e, -_L %z = constant, (2.6.51)

am,.‘L
The argument of the delta function in equation (2.6.50) may be written

n the form

) LchC'.os%u-(.Z.&SQ)

AMeULi.q ~2MeVp.q— Q7 = 2Mg (AE,- L X

Hence
q—q'l_ (W..,UE_-..) _ ‘BMg?. g fd¢ fd(CoS ,,,_) -F(Coseg,_.,_ 4;?‘_2_)
dte uqf ©
$ (2meviaq ?‘12““23}



where i 2
— AEL‘ Zm,\q'
Pz = _

Vi q, | ‘ (2.6.54)

Now S(Q,x)-: J(x)/[o.l and so

Ao (v, Vi) = +E T
Go By via) jdqﬁ@lf(ﬁz,‘ﬁeu) Hfi- f"‘lt) .(2.6.55)

2 _ lﬁdﬂilcl
. L a4
For isotropic orientations of WU, ' H"["*)‘*‘t_m-)"' a7 and so

doi (v, v, ) = 2% |
— yveze = 2 H '__ 2
Te V. q5 ( P'%‘l) . (2.6.56)
vNow d.t = f(_,d?,dAEL dcﬂw and thus
UL

BML (v“ Vi) = ‘Hrz'h Hlpa R (1-KG) |, (ai6sn)

208 VLTV QY
as before, where

_ A€+ 33, 9" |
Far = U g : (2.6.58)

Now- suppose that ‘f((os e 1.’¢Qu.) 3c°$<9lL1’Whlch is the case for any (2};)0)
angular state of an atom.

Then it is easy to show that

Y 12mell [ 40T
90 - 212——-{ - }H(: Ka) B (-p4) |

dq2tE, ViU q* Vi g
(2.6.59)
which is zero at AEL 3 mzq}' and non-zero around this region.

This result has been used by Banks, Vriens and Bonsen (1969) for

the special case of hydrogenic target atoms.
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2.7 The Effective Differential Cross Section df; (vi, Vo)

L&

Averaged over Uniformly-Distributed Orientations of the

Target Velocity for Charged-Particle Collisions.

" (a) Distinguishable Particles

Henceforth; unless otherwise stated, the arbitrary frame of
refere'nc;,e L ﬁill be chosen to be that for which the target velocity
distribution is spherically distributed, corresponding in the case of
charged-particle atom collisions to the frame in which the target nucleus
(a.ssumed to be of infinite mass) is at rest. The subscript L may
therefore be omitted. It is also convenient to define do - d(f‘._ d&Q

’ dae dae  dsie
for distinguishable charged particles.

The effectiye differential cross sectiron %‘ZE is obtained by
integrating the Thomas formula _,(see equation (2.‘6.28) over the momentum-
transfer magnitude q in the range O¢ quinsci 51mazfor a given value

of AE in the range -E, AESE, where E,=4ma> and E,= Lm,u;?

are the respective initial kinetic energies. Hence

de (v ) = 4rEy { Lo o- L (2.7.1)
dAE 3‘0’;1’1}1 Q"n.ln3 (lma-x_ ’ T

where the integration limits lie on the boundary of the accessible

region in (Q,AE) space for fixed AE . In general olg is a
- daE
function of m, , m, , V; , V; and OFE .

For positive AE the relevant boundaries are

AE = YyQq - 2—-'& Q,z , (2.7.2)
_ 1 gz
AE = "hq ¥ 7m, ’ (2.7.3)
and '
j T

HE = =g+ on 1. (2.7.4)



Since QYo the possible values of Umin 2 d q/max ave
. |
+ : /,
Ui 1 = (2mE)* - {2m (E;- pENY (2.7.5)
Qrer = (2m BN+ [2m(E-28)57 | (2.7.6)
A | gk o
Uminz = {Qmi(Ez*AE)Sl~ (Zsz,_)lz , o (271)
and s I
= E,+AE + (2M, 2
q'MM,:. {1m2( r )3 . (2.7.8)
Then
| - * * 2.7.
((mfn« - max ( q,minl ’ (’me 2.) , (2.7.9)
and
. + +
Umax min ( Qmor . Umaxa) . (2.7.10)

The appropriate values in any particular case are determined by the
relative values of AE , 'AE_.“ and AEn_ , the last two of which

are defined by equations (2.6.15) and (2.6.16). Let

desy - 4_12.2__3%[ A Fov Lr=1,2
d AE vty q»m-n:c %*:&LJ} . (2.7.11)
Then
ghf; = 7 %; 2?&’-( FI‘ + Fra) (2.7.12)
where 3, 3 Y,
Fus (W) (3 - p)oe +(%r) (35-3)(5) er
For (B GE-OUEET- (RIBEE) re
e (324) (32822 Gaa
nd !
T (3201 BRAEDDS | o
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The regions of validity of the different formulae are shown shaded
in figure (2.7.1a) for MM, and in figure (2.7.1b) for mi<m, .
In both diagrams the dimensioniess variable AE/ E; , which is the fraction
of the‘initﬁiél ,ipcid.en‘b kinefic énergy transferred to the target, is
‘plotted agéipst‘the dimensionless ratio U‘,_/'u" . Since AE is assumed -
positive anci is aiwa.ys less than or equal to E‘ the permitted values of

AE /E, 1lie only in the range [O,1] . In contrast there is no
ders
daE
is denoted by the symbol "y ". The boundary separating the regions

upper bound on the ratio U, /'U',' . The region of validity of

of validity of g-g’éi and g{éi in case (a) and that separating

9‘_9' n and doy, in case (b) is that segment of the parabola

dAE A aE _
AE’AE,, (see equation (2.6.15)) lying in the positive quadrani in

e

57 E,
and (1,0) . Similarly the boundary separating the regions of

Ve 4E space and passing through the points ‘{0,4-‘m,m1/(m”-m,_)l}.

validity of ?‘_o-n. and dg.lao;n in case (a) apd that separating
ad AE
Cid‘.“ and c‘:.‘gn in case (b) is that segment of the parabola
E

C‘:EEZAE“ (see equation (2.6.16) ) which lies in the positive

quadrant and passes through the points {0,4'm,mt/(m'.4—m\l} and (m./mz,o) .

The two parabolae are complementary in the sense that each is the

reflection of the other in the AE/E, axis. The greater of the two

parabolae hug its maximum at the point (im,-m,_\/l'm,_ , I) and the

region bétwjeen this point and the AE/E, axis lying above the larger of

the two parabolae and below the line AE=E ; 1s excluded by the conditions
2mg (Vi-v2) € MV < 2mg (v +uy)

which were derived in section (2.6b) after equation (2.6.17).



AE 6¢
AE)

(mn'ml.’o) (1) Tl (m_z,{%{l'n' ') 0o

4me
( M)

V,

g
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1

Figure 2.7.1 Regions of validity of ?ﬁc IT tor T,7=1,2 In the space
defined by the dimensionless parameters AE/E, and va s, for
positive AE . The regions for each value of I and T are shaded
differently and are denoted by 11, 122, 2I and 22 regpectively.
Case a) M, » My 3 b) W <M, 3 ) v, infinite ( E, has been
replaced by € = 3™, y* ); d) wm, infinite.
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In the limit as Y /U, tends to zero g-‘rEn. tends to the expression
A

dZE'l" (U;;Uz ) = ’T( Z\ IL ‘.FOI' O<AE< +M‘M1E /(M+Mz.)
(2.7.17)

= 0, otherwsse,
whlch is the result first obtained by Thomson (1912) for a target particle

initially at rest.

The differential cross sections and regions of vaiidi'by for AE<O
may be obtained from the stated results for AEYo wusing the detailed-
balance relation

1’; io.f-"(m',mz,m,zg,—mzl)= d“%—x 33 (M2, M, V2, ,lAEl)y
d JAE} dlae| 1 _ (2.7.18)
r I, =i,2

. J
since, for AEKO the relevant boundaries in ((i ,AE) space are

AE = viq -zm@& (2.7.19)

AE = = .‘1,-51,;,"73' , (2.7.20)
and '

AE = =%q + 4 €, (2.7.21)

and so the possible limits of integration over % are

-

’ Y
Loimg = L3m(E+12E)] % (2mE) = g7 (m,;, 1agl), (2722

MI'Z

-

| (imax. (2.7.23)

I\

J V.
[2m, (g, + 18ED] % (2m, E ) = (m., v, 1 6ED),

-+
qmaxl
- ! , _ } '
q’miﬂz = (lmlEl)é—— {zmz(Ez‘IAE,)?,/zz ?-l:fnl(m7.;‘r2.wlAE’),(2.’.{l24)
and
(Zmle,) + {Zml(sz—mshj = 7mm(mz, - 1a€1).(2.7.25)

Note that on the right-hand side of equation (2.7.18) the particles

q,mam. =

have been interchanged.
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The general formulae for d%(r and their regions of validity
presented in ’chis gection are moreE explicit versions of the results
obtained by Gerjuoy (1966) using a different method. In some special
cases the results have been used to obtain simple approximate énalytical
formulae for the exci’ca.tioh and ionization bf atoms and ions by incident
electrons, positrons and ions. These results are presented below for

completeness and convenience.

(1) Distinguishable Particles of Equal Mass

For equal masses the two parabolae separating the different regions

of validity of dg coincide and so the expressions do, and
dAE dAE
%Glz defined between them are irrelevant. The results for AESO
AE
are

dr. - me'z (, 4E ), for o< aE < max [(§-E,),0}
d AE E, AE* 34E 5 (2.7.28)

which was first given by Thomas (1927a) and

de, - mlz; ( 4E, _i) (E—AE) % for maaf(E-E,),0}¢ o€ <

daE E,ae2 | 328 3/\E; (2727)

which wé.s Piret given by Stabler (1964) (it should be emphagised that
many authors including Stabler label the target particle by | and
the incident particle by 2 ).

Equation (2.7.27) has no analogue for a stationary target. Equation
(2.7.26) reduces to equation (2.7.17) when E,=0 .

(ii) Infinite—iass Projectile

Since the initial incident kinetic energy E, is infinite it is

2
convenient to define the equivalent incident energy by €‘= itmzv, .



In [ q ,AE) space the boundaries derived from the mass and velocity of
the incident particle become
4B T v, S (2.7.28)
and : : -
AE = =Uiq . o (2.7.29)
The ﬁhysically-‘accessible region in (Vz/'u'. b,A,E/e') space for AE S O

. is shown in figure (2.7.l¢). The differential cross sections are

dr,, - T 22, ( +Ez) for OLAEE maxio Zmzv’('v‘.ﬂl:.)}
d AE €, AE? (2.7.30)
which was also first derived by Thomas (1927a) and
3 Ez 1 é_E /Z
dd, = TI’_Z_\_'-Z_,, [' gl).,«. 3(5.)—?(2-54'4_){}"' Ez).]’
daE  2& Ag? “’z AE AE (2.7.31)

C for max{o2mauyi(viv)] € AE € 2myw; (v +47),
which was first given by Vriens (1967). .

Note that equation (2.7.30) is identical to equation (2.7.26) if &,
is replaced by E. ’ Vthough'the fegions of validity are different.
Equation (2.7.31) demonstrates that the genera; results for d¢
can become extremely tedious and illustrates the danger that d(::eect
evaluation can lead to large numerical errors for AE &< Ez. .

(141) Infinite-Hass Target

As in case (ii) it ‘is convenient to introduce the equivalent initial
kinetic energy 82,:'2"”!“_3.1 . The bgundgries‘.vderivved from the target
particlq ’pecbme . |

AE. = e |, | (2.7.32)

- and

AE = =Vq : (2.7.33)
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The physically-allowed region in ( %’- , %_.E) space is shown in figure
1 1
(2.7.16.). The relevant differential cross sections are

. : 1,
é_o-h = WZ%Z;( 4’__@_\ _‘_L)(E,’-AE)/Z '
dAE E‘»Aﬁl 34 3 E, y

‘For 0 £ AE £ Max {O, 2m,v, (v,.'u;_)} ' (2..7.34)

and

: 2 EWY - Y2
f - PEDE GOl @1,
247435

for  max {o, Zm,mrz(v,-m)} < AE € E .

Bquations (2.7.34) and (2.7.35) have not been given previously.

b) Jdentical Electrons or Positrons

It was shown in sections (2.7 4(1) )that for equal masses AE“'::
AEZ; - Et E, . . E‘or latér applications it is necessary to choose
EyYE, g0 that the relative velocity is never zero. The full
range of AE can be divided into four intervals, only two of which-
are physically distinct because the energy transfers AE= Ez’_EZ
say, and AE= g~ f, ocannot be distinguished. Since E'= E -AF the
energy transfers AE and E,u—E)_—AE lead to identical final conditions.
The two distinct energy-transfer ranges may be chosen to be

O € AE € 4E, = 4(E-E,)
which is equivalent to
AE, £ AE £ 24E,= EE,
and secondly '
2 AE, € AE £ E |

which is equivalent to

~E, £ AE £0
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A collision in which O£ AE £AE, may be described as an "excitation"
becausge the final kinetic energies of both particles are greater than
the initial kinetic energy of the target particle. Acollision for
whiqh AE = AE, is such that the final kinetic energies are equal. A
collision in. which ‘EZSAE £0 may ‘be termed a "de-excitation'" since
the final kinetic energy of one particle is greater than the initial
incident energy EI . The e‘xcitation‘region will now be considered

in detail.

~ QD ~
o dol’. d8T_ de® | deft_ d3F_ dof
dAaEL LE, daE dog, dag_ doOE
dol’ - (}_Gcs ’ d‘UQ|8= é‘G.Q’B, dg". da 3
dag, dAE d2E,  dAE dag.  dAAE
~QS Qs CcsS QIF
and g{‘é‘- = g_ZE = 3—3; - g—gﬁ . Then it is easy to
show that for O < AE £ AE.
dg® “4E
— =3 -+ T =2 )
Ey . A62 ( Tre , (2.7.36)
A
g_ﬂ'f = e N {l +  *Ez ’3 (2.7.37)
ind d bE _ E, (Et“Ez.’AE) 3(E|"Ez"AE) ?
q’ﬁ-
QIF 4 maxe
do ' _ e de
dae E-—-.-':& jq , 4 3( VI—;U;’)%,AEIX)’(?"/'%)
minz

where g("?,"fz,%,i,AE,x) is defined by equation (2.6.32). The

expression for de®F  can only be evaluated numerically, however,
dAe



66

it can be transformed so that its convergence properties are improved ,

by replacing the variable CL by the dimensionless parameter x where

| |
q - (e (2.7.39)
Min 2 2 AE o
Then ‘
S!'__q, = 1}:7- dx y
+ , ‘
and the range q < ?’\((f is transformed into the range ~|<x <) .
min2 may 2
Hence for O £ A £ AE,

QIF 4 ‘
.d;q = T_T_g_ de-[_.dxa(m)le%)r7AE)x)

d AE 2E, AE (2.7.41)
The bound %G;Q‘B is obtained by replacing 9 ('u'”r\rz)vo) X, AE,X)

. . o~ 2, . .
by its approximate value Q= | /{méq;(})—%(t)} in equation
(2.7.41). The integrals can now be evaluated analytically giving,
for O £ AE £ AE,

do 8 et
dAE E,0E (E,- E;-AE) ) (2.7.42)

Equations (2.7.37) and (2.7.42) were first obtained by Vriens (1966b) after
pioneering work by Burgess (1963). If, in equations (2.7.36), (2.7.37)
and (2_.7.42) E, is replaced by zero the corresponding "Thomson"

symmetrised formulae are obtained, nameiy

D | ,
g_(_r - Ir_ﬂe_‘* , , (2.7.43)
dAE E, AE* »
doE — et
— : - L . 2- .

d ¢ e (E,—AE)‘ (2.7.44)
and
do_ms _ e’

r— — ara————

dAE E, 2€ (E,- BE) . | (2.7.45)
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These results are valid for O<K AE _géE’ and can be obtained directly
from_ the centre-of-mass angular-differentiaj cross sections (see equations
(244.6) to (2.4.9) % Further, in this case the result for the interference
term can also be obtained, for
QIF .

de _ e , .

daE gy ©°° {Y? } (2.7.46)

b ) : E’ AE (E|'AE) U‘l __AE 0704
provided O $AE<LSE, . It is interesting to note that equation
(2.7.46) simplifies to equation (2.7.45) when AE = AE,= E, .

In the case in which E, is not zero Vriens (1966b) approximated

A"y
daE

de T _ dg¥® Huo Lo(

= —_— cos
da AE dAg E~Eq

g,-e,_—ae)] > (2.7.47)
where UO: %me»u;?' + Equation (2.7.47) reduces to equation (2.7.42)
for AE= AE, . An alternative 'approximation for AE close to AE,

is Q1B - |
dt)‘c\;H = do { A, + B, (El'Ez‘ZAE)z}
A AE dae E-Ea ? (2.7.48)

where Ao and Bo are dimensionless parameters which can be

determlned only by flttlng to the numerical values. In particular Ao

is determined by 15‘ at AE=AE;, . If A, is not close to
dAEe aF
unity then the approximation dU‘ has little value. The
dAE ' :

parameter A° neasures the extent to which the interference is coherent.
In the accelerated symmetric model (see Thomas 1927a, Vriens 1966b )
the incident electron is assumed to gain energy before it collides with a

target electron in an atom or ion. In the case of a hydrogenic target E

is set equal to E‘wf U+ E.z . where Etao is the true incident energy
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and U ig the ionization potential of the target atom. However no
correction is included for the kinetic energy of the tdrget electron and
focus—lng effecusv‘ are »A:Lgnored.. Nevertheless, the improvement in the
agreement with more accurate results is significa.nt'. The relevant

differential cross sections are

, ' 4
do® - e ( + “4Ez )
dAE (E‘“+U+Ez) AE'l 3AE ) (2'7'49)
4
€ s 4E
do” = L 2 { I+ < 3 (2.7.50)
dAE (g L U+E,) (E\tU-LE) 3(EotU-0E) ) 7
4,
9['."@; re dxfd}g(v V, Vo %, AE, 5),
dae (E‘m.‘- U-rE,_) AE ™ ) (2 7.51)
and
dag (E,,,,—t—U-rEz) AE (E:w“'U’A'E) ’ (2.7.52)

all of which are valid for OLAEL A ‘rU; provided E|n is greater
than U , the ionization potential. A complication arises if E,m'
is lesé'than U . In this case those energy transfers in the range
-{EM’o , < qu.u)} result in both incident and target electrons being
temporarily trapped by the target nucleus to form. a classical H_ atom.
In such collisions the two electrons repeatedly collide until one of them
is free to escape. This means that the contributions to the differential
cross section ‘d_»_O' in the closed-channel range {Em’ ﬁ(Ewo*U)ﬁ

dAE
should be redistributed over the two open-~-channel ranges {O,Ews and



-E, ¢AE£{o . The possibility of such collisions was not discussed by
Vriens (1966b). In the unsymmetric model of Stabler (1964) these
complicated collisions are ignored because the incident electron is

regarded as free froni the influence of the target nucleus.
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2.8 The Effective Diffex:entlia.l Cross Section dg (\/ Averaged over a
‘“ dAE Y

Spherical Distribution of Target Velocities for Charged-Particle Collisions.

The velocity-averaged effective differential cross section a0 (V)

dAE

may be obtained by averaging d_o‘IJ over a given spherical velocity distributio:
e(ui) using the relevantdleggions as indicated in figures (2.7.1a) to
(2.7.1d). The resulting formulae are extremely complicated for all but
the simplest of expressions for e(u‘,.) . |
In many applications the target particle is an atomic electron whose

velocity distribution is usually sphericaily disfributed in the frame of
reference in which the atomic nucleus is at rest. In all but the simplest
cases the exact expression for p(w) is not known. Commonly used
approxizﬁations are the stationary target model e(vl) = 5(1)3_) where

§(x) 1is the well-known Dirac delta function and the circular-orbit
model P(Vl)-" 5('05:\)‘) where v 1is some velocity characteristic of the
particular target electron. In the exceptional case in which the target

atom is hydrogenic the exact target electron velocity distribution, termed

the Fock distribution, is given by

. ) 3—2-: . ,U,,Su.zl

for both the ground state and all uniformly-populated excited levels
(se_e Fock 1935), where ‘%mg'*fz' =U.

Vriens (1966b) proposed an approximate formula for de (v)
averaged over the Fock distribution in the case of the accelerated model

for identical electrons. However, he also incorporated some additional
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approximations in order to eliminate less important collisions and

obtained (see equation (28) of Vriens 1966b)

d"D(V; we® 0.924 + 2U
dAE T (E.+2u) U pE2 3’553} (2.8.2)
clc_r:mg__,' we¥
JBE (£ _120) (e, +U-aE)*] 012 N ooa ) 2 (2:8:3)
. (1]
and
Q1B .
ddp(uy) - 0.924 e ,
dAE (E o+ 2U)(E,+U-AE) AE (2.8.4)

all being valid for 0¢ AE$'L(EN°+U) + The interference term quoted in
equation (28) is incorrect since it contains Ez. + An expression of

the same type is

Qrf Q1B +
do,(v) = 99, cos {(~U—°— )1 Lo
E,w-rU

dAE dAE E +U AE)} (2.8.5)

In the same case, but without excluding particular collisions ,
D : E
Valentine (1968) computed d¢ and dO numerically for comparisons
dAe dae
with more accurate classical calculations.

The analytical results in this case are for En,2VU

b
do(v) = et
e FT — {0-T)+ YV (14T-9 }
dov). et ,
— (7.9 _ (|...T)+4"U I+'T—2)()} 8
dAE E‘Q(E";}U-At)z{ B(E‘N*U'AE) s (2' '7)
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dofyy - M=)
d AE Eio AE (Ejo+U-AE) (2.8.8)

=1 z, ; :
all being valid for ©%€ Aéé'L(E‘;:U)where E,m‘ 2 me'u;hand the dimensionless
" quantities X(E,G/U) and T(E,W/U) are given by

X (E,,,/U) = _‘4’(5@)[“ 7-(%'“){{'* %"")&"}] > (2.8.9)
and

T(E,;./U) = s (%M){'“ X(E""/U)} . (2.8.10)

As in previous cases, the interference term can only be integrated

numerically. It can be seen that the exact integrations differ from

D
the approximations of Vriens, especially in the second term of dd-gg_
E
and d"j_'.glé . However, no analytic results can be obtained for

the interference term.

These differential cross sections should be modified for E|W<U )
because of the complications caused by temporary trapping of both
electrons as discussed at the end of section (2.7).

In the general-mass case and even in the special limiting cases of
interest no other explicit results are available for dEIZ‘TE averaged

over the Fock distribution or over any comparable velocity distribution

for _non-h.ydrogehic targets.
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2.9 Total Effective Cross Sections for Charged-Particle Collisions

It is convenient to classify the total cross sections into four
types. Pirstly, ionization cross éections may be defined as cross
sections which include all collisions with energy transfers in excess
of a fixed positive amount | . In contrast excitation cross sections
may be defined as cross sections which include all collisions with
energy transfers lying between two positive values U|<.U1 s even if
part of this energy-transfer range may be inaccessible. By a suitable
choice of UL. ionization cross sections can be included in excitation
crogs sections, but to avoid possible confusion they will be treated
separately. De-excitations (collisions for which AE is negative)
will not be considered here but can be handled in a gimilar way.

Both excitation and ionization cross sections may be further classified
according to whether they have been averaged over the magnitudes of the targe:
velocities, The unaveraged total cross section O'CU];Q&) may be
obtained by integrating d%o (vi, ) over the relevant range of AE .

The averaged total cross se:;ion 0 (V) may be obtained either by
averaging O(V;,Vi) over e(’U'z) or by integrating Cl_(_T (vy) over
the relevant rangs of AE . deE

(a) Unaveraged Total Cross Sections.

The most important cases of physical interest are listed below.

(i) Infinite-Mass Projectile.

The ionization cross section O‘(\};,'U;_’U) is

0'('!)",1]'2_’(_]) = ’Yi"—%z

_v_ ., 2E
{' fEEe) T suf ¢ e

for SU S 2myv (vi-v3)

9
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T2 U |
T(u,vy,Uy= 7+ M bl - (v 2V
| 122, 0) 2€.U [ 2my, (v, 4\) “”3}:—”{115 *Va (U-"+ ﬁj}] :
tor 2 My, (v, -13) ¢ U ¢ 2mv (), (2.9.2)
and
T, = 0, for Uy 2ma(ue ) (2.9.3)

These results were first given by Vriens (1967) though the invariant
cross sections of Percival and Valentine (1966) had the same regions of
validity and the same high incident energy form in the important region
given by equation (2.9.1). |

The excitation cross section Q’-(V, ,v,_,U, 3Uz) is more complicated.
The simplest and most important result is

2,2

o, Uy = TEEUU) [ 2R,
, & U,U, 3 U,U,,

for 0<¢U U, € 2muvi(u-w) | (2.9.4)

The other cases are considerably more complicated but may be obtained
directly by integrating equation (2.’,7.31) over AE and by investigating

the respective magnitudes of U, , U, , 2m,y, (v;-0) and 2mM, v (V,+V3),

(ii) Boual-Mass Distinguishable Particles

The ionization cross section is

o (vi,vra,h = TYZTZ;{ - U L 2E
E, U (E-E,) 3V (2.9.9)
for E-E, > U ,

3
o (vi,w,U) = 2vzizl (E-U)?

u
for E-E, s U< E, | (2.9.6)
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ao(viva,U)= o | for UDE, .
(2.9.7)
Equations (2.9.5)’, (2.9.6) and (2.9.7) were first given by Stabler (1964),
though Thomas (1927a) had derived expression (2.9.5) and Ochkur and
Petrunkin (1963) had obtained equivalent numerical results.
The excitation cross section GT%ﬁ;U;)U‘}LL) has also been given
by Stabler. He considered four separate cases together with another

added in the footnotes. The simplest and most important result. is

~ T£Z(V-U) 2 E, (Urv
G(“)VMUUU:.) = A {I+ e S ")
E, YU, T30,
(2.9.8)
for 0¢U ¢, € E-E, .

(iii) Identical Electrons

The ionization cross sections can be obtained from equations

(2.7.36), (2.7.37), (2.7.41) and (2.7.42) and may be written

2E 20
}D 1{,+{E—E ]’(2.9.9>

R me
O'(U},'U‘,_’U) = E|U{ (E Ez)

ﬂe [H o {(E, E,_) (E, E,- u)ﬂ

€
q (viv,U .
N ) EWV L(E- Eﬂ (E E—U)’S (2.9.10)

e §1- Y +2E { u__
Gcs[mﬂrz;u) = U‘D+GE = E;{j | (E,-E,- u)’3 [l 30 (Ei'El'U)SJ’

(2.9.11)
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. 7(E-Ey)
QIF _ Te dae dX
0 (Vi V)= IEIX’ fdxj~ (2.9.12)
and
4
Q18 _ e log (E,-E;-U)
(T (’VI- -U-Z,U) = E. (E,"Ez) 03 _—I_LJL— ’ (2.9-13)

all being valid for 0 < U £ 4 (E~g,) .

Equations (2.9.9), (2.9.10) and (2.9.13) were obtained by Vriens
(1966b), though the last equation was given incorrectly in Vriens
(1966a). The interference term has not been given previoﬁsly, but
cannot be evaluated analytically. Vriens (1966b) proposed an

approximation

)
QIF,_ Qe Uo 1\
ot U) = 00 cos [z ) log g Y

-
Two other approximations can be obtained by integrating the approximate
expressions in equations (2.7.47) and (2.7.48) for g—ZEQ‘F . The
former cannot be integrated analytically. The latter is easily
integrated, but it is more convenient to use the value obtained from
equation (2.9.12) to fix the value of the parameter B° in equatién
(2.7.48).

In the accelerated treatment for ionization E, is replaced by

E,otU+E, so that the modified cross sections are valid for E>U .

Tor convenience these cross sections are also listed below.

4 ke 7_—_&7. |+ 2V
om0 2, o Dol T T e,
(2.9.15)
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E me* 2E v
T (vyv, U) = 1 - ]
o v2,U) (E o+ U+E) U (E‘“w) SD lWJ((U) E'S
2.9.1
; ey v ’LEz
Ui, Vy, U) = [— = + l“”‘ 3
7 {2, V) (-Ewrfu*'E?-)U( E‘“){ o B (2.9.17)
Qle( "a, U) — 7:[3——‘_'—_ EL?:
"’U*Ez_)(El +0U) v * (2.9.18)
- {(Em“’u)
and 2 (Em+ U+ E‘),) AE
0¥ (v, V) = T — ¢@F
(2.9.20)

The excitation cross sections in the symmetric unaccelerated model
can be treated in a similar way and if required they can be derived
from the expressions for the accelerated model treated below.

Firstly, suppose that E, is greater than U . Then the
excitation cross sections for AE  lying between U‘ and U2

are given by

*(v,-U) 1E

e U +V

G'D('U"w)’\);)u',uz) - ( 27¥ » ;g:}"‘ 2-.) 5 (2.9.21)
(Ewt+E )V, 1Yz

met (U,-V )
(EM—\- U+E:_XE,,;"U‘U,)(E|¢*U'02.)

{H 2E, (2E,+2V-y, uz)}
3 (Elw+u—u\)(el¢°+U U,_)(

O'E
2.9.22)
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T (Vig, V2, U, )= €%+ GF (2.9.23)

. ' 4 UZ(E‘W +U‘U,)j
O, U ) = - Leg ’

vV -U
(Ewsz,)(EmU) (it u=Ue) (2.9.24)
0¥ (v 2, U, U, ) = ne? ’dAE[olxyd?fg
Vi yV2, = U ) (2.9.25)
2(E,#UEy) Yy
and
RSy _ LRy _ QI\F
g ('\)’!”)Ul)uhul) - O— o y (2.9.26)
all being valid for O<V &, S(Ei";l‘_) }S Eo .
If Uz)(E‘W"'U) and E o> U then Ul should be replaced
e

vy 4 (€, +U)  in equations (2.9.21) to (2.9.26). REquations (2.9.21)

- . e s i
to (2.9.24) were given by Vriens (1966b), but the condition Uz >4 (Eh.,_u)
was not considered.

Now suppose that E is less than the ionization thresholdl .

joo
If Ew.> U2 equations (2.9.21) to (2.9.26) are unchanged, but if

UZ <E,, U, should be replaced by Em , since the
remaining range {Em R ':'T[EM"' U)} .1eads to temporary capture of
both electrons (see section (2.7b) ).  The contribution to the excitation
cross sections from this capiure region could be cbtained using a random
walk procedure (see for example Hammersley and Handscomb 1964) but the

~additional effort would not be justified becesuse even the symmetrised

accelerated binary-encountcr model considerably overestimates the exact-
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classical excitation cross section for incident energies below the
ionization threshold (see for example Valentine 1968). A simple
analytic estimate for this corraction can be obtained by azsuning
that a frection o of the capture collisions is redistributed
mniformly in the excitation range [O, Eb] and that the remaining
fraction }—of leads to de-excitations. Now the total capture cross
section can be obtained from equations (2.9.21) to (2.9.26) with vy
and U2 replaced by Eloa and é(Em-rU) respectively. The
contributions to the required excitation cross sections can be determined
by nultiplying the total capture cross section by the factor 0<(UZ—U,)/E,q,
if E o >U, and by the factor ok(E,57U)E. if U<E, <V,
Tor most purposes L= l/2 snould suffice.

Clearly, all excitation cross sections are zero if E.°;< Lh
and all ionization cross sections are zero if E,a;<\) .

(b)  Averazed Total Cross Sections

In the general-mass case the results are too tedious to be nresented
in detail, but the more important special cases are considered helow.

(i) Infinite-liass Projectile

The total ionigzation cross section averaged over the Fock distribution
given in equation (2.2.1) was calculated numerically both by Percival and
Valentine (1966L using invariant cross sections,and by McDowell (1966)
using invariant rates. Vriens (1967)’ obtained an analytic formula for
the incident velocity region yU;%Y —{v s though the expression is so
complicated that it i not immediately obvious what high incident velocity

form the cross section takes. Ilo formula was given for the low incident
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velocity region v, <-{1r in which the corresponding Thomson formula is
zero. The low-velocity form of the ionization cross section can be
obtained by expandingvthe terms in equation (2.9.2) for small VU;  and
simultaneously ;2 ( —¢¥1r )/U‘ and then averaging over U, .
Direct evaluation of equation (2.9.2) for numerical infegration, say, can
iead to numericai errors for small R since the expansion of the
separate terms containsleading terms of order 1ﬁ-4 , 1ﬂ_1 and  V;°
all of which exactly cancel when they are collected together. The

low incident velocity form of the ionization cross section averaged over

the Fock distribution is
cviv) = k(vAr) O{(’U'./'xf)q:s i (2.9.27)

Fairly accurate target electron velocity distributions have been
used to obtain total ionization cross sections for non-hydrogenic atoms
by proten impact (see for example Catlow and McDowell 1967 and Bates
and Kingston 1970), but, in contrast, no exact results are available for
averaged proton-excitation cross sections for any atomic targets.

(ii) Bqual-Mass Distinguishable Particles.

Fock-nveraged electron-hydrogen ionization cross sections have
bean evaluated mumerically by Kingston (1966) und analytically by
McDoWell (1966). In this case the result is simpler than the corresponding
expression derived by Vriens (1967) for infinite-mass projectiles.

McDowéll obtained ‘ . %1
ge 2 xz+)H {( 5x¥+15 x3- 322~ Tx +6)(2-1)
3yr ; y
+(5X54 1T +153-25C+ 20x) tan (x-1)

Y
3 1) . _ g, (2.9.28)
~24 2 log [’;72_:_,_((_;’:_’_"%,‘1} with x= E: .

O-(E“U) =
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Kingston (1968) has also obtajned numerical values for electron-hydrogen
jonization cross sections in which the atom is initially in different
excited levels (nm,l)  which are obtained by averaging uniformly over

. all orientations mt . ’The first ﬁon—hydrogénic tafgets we‘re consgidered
b;y'Catlow and McDowell (1967) for ionization only. Flannery (19703) has
'presented some numerical values for Fock-averaged electron~hydrogen
excitation cross sections in the special case of N N+l transitions

with M =20 and N<=100,

(1ii) Identical Electrons

The total ionization cross section averaged over the Fock distribution
for the symmetric accelerated model was evaluated numerically by Valentine
(1968). The analytic results can be‘ obtained very simply from the
'averaged'. differential cross sections 4_0'(1)‘,‘) in equations (2.8.6) to

(2.8.8). The results may be written

4241 (147-2X)
fend) = T | g)[{' (5 o (7 { = }<2929>']
GE{E’“"U '= %*(é )[{(E, u) Eu:}( _T)+ 3 (Em ) El ;I?((;—;:)ZXJ
0(Ep,v) = "—ef(-‘sim)[(" g‘{“)(l"’)* $(1- 1:9",2 J(1+7-2x)] |

(2.9.31)
Q!8 - me? = |
e FEN LD e,

and

(EaV)

. . . ]
L (E,.,,,U): me' | dv, ﬁh&) J. zf«’_‘_‘f[a‘xfdxg (2.9.33)

(2.9.32)
| |
i
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where X(E,,,,,/U) and T(E,“/U) are defined in equations (2.8.9) and

(2.8.10) respectively. Vriens (1966b) obtained the approximate formulae

cs met, v owr |- )+L(‘_22)
0, (E.,L)= = (E +ZU>[ Ew) 30 EL 1(2.9.34)

U2
Q‘B = 0.9724 T¢ L yu ) _E_:_loo
(El«o;u) Uq, (Elw_rzu)(gk:u (03 J s (2,9,35)
and
QIF _ QB Us o,
O (Ew,U) G, cos {(;U) on %95 s (2.9.36)
Joo

where Uo ig the ionization potential of the ground state of atomic
hydrogen (that is, (), is equal to the Rydberg unit of energy).
The total exci't'a‘tion’cross sections can also be obtained from equations

(2.8.6) to (2.8.8) and may be written

> _mey U T(1-T)+ 2) :+T—2x}
a (Elonunul)_'. Uz E \{ U|Uz ( 3 "2 ( (2 9. 37))

_U(U,-4) ?J x[(l~T) 4 PUREFW-UV,)
¢ { B U’) (.w) (EprU-U XEFU-0,) 3(E Uy, )(E.QPU-U:,)

(T-2%)7 (2.9.38)

Q'B(E,‘,,U.,Uz)"' 1Le‘¥( )( )(F—T) lo { 8:—((:::5:5;))3 )

(2.9.39)
20 { \
Q\F(E‘wlu')uz) - J'du'z (’ua) \ %f_E}\ dzfolX g’
for 0cy <uz\<,t(gbw)<g (EM+U+E,,) AE -, = (2.9.40)

If Vs3Ezu)s U, SEo, then U, should be replaced by “2‘:(%@‘”')) in
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equations (2.9.37) to (2.9.40). This region was not considered correctly
by Vriens (1966b). The results for El‘o(U are less reliable because
of the difficulty in treating the capture region E, < AE £ 4 (E,+U).
Nevertheless, if this region is neglected then the results are unchanged
if 'E'“>, U, and can be obtained from equations (2.9.37) té (2.9.40)

by replacing Uz by E . An approximate formula for the correction

Joo
arising from the redistribution of capture orbits can be derived in a
similar way to that described in section (2.9a(iii) ) except that in the
present case the total capture cross section can be derived from equations
(2.9.37) to (2.9.40) by replacing U, and U, by E _ and 3(E_+U)
respectively.

The symmetric accelerated model has - been applied to ionization and

excitation of non-hydrogenic atoms by Tripathi et al. (1969).

(iv) & Semi;Em‘.oirical» Decelerated Model for Total Ionization of

Hydrogen Atoms br Incident Positrons

The accelerated symmetric model for identical electrons is obtained
from the unsymmetric case by substituting E*U+E, for E;, . 1In
this wé,y, the region E'«-Ezs UCE, , which is important for low incident
enersies in the ungy.imctric treatment, is automaticallr oxcluded in the
aypmotrie nodel. Supvose that for incident poasitron:; a decclerated
model is defined by replacing E' by Em""(u'ﬂEl in the unsymmetric
case, where o and ,8 are positive constants. MNow, the region
E,-Ez5 ug E' is enhanced rather than excluded and the threshcld energy
for ionization is given by (I+«)U+BEy .  The natural choice o=1

and /3:] therefore leads %o the wrong trreshold onergvy. In fact




&4

A=0 , but ﬁ eed not necessarily be zero since E,

-, May assume a

range of values including zero. By comparison with the symmetric
treatment ﬂ’l iz used henceforth. Fi nally, the modified total
jonization cross section obtained from equations (2.9.5) - (2.9.7)
with ‘El = Elm'_.. E2 may be averaged numerically over the Fock velocity

distribution of the atomic electron 2 .
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2.10 Comparison of Binary-fincounter Total Ionization Cross Sections

with Exact-Classical Results

In the sgpecial case of charged particles incident upon hydrogen.
atoms which are initially in a uniformly;populated level n, the binary-
encbunter results for ionization can be compared with exact-classical
calculations. It is obvious from the explicit formulae for the binary-
encounter ionization cross sections G'(E, ,U) for incident energy E‘
and targef binding energy |) , that, with the exception of the

interference contribution, & ( E,,U) obeys the classical scaling law

G(E,U)= 0°0(6E, BU), for arbitrry 6 >0. (2.10.1)

Abrines and Percival (1966b) have shown that the same law applies to
cross sections derived from the exact-classical approach for three
interacting charged particles. Hence all comparisons can be made at

a single value of the binding energy |J Which can be conveniently set
equal to the ionization potential of the ground state of atomic hydrogen.
Cross sections from any other level n can be obtained from those for the
ground state via equation (2.10.1) with €= .

Various types of incident particle have been employed in exact-
classical calculations. Abrines and Percival (1966b) considered the
case of incident protons, Abrines, Percival and Valentine (1966)
investigated electron collisions and Percival and Vaientine (1967)
studied incident positrons. In all three cases the mass of the proton
waé not taken to be infinite. Electron collisions have also been

studied by Brattsev and Ochkur (1967) using a very similar technique
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but with an infinitely-massive target nucleus. [Each of these processes

is compared separately below.

(a) Infinite-Mass Projectile
ave_r‘a%ed
No/\binary-encounter results for finite-mass incident protons are

available. However, at incident proton energies £, above | Kev; ,-

the approximation of replacing the incident proton by an infinite-mass

projectile moving with the same speed should have a negligible effect

on the binary-encounter ionigation c;ross sections. A very convenient

epproximate relationship between the incident proton energy E y in
Kew. and the equivalent incident energy E": —?’_—me'u‘,z for the

infinite-mass projectile is given by

E, = (%’).25 Kewv.

The relevant cross sections are displayed in figure (2.10.1) in

(2.10.2)

the form of a Bethe plot ( OFE, versus loj E, ) so that the high

incident energy form of the ionization cross section

6.(El) ~ 2_3___?_ (Q:E_f)ﬂ’qz D (2.10.3)

can be demongtrated clearly.

The simplest of the binary-encounter results is the Thomson formula
given by equation (2.9.1) with E,=0 . By comparison with more refined
binary—encounter models and with the exact-classical results the Thomson
formula is too small by a factor 5/3 at high incident energies and so
the Thomson formula scaled up by the factor 5/3 has been plotted.

The reason for this disagreement at high incident energies is that the

neglected term in equation (2.9.1) contains a factor E, /U  whose
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average over the initial target velocity distribution is equal to unity
by the Virial Theorem for charged particles. The neglected term ié
therefore of the same order of magnitude as the first term in equation
(2.9.1) even for high incident energies. It is clear from equation
(2.7.30) that the Thomson model is only accurate if AE > E,~U .

The circular-orbit model given by equations (2.9.1), (2.9.2) and
(2.9.3) with Ei:U and the Fock-averaged model of McDowell (1966) and
Vriens (1967) are also displayed. The incident energy range below
about 6.25 Keur was not covered by Vriens and McDowell but was
determined numerically and was found to agree at low energies with
the threshold law given by equation (2.9.27).

The exact-classical results of Abrines and Percival (1966b) have
been supplemented at lower incident energies (see section (3.3) ) It
was poi‘nted out by Percival and Valentine (1966) that the binary-
encounter results should be interpreted as electron-loss cross sections
rather than purely ionization values. For this reason both ionization
and electron~loss results are displayed in figure (2.10.1). It is
worth noting that the 7 points with highest incident energy were
obtained from the same pseudo~random numbers so that the shape of the

curve in this region is more reliable than the absolute values.

(b) Incident Electrons

In this case there are more possible binary-encounter ionization
models, The cross sections in units of QY are listed in table
(2.10.2) as functions of the incident energy E, in units of the

ionization potential of the ground state of atomic hydrogen and are
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By o T O] % | % 3 o Cg
Vol () | (vad) [(ral) | (val)] (val)| (ma2) |(wad) | (mael)
1.05 0.181| 0.028| 0.144] 0,047 0.098] 0.155] 0.132] -
1.10 0.331] 0.077| 0.267| 0.122] 0.183] 0.289| 0.245| 0.19%04
1.15 | 0.454| 0.135| 0.372| 0.208| 0.256| 0.404| 0.342] -
1.20 0.556| 0.199| 0.463| 0.296| 0.319| 0.505] 0.426] -
1.25 0.640| 0.267| 0.542| 0.384| 0.375| 0.593| 0.499{ 0.34704
1.30 0.710| 0.337| 0.610| 0.469| 0.423| 0.669| 0.562| -
1.40 0.816| 0.482| 0.720{ 0.627| 0.502| 0.794| 0.665| -
1.50 0.889| 0.629| 0.804] 0.763| 0.563| 0.889] 0.743] -
1.60 0.937| 0.775| 0.868] 0.879| 0.610| 0.962| 0.803} 0.61706
1.80 0.988| 1.060| 0.953| 1.055| 0.675| 1.058| 0.883] -
2.00 1.000| 1.333] 1.000| 1.170| 0.712| 1.111| 0.923| 0.8106
2,50 0.960] 1.600| 1.031]| 1.292| 0.741] 1.143| 0.960| 0.83502
3.20 0.850| 1.515| 0.992| 1.275| 0.720| 1.091]| 0.926| 0.79x04]
4.00 0.750| 1.333| 0.917] 1.175| 0.670| 1.000| 0.859] 0.76304
6.40 0.527| 0.926| 0.711] 0.873| 0.526| 0.760| 0.672| 0.67204
8.00 0.437| 0.762| 0.613| 0.732| 0.455| 0.648| 0.581 -
10,00 0.360| 0.622| 0.520| 0.605| 0.387| 0.545| 0.496] 0.51702
12.00 0.306| 0.525| 0.451| 0.515| 0.336| 0.470| 0.432| -
16.00 0.234| 0.400| 0.356] 0.395| 0.266| 0.368| 0.343| 0.35202
20.00 | 0.190| 0.323| 0.294| 0.320( 0.220| 0,302 0.284| -
25,21 0.152| 0.258| 0.239| 0.256| 0.179| 0.244| 0.232| 0.25z02
40,00 0.097| 0.164| 0.156| 0.164| 0.117| 0.159] 0.153| 0.16%01
60.00 | 0.066] 0.110| 0.106| 0.110| 0.080| 0.107| 0.105| -
100.00 | o0.040| 0.066| 0.065| 0.066| 0.049| 0.065| 0.064] -

Table 2.10.2 Total reduced classical é-H ionization cross sections
as a function of the incident energy Eieo in units of the target ionization
potential U Binary-encounter valuesg; & to oy (see toxt).
Lxact-classical values og - BErrors in o represent approximate
statistical 23 confidence limits.




defined below.

is the unsymmeﬁric Thomson formula given by équation
(2.9.5) with E =F and E,=zo .
[ oo b

q,

G, is the unsymmetric circular-orbit model of Stabler given
by equations (2.9.5) and (2.9.6) with E, =E,, and E,=U .

dé is the accelerated symmetric circular—orbit model of

Vriens given by equation (2.9.17) with E,={) .

is the Fock-averaged unsymmetric model given by equation

(2.9.28).

&

is the approximate Fock-sveraged accelerated symmetric

o)

model given by equation (2.9.34).

)

is the scaled adccelerated symmetric Thomson model given
by equation (2.9.17) with E,=0 and then multiplied

by 5/3 .
G; is the exact Fock-averaged accelerated symmetric model

given by equation (2.9.31).

CE is the exact-classical ionization cross section with its

associated statistical error taken from Valentine (1968)

Cne should expect the binary-encounter results for incident electrons
or positrons to be no batter than the proton results at the sane velocity
aines in tha proton cune the motion of the inecident particle iz not
af'fected by the collision. At high incident energsien the electron
binary-encounter cross sactions should approach the exact-classical values.
In order to emphasise the high energy form, the binary-encounter cross
gsections may he expanded in inverse powers or the incident energy as

follows:

6= AE) 11 1£0] e st

i
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_gm) { | — %(QE-,)} + 0 {(ghfg TI“QZ', (2.10.5)

6:3 = % E)w {, - _; }é )3-*0{(%&0}33 HQZ—” (2.10.6)

a
0o

+= TR 2 (% )+ Of(# E_) j"%, | (2.10.7)
%'(f‘m) [!- 3(5,,,,)5 + Of('\g)m\?’j may,  (2.10.8)

Q.
il

= 2D AL o
_ 3 5
9 = 2},0 E.a, {I ) 54’ Oi(E’ /zj"a (2.10.10)

and
v - _
- 20f = 7
dg = 5 ( E, ) + ! . (2.10.11)

As expeéted the.Thomson result G] is too small by a factor 5/3
at high energies. All other approximations apart from the Vriens
result 63 agree with the leading term in the high-energy expansion of
the exa¢t~olassical values. Vriens obtains 05 by omitting certain
regions of intepration for which thie approximation is poor. However,
aithar thia operation hun not beon earried out corroctly, or else his
assumptions are wrong, since such modifications should not affect the
leading term in the expansion if the uwnmodified term agrees with the
exact-classical value. For this reason G may be regarded as empirical
and may be eliminated from the rest of this discussion. It is interesting

to note that the first two leading terms of the velocity-averaged cross
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sections Q; and 03 agree with those of the correspohding unaveraged
formulae di and 05 s showing that the velocityQaveraging procedure
gives different results only for intermediate or low incident energies.
It is not difficult to show that this resulf is also true for incident
protons. The statistical errors in the exact-classical results are
too large to accurately specify the second term in the expansion, but,

by comparison in table (2.10.2) ¢

. appears to agree best, yet 0} is

also within the statistical errors.

Although none of the binary-encounter models should be accurate just
above the ionization threéhold, it is interesting to compare the behaviour
of the various models here. The unsymmetric models Gi and q; have g

%& power law at threshold, as also does the quantal first-Born calculation

(see for example Rudge and Seaton 1965), whereas the Thomson model @,
the symmetric models O, , 6, and 6, have a linear threshold law,
favoured by Rudge and Seaton in the quantal case. It is now kaown that
the exact-classical threshold law is neither a linear nor a %@~ power law
(see Banks, Percival and Valentine 1969 , Peterkop and Tsukerman_1969), but
is close to the unusual power ;i’:{(‘ijl_)“?—_ I}ﬂl.lz?deriveq by Wannier (1953)
for the classical case. This law has also been derived in the semi-~classical
VKB approximation (Peterkop and Liepinsh 1969, Peterkop 1971).

The unsymmetric models ¢, and q; are worse than the symmetric
models at low and intermediate incident energies for iwo reasons. Firstly,
in the unsymmetric treatment the effect of the nucleus on the incident

electron after the collision with the target electron,is ignored. Thus,

at low and intermediate energies, if the incident electron loses all its



0
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initial energy to the target electron, the incident electron should be
captured by the nucleus, whereas in the unsymmetric treatment the collision
is counted as an ionization. A second reason is that the unsymmetric
tréatmént does not distinguish between incidént electrons or incident
positrons, whereés, forllow‘and intermediate energies the two cross sections
(see, for example, Valentine 1968 and figure (2.10.3» are quite different.
The empirical symmetric model oz s based on the symmetrised Thomson model
is extremely simple yet is superior to both unsymmetric treatments for
B> 2U - The symmetric models O; and 05 are surprisingly close
to exact-classical values for all incident energies above E m~|.‘5 v .
The better model is the velocity-averaged cross section O , but both
models must be regarded as semi-empirical since, in the symmetrisation

the incident energy E' is repia.ced by Em.ru-r-El whereas the initial
kinetic energy of the target electron is unchanged. INevertheless, if a
binary-encounter model is to be used at all, then it should be the
symmetrised velocifyhaveraged model, rather than an unsymmetric treatment,
as is used by Catlow and }cDowell (1967) for non-hydrogenic target atoms

and by Flanuery (1970a) for excitation of ‘atomic hydrogen.

(c) Incident Positrong

The cross sections @, 0, and q; defined in the previous
section are equally valid for incident positrons. The exact-classical
jonization cross section is tabulated in Percival and Valentine (1967).
As in the case of incident protons the binary-encounter results for

positrons can be interpreted as electron-loss values rather than purely
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as ionization. The exact—-claszical electron and positron results are
compared in figure (2.10.3) with the Fock-averaged unsymmetric model G;
of McDowell, with the Fookéaveraged symnetric model 6; for incident
electrons alone and with the semi-empirical decelerated model for
incident positrons (see section (2.9(b)iv) ).  The imbrovemeﬁt over

the unsymmetric model q; is remarkable.
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2.11 3Binary-incounter Istimates of the Interference Contribution to

Total Ionization Cross Sections for Ilectrons Incident upon

Fvdroeenic Ions.

In quantal calculationé exchange and interference‘effects are
particularly difficult to treat exactly and are therefore often neglected.
At intermediate incident energies the inclusion of exchange in the binary-
ancounter model reduces the total ionization cross sections hy as much as

30/, for target classical hydrogen stoms (see for example figure
(2.10.3) ).  This sugzests that exchange and interference contributions
to the qguantal ionization cross ssctions are not nezlizgible herc, Tul
are cufficlently small Yo be estimetsd uring a binary-encounter model.

‘The ionization potential ) of a target hydrogenic ion with
seneral nuclear chargehz; in an arbitrary uwniformly-nopulated initial

level M wray be written

. ‘Z 2

UV = (‘ﬁ) Uo > (2.11.1)
where \lo is the hinding energy of the ground state of atomic hydrogen.
The direct, exchange and interference-bound contributions to the {total
syametrised binary-encounter ionization cross sections of the target
hydrogenic ions may be caleulated from the reduced cross sections for
ionization of the ground-state neutral hydPogen aton using the scaling
law civen by equation (2.10.1), apart from a focusing factor J  which
partialiy allous for the effect af the net charge of the target system
on the incident =zlectron. A simple expression for F haz been siven

by Percival (1966), who took
2.3

- —_— 1.2
Foo 1% gy o
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for F>1 and F=| for J=1 . This factor iz identical for all
initial levels M. . In eguation (2.11.2) E is the ratio of incident
L ]

to the binding energy U .

energy E,

The binary-encounter interference contributions do not satisfy this
classical scaling law. The corresponding reduced contributions are
therefore functions, not of § alone, but of £ and of(z/n) or some
aquivalent parameter, say 'f;':'n/(n-i—Z) » but not of N and %
separately. Tor £ close %o zero Z is much larger than N, the
interference is ‘ma;scimal and the extreme quantal liwmit is approached.

For ‘b cloge to unity N is much larger than z; , the interference
is destructive-aﬁd the classical limit is aporoached.

In order to avoid additional averages over the magnitude of the
velocity of fhe target electron the accelerated symmetric unaversged circulax
orbit bhinary-sncounter model was selected firstly to study the effects of
including interference exactly using numerical integration. In this
comparison E' is replaced by Em-i-zu and E, by U . Then £ is
defined as EJQ/U .

dg®'*

The differential contribution dzE ’ given by equations (2.7.41)

and (2.6.32), was evaluated using Gaussian numerical integration for

» ded'F
different values of £ , £ and AE . The approximations a4 g ’

QF
given by equation (2.7.47)’ and 4_0' 8 , civen by equation (2.7.48), can be
AE
gauged from the symmetric case AE= {{Ew-u-d) for which both electrons

have the same kinetic energy finally. By construction the approximation

QUF QiF
dd‘ is exact here, whereas ‘}! A reduces to the bound dG Q\B
dAE dAE
given by equation (2.7. 42). The coefficient A, is the ratio do@ /dGQ'j
_ d O..QlF ase ! dag
evaluated at Agz..%_ (E‘w+u) . The approximation “YA of Vriens

dAE
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iz therefore accurate only if Ao is close to unity. The function
“lra N\ . ' . .

cos (Ao) is plotted agzinst the variable ‘t for various values of €
in the range [< €7 in figure (2.11.1). It is apparent that A, is
only close to unity for small £ . TFor OS‘ES-{ the function CoS_'(Ao)
is not particularly complicated and could possibly be approximated
éufficiently simply to allow further analytic integration over AE .
However the region -5\4 {:é\ contains rapid oscillations close to {;:l ’
which suggests that analytic approximations may not be easily obtained.
For other values of AE the coefficient B, in equation (2.7.48) is

d— QIF
also required. 4 comparison with the Vriens approximation ___5' A

d6&F dat

is not made here since it was found that agé A was poor except where
Ao was close to unity. The value of B° was chosen so that exact
integration over AE of equation (2.7.48) lead to the correct value of

1
the total interference contribution O'QF obtained by an equally-spaced

, , QIf Q\F
numerical integration of éd' over AE . The approximation 91_0'9
da QiF dbE
is therefors only accurate when Bo is small and when do varies

4AE
smoothly with AE . Values of Ag and 8, for the particular case £=2

are listed in table (2.11.2) as functions of £ . The approximation

do‘;‘)“: ‘ is poor for 'f;‘?/ '/,_ over the complete ionization range

dae ] ' «t . L .
U< AE S{(E.;’U) but is always accurate close to AE =3 E’“..-u) since

QF ,
da’W¥ has a stationary value here, as d‘i;:; {Jz'(E!a"'U)"AES’z
d4E 13
%Z: f:AE“%_‘{Em—*U)} by symmetry arguments. Table (2.11.2)

also contains the ratio R of the total interference contribution O"Q‘F

|
to its bound O"Q 8 s the total ionization cross section (3'Q6 given by
QF qiF

equation (2.9.20), and thé ratios KA and Rc of two approximations Gy 0,
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=10
Vired| way | © | Ra | Re | A B

o/t | 0.769 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000
1/11 | 0.770 | ©0.997 | 1.000 | 0.999 | 0.998 | -0.017
1/6 {0.772 | 0.988 | 0.999 | 0.997 | 0.990 | -0.067
3/13 | 0.775 0.973 0.998 0.993 0.978 | ~0.148
1/4 | 0.777 | 0.966 | 0.997 | 0.991 | 0.973 | -0.183
2/7 | 0.780 | 0.952 | 0.996 | 0.987 | 0.961 | -0.259
1/3 | 0.786 | 0.925 | 0.993 | 0.980 | 0.940 | ~0.397
3/8 | 0.794 | 0.893 | 0.990 | ©0.971 | 0.914 | -0.558
2/ 0.799 | 0.869 | 0.988 | 0.965 | 0.895 | ~0.677
1/2 | 0.833 | 0.721 | 0.974 | 0.921 | 0.772 | -1.345
3/ 0.897 | 0.445 | 0.941 | 0.825 | 0.530
5/8 10919 | 0.349 | 0.927 | 0.786 | 0.441 |
2/3 | 0.961 | 0.168 | 0.897 | 0.696 | 0.261
5/1 | 1.011 | -0.048 | 0.841 | 0.540 | 0.014
3/4 | 1.039 | -0.167 | 0.777 | 0.362 | -0.170
10/13 | 1.044 | -0.193 | 0.729 | 0.235 | -0.245
5/6 | 1.003 | <0.013 | 0.454 | -0.417 | -0.092
1/1 | 1.000 - -

XK

* X X X k %X X

Table 2.11.2 The accelerated circular—-orbit binary-encounter
reduced lomization cross section O%F for é-H and é~(H-like ion)
collisions together with several interference parameters versus
£=n/(n+2) for the case €= . See text.
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of Vriens to the interference bound | KA is the ratio of the

¥ . QIF
interference term O'f to the bound GQ‘B, where Oy is
a2
obtained by integrating %2 numerically over AE ,using an

equally-spaced formula. - Rc is the ratio of the expression O'CmF/ dQlB

proposed by Vriens and given by eguation (2.9.14). It should be
noted that the ratio RB given by Gg":/ O'G‘“B is just R by
construction.

Again, the ratios RA and R¢ are accurate only over a limited
range of small t  where the bound itself is probably sufficiently
close. For values of + close to unity Rc oscillates rapidly
between =} and |} whereas the exact values of R oscillate with
a damped amplitude. The behaviour of R is similar to that of Ao .
Hence for {7,—‘2: no simple analytic approximations may be expected to
be found.

The Fock=-averaged symmetrised acceleratéd total interference
contribution for -i:-—"/x is given by equation (2.9.33). This term
has an aﬁaly’bic bound given b;} equation (2.9.32). Numerical values
of this interference term have been calculated using the c¢rude and
control Monte-Carlo estimates of the four—dimeﬁsional integrals required.
These estimates are given by equations (3.1.51) and (3.1.74) respectively,
where the bound obtained by replacing the function g , given by equation
(2.6.32), by the simpler expression g, given by eduation (2.6.35), has
been used as the control. At each incident energy five hundred functioh
values correspoﬁding to less than five in each dimension were selected.

The statistical errors from the control method were found to be smaller




102

than thoge of the crude estimate by apvroximately a factor of three,
yvielding a reduction by a factor of nine in computing time over the crude
method of comparable accuracy. The results are shown in figure (2.11.3).
" Also displayed'a:e the veiocify—averaged bound, the unaveraged interference
estimate énd the empirical'bbund oﬁtained by symmetrising‘the Thomson
formula, given by equation (2.9.18) with £,=0 .

It is worth noting that for large & the high-energy limit of the
direct, interference and exchange contributions given by equations (2.9.29),
(2.9.32) and (2.9.30) are 7_-39 ! y 4‘8-2[055 and 4‘5'2 respectively, in
units of TYQ:, so that the interference contribution is larger here than
the exchange term. This is expected since the interference bound in
the basic Mott formula given by equations (2.4.6), (2.4.7) and (2.4.9),
is the geometric mean of the direct and exchange contiributions.

The equations of the unaveraged symmeiric accelerated model of
Vriens (1966b) have been applied by Tripathi, Mathur and Joshi (1969)
to ionigation and excitation of several non-hydrogenic atoms. However,
since the interference term O'S'F , Which they use, is not reliable, and
since they did not compare either with the unsymmetric model of Stabler
(1964) or the direct, exchange and interference contributionsg separately,
it is difficult to assess the significance of including the exchange and

interference contributions.
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CHAPTER 3

YONTE-CARLC CRBIT-INTEGRATICN THECRY

3.1 4 Review of the Theory

In the‘important special case of three charged particles the
theory is described fully by Abrines and Percival (1966a,b) and by
Vajentine (1968)}. This theory has also been outlined by McDowell and
Coleman (1970). The more general theory for arbitrary particle-particle
interactions is reviewed by Burgess and Percival (1968). In order to
avoid excessive cross-referencing the relevant paris of the theory are
discussed below, using a terminology developed by Banks, Percival and

Wilson (1971, 1972b,c).

(a) The Geometry of an N — Particle System.

In this theory a particle is supposed 10 have no shape or internal
structure which affects its interaction and all N particles are assumed
to be digtinguishable. In order to describe the positions and velocities
of all the particles at any time it is convenient to define a body as a
non-empty set of particles. In particular a simple body is a particle,

a composite body consists of two or more particles and a K- particle
body has exactly K particles. Two bodies are distinct if there is a
particle in one body which doés not belong to the other. Two bodies
are disjoint if there are no particles belonging to both. Since the
empty set of particles is not a body and since each pafticle may or may

N
not belong to a body there are NB =2 -1 distinct bodies in an

N - particle system and there are (}’i) distinct K- particle bodies

|
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where ( g ) is the well-known binomial coefficient.

Bach body may be labelled by a positive integer I where
| £ T ¢NB - In particular the labels may be ordered so that the label
of a i(l-',particle body is smaller than the label of a '<i" particle
body if K<KK; . If K;= K, there is no natural order but, once
the particles have been arbitrarily ordered with labels I = ,N y &
particular order within the K.- particle bodies may be suggested by
symmetry arguments. Thus, in the 3 - particle system the seven bodies
can be labelled so that § , 2 and 3 are the particles, 4 ,S and 6
are the 2 - particle bodies (2,3) , (3 1) and (i,')-)' and 7
is the 3=~ particle body (1,2,3),

In the N— particle system each body I has a mass My which is
defined as the sum of the masses of its constituent particleé. At a
given time t can body I also has a position !l'-t and a velocity Vi gy
:ih an arbitrary Galilean rectangular cartesian frame of reference L ’.
The position and velocity of a composite body are defined as the position
and velocity of the centre of mass of its constituent particles. |

In addition to the laboratory coordinates _!lr s Yug of each
body I y it is also convenient to introduce relative coordinates between
disjoint bodies. The relative coordinates between bodies which are not
disjoint are not usually required since these bodies overiap. The number

NR of sets of relative coordinateé. of pbsition and velocity is mot
trivial to obtain, but can be determined by considering the square array of
distinct-body labels against distinct-body labels. The value of NR is

sbviously less than the number of array elements lying above the diagonal
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of this square array. Since the body (Zﬂ-l) contains all the particles,
it is not disjoint with any other body and hence the final row and column
of the array can also be deleted. Then
NRE (2% -(2%-3) .
The precise value of NR can be found by considering the possible
nmnber of relati"ve coordinates be‘k‘;ween K‘ — particle bodies and disjoint
Kl" partlcle bOdlei.- \ Then N-—K )
, z- [{Z ;)}+_|_NK,))
2V K Jj>
(3.1.1)
where the binomial factor (g) is gero for IT<J and z:: QK
is to be interpreted as zero if J<I . The factor }é ml:ltiplying

N-K
the term ( ')

is necessary to avoid counting cases in which K,= Ky
twice. For N=0 4,2 ,3 ,4 and 5 the values of NR are

o, ), 6,25 and 90 .

As in the case of the laboratory coordinates, the relative coordinates

may be labelled by RI 5 I = J, NR . The labelling may be

arranged so that the label for a relative coordinate between a K.- particle
body and a disjoint (K'+Kl)-particle body is less than the label for a relative
coordinate between a K,—- particle body and a disjoint (;3+K4_)-particle body
it K3»Ky . If Ky=Kj then Ky¥Ka . If Ky=Ka and Kz= K
there is no natural order, but as in the laboratory-coordinate case, a
particular ordering may be suggested by symmetry arguments. In the

%~ particle system the six relative-coordinate labels are defined by

the pairs of disjoint bodies (2,3) 5 (3s1) 5 (1,2) ,{1,(2,3)} ,
{2,(3,03 and {3,0,1)} . Hence
| Y= Yiz- Fus } ,

Vo = Vi -VYis

(2.1.2)
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etec. The convention governing the signs in equation (3.1.2) is arbitrary,
but must be used consistently.

Bach set of relative coordinates RI has an associated relative
body I whose mass ‘mntv is e'qua.l to the reduced mass of the two disjoint
bodies from which the relative body is formed. |

It can be seen that the list of useful bodies and relative bodies and
their positions and velocities at any instant may be formidable. However,
not all these vectors are required to determine the motion of the N- particle
system at all times. The motion of the system can be obtained if a time t
and the positions and velocities of all the particles at that time are
prescribed, for then,Newton‘s equations of motion can be solved, provided
all the particle-particle interactions are known. The set of ( 6N+I)

real numbers defines the classical state of the N — particle system in

the laboratory representation. This state may be regarded as a point in
a (6”“’ ‘) dimensional space. The motion of this point is determined
by Newton's equations of motion. Any equivalgnt get of (6N+l) or more
real numbers which also defines this point defines the stgte. Useful
alternative sets of numbers may be termed representations. In particular
the standard representation may be defined as the set consisting of the
time t , the laboratory position and velocity of body (7.'.— I) together
with all the relative positions and velocities of the particles. The
equations of motion are simpler in this representation, since the motion

of the centre of mass (2“-—!) may be solved independently of the relative

motion and since the particle-particle interactions depend on the relative
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positions and velocities only. The laboratory and standard representations
are extreme cases of the useful representations. The laboratory represe-
n‘ba"bion is most useful when the particles are all sufficiently far apart
from one another for the interactions tc; be negligible. Intermediate
cases are also possible. To describe the intermediate cases it is convenient
to define an arrangement of the N — particle system as an exhaustive set
of mutually disjoint bodies. Thus, no particle is common to any iwo bodies,
yet every particle is included in some body. For each distinct arrangement
a representation can be defined by the set of real numbers consisting of the
time ¥ and standard representations of each of the disjoint bodies at that
time where, for this purpose, each body may be regarded as an independent

K — particle system, where K is equal to the number of particlés in
the relevant body. In the special case in which N3} the standard
representation is identical to the laboratory representation. The total
number of such representations can be determined as the number of ways N
distinguishable particles can be placed independently into N  boxes
without regard to the order of tﬁe boxes or the order of the particles
within each box. The total number of representations NREP of the N—

particle system under this scheme is therefore given by

Negp = L (Ns3agas, ... ,an) O (341.3)
att cases q; such  Tai=N, @l >0
where (N; Q,,Q,,... ,&n) is the multinomial coefficient defined and
tabulated by Abramowitz and Stegun '(1955 pp. 823 and 831). NREP is

also given by

N (m)
Neee = 2, g , (3.1.4)



where 8:“) is a Sfirling number of the second kind and defined
and tabulated by Abramowitz and Stegun (1965, pp. 824 and 835).

alternative reprcesentation schemes are possible but may not generaiise
easily and efficiently for systems of more particles. The present scheme
is identical to that used by ibrines and Percival (1966a) for N=3, in
the case of ;ché ‘standard and laboratory representations, but is different
for the in’cez’média‘be. ( 2+|) — parficle represen’oa‘ci‘ons, though the
arrangenents are identical.  They chose the ( 2+ 1)- particle representation I
to consizst of the labofatory position and velocity of the centre of mass /7
at time t, together with the relative positions and velocities .TRI and
Vgy Dbetween particles J and K, and _Y_‘R‘I_'s)and Vg (1+3) Dbétveen
particle T and body (I+3) , where T , J and K are cyclic permutat-
Jions of (1,2,3), which will be written henceforth in the form [{I,T’K§] )
In the natural extension ofvtheir scheme to the N — particle sysvem the
represén‘cation of & general arrangerﬁent of disjoint bodies consists of the
~v'rela,’c:i.ve positions and velocities between all prrticles in each disjoint
composite body, as in the present scheune, together with the relative
positions and velocities between all disjoint bodies at some time "t’, and,
finally, the laboratory position and velocity of the centre of mass (ZN- I)
of the N = pirticle systom at that time.  Thins scheme has the advaniage
that 211 importunt rolative positions und velocitics .re immedintely
available Tor compututional purposes, but suffers [rom the disadvantage
that the intermediate representations do not factorise into a sum of
" independent standard reprcsentations for each disjoint body.

The case N=2 is also identical in both schemes and
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has been treated in Chapter 2 where the symbol (; has been used in place
éf :3 for the centre of mass of the two particles.

Neither of these schemes is exhaustive in the sense that certain
laboratory or relative véctors are equuded from all representations for
all N 23 . Hdivever, given a representation inleither scheme, 211
other representations and all laboratory and relative vectoré of significance

can be determined from linear geometrical relations.

(b) The Eguations of liotion

Given the forces 5etween the particles and given prescribed initial
conditions, the equations of motion of the N — particle system can be
solved exactly (usually numerically) in any representation, though, in
practicé, the equations are simpler in certain representations.

| Thus, in the case of an isolated system of three particles with
charges #;, £y and 23 the equations of motion in the labox;atory

represgentation are
-

Yir=Vua

~ o ’
Ver = j:l._:l::[ Y1 ""'fl.lﬂ' Vg + fn.:n i (3.1.5)
where
F (%, f ot )= Np (227 2"11)
LTIttt v e »..1.3) I( ‘F": 7,;5: s (3.1.6)
_f. (r r r = = Ng. iy
Ll’ =k %-k2 ,—L3)- I -——‘s S (301.7)
Yax
$ (C, %, +.)= N, - Zxtz
Azt e Y202 )= 1" — d (3.1.8)

Yre
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fgI = r;..‘.l' - IL&

- d 9

(3.1.9)
and

Ny = V/mp (3.1.10)
ror IF |9j 2 and 3 and all [_ £ I,J, K)J .  Bauations
(3.1.5) constitute eighteen coupled first-order non~linear differential
equations, which partition into three indepen&ent sets of gix coupled
equations of motion for each particle separately, if the nine functions

JI.MM' satisfy the conditions

}LHM'(G" lﬁ-")tﬁ) = SHM’ ;I.M (!LM) 3 (3.1.11)
for 211 M una M= 4,2,3 , where § MM’/ is the well-known Kronecker

delta symbol.  These conditions are equivalent to the condition that the
nine coupling terms SLNH’(‘:.“)TL'"'.::;’) vhere

9a.ﬂn’ = fiam’ = Smm’ Fom(fin) (3.1.12)
for all H,P‘l':l,l,?, are all identically zero, which is onljr true
either if the charges are all gzero or else the masses are all infinite.
In either case the particles move uniformly since then ;‘_" (!‘:_N) is
also zerc for M = 1,2,3 . F]Qen if the coupling terms are not all
zarc the equationg of motion (3.1.5) partition approximately if the 3,_"_1/
sre all sufficiently emall, which ig true when tiho distances between all
three particles are sufficlently largé.

Tn the standard representation the equations of motion are

Y1 Vg
Via = O 4
=7 - (3.1.13)

for the uniform motion of the centre of mass 7 together with the
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independent equations of motion of particle J relative to K , and K

relative to I , say,

*

Ler = Vrr | } , (3.1.14)
wma Y= frrr Yer + frrv ey
fea = Vre 1 |
Vasr = Feor Yer + Frar s ’ (3.1.15)
where
Yer+ Yoo + Yax = Vrr+Vgg+vVre=g ,  (3.1.26)
JCRI'_[{rﬁI,(&?') = NgI 23._7‘_" + Ny #zZs ’ (3.1.17)
rér TYik
}va(‘iﬁof\eﬂ: Ny Trty | Ny ExE (3.1.18)
4 ' Yex Y&J
Yi& Y‘,‘lr .
' ‘ Z1Z3 3.1.20
’cx:r.rffnr;fau)'—' Ner Zx2r o Np EF‘ 30 ( )
Trs? RX
and
Ner = W/ Mexr (3.2.21)

for [{ :[,a' )Kél] . The twelve coupled equations of relative motion
(3.1.14) and (3.1.15) are simpler to solve than the laboratory form (3.1.5).
They partition into two independent sets of six coupled equations for the
motion of particles J and K separately relative to particles Kand I, if
the coupling terms

SRNM/ (rgtﬁ fga-) = ;RM ( RI )-RJ) Sﬂr‘l’ fRM(Tgn) (3 1. 22)
for mm'= T J .
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all are zero, which is true as in the laboratory cases, and in the two
‘additional cases Z;= N =0 with Nj#0 , and NK-; Z35 =0 with
NI¢0 s which correspond respectively to uniform motion of particle

I or J relative to particlle K , of infinite xriass, together with
‘non-uniform motion of particle J or I relative to K . The
solution of the iatter two—particle problem is »discussed in chapter 2.
Even if the coupling terms are not all zero, the equations of relative
motion pa.rtition‘approximately,if all the coupling terms are sufficiently
small. These conditions are satisfied by a classical model of a highly-
charged helium-like ion when Ty ™ Vg, ~ V3

The equations of motion in the (2+)) - particle representation [

of Abrines and Percival may be written

_':m = _‘Z_J',_-,} y
v, =9

48 above, together with the equations of motion of particle J relative
to particle K, and of particle I relative to body (I+3) , the centre
of mass of J and K ,

Yer = Ver

o _ J
Ver = ;’xu Yer + RI (x+43) TRE43) - (3.1.23)
and .
) = Vriz+d)
13;&(:43) = J(}rg(m).r lr'nr "'fa( r Ythr 3) ’
I3 +3)~ + (3.1.24)
. where
No¥ps = - NaYe (ra) = Nrzasy o, (3-2.25)
Bk = —Yrr - fae o (3.1.26)
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_ ENE A 2ri
RII{VRI e = Ner == + "MsNgNery Bt "M NsNery 3y - \fi:s
o e , (3.1.27)
| 22 | |
3t RT (T+3) {"kurﬂ fm’] Ng =F - N5 Z1%s ’ (3.1.28)
RY Y3
RK
:;g(nm {Ikxwfz(m)}: NR{;+3) Mg fRI(I,‘a) 5 (3-1.29)
and
— N 2y oy B1 P
J'K[I...;)(I*;){.IRT o = TR =t Ne ze3) =7, (3.1.30)

d Yk
for all [»6 I,7, kY]

The twelve equations of relative motion (3.1.23) and (3.1.24)
partition into iwo independent sets of six coupled equations for the

motion of particle U  relative to particle K  =nd, separately, of

particle 1  relative to body (I+'3) if the four coupling terms

Irear (¥, RT )-K{IrS)} = JC,.,,M/ - 5,,,,,1/ ach (Yzpm), (3.2.31)
for M)M'-: I)(I4-3), are all zero,which is true, as in the laboratory and
standard representation cases, and in the additional case Z,=O (without
the restriction NK—:o ) which corresponds to uniform motion of particle

I  relative to body (I+ 3)‘ . Even if the coupling terms are not all

zero, these equations of relative mbtioh partition approximately when the
9RMM’ are all sufficiently small, as iS the case for a‘classical

hydrogenic atom or ion weakly perturbed by a distant charged particle.

The system of twelve coupled equations of relative motion (3.1.14)

and (3.1.15) in the standard representation was selected by Abrines and



Percival for difect numerical computation. Although these equations can
be reduced to a system of only six coupled first-order non-linear differential.
equations by elimination of the. constants of the motion and the time
(Whittakervl96s, chapter‘13), the resulting differential equations are
considerably more complicated and so may not be more efficient for numerical
work.

In the general case of an N - particle system the coupling terms of
the equations of motion in any representation may be defined similarly. If
the coupling terms are sufficiently small the solution of the equations of
motion may e determined to any dégree of accuracy by direct numerical methods
or by perturbation expanéions (see, for example, Born 1960) of which the zeroth-
order expansion is the exact solution when the coupling terms are all zero.
In general the exact mumerical solution and the perturbation expansion of any
finite oider wili differ, even if only insignificantly, and so i1t is convenient

to distinguish them by‘introducing the concept of a glassical channel of an

N = particle systenm as an arrangement of the system together with prescribed
coupling terms, possibly approximate. In particular, for each arrangement
there are two important channels, the full-interaction channel, in which all
the coupling terms are calculated exactly from the prescribed particle-particle
interactions, and, in the other extreme, the non-coupling channel, in which
the coupling terms are negleéted. Intermediate channels, in which some
coupling terms may be included exactly, but others only included approximately
or eveﬁvneglectéd, may also be useful. Thus given the state of an N —particle
system at some time t , each distinct channel may lead to a different state

at any time 4/ . 4 selection of channels, including a full~-interaction
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channel, is particularly useful for numerical work, since it is possible,
in principle, to choose an optimum channel at any time t , 90 that the
error in the solution satisfies prescribed error bounds,and so that the
evolution of the state is most easily achieved. After a finite time
interval the error in the solution in the optimum channel may exceed the
error conditions, since the coupling terms will generally vary with time.
However, a different optimum &hannel can now be chogen and the solution can
be extended in this way fo any time {:/ .

In the caée of a collision between two disjoint bodies A and B the
error in the corresponding non-coupiing channel tends to zero as the time t/
tends to minue infinity. In this initial scattering channel the bodies A
and B form two separate isolated particle systems, each of which may have
woll-defined constants of the separated motion. The initial scatteriné
state can then be subdivided according to the values of such constants of
the motion. After the collision between bodies A and B, the system will
usually partition into a disjoint set of bodies C , D ,..... each of which
will form an isolated particle system as the time tf tends to infinity.

The corresponding non-coupling channel is termed the final scattering channel,
which can also be éubdivided according to the values of the constants of the
geparated motion. |

In the case of a collision between a charged particle | and a bound
pair of charged particles (2,3) , in which particle 2 has a charge of
,opposite sign te that of particle | s say, the possible final écattering

channels are the direct channel denoted by

J+ (2,3) —» |+ (2,3) , (3.1.32)
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the ionigzation channel

\+(7_’3) —» |+ 2+73

? (3.1.33)
and the exchange channel
(+(2,3) — (1,2)+3 . (3.1.34)

Tt is useful to distinguish the direct-ionization channel, in which
particle 2 remains closer to particle 3 , and the exchange-ionization
channel, in which particle 2 is finajly closer to particle | « Each
of the final channels can be subdivided according to the relative velocities
of the disjoint bodies and the binding energy and angular momentum of the

closest pair of particles.

(c ) Formal (lassica] Scattering Theory

The formal classical scattering theory described by Burgess and
Percival (1958) is useful for numerical work. Let the classical state
at time t ve X(t) . Let U((:)t’) be the classical evolution operator,
that is,the operator which relates the exact solution X(t) at time € to

the exact solution X(-E /) by

UCEA)X(E) = X(¥) . *e Uiffif.)gb

/
Let the evolution operator in the non-coupling channel I be UI(‘:,{: ) .

Then the classical scattering operator S which relates the initial

I’

scattering channel T +to the final scattering channel F, may be defined
by

Sex = lim UF({:O)Q)U(h_)E.)UI(L,{G)_Q.L%)

t,>
t_-)—-oo
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Apart from border-line cases the final channel [~ can be determined
uniquely. The classical scattering operator SFI is well-béhaved in
the limits ‘t_-a_eo and l:_._—a o s provided the long-range forces
between the disjoint bodies in the initial and final channels fall off
faster than the inverse-square law. If this is the case, ,SFI relates
two artificial states X () and Xe(t,) » the initial and fina;

reference étates, say, at the same arbitrary time to by

Xelte) = Ser X;(t,). (3.2.37)

If the long~-range forces do not fall to zero faster than the inverse-square
law, the difference between the coordinates in the states Xy (%,) and
XF( {;o) will usually be ini‘inité, corresponding to an infinite time delay
in the collision. For such forces it may be possible fto construct modified
evolution operators UI/ (-l;__ {to) and UF/ (60){:_'_) to incorporate the long-
range behaviour exactly. Thus, for example, in the case of charged
varticles incident uponvtarge’cvclassical hydrogenic ions, U; { {:__)4;0) nay
be chosen to treat the serparate wotions of the bound ion system and of the
incident pafticle in the overall charse of the tarzet ion. This motion does
not cox;rezal)on<}, to an exact non-coupling channel, but rather to an approximate
non-coupling channel for large separations of tho disjoint bodies. In
terms of these modified evolution operators the clasusical scattoring operutor.
SFI 1zay be constructed similarly and is Well-defined.

If the coupling terms in the initial channel T  are negligible

throughout the collision then U(k, £.) may be replaced by U_ (&, ,t_)

in equation (3.1.36) ind hence

SFI = SFI (3.1.38)
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and the system passes through the artificial reference state X ('l:o) at

ST TRY MU i sisiage st s vessveae Lvevsssos wvavs (Spgwg) -
time té .
It should be noted that the limits in equation (3.1.36) are only
taken after all three succeésive evolutions have been achieved. Hence
only approximate 1n1t1a1 and final scattering states X ((; ) and X (l;+)

are needed to obtain X ( t ) from XI( '&o) s Where

XI“:-).: X(":__) = UI ({:—)fo) Xl(to) 9 (3.1.39)

and

Xe (€)= X(ta)= Ule b)) X (£) . (3.1.40)

Indeed, if XI( ) or XF“T ) includes any internal coordinates which are
not conserved in the respective non-coupling channel, it is meaningless to
consider exact initial or final scattering states, since the limits of
such internal coordinates do not exist. The initial conditions for an
individual orbit are therefore prescribed in the initial reference state
X ( .(:o) , which may be used to generate sequences of initial and final
acattering states which lead to a convergent sequence of final reference
gtates. In spite of the fact that the limit of the sequence of final
reference atates cannot be evaluated in numerical work, the formal theory
nffords a practical wethod of determining numerical solutions for
individual orbits.

‘The time ‘i:o in equation (3.1.36) is arbitrary, but, in practice,
the initial conditions in the initial reference state may be used to
predict approximate properties of the collision, if to is chosen to be
the time of closest approach of the colliding disjoint bodies A and B

in the non-coupling initial channel I .
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(d) Classical Models and Cross Sections.

In applications of classical orbit-integration techniques to atomic
and molecular collision processes the uncertainty principle prevents an
accurate knowledge of any classical staté. In the quantum theory this
uncertainty leads naturally to a statistical interpretation of atomic
and molecular phenomena. Since the classical theory leads to definite
reéults, ohce the initial conditions have been specified, the desired
statistical properties must be introduced into the initial conditions.
This is achieved by treating the classical collision model as an ensemble
of similar colliisions in which the initial conditions are selected from
suitable distributions.

In the important case of collisions of a uniform monoenergetic beam
of disjoint bodies A with a stationary target body B , a general
expression for the distribution e(XI) of initial conditions has been

given by Burgess and Percival (1968). They obtained

e(XD) = 0x (%) Qo (Xa) S(1a) )L S(-y2) (31.)
where the position of the centre of mass ¥ of the Atarget system is chosen
at the origin of a fixed laboratory cartesian frame of reference whose :_z\
axis ‘is> oriented along the direction of the incident velocity V, . The
distributions P, (®,) 2nd Qg (Xg) ere the distributions of initial
conditions specifying the internal motion of the respective isolated
systems. These. distributions are chosen to represent the physical systems

as reasonably as poséible. In most cases eA(XA) and QB (5(8) are

sbationary and isotropic. In the case of a hydrogenic atom or ion the
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digtribution is taken to be the classical microcanonical model

QR(XH) = K S (é‘m U —%‘.;}——E) , (3.1.42)

where m , ¥ and ’U" are respectively the redﬁced mass, the relative
‘distance and relative speed of the electron and nucleus: of {the hydrogenic
atom or ion, Ze  is the charge on the nucleus, E is the total energy
and K is a normalisation constant. Other models are possible. In
particular, the Bohr-Sommerfeld model has also been widely used. The
contrasting merits of such models are discussed in section (4.1).

The distribution e (XI) is defined at the approximate initial
scattering state X I( l:_) . The corresponding di-stribution at the
initial reference state is gimple to determine if the force between

‘bodies A and B falls off faster than the inverse-square law. 1In

this case for stationary Q(XA) and Pe(xﬂ),

e [X(k)] = @ ] Xr(£)] . (3.1.43)

Otherwise ,

e {X(t)] = eh(xl\-)ee(XB);(ﬂ)['5)'9;\,1[6), (3.1.44)

where the distribution JC(fA)\:‘B"g;‘ ;’9'5) defined at time ﬁo may be

A
derived from the standard distribution S(YB) 6('}_)’5) ’Ti: 6('9"\_ Va2 )

A
defined in the limit as t_ tends to minus infinity, using the classical
theory of scattering of two bodies A and B whose motion is governed by the
. . V4 )
evolution operator UI (tO’ t_) .
In the absence of any interaction body A will cross the (g’g)

plane at the impact-parameter vector _b = (b C°S¢b’ b sin ’ﬁb,o) . Let

')\(I (t ) be the set of initial conditions, which, together with the
-]
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time {:D s the variables b and ¢b and any constants of the
distributions eA(XA) and eB (XB) (such as the binding energies),
make up the. initial reference state XI({:O) . Let Pb 8, 1 ( F)
be the mean probability that the prescribed initial channel T 1leads

to a final chanmel F for fixed b and ¢b . Then

Pbgbbl (F) = jd')\( e('f(') H(F';I) , (3.1.45)

where H(F}]’_) is unity if XI({:,,) leads to channel , and is gzero
otherwise. The total cross section for the production of channel F

from initial chamnel I is given by

oo Al .
(F) = | dbb[dg, B4 1 (F) . (s

Let C be any function of the initial and final reference states.

Then the differential cross section for the variable C is given by

da, (F)_ a,(F;¢) = jmdbbf:‘:wb P,%I (F;¢)

dc > (3.1.47)

where

Rog,r (F36) = JaX p(R) H(RT) {0 CO 35,00
Equations (3.1.47) and (3.1.48) may be generalised to include m:zltiple-—
differential cross sections O'I (F'; C.,CI’,..) for prescribed values
of C.,C-;_)...... . . |

If either A or B is composite then, in gensral, H(Fjl) is
an unknown function of XI [fo) , since it is necessary to determine

the solution of a three;-or-more particle problem in order to evaluate
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H(F;1) . ’I"hus the cross sections 01( F) , a;(F;¢) and
Gi(T:;CI)CZJ“.) must be determined numerically. Numerical methods
based upon Simpsop, Gauss-Laguerre and related technidues (see fer
example, Buckingham 1962) are unsuitable for two important reasons.
Firstly, if the number of dimensions éf'integration D in equation
(3.1.46) is large, then the rate of convergence for such methods is of
order PJQ/D where N :is the number of function evaluations and & is
a fixed parameter, close to unity and dependent upon the numerical formula
used (see, for example, Schreider 1964, chapter II). Secondly, in order
to determine the differential cross sections, an elaborate and time-
consuming search procedure may be regqaired to find orbits with prescribed
values of C,)Cz)... . In contrast, the lNonte~Carlo method of numerical
integration (see, for example, Hammersley and Handscomb 1964 and Schreider
1964) has a rate of convergence of order ’J‘Vi for largs N and all
values of I) . Purthermore, the function values used to determine the
total cross section O}(F) may also be utilised to determine all differen-

tial cross sections in the form of approximate unbiased differential dis-

, v,
F b4
where Np in the total mumber of orbits which result in final channel F .

tributions, whose characteristic parameters are accurate to order N

Thus,‘in the Monte-Carlo method, the delta-function restrictions for the
differential cross sections may be relaxed with the result that the time-

consuming search procedures are not required.

(e) The Monte-Carlo lMethod of Numerical Integration

The method is fully described by Schreider (1964) and by Hammersley

and Handscomb (1964). Various refinements have been applied by Abrines
’
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Percival and Valentine in order to reduce the statistical ETCOrS. In
order to discuss the relative merits of such refinements the theory is
outlined below.

Suppose that
' dx )
6, = fo LT (3.1.49)

and

] }
- J'o dx {f(l)*el:ﬁz: f;dx{ﬁ(x)g%- 9:', (3.1.50)

both exist. Let \§ be a random variable which is uniformly (rectangularly)

W,

digtributed in the interval E 0, Il . Then the unbiased crude Monte-Carlo

estimate t, of B, is given by

b= Lz OH8) (3.1.51)

=1

The corresponding unbiased estimate W of the variance W, 1is given by

N . 2
wo= gy [ 2 fF6f-net] G

The standard error cﬂ:, of the estimate t‘ is given by
\/2

St,= (2 = [y (3,159

For large N the values of f, are distributed normally about 8, with
standard deviation (St, . The standard error 5‘:. in t, therefore
represents approximate /3 confidence limits on t, .
The integral 0, may be regarded as the area between the curve
(j:f(x) and the % axis. This area is a special case of an area 91

bounded by an arbitrary rectifiable curve L with equation -§ (x,y)=o0,

The hit-or-miss Monte-Carlo estimate £1 is particularly useful

for determining the area ©, when the boundary ! is of complicated
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form. Suppose that rﬁ is enclosed in the unit square and that

| i '
0, = [ dy[dx H{Hu)} | (3.1.50)
exists, where H {{(XM)}:! if (Z,lﬁ) lies inside {7 eand is zero otherwise.

Then

o, - fdy Lax[ HiF@9]-0,] = g (1-8,) , (3.1.55)

algo exists. - The unbiased hit-or-miss estimate ‘tz of 92_ is given by

N
| ™
RN DAL U A (32,50

where M  is the number of points (i;_‘ 7§zi) which lie inside |' .
The true distribution of t2 is binomial. The standard error 51‘:2_

in tz is giiien by

{ 8, [1—92)}'/2

§t, = v

(3.1.57)
where 91 is, of course, unknown, in general. When N is large and
B, is not too extreme, the binomial distribution of t, may be

approximated by the normal distribution about 61 with gtandard deviation
!
2 - .
N—1|

However, even when N is large, if \‘:l is sufliciently clomse to zero

(3.1.58)

or unity, the normal distribution does not approximate the binomial dis-
tribution. The errvor estimates are then no longer symmetric about tz
beéause of the boundary conditions O%t, <V . If it were true that

M tended to a finite value as N  tended to infinity, then the dis-

tribution of M  would be of Poisson form. Although this is not the

case, for large N uand M~l , the Poisson law suggests an error
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estimate of the form

-~ 1
8¢, N (3.1.59)

In the region between the normal and Poisson limiting forms of the binomial
distribution, approximate error estimates are given by Hays (1963, p. 291)

and may be written, for small *:,2 and large N s in the form

t2a B [ & 2y g { falt), 3_’*3"‘
2 ( +78) | 2 2N N 4N s (3.1.60)

where Z is the number of standard deviations required to yield prescribed
confidence limits for the normal distribution. Hence, the case Z=|
corresponds to approximate 2/3 confidence limits. It is easy to see that
equation (3.1.60) has the correct form in the three limiting cases 'f:2~
tends to zero, & ’tends to infinity and N>»M>»| . 1If tz is close
to unity, then equation (3.1.60) should be applied to (I~t,) .
The arcsine' transformation (see for example, Zubin 1935) has also beén
applied to the cvase of extreme probabilities in order to obiain error
estimates which are approximately independent of 92 . However, the
transformation introduces a small bias of order I/N into the estimate t;_
Any integral of the form O, defined in equation (3.1.49) may be
expressed in the form 92 , given by equation (3.1.54) by choosing
H{-F(l,q)s-:H{fh)-té’s where H(1)=1 for 3o and H(L):O, otherwise.
However, Hammersley and Handscomb (1964) show, in this case, that the hit-
or-miss estimate tz has a larger standard error ithan the crude estimate 't‘_
Thus, the hit-or-miss techingue should only be applied in preference tc the

crude method either when the boundary f(l)‘j):o cannot be handled easily,
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or when several additional integrals of the type

8,(¢,G . EME fdgj dx H {;(1 q)} Sf(FC (x,\jj S{Q (K(l,ﬂ)(3 1.61)

have also to be evaluated.

In both cases, since the convergence rate is only h{m& s it is
1mportant to investigate possible ways of reducing the variance Wr
and hence the standard error tStI of an estimate .tI .  Hammersley 2nd
Handscomb (1964) and Schreider (1964) discuss several methods of variance
reduction for the crude estimate 'ﬂi . These methods should only be
applied with extreme caution to [)— dimensional integrals of the crude or
hit-or-miss type. Thus, for example, for D=6 (asz is the case for many
of the integrals treated later in this thesis), one-dimensional rules
employing 2, 3 or 4 function values, become rules employing 64, 729, and
4096 function values respectively.

In stratified sampling the range of integration of the integral 9,
is divided into K intervals h_= {dr-n"h)’ say, where O=of, <, < = |,

and, in each interval, the crude estimate is calculated independently.

Hence

{

, K ]
o= T I dxf(x) 2. ho [/ fle +hex)

r=1 «;.
(3.1.62)
has an unbiased stratified estimate fg Ziven by
Z‘ h }: UC( I-1 kl gz:r)
N (3.1.63)

' N

where pJI is the predetormined number of function vilues to be selected
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in ezch interval hI . If each NI is proportismal +o hI , the
stratification iz uniform and the standard error (St3 of the estimate ‘t3
ig never worse than the error gtl . A non-uniform stratification may
lead to better or to worse results. ‘hen each NI ig large an

estimate W 0f the vari'ance is given by

K NI ’ - .2
wy = N z"r \N ("’ ) Z'D-:, ( J:13":’21) ; (3.1.64)

where N = ZN r is the total number of functicn evaluations’
=1 .

;Iy = J[ (O(I‘l + hl EIJ) , (2.1.65)

and

i = Z' jEN . (3.1.66)

I Nt To=
The standard error 5t3 is therefore given by
\
St; o~ ( W3
N

For an integral of the form 62 s both integration ranges may be

(3.1.67)

stratified simultaneously. Suppose that the range of X 1is divided
into K  intervals h‘L , and that the range of Y is divided into L

int & - 7Y = < <.A <H= . Il’l. any « t t

intervals R, = (/33__"/35), where O =B,<pf, ﬁ'_ | v stratum (I)J)
of area hzk;\’ suppose that NJ’J function valuey are chosen. Then an

unbiased hit-or-miss stratified estimate “(:4_ of the integral

Z Z f fo‘;hu CEECRDY

oy,

= 7 ks z h fow'x,'dx’“fffw)} (31.68)

T=1
where X =of -+ h,x’ end y: /33-—1"' k:‘y’, is given by

t, = L kY hy Mmoo (3.1.69)

4 T=1 =i Nig

U

B,
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where MIJ’ is the number of points satisfying ;(1,9)),0 in the
stratum (I)J) . Vhen 211 the Npy are large und all the Mgy are

- not too extreme,an estimate of the variance may be written

4.

| L K , ‘
_ Mrz (Nrs-Mgs)
L = k }_' 17 (NYg-Mzs
4 - Z;r;. T Zz:. r,( Npg (Nog—1) (3.1.70)

so that
[/
st 4 = (‘_A_&) 2
N . (3.1.71)
If several Mrg are extreme with all Npy large,then the contributions
to 6t+ from stuch strata may be calculated using equation (3.1.60) instead
of equation (3.1.58). However, in practice, it is also posaible to select
a stratification .scheme in which each Nrgy is unity. 1In this case
equation (3.1.70) does not apply, but an upper bound to 61:4_ may be
obtained by substituting ‘t4_ for t::. in equation (3.1.58), or else in
equation (3.1.60) for extreme 't4_ . This scheme is usually more aceurate
than the hit~or-migs technique, since the density of points, at which the
function H {f{x,«g)} is evaluated, is more stringently controlled, and,
gince the contributions to the area from all strata which do not intersect
the boundary :;(173):;0 are.determined exactly by Just one function
evaluation.
Tre technique of stratification may be regarded as a particular case
of importance sampling. In» this approach for the integral 9, s & function
9(1) is sought so that 3(‘1)20 for 0L x ¢l and, 50 the indefinite

integral

.
ylx) = J, dx g(x) (3.1.72)



130

vhere 3(0)=0 and y(l)':I s is known analytically. Then, since

y(x) can be inverted, in principle, o obtain X(y) wnd as

|

8= [ dxfey = [ldyf{xed/giyy, (1)
the crude importance estimate ‘—’5 of’ 6, together with the standard
error 5{:5 are given by substituting :‘F{x (5: )3/9 {x ( ‘§¢)} for
f(g;) in equations (3.1.52) and (2.1.53). The combined uniform—
stratified and importanée estinates fé together with the standard
error &té are ~iven br the corresponding substitution into equations
(3.1.63) and (3.1.64). Importance metheds will produce more accurate
results than the crude estimate when the variation of 4(1)/3 (x) is
legs than the variation of ;(1) alone. However, u poor choies of

3(x) can lead to lesz accurate estiraiss.

Trportance gam;ling methods amzy aleo be 2y 0lisd o inte rals of 1o
Torm , 5 but it rust be remewbered that each function valus then hag
ite cun weight ‘/ g(I,lj) .
the method of control variatesz let ;:v ()L) be ar approximation to

Lo od
Jc(y.) . with ‘mown intesral B . Then, the crude control sutimate

t.] and. the wiforzly-stratified control estimate {',8 can be derived

Trom the identity
6, = § + [ox[fr-Fml

where the second iniasral in ihis equation iz estimated by crude or

tified methods.

Tra control-varinte ischidioue is sarticularly sieple in the cazs of
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~v
he intesral 91 . let 5(1,9):0 be an approximation of known area

né to the boundary f(l,‘j) =0 . Then

o N
6,= O~ Ldﬁ Lax[HH(X"ﬁ)}“H{“kmﬂ . (3.1.75)

n thig equé.“oion the value of the integrand of the second yintegral is
zero when (-F(x,g)),o and-f(x,v)}, o) , or whken (;(1J9)<o and
{(1)5) <|o) » is unity when ( :F(l,‘ﬁ)},o and :F('x,cd')«:’) 5 and has

value =1 when ({(‘L,g) <0 and f{x,«g))}O) . Sunnose that the second

-

integral in equation (3.1.75) is evaluated by the hit—or-miss tecknique.
In the zample of N points suppose that the numbers of points lying
inside the four mutually-exclusive regions defined above are a , d ’
b and ¢ vrespectively. Then the hit~or-miss estimate of the
original integral 92 , given by equation (3.1.54), is obtained by
setting M= a+tb . However, the hit-or-miss control e‘s‘timate 'I:q

is given by

(b-<)

= 8+
tq N - (3.1.76)

with

'
o o) _ (b-9)* 1%
ot iwcwo N"(N"")S K
| (3.1.77)

provided b and € are not too extreme. Similar results will be
obtained if hit-or-miss sé.mplglng is replaced by uniformly-stratified

sampling.

Cf the remaining variance-reduction technigues the regression method

generaliges simply for higher- dimensional integrals. In this approach
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several independent unbiased estimates of the unknown intezral must.

be 'available.‘, Tﬁen, sinée any weighted arithmetic mean of estimates
is also an unbiasged estimate, 1t is poésible‘ to determine one set of
welights for‘whiéh‘ the variance is least. 4s an e:%ample, thé least—~

variance estimate t obtained from the hit—or-miss and hit-or-miss

Amin

control estimates of the integral BZ. ig given by

_ (ab+2bcred)(@tb) (ad-bo).{ggb;gc)}
{:q'min ‘(a,b,c,d.) = "N (a+rc)(b+d) (Q-eC)(b-wt) , (3.1.78)

with
Se ,,_}__ | oub(c+d)+6d(a+!)‘) }'/'z_
o { N(N-)[a+c)(b+d)

.9 - .
(3.1.79)

provided & , b s, C and d are not too extreme.



3.2 Collisions between Charged Particles and Weutral Kydrorenic Atoms

(a) , Geometry

Let incident particle | ‘have charge z‘::e and mass M; . Suppose
the target atom 4— consists of two particles 2 and 3  of mass m,
and My and ‘charges Z,= 3¢ and Zz=12e, respecti&ely. If the
magnitudes of the three charges are different, then the theory must be
modified to allow for a long-range Coulomb attraction or repulsion in a
rearrangement collision in which particles | and 2 form a bound
system & and particle 3 is free. However, there is no restriction

upon the masses of the particles.

(1) Initial Conditions

In the initial reference state the target body 4 is located at
rest at the origin O of a laboratory C;aiilean coordinate system
O (2)13,@) . Let the reduced mass aseociated’with the motion of
particle 2 with respect to particle 3 e 'm- and. let the relative
pc)sition and velocity vectors at time <+t be ¥  end ’I_J__' .

Veglecting relativistic effects the total energy E =-U s where

2
Lmv?- f} = E = -*._)-m'v;
2 r 2 > (3.2.1)
the angular-momentum vector L , where
L =m l"%'}f ’
- (3.2.2)
and the Runge-Lenz (perihelion) vector _7\_} s Where
2
N = 1_["1;.: - S’-—: s (3_2_3)

- v
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are all constants of the unperturbed motion (see, for example, Landau and
Lifschitz 1960). The orbit of the bound relative motion is an ellipse.
"For a prescribed total energy -y the semi-major axis @  of the
’ellli_p;se is giv_en. by
a= 2 . < |

2U (3.2.4)
The plane of the ellipse is perpendicular to the angular-momentum vector,
whose magnitude is bounded by mex s the angular-momentum magnitude
in the circular orbit of the same total energy. Obvioﬁsly,

Lmax = Mma vy, :
(3.2.5)

The eccentricity €  of the orbit is given by
2
e =1 - - |
Lmax | (3.2.6)

The parameter ﬁ , defined as

L?.

ﬂ g — 9

L mox (3.2.7)

is a convenient alternative to & . The period T of the bound

motion is independent of the angulé,r momentum for s fixed energy. Hence

T= ' (3.2.8)
In a cartesian coordinate system O(@’;’Bl)%’) oriented so that 2 !
lies along L and %’ 1lies along N , the relative position
and velocity vectors f /' and ‘}_.[/ are convenientlly parametrised by
the eccentric anomaly W in the form

- a {Cos(u,)—- €, (l-—e")yzs:‘n(u), OS (3.2.9)
- ’



and A
PR . X
/oran . 2
'_\_f = —— {.—Am (“f),(l—éz) COS(U), o
,whex-e the eccentric anomaly W and the time )C relative -to the

time at the iaeirihelion distance are related by Kepler's equation

ark - w- esinuw | ©(3.2.11)
£ |

Formally, Kepler's equation has the following explicit solution for wu (+)

oo
20t ' ' [
wty = *EE 429 Ii%f’.) SinSL (350

v 5=y
- where D’n(x) is the ordinary Bessel function with argument X and

integral order N . However, for simple numerical work, equation
(2.2.11) can be solved directly (see Abrines and Percival 1966a).

The orientation of the frame 'O(’:Jr‘.:g'é") with respect to the
‘laboratory frame O(’zl._\ ,,y\,?) may be compourided from three successive
rotations through the positive Buler angles ¥ , B and q)
about the fixed 2. , ’g and _% axes respectively, where 0L WL2T

0\( 8« and 0;¢ <2 . The parameter '.L where’

- 2]
p=cosy (3.2.13)

in a convenient alternative to © .
The state of relative motion may therefore be completely specified
by the variables U » B , T= t/r R ¢ , ¥ and
Jo - Abrines and Percival (1966a) show that if the variables A
T , ¢/2ﬂ’ , ¥far  and (1+p)/2  are all selected independently

from a uniform distribution e('z,) = for 04x¢| , the microcanonical



ensemble defined by ecuation (3.1.42) is generated with total energy
E=-U . The specification of the initial reference state is completed
by prescribing the time {5 and the position IL‘ and velocity'yz‘, of
the incident particle.‘ v | |
For convenience, the time t% is chosen to be zero. The velocity

‘bf the incidéht particle is choéen, by conventidn, along the gg axis. |
Tt will be shown that this convention together with the Euler-angle
conventioné obscures a dynamical condition,which hélps to discriminate
between different'possible final channels. The position of the incident
particle may be fixed by the unmodified  impact parameter _[2 which may
be chosen by convention along the ‘g axis, since the target distribution

is spherically symmeiric. Hence

Vo= (9,bo) , (3.2.14)

| -~

v, = (o, Vi), (3.2.15)

-

and the initial reference state is completely specified. Apart from
border-line cases each initiaj reférenée gtate leads to a unique final
reference state with a definite final channel. Abrines and Percival
(1966a) have shown that total cross sections are obtained when the
variable b" / S-mo.x is uniformly distributed in the range [ o, l] ’

" where bén“x_ - is chosen sufficiently largevto include all collisions
of relevance. It is not difficult to show that the most efficient choice
ig the smallest possible value if Monte-Carlo methods are

of bmax
used to evaluate the crosg sections. However this smallest value can
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only be determined preciéely from the results of a large number of

orbits. 1In practice a guess for is mades If it appears

| B
that the guess is too small,then it is always possible to choose
~additional orbits with b lying between the original guess and some
larger value. Since the statistical errors in the total cross sections

. . 2 .
are proportional to b it is important to determine whether an

'.'\G.L L4
alternative coordinate to b can be used.

Suppose that the target atom congists of an electron and a much
heavier nucleus.. Then, if the velocity of the incident particle is
much greater than the velocity in the circular orbit of the target atom, the
energy transferred to the atom in a collision isgiven approximately by the
energy transferred to the electron, treated as free from the nucleus
during the collision, when the energy transfer is comparable to or
greater than the ionization energy U . Thﬁs, the energy transfer
depends not upon the position of the nucleus relative to the position
of the incident particle, but upon the position of the electron relative
to the incident particle. The modified impact parameter B’ is

therefore measured from the projection of the position of the target

electron in the ('i\ ,"13) plane at the initial reference state. Hence

Y= ("Lea‘h,”' b/, °) ) (3.2.16)
where the posifion'of the electron is Ile at the initial reference state.
Tt is not immediately obvious that B~  is uniformly distributed.
However, suppose that the atomic state is held fixed, apart from the final

A . . :
Euler angle of rotation 96 about the Z axis. Then, if instead,

the rotation is performed upon the incident particle in the opposite sense,
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the orbit is essentially unchanged. The distribution of the plane-
polar coordinates ( b ’ ¢) of the incident particle corresponds to
a uniform beam of particles crossing the (g,g) plane. This beam
could be described equally-well by coordinate-s ( b’ ) ¢ / ) rél'ative
~ to the projection of the position of the électron in this plane. Since

96’ is also uniformly distributed, then tfz must be uniformly dis-

tributed. Finally, if bll is uniformly distributed for one atomic
 configuration5>it is wniformly distributed for all atomic configurations.
Por high incident velocities bﬁiaac should be smaller than

: b:ﬁax. , and hence the standard errors in the total cross sections
for gtrong collisions, such as ionizations, should be reduced. For
extremely weak collisions the cross sections are dominated by large
impact parameters and the distinction between modified and unmodified
impact parameters is negligible. ' For intermediate impact parameters it
is not clear which technique yields more accurate results. The surprising
accuracy of binary-encounter theory for strong collisions at lower incident
velocities suggests that the strong collisions will be more concentrated in
the modified impact parameter than in the unmodified impact parameter.
The modified impact parameter is therefore preferable for strong collisions
and all incident velocities of the order of and greater.

it is now clear why the restriction upon the mass ratio of the two

target particles was made. If the two target particles have comparable

‘masssthen both particles can receive significant energy transfers and
hence orbits with large energy transfers may be grouped about either of

. :
the projections of the target particles in the (Zwi;) plane.  Fortunately
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this complication does not usually arise in practice;

It should be noted that the impact-parameter modification is taken
relative to the projection of the position df the target electron in the
plane passing through the centre of mass of the target atom and oriente@
‘perpendicular tb-the incident velocity. A vector modification is also
possible,-ﬁut, in order té prevent correlation between the projections of
the positioné of the incident particle and the target elsctron parallel
to the incident velocity, it is necessary to introduce an additional time
variéble TkEL':tég_I1pﬂ which is uniforml& distributed in some unit
range, say [o,:] s since the unperturbed motion of the target system
has period T . Then, the vector impact-parameter modification is
achieved if the incident particle is located at thé point

/
Vi, = (xLBa y]_e*b s ZLe+v‘-'tKEL) . (3.2.17)

in the initial reference state.

This technique suffers from the fact that an additional variable is
needed to specify the initial reference state, but is essential for
special applications in which arbitrarily close encounters between the
incident particle and target electron are required.

The approximate initial scattéring state is controlled by the
dimensionless error parameter § . The time t_(¥) at the initial

scattering staté is given by

_ 2a '
t (¥)= m‘ (3.2.18)

The initial scattering state is obtained by evolving the initial reference

state in the initial non-interacting (2+)-particle chammel | through
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the time interval (&_—‘tc) . It is easy to show that the potential-energy
terms betwsen the incident particle and each of the itarget particles in

the aporoximate initial scattering state is bounded by

Viax = YU+ o(¥) . (3.2.19)

(c) The Mumerical Solution of the Hquations of Motion.

In the present work the approximate final meattering state is computed
from the approximate initial scattering state by =solving the equations of
relative motion (3.1.23) and (3.1.24) approximately. The solution is
advanced step-by-step using a standard fourth-order Rﬁnge—Kutta formuls
(see‘for example, Buckingham 1962, p.242, equation 8.41) with a time
step which is recalculated at each step according to the formula derived
by Abrines and Percival (196%a, equation 31) until an approximate final
scattering state is attained. The overall accuracy is controlled by a
dimensionless error parameter E . The time-step formula is based ppon
the classical scaling laws for Coulomb interactions and is a generalisation
of a simplified formula for the relative motion of two charged particles
based on a Taylor exﬁansion.

The most serious disadvantage of this method is that an absolute
potential-energy error can becomeylarge if a relative distance becomes
very small,even though the relative error may remain approximately constant.
Por weak collisions large potential-energy errors arise predominantly from
highly-eccentric orbits of the target system. These errors can be
rioderated by multiplying the time step by an additional factor t?k} which

is constant for a given orbit. A4 more detailed investigation by
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Valentine (1968) showed that in any close approach of iwo particles,the
absolute potential-energy error could be moderated by multiplying the

. Y4
time step by a factor Y

i
, /A . i
Ry 4 instead of /3 , Where VkI is the

appropriate relative distance. However, Valentine claimed ‘that the
refinement improved only {7, or 27 of the individual orbits with
increased computing time. In the present work the time step with the
factor '3%’ hag therefore been used, though neither method is really

as satisfactory as a perturbation expansion method, =ay.

(d) Exit Tests

The approximate final state is attained when prescribed exit tests
are satisfied. These tests are listed in Abrines and Percival (1966a).
For final direct and exchange channels the error parameter X ig used
in a similar way to that in the comstruction of the approximate initial
scattering state. For final ionization channels an additional
dimensionless error parameter 5 is employed. The approximate final
state in an ionizing orbit is attained when, for each pair of particles,
the absolute ratio of the potential energy to the binding energy is less

than & . Other simple exit tests are reguired to prevent orbits

stopping prematurely.

(e) Scattering Parameters

In principle, the approximate final scattering state should be evolved
backwards in time without interaction to determine the final reference
state. All scattering parameters can then be calculated from the initial

and Pinal reference states. This procedure would be essential if, for
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example, the final value of the modified impact parameter or the final
value of the eccentric anomaly were required in a direct or exchange
collision. However, in practice, the scattering variables of interest

can be calculated from the initial and final geatteringe states.

(f) Determination of Suitable Error Parameters ¥ , &, § .

The values of the error parameters must be chosen with regard to
the conflicting demands of time of computation and of accuracy.

The error parameter 5 is important only for ionigations. Owing
to the form of the adjustable time-step formula,the computing time is
insensitive to large changes in 8 + The value of 5 may therefore
be gelected to yield errors of the same order of magnitude as those
introdiced by € and ¥ .

The error parameter X controls the initial potential—energy‘error
bound defined in equation (3.2.19) and a similar’final potential-energy
error bound for final direct and exchange channels where U is renlaced
by the corresponding final binding energy. In contrast, the round-off
error in the numerical solution of the equations of motion is approximately
invergely proportional to X 5 gince X ig roughly inversely proportional
to the total time interval of evolution.

The truncation error in the numerical solution of the equations of
motion is approximately preportional to 54, provided that the error is
not too large. However, for small & the round-off error is also
aporoximately inversely proportional to 8_ . Thus, if the compﬁting

time were irrelevant, the most accurate choices of § , &€ and 8§ would

be the smzllest values above the limits of round-off errvor.
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In practice the computing time is important. Usually, the total
compubting time is dominated by vhe time fc required to solve the

equations of motion. TNeglecting complicated collisions

—

t= RN
EYV,

, - (3.2.20)
where VU, 1is the initial velocity of the incident particle, N  is the
total number of orbits and k is approximately a constant,whose value
depends upon the computer available. If complicated collisions are
important then this value of “tc ig probably too small. For incident
protons the value of h .was found to vary by only about 207, for
incident velocities in the range 0.4V, ¢ Vi, & 27U, .
In the present work the valugs of the érror parameters X s &€ and

8. are chogen by ﬁrial and error using a small sample of orbits. The
usual criterion is that X and £ are chosen as large as possible ,
subject to prescribed error bounds in the scattering variables of
interest and in the constants of the wmotion. The value of 8 is not
normally critical. In this way a fixed computingvtime is used to

valculate as many orbits as possible.

(g) Goneration of Pseudorandom Numbers.

The uniform distribution of random numbers is generated from the

pseudorandom sequence

5
19

with Q= |17 , M= 2 and ¢ =0 . Some of

o §L._‘ + C (T"lodu(o m) S

i

(3.2.21)

the properties of this sequence and of other similar formulae are
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discussed by Hammersley and Handscomb (1964).
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3.3 Iixact=Classical Total Cross Sections for Protons Incident uvon

Atomic Hydrogen.

(a) Introduction

The earlier results of Abrines and Percival (1966b) were obtained
using an EMA compﬁfer prégram which was'run on~the University of London
Atlas computer. Their results afe extended in this work to lower incident
proton energies using the more general and flexible FPORTRAN computer
program developed by Percival and Valentine (see Valentine 1968).  4l1
computations have been performed on the Chilton Atlas computer.

All cross—section data are presented for target atoms in the ground
state. Using the classical scaling laws the dorresponding cross-sections
for target atoms initially in a unifofmly—populatedGnicr0canonicaD level

n méy be readiiy obtained. Although atomic units have been used
throughout, it is convenient to express the incidenf proton energy in
Kev. and also to use incident velocities for comparisons with infinite-
mass models. The gpproximate relations that a proton moving with an
atomic unit of velocity has an incident energy of about 918 a.u., which

is approximately equivalent to 25 Kev., have been used.

(v) Qggpulaﬁioﬁs
In table (3.3.1) the incident energies in Kev., the maximum value of
the square of the impact parameter in QZ‘ s the error parameteré g
¥ snd 5 ,vthe‘ﬁoﬁal number of orbits successfully integrated, the
total numbers in each of the mubually-exclusive final channels for direct

excitation, ionization and charge transfer, and the approximate computing




E i gmax T
in in E ‘5 S N T N D Nz N E in
Kev, | a2 hours
7 18 { 0,16 | 0.04 | 0,005 500 384 ol 116 | 3.0
10 { 20 { 0,17 | 0.04 | 0.005 699 580 1| 118 | 3.6
20 { 17 | 0,18 | 0.04 | 0,005 | 1499 | 1139 34 { 326 | 5.3
68 { 11x] 0.25 | 0,10 | 0,005 | 2500 | 1986 | 406 | 108 | 1.6

Tgole 3.3.1  Prelinminury data for exact-classical p-H results.
A * in the first column indicates modified impuct parameter; other—

wise unwodified. See text.
-E' 3 2 7
in 0, (T35) G (7a) I, (7a)
Kev,
T* 0 + 03 4,18 ¥ 34 4,18 = 34
10%* 0.03 # 03 3.38 ¥ 28 3.40 £ 28
20% 0,39 ¥ 07 3.70 = 18 4,08 # 19
38,1 1.35 ¥ 13 2,19 # 18 3.54 ¥ 22
54.4 1,69 = 12 1.07 £ 12 2,76 * 16
68 1,81 # 13 0,55 ¥ 09 2,36 ¥ 15
68% 1,79 % 08 0.48 ¥ 05 2,26 ¥ 09
81,6 1.63 = 12 0.31 = 08 1,94 ¥ 14
95,2 1,57 # 11 0,17 ¥ 04 1.74 = 12
108,8 1.39 7 10 0.07 % 03 1,46 T 10
136 1,13 = 09 0,01 # 01 1,14 ¥ 09
163.2 0,96 = 06 0 + 01 0,96 » 06
217.6 0,73 = 08 0 + 01 0,73 = 03
Table J.3.2 Totul reduced exact~classical p-H cross sections;
o 1onlzatlon), Se (charge~transfer); Siees (clectron-loss).

irrors represent approximate stutistical %3 - confidence limits. A %
in the first column indicates present calculaclons, otherwise, those
of Abrines and Percival (1966b).
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time in hours are all listed.

The orbits with incident energy 68 Kev. were computed in order to
cheqk the improved FORTRAN~pfogram against the available results from
the EMA program, since the FORTRAN program had not been used previously
for production funs.

At incident energies below about 4 Kev. the computing time required
to obtain reasonably accurate cross—-sections is prohibitive with the
bresent vefsion of the prograﬁ. Fortunately, below this incident
energy,ionizing collisions are rare and the charge-transfer collisions
have been treated approximately by Bates and Reid (1969b),using a
classical adiabatic model together with the BohwmeSommerfeld quantization
rules for the hydrogen molecular ion. Thus, the pressnt work fills the
gap between the exact—classical results of Abrines and Percival (1966b)

and the calculations of Bates and Reid.

(¢) Results for Total Cross Sections.

The exact-classical total cross sections may be calculated using
equations (3.1.46) and (3.1.56) with standard errors given by equations
(3:1.56) or (3.1.60) in axtreue oason.

e sxact-classicsl total oross ssctions 07 , 0. and Og5 for
ground-state targets are listed in table (3.3.2) in Tra} together
with the earlier fesults of Abrines and Percival (1966b). It should be
recalled tﬁat 6% includes capture into all final states. The exact-
claséical electron-loss cross section 0O ,q¢ 18 just the sum of the

A . £ i a .
ionization and capture (oharge-trans;er) cross sections €, and g
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Tie statistical errors represent approximate2/3 confidence limits.
Note that the statistical error in OLoss may be derived directly by
using the sum (NI140E) of orbits resulting in electron loss, rather
thén by combining the separate statistical errors in G} and Gg , in
which case a lgrger estimaﬁe may be obtained. The cross sections 0y
and 'GLusvare comparéd with various claséical binary—enccunter
approximations'in fiszure (2.10.1).

In figure (3.3.3) 0; is compared with the averaged binary-encounter
results of Vriens (1967) and the exact-classical ionization cross section
of Percival and Valentine (1967) for incident positrons of the same
velocity. Also displayed are the first-Born calculation of Bates and
Griffing (1953) and the experimental values of Fite et al. (1960) and
of Gilbody and Ireland (1964) in the sﬁecific case of ground-state
target atoms.

In figure (3.3.4) O 1is compared with the‘classical adiabatic
resonanf ground-state charge-~transfer cross section of Bates and Reid
(1969b) and with the corresponding averaged scaled crosz sections for
the initinl level M , since their crosn sections do not uenle classically.
Also shown are the sxact-claspsical results of Percival and Valentine (1967)
for incident positrons of the same velocity, the two-state quantal
calculation of McElroy (1963) and the experimental results of Gilbody and
Ryding (1966), both of which apply sﬁecifically for ground-state target
atoms. | i

4 4

. s " . .
- 01AR{UB) is an exactuclasdloal total cross section for an

. PR - 3 . PR . 5
ineident charzed particle moving with initial velocity 1I; , and Vg }

in the post-mean-square velocity of the electron in the sround state of
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O
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50 loo - 180
E, ( Kev.)

2:3.3 Ground-state p-A ionization cross sections. Curves;
A ( 1rou—Born5 blnurJ—encounuer) ixperimental vialuess; full circles

(Fite =% al. ); open circles (Gllbody and Ireland) szact-classical
results; Full squares (Drotons) open circles (positrons of same
velocity). Jrror bars in exact-classical rccult represzent approfimate

stztisticul e confidence limits
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the farget hydrosenic atowm, then the corresponding cross section

2

and for a

©

/ /.t . ~ .
g (1ﬁ,xm )  for an incident particle of vaelocity \ﬁ/
target atom in a unifommly-populated excited level YL with poot-mean—

square velocity Vg, 13 given by the classical scaling law

) =t alg) (331
vhere | |
nv, =v, (3.3.2)
and
‘YL’U',/:'UT ‘ (3.3.2)

The sxact-classical results for incident protons in the low velscity
fange'U}(U; show a marked disagreement with experimental and quantal
values for both ionization and total captnrevin the case of ground-stztie
target atoms, in contrast to the excellent agreement at intermediate
velocities U, ¢ v, <4, 5 say. It s néw well-established (see
for example, Bates znd Reid, 1969a,b)‘that for U;<ﬂ£, barrier venetration
plays a dominant roje in charpge-transfer processes and consequzntly also
in ionicationz. The exzact-classical results are, theréfore, not
surprisingly, too small in thic region. Fowever, for corresponding
ntoms in on excited level Mo, the range of scaled velocities over
which barrier penetration is significant, should decreasze as N
increases and hence for sufficiently large M, the exaét—classical crozs
sections should be accurate‘for the velocities considered. These rssults
indicate clearly the danger of extrapolating experiwental or quantal

cross sections by classical scaling laws.




(d) The Validity of the Classical Model of Bates and Reid

The Bates and Reid model (1969b) is based upon the classical theory
of the hydrogen molecular ion and employs only those classical orbiis
allowed by the Bohr-Sommerfeld quaﬁtization rules. Neverthéless, for
large M, the averaged scaled cross sections should approximate the
exact-classical microcanonical results, ﬁhough for low 1. the models do
not correspond. Apart from these differences Bates and Reid nake two
importé.nt assunptions in the low wvelocity limit which can be tested
directly, although it may be argued that the present exact-classical
results are not sufficiently low in incident velocity for the classical
adiabatic theory to be valid. Firstly, they assume that for each
allowed orhit, charge transfer takes place with probability '/2 if the
nuclear separation R is less than R(‘n,m,l’) where n' is the initial
level of the hydrogen atom and WM and I are subsidiary molecular
quantum numbers. Secondly, they assume that non-resonant transfers are
negligible. The scaled éveraged low-velocity limit of the classical
regsonant charge-transfer croéﬂ gection 0; (n) is given by

n-t I R’-(‘) ,I)
TN W

0 (n) = . (3.3.4)

T=z0 M=-t

As can be seen from figure (3.3.4) the cross section 0‘5(5) ig in
excellent agreement with the exact-classical cross section for capture
into all states,; though the apparent structure in the exact-claszsical
cross section for higher incident velocities is not reproduced in their
model. The extent of the agreement is demonsirated by the comparison

between the exact-classical charge-transfer probability as a funetion of




153

the square of the ummodified impact parameter b and the contributions

from ecuation (3.3.4) with

_ T
R{nym,1) = Wb, 3:2.5)

as shown in fignre (3.3.5).

’Howéver, in the exact-classical results, the spread in the dig-
tribution of final bindihg energies is not negligible at the incident
velocities considered. At lower incident velocities the spread should
decreage, but this is just the region where barrier penetration becomes

more significant. The classical resonant capture crogs sections of
Bates and Reid for large Y@ are therefore too large at highér incident
velocities, because capture into different final levels is significant,
but is not included, and are too small at lower incident velocities,
because barrier penetration is neglected.’

The reasons for the failure of classical methods in treating weak
excitations at high incident velocities have beeh discussed by Percival
and Richards (1970a). They claim that classical methods may only be
applied if all quantum numbers and all changes in the quantum numbers
are large compared with unity. The failure of the classical resonant
capture cross sections of Bates and Reid even for large M may be due
to similar reasons. Nevertheless, if these crosg sections are interpreted
as captuﬁe cross sections into all states, the values are accurate for
sufficiently large M and for incident vélocities‘above tne region of

importance of barrier penetration, but low enough for their approximate

theory to be valid.
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Figure 3.3.5 Reduced classical p-H capture probability versus the
square b of the unmodified impact parameter at the incident energy
7 Kev. Full curve (exact—cl&ssical); dashed curve (adisbatic model
of Bates and Reid for initial n = 5 level),



155

(e) The Validity of the Binary-Encounter Approximation

It is evident from figure (2.10.1) that the binary—encbunter
approximation to Gi .seriously overestimates the exact-classical
values for low incident proton veiocities, even though such collisions
' ihvolye close encounters. If, on the other hand, the binary—encouhter
“ionization cross section is interpréted as an electron-loss cross secti0n>,

then the exact-classical cross section (; is seriously underestimated

Loss
by the binary-encounter model at low proton velocities. The latter
result suggests that charge-transfer may take place at low incident
velocities in collisions for which the predicted binary-encounter energy
transfer is small. Since the binary-encounter results for total electron
loss and total’ionization are seriously in errbr for low incident proton
velocities;the binaryaenéountef results for excitations by slow incident
protons are likely to be even worse than the results for the stronger
collisions. A similar discrepancy between binary-encounter and exact-—
classical total and differential ionization cross sections for incident
electrons was found by Abrines, Percival and Valentine (1966), even for
incident velocities larger than, but comparable to, the initial root-mean-
square velocity Vs of the target electron. '

In the previous and present cxact-classical work the value of b::la,x.

was chosen to include virtually all ionizing and charge-transferring

collisions. Since contributions to the exact-classical continuous

differential excitation cross section C%'O-D occur with impact parameters
AE
outside this range, the estimate of é?[o from impact parametersbelow
AE

b;‘ is a lower bound subject to statistical fluctuations. Nevertheless
ax
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for each individual collision the exact-classical and the binary-encounter
values of the energy transfer AE may be computed. The exact-classiecal
and binary-encounter contributions to 'gégé are sketchéd in figure
(3.3.6) for the incident energies 68'Kev. and 20 Kev. = The striking

- disagreement at 20 Kev. may be e&en worse, since smali errors in the
eiact-classiéal orbit integration will tend to broaden the true reéults for
small AE . The region of validity of the binary-encounter approximation
as a classical model has been given by Percival and Richards (1967). They
argue that the theory is valid when the collision time t(m_: Qb,/’u‘; is
short compared with the natural period T= lTrCL/'U; oi the targét atom,
where @ is the radius and U, is the speed of the atomic electron in

the circular orbit of the same binding energy. For low incident velocities
1ﬁz<ru;’,3nd so the region, in which the binary-encounter approximation is

2 2z
(=

2 ,
- valid, yields a negligible contribution of order Th=n« 1) to the

vCol. P’y

total electron-loss cross section 01553, which is comparable to TTCiL .
For the first {time the binarj-encounter theory has been compared

with exact-classical results for individual orbits, using the theory

deacribed in mections (2.1), (7.2) snd (2.3) for the partienlar cnase of

ail ineidont fnite-mass proton and a target slectron. The comparison is

made using the coordinates defined at the initial reference state, rather

than those at the approximate initial scattering state, because, in the

exact-classical model, the target electron is evolved backwards in time

frow the initial reference state to the initial scattering state on an

elliptic orbit ingtead of a straight-line orbit, as required in the binary-

encounter theory. Although, in principle, either state, or any intermediate



Q) 100 20 Kev.

dr |
dAE

(vwa] /a.w.)

So |t

05— 4E
Ca.u.)
Figure 3.3.6 Contributions to reduced classical p-H differential

excitation cross sections from impact parameters below bmax versus energy

transfer. Case a) 20 Kev.; b) 68 Kev. Curves; 4 (exact-classical)s

B (binary-encounter).
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state may be used, the correlation between the exact-classical and binary-
encounter results should be greatest at the initial reference state, since
the incident proton is at its position of closest approach relative to the
centre of mass of the target atom, for each orbit at this state. Only b
'_ very high‘incident velocities will thé correlation be'iﬁsensitive to the
initial state at which the comparison is made. |

Bach orbit must result in one of four mutually—exciusive final channels
or cells according to whether the exact-classical final ohanhel is electron-
loss or direct excitation (or poesibly de—excitation) and to whether the
binary-encounter model predicts electron-loss or direct excitation (or
possibly de~excitation). In this approach it is still possible for the
energy transfer AE calculated by each theory to differ.widely within the
‘same cell.

At the incident energies 10 Kev. and 68 Kev. all exact-classical
orbits have been used in the comparison. At the incident energies 7 Kev.
znd 20 Kev. only the first 500 and 600 orbitsvrespectively have besn
compared. A particularly attractive feature of this approacn is that the
tinary-nncounter resultu, together with a varicty of other predictors, may
bes ovaluated in a wsepacate computer program with little additional computing
fime, aince the initial conditions can be regenerated quickly. Then, all
that is required from the exact-classical orbits is the value of the final
channel. In this way all earlier exact-classical orbits may be comvared
with binary-encounter predictions, provided that the exact initial conditions

. ~a 1 . 1
can be reprodiced and that the exact-classical channels are known.
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The total numbers of orbits, which fall into each cell, are rresented

in the first column of two-by-two contingency tables in table (3.3.7).
The results, which-would be expected if the binary—enoounter.theory were
not correlated with the exact-classical values, are éresented in the
second column. In this case the nuwber in each cell is given by the
prodﬁcﬁ of the appropriate row sum and column sum, divided by the total
number of orbits. The results in the second column have been rounded
to the nearest integer. The numbers, which would be expected if every
orbit, for which the binary-encounter médel predicts electron-loss,
results in electron-loss, are listed in the.third column. TIn this case

the region of initial condifions, for which the binaryaencounter’model
predicts electron-loss, is contaiped within the corresponding exact-
classical region. ' Since, for each contingency table, there is only one
degree of freedom, a measure of the relevance of the binary-encounter
model can be derived by notingz that any cell total P{IJ' selected from

the first column may be written in the form

NI:‘ — U‘—X.) NIJZ + X NI‘SB , (3.3-6)

whare N qnd N ara the corpssponding call totals in the socond and
IJ2 L33 A
third columma respectively, and where X  depends only upon che incident
volocity. The factor (1-X) may be regarded as a measure of the random
component in the comparison and the fraction X may be interpreted as
a measure of the sisnificance of the approximate theory. Av . roximate
standard srrors in X may be gauged by adling to, and subtracting from,
smallest cell “otal its owa square root. Negative values of X =

rerrissible though unliksly since this would imuly a negative correlation
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EL 8 10#[ 116] Eu] 6| 11d[ 116] =L 2a] 93 116
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T| 24| 47¢{ 500 1| 24| 476} 500( .T| 24| 476 500
5)10 Keu BL BD .T BL BD T BL BD .T
EL| 19| 10d} 119| EL| 10| 109 119{ EL|[ 61| s5d| 119
ED| 42| 53d4| 580 ED| 51| 529] 580} ED] of 58d| 580
v{ 61| 638 e90] T| 61| 638 699 T| e1| e3d| 99
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C) 20 Kev. ‘ .
en| 55| 78| 133] EL{ 21 1121 133] EL| 94| 3d| 133
ED{ 39| 428 467] ED| 73| 394 467| ED| o] 467 467
{ 94f s50d| 600f T} 94{ 506| 600{ | 94| 504} 600
BL BD T BL BD T BL BD T
d)()gkw'EL 305| 09| s12] =] 96 L] 469] 43| 514
Ep| 164|1822|1986| ED| 373 ED{ 0|198d]1986
T| 469 zolezfsoq T| 469 1| 46920312500

PTable 3.3.7

individuzl orbits.
The actual rasults oblained ure Dpre

colum of comtingency tables.

tables.

See

w-H contingency tables ut various incident
encrzies for comparisions between exact-classical values ()
and binary-encounter uredictions of the final channels of

eleciron—icss (L) and of direct excitation (D) for sets of

Rov and column tofals are dsnoted by T.
zented in the
text for the remaining

Pirst
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between the two mcdels.

The binary-éncounter cgmparison may be used to determine a control
estimate of the exaci-clussical cross section dloss 5 using equation
(3.1.76) with standard error given apyroximately by equation (3.1.77),
though there is no guarantee that the results will be more accurate than
the direct hit—op-miss estimates in table (3.3.2). In order to obtain
a control estimate, the Fock—averaged binary-encounter electron-loss croés
section for a finite-mass incident proton must also be known. Howevex,
since the difference between the finite-mass and iﬁfinite—mass binafy—
encounter quels is emall at these incident velocities, the simpler
infinite-mass results may be employed, particularly since the standard
error of the controi estimate is independent of the approximate analytic -
integral. |

The theoretical values for the infinite-mass bLinzry-encounter
electron-loss cross section 0"'_05;)65 are 1.93Mq2 at 68 Kev. and 1.75

TTQZ’ at 10 Kev. The Lit-or-miss estimates of @] are 2,06% o9n~a°?'

Loss‘eg
and 1.75% 21 ral respectively, and the control estimates of the exact-
clagzical O g, are 2.13* 09 wag and 3.40%34 ma} respectively. If any

‘bias in the random sample of initial conditions at 68 Kev. affects 02055,85

and @, similarly, then this work suggests that the hit-or-miss value

Loss
listed in table (3.3.2) is larger than it should be. However, the earlier

independent estimate by Abrines anvaercival (1966b) is then even larger.
Although the control—estimate approach is more satisfactory aesthetically,
the statistical errors are,at both incident energies, at least as large, for
these cases, as the originél hit~or-miss errors. Thus the binary-encounter

nodel Tor individual orbits is not sufficiently close to the exact-classical
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model, to reduce the statistical errors at these incident velocities.
Although this approximation may be more useful at higher velocities,

the exact-classical and binary-encounter electron-loss cross sections are
knovn to agree closely (at least statistically) in this region.
Nevertheless, the individual-orbit binary-encounter model is useful in
comparisons with exact-classical results, especially when subsamples of
initial conditions are selected for inveétigation by the exact-clasgsical
technique. In such cases the analytic binary-encounter results may not
have been determined, for example, a sub-sample of orbits with E} dis-

tributed uniformly in the range (0,1)0% only, say.
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3.4  Exact-Classical Charge-Transfer Probabilities in Close Collisions

of Protons with Hydrogen Atoms.

(a) Introduction

The first measurement of the charge-transfer probability in close
collisions of protons and ground-state hydrogen atoms was made by
Lockwood and Everhart (1962). Their results for incident proton energies

in the range 0.7 Kev. to 40 Kev. at a fixed scattering angle of 3o

revealed that the charge-transfer probability PE was an oscillating function

of incident energy. More recently Helbig and Everhart (1965) repeated
and extended these measurements to include incident energies from 0.13 Kev
. %o 150 Kev. and scattering angles between 0.2° and 6°. It was found
that_ F; was also a resonant function of scatitering angle. However,
over the range 4 Kev. to 150 Kev. bE was independent of the scattering
angle, provided the angle was at least 20.

Barly quantum-mechanical calculations failed to predict the location
of the maxima and overestimated the amplitude of the cscillations in PE
(see, for example, Wilets and Gallaher, 1966, and the reforences therein).
However the Sturmian close-coupling calculations of Gallaher and filets
(1968) and the variable screened nuclear-charge modél of Cheshire (1968)
are in better agreement with experiment.

There are two simple explanations for the resonant behaviour of FE .
The first explanation is easy to formulate within the framework of gquantum
mechanics;since the syumetry of the field experienced by the electron
leads naturally to both gerade and ungerade molecular wavefunctions.

Then, the interference between these states can give rise to resonant

e EeTTETY iIindooel e
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phenomena in FE « Since this process has no analcgue in a purely-
classical description, such resonances are non—classical and cannot be
. reyroduced by a rurely-classical model. |

A second mechanism was proposed by Cheshire (1968) and may Ee worded
in the following way At high incident-proton energies the atomic
electron does'not bhave enough time to "jump" to the passing proton
during the collision and therefore PE should be small. As the
incident cnergy is decreased, Pz should increase until an optimum
incident energy is reached (at about 25 Kev.) at which the atomic
electron has sufficient time to "jump" to the passing proton, but not
enough time to return to the:target proton. In the neighbourhoocd of

this incident energy, FE should have its first maximum in terms of

decreasing incident energy. At lower incident energieslmultiple transfers

are possible and a series of maxima and minima in F% may be expected.
Unlike the first explanation Cheshire's mechanism may be interpreted
classically. In this section the exact-classical values of f are
determined to discover whether the Lockwood and Everhart effect has a
classical explanation. The exact-classical results are also useful

as a test for possible approximate classical collision models.

(b) calculations

The preliminary data for the calculations is displayed in table
(3-4-1). The‘range of incident energies is chosen to correspond to
the experimental range over which k% was found to be insensitive to

o
scattering angles about 3°,  Scattering angles close to 3 are selected

because of the largé amount of experimental and guantal theoretical
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E, b* T
in m e 5 é NT N D NI N E n
Kev, Q: | , houtrs
4| 1,667 { 0,15 | 0,04 | 0,005 597 | 318 11| 268 | 5.4

5| 1,067 { 0,16 | 0,04 | 0,005 498 | 261 11 | 226 | 3.9

71 0,544 { 0.16' | 0.04 | 0.005 499 | 273 23 1 203 | 3.1

8} 0,416} 0,16 | 0,04 } 0,005 700 | 404 22 | 274 | 4.1

10 { 0,267 | 0,17 | 0,04 | 0,005 700 | 381 33 | 286 | 3.6

14 §{ 0,137 | 0.16 | 0,04 | 0,005 400 | 166 31| 203 | 1.9

20 | 0,067 | 0,18 § 0,04 | 0,005 | 1000 | 245 { 103 | 652 | 3.4

30 | 0,029 0,17 | 0,04 | 0.005 600 | 129 | 105 | 366 | 1.8

50 { 0,010 | 0,17 | 0,04 | 0,005 700 | 209 | 207 | 284 | 1.7
100 | 0,003} 0.17 { 0,04 | 0,005 600 | 299 | 247 54 | 1,4%
2)100 | 0.003%} 0,20 | 0,10 | 0,005 300 | 230 69 1] 1.9
b)100 { 0,003%| 0,20 | 0,10 | 0,005 266 95 | 127 1 44 | 1.6

Table 3.4.1 Preliminary data for close p-H collisions. A ¥ in
the second column denotes impact parameters modified relative to the
target proton; = otherwise, unmodified. A * in the final column
indicates the value to be multiplied by a factor of ten. Data at
100 Kev.; a) initial conditions with < in the rnge (0.25,0.6) only;
b) T in the range (-0.4,0.25) only. The marked differences in these
two. cases indicate that Y is a significant initial variable at high
energies. See section (4.2).
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resulis available for comparison.
It is not practical to determine the appropriate initial conditions
C oL e A o) e » .
which yield a scattering angle of exactly 3~ for each individual orbit.

Instead, as in the calculation of Cheshire (1968) and Gallaher and

Wilets (1968), the impact paraméter relative to the centre of mass of the

target system is chosen to be a function of the incident energy alone.

The Rutherford formula for the scattering of the protons, alone, yields

bE = 0.5 , | (3.4.1)
where b is expressed in q, and El in Kev. Since this formula
does not allow for the screening of the target proton by the atoﬁic,
electron, a more accurzte value of b was found by trial and error at
7 Kev. This value may be used to obtain impact parameters at different

incident energies employing the approximate relation
bE, = o0.516 . (3.4.2)

The corresponding values of bz are listed in table (3.4.1). In all
cases, exceph a£ the higﬁest energy 100 Kev., the spread in the angles
of scattering close to 30 isbless than, but comparable to, the angular
resolution quoted by Lockwood and‘Everhart (1962).  For incident energies
of 100 Kev. and above the excessive spread in scattering angle is caused
by b. being not much larger than the unperturbed radius of the orbit of
the taiget proton. The spread i=m reduced by ohopsing t) relative to
the target proton rather than to the centre of mass.

The incident energies in the range 4 Kev. to 50 Xev. inclusive were

computed on vhe Chilton Atlas. The calculations at 100 Kev. were



performed on the University of Stirling ICL 4130.

(c) Results for the Exact-Classical Probabilities.
The values of the exact-classical probabilities of total direct

excitation PD i of total ionization ‘PI and of total charge tremsfer

Fk.vare shown in figure (3.4.2). The error bars represent approximate

%/g confidence limits. Smooth curves have been drawn through the
points by hand to avoid possible confusion. The upper horizontal scale
is non-linear and shows the incident energy E‘ in Kev.e The iower
horizontal scale is linear in a convenient dimensionless parameter {;,
which is the ratio of the incident energy El in Xev. to the incident
energy (E,-rlS) in Xev. The value t= Y, corresponds to the
incident energy 25 Kev. at which the incident proton velocity V; and
the root-mean-sqﬁare velocity VU, of the atomic electron are almost
equal. HNote that the incident energy range considered is therefore

approximately equivalent to the incident velocity range

0.4v, ¢V, ¢ 2Vp

It is immediately apparent thatl the charge-transfer probability PE
is an urdulating function of EI , and has a maximum value of about 0.68
cloge to 25 Kev. . There is aiso astrong evidence for a minimum value of
about 0.39 close to 8 Kev. '_ There‘ appears to be no further significant
structure below 7 Kev. Since there is no significant structure Below
7 Kev.,the maxima and minima for the high—order transfers predicted by
Cheshire (1968) are rapidly damped in the classical spproach. In this

region any strong oscillations in ]OE must be purely-quantal in origin.

In contrast, above 7 Kev. significant oscillations are present in the
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clagsical results gnd hence the purely-quantal effects may not be
dominant.

in figure (3.4.3) the exact-classical results for PE are compared
with the quantai caloulations’of Cheshire (1968) and of Gallahar and
Vilets (1968) and’with ﬁhé.experimental values of Lockwood and Everhart
(1962). Unliké early quantal theéries, the exact-classical results
are "in phase" with the expérimental values for incident energies above
7 Xev. The classical ampiitudes are too small by apvroximately the
game factor as the quantal resﬁlts of Cheshire and of Wilets and Gailéher :
areAtoo 1arge.-

As in other exact-classical calculations, an important a&vantage of
the classical method is the ability to discriminate between phenomena
which are purely-quantal and those which can be described equally-well
classically. Thik leads, not only to a better understénding of.the
mechanisms involved, but also enables more accurate extrapolations for
corresponding processes involving initially excited levels. A second
advanfage of the classical approach is the possibility of testing approx-

imate hypotheses used either in classicél or in quantal treatwents. 1In
the present case the failure of the hydrogenic expansion of Wilets and
Gallaher (1966) and of the calculation of Cheshire (1968) at incident
energies above 7 Kev. is not surprising since they neglect ionization
channels. As can be seen from figure (3.4.2) the exact-classical
ionization probability is not negligible in this energy range and it is

therefore not unreasonable to expect the true ionization probability to

be significant here. If this is so, the results of Wilets and Gallagher
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and of Cheshire are too large at higher incident energies. In contrast
the results of Gallaher and Wilets (1968) contain the possibility of
ionization implicitly in the Sturmian expansion. Their results are in

pest agresment with experiment.

(@) Differential Distributions

The continuous differential prdbabilities ;DD (ﬁ) and PE (’8)
show little structure as a function of the initial angular-momentum
parameter ﬁ = |* /leat « In contrast the differential probability

h‘: (p) indicates a complete reversal of bias over the' incidént
range considered,as can be seen in figure (3.4.4).

The distributions ?o( u}) and QE (U,;) of final binding energy {J f
for direct and charge-transfer collisiohs are, of course, also continuous.
The distribﬁtions may be characterised by their means and standard
deviations, though since 60 ( L);) and QE (\)5,) are not equal to the
normal dizstribution, higher moments may also be important. The means
and standard deviations are plo"c’sed in figure (3.4.5) as a function of
the incident energy. The error bars represent approximate 2/3 confidence
limits in the values determined from the finite samples of orbits. Again,
smooth curves have been drawn through the points by hand to avoid possible
confugion. At low incident energies, as expected, the distributions

,?D (U;) and ee (U;) are very similar. Over the energy range |
considered,the apparent structure in the distribﬁtions is extrenmely
complicated. It would therefore appear that the possibility of finding

an approximate classical theory in this energy range is extremely unlikely.
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Pigure 3.4.4 Ixact-classical relative differential ionization
probabilities in close p-E collisions versus the initial angular-
momentum parameter &  for incident energies 10 Kew, 20 Kev., and
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However, woth below and above this energy range approximate theories
apnear feasible.

The continuous differential distribution Pi: ({ir_) y Whare /5'(; is
the finagl angular-momentun ratio L_1 / L;;Mw s 18 insensitive to ﬂF for
low and intermediate eénergies, but for incident energies of 70 Kev. and
above, electrons are captured preferentially into orbits with low angular
momenta, as was found by Abrinee and Percival (19661)) in the case of
total charge transfer. Again, as in their work, the results for low IB'-F
arising from orbite with /8 large initially may not be agcurately

determined.



3«5 Simultaneocus Ansle and Unerey Distributions of Tlectrons Bisciad

from Ground-State Holiwe Atoms by Protons of Intermediates Lnevay.

The 3-particle exact-classical MRTRAN cowputer program of Percival
and Valentine (see Valentine 1968) has been used to investigate classical
collisions of protons incident upon pround-state helium atoms.

4 direct classical treatment of the 4-particle problsm was not
attempted for two imrortant ressons. Firstly, it Would nave bhesn
difficult, if not imposzible, to construct & stable ¢lassical modsl of
an isolated ground-state helium atom with two orbiting electrons, since
it is always possible for such a classical system to auloionige, in
order to avolid autolonization the twomelectron model was approximated by
two independent one-electron wodels, The second wain resson for reducing
the 4-particle problem to a 3-particle problem was thal extensiye
modifications to the computer program would have besn required o treat
fovr particles.

- o - - o 5

Two alternziive ¢lassical one-electron models of ground-state helium

u

atoms were considered. The forwer was an extremely siuwple bul crude
sczled-hydrogenic model, in whick the atom was represented as an electiron
orbiting wround a structureless particle whose mase and charge were taken

-

to be that of a singly-charged heliuwn ion. This wodel, therefore, implied

that the single electron was coupletely screened by the ofher electron
from the doubly-charged nucleus. Hence tnis model most realistic for

high singly—excited states of nelium rather than for the ground siate.
Nevertheless, this model had the atvaniages that equivalent approximatious
5 &

ul

had been maGe in the first- Bora calculaticas of Rudd, Sautier and Bailey(1966),



176

and that the classical computer program could be used without modification.
4 more realistic variable-nuclear-charge model was also investigated
~I

usihg a simple expression
Zlv) = {I+ exp(- hvv)?)e, (3.5.1)

Por tihe effective nuclear charge Z(¥) as a function of the radius ¥~ of
the electron orﬁit, where ka was a suitable constant. This model had
the advantage théﬁ a variation in the screening of the nuclear chargs was
incorporated, but the main disadvanfages were that, since the period of
the bound motion of the electron was no longer independent of its angular
momentum for a fixed binding energy, the wind-back procedure was mofe
complicated than the Xepler motion, that the best choice of angular-
momentun distribution to represent the ground state was not obvious,
that several parts of the classical computer program required modification,
and that the solution of Newton's equations of motion using equation (3.5.1)
was probably more time-consuming owing to the need for a smaller time-step.
For these reasons, the simpler model was selected for a preliminary
investigation, but the necessary modifications to the computer program were
also carried out for the more réalistic model, in the event that the
classical results using the simple model were not in satisfactory agreement
with the experimental results of Rudd and Jorgenson (1963) and of Rudd,
Sautter and Bailey (1966), especially for small angles of ejection, where
the experimentai results are typically larger than the binary~encounter é
results of Bonsen and Vriens (1970) and the Born calculations of Rudd et al.;

by at least a factor of ten.
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The details of this calculation, the results and the comparison
with experiment and with Born and binary-encounter theories have been
published by Bonsen and Banke (1971) (see, for example, the end of this
thesis)., The results obtained from the simple classical model are in
. such close agreeﬁent with exberiment at low ejection angles that a further
investigation uging the more sophisticated model is not justified,because
the remaining discrepancy could be due predominantly to the classical
approximation itself.

SinQe the binary-encounter results are too low at low éngles, genuine
three~body effects must be responsible for the enhancement at low ejection
angles. The remarkable agreement using the simple classical model
suggests that the effect depends crucially on the final long-range
interactions between the thrée bodies, rather than upon specific initial.
atomic properties.

In contrast, at large angleé of ejection, the Born calculations are
congiderably larger than the results of the accurate-classical and
binary-encounter models, and are in much better agreement with experiment.
In this region, since the accurate-classical and binary-encounter results
are similar, three-~body effects are not important. The failure of the
classical results has been attributed by Percival (1971) to the dominance

~of a purely-quantal two-body mechanism,termed super-barrier reflection,
. between &he ejected electron and the helium ion.

This work again demonstrates that simple éuantal theories (in this
case the first-Born approximation) and accurate-classical models are

complementary, even for low quantum numbers, and that the complementarity



may not be evident unless a sufiiciently.accurate classical model is

used.
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CHAPITR 4

ADDITIONAL 47D CONCLUDING RENARKS

s

«1 Classical Models for Hydrocenic Atoms and Tons

.

Trere arc two simi &r-but distinet classical models of Lydrogenic
atorz and ions, In the Bohr-Sowmerleld model (see, for examplé,ﬁofn
196@) a direct correspondence is made hetween the quantum mumbers
(h,L,rn) of 3 quantal excited state of a hydrogenic atom or ion in
sphefical-polar coordinates, and discrete values only of the classiecal
zction variables (ﬂc,Lc;nk) in gpherical-polar coordinates. The Bohr-
Sormzerfcld model, therefore,; consists of a classical ensemble of sgimilar
orbits each with prescribed clagsical action variables,but with

.arbitrary values of the canonically-conjugate angle variables, by virtue
of the uncertainty principle. The natural distribntion, from which to

elect the angle vurlables independently, is the unifors rectangular

[62]

distribution defined over a range[o,znj ; say. Thig ensenble may be
generalised to trest the two cases in which Pirgtly atows in a given
lzvel (n,L) are wnifornmly populated in the (2L+1) m- states and
gecondly, in which atoms in a glven level N are uaifornly populsted
in the M (Lm) = states. However, the classical ensembles which
represent these levels are not usually spherically syuneiric, unlile the
quanﬁal treatment; for example, the ensemble representing the level
(ﬂé-’z,Lc") , averaged unifornly over the Wi-states , wm =-1,0,1 ,

is not epherically syrmetric, since the orvlits with W =2l lie entirely
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in the (g,g) plane,wnereas orbits with W =0 are spherically distributed.
Cnly in the limit of large n, and LC will these distributions approach
a spherical form for non-zero values of Lc .

A well-known alternative to the Bohr-Sommerfeld model for a uniformly-
porulated level N is the clgsgical microcanonical model.  However, no
alférnative'to the DBohr~Sommerfeld model for a uniformlynpogulated level

(n,L) has previously been given. A possible model is formmlated in
this section. In the classical microcanonical model a correspordence

is made between N and Ng , a8 in the Bohr-Sommerfeld case, but not
between (L, m) and discrete values of (L("“‘)‘o Instead, the level n
is represerted by a different average of ensembles of the Bohr=Soumerfeld
type with prescribed (nc ,Lc,rnc) . This average is taken over all
values of M. in the complete continuous range [-l¢,l¢] and over

all Lo in the complete continuous range [o,n ], in such a way that the
dimengionless va,rié.bles ﬁ = LZ' /nz' and w= m‘_/ Lc_ are independently
and uniformly disbributed in the ranges [0,1] and [-1,1) respectively.
The clasgical microcanonical model ig therefore the approxiwation to the
Bohr-Somaerfeld model for a level YW, obtained by replacing the
sunmations by integrations. However, the classical microcanonical

model has two advaniages over the Bohr-Sommerfeld model.  Firstly the
classical ensemble is spherically distributed for alln, as in the quantal
treatment., Secondly, the momentum distribution derived from the
microcanonical erngemble is correct for all 1evels‘Y1 o TFor these

reasons, the clazsical microcanonical model for a uniformly-populated
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level MU is wore attractive than the Bohr-Sommerfeld model. A similar
model of a uniformly-populated levelfnl) is sought with the same additional
nroperties.
The ey to this construction is the correspondence between the

quantum numbers N and L  and a classical distribution function

en,,(,s) + This can he geen from the fact that for any level (n,l,)
the spherieal quantum momentum distribution ig defined over the entirs
range of nagnitudes of momentum, whereas in the classical case barriers
exist unless straight-line orbits are permitted. By compari.son with
the xnown microcanonical model in which @, (p):l Jthe distribution

eﬂt(ﬁ) must satisfy the Fock identity, namely

n-l
(2L41)
Z ""'r"""i ent(ﬁ) = en(ﬁ)=‘ g (4.1.1)
l=0
for all . . In particular, for N=1!, L=0

ent (B) =l=@n(B) . (4.1.2)

The simplest possible postulate for em_(p) ig 4 polynomial of degreé
( ’q-%) with coefficie.n‘cs which depend upon YL and L . For g smiven
value of }3 the classical ensemble of orbits, obtained by averaging over
the thrce angle variables and the variable M leads to the classical

momentun distribution (o;a p ( p) given by

¢ 4 B . H(Bmu—8), |
nea.ﬁ”’) = ™ (p=p3) (T= B/ Bmax) > (4.1.3)

where b; =2mU  and B = 4-33"'):},"/(}5‘1-?:')". This distribution may

be obtained from the Dosition distribution defined by Fapleton (1968) for
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a fixed classical angular-momentum magnitude, by using the energy
eguation

' 2— 262—_ =_J' ;Z.
I S

Y . (4e1.4)

The precise aha,ly‘bic form of ﬂm ig egsential to the correspondence
with the quantal momentum distributions. The physical reason for the
upper bound leQ«X ; which is never greater than unity,is that if p is
different to PQ , then a circular orbit must be forbidden and hence P
cannot be unity.

The distribution e;° P( b) is normalised according to

Pmax ‘
fb.-.- dp e‘,,eﬁ (p)y =1 | (4.1.5)

‘where
b
Pmax = Po (:{—Z ’ (4+1.6)
Prmin = 23 ('sz 1 (4.1.7)
and '
e = (18", G

is the eccentricity of the ensemble of orbits.

It is not difficult to show that the classical microcanonical

momentun distribution ef, (P) is gonerated by
(-]

Rh(P) = L4 euB) epaP (429)

where Q‘s(p)z | « Then

- 3__2- Pos * (4.1.10)
eS(p) = ¥ (F;f—hz)@ . por.10
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i
¢ _ <
e“i(b) - L df Rne (B) Cr.p (p) (4.1.11)
be the classical momentum distribution derived from em (P) .
‘In particular, if | (’zr(ﬁ): 2/3 .then .

3

< . Bma 4

giving
512 21 2
< _ EoF 16 Pbs P
ezP(P) = _T-;-(p1+},:)‘+ Y (bT-_rPg')z‘ ’ (4.1.12)

which is the exact quantal momentum distribution for the 2}3 level.

Similarly, if &S (p):%—(p then

< 2 ke . ALKoPY
R S

which is also the exact quantal momentum distribution for the 2§ level.

(4.1.13)

As a check, note that

A}L Pas(B) + j-_ pB)=1 (4.1.14)
and

C C /i < _ 3% Losbz
T P2s{P)+ 2 p2p(P) = @p(b)= ™ (prepr)t - (4113

Further, the following sinple relations hold
, j
['ap ps(p) = ['dBpuspd= ['dPPab (B) =1
[[ap pus(p) fup () =°

and | (£.1.16)

[ldp pes(P) pas (Y70

There rewains ocnly one awkward problem. for /6‘>2/3 5 st ( ﬁ)
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is negative. The explanation is, however, extremely simple. Since
the gquantal momentum-space wave functions for the 1S and 28 gtates
must be orthogonal in their "radial" part,the latter must have a simple
Zero é,t a finite but non-zero value of b ’ and‘ so the momentum dis-
tribution for this level must have a node at this point. Clearly, the
node occurs at =P, , where the distribution takes the form R (P*b‘,)l
In order to reproduce this behaviour gome clagsical confributions near

}o: bo n;ust be subtracted, not added. It may be argued that such

negative distributions are unacceptable, yet they do not arise inherently
from classical distribution theory,but are consequences of the cofrespondence
between classical and quantal systems. In spite of this difficulty it is

extremely surprising that such a siuple extension gives exact results.

For an arbitrary level (TL,L) the quantal momentum distribution

e'?l (p) may be written

t+/ \ 2
h-l-i "‘“] " (4.1.17)

2kt (2 (n-t)
er?t(P) = n(ﬁp:)* T (nel)T “ﬂm{

where

Emax = (PP-p3)/ (P pe)

(4.128)

and

Bmox = | = €max (4.1.19)
(see for example Bethe and Salpeter 1957, Vol. 35, pp. 125-6).
The function C: ('t,) is the Cegenbauer polynomial of degree M with

parameter Y and argument X (see, for example, Abramowitz
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and Stesun 1965, po.773-803 ). Now, since Cnbf.) is even or odd

. , v P
according to waether U is even or odd, the function {Cn{l)s
. ) . 2 - A 2
is a polynomial in X~  and hence also a polynomial in (I-x ) . Thus,

, 2

by equation (4.1.19) the expression {Cn L-.(em&lﬁ is always a
polynomial in ﬂMax of degree 4 = n-t-1 , the number of zeros in the

"padial" momentum-space wave function. Hence, it is always possible

to write

L+l 2 J L+ Rk
{ Cn_H( emax)} = Zk:o D,jk /Bm«lx ? (4.1.20)

go that

512 L 2. )
a 32 b, P (2. ) iln L kal ,
QnL(p) = ﬁ (E;:Poz)“" W ’ Z de Ffmux, . (4.1.21)

=0
In order to reproduce this quan‘bal distribution in the classical model,
n-l
suppose ent(p) = zAnLhﬁ Use this in equation (4.1.11) Then
3 Brax =Y, n-l
< 4
it = B [ 4 O] T
so that
N :
¢ = 3% P : z W, e, A 22)
g (P)= (PPt o, o nlk Bmax 5 (401,22

where thﬂ = (Zh k.‘)l/(zkﬂ)! . Hence Q:L(P) is identical

to (::'L( p) if the Apj are chosen to satisfy

AnL(L‘\"") = O , for v=0,l-1;

v al L+ (4.1. 23)
AnL(L+r) = @__.é.’_,.)..i—ﬁ - Die, [

() Woaar s
for v =0, n-t-i
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L+
The coefficients D:, are assumed to be known from the cuantal model
and so the claszical polynomial distribution (’"L ( p) ig wniquely

L+t
determined. Since the coefficient Dé-,. depends upon proverties of

the Gegenbauer polynomials, an explicit expresdion is not necessarily

*
easy to obtain. THowever a direct guess Ant v for Anl Lo With

* r

Ap e = (1 (n+lxrin
" (n-L-r<=1)} (2L+r+D!} r!

satisfies the necessary congtraint given by equation (4.1.1) and has

(l?olvﬁtf?)

been checked in many cases. This guess leads to the expression

x n (n+L)! LF . (2t+2,2142,8)
Enc (B) = oy (2t+|)!—'3. i (2220280 (4.1.25)

~where Fn ( P,tl‘x) is the Jacobi polyncmial defined by Abramowitz and
Stegun {1965, pp. 773-803). The orthogonality relations for these

polynomicls imply automatically that
i ¥
j df Pni (p) =1 for all n,tL
P » ] :

o [lap enlB) B GBI =0 for aEn. | (o)

It further appears that

L. dp Qd;t.(ﬁ) ;6':1;/ (ﬁ) =0 for L”#_L; (41.27)

In particular

n-l

€n n-i (B) = n,& . (4.1.28)

and
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€n nfl(p) = 2h(n—a)ﬁ"lln(2n—r)/3h_' \ (4.1.29)

are completely consistent with equations (4.1.25) ~ (4.1.27).
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A.2 iscellaneous Initial Variableg

In principle, the initial conditions of an exact-classical orbit
can be generated from any ajternative set of initial vafiables
eéui#aiént to the‘original set. If, however, exact~claséioa1 orbits
with known initial conditions are available from nrevious work,'theh
there are two ﬁain réasons‘why, in practice, it is important to
investigzate whether there ére alternative significant initial variables.
In this work'a significant initial variable may ﬁe defined as one for
vhich orbits of a similar type, say ionization, are significantly
concentrated ir limited regions of the allowed range of the variable,
even when the orbits have been averaged over all other initial variables.
In contrazt, an insiynificant initial variable may he defined as one for
which the concentrétion of orbits of a similar type is insensitive to
the value of the initial varisble over its entire range, once the orbits
have been averaged over all other initial variables.

The Tirst important reason for such an investigation is that the
significance (or even the lack of signifioance) of a particular initial
variable can sugzest (or even reject) the possibility of o simplified
treatment of the collisions. | Such a procedure may therefore provide
inegisht into the claseical mechanisms invelved in specific many-particle
collisions. Purther, the success (or failure) of a classical dynamical
approximation may be used to suggest (or criticise) an equivalent quantal

dynamical approximation.



189

The second reason applies particularly to the lionte-Carlo methods
of intecration. The more refined techniques, such ag stratification,
importance sampling and control-Variate methods (see, for example,
section (3.1) ), only have increased efficiency over the crude and
hit-or-miss methods,if as many as possible of the initial variables
are significant, otherwise the gain in efficiency is usually small.

A detailed investigation of ionization and charge—transfer collisions
wag made at the incident proton enefgy 68 Xev. (see section (3.3)). The
dependence of these strong collisions was sought as a separate function
of each of the original and of several simple alternative initiai
variables, though dependences for two or more variables at a time were
pogtponed until significant variables could be found.

The results of the investigation were, in general, disappointing,
but perhaps it was too much‘to expect that all ﬁhé original initial
variables could be replaced by alternative simple significant initial
variables.

The first of the significant variables waé found to be the square

HL of the modified impact parameter, which was already known from
earlier work. Strong collisions were indeed more closely grouped than
in the corresponding unmodified square 51 at this incident energy.
The significance of gz is suggeéted from the binary-encounter theory.
Indeed, in the Thomson model, the energy transfer is a simple functioﬁ
of b* and is independent of the other five initial variables. However,

in the Thomas model, in which allowance is made for the motion of the
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target s2lectron, the energy transfer is a complicated function of ‘;z
and of the other initial variables. In fact, only four of these five
varizbles are required, since the Thomas energy transfer is‘invariant
‘under rotations of the position of the target electron about the'axié
'through the centre of mass of the atom in the directioh of the incident
velocity. Unfortuhately this angle is not one of the original set of
initial variables. Since ff is measured along a fixed axis, and not
radially, different valﬁes of this angle produce different unmodified
impact parameters b so that the exact-classical orbits are not
invariant under this rotation, though the angular dependence of strong
, collisidns was not found to be sufiiciently signifiéaﬁt'to be useful in
later work. The Thomas binary-encounter model was found to be
particularly disapnointing, as the gain over the Thomson model was only
marginal at this energy. Hevertheleess, the binary-encounter theory does
12
provide the variable b .

A second significant variable was suggested originally by Percival
and Richards (1971la,b),where they found that their analytic work for
weal excitations gimplified if the incident-velocity direction is chosen
along {J‘ axis instead of the 2 axis. They found that the Huler
rotation-natrix elements were more symmetric and. that the expression

(,_,Hz)?z: sin® could be entirely eliminated with this choice of
incident-velocity direction. Since, in the exact-classical work the
incident direction had besn chosen by convention along the 2: axis, it

was decided to investigate the dependence of strong collisions on each of
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the rotation~matrix eleients. This had not been considered previoﬁsly.
It was found, surprisingly that the dependence on the elewment R 13

(= - cos sin®  in terms of the oi‘iginal variables) was significant
for ‘poth ionization and éharge tranéfer. Further, the'dependence' was
‘fou.nd to be very close to that predicted by the classical first-order
dipole 'perturbation theory of Percival and Richards (1967) Af'or the
special case of circular orbits and large values of the adiabaticity
parameter 'wb'/v. . The elemeht, Pt% is simply the scalar product

L.x in the original coordinate system where L

L is the initial
orbital angular momentum of the target electron. If the impact parameter
is unmodified, or even if it is modified, but much larger than the mean

. . '] A . . . . . .
atomic radius Q , then X is directed along the initial angular
momentum Ly of the incident particle, though this is not true for small
modified impact parameters. For this reason the dependence of strong

. . . . y L 3 ﬁ A 3
collisions was also investigated as a function of L,.L  but it was found

1, i} A o L) h) . :

to be so close to the dependence with respect to L .X that the simpler

—

uniformly—~distributed variable /I\_._. could be used in preference. If

~ :
the velocity 1s directed along the axis, then L__'i ig simply the

e ¥

~

new initial Ruler-angle variable W . Hence the classical adiabatic
perturbation theory provides the significant variable ,.L’ . Physically)
this means that ,for large impact para.meters, strong collisions are
concentrated in the region where the orbits are almost planar, as might
‘have been expected from first principles. |

/2

: 2%
4t lower incident energies b is less significant than b~ y but
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the significance of p.f persists, as can be seen from figure (4.2.1),
where the dependence of charge transfer (ionization being negligible in
this case) is displayed gimultaneously as a function of the variables
B/ bpax and (:z_;{i’) , using the firet 400 orbits of the exact-classical
results for 7 Kev. incident protons. The dependence is extrenely
striking at such a low incident energy. It should be noted that each
cell would be expected to contain approximately the same number of
charge-transfer orbits,if these variables were insignificant. In this
case the shape of the distribution suggests that an alternative product
variable Q= b‘(l-ﬂ)/(lb;)would be even more significant. However,
first, care is needed, since the product q of the two independent and
uniformly-distributed variables % and Y say, is not uniformly
distributed, even though all are defined in the range [0, i] . Instead,
the variable W = CL—Q'Loch is uniformly distributed on this range. In
the above cage, all charge-transfer orbits possess values of W 1in the
restricied range [o, o. 6] approximately, which implies that the rewaining
40, of the total orbits could have been omitted,if the significance
of this wvariabvle and its precise cut~off value were known beforehand.
The only dificulty which could arise from using this variable is that

2
its value depends upon b « I% ig therefore probably better to

Mm%
2.
uge this variable only if bmax is known to include all orbits of
interest and is not to be varied.
Of the remaining distributions the dependences upon the variables

ﬁ‘-’- l}/‘}mom and the electron phase parameler '1:/9.11 are probably most

significant at intermediate and nigh incident energies, but only for
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and (1=x)/2 for 7 Kev. protons.
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charge-transfer, not for lonization. These two variables are

JUST thiose

needed to define the initial radius ¥ of the electron and hence also

its speed, using the energy equation. It would appear thatv the variable

9(*} , Where

o
= 2 i -2} f(2a-r)
g(r) twn(zu_ "TFi(h*ﬂ(a )[( 3 s

which ig uniformly distributed in the range [C)l] is a convenient

alternative to the pair (fs,fo v It is interesting that this variable
arises naturally in the approximate classical treatment of charge
transfer at high incident energies (see, for exgmple, Thomas 1927c,

Bates and Kingston 1970).
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Abstract. A detailed comparison has been made between the binary-encounter and-

Bethe theories for ionization of the (2p, 0) hydrogen atom by a fast incident charged
particle. For this purpose we have mathematically reformulated the binary-encounter
theory to treat the non-isotropic velocity distribution in the initial state of the atom
considered. The pronounced dip found before in the Bethe theory is reproduced in
the binary-encounter theory and is shown to be caused solely by the angular part of
the initial-state wave function. Good agreement between the theories is found for
energy transfers € >1 ryd. Applications to other initial states and other atoms are
discussed.

1, Introduction

A new wave of interest in binary-encounter collision theory was created by the publica-
tion of Gryzinski’s (1959) paper, where remarkably good agreement between classical total
cross sections and experiment was found for a vast range of charged-particle-atom collisions.
However, these formulae contained certain errors which were corrected by Stabler (1964)
and as a result the agreement with experiment suffered. The agreement was improved for
electron-atom collisions by Burgess (1963) and Vriens (1966) by formulating a symmetric
collision model and partly allowing for electron exchange by using a quantal instead of a
classical treatment. Kingston (1968) gave a quantitative comparison between the binary-
encounter collision theory and Bethe (first Born) theory for ionization of ground-state and
excited hydrogen atoms by fast charged particles, and so studied the range of validity
of the binary-encounter collision theory for total cross sections. His results agree with the
qualitative results afforded by the correspondence principle (see e.g. Abrines and Percival
1966, Burgess and Percival 1968, Vriens 1969). This approach was extended to a compari-
son of the differential cross sections by Vriens and Bonsen (1968, to be referred to as I) for
ionization of -atomic hydrogen from the initial ‘configurations’ 1s, 2s, 2p and 2. Here 1s
and 2s are single states, 2p is the arithmetic mean of (2p, 0), (2p,+ 1) and (2p,—1), and 2
is the arithmetic mean of 2s, (2p, 0), (2p,+1) and"(2p,—1). All of these ‘configurations’
have isotropic velocity distributions. 2s and 2p have the same ionization energy, but differ
in the form of the velocity distributions. It was shown in I that, by using the quantal
velocity distribution in the binary-encounter collision theory, good agreement was found
with the corresponding Bethe results. This established how ‘initial-state / quantization’,
as we have called it, should be accounted for in the binary-encounter collision theory. In
this paper we extend the comparison to include ‘initial-state m quantization’. This intro-
duces a new feature, viz. non-isotropic initial velocity distributions, and we have modified
the binary-encounter collision theory accordingly. This work was also motivated by the
pronounced ‘dip’ which develops in the Bethe generalized oscillator strength fi(K) for
lonization from the initial (2p, 0) state of hydrogen. We have hereby completed the quanti-
zation in the initial state. In contrast no consistent method has yet been found to account
for final-state quantization (necessary, for example, in excitation and charge tz:an§fer).
Throughout this paper we neglect exchange effects, and hence for the case of incident
electrons the formulae only apply for sufficiently high incident energies. We also neglect
all relativistic effects.

2. Binary-encounter theory

In a binary encounter the differential cross section 9°c/0E 0P 9(cos x), abbreviated
hereafter by .og.p for an energy transfer E and 4 simultaneous momentum transfer P
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from an incident particle of charge 2,¢ and velocity , to a target electron with velocity v
is given by Vriens (1966) for incident electrons only, Banks (unpublished) for arbitrary
masses; Banks’s method is described by Vriens (1969)
8z,%* H(X)
RPa S oph xiA (1)
where
X =1+42(3,.P)Y2.P)3,. 9)=(3,. P>~ (. P)2— (3, . )2 )

H(X) = 1 for X> 0 and H(X) = 0 otherwise, and 9, . = cos y.

In applications to charged-particle-atom collisions equation (1) must be averaged over
the velocity distribution f{ @) of the atomic electron(s) relevan tto the target atoms considered,
ie.

wme= | " 02 dafi (o) | d(eos A0 | dn f(1) 9%, (3)

0

where 7 is the azimuthal angle of ¥ around o, and

f: v2 dof(v) J‘1—1 d(cos x)f(x) f:ﬂ dy fi(n) = 1. 4)

For isotropic velocity distributions f,(n) = 1/27 and f,(x) = }, so that the angular integra-
tions in equation (3) yield (see Thomas 1927, Vriens 1966, 1967)

4z, 2e*
O ©)
and N .
Ogp = f 2?2 de f(v)og p,y (6)
0

For non-isotropic velocity distributions equation (3) will first be expressed in a more
convenient form. R

Let O(XA', Y, 2) be a Cartesian frame of reference oriented so that Z is in the direction
of o, and so that P lies in the (2, b'e ) plane. Then 'iiis conveniently described by the usual

spherical polar angles x and 7, where cos y = 9; . 2. _ o
Let O(%, 9; %) be another Cartesian frame of reference oriented so that ¥ coincides

with ¥ and so that % lies along P (see figure 1). In this frame % is described by the spherical

polar angles @ and ¢, where cos § = 9. P. R R
It can easily be shown (Vriens 1966, 1969) that 9, . P and 9 . P are uniquely determined

by ©,, P, E and v, all of which are here considered fixed in the integration over angles (the -

"~ . . »
integration over v being the final one). Let cos o = 9; . P. Geometrically the condition
A - -
9. Pis a constant means that 9 is restricted to a circle I' whose ¢entre lies on P and whose
plane is normal to P. The angles y, 0, ¢ and « are related by

cos x = sin o sin 6 sin ¢ + cos o cos 4. )
Now
X2 = sinf sina cos ¢ (82)
and )
d(cos x) = sin # sin o cos ¢

50 that oo 3)
cosy) 9
s = d¢. 9
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Figure 1. Velocity space diagram for the binary encounter. When P, E, v, and the

. -
magnitude of 9 are all fixed, the vector (OA) must lie on the circle T’, whose plane is
perpendicular to P and whose centre lies on P.

Hence, for the case of isotropic velocity distributions, we can replace the non-uniform
integration over cos x by a uniform and much simpler iritegration over ¢, where ¢ is the
most convenient representation for . Thus we can write

47z, 2et
where :
1 2n 1t
P . dé oppe = 2 f_l d(cos x) oz,p,-
For non-isotropic distributions of 9, because 6 is fixed,
8z, %et
OE, P, 0, ¢ = WS(COSG—M) (11)
where 8(x) is the well-known Dirac 8-function and
2m.E — P?
= 12
E e omoP (12

where m, is the electron mass. ,
Equation (10) is a simpler and more elegant version of equation (1). Equation (11) is
fully normalized in that

41z, %et

[ v [ as
5 d(COoS -— = —,
i o 2m T OBROO T Pt

With equation (11) we have reproduced a formula derived by Nijboer (1968, private
communication) in an entirely different way. He used the first Born matrix element for
charged-particle-atom collisions as a starting point and not relations for scattering of free-
moving particles. Nijboer’s method is described in the review by Vriens (1969).
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_ Let the velocity (momentum) space wave function i,,,,(@) of the hydrogen atom in the
initial bound state be written

Puin(?) = pur(0) Yim(0, ¢) (13)

where p,;(v) is the radial velocity space wave function,

f o dofpu(o)f? = 1
0

and Y (0, $) is the normalized spherical harmonic (see Bethe and Salpeter 1957, p. 91,
8wz et

pp- 122-5). Then
Opp = <nlm oD 1zlm>

8 2,4 | .
i <nlm nlm>. 14)

v,2P*
3. The generalized oscillator strength in binary-encounter theory

The ‘binary-encounter generalized oscillator strength’ f-(K) (denoted before in I as
df(Q)/de) is related to the high incident velocity limit of the binary-encounter cross section
og,p Dy

&(cos 0 —p)

1
—6(cos 0 —p)
o

PEy 2
fE(K) = ____1___2 Gg,p (15)

8mway?z,%v,

where K = P[h (hence Ka, is dimensionless) and v, = €%/, Hence

fe(K) = (}2:)3 <nlm nlm>

_ (‘I‘E{%‘g<nfml3 (E—iiK . v;%ﬁzKQ/me) nlm> ‘(16).

where R is the Rydberg energy (m.e*/2%%). Here we used the relation |a|8(ax) = 8(x).

Equation (16) is actually the formula derived by Nijboer and mentioned before. Using the
notation O = (Ka,)? and € = E|R,
€ — Q Vg

T 2017 o

0 8(cos 0—p)
5, dcos 0—p

o

‘and, since p? € 1, 92 > v,,,% where

ol
Ymin = Eél‘,?%o-
In particular for the (2p, 0) initial hydrogenic state

3412
o= (i) o

128 2,20
pai(v) = 3 U2 (402 + %,2)1'{5
Rerforming the angular integration only, we obtain

210 ¢(e — Q) 210
JoolK) = T Qsl‘z (427 +0,2)

3 H(Z’ - ‘vmm) (17)
and

78 = | m & fy. K).
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It can immediately be seen that fg ,(K) is zero for ¢ = Q and non-zero around this
region. Performing the integration over v, we obtain

128 €Q5/%(c— Q)?

Seeoo(K) = —5_‘”—((:*_9)2—4‘9}?5 :

(18)
Similarly, for the (2p, + 1) initial state

3 1/2
Y, (6, 4) = (8—71) sin 0 exp( 4 ig)

and the complete integration yields

16 Q52
f E.(2p, £ 1)(K) =

57 {(e— QP+ Q)
Fo.20(K) = 3 e, 20,0 &) + 2 20, £ 1)(K)}

_ 32 Q{5 0)*+ 0}
Sl 3 e orror

which is in agreement with equation (7¢) of 1.

(19)
Now

1.e.

(20)

4. The generalized oscillator strength in Bethe theory
The generalized oscillator strength fz(K) is defined by

2

(l/’ilexp(lK * r) W’nlm)

1K) =5 1)

where, as before, i, is the initial-state wave function of the target atom, i is the final
wave function and r is the position vector of the atomic electron. For ionization of the
hydrogen atom from the initial state (n, /, m) (see I and the references therein)

' fE(K) = émm {1 —exp (—217)} - exp {;2 arctan (—gﬂ——)} (22)

k, " O—k,2+1/n?
where 1,2 = e—1/n?. In particular, for ionization from the (2p, 0) hydrogen atom
4e
- {Ue—O)* _0)
boso =I5 gy g U6~ O+ G40+ 9= 0)
+(1920%+540)(e — O)? + 800%(e — Q) + 1502}, (23)

5. Comparison of the theories

We used equations (18), (22) and (23) to calculate the K dependence of fz (5, o,(K) for
different values of E. The results are displayed in figures 2, 3 and 4. The most striking
feature of the Bethe theory formula is the gradually developing dip at Q = e which deepens
with increasing e. For this state the binary-encounter theory approach gives an exact
zero at Q = e for alle. The differences in the two theories arise from the fact that the effect
of the nucleus on the atomic electron is only partly allowed for (initial state) in the binary-
encounter approach, whereas the Bethe theory contains the full effect of the nucleus (initial
and final state) on the atomic electron. In both theories the effect of the nucleus on the
incident particle is ignored. This is valid provided the incident velocity is sufficiently large.
It can be seen that there is remarkable agreement for ¢ = 15 (see figure 4) and that reason-
able agreement is already found for € > 1, which exceeds the threshold energy for ioniza-
tion by a factor of 4. As in I, we find that the binary-encounter theory gives an incorrect
description of the collision process for small K.
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-4 -3 -2 -1 0 | 2
InQ

Figure 2. Bethe (full curves) and binary-encounter (broken curves) generalized
oscillator strengths for ionization of the hydrogen atom fromthe n =2, =1, m =0

state for different energy transfers. Curve A, € = 0-25 and fz(K) = fz'(K); curve B,
€ =04 and fe(K) = 0-5(fz'(K)—2); curve C,e =1 and fe(K) = 0-2(f'(K)—4).

£ (KD

In @

Figure 3. Bethe (full curve) and binary-encounter (broken curve) generalized oscillator
strengths for ionization of the hydrogen atom from the n = 2, [ = 1, m = 0 state for
e = 3.
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Figure 4. As in figure 3 fore = 15.

6. m-quantization axis

In both theories the axis of m quantization was taken along the direction of the momen-
tum transfer vector P, which is fixed once »; and 9,’, the final velocity of the incident
particle (energy loss and direction of scattering), are chosen (e.g. in an experiment). Hence
the cases considered are realistic in that it is experimentally possible to make a beam of

atoms with = either 0 or 1 along the P direction. In principle one can thus observe the
pronounced dip found here.

It is interesting to note that, if in the binary-encounter theory we choose the initial
state m-quantization axis along the direction of ,, then for the (2p, 0) state of atomic hydro-
gen we obtain equation (19) which equals the result arising from the (2p, + 1) state with
the m-quantization axis along P. This is surprising because, even though

) 2m,E + P?

5,.P = -
2m v P

is small for large v; and therefore P is almost perpendicular to v;, the resulting angular
distributions are different. The former distribution has axial symmetry about the 9, direc-

tion, whereas the latter has toroidal symmetry about the P direction.

7. Additional remarks

Because of the simple structure of equation (16), the method can easily be extended to
higher excited states of hydrogen and to other target atoms. The zeros (or minima) in the
binary-encounter generalized oscillator strength for large E and P give the location of
possible dips in the Bethe and experimentally measured generalized oscillator strengths.
The nature of these dips arises essentially from the angular integration and thus from the
angular part of the initial-state wave function, as can be seen from equations (16) and (17).
The dips (troughs) recently discussed by Kim ef al. (1968) arise in a different way. They
considered excitation to bound states and ionization with small E. In their cases the dips
arise from the radial parts of the initial- and final-state wave functions.
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Abstract. Differential cross sections for the ejection of electrons from helium
by 100 and 300 keV protons are calculated using a classical three body collision
theory. Comparisons are made with the experimental and quantum mechanical
results. For not too large angles of ejection the classical orbit integration cross
sections agree very well with the experimental values, in contrast to the quantum
mechanical Born calculations,

1. Introduction

The energy and angular distribution of electrons ejected by 100 to 300 keV
protons from helium has been measured by Kuyatt and Jorgenson (1963),

| Rudd and Jorgenson (1963, to be referred to as RJ) and by Rudd, Sauter and Bailey
| (1966, to be referred to as RSB). RSB also performed Born calculations (hydrogenic,

scaled on the ionization energy) for this process. An extension of the Born calculations

| was made by Salin (1969) for atomic hydrogen. He took into account the interaction

of the ejected electron with the scattered proton by introducing a velocity dependent
effective charge. Macek (1970) took account of the final state wave distortion due to
the proton by calculating the first term of the Neumann expansion of the solutions of
the Faddeev equation. Another theoretical approach, the binary encounter theory,
has been employed by Bonsen and Vriens (1970). From their comparison of the
(simple) binary encounter theory with the experiment and Born calculations of RSB,
they concluded that (i) the binary encounter theory and all classical theories fail in
describing the backward ejection, since this is caused by a purely quantum mechanical
mteraction of the ejected electron with the rest of the atom and (ii) for velocities of
the ejected electron which are of the same order of magnitude as the velocity of the
incident proton a three (or more) body theory has to be used to describe the
txperimental results in the forward direction.

These conclusions encouraged us to calculate the cross sections for small angle
tection of electrons by protons from helium using the classical three body theory
developed and applied to collisions of protons with hydrogen atoms by Abrines and
Percival (1966 a,b, to be referred to as AP). Abrines et al. (1966) also applied the
original Ema program developed by AP to collisions of electrons with hydrogen
Atoms. The total p—H ionization cross sections, obtained by AP had normal statistical
errors of about 109, and agreed with experiment to within 15%, over the entire
tange of incident proton energies (40225 keV). In their treatment, the only approxi-
Mation was the classical one, whercas in all other classical theories (Gryzinski 1959,
Burgess 1964, Stabler 1964 and Ochkur and Petrun’kin 1963) a second approximation
the impulse or binary encounter approximation) was also made. Our program was
based on the more general and flexible Fortran three body Monte Carlo program of
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Percival and Valentine (see Valentine 1968, Banks, et al. 1969 and Banks and
Valentine 1969).

In this paper we make extensive comparisons with the experiment and Born
calculations of RSB and RJ, and with the binary encounter theory. Double differ-
ential cross sections are calculated so that we are able to test the validity of the classical
approximation in detail.

2. Classical model for the helium atom

Because of the fact that the atom contains two electrons, an additional
approximation has to be made. The two electrons will be described as independent
scattering centres, so the four particle collision can be replaced by two independent
three particle (p~H) collisions. The classical microcanonical velocity distribution in
the field of the nucleus can be written as

@) 8vy° {
) = ——

P 772(7}2_’_7)02)4 ( )
in which mv,? = —2E,, E, being the binding energy. This distribution has also

been shown by Bonsen and Vriens (1970) to represent the quantum mechanical
velocity distribution of the electrons in the helium atom very well if E, was chosen
to be equal to the mean kinetic energy of the electron (39-49 eV). However, since

the ionization threshold is equal to E in the classical model, we had to choose E, -

equal to the ionization energy (24-58 eV). This represents the same scaling as has
been performed in the Born approximation.

3. Numerical method

We used the program described by Valentine (1968) to construct the classical
proton-helium atom system and obtained the differential cross sections for ejection
of electrons for two incident energies (100 keV and 300 keV). The values of the
error parameters €, y and 6 defined by AP were chosen to be 0-3, 0-2 and 0-005
respectively. With these error parameters the statistical errors were larger than the
numerical and truncation errors arising from the Runge Kutta integration of the
equations of motion and from the neglect of the asymptotic interaction. Although a
very small value of & was used the extra computing time was relatively short. The
range of modified impact parameters was chosen to be 4/3-37 a,, for 100 keV proton
impact and 4/3 a, for 300 keV proton impact. From a sample of orbits uniform in the
whole range of modifiedimpact parameters (3000 orbits in the case of 100 keV impact
and 1000 orbits for 300 keV impact) the following remarks could be made:

(1) In order to obtain normal statistical errors less than 209, for the small angle
Ionization cross sections in the interesting ejection energy range (40-200 eV for
100 keV impact and 100-600 eV for 300 keV impact), the total number of orbits
necessary with a uniform impact parameter distribution would be 25 000 for 100 keV
and as many as 75 000 for 300 keV proton impact.

(ii) For all ejection angles, large ejection energies arose from collisions in which
small modified impact parameters were involved.

To reduce the computing time, which was about thirty seconds for each orbit on
the Stirling University ICL 4100 as well as on the Utrecht University EL-X8 we
made use of (ii) and used a weighted distribution of modified impact parameters for
the calculations of the cross sections (Abrines and Percival 1966 b). By taking the
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distribution of figures 1a and 15 for 100 and 300 keV proton impact respectively, we
obtained normal statistical errors less than 209, for the cross sections in the interesting
range of energy and angle with 8000 orbits in the case of 100 keV proton impact and
9300 in the case of 300 keV proton impact.

54
N 4
1257 00 keV 300 keV
34
2
(..
0 3 ) 5 ot 2
bz(aozl b?CaOZ )

Figure 1. Impact parameter distribution used for the calculations of collisions
of 100 and 300 keV protons on helium.

4. Statistics

The impact parameter distributions used to calculate the double differential cross
sections can be written as:
n

- p(b%) = 6(6%) 2, ¢,0(b,°—b7) (2)

j=1

in which 8(x) is the unit step function; so between two values b;_; and b; of the
modified impact parameter the distribution is uniform. For the range of impact
parameters between b;_, and b; we can calculate the contribution o,(F, ) to the double
differential cross section o, 6). Suppose that #; collisions take place with impact
parameter between b;_; and b;, then n; = NX7%_c;, in which N is the total number of
orbits. Further let the number of collisions resulting in ionization of the atom with the
ejected electron moving in a direction between 0 — A6 and 6+ $A6 with respect to the
incident proton and with an energy between E—{AE and E+ 3AE be denoted by

nE, 6). Then the contribution o,(E, 6) to the double differentigl cross section o(E, )
can be written as:

(£, 8) = MEO) |
T T S AOAE sind

&

(52—5,_,%) "~ where b, = 0. 3)

Assuming that no ionization takes place for impact parameters larger than b,, the
double differential cross section o(E, §) for ejection of an electron is simply

n

o(E,0) = 3 o(E,0). 4

i=1

Since in practice #; > n,(E, 0) the standard error is given by

* n(E,0)

1/2
A E, 0 = 2 __ _ 2\2 .
o(E,0) ZAGAEsinG{igl o0 h 1)} ©)
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In our calculations we choose Af = 10° for both incident energies. We took
AE = 25 eV for 100 keV proton impact and AE = 50 €V for 300 keV proton impact.
The standard errors were found to be of the order -of 209, except for very large
ejection energies and large ejection angles where the errors may be as large as 100%,.

Note that to obtain good statistics from an economical number of orbits we require
fairly large tolerances in energy and angle. This may result in a smoothing of the
double differential cross section. Experimentalists are faced with similar difficulties
but in this case our tolerances are larger than those of RSB. However for a given
atomic model we have 1009, counting efficiency so that we do not have additional
normalization problems.

5. Double differential cross sections

For ejection angles smaller than 90° we calculated the cross sections o(E, 6) and
compared our values with the corresponding experimental cross sections of RSB, the
binary encounter results of Bonsen and Vriens (1970) and the Born cross sections of
RSB, which agree with the binary encounter cross sections to within 10%,. For 100 keV
proton impact on helium the results are given in figure 2.

l0719L 44 100 keV H* on He
co(£,8)

lo'ZO
N
=107
E
@
3
b 10 /
]0'2#
10724 4
0 100 200 300
Eel (BV)

Figure 2. Energy distributions of electrons ejected from helium at various angles

with respect to 100 keV proton beam. The sets of data for 10° and 20° ejection

are multiplied by a factor of 100 and 10 respectively. ll our calculations;
O experiment of RSB; full curve, Born approximation.

The three sets of data have been displaced along the ordinate axis. In the upper

set the ejection angle is 10°. The agreement between the experiment and the classical
results is extremely good. The remaining discrepancies may be due to the approxi-
mate velocity distribution. In the energy region where both Born and binary encounter
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theory give results which are about a factor of six smaller than the experiment, the
Monte Carlo results are somewhat larger even than the experimental ones. This is
rather surprising since the omission of quantal tunnel effects should produce the
opposite. This discrepancy is unlikely to be due to the approximate velocity distribu-
tion since Bonsen and Vriens (1970) demonstrated that (in the binary encounter
approximation) the use of a more accurate velocity distribution raised the cross
sections in this energy region. The calculated energy distribution for 20° ejection
(the middle set of data) agrees completely with the experimental cross section over
the whole range of energy to within the statistical errors. For higher ejection angles
(see for instance the lower set for 50° ejection) it can be seen that the classical
approximation no longer holds.

The Monte Carlo results for 300 keV proton impact on helium are presented in
figure 3 together with experimental and Born results of RSB. The results for 10°

‘0—20

T T f T

300 keV H¥on He
o (£,8)

3
~N
o

o (£8) (mZeV sr-h)
5

0724

[ \\;\ ]
7 ¥ ‘!
-250 LN °
[y 5§ ‘}zo 3
10726 T

| i R 1 L
0 100 200 300 400 500 600
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Figure 3. Energy distribution of electrons ejected by 300 keV protons from

helium at various angles. The set of data for 20° and 30° ejection are multiplied

by a factor of 100 and 10 respectively. WMl our calculations; O experiment of
RSB; full curve, Born approximation.

ejection are not presented since the statistical errors are too large to make decisive
conclusions. For 20° ejection the cross sections are given in the upper part of the
figure. Though the statistical errors are not small the agreement between the classical
theory and the experiment is extremely good. This is also the case for 30° ejection.
For higher ejection angles the classical theory underestimates the cross sections but
even for 70° ejection (see the lower set of data of figure 3) the calculated energy dis-
tribution is in quite good agreement with experiment.

Comparison with the Born (as well as the binary encounter) approximation
shows that the interaction between the projectile and the atom in the region where the
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velocity of the incident proton is about the same as the velocity of the ejected electron
(50 eV for 100 keV protons and 150 eV for 300 keV protons) is essentially a four
particle interaction, which can be described very well classically by two independent
three particle collisions.

6. Single differential cross sections

In figures 4 and 5 the cross sections o(f) are presented and compared with the
corresponding experimental results of RSB and RJ and with Born and binary

I 1 I { I
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Figure 4. Angular distribution of electrons ejected by 100 keV protons from
helium. M our results; [J experiments of RJ; O experiments of RSB; full
curve, Born approximation; broken curve, binary encounter theory.

encounter calculations. From these figures it is clear that the classical approach is not
valid for backward ejection as has been explained previously by Bonsen and Vriens
(1970). In the forward direction the angular distribution calculated using the Monte
Carlo method is in very close agreement with experiment. For lower angles the
statistical errors become large owing to the small size of the ionization channel. For
higher impact energies the range of validity of the classical theory approaches 90°.
The results of RJ seem to be somewhat more realistic than the measurements of RSB.

In figure 6 the energy distributions of the ejected electrons are presented for both
incident energies. The agreement between all experiments and theories is close for all
ejection energies. It is clear that large angle ejection does not contribute significantly
to o(E) for ejection energies larger than about 30 eV. For very small ejection energies
(< 20 eV) the results of RJ are in closer agreement with our calculations than the -
measurements of RSB. In the energy range where the velocities of ejected electron
and incident proton are about equal, the classical cross sections are slightly better
than Born and binary encounter values which follows directly from the double
differential cross section calculations.
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300 keV H on He

i-23v

120 150 180

Figure 5. Angular distribution of electrons ejected by 300 keV protons from
helium. m our results; 0O experiments of RSB; full curve, Born approxi-
mation; broken curve, binary encounter approximation.
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Figure 6. Energy distributions of electrons ejected by 100 and 300 keV protons

from helium. The 300 keV sets of data have been multiplied by 10. m our

results; o experiments of RJ; O experiments of RSB; ¢ binary encounter
theory; full curve, Born approximation.
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7. Total ionization cross sections
In table 1 the classical total ionization cross sections are presented for both

incident energies and compared with previous results.

Table 1. Total ionization cross sections for ionization of helium by

protons
E, RSB RJ Born Binary Our
(keV) encounter results
100 11-9 10-0 11.0 11.9 9-25+0-25
300 7-13 — 5.47 5.74 5-44 +£0-25

All cross sections are in units of 10 ~2!m2,

It can be seen that the classical result, which is in very close agreement with
previous calculations of AP for p—H collisions, in both cases is about 20%, smaller
than the RSB results. The cross sections of RJ for 100 keV protons agree to within
7% with our calculations. The main difference between classical theory and both
experiments is due to small energy (< 20 eV) large angle (> 70°) ejection as can be
seen from figures 4 to 6. For 100 keV proton impact a fortuitous agreement exists
between the quantum mechanical (Born as well as binary encounter) theories and the
experiment of RSB. From figure 4 it can be seen that a compensation of the errors
occurs in forward and intermediate angles. For 300 keV proton impact this com-
pensation does not occur to the same extent and the total cross section in both theories
is smaller than the experimental value.

8. Conclusion

The classical three body approximation describes the angular and energy

distribution of electrons ejected by protons from helium very well for small and
intermediate ejection angles and for all ejection energies. In this region the classical
approach is even superior to the Born approximation. For large ejection angles a
quantum mechanical approach has to be used. To calculate total cross sections for
intermediate energies of the proton the classical three body approximation is as good
as any quantum mechanical approach. However to obtain good statistics within
reasonable time a fast computer has to be uséd for the Monte Carlo program.

The proton and electron ionization cross sections obtained by Abrines and
Percival (1966 b) and by Abrines et al. (1966) were determined as functions of
incident energy only. It is possible, that the agreement between Monte Carlo and
experiment on ground-state atoms is fortuitous. Particularly since the experiments
of Lassettre and his collaborators there is increasing insistance that comparisons of

the differential cross sections should be required before theory and experiment are

said to agree. On this basis the present results for double differential cross sections
show that classical orbit integration methods are valid in important regions of incident
energy, energy transfer and ejection angle even for low quantum numbers.
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PROGRAM SUMMARY

Title of program (32 characters maximum): EVAR
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Computer for which the program is designed and others upon which it is operable
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Opevating system ov monitor undey which the progvam is executed: ENL 23

Programming languages used: FORTRAN

High speed store vequived: 20000 words. No. of bits in a word: 24.

Is the program overlaid? No
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No, of cards in combined progrvam and test deck: 3452
Card punching code: 1BM 029 EBCDIC

Keywords descriptive of problem and method of solution: Atomic, Molecular, Astrophysics, Classical, Coulomb,
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Nature of the physical problem
Flexible representation of the classical relative

motion of two particles interacting through a general
central force.

Method of solution
" A general terminology of states and frames is in-
. troduced which allows changes from one state or frame
to another to be defined. The frame changes are ana-
lytic. The state changes are made by solution of
Newton's equations of motion using a fourth-order
Runge-Kutta formula.[1].

Restrictions on the complexity of the problem
Limited to central forces.

Typical running time

This depends on the form of the potential, the
boundary conditions and the. integration time specified.

Reference

‘[1] R.A. Buckingham, Numerical methods (Pitman,
London, 1962),
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LONG WRITE-UP

1. INTRODUCTION

Programs for the numerical solution of the
newtonian equations for the relative motion of 2
particles interacting through a central force have
wide application. Frequently solutions are re-
quired as part of the solution of a problem in-
volving 3 or more particles.

This package is designed to provide a flexible,
comprehensible and machine ~independent set of
routines for the 2-particle relative-motion pro-
blem, rather than routines which compute quick-
ly, although speed has not been neglected. Some
of the conventions adopted may appear unneces-
sary, but their significance becomes apparent in
using the package as part of a larger problem.

Because the problem of the relative motion of
2 particles is equivalent to that of the motion of
a single particle (with their reduced mass) in a
given external field [1,p. 29], the masses, co-
ordinates and velocities of the individual par-
ticles are not relevant to this package. Further-
more this package may be used directly to ob-
tain solutions of the equivalent problem of a
single particle in a given fixed external field.

Although most computing time is spent in in-
tegrating equations of motion, in practice, much
programming is concerned with setting up initial
conditions and analysing data. We have found that
this programming is greatly assisted by the in-
troduction of a terminology of classical frames
and states. The routines of the package are con-
cerned with changes in frame in addition to the
integration of equations of motion, which is re-
quired for changes in state. The latter is carried
out using a fourth-order Runge-Kutta method [2]
with a step length which is recalculated at each
step.

Provision is made for obtaining and working
In a frame of reference (%', y', z') for which the
relative motion is in the %', »' plane, but no at-
tempt is made to separate the radial and angular
motions, since the use of similar integration
methods for 2-particle and 3-particle systems
should reduce certain numerical errors accumu-
lated along orbits. The form of the force field is
thosen so that the user may include his own force
Ferms. There is also special provision for the
lverse-square force term. The package may be
Used for both bound systems and scattering pro-
blems,

The programming standards adopted in this

Package are comparable to those proposed by
Roberts in ref. [3]

2. BODY AND STATES

There is only 1 body in a 2-particle relative-
motion system. This is called the veduced mass.
It is labelled by any of

IBODR, JBODR, ..., NBODR, (IBODR =1},

BODR (abbreviation).

This body has a mass EMR2(IBODR).

The

2 (abbreviation)
as for EMR2(IBODR) is used to denote a variable
or routine associated specifically with a 2-par-
ticle system. This is convenient when the package
is used as part of a larger package or program.

Time (epoch) for the 2-particle relative-mo-
tion system is denoted by TIMR2 and is measured
(in some system of units which must be used
consistently throughout) with respect to a standard
origin of time which is supposed fixed.

At a given time TIMR2 the body has a position
R and velocity V relative to the standard (labora-
tory or LAB) co-ordinate system whose origin
coincides with the centre of force. R and V are
represented collectively by 6 numerical co-or-
dinates (in some system of units which must be
used consistently throughout).

The 6 co-ordinates constitute the RV-vector
of the body and are labelled by any of

IRV, JRV, ..., NRV, (IRV =1 to 6), in which

IRV =1, 2, 3 label the position co-ordinates

and

IRV =4, 5, 6 label the corresponding velocity

co-ordinates.

The

RV (abbreviation)
refers to co-ordinates of position and velocity.
We have found that velocity is preferable to mo-
mentum for numerical computation of orbits.

The motion of the system at all times, or
evolution of the system, can be obtained if a
time TIMR2 and the RV-vector of the body (with
respect to the standard cartesian axes at that
time) are defined. This set of 7 real numbers de-
fines a state of the 2-particle relative-motion
system in the standard frame, or a point in the
7-dimensional RVT-space. Any equivalent set of
7 or more real numbers which defines this point
also defines the state. States are labelled by any
of

ISTR, JSTR, ..., NSTR, (ISTR = 1 to KRSTM2),

ST (abbreviation).

A typical state might be that at the beginning
of an integration of the equations of motion,
called the énritial state, labelled ISTR = JSTR, or
the state after integration, called the final state,
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labelled ISTR = MSTR. When different forms of
interaction or different stages in the integration
are introduced, more states are needed. The
choice of numerical values of ISTR labels is left
to the user. We have made provision for 7 states
but this maximum number 7 may be altered by
changing dimension statements and redefining
KRSTM2.
The time at which the system reaches state

ISTR is denoted by

TIMR2 (1, ISTR) .
As the calculation proceeds, the RV-vectors are
stored in a 3-dimensional array:

RVREL2 (IRV, IBODR, ISTR)
with locations for each of the 6 co-ordinates IRV
of the RV -vector of the body IBODR in each state
ISTR.

3. FRAMES

At a given stage in a computation not all of
the elements of the RVREL2 array will be ob-
tained. For a given state ISTR only the time
TIMR2 and the 6 values of RVREL2 defining the
position and velocity of the body are required to
define the state. But any equivalent set of 7 or
more real numbers also defines the state. Only
some of these equivalent sets are significant or
useful and we call these frames, which may be
considered as particular co-ordinate systems
in the 7-dimensional RVT-state space. If more
than 7 numbers are given by a frame, then they
are related and the frame is reducible. Such
frames are nevertheless significant.

The frames are labelled by any of

IFRAM, JFRAM, ..., NFRAM,

(IFRAM =1, 2, 3, 4, 5),

IFRAM (abbreviation).

The frame IFRAM =1 has been defined above
and is the standavd frame. Thus, in a given state
ISTR, for IFRAM =1:

give TIMR2(1,ISTR) , @)

RVREL2(IRV,1,ISTR), IRV =1 to 6.
(That is to say, if TIMR2(1,ISTR),
RVRELZ(IRV,1, ISTR) are given then IFRAM =1
is available.)

The frame IFRAM =2 is the votation-matvix
Sframe. In this frame a new set of axes with unit
vectors X', y', Z'is defined with standard car-
tesian co-ordinates

XDASH2(IR,1,ISTR), IR =1to 3,

YDASH2(IR,1,ISTR), IR =1to 3,

ZDASH2(IR,1,ISTR), IR=1to 3,
respectively. The nine values constitute a 3 X 3

rotation matrix M which relates co-ordinates in
the two co-ordinate systems. The components
with IR = 4 are described in routine AXES2.

In the dashed co-ordinate system the %', ¥’
plane is taken to be the plane of relative motion
so that the angular momentum vector is in the
direction of the z' axis. For the Coulomb force
the %' axis is taken to be in the direction of the
perihelion vector (shortest radius vector). When
no Coulomb force is present the x' axis is taken
perpendicular to the initial velocity vector so
that the y' axis is parallel to this velocity vector.
Combinations of Coulomb and non-Coulomb forces
and the special cases that arise when some of the
quantities are very large or small, are de-
scribed in the comments of routine AXES2.

In the dashed co-ordinate system only the co-
ordinates 1, 2, 4 and 5 are required to define
the RV-vector as the z'-components are zero.

The RV-vector is called

RVRXV2(IRV,1,ISTR) ,

~ where RXV denotes the vector R X V which is

used to define the new frame, The values for
IRV =3 and IRV =6 are always zero.

Both this RV-vector and the rotation matrix
are needed to define the given state ISTR of rela-
tive motion, so that for IFRAM = 2:

give TIMR2(1,ISTR), XDASH2(IR, 1, ISTR),
YDASH2(IR, 1,ISTR), ZDASH2(IR, 1, ISTR),
IR=1to 3, @)
RVRXV2(IRV,1,ISTR),IRV =1, 2, 4, 5.
Clearly this frame is very reducible.

The reducibility is lessened by defining the
rotation in terms of the Euler angles instead of
the matrix. With the definition given by Whittaker
{4, p. 9] of the Euler angles (¢3,02,y9) £
(PHI2, THETA2, PSI2) or with g £ EMU2 £
cosf9 as a useful alternative parameter, the

Euler-angle frames are defined as follows. For
IFRAM = 3:

give TIMR2(1,ISTR), PHI2(1,ISTR),
THETA2(1,ISTR), PSI2(1, ISTR), (3)
RVRXV2(IRV,1,ISTR), IRV =1, 2, 4, 5.
For IFRAM =4
give as IFRAM = 3,
but EMU2(1, ISTR) in place of 4
THETA2(1,ISTR) .

The fifth frame requires an alternative defi-
nition of the rotation in terms of the complex
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Cayley-Klein parameters [4, p. 12] (ag, 89, vg, 89)
2 (ALPHA2, BETA2, GAMMA2,DELTA?2) so that
for IFRAM = 5:

give TIMR2(1,ISTR), ALPHA2(1,ISTR),
BETA2(1,ISTR), GAMMAZ2(1, ISTR),
DELTA2(1, ISTR), RVRXV2(IRV, 1,ISTR), {
IRV =1, 2, 4, 5.

5)

The equations of relative motion are usually
integrated in the rotation-matrix frame, but
since only TIMR2 and RVRXV2 are required,
any but the standard frame would do.

Initial conditions are sometimes set up in the
Euler angle frame [5]. The Cayley-Klein frame
is included for completeness.

4. SIGNALS AND SIGNAL RULES

These play a key role in the operation of the
package. At the beginning of a run for a given or-
bit none of the frames will be available for any
state of that orbit. The initial state (say ISTR =1)
for the relative motion may then be set up by the
user in any one of the 5 frames, but it may be

required at a later stage in any other frame. A
routine UFRAM2 is provided for obtaining one
frame from another, but this will not work un-
less a record is kept of which particular frame
or frames is available. This service is provided
by a signal arvay:

KSFRM2(IFRAM, 1, ISTR) ,
whose value for each IFRAM, ISTR is either 0,
which is called »ed, or 1, which is called green.
The package will function properly only if the
signal vules are strictly kept by the user.

At the beginning of the run for a given orbit
the whole signal array must be set to red (zero)
by the user. For a given state ISTR, if the user
Provides the frame IFRAM without using the
| Package, say to set up the initial conditions, he

hust set the appropriate signal to green (1). If
i the package routines are used to obtain frames,
\ they set the signals automatically.

) As each frame is obtained the corresponding
Signal is set to green. If a routine of the package
requires a particular frame it first observes the
torresponding signal. If it sees green it proceeds.

it sees red it means that the required frame is
lot available, and either it obtains the frame
from an available frame, or, if none is available,
4 FAULT routine is called. If the user wishes to
Vrite routines using particular frames he is ad-
Vsed to use the signal KSFRM? in the same way.

The signal arrays KSCAL2 and KSAXE2 will
be described in the context of the routines that
use them.

The signal rules described above must be
obeyed by the user, or the routines of the package
may produce nonsense, using RV-vectors with
incorrect components as data. When the rules
are obeyed they allow rapid and relatively simple
programming.

5. EQUATIONS OF MOTION, ERROR PARAM-
ETERS

The frames are derived from one another
using analytic relations. A state ISTR can in
general only be obtained from another by numeri-
cal integration of the equations of motion, called
numerical evolution.

The equations of relative motion are

. . 1 ~

R = V; | 4 =M FR » (6)
where M is the mass of the body, FR is the ex-
ternal central force acting upon it, and the dot

_ denotes differentiation with respect to time. We

call F the scalar central force. F differs from
the magnitude of the force by the-inclusion of a
sign (negative if attractive).

The 6 equations of relative motion are first
order differential equations for RVREL2 with
respect to TIMR2. The 4 equivalent equations for
the corresponding co-ordinates RVRXV2 are
solved (by routine USTR2) in frame 2 by a step-
by-step procedure.

Numerical integration, like many other com-
putations, requires a judgement to be made on the
conflicting demands of speed of computation and
accuracy of the results. Unfortunately this judge-
ment often cannot be made without many test
runs, so in this and later packages and pro-
grams speed and accuracy of computation are
under the control of ervov parameters

ERRP (abbreviation) ,
which are part of the input data.

Normally if an error parameter is small the
accuracy is relatively good, but the speed of
computation is relatively low, and vice versa.

For a given accuracy we like the speed to be
as high as possible. For the equations of relative
motion the speed depends critically on the opti-
mum length of the time-step STEP2 in the step-
by-step integration, which is a function of the
current force, and thus of the stage of integra-
tion.

We find it appropriate to récalculate STEP2 at
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every step, normally according to the formula

+ ERRP2(1)

STEP2 = S__—I__—QRT( V-E/MD) )
where ERRP2(1) is an error parameter, and
have for this reason used fourth-order Runge-
Kutta integration and not a nominally faster
numerical integration procedure for which a
change of step length is difficult.

In exceptional circumstances, e.g. near a
singularity or zero of the force, STEP2 as de-
fined above may approach zero or infinity, and
the routine STEPL2 which calculates STEP2
then keeps its magnitude within specified bounds.

6. SUBROUTINES AND FUNCTIONS

In writing routines it is advisable to allow for
exceptional occurrences, such as position and
velocity vectors being inthe same direction. We
have found that such exceptional cases require
considerable programming, which detracts
from the clarity of the routines of the package.
We have therefore separated many routines into
novmal modes and special or exceptional modes.
At first reading the special modes should be ig-
nored. However, it should be pointed out that
analytically "simple" orbits, such as circular
and straight line orbits frequently require special
modes of operation of the routines.

The general flow through the routines is given
in fig. 1.

USTR2(WTIM,JSTR, MSTR) and its daughters
USTR2 is the most important routine of the 2-
particle relative-motion package and, with the
aid of its descendants, carries out the numerical
evolution.

Explicitly, USTR2 obtains the final state
MSTR of the relative motion in the standard
frame from the initial state JSTR, in any frame,
and the time interval WTIM.

USTR2 uses UFRAM2 to obtain the co-ordin-
ates of relative motion in the dashed co-ordin-
ate system, and then normally carries out step-
by-step evolution with full interaction in that
frame. For each step, USTR2 calculates the
current time step STEP2 (increment or decre-
ment) using STEPL2 and evolves the state ap-
proximately for that step in time using RUNGE2.
When the time interval WTIM has lapsed (over-
shoot is automatically prevented) USTR2 sets
KSFRM2(2,1,MSTR) =1 and uses UFRAM2 to
obtain the co-ordinates of relative motion in the
standard frame IFRAM = 1. If during evolution

D. BANKS et al.

1
{FAULTZ

- Fig. 1. Package structure. Each (mother) routine shown

at the tail of each arrow calls (daughter) routines at the
head of the arrow, which in their turn call further
(descendant) routines.

the number of steps exceeds a given tolerable
maximum number KINTM2, USTR2 calls
FAULT2(2,JSTR).

Exceptional modes are described in the com-
ments of USTR2.

RUNGE2

RUNGE? carries out a single step in the numeri-
cal evolution using ACVEL?2 to obtain the vector
accelerations and velocities (derivatives of ve-
locities and positions) as functions of position
and velocity. The 4th-order Runge-Kutta method
[2] is used.

STEPL2
STEPL2 calculates the current step in time for
the step-by-step numerical evolution using eq. (7)-

ACVEL?2

ACVEL?2 obtains the current relative vector ac-
celeration and velocity in the dashed co-ordinate
system, using FORCE2 to calculate the required
current scalar force as a function of the current
radial distance.

FORCE?2
FORCE2 obtains the current scalar central
force FRC2(1) which acts on the body (negative
if attractive).

It is used to obtain the vector forces for
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numerical integration and for calculation of the
current step length.

FORCE?2 is used and operates in 3 different
modes, which we describe separately.

FORCE?2 (inverse-squarve mode)
Only the inverse-square (or Coulomb) force is

- present. For use, set SCALE2(1,1) equal to the
force constant (product of the charges), and
KSCAL2(1,1) and KSCLM2(1) equal to 1. Before
each call ensure R2(1) is equal to the distance
from the force centre and then call the routine
FORCE2 to obtain the scalar inverse-square
force.

i
| FORCE2 (general mode)
Central force (chemical) terms are present which
‘ are not inversely proportional to RSQ2(1). The
total scalar force is a sum of KSCLM2(1) (10 or
l less) terms. For use in this mode the routine
' must be modified by the programmer as de-
scribed in the comments of FORCE2. In addition
| to the modification KSCLM2(1) must be set to the
‘ number of terms in the force, KSCAL2(1, LPTL)
set to O if the term LPTL is zero; and 1 other-
| wise, where the term LPTL =1 is always of in-
verse~-square form. The scale factors
SCALE2(1, LPTL) must be assigned by the user.
Also KSHPM2(1) must be set to the number (10 or
l less) of shape parameters and SHAPE2(1, LSHP)
| must be set to their correct values.
FORCE?2 obtains the scalar force by calculat-
ing the KSCLM2(1) force terms (using the
- KSHPM2(1) shape parameters) and adding them
together.

l FORCE2 (chemical mode)
| s in the general mode but the inverse-square
‘ term is never present.

. UFRAM?2 and AXES2

\ These form a different branch of the USTR2

| family from those considered in the previous
Section. They are often used on their own, in-

 ependently of USTR2.

\ UFRAM2(MFRAM2, JSTR)

UFRAM?2 is used to obtain a required frame
MFRAM? for a given state JSTR of the relative
otion of a 2-particle system if any of the 5
lframes is available.

I For instance the initial conditions of relative
Dotion may be known in the standard frame

; =1, that is the vectors of relative posi-
tion ang velocity in the co-ordinate system of

that frame. They are required (by USTR2) in one
of the other frames in which the motion is in the

x', y' plane in order to perform the numerical in-

tegration of the equations of motion.

The signal rules must be obeyed for UFRAM2
to work.

UFRAM?2 looks at the signal
KSFRM2(MFRAM?2,1,JSTR) and if it is green,
UFRAM2 assumes frame MFRAM?2 is available
and returns. If that signal is red, UFRAM2 looks
at the other signals KSFRM2 for the state JSTR
of relative motion to see if any one is green, and
if so assumes the corresponding frame IFRAM2
is available. From frame IFRAM2 it then cal-
culates the variables of MFRAM2, and of any
intermediate frames that it may be convenient to
use. It switches KSFRM?2 to green for MFRAM2
and for any such intermediate frame of state
JSTR and returns. If KSFRM2(IFRAM, 1,JSTR)
is red for all five frames, UFRAM2 calls
FAULT2(4,JSTR) and returns.

AXES2(JSTR)
AXES?2 obtains the standard co-ordinates (direc-
tion cosines) of the dashed axes x', y', 2' for the

~ state JSTR {rom the relative position and veloci-

ty RV-vector RVREL2. It also finds the following
simple dynamical frame invariants in the state
JSTR:

1) the relative distance RST2(1,JSTR),

2) the relative speed VST2(1,JSTR),

3) the magnitude of the angular momentum
vector ZDASH2(4,1,JSTR) (if possible),

4) the magnitude of the Runge-Lenz vector
XDASH2(4,1,JSTR) (if possible).

It has 3 normal modes of operation which we
describe here and many exceptional modes which
are needed for singular conditions and which are
described only in the detailed comments of
AXES2. In all normal modes the motion is con-
fined to the x', y' plane.

AXES2 (invevse-square mode)

This is the normal mode when only an inverse-
square force is present. The %' axis is in the di-
rection of the perihelion of the orbit of relative
motion, that is, in the direction of the Runge-
Lenz vector [1, eq. (15.17)] of relative motion

MV x (RxV)+KR/|R|, (8)

where K 2 SCALE2(1,1) is the inverse-square
force constant.

The Runge-Lenz vector is a constant of the
motion and is approximately so during numerical
evolution.
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AXES2 (chemical mode)

This is the non-singular mode when chemical
terms (see FORCE2, chemical mode) but no in-
verse-square term is present. The x' axis is in
the direction of the first term in formula (8).
During numerical evolution the x' axis remains
constant at its initial-state value.

AXES?2 (general mode)

Both chemical and inverse-square terms are
present. The x' axis is in the direction of the
vector (8) but this is not usually the direction of
the perihelion of the relative motion. The same
applies to numerical evolution as for the chemi-
cal mode. However, if the chemical terms are
relatively small, the x' axis is approximately in
the direction of the perihelion and AXES2 may be
used to investigate the precession of the peri-
helion.

7. AUXILIARY ROUTINES AND FUNCTIONS

POTNL?2

POTNL2 obtains the potential energy of the body
(reduced mass). It has the same general struc-
ture as FORCE2.

INVAR2(JSTR) -
INVAR2 obtains some of the simple dynamical
frame invariants of the relative state JSTR.

REDKR?2
REDKR2 sets to red (0) all the signals which can
be altered by this package.

FAULT2(JFAULT, MFAULT)

FAULT2 writes fault messages for faults de-
tected in the 2-particle relative-motion package
into the output stream labelled by KOUT.

ATAN2A(WY, WX)

The function ATAN2A obtains the plane polar
angle ATAN2A (in radians) in the range (0, 27) of
a point in a plane with cartesian co-ordinates
(WX, WY). This function is necessary for
machine-independent operation, as the range of
definition of ATAN2(X,Y) can be different for
different installations. ATAN2A(WY,WX) re-
quires the standard tangent function ATAN(X) for
X in the range (0,7/2) only.

CYCLIC(JI, MJ, MK)
CYCLIC makes (JI, MJ, MK) a cyclic permutation
of (1,2, 3) if possible, given JI only.

FAULTG@EFAULT)

FAULTG writes fault messages for faults de-
tected in ATAN2A or CYCLIC into the output
stream labelled by KOUT.

Common blocks
Block name
C2ANGL

Contents
ALPHA2(1,7), BETA2(1,7),
DELTA2(1,7), EMU2(1,7),
GAMMAZ2(1,7), PHI2(1,7),
PSI2(1,7), THETA2(1,7)
KSAXE2(1,7), RVRXV2(6,1,17),
XDASH2(4,1,7), YDASH2(4,1,7),
ZDASH2(4,1, 7)
KSFRM2(5,1
TIMR2(1, ’7)
FRCN2(1,10), PTLN2(1,10)
EMR2(1), ERRP2(5), KINTM2,
KRSTM2, KSCAL2(1,10),
KSCLM2(1), KSHPM2(1),
SCALE2(1,10), SHAPE2(1 10)
EKST2(1,7), ETST2(1,7),
FRCST2(1,7), PTLST2(1,7),
RST2(1,7), VST2(1,17)

C2AXES

C2BODR , RVREL2(6,1,7),

C2FCPT
C2INPR

C2INVR

C2USTR FF2(4), FRC2(1), KINT2, PTL2(1),

R2(1), RSQ2(1), RV2(4), STEP2,
TIME2 V2(1), VSQ2(1)
CINOUT AZERO, KIN, KOUT
For definitions of common block variables
see dictionary.

8. ESSENTIAL INFORMATION REQUIRED BY
THE PACKAGE

The package will function correctly if the fol-
lowing instructions are obeyed.

1) Include 2ll common blocks of the package
in the calling routine.

2) Define all the input constants. These con-
stitute the common blocks CINOUT and C2INPR.

3) Call REDKR2,

4) Define any of the 5 frames for some state
JSTR and set the corresponding signal (s) to
GREEN (1).

5) Define WTIM if a new state MSTR is to be
obtained by numerical evolution.

9. TEST RUN

The package is tested with the aid of the
driver program REL MOTION TEST which con~
sists of the main routine MAIN TEST and 4 auxi-
liary routines ZEROR2(JSTM2),

INOUT2(JSTR, JIN, WNAME),




CLASSICAL RELATIVE MOTION 121

OUTST2(JSTR, WNAME) and OUT2(WNAME).
Using the package, the driver program carries
out the numerical evolution of the motion of an
electron relative to a proton with a non-rela-
tivistic inverse-square attractive force between
them, using atomic units. It then includes a
harmonic perturbation term.

The first étep of the main routine is to set all
the common variables in the package for the
states 1, 2, 3, 4, and 5 to zero. This is achieved
by routine ZEROR2. The input constants and
the initial state of the atom in the standard
frame 1 are assigned in INOUT2, which also
reads and writes the names QNAME of all the
common variables. INOUT?2 then writes out the
complete common list, showing the input con-
stants and the initial state of the atom in a
standardised form. The output variables for
state 1 are then calculated and written out. The
main program next evolves state 1 for a complete
period QWTIM of the bound motion, placing the
results into state 2. The values of the common
variables of state 2 are determined and written
out. As the system has been evolved for a com-
plete period, exact integration should return all
the variables save WTIM to their original values.
A good approximation to this situation can be ob-
tained by choosing a sufficiently small ERRP2(1).
At tiéne QWTIM a perturbing term of the form
+10?r? (where - w® = SCALE2(1, 2)) is added to
the existing potential and the corresponding term
-w2r is added to the scalar force. As a result,
some of the values of the common variables are
altered and so the state is renamed state 3 and
the complete common list written out again. The
system is evolved from state 3 for a further
time interval QWTIM forwards in time to state 4
and then backwards in time (time interval
-QWTIM) to state 5. The values of all common
variables are written out for the states 4 and 5
as each state is obtained. The results are not

identical because the perturbed system has a
different period to that of the unperturbed sys-
tem. A fully comprehensive test of the package
has been made but is too long for presentation.
This program tests only those branches of
routines which are required in a typical applica-
tion of the package.

Data for the test vun
The data consists of the names of all of the
common variables.

Output from the test vun

This consists of the listing of the input data
followed by six pages showing the progression
through the five states as described above. The
input data and the first three of these pages are
reproduced below.
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ATA CARPS

A/FR] KI KO-'T  r-RKP?
FF? FRE;2 Kin? PT1?
KRST*-!2 KSrHM?K V ;' FL2 T1 MR2
EMU? GAMMA2PH12 PSI2

D. BANKS et al.

TEST RUN OUTPUT

KpiTM?KSCAL.?KSCLM?KSMPM?qCALF?SMAPP2rRCK? PTL *?
R2 RSR2  RV? STFP? TIME? V? VSQ?  FMR?
kSAXF 2RVRXV2XOAS!«?vpASM 270 ASU? AL PHA2PF TA2 Pfrt TAP
THFTA2FKST2 FTST2 FPCST2PTLST2RST2  VST?

INPUT VALUE* OF ALL COMMON VAR IARLES

INPUT CONSTANTS

A/EWO 0.inooonE-ov
KIN

KouT

FRRP2

KINTM?

KSCAL2

KSCLM?

KbiHPM?

SCALE? -0.inooonE*ot
SHAPE? 0.00000nt*ou
TRAMF VARIABLES

p.osonooF«no

o.opnonnp”no

IN THE RELATIVE S5TATT 1 ARF

n.icononp-oi

AS FOLIO~S.

0.i00000r*n?

EHR? 0.999460E%00

KRSTwM ?

KSFRM? .

HVREL? n.200000E*00 o.onnnnnE”on £1.000000.MOO P, uoo'ioOF #on

T IMR?

KSAXt? 0

RVRXV? 0100000f)E*00 0.0000n0F*00 0. 000OOOF *00 0. O00OOOE *00 0.000000F*0n 0.000000F*00
XPASH? 0.000000E*00 ti.OonnnoE*on n.onooonF no o.0onnonFron

YDASH? 0.0n0o0oE«on 0.000000E*00 0+ 00000OE +0Q 0. O0000OE *00

ZOASM? 0.0n000nt*00 1.000000E*on 0.00pnocE”oo c.oonnonF’pn

ALPHA? 0.000000E*00 0.000000E*00 i~ Voo - - B
BC-TA2 0. 000000F*OU n.noooooF on

DELTA? 0+ 00000OE *00 0.000000E«00

EMU? 0.000n0n£*00

GAMMA? 0.0n0000E 00 0.000000t*00

PHI? 0.pn01»0ilF+00

PS 12 0.000nonE”on

THETA? 0t000U00E»GO

EKST2 0.00000nE*00 .
ETST? 0.000000F" 00

FRCST? 0.000n0onE*o00

PTLST? 0.00n000E"00

RST? 0.000000E*00 SSSBESSSSIiiiiiil ~'W _L 1 1811 - -
VST? o.onooonE*nn

INTERACTION TFRMS

FRCN2 0.000n00E*00 0.000000E%0n ML -Z-WL'J - jL
PTLN2 n.onooont*on n.000000F*00
CURRENT VAPIASLES OF STEP-BY-STEP EVOLUTION

Fr2 o.onooonE«oo 0.000000E* 00 0+ QOOOOOE«QO fl.OOOOOOE+00

FRC2 0+ 000000E'00

KINT2 0 1=~ ixJIJj
PTL2 0+ononof)E«oo

R? 0.000n00E*00

RSQ2 0tOnooonE«oo

RV2 0.000000E*00 0.000000E«00 0+00000PF«00 0.000000Ef00

STEP? 0.ononooE*o0

TIME2 0.0n0000E*o00

V2 0«00U000E«0O

vso? 0,00Q00QE*00

OUTPUT VALUFS OF ALL COMMON VAR|ARLr S

IN THF RELATIVE STATF | ARF AS FOLLOWS.

S3IIH Ztsexst 31 Its 89SSSS ItlltStsSC 83 8SS 39BBSSSB 818S8 B 888 St ISS8SBSS

INPUT CONSTANTS

ATERO 0.10 OOE-09

KIN 7

KOouT ?

EPRP2 Q.400000E-01 0.0Q0000E*0Q n.innnont-oi 0.ioo/mnF.0?
KINTM? 1000

KSCAL2 1

KSCLM? ? . vl

KSMPM? 1

SCALE? -0.100000E*01 D.100000E-01

shape? 0.000n0<)E*00
FRAMF VARIABLES



FMR? 0.9994606%00

KKSTM?

KSFRH?

RVRFL?

TIMR2

KSAX6?

RVRXV? 0.200000E*

XDASH? o.onooont*

YUASH? *

ZDASH2

7 0.S0000QE*

0+5000006*
0.500000E*

EMU? 0.000000E*

3 2 .05, 006*

= OYe 152000

PSI? 0-1570806*

THETA? 0.1570006*

6KST2 044%00006*

ETST2 -Q.500001E*

FROST? -0.2500006%

PTLST? ~0.s00000¢e*

RST? 0%2000006+

VST2 0.300081E*

INT6RACTK N TERMS
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0.200000E*00

0.0000006%00
0.100000E*01
0.0000006*00
0.0000006*00
0.500000E*00
n.5000006*00
-0.5000006*00

0.5000006*00

0.0000006*00
0.0000006*00

0.000000E*00

0.0000006%00
0.0000006%00
0.1000006*01
0.000ponE*on

CURRENT VARIABLES OF ST6P-RY-ST6P EVOLUTION

PTLN2 -0 1500000E *01
FF2 0.0000006*00
F.BC2 -0.2500006%02,
KINT2 0

wz -0.500CO0E*O1
0.2000006*00

RSQ2 0.4000006*01
RV2 0.0000006%00
STEP2 0+000000E*00
TIME2 0 2
V.2 !

Vso02 0.0000006*00

OUTPUT VALUES OF ALL COMMON

KIN 7
KouT ?
ERRP2 0.4800006-01
KINTH?

KSCAL2 1
KSCLM? 2
KSHPM? 1
SCALE? -0.1000006*01
SHAPE2 0.0000006*00
FRAME VARIABLES

6MR? 0.999460E*00
KRSTM? 5
KSFRH? 1
RVRFL? 0.000000E*00
TIMR2 0.6201496%01

KSAXE? 4
RVRXV 0.2000006*00
XDASH? 0.0n00oP6*on
VOASH?

ZDASH? 0.1000006%01
ALPHA? 0.5000006%00
BFT A2 0.500000E*00
DELTA? 0.5000006*00
EMU? 0.0000006*00
GAMMA? -0+500000P *00
PHI 2

PSI2 0.1570806*01
THETA? 0.157080E*01
EKST2 0.450000E*01
6TST2 -0.500001E*00
FRCST? -0.250000E*0?
PTLST2 -0.5000006*01
RST2 0.2000006%00
VST? 0.3000016%01

FRCN2 -0.2500006%02
PTLN2 -0.500000E*01

0.0000006%00

0.0000006*00

-0.1 00000E-O1

0.2000006*00

0.1178566-03
0.1000006%01
-0.7283026-06
0.0000006*00

0.5000006*00
-0.5000006*00

0.5000006*00

0.0000006%00
0.0000006*00

VARIABLES

0.0P000pE*00

1
0,110001F-03

0.0000006*00
0.7?830?F-06
0.1000006%01
0.0POonnF*o0

CURRENT VARIABLES OF STEP-RY-STEP EVOLUTION

FF2 -0.9049926-03
FRC? -0.250000E*0?
KINT? 168
PTL2 -0.5000006%01
R? 0 *?200000E*0Q
RSQ2 0.4000006-01
RV2 0.2000006*00
STEP2 0.60530ftE-03
TIME2 0.678t49E»01
v? 0+300077E *01

VS02 0%9004656 *01

0.3000916%01

0.110001E-03

-fl.250i35E.0?

-0.98.581E-03

n.00n000F*Q0

0.000000E*OD
0.0000006*00

056

0.0000006*00

a.ionoooF-oi

Of 00P0006*00

-0.9823956-03
p.fIPOOOOF*nn

(blOOgﬁd *01

0.<'000006*00

0.3008816%01

IN THF RFLATIVF STATE ? ABE AS FOLLOWS.

o.inonoPE*g?

-0,9P4501F-(M

0.3000016*01

1,300

O.CoBIEQD

0.300r«iH*ni
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