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Introduction

The structure of O-bisimple and bisimple inverse semigroups
has been extensively studied and established by Clifford, Reilly,
Warne, Munn and McAlister. The initial work was done by Clifford in
[0] on bisimple inverse semigroups with an identity and this was
generalised by Reilly and Clifford in [13]. 1In [5] McAlister has
produced a structure theorem for O-bisimple inverse semigroups in
terms of groups and semilattices which can be specialised to give
most of the previously known results in this area. These include
the result of Munn described in [10] and the result of Reilly in [12],
which deals with bisimple inverse semigroups whose semilattices are
order isomorphic to the non negative integers with the reverse of the
natural ordering, i.e. semilattices which are w—-chains. Warne has
made a study of those bisimple inverse semigroups whose semilattices
are order isomorphic to the integers with the reverse of the natural
ordering and has obtained in [14] a structure for these which ties
closely with [12].

To date, the corresponding work on O-simple and simple inverse
semigroups is more scanty, although specific types of simple inverse
semigroups have been tackled. Munn in [7] has produced a structure
theorem for simple inverse semigroups, whose semilattices are w-chains,
which is formulated in terms of groups and homomorphisms. An
equivalent form of this result was obtained independently by Kochin
in [2]. The result of Munn described above was generalised by

ond by Pulnck and  Awlh [sl,
Lallement, in [3],\to the case of O-simple inverse semigroups whose
semilattices are O-direct unions of w-chains with zero. In [11]

Munn presents a structure theorem for a simple inverse semigroup S
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with a semilattice E of the following type: there exists a semilattice
Y, with a greatest element, such that E = N X ¥, where N denotes the
non-negative integers; the ordering on E is given by

(i,) < (3,8) <=> (i =3 and o <B) or i >j
and, moreover, the factorisation of E is compatible with the &;—structure
of S in the sense that

((i,0),(5,8) €f) <=> a=8
It is shown that S is isomorphic to a semigroup of the form N x A x N,
with a suitably defined multiplication, where A is a semilattice of
groups with semilattice Y. This is a generalisation of the form
N X G XN described by Reilly in [12]. If the case that Y is a finite
chain is considered we have the result obtained by Munn in [7] and °
when Y consists of a single element we are in the situation of [12].

In this thesis an attempt is made to generalise firstly the
results obtained in [3] and secondly those obtained in [11]. For the
first of these we aim at establishing a structure theorem for a O-simple
inverse semigroup whose semilattice is such that every non zero
principal ideal is an w-chain with zero, a type of semilattice described
as an w-tree with zero. A construction is developed using as a model
the construction used by Munn in [7] and employing results established
in the text regarding O-simple inverse semigroups, whose semilattices
are w-trees with zero, which have no non trivial congruences contained
in the Green's relation 74, (the "fundamental" O-simple inverse
semigroups whose semilattices are w-trees with zero). The construction,
involving an w-tree with zero and a finite set of groups and homomorphisms,
is shown to produce a O-simple inverse semigroup whose semilattice is
an w-tree with zero and then, conversely, every O-simple inverse semigroup
whose semilattice is an w-tree with zero is shown to have the form of

the constructed semigroup.
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Two main routes of specialisation of this result are possible.
The first is to consider particular types of w-trees with zero and thg
second is to consider the O-bisimple inverse semigroups of this type.
Starting with the semilattice, one of the first results obtained is
one concerning semigroups of the same type as those considered by
Lallement in [3]. Lallement's result and that in section 2.6 although
differently formulated can be shown to be equivalent. A next step
could be the consideration of a semilattice which is an w-chain with
zero, a situation which is exactly that of [7] with a zero adjoined.
We can of course consider an w-tree, instead of an w~tree with zero,
and from this obtain the structure of a simple inverse semigroup whose
semilattice is an w-tree. A simplification of this is to consider a
semilattice which is order isomorphic to tﬁe integers with the reverse
of the natural ordering. If simultaneously we restrict the number of
- groups under consideration to one, we have the situation of Warne in {14].
This reduction of the number of groups to one is based on a result
obtained in Chapter 2 which states that the number of groups involved
and the number of non zero -classes of the semigroup are equal.
Clearly this leads us to consider O-bisimple inverse semigroups whose
semilattices are w-trees with zero. From this we can obtain the
structure of these exactly as in [5] and can deduce the result of [12].

The second type of semigroup considered is a O-simple inverse
semigroup S whose semilaﬁtice E is said to admit a factorisation
compatible with the £9=structure of S. This is a development of the
notion introduced by Munn in [11] and described above. We require that
EN{0} = (FM0}) X Y where F is a semilattice with zero and Y is a

semilattice with greatest element; the ordering on E is given by

0 < (x,0) for all x ¢ FA\{0}, a ¢ ¥

(x,0) < (y,B) <=> (x =y and o < B) or x < y
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and, moreover, this factorisation is compatible with the i)-structure
of S in the sense that

((x,0) (7,8)) € <=> o= 8.
In Munn's formulation of the situation in [11] the semilattice F is
an w-chain. In the course of Chapter 3 it is shown that if a O-simple
inverse semigroup is such that its semilattice admits a factorisation
compatible with the A;*structure of the semigroup then the semilattice
F involved is O-uniform.

The approach to this second problem is to generalise a particular
version of McAlister's construction of [5]. We restrict the semilattices
used in his construction to those which have an associative addition and
replace the group used by a semigroup with an identity element.
Conditions are established for the semigroup formed to be O-simple and
inverse. 1In the particular case that the semigroup with identity is a
Semalatb
unien of groups it is found that the constructed semigroup is O-simple
and inverse and its semilattice admits a factorisation compatible with
the [9=structure of the semigroup. A converse result is obtained in
the case of a 0O-simple inverse semigroup whose semilattice admits a

5 suck tot the 'fint mutor
factorisation compatible with the S‘structure of the semigroup and which A
has a non zero principal ideal whose group of order automorphisms is
trivial.

The special cases arising from this result are obtained by one of
two methods: the first is to specialise the semilattice used in the
construction and the second is to specialise the semigroup with identity
either to a finite chain of groups or to one group. The first
specialisation is that of the semilattice to an w-tree with zero. If
at this point the semigroup with identity is replaced by a group we
have a O-bisimple inverse semigroup whose semilattice is an w-tree with

zero which is described in [5] and which also arose as a special case of



the theorems of Chapter 2. Taking the semilattice to be an w-chain
with zero gives rise to exactly the situation of [11] with a zero
adjoined. If now the semigroup is taken to be a finite chain of
groups we obtain the result of [7] and [2]. 1If lastly this finite
chain of groups is shrunk to one group we have, again, the result

of [12].



1. Preliminaries

The notation and basic definitions are as in Clifford and
Preston [1]. Throughout N will be used to denote the set
{0,1,2...}.

1.1 An inverse semigroup and its semilattice

1.1.1 Let S be a set and X a binary operation on S. Then (S,X)
is a semigroup if, for all a,b,c € S, (axb) X ¢c =a x (b x ),
i.e. X is an associative binary operation on S. Usually the X is
omitted and ab written for a X b and we refer to the semigroup S

rather than to (S,X) when there is no ambiguity.

1.1.2 Let S be a semigroup and let T be a subset of S. Then T is
said to be a subsemigroup of S if, for all a,b € T, ab € T.
We now introduce two very common types of semigroup

following as in (1.1.1) and (1.1.2) the definitions in [1].

1.1.3 A semigroup S is said to be regular if, for each element

a € S there exists an element x € S such that a = axa ., Those
elements X € S such that a = axa and x = xax are called inverses

of a. From [1, Lemma 1J4] we have that if S is reqgular then each
element has at least one inverse. For if a € S and x € S and is
such that a = axa then we consider xax. We have a(xax)a = (axa)xa =
axa = a and (xax)a(xax) = x(axa)xax = x(axa)x = xax. Hence xax is
an inverse of a.

This leads us to the next definition.

1.1.4 A semigroup S is said to be inverse if it is regular and each
element has exactly one inverse. By [1l, Theorem 1.17] an inverse
semigroup can also be characterised as a regular semigroup in which

any two idempotents commute. If S is an inverse semigroup and



a € S, it is customary to denote by a._l the unique inverse of a.

1.1.5 Turning now to the set of idempotents of a semigroup, we
denote by ES the set of idempotents of the semigroup S. A
partial ordering can be defined on ES by the rule that e < f

<=> ¢ = ef = fe.

1.1.6 A commutative semigroup of idempotents is called a
semilattice. In a semilattice any pair of elements has a greatest
lower bound with respect to the ordering defined above, the greatest

lower bound of two elements being their product.

1.1.7 Returning to the case where S is an inverse semigroup we
can readily show that Es is a semilattice. If e,f ¢ ES then
ef = fe from (1.1.4) and so (ef) (ef) = e(fe)f = e(ef)f = ef so

that ES is a subsemigroup of S. Clearly Es is commutative and so

ES is a semilattice.

1.1.8 A particular type of semilattice which will occur frequently
in the following sections is an w=-chain. An w-chain is a semilattice

of the form {ei:i € N, with e; > ej <=> i < j}.

1.2 The Green's relations on a semigroup

1.2.1 Let S be a semigroup. We adopt the convention of [1,
Section 1.1] that sl = s if S has an identity element and that sl

= S with an identity adjoined otherwise,

1.2.2 The equivalence relations 2(, 6&1 and £¥~ are defined on S

as follows:-

(a,b) € 36, <=> sla = slp
(a,b) € 43, <=> as! = bs!
=> slas! = slpsl

(a,b) € ai <



Clearly if a # b then (a,b) € )ﬁ if and only if there exist

c,d € S such that ca = b and a = db. A similar result holds for 0E .

1.2.3 We denote by L_ (R_,J_) the L- (pe-,ﬂn) class of S

containing a.

1.2.4 In [1, Lemma 2.1] it is shown that fand 5€ commute and
their product is defined to be (5' . Clearly (a,b) € }; if and
only if there exists ¢ € S such that (a,c) € OE_ and (c,b) € 5<L
(or alternately (a,c) € Ei_and (c,b) eoz_). The chlass of s

containing a is written Da'

1.2.5 Finally the equivalence relation ¥ on S is defined to be

szrwcfi. Thus {(a,b) € i?% if and only if (a,b) eoti and

(a,b) € &8, We denote the $¥~class of S containing a by Ha'
These equivalence relations are known as the Green's

relations , and are defined as in [1, Section 2.1].

1.2.6 In the case that S is an inverse semigroup we note that
a ¢ Sa and so sla = sa. Similarly as! = as and slas! = sas.

This is proved in [l, Lemma 2.13]

1.2.7 Also, if S is inverse, we have from [1l, Theorem 1.17] that

each 0ﬂ—class and each at?class of S contain exactly one idempotent.

1.2.8 If we wish to emphasise the semigroup S on which the
Green's relations are being discussed we write, for example,atfs.
We now use the terminology of the Green's relations to

make further descriptions of a semigroup as in [1l, Section 2.1].

1.2.9 A semigroup S with a zero is said to be O-bisimple if, for
any pair a,b € S N~ {0}, (a,b) € £9' , i.e. there is one non zero
xtclass in S. A semigroup S without zero is said to be

bisimple if it consists of a single é}:class.



4.

2
S$#0 and
1.2.10 A semigroup S with a zero is said to be O-simple if A for

any pair a,b € s\N{0}, (a,b) ea? , i.e. there is one non zero
52 -~class in S. Also a semigroup S without zero is said to be

simple if it consists of a single C;Z ~class.

1.2.11 In [1, Section 1.7] the maximal subgroups of a semigroup S
are defined to be those subgroups of S which are not properly
contained in any other subgroup of S. From {1, Theorem 2.16]

we have that if S is a semigroup then any Qﬂ/~class of S containing
an idempotent is a subgroup of S and indeed from [1l, Section 2.3] the
maximal subgroups of S are precisely the'$$[—c1asses of S containing

idempotents.

1.2.12 If S is an inverse semigroup which is a union of groups then by
[1, Section 4.2] S is a semilattice Y of groups where Y is isomorphic

to Es and, if a € S, Ha = La = Ra = Da = Ja. Thus we have that if

S is an inverse semigroup which is a union of groups and if a € S

then aa-'1 = a_la by (1.27) above. Conversely if S is an inverse
semigroup in which aa"l = a—la for all a € S then, as (a,aa—l) eiﬁl

and (a,a_la) € Qf, we have (a,aa-l) € :f¥L . Hence a belongs to a
maximal subgroup and we have that S is a union of maximal subgroups, i.e.

a union of groups)and so is a semilattice of groups.

1.2.13 A semigroup with an identity element is called a monoid.

1.2.14 A centric inverse monoid is an inverse monoid which is a

semilattice of groups.

1.3 Semigroup and semilattice related

In this section we introduce some special types of semigroup and

semilattice and show the relations between them.

1.3.1 It is established in [6, Section 3] that, if S is an inverse

semigroup, the maximum congruence contained in JJis ¥, where y is



defined as follows:- (a,b) € u <=> a_lea = b—leb for all e ¢ ES.

In the special case that Qﬂbis a congruence $V= M.

1.3.2 According to [9, Section 2] if S is a semigroup in which the only
congruence contained in 4“ is the identity congruence i, then S is said
to be fundamental. An inverse semigroup is fundamental if and only if p= i.

We now construct a fundamental inverse semigroup.

1.3.3 As in [1, Section 1.9] we define a one-to-one partial

transformation on a set X to be a bijection with domain and range both

subsets of X. The null mapping is also considered to be a partial

transformation on X,being the mapping whose domain and range are both

the empty set. If o is a partial transformation on X it is customary to denote
) ora - to- one

by A(a) the domain of a,and by V(a) the‘range of a. The set of alljpartial

transformations on a set X is denoted byw:ax. A multiplication is defined

on \q/x as follows:- if a,B e‘cﬂx with V(a) n A(B) = ¢ then 0B = O,

otherwise A(aB) =(V(a) n A(B))Q_l ¢y V(aB) = (V(a)n A(B))B and if

x € A (aB), then x(aB) = (xa)B.

It is shown in [1l, Section 1.9] that é’x is an inverse semigroup.

1.3.4 Let E be a semilattice then TE is defined in [6, Section 2] to be
the subset of {OE comprising those partial transformations of E which have
domain and range which are principal ideals of E. From [6, Lemma 2.2], TE
is an inverse subsemigroup of hQE and by [9, Corollary 2.7] is
fundamental. As TE is inverse we can apply [9, Lemma 1.2] to describe the
Green's relations in T, We thus have that, in Tpr (a,B) ¢ & <=> V(a) =
V(B) and (a,8) e & <=> a(a) = A(B).

Negt we~foliow(the_patﬁg;n of [9, Section 3] in making two
definitions which relate E and TE'

1.3.5 If E is a semilattice with zero we shall denote by E* the set

E\{0}.



1.3.6 Let E be a semilattice with zero. An inverse subsemigroup S
of TE is said to be O~transitive if and only if it contains the zero
of T i.e. the mapping with domain and range {0}, and also, for all
e,f € E*, there exists o ¢ S such that A(o) = Ee and V(a) = Ef.

Let E be a semilattice without zero. Then the above definition
is modified as follows. An inverse subsemigroup S of TE is said to be

transitive if and only if, for all e,f € E, there exists o € S such

that A(ad) = Ee and V(a) = Ef.

1.3.7 Let E be a semilattice with zero then E is said to be O-uniform
if and only if, for all e,f ¢ E*, Ee = Ef. If E is a semilattice
w;thout Zero then E is said to be uniform if and only if, for all

e,f ¢ E, Ee ~ Ef.

1.3.8 If we now examine these two definitions more closely we see that
TE is O-transitive (transitive) if and only if it contains a O-transitive
(transitive) inverse subsemigroup. Also E is O-uniform (uniform) if and
only if TE is O-transitive (transitive).

Next we obtain the structure of TE for a particular type of

uniform semilattice E.

1.3.9 A partia$ly ordered set P is said to be inversely well-ordered if
every non-empty subset of P has a greatest element. This definition is

given in [6, Section 3].

1.3.10 Let E be a uniform semilattice in which every principal ideal is
inversely well-ordered. Clearly, as E is uniform, we have from

[6, Theorem 2.3] that E is the semilattice of a bisimple semigroup. Let
S denote this semigroup. We are now in the situation of [6, Theorem 3.2]
and have that ¥ is a congruence on S and Sljy,g'TE. Hence % = i on To
and so we can specify TE completely. If e,f € E, by the uniformity of E

and the ensuing transitivity of TE’ there exists a € TE such that



A(a) = Ee and V(o) = Ef. This element o is unique, as H= i, by
(1.3.4). Thus if we denote by Ee £ the unique element of TE with
r

domain Ee and range Ef we have Ty ='{§e gierf € E }. Also
14

BE, ¢ Egp) = (EE 0 E9) a;ff = (8f9) E_1_ = E(fg £_ ) by

6,L 2.1 d = imi
[6,Lemma ] an V(ge,f gg,h) E(fg gg,h), similarly. Thus

€ € = &, .1
£
=¥ g,h fg&;e'f,fg gg,h

1.3.11 It is easily seen that if E is a O-uniform semilattice in which
every principal ideal is inversely well-ordered then the result of
(1.3.10) can be extended to include this situation. We would then have
Th ='{€e’f:e,f e E*F U {0} with the non zero products in T, being
€

where fg # 0. It is possible to regard

e f fgn T Pegel egr

e,f

TE as (E*xE*)u{0} with multiblication defined on (E*xE*)u{0} as follows:-

(e,£)0 = 0(e,f) = 0% = 0

(e,f) (g,h) = 0 if fg = 0

-1 .
((E)E_ ¢o (FE_ ) if fg # 0.

Finally in this section we include another two definitions relating

E and TE as in [9, Section 3].

1.3.12 Let E be a semilattice with zero. An inverse subsemigroup S
of TE is said to be O-subtransitive if and only if S contains the zero
of TE and also, for all e,f € E*, there exists a € S such that

A(o) = Ee and V(o) € Ef. If E is a semilattice without zero the
definition is modified as follows. An inverse subsemigroup S of TE

is said to be subtransitive if and only if, for all e,f € E, there

exists o € S such that A(a) = Ee and V(a) € EE.



1.3.13 A semilattice E with zero is said to be O~subuniform if and
only if, for all e,f € E*, there exists g < f such that Ee ;'Eg. if
E is a semilattice without zero then E is said to be subuniform if

~

and only if, for all e,f € E, there exists g < £ such that Ee = Eg.

1.3.14 We note that TE is O-subtransitive (subtransitive) if and only
if it contains a O-subtransitive (subtransitive) inverse subsemigroup.
Also E is O-subuniform (subuniform) if and only if TE is 0~

subtransitive (subtransitive).



2. A O-simple inverse semigroup whose semilattice is an w-tree

with zero

In this chapter we show how to construct a O-simple inverse
semigroup whose semilattice is an w-tree with zero from a finite set
of groups and homomorphisms and an w-tree with zero. Then we show
that all O-simple inverse semigroups with semilattice an w-tree

with zero are of this type.

2.1 An w-tree with zero

2.1.1 A semilattice with zero in which every non zero principal ideal is

whh 2ero
an w—chainAis called an w-tree with zero.

2.1.2 Let E be an w-tree with zero. 1If e,f ¢ E* with e 2 f we
define [e,f] = |{x € E¥: e > x = f}| - 1. Since {x € E*: x < e} is
an w-chain, this is a well-defined non-negative integer. For each
t € N and e € E* there exists a unique element f € E* such that

f € e and [e,f] = t, we denote this element by e + t.

2.1.3 Define a relation ~ on E* by a ~ b <=> ab # 0. This relation
is an equivalence relation. The equivalence classes of E* generated by
~ are called the components of E*. Thus a ~ b <=> a and b belong

to the same component of E*.

2.1.4 Select a tranversal T of the components of E*. For each
a € E* let ea denote the element of T in the same component as a.
Let k € N, with k 2.;;' For each element a ¢ E* we define the
k-index of a, relative to T, to be the nOnnzyﬂhtremainder when

[ea,aea] - [a,aea] is divided by k.
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2.2 The semigroup S (E, T, k)

This section is an account of an unpublished result of

W. D. Munn.

2.2.1 Let E be an w-tree with zero and let T be a transversal
of the components of E*. Fix k € N, with k 2 1, and for all

a € E* let a denote the k-index of a, relative to T. Let

S (E, T, k) = {(a,b) € E* x E*; a = b} v {(0,0)}. Define

multiplication on S (E, T, k) as follows:-

(a,b)(c,d) = (a+ t, 4 + s) where t = [b,bc] and
s = [c,bc] if bc 2 O,

all other products are (0,0).

2.2.2 We note that in the case that E is an w-tree with zero

then E is a O-uniform semilattice in which every principal ideal

is inversely well-ordered. Hence we can apply (1.3.11) and have

T, = {(e,f) € B* x E* } U {0} , with (e,f) (g,h) = (ng;]"f £9E 1)

if fg # 0 and all other products are zero. However fgi;}f =e+n
where n = [f,£fqg] and‘fggg'h = h + m where m = [g,fg]l. From this we see
that S (E, T, k) &€ TE and that the multiplication defined on

S (E, T, k) is that of TE.

2.2.3 Theorem: The set S (E, T, k) with the multiplication defined

above is a O-subtransitive inverse subsemigroup of TE.

Proof: Let (a,b), (c,d8) ¢ S (E, T, k)\'{(o,O)},If bc = 0 then
(a,b) (c,d) = (0,0) € S(E, T, k). Suppose therefore that bc # 0
and consider (a,b)(c,d) = (a + t, d +s) where t = [b,bc] and

S = [c,bc]. To show that (a + t, d + s) ¢ S (E, T, k) we have to

prove that a + t = d + s. To simplify this we insert the following

lemma.



11.

2.2.4 Lemma: If a € E* and p ¢ N, then a + p =a+ p (mod k).

Proof: Since a(a + p) # O we have e_ = e . Also

_ a a+p

[ea,(a + p)ea] - [a+p, (a + p)ea] = [ea, aea] + [aea.(a + p)ea]—
([a.aea] + [aea, (a + p)ea] - [a,a + p]) = [ea,aea] - [a,aea] +

fa,a + p] = [ea,aea] - [a,aea] + p. Hence a + p = a+ p (mod k).

Returning to the theorem, we have from Lemma 2.2.4 that

a+t=a+t (mod k). However a=>band so a + t b+ t (mod k).

Applying Lemma 2.2.4 again we have b + t = b + t (mod k) and so

a+ t=>b+ t. Similarly we have d + s = ¢ + s. However b + t =

c+ s =Dbc so that a + t = d + s. Thus the multiplication on

S (E, T, k) is closed and so S (E, T, k) is a subsemigroup of TE.

It is an inverse subsemigroup of T_ since, if (a,b) € S (E, T, k),

E
(a,b)"l = (b,a) is also in S (E, T, k).

Let a,b ¢ E* and let t =k - b + a. Clearly t 2 1 and so

b+ t <b. Also, by Lemma 2.2.4, we have b + £t = b + t (mod k) and

b+t=k+az=a (mod k). Thus (a,b + t) ¢ S (E, T, k) and so as
S (E, T, k) also contains the zero of TE' S is O-subtransitive.

The next theorem is the converse of Theorem 2.2.3.

2.2.5 Theorem: If S is a O-subtransitive inverse subsemigroup of
Tor where E is an w-tree with zero, then there exists k € N, with
k 21, and T, a transversal of the components of E*, such that S
is of the form S (E, T, k).
Proof: Since S is a O-subtransitive inverse subsemigroup of TE we
have from (1.3.11) that S is a subset of (E* x E*) u {(0,0)} with
multiplication as described in (1.3.11).
Fix e € E* and define k = min { n € N: n 2 1 and (e,e + n) ¢ S}

The O-subtransitivity of S ensures the existence of such an integer.

Select a transversal of the components of E*. For all a € E* let
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Za be the element in the transversal such that a ~ za. Since S is
O-subtransitive, for all a € E* there exists e, ¢ E* such that

e, <2 and (eje) € S. LetrT =’{ea;a € E*}. Then T is a
transversal of the components of E*.

Before proceding with the remainder of the proof of this

theorem it is convenient to consider the following lemmas.

2.2.6 Lemma: For all p,gqe N, (e + p, e + g) ¢ S if and only if

P = q (mod k).

Proof: We note firstly that by [9, Theorem 3.2 (ii)] S has a semi-
lattice isomorphic to E.

Since (e,e + k) € S, (e,e + k)n = (e,e + nk) € S for all
neNwithn=>1. Also (e + i, e + i) (e, e + k)n =
(e +i, e+ nk +1i) ¢ S, for all n € N with n 2 1 and for all i € N
with 0 < i <k. Bs 'S contams’  the semilnthr of Tm we also
have (e + i, e + i)be S for all i e N and so we have (e,e + nk) € S
for all n e Nand (e + i, e + i + nk) € S for all n € N and for all
i e Nwith 0 <1i <k.

Let (e + p, e + q) € S withp=nk + i and g = mk + j where
m,n,i,j e Nand 0 < i, j <k. Then (e + i, e + p) € S and
(e+j,e+q e€S. Thus (e + i, e+ p)(e+ p, e+ ql(e + j, e + q)_l
e Sand so (e + i, e + 3) € S. Assume that i > j. Then
(e, e+k)(e+i, e+ Jj) =(e,e+j+(k=-1)) = (e, e + k =
(i - j)). However this is in S and 0 <k - (i - j) <k
contradicting the definition of k. Hence i ¥ j. Similarly we can
show i ¢ j and so we have i = j and p = g (mod k).

Conversely let p,g ¢ N with p =g (mod k). Let p =nk + i and
qg=mk + i wherem, n, i ¢e Nwith 0 < i <k. Then (e + i, e + p) € S

-1
and (e + i, e + q) € S. So that ( e+ i, e+ p) (e+ i, e+ q =

(e + p, e +qg) € S.
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2.2.7 Lemma. For all a ¢ E*¥* and for all p,g e N, (a +p, a+q) € S
if and only if p =g (mod k).
Proof: For a ¢ E*, define k, = min { n e N:n >1 and (a, a + n) ¢ S }
with ke = k. We then have, for all a ¢ E*, a parallel result to
Lemma 2.2.6, namely that (a + p, a + q) ¢ S if and only if p = g

(mod ka). Since S is O-subtransitive, for each a ¢ S there exists
P e N with p > 1 such that (e, a + p) ¢ S. Since (e, e + k) ¢ S we
have (e, a + p)—1 (e, e + k)'-l = (a + p,e) (e + k,e) = (a +p + k,e)

€ S. Hence we have (a + p,e)(e,a + p + k) = (a+p, a+p + k)

€ S. Thus, by the parallel result to Lemma 2.2.6, we have p = p + k
(mod ka) so that kalk. Also there exists g € N, with g > 1, such that
(a, e+ q ¢ S. Since (a, a + ka) € S we have (e + g, a)(a + ka,a) =
(e +q+k ,a) eS. Thus (e + g +k,,a)l(ae+q = (e+tqg+tk,

e +q) € S and from Lemma 2.2.6 we now have g + ki = q (mod k) and so
klka. Combining these two results we have k = ka and the lemma is
proved.

Returning now to Theorem 2.2.5, let (a,b) ¢ S\ {(0,0)} . Since

ae_ # 0 there exist p,n € N such that a + p = e, + nk. By Lemma 2.2.4

at+tp=a+p (mod k) so that a_+ p = e, + nk (mod k).  However

e + nk =,f§ =0 and so a = -p (mod k). Similarly there exist

g,m ¢ N such that b + g e, +mk and b = ~g (mod k). We have, by

b
Lemma 2.2.7, that (ea,ea + nk), (eb,eb + mk) ¢ S. By choice
(e,ea), (e,eb) e S and so (ea + nk,ea)(ea,e)(e,eb)(eb,eb + mk)e S

so that (ea + nk,e, +mk) = (a + p, b+ g) € S. Since (a,b) € S and

b

S is inverse, (b,a) ¢ S and we have (b,a)(a + p, b+ q) ¢ S, i.e.

(b +p, b+q) ¢ S. Thus, by Lemma 2.2.7, p = g (mod k} and so

a = b. Hence we have S CsE, T, k).
Now suppose that (a,b) € S(E, T, k) with a,b 2 0. Then
a = b. Since S is O-subtransitive there exist p,q e¢ N such that
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(a,e + p) ¢ Sand (b, e + q) € S. However, from above, S cs (E, T, k)

and soa =e +p andb=e+qg. Thuse + p==¢e + g. From

Lerma 2.2.4 e+ p=e+p (mod k) and e + g = e + g (mod k)

and so we have p = g (mod k). Hence, by Lemma 2.2.6, (e + p, e + g) ¢ S.
From this (a, e + p)(e + p, e + g) (e + g, b) = (a,b)e S and we have

S (E, T, k) €S.

Combining the two inclusion results we have S = S(E, T, k).

2.3 The construction of the groupoid S(E, T, k, Gi' xi, e, VEL—

In this section we describe a process for constructing a
O-simple inverse semigroup from a finite set of groups and

homomorphisms and an w-tree with zero.

2.3.1 Let E be an w-tree with zero and let T be a transversal of
the components of E¥*. Fix k € N, with k 2 1, and for all a € E* let

a be the k~index of a, relative to T.

2.3.2 Let G be k groups with identity elements

0Syreeer Gy

eo,el...,ek_l respectively. For 0 < i < k-2 let Yi:Gi--a‘Gi_Fl be
a homomorphism and let Yk-lsz—i_a Go be a homomorphism. For all
neNletG, = Gn(mod )’ Yn = Yn(mod k) and e, = ®n(mod k) °

and let

1 > = s o
2.3.3 For m,t ¢ N, with t 2 1, let am,t YmYm-?—l m+t-1

am ° be the identity automorphism on Gmi Thus for m,t,s € N we have
14

o o, =q
m,t m+t,s m,s+t

and 0lm,t = am+sk,t

2.3.4 Fix e € E*. Por each f € E* define Ve € Gf

£41 with ve . the

+1

i i i . i 2
identity of Ge+i+1 for all i e N. For all t € N, with t l, and

f ¢ E* define m d

)( fitol 2D

cee V

g8 = Ve % 4 1,01 Upar %£42,¢-2

define m e to be the identity of G
’

all t € N, £ € E*.

£ We note that mt,f € G£+t for
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-

2.3.5 Let S = {(a,g,,b) ¢ E* x(ku%s.)x E*
i i=p +

u {0}. Define a multiplication on S as follows:-

a=>b=1and gi € Gi}

(a,g;/b) (c/hy,@) = (att, m.

-1 4
t,a (h =, )ms'd,d+s)

%
95N, %, 17, c B, s
where t = [b,bc] and s = [c,bc], if bc 2z 0} all other products

are zero.

2.3.6 We show that this multiplication is closed. Let (a,gi,b),
(c/hy,d) e s\ {0}, 1If bc = 0, then (a,g;/b) (c,hyed) =0 ¢ S. We

suppose, therefore, that bc # 0. Then

_ -1 -1
(algirb) (Crhj'd) = (a*t'mt,a(giai,t)mt,bms,c (thtj ,S)mS,d'd+S)

where t = [b,bc] and s = [c,bc]. Note that the outer elements in
each triple (a,gi,b))(c, hj,d) are in S(E, T, k) and, when multiplied,

behave exactly as there. Thus att = d +s. As a = b = i we have

€ G,, . However from

and similarly ms'c, ms,d j+s

meoa’ Me,p € Cis

Lemma 2.2.4 we have att = a + t (mod k) and d+s = 4 + s(mod k)

t

+t = d+s = i+ = j+ . T
so that a+t = d+s i+t (mod k) j+s (mod k) hus mt,a'mt,b'ms,c’

e G, and h.o. € G, so that the

m € G . Furthermore gia. i+t 55,8 j+s
r

S,d a+t llt

middle term of the product (a,gi,b)(c,hj,d) is a product of elements

of Ga+t and so is in G e

2.3.7 We denote the groupoid described in (2.3.5) and (2.3.6) by

S(E, T, k,Gi'yi,e,vf).

2.4 S(E, T, k, Gi'Yilel vf)

In this section we show that the groupoid described above is
a O-simple inverse semigroup with semilattice isomorphic to E and
we examine the Green's relations on the semigroup.
2.4.1 Theorem: S = S(E, T, k, G/ v,/ € vf) is a semigroup.
Proof: Having shown in (2.3.6) that the multiplication is closed

we are left to consider the associativity. Let (a, gi, b),
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‘(c,hj.d>,(f. 1,9 € s\{0}.

(a) If bc =0 and df = 0, then [(a,gi,b)(c,hj,d)](f,ln,g) =
0 (f,ln,g) = 0 and

(algilb) [(clhjld) (f'lnrg)] = (a,gi,b) 0=20

(b) If bc =0 and df = 0, then [(a, gi,b)(c,hj,d)](f,ln.g) =
O(fllnag) = 0.

On the other hand (a,gi,b)[(c,hj,d)(f,ln'g)] = (a,gi,b)(c+t,x,g+s)

where t = [4,df],s = [£,df], and x is the appropriate middle

However b(c+t) = bc(c+t) = 0 and so (a,gi,b)(c+t,x,g+s) = 0.

(c) If bc 2 0 and df = 0 we can show in a similar manner to (b)

]
@]

that [(a,q.,b)(c,h.,d)1(£f,1_,9) = (a,9,.,b)[(c,h,,d) (£,1 ,q9)]
i j n 1 J n

(d) The last case to consider is that with bc # 0 and df # O.

We examine first the product [(a,gi.b)(c.hj,d)](f.ln,g) =

-1 -1

L0 +
t,a (giai,t) LN ms’c (hjuj,s) m__,d s)(f,ln,g) where

+
(att,m s,d

t = [b,bc] and s = [c,bc],

= (a+t,xp,d+s)(f,1n,g), say, where p = a+t,

= ((a+t) +u, m;1 ( 1o

+
,att xpap,u) mu,d+s mw,f lnan,w) mw,g’g w) where

u =fda+s, £(a+s)] and w = [£, (d+s)f].

We now investigate xpa . We have, as o a is a homomorphism,

pP.u ’
X_0o = (m o -1 ( o o ) (m o ) (m o -1
P p,u t,a p,u 93 i,t p,u t,b p,u s,c p,u X
(hj aj,s OtP'u)(ms,d ap,u)'

The following lemma simplifies this term considerably.

-1
: * Ky =
2.4.2 Lemma If a ¢ E¥ and t,s € N then mt'aa r,s ms+t,ams,a+t

where r = a+t.

Proof: By Lemma 2.2.4 we have att = at+t (mod k). Thus from (2.3.3)

term.
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)]«

cea (v
( att,s

o o v .
t.a 0‘r:,s I« a‘agjl,tvl)(va+l 0‘_<'=l:+2,t--2) att~1

= v Y oo
( a &gfl,t-l agft,s)(va+l ang,t—2 agft,s) (va+t-1a§ft,s)

o )

es eV
N art,s)e

= (va‘agfl,s+t—l)(va+l 0‘3_-!-2,s+t--2 at+t-1

Hence we have

) (

m m =
t,a c‘r,s) s,att (va 0‘3_-!—1,s+t--1

+ *#2,5+t-2) ... (v
atl "af2,s+t-2) ( a+t—1aa+t,s)x

) I 4

) (

v .
( a+t 0La+t-!-l,s--l va+t+1 0La1+t+2,s-2 att+s-1

= (g %41, s4t-1) Var1 Yav2,s+e-2" "0 X

Vart-1 %art,s’ Vart %are+1,s-1) X

Yeoo V as, by

(

Vatt+l “att+2,s-2 att+s-1

Lemma 2.2.4, att = att (mod k).

. - . F .
Thus (mt,a ar,s)ms,a+t ms+t,a rom this we have

-1 -1

m m m =m . However m G
( t,a ar,s) s,att s,att s+t,a ms,a+t s,a+t6 att+s
and m 8 e G o -1
t,a r,s a+t+s so that (m m m =m o
! ' = ( t,a r,s) s,att s,a+t t,a r,s

Applying this lemmafour times we can simplify xp g u°
’

(1) m =m m‘-l
t,a 0‘p,u t+u,a u,att

(2) We have p = att = at+t (mod k) = b+t (mod k) = b+t (mod k) by

_ -1 _ -1
Lemma 2.2.4. Thus mt,b ap,u = mt+u,b mu,b+t = mt+u,b mu,bc'

[l
"

(3) We have p = g+t = d+s = d+s (mod k) = ¢c+s (mod k) = ct+s (mod k)

-1 -1
m m =m m
st+u,c u,c+s s+tu,c u,bc

by Lemma 2.2.4. Thus m o
S,C p'u

4 =m m’1
(4) Ms,d “p,u - "s+u,d u,d+s’

= . =a,
We note further that %, t %p,u Gifta1+t,u i,t+u

since p = att = att (mod k) by Lemma 2.2.4 and using (2.3.3). Also,

. [ = 0O O = #.
J¢/S P J:s “Jts,u

by a similar argument, o j,s+u’
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Combining all these results we have

-1 -1 -1
X 0 m m . O, )
P pP,u u,a+t t+u,a (gl 1,t+u)mt+u,b mu,bcmu,bc ms+u,c X

-1
(hj O‘j,s+u) ms+u,d mu,d+s .

The middle term of the product [(a,gi,b)(c,hj,d)](f,ln,g) is thus

-1 -1 -1
m . O, . O,
t+u,a»(g1 1,t+u) mt+u,b ms+u,c(hj aj,s+u)ms+u,d mw,f (lnan,w)mw,g

If we now examine the product (a,gi,b)[(c,hj,d)(f,ln,g)]
we find by similar arguments that it is

-1 -1 -1
+ .Q,
(aty, myla(giai,y)myrb mz+r,c(h3aj.z+r)mz+r,d mx+z,f(ln°‘n,x+z

) A

mx+z,g,(g+x)+z)

where r = [4,df], x = [£,df], v = [b,b(c+xr)] and z = [c+r,b(c+r)].

As we have earlier noted, the outer components of each term
of 8(E, T, k, Gi’ Yir e vf) are in S(E, T, k) and, under
multiplication, behave exactly as there. Since multiplication is
associative in S(E, T, k) we thus have a + t + u = at+y and g+w =
g+x+z so that t+u = y and w = x+z. To complete the proof that the
middle components of the two products are equal we need now only

show that s+u = z+r. We note that z+r = [c+r, b(c+r)] + [c,c+r] =

[c, b(c+r)] = [c,bc] + [bc, b(ctr)] = & + [b, b(c+r)] - [b,bc] =

s + y-t = 8 + (t+tu)-t = s+u. .

2.4.3 Lemma In S = S(E, T, k, Gi’ Yi’ e, vf) the element (a,gi,b)

is an idempotent if and only if a =b and g, = e;-

Proof: Let (a,gi,b) € S and be an idempotent. Then (a,gi,b) =
(a,gi,b)(a,gi,b). Since (a,gi,b) # 0 we must have ab # 0 and so

1 -1
(a:gi:b) = (att, m

- X ., +
t,a(gi 0Ll,t) mt,b ms,a(gl 1,s) ms,b’b s) where

t = [b,ab]l] and s = [a,ab]. However a = at+t and b = b+s so that

s =t =0 and we have b = ab = a. Also (a,gi,b) = (a,gigi,b) so
. 2 -

that g9; =94 and g; = ej-
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Conversely let (a,ei,a) € S. Then (a,ei,a)(a,ei,a) =

(a,e.e.,a) = (a,e.,a).
1884y ) (a, it )

2.4.4 Theorem: The semigroup S = S(E, T, k, Gi' Yir € vf) is

a O-simple inverse semigroup.

Proof: Let (a,gi,b) e S\ {0} and consider (a,gi,b)(b,ai,a)(a,gi,b)
(a,ei,a)(a,gi,b) = (a,gi,b). Thus S is regular. To complete the
proof that S is inverse we need only by (1.1.4) check that the
idempotents in S commute. Let (a,ei,a) and (c,ej,c) be two

idempotents in S. Then (a,ei,a)(c,ej,c) =0 = (c,ej,c)(a,ei,a) if

-1 -1

= 0. If z . . = + L0,
ac 0 ac o, (a,el,a)(c,ej,c) (a t,mt’a(elul,t) mt,a ms'c
. + = = .
(ejaj's) ms'c,c s) where t fa,ac] and s [c,ac] We have

g0, L T e and e.., = e. . However i+t = a+tt

't i+t j j.s j+s att (mod k), by

Lemma 2.2.4, and j+s = c+s = c+s (mod k) so that i+t = j+s (mod k) and

SO e.q, (ac). We can

i%,¢ = ejaj,s' Thus (a,ei,a)(c,ej,c) = (ac,ei+t

i+t i+gr3C) -

show similarly that (c,ej,c)(a,ei,a) = (ca,e,,. ,ca) = (ac,e,
Let (a,g;,b), (c,hy,d) e sN{o} . Then (a,b), (c,d) € S(E, T, k)

which is, by Theorem 2.2.3, a O-subtransitive inverse subsemigroup

of TE. Since E is an w-tree with zero it is O-subuniform and so we

can apply [9, Theorem 3.2 (ii)] and we have that S(E, T, k) is O-simple.

Thus there exist (w,x), (y,z) € S(E, T, k) such that (a,b) = (w,x) (c,d)X

(y,z). Also (w,ew,x)(c,hj,d)(y,eE,Z) =(a,Pi.b), say, where Py is the

appropriate middle term. Hence (a,gi,b) = (w,ew,x)(c,hj,d)(y,ez,z)X

(b,p;lgi,b) and so we have S is O-simple.

TIn the following theorem we examine in detail the semigroup

S(E, T, k, Gi?Yi'e'Vf)'
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2.4.5 Theorem: In S = S(E, T, k, Gi' Y0 e,vf)

2. ((a:gi:b),(cphj.d)) ef<=> a-=c

((a:gi'b),(C,hj,d)) € f<=> b=4da

]
Q
V)]
2
e

]
o))

((algi'b) '(clhj’d)) €~W<=> a
((argi,b),(C,hj,d)) €9<=> i= j

3. J‘ is a congruence on S

. to within 1S omerphain,
4. The maximal subgroups of S are),\Go,Gl,Gz,...,Gk__l.

5. There are exactly k non zero ﬁ'—classes in S.

Proof: 1. From Lemma 2.4.3 we have E = {(a,ei,a) € S \'{0}}U' {0}.
Define a mapping ¢:E - Es as follows:-
0¢ = 0 and ap = (a,ea,a).

Clearly ¢ is a bijection. If a,b € E* with ab = 0 then (ab)¢ = 0 and

(a$) (bd) = 0. If a,b € E*¥* with ab # 0 then (a¢) (b$) = (a,ea,a) (b,eb,b) =

(ab,ea+t,ab) where t = [a,abl, from the proof of Theorem 2.4.4. Thus
(a¢) (b)) = (ab)¢ and we have ¢ is a homomorphism and hence an
isomorphism.

2. Let (a,gi,b))(c,hj,d) € S with ((a,gi,b),(c,hj,d)) eL .
We have ((a,g;,b),(a,g;.b) (@9, b)) € &, i.e. ((a,9,,b),(ase;,2)) €&
Similarly ((c,hj,d),(c,ej,c))eﬁ. Thus ((a,ei.a),(c,ej.c))e& .
However from (1.2.7) we now have (a,ei,a) = (c,ej,c) so that a = c.
Conversely let (a,gi,b),(a,hi,d) € S. Then, as above,

((a,gi,b)'(a,ei:a)) e ® and ((a,hi,d),(a,ei,a)) e . so that

((a,9;/b),(a,by,d) € € .
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The result for J\a follows similarly and the result for ﬂ
can then be readily deduced.

Let (a,gi,b),(c,hj,d) € S with ((a,gi,b),(c,hj,d)) € 0(9' .
Then there exists (f,lt,g) € S sach that ((a,g;,b),(f,1,,9)) ¢ >
and ((f'lt'g) '(c'hj Ad)) € o}\o From the above results we have
a=fand g=d. Hence a = f and g = d. However f = g and so
we have a = 4, i.e. i = j.

Conversely let (a,gi,b),(c,hi,d) € S. From the results on (_
andx above we have ((a,gi,b) ,(a,ei,d)) e ® and ((a,ei,d) (c,hi,d)) e K
so that ((a,g;,b),(c,h ,d) € & .

3. This result can be checked easily.

4. From (1.2.11) we have that the maximal subgroups of S are
thej’l—classzd{of S containing idempotents. From result 2 above,
= {(a,gi,a),:gi € Gy } > G, and so the maximal subgroups of

H
(aleila)

S are isomorphic to the groups GO'Gl""'Gk—l'
5. For i = 0,1,2,...,k-1 let D; = {(a,g;,b):a =b = i and
g9; € G }. From result 2 above, for any i € N, where 0 £ i < k-1,

any two elements in Di are 3—equivalent. Further if (a,gi,b) ,(p,xr,q) €S
and ((a,gi,b) ,(p,xr,q)) e A then p=9g=r =1 and (p,xr,q) € Di'

Thus the non zerom-classes of S are precisely the sets DO’D teeesD

1 k-1

and so there are exactly k non zero 9-—classes of s.

2.4.6 Corollary: In S(E, T, k) there are exactly k non zero

9 -classes.

Proof: It is sufficient to say that S(E, T, k) = S(E, T, k, Gi'Yi’

e, vf) where, for 0 < i < k-1, G, = {ei} .

2.5 A O-simple inverse semigroup whose semilattice is an w-tree with

Zexo.

We have shown in section 2.4 that the construction
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S(E, T, k, Gi' Yi' e, vf) gives rise to a O-simple inverse semigroup
whose semilattice is an w-tree with zero. 1In this section we prove
that, in fact, every O-simple inverse semigroup whose semilattice is
an w-tree with zero is of the form described above. The result is
reached in two stages: the first stage is the consideration of

the fundamental semigroup SA;V and the second stage is the
consideration of S itself.

2.5.1 Theorem: Let S be a O-simple inverse semigroup whose
semilattice E is an w-tree with zero. ThenQZL is a congruence on

S and there exists a transversal T of the components of E* and k € N

with k 2 1, such that S/¢/ ~ S(E, T, k).

Proof: From [6, Theorem 3.2] we have that #= u and so# is a
congruence on S. As E is an w-tree with zero, E satisfies the
conditions of (1.3.11) and we have that Te =’{£e'f: e,f € Ex}u {0}

as described in (1.3.10) and (1.3.11). Applying [6, Lemma 3.1] we have
S/JV'= S/u ~ SO where 0:S »> TE is a homomorphism with 00 = 0 and &0 =

for a ¢ s~{0}, 1If, as in (1.3.11), we take T_ =

£ -1 B

aa ,a"la
{(e,f) : e,f € E¥} u {0} then SO is the set {(aaul,a-la) :a€sS N
{0} } u {0}. We note that, by [9, Theorem 2.4], S/4 is a fundamental
inverse semigroup with semilattice isomorphic to E. Hence SO is a
fundamental O-simple inverse subsemigroup of TEo If we now apply

[9, Theorem 3.2 (i)] we have that SO is a O-subtransitive inverse
subsemigroup of TE. Then, by Theorem 2.2.5, there exist k € N, with
k > 1, and a transversal T of the components of E* such that SO =
S(E, T, k).

2.5.2 With the same notation as in 2.2 let the isomorphism

discussed in Theorem 2.5.1 be ¢ : SF¥ +’{(f,g) : £,9 € E* and

£ =g} u {0} where 04 = 0 and (H))¢ = (aat,a7ta).
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2.5.3 Theorem: Let S be a O-simple inverse semigroup whose
semilattice E is an w~tree with zero. Then there exists a
semigroup S(E, T, k, Gi' Yi ,y €, vf) such that s ~ S(E, T, k,
Gi' Yi' e, vf).
Proof: It has been shown in Theorem 2.5.1 that there exist k € N,
with k 2 1, and T a transversal of the components of E* such that
¢ + sS/M> S(E, T, k), described in (2.5.2))is an isomorphism.
With k and T as there,select an element e € E* for which e = 0
and keep it fixed.

For i = 0,1,2,...,k-1 let Gi = He+i and, for all n € N,

take Gn = Then, for all n € N, Gn is a group.

Gn (mod k) °
We next choose a set of representatives of the non-zero

Jy—classes of S as follows:-

For f ¢ E*, with £ = i, let ue be the representative of Hx where

(Hx)¢ = (e+i,f). We make the following stipulations:-

(a) LI is the identity of G, for i e N with 0 ¥ i < k-1.

(b) Uoink u:+k = 4" (say) for all n € N, with n 21.
(c) U imink (e+m)un for all myn € N withn =1 and 0O £ m < k-1.
(a) u;lug is the representative of Hy where (Hy)¢ = (f,q9).

We note that if f ¢ E* with £ = i then ufu;l= e+i and ugluf = £,
In the next lemma we obtain a method of expressing all the

elements of SN {0} in terms of these representatives and elements of
the groups Gi’ i=0,1,2,...,k-1.
2.5.4 Lemma: Let x € S>{0}. Then there exists a unique representation

3 -1 = = = i
of x in the form u g ,u where (H )¢ = (£,h), £ =h =1 and g; €G;.
Proof: Let x € S\ {0} with (Hx)¢ =(f,h). Since (f,h) € S(E, T, k),

£ =h=1i (say). We thus have (f, e+i) (eti,eti)(e+i,h) = (f,h) in
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)¢. Since-iyis a congruence
Yy
on S, by Theorem 2.5.1, we have (Hx)¢ =

S(E, T, k) and so (H )¢ = (H "1He+1

(hugl(e+i)u£}¢. However ¢

is an isomorphism and so H =H

Thus (x, u—l(e+i)uh) € hﬁ

-1
£

q'l(e+1) uh

Again, using the fact thatiléls a congruence, we have (u_.xu
u u_ (eti)u -1 ) e , so that, as u u—l = eti = u u-1 we have
£ f h'h ’ ’ £f h'h

-1 . -
,et+i) € 34. However G. =H ,. and so u_. X u 1 =9y (say),

(ug x uy e+i £¥X Yy

-1 _ -1 -1 _
where gi € Gi' Thus uf uf b4 uh uh = ug giuh. However uf u = f and

u U= h, also xx—1 = f and x_lx = h and we have £ _x_h = x. Thus
X = uf gluh Hence there is a representation of x in the required
form.

Suppose that x € S~ {0} and x has two representations in
the required form, the first being x = u;l gy, and the second
being x = u;lhjuq. From x = u;lgiuh we have (Hx)¢'= (f,h) and
from x = u;lhjuq we have (H§)¢ = (p,g). Thus (£,h) = (p,q) and £ = p
and h = g. Consequently i = £ = p = j and we now have u;1 g9, = x =
uglhiuh. However, u. x u;1 = (e+i)gi(e+i) =g, and ue x u;l=
(e+i)hi(e+i) = hi so that 9; < hi and the representation is unique.
Returning to the theorem we now use this representation to

define a mapping y: S *'{(f,gi,h) : £,h e E*, £ =h =1 and

9; €6y } v {0} as follows:- Oy = O

Xy (f,gi,h) where (Hx)¢ = (£,h) and the

representation of x described in Lemma 2.5.4 is uglgiuh. From Lemma

2.5.4 we see that the mapping Yy is well-defined. It is also readily
\

-1 N
seen to be a surjection, for, if (p,gi,q) € E*xrtgo Gi} XEj with

-

p=g=1iand g, € Gi then, letting y = up giuq we have yy =

(p,gi,q). Also if x,y € S~ {0} and x¢ = yy we have at once that

X =y.
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Let i € N with 0 £ i £ k-2 and let g; € Gi' Then

( = (e+i,e+i) (e+itl,e+itl) = (e+i+l,e+i+l). Thus

Hgi(e+i+1))¢

gi(e+i+l) = (e+i+1)gi(e+i+1). Similarly (e+i+1)gi = (e+i+l)gi X

(e+i+l). Hence (e+i+l)gi = gi(e+i+l) and is in G We

i+1’

defi mappi . 2 G, . =
ine a pping Yl Gl -+ G1+l by the rule that 974
gi(e+i+l). It is immediate from the remarks above that Yi is

a well-defined homomorphism.

F i - -
or g, _, € Gk-l we examine (Hugk-1)¢ (e,etk) (etk-1,
etk-l) = (e,et+k). By Lemma 2.5.4 we thus have ugk_1 = u;lgou For somr
una . = . i 1 .
e g € Go Thus ug, 5 = 9yu Define a mapping V-1 Gk—l > G

by the rule that (gk_lyk_l)u =ugy - This is again

easily seen to be a well-defined homomorphism.

We now extend these definitions taking Yn = Yn(mod k)for

all n €e N. If n,t € Nwith t 2 1 define a =YY oY
n,t n

n+l n+t-1

and an o to be the identity automorphism on Gn' Note that for
’

m, s, t € N we have o o = o
roee m,t mtt,s m,t+s

2.5.3 (i)

and am,t = am+sk,t

If 0 £ i £ 3j £ k-1 we have g, (etj) = g, (eti+l) (e+i+2)... (et])
i i

ceoY. = giui,j—i"' 2.5.3 (ii).

so that g, (e+]) = 9;Y;¥ 490741

Similarly we have (etj)g, = g.a ...2.5.3 (iii).

i%,5-1

The next lemma is concerned with these homomorphisms.

2.5.5 Lemma: If n,i e Nwithn21, 0£1i<k-1andg; e Gi

n_ _ n
then u 9, = (giai,nk-i)u .

Proof: We commence an inductive proof by considering the case

when n = 1. We then have (Hug )¢ = (@, e+ Kk Yetl a4l)® (Q')U'k) and
i .

so ug, (ugi)(e+k) = (ugi)(e+k)(e+k—1) = (ugi)(e+k-l) =

u(gi(e+k-l)). However, by (2.5.3 (ii)), gi(e+k-l) = giai,k-l-i

and gi(e+k-1) & Gk Hence ug; = u(gi(ﬁ,k-l—i)

-1°

‘(9iJi,k-1-i)*k-1)“ = (gfii,k-i)u' The proposition is therefore
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true in the case n = 1.

Assume that the proposition is true for n = r-1 where

r 2 2 and consider the case n r. In the case n = r-1 we

have the result that, if 0 < i € k-1 and gi € Gi' then

ur_l = (g.0 )ur_1 Whe =r id fg, =
9 95% , (r=1)k-i . nn=rx, weconsider ug, =

r-1 r-1l . - .
u (ugi) =u (gia i)u, since the proposition is true for

i, k-
n = 1. Applying the proposition for n = r-1 we now have

[+ ur
o, (x-1)k

)

~1 .
Ju since g e, € Go' Hence,

g, = ((g.0
95 gi i i,k-1

i i, k-1

. r r
by (2.5.3 (i)), we have u gi = (giai,rk-i)u and we have proved

the proposition for n = r. Thus, by induction, for all n € N
with n 2 1, the proposition holds.

Returning once more to the theorem we now make a
notational definition:-
Let f ¢e E* and t e N. If i = f and p = f+t, Qe define mt,f
e+itt e - M, £UE4t

Yo = (etp,eti+t)X

to be the unique element in Gp such that u

This is a valid definition, since (H

Yeti+t's o
(e+i,f) = (e+p,f+t) and so, by Lemma 2.5.4, Uit = ue+pgpuf+t
wnygue g n
. = e+
for someAelement gP € GP However ue+p e+p and so we have
ue+i+tuf = gpuf+t' We take mt,f = gp.
For all £ ¢ E* we denote by Ve the element m e We
&
= = = +1 = i.
note that mb'fuf ue+iuf u; so that mo,f eti, where £ = i

We now show that this notational definition is a suitable

one for the construction of the semigroup S(E, T, k, Gi' Yy vf).

2.5.6 Lemma: Let f,h ¢ E*¥ with £ =i and h = j. Then, if fh # 0,

-1 -1 -1
Uely = Yorite Mt £ s, h Vetjts

. -1
[h,fh] and, if f£h = O, ufuh = 0.

where t = [£f,fh] and s =

Proof: If fhz O then (Hu u_l)¢ = (e+i,f) (h,et+]j) = (e+i+t,
fh
et+j+s) where t = [f,fh] and s = [h,fh]. Since this product is in
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S(E, T, k) we have etit+t = e+j+s = p (say). By Lemma 2.5.4,
u -1 _ u-l
£%h e+i+t Ip Yetj+s

-1 -1
ue+i+t U uh ue+j+s = (e+p)gp(e+p) = gp. However,

where gp € Gp' From this we see that
Yetritt % °
-1
m = =
t,f i+t Yetjts Yn = Vg,h Uhest TPUS 9p T WMo Ve Ypio X
-1 .
Noting that f+t = h+s = fh, we have g_ =

m .
s,h P mt,f

and

-1
(e+p) m 1 =

mt,f ms,h' as mt,f € Gf+t = Gp since f+t = £ + t(mod k) = it+t(mod k)

= et+it+t (mod k), by Lemma 2.2.4. From this we have ue u;l =
u-1 m m-1 u
eti+t t,f s,h “et+j+s’
If fh = 0 then (Hu u;l)¢ = (e+i,f) (h,et]j) = 0 and so

-1 £

ufuh = 0.

2.5.7 Lemma: Let f ¢ E* with £ = i and let t &€ Nwith t 2 1.

Then m = ( )( ) I ¢ ).

e, £ 0 VE%iel,e-1 VEe1%i42,t-2 Vere-1
Proof: The proposition holds for all £ € E* when t = 1. Assume
that the proposition holds for t ¢ N, with t 2 1, and f ¢ E*

where £ = i, i.e. that m g = (Vfai+1,t-l)(Vf+lai+2,t-2)"'(Vf+t-1)' BX

definition, nL+l,f is such that mt+1,f uf+t+1 = ue+i+t+l Uges
where f+t+l = gq (say). However mt,f Ueir = Yeritt Uf7 where

f+t = p (say). By Lemma 2.2.4, g = f+t +1 (mod k) = ptl (mod k).

There are therefore two cases to consider:-

IA

(i) 0 < p £k-2 and q = ptl

(ii) p = k-1 and g = 0

Case (i) Let i+t = rk+p where r € N. Then M1, el T

r r
= (e+pt = (etptl) (etp)u u_ = (et+p+l
Uetrk+ptl Uf (etp+l)u u, (etptl) (etp)uu, = (etptl) X
= +p+ . Sincem e G it follows
Ueprksp U = (SYPYL) Wy o Vg t, £ p
-1
that mt+l,f Ueiesl = (mt,f)Yp Ue,yo Hence mt+1,f Ueiesl YEresl

-1

= (e+p+
f+t+l Upres - (€7PHL) and so

-1
(mt,f)Yp Ueie Yeretl1® However u

-1
= . By Lemma 2.5.6 we have
e+l (mt,f) Yp Ygst Ugrtrc Y €
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u u_l = u-l m m-l =
£+t f+t+l  Cetptl 1, f+t 10, F+t+l Setptl

(e+p+l) (e+p+l) = m

(e+p+l) m1,f+t X

v . Thus m

1,64t VE+t v

t+1,£ = Pe,e) Yp Vese

which is the required result in this case.

Case (ii Let i+t = rk+k-1 wh . =
(ii) where r € N Then mt+l,f uf+t+l

_.rtl _ r _ r _ _
ue+(r+l)k U =W Tug = uu ue = u(e+k-1)u Ue = WU gn 1Y =
u(mt,f uf+t) = (mt,f) Yk—l uuf+t)51nce mt,f € Gk-l' Thus we

'l _ _l
have mt+l,f Ucgitl Yeres] = (mt,f) Yk-l Uue L Ul However
u u_l = e and we have m = (m ) -1
f+t+1 CE+esl 41, £ t,f Yk-1 TertF+e41”
-1 -1 -1
B «5. = =
y Lemma 2.5.6 we have g, Ue,1q = Yoy ™, gt Do, £4t41 Ve
-1 _ -1 _
UMy e THUS® L, =l ) e g W TRy e T B Py X
- \ . . . .
ml,f+t (mt,f Yk—l vf+t which is the required result
We return now to the theorem. The final step in showing
that the v_.'s defined above satisfy the requirements for the

£

semigroup S(E, T, k, Gi' Yi' e, vf) is to show that, if i ¢ N,

ve+i is the identity of the group Gi+1' Let 1 € N with

s = < k-1. , = .
i =rk + pwhere r ¢ Nand 0 £ p < k-1 Then v__ . M et+i and

, Where q = e+i+l (say). Thus v_ .6 =

SO Vv
e+l

.u . =u u .,
eti e+i+l etptl et+i
=1

.2. = eti+
ue+p+1 Uopi Borisl. By Lemma 2.2.4, we have q = e+i+l (mod k)

= p+ 1 (mod k). Hence there are two cases to be considered

here:-
(i) that 0 £ p £ k-2 and q = ptl
(ii) that p = k-1 and gq = 0.
) _ -1 ,
Case (i). We have v_, . = (e+p+l) Uetrktp Yetitl = (e+p+1) X
r -1 _ r -1 - -1 _
(e+p) u Yori+l = ( etptl) u Yeti+l = Yetrk+p+l Yeritl
-1
= (etp+l).
Uositl Yeriel - (ETPHL)
Case (ii) We have v =u u u--1 =u (e+k—l)ur u-1 =
117 eti  Vetk “eti e+i+l et+i+l
r -1 _ r -1 _ r+l -1 _
u(e+k) (etk-1)u” u i, o =uletku u ;) =8 Ui T

-1

= e. In both cases we have the required result.
Yot (r+1)k Vet (z+l)k - & I “
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as specified

It follows now that, with T, k, Gi' Yi' e, Vf

above, the semigroup S(E, T, k, Gi’ Yi' e, vf) can be defined. The
mapping ¥ described above is clearly a bijection from S onto

S(E, T, k, Gi, Yi' e, vf) and the remainder of the proof is
concerned with showing that § is an isomorphism.

Let x,y € S\{0} with x¢y = (a,g,,b) and yy = (c,hj,d).

_.-1 _ .=
Then x = ua gi ub and y = uc hj uge
If bc = 0 then (xy)(yy) = 0. Also (Hx)¢(Hy)¢ = 0 and so

(ny)¢ = 0 from which we have xy = 0. Hence (xy)¥ = (x¢) (yy).

If bc 2 0 then (ny)¢ = (Hx)¢(Hy)¢ = (a,b) (c,d) =

(att,d+s) where t = [b,bc] and s = [c,bc]. Thus (xy)y = (att,

= i + = + =
z, d+s) where xy ua+t z ud+s with at+t = d+s p (say) and

G F thi h X u—l =u u_l z Uy u_l
Z € s rom is we have ua+t 04 d+s a+t att d+s Cd+s

(etp) z (e+p) = z. Hence z = U Uy g u, u h uy udis. By

u-l= u-l m m-1 u . = m-l a L.,
att a etp o,att t,a eti+t t,a etitt
-1_ -1 -1 -1 _ -1 X

= . m m u . : also, u, u =u . m
also Y Y T Y%eti+t Mt,b Us,c etj+s ' 7d Ta+s etj+s s,d

Lemma 2.5.6 we have u

-1 -1 ..
= . m . Combining these three results we see
mo,d+s ue+p ue+j+s s,d g

-1 -1 oL oot h, ulom Let
that z = mt,a ue+i+t gi ue+i+t t,b s,c e+]+s et+ij+s Sldo ‘
Swppoa 9-.nt T2, wal,

i+t = rk + p and j+s = wkt+p where r,w ¢ N.,\then u etitt (et+p)u” and

w = 1
ue+j+s = (etp)u . By Lemma 2.5.5, Uopist 9 (e+p)u 9; (etp) X

w

. = (etp)u” h, = (e+p) (h,o, Ju.
(glal,rk Ju" and ue+j+s hj (etp) 3 (etp) ( 373 .wk-]

However, by (2.5.3 (iii)), (et+p) (g, 1%, rk—l) = (g, ai rk-i )ao,p since

+ .) = (h.a. .o . By (2.5.3 (1)) we
9% rk-i € %o and (e P)(hjaj'wk_J) ( 3 J,wk-j) 0,p 4

= . = and similarl

have (glal,rk—i)ao,p (giai,rk-l)ark,p (9 0 3, rk+p-i .) Y
. ] - r

(hyoy 909, p = Byly qeap-g)e HeMCC Ugyipe 95 = (930 ppypg) ¥

(g.a, )(e+p)u =

however g.a. - Gp and so Yeritt 91 = '9i%i,rktp-i

i“i,rk+p-1
= .. .. Similarly we have u_,., h. =
(9,9, ) Yesrk+p (9,0 ¢) Veritt 4 e+j+sts
(hia. Ju -. . With these results _  whilh. mawm True o
J J,s etj+s b}

=0 w=o We hawe  that
) v
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-1 -1 -1 -1
z=m (g.a, . .
t,a gl,l,t) ue+1+t ue+1+t mt,b ms,c (hjaj,s)ue+j+sue+j+s ms,d
=nl (g0, )(etp) m. . ml (n ) (e+
t,a gi i,t p t,b "s,c jaj,s e+p) ms,d

=mt (g0 ) -1

m m h.o, m i .
t,a 9i%,¢) P¢,p Os,c ( j ],S) s,d 5 since gia.' , h.a. € G

it J J.s b

This is the same middle term as is obtained when(a,gi,b) and
(c,hj,d) are multiplied in S(E, T, k, Gi’Yi’ e, vf) and so we

have that (xy)y = (x¢)(y¥) and ¢ is a homomorphism.

2.6 Applications and Special Cases

There are two main lines of approach which make considerable
simplifications of the above results and give rise to several already
established results. One approach is to simplify E, first by
considering a O-direct union of w-chains as was done by Lallement in
[3], and then by specialising again and examining the case when E
is an.w=-chain with zero. The other means of refinement is to take
k =1 and with this to consider the various cases of E. Before
embarking on either of these we investigate the case when, for all
, where multiplication is much

* 3 (3 . 3
e € E*¥, v_ is the identity of Gf+1

£
simplified.
2.6.1 Definition: A semigroup S, wherel#‘is a congruence on S, is

said to 'split over 4l ' if there exists a set of representatives of the

:ii-classes of S which form a subsemigroup of S.

2.6.2 Theorem: (i) The semigroup S = S(E, T, k, G,/ Y;s €, V)
where, for all f ¢ E¥%, vf is the identity of Gf+l' is a O-simple
inverse semigroup whose semilattice is an w-tree and which splits
over jV.

(ii) Conversely, let S be a O-simple inverse
semigroup, whose semilattice is an w-tree with zero, which splits

over'yd. Then S is of the form S(E, T, k, Gi' Yir € vf) where,
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£ * . . .
or all £ ¢ E*, ve is the identity of Gf+1.

Proof: (1) From Theorems 2.4.1, 2.4.4 and 2.4.5 we have that S is a
O-simple inverse semigroup whose semilattice is an w-tree with zero
and wherecﬂ is a congruence on S. Consider u ='{(a,ei,b) € S; e, is
the identity of Gi}U{O}. Then W is a subset of s and, from Theorem
2.4.5 (2), is a set of representatives of the.ﬁ -classes of S. Let

(a,ei,b),(c,ej,d) el . If bc =0, then (a,ei,b)(c,ej,d) =0el(l.

-1

_1 .
+ .0
(a+t,m (e.q )mt'bms'c(ejaj’s)k

t,a i7i,t

]

If bc # 0, then (a,ei,b)(c,ej,d)

]

+ = = =
ms,d'd s) where t [b,bc] and s [c,bc]. However mt,a mt,b

m =m = the identity element of Ga+

. Also e.a, = e =
s,c s,d

t 11i,t a+t

ejaj,s and so (a,ei,b)(c,ej,d) (a+t,ea+t,d+s) € Y . Hence is a

subsemigroup of S and so S splits overj* .

See Aﬂu44;¢ (ii) From Theorem 2.5.3, S is of the form S(E, T, k, Gi'

Yir ©r vf). Since S splits overdu there exists a set of representatives A
of the i{—classes of S which forms a subsemigroup of S. Assume that,
in the notation of Theorem 2.5.3, the set of representatives ue chosen

are elements of this subsemigroup of S. Examining, in the light

of this, the definition of m we have m

t, £ t, £+t ~ Uetristlg’ ¥here

£ =4i. If f+t = p we have(n )6 = (e+p,e+i+t) (e+i,f)
- —_— u ,.,..u

et+i+t £
(etp,f+t) and so, as the set of representatives tﬁ forms

V1]

subsemigroup of S, we have Uopirt?e = Ygpps Hence mt,fuf+t = Ul

so that mt £ is the identity of Gp. This means that, for all f ¢ E*,
’

v is the identity of Gf+1.

£ Mg
&4’AﬂMdﬁQ.6.3 From the above theorem we have a ’ . sufficient

condition for a semigroup S(E, T, k, Gi’ Yir € vf) to split over'dq:

namely that Ve is the identity of Gf+1, for all £ ¢ E*. Hewever—a

and—ati—t—edr—u e = U —where— =t
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We apply this criterion below in considering the first

simplification of E.

2.6.4 A semilattice with zero is said to be a O-direct union of
w-chains if it is isomorphic to the set (N x I) u {O}with the
ordering 0 < (n,a) for all n € N and for all a € I,and (n,a)

< (m,B) <=>a =8 andn>m , where n,m ¢ N and o,8 ¢ I.

2.6.5 Theorem: (i) Let E be a 0O-direct union of w-chains. Then
S = S(E, T, k) is a O-subtransitive inverse subsemigroup of TE

whose semilattice is a 0O-direct union of w-chains.

(ii) Let S be a O-subtransitive inverse subsemigroup
of TE’ where E is an w-tree with zero, whose semilattice is a
O-direct union of w-chains. Then E is a O-direct union of w-chains

and there exist k € N, with k 2 1, and a transversal T of the

components of E* such that S = S(E, T, k).

Proof: (i) That S is a O-subtransitive inverse subsemigroup of TE
follows immediately from Theorem 2.2.3. From [9, Theorem 3.2 (ii)] we have
that S has semilattice isomorphic to E, so that the semilattice of S is
a 0O-direct union of w-chains.

(ii) From [9, Theorem 3.2 (ii)] the semilattice S is isomorphic to
E. Hence E is a 0O-direct union of w~chains. The remainder of the
result holds by Theorem 2.2.5.

In [3] Lallement considers those O-simple inverse semigroups
whose semilattices are O-direct unions of w-chdains. First he considers
the case whenw =i. IfMN=1i , then the semigroup is fundamental and
by [9, Theorem 3.2 (i)] we have that S is isomorphic to a O-subtransitive

inverse subsemigroup of TE' Thus the first case considered by Lallement

is the same as that in Theorem 2.6.5.
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2.6.6 1In [3, Proposition 1] Lallement states his result for O-simple
inverse semigroups whose semilattices are O-direct unions of w-

chains and where #= i.

Proposition 1. Let A be a set and p : A x A > Zd be a mapping

into the set of integers mod d satisfying p_(a,B) + p(B,y) =
p(c,y) and p(a,a) = 0, for all «,B,y € A. Let s (A, p,d) be

a set consisting of 0 and the quadruples (i'j)a , where i,j e N

B
and a,B € A, such that i-j = p(a,B) (mod d). We define a

multiplication on S(A,p,d) such that the only non zero products
(k,1)

are (i'j)a y = (i + [k-j1, 1 + [j-k])ay where [n] = n

B B
if n 20 and [n] = 0 if n < 0. Then S_(A,p,d) is a O-simple
inverse semigroup whose semilattice is a O-direct union of w-
chains and é‘ =i,

Conversely if S is a O-simple inverse semigroup whose

semilattice is a 0O-direct union of w-chains and-ff= i in S then there

exist A,p,d such that S ~ S(A,p,d).

2.6.7 We must now reconcile Theorem 2.6.5 with Lallement's proposition
quoted in (2.6.6). We note firstly that if E is a O-direct union of
w-chains then there exists a set A such that E = (N x A)u {0}

where (n,0) < (m,B) <=> o=B and n 2m for n,m e N, a,B € A.

Let S be a O-simple inverse semigroup whose semilattice E =
(N x A) u {0} and where $!= i. As noted earlier we have by [9,
Theorem 3.2 (i)] that S is isomorphic to a O-subtransitive inverse
subsemigroup of T_. Thus we are in the situation of Theorem 2.6.5

E b we idmbly S otk SCET,K).

(ii) and also of Theorem 2.2.5. \ Following the notation of Theorem

2.2.5 we make the following definitions:-
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Fix (0,0) ¢ E*. Let Z(n . = (0,y) for all n ¢ N and let
4

e(n,Y) = (pY’Y) where pY is the least element of N such that
((0,0) » (PY,y)) € S. Let T ='{(pY,y) ‘ Yy ¢ A }. We note that
Pf < k. Suppose that By 2 k,Then since ((0,y),(k,y)) ¢ S and
((OIa):(PY,y)) e S we have ((Ora),(Py:y))Ukry),(O,y)) = ((0,a),
(sx;kx,y)) e S which contradicts the definition pY

Using this notation we examine (r,y). Recalling that (r,y)
is the remainder after division by k of [(Py'Y)'(py'Y)(r’Y)] -

[ti:,y),(py;y)(r,y)]j there are three cases to consider:- (a) pY <r

(b)) p =1 (c) r. In (a) (r,y) = r- (mod k), i
” PY > I,y r pY mo ), in

(b) (r,y) =0 = TP, (mod k) and in (c) (r,y)= -(py-r) (mod k)

r—py(mod k). Applying this we have S = S(E, T, k) =

111

{((m,g), (miy)) : (n,B),(myy) € E* and n-p, m—py(mod kK)} u {Y
={{(n,g),(myy)): n,m ¢ N,B,y ¢ A and n-m = pﬁ-pY (mod k)} v {0}
This leads us to define p(8,y) = pe-pY (mod k) for all g,y € A.
It can be quickly checked that p:A x A = Zk satisfies the
conditions of 2.6.6. Thus we have S(E, T, k) = {((n,B),(m,y)):
m,n ¢ N, B,y ¢ A and n-m = p(B,y) (mod k)}u{0} . Multiplication in
S(E, T, k) is now as follows:-

the only non zero products are ((n,g),(m,y)) ((x,y),(q4,8)) =
((n,B) + t, (q,8) + s))where t=[(my),(my)(r,y)] and s =
[(x,y),(m,y) (£,¥)], = ((n+t,B) , (g+s,68)) = ((n + [r-m],B),(q +
[m-r],8)). This is exactly the multiplication in S(A,p,k) and so
S(E, T, k) = S(A,p,k).

We now proceed with the non-fundamental case where E is a
O-direct union of w-chains,

2.6.8 Theorem: If S is a O-simple inverse semigroup whose semilattice

is a O-direct union of w-chains, then S splits overfﬁk
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Proof: By Theorem 2.5.1i4is a congruence on S. Let E =

(N x A)u{0} and fix (0,a) € E*. With the notation of 2.6.7 and
ce R
Theorem 2.5.3 we select a set of representatives of e ¢1-c1asses

of S as follows:~ 1let u = =
et u u(k,a) and let CB u(O,B) for all
Be A, B# a. We then make the following stipulations:-
n .
(@) u = u(nk,a) for all n e Nwithn 21
(b) u(i o) is the identity of the group Gi for 1 e Nwith 0 <1 < k-1
r

(c) (i,a)un =u for all i,n e Nwithn =21 and 0 €< i < k-1

(nk+i,a)

m+1

(d) (i,o)u c for all m ¢ N and i € N with

B u(mk+ps+i,s)

0 <i <k-1 and for all B € A

, - . with B # a.
@ (K=pprj AICp = Mjpy o Oejcpp, p ot
We check briefly that these stipulations are valid. We have (Hun)¢ =

((ol(!)l(kla))n = ((0,a),(nk,0)) also (H = ((i,a),(i,0)) ((O,q),

(1,0 u ?

(nk,a)) = ((i,a),(nk+i,a)). We note that (H )¢ ((k-pepa),(O:B)) and
B

(i,a)um*1c8)¢ = ((1,0),(1,0)) ((0,0), ((m+1)k,@)) ((k-Pgral,(0,8))

= ((i,0),(i,a)) ((0,a), ((mk+p

so (H

).B)) = ((i,0), ((mk+it+p ) ,B)).

B B

We now check that this set of representatives satisfies the

condition stated in 2.6.3. First we examine Uit q) u(nk+i+p8,6)

sk+p where 0 < p < k-1 and we have

where B # a. Let i+t

n+
= (p,a) uS (i,a) un 1 c.. There are two cases

Y (i+t,0) “(nk+i+p6,e> B
to consider:~ the first that s = 0 and the second that s 2> 1.

(i) If s = 0 then i+t = p and we have Uit q) u(nk+i+pB,B) =
(p,a) (i,0) un+l c. . However p 2 i and so u

8 (i+t,0) Y(nk+i+p_,B)

B
n+l

(prod W Cg = B nkep 45 8)

(ii) If s 21 then u(i+t,a) u(nk+i+p6l8)

= u(nk+pB+i+t,B).

+
= (p,a) u® W 1 c_ as

B

. = (p,a) us+n+l c
u(i,a) = u and so we have u(i+t,a) u(nk+i+PB:B) P

= Y(nk+i+t+p_,B)

B u((s+n)k+pB +p,B) 6
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In both cases we have the required result. A sCwmdar axjuwmmét
& < . = . . )
g:”’: bkt £ 0 J Pﬁ) P ol | tham “’(Ht,,{) “Q,P) = u'grt,ﬁ\ whae (':k’f)&*\]’
If however w id i =
e consider u . . .. Uk, ) where i+t = sk+p we have

_ s ,. n . . .
u(i+t,a) u(nk+i,a) = (p,0) u” (i,a) u and considering in turn the

cases when s = 0 and n = 0 we have . . =
Yiitt, ) (nk+i,0) © (nk+itt,a)

which is again the required result.

2.6.9 Theorem: (i) Let E be a O-direct union of w-chains. Then

S =8(E, T, k, Gi' Yir € vf) where, for all f ¢ E* , Ve is the

identity of Gf+l,is a O-simple inverse semigroup whose semilattice

is a O-direct union of w-chains.
(ii) Let S be a O-simple inverse semigroup whose

semilattice is a O-direct union of w-chains. Then S is of the form

A . > .
S(E, T, k,%yi, e, vf) where ve is the identity of Gf+

1 for all
f € E*.
These results are immediate from Theorem 2.6.8 and

Theorem 2.6.2.

2.6.10 In [3,Theorem 2] Lallement states his result for this

case. It is as follows:-
Yo Y1 Yd-2 Yd-1
Theorem 2: Let Go -+ G1 > ces > Ga-l - Go be a cycle of

group homomorphisms. Let am,n = Ym Ym+l"'Y where m,n € N with

n-1

m<n. Let & =S8(A, p, 4, Gi,Yi) be the set consisting of 0 and
the elements of the form (i, g, j)BY where (i'j)BY € S(A, p, Q)
and 9, € Gr with r = (i-p(B)a))(mod d) (where ¢ is a fixed element
of A). On I we define a multiplication where the only non zero

(k,9 /1)y = (i+1k=31, g, o X

products are given by (i, gr,J) r %a,w

By

- = j=- ,0 v = k-p(y,e) and w =
9%, 0’ 1+ 103 k])BG where u = j-p(y,o), p(Y,0)

max {u,v}. With this multiplication I is a O-simple inverse

semigroup whose semilattice is a O-direct union of w-chains.
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Conversely every semigroup S which is a O-simple inverse
semigroup whose semilattice is a O-direct union of w-chains is
of this form.
Clearly we must now reconcile Lallement's theorem quoted

in 2.6.10 and Theorem 2.6.9.

2.6.11 With the notation as developed in 2.6.7 we have that if

S

S(E, T, k, Gi’ Yir € vf) is as defined in Theorem 2.6.9 then

s = {((r,B), g5 (s,v)): r,s eN, B,y € A, r-pg = s-pY = i (mod k) and

g; € G; Yu{o}

{k(r.ﬁ), g;» (s,M)): x,s e N, By € A, r-p(B,a) = s-p(y,0)

i(mod k) and g, € G,}u{0}, since p, = O.

The set S is thus the same as the set I with k = d and we need only now
check that the multiplications are the same. We note firstly that

Q as defined in I is the same as « in S. Using the result that
m,n m’n-m

S(E, T, k) = S(A,p, k) we have the only non zero products in S are

((x,B), gi (SIY))‘(nIY)I hjl (qla)) = ((r + [n-s],B), g l l’[n_s] 5 J,[s-n]

(g + [s-n],9).

Multiplication in I states that (r, g,, s) (n, h,, q) is a non
1 B 3 8 ) Jond
w= s—plwd) V= n- P (3,4, W = wowgiyv

zero product equal to (r + [n-sl, glau Ww h:J v, w,q+[s ﬁ»BGA Using the

information that o () =a (s) we have this product equal to
u,w u,w-u
- + [s=n where u = s-p =
(r + [n-s], 9% 4, w-u hJ e [ ])BG' ’

s-p(yd, v = n-p_= n-p(y,a) and w = max {u,v}. Since u z i (mod k)
Y
and v=j (mod k) we have 9; au weu gi ai,w-u and hj o‘v,w-v =

However w-u = [n-s] and w-v = [s-n] so that we have the

. O, .
J  Jwev
same form for the products in I and S.

The next case to consider is the one where E is an w-chain"
with zero. This isin fact a special case of the above piece of work,

where E is a O-direct union of w—chains, this being the case where

IA] =1 and so E ;;{ei: i e N and e;> ej‘<=> i < j}u{o}.
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2.6.12 Theorem (i) Let E be an w-chain with zero. Then
S(E, T, k, Gi'Yi' e, vf) where, for all f ¢ E%, Ve is the identity
of Gf+l' is a O-simple inverse semigroup whose semilattice is an
w-chain with zero.
(ii) Let S be a O-simple inverse semigroup whose
semilattice E is an w-chain with zero. Then S is of the form

S(E, T, k, GiYi’ e, vf) where, for all £ € E*, v_ is the identity

AJ

£
of Gﬁfl'
Proof: (i) This follows immediately from Theorems 2.4.1, 2.4.4 and
2.4.5.

(ii) Since an w-chain is, trivially,a O-direct union of
w-chains we apply Theorem 2.6.9 (ii) and immediately have the result.

In [7] Munn obtained an apparently different structure theorem
for the same type of semigroup as described in (2.6.12). His results

are stated in [7, Theorem 3.3 and Theorem 4.11]. We now show the

results to be equivalent.

2.6.13 Let t: S(E, T, Ky GivY;r & ve) > sk, Gi,vi)bco} 3
where S(E, T, k, Gi,np, ve) is as described in 2.6.135and S(k, Gi,Yi) o e,

is as in [7, Theorem 3.3], be defined as follows:-

)T

(

Crk+i’ 9i’ Csk+i (r,g;.8)
or = 0
It can be easily checked that T is an isomorphism and so the two

structure theorems are equivalent.

2.6.14. When E is an W-chain with zero and S = S(E, T, k, Gi'Yi' e,
Vf) is as in Theorem 2.6.12 then we note that there are no zero products
in S N~ {0}. Hence S \ {0} is a simple rajuhr w-semigroup in the
terminology of [7]. Thus S<{0} a S(k, G,,v;) as described in [7].

If we now return to the original situation, where E is an

) -tree with zero, we can begin a different set of specialisations by
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taking k = 1, i.e. by having a semigroup with one non zero i)-class,
in other words a O-bisimple inverse semigroup with semilattice an

w-tree with zero.

2.6.15 Theorem: (i) Let E be an w-tree with zero and k = 1. Then
S(E, T, k, G,Y, e, vf) is a O-bisimple inverse semigroup whose
semilattice is an w-tree with zero.

(ii) Let S be a O-bisimple inverse semigroup whose

semilattice E is an w-tree with zero. Then S has the form S(E, T, k,

Gi)Yi' e, vf) where k 1.

Proof: In the case k 1, there is one group G and one homomorphism

Y: G> G. With the original notation of (2.3.3), ai = Yt, for
r

t
teN, t21.
(i) This is immediate from Theorems 2.4.1, 2.4.4 and 2.4.5.
(ii) This is immediate from Theorems2.5.3 ond . 4.5

Notice that in this case S(E, T, k, G, Y, e, V) = {(a,g,b):
a,b € E*, g € G}u{0} where multiplication is as follows:-
the only non zero products are (a,g,b) (c,h,d) where bc # 0 and

-1 t -1 s
(a,g,b) (c,h,d) = (a+t, m Ja (gy )m,c,b m (hy )ms'd,d+S) where

t s,cC
t = [b,bc] and s = [c,bc]. This is the same result as is stated

in [5, Theorem 6.1].

2.6.16 Theorem (i) Let E be a 0O-direct union of d-chains and let k = 1.
Then S(E, T, k, G,Y, €, vf) where, for all £ ¢ E¥%, Ve is the
identity of G,is a O-bisimple inverse semigroup whose semilattice is

a O-direct union of wechains.

(ii) Let S be a O-bisimple inverse semigroup whose
semilattice E is a O-direct union of w-chains. Then S is of the
form S(E, T, k, Gi'Yi' e, vf) where k = 1 and, for all f ¢ E¥*, Ve

is the identity of Gf+l’
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Proof: (i) This follows from Theorems 2.6.15 (i) and 2.4.5.

(ii) From Theorem 2.6.8 we have that S splits over»f}and
so by Theorem 2.6.2 (ii) we have that S is of the form S(E, T, k,
Gi' Yir € vf) where, for all f ¢ E*, Ve is the identity of

G

£41° If we now apply Theorem 2.6.15 (ii) we have the result.

2.6.17. Note that when k = 1 and, for all f ¢ E*, Ve is the
identity of G, if we take E = (N x A)u{0} then S = S(E, T, k,

G/Y, e V) = {((m,0) ,g,(n,B)): myn € N, o,B € A, g € G}u{o}.

The multiplication on S is such that the only non zero products are
((m,a) ,g,(n,8)((2,8) , b, (@,8) = ((mt,a), (gv) M), (qts,6)) where
t=[(nB8),(n,B)(p,B)] and s = [(p,B),(n,B) (P,B)]. Let v = max (n,p)
then t = v-n and s = v-p. Hence ((m,a),g,(n,B))(p,B) h,(q,8)) =
((m-n+v,a) , (gy" ) (hy" By, (g-p+v,8)).

Thus we have that the result stated in Theorem 2.6.16 is

exactly that of [10, Theorem 4.2].

2.6.18 Theorem: (i) Let E be an w-chain with zero and k = 1. Then
S(E, T, k, G, v, é, vf), where for all f ¢ E*, Ve is the identity
of G, is a O-bisimple inverse semigroup whose semilattice is an
W-chain with zero.

(ii) Let S be a O-bisimple inverse semigroup whose
semilattice E is an w-chain with zero. Then S is of the form
S(E, T, k, Gi'Yi’ e, vf) where k = 1 and for all f € E*, Ve is

the identity element of Gf+1.

Proof: This result follows immediately from Theorem 2.6.16 as an
W-chain with zero is, trivially, a O-direct union of w-chains.

2.6.19 Applying (2.6.17) to the case when E is anW-chain with

zero we have S = S(E, T, k, G,Y, e, Vf) = &nh g, n):mn € N, g € G}u{o}

with multiplication as follows:- the only non zero products in S

t- t-
are (m,g,n)(p,h,q) = (m-ntt, (gy ®) (hy""®) ,q-p+t) where t = max(n,p).
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Hence we have that $ = {(m,g,n): m,n ¢ N, g € Glu{o} ,
where G is a group, with multiplication defined as follows:-
(m,g,n) (p,h,q) = (m-ntt, (th-n)(hYt_p), g~p+t) , where t = max(n,p)
and v:G > G is an endomorphism, and all other products are zero,
is a O-bisimple inverse semigroup whose semilattice is an w-chainwith zero
and that, conversely, every O-bisimple inverse semigroup whose semilattice
is an w-chain with zero is of this form.

From this we can readily deduce that if G is a group and
Y:G > G is an endomorphism then B = {(m,g,n): m,n € N, g € G} with
multiplication as follows:-

(m,g,n) (p,h,q) = (m~n+t, (th-n)(hYt—p), g-p+t) where t = max(n,p),
is a bisimple inverse semigroup whose semilattice is an w-chain.
Conversely, every bisimple inverse semigroup whose semilattice is
an w-chain is of this form. This is exactly the result obtained
by Reilly in [12].

It should be noted that in the above situation, where E is
an w-chain with zerojthe parameter T is is redundant, there being
only one component of E*.

Apart from these two paths of specialisation through first
the semilattice and then the assumption that k = 1 we can consider
an independent specialisation of E and the ensuing case with k = 1.
For this example we let E ='{en:n € I and e, < eﬁ <=> n 2 m} where
I denotes the set of integers.

2.6.20 Theorem: (i) The semigroup S = S(E, T, k, GyrYye e.r ven)\{O},
where v, is the identity of Ge+l for all n 2 O)is a simple inverse
semigrou; whose semilattice is isomorphic to the integersunder the
reverse of the normal ordering.

(ii) If S is a simple inverse semigroup whose

semilattice E is isomorphic to the set of integers under the
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reverse of the normal ordering then S is of the form S(E, T, k,

Giv Yy0 €y Ven)‘\{O} where v, 1is the identity element of
n

Ge+l for all n 2 0.

sn
Proof: (i) This follows from Theorems 2.4.1, 2.4.4 and 2.4.5 since
no products of the form (en,gi,en)(ep,hj,eq) are zero.

(ii) From Theorem 2.5.3, S with a 0 adjoined is of the form
S(E, T, k, Gi' Y0 en, Ve ). The set T is here a quubmm since there
is one component only of g*. We therefore take T = {eo} and e, to
be the fixed element used as a parameter.

With the notation of Theorem 2.5.3 we select a set of

representatives of the non zero ¥4-classes of S with the following

stipulations:-
let u=nu and un = ue for alln e N, n 2 1.
®k nk
let e u® = u, where n,p ¢ N and 0 < p £ k-1 and n 2 1.
p p+nk

let ei = ue where i e N and 0 < i < k-1.
i

We now examine, in the light of the above specifications for the

set of representatives, the elements Ve where n =2 0. By definition
n

i(mod k) and

v is such that v
e e

ue+l ue +i+lue where n
n n n o n

. =u . .
e +i+l ue e +i+l ue,
(o] n (e}

0 < i < k-1. By the specifications above u
i+sk’

= 3 i < i <€ k-
where n = i+sk, i,s ¢ N, and 0 < i < k-1, so that ue +i+l ue.
o i+sk
= S, If i <k-2 thenu e.u® = e e.,us = e,,. us =
T Ve, . &Y. = e, . i i+l G i+l
i+l i+l s s o+l
u and if i = k-1 ue eius = ueiu =uu =u = u

€i+1+sk i+l €(s+l)k

=u and so ve is the identity of the

In both cases u e +1
n n

.., U
eo+1+l en
group Ge +1.

L
If we recall from the proof of (i) that no products of elemumb of

S(E, T, k, Gir Yyr ¢ vn)\ {0} are zero then we have the result.
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2.6.2). We note that in the case of Theorem 2.6.20 (ii) S is

of the form’{(en,gi,em): mn;i € I with0<4i<k-1, n=n = i(mod k),
g; € G, } with multiplication as follows:-
-1
e .re_)(e_,h. = . i
( n'9yr m)( o’ J,eq) (en,gl ms,ep(hjaj,s) My v eq+s) if m 2 p and
s = m-p
= (e ' m-l (g.a ) m h.,e ) if m < p and
ntt’ Tte CiTi,t Tte Ti'q B
t = p-m

With this representation for S put k = 1 and we have the

following:~

2.6.22 Theorem: (i) Let G be a group and o an endomorphism of G
with o° the identity automorphism on G. For each n € I chose u ¢ G

such that u, is the identity of G if n > 0. Define v,=u

t-1 t-2

for alln € I. For t e Nand n € I letm = (v a T)(v a” ... X

t,n n n+l

where t 2 1 and moo be the identity of G. Then, if

’

Vn+t-1

S =’{(ep,g,eq): pP,9 € I, g € G} with multiplication defined as in
(2.6.21), S is a bisimple inverse semigroup whose semilattice is
isomorphic to I under the reverse of the normal ordering.

(ii) Conversely, if S is a bisimple inverse semigroup
whose semilattice is isomorphic to I with the reverse of the normal
ordering then S has the form described in (i).

Proof: (i) This follows from Theorem 2.6.40 (i) noting that7since
k = 1 s has only one ﬁ}=class and so is bisimple.
(ii) This follows from Theorem 2.6.40 (ii) and (2.6.2¥).

This is exactly the result obtained by Warnein [14, Theorem

1.3].
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3. A O-Simple'inverse semigroup whose semilattice admits a

factorisation compatible with its f}-structure

In [5] McAlister gives a structure theorem for O-bisimple
inverse semigroups in terms of groups and O-uniform semilattices.
In this chapter we extend this to a structure theorem for a
particular type of O-simple inverse semigroup. Firstly, however,

we require a summary of some points in McAlister's paper.

3.1 Introduction

3.1.1 Let E be a O-uniform semilattice.Then, following the pattern
of [5, Section 2], we define an addition on E. Fix an element k ¢ E*
and let E+ = {x ¢ E¥*: x €k }. For each e ¢ E* let I_ denote the

set of isomorphisms from E onto {x € E¥: x < e~§: Ie # ¢ since E is
a O-uniform semilattice. By an addition on E with identity k we mean
a choice function §on’ {Ie: e € E*} such that a_(k) is the identity on

+ ‘o + ;
E . If:§_is an addition on E and e € E and f € E* we write e+f for

e J(£); if g,h ¢ E* with g ¥ h we write g-h for g(R(h)) 1. The
+
additionj& is associative if (e+f)+g = e+(f+g) where e,f ¢ E ,

g € E*,

3.1.2 For completeness we include the statement of McAlister's

structure theorem, [5, Theorem 3.2].

Theorem: Let E be a O-uniform semilattice and let © be a fixed
non zero element of E; let E* = E\ {0} and EY = {x ¢ E*:x < 0}.
Let Q be an addition on E with identity © and let G be a group,
with identity element 1, which acts on E+ by (order) automorphisms.
Suppose that functions f:E+ x E¥ »+ G and [ ) ] : E+ X G > G are

given which satisfy:-
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1. flegb) =1 =£(a,0) for each a ¢ E', b ¢ E*.
2. [e6,9] = g for each g ¢ G.
3. f(a,b)f(atb,c) = [a,f(b,c)]1f(af(b,c),b+c)

f(a,b) [a+b,k] = [a, [b,k]11£ (alb,k] 1 bk)
+
for all a,b ¢ E , c ¢ E*, k ¢ G.

4. [a,g)llag,h] = [a,gh] for each a ¢ E+, g,h ¢ G.
5. (atb)k = a[b,k] + bk for all a,b ¢ ET, k ¢ G.

6. (atb)+c = af(b,c) + (b+c) for all a,b ¢ E', c ¢ E*.

where the group action is denoted by juxtaposition.
Then the set E* x G x E*, together with zero, forms a O-
bisimple inverse semigroup BO(E,G,'ﬁb G, 0; £, [ , 1) under the
multiplication (a,g,b;(c,h,d) = ((bc-'-b)g_1 + a, uv, (bc-c)h+d) if bc = O
0 ,Otherwise
(a,g,b)0 = 0 = 0(a,g,b) = Ol)

(£ ((be-b)g +,2)) ™} [(be-b)g™,g] £(bc -b,b)

where u

(£ (be-c,c)) T [be-c,h] £((bc-c)h,d).

and v
The group of units is isomorphic to G and the semilattice of idempotents
is isomorphic to E.

Conversely, if S is a O-bisimple inverse semigroup with
semilattice of idempotents isomorphic to E and group of units
isomorphic to G, then S';BO(E,O ' E; G,o0; £, [ , 1) for some
additionﬂilon E with identity © , action o of G on E' and functions
f, [ , ] for which 1-6 (above) hold.
3.1.3 Corollary: Let E be a O-uniform semilattice and let @ be a
fixed non zero element of E; let E* = E~{0} and E+ = {x ¢ E*¥: x < 0}.
Let]f be an addition on E, with identity ©, which is associative, and
let G be a group with identity 1, acting trivially on E+. Suppose

+ . . .
that functions £V x E* > G and [ , ]:E x G+ G are given which satisfy:-
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1. £(e,b) =1 = £(a,0) for each a ¢ E', b ¢ E*
2. [e,9] = g for each g ¢ G.
3. f(a,b)f(atb,c) = [a,f(b,c)]1f(a,b+c)
f(a,b) [atb,k] = [a,[b,k]]1£(a,b)
for all a,b ¢ E+, ¢ e E*, k ¢ G.

4. [a,glla,h] = [a,gh] for each a ¢ E+, g,h ¢ G.

Then the set E* x G x E*, together with zero, forms a 0-
bisimple inverse semigroup BO(E, 0, @} G; £,[ , 1) under the
multiplication (a,g,b)(c,h,d) = J((bc-b)+a,uv, (bc-c)+d) if bc # O

0 otherwise
(a,9,b)0 = 0 = 0(a,g,b) =0

(£ (be-b,a)) Y [be-b,g] £ (be=b,b)

where u

(f(bc-c,c))-l[bc-c,h]f(bc-c,d).

and v
The group of units is isomorphic to G and the semilattice of

idempotents is isomorphic to E.

3.2 The construction of the groupoid S(E, k, §; A, 1,0)

In this section we describe a process for constructing a
O-simple inverse semigroup from aO-uniform semilattice and a monoid

by a method based on that of McAlister described in (3.1).

3.2.1 Let E be a O-uniform semilattice and let k be a fixed element
of E¥; let E+ ={x e E¥:x <k }. Let § be an associative addition on
E with identity k.

Let A be a monoid with identity element 1.

Suppose that a function T:E+ X E* > Hl(of A) is given and,
for all e ¢ E+, an endomorphism of A, Oe, is defined such that Gk is
the identity on A and (A) Ge € H if e # k and also the following

conditions are satisfied:-
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3.2.1 (1) T(k,f) =1 = 1(e,k) for each e ¢ E', £ ¢ E*.
3.2.1 (2) t(e,f) T(etf,g) = (T(f,g))ee T(e,f+g) for each
e,f ¢ E+[ g € E*
3.2.1 (3) ‘r(e,f)aee+f = (aef)GeT(e,f) for each e,f ¢ E+, a € A.
Define a multiplication on E* x A x E*J io} as follows:~-
(e,a,f) (g,b,h) = ((fg-f)+e, uv, (£g-g)+h), if fg # 0, where
u = (t(fg-£,e)) L 28, F(£9-£,£) and v = (t(fg-g,9)) " BO, . T(fg=g,h)

All other products are zero.

3.2.2 It is readily seen that this multip lication is closed. Clearly
if (e,a,f),(g,b,h) € E* X A x E* with £fg # O then (fg-f)+e, (fg-g) + h

€ E* and u,v € A so that uv € A.

3.2.3 We denote the groupoid formed in (3.2.1) by S(E, k, &5 A,t ,8) 5 whex
6 o tke Moap-puny Q'—>9¢ (ee ET)
3.3 S(E, k, §; A, 7,6)

In this section we establish that the groupoid S(E, k, 6; A,T ,0)
is a semigroup and state necessary and sufficient conditions for it to
be 0O-simple. We then examine in detail the structure of S(E, k, §b

A, g.,0).

3.3.1 Theorem: S = S(E, k, ﬁ; A, 1,9) is a semigroup with zero.
Proof: Let (e,a,f), (g,b,h), (l,c,m ¢ s\{o0}
(a) If fg = 0 = hl then [(e,a,f)(g,b,/h)]1(1,c,m) = O(1,c,m) = O and

(e,a,f) [(g,b,h) (1,c,m)] = (e,a,f)0 = O.

(b) If fg = 0 and hl #z O then [(e,a,f) (g,b,h)](1,c,m) = O(1,c,m) = O.
On the other hand, (e,a,f)[(g,b,h)(1,c,m)] = (e,a,f){(hl-h)+g,x, (h1-1)
+ m) where x is the appropriate middle term. However (hl-h) + g <g
and so f((hl-h) +g) = fg((hl-h)+g) = 0 and (e,a,f) [(g,b,h) (1,c,m)] = O.
(c) If fg # 0 and hl = 0 we can show in a similar manner to (b) that

[(e,a,f) (g,b,h)}1(1,c,m) =0 = (e,a,f) [(g,b,h) (1,cm].
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(d) We are now left to consider the case when fg # 0 and hl = 0.

Here [(e,a,f) (g,b,h)]1(1,c,m) = ((fg-f)+e,uv, (Eg-g) +h) (1,c,m) where
u = (t(fg-£f,e)) aefg_fr(fg—f,f) and v = (1(fg-g,9)) befg_
Let n = (fg-f)+e and p = (fg-g)+h, Then [(e,a,f) (g,b,h)](l,c,m) =

gT(fg—g,h).

(n,uv,p) (1,c,m) = ((pl-p)+n,wx, (pl-1)+m) where

_ _ -1 _ -1 i
v = (T(pl-p,n)) (uv)epl_pt(pl p,P) and x = (t(pl-1,1)) cepl_lt(pl—l,m)

On the other hand, (e,a,f)[(g,b,h) (1,c,m)]
1

(e,a,f) ((hl-h)+g,st, (h1-1)+m)

‘ _ -1
b6y, ,T(hl-h,h) and t = (T(hl-1,1)) " 6, _ T(hl-1,m)

Let g = (hl-h)+g and r = (hl-1)+m, Fthen (e,a,f)[(g,b,h) (1,c,m)] =

where s = (T(hl-h,g))—

(e,a,f) (q,st,r) = ((fq-f)+e,yz, (£q~q)+r) where

y = (t(fq-f,e)) " T(fq-£,£) and z = (t(fa-q,@) " (st)0, _ T(fg-q,r).

gt

The outer terms in each of these products aie exactly those
obtained as outer terms in the semigroup of Corollary 3.1.3. Since
associativity has been proved in this case, we can say here that the
outer terms in the products [(e,a,f) (g,b,h)]1(1,c,m) and te,a,f)[(g,b,h)x
(1,c,m)] are equal. We must now prove that the middle term in each of
these products is the same.

From the equality of the outer terms we have the following:-

(Pl-p)+n = (fq-f)+e and (pl-l)+m = (fq-q)+r.

Hence we have (pl-p) + ((fg-f)+e) (fg~f)+e and so, as the addition

is associative, ((pl-p}+(fg-f))+e (fq-f)+e so that

(pl-p)+(£g-£f) = £q-f  ..... 3.3.1 (i)
Operating on both sides of 3.3.1 (i) by f and using again that the
addition is associative, we have

(pl-p)+fg = f@ = ..., 3.3.1 (ii)

By similar consideration of (pl-1)+m and (£q-q)+r we have

pl-1 = (fq-q)+(h1-1) ..... 3.3.1(iii)

and pl (fq-q) +hl ceeee 3.3.1(iv)
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First we examine the middle term wx. We have

_l _l
wx = (x(pl-p/m)) " (u) 6, T (plopp) (c(pL-1,1)) ™ co_;  r(pl-lm).

, a . -
However, epl-p 1s an endomorphism of A and so (uv)epl_P (uepl_p)%
(vepl-p)‘ Now,
-1

= fo- -

u651-p [(c{fg-£f,e)) aefg_fr(fg f.f)]epl_p
-1
= (t(fg-£f,e a fg-£,f as
((z(fg-£, ))epl_p) ( efg_f)epl_p (¢ (fg-£, ))epl_p 8p1-p

is an endomorphism. However, by 3.2.1(2),
-1
(r(fg-f,e))epl_p = 1(pl-p,£g-£f) 1 ((pl-p) +(£g-£) ,e) (1 (pl-p, (fg-£) +e))
= ¢(pl-p,fg-£f) ¢ (£g-£,e) (T(pl—p,n))-l, by 3.3.1(i), and

(t(£9-£,8)) 6 ) = 7(pl-p,£g-£) 1(£q-£,%) (r(pl-P,£9)) T, by 3.3.1(D).

1

Also, by 3.2.1(3), (aefg_f)e =1(pl-p,fg-£f) ae(Pl_p)+(fg_f)(T(Pl'Prfg‘f))-

-1
=1 (pl-p,fg~f) aefq_f(r(pl-p,fg-f)) by

3.3.1(ii).

pl-p

- -1
= 1(pl-p,n) (t (fg-£f,e)) 1 aefq_fr(fq-f,f)(r(pl—p,fg)) .

-1
£g-g,h) 6
)0y, )6 T(Fgmgh),)

Thus uf
pl-p

= fq-
However, we also have vepl-p (t(fg glg)epl_p -p

is an endomorphism of A. By 3.2.1 (2) we have

since 8
pl-p

-\
r(fg-g,g)epl = 1(pl-p,fg-g) 1(p1l-p) +(£9-9) ,9)ft (P1~p, (£g~g) +g})

-P

% (pl-p,£9-g) T (£a-g,9) (T (pl-p,£9)) ", by 3.3.1(ii),

as (pl-p)+fg = fg implies that fq < g and so we have
(p1-p)+(fg-g)+g = (£q-g)+g and (pl-p}Hfg-g) = fq-g.

Also T(fg-g,h)epl_P = 'r(pl-p,f‘;l'g)'r(fq‘-g,h)('r(pl—p,(fg-g)+h)'1

by the same argument as above and so

-1
T(fg—g,h)epl_p = ttpl-p,£g-g) T (f£g-g,h) (T (p1-p,p))

(t(pl-p,£g-9)) 1, by
Also (befg )8 1tpl-p,£9-9) be(pl—p)+(fg-g) pEpy '

=g’ pl-p
3.2.1(3)

-1
- - (pl-p,fg-
T(pl p,fg qg) bef (t(pl-p,£fg-g9))

-1 _ -1
Thus vepl..P = T-tpl_P'fg) (‘[ (fq—g ,g) ) befq_gT (fq-g,h) (T (Pl PiP) )

-1 _ -1
and so wx = (t(fg-f,e)) aefq_fT(fQ'f:f)(T(fq 9:9)) befq-g

-1
T(fq-g,h)\‘/(T(pl—l,l)) cepl-lT(pl-l'm)'
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A similar treatment of yz yields

yz = (t(£q-£,e)) a0 _¢T(£a-£,£) (t(pl-h,q)) BO ) T (P1-h,h) (t(p1-1,1)) "}
cepl_lr(pl-l,m).

For wx to be equal to yz and so to have the required result & i«
enwﬂLto show that pl-h = fq-g. We have from (3.3.1(iv)) that pl =
(fg-g)+hl = (fg-q)+((h1-1)+1) = ((f£q-q)+(hl-h))+h as the addition is
associative. Hence pl < h and pl-h = (fq-q)+(hl-h). However fq =
(Eg-q)+q = (£q-q)+((hl-h)+g) = ((fg~-q)+(hl-h))+g, as the addition is
associative. Thus fq < g and fq-g = (£g-g)+(hl-h) and we have the
required result.

We examine now the question of the O-simplicity of S(E, k,]E;

A, 1, 6).

3.3.2 As in [1, Section 2.7] we make the following definition.
In a semilattice E with zero)an element £ € E* is said to be primitive

if e < f implies e = 0 or e = £.

3.3.3 Theorem: (a) If E is a O-uniform semilattice with no

primitive idempotents then S = S(E, k,_iﬁ A, v, 0) is O-simple.
(b) If E is a O-uniform semilattice with a primitive
idempotent then S = S(E, k,§ ; A, T, 0) is O-simple if and only if A
is simple.
Proof: (a) Let (e,a,f), (g,b,h) € S~{0}. Since E contains no
primitive idempotents, there exists 1 € E* with l1<e. Letvs=
(T(l'e,e))_l a,_ t(l-e,f). Since 1-e # k, a6, _ e H, and so v ¢ H,.
- -1

Consider (g,b,1) (e,a,f) ((1-e)+f,v 1,h) = (g,bv, (1-e)+£) ((1-e)+£,v ,h) =

T = i S is O-simple
(g,bvv ~,h) = (g,b,h). Thus the semigroup S is O-simple.

(b) Suppose that S is O-simple. Let a,b € A. Then, if e ¢ E*,

(e,a,e), (e,b,e) € S ~{0} so that there exist (f,c,g) and (h,d4,1) € s~ {0}
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such that (e,a,e) = (f,c,q)(e,b,e)(h,d,1). However, E has a

primitive idempotent and so, as E is O-uniform, every idempotent in

E* is primitive. Now ge < e and so ge = 0 or ge = e. Since (e,a,e) # 0,
ge # 0 and so ge = e. Thus g < e so that g = 0 or g = e. Since g ¢ E*,
g = e. By a similar argument we have h = e. The outer components of
the product (f,c,e) (e,b,e)(e,d,1) are £ and 1. However since the

product is equal to (e,a,e) we have f

l =e. Thus (e,a,e) =

(e,c,e) (e,b,e) (e,d,e) = (e,cbd,e) so that a = cbd and A is simple.

Conversely assume that A is simple. Let (e,a,f), (g,b,h) € sn{o0}.
Since A is simple there exist c,d € A such that a = cbd. Consider the
product (e,c,q) (g,b,h) (h,d,£f) = (e,cb,h) (h,d,f) = (e,cbd,f) = (e,a,f).
Thus S is O-simple.

In the following theorem we examine in detail the semigroup

s(e, x, & a, 7, 0).

3.3.4 Theorem: Let S = S(E, k, @; A, 7, 68). Then
\ 1. (e,a,f) is an idempotent in S\ {0O}<=> e = f and a = a
2. S is regular <=> A is regular

3. S is inverse «<«=> A is inverse

4. ((e,a,8),(g,bh) € P <> £=hand (a,b) eX,

((elarf)r(glbrh)) € £S <=> e g and (a,b) € ﬂA

g, £ = h and (a,b) ej(/A

L}

((e,a,£),(g,bs0) e Pg <=> e
(te,a,£),(gb,)) e By <=> (ab) e Bh.
5. ié/is a congruence on S <=z${is a congruence on A.
6. If A is an inverse semigroup then, for a,b ¢ EA'
(e,a,e) < (£,b,f) <=> (e = £ and a < b) or e < £,
7. If A is an inverse semigroup then, for a,b ¢ EA’

-{((ela'e) ,(f,b,f)) € 6 <=> a = b} hOldS‘ <=> A is a

semilattice of groups.
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Proof: 1. Let (e,a,f) ¢ S\{0} with (e,a,f) = (e,a,f)(e,a,f). Then
ef » 0 and (e,a,f) = ((fe-f)+e, uv, (fe-e)+f) where

-1 -
u = (1t (fe-f,e)) abg _¢T(fe-£,f) and v = (1(fe-e,e)) lae _oT(fe=e,f).

fe

Thus e = (fe-f)+e and f = (fe-e)+f so that k = fe-f = fe-e and so

f = fe = e. From this we have u = v = a and so uv = a2. Thus a = az.
Conversely, consider (e,a,e)(e,a,e), where a = a2 in A and

e ¢ .EX. We have (e,a,e) (e,a,e) = (e,az,e) = (e,a,e) so that (e,a,e)

is an idempotent in S \ {0}.

2. Assume that S is regular. Let a ¢ A. We have (e,a,e) ¢ S
and so, since S is regular, there exists (f,b,g) € S such that (e,a,e) =
(e,a,e) (f,b,g) (e,a,e). From this we see that (e,a,e) (f,b,g) # 0 and
is an idempotent in S. Thus, by Theorem 3.3.4 (1), we know the form of
(e,a,e) (f,b,g). However, (e,a,e) (f£,b,g) = (ef,uv, (ef-f)+g) where u =

T (ef-f,q).

(T(ef-e,e))—lae et(ef-e,e) and v = (t(ef-f,f))-lbe

ef- ef-f

Hence ef = (ef-f)+g, and we have (e,a,e) (f,b,g) (e,a,e) = (ef,uv,ef) (e,a,e) =

-1
(ef, (uv)w,ef) where w = (T (ef-e,e)) "a %f_ez(ef-e,e). However,

(e,a,e) so that e = ef, and uvw = a. If ef = ¢

(e,a,e) (f,b,9) (e,a,e)
then u = a = w so that ava = a and we have that A is regular.
Conversely, assume that A is regular. Let (e,a,f) ¢ s\{o}.
Since A is regular, there exists b € A such that aba = a. We consider
(e,a,f) (£,b,e) (e,a,f) = (e,ab,e) (e,a,f) = (e,aba,f) = (e,a,f) and we
have that S is regular.
3. Assume that S is inverse. Then S is regular and so, by
Theorem 3.3.4 (2), A is regular. To show that A is inverse we
need only, by (1.1.4), show that any two idempotents in A commute.
Let a and b be idempotents in A. Then, by Theorem 3.3.4 (1), (e,a,e)
and (e,b,e) are idempotents in S. Thus, since S is inverse, (e,a,e)X

(e,b,e) = (e,b,e)(e,a,e), and so (e,ab,e) = (e,ba,e) and we have ab = ba.



53.

Conversely, assume that A is inverse. Then, by Theorem 3.3.4 (2),
§ is regular. Let (e,a,e) and (f,b,f) be idempotents in S. By

Theorem 3.3.4 (1), a and b are idempotents in A. Now, (e,a,e) (f,b,f) =

Ix

(ef ,uv,ef) where u = (T(ef-e,e))-laeef_er(ef-e,e) and v = (t(ef-£,£))
beef_fr(ef-f,f). Also (f,b,f) (e,a,e) = (ef,vu,ef). However a_g_, and
beef—f are idempotents in A, so that u and v are idempotents in A. |
Hence, since A is inverse, uv = vu and so (e,a,e) (f,b,f) = (£,b,f) (e,a,e)
and S is inverse. ”

4. Let (e,a,f), (g,b,h) ¢ S with ((e,a,f),(g,b,h)) ¢ L. Then
there exist (1,c¢,m), (n,d,p) ¢ S such that (1,c,m) (e,a,f) = (g,b,h) and
(n,d,p) (g,b,h) = (e,a,f). From these we have that (g,b,h)‘=

( (me-m) +1,uv, (me-e) +£f) where u = (1 (me-m,l))-l came_mt (me-m,m) and

v ('t(me-e,e))_l aeme_e-r (me~e,f). Since h = (me-e)+f we have that

h

IA

f. By considering (n,d,p) (g,b,h) = (e,a,f) we can show similarly

that f < h and so £ = h. Hence me-e = k and v = a so that b = ua. .
&'km w € A)

Similarly, by considering (n,d,p) (g,b,h) = (e,a,f) we have u™b = a,and

so (a,b) & x

Conversely, let (e,a,f),(g,b,f) € S with (a,b) e,{o. Then there

exist c,d ¢ A such that ca = b and db = a. Considering (g,c,e) (e,a,f) =

(g,ca,f) = (g,b,f) and (e,d,q) (g,b,f) (e,db,f) = (e,a,f) we see that

((e,a,£),(g,b,£)) eX.

The result for Iican be proved in a similar manner and the

result for :\# then follows immediately.

Let (e,a,f),(g,b,h) € S and suppose that ((e,a,f):(g,b'h)) e d>
Then there exists (m,c,n) € S such that ((e,a,f),(m,c,n))eR_and

((m,c,n), (g,b,h)) e;(. From the above results we have (a,c)e R

and (c,b) € Xso that (a,b) EB:
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Conversely, let (e,a,f),(g,b,h) € S with (a,b)éB’. Then
there exists ¢ € A such that (a,c) ¢ R and (c,b) ¢ X Hence, from
the above results, ((e,a,f),(e,c,h)) ¢ § and ((e,c,h),(g,b,h))e 2
so that ((e,a,f),(g,b,h)) ¢ /.

5. Assume that W is a congruence on S. Let a,b ¢ A with
(a,b) ¢ ,:é// and let c,d € A. By Theorem 3.3.4(4), we have that
((e,a,e),(e,b,e)) e,wand, as#/is a congruence on S, ((e,c,e)(e,a,e),
(e,c,e) (e,b,e)) s,w. However (e,c,e)(e,a,e) = (e,ca,e) and
(e,c,e) (e,b,e) = (e,cb,e) so that, by Theorem 3.3.4 (4), we have
(ca,cb) ei/ . Similarly, by considering ((e,a,e) (e,d,e),(e,b,e) (e,d,e))
we have (ad,bd)ew and soi/ is a congruence on A.

Conversely, assume that ﬂ/is a congruence on A. Let (e,a,f),
(e,b,f)e S with ((e,a,f),(e,b,f)) e# . Then, by Theorem 3.3.4 (4),
(a,b ) € H Let (g,c/h),(1,d,m) € S. We consider (g,c,h) (e,a,f)
and (g,c,h) (e,b,f). If he = 0 then both products are zero and so are

((he-h)+g, uv, (he-e)+f)

#equivalent. If he # 0 then (g,c,h) (e,a,f)

-1
(7 (he-e,e)) ad, o X

where u = (¢ (he—h,g))-l COpe—nT (he-h,h) and v
t(he-e,f). Also (g,c,h)(e,b,f) = ((he-h)+g,uw, (he-e)+f) where
W= (r(he-e,e))—lbehe_e-r(he-e,f) . Since (a,b) e:ﬁz we also have
(aehe-e'behe-e) sﬂas Ohe-e is an endomorphism of A. Hence, as :ﬁ
is a congruence on A, (v,w) glf and so (uv,uw) e:ﬁz . Applying
Theorem 3.3.4(4), we now have ((g,c,h) (e,a,f), (g,c,h) (e,b,f))e;g/ .
It can be shown similarly that ((e,a,f)(1,4,m), (e,b,f)(1,4,m)) 536/
and so -Z/ is a congruence on S.

6. Let (e,a,e) and (f,b,f) be idempotents in S. Since A

is inverse, S is inverse, by Theorem 3.3.4 (3), and so the set of

idempotents of S forms a semilattice. Assume that (e,a,e) < (£,b,f),

Then (e,a,e) = (e,a,e) (f,b,f) = (ef,uv,ef) where

- -1
u = (1(ef-e,e)) laeef_e-r(ef-e,e) and v = (t(ef-£f,£)) "bb_._c7(ef-£f,f).
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Hence e = ef and so e < f, and also a=uv. If e=f thenu = a
and v = b so that a =ab and a <b. Thus e < for e = f and a < b.

Conversely assume that (e,a,e), (f,b,f) are idempotentsvin S
with e < £f. Then (e,a,e) (f,b,f) = (e,ax,e) where x = (1'(e-f,f))-l X
bee_fr(e—f,f). As e < f, e-f 2 k and so bee-f =1 and x = 1. Thus
(e,a,e) (£,b,f) = (e,a,e). If e =f and a < b then (e,a,e) (f,b,f) =
(e,ab,e) = (e,a,e). Hence in either case (e,a,e) < (f,b,f).

7. Suppose that S is such that, when a,b ¢ EA’ ((e,a,e),
(£,b,£)) ¢ F<=> a=b. Letc ¢ A, Then (cc T, lc) ¢ A% in
A and so, by Theorem 3.3.4 (4), ((e,cc™t,e), (£,c71c,8)) ¢ S, where
e, f ¢ E*¥. Hence cc-1 = c_lc and so by (1.2.12), since A is inverse,
A is a semilattice of groups.

Conversely let A be a semilattice of groups. Clearly if
a ¢ E,, by Theorem 3.3.4 (4), ((e,ase), (£,a,£)) ¢ K for e,f ¢ E*.
If a,b ¢ E, and ((e,a,e), (£,b,)) ¢ K, vwhere e,f ¢ E*, then, by
Theorem 3.3.4 (4), (a,b) € &}. Thus there exists ¢ ¢ A such that

cc 1. a and c-lc = b. However A is a semilattice of groups and is

1 1

inverse so that by (1.2.12) cc " =c¢ "c and so a = b.

3.3.5 If we now examine more closely those semigroups of the form
S(E, k,;§} A, 1, 6) where A is a centric inverse monoid and E has a
primitive idempotent then by Theorem 3.3.3(b) we require that A is
simple so that S(E, k,_&;'A; T, 6) is a O-simple inverse semigroup.
However, by [1, Theorem 4.5] A, in this case, is itself completely
simple and so by [1, Section 2.7] has a primitive idempotent.
Applying Theorem 3.3.4 (6), we readily have that S(E, k,_i; A, 1, 9)
has a primitive. ddempotent so that S itself is completely O-simple.

However, in [1, Theorem 3.5] the Rees Theorem determining the

structure of completely O-simple semigroups is stated.



56.

3.4 Factorisation of a semilattice E_ compatible with the A91

structure of S

3.4.1 Let S be an inverse semigroup with zero, and semilattice E.
Then E is said to admit a factorisation compatible with the élﬁstructure
of S if:~ (i) E* is order isomorphic to F* x Y where F is a semilattice
with zero and Y is a semilattice with identity, and where (f,q) < (g.,R)
in F* x ¥ <=> (f =g and g< g ) or f < g.

(ii) ife,f ¢ E* and, under the order isomorphism of (i),
e > (gy0) in F* x Y and £ » (h,Bg) in F* 5 Y, then (e,f) ¢ 4%(:> a =B
in Y.

3.4.2 This is a formalisation of the situation described in Theorem
3.3.4 (1), (6) and (7). We thus have that if A is an inverse monoid
which is a semilattice of groups then S = S(E, k, i; A, 1, 8) is such
that ES admits a factorisation compatible with the K}Lstructure of S.

. - )
In fact ES\{O} ~ B*¥ x E,

3.4.3 Theorem: Let S be a O-simple inverse semigroup with semilattice

E which admits a factorisation compatible wi th the i}-structure of sS.
o in 3k,

Let E* be order isomorphic to F* x Y¥a Then F is a Osuniform

semilattice.

Proof: Let 1 denote the identity of Y and take E* = F* x Y. We show
firstly that §'='{(e,1):e ¢ F*}y {0}is a semilattice isomorphic to F.

Since F ¢ E, F is a partially ordered set. Let (e,1),(£,1) ¢ F, Then,

if ef # 0, (ef,1) ¢ F. However (ef,1) < (e,1),(£,1) so that (ef,1)

< (e,1) (f,1) this latter product being defined in E. Let (e,1)(£f,1)

(x,0), say, Then (x,a) < (e,1),(f,1) and so x < e,f and x < ef. Thus

(x,0) < (ef,1) so that (e,1)(£,1) = (ef,1). If ef = 0 then (e,l)(£,1)

= 0 also. Hence F is a semilattice. The mapping (e,1) - e and 0 > O

is a semilattice isomorphism from F onto F.
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Let e,f ¢ F*, Then ((e,1),(£,1)) ¢ S and so Die1) =
e,

Pig,1)- tetB= D(e,l)U' {0 }for e ¢ F*. Because of the

factorisation of E compatible with the B’-structure of S, D (e,1) =
e,

U R = U L . Hence B = ( U R ) u{0} =
£ o P (£,1) £ ¢ F (£,1) £ . pr (£/1)
(U L ) u{ 0}. Let x,y ¢ B\{0}, Then there exist f,g ¢ F*
£, F* (£,1)

such that (x,(f,1)) €(?< and (y, (g,1)) eéﬁ . Thus Sx = S(f,1) and

¥yS = (g,1)S. From this we have Sxy = S(f,1)y and (f,1)yS = (£,1) (g,1)s.

From the first part of the theorem we thus have xy = 0 or (xy, (fg,l))&ia)fﬁiQ
Clearly in either case Xy ¢ B and so B is a subsemigroup of S.

If x ¢ B\{0} then we have immediately that x-l € B and so B is an

inverse subsemigroup of S. The semilattice of B is F. Let

(e,1),(£,1) ¢ F, Then, as ((e,1),(£,1)) e,&s there exists x ¢ S such

1

that (e,l) = xx ~ and (£,1) = x—lx, from [6, Lemma 1.1]. However

X g R(e,l) and so x ¢ B. Thus ((e,1),(£f,1)) ¢ AQ’B. Hence by
[6, Lemma 1.1] B is O-bisimple and so, by [10, Theorem 1.2], F is

O-uniform and F is also O-uniform.

3.5 The structure of a type of O-simple inverse semigroup

3.5.1 1In this section we set out to show that a certain type of 0-
simple inverse semigroup whose semilattice admits a factorisation
compatible with the149=structure of the semigroup is of the form
described in sections 3.2 and 3.3. We break the proof into two

main sections @ the first consists of showing that‘y is a congruence
on a semigroup of the type being considered and then examining Sﬁzl;
the second consists of examining the semigroup itself.

3.5.2 Before stating the first theorem we recall from (1.3.1) that/u.
denotes the maximal idempotent separating congruence on an inverse

semigroup S. Also, from [6, Lemma 3.1] and (6, Lemma 1.2], if S
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is an inverse semigroup, then S/u ~ S0 where the homomorphism
015 > . _ -1 -1 . -1
:S T is such that a6 = 6_:E aa = > E a a, with e = a —ea
E a S S a

S

for all e ¢ Esaa-l, is an isomorphism.

3.5.3 Theorem: Let S be a O-simple inverse semigroup whose
semilattice E admits a factorisation compatible with the i)-structure
oo Bndnsotion b Givew by
of S. LetyE* = F* X Y where F contains a non zero principal ideal
whose group of order automorphisms is trivial. Then,]{ is a
congruence on S.
Proof: We have by Theorem 3.4.3 that F is a O-uniform semilattice.
Hence every non zero principal ideal of F has a trivial group of
order automorphisms. From this we can deduce that, if x,y e F%,
there exists a unique isomorphism from Fx onto Fy. As in (1.3.10)
and (1.3.11) denote this mapping by gx'y and so we have TF =
'{Ex'yzx,y e F*}u{0} with multiplication as described in (1.3.11).
We wish to show that,;yis a congruence on S. By (1.3.1) we
have u gﬂ so that to prove—j is a congruen ce we need only show

/ -1 -1
that :7/5 u . Let a,b eS\{a}with (a,b)e :# Then aa =~ = bb ~ =

(x,a), (say), and a—la = b_lb = (y,e) (say): the Y-components of the

-1 -1
idempotents are equal since (aa l,a a) € EL. Thusea:E(x,a) + E(y,0)
and eb:E(x,a) + E(y,o ).
The following lemma facilitates the completion of the proof.

3.5.4 Lemma: Let S be a O-simple inverse semigroup as described in

Theorem 3.5.3. For a eS%éwith Ba:E(x;u) + E(y,a), (Z'n)ea =
(zg&. ,n) for all (Z,n) € E(x,a).
X,y
. -1 e ( a)_l -
Proof: We note that if p € Eaa ~ then (p,pa)e as pal(p
-1 - - - -1 -1, -1 . _
baa 1p 1 = pp 1. Also (pa,a lpa) e}( as (a "pa) “(a "pa) =

a'plaalpa = a~p"lpa = (pa) 'pa. Thus (f,a-lpa) = (p,pf)e S
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Hence if (Z,p) ¢ E(x,q) then ((Z,n), (Z,n)ea) Q‘S’and so, from
the D’-compatibility of the factorisation of E, we have (Z,n)e_ =
a

(w,n) (say). We note that E(x,4) = U {em):p ¥ X}y U { (p,§):

‘ ne Y s e¥
P < x}. ns o § * o
For pe y define an on Fx as follows:-
X = 0 =0 d, if p =
@ Y, a and, if p < x, (pan,n) (P, .

It is easily checked that anzFx -+ Fy is an isomorphism so that an =

£ v and we have the result.
14

Returning to the theorem we have that, for all (p,n) ¢ E(x,a)
(p/m)o, = (ng,y'“) = (p,n)6, and so 6_ = 6, . From [6, Lemma 3.1]

we now have (a,b)e u and the result follows.

3.5.6 Theorem: Let S be a O~simple inverse semigroup whose semi-

lattice E admits a factorisation compatible with the A;‘structure of
ko Fadonsation be givew by
S. Let, E* = F* x Y where F contains a non zero principal ideal whose

group of order automorphisms is trivial. Then S/,¢¢is of the form

s(F, k, i:’ Y, 1, ¥).

Fink, by Theartms 3.43 , F to 0= umi Fovian .« |
Proof: nAs noted in Theorem 3.5.3 we have T, ={g x,y XY € F*}u{0}

with multiplication as in (1.3.11). Fix k e F* and define § (£) to

be for all f € F*. Clearlyjﬁ is an addition on F with identity

gk,f

. +
k. We consider whether the addition is associative. Let e,f ¢ F ,
where F' = {x € F*¥:x< k}, and g € F*, then (etf)+g = (ef )& =
k,f °k,g

¥y = egk,f+g = e+(f+g), which shows that the

ety )by g T (eek'fg.k"g
addition is associative.

By Theorem 3.5.fh.1fis a ‘congruence on S and so by [6, Lemma 3.1]
SZ¥¢= S/u ~ S8 where 6 is as defined in (3.5.2). Define a mapping
$:56 > F* x ¥ x F*u{ 0} as follows:-

09 =0

- -1 ;
(o) 9= (e,a,f) where aa 1 - (esq) and 272 = (£,a), for 0?0,
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This mapping is well-defined;for if ea = eb then,

bﬂ' [6, Lemma 3.11, (a,b) ¢ J&Land aa™’ = bb ! and a’la = b lb. also
if ea'eb e Sg with (ea)¢ = (eb)¢ then aa_l = bb-1 and a-é = b_lbso
that (a,b) e—Sdand (a,b) ¢ A . Hence, by [6, Lemma 3.1], ea = eb.
If (e,asf) ¢ F* x Y x F* then ((e,a),(£,0))e S in S by thegd-
compatibility of the factorisation of E. Hence there exists a ¢ S
such that ((e,q),a) eﬁi and ((f,0),a) ¢{. From this we have aa~t
= (e,q) and 2@ = (f,0) and (§,)¢ = (e,a;f). Combining all this
information we have that ¢ is a bijection on S@.

Bhoe T4 by TEQ= bvall L de FIXF* amd dl = | fov okt e Y, Qeé
¢tK. To complete the proof we must examine (9 20 ¢ and (6.)¢(6,)¢

whare o I~ #0.

for eareb € Se)f\ Let (ea)(b = (e,a,f) and (eb)¢ = (g,8,h). If
£9 = O then in S(F, k, §s ¥, 1, y) we have (8_)¢(6,)¢ = 0. Also

- ~t
GENENS) =00 alr b j henw ab = 0 and (6,6,)¢ = (6_,)¢ = O also.
If fg # 0 then, in S(F, k, ’@7 Y, ¢, w), (ea)¢(9b)¢ = (e,a,f) (g,B/h) =

~1
((£g-f)+e,uv, (fEg-g)+h) where u = (vtfg-f,e)) “ng-f t{(fg-£,£) =
-1 .

= ~q - = th
a\.yfg g and v = (1(£9-9,9)) "BY, _gr(fg g /h) Bwfg_ , this
simplification being possible as H = {1} and so 1(f,g) = 1 for
all f ¢ F+, § ¢ F*, where 1 is the identity element of Y. There are

four possible situations:-

(i) £ = g and so uv = af

]

L1

(ii) £ < g and so uv o

(iii)f > g and so uv = 18 = B

(iv) f and g are incomparable and so uv = 1.

-.1_
On the other hand, consider (eaeb)¢.We have A(6_6,) = (E(f,a)(9,8))0~ =

(E(£,a) (3,8))6_-1 = E((f,a) (9,8))6,-1 by [6, Lema 2.1]. Similarly

(£,a8); in

v(6,6,) = E((f,a) (g,8))8. In case (1) (£,0) (g,8)
case (ii) (£,a)(g,B) = (£,0) ;i in case (iii) (£,a) (g,B8) = (g,B);

in case (iv) (f,a)(g,8) = (fg,1). Thus in each case A(anb) =
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E(fg,Y)6_-; and V(6 _6,) = E(fg,v)6, where y = aB,a,B or 1 as

appropriate. Applying Lemma 3.5.4 we have that A(geb)

E(f ) and V(0_6.) = E(f . =

-1 -1
= f = (fg~f)+ d £ = f = =
gﬁk’fﬁk,e (fg-f)+e an gég’h gEg'kEklh ngk'gEk’h

(fg-g)+h, and we have (6.6,)¢ = ((£g-f)+e, Yy, (£g-g)+h) where

Y = oB in case (i), Y = o in case (ii), y = B in case (iii) and

Y =1 in case (iv). Hence (eaeb)cp = (ea)¢(eb)¢ and we have that ¢

is an isomorphism.

We now make the step from obtaining the structure of S/¥])to

obtaining the structure of S.

3.5.7 Theorem Let S be a O-simple inverse semigroup whose semilattice

thas PrdSniation, he

E admits a factorisation compatible with the /0*-structure of S. Let A

Jren by

A E* = F* x Y where F has a non zero principal ideal whose group of order
automorphisms is trivial. Then S ~ S(F, k,_@ ; A, T, V) where A is

a centric inverse monoid with semilat;ice Y.
g:, M‘bw 3¢#—.5) F w O"Wb-fwv-

Proof: n Take k ¢ F* to be as in Theorem 3.5.6 and define the addition

-

P as in Theorem 3.5.6. Let 1 denote the identity element of Y.

= = . h
For each a € Y let Ga, H(k,a) and let A 3 IeJ YG'L Then eac

Goc is a group by (1.2.11). Let x,y € A with x € Ga and y € GB .
is a congruence on S and so (xy,(k,a)y) eﬂ and ((kyad)y, (k,0) (k/B))Eﬂ-
Hence (xy, (k,a) (k,8)) €&+ But (k,0) (k,8) = (k,aB) in E and so

(xy,(k,aB)) € ‘Zland Xy € GaB . Thus xy € A and A is a subsemigroup

Then (x_,(k,a)) s-d and (y,(k,B)) ei’//. However, by Theorem 3.5.3,

of s. Morecwds S q,\qg E-.Q,,LP) A s o

seuma Lo th e o Srou’;s . The idempotent (k,1) € A
and is an identity for the semigroup A so that A is a centric inverse

monoid with semilattice {(k,a):0 € Y} = Y.
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From Theorem 3.5.6 we have that there exists an isomorphism
¢:s<;l + F* x Y x F*y {0} whereby 0¢ = 0 and(H )¢ = (e,0,f) where

Ss-l = (e,a) and s ls = (f,0), b mMJhPhxmhcw w R x}ﬁ<F* {Qj
baing as  dwenbed w  Thevewy 3.5.b.

We select a transversal of the Ji-classes of S

contained in R as follows:-

(kyl)
Let u, be the representative of Ha where (Ha)¢ = (k,1,e); we

stipulate that u = (k,1).

We now use this transversal to obtain a unique form for the
elements of S and establish this in the fo_llowing lemma.

3.5.8 Lemma. If x ¢ S\{0} there is a unique representation of x

-1
i = G .
in the form ue guu where (Hx)¢ (e,a,f) and ga € o

£

Proof: Let x ¢ S\ {0} with (H)¢ = (e,a,f). Then (e,a,f) =

-1
(e,1,k) (k,a}k) (k,1,£) and we have (H )¢ = ((Hue)qb) (H(k,a))¢(Huf)¢

= (H ’1ik wu )¢ as ¢ is an isomorphism and &, by Theorem 3.5.3,
-1
is a congruence on S. Thus Hx = Hu‘l(k,a)uf and (x, u, (k,a)uf)edg.

:zl ~1

Again using the fact that ,Z/is a congruence on S, we have (uexuf '
-1 _ _ -1

ue e (k a)u u )e,GQL. However, u u = = (k,1) =uu." as

ue,uf € R(k,l)'

..l -1 =
= Ga' Let uexuf = g (say) € Ga' Then ue uexuf uf ue gauf.

- . -1 -1
However uelue = (e,a) and ufl = (£,a), while xx © = (e,0) and x "x

-1 -1
Thus (uexuf , (k,a)) e:Z/, and so uexuf € H(k,a)

-l
-1 -1 _
= (£f,a) , so that u u xu U = X and we have x = u gu. . Thus there
is a representation of x in the required form and it remains to

Prove that it is unique.
, 2 -1
Suppose that x €S \{0}and x = u g, Ve and x = o hBuq' Then
()6 = (1,8 (k,,Kk) (k,1,6) = (e,8,£) and (1) = (1K) (k,8,K) X

-1
(k,1,q9) = (p,B,q) so that e =p, £ = q and a =B . Hence x = u_ B ug
-1 - -1 -1 _ -l -1
hauf so that u xuc" = u U, I Ul and u Xug uu, h P fl
- -1 _
Since u u_ "t = ugu, 1 - (x,1) we now have udu, =g, and uxu,
h, so that g, = h, and this representation is indeed unique.
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Returning now to the theorem, this representation leads
us to define a mapping g: S+ F* x A x F* u{ 0} as follows:-

Qo=0 and sg = (e,ga,f) where (Hs)q; = (e,q,f) and

s =u, guc..
Clearly ¢ is a well-defined mapping. 1If x,y ¢ S with x5 = yg =

= y so that ¢ is injective. Also,

_.-1
(e,ga,f) (say), then x = u, g, ue

. -1
if (e,ga,f) e F* x A x F*¥ let x = ue gau Then (Hx)¢ = (e,q,f)

£
and xo = (e,ga,f) so that ¢ is sunjective. To show that g is a

homomorphism we need to examine the multiplication and to simplify

this we introduce the following lemmas.

+ . .
3.5.9 Lemma: If e¢ ¥ and f ¢ F* then there exists a unique

element g(e,f) in Gl such that ueuf = g(e,f)ue+f.

Proof: Since ¢ is an isomorphism on S/jj and-\# is a congruence on

S we have (H )¢ = (H_ o (H_ ) = (k,1,e)(k,1,f) = (k,1,e+f).
ueuf Ye Ug
Thus (I-Iu )¢ = (k,1,e+f) and, from Lemma 3.5.8, we have that there

u
e f _
exists a unigue element 9 in Gl such that ule =W g . = 9U e

- +
3.5.10 From here onwards we shall, for all e¢ F and f ¢ F*, denote

by T (e,f) the unique element in G, such that u u. = tde,f)u_ ..

3.5.11 Lemma: For all ee F' and f ¢ F* we have t (e,k) = (k,1)

T (k,f).

Proof: From (3.5.10), T (e,k)ue"‘k = uu and sO T (e.k)ue =u,.

-1 =u u_l. However ueu;l = (k,1) and we have

Henc
e Te,k) ueue

T (e,k) = (k,1). From (3.5.10), r(k,f)uk+f = wu, and so

-1 -1 -1
T (k,f)uf = ug. Hence T (k,f)ufuf = ugu.. However ucu. = (k,1)
and we have T (k,f) = (k,1).
- -1 -1
3.5.12 Lemma: For all e,f e€F*, uu, =u. T (ef-e,e) ( ef-£,£)) "y

Yeg-£°
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. -1 . .
Proof: We have (Hueu£1)¢ = (Hue)¢((Huf)¢) 51nceQ¢ is a
congruence on S and ¢ is a homomorphism. Thus we have

(Hu u_l)¢ = (k,l,e) (f'l,k) = (ef"e,l,ef‘f) and' bY Lenmla 3.508’

u ugl = ol h -1,-1
Vs ef-e gl uef-f where gl ¢ G. However, uef_.ueuf uef-f
_ -1 -1 -1

Yef-eef-e 1 Yef-flef-f Md S U U = (k1) =u . X

_ -1
U e g We have 9, = uef-eue(uef-fu f), From (3.5.10) we have
Uopoele = T(ef-—e,e)uef and U g gl = T(ef-f,f)uef. Hence 9, =
-1 -1 -1 _
T (ef e,e)uefuef(T(ef £,£)) . However uefuef = (k,1l) and so 9,
= T(ef-—e,e)(-t(ef-f,f))-l from which we obtain the required result.
3.5.13 Lemma 'Let e ¢ F+\’{k} and a ¢ A. Then there exists a

unique element g ¢ G, such that ua =gu_.

1

Proof: Let a ¢ A with a ¢ Ga (say). Then (Huea)¢ = (Hue)¢(Ha)¢

= (k,1,e) (k,4,k) as QQ is a congruence on S and ¢ is a

homomorphism. Hence (Hu a)¢ = (k,1,e) and so by Lemma 3.5.8 we have
e

uea = u_ for a unique element 9, € Gl' However u, =

Y 91Y%

(k,1) and so ua = g;u, for a unique element 9, € Gl'

3.5.14 Define a mapping y_:A + G;, for all e ¢ F+.\{k}, as
follows:- ua = (awe)ue. By Lemma 3.5.13 this mapping is well~-
defined for each e ¢ N {k}. Also, as ue(ab) =(uea)b = (awe)ueb =
(awe)(bwe)ue we have (ab)y u_ = (aﬁe)(bwe)ue so that, on post-
multiplying by u;l, we have (ab)we = (awe)(bwe). Hence for each
e ¢ Fﬁ.i{k} we have that y_ is a homomorphism from A into G, .
Define by to be the identity mapping on A.

3.5.15 Lemma: If e,f ¢ F' and g ¢ F* then t(e,f)T(e+f ,g) =
(t(£,9))y, Tle,f+g).

Proof: If e = k the result is immediate once we note that

1(e,f) = t(e,f+g) = (k,1), by Lemma 3.5.1l.
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If e # k then by (3.5.10) and (3.5.14) we have u (ufu )
e g

= u, t(f,9)u = (tE9))p uue, = T(E,9) Y, T(e,fHg)u

f4g f+g e+ (f+g)

On the other hand .5. , = =
and, by (3.5.10) (ueuf)ug T(e,f)ue+fug T(e,f) X

T(e+f,g)u As the addition is associative u

(e+f)+g”
Uet (£4g) and so T(f,9)V T(e,f+g)ue+f+g = (e, ) T(e+E,9u_,

-1 _
et+f+g Uetf+g

(e+f)+g

f+g

On post multiplying by u;i and noting that u

f+g
(k,1) we have the result.

3.5.16 Lemma: If a € A and e,f ¢ F+ then (awf)weT(e,f) =

T(e,f)awe+f.
Proof: If e = £ = k the result is immediate since t(k,k) = (k,1),

by Lemma 3.5.11. If e =k and £ # k, since t(k,f) = (k,1l) by
Lemma 3.5.11 we again have the result. Similarly, if e # k and
f = k the result holds. We are thus left to consider the case
where e # k and £ # k. From (3.5.14), ue(ufa) = ue(alpf)uf =
(awf)¢eueuf = (awf)¢e r(e,f)ﬁe+f, by (3.5.10) also. On the other
hand, by (3.5.10), (ueuf)a = T(e,f)ue+fa and)by (3.5.14))(ueuf)a

= T(e,f)(a¢e+f)ue+f. Thus (awf)we 'r(e,f)ue+f = T(e,f)(awe+fﬁue+f.
By postmultiplying by u;if and noting that ue+fu;1f = (k,1) we
have the result.

We return how to the theorem. The functions T:F+ X F* >
H(k,l) and d):F+ + End A defined above are shown in Lemmas 3.5.9
3.5.11, 3.5.15 and 3.5.16.to satisfy the necessary requirements

for the construction of the semigroup S(F, k, @} A, T, y). We are
now in a position to verify that ofs +~S(F, k, §; A, 1,4 ) is a
homomorphism.

Let s € S\{0}. Then sO = 0 and (s0)o = 0 = (s0) (00). If
8,t ¢ s\{0} with st = O then (st)o = 0. Let so = (e,ga,f) and to

= (p,hs,q).Then (so) (tO’) = (e,ga,f) (Plhqu) = (e,ga:f) (£,0,f) (PleP)X

(Pth:Q)- However (£,a) (p,B8) = s Istt™ = 0 and so (£,a,£) (p,B,P)
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(H(f,a))¢(H(p.B))¢ - (H(f,a)(p’s))¢ =0 Sinceigfis a congruence
on S and ¢ is a homomorphism. Thus (s0)(to) = 0 = (st)o.

Let s,t. ¢ S\{0} with st # 0. Let sg = (e,ga,f) and to &

(p,hB,q). From this we have s u;lgauf and t = u_l h u . Hence

P B g
- -1 -1
st =u ucuch * A i e D =
e 93%% gl pplying Lemma‘3 5.12 we have ugu
-1 -1 -1 -1
fp-£,f fp- an = -
Ueo g t(fp-£,£) (1 (fp-p,p)) Ueop d so st U Iop-f T (fp-£f,£) X

(< (fp-p,p)) T

~1 -1
h . F .5. =
ufp—p qu rom 3.5.14, ufp-f ga (gu wfp-f)ufp—f
_ _ -1 -1 -1
and ufP_PhFJ = (thfp-p)ufp-p so that st = u, ((ga ¢fp-f)ufp-f) X
-1 -1

T(£p-£,£) (7 (£p-p,p)) L(h oy, )

u. _u £p~£,£) X
B fp-p’ fp-p 4 ) TlEp-f,f)

Ye ufp—f(gawfp-f

(< (fp-p,p)) T (h )

+ Since wfp—f is a homomorphism.

-1
(gp-£)+e)  Tolp-g X

u u
Bwa‘P fp-p q
Applying (3.5.10) we now have st = (t(fp-f,e)u

T(fP‘f,f)(T(fP‘P:P*)—l(h wfp_p)r(fP’PrQ)u However

B (fp-p)+q’
(Hst)¢ = (Hs)¢(Ht)¢ = (e,0,f) (p,B,q) since,lyis a congruence on S
and ¢ is_a homomorphism. Thus (Hst)¢ = ((fp-f)+e,y, (fp-p)+q) where
Y = afp if £ =p
o if f4£ p
Bif £ >p

1l if £, p are incomparable

-1
It can be readily be checked that in each of these cases (t(fp-f,e)) ~ X
-1 . .
(gawfp_f)T(fp-f,f)(T(fp-p,p)) (thfp-p )T(fp-p,q)wls in GY and so, by the
definition of ¢, (st)o =

- -1
((fp-f)+e, (T(fp-f,e)) l(gau;fp_f)r(fp-f.f) (t(fp-p,P)) “(hghe )X

T(fp-p,q), (fp-p)+q) = (so) (to) in S(F, k.fﬁ;A. T, ¥).

3.6 Isomorphisms between semigroups of the type S(E, k, ®; A, 1,6)

In this section, following some of the notions of [5, Section 4]
we consider certain isomorphisms between semigroups of the type

considered above.
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3.6.1 Theorem: Let S =S(E, k, §; A, 7, 6) and T = S(F, 1, ¥;B,
o, A) where A and B are centric inverse monoids.

(a) Let §:S » T be an isomorphism, for which (k,lA,k)¢ = (l,lB,l)
where 1A is the identity of A and 1B is the identity of B. Then

there exist isomorphisms a:A -+ B and B:E -+ F with kB = %, and,

for all e € E*, there exists xe € HlB, with xk = lB, such that

(e,a,f)Yy = (eB, x;l (aa)xf,fe). The following conditions are
+
also satisfied:- (3.6.1)(i) (e+f)B = eB + fB for all e e E , £ € E*
(3.6.1) (ii) (xe)xflepo(ee,fﬁ) = (t(e,f))a X rf!
for all e € E+, f ¢ E*

. _ -1
(3.6.1) (iii) (aa)Aé = xe (aee)axe for all a € A,

B
+
e eE .

(b) Conversely, if a:A -+ B and B:E > F, with kf = 2, are
isomorphisms and if, for all e € E*, there exists xe £ HlB, with
X = lB' satisfying conditions (3.6.1) (i)-(iii) then the mapping

Y :S > T defined by (e,a,f)y = (eB,x;l(aa)xf,fB), and Oy = O)is an

isomorphism.

Proof: As a and B are centric inverse monoids (3.4.2) holds and
so ((e,lA,e),(k,lA,k)) € ﬁ;j31 s for all e e E*. Thus ((e,1,,e)y,
(e, 1, k) P) e);—in T. As F admits a factorisation compatible
with the &2-structure of T and (k,lA,k)w = (I,lB,I) we have
(e,lA,e)w = (n,lB,n)(say). Let B:E «+ F be defined as follows:

08 = 0 and (e,lA,e)¢ = (eB,lB,eB) for all e ¢ E*. Since ¢ is

an isomorphism we can deduce that B is a bijection. Also if
e,f € E* with ef = 0 then ((e,lA,e)(f,lA,f))w = 0y = 0 and so
(e,lA,e)w(f,lA,f)w = 0 so that (eB,lB,eB)(fB,lB,fB) = 0 and we

have (eB) (£B8) = 0 = (ef)B . If e,f € E* with ef # O then



68.
((e,lA,e) (f,lA,f))w = (ef,lA,ef)w = ((ef)B,lB,(ef) B). Also, as y is
an isomorphism, ((e,1,,e) (£,1,,8))¢ = (e:lA:eW(f:lA,fW = (eB,1;,eB) X
(£8,15,£68) = ((eB) (£B) 11(eB) (£B))as, since ((e,1,,e) (£,1,,£)% = 0,
(eB) (£B) # 0. Hence (eB) (£R) = (ef)B and we have B:E -+ F an isomorphism
with kB = .
In this next section of the proof we show that if &e Ii:A then

(k,6,k)¥ = (2,Y,X) for some Y € E Let (k,8,k) € S with § ¢ EA.

5
Then by Theorem 3.3.4,(1), (k,%,k) is an idempotent in S and so (k,$,k)¥
is an idempotent in T so that (k,8,k)¥ = (p,n,p) (say) where § € Eg.

We note that, by Theorem 3.3.4 (6), (k,8,k) < (k,lA,k) and so (p,n,p)

£ (kflA,k)\U = (Z,lB,k) . Hence, by Theorem 3.3.4,(6), either p < %
orp=%and n < lB. Assuming that p < %, let (p,lB,p) = (n,u,n}yY (say),
where U € EA' Then as (p,n,p) < (p,lB,p)' < (—r,lB,»I) we have

(k,8,k) < (n,u,n) < (k,lA,k) . Hence k £ n and n € k so that k = n.
However ((p,lB,p) ’ (AI,lB,l’)) € B’ in T by Theorem 3.3.4(7), and so
((n,u,m), (k,1,,%)) €M in's so that,by Theorem 3.3.4(7) again, we have

o= lA and so (n,u,n) = (k,lA,k) which is a contradiction. Thus p * x.

Hence p = # and (k,6,k)y = (&,n, &) is of the required form.

Using the above we obtain the following result. Let a ¢ A}
then ((k,a,k), (k,aa",x)) ¢ F, and so ((k,a,K)y, &,y 2)) e Ay (sav).
Thus (k,a,k)y = (»3:,?,4]:) where b ¢ B. We define :A +» B as follows:-
(k,a,k)y = (¥,aq,%). Clearly o is a bijection. Also if a;,a, e A
then (k,a ayk)y = (Z,(a;a))a,2). However (k,a,a,,k) = (k,a, k) (k,a,,k)

1
so that, as ¢ is an isomorphism, (k,alaz.k)ﬂ) = (k,al,k)w(k:az'k)lll =

Hf,ala,‘l) (a‘:,aza,»r) = (-I,(ala) (azoz) ,2) and we have (alaz)a = (ala) (aza) ’
So that ¢ is an isomorphism.
Let e € E*. Then ((k,1,,e), (k,1,k)) efg and ((k,1y.e), (e,1,,e))
X, Thus (0,1, e0hE 1) e L and (kL)% (eB 1y ,e8) ety

S0 that (k,lA,e)IP = (%,x,eB) for some x € A. Denote by X, the element

in B such that (k,lA,e)‘P = («]:,xe,eﬁ) . From the Green's relations above
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we also have x x_1 =1 so that x € H
e e e

B Also x, = 1B as (k,lA,k)w =

lB
Gk,lB,&).

Let (e,a,f) ¢ S;then (e,a,f) = (e,1,k) (k,a,k) (k,1,£) = (k,1,e) ‘x
(k,a,k) (k,1,£). Thus (e,a,£)y = ((k,1,e)¢) L(k,a,K)p(k,1,£)y as ¢ is
an isomorphism. Hence (e,a,f)y = ({,xe,eB)_l({,aa611(I,xfrfB) =

_l -
(eB:Xe II)CI}aarI)QI,xf,fB) = (eBf,x 1 (ao)x.,£ER) .
e £

To complete the proof of (a) we need only check that conditions
3.6.1 (i), (ii) and (iii) are satisfied. We note that if e ¢ E+ and
f € E* then (e,1,,e) (k,1,,f) = (e.(r(e,k))-lt(e,f),e+f) = (e,t(e,f),

-1

e+f). Hence ((e,lA,e)(k,lA,f))w = (eB,xe (T(e,f))axe+f,(e+f)8).
However, { is an isomorphism and ((e,lA,e)(k,lA,f))¢ = (e,lA,e)w (krlA,f)w

= (eB,1,08)(%,x,,£B) = (eB, (0(eB,1)) ™" x_ A _c(eB,£B) ,ef + £B). Thus

f 7\eB

(etf)B = ef + fB, equating the third terms in ((e,lA,e)(k,lA,f)w and

(e,lA,e)w(k,lA,f)w, so that condition 3.6.1 (i) is satisfied. Equating
X -1 _ -1

the middle terms we have X, (T(e,f))axe+f = (o(eB,1)) (xf)AeBc(eB,fB)

= (xf)keBo(eB,fB). Pre-multiplying both these expressions by Xq and

. -1 _ .
noting that X x, = lB we have (t(e,f))o x = xe(xf)lesc(eB,EB) which

e+f
is condition 3.6.1 (ii). To obtain condition 3.6.1 (iii) we consider
+

(k,yge)(k,a,k) where a ¢ A and e € E . We have (k,lA,e)(k,a,k) =
(k,aee,e) so that ((k,lA,e)(k,a,k))w = (k,aee,e)¢ = (&,(aee)axe,eB).
However, as { is an isomorphism we have ((k,lA,e)(k,a,k))¢ = (k,lA,e»P X
(k,a, k)¢ = (&,xe,eB)(k,aa,t) = (l,xe(aq)kee,eﬁ). Equating the middle
terms of ((k,lA,e)(k,a,k))¢ and (k,lA,e)w(k,a,k)w we have (aee)axe
= xe(aa)leB. On pre-multiplying both these expressions by x;I and

. "1 - = -1 e . . P
noting that X, %, = lB we have (aa)AeB X, (a e)axe which is condition
3.6.1 (iii).

(b) We first show that if ¥ is as defined then Y is a bijection.
. N 4

Let (e,a,f), (g,b,h)e S with (e,a,f)¥ = (g,b,h)¥. Then (eB,xe (aa)xf,

£B8) = (gB,x;l (La)xh,hB). Thus e 8= gBR.and fB = hB so that, since B is



70.

an isomorphism e = g and £ = h. Also x;l(act)xf = x;l(bu)xh =

x_l (bu)xf. Hence as x x -1 =1
ee

e we have ac = bo 8o that,

B~ £t
as o is an isomorphism, a = b. Thus ¥ is injective. Also let (m,c,n) € T.

Then as B:E + F is an isomorphism, there exists e,f € E such that e = m

1 . .
£ € B and so, since 0a:A > B is an

and f8 = n. We note that xecx

i.e X -1(aa)x
f T e £

isomorphism, there exists a € A such that ao = xecx
= c. Thus (e,a,f)y = (m,c,n) and we have that ¥ is surjective.

We must now verify that y is a homomorphiism. Let (e,a,f),(g,b,h) € S
with fg = 0. Then (e,a,f)(g,b,h) = 0 and ((e,a,f) (g,b,h))y = 0. Also
(fg)8 = (£B)(gB) = O as B is an isomorphism and so (e,a,f)Y(g,b,h)y =
(eB,xe'l(aa)xf,fe)(gs;xg‘l(ba)xh,hs) = 0 and we have ((e,a,f) (g,b,h))V¥

=0 = (e,a,f)¥(g,b,h)¥. If (e,a,f),(g,b,h) € S with £fg # 0 then (e,a,f) X

(g,b,h) = ((f£g-f)+e,uv, (fg-g)+h) where u = (T(fg-f,e))-laefg_ft(fg-f,f)
and v = (T(fg—g,g))-lbefg_gr(fg-g,h). Thus ((e,a,f) (g,b,h))VY =

-1
((£g-£)B +eB,x(fg_f)+e (uv)a x(fg_g)+h,(fg—g)8 +hB) . We note that

(uv)o = (uo) (vo) as o is an isomorphism and also ua = ((t(fg-f,e))o )-1 X

Yo (Tt (fg-£,£))a. By applying conditions 3.6.1(ii) and (iii) we

1 y-1
(Eg-f) +e

yoli£g-£) 8, £8) x !

(aefg_f

( )o(lEg-£) B,eB)x

have ua = (xfg_f

x‘e)\(i:“.:;—f)l?»

(a®) A x_l X (x A
7T (£g-£) BT fg-f “fg-f £ (fg-£f)/ fg-f+£

-1 -1
(o £g-£)B,eB)) = x " A e pypla WA e eygEA gqgyp X
1 _
£g ~ T (fg-f)+e

-1
o((fg-f)B,£B) x £g' 28 A(fg—f)B

Xeg-f

= x(fg—f)+e
- -1, -1
o ((Eg-£)B,£B) x (0 ((£g~£)B,eB)) " (x, "(aM)x)A oo ryp X

is a homomorphism of B. Also,

-1, -1
similarly, we obtain vo = xfg(O(fg-g)B,gB)) (x4 (ba)xh)x(fg-gﬁﬁ X
o ((£g-g)B,hB) x (£g-g)+h" Hence ((e,a,f) (g,b,h))¥= ((£g-f)B + e

1

- -1
(0 ((£g-£)8,e8)) T (x, " (a®) %)X o o g0 ((Fg-DIR, ) X

-1, -1 -
(O((£9-9)B,gB)) " (x, ~ (XA .o )0 ((Fg 9)B,hB) , (fg-g) B + hB).

—1 -
On the other hand, (e,a,f)¥(g,b,h)¥ = (eB,xe (a%)x. , fS)(gB.qu(bd)thhB)

= ((£8) (gB) - £B) + eB, pq, ((£B)(gB) - gB) + hB) where
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= (o(£ -£8,e8)) L(x -
P = (olf8) (98) -£8,eB)) ™ (x ™ (@) x A ) (g8) -£gC ( (EB) (9B) ~£8,£8) and
-1, -1
q = (o ((£8) (gB) -g8, -
o ((£8) (98)-gB,9B)) "(x o (bO)X A (pay (o) o0 ((£B) (gB)-gB,hB). To

show that (e,a,f)¥(g,b,h)y = ((e,a,f) (g,b,h))y we need only show that
(£8) (g8)-£B = (£g-f)B and (£B) (gB)-gB = (fg-g)B . As B is a
homomorphism we have (£fg)B = (£B) (gB). Also, by condition 3.6.1(i)
(fg)B = ((fg-g)+g)B = (fg-g)B + gB so that (fg-g)B = (fd8 = gB and
similarly, (£g)B = ((fg-f)+f)B = (fg-f)B +fB so that (fg-f)B =
(fg)B -fB and the result is proved.

We must lastly check that § is an isomorphism for which

(k,lA,k)w = (&,lB,k). By the definition of ¥, (k,1, k)Y =
-1 _ -1 _ v
(kB,x lf(lA) Ot\/xk,kB) = (‘&I}L‘k lekri) = ('&I]-Bl’t) .

3.7 Special Cases and Applications

The first special case we consider is that when E is an w-tree
with zero as this is the most complicated case which can actually

be computed.

3.7.1 Theorem: Let E be an w-tree with zero and let A be a centric
inverse monoid with identity 1. FiX k ¢ E* and let e > v, bea

mapping of E into H, with the property that Ve = 1 for all e < k.

1

Let 0 be an endomorphism of A into H, and let ao denote the identity

1
mapping on A. For each pair (i,x) € N x E* define
i-1 i-2 s
= >
wi,x (vxa )(vx+1a ) e (Vx+i—l)' ifi=21
l'if i = 00

Let S = E* X A x E*U {0} and define multiplication on S as

- t -1
follows:- (m,a,n) (r,b,s) = (m+t,wt1 (a0 Jw, w
)m

u
t,n u,r(ba )Wh’315+¥)

where t = [n,nr] and u = [r,nr], if nr # 0, and all other products
are zero. Then S is a O-simple inverse semigroup whose semilattice
admits a factorisation compatible with the £)-structure of S.

Proof : The proof consists of showing that S, as described above, is
in fact of the form S(E, k,‘I} A, T, 9) and the result then follows

immediately from Theorems 3.3.3 and 3.3.4, and (3.4.2).
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The first feature we concentrate on is an addition on E, Since
E is an w-tree with zero each principal ideal of E is an w-chain
with zero and so is inversely well-ordered. Hence, by the note
following [6, Theorem 3.2], 23¢ =i on TE. Thus, if e,f € E*, there

exists a unique isomorphism ge :Ee > Ef as described in (1.3.10).

i
14
If kX ¢ E* is fixed, an addition $ with identity k can be defined on

-

+
E whereby e+f = egk £ for all e ¢ E , £ € E*¥, 1In the product (m,a,n)X
’
(r,b,s) we need to reconcile m+t, where t = [n,nr], and s+u, where u

= [r,nr] with (nr-n)+m and (nr-r)+s, respectively. We note that

-1
nt+t = nr so that m+t = = = - .
s m+t (nr)En’kik,m (an.k'n)F,k'm (nr-n)+m
Similarly s+u = (nr-r)+s.
+ .
We next note that E = {k+i:i ¢ N}. Letw. . = T(k+i,f) for

i,f

all i e N, £ € E*, Then T:E+ X E* > Hl and immediately satisfies
condition 3.2.1,(1). We also make the definition that ek+i = ui for
all i € N and set to checking that conditions 3.2.1, (2) and (3) are
satisfied. PFor condition 3.2.1, (2), t(k+i,k+j)Tt(k+it+j,g) = t(k+it+j,q)

as t(k+i,k+j) = 1, since k+j < k, and so v, . =1 for all n € N. On
=70 . k+j+n
TN WJZ‘) . j—l

the other hanqﬂ\(T(k+j,g))9 T(k+i,g+j) = w, a w, . = ((w o ) IR ¢
k+1i i,g+ K . .
i i-1 3:9 1973 llw:uw% heldo i (=0 ov z0O.
® e o0 - . = » [] = +.+. - i i
Vg+j-l)u X (vg+ja ) gj+i-1 w1+J,g T(k+i+j,g) . Thus condition

3.2.1, (2) is satisfied. For condition 3.2.1 (3) consider t(k+i,k+j) X

actl+J since, as above, T(k+i,k+j) = 1. Also (aek .) X

(ad +3° k+i

K+i+s)
T(k+i,k+j) = (aaj)all = aal+J and we have condition 3.2.1,(3) satisfied.
We note now that, as E is an w-tree with zero, E contains no

primitive idempotents and 8o, by Theorem 3.3.3 (a), S is O-simple. The

remainder of the result follows directly from Theorem 3.3.4 and (3.4.2).

3.7.2 There is also a converse to this result.
3.7.3 Theorem: Let S be a O-simple inverse semigroup whose semilattice
E admits a factorisation compatible with the A}“structure of S. Let E*

00 3.14..')
= F* x Y.where F is an y-tree with zero. Then S has the form described

in Theorem 3.7.1.
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Proof: The conditiops of Theorem 3.5.7 are satisfied by S.
AYlouahe

Thus there is anjaddition defined on F with e+f = ef x £ Vhere
b4

k is an arbitrary fixed element of F*. We have shown above, in
Theorem 3.7.1, that if n,r,m € F* with nr # 0, then, if t = [n,nrl,
m+t = (nr-n)+m. We define A as in Theorem 3.5.7.

We select a set of representatives M¢ of te S#hclasses

f i i v tkl- .5

of S gonta1ne§ in R(k,l) as in P«uﬁ ot TTheorewmy 35 1, wh, b
—k prenyes |

Let u be the representative of Ha' where (Ha)¢ = (k,1lyk#l) and let

u" be the representative of Hx' where (H )¢ = (k,1,k+n) for all n € N

) . TH ¥ o in Theovem 3.s.7.
with n 2 1, taking ¢ as in Theorem 3.5.7./\ hus we have uk+nuf

= i(k+n,f)uf+n, for all £ € F¥ and n € N, so that unuf = 1(k+n,f)u
Define t(k+n,f) = w £ for all n €N, n2 1, and for all £ € F¥*,
n, Wit Wop =1 fv ol fe FY.

= * ‘ = )
and let vf wl,f for all f e F*. ) We also have ua (a&kﬁi)u, for all

f4+n"*

~ n
= = >
aeA. Let K+l o, so that Qi+n o0 for all ne N, n 2 1. Let

a® = Wi' the identity automorphism on A.
From Theorem 3.5.7 we have that S is of the form S(F,kﬂé;A,r,qo.
From the results obtained above we have S ~ F* x A x F*u {0} with
the following multiplication in F* x A x F*y{0}:-
-1

1 t u _
t,m(aa )wt,n wurp(ba )Wﬁ'q,q+u) where t =

(m,a,n) (p,b,q) = (m+t,w
[n,np] and u = [p,np], if np # 0; all other products are zero.
The mapping a satisfies the requirements of Theorem 3.7.1

and we now need to check that ve and V. e are as required. We
r

. + _ . .
note that if e ¢ F then ve vk+i for some i ¢ N and ve is such
i+l i+l
= i.e. =v.u . Thus we have v_ = (k,1).
that uuk+i veuk+i+1’ i.e. u e e (x,1)

Examining w, we see that w = v_ for all £ ¢ F¥*, We assume that
i,f 1,f £

= v_0 v o eV is true. We have

for i =p, w £ £4+1 £4+p-1

p.f

p+l - p+l - P -
u ue = (w§+1,f) uf+p+l' However u ug u(u uf) u(wp,fuf+p)
= (wp'f)auuf+P = (wp’f)ozwl'f+p uf+p+1. Hence wp+l,f = (wb,f)awl,f+p

and the condition regarding V. £ is proved.
’
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3.7.4 Theorem: Let E be a O-direct union of w-chains and let A
be a centric inverse monoid with identity 1. Let a:A - Hl be an
endomorphisﬁ with o° the identity mapping on A.

Let S = [(NXN)x(IxI)xAJu{0}and define a multiplication on S
as follows:- ((m,n), (i,3) Ia)((qu) s (J,k),b) = ((m-n+t,g-p+t), (i,k),

t-n t-p -
ao bo ) where t = max {n,p); all other products are zero.
Then S is a O-simple inverse semigroup whose semilattice admits
a factorisation compatible with the }gfétructure of s.
Proof: The proof consists of showing that S has the form of the
semigroup described in Theorem 3.7.1 and the result is then immediate.
First a O-direct union of w-chains is, as described in (2.6.4), of
the form N x I u{0} and is a special type of w-tree with zero.
The only non zero products in N x I are those of the form (n,i) (m,J)
with i = j. Take each vy = 1 in Theorem 3.7.1. With E* = N xI the
multiplication on S in Theorem 3.7.1 is thus ((m,i),a, (n,3)) ((p,3).,
X tbau . . .

b(q,RN) = ((m+t,i),an r(qtu, b)) where t = [(n,3),(n,3)(pP,3)] and
u= [(p,I)s(n,3)(P,J)]. Thus, if x = max (n,p), t = x-n and u = x-p,
. R . . X-n , X-p
so that {(m,i),a,(n,3)) ((p,j),b,(a,B) = ((m+x-n,i), aa ba™ *,

(g+x-p,) which is the same product as defined in the statemeént

of Theorem 3.7.4 and so the result is proved.
3.7.5 The converse of this result is as follows:-

Theorem: Let S be a O-simple inverse semigroup whose semilattice E
admits a factorisation compatible with the X;istructure of S. Let
E* = F* x %HWhere F is a O-direct union of w-chains. Then S has the
form described in Theorem 3.7.4.

Proof: Clearly F is an w-tree with zero and so the conditions of
Theorem 3.7.3 are satisfied. We have shown, in the proof of Theorem

3.7.4, that if (m,i),(n,j),(r,3) € F* theq, if t = [(m,]), (x,3) (n,3)]

and x = max (n,r), we have (m+t,i) = (m+x-n,i).
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Fix (0,2) € F* and, as in Theorem 3.5.7, choose a set of
representatives of the . $4—classes of S contained in R((0 z),1)
14 r

as follows:-

Let u be the representative of Ha' where (Ha)¢ = ((0,2),1,(1,2)) and

let un be the representative of Hx' where (Hx)¢= ((0,z),14n,z)) for
allne N, n2>1, and

let ix be the representative of Hy, where (Hy)¢ = ((0,2),1,(0,x)) for
all x € ¥, and

let unix be the representative of Hw' where (Hw)¢ = ((0,z),1,(n,x», for
allne N, n=21and all x € Y.

We also stipulate that iz = ((0,2),1).

With these representatives we consider the mapping 1 defined

. +
in Theorems 3.5.7 and 3.7.3. Firstly we note that F = {(n,z):n € N}

and so for all (n,z) € F+ and (m,x) € F* we have u(n,z)u(m,x) =

n m,
=u i_ and

However u = u u =
(n,z) ! (m,x) X

T( (n.z),(m,x) )u(nﬂn,x) .

u(n+m,x) = uﬁ*m ix . Hence ungmix = T((n,z),(m,x))un+mix, from
which we immediately have that t((n,z),(m,x)) = ((0,z),1). Hence,
for all (n,x)e F* we have V(n,x) =7T((1,2),(n,x)) = ((0,2),1).
Using this result in Theorem 3.7.3 we thus have a semigroup as
described in Theorem 3.7.8&.

3.7.6 Theorem: Let A be a centric inverse monoid with identity

element 1. Let 6:A - H, be an endomorphism with 60 denoting the

1
identity automorphism on A.
Let S = (NxNxA) u {0} and define multiplication on S as
t-n ,  t-p _
follows:- (m,n,a)(p,q,b) = (m-ntt,g-p+t,ad bb ) where t =
max (n,p); all other products are zero. Then S is a O-simple inverse

semigroup whose semilattice admits a factorisation compatible with

the\ﬁs -structure of S.
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Proof: This is a modification of Theorem 3.7.4 since an w-chain
with zero is isomorphic to N u {0} and an w-chain with zero is,
trivially, @& o-direct union of w-chains. In fact we have exactly

the situation of Theorem 3.7.4 wkéh |I| = 1. The theorem follows
immediately.

3.7.7 Theorem: Let S be a 0O-simple inversec semigroup whose
semilattice E admits a factorisation compatible with the ¢9fstructure
of S. Let E* = F* x Y where F is an w-chain with zero. Then S has

the form described in Theorem 3.7.6.

Proof: Since an w-chain with zero is a O-direct union of w-chains
S satisfies Theorem 3.7.5. However F* = N in this case, i.e. |I]
= 1 and so we have exactly the form described in Theorem 3.7.6.

The results of Theorems 3.7.6 and 3.7.7 were obtained by
Munn in [1i, Theorem 3.3].

The special cases obtained so far have been obtained by
successive modifications of E in S(E, k,lgﬁ A, 1, 8). We obtain
a further special case by taking E to be an w-chain with zero
as in Theorem 3.7.6 and, in addition, taking EA to be a finite
chain,.

3.7.8 Theorem: Let A be a centric inverse monoid with identity
element 1 whose semilattice is a finite chain. Let 6:A > Hl be
an endomorphism with 60 denoting the identity mapping on A.

Let S = (NxNxA) U {0} and define multiplication on S as
follows:- (m,n,a) (p,q9,b) = (m—n+t,q-p+1:,aet-'n bet-p) where t
= max (n,p); all other products are zero. Then S is a O-simple
inverse w-semigroup.

Conversely, every O-simple inverse w-semigroup is of this

form.
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Proof: Clearly S satisfies the conditions of Theorem 3.7.6 and so
is a O-simple inverse semigroup. By Theorems 3.7.6 and 3.3.4, and

(3.4.2) E_ admits a factorisation and Eg =NXE

S However, if

x

E, ='{e1 =l>e,>...> ed} (say) then N x E, =‘{(0,el)>(0,e2)...

>(0,ed)>(l,el)>(l,e2)>... (l,ed)>...} . Thus N x E, is itself an

w -chain and so, in the terminology of [7], S is an w-semigroupsth 20
Conversely, let S be a O-simple inverse w-semigroup with

semilattice E where E* =‘{ei:i € N and e; > ej <=> i < j} . By

[7, Lemma 4.3 (iii)] there exists d € N, 4 > 1, the number of non

zero,éLic}asses of S, such that (e;,e;) eff<=> i=3j (m6d d). We

consider the mapping e; + (n,s) where i = nd+s and 0 < s <d, n £ N.

Thus, if e, 4+ (n,s) and ej + (m,t) then (ei,ej) e/ <=> 8 = t.

Also e; < ej<=> i>3j, i.e. nd+s > md+t. However nd+s > md+t

<=>n>mor n=mand s > t. Hence we see that N x {0,1,2,...,

d-1} is a factorisation of E_ compatible with the ‘;ﬁstructure of sS.

S
From this we have that S satisfies the conditions of Theorem 3.7.7
and the result follows.

This result was obtained in [2] by Kochin and in (7] by
Munn.

The final simplification in this pattern is to take IEAI =1,
so that A is a group. The folléwing is then the case:-
3.7.9 Theorem: Let A be a group and let o be an endomorphism of A
with ao denoting the identity automorphism on A.

Let S = (NxNxA)u{0} and define multiplication on S as follows:-
(m,n,a) (p,q,b) = (m-n+1:,q--p+t,aozt_n bat_p) where t = max (n,p):
all other products are zero. Then S is a O-bisimple inverse
w-semigroup.

Conversely, every O-bisimple inverse w-semigroup is of

this form.
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This result was established by Reilly in [12, Theorem

3.5].

Another chain of special cases can be obtained by returning
to the original S(E, k,‘£;A, T, 0) and taking A to be a group.
3.7.10 Theorem: 1In S(E, k, J&A, T, 0) let A be a group. Then
S(E, k,‘lﬁ A, 1, 0) is a O-bisimple inverse semigroup.

This is immediate from Theorems 3.3.4 (3) and ). It is
the special case of McAlister's result stated in Corollary 3.1.3.

If we now return to Theorems 3.7.1 and 3.7.3 and make the

additional modification that 4EAI = 1 we have the following result.

3.7.11 Theorem: Let E be an y-tree with zero and let G be a group
with identity 1. Fix k ¢ E* and let e » v, be a mapping of E* » G
with the property that v, = 1 for all e < k. Let g be an endomorphism

of G with ao denoting the identity automorphism on A. For each pair

(i,x) ¢ N x E* gefine w. = v al—l cee V.,
i,x b 4 x+i-1

1 (i=0).

(i 2 1)

Let S = (E*xGxE*)u{0} and define a multiplication on S

as follows:~- (m,a,n) (r,b,s) = (m+t, w-l aat -1

u
w w boa~ w ,s+u)
t,m t,n u,r u,s

’
where t = [n,nr] and u = [r,nr] if nr # 0; all other products are
zero. Then S is a O-bisimple inverse semigroup whose semilattice

is an w-tree with zero.

Conversely, if S is a O-bisimple inverse semigroup whose
semilattice is an w-tree with zero, then S has the form described
above.

Proof: Clearly S has the form described in Theorem 3.7.1 and so

ié of the form S(E, k,jﬁ;A, ®, 6) where E is an w-tree with zero and
A is a group. Thus by Theorem 3.7.1,S is a O-simple inverse semigroup.
Also, by Theorem 3.3.4 and (3.4.2) the semilattice of S is an w-

tree with zero and, applying Theorem 3.3.4, (h)

is O-bisimple.
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Conversely, if S is a O-bisimple inverse semigroup whose
semilattice is an w-tree with zero, ES can be considered as
having a factorisation E; X'{l} which is compatible with the
f}istructure of S. Thus by Theorem 3.7.3 the result follows.

This result was stated by McAlister in [5, Theorem 6.1].
3.7.12 This modification brings us to a result stated in Theorem
2.6.15 and spotlights the overlap of the situations described in

Chapter 2 and Chapter 3. The results deduced from Theorem 2.6.15

follow automatically from Theorem 3.7.11.
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APPENDIX

Revised version of the proof of Theorem 2.6.2(ii) an8 of 2.6.3.
2.6.2 Theorems
Proofs (ii) From Theorem 2.5.3, S is of the form S(E,T,k,G 5 ¥- ,e,vf)
Since S splits OVer.H there exists a set of representatives A of
the #-classes of S which forms a subsemigroup of S. Assume that
A= {r(f,g) s £,8 ¢ E*}; where, in the notation of(2.5.2),
(Bp(f,g))# = (f,8). Then r(f,g)r(p,a) = r((f,g)(p,q)).....2.6.2(a)
This follows as the set of representatives is a subsemigroup of S
and (Hr(f,g)r(p,q))¢ = (f,e)(p,q). Also r(f,g)(r(f,g)YJ =f and
(r(£,8) ' r(£,8) = & veveeneeeeaa26.2(b).

It is also immediate that (r(f,g)fJ = r(g,f) trieeesscss2.6.2(c).
This follows as r(f,g)r(g,f)r(f,g)= r((f,g)(g,f)(f,g)), by
2.6.2(a), i.e. r(f,g)r(g,f)r(f,g) r(f,g).

For all f ¢ E let uf = r(e+i,f) where £ = i. We now show

that these elements u, satisfy conditions (a),(b),(c) and (&) of
Theorem 2.5.3.

*
(a) Let i ¢ N with Og ig k-1 and let £ ¢ E with £ = i. Then

= r(e+i,e+i)r(e+i,f) = r(e+i,f) by 2.6.2(a) and so

Uosilly

Uiy = Ug and Ugyi = e+i. -

() Let ne Nwithnj 1. Then ul, = (r(e,e+k))™ = r((e,e+x)™)=
r(e,e+nk) = U ket

(¢) Let myne Nwithn 31 and Osms k-1. Thenu,,. . . =

r(e+m,e+mink) = r((es4m,e+m)(e,e4nk)) = r(e+m,e+n)r(e,esnk)

(e-m)ue_"k ,

-l
(4) Let f,g ¢ E with £ =g =1i. Then upu,= (r(e+i,f))r(e+i,g) =

r(f,e+i)r(e+i,g) by 2.6.2(c). Thus u;ug = r((f,e+i) (e+i,g)) =
r(f,g).



With the notation of Theorem 2.5.2 we now examine the
definition of nt,f' We have mt,fuf+t = Ugpietdf where £ = i.
Let p = f#& then we have m, fr(e+p,f+t) = r(e+p,e+i+t)r(e+i,f) =

y
r((e+p,e+i+t) (e+i,f)) by 2.6.2(a). Thus my fr(e+p,f+t) =
]
r(e+p,f+t). Hence my ¢ = e+D, the identity of the group Gi+t'

»*
From this we see that for all f ¢ B , Ve =M o is the identity of
9

the groun G:fl'

2.6.3 PFrom the 2bove theorem we have & necessary and sufficient
condition for a O-simple inverse semigroup whose semilattice is

an W -tree with zero to split over JH s namely that it be isomorphic
to a semigroup of the form S(E,T,k,Gi,Xi,e,vf) where, for all f ¢ E*,
Ve is the identity of the group Gf+1. However a sufficient condition
forﬁhis t0 occur is that there eizsts a set of representatives uf

of certain ~$‘-classes of S satisfying conditions (a),(b),(c) ana

(a) of the proof of Theorem 2.5.3 and such that, for all fe E*

and all t+ ¢ N, u Up 49 where T = i.

e+itt?e T



