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Introduction

The structure of O-bisimple and bisimple inverse semigroups 

has been extensively studied and established by Clifford, Reilly,

Warne, Munn and McAlister. The initial work was done by Clifford in

[0] on bisimple inverse semigroups with an identity and this was 

generalised by Reilly and Clifford in [13]. In [5] McAlister has 

produced a structure theorem for O-bisimple inverse semigroups in 

terms of groups and semilattices which can be specialised to give 

most of the previously known results in this area. These include 

the result of Munn described in [10] and the result of Reilly in [12], 

which deals with bisimple inverse semigroups whose semilattices are 

order isomorphic to the non negative integers with the reverse of the 

natural ordering, i.e. semilattices which are w-chains. Warne has 

made a study of those bisimple inverse semigroups whose semilattices 

are order isomorphic to the integers with the reverse of the natural 

ordering and has obtained in [14] a structure for these which ties 

closely with [12].

To date, the corresponding work on 0-simple and simple inverse

semigroups is more scanty, although specific types of simple inverse

semigroups have been tackled. Munn in [7] has produced a structure

theorem for simple inverse semigroups, whose semilattices are w-chains,

which is formulated in terms of groups and homomorphisms. An

equivalent form of this result was obtained independently by Kochin

in [2]. The result of Munn described above was generalised by 
OilvA iotj Ptlfvciv AvaH- Ob'] ,

Lallement, in [3]^ to the case of 0-simple inverse semigroups whose

semilattices are 0-direct unions of w-chains with zero. In [11]

Munn presents a structure theorem for a simple inverse semigroup S



with a semilattice E of the following type: there exists a semilattice

Y, with a greatest element, such that E = N x Y, where N denotes the 

non-negative integers; the ordering on E is given by 

(i,a) < (j,3) <=> (i = j and a < 3) or i > j
and, moreover, the factorisation of E is compatible with the J^-structure 

of S in the sense that

((ifOt) , (j,3)) e <=> a = 3 

It is shown that S is isomorphic to a semigroup of the form N x A x n , 

with a suitably defined multiplication, where A is a semilattice of 

groups with semilattice Y. This is a generalisation of the form 

N X G X N described by Reilly in [12]. If the case that Y is a finite 

chain is considered we have the result obtained by Munn in [7] and 

when Y consists of a single element we are in the situation of [12].

In this thesis an attempt is made to generalise firstly the 

results obtained in [3] and secondly those obtained in [11]. For the 

first of these we aim at establishing a structure theorem for a 0-simple 

inverse semigroup whose semilattice is such that every non zero 

principal ideal is an w-chain with zero, a type of semilattice described 

as an w-tree with zero. A construction is developed using as a model 

the construction used by Munn in [7] and employing results established 

in the text regarding 0-simple inverse semigroups, whose semilattices 

are w-trees with zero, which have no non trivial congruences contained 

in the Green's relation ^/, (the "fundamental" 0-simple inverse 

semigroups whose semilattices are w-trees with zero). The construction, 

involving an w-tree with zero and a finite set of groups and homomorphisms, 

is shown to produce a 0-simple inverse semigroup whose semilattice is 

an w-tree with zero and then, conversely, every 0-simple inverse semigroup 

whose semilattice is an w-tree with zero is shown to have the form of 

the constructed semigroup.



iii.

Two main routes of specialisation of this result are possible.

The first is to consider particular types of to-trees with zero and the 

second is to consider the O-bisimple inverse semigroups of this type. 

Starting with the semilattice, one of the first results obtained is 

one concerning semigroups of the same type as those considered by 

Lallement in [3]. Lallement's result and that in section 2.6 although 

differently formulated can be shown to be equivalent. A next step 

could be the consideration of a semilattice which is an m-chain with 

zero, a situation which is exactly that of [7] with a zero adjoined.

We can of course consider an co-tree, instead of an co-tree with zero, 

and from this obtain the structure of a simple inverse semigroup whose 

semilattice is an co-tree. A simplification of this is to consider a 

semilattice which is order isomorphic to the integers with the reverse 

of the natural ordering. If simultaneously we restrict the number of 

groups under consideration to one, we have the situation of Warne in [14]. 

This reduction of the number of groups to one is based on a result 

obtained in Chapter 2 which states that the number of groups involved 

and the number of non zero j^-classes of the semigroup are equal.

Clearly this leads us to consider O-bisimple inverse semigroups whose 

semilattices are m-trees with zero. From this we can obtain the 

structure of these exactly as in [5] and can deduce the result of [12].

The second type of semigroup considered is a 0-simple inverse 

semigroup S whose semilattice E is said to admit a factorisation 

compatible with the J^-structure of S. This is a development of the 

notion introduced by Munn in [11] and described above. We require that

E ̂ {o} - (FvCo)) x Y where F is a semilattice with zero and Y is a

semilattice with greatest element; the ordering on E is given by

0 < (x,a) for all x e F\{0}, a e Y

(x,a) < (y,3) <=> (x = y and a < 3) or x < y



and, moreover, this factorisation is compatible with the ^-structure 

of S in the sense that

((XfOi^y^)) e 5) <=> a = 3.
In Munn's formulation of the situation in [11] the semilattice F is 

an co-chain. In the course of Chapter 3 it is shown that if a 0-simple 

inverse semigroup is such that its semilattice admits a factorisation 

compatible with the $ “-structure of the semigroup then the semilattice 

F involved is O-uniform.

The approach to this second problem is to generalise a particular 

version of McAlister's construction of [5]. We restrict the semilattices 

used in his construction to those which have an associative addition and 

replace the group used by a semigroup with an identity element.

Conditions are established for the semigroup formed to be 0-simple and 

inverse. In the particular case that the semigroup with identity is a
$fi,rvwU,tb«X
union of groups it is found that the constructed semigroup is 0-simple

and inverse and its semilattice admits a factorisation compatible with

the structure of the semigroup. A converse result is obtained in

the case of a 0-simple inverse semigroup whose semilattice admits a
/\ is su<iv ttoct '-Auat- -kiMx '

factorisation compatible with the ^^structure of the semigroup and which ̂

has a non zero principal ideal whose group of order automorphisms is

trivial.

The special cases arising from this result are obtained by one of 

two methods: the first is to specialise the semilattice used in the

construction and the second is to specialise the semigroup with identity 

either to a finite chain of groups or to one group. The first 

specialisation is that of the semilattice to an co-tree with zero. If 

at this point the semigroup with identity is replaced by a group we 

have a O-bisimple inverse semigroup whose semilattice is an co-tree with 

zero which is described in [5] and which also arose as a special case of



the theorems of Chapter 2. Taking the semilattice to be an w-chain 

with zero gives rise to exactly the situation of [11] with a zero 

adjoined. If now the semigroup is taken to be a finite chain of 

groups we obtain the result of [7] and [2]. If lastly this finite 

chain of groups is shrunk to one group we have, again, the result



1. Preliminaries

The notation and basic definitions are as in Clifford and 

Preston [1]. Throughout N will be used to denote the set 

{0,1,2. • •} •

1.1 An inverse semigroup and its semilattice

1.1.1 Let S be a set and x a binary operation on S. Then (S,x) 

is a semigroup if, for all a,b,c e S, (a x b) x c  = a x  (b x c) ,

i.e. x is an associative binary operation on S. Usually the x is 

omitted and ab written for a x b and we refer to the semigroup S 

rather than to (S,x) when there is no ambiguity.

1.1.2 Let S be a semigroup and let T be a subset of S. Then T is 

said to be a subsemigroup of S if, for all a,b £ T, ab e T.

We now introduce two very common types of semigroup 

following as in (1.1.1) and (1.1.2) the definitions in [1].

1.1.3 A semigroup S is said to be regular if, for each element 

a £ S there exists an element x e S such that a = axa . Those 

elements x e S such that a = axa and x = xax are called inverses 

of a. From [1, Lemma 1J4] we have that if S is regular then each 

element has at least one inverse. For if a e S and x e S and is 

such that a = axa then we consider xax. We have a(xax)a = (axa)xa = 

axa = a and (xax)a(xax) = x(axa)xax = x(axa)x = xax. Hence xax is 

an inverse of a.

This leads us to the next definition.

1.1.4 A semigroup S is said to be inverse if it is regular and each 

element has exactly one inverse. By [1, Theorem 1.17] an inverse 

semigroup can also be characterised as a regular semigroup in which 

any two idempotents commute. If S is an inverse semigroup and



2.

a e S, it is customary to denote by a  ̂ the unique inverse of a.

1.1.5 Turning now to the set of idempotents of a semigroup, we 

denote by the set of idempotents of the semigroup S. A 

partial ordering can be defined on E by the rule that e < fO
<=> e = ef = fe.

1.1.6 A commutative semigroup of idempotents is called a

semilattice. In a semilattice any pair of elements has a greatest

lower bound with respect to the ordering defined above, the greatest

lower bound of two elements being their product.

1.1.7 Returning to the case where S is an inverse semigroup we 

can readily show that E is a semilattice. If e,f e E thenb b

ef = fe from (1.1.4) and so (ef)(ef) = e(fe)f = e(ef)f = ef so 

that E is a subsemigroup of S. Clearly E is commutative and soo O
E is a semilattice.b

1.1.8 A particular type of semilattice which will occur frequently

in the following sections is an co-chain. An co-chain is a semilattice

of the form {e.:i e N, with e. > e. <=> i < j}.l 1 3

1.2 The Green's relations on a semigroup

1.2.1 Let S be a semigroup. We adopt the convention of [1,

Section 1.1] that S1 = S if S has an identity element and that S1 

= S with an identity adjoined otherwise.

1.2.2 The equivalence relations and ^  are defined on S

as follows:-

(a,b) A II V S l a S:b

(a,b) £ 1  <=> aS1 bS1

(a,b) AIIVVLl S1aS1 = S1bS



Clearly if a * b then (a,b) e if and only if there exist

c,d e S such that ca = b and a = db. A similar result holds for

1.2.3 We denote by L (R fJ ) the t Q ") class of S
ci d  d  ^  (j

containing a.

1.2.4 In [1, Lemma 2.1] it is shown that ^and ^  commute and 

their product is defined to be &  . Clearly (a,b) e <Q if and 

only if there exists c e S such that (a,c) e (j^_ and (c,b) e 

(or alternately (a,c) e and (c,b) e ) . The ^-class of S 

containing a is written D^.

1.2.5 Finally the equivalence relation on S is defined to be

Thus (a,b) e -$ 4 if and only if (a,b) and

(a,b) e $  . We denote the^-class of S containing a by H .a
These equivalence relations are known as the Green's 

relations , and are defined as in [1, Section 2.1].

1.2.6 In the case that S is an inverse semigroup we note that 

a e Sa and so S*a = Sa. Similarly aS1 = aS and S^-aS1 = SaS.

This is proved in [1, Lemma 2.13]

1.2.7 Also, if S is inverse, we have from [1, Theorem 1.17] that 

each t^-class and each <^j-class of S contain exactly one idempotent.

1.2.8 If we wish to emphasise the semigroup S on which the 

Green's relations are being discussed we write, for example, c £ s *

We now use the terminology of the Green's relations to 

make further descriptions of a semigroup as in [1, Section 2.1].

1.2.9 A semigroup S with a zero is said to be O-bisimple if, for 

any pair a,b e S { o } ,  (a,b) e , i.e. there is one non zero

<$-class in S. A semigroup S without zero is said to be 

bisimple if it consists of a single <£^-class.



4.
2.5 ^ 0

1.2.10 A semigroup S witli a zero is said to be O^simple if/\ for

any pair a,b e SN{o}, (a,b) e^  , i.e. there is one non zero

^  -class in S. Also a semigroup S without zero is said to be

simple if it consists of a single ̂  -class.

1.2.11 In [1, Section 1.7] the maximal subgroups of a semigroup S 

are defined to be those subgroups of S which are not properly 

contained in any other subgroup of S. From [1, Theorem 2.16]

we have that if S is a semigroup then any -class of S containing 

an idempotent is a subgroup of S and indeed from [1, Section 2.3] the 

maximal subgroups of S are precisely the -classes of S containing 

idempotents.

1.2.12 If S is an inverse semigroup which is a union of groups then by

[1, Section 4.2] S is a semilattice Y of groups where Y is isomorphic

to and, if a e S, H = L  = R  = D  = J .  Thus we have that if S a a a a a
S is an inverse semigroup which is a union of groups and if a e S 

then aa  ̂= a ^a by (1.2̂ 7) above. Conversely if S is an inverse 

semigroup in which aa ^ = a ^a for all a e S then, as (a,aa "S e (̂ L- 

and (a,a ^a) e , we have (a,aa "S e • Hence a belongs to a

maximal subgroup and we have that S is a union of maximal subgroups, i.e. 

a union of groups)and so is a semilattice of groups.

1.2.13 A semigroup with an identity element is called a monoid.

1.2.14 A centric inverse monoid is an inverse monoid which is a 

semilattice of groups.

1.3 Semigroup and semilattice related

In this section we introduce some special types of semigroup and 

semilattice and show the relations between them.

1.3.1 It is established in [6, Section 3] that, if S is an inverse 

semigroup, the maximum congruence contained in ^ i s  y, where y is
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defined as follows:- (a,b) e y <=> a ^ea = b ^eb for all e e E .s
In the special case that is a congruence $ =  y.

1.3.2 According to [9, Section 2] if S is a semigroup in which the only 

congruence contained in is the identity congruence i, then S is said

to be fundamental. An inverse semigroup is fundamental if and only if y= i.

We now construct a fundamental inverse semigroup.

1.3.3 As in [1, Section 1.9] we define a one-to-one partial 

transformation on a set X to be a bijection with domain and range both 

subsets of X. The null mapping is also considered to be a partial 

transformation on X^being the mapping whose domain and range are both

the empty set. If a is a partial transformation on X it is customary to denote
0 rva, - to — OVnA

by A(a) the domain of a,and by V(a) the range of a. The set of all^partial

transformations on a set X is denoted by . A multiplication is definedX
on as follows:- if a 6 e ̂ v with V (a) n A($) = <J> then a3 = 0,X ' X
otherwise A(a3) =(V(a) n A (3)) oi ^ , V(a3) = (V(a)ft A (3)) 3 and if 

x e A (a3) , then x(a3) = (xa)3.

It is shown in [1, Section 1.9] that is an inverse semigroup.X

1.3.4 Let E be a semilattice then T is defined in [6, Section 2] to beE
the subset of vJ? comprising those partial transformations of E which have E
domain and range which are principal ideals of E. From [6, Lemma 2.2], TE
is an inverse subsemigroup of and by [9/ Corollary 2.7] isE
fundamental. As T is inverse we can apply [9, Lemma 1.2] to describe the E
Green's relations in T . We thus have that, in T , (a,3) € <=> V (a) =E E
V (3) and (a,3) £<£_<=> A (a) = A(3) -

Next we foliow the pattern of [9, Section 3] in making two

definitions which relate E and T .E
1.3.5 If E is a semilattice with zero we shall denote by E* the set 

E \{0}.



1.3.6 Let E be a semilattice with zero. An inverse subsemigroup S 

°f is said to be 0—transitive if and only if it contains the zero 

of T , i.e. the mapping with domain and range {0}, and also, for all 

e,f e E*, there exists a e S such that A(a) = Ee and V(a) = Ef.

Let E be a semilattice without zero. Then the above definition 

is modified as follows. An inverse subsemigroup S of is said to be 

transitive if and only if, for all e,f e E, there exists a e S such 

that A(a) = Ee and V(a) = Ef.

1.3.7 Let E be a semilattice with zero ’then E is said to be O-uniform 

if and only if, for all e,f € E*, Ee * Ef. If E is a semilattice 

without £ero then E is said to be uniform if and only if, for all

e,f e E, Ee = Ef.

1.3.8 If we now examine these two definitions more closely we see that

T is O-transitive (transitive) if and only if it contains a O-transitiveE
(transitive) inverse subsemigroup. Also E is O-uniform (uniform) if and

only if T is O-transitive (transitive).E
Next we obtain the structure of T for a particular type ofE

uniform semilattice E.

1.3.9 A partially ordered set P is said to be inversely well-ordered if 

every non-empty subset of P has a greatest element. This definition is 

given in [6, Section 3] .

1.3.10 Let E be a uniform semilattice in which every principal ideal is 

inversely well-ordered. Clearly, as E is uniform, we have from

[6, Theorem 2.3] that E is the semilattice of a bisimple semigroup. Let

S denote this semigroup. We are now in the situation of [6, Theorem 3.2]

and have that is a congruence on S and = T . Hence = i on TE E
and so we can specify T completely. If e,f e E, by the uniformity of EE
and the ensuing transitivity of T , there exists a e T such thatE E



A(a) = Ee and V(a) = Ef. This element a is unique, as i, by

(1.3.4). Thus if we denote by £ _ the unique element of T withe,f E
domain Ee and range Ef we have T = { £  ^:e,f e E }. AlsoE e,f
a(?c r  h> = (Ef n E9> C 1* = <Ef9> C 1, = E(f9 bye,r g,n e,r e,f e,f
[6,Lemma 2.1] and V(£ _ E, , ) = E(fg £ . ) , similarly. Thuse,f g,h q/h

^e,f ^g,h “ ^fgC1 ,fg Ee,f g,h

1.3.11 It is easily seen that if E is a O-uniform semilattice in which

every principal ideal is inversely well-ordered then the result of

(1.3.10) can be extended to include this situation. We would then have

T = {£ _:e,fe E*} u {o}  with the non zero products in T being E e,f E
Z - Z , =  Z<- >--1 ^  ̂ where fg * 0. It is possible to regarde,f g,h *fg£ 1 ,fg£ .

e,f 9,h

T£ as (E*xE*)u{0) wrth multiplication defined on (E*xE*)u{0} as follows:- 

(e,f)0 = 0(e,f) = 02 = 0 

(e,f) (g,h) = \  0 if fg = 0

(^((fg) (fg) 5 h) if fg * 0.

Finally in this section we include another two definitions relating

E and T as in [9, Section 3].E

1.3.12 Let E be a semilattice with zero. An inverse subsemigroup S

of T is said to be O-subtransitive if and only if S contains the zeroE
of T and also, for all e,f e E*, there exists a e S such that E
A(a) = Ee and V(a) c Ef. If E is a semilattice without zero the

definition is modified as follows. An inverse subsemigroup S of T E
is said to be subtransitive if and only if, for all e,f e E, there 

exists a e S such that A(a) = Ee and V(a) £  Ef.



1.3.13 A semilattice E with zero is said to be O-subuniform if and 

only if, for all e,f € E*, there exists g < f such that Ee = Eg. If 

E is a semilattice without zero then E is said to be subuniform if 

and only if , for all e,f e E, there exists g < f such that Ee *= Eg.

1.3.14 We note that T is O-subtransitive (subtransitive) if and onlyE
if i*t contains a O-subtransitive (subtransitive) inverse subsemigroup.

Also E is O-subuniform (subuniform) if and only if T is 0-E
subtransitive (subtransitive).



2. A 0-simple inverse semigroup whose semilattice is an w-tree

with zero

In this chapter we show how to construct a 0-simple inverse 

semigroup whose semilattice is an w-tree with zero from a finite set 

of groups and homomorphisms and an w-tree with zero. Then we show 

that all 0-simple inverse semigroups with semilattice an w-tree 

with zero are of this type.

2.1 An w-tree with zero

2.1.1 A semilattice with zero in which every non zero principal ideal is
Witkan w-chain^is called an w-tree with zero.

2.1.2 Let E be an w-tree with zero. If e,f e E* with e £ f we 

define [e,f] = |{x e E*: e > x > f} I - 1. Since {x e E*: x «  e} is 

an w-chain, this is a well-defined non-negative integer. For each 

t e N and e e E* there exists a unique element f e E* such that

f % e and [e,f] = tt we denote this element by e + t.

2.1.3 Define a relation ~ on E* by a ~ b <=> ab * 0. This relation

is an equivalence relation. The equivalence classes of E* generated by 

~ are called the components of E*. Thus a ~ b <=> a and b belong

to the same component of E*.

2.1.4 Select a tranversal T of the components of E*. For each

a e E* let e denote the element of T in the same component as a.a
Let k € N, with k > 1. For each element a e E* we define the

k-index of a, relative to T, to be the non remainder when

[e rae ] - [a,ae ] is divided by k. a a a



2.2 The semigroup S (E, T, k)

This section is an account of an unpublished result of 

W. D. Munn.

2.2.1 Let E be an w-tree with zero and let T be a transversal

of the components of E*. Fix k e N, with k > 1, and for all

a e E* let a denote the k-index of a, relative to T. Let 

S (E, T, k) = {(a,b) £ E* x E*: a = b} u {(0,0)}. Define

multiplication on S (E, T, k) as follows:-

(a,b)(c,d) = (a + t, d + s) where t = [b,bc] and

s = [c,bc] if be *  0, 

all other products are (0,0) .

2.2.2 We note that in the case that E is an w-tree with zero

then E is a O-uniform semilattice in which every principal ideal

is inversely well-ordered. Hence we can apply (1.3.11) and have

T = { (e,f) e E* x e * } u {0} , with (e,f) (g,h) = (fg£ 1 ,fg £ )E e,f g,h
if fg * 0 and all other products are zero. However fg£~^ = e + ne, r
where n = [f,fg] and fg£ = h + m where m = [g,fg]. From this weg,h
that S (E , T, k) S T  and that the multiplication defined onE
S (E, T, k) is that of T .E

2.2.3 Theorem: The set S (E, T, k) with the multiplication defined

above is a O-subtransitive inverse subsemigroup of T .E

Proof; Let (a,b), (c,d) £ S (E, T, k)\ { ( 0 , 0 ) } . I f  be = 0 then 

(a,b)(c,d) = (0,0) £ S(E, T, k). Suppose therefore that be * 0

and consider (a,b)(c,d) = ( a + t, d +s) where t = [b,bc] and

S = [c,bc]. To show that (a + t, d + s) e S (E, T, k) we have to

prove that a + t = d + s. To simplify this we insert the following

lemma.



2.2.4 Lemma: If a e E* and p e N, then a + p = â  + p (mod k).

Proof: Since a(a + p) # 0 we have e = e . Also------  a a + p
[e ,(a + p)e 1 - [a + p, (a + p)e ] = [e , ae ] + [ae ,(a + p)e ]-a a a a a a a
([a,ae ] + [ae , (a + p)e ] - [a,a + p]) = [e ,ae ] - [a,ae ] + a a a a a a
[a,a + p] = [e ,ae] - [a,ae ] + p. Hence a + p = a + p (mod k). a a a  —  —

Returning to the theorem, we have from Lemma 2.2.4 that

a + t = a_ + t (mod k) . However = b and so a + t = b + t (mod k)

Applying Lemma 2.2.4 again we have b + t = b + t (mod k) and so

a + t = b + t. Similarly we have d + s = c + s. However b + t =

c + s = be so that a + t = d + s. Thus the multiplication on

S (E, T, k) is closed and so S (E, T, k) is a subsemigroup of T .E
It is an inverse subsemigroup of T since, if (a,b) e S (E, T, k),E
(a,b) ^ = (b,a) is also in S (E, T, k).

Let a,b e E* and let t = k - Id + a . Clearly t > 1 and so 

b + t < b. Also, by Lemma 2.2.4, we have b + t = b + t (mod k) and

b + t = k + a^=a^ (mod k) . Thus (a,b + t) e S (E, T, k) and so as

S (E, T, k) also contains the zero of T , S is O-subtransitive.E
The next theorem is the converse of Theorem 2.2.3.

2.2.5 Theorem: If S is a O-subtransitive inverse subsemigroup of

T , where E is an w-tree with zero.then there exists k e N, with E
k > 1, and T, a transversal of the components of E*, such that S 

is of the form S (E, T, k).

Proof: Since S is a O-subtransitive inverse subsemigroup of T£ we

have from (1.3.11) that S is a subset of (E* * E*) u {(0,0)} with 

multiplication as described in (1.3.11).

Fix e e E* and define k = min { n e N: n > 1 and (e,e + n) e 

The O-subtransitivity of S ensures the existence of such an integer 

Select a transversal of the components of E*. For all a e E* let
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Z be the element in the transversal such that a ~ Z . Since S is a a
O-subtransitive, for all a e E* there exists e e E* such thata
e < Z and (e,e ) € S. Let t = {e ;a e E*}. Then T is a a a a a
transversal of the components of E*.

Before proceding with the remainder of the proof of this 

theorem it is convenient to consider the following lemmas.

2.2.6 Lemma: For all p,q £ N, (e + p, e + q) e S if and only if 

p = q (mod k) .

Proof: We note firstly that by [9, Theorem 3.2 (ii)] S has a semi­

lattice isomorphic to E.

Since (e,e + k) e S, (e,e + k)n = (e,e + nk) e S for all 

n e N with n > 1. Also ( e + i ,  e + i)(e, e + k ) n =

( e + i ,  e + n k + i )  £ S, for all n e N with n > 1 and for all i e N 

with 0 < i < k. As 5 COnfMwi ■ fckt 5«rv\i/K*bcC o£ T  we also

have (e + i, e + i) e S for all i e N and so we have (e,e + nk) e S 

for all n e N and ( e + i ,  e + i + nk) e S for all n e N and for all 

i e N with 0 < i < k.

Let (e + p, e + q) £ S with p = nk + i and q = mk + j where

m,n,i,j £ N and 0 < i, j < k. Then (e + i, e + p) e S and

(e + j, e + q) £ S. Thus (e + i, e + p)(e + p, e + q)(e + j, e + q) 1 

£ S and so ( e + i ,  e + j )  e S. Assume that i > j. Then 

(e, e + k) (e + i, e + j) - (e, e + j + (k - i)) = (e, e + k -

(i - j)). However this is in S and 0 < k - (i - j) < k

contradicting the definition of k. Hence i $ j. Similarly we can

show i ^ j and so we have i = j and p = q (mod k).

Conversely let p,q e N with p p q (mod k). Let p = nk + i and

q = mk + i where m, n, i e N with 0 < i < k. Then (e + i, e + p) e S
-1and (e + i, e + q) £ S. So that ( e + i , e  + p) (e + i , e  + q) =

(e + p, e + q) £ S.



2.2.7 Lemma. For all a e E* and for all p,q £ N, (a + p, a + q) e S

if and only if p Eq (mod k).

Proof: For a £ E*, define k = min { n e N:n > 1 and (a, a + n) e S }___ 3.
with k^ = k. We then have, for all a e E*, a parallel result to 

Lemma 2.2.6, namely that (a + p, a + q) e S if and only if p = q 

(mod k ). Since S is O-subtransitive, for each a £ S there existsa

p e N with p > 1 such that (e, a + p) e s. Since (e, e + k) e S we

have (e, a + p) ^ (e, e + k) ^ = (a + p,e)(e + k,e) = (a + p + k,e)

e S. Hence we have (a + p,e)(e,a + p + k) = (a + p, a + p + k) 

e S. Thus, by the parallel result to Lemma 2.2.6, we have p = p + k

(mod k ) so that k Ik. Also there exists q e N, with q > 1, such thatcl cl

(a, e + q) £ S. Since (a, a + k ) e S we have (e + q, a)(a + k ,a) =a a
(e + q + k ,a) e S. Thus (e + q + k ,a)(a,e + q) = (e + q + k ,cl 3  d

e + q) £ S and from Lemma 2.2.6 we now have q + k = q (mod k) and sofe
k|k . Combining these two results we have k = k and the lemma is

cl d

proved.

Returning now to Theorem 2.2.5, let (a,b) e S\{(0,0)} . Since

ae * 0 there exist p,n 6 N such that a + p = e  +nk. By Lemma 2.2.4a ci

a + p E a + p (mod k) so that a_ + p = e& + nk (mod k). However

e + nk = e = 0  and so a E -p (mod k). Similarly there exist  —£
q,m e N such that b + q = e^ + mk and b = -q (mod k). We have, by

Lemma 2.2.7, that (e ,e + nk), (e, ,e, + mk) e S. By choicea a d d

(e,ea), (e,eb) £ S and so (e& + nk,e^)(ea #e)(e,eb)(eb ,eb + mk)£ S

so that (e + nk,e. + mk) = (a + p, b + q) £ S. Since (a,b) e S and a b
S is inverse, (b,a) £ S and we have (b,a)(a + p, b + q) £ S, i.e.

(b + p, b + q) £ S. Thus, by Lemma 2.2.7, p = q (mod k) and so

â  = Id . Hence we have S Q  S (E, T , k) .

Now suppose that (a,b) £ S(E, T, k) with a,b * 0. Then 

a = b. Since S is O-subtransitive there exist p,q £ N such that
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(a,e + p) e S and (b, e + q) e S. However, from above, S c s (E, T, k)

and so a = e + p and b_ = e + q . Thus e + p = e + q . From

Lemma 2.2.4 e + p E e_ + p (mod k) and e + q = e_ + q (mod k)

and so we have p = q (mod k). Hence, by Lemma 2.2.6, ( e + p ,  e + q )  £ S.

From this (a, e + p)(e + p, e + q)(e + q, b) = (a,b) e  S and we have

S (E, T, k) c S.

Combining the two inclusion results we have S = S(E, T, k).

2.3 The construction of the groupoid S(E, T, k, G^, y^, e, v^)_

In this section we describe a process for constructing a 

0-simple inverse semigroup from a finite set of groups and 

homomorphisms and an aj-tree with zero.

2.3.1 Let E be an oi-tree with zero and let T be a transversal of

the components of E*. Fix k € N, with k > 1, and for all a e E* let

be the k-index of a, relative to T.

2.3.2 Let G ,G,,..., G be k groups with identity elementsU X K—X
eO,el***'ek 1 resPectively* For 0 - - k"2 let Yi:Gi ^ Gi+l ^
a homomorphism and let G^ be a homomorphism. For all

n e N let G = G , . , . , y = y , , . . and e = e . .n n(mod k) n 'n(mod k) n n(mod k)

2.3.3 For m,t e N, with t > 1, let a - y y ...ym 1 and letm,t m m+l m+t—l
a be the identity automorphism on G ; Thus for m,t,s e N we have m,o m

a a = am,t itt+t,s m,s+t

and a . = a , . .m,t m+sk,t

2.3.4 Fix e e E*. For each f e E* define v- e G_^_ with v ,. thet t+l e+i
identity of G . , for all i e N. For all t e N, with t > 1, ande+i+1
f £ E* define mfc(f = (vf a£  + ljt.x) (vf+1 ... vf+t_1 and

define m _ to be the identity of G_. We note that m. e G_,. for o , f t, f f+t
all t e N, f £ E*.
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2.3.5 Let S = { (a,g. ,b) e E* x(^LĴ G.) x E* » a = b = i and g. e G. }i i=0 A i i
u {0}. Define a multiplication on S as followss-

(a,g ,b)(c,h.,d) = (a+t, nT1 (g A  )ija m"1 (h <^ )m .,d+s)i 3 t j ci lift t/b s f c ] ] ̂ s s f q

where t = [b,bc] and s = [c,bc], if be *  0J all other products

are zero.

2.3.6 We show that this multiplication is closed. Let (a,g^,b), 

(c,hj,d) e Sv {0}, If be = 0, then (a,g^,b)(c,tu,d) = 0 e S. We

suppose, therefore, that be # 0. Then

(a,g. ,b) (c,h . ,d) = (a+t,m 1 (g.a . .)m , m”1 (h a . J m  ,,d+s)x j x r ci l i f t  t f Id s f c j (s s f a

where t = [b,bc] and s = [c,bc]. Note that the outer elements in

each triple (a,g^,b)^ (c, h^,d) are in S(E, T, k) and, when multiplied,

behave exactly as there. Thus a+t = d +s. As a = b = i we have

nt / nt , e G .,  ̂and similarly m , m _ e G ., . However fromt,a t,b l+t s,c s,d j + s

Lemma 2.2.4 we have a+t = â  + t (mod k) and d+s E d_ + s(mod k)

so that a+t = d+s E i+t (mod k) E j+s (mod k) . Thus in ,m. , ,m ,11 ~~l t f 3 t f D S / C

m , e G Furthermore g.a. . e G.tJ_ and h.a. e G., so that thes,d a+t l i,t i+t j  j , s  j+ s

middle term of the product (a,g^,b)(c,hj,d) is a product of elements

of G and so is in G t . a+t a+t

2.3.7 We denote the groupoid described in (2.3.5) and (2.3.6) by

S(E, T, fc,G. y ,e,v ).1,1 r

2.4 S(E, T, k, Gi,Yi,e, vf)

In this section we show that the groupoid described above is 

a 0-simple inverse semigroup with semilattice isomorphic to E and 

we examine the Green's relations on the semigroup.

2.4.1 Theorem: S = S(E, T, k, G^, ©* vf) is a semigroup.

Proof: Having shown in (2.3.6) that the multiplication is closed

we are left to consider the associativity. Let (a, g^, b),
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(c,h_. ,d) , (f, ln#g) e S\{0}.

(a) If be = 0 and df = 0, then [(a,g^,b)(c,hj,d)](f,ln ,g) =

0 (f,l ,g) = 0  and n
(a,g.,b)[(c,h.,d)(f,1 ,g)] = (a,g.,b) 0 = 0  l 3 n l

(b) If be = 0 and df * 0, then [(a, g^,b)(c,hj,d)](f,ln ,g) =

0(f,ln ,g) = 0.

On the other hand (a,gifb) [ (c,h.. ,d) (f ,ln ,g) ] = (a^^b) (c+t,x,g+s)

where t = [d,df] ,s = [f,df] , and x is the appropriate middle term

However b(c+t) = bc(c+t) = 0 and so (a,gifb)(c+t,x,g+s) = 0.

(c) If be * 0 and df = 0 we can show in a similar manner to (b) 

that [ (a,g^,b) (c,hj ,d) ] (f ,ln,g) = (a/g^b) [ (c,hj ,d) (f ,ln,g) ] = 0.

.(d) The last case to consider is that with be * 0 and df * 0.

We examine first the product [(a,g^,b)(c,hj,d)] (f,ln ,g) =

(a+tfnT1 (g.a. J  m. , m"1 (h.a. ) m ,d+s)(f,l ,g) wheret,a i,t t,b s,c 3 s,d n
t = [b,bc] and s = [c,bc],

= (a+t,xp ,d+s)(f,ln,g), say, where p = a+t,

=((a+t)+u, m”1 (x a ) m m (1 a ) m ,g+w) where; ' u,a+t P P/U u,d+s w,f n n,w' w,g'^
u =£d+s, f(d+s)] and w = [f, (d+s)f].

We now investigate x a . W e  have, as a is a homomorphism,* P PrU P,u
X a = (in a ) ” 1 (g. a. , a ) (m , a ) (m a ) 1 x p PfU tfQ. PfU i i*t P*u t,b p/U S/C P/U
(h.a. a ) (m , a ) .3 DrS p,u s,d p,u
The following lemma simplifies this term considerably.

2.4.2 Lemma: If a e E* and t , s  e N then a r s * ms+t,ams^a+t

where r = a+t.
Proof: By Lemma 2.2.4 we have a+t = a+t (mod k). Thus from (2.3.3)
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mt,a ar,s ” 1(Va aa+l,t-lJ ̂ Va+1 aa+2,t-2)* *‘(va+t-l* ] aa+t,s

(Va &a+l,t-l aa+t,s^ ̂ Va+1 aa+2,t-2 “a + t ^  “  * (va+t-laa+t,s) 

(Va aa+l,s+t-1* (va+l aa+2,s+t-2J * * *(Va+t-l aa+t,s5 ‘

Hence we have

m̂t,a “r ^^Sra+t V̂a aa+l,s+t-l^Va+l aa+2,s+t-2) ... (v a j. )Xa+t—1 a+t;s

(Va+t aa+t+lys-l^ (va+t+l 0ta+t+2,s-2) *“ Va+t+s-l*

(Va aa+l,s+t-l)(Va+l aa+2,s+t-2)* * * *

(Va+t-l aa+t,s)(Va+t aa+t+l,s-l) X

(va+t+l aa+t+2,s-2) Va+t+s-l aS' by 

Lemma 2.2.4^ a+t = a+t (mod k).

Thus (ML a )m . ̂  = m . From this we have t,a r,s s,a+t s+t,a
(m^ a )m .. m 1 = m m 1 . However m e Gt,a r,s s#a+t s#a+t s+t,a s,a+t s,a+t a+t+s
and in a £ G , .. . . a  s -1t,a r,s a+t+s so that (ni )m ,.m  ̂= ni a—  t,a r,s s,a+t s,a+t t,a r,s

Applying this lemmafour times we can simplify

(1) rn a = m . , m  1t,a p,u t+u,a u,a+t

(2) We have p = a+t = a+t (mod k) E b+t (mod k) e b+t (mod k) by

Lemma 2.2.4. Thus iri , a = m - m 1 = m. m 1, .t,b p,u t+u,b u,b+t t+u,b u,bc
(3) We have p = a+t = d+s E d+s (mod k) E c+s (mod k) e c+s (mod k)

by Lemma 2.2.4. Thus m a = m , m 1 , = m , m 1.
J s,c p,u s+u,c u,c+s s+u,c u,bc

(4) m , a = m , m , .s,d p,u s+u,d u,d+s
We note further that ai(t ap>u = aift “i+t,u = ai,t+u 

since p = a+t e a+t (mod k) by Lemma 2.2.4 and using (2.3.3). Also,

by a similar argument, aj s  ap u  = aj<s aj+S(U =
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Combining all these results we have

Xp°p,u mu,a+t mt+u,a ^i ai,t+u^mt+u,b mu,bcmu,bc ms+u,c ^ 

ajfS+u^ ms+u,d mu,d+s ,

The middle term of the product [(a^^b) (c,hj,d)] (f,ln ,g) is thus

(g. a. ) m. j (h.a. , ) m ,  . m * (1 a )mt+u,a 1 i,t+u t+u,b s+u,c 3 jfS+u s+u,d w,f n n,w w,g

If we now examine the product (a,g^,b)[(c,hj,d)(f,ln,g)] 

we find by similar arguments that it is

(a+y' V a (giai,y)my,b V r , c (Y j , 2+r)mz+r,d C 2,f(V n , x +2> A 

mx+2,g'(g+x,+z)
where r = [d,df], x = [f,df], y = [b,b(c+r)] and z = [c+r,b(c+r) ] .

As we have earlier noted, the outer components of each term 

of S(E, T, k, G^, y e, vf) are in S(E, T, k) and, under 

multiplication, behave exactly as there. Since multiplication is 

associative in S(E, T, k) we thus have a + t + u = a+y and g+w = 

g+x+z so that t+u = y and w = x+z. To complete the proof that the 

middle components of the two products are equal we need now only 

show that s+u = z+r. We note that z+r = [c+r, b(c+r)] + [c,c+r] = 

[c, b(c+r)] = [c,bc] + [be, b(c+r)] = s + [b, b(c+r)] - [b,bc] = 

s + y-t = s + (t+u)-t = s+u.

2.4.3 Lemma In S = S(E, T, k, e, vf) the element (a,gifb)

is an idempotent if and only if a =b and g^ = e^.

Proof: Let (a,girb) e S and be an idempotent. Then (a^g^b) =

(a,gifb)(a,g^,b). Since (a,gi,b) * 0 we must have ab *  0 and so

(a,g. ,b) = (a+t, r t ^ g .  a. ̂ ) mt b mg^.b+s) where

t = [b,ab] and s = [a,ab]. However a = a+t and b = b+s so that

s = t = 0 and we have b = ab = a. Also (a,g^,b) = (a,g^g^,b) so 
2that gi = gi and gi = ei.



19.

Conversely let (a^^a) e S» Then (a,e±,a)(a,e±,a) =

(a,e^,a) = (a,eifa) .

2.4.4 Theorem; The semigroup S = S(E, T, k, G^f y^, e, vf) is 

a 0-simple inverse semigroup.

Proof: Let (a,gifb) e S\ {0} and consider (a,gifb)(b,g*,a)(a,gifb) =

(a,e^,a)(a,g^,b) = (a,g^,b). Thus S is regular. To complete the 

proof that S is inverse we need only by (1.1.4) check that the 

idempotents in S commute. Let (a,e^,a) and (c,ej,c) be two 

idempotents in S. Then (are^ra)(c,e^,c) = 0 = (c,ej,c)(a,e^,a) if 

ac = 0. If ac * 0, (a,e. ,a) (c,e. ,c) = (a+t,m * (e.a. in m  ̂ XX 3 t j cl X 1 /1 H S f c
(e.a. ) m ,c+s) where t = [a,ac] and s = [c,ac]. We have

3 3 t s s,c
e.a. . = e.  ̂and e.a. = e., . However i+t = a+t e a+t (mod k) , by i i,t i+t 3 3 , s  j+s —   J

Lemma 2.2.4, and j+s = £+s E c+s (mod k) so that i+t E j+s (mod k) and

so e.a. = e.a. . Thus (a,e. ,a) (c,e. ,c) = (ac,e.,̂ ,ac). We can 1 1 ,t DD/S l 3 i+t
show similarly that (c,ej,c)(a,e^,a) = (ca,e^+t,ca) = (ac,e^+t,ac).

Let (a,gifb) , (c,h..,d) e S M O }  . Then (a,b) , (c,d) e S(E, T, k)

which is, by Theorem 2.2.3, a O-subtransitive inverse subsemigroup

of T . Since E is an a)-tree with zero it is 0-subuniform and so we E
can apply [9, Theorem 3.2 (ii)] and we have that S(E, T, k) is 0-simple.

Thus there exist (w,x), (y,z) e S(E, T, k) such that (a,b) = (w,x)(c,d)X

(y,z). Also (w,e ,x)(c,h.,d)(y,e ,z) =(a,p.,b), say, where p. is the w 3 i i
appropriate middle tern. Hence (a,g^,b) = (w,e^,x) (c,h_. ,d) (y,ez,z) X  

(b,p^g^,b) and so we have S is 0-simple.

£n the following theorem we examine in detail the semigroup 

S(E, T, k, G^jY^,e,v_p) .
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2.4.5 Theorem: In S = S(E, T f k f G , e,vf)

1. E ~ Es =

2. ((a,g^,b) , (c,hj ,d)) e£<=> a = c

((a,gi,b)>(c,hj/d)) e £ <=> b = d

((a,g^,b),(c,hj,d)) a = c and b = d

((a,g^,b) , (c,hj ,d)) e B < - >  i = j

3. il is a congruence on S
•fco u v Hu*'. iS Ow\^rpU^Vwv^

4. The maximal subgroups of S a r ^ G ^ G - ^ G ^  ...

5. There are exactly k non zero ^-classes in S.

Proof: 1. From Lemma 2.4.3 we have Eg = { (a,e^,a) e S v{o|u {0}.

Define a mapping 4>:E -+ E as follows:-b
0(|> = 0 and a<f> = (a,e ,a).cl

Clearly <j> is a bijection. If a,b z E* with ab = 0 then (ab) <J> = 0 and

(a4>) (b<j>) = 0. If a,b z E* with ab * 0 then (a<J>) (b<J>) = (a,ea,a) (b,eb ,b) =

(ab,e ,ab) where t = [a,ab], from the proof of Theorem 2.4.4. Thus a+t
(a<j>) (txf)) = (ab)(j> and we have <j> is a homomorphism and hence an 

isomorphism.

2. Let (ajg^bycfhjjd) e S with ((a^g^b) , (c,h. ,d)) e .

We have ((a,g±,b),(a,g^b)(afgi,b)"1) e , i.e. ((a,g±,b),{a,e±,a)) £  (£L 

Similarly ((c,h_.,d),(c,e_.,c))e £. Thus ((a,e±,a),(c,e_.,c))e &  .

However from (1.2.7) we now have (a,e^fa) = (c,ej,c) so that a = c.

Conversely let ( a , q ± , b ) ,(a,hi,d) e S. Then, as above,

((a,gifb),(a,ei,a)) e <£ and ((a,hifd),(a,eifa)) e(^- so that 

((a,gifb),(a,hifd)) e £  .



The result for follows similarly and the result for ^  

can then be readily deduced.

Let (a,gifb),(c,hj,d) e S with ((a,gi#b),(c,h..,d)) e S  .

Then there exists (f,lt,g) e S such that ((a,g^,b),(f,1 ,g)) e 

and ((f,lt,g),(c,hj,d)) e . From the above results we have

a = f and g = d. Hence a_ = f_ and _̂ = d_. However f_ = g_ and so

we have ^  = d , i.e. i = j .

Conversely let (a,g^,b) , (c,h^,d) e S. From the results on 

and $  above we have ((a,gi,b) , (a,eifd)) e (fL and ((a,eifd) (c,hifd)) e 

so that ((a,g^,b) , (c,lu,d)) e &  .

3. This result can be checked easily.

4. From (1.2.11) we have that the maximal subgroups of S are

the -class«$jof S containing idempotents. From result 2 above,I
H, x = {(a,g.,a):g. c G. } ~ G. and so the maximal subgroups of(a,e^,a) i i i —  i

5 are isomorphic to the groups Go'Gif* * *

5. For i = 0,1,2,...,k-l let { (a,g^,b):a^ = b = i and

^i € Gi From 2 above, for any i e N, where 0 ^ i < k-1,

any two elements in Di are ̂ -equivalent. Further if (a,gifb),(p,xr ,q) e 

and ((a,g±,b),(p,xr ,q)) e &  then £  = £  = r = i and (p,xr ,q) e D±.

Thus the non zero 2) -classes of S are precisely the sets Dg,D^,...,D 

and so there are exactly k non zero & -classes of S.

2.4.6 Corollary: In S(E, T, k) there are exactly k non zero

6  -classes.

Proof: It is sufficient to say that S(E, T, k) = S(E, T, k, G ^ y  ,

e, v^) where, for 0 < ± < k-1, G^ = {e^} .

2.5 A 0-simple inverse semigroup whose semilattice is an cj-tree with

zero.
We have shown in section 2.4 that the construction
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S(E, T, k, G^, y ^ , e, v^) gives rise to a 0-simple inverse semigroup 

whose semilattice is an co-tree with zero. In this section we prove 

that, in fact, every 0-simple inverse semigroup whose semilattice is 

an co-tree with zero is of the form described above. The result is 

reached in two stages: the first stage is the consideration of

the fundamental semigroup S / ^  and the second stage is the 

consideration of S itself.

2.5.1 Theorem: Let S be a 0-simple inverse semigroup whose

semilattice E is an co-tree with zero. Then^- is a congruence on

S and there exists a transversal T of the components of E* and k e N >

with k > 1, such that S / g / ~ S(E, T , k).

Proof: From [6, Theorem 3.2] we have that f t = y and so f t  is a

congruence on S. As E is an co-tree with zero, E satisfies the 

conditions of (1.3.11) and we have that T = {£ : e,f c E*}u {0}L 6f I
as described in (1.3.10) and (1.3.11). Applying [6, Lemma 3.1] we have

S/ ' f t  — S/y ~ S0 where 0:S -*■ T is a homomorphism with 00 = 0 and tt0 =—  E
£ -1 for a e S v {0}, If, as in (1.3.11), we take T_ =aa ,a Aa e
{(e,f) : e,f e E*} u {0} then S0 is the set { (aa 1,a ^a) : a e S v.

{0} } u {0}. We note that, by [9, Theorem 2.4], S /J j is a fundamental 

inverse semigroup with semilattice isomorphic to E. Hence S0 is a 

fundamental 0-simple inverse subsemigroup of T^ « If we now apply 

[9, Theorem 3.2 (i)] we have that S0 is a O-subtransitive inverse 

subsemigroup of T . Then, by Theorem 2.2.5, there exist k e N, with

k > 1, and a transversal T of the components of E* such that S© =

S(E, T, k) .

2.5.2 With the same notation as in 2.2 let the isomorphism 

discussed in Theorem 2.5.1 be <j) : -► {(f,g) : f,g e E* and

f = g} u {o} where Of = 0 and (H )(J> = (aa \ a  ^a) .—  a



23.

2.5.3 Theorem: Let S be a 0-simple inverse semigroup whose 

semilattice E is an w-tree with zero. Then there exists a 

semigroup S(E, T, k, G , y , e, vf) such that S ~ S(E, T, k,

V  v  e- V  •
Proof: It has been shown in Theorem 2.5.1 that there exist k e N,

with k ^ 1, and T a transversal of the components of E* such that

<f> : S(E, T, k) , described in (2.5.2)? is an isomorphism.

With k and T as there x select an element e e E* for which ê  = 0

and keep it fixed.

For i = 0,1,2,...,k-l let G. = H and, for all n e N,i e+i
take G = G , _ , . . Then, for all n e N, G is a group,n n (mod k) n

We next choose a set of representatives of the non-zero 

-classes of S as follows:- 

For f € E*, with f_ = i, let uf be the representative of Hx where

(Ĥ )<J) = (e+i,f) . We make the following stipulations:-

(a) u . is the identity of G. for i e N with 0 5 i ^ k-1.e+i i

(b) u , = u11 , = un (say) for all n e N, with n ^1.e+nk e+k

(c) u = (e+m)un for all m,n e N with n > 1 and 0 < m < k-1.e+m+nk

(d) uT^u is the representative of H where (H ) <J> = (f ,g) .f g y y
We note that if f e E* with f_ = i then ufu”1= e+i and uf1uf = f.

In the next lemma we obtain a method of expressing all the 

elements of S' {0} in terms of these representatives and elements of 

the groups G^, i = 0,1,2,...,k-l.

2.5.4 Lemma: Let x e S v {0}. Then there exists a unique representation

of x in the form u.^g.u, where (H )<f> = (f,h) , f = h = i and g. € G .f i n  x —  —  1 1

Proof: Let x e S' {0} with (Hx> <f> =(f ,h) . Since (f,h) e S(E, T, k) ,

f = h = i (say). We thus have (f, e+i)(e+i,e+i)(e+i,h) = (f,h) in
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S(E, T, k) and so (H ) <j> = (H ,iH .H ) <p. Since is a congruencex u_A e+i u. 3f h
on S, by Theorem 2.5.1, we have (H ) <p = {h _■> , .. Vx * u^J-(e+i)Uji# <p. However <p

is an isomorphism and so Hx = H -l(e+i) u • Thus (x, u”1(e+i)uh) £

Again, using the fact that d j, is a congruence, we have (u^xu, ,r h
ufu ^ (e+i)u^u^^) £ , so that, as = e+i = uj1uh^f we ^ave
(u. x u,\e+i) e . However G. = H , . and so u,. x u, ̂  = g. (say) , f h l e+i f h ri J

where g. e G.. Thus u_^u_ x u,\l = u_^g.u, . However u_^u_ = f and 1 1  f f h h f l h f f
u ^ u ^  = h, also xx ^ = f and x ^x = h and we have f^x^h = x. Thus 

x = u 1 9^^* Hence there is a representation of x in the required

form.

Suppose that x £ S \{0} and x has two representations in

the required form, the first being x = u ^  9^^' an^ the second

being x = u Hi.u . From x = u_^g.u. we have (H )<Jr = (f,h) and 3 p j q f i n  x
from x = u ^h.u we have (H_) <p = (p,q) . Thus (f,h) = (p,q) and f = p 

P 3 9 *
and h = q. Consequently i = f_ = p = j and we now have u 1 9^ ^  = x =

u_^h.u. . However, ur x u.^ = (e+i)g.(e+i) = g. and u- x u "*’=f i h  f h  i i r n
(e+i) Ik  (e+i) = tu so that g^ = Ik  and the representation is unique.

Returning to the theorem we now use this representation to

define a mapping ip: S ■+ {(f,g^,h) : f,h £ E*, f̂ = h = i and

g. £ G. } u {0} as follows:- Oip -  0 i i
xip = (f,g^,h) where (Hx) 4> = (f,h) and the

representation of x described in Lemma 2.5.4 is uf^9^u^* From Lemma

2.5.4 we see that the mapping ip is well-defined. It is also readily

seen to be a surjection, for, if (p,g^rq) e E*X.^Uq G ^ j XE* with

p = q = i and g. £ G. then, letting y = u g.u we have yip =—  -*■ i i  P 1 H.
(P/9^9) • Also if x,y £ S^ {o} and xip = yip we have at once that 

x = y.



Let i e N with 0 < i < k-2 and let g. e G.. Then1 1

Ĥg.(e+i+l)^ = ê+^'e+^  (e+ -̂+ -̂'e+;*-+l) = (e+i+1 fe+i+1) . Thus
g^(e+i+l) = (e+i+l)g^(e+i+l). Similarly (e+i+l)g^ = (e+i+l)g^ X 

(e+i+1). Hence (e+i+l)g^ = g^(e+i+l) and is in 

define a mapping yi : Gi ^ Gi+i the rule that 9-jY.̂ = 
g^(e+i+1). It is immediate from the remarks above that y^ is 

a well-defined homomorphism.

For g, , e G, , we examine (H ) d> = (e,e+k) (e+k-1,3k-l k-1 ug, , T
-1e+k-1) = (e,e+k). By Lemma 2.5.4 we thus have ug, _ = u g u 0 IrwJLk-1 e o

Un^uj. g e G . Thus ug, , = g u. Define a mapping y, , : G, , -► G1 o o ^k-1 o 3 'k-1 k-1 o
by the rule that (g y ) u = ug, . This is againK"*J.

easily seen to be a well-defined homomorphism.

We now extend these definitions taking y = y , , , Nforn n(mod k)
all n e N. If n,t e N with t ^ 1 define « . = y y . ,n,t n n+l n+t-l
and a to be the identity automorphism on G . Note that forn,o n
m, s, t e N we have a a = am,t m+t,s m,t+s

and a . = a .m,t m+sk,t
2.5.3 (i)

If 0 < i ^ j ^ k-1 we have g^e+j) = g^e+i+1) (e+i+2) ... (e+j)

so that gi (e+j) = = giai,j-i**’ 2*5‘3 (ii) •
Similarly we have (e+j)g. = g.a. • • ...2.5.3 (iii).l l i /j—l

The next lemma is concerned with these homomorphisms.

2.5.5 Lemma: If n,i e N with n > 1, 0 S i < k-1 and g± £ G±

then ung. = (g.a. , J u 11.*i 5i i,nk-x

Proof: We commence an inductive proof by considering the case

when n = 1. We then have (H^  ̂<f> * (€, e + k  (e ̂ k} oun ct

so ug^ = (ug^)(e+k) = (ug^)(e+k)(e+k-1) = (ug^)(e+k-1) = 

u(g± (e+k-1)). However, by (2.5.3 (ii)), (e+k-1) = 9iai/k_1_i

and g± (e+k-1) 6 G ^ . Hence uĝ  ̂= u(g± =

^ gi°i,k-l-i^k-l^u = ^i'N.,k-i^u * The Pr°P°sition is therefore



26.

true in the case n = 1.

Assume that the proposition is true for n = r-1 where

r ^ 2 and consider the case n = r. In the case n = r-1 we

have the result that, if 0 < i < k-1 and g. e G., thenl i™ ^  ^ 
u g. = (g.a. . .)u . When n = r, we consider u g. =i i l,(r-1)k-i ai
r”l , > r-1. „ . . .u (ug.) = u (g.ot. .)u, since the proposition is true forX 1 1;

n = 1. Applying the proposition for n = r-1 we now have
r r—1ug. = ((g.a. . -)a , X1 u )u since g.a. . . e G . Hence, i i i,k-i o,(r-l)k ^i i,k-i o

by (2.5.3 (i)), we have ug. = (g.a. .)u and we have provedX X X jXJC—X

the proposition for n = r. Thus, by induction, for all n e N 

with n > 1, the proposition holds.

Returning once more to the theorem we now make a 

notational definition:-

Let f e E* and t e N. If i = f and p = f+t, we define m*c / r
to be the unique element in G such that u .,.u- = m .^ p e+i+t f t,f f+t
This is a valid definition, since (H )<J> = (e+p,e+i+t) K

ue+i+t f
(e+i,f) = (e+p,f+t) and so, by Lemma 2.5.4, ue+±+tuf * ue+p9pUf+t

(JLA >'C|WJL
for some.element g e G . However u = e+p and so we have P P e+P
u . . LJu_ = g u_,. . We take m = g . e+i+t f p f+t t,f p

For all f e E* we denote by v- the element m. _. Wer 11 f
note that m ^u^ = u ,.u, = u. so that m = e+i, where f = i. o,f f e+i f f o,f —

We now show that this notational definition is a suitable 

one for the construction of the semigroup S(E, T, k, G ^  Y^,e, vf).

2.5.6 Lemma: Let f,h € E* with f_ = i and h = j. Then, if fh * 0,

u -U.-1 = U _ 1 . m, £ m-1, u . .. where t = [f,fh] and s =fHi e+i+t t,f s,h e+u+s
[h,fh] and, if fh = 0, ufUj^ = 0*

Proof: If fli* 0 then (H -i)<j> = (e+i,f) (h,e+j) = (e+i+t,
Uf Uh

e+j+s) where t = [f,fh] and s = [h,fh]. Since this product is in



S(E, T , k) we have e+i+t = e+j+s = p (say). By Lemma 2.5.4,

u£\  = V i + t  gp ue+j+s where gp 6 V  From this we see that
Ue+i+t Uf "h1 V j + s  = <e+p)gp (e+p) “ V  However, ue+i+t uf =

mt,f V t  ue+j+s \  = ms,h V s *  Thus gP = mt,f uf+t V s  *
m 1 . Noting that f+t = h+s = fh, we have g = m _ (e+p) m =s,n p t,f s,h
m4_ £ as m e G = G since f+t = f + t(mod k) = i+t (mod k)t,r s,h t,f f+t p   —
= e+i+t (mod k), by Lemma 2.2.4. From this we have u ^  =
-1 -1 u , . ,. m . _  m , u , . , .  e+i+t t,f s,h e+j+s

If fh = 0 then (H -l)<f> = (e+i,f) (h,e+j) = 0 and so
-i „ UfUhUfUh = o.

2.5.7 Lemma: Let f e E* with -  i and let t £ N with t ̂  1.

Then «tf£ = ( V i+lft_1) ( V 1«i+2ft_2)....(vf+t-l>'

Proof: The proposition holds for all f e E* when t = 1. Assume

that the proposition holds for t e N, with t ̂  1, and f e E*

where f = i, i.e. that mt(f = <vf+lai+2,t-21 ’ ‘4 (vf+t-r
definition, n)_+1|f is such that mt+1£ uf+t+1 = ue+.+t+1 uf,
where f+t+1 = q (say). However mt f uf+t = Ue+i+t Uf' where
f+t = p (say). By Lemma 2.2.4, q = f+t +1 (mod k) = p+1 (mod k).

There are therefore two cases to consider:-

(i) 0 < p < k-2 and q = p+1

(ii) p = k-1 and q = 0

Case (i) Let i+t = rk+p where r e N. Then mfc+1 f uf+t+1 =

u , _ u. = (e+p+l)uru_ = (e+p+1)(e+p)uru^ = (e+p+1)e+rk+p+1 f f f

Vrk+p uf = <e+P+1) mt,f V f  Since mt,f £ Gp “  follows
that mt+ljf uf+t+1 = (rnt,f)Yp uf+t‘ Hence mt+l,f uf+t+luf+t+l =
(mt,f)YP V t  V t + 1 4 HOWeVer V t + 1  V t + 1  = (e+p+1) and 50 
Vi,f= (mtJ Yp Vt Vt+r By Lemma 2-5-6 we have
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uf+t V t + 1  = Ue+p+l ml,f+t Vf+t+l V p + 1  = <e+P+1) ml,f+t "
(e+p+1) (e+p+1) = m1;f+t = vf+fc. Thus »wl>f = <mt(f) y p vf+t 

which is the required result in this case.

Case (ii) Let i+t = rk+k-1 where r e N. Then m _ u-e.4_.i =U T f T t T 1

ue+(r+1)k uf = "r+luf = uu%  = u(e+k-1)uruf = uue+rk+k_lUf =

u(mt,f uf+t) = Vi uVt>slnce mt,f £ Gk-r Thus we 
have mt+i,f Vt+i ufit+i = Vi u Vt Vt+i• However 
uf+t+i Vt+i = e and we have Vi,f = uVtVt+r
By Lemma 2.5.6 we have uf+fc u ' ^  = ml f+t m~0 ) f + t + 1  =

U_1 mi,f+f Thus mt+i,f = V i  uu_1 "l.f+t = (mt,f)Yk-lX
m = (m^ J Y, -> which is the required result.l,f+t t,f 'k-1 f+t

We return now to the theorem. The final step in showing

that the vf 's defined above satisfy the requirements for the

semigroup S(E, T, k, G^, y #̂ e, vf) is to show that, if i e N,

v . is the identity of the group G.,.. Let i € N with e+i l+l
i = rk + p where r e N and 0 £ p ^ k-1. Then v = m . and0+1 lf +̂1
s o v  . u  . , = u „ u  ., where q - e+i+1 (say). Thus v ,. =e+i e+i+1 e+p+1 e+i n   e+i
u , u , By Lemma 2.2.4, we have q = e+i+1 (mod k)e+p+1 e+i e+i+1.------------------------------- ---
5 p + 1  (mod k). Hence there are two cases to be considered

here:-

(i) that 0 < p < k-2 and q = p+1

(ii) that p = k-1 and q = 0.

Case (i). We have v ^ + i = (e+p+1) ue+rk+p ue+i+l “ (e+P+1> X  

(e+p) ur u = ( e+p+1) ur = ue+rk+p+1 u^ . +1 =

u ,... u . = (e+p+1). e+i+1 e+i+1
Case (ii). We have ve+. = ue+fc ue+. u^ . +1 = u (e+k-1)ur u^ . +1 =

u(e+k) (e+k-1)ur u^ . +1 = u(e+k)ur u^ . +1 = ur+1 u^ . +1 =

u u"1 = e. In both cases we have the required result,e+(r+1)k e+(r+l)k
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It follows now that, with T, k , G^, y^, e, v^ as specified

above, the semigroup S(E, T, k, G^, y^, e, v^) can be defined. The

mapping ip described above is clearly a bijection from S onto

S(E, T, k, G^, y^, e, v^) and the remainder of the proof is

concerned with showing that ip is an isomorphism.

Let x,y e S\{0} with xip = (a,g^,b) and yip = (c,hj,d).

Then x = u ^ g . u_ and y = u ̂ h . u ,.a 1 d c u d
If be = 0 then (xip) (yip) = 0. Also (H )<p(H )<p = 0  and sox y

(H ) <p = 0  from which we have xy = 0. Hence (xy)ip = (xip) (yip) . xy
If be * 0 then (H ) <p = (H ) <p (H ) <p = (a,b) (c,d) = xy x y

(a+t,d+s) where t = [b,bc] and s = [c,bc]. Thus (xy)ip = (a+t,

z, d+s) where xy = u z u _, with a+t = d+s = p (say) anda+t d+s --- ---
, • ^ “1 “I “1z e G . From this we have u xy u = u u z u u . p a+t d+s a+t a+t d+s d+s

(e+p) z (e+p) = z. Hence z = u&+t ^  u^h.. ud u ^ .  By
„  ̂ - 1 - 1  -1 -1 Lemma 2.5.6 we have u .. u = u r n  m u . = m u , ... :a+t a e+p o,a+t t,a e+i+t t,a e+i+t

also u, u u ^ t . m m ^ u : also, u u ^ = u ^ . m _
id c e+i+t t,b s,c e+j+s d d+s e+j+s s,d

nf1 u = u”1 . m Combining these three results we seeo,d+s e+p e+u+s s,d
-1 “1 “I . -1 _ .that z = m u . 9 • u , . . . m m u . h . u . m . Letu ue+i+t i e+i+t t,b s,c e+u+s u e+u+s s,d ,

£ir»t fcKpX  ^  >
i+t = rk + p and j+s = wk+p where r,w e N.^ then ue+i+t = (e+p)u and

u , =  (e+pju^. By Lemma 2.5.5, u ,  g. = (e+p)ur g = (e+p) \ e+j+s e+i+t l l
(g.a. , ,)ur and u ... h. = (e+p)uW h = (e+p)(ha wl_.)uW .i,rk-i e+u+s U 3 3 3/w* 3

sinceHowever, by (2.5.3 (iii)), (e+p) (9iai r̂k..i) ~ ĝiai,rk-i^ao,p

giai,rk-i £ Go and ^ ‘V j . w k - j ’ = (hjaj,wk-j)ao,p- By (2‘5'3 U)) 
have <9i<*ifrk_i>“0fP = (giai,rk-i)ork,p = ^iVrk+p-i* and similarly
(ha )a = (h.oi. , .) . Hence u g. = (g.a. .)u , ̂ j U,wk-j; o,p j j,wk+p-u e+i+t *i *i i,rk+p-i
however g.a. . . . e G and so u .... g. = (g.a. •)(e+p)ur =l i,rk+p-i P e+i+t i i i,rk+p-i
(a a )u = (cr.a. ) u . Similarly we have u ... h. =i,i,t e+rk+p w i i,t' e+i+t * e+u+s u
(h.a. )u . . With these results wlm'ick. (iw uu^ hr
3 3/s e+u+s >

-f— o ; u - O , wt Kavk tK*t

we
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This is the same middle term as is obtained when(a,g.,b) andx
(c,hj,d) are multiplied in S(E, T, k, e, vf) and so we

have that (xy)ijj = (xtp) (yij;) and i|/ is a homomorphism.

2.6 Applications and Special Cases

There are two main lines of approach which make considerable 

simplifications of the above results and give rise to several already 

established results. One approach is to simplify E, first by

considering a O-direct union of co-chains as was done by Lallement in

[3], and then by specialising again and examining the case when E

is an co-chain with zero. The other means of refinement is to take

k = 1 and with this to consider the various cases of E. Before

embarking on either of these we investigate the case when, for all

e e E*, v^ is the identity of Gf+^' where multiplication is much 

simplified.

2.6.1 Definition: A semigroup S, where-^ is a congruence on S, is 

said to 'split over ^ ' if there exists a set of representatives of the 

&  -classes of S which form a subsemigroup of S.

2.6.2 Theorem; (i) The semigroup S = S(E, T, k, e, vf) 

where, for all f e E*, vf is the identity of Gf+1/ is a 0-simple 

inverse semigroup whose semilattice is an co-tree and which splits

semigroup, whose semilattice is an co-tree with zero, which splits 

over ̂ . Then S is of the form S(E, T, k, G^, vf) where,

over

(ii) Conversely, let S be a 0-simple inverse
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for all f e E*, v_ is the identity of Gr f+1
Proof: (i) From Theorems 2.4.1, 2.4.4 and 2.4.5 we have that S is a

0-simple inverse semigroup whose semilattice is an co-tree with zero

and where il is a congruence on S. Consider H. = {(a,e. ,b) e S? e isi i
the identity of G^u-fo}. Then ii is a subset of S and, from Theorem

2.4.5 (2), is a set of representatives of the $  -classes of S. Let

(a,e^,b) , (c,ej ,d) e (i . If be = 0, then (a,e^,b) (c,e_. ,d) = 0 e (i .

If be * 0, then (a,e. ,b) (c,e.,d) = (a+t,m ^ (e.a. .)m m ^ (e.a.
1 3 t,a l i,t t,b s,c j ],s

mc where t = [b,bc] and s - [c,bc]. However m = m. , =
s ' a t,a t,b

mc _ = m A = the identity element of G , . Also e.a. = es'c s'a a+t l i,t a+t
an^ so (a,e.,b)(c,e.,d) = (a+t,e,d+s) e 4A . Hence ^  is a J J r  3 a+t

subsemigroup of S and so S splits over^j .

See (ii) From Theorem 2.5.3, S is of the form S(E, T, k, G. ,

Yi' e' vf̂  * since s splits overv$ there exists a set of representatives A
of the J| -classes of S which forms a subsemigroup of S. Assume that,

in the notation of Theorem 2.5.3, the set of representatives uf chosen

are elements of this subsemigroup of S. Examining, in the light

of this, the definition of m. - we have in -u,,^ * u . u^, wheret,f t,f f+t e+x+t f
f_ s i. If f+t = p we havefH ) <ji = (e+p,e+i+t) (e+i,f) =

Ue+i+tUf
(e+p,f+t) and so, as the set of representatives A forms a

subsemigroup of S, we have u ,...u- = uriJ_. Hence m, ^u„ = u re+x+t f f+t t,f f+t f+t
so that m _ is the identity of G . This means that, for all f e E*, t , r p
vf = m1 f is the identity of Gf+1«

Afp*<kf2.6.3 From the above theorem we have a . sufficient

condition for a semigroup S(E, T, k, G^, y^, e, vf) to split over :

namely that v^ is the identity of Gf+^' f°r all f e E*. However a

sufficient condition for fehio to oeeur i-a that there cxioto a cot of

representatives U£ of thc -̂f— elaooco of 6 3ueh that for all f e E*

and allr t c Ny u . . . 'U. = whore f » i.e+x+t f r+t —
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We apply this criterion below in considering the first 

simplification of E.

2.6.4 A semilattice with zero is said to be a O-direct union of 

oo-chains if it is isomorphic to the set (N x I) u {0}with the 

ordering 0 < (n,a) for all n e N and for all a e I,and (n,a)

< (m,3) <=> a = 3 and n ^ m ) where n fm e N and a,3 £ I.

2.6.5 Theorem: (i) Let E be a O-direct union of oo-chains. Then

S = S(E, T, k) is a O-subtransitive inverse subsemigroup of TE
whose semilattice is a O-direct union of oo-chains.

(ii) Let S be a O-subtransitive inverse subsemigroup 

of Te , where E is an co-tree with zero, whose semilattice is a 

O-direct union of co-chains. Then E is a O-direct union of co-chains 

and there exist k e N, with k > 1, and a transversal T of the 

components of E* such that S = S(E, T , k).

Proof: (i) That S is a O-subtransitive inverse subsemigroup of T„ 

follows immediately from Theorem 2.2.3. From [9, Theorem 3.2 (ii)] we have 

that S has semilattice isomorphic to E, so that the semilattice of S is 

a O-direct union of oo-chains.

(ii) From [9, Theorem 3.2 (ii)] the semilattice S is isomorphic to 

E. Hence E is a O-direct union of oo-chains. The remainder of the 

result holds by Theorem 2.2.5.
In [3] Lallement considers those 0-simple inverse semigroups 

whose semilattices are O-direct unions of co-chains. First he considers 

the case when 44 = i. I f  4 4  = i, then the semigroup is fundamental and 

by [9, Theorem 3.2 (i)] we have that S is isomorphic to a O-subtransitive 

inverse subsemigroup of T . Thus the first case considered by Lallement 

is the same as that in Theorem 2.6.5.
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2.6.6 In [3, Proposition 1] Lallement states his result for 0-simple 

inverse semigroups whose semilattices are O-direct unions of uj- 

chains and where = i.

Proposition 1. Let A be a set and p : A x A ->■ be a mapping

into the set of integers mod d satisfying pv (̂a,3) + p(3/Y) =

p(a,y) and p(a,a) = 0, for all a,3,Y e A. Let S (A, p,d) be

a set consisting of 0 and the quadruples (i,j) a , where i,j e Notp
and a,3 e A, such that i-j = p(a,3) (mod d) . We define a

multiplication on S^Arp,d) such that the only non zero products

are (i,j) (k,l) = (i + [3c-j] , 1 + [ j-3c]) where [n] = nap py oiy
if n > 0 and [n] = 0 if n < 0. Then S^(A,p,d) is a 0-simple 

inverse semigroup whose semilattice is a O-direct union of oj- 

chains and $  = i.

Conversely if S is a 0-simple inverse semigroup whose 

semilattice is a O-direct union of w-chains and il = i in S then there 

exist A,p,d such that S ~ S(A,p,d).

2.6.7 We must now reconcile Theorem 2.6.5 with Lallement's proposition

quoted in (2.6.6). We note firstly that if E is a O-direct union of

oo-chains then there exists a set A such that E = (N x A) u {0}

where (n,a) < (mf3) <=> a=3 and n > m for n,m e N, a,3 e A.

Let S be a 0-simple inverse semigroup whose semilattice E =

(N x A) u {O} and where i. As noted earlier we have by [9f 

Theorem 3.2 (i)] that S is isomorphic to a O-subtransitive inverse 

subsemigroup of T . Thus we are in the situation of Theorem 2.6.5
^ VA/» i S wvfctv ; fc V

(ii) and also of Theorem 2 . 2 . 5 . Following the notation of Theorem

2.2.5 we make the following definitions:-
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Fix (0,a) e E*. Let Z ^  = (0,y) for all n e N and let
,y)

e /_ \ ~ (P iy ) where p is the least element of N such that

((0,a)» (P^'Y^ e S* Let T = { ' y e A }• We note that
p ' < k. Suppose that p^ > k.Then since ((0,y),(k,y)) e S and 

((0,a),(p^#y)) e S we have ((0,a) , (p^,y) )((k,y) , (o,y)) = ((0,a),

(P-k t y ) ) e S which contradicts the definition p Y Y
Using this notation we examine (r,y). Recalling that (r , y)

is the remainder after division by k of [(p ,v),(p ,v)(r,v)] -
Y Y ’

[fct y ) I (p /Y)(r,y)]j there are three cases to consider:- (a) p < r

(b) (r,y ) = 0 e r-p (mod k) and in (c) (r,y) e - (p -r) (mod k) =  — l y — L Y
r-p (mod k) . Applying this we have S = S(E, T, k) =

It can be quickly checked that p:A x A ->• satisfies the 

conditions of 2.6.6. Thus we have S(E, T, k) = {((n,3) , (m,y)) : 

m,n e N, $,y e A and n-m = p(3,y) (mod k)}u{0> • Multiplication in 

S(E, T, k) is now as follows:-

the only non zero products are ((n,3),(m,y))((r,y),(q,6)) = 

((n,3) + t, (q/6) + s); where t = [(m,y),(m,y)(r,y)] and s =

[(r#y),(m,y)(r,y)]5 = ((n+t,3),(q+s,6)) = ((n + [r-m],3),(q +

[m-r],6)). This is exactly the multiplication in S(A,p,k) and so 

S(E, T, k) = S(AfP/k).

We now proceed with the non-fundamental case where E is a 

O-direct union of oj-chains,

2.6.8 Theorem: If S is a 0-simple inverse semigroup whose semilattice

is a O-direct union of u)-chains, then S splits over

(b) p r (c) p > r. In (a) (r,v) = r-p (mod k), in Y — L YY

Y

This leads us to define p(3,y) = P ~ P  (mod k) for all g,y e A.
p Y
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Proof: By Theorem 2.5.1 $  is a congruence on S . Let E =

(N x A)u{0} and fix (0,a) e E*. With the notation of 2.6.7 and
ca,rbu*\.

Theorem 2.5.3 we select a set of representatives of $ -classes

of S as follows:- let u = u M . and let c = u for all(k,a) 6 (0,3)
3 e Af 3 * a. We then make the following stipulations:-

(a) u11 = u. . . for all n e N with n > 1(nk,a)

(b) u,. . i s  the identity of the group G. for i e N with 0 < 1 < k-1Ura) i

(c) (i,a)un = u. , , . . for all i,n e N with n > 1 and 0 < i < k-1(nk+i,a)
m+2

(d) (i,a)u c. = u. . , .. for all m e N and i e N with3 (mk+Pg+i,3)
0 < i < k-1 and for all 3 e A

n , with 3 * a.
(e) (k-Pf r , P
We check briefly that these stipulations are valid. We have (Hun) <p =

((0,a),(k,a))n = ((0,a),(nk,a)) also (H . n)$ = ((if a),(i,a))((0,a),{1 fOtJ u
(nk,a)) = ((i,a) , (nk+i,a)) . We note that (H ) 4> = ((k-p ,a) , (0, 3)) andC _ D3
so (H,. . m+1 )<j) = ((i,a) , (i,a)) ((0,a), ((m+l)k,a)) ((k-p ,a) , (0, 3))(i/ ct) u c^ p
= ((i,a) , (i,a)) ((0,a) , ((mk+p^) , 3)) = ((if a) , ((mk+i+p^ , 3)) .

We now check that this set of representatives satisfies the

condition stated in 2.6.3. First we examine u . C\(i+t,a) (nk+i+p^, p)
where 3 * a. Let i+t = sk+p where 0 < p < k-1 and we have

u .. . u, . _ = (Pfa) uS (i,a) un+1 cQ. There are two cases(i+t,a) (nk+i+p^,3) 3
to consider:- the first that s = 0 and the second that s > 1.

(i) If s = 0 then i+t = p and we have u {±+t>a) “ (nk+1+p e) -
n+1<p,a)(i,a) u c . However p > i and so » (i+tj0, u (nk+i+p ») =

/ , n+1 = nu Cg u (nk+Pg+p,S) (nk+Pg+i+t,B).
(ii) I f . i l  then u (i+t<o) u (nk+.+p , = (p.«) us un+1 cg as

p . s+n+1u(i,a) = u and so we have u (.+t a) u (nk+i+p B) - (P»«) u cg
3

u ((s+n)k+p^ +p,3) u (nk+i+t+p^,3)*



In both cases we have the required result. A
S W  l**fc it O fej^f(S V >  = « w ,
If however we consider u. u. . . . where i+t = sk+p we have(i+t,a) (nk+i,a) e

s nU (i+t,a) U (nk+i,a) = u u and considering in turn the
cases when s = 0 and n = 0 we have u,. ^ u, , . * = u, , .(i+t,«0 (nk+i,a) (nk+i+tfa)
which is again the required result.

2.6.9 Theorem: (i) Let E be a O-direct union of co-chains. Then

S = S(E, T, k, G^, y^, e, vf) where, for all f e E* , vf is the 

identity of Gf+1<)is a 0-simple inverse semigroup whose semilattice 

is a O-direct union of w-chains.

(ii) Let S be a 0-simple inverse semigroup whose 

semilattice is a O-direct union of aj-chains. Then S is of the form 

S(E, T, e/ vf) where v^ is the identity of G^+^ for all

f e E*.

These results are immediate from Theorem 2.6.8 and 

Theorem 2.6.2.

2.6.10 In [3,Theorem 2] Lallement states his result for this

case. It is as follows :-
J o  J l  J & -2 Yd-1Theorem 2: Let G -*■ G, ■+' ... +• G *+ G be a cycle of— o I U“1 o

group homomorphisms. Let am n = Ym ^m+i***^n-l w^ere m 'n e N with
m £ n. Let t  = S(A, p, d, G^,y^) be the set consisting of 0 and

the elements of the form (i, 9r * j) ̂  where (i,j)^ e S(A, p, d)

and g e G with r = (i-p(3.ot)) (mod d) (where a is a fixed element r r )
of A). On £ we define a multiplication where the only non zero 

products are given by (i, ^*gs/l)yg = 9r aU/W X

g a , 1 + [j-k])ox where u = j-p(y,a) , v = k-p(y,a) and w = s V,W po
max {u,v}. With this multiplication Z is a 0-simple inverse 

semigroup whose semilattice is a 0—direct union of (o-chains.
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Conversely every semigroup S which is a 0-simple inverse 

semigroup whose semilattice is a O-direct union of co—chains is 

of this form.

Clearly we must now reconcile Lallement's theorem quoted 

in 2.6.10 and Theorem 2.6.9.

2.6.11 With the notation as developed in 2.6.7 we have that if

S = S(E, T, k, G^, y e f vf) is as defined in Theorem 2.6.9 then

S = {((r,3)# g ., (s,y)): r,s e N, 3,y e A, r-pe = s-p^ = i (mod k) andi P Y
g± e G± }u{o}

= £( (r ,3) r gi/ (s, y) ): r,s e N, 3,Y e A, r-p(3,a) = s-p(Y,a)

= i(mod k) and g. e G.}u{0}, since p =0.

The set S is thus the same as the set E with k = d and we need only now

check that the multiplications are the same. We note firstly that

a as defined in E is the same as a in S. Using the result thatm,n m,n-m
S(E, T, k) = S(A,p, k) we have the only non zero products in S are 

((r,3), g± (s,y) )((n/Y) > h j / (q/<5)) = ((r + [n-s],3), g iai,[n -s ]h ja j f [s_n ] ' 

(q + [s-n] ,6) .

Multiplication in E states that (r, g^, s) (n, hj, g^y6 a n°n

zero product equal to (r + [n-s] , 9^au w hjav w *q+ ts-n))gg^ Using the

information that a (E) = a (S) we have this product equal tou,w u,w-u
(r + [n-s], g.a h. a„ tT / q + ts“n3)QA' where u = s-p =l u,w-u 3 v,w-v 36 Y
s-p(Y; oj , v = n-p = n-p(Y/d) and w = max {u,v}. Since u = i (mod k)

Y
and v=j (mod k) we have g ± <*u w_u = %  ai,w-u and hj av ,w-v = 
h a  . However w—u = [n-s] and w—v = [s-n] so that we have the3 3 rW-V
same form for the products in E and S.

The next case to consider is the one where E is an go-chain 1 

with zero. This isin fact a special case of the above piece of work, 

where E is a O-direct union of go -chains  ̂ this being the case where 

1A | = 1  and so E ~ {e.: i € N and e^> e^ <=> i < j}u{0}.



2.6.12 Theorem (i) Let E be an co-chain with zero. Then

S(E, T, k, e' vf̂  where, for all f e E*, is the identity

of Gf+i» -̂s a 0-simple inverse semigroup whose semilattice is an 
co-chain with zero.

(ii) Let S be a 0-simple inverse semigroup whose 

semilattice E is an co-chain with zero. Then S is of the form 

S(E, T, k, G^y\, e, v^) where, for all f e E*, v^ is the identity

of Gf+r
Proof: (i) This follows immediately from Theorems 2.4.1, 2.4.4 and

2.4.5.

(ii) Since an co-chain is, trivially,a O-direct union of 

co-chains we apply Theorem 2.6.9 (ii) and immediately have the result.

In [7] Munn obtained an apparently different structure theorem 

for the same type of semigroup as described in (2.6.12). His results 

are stated in [7, Theorem 3.3 and Theorem 4.11]. We now show the 

results to be equivalent.

2.6.13 Let ts S(E, T, k, G . ^ ,  e, vf) -*■ S(k, G^y^uCo} >

where S(E, T, k, vf) is as described in 2.6.1^and S(k, G ^ y ^  &  &

is as in [7, Theorem 3.3], be defined as follows:-

It can be easily checked that t is an isomorphism and so the two 

structure theorems are equivalent.

2.6.14. When E is an lO-chain with zero and S = S(E, T, k, G ^ y ^  e,

in S ^ {0}. Hence S s {0} is a simple w-semigroup in the

terminology of [7]. Thus S^{0> ^S(k, G ^ y ^  as described in [7], 

If we now return to the original situation, where E is an 

Ui) —tree with zero, we can begin a different set of specialisations by

Ox

(r,g±,s)

0

vf) is as in Theorem 2.6.12 then we note that there are no zero products



taking k — 1, i.e. by having a semigroup with one non zero -class, 

in other words a O-bisimple inverse semigroup with semilattice an 

10-tree with zero.

2.6.15 Theorem: (i) Let E be an co-tree with zero and k = 1. Then 

S(E, T, k, G,y, e, v^) is a O-bisimple inverse semigroup whose 

semilattice is an co-tree with zero.

(ii) Let S be a O-bisimple inverse semigroup whose

semilattice E is an co-tree with zero. Then S has the form S(E, T, k,

G. y., e, v_) where k = 1.D i  f

Proof: In the case k = 1, there is one group G and one homomorphism

y: G -+ G. With the original notation of (2.3.3), a. = yt, fori , t

t e N, t > 1.

(i) This is immediate from Theorems 2.4.1, 2.4.4 and 2.4.5.

(ii) This is immediate from Theorems2.5.3 <x*v/ <2, if, S’.

Notice that in this case S(E, T, k, G, y, e, vf) = {(a,g,b):

a,b e E*, g e G}u{0} where multiplication is as follows:-

the only non zero products are (a,g,b)(c,h,d) where be * 0 and
—1 t —1 s(a,g,b) (c,h,d) = (a+t, m. (gy )m m (hy )m ,/d+s) where
t/a. U/D S/C O/U.

t = [b,bc] and s = [c,bc]. This is the same result as is stated 

in [5, Theorem 6.1].

2.6.16 Theorem (i) Let E be a O-direct union of (6-chains and let k = 

Then S(E, T, k, G,y, e, vf) where, for all f e E*, vf is the 

identity of Gjis a O-bisimple inverse semigroup whose semilattice is 

a O-direct union of uwchains.
(ii) Let S be a O-bisimple inverse semigroup whose 

semilattice E is a 0—direct union of co—chains. Then S is of the 

form S(E, T, k, G ^ y ^  e, vf) where k = 1 and, for all f e E*, vf 

is the identity of G^+ .̂
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Proof: (i) This follows from Theorems 2.6.15 (i) and 2.4.5.

(ii) From Theorem 2.6.8 we have that S splits over-^/ and

so by Theorem 2.6.2 (ii) we have that S is of the form S(E, T, k,

Gff Y^/ e# vf) where, for all f e E*, v^ is the identity of

If we now apply Theorem 2.6.15 (ii) we have the result.

2.6.17. Note that when k = 1 and, for all f e E*, vf is the

identity of G, if we take E = (N x A)u{0} then S = S(E, T, k,

G,y, e, vf) = {((m,a) ,g, (n,B)) : m,n e N, a,3 e A, g e G}ii{o}.

The multiplication on S is such that the only non zero products are 

((m,a) ,g, (n,3) )((p,3) / h,(q,6)) = ((m+t,a), (gy^ (JiyS) , (q+s,6)) where 

t =  [(n,3),(n,3)(Pf3)] and s = [(p,3)/(n,3)(P/3)]. Let v = max (n,p) 

then t = v-n and s = v-p. Hence ((m,a) ,g, (n,3) )((p,3) h,(q,6)) =

((m-n+v,a),(gyV n)(hyV P), (q-p+v,<S)).

Thus we have that the result stated in Theorem 2.6.16 is 

exactly that of [10, Theorem 4.2].

2.6.18 Theorem: (i) Let E be an co-chain with zero and k = 1. Then

S(E, T, k, G, y, e, vf), where for all f e E*, vf is the identity

of G, is a O-bisimple inverse semigroup whose semilattice is an 

^-chain with zero.

(ii) Let S be a O-bisimple inverse semigroup whose 

semilattice E is an co-chain with zero. Then S is of the form

S(E, T, k, Gi,yi, e, vf) where k = 1 and for all f e E*, vf is

the identity element of

Proof: This result follows immediately from Theorem 2.6.16 as an

W-chain with zero is, trivially/ a O-direct union of co-chains.

2.6.19 Applying (2.6.17) to the case when E is anUnchain with

zero we have S = S(E, T, k, G,y, e, vf) = {(m, g, n):m,n e N, g e G}u{0>

with multiplication as follows:- the only non zero products in S

are (m,g,n)(p,h,q) = (m-n+t,(gyt_n)(hyt“P),q-p+t) where t = max(n,p).
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Hence we have that S = { (m,g,n): m,n e N, g e G}u{0} ,

where G is a group, with multiplication defined as follows:-

(m,g,n) (p,h,q) = (m-n+t, (gy** n) (hyt P) , q-p+t) , where t = max(n,p)

and y:G + G is an endomorphism, and all other products are zero,

is a O-bisimple inverse semigroup whose semilattice is an co-chain with zero

and that, conversely, every O-bisimple inverse semigroup whose semilattice

is an co-chain with zero is of this form.

From this we can readily deduce that if G is a group and

y:G -*■ G is an endomorphism then B = {(m,g,n) : m,n e N, g e G} with

multiplication as follows:-

(m,g,n) (p,h,q) = (m-n+t, (gyt n) (hy11 P) , q-p+t) where t = max(n,p) ,

is a bisimple inverse semigroup whose semilattice is an co-chain.

Conversely, every bisimple inverse semigroup whose semilattice is

an co-chain is of this form. This is exactly the result obtained

by Reilly in [12].

It should be noted that in the above situation, where E is

an co-chain with zero ̂ the parameter T is is redundant, there being

only one component of E*.

Apart from these two paths of specialisation through first

the semilattice and then the assumption that k = 1 we can consider

an independent specialisation of E and the ensuing case with k = 1.

For this example we let E = {e :n e I and e $ e <=> n > m} where 
r  n n m

I denotes the set of integers.

2.6.20 Theorem: (i) The semigroup S = S(E, T, k, G ^ y ^  e ^ f )Mo},
n

where v is the identity of G for all n > 0 is a simple inverse
en ^

semigroup whose semilattice is isomorphic to the integer? under the

reverse of the normal ordering.
(ii) If S is a simple inverse semigroup whose 

semilattice E is isomorphic to the set of integers under the



reverse of the normal ordering then S is of the form S(E, T, k,

Y eQ / ve ) where v is the identity element of
n en

Ge+1 for all n > 0.
—n

Proof: (i) This follows from Theorems 2.4.1, 2.4.4 and 2.4.5 since

no products of the form (e ,g.,e )(e ,h.,e ) are zero.n l n P D q
(ii) From Theorem 2.5.3, S with a 0 adjoined is of the form

S(E, T, k, G., y., e , v ). The set T is here & tcnqUbfrvu since there l i n e  J
m

is one component only of E*. We therefore take T = {e } and e too o
be the fixed element used as a parameter.

With the notation of Theorem 2.5.3 we select a set of 

representatives of the non zero ^ — classes of S with the following 

stipulations:-

let u = u and u11 = u for all n e N, n > 1.e, e ik nk
let e u11 = u where n,p e N and 0 < p ^ k-1 and n > 1.

p V r *

let e . = u where i e N and 0 < i ^ k-1.l e.l

We now examine, in the light of the above specifications for the

set of representatives, the elements vg where n > 0. By definition
n

ve such that ve ue+1 _ ue +i+iue where n = i(mod k) and n n n o n
0 < i < k-1. By the specifications above ug +i+1 ug = ug +i+1 ug

o n o  i+sk'
where n = i+sk, i,s e N, and 0 ^ i ^ k-1, so that u^ ue

o i+sk
= u e.uS. If i < k-2 then u e±uS = e±+1 e ^ s  = e±+1 us =

6:1+1 1 i+1 s s s+1u and if i = k-1 u e,us = ue u = uu = u = u
ei+l+sk ei+l (s+1)k

In both cases u . , u = u and so v is the identity of the 
eo+1+1 en en n

group Ge 
—n
If we recall from the proof of (i) that no products of

S(E, T, k, G , y , e , v ) \ {0} are zero then we have the result, i i o n
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2.6.21. We note that in the case of Theorem 2 . 6 . 1 0  (ii) S is

of the form : m,n>i e I with 0 < i < k-1, n = m = i(mod k) ,

9i e ^  } with multiplication as follows

(en»9jfem) (e ,h. ,e ) = (e ,g. m 1 (h.a. ) m , e ) if m > p andn i m  P 3 q n i s,e 3 l/S s,e q+s v
P q

s = m-p

- m+. _ (g.a, ) m h.,e if m < p andn+t t,e l i,t t,e l q n m J
t = p-m

With this representation for S put k = 1 and we have the 

following

2 .6 .2 %  Theorem: (i) Let G be a group and a an endomorphism of G

with a° the identity automorphism on G. For each n e I chose un e G

such that u is the identity of G if n > 0. Define v = un ' n n+1
t-1 t-2for all n € I. For t e N and n € I let im * (v a ) (v ,, a ) ... Xt,n n n+1 A

v _ where t ^ 1 and m be the identity of G. Then, ifn+t-1 o,n
s -■ {(V g,eq). P,q e I. g « G} with itipllcatlon defined as in 

(2.6.2 1), S is a bisimple inverse semigroup whose semilattice is 

isomorphic to I under the reverse of the normal ordering.

(ii) Conversely, if S is a bisimple inverse semigroup 

whose semilattice is isomorphic to I with the reverse of the normal 

ordering then S has the form described in (i) .

Proof; (i) This follows from Theorem 2.6.2.0 (i) noting that^since 

k = l^s has only one j^-class and so is bisimple.

(ii) This follows from Theorem 2.6.3*0 (ii) and (2.6.2V).

This is exactly the result obtained by Warne in [14, Theorem

1.3] .



3. A  O-simple inverse semigroup whose semilattice admits a 

factorisation compatible with its -structure

In [5] McAlister gives a structure theorem for O-bisimple 

inverse semigroups in terms of groups and O-uniform semilattices.

In this chapter we extend this to a structure theorem for a 

particular type of O-simple inverse semigroup. Firstly, however, 

we require a summary of some points in McAlister's paper.

3.1 Introduction

3.1.1 Let E be a O-uniform semilattice.Then, following the pattern

of [5, Section 2], we define an addition on E. Fix an element k e E*

and let E+ = {x e E*: x £. k }. For each e e E* let I denote thee
set of isomorphisms from E+ onto £x e E*: x < e : Ie * <j> since E is

a O-uniform semilattice. By an addition on E with identity k we mean

a choice function Ilf on {I : e e E*} such that .̂(k) is the identity on0
+ *“T" +E . If ̂  is an addition on E and e e E and f e E* we write e+f for 

e J(f); if g,h e E* with g £ h we write g-h for g($.(h)) 1. The 

addition is associative if (e+f)+g = e+(f+g) where e,f e E+ , 

g e E*.

3.1.2 For completeness we include the statement of McAlister's 

structure theorem, [5, Theorem 3.2].

Theorem: Let E be a O-uniform semilattice and let 0 be a fixed

non zero element of E; let E* = E N{0} and E+ = {x e E*:x ^ 0}.

Let <j> be an addition on E with identity ® and let G be a group,

with identity element 1, which acts on E+ by (order) automorphisms.
■+■ +Suppose that functions f :E x E* -*■ G and [ ? ] : E xG-*-G are

given which satisfy:-
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1» f(0j.'b) = 1 = f(a,Q) for each a e E+ , b e E*.

2. [0,g] = g for each g e G.

3. f(a,b)f(a+b,c) = [a,f(b,c)]f(af(b,c),b+c) 

f(a,b)[a+b,k] = [a,[b,k]]f(a[b,k],bk)

for all a,b e E+ , c e E*, k e G.

4. [a,g][ag,h] = [a,gh] for each a e E+ , g,h e G.

5. (a+b)k = a[b,k] + bk for all a,b £ E+ , k e G.

6. (a+b)+c = af(b,c) + (b+c) for all a,b e E+ , c e E*.

where the group action is denoted by juxtaposition.

Then the set E* x G x E*, together with zero, forms a 0- 

bisimple inverse semigroup B°(E,0, 5 / G * C / 1) under the

multiplication (a,g,b) (c,h,d) = \((bc*-b)g ^ + a, uv, (bc-c)h+d) if be * 0

( 0 > otherwise
i

(a,g,b)0 = 0 = 0(a,g,b) - O  ̂

where u = (f((bc-b)g 1,a)) 1 [(bc-b)g 1,g] f(be -b,b) 

and v = (f(bc-c,c)) 1 [bc-c,h] f ((bc-c)h,d).

The group of units is isomorphic to G and the semilattice of idempotents 

is isomorphic to E.

Conversely, if S is a 0-bisimple inverse semigroup with 

semilattice of idempotents isomorphic to E and group of units 

isomorphic to G, then S^B°(E,0 , $,• G, o; f, [ , ]) for some 

addition J o n  E with identity 0 , action o of G on E+ and functions 
f/ [ / ] for which 1-6 (above) hold.

3.1.3 Corollary: Let E be a O-uniform semilattice and let 0 be a

fixed non zero element of E; let E* = Ev{0} and E = { x e E * : x < 0 } .

Let be an addition on E, with identity 0, which is associative, and 

let G be a group with identity 1, acting trivially on E+ . Suppose
j. -f*that functions f :E x E* -* G and [ , ] :E x G G are given which satisfy:-
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1* f(0,b) = 1 = f(a,0) for each a e E+ , b e E*

2. [0,g] = g for each g e G.

3. f(a,b)f(a+b,c) = [a,f(b,c)]f(a,b+c) 

f(a,b)[a+b,k] = [a,[b,k]]f(a,b)

for all a,b e E+, c e E*, k e G.

4. [a,g][a,h] = [a,gh] for each a e E+ , g #h e G.

Then the set E* x G x E*, together with zero, forms a 0- 

bisimple inverse semigroup B°(E, 0, G; f,[ , ]) under the 

multiplication (a,g,b) (c,h,d) = i ((bc-b) +a,uv, (bc-c) +d^ if be *  0

(̂ 0 otherwise

(a,g,b) 0 = 0 = 0(a,g,b) •=-O

where u = (f(bc-b,a)) 1[bc-b,g]f(bc-b,b)

and v = (f(bc-c,c)) ^ [bc-c,h]f(bc-c,d).

The group of units is isomorphic to G and the semilattice of

idempotents is isomorphic to E.

3.2 The construction of the groupoid S(E, k, A, t ,0)

In this section we describe a process for constructing a

O-simple inverse semigroup from a^O-uniform semilattice and a monoid 

by a method based on that of McAlister described in (3.1).

3.2.1 Let E be a O-uniform semilattice and let k be a fixed element 

of E*; let E+ = {x e E*:x < k }. Let J  be an associative addition on 

E with identity k.

Let A be a monoid with identity element 1.

Suppose that a function t :E+ x E* ■+■ ^  (of A) is given and, 

for all e e E+ , an endomorphism of A, 0 , is defined such that 0fc is 

the identity on A and (A) 0 ^ ^  if e * k and also the following 

conditions are satisfied:-
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3.2.1 (1) x(k,f) = 1 = x(e,k) for each e e E+ , f e E*.

3.2.1 (2) x(e,f) x(e+f,g) = (x(f,g))0e x(e,f+g) for each
+e,f e E , g e E*

3.2.1 (3) T(e,f)a0e+^ = (a0^)0^x(e,f) for each e,f e E+ , a e A. 

Define a multiplication on E*x A x E* U fpj as follows:-

(e,a,f) (g,b,h) = ((fg-f)+e, uv, (fg-g)+h), if fg * 0, where 

u = (x(fg-f,e)) 1 a0fg_j(fg-f,f) and v = (x(fg-g,g)) 1 b0f x(fg-g,h)

All other products are zero.

3.2.2 It is readily seen that this multip lication is closed. Clearly 

if (e,a,f),(g,b,h) £ E* * a  x E* with fg * 0 then (fg-f)+e, (fg-g) + h

e E* and u,v e A so that uv e A.

3.2.3 We denote the groupoid formed in (3.2.1) by S(E, k, J>; A,x ,0)  ̂voktrt
0 Co tfcx e *—» (_ee- £*)

3.3 S(E, k, j*; Ay x#0)

In this section we establish that the groupoid S(E, k, (£; A,t r0) 

is a semigroup and state necessary and sufficient conditions for it to 

be O-simple. We then examine in detail the structure of S(E, k, f;

A, q?r0) .

3.3.1 Theorem: S = S(E, k, A, x,0) is a semigroup with zero.

Proof: Let (e,a,f), (g,b,h), (l,c,m) e S\{0}

(a) If fg = 0 = hi then [ (e,a,f)(g,b,h)](l,c,m) = 0(1,c,m) = 0 and 

(e,a,f)[(g,b,h)(l,c,m)] = (e,a,f)0 = 0.

(b) If fg = 0 and hi * 0 then [(e,a,f)(g,b,h)] (l,c,m) = 0(1,c,m) = 0.

On the other hand, (e,a,f)[(g,b,h)(l,c,m)] = (e,a,f)((hl-h)+g,x, (hl-1)

+ m) where x is the appropriate middle term. However (hl-h) + g < g 

and so f((hl-h) +g) = fg((hl-h)+g) = 0 and (e,a,f)[(g,b,h)(l,c,m)] = 0.

(c) If fg * 0 and hi = 0 we can show in a similar manner to (b) that 

[(e,a,f)(g,b,h)](l,c,m) = 0 = (e,a,f)[(g,b,h)(1,c,m)].
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(d) We are now left to consider the case when fg * 0 and hi * 0.

Here [ (e,a,f)(g,b,h)](l,c,m) = ((fg—f)+e,uv,(fg—g) +h)(l,c,m) where 

u = (t(fg-f,e)) 1 a6fg_fT(fg-f,f) and v = (x(fg-g,g))_1 b0fg_gx(fg-g,h).

Let n = (fg-f)+e and p = (fg-g)+h. Then [(e,aff)(g,b,h)](1,c,m) =
(n,uv,p) (l,c ,m) = ((pl-p)+n,wx, (pl-l)+m) where

w = (t (pl-p,n))_1 (uv) 0pX_pT (P1”P/P) and x = (x (pl-1,1)) "'1 c O ^ ^ x  (pl-l,m)

On the other hand, (e,a,f) [(g,b,h) (l,c,m)] = (e,a,f)((hl-h)+g,st,(hl-l)+m) 

where s = (x(hl-h,g))“1 b0hl_hx(hl-h,h) and t = (x(hl-1,1))_1 c0 x(hl-1,m)

Let q = (hl-h)+g and r = (hl-l)+mf Then (e,a,f) [ (g,b,h) (l,c,m) ] =

(e,a,f)(q,st,r) = ((fq-f)+e,yz,(fq^q)+r) where

y = (x(fq-f,e)) 1 a0 x(fq-f,f) and z = (x(fq-q,q)) 1(st)0 x(fq-q,r).fq-f fq-q
The outer terms in each of these products are exactly those 

obtained as outer terms in the semigroup of Corollary 3.1.3. Since 

associativity has been proved in this case, we can say here that the 

outer terms in the products [(e,a,f)(g,b,h)](l,c,m) and (e,a,f)[(g,b,h)X 

(l,c,m)] are equal. We must now prove that the middle term in each of 

these products is the same.

From the equality of the outer terms we have the following 

(pl-p)+n = (fq-f)+e and (pl-l)+m = (fq-q)+r.

Hence we have (pl-p) + ((fg-f)+e) = (fq-f)+e and so, as the addition 

is associative, ((pl-pH"(fq-f))+e = (fq~f)+e so that

(pl-p) + (fg-f) = fq-f ........  3.3.1 (i)

Operating on both sides of 3.3.1 (i) by f and using again that the 

addition is associative, we have

(pl-p)+fg = fq   3.3.1 (ii)

By similar consideration of (pl-l)+m and (fq-q)+r we have

pl-1 = (fq-q) + (hl-1) ....  3.3.1 (iii)

and pi = (fq-q)+hl   3.3.1 (iv)
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First we examine the middle term wx. We have

wx = (T 'pl-p,n)) (uv)epl_pT(pl-p,p) (t(p1-1,1)>_1 C6 .

However, 0 is an endomorphism of A and so (uv) e = (ue )A P-*-”P pl~p pl”P
(V0Pi-p) Now>

U0pl-P = t(T<f9'f'e))"1 a6fg-fT(fg‘f'f)1V - p
= ((T{fg-£,e))epl.p)"1 (aefg_f)epl.p (x(fg-f,f))epl.p as epl_p

is an endomorphism. However, by 3.2.1(2),

(T(fg-f,e))6pl_p = t(Pl-Pffg-f)t((pl-p)+(fg-f),e)(T(pl-p,(fg-f)+e)) 1

= t (Pl-P/fg-f)t (fq-f,e)(T(pl-p,n)) 1, by 3.3.1(i), and

( t (fg-f /f))  Qpi_p = t (pi-P/fg-f)x(fq-f/f) (x(pi-P/fg)) 1 / by 3 .3 . K D .

Also, by 3.2.1(3), (a0fg_f)0p]_p =t(pl-p,fg-f) ae(pl-p)+ (fg-f)(x(pl-P/fg-f))~1

=x(pl-p,fg-f) aefg_f (x(pl-p,fg-f)) 1 by
3.3.1(ii).

Thus u6pl_p = x (pl-p,n) (t (fq-f ,e)) 1 a0fq_fx(fq-f,f)(x(pl-p,fg)) 1.

However, we also have v0pi_p = (T (fg.“9/g) 6pi_p) 1 b̂0fg-g^0pl-pT 0pl-p 
Since *-s an endomorphism of A. By 3.2.1 (2) we have

x(fg-g,g)0 = x (pl-p,fg-g) x((pl-p) +(fg-g) ,g)fr (pl-p, (fg-g)+g)Y*pj. p
= x(pl-p,fg-g)x(fq-g,g)(x(pl-p,fg)) 1, by 3.3.1(ii),

as (pl-p) +fg = fq implies that fq < g and so we have

(pl-p) + (fg-g) +g = (fq-g)+g and (pi-ph^g-g) = fq-g-

Also x(fg-g,h) 6 , = x(pl-p,fg-g)x(fq-g,h)(x(pl-p,(fg-g)+h)"1pl-p
by the same argument as above and so

x(fg-g,h) 6 _ = x{pl-p,fg-g)x(fq-g,h)(x(pl-p,p))pl-p
Also (b6fg-g) 0pi-p = T'(P1“P/fg-g) b0 (pl-p) + (fg-g) (pl-P »^9-g)} _1' by

3.2.1(3)

= x(pl-p,fg-g) b0fq_g (x(pl-p,fg-g))"1

Thus v0 _ = xtpl-p,fg)(x(fq-g,g)) 1 b0_ x(fq-g,h)(x(pl-p,p))pi—p ^q-g
and so wx = (x(fq-f,e)) 1 a0^q_^x(fq-f,f)(x(fq-g,g)) b0̂ q_g X

x(fq-g,h)^ (x(pl-l,l))“1 .
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A similar treatment of yz yields

yz = (t (fq-f ,e)) a6f<j_fT (fq-f ,f) (t (pl-h,g))_1 b0 t (pl-h,h) (x(pl-l,l)) -1

X C0 1T(pl-l,m).
For wx to be equal to yz and so to have the required result o-b ii. 

to show that pl-h = fq-g. We have from (3.3.1 (iv)) that pi =

(fq-g[)+hl = (fq-q)+ ((hl-1)+1) = ((fq-q) + (hi-h) )+h as the addition is 

associative. Hence pi S h and pl-h = (fq-q) + (hl-h) . However fq =

(fq-q)+q = (fq-q) + ((hl-h) +g) = ((fq-q)+ (hl-h))+g, as the addition is 

associative. Thus fq < g and fq-g = (fq-g) + (hl-h) and we have the 

required result.

We examine now the question of the 0-siraplicity of S(E, k,

A , X , 0 ) .

3.3.2 As in [1, Section 2.7] we make the following definition.

In a semilattice E with zero} an element f e E* is said to be primitive 

if e £ f implies e = 0 or e = f.

3.3.3 Theorem; (a) If E is a O-uniform semilattice with no

primitive idempotents then S = S(E, k, jf; A, x, 6) is O-simple.

(b) If E is a O-uniform semilattice with a primitive

idempotent then S = S(E, k,J ; A, x, 0) is O-simple if and only if A

is simple.

Proof: (a) Let (e,a,f), (g,b,h) e S\{0}. Since E contains no

primitive idempotents, there exists 1 e E* with 1 < e. Let v =

(x(l-e,e))-1 a0_ T(l-e,f). Since 1-e * k, a0 e H and so v e H,.
1-e •L”e

Consider (g,b,l)(e,a,f)((l-e)+f,v“1,h) = (g,bv,(1-e)+f)((1-e)+f,v ,h) = 

(g/bw”1 ,h) = (g,b,h) . Thus the semigroup S is O-simple.

(b) Suppose that S is O-simple. Let a,b e A. Then, if e e E*,

(e,a,e) , (e,b,e) e S ^{0} so that there exist (f,c,g) and (h,d,l) e S\{0}
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such that (e,a,e) = (f,c,g)(e,b,e)(h,d,l). However, E has a 

primitive idempotent and so, as E is O-uniform, every idempotent in 

E* is primitive. Now ge < e and so ge = 0 or ge = e. Since (e,a,e) * 0, 

ge * 0 and so ge = e. Thus g < e so that g = 0 or g = e. Since g « E*, 

g = e. By a similar argument we have h = e. The outer components of 

the product (f ,c,e) (e,b,e) (e,d,l) are f and 1. However since the 

product is equal to (e,a,e) we have f = 1 = e. Thus (e,a,e) =

(e,c,e)(e,b,e)(e,d,e) = (e,cbd,e) so that a = cbd and A is simple.

Conversely assume that A is simple. Let (e,a,f), (g,b,h) e S\{0}.

Since A is simple there exist c,d e A such that a = cbd. Consider the

product (e,c,g)(g,b,h)(h,d,f) = (e,cb,h)(h,d,f) = (e,cbd,f) = (e,a,f). 

Thus S is O-simple.

In the following theorem we examine in detail the semigroup 

S(E, k, A, t , 6).

3.3.4 Theorem: Let S = S(E, k, A, t , 0). Then
4-1. (e,a,f) is an idempotent in S\{0}<=> e = f and a = a

2. S is regular <=> A is regular

3. S is inverse <=> A is inverse

6. If A is an inverse semigroup then, for a,b e E^,

(e,a,e) < (f,b,f) <=> (e = f and a < b) or e < f.

7. If A is an inverse semigroup then, for a,b £ E^,

{((e,a,e),(f,b,f)) e $  <=> a = b} holds <=> A is a

semilattice of groups.

4. ((e,a,f) , (g ,b,h)) e ̂ jfs <=> f = h and (a,b) e X A 

((e,a,f) , (g,b,h)) € <=> e = g and (a,b) e

((e,a,f), (g,b,h)) € s ' <=> (a,b) e

5. ^ f  is a congruence on S <=>^|is a congruence on A.
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Proofs 1. Let (e,a,f) z S\{0} with (e,a,f) = (e,a,f) (e,a,f). Then 

ef * 0 and (e,a,f) = ((fe-f)+e, uv, (fe-e)+f) where

u =  (T (fe-f,e)) 1 a0^e_fT(fe-f,f) and v = (T (fe-e,e))_1a6fe_eT(fe-e,f).

Thus e = (fe-f)+e and f = (fe-e)+f so that k = fe-f = fe-e and so

f = fe = e. From this we have u = v = a and so uv = a2. Thus a = a2.

Conversely, consider (e,a,e)(e,a,e), where a = a2 in A and 

e e E^. We have (e,a,e)(e,a,e) = (e,a2,e) = (e,a,e) so that (e,a,e) 

is an idempotent in S \ {0}.

2. Assume that S is regular. Let a e A. We have (e,a,e) e S 

and so, since S is regular, there exists (f,b,g) e S such that (e,a,e) = 

(e,a,e) (f ,b,g) (e,a,e) . From this we see that (e,a,e) (f ,b,g) * 0 and 

is an idempotent in S. Thus, by Theorem 3.3.4 (1), we know the form of 

(e,a,e) (f,b,g) . However, (e,a,e)(f,b,g) = (ef,uv,(ef-f)+g) where u = 

(x(ef-e,e)) ^a0 ^  x(ef-e,e) and v = (x(ef-f,f)) 1b0ef_fx(ef-f,g).

Hence ef = (ef-f)+g, and we have (e,a,e) (f,b,g) (e,a,e) = (ef,uv,ef) (e,a,e) = 

(ef, (uv)w,ef) where w = (x(ef-e,e)) *a 0^_e2'(ef-e,e) . However,

(e,a,e) (f,b,g) (e,a,e) = (e,a,e) so that e = ef, and uvw = a. If ef = e 

then u = a = w so that ava = a and we have that A is regular.

Conversely, assume that A is regular. Let (e,a,f) e S^{0}.

Since A is regular, there exists b e A such that aba = a. We consider 

(e,a,f) (f,b,e)(e,a,f) = (e,ab,e)(e,a,f) = (e,aba,f) = (e,a,f) and we

have that S is regular.
3. Assume that S is inverse. Then S is regular and so, by 

Theorem 3.3.4 (2) , A is regular. To show that A is inverse we 

need only, by (1.1.4), show that any two idempotents in A commute.

Let a and b be idempotents in A. Then, by Theorem 3.3.4 (1), (e,a,e) 

and (e,b,e) are idempotents in S. Thus, since S is inverse, (e,a,e)^(

(e,b,e) = (e,b,e)(e,a,e), and so (e,ab,e) = (e,ba,e) and we have ab = ba.
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Conversely, assume that A is inverse. Then, by Theorem 3.3.4 (2),

S is regular. Let (e,a,e) and (f,b,f) be idempotents in S. By

Theorem 3.3.4 (1), a and b are idempotents in A. Now, (e,a,e) (f ,b,f) =

(ef ,uv,ef) where u = (T (ef-e,e)) ̂ ae T (ef-e,e) and v = (T (ef-f ,f)) ”XX01 "0
b0e£_£i (ef/f) • Also (f ,b,f) (e,a,e) = (ef ,vu,ef) . However a0e£ and

are idempotents in A, so that u and v are idempotents in A.

Hence, since A is inverse, uv = vu and so (e,a,e) (f ,b,f) = (f,b,f) (e,a,e)

and S is inverse.

4. Let (e,a,f), (g,b,h) e S with ((e,a,f),(g,b,h)) e X  • Then

there exist (l,c,m) , (n,d,p) e S such that (l,c,m) (e,a,f) = (g,b,h) and

(n,d,p) (g,b,h) = (e,a,f) . From these we have that (g,b,h) =

((me-m)+l,uv, (me-e)+f) where u = (T(me-m,l)) 1 c0 t (me-m,m) andme-m
v = (T(me-e,e)) 1 a0 x(me-e,f). Since h = (me-e)+f we have thatme-e
h < f. By considering (n,d,p)(fc,b,h) = (e,a,f) we can show similarly 

that f < h and so f = h. Hence me-e = k and v = a so that b = ua. ,
fer* SrOVrj, Us fe I

Similarly, by considering (n,d,p) (g,b,h) = (e,a,f) we have u b = ^and 

so (a,b) £

Conversely, let (e,a,f) , (g,b,f) e S with (a,b) Then there

exist c,d e A such that ca = b and db = a. Considering (g,c,e) (e,a,f) = 

(g,ca,f) = (g,b,f) and (e,d,g)(g,b,f) = (e,db,f) = (e,a,f) we see that

((e,a,f) , (g,b,f))
The result f o r c a n  be proved in a similar manner and the

result for ̂ t h e n  follows immediately.
Let (e,a,f) , (g,b,h) e S and suppose that ((e,a,f) , (g,b,h)) e & ~  

Then there exists (m,c,n) e S such that ((e,a,f) , (m,c,n)) £(^and 

((m,c ,n) , (g,b,h)) e^. From the above results we have (a,c)e (F L

and (c,b) e X s o  that (a,b)
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Conversely, let (e,a,f), (g,b,h) e S with (a,b)£?£h Then 

there exists c e A such that (a,c) e 6 \ and (c,b) Hence, from

the above results, ((e,a,f), (e,c,h)) e <f\ and ((e,c,h), (g,b,h)) e 
so that ((e,a,f) , (g,b,h)) e

5. Assume that ^  is a congruence on S. Let a,b e A with 

(a,b) z and let c,d e A. By Theorem 3.3.4(4) , we have that

((e,a,e) , (e,b,e)) e$/and, as^/is a congruence on S, ((e,c,e) (e,a,e) , 

(e,c,e)(e,b,e)) e However (e,c,e)(e,a,e) = (e,ca,e) and

(e,c,e) (e,b,e) = (e,cb,e) so that, by Theorem 3.3.4 (4), we have 

(ca,cb) . Similarly, by considering ((e,a,e) (e,d,e) , (e,b,e) (e,d,e)) 

we have (ad,bd) e % J  and so^/ is a congruence on A.

Conversely, assume that |^is a congruence on A. Let (e,a,f) , 

(e,b,f)e S with ((e,a,f) , (e,b,f)) e . Then, by Theorem 3.3.4 (4), 

(a,b ) e Let (g,c,h),(l,d,m) e S. We consider (g,c,h)(e,a,f)

and (g,c,h) (e,b,f). If he = 0 then both products are zero and so are

equivalent. If he * 0 then (g,c,h) (e,a,f) = ((he-h)+g, uv, (fie-e)+f)*1

where u = (t(he-h,g))_1 c0he_hT(he-h,h) and v = (T(he-e,e)) la0he_e X

x(he-e,f). Also (g,c,h)(e,b,f) = ((he-h)+g,uw,(he-e)+f) where

w =  (xdie-e^))”^ © ^  T (he-e,f). Since (a,b) we also havehe-e
(c^he ,beh ) e i f l as 6he e is an endomorphism of A. Hence, as 

is a congruence on A, (v,w) end so (uv,uw) z ~ ^ . Applying

Theorem 3.3.4 (4), we now have ((g/C,h) (e,a,f), (g,c,h) (e,b,f^e^/ •

It can be shown similarly that ((e,a,f)(l,d,m), (e,b,f)(l,d,m)) 

and so is a congruence on S.
6. Let (e,a,e) and (f,b,f) be idempotents in S. Since A 

is inverse, S is inverse, by Theorem 3.3.4 (3) , and so the set of 

idempotents of S forms a semilattice. Assume that (e,a,e) < (f,b,f). 

Then (e,a,e) = (e,a,e)(f,b,f) = (ef,uv,ef) where

u = (x(ef-e,e)) ^a®ef.eT (ef-e,e) and v = (x(ef-f,f)) b0e^_^x(ef-f,f).
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Hence e = ef and so e < f, and also a = uv. if e = f then u = a

and v = b so that a = ab and a < b. Thus e < f or e = f and a < b.

Conversely assume that (e,a,e), (f,b,f) are idempotents in S

with e < f. Then (e,a,e)(f,b,f) = (e,ax,e) where x = (T(e-f,f))_1 X

(e-f,f) . As e < f, e-f * k and so be * - 1 and x = 1. Thus e t e-f
(e,a,e) (f,b,f) = (e,a,e) . If e = f and a < b then (e,a,e) (f,b,f) =

(e,ab,e) = (e,a,e). Hence in either case (e,a,e) < (f,b,f).

7. Suppose that S is such that, when a,b e E^, ((e,a,e), 

(f,b,f)) e <=> a = b. Let c e A, Then (cc \ c  ^c) e in

A and so, by Theorem 3.3.4 (4), ((e,cc *,e) , (f,c 1c,f)) e ^  , where 

e,f e E*. Hence cc ^ = c ^c and so by (1.2.12), since A is inverse,

A is a semilattice of groups.

Conversely let A be a semilattice of groups. Clearly if 

a e E^, by Theorem 3.3.4 (4), ((e,a,e) , (f ,a,f)) e &  f o r  e,f e E*.

If a,b e Ea and ((e,a,e), (f,b,f)) £ S ' , where e,f e E*, then, by 

Theorem 3.3.4 (4), (a,b) £ &  . Thus there exists c £ A such that 

cc”1 = a and c-1c = b. However A is a semilattice of groups and is 

inverse so that by (1.2.12) cc ^ = c ^c and so a = b.

3.3.5 If we now examine more closely those semigroups of the form 

S(E, k, A, t , 0) where A is a centric inverse monoid and E has a 

primitive idempotent then by Theorem 3.3.3(b) we require that A is 

simple so that S(E, k, A, t, 0) is a O-simple inverse semigroup. 

However, by [1, Theorem 4.5] A, in this case, is itself completely 

simple and so by [1, Section 2.7] has a primitive idempotent.

Applyiiig Theorem 3.3.4 (6), we readily have that S(E, k, A, t, 0) 

has a primitive: idempotent so that S itself is completely O-simple. 

However, in [1, Theorem 3.5] the Rees Theorem determining the 

structure of completely O-simple semigroups is stated.
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3*4 Factorisation of a semilattice Ê _ compatible with the 
structure of S

3.4.1 Let S be an inverse semigroup with zero, and semilattice E.

Then E is said to admit a factorisation compatible with the structure

of S if:- (i) E* is order isomorphic to F* x y where F is a semilattice

with zero and Y is a semilattice with identity, and where (f,a) < (9/3)

in F* x Y <=> (f = g and cx< 3 ) or f < g.

(ii) if e,f e E* and, under the order isomorphism of (i),

® +  (9/a) in F* x Y and f -f (h,g) in F* Y, then (e,f) e & ' < = > a = 3S
in Y.

3.4.2 This is a formalisation of the situation described in Theorem 

3.3.4 (1) , (6) and (7). We thus have that if A is an inverse monoid 

which is a semilattice of groups then S = S(E, k, (£; A, j ,  0) is such 

that Eg admits a factorisation compatible with the /^structure of S.

In fact E \ {0} ~  E *  x E .b-------- A

3.4.3 Theorem: Let S be a O-simple inverse semigroup with semilattice

E which admits a factorisation compatible wi th the ^  -structure of S.
(vo iVs. 3. if • I.

Let E* be order isomorphic to F* x ^  Then F is a Oruniform 

semilattice.

Proof: Let 1 denote the identity of Y and take E* = F* x Y. We show

firstly that F = {(e,l) :e e F*}u {0}is a semilattice isomorphic to F.

Since F c E, F is a partially ordered set. Let (e,l),(f,l) e F.Then,

if ef * 0, (ef,l) e F. However (ef,l) < (e,l),(f,l) so that (ef,l)

< (e,l)(f,1) this latter product being defined in E. Let (e,l)(f,1) = 

(x,ct) , say«Then (x,u) ^ (e,l),(f/l) and so x < e,f and x < ef. Thus 

(x,a) < (ef,1) so that (e,l)(f,1) = (ef,1). If ef = 0 then (e,l)(f,1)

= 0 also. Hence F is a semilattice. The mapping (e,l) -f e and 0 -f 0 

is a semilattice isomorphism from F onto F.



57.
Let e,f £ P*. Then ((e,l), (f ,1)) € A- and so D,

(e,l)
D (f,l) * Let B m D (e,l)u }for e e F** Because of the
factorisation of E compatible with the ^'’—structure of S, D =(e,l)

f V P*R (f.i)= fy F. L (f.i > • Hence b = uf°> -
( ^ B (f,l)^ Le^ x,y E EM0}«*Then there exist f,g e F*f  ̂ F*
such that (x, (f ,1)) e ̂  and (y,(g,l)) . Thus Sx = S(f,l) and

yS = (g,l)S. From this we have Sxy = S(f,l)y and (f,l)yS = (f,l)(g,l)S.

From the first part of the theorem we thus have xy = 0 or (xyf (fg,l))e^) fj^Q 

Clearly in either case xy e B and so B is a subsemigroup of S.

If x e B\{ 0} then we have immediately that x”1 e B and so B is an 

inverse subsemigroup of S. The semilattice of B is F. Let 

(e,l),(f,l) e F* Then, as ((e,l), (f ,1)) e Jfr there exists x e S suchO
that (e,l) = xx ^ and (f,l) « x ^x, from [6, Lemma 1.1] . However

x 0 R and so x e B. Thus ((e,l), (f ,1)) e &  ^  Hence by(e,l; '  B
[6, Lemma 1.1] B is 0-bisimple and so, by [10, Theorem 1.2], F is 

O-uniform and F is also O-uniform.

3.5 The structure of a type of O-simple inverse semigroup

3.5.1 In this section we set out to show that a certain type of 0- 

simple inverse semigroup whose semilattice admits a factorisation 

compatible with the /9"-structure of the semigroup is of the form 

described in sections 3.2 and 3.3. We break the proof into two 

main sections i  the first consists of showing that jl is a congruence 

on a semigroup of the type being considered and then examining S / $ 4  y 

the second consists of examining the semigroup itself.

3.5.2 Before stating the first theorem we recall from (1.3.1) that^A* 

denotes the maximal idempotent separating congruence on an inverse 

semigroup S. Also, from [6, Lemma 3.1] and [6, Lemma 1.2], if S
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is an inverse semigroup, then S/y ~ S0 where the homomorphism
0:S T is such that a0 - 0 :E aa -*• E a ^a, with e0 = a ^ea g a o s a
for all e e Esaa \  is an isomorphism.

3.5.3 Theorem: Let S be a O-simple inverse semigroup whose 

semilattice E admits a factorisation compatible with the -structure
blfao tut- ^ I \M*n fay

of S. Let^E* = F* x y where F contains a non zero principal ideal

whose group of order automorphisms is trivial. Then ̂  is a

congruence on S.

Proof: We have by Theorem 3.4.3 that F is a O-uniform semilattice.

Hence every non zero principal ideal of F has a trivial group of

order automorphisms. From this we can deduce that, if x,y e F*,

there exists a unique isomorphism from Fx onto Fy. As in (1.3.10)

and (1.3.11) denote this mapping by £x and so we have Tp =

{£ :x,y e F*}u{0} with multiplication as described in (1.3.11).X /Y
We wish to show that j^/is a congruence on S. By (1.3.1) we 

have y so that to prove ̂  is a congruence we need only show 

t h a t ^ c  y . Let a,b e ^ ^ i t h  (a,b)e ^  . Then aa 1 = bb 1 =

(x,a), (say) , and a-1a = b-1b = (y,a)>(say) : the Y-components of the 

idempotents are equal since (aa \ a  ^a) e . Thus©a :E (x,a) E(y,a) 

and 0^:E(x,a) E(y,a ).

The following lemma facilitates the completion of the proof.

3.5.4 Lemma: Let S be a O-simple inverse semigroup as described in

Theorem 3.5.3. For a e ^ w i t h  0 :E(x^a) E(y,a), (Z,n)0 =
cl

(Z£ ,n) for all (Z,tj) e E(x,a).x,y
Proof: We note that if p e Eaa then (p,pa.)e as pa (pa) —

paa ^p ^ = pp Also (pa,a ^pa) e X  as (a Pa) (a Pa) ” 

a ^aa ^pa = a ^p ^pa = (pa) ^pa. Thus (^,a ^pa) = (p*P@a)e $■*
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Hence if (ZfT1) e E(x,a) then ((Z,^), (ZfT1)e ) e and so, from

a

the ̂ "-compatibility of the factorisation of E, we have (Z/T1)e =
cl

(w,n) (say) . We note that E(x,a) = U {(p,^) :p £ x}u U { (p,g) :
ne Y 6 e Y

2 < *}• n< a 6  ̂a

For ne Y define a on Fx as follows:-n
xa = Yr 0a ® 0 and, if p < x, (pa ,n) = (p#n)0 •n n n a

It is easily checked that a :Fx Fy is an isomorphism so that a =n n
£ and we have the result.x r y

Returning to the theorem we have that, for all (p,n) e E(x,a)

(P*n)0= = (p£ rh) = (P/n)6u so ® From [6, Lemma 3.1]a x , y D a n
we now have (a,b)e y and the result follows.

3.5.6 Theorem: Let S be a O-simple inverse semigroup whose semi­

lattice E admits a factorisation compatible with the ^*-structure of
fckto pAtfotvSajfcev, be,

S. Let^E* = F* x y where F contains a non zero principal ideal whose 

group of order automorphisms is trivial. Then S/ ,^/is of the form

S (F, k, <£; Y, t , ty) .
f~irxbj by 3.̂., 3 ) f~ & 0- /Wvw.

Proof: a As * noted in Theorem 3.5.3 we have Tw ={£ „ :X'Y e F*}u{0}  r x,y
with multiplication as in (1.3.11) . Fix k e F* and define (f) to

be 6 for all f e F*. Clearly J  is an addition on F with identity k,f
k. We consider whether the addition is associative. Let e,f c F , 

where F+ = {x e F*:x < k}, and g e F*, then (e+f)+g = (e^krf)^kfg =

f+a = e+<f+9>' which shows that ^k,f k,g k,ffk ĝ k,r+g
addition is associative.

By Theorem 3.5.“3 , ^ 1  is a congruence on S and so by [6, Lemma 3.1]

S/^s= s/y ~ S0 where 0 is as defined in (3.5.2) . Define a mapping

<j):S0 ■> F* x y x f * u { o} as follows:- 

0<f> =0

(0 )d>= (e,a#f) where aa ^ = (e,a) and a ^a = (f,a) 5 ^ 0 ,
cl



60.

This mapping is well-defined:for if 0 = e then> a b U1XC11)
tuj [6, Lemma 3.1], (afb) g .^,and aa  ̂= bb ^ and a ^a = b ^b. Also

0a /0b c E0 with (0a)<(> ~ then aa ^ = bb and a a = b *̂ tso

that (a,b) g -^and (a,b) g U  . Hence, by [6, Lemma 3.1], 0 = 0, .a b
If (e,ot>f) e F* x Y x F* then ((e,a), (f ,a)) e &  in S by the^^—

compatibility of the factorisation of E. Hence there exists a g S

such that ((e,a) ,a) g and ((f,a),a) . From this we have aa ^

= (e,a) and a a = (f,a) and (0 )<j> = (e,a>f). Combining all thisa  '

information we have that <p is a bisection on S0. *
0 , h<j t ̂ 1̂) -I CJL { f t d. - i cdt oit Y ) €.£- £ ^

To complete the proof we must examine (0 0.)<J> and (0 )d>(0.)<j)M W  a. , l r  t o .  a b a b
for 0a #0b e S0̂  Let (0aH  = (e,a,f) and (0b)<j> = (g,£,h). If

fg = 0 then in S(F, k, Y, x, i|0 we have (0&) <j> (0b) <J> = 0. Also

ab = 0 and (0a0b)<|> = (eabH  = 0 also*
If fg * 0 then, in S(F, k, jf>; Y, f, ip) , (0a)<J> (0b>(J) = (e,a,f) (g,$,h) =

((fg-f) +e,uv, (fg-g) +h) where u = (x'ffg-f/e)) x(fg-f,f) =

°^fg-f and v = 13'f'fg^.T(fg"S'h) = ^fg-g' this
simplification being possible as H^ = {1} and so x(f,g) = 1 for 

all f £ F+ , § e F*, where 1 is the identity element of Y. There are 

four possible situations:-

(i) f = g and so uv = a$

(ii) f < g and so uv = <£l = a

(iii)f > g and so uv = 10 = 3

(iv) f and g are incomparable and so uv = 1.

On the other hand, consider (0&0b) 4>. We have A(0a0b) = (E ( f (9/3)) ©a -

(E(f,a)(g,3))0 -i = E((f,a)(g,3)>ea-l bY *6' Lemma 2-1]* similarlY a a
V(0 0 ) = E((f,a)(g,3))0K . Incase (i) (f,a)(g,3) = (fra3); in a b o

case (ii) (f,a)(g,3) = (f»ct) ; in case (iii) (f,a)(g,3) - (g#3)» 

in case (iv) (f,a)(g,3) = (fg»l)» Thus in each case A(0&0b) -
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ECfg.Yje^i and 7 ( 0 ^ )  = E(£g,Y)6b where y = aB,a,0 or 1 as

appropriate. Applying Lemma 3.5.*y we have that A (90 ) =a b
E(fg^f,e'Y) * * *  V(0a8b) = E(fgS,h'Y)* Howev®r f95f>e = f^ ffk^k/e
= fgS, = (fg-f) +e and fg£ . = fg£ £ = fq£_1 £ =k 'f * ysg,h g,k k,h w k,g^k,h
(fg-g)+h, and we have (6 ®b) ♦ = ((fg-f)+e, y , (fg-g)+h) where

y = a3 in case (i), y = a in case (ii), y = 3 in case (iii) and

y = 1 in case (iv) . Hence (9 0.)<f> = (0 ) cf> (0. ) 4> and we have that d>a b a b T
is an isomorphism.

We now make the step from obtaining the structure of 

obtaining the structure of S.

3.5.7 Theorem Let S be a O-simple inverse semigroup whose semilattice
kcJ$A£A/fc#v\, but

E admits a factorisation compatible with the j t y ' - s t r u c t u r e  of S. Let ^

^ E* = F* x y where F has a non zero principal ideal whose group of order

automorphisms is trivial. Then S ~ S(F, k,j£ ; A, x, tJ>) where A is

a centric inverse monoid with semilattice Y.
Bkj 3. If-* i } P to 0 - U*M $H>w.

Proof: A Take k e F* to be as in Theorem 3.5.6 and define the addition

j> as in Theorem 3.5.6. Let 1 denote the identity element of Y.

For each a e Y let Gq = H (k,a) and let A a e YG* ‘ Then each 
is a group by (1.2.11) . Let xry e A with x e and y e .

Then (*,(k,cO) z 4 l  and (y,(k,3)) However, by Theorem 3.5.3, ̂

is a congruence on S and so (xy,(k,a)y) and ((k'*a>)y, (k^a) (k^3)) e $ 4 .

Hence (xy, (k,a) (k,3)) (k,a) (k,3) = (k,a3) in E and so

(xy,(k,a3)) e ^  and xy e G ^  . Thus xy e A and A is a subsemigroup 

of S. M  0 j  <iKM UL /V li CV.

o f  (jrowpi . The idempotent (k,l) e A

and is an identity for the semigroup A so that A is a centric inverse

monoid with semilattice { (k,a) :a e Y} ~ Y.
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From Theorem 3.5.6 we have that there exists an isomorphism

+ F* x Y x F*u {0} whereby 0<f> = 0 and(Hg)<j> = (e,a,f) where
“*X “1 Xss = (e,a) and s s = (f,a) ? ft* i'*. £

faaAt'vg oa ĉtoCrvLt-flL iw TKx̂ tv̂ v 3. S. fe> .
We select a transversal of the ^-classes of S

contained in R, as follows (fcyl)
Let ue be the representative of H where (H )d> = (k,l,e)? we ^ sl sl

stipulate that = (k,l).

We now use this transversal to obtain a unique form for the

elements of S and establish this in the following lemma.

3.5.8 Lemma. If x e S\{0} there is a unique representation of x

in the form u u.. where (H )<j> = (e,a,f) and g e G .e a f x a a

Proof: Let x e S \ {0} with (Ĥ )cf) = (e,a,f) . Then (e,a,f) =

(e,l,k) (k,a.Vk) (k,l,f) and we have (H ) <|> = ((H ) <(>) 1(H. ,)<j>(H )<f>X U (JC/Oij Ue £
= Ĥu-ljk aju )<f> as 4> is an isomorphism and-/?/, by Theorem 3.5.3,

e ' ^ -1 1 is a congruence on S. Thus H = H ,, . and (x, u (k,a)uje^t .r x u  ■L(k,a)u^ e f
I ^ “1Again using the fact that is a congruence on S, we have (u^xu^ ,

u u 1 (k^Ju-u”1) . However, u u 1 = (k,l) = u-u.1 ase e  f f e e  r r
""X w  / “Xue ,uf e R (k x . Thus (u0xuf ,(k,a)) e-^/, and so u0xuf e H (k â)

= Ga . Let uexu^X = ga (say) e Go- Then u ^ x u j 1^  = u‘1gc(uf.

However u ^u = (e,a) and u_^u<- = (f,a), while xx ^ = (e,a) and x x e e f f
= (f,a) , so that u~1uexu“1uf = x and we have x = ̂ejJuf . Thus there

is a representation of x in the required form and it remains to

prove that it is unique.
-* -1Suppose that x eS \{o)and x = and x = u^ b3Uq* Then

(Hx)<(> = (e,l,k) (k,a,k) (k,l,f) = (e,a,f) and (Hx)<|> = (p,l,k) (k,3,k) X

-1.(k,l,q) = (p,$,q) so that e = P/ f - <3 and a -3 . Hence x ug 9auf 

* Ue1 hauf so that = UeUe"L 9aufuf and UeXUf = UeUe haufuf *
i i  -1 j “1 _Since u u " = u^u ~ = (k,l) we now have u x u f = ga and u xufe e f f e

h so that g = h and this representation is indeed unique.ot a



Returning now to the theorem, this representation leads

us to define a mapping a : S + F* x A x F* y{ 0} as follows :-

0 c =  0 and sg = (e,g ,f) where (H )4, = (e,a,f) and
a s

-1S = U Q u _. e ^  f

Clearly a is a well-defined mapping. If x,y e S with xg = yo =

ff) (say) , then x = u ^g u = y so that cr is injective. Also,a e a r
if (e,g ,f) e F* x A x F* let x = u "̂ g u_. Then (H )<t, = (e,a ,f) a e a r  x Y
and xc = (e,g^,f) so that q is surrjective. To show that g is a 

homomorphism we need to examine the multiplication and to simplify 

this we introduce the following lemmas.

3.5.9 Lemma: If e e F and f 0 F* then there exists a unique

element g(e,f) in G, such that u u.. = g(e,f)u1 e r e+r

Proof: Since <J> is an isomorphism on S a n d - ^ i s  a congruence on

S we have (H )d> = (H )d> (H )<b = (k,l,e)(k,l,f) = (k,l,e+f) .u u,. T u U-. Te f e f
Thus (H )d> = (k,l,e+f) and, from Lemma 3.5.8, we have that there u u_

e ”1 exists a unique element g^ in G^ such that ^ u ^  - u^ glUe+f = glUe+f

3.5.10 From here onwards we shall, for all e e F+ and f e F*, denote 

by t (e,f) the unique element in G^ such that u^u^ = xtfe*f)ue+ .̂

3.5.11 Lemma: For all e e F+ and f 0 F* we have x (e/k) = (k,l) = 

x (k,f).
Proof: From (3.5.10) , t (e,k)ue+fc = and so x (e,k)ue = ue-

Hence x(e,k)u u ^ = u u However u u = (k,l) and we havee e e e e e
x (e,k) = (k,l) . From (3.5.10), x (k,f)uk+f = n ] u f  and so

t (k,f)uf = uf. Hence t (k,f)ufuf = ufuf  However ufuf = (k,l)

and we have x (k,f) » (k,l).
3.5.12 Lemma: For all e,f eF*, ueufX = ^ _ e x (ef-e,e) ( x(ef-f ,f))
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P.r2°f: "e have (H ^  = (H )*((H Ĵ )’1 since^ is a
e f e uf

congruence on S and <j> is a homomorphism. Thus we have

Ĥu u-lH = (k/l/e) (f,l,k) = (ef-e,l,ef-f) and, by Lemma 3.5.8,
—1^ —I

UeUf = uef-e gl uef-f where gl ® G ‘ However, ^ . ^ U f  uIf-f

= uef-euef-e gl uef-fuef-f and as u6f-euef-e = (k'1) = uef-f*
uef-f we = uef-eue (uef-fu f ^  From (3-5*10) we hava
Uef-eUe ~ x(ef-e,e)uef and uef_fuf = t (ef-frf)uQf. Hence g1 =
x (ef-e,e)ue^ue^(x (ef-f ,f)) However u ^ u ^  = (k,l) and so g^

= x(®f~e/e)(x(ef-f,f)) ^ from which we obtain the required result.

3.5.13 Lemma {Let e £ F+ \ {k} and a e A. Then there exists a 

unique element g e such that uga = gug.

Proof: Let a e A with a £ G (say) . Then (H )<{> = (H )<f>(H )<j>
a e Ue

= (k,l,e) (k,^,k) as is a congruence on S and <(> is a

homomorphism. Hence (H )<j> = (k,l,e) and so by Lemma 3.5.8 we have
-1 e u^a = u^ ^iue ^or a element g^ £ G^. However u^ =

(k,l) and so u a = g,u for a unique element g. e Gn .e l e -l J-

3.5.14 Define a mapping \pe ' A •+ f°r a*l e £ F \{k}, as

follows:- uga = (a^e)ue. By Lemma 3.5.13 this mapping is well**

defined for each e £ F+ \ {k}. Also, as ug (ab) =(uga)b = (a^e)ugb =

(atpe) (b^e)ue we have (ab)i|>eUe = (a >̂e) (k^g^g so that, on post-

multiplying by u we have (ab)ij/ = (a^ ) (kilO • Hence for each © e 6 6
e e F+ v. {k} we have that is a homomorphism from A into G^.

Define to be the identity mapping on A.Tk
3.5.15 Lemma: If e,f e F+ and g e F* then x(e,f)x(e+f,3 ) =

(x(f,g))^e x(e,f+g).
Proof: If e = k the result is immediate once we note that

x(e,f) = x(e,f+g) = (k,l), by Lemma 3.5.11.
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If e * k then by (3.5.10) and (3.5.14) we have u (u u )e f g
= ue T <f»g)uf+g = (T<f,g))*eu u f+g = t(f,g)i|/e T <e -f+9>ue+(f+g) •

On the other hand, by (3.5.10), (u u,)u = T(e,f)u „u„ = t(e,f) Xe r g e+f 9
x(e+f,g)u . As the addition is associative u, =[e-t-rj+g (e+f)+g

ue+ (f+g) 80 T <f'9>*e T <e'f+9 > V f + g  = T(e'f)T(e+f'9>ue+f+g-
On post multiplying by u , „, and noting that u , u-1, =e+f+g 3 e+f+g e+f+g
(k,l) we have the result.

3.5.16 Lemma: If a e A and e,f e F+ then (ai^)^ x(e,f) =

T(e,f)aV-e+f.

Proof: If e = f = k the result is immediate since x(k,k) = (k,l),

by Lemma 3.5.11. If e = k and f * k, since x(k,f) = (k,l) by

Lemma 3.5.11^6 again have the result. Similarly, if e * k and

f = k the result holds. We are thus left to consider the case

where e * k and f * k. From (3.5.14), u (u_a) = u (aiJOu- =e f e r r
(ai|/_)i{/ u u.. = (aiK)^ x(e,f)u by (3.5.10) also. On the other f e e f t e e+t
hand, by (3.5.10), (ueu^)a = x(e,f)ug+fa and^by (3.5.14)^ (ueuf)a

= T(e,f) ̂ a^e+f^ue+f* Thus te^f^e T(e,f)ue+f = T(e'f> (a,*e+f*Ue+f *
By postmultiplying by u ^  and noting that ue+fue+f = ( * - ,1 ) we 

have the result.
We return now to the theorem. The functions x:F x f * •>

H, , and il;:F+ -> End A defined above are shown in Lemmas 3.5.9 (k,l)
3.5.11, 3.5.15 and 3.5.16.to satisfy the necessary requirements 

for the construction of the semigroup S(F, k, A, x, \J>). We are 

now in a position to verify that a:S -*■ S(F, k, (£; A, x,ip ) is a 

homomorphism.
Let 5 e S\{0}. Then sO = 0 and (s0)a = 0 = (sa) (Ocr). If 

S,t e S\{0} with st = 0 then (st)a = 0. Let sa = (e,ga,f) and ta 

= (p,h^,q)*Then (sa)(ta) = (e,ga ,f)(P/h^,q) = (e,ga ,f)(f,a,f)(p,$,p)X 
(p,h0,q). However (f,a)(p,3) = s 1stt = 0 and so (f,a,f)(p,3,p)p



(H(f , a ) ^ (H(p,e)^ = (H(f,a) (p,6))(,> " ° since-^ is a congruence 
on S and <f> is a homomorphism. Thus (sa) (ta) = 0 = (st)a.

Let s,t £ S\{0} with st * 0. Let sa = (o,g , f) and ta %

(P*h .q) • From this we have s = u ^ g  u_ and t = u-1 h u .
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a
L . Hencee a f p $ q

—1 —I .st - ue ^aufu^ 3Uq* Applying Lemma 3.5.12 we have u^u^ =

ufp_f ^ (fp—f *f) (t (fp—PrP)) "”1ufp_p and so st = u"1 gau~p_f x(fp-f,f) X

(xffp-p.p))'1 ufp_phg< y  From 3.5.14, ufp_f g 1̂ - (9; % fp.f)ufp.f

and Ufp-p% ‘ (Vfp-p)Ufp-P 80 th3t St = "e1 '^a^fp-f^fp-f1'1 X  
T(fp-f,f)(T(fp-p,p))-1(h6*fp.p)ufp_pu4 = ̂ S p _ f(W f >  r(tp-f,t)X

(x(fp-p,p)) ^(hJ) )u_ u , since ip- , is a homomorphism.3Yfp-p fp-p q rfp-f *

Applying (3.5.10) we now have st = (x (fp-f ,e)u,_ £. , ) ^  i(i. _ \(fp-t)+e a fp-f
x (fp-f ,f) (x (fp-p,p*) 1(h^fp_p)x(fp-p,q)u^fp_p)+q. However

(H ) (p = (H ) <J) (H ) <f> = (e,a,f)(p,3,q) since^is a congruence on S St s t
and f is a homomorphism. Thus (H )<J> = ((fp-f)+e,y,(fp-p)+q) where 

Y =

1 if f, p are incomparable

It can be readily be checked that in each of these cases (x(fp-f,e)) X 
(ga^fp-f) T (fp-f ,f) (x (fp-p,p)) 1(hg^fp_p )x(fp-p,q) is in and so, by the 

definition of a, (st)a =

((fp-f) +e, (T(fp-f ,e))"1 (ga^fp_f)T(fp-f ,f) (T(fp-p,p)) ̂ ( ^ f p - p )  *  

x (fp-p,q) , (fp-p)+q) = (sa) (ta) in S(F, k, J?A, x, \p).

3.6 Isomorphisms between semigroups of the type S(E, k, A, x,9 )

In this section, following some of the notions of [5, Section 4] 

we consider certain isomorphisms between semigroups of the type 

considered above.
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3.6.1 Theorem: Let S = S(E, k, A, t , 0) and T = S(F, 1, B,

a, A) where A and B are centric inverse monoids.

(a) Let i[f:S +  T be an isomorphism, for which (k,l ,k)if> = (2, 1 ,2)A B
where 1 ^ is the identity of A and 1 is the identity of B. Then

there exist isomorphisms a:A ■+ B and 3:E -*■ F with k3 = 2, and,

for all e e E*, there exists x e H , with x^ = 1 , such that
_! 6 1B

(e,a,f)i|; = (e3, x^ (aa)x^,f3) . The following conditions are

also satisfied:- (3.6.1) (i) (e+f) 3 = e3 + f(3 for all e e E+, f e E*

(3.6.1)(ii) (xe)xfAe^a(e3ff3) = (x(e,f))a xg+f,

for all e e E+, f e E*

(3.6.1)(iii) (aa)A,0 = x ^(a0 )ax for all a e A,An P P P
+e e E .

(b) Conversely, if a:A -► B and 3:E -► F, with k3 = 2, are

isomorphisms and if, for all e e E*, there exists s e H , with
e B

x^ = lg , satisfying conditions (3.6.1)(i)-(iii) then the mapping 

^ :S -*■ T defined by (e,a,f)i|; = (e3,x 1 (aa)xf ,f3) , and Oip = O ^ s  an 

isomorphism.

Proof: As A and B are centric inverse monoids (3.4.2) holds and

so ((e,lA ,e) , (k,lA ,k)) e &  in S for all e e E*. Thus ((e,lA ,e)\j;> 

(k,lA ,k)^) e in T. As F admits a factorisation compatible 

with the ̂ -structure of T and (k,lA ,k)i|/ = (2,1^,2) we have 

(e,lA ,e)ip = (n,lB ,n) (say) . Let 3:E +  F be defined as follows:

03 = 0 and (e,lA ,e)i|/ = (e3,lB*e3) for all e e E*. Since is 

an isomorphism we can deduce that 3 is a bijection. Also if 

e,f £ E* with ef = 0 then ((e,lA ,e) (f, 1A ,f))^ = Oip — 0 and so 

(e,lA ,e)ip(f ,lA ,f)^ = 0 so that (e3,lB *e3) (f3,lB*f3) = 0 and we 

have (e3)(f3) * 0 = (ef)3 . If e,f e E* with ef * 0 then
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(e$) (f3) * 0. Hence (e3) (f3) = (ef)3 and we have 3:E ->• F an isomorphism 
with k3 = fc.

In this next section of the proof we show that if <5e E„ thenA
(k,<S,k)ip = M,y,£) for some y e E_. Let (k,<5,k) e S with 6 e E_.■D A
Then by Theorem 3.3.4, (1), (k,$,k) is an idempotent in S and so (k,6,k)\|>

is an idempotent in T so that (k,6,k)ijj = (p,Ti,p) (say) where ij e E .B
We note that, by Theorem 3.3.4 (6), (k,6,k) < <k,l ,k) and so (p,n»p)A
^ (k,l ,k)^ = (£,!„,.£). Hence, by Theorem 3.3.4,(6), either p < 4A B
or p = 4 and n ^ 1_. Assuming that p < 4r, let (p,l0/p) = (n,y,n}if> (say) ,B D

where y e E_ . Then as (p,n,p) ̂  (P*1D»P) < (*/lB r*) we haveA D O

(k,6,k) < (n,y,n) < (k,l ,k) . Hence k £ n and n < k so that k = n.A

However ((p,lD ,p) , ( * , 1 -,*)) e f t  in T by Theorem 3.3.4(7), and so B B
((n,y,n) , (k,lA ,k)) e in S so that,by Theorem 3.3.4(7) again, we have

U = 1 and so (n,y,n) = (k,l ,k) which is a contradiction. Thus p ^ 4r.A  A

Hence p = i  and (k,6,k)if> = (4,n, *) is of the required form.

Using the above we obtain the following result. Let a e A)

then ((k,a,k) , (k,aa-1,k)) e ,^s and so ((k,a,k) i|», (4, y , * ) ) e $ / T (say).

Thus (k,a,k) $  = (4,b,4:) where b e B. We define a : h B as follows

(k,a,k)ip = (4r,aa ,*). Clearly a is a bijection. Also if ax,a2 e A

then (k,a1a2,k)ip = (4, (a^)a,4) . However ( k ^ a ^ k )  = (k,a1#k) (k,a2,k)

so that, as ip is an isomorphism, (k,a^a2,k)\|; = (k,a^,k)i|;(k,a2,k)i{/ -

(4,aia,d:) (4,a2a,i) = (*, (a^) (a2a) ,4) and we have ( a ^ a  = (a^) (a2o) ,

so that a is an isomorphism.

Let e e E*. Then ((k,lA ,e), (k,lA<k)) e ^ s and ((k,lA ,e), (e,lA ,e))

e ^ s * Thus ((k,lA ,e)^(-i,lB ,i)) e < # T and ((k,lA ,e)<Me3,lB ,e3)) e ^ T

so that (k,l ,e)^ = (-ir,x,e3) for some x e a . Denote by xg the element A
in & such that (k,l_,e)^ = (4,x ,eji) . From the Green's relations aboveA ®
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we also have x^ 1 = lg so that xee H1 . Also = lg as (k,lA ,k)i|> =
B

(*,1b ,4).

Let (e,a,f) e S;then (e,a,f) = (e,l,k) (k,a,k) (k,l,f) = ( k ^ e ) " 1*

(k,a,k) (k,l,f). Thus (e,a,f)i|> = ((k,l,e)i|>) _1 (k,a,k)i|> (k,lff)i|» as ip is

an isomorphism. Hence (e,a,f)^ = (4,xe,e3) _1 (4,aa(,4) (4,xf ,f3) =

(eg ,x 1,4) (-ir,aa(4,x^.,f8) = (e3,x 1 (aa)x,.,f3) .© r e r
To complete the proof of (a) we need only check that conditions

3.6.1 (i) , (ii) and (iii) are satisfied. We note that if e e E+ and

f e E* then (e,lA ,e)(k,lA ,f) = (e,(x(e,k)) (e,f),e+f) = (e,x(e,f),

e+f) . Hence ((e,lA ,e) (k,lA ,f) )i|; = ( e 3 ( x  (e,f) )axg+f, (e+f) 3) •

However, is an isomorphism and ((e,lA ,e)(k,lA , f ) = (e,lA ,e)^ (k,lA ,f)ip

= (e3,l ye3)(4,xf,f3) = (e3,(a(e3,1))"1 x_ X _a(e3,f3),eB + f3). Thus d i. ± ep
(e+f) 3 = e3 + f3/ equating the third terms in ((e,lA ,e) (k,lA ,f)iJ; and 

(e,l ,e)i|j(k,l ,f)ty, so that condition 3.6.1 (i) is satisfied. EquatingA A
the middle terms we have x ^(x(e,f))ax _ = (a(e3/l)) ^(x_)X Oo(e3,f3)e e+f f ep
= (x,.)A fia(e3ff3)« Pre-multiplying both these expressions by x and£' 6 p ©
noting that x x 1 = 1_ we have (x(e,f))a x = x (x..) A o(e3,£3) which e e B e+f e f e3
is condition 3.6.1 (ii). To obtain condition 3.6.1 (iii) we consider 

(k,]^e)(k,a,k) where a e A and e e E+. We have (k,lA ,e)(k,a,k) =

(k,a6 ,e) so that ((k,l ,e) (k,a,k) )ip = (k,a0 ,e)^ = (4,(a© )ax ,e3).6 A 6 C 6
However, as ^ is an isomorphism we have ((k,lA ,e)(k,a,k))^ = (k,lA ,e)y *

(k,a,k)\p = (4,xe,e3)(4,aa,4) = (4,xe (aa)Xe^,e3). Equating the middle

terms of ((k,lA ,e)(k,a,k))^ and (k,lA ,e)^(k,a,k)^ we have (a0e)axe

= x (aa)X Q. On pre-multiplying both these expressions by x 1 and e ep e
noting that x "̂x = 1_ we have (ad) X Q = x (a0 )cnx which is condition3 e e B e p e e e
3.6.1 (iii).

(b) We first show that if V is as defined then f is a bisection.

Let (e,a,f) , (g,b,h)e S with (e,a,f)i|> = (g,b,h)ip. Then (eB'X^ (aot)Xf,

f3) = (g3/X-1 (la)x ,h3). Thus e 3= g3 and f3 = h3 so that, since 3 is g n



an isomorphism e = g and f = h. Also x’1(aa)xr = x"1(ba) 2c =e f g n

x ^ (ba)x-. Hence as x x ^ = 1 = x_x, ^ we have act = ba so that,e f e e B f f
as a is an isomorphism, a = b. Thus ip is injective. Also let (m,c,n) e T.

Then as 3:E -* F is an isomorphism, there exists e,f e E such that e3 = m

and f3 = n. We note that x cx_ ^ e B and so, since a:A -*• B is ane r
isomorphism, there exists a e A such that aa = x^cx^ ^ i.e. xg ^(aa)x^

= c. Thus (e,a,f)ij> = (m,c,n) and we have that iJj is surjective.

We must now verify that ^ is a homomorphism. Let (e,a,f),(g,b,h) e I

with fg = 0. Then (e,a,f) (g,b,h) = 0 and ((e,a,f) (g,b,h) )ij; = 0. Also

(fg)3 = (f3) (g3) = 0 as 3 is an isomorphism and so ( e , a , f ) \ M g , b , h =

(e3,xe 1(aa)xf ,f3) (g3^xg 1(ba)xh ,h3) = 0 and we have ((e,a,f) (g,b,h))

= 0 = (e,a,f)i|j (g,b,h)ip. If (e,a,f) , (g,b,h) e S with fg * 0 then (e,a,f)X

(g,b,h) = ((fg-f)+e,uv,(fg-g)+h) where u = (x(fg-f,e)) 1a0f^_fT(fg-f,f)

and v = (t (fg-g,g)) ^ 0 -  x(fg-g,h). Thus ((e,a,f) (g,b,h)) =fg-g
((fg-f)3 +e3,x“^g _f)+e (uv)a x (fg_g)+h'(fg-g)3 + h 3 ) . We note that

(uv)a = (ua)(va) as a is an isomorphism and also ua = ((x(fg-f,e))a ) 1 X

(a0 _)a(x(fg-f,f))a. By applying conditions 3.6.1 (ii) and (iii) wefg-f
have ua = <xfg_f <*e*(fg_f) g>°«fg-f) 1 X

x fg-f (aa)A(fg-£)Bx fg-f xfg-f (xfX ( f g - f ^ ° « f9 _f) B 'f6) x fg-f+f

= x (fg-f)+e 1 xe^ X (fg-f)8 (a a)X(fg-f)6(xf}X(fg-f)3 *
<J((fg-f)B,fB) x-1fg = * (fg_f)+e ((fg-f)6,eB))_1 (xj1 (aa)xf)A(fgf}p X

a( (fg-f) 3,f3) x_1fg' as * (fg-f) 3 is a homoiaorPhisin of B * 
similarly, we obtain va = x^g (tf (fg-g) 3,g3)) (x g xh ^  (fg-g£3 *

<*( (fg-g)3,h3) x”^fg_g)+h* Hence ((e,a,f) (g,b,h) )^= ((fg-f)3 + e3,

(a ((fg-f)3,e3))”1 (xe"1 (aa) Xf) A (fg_f)fio((fg-f)*,f3) x 

(a((fg-g)3,g3))”1 ( x ^ 1 (ba)X^A(fg_g ) 3 a ((fg-g)3 ,h3), (fg-g)3 + h 3 ) .

On the other hand, (e,a,f)^(g,b,h)^ = (e3,x^ (aa)x^ , f3)(g3*xg (ba)x^,hB) 

= ((f3)(g&) - f&) + eB, pq, ((f3)(g3) - g3) + h3) where
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P =  (a^fg)(gg) -fg,eg))_1(xe_1(ao)xf)X(fe) (gg)_fga ((fg) (gg)-fg,fg) and

q =  (c ((fg) (gg) -gg ,gg))_1 (x“* (ba) x ^ A  (f g) Ba((£g) (gg)-gg,hg). To

show that (e,a,f(g,b,h)iji = ((e,a,f) (g,b,h) )\p we need only show that

(f3)(g8)-fe = (fg-f) 3 and (fB)(g3)-gB = (fg-g)3 . As 3 is a

homomorphism we have (fg)3 = (f3)(g3). Also, by condition 3.6.1(i)

(fg)3 = ((fg-g)+g)3 - (fg-g)3 + g3 so that (fg-g)3 = (f^3 ■ g3 and

similarly, (fg)3 = ((fg-f)+f)3 = (fg-f)3 +f3 so that (fg-f)3 =

(fg)3 -f3 and the result is proved.

We must lastly check that ip is an isomorphism for which

(k,lA ,k)i|j = dt,lB ,Jk) . By the definition of ip, (k,lA ,k)^ = 
(k3,x"l(lA)a^xk ,k3) = (^/^ 1 lBxk ^) = ( * , ± B ,%) .

3.7 Special Cases and Applications

The first special case we consider is that when E is an co-tree 

with zero as this is the most complicated case which can actually 

be computed.

3.7.1 Theorem: Let E be an co-tree with zero and let A be a centric

inverse monoid with identity 1. Fix k e E* and let e v be a

mapping of E into with the property that v = 1 for all e ^ k.

Let a be an endomorphism of A into and let a° denote the identity 
mapping on A. For each pair (i,x) e N x E* define

w. = J (v a1 1) (v a1 2) .... (v ) , if i > 1 i,x “S x x+1 x+i-1
I l,if i = 0.

Let S = E* * A x E*u (o) and define multiplication on S as

follows:- (m.a.n)(r,b,s) = (m+t,w * (aat)w w ^ (bau)w ,s+p)
9 9 UfQi Lf n Ufi u/b

where t = [n,nr] and u = [r,nr], if nr * 0, and all other products 

are zero. Then S is a 0-simple inverse semigroup whose semilattice 

admits a factorisation compatible with the JQ -structure of S.

Proof : The proof consists of showing that S, as described above, is 

in fact of the form S(E, k, A, t , 0) and the result then follows

immediately from Theorems 3.3.3 and 3.3.4, and (3.4.2).
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The first feature we concentrate on is an addition on E, Since

E is an w-tree with zero each principal ideal of E is an u)-chain

with zero and so is inversely well-orderedo Hence, by the note

following [6, Theorem 3 . 2 ] , ^ i = i o n T  . Thus, if e,f e E*, thereE
exists a unique isomorphism £ _:Ee -+ Ef as described in (1.3.10) .e,f
If k e E* is fixed, an addition (j> with identity k can be defined on

E whereby e+f = e£^ f f°r e e E+ , f e E*. In the product (m,a,n)X

(r,b,s) we need to reconcile m+t, where t = [n,nr], and s+u, where u

= [r,nr] with (nr-n)+rn and (nr-r)+s, respectively. We note that

n+t = nr so that m+t = (nr)£ , = (nr£. ̂  = (nr-n)+m.n,Jc k,m K,n Jĉ m
Similarly s+u = (nr-r)+s.

We next note that E+ = {k+i:i e N}. Let w-  ^ = x(k+i,f) foriff
all i e N, f e E*. Then x:E+ x e * ■+ and immediately satisfies

condition 3.2.1, (1). We also make the definition that 0. ,. = a1 fork+i
all i e N and set to checking that conditions 3.2.1, (2) and (3) are

satisfied. For condition 3.2.1, (2), x(k+i,k+j)x(k+i+j,g) = x(k+i+j,g)

as x(k+i,k+j) = 1, since k+j £ k, and so v . = 1 for all n e N. On
if 1*1 ^ ,

the other hand^ (x(k+j,g))ek+ix(k+i,g+j) = w. . = ((v a ) • • »X
. ^ ^ TKao ){• \j ~ 0 j ; i?

v . ,)a x (v .a ” )....v w.,. = x(k+i+j,g)•a Thus conditiong+3~l g+3 g+3+1-1 1+3,9 n

3.2.1, (2) is satisfied. For condition 3.2.1 (3) consider x(k+i,k+j) X 

(a6k+i+;.) = aa1+3 since, as above, x(k+i,k+j) = 1. Also (a0k+j) k+i *

x(k+i,k+j) = (aa^a1! = aa1*-5 and we have condition 3.2.1, (3) satisfied.

We note now that, as E is an w-tree with zero, E contains no 

primitive idempotents andL so, by Theorem 3.3.3 (a), S is 0-simple. The 

remainder of the result follows directly from Theorem 3.3.4 and (3.4.2).

3.7.2 There is also a converse to this result.

3.7.3 Theorem: Let S be a 0-simple inverse semigroup whose semilattice

E admits a factorisation compatible with the ^-structure of S. Let E* 
iv\> 3.if- 1 j

= F* x XA.w^ere ^ an w_tree with zero. Then S has the form described 

in Theorem 3.7.1.
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Proof: The conditions of Theorem 3.5.7 are satisfied by S.

Thus there is anAaddition defined on F with e+f = e£ , _ wherek,f
k is an arbitrary fixed element of F*. We have shown above, in

Theorem 3.7.1, that if n,r,m e F* with nr * 0, then, if t = [n,nr],

m+t = (nr-n)+m. We define A as in Theorem 3.5.7.

We select a set of representatives ^  o f classes

of S contained in R„ as ii~ tkt p*W 'Tki.oK**, 3.5'*'/, &JLI ,, (k,l) r >

Let u be the representative of H , where (H ) <J> = (k,l*k+l) and leta a
un be the representative of H , where (H ) </> = (k,l,k+n) for all n e NX x t

fiUvKjc T T ,  ^  owa ii^ T L tx w ^ w v  3 . S . 7 *  
with n * 1, taking <j> as in Theorem 3.5.7. /\Thus we have

~ t(k+n,f)u_, , for all f e F* and n e N, so that unu_ = T(k+n,f)u_, .t+n i r+n
Define x(k+n,f) = w _ for all n e N, n * 1, and for all f e F*,

n ' f  W n J t L  V J 0 . - t  Ur e v U  F*.hand let vf = f ^or a^i ^ e F** A We also have ua = (aYj^_)u ' ^or aii
a e A. Let Ik _ = a, so that Ik , = an for all n e N, n * 1. Let•k+l Tk+n
a° = tk , the identity automorphism on A.Jv

From Theorem 3.5.7 we have that S is of the form S (F,k,^:A,x ,1)/) .

From the results obtained above we have S ~ F* x a  x f *u {0} with

the following multiplication in F* x a x F*u{0}:- 

(m,a,n) (p,b,q) = ( m + ^ w ^ C a a 11) w. ^ w"1 (bau)w .q+u) where t =u/ul u/ii U/P U /4
[n,np] and u = [p,np], if np *  0; all other products are zero.

The mapping a satisfies the requirements of Theorem 3.7.1

and we now need to check that v and w. are as required. Wee i ,e
note that if e e F+ then v = v, ,. for some i e N and v is suche k+i e
that u*^+i = VVf-i+i' i*e* ul+1 = Veul+1* ThuS We haVe Ve = (k,1) * 
Examining w. ^ we see that w^ ^ = v^ for all f e F*. We assume that

for i = P» w f =* vfap”1 vf+1aP”2 ..*vf+p-1 is true. We have

uP+1 uf ■ 'Vi.fl u£+p+i' However uP+1 uf= u(uPV  “ u(wP,fufV
■ (wP ,f)aUUf+P = (Mp,f)owl,£+p Uf+p+l- Hence V l . f  = (WP.£)aWl,f+P 
and the condition regarding w. _ is proved.
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3*7.4 Theorem; Let E be a O-direct union of co-chains and let A

be a centric inverse monoid with identity 1. Let a:A -*• be an

endomorphism with a° the identity mapping on A.

Let S = [(NXN)x(1*1)x a]u{o}and define a multiplication on S

as follows:- ((m,n) , (i, j) ,a)((p,q) , (j ,k) ,b) = ((m-n+t,q-p+t) , (i,k) , 
t-n , t-p.aa ba ) where t = max |n,p); all other products are zero.

Then S is a 0-simple inverse semigroup whose semilattice admits

a factorisation compatible with the /^structure of S.

Proof: The proof consists of showing that S has the form of the

semigroup described in Theorem 3.7.1 and the result is then immediate.

First a O-direct union of co-chains is, as described in (2.6.4), of

the form N x i u{0} and is a special type of co-tree with zero.

The only non zero products in N x i are those of the form (n,i)(m,j)

with i = j. Take each v = 1 in Theorem 3.7.1. With E* = N xi the
J e

multiplication on S in Theorem 3.7.1 is thus ((m,i),a,(n,j))((p,j), 

tyq,^) = ((m+t,i) r a a ^ 11, (q+u,l»)) where t = [ (n, j) , (n, j) (p, j) ] and 

u = [(Pfj) t  (n,j)(p,j)]. Thus, if x = max (n,p), t = x-n and u = x-p,

so that ((m,i),a,(n,j))((p,j),b,(q,l)) = ((m+x-n,i), aax n bax p ,

(q+x-p,b)) which is the same product as defined in the statement 

of Theorem 3.7.4 and so the result is proved.

3.7.5 The converse of this result is as follows:-

Theorem: Let S be a 0-simple inverse semigroup whose semilattice E

admits a factorisation compatible with the /^-structure of S. Let
ffv/4 (VV) 3» if • I J

E* = F* x Y^here F is a O-direct union of co-chains. Then S has the

form described in Theorem 3.7.4.

Proof: Clearly F is an co-tree with zero and so the conditions of

Theorem 3.7.3 are satisfied. We have shown, in the proof of Theorem 

3.7.4, that if (m,i),(n,j),(r,j) e F* theft, if t = [ (m,j),(r,j)(n,j)] 

and x = max (n,r), we have (m+t,i) = (m+x-n,i).
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Fix (0,z) £ F* and, as in Theorem 3.5.7, choose a set of

representatives of the -classes of S contained in .((0,z),1)
as follows;-

Let u be the representative of H , where (H )<J> = ((0,z) ,1, (l,z)) and3̂ a
let u11 be the representative of H , where (H )<#)= ((0,z) ,L(n,z)) for

X X  *

all n e N, n ^ 1, and
let i be the representative of H , where (H )<j> = ((0,z) ,1, (0,x)) for x y y

all x e Y, and

let uni be the representative of H , where (H )<{> = ((0,z) ,1, (n,x)), for X w w
all n e N, n > 1 and all x e Y.

We also stipulate that i = ((0,z),l).z
With these representatives we consider the mapping t defined

in Theorems 3.5.7 and 3.7.3. Firstly we note that F+ = { (n,z):n e N}

and so for all (n,z) e F+ and (m,x) e F* we have u, . u , . =(n,z) (m,x)
T((n,Z)j(m,x))u(n+m(X). However u (n z) = un , u (mx) = umix and

tt+m . ' n m. n+m. _u, , » = u l . Hence u p l = t ((n,z) , (m,x) )u l , from(n+m /X) x x  x
which we immediately have that x ((n,z),(m,x)) = ((0,z),l). Hence, 

for all (n,x)e F* we have v. . = X ((l,z),(n,x)) = ((0,z),l).(XI ̂ X)
Using this result in Theorem 3.7.3 we thus have a semigroup as 

described in Theorem 3.7.4.

3.7.6 Theorem; Let A be a centric inverse monoid with identity 

element 1. Let 0:A -► H1 be an endomorphism with 0° denoting the 

identity automorphism on A.

Let S = (H*NXA) u {0} and define multiplication on S as 

follows;- (m,n,a) (p,q,b) = (m-n+t^-p+t^ © ^ 11 b © ^ )  where t = 

max (n,p); all other products are zero. Then S is a 0-simple inverse 

semigroup whose semilattice admits a factorisation compatible with 

the ^  -structure of S.
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Proof: This is a modification of Theorem 3.7.4 since an to-chain

with zero is isomorphic to N u {0} and an co-chain with zero is, 

trivially, a o-direct union of co-chains. In fact we have exactly 

the situation of Theorem 3.7.4 wi£h |I| = 1. The theorem follows 

immediately.

3.7.7 Theorem: Let S be a 0-simple inversee semigroup whose

semilattice E admits a factorisation compatible with the /^structure 

of S. Let E* = F* x y where F is an co-chain with zero. Then S has 

the form described in Theorem 3.7.6.

Proof: Since an co-chain with zero is a O-direct union of co-chains

S satisfies Theorem 3.7.5. However F* = N in this case, i.e. |l|

= 1 and so we have exactly the form described in Theorem 3.7.6.

The results of Theorems 3.7.6 and 3.7.7 were obtained by 

Munn in [ii, Theorem 3.3],

The special cases obtained so far have been obtained by 

successive modifications of E in S(E, k, J); A, t, 8). We obtain 

a further special case by taking E to be an co-chain with zero 

as in Theorem 3.7.6 and, in addition, taking E^ to be a finite 

chain.

3.7.8 Theorem: Let A be a centric inverse monoid with identity 

element 1 whose semilattice is a finite chain. Let 0 :A -*• be 

an eddomorphism with 0^ denoting the identity mapping on A.

Let S = (Nxnxa) u {0} and define multiplication on S as 

follows:- (m,n,a) (p,q,b) = (m-n+tjq-p+t^O^ 11 b © ^ )  where t 

= max (n,p)? all other products are zero. Then S is a 0-simple 

inverse co-semigroup.
Conversely, every 0-simple inverse co-semigroup is of this

form.
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Proof: Clearly S satisfies the conditions of Theorem 3.7.6 and so

is a 0-simple inverse semigroup. By Theorems 3.7.6 and 3.3.4, and

(3.4.2) E admits a factorisation and E* = N * E . However, if& A
Ea = = 1 > e2 > ... > ed> (say) then N x = { (0,e1)> (0,e ) ...

> ̂ ' ed^> ^ ,el^> ^ ,e2^>* * * • Thus N x EA is itself an
to -chain and so, in the terminology of [7] , S is an a)-semigroupJwJh .

Conversely, let S be a 0-simple inverse oo-semigroup with

semilattice E where E* = {e.:i e N and e. > e. <=> i < j} . Byi i j
[7, Lemma 4.3 (iii)] there exists d e N, d > 1, the number of non

zero ̂ ^-classes of S, such that (e^,ej) ej9'<=> i = j (ibod d) . We

consider the mapping e^ ■+ (n,s) where i = nd+s and 0 ^ s <d, n £ N .

Thus, if e^ ** (n,s) and e^ •+ (m,t) then (e^,e^) e/S- <=> fl = t.

Also e. < e.<=> i > j, i.e. nd+s > md+t. However nd+s > md+t 1 3  J'
<=> n > m or n = m and s > t. Hence we see that N x {0,1,2,...,

d-1} is a factorisation of E compatible with the ^^structure of S.b
From this we have that S satisfies the conditions of Theorem 3.7.7 

and the result follows.

This result was obtained in [2] by Kochin and in [7] by

Munn.

The final simplification in this pattern is to take |ea I = 1, 

so that A is a group. The following is then the case:-

3.7.9 Theorem: Let A be a group and let a be an endomorphism of A

with a° denoting the identity automorphism on A.

Let S = (Nxnx a)u{0} and define multiplication on S as follows:- 

(m,n,a)(p,q,b) = (m-n+t,q-p+t,aat_n bat-p) where t = max (n,p): 

all other products are zero. Then S is a 0-bisimple inverse 

a)-semigroup.
Conversely, every 0-bisimple inverse w-semigroup is of 

this form.



78.

This result was established by Reilly in [12, Theorem
3.5].

Another chain of special cases can be obtained by returning 

to the original S(E, k, A, t, 0) and taking A to be a group.

3.7.10 Theorem: In S(E, k, j£;A, t, 0) let A be a group. Then 

S(E, k, i ,  A, t, 0) is a 0-bisimple inverse semigroup.

This is immediate from Theorems 3.3.4 (S') (f+'i . It is

the special case of McAlister's result stated in Corollary 3.1.3.

If we now return to Theorems 3.7.1 and 3.7.3 and make the

additional modification that .$E 1 = 1 we have the following result.A

3.7.11 Theorem: Let E be an oj-tree with zero and let G be a group

with identity 1. Fix k e E* an<̂  let e v^ be a mapping of E* •> G

with the properly that vg = 1 for all e ^ k. Let a be an endomorphism 

of G with a° denoting the identity automorphism on A. For each pair

where t = [n,nr] and u = [r,nr] if nr * 0; all other products are 

zero. Then S is a 0-bisimple inverse semigroup whose semilattice 

is an co-tree with zero.

Conversely, if S is a 0-bisimple inverse semigroup whose 

semilattice is an co-tree with zero, then S has the form described 

above.
Proof: Clearly S has the form described in Theorem 3.7.1 and so

is of the form S(E, k,j£)?A, f, 0) where E is an co-tree with zero and 

A is a group. Thus by Theorem 3.7.1, S is a 0-simple inverse semigroup. 

Also, by Theorem 3.3.4 and (3.4.2) the semilattice of S is an w- 

tree with zero and, applying Theorem 3.3.4, (V) 
is 0-bisimple.

1 (i = 0).

Let S = (e *xG*E*)u{0} and define a multiplication on S

as follows:- (m,a,n)(r,b,s)



Conversely, if S is a O-bisimple inverse semigroup whose 

semilattice is an w-tree with zero, E can be considered asO
having a factorisation E* x {1} which is compatible with theO
^^■structure of S. Thus by Theorem 3.7.3 the result follows.

This result was stated by McAlister in [5, Theorem 6.1].

3.7.12 This modification brings us to a result stated in Theorem

2.6.15 and spotlights the overlap of the situations described in 

Chapter 2 and Chapter 3. The results deduced from Theorem 2.6.15 

follow automatically from Theorem 3.7.11.
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APPENDIX
Revised version of the proof of Theorem 2.6.2(ii) and of 2.6.3.

2.6.2 Theorem
Proof* (ii) Prom Theorem 2.5.3, S is of the form S(E,T,k,CK,^ife,T^). 
Since S splits over there exists a set of representatives A of 
the ̂ -classes of S which forms a subsemigroup of S. Assume that 
A = £r(f,g) * f,g e where, in the notation of(2.5*2),
(Hr(f,g))^ = Then r(f,g)r(p,q) = r((f,g)(p,q)).....2.6.2(a)
This follows as the set of representatives is a subsemigroup of S 
and (Hr (f,g)r (p,q))0 = (*tg) (Pt<l)- Als0 r(f,g)(r(f,g)f‘ » f and 
(r(f,g)r‘r(f,g) = g ............2.6.2(b).

It is also immediate that (r(f,g)) * = r(g,f) ..........2.6.2(c).
This follows as r(f,g)r(g,f)r(f,g)= r((f,g)(g,f)(f,g)), by
2.6.2(a), i.e. r(f,g)r(g,f)r(f,g) = r(f,g).

*
For all f e E let uf = r(e+i,f) where f = i. We now show 

that these elements u^ satisfy conditions (a),(b),(c) and (d) of 
Theorem 2.5*3.
(a) Let i e N with i^ k-1 and let f e E with f = i. Then
U = r(e+i,e+i)r(e+i,f) = r(e+i,f) by 2.6.2(a) and soe+i 1
u e+iuf = uf 31x8 u e+i = e+i*
(to) let n e N with n 5 1. Then = (r(e,e+k))n = r((e,e+k)n')'=
r(e,e+nk) = u e+nfe.
(c) Let m,n e N with n £ 1 and 0 < m s k-1. Then =
r(e+m,e+m+nk) = r((e+m,e+m)(e,e+nk)) = r(e+m,e+m)r(e,e+nk) =

(e+" K +k- # -i “(a) let f,g e E with f = &  = i. Then ufu = (r(e+i,f))r(e+i,g) =
r(f ,e+i)r(e+i,g) hy 2.6.2(c). Thus û .u = r((f,e+i)(e+i,g)) = 
r(f,g).



With the notation of Theorem 2.5-3 we now examine the
definition of m^ We have m^ = u e+i+tuf w^ere £ = i*
Let p = f»t then we have m^ ^r(e+p,f+t) = r(e+p,e+i+t)r(e+i,f) =
r((e+p,e+i*ft) (e+i,f)) by 2.6.2(a). Thus m^ ^r(e+p,f+t) =
r(e+p,f+t). Hence râ  ^ = e+p, the identity of the group Gf+f

*Prom this we see that for all f e 8 , v̂  = m ^  is the identity of 
the group Gr+r

2.6.3 Prom the above theorem we have a necessary and sufficient 
condition for a O-simple inverse semigroup whose semilattice is 
an ui -tree with zero to split over $  * namely that it be isomorphic 
to a semigroup of the form S(E,T,k,G^,«^,e,v^) where, for all f e E , 
v^ is the identity of the group However a sufficient condition
foi^this to occur is that there exists a set of representatives u^ 
of certain ^/-classes of S satisfying conditions (a),(b),(c) and
, V *(d) of the proof of Theorem 2.5*3 and such that, for all fe E 
and all t e N, u e+i+^uf« = uf+t* wIlere £ =


