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ABSTRACT

This thesis looks into the possibility that X radiation 

following inner shell ionization by electron impact might 

be polarized. There has been some speculation on this 

point: one published conclusion (Cooper and Zare, 1968) 

is that the polarization must be zero; another conclusion 

(Mehlhorn, 1968) is that the polarization need not be Jero 

and can be substantially polarized. By application of the 

Bethe and Born collision theories (Chapters 4 and 5)1 it 

will be shown that both these assertions are wrong: a 

non-zero polarization can exist, but will be extremely 

small, even in the region of high impact energies. This 

work (McFarlane, 1972) has been indirectly confirmed by 

measurements of the related phenomenon of the angular 

distribution of Auger electrons following inner shell 

ionization by electrons (Cleff and Mehlhorn, 1971)* By 

extending the Bethe theory to include relativistic 

corrections after the manner of Miller (1932) it is shown 

(Chapter 6) that the polarization approaches its high 

energy limit only very slowly.

The thesis al«o looks at other anisotropic processes 

following electron and photon impact. Chapter 7 deals 1



the related problem of Auger electron angular 

distributions following inner shell photoionization. 

Chapter 8 postulates a directional correlation between 
photoelectrons and Auger electrons. Chapter 9 shows 

that the spin of a photoelectron is correlated with its 

direction of ejection, if there is significant fine 

structure .interaction in the bound state.

An appendix is concerned with the high energy limit of 

the form of anisotropies, and shows that this limit is 

more subtle than has been realized. An analytic, compact 

expression for the line polarization is hence derived and 

tested successfully against experiment and a more 

complicated theory.
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CHAPTER 1

PRELIMINARIES

1. Introduc tion

This thesis will touch on various topics which can all be 

assembled under the heading: the study of anisotropic processes 

following electron- and photon-atom collisions. A justification 

for such a study may be put forward as follows:

(a) Knowledge of angular distributions can be vital in 

obtaining accurate total cross sections. For example, 

polarization corrections must be applied to excitation 

cross sections obtained by optical measurements. (An 

account of how such corrections may be made is contain-: d 

in the review by Moiseiwitsch and Smith, 1968). Hence it 

is necessary to know the polarization of the emitted 

light as a function of collision energy,

(b) The quantum-mechanical amplitude for an anistropic process 

of the type dealt with here can be factorized into a radial 

and an angular part ( Wigner-Eckart theorem). The latter 

depends only on the rotational symmetry of the problem and 

can be treated by standard Racah methods (see, for example, 

Edmonds, i960). The former contains the detailed
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information on the structure and interaction. To take 

an example from nuclear physics, the angular distribution 

between two radiations emitted successively from a 

nucleus depends partly on symmetry properties, i.e. on 

the angular momenta of the states involved, and partly 

on the detailed structure of the states. A classical 

example is the motion of a particle in a central field.

The symmetry of the interaction leads to a plane orbit 

and conservation of angular momentum, while the exact 

shape of the orbit depends upon the detailed form of the 

central interaction. To return to the radial amplitudes, 

anisotropic processes give information on the ratio of 

their squared moduli, whereas total cross sections depend 

usually on the sum of the squared moduli. The types of 

measurement can thus be complementary.

(c) As long ago as 1933i Massey and Mohr calculated angular 

distributions of electrons ejected in collisions of fast 

electrons with hydrogen atoms. No experimental information 

was (or, to the writer's knowledge, is yet) available to 

check against their calculations. However, this kind of 

situation is changing, and experimental measurements of 

differential cross sections are increasingly becoming 

available. Such experiments will be mentioned as 

appropriate in the text. Hence the interest in anisotr .ic 

processes seems likely to increase.
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The kind of process dealt with here, then, is the inelastic 

collision of a photon or an electron with an atom resulting 

in the removal of a bound electron from an inner shell of 

the atom. (An appendix deals with the polarization of outer 

shell radiation following electron excitation).

When a photon is absorbed by an atom it thereby gives up its 

angular momentum to the atom, and hence the latter may be left 

in a non-spherically symmetric state. Thus when the excited 

atoms relax, the anisotropy can be reflected in a non-uniform 

distribution of the relaxation products (e.g. photons or Auger 

electrons). Notice that use of unpolarized radiation does not 

preclude the introduction of anisotropy, for no angular 

momentum may be transferred to the atom in the direction of 

the beam. It is necessary that a collimated beam of radiation 

be used (but not, for some types of anisotropy, sufficient).

In collisions of electrons with atoms (and molecules) the 

anisotropy can usefully be thought of as arising from the 

receipt by the atom of a momentum transfer, 'ft K  , which is

not isotropically distributed. For a given angle of scattering
A

the direction K is uniquely defined. However, if the
A

angle of scattering is not detected, the direction K is in 

effect averaged, even for a fixed velocity of impact. The



customary picture, due to Bethe (1933), is of the variation
A

of K  from being parallel to the direction of incidence at 

the threshold excitation energy, to being perpendicular to 

this direction in the limit of high energies. Hence the 

anisotropy gradually makes a transition between two limiting 

forms as the collision energy is varied. We shall make a more
Athorough analysis of the variation of K  in connection with 

Bethe's theory.

Finally, we give a resume of the contents of the thesis.

The remaining section of this chapter derives expressions for 

the polarization of the characteristic X-ray lines when the 

atom has been left with a vacancy in an inner shell, the 

vacancy distribution being known.

Chapter 2 derives a relation which relates the cross sections 

for ionization from the "fine structure” states ( Y\ 

to those for the "uncoupled” states ( m  ).

Chapter 3 obtains expressions for dipole matrix elements 

(bound — ►free) which are useful both for photoionization and 

electron ionization (Bethe theory).
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Chapter A applies the Bethe theory to inner shell ionization

by electrons. In the process a prescription is obtained for
*the treatment of the direction K which is of wider application 

(see Appendix).

Chapter 5 applies the Born approximation to L-shell ionization, 

It is sho».n that earlier treatments of this problem must be 

modified owing to their choice of quantization axis. The 

polarization of some X-ray lines is calculated in this way as 

a function of collision energy. Also, comparison is made with 

some experimental results on the angular distribution of Auger 

electrons ejected from the L^-shell of argon by electrons 

(Cleff and Mehlhorn, 1971)*

Chapter 6 modifies the Bethe theory to take into account the 

effect of relativity in the motion of the incident and bound 

particles. In effect, this requires the adaptation of 

Miller’s theory (1930)*

Chapter 7 calculates the asymmetry coefficient of the angular 

distribution of Auger electrons following photoionization. 

Some earlier calculations of a similar type are commented on.



Chapter 8 postulates a correlation between the direction of 

photoelectrons and that of the resultant Auger electrons 

following the inner shell photoeffect. The nature of the 

correlation is estimated and an experiment to investigate 

the effect is suggested.

Chapter 9 shows that the photoelectrons which originate from 

individual fine structure levels will be partially spin - 

polarized, the degree of spin polarization depending markedly 

on the direction of ejection. In particular, the polarization 

of forward-ejected photoelectrons may be obtained solely from 

a consideration of angular momentum.

Finally, the Appendix considers two opposing views of the for t 

of anisotropies in the high energy limit of electron impact.

One is these is vindicated (with qualifications) and the other 

shown to be erroneous. In the process, a very simple analytic 

formula, giving the polarization of optical radiation excited 

by electron impact as a function of collision energy, is derived. 

It depends on a single, well-known collisional parameter which 

is related to the differential scattering cross section. The 

simple formula is shown to compare well with the Born 

approximation as applied to helium excitation by :riens and 

Carri&re (1970).
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2 . The Radiative Problem

The problem dealt with in this section may be stated as follows: 

given a certain vacancy distribution following inner shell 

ionization, what will be the resultant polarization of the 

X-ray lines emitted when these vacancies are filled by radiative 

transitions from higher shells?

Due to the complete analogy between the parts played by the 

electron and the vacancy respectively, the radiative problem 

of Percival and Seaton (1958; called PS hereafter) is equivalent 

to that treated here. However, two of the transitions we wish

are not tabulated by Percival and Seaton, and we will derive uhe 

appropriate expression for the polarization of these P n e s  here.

tabulated by Percival and Seaton; we will derive this also as 

a check on our algebra.

We begin by defining our axis of magnetic quantization to be 

the direction of the incoming electrons. The percentage 

polarization of the radiation is

to consider - L$ > M s

The third transition

(1.2.1)
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t " t xwhere X. and X are the radiation intensities, in a 

direction perpendicular to the quantization axis Ox. , with 

electric vectors respectively parallel and perpendicular to 

Oz. . By a generalization of the argument given by Percival

and Seaton, we may write for V  :

-p = I o o
K * + K  (1-2-2)

K z is the rate coefficient for emission of photons 

characteristic of a dipole aligned along the Z-axis, K  is the 

total rate coefficient for emission of all photons. They are 

defined by the relations

K l = T ‘ 2 ! I  Q w

K = v  £  Q (<*) (1.2.M
oC

Here OC represents the substates of the ionized level and 

^  those of the level to which the vacancy makes its 

transition, subsequent to ionization. Q  t°o is the ionization 

cross section for the initial substate is the

radiative transition probability for emission of a Z-photon:

A, c  l< 0>' *'  * > l (1.2.5)
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where O  is a multiplicative constant which need not concern 

us here. is the radiative transition probability summed
over polarizations.

Now since X-ray levels exhibit fine structure, we must consider 

a transition of the type C^ J • The necessary

cross section transformation relation to express the Q  Cj wvft 
in terms of the Q U v r ^  established in the following
chapter. It is

q  w  *  i W v o  a  2 6)^  ° " ^ 1  U . 2.6;

where the factor of arises because Q  is

independent of Vf\$ , and we have put Using

the Wigner-Eckart theorem, we have

l **

U
(i (1_2_7)

where

A t y^'S)  =  2 (1.2.8)

In obtaining (1«2.7) we have used the fact that rnay be

considered as a component of an irreducible tensor operator. 

Using (1.2.6) and (1.2.7) in (1.2.3) gives
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K * =  %  Ci'itj]
Aiy>

0.
■ 2  2  2  I 1  *  ° W ^
^ " V  wSw,s *  yv'i°'w j V m  ’'r' i ~ " V

(1.2.9)

Also,
k = %  -.9— il) -£ii j’ q u ^n

VY\

(1.2.10)

By employing (1.2.2), (1.2.9) and (li.2.10) we may calculate

in ^ r m s  of the QCiv*') . We find

'P(U,-»M1')= 300 Qe— .Q -.
; 5 Q. +  T Q *

f ( u 5 = 300 91 “ Q o

(1 .2 . xa)

f>(L* 10O
7 Q c + 1 ' 5 Q 1 (1 .2 .11o)

where Q o  and Q t abbreviate Q  Cap,o') and Q ( a p )t±‘) .
The first of these agrees with the tables of Percival and 

Seaton.



CHAPTER 2

A CROSS SECTION TRANSFORMATION RELATION 

FOR INNER SHELL IONIZATION

i . Deriving the Relation

In the theory of atomic line polarization by electron impact, 

one calculates cross sections for excitation to individual 

magnetic substates of the upper level. We may designate 

these cross sections being any

other quantum numbers needed to specify the state fully.

If the upper level has well-defined fine structure, one 

must express cross sections Q  (w, Sv/SHs") in terms of 

those with definite Hu . The necessary relation w u  

obtained by Percival and Seaton (1958) and can be written

• Q  (.* s u  Ri
where we have used Wigner's 3j-symbol and the abbreviation

Now Percival and Seaton emphasize that this 

relation is valid only so long as three assumptions remain 

valid. These are:



(a) that LS-coupling holds (i.e. the spin-orbit 
interaction is weak);

(b) that the initial state of the atom has zero

orbital angular momentum;

(c) and that the interaction potential producing the

transition does not involve spin co-ordinates.

The related phenomenon of polarization of characteristic 

X-rays excited by electron impact, the study of which forms 

a major part of this thesis, has attracted some attention 

in the literature quite recently; relevant references are 

contained in Chapter 5» Since X-ray levels invariably 

exhibit well-developed fine structure - the ’’spin doublets” 

of X-ray spectroscopy - one must therefore express the 

cross section for ionization of the atom from i. e spin- 

orbital characterized by the set of one-electron quai lum 

numbers ( j ) in terms of the set ( TV. yv\ yt\s ) .

The published papers mentioned above have in fact employed 

a relation for this purpose. It is

Now this second relation has been employed, without proof - 
the similarity to (2.1 .1) shows that it has bee1! merely 

extended to include the second situation. The validity of

9 (2.1.2)
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such an extension is not self-evident; nor are the constraints 

(corresponding to the conditions (a), (b) and (c) placed on 

the use of (2.1.1) by Percival and Seaton) on the use of 

(2.1.2) obvious. For one thing, it is clearly not true 

that LS-coupling holds for X-ray levels. We will now show 

that (2.1.2) can be used for the stated purpose - in fact, 

the proof is very simple. But the above remarks should 

make it plain that (2.1.1) and (2 .1.2) refer to two quite 
distinct physical situations, so that the one cannot 

simply be inferred from the other.

We denote by ( ) the wave vector and spin state of the

ejected electron. In the same way the incident and scattered 

electron is labelled by ( % » > " 0  and respectively.
Hence we represent the process by the transition amplitu^-

T ( T
It will be necessary to adopt assumption (c) above - that 

the interaction is spin - independent - so that total spin 

and orbital angular momenta will be separately conserved. 

Uncoupling the spin and orbital angular momenta of the 

bound electron, we write:



 _____\ Yr\ m. - m\ /Vn m^ S 0

Conservation of total spin imposes the constraint

•+ ^ s ,
(2 .1 .5 )

The cross section is proportional to the squared modulus of 

(2.1.*t). We see that cross terms will arise in YV\ and 

However, the conservation condition (2.1.5) eliminates cross 

terms in Yf\$ ,and the remaining cross terms vanish as a 

result of the condition

yn* = m  -+ m<- 0 (2.1.6)
imposed by the 3j-symbol. Thus we have

£  ( *  (2>ll 
m  m s » o '

and (2.1.2) follows immediately. We see that the fact that 

the spin component of the ejected electron is a good

quantum number is essential to the existence of (2.1.2).
This corresponds to the imposition of the constraint (b) 

in the case of discrete excitation. In other words, (2.1.1) 
and (2 .1.2) hold because in the former case there is no 
spin-orbit interaction in the initial sta^e, in the latter

7)



there is none in the final state.

As for condition (a) above, the question of LS-coupling, 

we see that it does not arise for inner shell ionization, 

where the ionized subshell is initially complete and 

therefore there is only a single vacancy in the shell 

after ionization. The Pauli vacancy principle tells us 

that this vacancy behaves like a single electron in an 

otherwise empty subshell.

2. Physical Interpretation

In the previous section we saw that the relations (2.1.1) 

and (2 .1.2 ) hold only so long as there is no spin-orbit 
interaction in one of the two states connected by the 

collisional interaction. It is possible to present . 

physical interpretation of this rule as follows. The 

physical content of the two transformation relations is, 

in effect, that no interference takes place between the 

amplitudes represented on the right hand side of each 

relation. In Figure 2.1 a schematic diagram has been drawn 

of the collisional transition ^  . The

degenerate magnetic substates have been shown as separate 

for convenience. We can think of the transition as being
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accomplished in three distinct stages: first, the spin- 

orbit interaction in the ground state takes the atom into 

a state of definite Mc ; secondly, the collisional inter

action causes a transition to an excited state of definite 

M y  ; and thirdly, the spin-orbit interaction in the 

excited state takes the atom into a state of definite .

In particular we have shown the transition ( Y\

There exist two possible paths 

the transition may take, subject to the conservation of 

angular momentum: via upper states with M usO and 

respectively. However, the amplitudes for these two paths 

may not interfere if it is possible, in principle, to 

determine which was taken in any particular case without 

disturbing the process. This rule is a consequence of 

the Uncertainty Principle and is basic to quantum 

mechanics. A discussion of this point may be found in 

Feynman and Hibbs (1965i Chapter 1). To use their 

terminology, the two paths represent exclusive (as against 

interfering) alternatives, because they could have been 

separately identified by the information available. If we 

use a spin-polarized electron beam and detect the spin 

component of the scattered electron, we know from spin 

conservation the change in spin component of the atom,

A m . Measurement of the initial and final orientations



of the atom gives us A m , . Hence, since 

we know which of the two paths was actually taken in a 

given instance. Note that preparation of beam and 

target in no way limits the discussion, since unpolarized 

beams and randomly-orientated targets can be represented 
by statistical ensembles of prepared systems.

Figure 2.2 by contrast illustrates the transition

— ►  n* • Here we
can still determine & M U , but paths (1) and (2) both 
have A M j = + l  and are therefore interfering alternatives.

Figure 2.3 shows that no interfering alternatives arise for 

the case of ionization, since we are faced again with 

exclusive alternatives.

3* Coupling to Angular Momenta.in Outer Shells

A contingency which would upset the simple situation 

corresponding to (2 .1.2) would be if the angular momentum 
of the vacancy were to couple to another source of angular 

momentum - that of a partially filled outer shell. However, 

such coupling would lead to a further splitting of the 

X-ray doublets and could be observed experimentally. In



fact, the idea that such higher multiplicities could arise 

was propounded as far back as 1926 by Coster and Mulder, 

but has never been observed in the Kor L groups, due 

probably to the large natural widths of the lines. Van 

der Tuuk (192?) has observed what appear to be unresolved 

multiplets in the M series lines of the rare earths. Thus 

it seems reasonable to treat the atom in an inner shell 

ionization process as if its initial angular momentum 

were zero, in accordance with assumption (b) of § 2.1 .
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CHAPTER 3

THE DIPOLE APPROXIMATION

1) Dipole Matrix Element: One-Electron Problem

In the following chapters of this thesis we shall see that the 

same matrix elements - those of the components of the position 

operator, r - occur both in the treatment of photoionization 

and in the treatment of electron-atom collisions at high energy- 

known as the Bethe approximation (see, for instance, Mott &

Massey, 1965» p.^97). Therefore it seemed appropriate to evaluate 

these matrix elements prior to a consideration of either of these 

theories and to call on the results whenever necessary.

It simplifies the use of tensor operator theory if we express r 

in terms of its spherical components, T  Cj* s o , t l  )

These are related to the Cartesian components by

We require the matrix elements of these operators between initial

and final states l t t>  and \ % > where

(3*1.2)
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represents the bound state of the electron and is therefore an 

eigenstate of angular momentum; and

^  2  (0* 'C<K> X„<r> G„(r)

represents the ejection of the electron in the direction X 

with momentum ‘K , and thus is not an eigenstate of

angular momentum. is the radial wavefunction divided

by K r  and Sj is the phase shift (Coulomb + non-Coulomb)

of the 1th partial scattered wave. The normalization of Gp CY'') 

need not be discussed here, concerned as we shall be with 

relative transition probabilities. It will be convenient to 

rewrite (3*1»3 ) as

- 7) Q.(Vn') U.l.iO
where

a  (t,m) =  A - V  (if *  ^  X *  ($■)
(3.1.5)

The dipole matrix element for the transition may now be written:

< vh l r c ;  l t t >  = 2  M V O  f t * *  < t m | C j kU W >

(3-1.6)
is the radial dipole integral

- \ T  K / r) i}T) ^  ( 1 . 7 )
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By application of the Wigner-Eckart theorem

=  ( - l / ” " <  t  II C 4- H >

/ *' 1 i \
\ Yf\ /X. — Vy\ ) (3.1,8)

where the reduced matrix element

< t | l  C1 H ' >  = (- i)*  t i 1
~  (3.1.9 )

and ^ “* being the greater of £

and £ . Thus (3.1*6) becomes

< O h l r C ^ H < > =  £

. >0 /*• 1- £ \  (3.1.10)
* * *  V ^ '  - m  J

The transition probability is obtained by squaring (3.1.10):

p (raW-* %) = K+*lrC*\+t>f
= E
. ^ < . * v v  £  C  ^  v

(3.1.11)
/ V 1 ti \ / JL1 i ^  \
\ >*• -m'-jw V vy\’ /a -m-jxj
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where the properties of the 3j-symbol have been used to eliminate 
two summations. We make use of the convenient quantity "p , 
where 'P = o<P is the exact transition probability and ©< 

is left undefined at this stage. We now integrate over all 

directions of ejection and use the orthonormality property of 

spherical harmonics. Thus ( 3 » 1 * H )  becomes

■P (nl'm' — ►K') =  \ cL<o(&)
J (3.1.12)

,7-, „ t a' i & \*= ( \  0 *>«■ \ mH \ m  jx -rn-pi

The summation over & is limited by the selection properties 

of the 3j-symbol to the terms X. = + 1. and

Hence we have, on dropping the primes,

P (ri 1yy\ >■ X) = M f

I  1 / t  1 A-i ^?<3.1.13)
m  /i

If there is an appreciable spin-orbit interaction in the initial 

state, we must describe the bound electron by means of the 

quantum numbers ( T\  ̂ ) • Hence to evaluate the dipole

matrix element we first make the expansion
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= Z
rn ,vnjt,,s

l-k. + m i   --- , \  I ^  'X jC-i) * 0 Cj3
.m ">s -VA-, , (3>1>i4)

where C j l = Z j  + l  • \ % >  is unchanged apart from

multiplication by its spin function • Evaluating the
5

dipole matrix element as before we find that

<+t IrCil'HV
%

where we have summed over final spin • 0n squaring the

matrix element and integrating over angles of ejection we can 

show that . ^
=  £ (l i

m  W  ~n'j

(. .1.1b)
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2.- Dipole Matrix Element: Many-Electron Problem

In this section we generalize the considerations of the previous 

section to atoms containing many electrons. In such atoms the 

electron which is removed by the ionization process will initially 

be coupled to the other electrons via spin-orbit and electrostatic 

interactions. Also, we must take account of the indistinguishability 

of the electrons;this means that, as fermions, they must be 

represented by a wavefunction which is antisymmetric under exchange 

of particles. Accordingly, we shall construct such N-particle 

wavefunctions for the extreme cases of L Sand, j - j coupling, and 

use them to recalculate the dipole matrix element.

We assume that the initial and final states may be represented as 

a Slater determinant of spin-orbitals, the radial wavefunctions 

being calculated in the central field approximation.

(a) .j-.i Coupling

Here the good quantum numbers are )........ i i

jl > ]x •>........ *> 1 ......... ^
(along with N - 2 quantum numbers representing intermediate

stages in the coupling of the j's to form J). We write the

initial state wavefunction as
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T n i  f

(3.2.1)

where 'P is the permutation operator and CX represents 

the remaining 4-N'~2. quantum numbers. The final state 

wavefunction may be written as

' %> = 1= £ a M  S' («*u J"
■J N !  ? Ijm

• Q? (Tf\iLmn w i ^  (3.2 .2)

where <X is as given by (3.1«5 ). Y  represents the state

of the ion and Q  that of the ejected electron. We now expand 

the N-particle wavefunction in terms of its (N-l)-

particle parent wavefunctions:

i*t> = Z I *'
<V>
YV'IJV „ , (3.2.3)

• O ' T V - S - V  1 } « X T >

where K T V ^ o 1

M m' \ d*1*)

z> -y \ Ctrl**-
\ m ,‘ w;' - M J
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Note that in this expression the (N-l)-particle functions 

S' T ' M j )  are understood to be antisymmetrized. The 

quantity , the weighting coefficient

in the expansion (3*2.3)i is known as the fractional parentage 
coefficient. Since the parent wavefunctions are orthonormal, 

the matrix element of a one-electron operator may receive 

contributions only when initial and final states possess a 

parent in common. Thus I'YO- as written in (3*2.3) consists 

of a series of products of (N-l)-particle functions with 

one-particle functions, whereas i % >  consists of only one 

such product. Hence a non-zero contribution to the dipole 

matrix element occurs only when OC* — OC , IT = ”3" > j — Mj* 

(or, in other words, when the "core" of non-jumping electrons 

does not change its quantum numbers). Hence the contributing 

terms in the expansion of 1 are

2  +  ( < * “ 9  ( n ' v y  r v r O

(3.2.5)

At this point it should be noted that we shall use the Pauli
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approximation to the exact Dirac wavefunction for the bound 

electron in evaluating the dipole matrix element (see Bethe 

and Salpeter (1957) p.1^8). In the Dirac theory, the radial 

eigenfunction depends on j and the argument presented here 

breaks down. The Pauli wavefunctions will constitute a good 

approximation only so long as -  Z/»f is not

comparable to unity. It is worth mentioning also that the 

Pauli solutions approximate those of Dirac more closely for 

j = X +  ̂  i since we shall be particularly concerned with the

level arising from ionization of the L^-subshell (n = 2,

The dipole matrix element is thus
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where the expansion

c? w y  tV>V>
=  2  Q  { - n ' V r ^ Y < \ n  * *  y

- W  U ’ (3.2.7)

CV]'1 ( V " Js-+,v’v
has been used.

The reduced matrix element < u  c 4 w «.* >  is given in 
(3*1*9)* We now make use of the assumption that we need only 

consider the ejection of equivalent electrons, so that the

summations over 'Yl'>  ̂ and in (3*2.6) vanish. This

will avoid cross-terms arising in these quantum numbers. Taking 

the squared modulus of (3*2.6) and integrating over all angles of 
ejection we find

= (.%’d -t i ) (Vn* V}
•2 2  i 11 i.

2.

N*1

** «,«j W  w  ‘h * ) V w  w s -tywj I (3>2<8)

,W\ /A.

where we have averaged over initial atomic orientations ’
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summed over final spin orientations ; and dropped the

primes on the initial one-electron orbital.

Now the form of (3*2*8) as compared with (3*1*17) implies that 

by taking account of the coupling to the other electrons we 

will in general reduce the degree of anisotropy in the final 

orientation of the atom. However, for the important case of 

a completely filled subshell ( 7 = - O ) prior to ionization, 

(3*2.8) reduces to (3.1.17)i apart from a factor of ( +  1 ) ,

(which arises because of the implicit assumption here that the 

probability of finding an electron in the orbital ( Y\ k. ^ )

is ( <(̂ ■'■1. ) ̂  , whereas in the previous section it is unity).

One might have expected such a result from the MPauli vacancy 

principle".

(b) LS coupling

In this case, the good quantum numbers are •£, ^..........

S4)S2 > ................... . SN , U 5 S ,  ^  and (along with 2N - k

intermediate quantum numbers). The initial state wavefunction is

\ X >  = j = L  £  C - i / f  (3.2.9)
n|n T  ^



The final state wavefunction is

' ̂  >  ' 'Jn ’i ^  ^  (_1^  ^  a  ^ m>)* £>m

• S '  (<*." L "  S “ "3 “ M j "  } ^  (r> 4. w  ■ m s') (3.2 .10)

Again we may expand I » an N-particle wavefunction, in

terms of a series of (N-l)-particle parent wavefunctions:

|Hl> = Z  U i '
. <oC 0 S',Y\'4.' (3.2.11)

where

\ <*' L.' s' V «<LS7Mj 3>
= S  E  2  s'M'to <$(«’*.

M',w M.Hj

/ l‘ V  L \ / S' s' S \ / L s s

U '  m' - M  / VMj’ mi - M s / \ H  Ms - M ,

(3*2.12)

The are understood to be

antisymmetrized. Noticing that the final state (I -1)-particle
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functions are expressed in the ( L. 75" M 3 ) coupling scheme, 
we may now express the ^  C 0(' L 1 S' M  ' } ±n terms of

the wavefunctions S' (<*' u ‘ S ‘ M-j') and proceed as for
j-j coupling. However, an alternative and more elegant 

procedure is to use the following expansion in place of (3.2.12):

I <*' U' s' >w Oj U S 7tAj>

5 ¥ -  (V S' *")
t '  S' V  I

l L  ^  ) , O . a . w ,

• ( c i r ' K y m - i t s  i ) 1*

\<*V *>'!' •,
= 2  t U ’ i S' -3-' M,") 9  (n1 V o' wtf 1

where

(5,2-14). f r  v ■* \  c - i r " 4 ^  t t f i

V t v  -h3 j

The transformation (3*2.13) relates two possible methods of 

coupling the four angular momenta U  5 ̂  , S* anc*

to form a fifth, <3*' • The two schemes are indicated 

diagramatically opposite. By means of (3*2.13)» the eigenvectors 

of Scheme (a) are related to those of Scheme (b). It is well



35

<cO

<b)
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known that the coefficients of such a transformation must be the 

9 J  - symbols (see Messiah, 1961, p.1066).

Substitution of (3.2.13) and (3.2.14) in (3 .2.11) gives

: E, Z  S
7'V M ' wv,'

• Ĉ > <(X.'

u ‘ s ' ^  •' <
S' " U  j

\ \M-S - M 3 I (3.2.15)

• (Ctf3C^CylCL3LS3')*(-!')

n T '

By the same reasoning as before, the only terms in (3*2.15) 

which contribute to the dipole matrix element are

2 3  vp(.*" lh s" m th) 9 <«' ■*•’ V  W )
1.1
d

l ” S" 7 " ,
i 1 s '  < ° < V S ,> , 1 , \ } L $ >

L S T
'5T" “T  \  v'/o V I , J 3 . 2 . 1 6 )

fo-Mf -M J
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It is interesting to note the similarity of (3.2.16) to (3.2 .3 ), 
the corresponding expression for j-j coupling. They differ 

only by a multiplicative factor which is independent of M-y 

and M y  , the initial and final orientations of the atom 

respectively.

Once more we assume that the ejected electrons are equivalent 

initially* which means for LS-coupling that the summations over 

Y\' and 1L* (but not ^  ) vanish. From this point the evaluation 

of the transition probability proceeds as before and yields

L" S" C L." S"

S ?

s "  3 

Hj-n; -Hjz  z
Hj

c a e v ]

j'\
YV\ ¥VV - w

(hi)  ^
1 l + l

m  /a -vn-yA (3.2.17)
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A more complicated result equivalent to (3.2.17) has been 
obtained by Flugge, Mehlhorn and Schmidt (1972) by a simple 

extension of the work of Cooper and Zare (1968). The latter 

start from an expansion of the final state many-electron

different from that outlined above, which seems to be shorter 

and more elegant to the present writer. One arrives at an 

expression equivalent to (3.2.17) by squaring equation (2) 
of Flugge et al. It is thus apparent that the method given 

here leads to a more economical result, since the alternative 

expression involves copious numbers of cross-terms in unobserved 

magnetic quantum numbers and is altogether more cumbersome. The 

equivalence of the two formulae can be demonstrated by the 

application of the standard relation for 9j-symbols:

wavefunction procedure appears rather

a b c

By comparison, the only cross-terms arising in (3*2.17) are those 

involving j . Since S = the values taken by j are limited by
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the triangular relationships as follows:

j = 4 t *
J (3.2.19a)

T + 7 "  >  \ >  IT-7" I1 ■ (3.2.19b)

We see therefore that the double summation over j and j* in 

(3.2.1?) never involves more than four terms. In fact, if

£  = 7 + 7 " + ^  (3.2.20a)

or

j u  i 7 - r v ’x
(3.2.20b)

only one 9j-symbol need be evaluated, and no cross-terms remain.

Comparing (3*2.17) and (3.2.8), we see that the two coupling 

schemes in general give different relative probabilities for the 

different final atomic orientations M j M . As one would expect, 

though, for ejection from a filled subshell, LS-coupling, 

jj-coupling and the one-electron model all give the same results.



CHAPTER k

THE BETHE THEORY

1. Preliminary Remarks - Threshold Polarization

In the theory of the polarization of atomic line radiation by 

electron impact, one distinguishes three different situations 

regarding the collision problem:

(a) At threshold: At the threshold excitation energy, the

relative probability of exciting the different magnetic 

substates of the upper level may be calculated purely 

from a consideration of angular momentum conservation, 

no detailed knowledge of the collision process thus 

being necessary.

(b) Near threshold: In this region, reliable calculations 

of the collision cross sections are most difficult to 

obtain, so that experimental measurements and the above 

threshold law provide an important test for collision 

theories.

(c) Far from threshold: Here the theoretical calculations are
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sd.iQp3.ep* The most important and most frequently employed of* 

such theories is the Born approximation. The question of 

interest is how close to threshold one may apply the Born 

theory without encountering significant deviations from 

experiment. However, the situation is complicated at high 

energies by "cascade" population of the upper level.

In the following sections we shall be concerned with calculating 

the relative vacancy population of the magnetic substates of 

the excited level produced by the removal of an electron from a 

hitherto complete inner shell. It is of interest to compare 

the problem with that of outer shell excitation for each of the 

three cases distinguished above.

(a) At threshold: At the ionization threshold, the scattered

and ejected electrons have zero velocity and therefore zero 

orbital angular momentum. As we choose our quantization axis 

along the direction of incidence and recall that a complete 

subshell has M  = O  , the total orbital A.M. component

along the Z-axis is zero prior to the collision. Hence only 

vacancy states with zero A.M. component in this direction may 

be excited by ionization at threshold. However, the situation 

is complicated by the existence of discrete unfilled levels 

below the ionization continuum. These levels may be filled as
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a result of the collisional excitation, and hence obscure the 

threshold law deduced above. Strictly then, the threshold 

energy will be that required to excite an electron to the 

first unoccupied outer level. Only if this level is an S-state 

(L = 0) will the above selection rule still hold. If L = 0, 

we have merely A  M = 0  for the transition, a restriction

which will not lead to large inequalities in the vacancy

population over the magnetic substates. Even if the first 

unoccupied outer level should be an S-state, the situation is 

complicated by the fact that the outer energy levels may be so

close compared with the energy spread in the incident electron

beam that any large threshold polarization is effectively 

smeared out.

(b) Near threshold: Again, the situation is more complex than 

for the outer shell case, due to the absence of a well-defined 

selection rule and the importance of the discrete excitations 

in this region.

(c) Far from threshold: Here it should be permissible to 

neglect the influence of discrete excitations, and to estimate 

the ionization cross sections accurately at such high energies.
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The considerations outlined above induce us to begin our 

investigations with the high energy region, where one expects 

the calculations to be simpler, and also where one might 

expect to find large polarizations resulting from inner-shell 

transitions, by analogy with the optical case (see Percival 

and Seaton (1958) p.133 )•

The remaining sections of this chapter apply the Bethe theory 

to this problem. Although worked out in considerable detail 

in Bethe's monumental paper (1930)* the theory has not been 

fully appreciated or exploited until recently. An interesting 

review of the Bethe theory has recently been given by Inokuti 

(1971).

The following chapter extends the results to lower energies 

using the Born approximation.

2. The Bethe Limit

The Born approximation leads to the well-known transition matrix 

element

< ^ - f  I A x p  Ci- !$•!'') \ '-v>  (^.2.1)

At sufficiently high energies of impact, the bulk of all 

ionizing collisions are due to small angle, "glancing" collisions,
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that is, collisions involving small momentum transfer K  

Hence we may perform what is known as the Bethe approximation, 

and replace the exponential in the Born matrix element by 
the first two terms in its expansion:

'-K-t

so that

l< ̂ \ jLxip a ts-xM L>\a - Kfi £r i t>l‘
The scalar product K.£ can be expanded as follows:

(4.2.2)

(4.2.3)

K - £  = K r  £  C * * ( e K)<?K ’> C *  ce,^')
/>• (k.Z.k)

_ -i.The C^_ are the spherical tensor components defined by equation 

(3 .1 .1 ). ( e K><?K ) and are the polar angles of K •

and £ respectively in a coordinate system where the Z-axis 

coincides with the direction of the incidence of the electron. 

Equation (4.2.4) allows us to write

=  k  £  c ^ c e * , ^
*  A (^.2.5)

We can simplify (4.2.5) further by the assumption that is

virtually perpendicular to -feo » the wave vector of the 

incoming electron, so that we may set • The validity



45

of this approximation will be scrutinized in the following 
section. Using this fact we have

<  £ I % - t  l i-> *  K  {  4-'^* \ r

+  e , \  i.>^

(̂ .2.6)

Since we do not detect the azimu: thal angle (£K , we must 

average over this variable. Hence we obtain

J K - f - 1 U > l * c ^
O

. 0(^.2.7)

We now identify | i as the bound state of an electron 

specified by the quantum numbers and if as the

continuum state representing an ejected electron of momentum 

fcX . O n  integrating (k.2.7) over all directions of 

ejection, using (3.1.1^) and inserting explicit values for 

3j-symbols, one finds

y jj ' L>'̂
=  K a [  x f  ( M X M )  + v,»

L
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Now the total cross section is given by the relationship

^ z r
x) —  V ttq6 1 di(Ka"> H*

^  Kiv * *  *
*TT j 1 l<f (4.2.9)

where we have

^vruw ~ *^o ~

(4.2.10a)

(4.2.10b)

We follow the customary practice in the Bethe approximation of 
putting

Km»K
t f M o  (4.2.11)

It is also customary to disregard the kinematic upper limit 

Kfh<o< 1 replacing it with the value K c , called the 

"momentum transfer cut off". Here we shall put

kr -*0 \ ft J (4.2.12)

and ignore all collisions resulting in larger momentum transfers. 

It will later become clear that this practice is consistent with 

the other approximations made in this section, in particular 

setting 0 K =
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Using (4.2*8), (4.2*9)* (4.2*11) and (4.2*12), and integrating 
over K  , one obtains

X} = ^ al JL (4-E. \
^  v<t'
ff+tXft+iQ + no -t yvn1 *7

' W m ’ 2>X2Q.+i) \ * - l  a ^ +l) (2 M )  J

(4.2.13)

Finally, we must also integrate over all possible energy transfers 

Afc . This is equivalent to an integration over , since

A e  = 1.8. •+

where X A*. is the ionization energy of the -subshell.

Note that the argument of the logarithm in (4.2.13) is dependent 

on AE. , but since this dependence occurs in a logarithmic term 

it is usual to simplify the integration by putting A E  1*^ 

in this part of the integrand. Thus one has finally

Q  Iml - Q  Cvx̂ /vv -> contivm**w\}

‘- t ' sf a * (MX̂ 2)̂ - r i
J ^ x ,4 + i ^(oH^X^+i") J 2.(ctUlX2ft.-0

f i ( (4.2.15)
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It is apparent that the cross section (R2.15) factorises into a

part dependent on collision energy £ , and a part dependent on

m  , the magnetic quantum number. Hence the ratio Q  •w*/'Qlm'l
in which we are interested is independent of £ • For the 

particular case of ionization from a subshell, we have

Q < y  - R.2.16)

To obtain a numerical value for the ratio we must now make some 

assumption about the wavefunctions to be used in evaluating the 

we take 'them to be hydrogenic and use the data of 

Bethe and Salpeter (1957 p*550) we find

= o - 8 1 V  ( R 2.17)

Note that the ratio is also independent of 2  . Using results

derived earlier (see Chapter 1, (i .X. 11̂ . >c.) ̂  we obtain
estimates of , the high energy limit of the polarization,

for three lines of the L series.

= -5-04-% (*K 2.18a)

Xa C k , ^ = ^  — *■ L i') - - 1 0 0  4  (4 .2.18b)

f U ( U ^ =  = + M l 7 .  (4.2.18c)



49

These polarizations are small, whereas for many optical

transitions is large. It is possible to gain some physical 

insight into this result as follows:

If the collision energy becomes sufficiently large, the momentum 

transfer will take place virtually at right angles to the 

direction of incidence. This means that any transitions which 

result from the collision must obey the selection rule

. A m =  ± 1
(4.2.19)

This is true both for optical excitation and for inner shell 

ionization. In the latter case, the only transitions into the 

continuum in the Bethe limit are those which are optically 

allowed:

(4.2.20)

With the aid of these two selection rules we can illustrate the 

situation diagramatically. In figure 4.1(a) we see that, 

notwithstanding the selection rule, transitions from all magnetic 

substates into the continuum are possible. In figure 4.1*(b), 

however, transitions from the state ( ) are forbidden.

If only this latter case were important, the vacancy distribution 

after the collision would be highly unequal and the polarization 

of the characteristic X rays large. That the polarization is in 

fact small is a result of the inequality
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^  ^ X 3 (4.2.21)

when the radial eigenfunctions are hydrogenic. Thus the question 

arises as to whether the inequality (4.2.21) could be reversed 

in a case where different wavefunctions were appropriate 

particularly since the sensitivity of the integrands in (4.2.21) 

to small changes in the form of the radial eigenfunctions is well 

known from the related study of photoionization. In fact, it is 

known that for certain atoms one has the phenomenon known as the 

"Cooper minimum" in the photoionization cross section as a function 

of photon energy. This is due to the vanishing of for

certain values of X  . Anisotropy following photoionization 

will be dealt with separately in Chapter ?• However, the integration 

over X tends to mask this behaviour, and it appears likely uhat

(4 .2.21) will be obeyed by any physically realistic wavefunctions.

The Bethe theory, as we mentioned earlier, is capable of a greater 

degree of sophistication than that which we have deployed up to 

this point. The following sections therefore will seek to improve 

on the situation, re-examining in the process the assumptions 

on which this section is based.
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3• An Improved Bethe Theory I : Direction of Momentum Transfer

The version of the Bethe theory employed in the preceding 

section is useful for three reasons: firstly, it allows us to

the characteristic X radiation; secondly, it provides a check 

on the more accurate Born cross sections to be calculated in 

the following chapter; and lastly, it provides us with the 

simple physical picture which results from the selection rule 

k m  - ±  1 ( see Fig. (k .1)).

However, as a source of realistic cross sections - even for the 

region well above threshold - the theory is inadequate. Its 

inadequacy stems from the neglect of terms of order t- in the

cross section with respect to the EL EL term. A more

realistic form for the total cross section would be

Of course if El is sufficiently large one expects the 

logarithmic term in (3«5 »1) to dominate; but if then

the non-logarithmic term will be important even for very large 

£  . A study of this problem has been made by Schram & Vriens

(1965). They show that, for the ionization of a hydrogenic atom

predict , the high energy limit of the polarization of
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from the 2p-state, the ratio B/A = 10.177. Hence the possibility 

®xists tliat the simple calculations of the preceding, are nowhere 

valid, since for E. such that the non-logarithmic terms is 

negligible, one may be well into the relativistic region - 

particularly since one is dealing with processes where the 

ionization threshold is high. The question of relativistic 

corrections will be dealt with in Chapter 6. In this section
-Xand the next we calculate the term of order EL in the cross

sections Q(2p,m — ionization continuum). One contribution

comes from the close collisions - more specifically, from those

transitions involving momentum transfers >  1k K 0 , where K 0

is the so-called "momentum transfer cutoff factor", to be

defined below. This contribution is well-known and is dealt

with in Bethe’s original (1930) paper. A further contribution,

peculiar to ionization from (or excitation to) states with .veil-

defined magnetic quantum number , arises from the removal

of the assumption that 0* , the angle between the momentum

transfer vector and the incident electron momentum ,

-i-s • This assumption is made in the previous section and

in all Bethe literature known to the present writer. In other
ITwords, we shall show that setting ^  equivalent for

these cross sections to the neglect of a term of order E. .

Consider the situation as presented in the diagram:



We have

C O S 0 K  = - »,aK J k K  C4.3.2)

From conservation of energy this may be rewritten

£  +
C OS0K~ nJkJK*' (if-3*3>

The Bethe procedure is to split the integration over K  into

two ranges, ^ K*© and K 0 — ’ where and

are the kinematic limits and Ko is chosen so that the dipole 

approximation, ^ ~  L /£•"£ > i-s valid

throughout the lower range:

Ko «  (4.3.if)
where is the reciprocal orbit size of the v\E -subshell.

Equation (4.3»^) may thus be rewritten:
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K  «  / E»e 
V

(4.3.5)
Now is the ionization energy of the h ft. -subshell, so

that E*S_ ̂  hi. , the energy transfer to the atom in an

ionizing collision, and we may write:

W''1 <C<
^  (4.3.6)

Use of (4.3*6) in conjunction with (4.3*3) leads to the conclusion 

that in the dipole range Ko one has

z ie .

~  KvnivN ^  (4.3*7)

so we see that 0^= ©  when , and if K 0 » We have

6 k  = ^  • Hence the integrand in this region of the 

integration may not be simplified by assigning a fixed value to 

6 k .

k ; can be chosen such that

■"<
-t* (4 .3.8 )

only if
KVniw ( *■»3 • 9)s .  A  » * •



5 G

Sin°e -K2- AE (A.3.10)

condition (4.3.8) can be satisfied in the range of energies to 
which the Bethe applies.

Hence we can write

Ceos4 0 * \ =p. «  1
0.3.11)

4-ft? +  a ~COS © K 0: ^ ^ ac i
4-*

X  (4.3.12)0

Equations (4.2.11) and (4.2.12) appear to suggest that asr ,.gning 

a fixed value to 0 *  in the upper region would also be 

unjustified. However, it is well known that the contribution 

to the cross section is negligible unless K  i.e.

we can choose a second cut-off K* such that

2 m _ A E  < . <  K *  < <  - C
■ (A.3.13)

and integrate only from K© to ^ 1. .

Now

(co?? 0» Ki
4-Jfe?

<< 1
(4.3.14)
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So we see from (4.3»H) and (4.3*14) that no significant 

error is sustained in the upper integration region by setting 

We shall call on this result in the following 

section. Meanwhile, we shall re-evaluate the dipole 

contribution taking into account the variation of © k  •

Assuming that K is contained in the XZ-plane, we may write

>< 1 K\£ \ - KSmQ^. <  X  I 3C- I n-R. m^>

K cos < X  1 (4.3.15)

A
We now square, integrate over X  , and evaluate angular factors:

j l < «  i t$.'C

+ k W © <  (  X
[ (2-5-+ C2A.rlX2firl̂  )

Now
+0(1?) (4.3.17)

'Kwvtw ^
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ASince we retain terms of order at least in the total

cross section, only the first term on the right of (4.3.17) 

makes a significant contribution. Note that this term is 

independent of the cut-off parameter K e .

The differential cross section in the dipole region is

- ( K a . f W O  \k * i A

Use of (4.3*16), (4.3.17) and (4.3*18) allows us to perform 

the integration over K  , upon which we find:

The dependence on the cut-off parameter K© will vanish when 

the non-dipole contribution is added to (4.3*19)•

* 6 ^ * %  L 
r a+iw+iO+wv* »*■ . m-i) + *»>* *?■ 1
1  a*-+iX2*+f) (2t>+iX2*.-l) ,<WJ

(2+ii - m  
C2*-+JX2«.+l') C4t+fXAt-i)

It may be shown without difficulty that the additional term 
^.1of order t  vanishes on performance of a summation over vw 

To demonstrate that it is non-negligible, note that the



argument of the logarithm may be written

(4.3.20)
Since the first factor is small compared to unity (see (4.3.6)), 

the logarithm may not be large compared to unity until E is 

very much larger than AEL. indeed.

The presence of the EL term above is a result of kinematical 

considerations; hence we might expect it to be of importance 

for any discussion of the form of anisotropies in the high- 

energy limit of the Born approximation. In fact, the only 

recognition of its importance known to the writer is that of 

Zare (1967) in his calculations of the angular distribution 
of products in the electron impact dissociation of n a 

Zare points out that the form of the Born integrand is such as 

to weight strongly small values of K  , of the order of Kmiv, • 

Since for KVvû  we have 0 K = O  , as demonstrated above,

the effect of setting 0 K =U^ is to make the form of the 

anisotropy approach its high energy limit too rapidly. Zare 

supports his case by theoretical and experimental examination 

of the above-mentioned angular distribution. However, he does 

not consider the Bethe cross section (4.3.1), which gives us 

in analytic form the high-energy behaviour of the Born cross
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section, so his arguments remain more qualitative than those 

presented here. Zare also makes an incorrect extension of 

his argument in which he asserts that the form of 

anisotropies will not, in general, reach that value

impact energy; on the basis of this he suggests that some 

of the results of Percival and Seaton (1958) are in error.

In an appendix to this work it is demonstrated that Zare's 

reasoning is mistaken and that, in fact, the results of 

Percival and Seaton are correct. However, it is shown also 

that for the case of optically-allowed excitations, the 

approach to the Percival and Seaton limit will be slower 

than for optically-forbidden excitations.

k . An Improved Bethe Theory II: Non-Dipole Transitions

e-*We now evaluate the remaining contribution of order c. to 

the Bethe cross section formula (3.5.1). It arises from the 

region , where the simplification

P (iK ^  ~ I*** l is inapplicable. To this end,

we define the generalized oscillator strength ft as

f ollows:

predicted by setting 9 ^  ̂  * no matter how high the

j  1<5 ( ^ . 1 )
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Here € is the convenient parameter • The

contribution from the "close" collisions to the total cross 
section is thus

(k.k.2)

a r Kmuc

K©

where is a convenient scaled unit of impactz’ R
energy.

The integral in (*t.*f.2) will have to be performed numerically, 

so that we must make the limits of integration explicit. We 

follow the well-established procedure of setting 00

and thus ignoring the kinematic limit, on the grounds that 

the additional contribution arising thereby may be neglected. 

As for the lower limit, we avoid the ascription of an explicit 

value to K0 by the following method, equivalent to that of 

Miller and Platzman (1957): we write

\°° {  CK') AiUOC1')
\  ‘e

“ 1° ( W -
K©

= - SnO<£) ~It +



l l =  J
~oo

" a z '~~

We see that all dependence on the cut-off parameter Ko will 

vanish when the contribution from (k,J> .19) is taken into account. 

The replacement of the exact lower limit in , by - o ©  is

justified, since the integrand is negligible for - O O ^  K© •

The must be obtained before and can

be evaluated. In the present work, we use evaluated

with hydrogenic wavefunctions for the states O') and

(2|p, m - 1 1S) These come from the Born approximation

calculations of the following chapter, Equations (5*l«9a) and 

(5»l«9b). It will be noticed that these expressions involve 

0 *  , the momentum transfer direction, and thus depend 

implicitly on the impact energy ET . However, we may effect 

an important simplification by remembering (see Sec tion/j. .̂ >) 

that in those regions of integration in X ^ a n d X ^  for which 

the integrand is significant, small error is sustained by 

setting 9 k = ̂ .

6 2

(k.k.kb)
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Hence we have

5 * . { i  -

• " P  [ - 2. a'
(4.4.5)

Oirctarv
Ka„

where "K ̂  is the momentum of the ejected electron and

'C _ ______4-£________
l5{(6-C|jS- ( \ V f (4.it.6a)

• W  Ce-«f>a +  +  2 v f  + i6<^

r  _ z c ______
^ 1 "  I5[(€'d(f+di]5 (4.4.6b)

. +  (<<2^+tXe-^S -i- C2ifecf+'rfc<^C€-c\f

+ ( i o 8 ^ 4 +scjXe.-^-) + 2 ^ 3 -v 3 3 < ^
2,

Here the shorthand notation <t= (K*sg.) has been employed.

The optical oscillator strengths can, of course, be

obtained by setting Ĉ = O  in equations (4.4.5), (4.4.6a) 

and (4.4.6b), or by using the explicit formulae for the 

given by Bethe and Salpeter (1957)*

We have thus:
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Q(0 - QC€) -V Q (€Y.rlACfi \ r\\dose. v dis'tuwt

=  ‘t W  CC<n±& - 0€2
- j[r -f C ^ Y f o Q t  £(£-!.") j- >n 7.

L C^+'bOfe^i} *£+i- (2^-viyai-i^ x ^ j

-v f ~yŷ ^  £~ ̂  >$* 7c csu+*>)au*î axa+i C2<+iX*e-U ^_13
+ c^-iO ]

(4.4.7)

Since we do not in general detect the energy of ejection, we 

shall evaluate

Q** = C Q (O de

_ ^ .ttc C  [ ( U  ^ | ' l )

Z ’ ^
. i- C m1 C *7l Ac Cg* Ac

z I  (Ot+bXiK.+l') K'*-+ 1 -f (^Hl)Gt-l) j V ^
Crt-^-wQ- *7
(Ĵ t+'bXit*-!) J x,i+i-g; GfeDfttii J V l g i

•7 (4.4.8)
+ J
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where 00
' KY\

jso

6 " ' ^ € d €
^  (4. 4. 9)

The must be evaluated by numerically integrating over

£ and ^  . Using formulae (4.4.5), (4.4.6a) and (4.4.6b), 

we have calculated

C-a^c - 5'h-lk-O O A . l O a )

and

Clb-il " t> ‘ 0
r (4.4.10b)

The work of Vriens & Bonsen (1968) contains the (implicit) values 

0°
Jl = i,2<i<l b  C't.'t.lla)

(4.4.11b)

Hence we find

Q d p , 0 - > i . > ^ . . [ ; o ^ 5 W ^ 4 ^ - t 5 (4A<12a)
i  I

Q C ^ t | V O ) =  ^ . [ o - S f c b Y f c V ^  H- S  (4.4.12b)
Hi



66

We shall not plot the above cross sections as a function of 

^  , reserving that for the more accurate Born cross

sections of the following chapter. However, the simple 

analytic form of (4.4.12a) and (4.4.12b) allows us to draw 

some interesting conclusions. Firstly, since the magnitude
rof the C. term is similar for both cross sections, the 

effect of the corrections is strongly depolarizing. Secondly, 

since for both cross sections, the El~̂ -£»\ E
-iterm will be comparable in magnitude to the E. term when 

   12.
fc. *  5 , 0 0 0  H. Thus, even for the lightest atoms,

the cross sections of Section ^2are unrealistic, since such 

energies are relativistic. Thirdly, consideration of 

(4.4.10a) and (4.4.10b) shows that the non-dipole contribution 

to the term in the cross section is easily the larger, the

dipole contribution, however, being non-negligiole.

Table gives some idea of how slow is the approach to the

high-energy limit of the cross section ratio which was 

calculated in \ 3-^.



&  ( = E/ * f 0
1 0 0 - 9 1 3 5
5 0 0 - 9 0 3 1

2 0 0 0 - 8 9 5 7
1 0 0 0 0  - 8 8 5 3
O O 0 - 8 1 1 6

Table
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CHAPTER 3

THE BORN APPROXIMATION

1. Theory

The Born approximation is the most widely-used collisional 

theory in dealing with electron-atom collisions where the 

incoming electron has a velocity at least several times 

larger than the bound electron with which it interacts. It 

is based on first-order perturbation theory in that both 

electron and atom are considered as making a transition from 

an initial to a final unperturbed state as a result of their 

mutual interaction, without passing through virtual, inter

mediate states as occurs when higher orders in the perturbation 

expansion are taken into account. For a derivation and 

discussion of Born’s formulae, the reader is referred to 

standard texts such as Mott and Massey (1965) or Messiah

In the Born theory, the amplitude for a transition from an 

initial state \l> to a final state (*f> is proportional 
to the matrix element

(1961)

(5.1.1)
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For the ionization process we wish to consider, I is

a state labelled by the quantum numbers fl ? -ft. ̂  and Tfi , 

where the axis of magnetic quantization is parallel to the 

direction of the incoming electron. For the innermost shells 

of the heavier atoms, the deviation of the potential from 

Coulomb shape is small, and to a good approximation we may 

use hydrogenic eigenstates with the appropriate screening.

is a state of the continous spectrum in which the
Aatomic electron is moving in a particular direction X  

with momentum in the field of a charge ?  e - + C z - s H ,

where -2L is the nuclear charge and S the screening 
factor. Obviously the charge "seen" by the ejected electron 

varies as it moves through the atom. Discussions of this 

problem can be found in the literature and in the standard 

references (Mott and Massey, for instance). In the present 

work, the same value of Z  will be employed for both 

bound and ejected electron wave functions. As mentioned 

earlier, the state of most interest here is the 2p state. 

Calculations of ionization cross sections for the 2p state 

of a hydrogenic system in the Born approximation have been 

carried out by several investigators (B^jhop 19^0, Mandl 1952, 

Swan 1955i McCrea and McKirgan I960, and Omidvar 1965). 
However, in all of these the practice has been to choose 

a quantization axis which is parallel to the momentum
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transfer vector, h K  . This is the obvious choice, since 

thereby the operator exp ( v. in becomes

simply exp (v K'f CJ0S6} = exp (̂ 1 It leads to no difficulty

so long as the cross section is averaged over atomic 

orientations YTl , as is customary. But if we are interested

in a particular value of YY\ , the total cross section is no

longer meaningful, since to obtain it we must integrate over 

, the average direction of which changes with collision 

energy. Hence it is plainly misleading to display graphical 

results for ionization cross sections for the individual vr\ 
states (as is done by McCrea and McKirgan) referred to j$ 

as axis, without making this point clear.

We shall row show how it is possible to relate the double 

differential cross sections with respect to energy transfer

and momentum transfer in the two sets of axes and hence

re-calculate the desired total cross sections. To avoid 

confusion, we shall label magnetic substates taken with 

respect to axis K  by )X , those taken with respect to 

(the wavevector of the incident electron) by TH . If we 

consider these two sets of axes as coinciding when one set 

is rotated in the appropriate direction through an angle 0K 
about their common y-axis, we obtain the following relation 

between the two sets of quantum states In £trT> and

Irift. YT>> =  2  (5 -1 .2 )
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where the rotation matrix element is as
defined by Edmonds (i960).

Hence we Kave
<■? I«■■*<>

=  Z  ° ^  i ^ i p c i ^ . p w v >  (5 .1.3)

The cross section is proportional to 

(< ̂ 1 Cl K.r ya>̂

= 2  toeko') (5.1 a )
A**/*-'

. < a y  l A x ^ C - l V $ . t M ^ > < ^ \ ^ ' p ( ( K - X M ' n V >

The differential cross sections which Biwhop and others 

calculate are in effect diagonal elements of the matrix 

defined by (^>.l.k) when Yl = 2, Si = 1 ,  and /K = 0 or ±  1 

(apart, that is, from the rotation matrix elements). We 

would appear also to have to evaluate the off-diagonal elements. 

Fortunately, a detailed consideration of the structure shows 

that the contribution from such cross-terms vanishes when one 

integrates over all direction of ejection. Thus we may write

j l < H f c * p d - £ - £ M ^ w > f  (5.1.5)

= 2  I *& rt> ( o e * o ) f  f l < f  (fl.xlpaK.rMa>i>f<Awc^
M  m  M. 0
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or, alternatively,

f(K-r,V)= 2  1 (o eKo) f {(*•,«*./*•)
ae ^  (5.1.6)

where

f l ~ * ^ S ,  A t oC^
(Kciof J (5.1.7)

is the quantity known as the generalized oscillator strength 

for the transition, being the energy transfer. (S') .

usually valuable on account of its independence of incident 

particle energy, is here dependent on the energy of the 

collision through , which is given by

_ (Koof -v
%  (5 .1.8)

cos 0 K =

It is possible to plot against K" for different

choices of , producing in this way what has become

known as the "Bethe Surface" for the atom (see Inokati, 1971)•

But in the present case, one has also the direction of K
A

to take into account; for each possible value of ^  there 

exists a distinct Bethe surface.

Evaluating the rotation matrix elements for the 2p state 

yields the relations



73

Si

+  (5.1.9a)

and
fWL(Si*P>m=-'') = ^(1 + COS^Q^ {^(K^jp^stO

,u _,«1̂  r , * v (5.1.9b)+ y% W  aK • cup ,m= o')

The ' W * ' *  for a hydrogenic system are of the general form

-1f„<s->"«*> = 1,t„ Jl- «f (-— £-)}

. S L x b  r a r c W \  /
( X a *  ~ (/%r)

(5.1.10)

Z  
z

where ^ = ( s z L) ' We obtain from the work of Banks, 
Vriens and Bonsen (1969) in conjunction with that of Vriens 

and Bonsen (1968), the expressions

4-e
k » = ° =

+ (md[1+ 5 ^ X £ - ^ +  8 0 cfCe-^ + ISdf 1  (5, 1 »lla)

and
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where ^  * Hence by means of equations 
(5.1.8), (5.1.9a)b),(5.1.10), (5.1.11a) and (5.1.11b) we 

have defined the in terms of dj 4 and

E  . To obtain the total cross section we require the 
relation

The double integration in (5*1.12) must be performed 

numerically for each value of E. of interest.

2. Results

The total cross sections Q  C £ p , m = o - ^ v O  and

, as calculated from (5*1.12) above, 

are shown in Figure (5.1)* They are given in scaled u.iits of
O. - A qualitative behaviour of these cross sections 

is quite different from those of McCrea and McKirgan 

mentioned above. Whereas in the latter Q  Qvn*©^ is larger 

than for all energies, the present cross sections

intersect about 16 times the threshold energy and thereafter 
Q  C w\= ± 0  is the larger, the ratio slowly increasing 

with increasing energy.
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Figure (5*2) gives the polarization of the lines , L q(

and as a function of the collision energy. These

curves are obtained simply by substitution of our cross 

section data in the formulae (1.2.Ho), (1.2.11^, and (1.2.Me). 

Note the intersection around twice the threshold energy.

This is not visible in Figure (5»1) because it occurs on 

the steep, low-energy side of the cross section peak.

There seems to be no physical reason for this behaviour, 

which can probably be safely ascribed to the inadequacy 

of the Born approximation in this region.

At this point we mention that Figures (5*1) and (5*2) are 

in sharp disagreement with a calculation published by 

Melhorn (1968). Melhorn does not present any

detailed analysis which can be compared with the above 

derivation. His polarization results, however, are 

substantially larger for all incident energies shown, 

do not change sign anywhere in this range, and appear to 

be tending to very different high energy limits. It appears 

that one could account for such results by assuming that the 

collision cross sections were referred to a momentum transfer 

quantization axis. This has, in fact, been confirmed by 

Melhorn (private communication). It is therefore surprising 

that the only published experimental^! X ray polarization
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- that of Hrdy, Henins and Bearden (1970) on the Lot,

X rays of mercury - is in fairly good agreement with the 

erroneous results of Melhorn.

In further support of the present results, two checks have 

been carried out. The cross section ratio for the Bethe 

limit was obtained by setting K = 0 in equation (5.1.12) 

and performing the integration over ^  numerically. The 

result was

in good agreement with (4.2.17)* Also, the corresponding

(see Burgess and Percival 1968, or Vriens 1969) were calculated

previous unpublished calculations of Banks (private 

communication). They are:

O- 8 Ufel
Q  (2 p,7n =

(5.2.1)

in the binary encounter (classical impulse) theo y

for the particular case and checked with the

and

(K > \ = (5.2.2b)

§ir
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The cross sections displayed in Figure (5»1) have been used 

by Cleff and Melhorn (1971) to predict Auger asymmetry 

parameters (̂> (see Chapter 7) for comparison with their 

experimental measurements on the angular distribution of 

Auger electrons ejected from the level of At as a

result of electron impact. Table 5*1 opposite shows this 

comparison. The latter two results are in quite good 

agreement,theory falling within experimental error limits. 

The disagreement for the first result is hardly surprising 

in view of the unreliability of the Born theory at this 

energy.
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CHAPTER 6

RELATIVISTIC MODIFICATION OF THE BETHE THEORY

1. Introductory Remarks

In this chapter we wish to see what changes have to be made 

to the Bethe theory when v  , the velocity of the incident 

electron, becomes comparable to C , the velocity of light.

We first of all note that such a revised Bethe theory already 

exists. Miller (1932) has derived the following expression 

for the cross section for the transition ( Y\ ^  rv ) due

to the impact of an electron of velocity on an arbitrary

target atom:

constant, and Cn'Jt1 has been defined in connection with 

the non-relativistic Bethe theory. The assumptions on which 

Mjzfllei's calculations rest will be discussed later. The most 

important difference between (6.1.1) and the non-relativistic

• ( 2 . 0 ^  (6.1.1)

where %  is the Rydberg energy, ©< the fine structure

expressions (4.^f.l2a,b) is the presence of the term



this means that, whereas the expression ( ^ ' 2. ) decreases

monotonically with increasing incident velocity, here the cross 

section approaches a minimum and then increases as ur approaches 

very close to C . The question is whether (6.1.1) can be 

employed for transitions of the type (a&wn —■> rt&m ), or 

whether it must be further modified. In the following section, 

three distinct considerations are advanced which indicate that 

the latter course must be taken.

2. The Need for Modifying the Miller Formula

(a) The first consideration is purely classical, the outcome

of kinematical requirements. As has been pointed out earlier,

the physical reason for the variation of the cross section

with impact velocity is the concomitant

variation of the direction of momentum transfer. We now
A

examine the change in as the momentum of the incoming

electron, -bo becomes very large.' /V

(i) Non-relativistic case

The situation is shown vectorially in the diagram.
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We are interested in the angle ©*, which K  makes with 

the Z-axis, chosen to be parallel to . Geometrically

we have

cx>se* = U K (6.2.1)
From energy conservation,

_ q,* - 7.yy\ A.E
~ *1 — is—

" (6.2.2)

where A E  is the increase in energy of the atom as a result 

of the collision. Hence

CoS 0̂  “  ̂a i/'
* (6.2.3)

Now as k0 O O  , COS 0 K ~ O  , and so the momentum

transfer in the high energy limit takes place perpendicular 

to the direction of incidence, for all K
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(ii) Relativistic case:

Equation (6.2.1) still, of course, holds, but in place of 

(6.2.2) we have

t\c +  v/xa + ft* =: & E

where X = m c / ^

Hence

Substitution of (6.2.5) in (6.2.1) gives

COS0K - >

(6.2.M

(6.2.6)

C O S 0 K : (  K *  ~  C ^ c )  , ,  „
2 . K K

Again letting fc0— ► °o , we find

(6.2.7)

So we see that this time the direction of momentum transfer 

tends to a limit which is dependent on its magnitude,

Since we may consider to be fixed for a given inelastic

transition, CoS © K  takes its maximum value in (6.2.7) 

when K = Km; - '̂o"' ̂jl 1 -*-s ^he kinematic lower
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limit, taken by both Bethe and Born approximations in the 

integration over K

Hence ,

(6.2.8)

As M „  O O

— > -hB - K  u  ■

Since all terms in the brackets of order or smaller

will tend to zero as -> <=o , we are left with the

result

Kvr,;* -> \  °o"C, (6.2.9)

Combination of (6.2.7) and (6.2.9) gives

( c o S © K )«>«x —>  t  aS _ >  ° ° (6.2.10)

Thus in distinction to the non-relativistic case K is 

parallel to Jfeo in the limit of high energy and low momentum 

transfer.



it will be recalled that the Bethe method involves division 

of the momentum transfer integration into two ranges; the 

boundary between the two is given by K= K0 i where K0 
satisfies the inequalities

K  «  ( V
(6.2.11a)

k '1 »  ( \Kp ^  (6.2.11b)

(6.2.11a) corresponds to the non-relativistic constraint on 

K 0 . The need for (6.2.11b) will become apparent below. 

Here £-© is the ionisation energy of the bound electron.

Use of the inequality (6.2.11b) in conjunction with (6.2.6) 

shows that throughout the range K*0 —> Ki*ax one can

put 0 K =  without significant error. In the range 

K 0 , however, 0 *  varies from O  to i so

that one cannot simplify the integration over K  in this 

range by assigning a fixed value to 0 ^  . Moreover, it is

from this region that the logarithmic term in the total cross 

section, dominant at high energies, is derived. We shall 

also see that in this region of K  the effects of spin 

and retardation are appreciable.
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(b) In the Miller theory, the familiar Coulomb interaction 

is augmented by a term representing the interaction of the 

spins of the incident and bound electrons. This leads 

eventually to the replacement of the Bethe operator expCl K.r') 

by the operator

Hence the new interaction operator selects a particular 

direction in space, the magnetic quantization axis. This is 

a further reason why (6.1.1) cannot, 'a priori1, be applied 

to transitions from (or to) individual TA states.

(c) One of the requirements of the relativistic cross 

section formula must be that it gives back the non-relativistic 

formula when , Comparison of (6.1.1) with

(*t.4.12a,b) shows that this requirement is not satisfied. We 

conclude that we must reapply Miller's methods for the case
and that this reapplication must yield 

a formula which differs from (6 .1.1).

3 . An Outline of Miller's Method

Miller's adaptation (1932) of the Bethe approximation consists 

of a long article of which the text is in Gerr an and the

(6.2.12)



notation somewhat dated. For this reason, it seems pertinent 

to synopsize Miller’s procedure here, noting the physical 

assumptions, approximations and limits of validity of the 

theory, and breaking off the section at that point where 

modification becomes necessary.

In common with the first Born approximation, the interaction 

between atom and electron is treated as a small perturbation 

which causes transitions between unperturbed eigenstates of 

the isolated systems. The non-relativistic Born theory 

employs a Coulomb interaction, whereas Miller also takes 

account of the spin interaction. Retardation and the 

relativistic increase of mass with velocity are also allowed 

for. As with the Born, the possibility of exchange is 

neglected.

Dirac plane waves are used to describe the free electron, but

for the bound electron the approximate wave-functions of

Darwin are employed. The condition of their validity is
%

that EL*x <  ̂  AAC. , where Y\ labels the discrete 

or continuum state in question and YA is the rest mass of 

the electron.

To arrive at a plausible interaction operator, the following
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procedure is adopted. Appropriate Dirac charge- and current- 

dencities for the free electron are formed:

V o
, * „  l (6.3.1)
% co  s  t , c* d

where CO labels the free electron, W\, and O, the initial 

and final Dirac plane wave states, and where the components 

of are the Dirac current matrices. These charge- and

current-distributions produce, according to Maxwell’s theory,
3T CO ACOa scalar potential ^  anc* a vector potential n

at the point “£  given by

2  ~  J ' t . - r J

a c j w  = ^  f ( 6 -3 -2)J ir.-XJl 'Vi

The parentheses signify that for p M  and j <0 the retarded' A.
values, i.e. the values at time -t_ -  ̂ Xtj , are taken.

C

CO
AThe interaction energy due to the effect of the fields A 

and on the bound electron (2) at the point is, in

the Dirac theory,

-•«. [ §<0(O + 2S‘°* (6.3.3)



Combination of (6 .3.1), (6.3.2) and (6.3.3) shows that the 

desired interaction operator may be written

-e.a (1 - o<-« ) ^ { i  I £-&))
^  c. ' (6>3A) 

where A.E. — I " E* I is the magnitude of the energy

r.-fJ
transfer involved in the process. The factor ?  •»SS

represents the spin interaction.

At this point the expressions for the Dirac and Darwin spinors 

and for the Dirac matrices are used explicitly. After some 

tedious calculation the expression

d I Q  (K') =
[ K 1 -  ( ^ 1

AI £ ex') + C 'OEI t’cto I
*  (6.3.5)

is obtained, where

£ 0 0 -  (6.3.6)

and £ ‘CK-1 = <  ^ 1 'L3 s (6.3.7)

In obtaining (6.2.5) the following inequalities are used:
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'X 'a.
K  «  * ^ Q \(6 .3.8)

^ ^  fuaK  c •< -feo
(6. .9)

<1 *3L
so that terms of order may be neglected.

(6.3*8) follows from the use of Darwin wavefunctions for the 

bound and ejected electron, (6.3*9) from the requirements 

of 1st order perturbation theory. derives from the

spin interaction.

When we may make the Bethe approximation

*
(6.3.10)

where is the optical oscillator strength. Miller

shows that the spin term is appreciable when
c J-x  ̂ i.e. for small momentum transfers. This is 

because the first term in the expansion of vanishes

for l  CK') due to the orthogonality of the wavefunctions 

whereas this is seen not to be so for £  •

Using the identity

-  '  i T x  (6 .3 .1D

• < - f  1 a. U >



it can be shown that for small K  we may write

X ( K ' )  = £ (K O  -+ i E.Xk ')0

(6 .3.12)

where 3 is defined as a vector with components

S*= K , , s ,=  k 3 ,  (6.3.13,

(6.3*12) can be used in conjunction with (6.3*5) to find the 

contribution to the cross section in the range 

where
K m U  =  -fee.' -fe,

" ( ^ ) w i  (6‘3‘14)

and K 0 is given by (6.2.10). The contribution from the range

is evaluated by noting that here (6.3*5)

reduces to

< K ' * • T ?  U ( K " ‘ « ■ » . » »

which is simply the non-relativistic expression.

Mailer simplifies the calculation of the total cross section
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by using the identity

S  23 I v A V  t ~ S  (6 .3.16)
m  vv\

Sinee here we are interested in orientations, (6 .3.16) may 

not be used, and we thus diverge somewhat from Miller's 

procedure.

4. Adapting the Miller Formula

Due to the close analogy with equation ( \ .12. ) we can show

that

= ZL £  s I ym <*>l 2>(
* V  A  \

_ a
• K , * '

A 1 ̂  I A j A \
- *. 1 *■ \

m  /a. - w\
(6.^.1)

"i / {. 1 -S \ a
VA o  - W v ‘ J

\ 1 A .1 ft ' >A

(S1-

(6.4.2)

An expression for S has been obtained by Miller. It is

s' = K* - (fS - * (&i (6 .4 .3)



Thus we need only find an explicit expression for From

(6.3.13) we have

Thus on account of the inequality (6 .3.9) we can show
(S.k.k)

(£) (6.4 .5)

Returning to (6.4.2) we have

J i x
i

At o - yy\

4  i  a' \l

rv\ 1 - 1 j

-  id )

/SL 1 Na
\ m  -1 -wv'

• ^  U l M ' )

(6.4.6)

Using (6.3.5), (6.3.12) and (6.4.11) the integration over K



may be performed analytically. The result is

Q  x  ̂  - ^TTCXo ) y\ a !

r
?, W / J L  l 5.'

VK O 'VVx

iA c ) 'tf*- 1

t ( \

iv\ “1 - w\

Kmox

f *  1 v  V 1V VW -1 -WNV / J

£ 0 0
K 4

(6.4.7)

Now the integral over tC„ — >  \Cw»x may be obtained from 

earlier results (see Chapter 4). We evaluate the 3j-symbols, 

the inequality K 0 »  ( 5 ^ ^  and obtain finally:use
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j  ( - t  ^  ( 1 - ^  -  1 ^
v* rj\ " " yX I v «*>

' / v,* ^  - H l - i V m - #  '' ca.e+axa.L+L') ci<*i'5(a<i-r)
+  \ ( ^  X>X . jJ-l^

c I (,2«.+̂ ani-i') K,etl C 2 m x * 4 0  * ,trlir6 k 8)

There are two checks on this equation: it reduces to (A.A.7) 

when 1 , and to (5*1.1) when we sum over YY\ . The

factor C l represents the contribution from the 

transitions with momentum transfers greater than t\Ke

On insertion of the explicit values of the parameters ^?x^ *

s ’ £<L obtained in Chapter A we find

Q  C2.)p,±l->0 = f ( ^  +  9-fobS')0-5Lfa7L,
,l> « u d ' ^  '

« n C6 .A-.9b)
-t 4 5 < m  £



Figure (6.1) exhibits the ratio of these two expressions,

, as a function of energy, for three different

values of 2  • For comparison, the corresponding non-

re '1 a t i vis tic expressions have also been included. Figure

(6.1) makes it clear that the effect of the correction is to

make the approach to the high energy limit more rapid, althou^

still extremely slow, thus emphasizing that the high energy

limit is of formal rather than of practical interest. The

major correction is the so-called "relativistic rise" term,
%  \- (l- • According to Fano (1956), this term, which

causes the total cross section to pass through a minimum 

before rising monotonically withfUrther increase of energy, 

stems from virtual photons which give rise to forces 

perpendicular to K . Hence the fact that tends

to the same high energy limit both relativistically and 

non-relativistically is not trivial. We recall that, for 

those collisions which make the major contribution to the
A

cross section at uhese energies (those of small ^  ) i /$

tends with increase of energy to become parallel to the
A

direction of coincidence, -fto • This is a purely

kinematic conclusion. The virtual photon forces identified

by Fano, however, are a consequence of the special nature of 

the Miller interaction. The combination of these effects 

leads to the conclusion that the forces acting on the bound
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electron tend to become perpendicular to in the limit

of high energies, just as for the non-relativistic case.
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CHAPTER 7

AHISOTROPY FOLLOWING INNER SHELL PHOTOIONIZATION

1. Introduc tion

It is known that there is a close connection between electron 

impact ionization in the limit of high energies and the 

process of photoionization. This connection is reflected 

in the presence of the optical oscillator strength in the 

Bethe asymptotic cross section formula (see, for example,

Inokuti 1971). Hence one would expect the occurrence of 

anisotropic effects following electron ionization of inner 1 

shells to imply similar effects for photoionization. This 

fact has been realized by Flugge, Mehlhorn and Schmidt 

(hereafter abbreviated by FMS), who have recently (1972) 

calculated some Auger electron angular distributions 

following photoionization by unpolarized light. Notwithstanding 

the existence of these prior calculations of FMS, this chapter 

will be concerned with

(a) the calculation of photoionization cross sections from 
the orbital designated by the set of quantum numbers

( r» t 3 ;
(b) the use of these to predict the asymmetry parameter 

of the resulting Auger electron angular distribution,



as a function of photon energy.

Before doing g o , the obvious charge of redundancy must be 

countered.

(1) Explicit formulae will be given for any ( Y\ 4. j lfv̂  ) 

and for all possible light polarizations. FMS contains such 

formulae only for 1 > *^3 * = ^  ’ anc*
for unpolarized light. Thus their results represent a 

special case of the present calculation.

(2) By the manner in which FMS present and interpret their 

calculated data they give the impression that (V is 

typically quite large, which is not in fact the case.

(3) In a simple physical argument, it is shown why the 

study of anisotropic effects following photoionization can 

be of more interest than similar studies with regard to 

photoexcitation.

2. Calculation and Results

The required photoionization cross sections are obtained 

by evaluating the expression



where is the energy of the ejected

photoelectron. Note that we integrate over all directions 

of ejection and sum over all final spin orientations. The 

index A  in the operator gives the polarization of the 

incident radiation. It will be apparent from (7.2.1) that 

the photoionization process is being described in the 

dipole approximation, which should hold for 2T not too 

large.

Now the photoionization cross section will be proportional to

(7.2.1), but since the proportionality constant is certainly 

independent of Wlj , we can leave it out of consideration 

and need only evaluate for our purposes the quantity 

. in the expression (3*1 *17) we have
in terms of 3j-symbols. It will be useful 

to write in the general form

= A  ^  (7 .2 .2 )

where the aŶ  defined in (3.1.7) .?nd ft and '£>

are functions of > * > ^ 3  and w\j (not to be confused with 

the Einstein A and 3  coefficients)- Calculation of



the 3j-symbols in (3.1.17) allows us to construct Table 7.1, 

which gives A and 3 for all , and for each of the

two possibilities >  A * 5* Note that an unpolarized
beam may be represented by the incoherent addition of left- 

and right-circularly polarized beams.

3For the specific case /£. , Table (7*1) gives

m ,-% y

•K S

1  % ^ K d L +

(7.2.3a)

I ° ( ^  = +  a t f
* s (7.2.3b)

(7.2.^a)

(7•2.4b)

(7.2.4c)

(7.2.4d)

It can be checked that addition of (7*2.4a) to (7*2.4d) ana
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of (7*2.4b) to (7-2.4c) give expressions for unpolarized 

radiation which agree with FMS.

We turn now to the distribution of the Auger electrons 

ejected from the atom as a result of radiationless transitions 

into the vacancies left by photoionization. For the case 

where the residual ion is left with J - O  in the Auger shell, 

the distribution is particularly simple, and has been given 

by FMS:

(7.2.5)

where

Equations (7*2.3) and (7*2.*f) give

?

xs

(7.2.7)

(7.2.8)



It is interesting that circularly polarized radiation produces 

the same Auger distribution as unpolarized radiation. This 

result is true for all ^ , as can readily be seen from

Table (7.1)* It arises from the independence of (7.2.6) of 

the sign of . Note also that the expression (7.2.8)

is exactly - 0.5 times that given by (7.2.7), so that the 

two distributions are opposite in sense, for all photon 

energies. This would seem to be a peculiarity of orbitals 

having ^

Comments

4

It could be argued that the inclusion of all possible states 

of polarization is not really necessary, since an experimental 

measurement which uses unpolarized radiation will obtaina
information on the quantities 7S anc* tu.cce the
added practical complication of polarizing the radiation leads 

to no new information which could not have been obtained 

without recourse to this. However, there are several pointa 

to be made against this.

1) UV radiation from electron synchrotrons is at present 

being used in photoionization studies, and such radiation 

has a strong linear polarization. Thus the formula of FMS 

would be inapplicable to such a case.



2) The angular distributions resulting from the use of 

linearly polarized radiation are sometimes more anisotropic 

than those from unpolarized radiation, and may therefore

be easier to measure.

3) Lastly, the use of polarized radiation provides a means 

of checking the information derived from unpolarized 

radiation.

FMS have calculated explicit values for the asymmetry parameter

for the cases (k (3p subshell) and M<^ (2p subshell).

Of these, the former leads to larger (b for all photon

energies shown, and exhibits a steep maximum near threshold, in

which touches the extreme value - 0.5» shows no

maximum and is less than -0.1 for most of the energy range.

FMS say that they select these two examples Mto demonstrate the

striking differencess in the angular distribution of Auger
out

electrons of different elements”. They do not pointy however, 

that this striking difference can be readily correlated with 

the phenomenon observed in pnotoionization cross sections 

known as the Cooper minimum. In the case in point, this 

minimum is a result of the variation of the overlap, as: a 

function of energy, of the VCcl with the 3p wave function.

For a particular value of this results in t’ e disappearance



of the quantity That this circumstance leads to

a maximum in the Auger asymmetry parameter can be verified 

by reference to Table (7*1), using the fact that only the £> 

coefficient uf (7*2.2) takes part. Physically, it can 

readily be explained as follows. Given that the quantization 

axis is chosen along the wave vector of the photon, we see that 

angular momentum transfers to the atom are limited by the rule 

A w  When to this is added the further restriction

that only XS states can be reached by photoionization, we 

see that we have the selection rule

Q  t»>1p,w=£> —> Xc ") -- O
(7.3-1)

where by we have labelled the energy corresponding to

the Cooper minimum. Hence only vacancies with Y Y c a n  

be produced at the Cooper minimum, and the maximuu. in the 

asymmetry parameter is thus accounted for.

Hence one only expects large anisotropy in the region of a 

Cooper minimum. This is exemplified by the behaviour of (3> 

for the 2p subshell of , which does not possess a Cooper

minimum in its photoionization cross section. More generally, 

large anisotropy results only from photoionization of some 

subshells, only for photon energies in a certain range, and 

the behaviour of the results of FMS may be regarded

as more typical than that of the 3P r_suits.



Many investigations have been carried out on the polarization 

of optical radiation from atoms excited by radiation which 

is itself polarized (see Mitchell and Zemansky, 193^5 °r more 

recently Kleinpoppen and Neugart, 1966). Typically one is 

exciting the atom to an upper state which has well-defined 

orbital, angular momentum, and essentially one calculates the 

polarization of the de-excitation radiation from angular 

momentum conservation, a knowledge of radial wave functions 

thus being superfluous. The crucial difference in the 

ionization case is that continuum energy levels are degenerate

states are present at the same excitation energy. For each of

relative vacancy distribution in the residual ion over the 

substates, using only angular momentum conservation. Howev.r, 

to sum their contributions to the resultant vacancy distribution 

we must know the extent of the overlap of the final state 

wavefunction with the initial state wavefunction for each case.

To the extent that the dipole approximation is correct, one 

need only consider the two states given by ^ =

In other words, the vacancy distribution depends on the ratio

the form of the radial wavefunctions. It is tvis feature of 

anisotropic phenomena following photoionization which cour:

with respect to orbital angular momentum, so that

these states of given «£. it is possible to calculate the

, and thus contains information on
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render future experimental investigations particularly 

interesting.



CHAPTER 8

DIRECTIONAL CORRELATION IN INNER SHELL PHOTOIONIZATION

1. Theory

It is the intention of this chapter to demonstrate that when 

an atom de-excites following inner shell photoionization, th 

particle emitted - photon or Auger electron - is ejected in 

direction which is strongly correlated with that of the 

primary photoelectron. It will be shown that the detailed 

form of the correlation is a function of parameters of basic 

theoretical interest - the radial dipole matrix elements, 

and the phase shifts of the partial (ejected electron) waves 

For this reason, it is suggested that a coincideace 

experiment (electron-electron or electron-photon) could be 

expected to yield much worthwhile information.

We have seen in previous chapters how Auger angular 

distributions and X-ray polarizations depend on the ratios 

of the ionization cross sections Q  (‘nJfL'W C') f°r
different valuers of TC\ . These ratios are not very large 

in general, and therefore do not lead to large anisotropy in 

the vacancy de-excitation process. However, it might happen
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that the probability of ejection in a particular direction 

varies substantially, depending on which magnetic substate 

the electron initially occupies. Of course, an experiment 

on the angular distribution of photoelectrons will detect 

the sum of the contributions from the individual m  states, 

and will give no information on the ratio of these 

contributions. To obtain such information, we must detect, 

in coincidence with the photoelectron, the particle which 

results from the filling of the vacancy caused by its 

ejection. If the ratio of the above-mentioned contributions 

is large, the angular distribution of the secondary particle 

may in general be expected to be highly anisotropic.

To put the foregoing argument on a more quantitative footing, 

we must first of all calculate the angular distribution of 

photoelectrons ejected from a bound state characterized by 

the quantum numbers ( y\ JL m  ). Comparable calculations for 

the quantum numbers ( ) , summing over all orientations YV\ ,

have been carried out by Zare and Cooper (1968). The atomic 

wavefunctions are calculated in the central field approximation, 

and the interaction between photon and atom is treated in the 

dipole approximation. The quantization axis is taken along 

the direction of the photon beam, and the beam is assumed to 

be unpolarized. This is achieved by calculating separately



the probabilities for right- and left-circular polarization 

and adding them incoherently.

The amplitude for photo-ejection from a bound state (nSLwy) 

by light of polarization JA. is given by

< i i r d l i >  Kx«.'
, /<. 1  1  \ (8.1.1) 

\*\ M. I

where we have adopted the notation and procedure of Chapter 3*

The dependence on direction of photo-ejection, it will be
/ n 1 f \recalled, is contained in ). The required angular

distribution is proportional to

I *  (y\£wv > 0 ^  *

M i
• M >  r^,!i !>.,->)■ V V

. f *- 1  M ( *  1
\  VV\  / a  - w JA - I j

(8.1.2)

The summations are limited by the requirements = -tL i 1. ,

JU= (triangular property of 3j-symbols).

For unpolarized radiation,
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IC.U.,8) = t  { |< f  I t C'„ a x 'f  |< f  IrC ^ l'o f^

* t  Z K ^ - w

• {<X(ftl,nvvl')o5(J12lm̂ l')/<- 1 *• V *  1 ?lN)
( Vwv -ft -m-t/\m *t

-+• a(£„w-i)a*(41,rn-l')/<- 1 W l  1
\»»\ -i -1 -M+iJJ

(8.1.3)

ter evaluating 3j -symbols and. substituting the explicit 

expressions for the OL ( ) i we find

I (4m •, 0")
= *  I 1

•+■ X JL -1_____ C i  A
CW.+iXa^.-i') 1 I» v*
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-t- ^ X l + 1  fi.-i

• J (Y * ib  Y &) j l  v l^ 4t 8w^ + Y *d bL <.+i,WV-l fc-l,wv-l ft-l̂WV-l ÎjTTV-l.
•[(4.-wvt-lXJL-r<\v2.)(!!.+m')a+vyi -1^ )]^

+ (Y *«) Y (fo Y*(y$) Y (p

W\-

By squaring the well-known identity
•/ \s

QO%& Y =, r(E+VA+OGS-- Wt +lV] 2y -i- r̂ m^-yQVy
L (oi+v &ji+o -i L(u+iX2.M.y V-t^ (8.1.

and rearranging terms, it is possible to eliminate cross 

terms between spherical harmonics appearing in (8.1.*f).

We have then finally

ICn£m ̂  6")

[ ( a f t + y ) W l >  ( ̂
+  I (£+Wv+l)(^+^+i)^

t ^  ̂  8-~~i    r  ̂ ^
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(Jt+1') -(m-if I Y  /^ | a l y  (^U?
1 ~  ( < U + $ m + i y  *

£■ - Cm-if ,Y  g.4- ( ^ l ^ _ \y (tDU
d W X U - l l  t-V*-1 ■ A_1)w l  J [8.1.6)

Below we ev aluate (8.1.6) for the first few values of JJ.

Ĵ r 0 ( s-state ) :

I  (*$:,©')= k  ^ x y >  Shf^ ®
(8.1.7a)

Qjz 1 (p-state):

I (ŷ .O •, 0s) = \  ̂  Sm"10 cos* © (, _ x _ ?fe}

I (A)s,ti;ê = kv 9 sm^el

+
* stos <c>s') (3co^9-l')

(8.1.7c)

JU2 (d-state):

I  {«d,Oid') «  S ^ Q C W e - l l 1 ( 8 .1.7 )

+  lo ̂ V Sî 0  K [ ,V os(V S^
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I ^  C0&16[(5cog©-̂5+2 5 Sm*eO
lio ^os? ©

+  ■ t o ^ ’Kx^coslS^-Sj,')

• cc>^0 ( 5co^0 “ 2\)

(8.1.7e)

Knd+2,0') = ^  slv?6 [C5cô ©-î +15s\rfel

+  to ^ * P  Si^ 6

(8.1 ,7f)

The which Cooper and Zare calculate can all be

cast in the form ( X + t a C o S ^ O  » irrespective of the values 

of Y\ and . This is because summation over Yn renders 
all subshells spherically symmetric, so that asymmetry enters 

only through the incident photon. The 0^ , on the

other hand, become increasingly complex functions of 0  as 

£  increases, reflecting the increasing complexity of 

the angular wavefunction.
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For inner shells, and particularly for the heavier atoms, 

one must take account of fine structure. This means that 

the initial bound state of the electron should be described 

in the coupled representation ( Yi Jl j ). It can be 

shown, by a straight-forward extension of the algebra of 

Chapter 3i that for the present case

|< ^  \ C V  \ ^Icou^WdL

= 2  c j l  *  M *  | < - f l r ( £ u > f  o j

(8.1-8)

Hence we may write

X •, e )

= \  z  ( *  *  0  ^  C X I  i M ^ e )wTm. V *  m # - m j  J 0 > J
(8.1.9)

As stated earlier, we can gain information about the

')&) 9 and hence tlle X(v\A.irŵ  0 ̂ , by
observing the angular distribution of the secondary particle, 

which can either be a photon or an Auger electron. A 

comprehensive review of the Auger effect is given by Burhop 

(1952) .
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To render the discussion more specific, we consider an 

Auger transition of the type L 3

where the Auger electron is emitted as a single P * *  -wave.

For the case where one does not detect the direction of 

the initial photoelectron, the angular distribution can be 
written

I  (6^ oc 1 t  (b 1* Ccos©^
(8.1.10)

where we have used for the direction of ejection of the

Auger electron to avoid confusion with 0 , that of the

photoelectron. (CoS 0^ ̂  is a Legendre polynomial and

-  Q t V O - Q O s . V )
( ~  (8.1.11)

is called the asymmetry parameter of the distributir 

and the Q(o>yni') are abbreviations for the total ionization 

cross sections

If the angle of ejection of the photoelectron is measured in 

coincidence with that of the Auger electron, we may define 

by extension an asymmetry parameter which is a function of ©  :

where is in abbreviated foi .1 the

which was defined in (8.1*9)*



2. Results

We have taken theoretical values for the ^>{£*1 from

two sources. Firstly, we have used the results of 

Burgess (1964), which apply to hydrogenic systems, and 

which should therefore give good results when applied 

to the inner shells of the heavier atoms (although it 

should be remembered that in this region the dipole 

approximation will be suspect). Secondly, the results 

oi McGuire (1970) have been employed. McGuire has 

calculated the for selected values of for

the elements He to X e  • Details of his method of 

calculation are given elsewhere (McGuire, 1968). Briefly, 

he approximates the quantity — yVC'T} by a series of 

straight lines, adjusting the parameters of the strrigh1 

lines to give approximately the same bound state energy eigen

values as those obtained by Herman and Skillman (1963) using 
the Hartree-Fock-Slater approach. He then uses the discrete . 

and continuum orbitals of the model to obtain photoionization 

cross sections.

The theoretical values can be used to evaluate

the X  CvvfijrAj 0 ^  given in (8.1.7a - f). The case I  (v\Vj 0") Is 

somewhat trivial: here we have a 0  distribute

for all For the case XCvn\ot0 ̂ 0 }  we have a



Sv\ &  cos 0  distribution for all , but for

we have two competing outgoing channels 

and therefore the detailed form of the distribution 

depends on the ratio / ^ ^ 5  and on the phase

shift difference Figure (8.1) shows

and , using Burgess's data,

for zero energy of ejection. 1(2 ̂ ± i  ,6s) was calculated 

using the extreme values of O  and 7r for the phase 

shift difference. It is interesting that the ratio

X  o  \ 0wv
(8.2.1)

(where 0  magic = COS is the so-called "magic 

angle")does not depend on the phase shift difference but 

only on the ratio $x<l

The picture is not appreciably altered for ejection energies 

greater than threshold, for a hydrogenic system, because of 

the slow, monotonic variation of with . However,

a very different picture can be seen for the lighter atoms on 

the basis of McGuire's data. We consider the particular 

case of photoionization from the 3p-subshell of C(X .

Figure (8.2) shows the situation at threshold. Here,
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, and is extremely sensitive
to the phase shift difference. Furthermore, the 

distributions vary rapidly as the total photoionization 

cross section goes through what has become known as the 

"Cooper minimum". Such minima are associated with a 

change in sign of as X  varies, so that for a

particular value of X  we have Inspection

of (8.1.7b) and (8.1.7c) shows that I ( *  \p.O',6')= o

and constant at the Cooper minimum.

For energies well above the minimum, we have 

as in the Coulomb case, so that here the distributions 

look much like those of Figure (8.1). Incidentally, for 

the 2p-subshell of Col McGuire's data give a picture which 

approaches more nearly to the hydrogenic case, as one 

would expect of an inner subshell. The most important 

feature of these results, then, is that the ratio

is far from being unity for 

most angles 0  , and is a rapidly-varying function of ©  . 

Thus encouraged, we insert the data of Figure (8.1) into 

the formulae (8.1.9) and (8.1.12) and obtain the 

corresponding behaviour of p e e )  as a function of ©  .

We see that the magnitude of <we) varies considerably 

and that its sign changes twice in the region ©  = D  to 

0 = 1P^ (Figure (8 .3))*
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In figure (8.4) we have shown (b(6) for various angles as 

a function of the photon energy, using the data of 

McGuire for the 3p-subshell. Notice that (MS') = -0.5
at the energy of the Cooper minimum, independently of ©  ,

Also, = -0.5 independently o f s i

%<t and , and hence independently of photon energy.

This chapter has indicated that some interesting results 

might be expected from an experiment which detected in 

coincidence a photoelectron and the resultant Auger electron 

(or photon). Coincidence experiments are relatively 

recent in the field of atomic physics, due to the difficulty 

of using the counting techniques —  responsible for their 

success in nuclear physics— in the detection of low energy 

particles. However, the use of the coincidence techniqu 

is increasing (Erhardt, 1971) and has already had some 

important successes.

Thus the experiment proposed here is put forward in the 

realization that it may not be feasible for technical 

reasons, but in the expectation that such problems could 

be solved in the near future.
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CHAPTER 9

CORRELATION BETWEEN SPIN POLARIZATION 

AND ANGLE OF PHOTOEJECTION

1. General Case: Arbitrary Angle of Ejection

In recent years, the study known as photoelectron spectroscopy 

has come into being. Experimental techniques have developed 

to such an extent that not only total photoabsorption cross 

sections, but also the individual subshell contributions 

and angular distributions may be measured. The recent paper 

of Kennedy and Manson (1972) contains many useful references 

in this field. Thus it is now possible to measure the energy 

and direction of the ejected electron; the only parameter 

which remains unmeasured ia. its spin orientation. Tu , 

chapter will show that, following photoionization by 

circularly polarized light, the electrons originating from 

a particular fine structure state are in general partially 

spin-polarized, the degree of spin polarization depending 

strongly on the angle of ejection. Thus the spin polarization 

depends on the same basic theoretical parameters - radial 

dipole matrix elements, phase shifts - as does the angular 

distribution. We shall see, however, that th' spin 

polarization has the added interest that f r certain



directions of ejection it is possible to predict the degree 

of polarization purely from angular momentum conservation 

and independently of the details of radial wavefunctions.

The premises of the calculation are identical to the fore

going part of this thesis - wavefunctions are calculated 

in the central field approximation, and the interaction 

between photon and atom is restricted to the dipole term.

The matrix element required is

< K X |  t Cli I" *
' ^  (9-1.1)

where t K is the momentum and Y¥\. the spin component of 

the ejected electron, and the operator describes the eLeo trie 

dipole interaction with a right circularly polarized beam of 

radiation. The corresponding cross section for pnotoejecL on 

in the direction ©  (the polar angle with respect to tne • 

photon momentum as Z-axis) is

■ Z  (9 i 2>

where is "the binding energy in rydbergs of an electron
, “2 T

in the bound state (f\ ^ ) ;

is the fine structure constant; Q e the Bob' radius; and
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is the number of electrons occupying the initial state. It 

will be found convenient to cast (©} in the form

=  ( 1  -v ( i C ' O ' E c c o B e f i4*T KV.i-.j)

where
p+1

c C c = \ l y „. (e') d(cose)
** J_t *'"* (9.1.4)

‘Q.VxZ- •*&( 3 s c  - I s) and ^  is called the asymmetry

parameter of the distribution. Now the calculation of 

(9.1.1), and hence of (9.1*3)i is essentially similar to 

that outlined in Chapter 3i except, that no integration over 

angle of ejection is performed. After emplsiying the 

identities

£  | Y t m l* =WT 4-TT '".1.3)
and

Z  1 Y*,m  T = ^  ^ &'»**©
*  • 01T (9.1.6)

the following expressions are obtained:

Case (i) J ^

( + ^  = 1L1 o«j,a [ n ^ . a+Js. (e -

• C w u z )  + x i?K l <  j

(9.1.7-
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1

(9.1.7b)

= - j ota® ( e  - €.««.,t+^/Sk+al

• [ « + ^ ) < A +l  1

^ • ) =  (M t - i ) 4 i  + ( ^ ? i U W » ( ^ & 7c)

G t + O  £(*+*)<.*. + m .

(9.1.?d)

Case (ii) j c

0 ^ * C + J O  =  ^ Qo ( ^ - £-«e-,s.-i) 6 n i \

• [  U + O  ’R x j U !  +  (9.- 8 a )

1 * ‘ <*+!> +  C ^ t ^ ]  (9>1>8b)

o**c-£) =  [N*A,JL-1i C f e - 6 - » i M V x n l  

C itt+i')
(9.1.8c)
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CU.+1) c s u + u  ̂  +  C M }  * V - J

(9.l.8d)

A useful check on these equations is to sum over spin 

orientations. For both Case (i) and Case (ii) one obtains

• C r t + i ^ u ^ ]
(9.1.9a)

and

JO - ( jA

*»*-*■* (9.1.9b)

which agrees with the Bethe-Cooper-Zare formula for the 

photoelectron angular distribution.

Before evaluating the above results numerically, we wish to 

consider the special case where the photoelectron is ejected 

along the direction of the quantization axis (forward or 

backward ejection). Of course, this can be obtained by
/S. 0 Osetting 0 - 0  or 0 =  \80 in the general formula. However, 

the following section will show that for such a case the spin 

polarization can be obtained simply from angular momentum 

conservation. This has also the virtue of oroviding a
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further check for the algebra of the present section.

2. Special Case: Ejection Along Quantization Axis.

For the particular case of forward (or backward) ejection, 

we shall show that the spin polarization can be obtained 

independently of any detailed knowledge of atomic wave- 

functions. Now as a result of our choice of quantization 

axis, we have
m ' =  o (9.2.1)

where wV is the orbital angular momentum component along 

this axis of. the ejected electron. If the photon responsible 

for the transition if right circularly polarized, we know 

that
Am= m'-m = -i

A s b a result of combining the last two relations, the selection 

rule

(9.2.3)

is obtained. In the presence of a spin-orbit interaction,

Yf\ is no longer a good quantum number and we specify the 

orbital occupied by the bound electron by the set )•

We may expand this bound state thus:
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^  M 5 - W J  )

' Xl,
(9.2.0

If the spin component of the ejected electron is Wv , the 

orthonormality of the spin functions and the selection 

rule (9»2.3) limit the contribution to the transition 

amplitude to one term in the expansion (9*2.4), this term 

being

\ i -md I (9.2.5)

Hence the spin polarization

K A O - I t - V )<p= 1 6 0
I W +  I ( H 0  (9 .2 . 0

can be replaced for this special case by

i t - f * 5 itV i A A )  V - l A + H j

(9.2.7)

Since » we have the two possibilities

Using explicit expressions for the 3j-symbols, we find

1 0 0 . [ - M k  ( i = w o

1/. ( j .  t.-.'i)



Remembering the statistical weight factor (2j+l), we note 

that the contributions from the states are such

as to cancel each other out. The values & = 1, ^ are

of particular interest in that they lead to P = 100%.

3• Results

The percentage spin polarization of electrons ejected with 

momentum t o  at an angle 0 may be defined as

-pfft'| - l o o
W e V W e ' l  < 9 .3 . d

To obtain explicit numerical values of we must now

choose an atomic system, specify the subshell from which 

the electron is to be ejected, and obtain theoretical 

values for the radial dipole matrix elements and phase 

shifts needed. The choice of atom was dictated as follows.

The formulae (9•1•7a,b ,c ,d) and (9•1.8a,b,c ,d) were obtained 

by neglect of coupling of the bound electron to other electrons 

This is justified for either a single electron in an otherwise 

empty subshell £r an electron in a closed subshell (Pauli 

vacancy principle). We opt for the latter since the fine 

structure splitting is so small in the former case as to make 

experimental energy discrimination unlikely. T h . noble gases 

were chosen because of the availability of a recent



calculation (Kennedy and Manson, 1972) which provides the 

requisite theoretical data for these elements, for both 

outer and inner subshells; and also because they are 

simple to deal with experimentally, being monatomic gases 

at room temperature. Figure 9*1 shows the percentage spin 

polarization ?(&') as a function of the angle of photo

ejection 0 from the 4-V -subshell of Kr , each curve 

corresponding to a different photon energy. Note that 

?«?) = 100%, in agreement with Section 9*2, for all 

energies. Note also the interesting behaviour which 

occurs at the energy of the Cooper minimum, discussed 

in previous chapters. At this energy, only the contribution 

from the outgoing S-wave is present, and this is 

accompanied by the complete suppression of the spin
i .orientation , so that we have P = 100% for all

angles of ejection.

Figure (9*2) shows the corresponding situation for the inner
<2 .

3  P l. -subshell of K r  . The important difference here is

that there is no Cooper minimum present, so that the change

in P with photon energy is much less marked.

The picture for the other noble gases is similar to that 

given above for Kr
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Photoejection from a close<i p-subshell leaves the residual 

ion in either of the states In the presence of a

spin-orbit interaction, these two states are separated in 

energy: hence, for ionization with photons of a sharp 

wavelength, the photoelectrons will consist of two groups, 

differing in energy by the amount of the fine structure 

splitting. The problem of observing the spin polarization 

of these groups separately can be dealt with in two ways. 

Firstly, the photon wavelength can be arranged so that only 

the higher energy Ph . group is obtained. In this 

connection, we note that the energy resolution necessary 

to achieve this is available, as shown by Berkowitz et al, 

(1966) who have studied the angular distribution of the 
two groups of photoelectrons for the noble gases. Secondly, 

both groups can be excited, and subsequently separated by 

using their different mean velocities to deflect them 

through different angles* This, however, could prove 

difficult and lead to losses in intensity.

It seems unlikely that the process dealt with in this chapter 

will provide a serious rival to the existing methods of 

providing intense beams of spin-polarized electrons; however, 

it could provide an interesting extension to photoelectron 

spectroscopy as a means of gaining information on both bound 

and continuum atomic wavefunctions.



APPENDIX

THE FORM OF ANISOTROPIES IN THE HIGH-ENERGY 

LIMIT OF THE BORN APPROXIMATION

In the course of calculating the angular distribution of 

products in the electron impact dissociation of ,

Zare (1967) makes some general assertions concerning the 

form of anisotropies in the high energy limit of the Born 

approximation. In particular, he claims that the work of 

Percival and Seaton (1958) (henceforth referred to as PS) 

on the polarization of atomic line radiation contains an 

error in this respect. We shall show that (a) Zare's 

general argument contains a fallacy; (b) the results of 

PS are correct; and (c) the rapidity with which the high 

energy limit is approached depends on whether or not the 

transition in question is optically allowed.

It is well known that the physical reason for the variation 

of such anisotropies as a function of impact energy is the 

energy dependence of the direction of momentum transfer to 

the atom K (momentum transfer ). The customary
A

approach is to consider that K is parallel to the 

incident beam at threshold and perpendicular at the high 

energy limit, varying monotonically between these two



extremes. Hence PS simplify their calculation by setting 

(the angle between K  and , where U .  is the^ #VO ©
momentum of the incoming electron) equal to • Zare

contends that this substitution is in general unjustified.

He correctly notes that, as (the kinematic

lower limit), 0° even for -fe0 very large. Since

the momentum transfer integrand in the Born approximation 

weights strongly small values of K close to K*v»w , the 

form of the anisotropy even at high energies may be 

substantially less than the limiting form predicted by 

putting 0^- • This is in agreement with the conclusions

of § However, Zare extends his argument in the

following manner:

i ^ _
"It might be wondered whether the 0  limiting form

(Zare is referring to the dissociation of H* ) would be 

reached, provided we were to consider still higher 

energies than.that shown in Figure 7- However, this is 

not the case, as can be demonstrated in the following 

manner. Let us calculate the fractional contribution 

to the total integral made by those values of 6 (our ©vc) 
that are less than or equal to e  magic ( (B magic is the 

'taagic angle" of 5^.7° introduced by Van Vleck (19~5)) ••••
» i

....... such values of 0 magic, corresponding to the

limits of integration from to >CS , cause peaking



along •%© and thus oppose the formation of a Stv?0 

distribution. In the high-energy limit, the integrand 

of (52) will be dominated by some leading inverse power 

of K, so that the indefinite integral has the functional 

form -(b K  where, in general, V\>-0 . The fraction^ 

of the total integral for which 0 * magic is thus

given by

Vs / Kwm*
^  ( 0  $  0 w i t  ) = ) Km;„

«  ■ - k—  W

which is seen to be independent of the bombardment energy E*

Zare concludes that if Y\^ 2. , the angular distribution need

never be reversed in sense. Since the above argument is qu*t 

general, Zare goes on to say that the performance of the 

integral over K in PS Equations (6 .13)1 (6.1*0 and (6.15) is 

incorrect in the general case, and leads to the wrong high- 

energy limit of the line polarization P, unless the integrand 

in question varies as IN. or slower.

The flaw in Zare's argument is contained in the statement:

"In the high-energy limit, the integrand of (52) will be 

dominated by some leading inverse power of K". This is not 

the case, for the coefficient (i of such an inverse power 

of K will be shown to be itself a function of the collision



energy, so that although Zare’s equation (5*0 is quite 

correct, the contribution from such a term tends rapidly 

to zero as

We shall demonstrate this for the case dealt with by PS; 

namely, the excitation in the Born approximation

Restating PS equation (6 .I3) in altered notation, we have:

p W x
q  as J l'P^W')\l>̂ Xc\K (A.i)

where

X ^ K ) = \<*l I ^  (Kr  ̂\ iS > \
K (A. 2)

in which
X

j ^ K t O  -  ( 2W )
(A.3)

Now since

(A„*0

we have .Km «
CP(iS-7>-TN̂ >no>) _ / 2. \ ^

Q U s - » w O  C ^ i ^ ( K > K d L K  (A*5)
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By setting PS obtain from this

Aim ng<**-»»tmVl / a_\ .«
V * - L U u i )  u .6)

Now the Bethe cross section ( 4 - 3 . 1  ) is the asymptotic form 

of the Born approximation as becomes large; PS do not

make it clear whether (A.6) should apply in the Bethe 

region or whether it is intended as a purely formal high- 

energy limit. The procedure we follow is equivalent to 

performing the Bethe approximation on the expression (A.5)*

In § 4.3 we saw that S k i s  significantly different from 

only if K 0 1 Ko being the "momentum

cut-off factor" introduced by Bethe (1930)* Hence for 

Ko ^  K  ̂  » the approximation represented by

(A.6) is certainly justified in the Bethe approximation, 

and we need only consider the behaviour of the integrand 

in (A.5) in the lower region of momentum transfers. This 

region is defined such that the inequality

K* < K  1  ( a .7 )

holds for all "T contributing appreciably to the integration 

implied in (A.2).

Thus j^(Kf)can be replaced by the leading term, of order



(Kr) , in its expansion, and we find
C*0 i o «  li?*-3 

QCt5-»nWfi _ ✓ <a \  ■)*<>J ̂  ( cos ^k)1 K c> K

dlK (A' 8)

rg>(lS-»nW)-l ^  <“>Lc$(is-*n̂  JK<Ktt - U sl+1 ) f*

Now at high energies

tf*. (A'9)

and thus we may write, using

cos 0K - S -t- fo*!*
K  (A.10)

for such energies. The first of the two terms on the right 

side of (A.10) is certainly much smaller than unity forkT^K0 » 

so that the substitution

(A.11)

should lead to no serious error in evaluating (A.8). Hence 

we make the substitution OC= and find

( • 1 ^  cwilsc^dbt
j~-SL^.±rjy)1 c: / o _ \  — ---------------u .1 2 )
L q m s ^  J K 6 K o ^ « + i )  >

vKVwiv̂

The energy dependence in (A.12) is thus confined to the lower 

limit of integration, making it clear, in view rf (A.9), that 

the dominant term at high energies will come from the leading 

inverse power of 30 in the integrand, and not, as stated by



Zare, from that of K.

*0Now the associated Legendre function ( a i s  the

product of Cl-sO*"' and a polynomial of degree 
( JL-rv\ ) ; hence the coefficient of the leading inverse 

power of X  in the upper integral in (A.12) is just 

, so that

r CKlS-frtt&rvQ"] _ f 0. \  \
^  Yimi) COM  (A. 13)

and we have thus vindicated the use of (A.6) by PS as a 

formal high-energy limit. Also, because of its similarity 

in structure, one can easily show that the expression (52) 

of Zare's paper (for the angular distribution of products 

following the dissociation of H* ) must eventually reach 

the si**© form corresponding to © K = •

The question remains as to whether the PS values calculated 

by using (A.6) are attained in the region of energies for 

which the Bethe approximation is valid, or whether they 

represent a merely formal high-energy limit, unattainable 

except for collision energies which require the modification 

of the Bethe formula itself due to the onset of relativistic 

effects. Now for optically-disallowed excitations ( in

the above formulae) the contribution from distant collisi.. r
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(represented by (A.12)) is relatively unimportant (see, for 

example, Inokuti (1971) p.30?)« Hence, one may substitute 

for such excitations throughout the Bethe region 

of validity, and the line polarization following a transition 

from such an excited state will reach the value predicted

by PS, throughout this region (neglecting any other depolarizing 

phenomena). For an optically-allowed transition, the 

contribution of the distant collisions is predominant at h:Lgh 

energies, and one cannot neglect the contribution represented 

by (A.12). We shall find it convenient to use the formula 

of Vriens and Carri£re (1970) for the polarization:

100 (•& cos*6 k -  O
aoo - ‘p0( i -  cos1©*") u 'lk)

where \

and is the generalized oscillator strength for the

transition. The relation between and the Born

matrix element is given in Chapter 5* is the threshold

polarization; values of have been tabulated for a wide 

range of transitions by PS.



Now (A. 1.3) can be rewritten as

,*(**)
- Acôe* = --- i«— s— 3Sl— iu ^ (a.i6)

£  ^ « 9
From the definition of the parameter Ko , we can make the

substitution V * o  *  f,fo) in the first integral in

the numfcrat'O'f, ^(O^being the optical oscillator strength;
Afrom our kinematic analysis of the behaviour of K* A.

(Chapter k) we can set 0 * “ in the second integral, the 

contribution from which thereby vanishes. We have therefore

” 5 T  *  5 a , “ fat ̂ 9  (A . 17)
rKmur I > t

,  l  f„ < „ -  o (e- V e ) 1  / £

Now the evaluation of the denominator is equivalent io the 

performance of the Born approximation; it must be evaluated 

separately for each collision energy of interest, since 

the limits Ky*i* , are themselves functions of energy.

However, it has been amply demonstrated (see Inokuti, 1971) 

that the Bethe asymptotic cross section, which is a function 

of the parameters and C* (the latter to be defined)

has virtually all the physical content of the Born 

approximation, at least to terms of order EL 1 . The Bethe

procedure gives:



where Ct\ is defined by

c - ( ^ * 3  =  J

- d I K 1)
-  j j i  -

substitution of (A.l8) in (A.17) gives

C o ^ 0 K = Q -&A (4-c*
V) (a .20)

and thus

? =  ^ Q ' P q  C  ^  - JjA (A-c* e/ r ^ 1  

(a o o  -  ?0 )  v  (4-c* E /(? y  +  90 (A.21)

The formula (A.21)gives the polarization of any line in 

terms of the two parameters ^  and . As mentioned

before, ^  has been tabulated by PS; equation (A.19) shows 

that Cw depends only on the shape of the generalized 

oscillator strength fix') and hence on the shape of the 

differential cross section.

We shall test the validity of the assumptions on which (A.21) 

is based by evaluating the polarization of the helium line 

( ) following the electron Impact excitation



( ^ ^  ^  )• For this line there are experimental

data (Moustafa Moussa, 1967) available, and also a Born 

approximation calculation (Vriens and Carriere, 1970). The 

latter calculation takes a truncated series expansion for

C O  of the Lassettre type (Lassettre, 1965) and determines 

the expansion coefficients by fitting to the definitive 

obtained by Kim and Inokuti (1968). It then calculates both 

excitation cross section and polarization using the 

e.xpansion. We use the value

C-lp = - i  - z t i
(A.22)

given by Kim and Inokuti, so that any difference between the 

two calculations cannot be ascribed to the use of different 

wavefunctions. The results are shown in Figure (A.l). We 

see that the present results converge on those of Vriens 

and Carriere with increasing energy, so that by E* ?>k*V 

the two curves are indistinguishable. Both curves are in 

reasonable agreement with experiment, considering that the 

latter is uncorrected for the depolarizing effect of cascade 

population of the upper level. Since the validity of the 

Born itself is questionable below *f00eV , one sees that the 

use of (A.21) represents a simple and worthwhile alternative 

to more elaborate Born calculations, which require a numerical 

integration for each value of E of interest. Furthermore, an 

estimate of P made with an empirically-determined C* may be
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more accurate than a full Born calculation with inadequate 

wave functions.

It is interesting to note that the formula (A.21) requires 

a correlation between the shape of the differential cross 

section at a particular (moderate to high) energy and the 

polarization of radiation from the subsequent transition.

It is possible that this could be exploited both 

experimentally and theoretically.

The thesis of Moustafa Moussa (1967) contains some calculations 

on the high energy tendency of the polarization. However, 

these are unsupported by any kinematic analysis such as is 

employed here, and consequently Moustafa Moussa is able to 

deal only with the low momentum transfer range ( K K 0 ).

Hence his conclusions, although correct, remain qualitative.

We conclude with a summary of the appendix:

a) The argument about the high energy limit of anisotropies 

is more subtle than it appears at first sight - as witness 

the inadequacy of its treatment by Zare and also, differently, 

by PS.
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b) The limiting values fi* given by PS are formally 

correct, but practically wrong for optically-allowed 

excitations, for which case the approach to the limit 

is extremely slow, so that , even for very

fast electrons (see Figure (A.l)). This stricture does 

not apply to optically-disallowed excitations.

c) A compact formula giving 'P as a function of 

impact energy has been obtained. The excellent agreement 

with the full Born calculation of Vriens and Carriere

for E  suggests the correctness of the kinematic

argument on which the formula is based.

d) The dependence of the formula for ' P on the parameter 

Qr\ , which can be obtained independently from total

and differential cross sections, both theoretical and 

experimental, implies an interesting cross-correlation 

among these different types of high energy data.

e) The generality of the kinematic procedure for K/V
suggests its possible extension to other types of 

anisotropic process following on electron impact, e.g. 

the angular distribution of products after molecular 

dissociation; or the direction of ejection of secondary 

electrons after ionization.
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• The polarization of characteristic x radiation excited by 
electron impact!
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Abstract. Using hydrogenic wavefunctions, the cross sections for ionization of an atom 
from the magnetic substates of the L3 level are calculated in (i) the Bethe approxim ation; 
and (ii) the first Born approximation. Calculation (ii) differs from previous work of a similar 
nature in that it takes as axis of quantization the direction of the incident electron beam.

Hence the polarization of the resulting characteristic x radiation is estim ated; it is 
found to be small in comparison with the degree of polarization which typically results 
from the excitation of optical lines, in marked disagreement with a previous calculation.

1. Introduction

When atomic line radiation is excited by a collimated beam of electrons, it is in general polarized. This is well known from observation and has been accounted for satisfactorily within the framework of quantum mechanics. The field is the subject of a recent review article by Kleinpoppen (1969). The electron beam introduces a large degree of anisotropy into the process which manifests itself in the non-uniform angular distribution of the emitted radiation. Hence, when a collimated beam is used to excite the characteristic x rays of an atom, the question arises as to whether this radiation also is polarized. The purpose of the present study is to look at the latter process in more detail and to give some kind of quantitative indication of the extent of the polarization to be expected in a given line.There has been, to the author’s knowledge, only one published experimental study of x ray polarization— that of Hrdy et al (1970) on the Lai x rays of mercury. They claim good agreement with the only previous theoretical work, due to Mehlhorn (1968). But there are strong reasons for believing the results of Mehlhorn to be erroneous; these will be discussed in detail later.The basic premise of the theory presented here is the same as that of the Oppenheimer- Penney theory of the polarization of optical line radiation; that one may calculate separately the probability of collisionally exciting a state with a particular orbital angular momentum component along a fixed direction, and the probability of emission of a polarized photon in the subsequent transition from that state. Percival and Seaton (1958) showed that in certain circumstances, this assumption leads to ambiguities, and presented a more sophisticated theory which successfully resolved these ambiguities.
t  This work was first reported on at the 3rd National Atomic and Molecular Physics Conference, University 
of York, April 1971.
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Nevertheless, we shall retain the assumption in what follows, on the grounds that the inequality
fine structure splitting » line width » hyperfine structure splitting (1)

is generally true of x ray spectra, and that therefore the ambiguity should not arise in practice.Hence we can separate the problem into two parts— the collisional and the radiative, the former presenting the greater difficulty. The bulk of discussion in this paper will concern the collision problem, but § 2 deals with the question of threshold polarization which for optical lines may be calculated without knowledge of cross sections. § 3 deals with the calculation of the ionization cross section from any state designated by the quantum numbers (nlm) in the Bethe approximation, whereas § 4 uses the Born approximation to calculate the cross sections for ionization from the states (2p, m = 0) and (2p, m = ± 1) using hydrogenic wavefunctions. The Bethe approximation is, of course, much cruder than the Born. The advantages of its use lie in its simplicity and its generality (it applies to any values of (nlm)). Also, it supplies a formal high energy limit on the Born calculation, and a simple physical picture which helps to explain the results.Section 5 gives the results of these calculations and § 6 comments on their significance.

2. Threshold polarization

In electron impact excitation, it is well known that the threshold polarization can be calculated without any knowledge of cross sections. Thus the question presents itself where this can be done for excitation of x ray levels by electron impact.We consider, for the moment, the process to be simply one of ionization. Before the collision takes place, the incident electron has zero orbital angular momentum component along the quantization axis, by definition. Also, the shell which is to be ionized is initially complete, and therefore has zero orbital angular momentum component 
(Ml = 0). Hence the total component is initially zero (ignoring any component which may exist in an outer shell, which takes no part in the ionization process). After the collision, at the energy of the ionization threshold, the scattered and ejected electrons have zero velocity and therefore zero orbital angular momentum. Hence only vacancy states with M L = 0 can be excited, and we have a very similar threshold selection rule to that for optical excitation, that is

<r(n, L, M l * 0) = 0. (2)
However, the process is not simply one of ionization. It is possible to create a vacancy in an inner shell by exciting an electron to a discrete unfilled level. Because of the narrowness of the energy range occupied by such levels, the probability of this process is in general small compared with that of ionization, and if we use a collisional approximation such as the Born, which is in any case only valid for high impact energies, the error in ignoring excitation to discrete levels should be negligible. But as we approach the ionization threshold, the discrete excitations will become increasingly important, and the above threshold law will therefore be invalid.Strictly speaking, then, the threshold energy will be the energy required to excite an electron to the first unoccupied outer level. Only if this level is an S state (L = 0) will the selection rule (2) still obtain. For L ̂  0, we have merely AM L = 0 for the transition, a restriction which will not lead to large ratios between the cross sections for producing
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vacancy states with different M L. Even if the first unoccupied outer level should be an S state, the situation is complicated by the fact that the outer energy levels may be sufficiently close compared with the energy resolution of the incident electron beam that any large threshold polarization is effectively smeared out.This very qualitative account is meant to indicate the more complicated nature of the threshold region in the x ray case and to guard against the facile application of a threshold selection rule derived from the optical excitation case. The remainder of this paper will deal with the region well above threshold, where these strictures do not apply.

3. The Bethe approximation

At sufficiently high energies of impact, the bulk of all ionizing collisions are due to small angle, ‘glancing’ collisions, that is collisions involving small momentum transfer, K. This justifies replacing the exponential in the Born matrix element by its first two terms (see Mott and Massey 1965 p 497).
exp(itf.r) ~ 1 + iK.r (3)

so that
K/c/'mj exp(iA\ r)|n/m)|2 ~ \(Kl'm'\(K. i*)|n/ra>|2 (4)

where (nlm) are the quantum numbers of the initial atomic state and (Kl'm') those of a state in the continuum. Strictly speaking, the continuum state should represent the ejection of an electron in a particular direction. It can be demonstrated by expanding such a state in spherical harmonics that one arrives at the same result as in equation (6) below.To measure the polarization we must choose our z axis along the direction of the incident electron. With this choice we have
K  .r = Kr(cos X cos 9 + sin X sin 6 cos 0) (5)

where (6, (j>) are the polar angles of the vector r and X is the angle between K and the quantization axis. We may arbitrarily set the azimuthal angle of K equal to zeto in these axes.Substitution of (5) into (4) and summation over the angular momentum quantum numbers of the final state gives
£ \ ( k ¥ m'\(K. r)\nlm>\2

I ' m ’

= K 2 cos22{|<k:/ + lm|r cos 0|n/m)|2 + |<K:/— lm|r cos 0|n/m)|2}
+^K2 sin2 X{\(kI+ lm + llrsin̂e’̂n/m)!2 + |</c/+ lm— l|rsin0e-l<*jn/m>|2 
+ |<k/— lm+ 1|r sin 6 e1<#,|n/m)|2 + |</c/— lm — l|r sin 6 e_,̂|n/m)|2}. (6)

The angular parts of these matrix elements can be evaluated simply (see Bethe andSalpeter 1957 p 432). Now we make the additional approximation X = jn, that is the momentum transfer takes place perpendicular to the direction of incidence; this should hold good in the limit of high energies. Thus we find for the total ionization cross
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section, on performing the integration over K, 
4nal j l'a0 ̂ Kl+, ̂ 0  +  l)(/ + 2) + m 2

i f * "(T/Ry) Jo m 2(2/ + 3)(2/+l)

where 0tj = |J“ Rn.r(r)Rnl(r)r3 dr|2, the R’s being the appropriate radial eigenfunctions. 
T is the kinetic energy of the incident electron and Ry the Rydberg energy.We are concerned here with the ratio of the cross sections for ionization from different substates corresponding to the same subshell defined by the values of n and /. From (7) we can write such a ratio

r « i +i, (/+l)(/ + 2) + m'2 , r  0 * 1 - 1  A +

J o * -  ~2(2f+T),2/-Tl)~ J0 * -  dK<,m. J0 “ 2(2/ +  3)(2/+l) J0 “ 2(2/+l)(2/-l)

r ^ ^ d,c(f+ll('+2l+w2, r g - f cJo 2(2/ + 3)(2/+1) J0 dK

(8)
2(2/+l)(2/-l)

Note that, in the high energy limit, this ratio is independent of incident electron energy. To evaluate the ratio for given values of n, /, and m in a particular atom, we must first make some assumptions about the form of the radial atomic wavefunctions. We shall postpone consideration of this until § 5.

4. The Born approximation

The Born amplitude for a transition from an initial state to a final state is proportional to the matrix element (sometimes called the atomic form factor)
<f| exp(iA\ r)|i>. (9)

In the ionization process we wish to consider, i is a state labelled by the quantum numbers n, I and m, where the axis of quantization is as defined above. For the innermost shells of the heavier atoms, the deviation of the potential from Coulomb shape is small, and to a good approximation we may use hydrogenic eigenstates with the appropriate screening, f is a state of the continuous spectrum in which the atomic electron is moving in a particular direction in the field of a charge +Z'e = +{Z — s)e, where Z is the nuclear charge and s the screening factor for the subshell. From general symmetry considerations we can say that the 2p state is the first state, going out from the nucleus, capable of giving rise to polarized x rays. Calculations of cross sections for ionization from the 2p state of a hydrogen like system in the Born approximation have been carried out by several investigators (Burhop 1940, Mandl 1952, Swan 1955, McCrea and McKirgan 1960, and Omidvar 1965). However, in all of these the quantization axis is taken as parallel to the momentum transfer vector. This is done to simplify the evaluation of the matrix element (9), since exp(iA\ r) becomes simply exp(iXr cos 0). As long as the cross section is averaged over m, this procedure leads to no difficulty. But if we are interested in a particular value of m, the total cross section is physically meaningless, since K, the quantization axis, is itself a function of incident electron energy.In what follows, a method is shown of relating ionization cross sections from particular magnetic substates to a fixed axis of quantization along the direction of the
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incident beam of electrons. To avoid confusion, we shall label magnetic quantum states taken with respect to axis A by /n, those taken with respect to k (the wavevector of the incident electron) by m. If we consider these two sets of axes as coinciding when one set is rotated in the appropriate direction through an angle about their common 
y axis, we obtain the following relation between the two sets of quantum states |nlm} and | n//i):

|«/m> = ̂ S “ (0A0)|«/̂ > (10)
I1

where the rotation matrix element ̂ (̂a/fy) is as defined by Edmonds (1960).Hence we have
<f| exp(iA. r)|n/m> = £ ̂(OAO) <fl exP(iAr- r)l«*/*>• (11)

The cross section is proportional to
|<f| exp(iA. r)\nlm)\2 = £ exp(-iA. r)|f><f| exp(iA. r)\nlfi>. (12)

II,fl’
The differential cross sections for the cases (2p, 0) and (2p, ± 1) which Burhop and others calculate are in effect the diagonal elements of the matrix defined by the right hand side of equation (12) (apart, that is, from the rotation matrix elements). We have to evaluate also the off-diagonal elements. As it happens, a detailed consideration of the matrix elements shows that these off-diagonal terms vanish when one integrates over all directions of ejection of the atomic electron. So we may write
J |<f| exp(iA. r)|n/m>|2 dco(A) = £ |̂(020)12 J |<f| exp(iA. r)\nlfi}\2 dco(A) (13) 
or, alternatively,

UK; nlm) = £|@«(0/l0)|2fE(K;t#) (14)
where

UK, nlm) = -|^ | |<f| expfiif. r)|n/m>|2 dcotf) (15)
is the generalized oscillator strength, E being the energy transfer in the collision. Note that in this case f̂K), usually valuable precisely because of its independence of incident particle energy, is here dependent on the energy of the collision through the angle X, which is itself related to the energy:

21 {(Ka0)2 + E/ Ry}2
COS ̂  = M Y  ^TVP • (16)4(Ktf0) r/Ry

We use f£(K) here for the sake of brevity.For the 2p state, evaluating the rotation matrix elements yields the relations
fe(K ; 2p, m = 0) = cos2Af£(K; 2p, /z = 0) + sin2/lf£(K; 2p, fi = ±1) (17a)

and
f£(X; 2p, m = ± 1) = i ( l  + co s2A)f£(K; 2p, \i = ± 1)+^ sin22f£(K; 2p, fi = 0). (lib)
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The f£(.K) for a hydrogenic system of effective charge Z' are of the general form

the work of Banks et al (1969) in conjunction with that of Vriens and Bonsen (1968), the expressions

where e = E/Z'2Ry. Hence by means of equations (16), (17a), (17b), (18), (19a) and (19b) we have defined f£(X; 2p, m = 0) and iE(K; 2p, m = ± 1) in terms of Q, e and t (= T/Z'2 Ry). To obtain the total cross section we require the relation

from the kinematics of the collision process.The double integration in (20) must be performed numerically for each value of t of interest. The resulting total cross sections are shown in the following section.

5. Results

5.1. Bethe approximation

Equation (8) becomes for the particular case of an initial 2p state:

(18)
arctan

where Q = (KaJZ')2 and Kh is the momentum of the ejected electron. We obtain from

{7(t- Q)* + (64fi+4)(E — Q) (19a)
+(i92Q2+54e)(£-02+8oe2(e-e)+i5e2!

and

{4(*-<2)2+ (28Q + 3)0{4(e - Q)2 + (2SQ + 3)(e - Q) + 24Q2 + 18(2} (19b)

(20)

where
Qmin = 2t —  e —  2t(l— (/t)'12 (21 a )

and
Q m a x  = 2f — c + 2f(l — e/t)1/2 (21b)

ClpO (22)

To obtain a numerical value for the ratio we must make some assumption about the wavefunctions. If we take them to be hydrogenic and use the data of Bethe and Salpeter
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(1957 p 350) for the radial matrix elements, we find
= 0-814. (23)<T2p±l

This ratio is independent of both t and Z'. The percentage polarization of radiation is defined as
711 —71

p = m -eTe

where 711 is the intensity of radiation with electric vector aligned parallel to the quantization axis, and I1 the intensity with electric vector perpendicular to the same axis, the direction of observation in both cases being at right angles to the axis. Now 711 and 71 depend on the optical transition probabilities and on the population of atoms with vacancies in the different substates, the latter being proportional to the ionization cross sections for these substates. Since there is a substantial spin-orbit interaction, the substates in question are designated by the quantum numbers n, l,j, mj. The ionization cross sections for these substates must therefore be expressed in terms of those for substates designated by n, /, m. This may be done using vector coupling coefficients. When these coefficients are evaluated, together with the appropriate optical transition probabilities, for the particular case of ionization from the L3 sublevel, the resulting expressions for P are as follows:
P(L,) = P(M, - L3) = 300 a°~a' (24a)

SoQ + lOi

P(LJ = P(M5 - L3) = 100 a°~"1 (24b)
la0 + \5Oi

P(LJ = P(M4 - L3) = 300 g‘ ~g° (24c)4<70+ll<71
where we have used the abbreviations aQ = o-2p0 and ox = ff2P±1. Thus, in the limit of high energies

PJLt) = -5-04% (25a)
PJ LJ= -1-00% (25 b)
PJ L J =  +3-91%. (25c)

These polarization are small, whereas P^ for many optical transitions is large. It is possible to gain some physical insight into this result as follows.As the collision energy becomes large, the momentum transfer is virtually at right angles to the direction of incidence. This means that any transitions which result from the collision must obey the selection rule
A m =  ±1. (26)

This is true for both optical excitation and inner shell ionization. In the latter case, the only transitions into the continuum in the Bethe limit are those which are optically allowed. This situation is illustrated in figure 1. In (a) we see that, notwithstanding the selection rule, transitions from all magnetic substates into the continuum are possible.
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m= -2 -I 0 +1 +2 K(j /7?=0 KS

m - +10m -

Figure 1. Bound-free transitions from the 2p level in the Bethe limit. The selection rule 
Am =  +1 means that, in case (b) the ionization cross section from the state (2p, m =  0) is 
zero.

In (b), however, transitions from the state (2p, m = 0) are forbidden. In this case the vacancy distribution after the collision will be highly unequal and the polarization of the characteristic x rays large. That the polarization is in fact small is a result of the inequality
| £%+1 d/c » | dtft1 d* (27)

where the radial eigenfunctions are hydrogenic.
5.2. Born approximation

The total cross sections er(2p, m = 0) and er(2p, m = ± 1), as calculated from the expression (20) above, are shown in figure 2. They are given in scaled units of nal/Z'A. The cross sections intersect at around 16 times the threshold energy. They intersect again on the low energy side of the peak, as can be seen more clearly in figure 3, which gives the

20-

Electron incident energy (threshold units)

Figure 2. Ionization cross sections from the hydrogenic states (2p, m =  0) and (2p, m =  ±  1) 
in the Born approximation, referred to a quantization axis aligned parallel to the direction 
of electron incidence.
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- 4

Electron incident energy (threshold units!

Figure 3. Percentage polarization of the lines Lai(M 5 -*■ L3), LI2(M4 -*• L3) and L,(M 1 -» L3) 
as a function of electron incident energy. The calculation uses the cross section data shown 
in figure 2.

polarization of the lines L,, Lai, and La2 as a function of collision energy. There seems to be no physical justification for this low velocity behaviour, which can probably be safely ascribed to the inadequacy of the Born approximation in this region.At this point we should mention that figures 2 and 3 are in sharp disagreement with the published results of Mehlhorn (1968). Mehlhorn’s calculated polarizations are substantially larger for all incident electron energies shown, do not change sign anywhere in this range, and appear to be tending to very different high energy limits. It appears that Mehlhorn’s results can be accounted for on the assumption that his collision cross sections are referred to a momentum transfer quantization axis. This has been confirmed by Mehlhorn (private communication).In further support of the present results, two checks have been carried out. The cross section ratio for the Bethe limit was obtained by setting K = 0 in equation (20) and performing the integration over e. The result was
er(2p, m = 0) 

cr(2p, m — ±  1)
= 0-81161 (28)

in good agreement with (23). Also, the corresponding expressions for fE(K) in the binary encounter (classical impulse) theory (see Burgess and Percival 1968, or Vriens 1969) were calculated for the particular case A — and checked with the previous unpublished calculations of Banks (1968 private communication). They are:
fe(K ; 2p, m = 0) = 16 5/2

5 k  { ( i - Q f  +  Q Y

and
„ 8 eQ5/2{9(f — Q)2 + Q]

W  ’ P’m  ±  * 5 n  { U - Q ) *  +  Q y

(2 9  a)

(29ft)

Setting A = jn in equations (17a) and (176), it can be shown graphically that they agree well with (29a) and (296) respectively, in the limit of large Q and e, as the work of Vriens and Bonsen (1968) shows they must.
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6. Comments

Both Bethe and Born calculations concur in suggesting that the polarization of characteristic x radiation resulting from electron impact is small over the intermediate to high range of collision energies. However, in the Bethe case we saw that this conclusion is a result of the inequality (27), and such radial matrix elements tend to be highly sensitive to the form of the wavefunctions, so that a small deviation from the Coulomb shape which we assume might lead to significantly different results.In appraising the validity of the foregoing simple theory, it should be remembered that it neglects several effects which may have an important influence. Firstly, it takes no account of the phenomenon of radiationless or Auger transitions (see Burhop 1952), which may seriously alter the primary vacancy distribution due to the collision, and hence the polarization. Secondly, it ignores the effect of focussing and acceleration by the highly charged nucleus on the incoming electron, which must pass close to the nucleus to ionize from an inner shell. Thirdly, and perhaps most importantly, the theory makes no allowance for the effects of relativity. Even for Z as low as 30, the velocity of an L shell electron is ~01 c, and for the Born to be valid the incident electron must be at least two or three times faster. It is hoped to take some account of relativity in a future paper.
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