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ABSTRACT

This work is  concerned w ith c o l l is io n  processes occurring 

between simple polyatom ic gas molecules and e lec tro n s  o f low inciden t 

k in e tic  energy (0-5  eV).

The p r in c ip a l  methods o f experim ental in v e s tig a tio n  and previous 

work in  the f i e ld  are reviewed. An o u tlin e  of fundamental concepts of 

wave-mechanical s c a tte r in g  theory  is  p resen ted  and a p p lica tio n s  of theory 

to  low energy electron-m olecu le  c o ll is io n s  are reviewed and d iscussed . 

A fte r  co n sid e ra tio n  of the shortcomings of e x is t in g  th eo rie s  in  r e la t io n  

to  tr ia to m ic  and la rg e r  molecules i t  i s  concluded th a t  appreciab le  d ire c t  

e x c ita tio n  o f in fra re d -a c tiv e  v ib ra tio n a l modes i s  to  be expected.

A d esc rip tio n  i s  given o f the design and co n stru c tio n  o f a 

Townsend-Huxley type d iffu s io n  apparatus to  measure the  r a t io  of 

d if fu s io n  c o e ff ic ie n t to  m obility  {D/p) f o r  e lec tro n s  in  gases. The 

p r in c ip a l fe a tu re  of th i s  apparatus i s  i t s  s u i ta b i l i ty  fo r  accurate 

measurement in  low-energy swarms achieved by choice of geometry, 

mechanical accuracy, un iform ity  of e le c t r i c  f i e ld  and use of u ltra -h ig h  

vacuum techniques.

The r e s u l ts  obtained using  th is  apparatus are  p resen ted  as D/p 

values in  methane, e th y len e , ace ty len e , cyclopropane and hydrogen



su lph ide. In  each case the  measurements extend to  considerably  lower

values of f i e ld  s tren g th /p re ssu re  r a t io  than h ith e r to  published  r e s u l ts .

An account is  given of the method of swarm tra n sp o rt c o e ff ic ie n t

a n a ly s is  by so lu tio n  of the Boltzmann equation fo r  t r i a l  c ro ss -sec tio n

v a lu es . A computer program i s  described  which au tom atically  ad ju s ts

the c ro ss -se c tio n s  u n t i l  they are co n sis ten t w ith experim ental data .

For each gas s tu d ied , the r e s u l ts  of the an a ly s is  are given.

For methane and e th y len e , the momentum-transfer cro ss -se c tio n  i s

derived  along w ith  two in e la s t ic  c ro ss-sec tio n s  corresponding to

e x c ita t io n  of in fra re d -a c tiv e  v ib ra tio n a l modes. For acety lene and

cyclopropane only one v ib ra tio n a l  c ro ss -se c tio n  i s  used. The l ik e ly

co n trib u tio n s  from o th e r in e la s t ic  processes are  d iscussed.

The re s u l ts  suggest th a t  the la rg e  in e la s t ic  energy lo sses  in

these  molecules can be explained by v ib ra tio n a l  e x c ita t io n

c ro ss -se c tio n s  peaking ju s t  above th re sh o ld  energy w ith  magnitudes of 
-16 2the  o rd er of 10 cm . No evidence i s  found to  support the  idea th a t  

th i s  e x c i ta t io n  may occur v ia  an in term ediate  negative ion "resonance” .
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CHAPTER I  

REVIEW OP ELECTRON-MQLECULE COLLISIONS

1 .1 . INTRODUCTION

The study of electron-m olecule c o llis io n s  can he considered to  

a f fe c t  two p r in c ip a l areas of s c ie n t i f i c  understanding. F i r s t ly ,  i t  

can give important inform ation on m olecular s tru c tu re , both in  the  

ground e le c tro n ic  s ta te  and in  ex c ited  and ion ic  s ta te s .  Secondly, i t  

g ives in s ig h t in to  the dynamics of m olecular p rocesses. The form er 

e f f e c ts  have been ex p lo ited  by the development of s tandard  techniques 

f o r  s tr u c tu r a l  in v e s tig a tio n , such as e lec tro n  d if f r a c t io n ,  mass 

spectrom etry , and e lectron-im pact spectrom etry, while the  l a t t e r  have 

s tim u la ted  the development o f a v as t new f ie ld  of th e o re t ic a l  p h y sics , 

w ith  im portant consequences to  the understanding o f a l l  fundamental 

p ro cesses.

The p o ssib le  consequences to  an e le c tro n  molecule encounter may 

be c la s s i f ie d  as fo llow s.

(a) E la s t ic  s c a t te r in g , in  which there  i s  no change in  th e  in te rn a l

energy s ta te  of the  molecule.

(b) I n e la s t ic  s c a tte r in g  w ith  e x c ita tio n  of th e  molecule to  a  s ta te

d if fe r in g  in  one o r more of i t s  r o ta t io n a l ,  v ib ra tio n a l ,  o r 

e le c tro n ic  quantum numbers. The reverse  of th i s  p rocess 

( i . e .  d e -ex c ita tio n )  i s  o fte n  re fe rre d  to  as su p e re la s tic
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s c a tte r in g .

(c ) Io n isa tio n  to  e i th e r  a  p o s itiv e  or negative ion , th i s  being a

sp e c ia l case of (b ) .  As w ith e le c tro n ic  e x c ita t io n , io n isa tio n  

may lead  to  m olecular d isso c ia tio n .

The above c la s s if ic a t io n  i s  somewhat em pirica l as i t  depends

to  a c e r ta in  ex ten t on the experim ental system. Thus, i f  a negative  ion 

formed l iv e s  long enough to  be de tec ted  as such, the  c o ll is io n  w i l l  be 

c la s s i f ie d  as an e le c tro n  attachm ent, whereas i f  the life tim e  is  sh o rt 

and the ion u ndetected , the c o l l is io n  w il l  u su a lly  be described  as e la s t i c  

o r in e la s t ic  according to  the  k in e t ic  energy of the em itted  e le c tro n .

the  p ro b a b ility  of the p ro je c t i le  c o llid in g  in  t r a v e l l in g  u n it  d istance  

through a gas of u n it  d en s ity . Hence the number of e le c tro n s  sc a tte re d  

from a  beam of cu rren t d en sity  I  in  t r a i n i n g  a  d istan ce  dx i s  given by

As i t  i s  o ften  p o ssib le  to  measure the  angular d is t r ib u t io n  of 

s c a tte re d  e le c tro n s , the  s c a tte r in g  phenomenon is  fu r th e r  described  in

p e r  u n it  so lid  angle of s c a tte r in g  through an angle 9. This i s  r e la te d  

to  the  t o t a l  c ro ss -se c tio n  by
2jt n

Q u an tita tiv e  d e sc rip tio n  o f c o l l is io n s  is  made in  terms of 

the c o l l is io n  c ro ss -sec tio n  • The t o t a l  c ro ss -sec tio n  Q i s  defined  as

- d l  = MQIdx ( 1 . 1 )

terms of the d i f f e r e n t ia l  c ro ss -se c tio n  <f(0 ) ,  which is  the p ro b a b ility

Q J J t  (e)ae&f>
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using  a sp h erica l p o la r  co-ord inate  system centred  on the  ta rg e t .

I f  the c o ll is io n s  are  c la s s if ie d  in to  d is t in c t  p ro cesses , the 

t o t a l  c ro ss -sec tio n  is  the sum of the in d iv id u a l c ro ss -se c tio n s  fo r  

each process:
n

Q
i =0

 ii

= Y L  Qi  t 1' 3)

A s im ila r  re la t io n s h ip  holds fo r  the d if f e r e n t ia l  c ro ss-sec tio n s ,

A c ro ss -se c tio n  d e f in it io n  of p a r t ic u la r  importance in  e le c tro n

swarm an aly sis  i s  the  momentum-transfer c ro ss -sec tio n  Qm (a lso  c a lle d

the d iffu s io n  c ro ss -se c tio n ) . For e la s t ic  s c a tte r in g  of an e le c tro n

of mass m through an angle © by a molecule o f mass M, where M » m, the
2f ra c t io n a l  lo ss  of k in e tic  energy by the e le c tro n  i s

X -  2(1 -  cos©) n/M (I.4-)

In  terms of the  d i f f e r e n t ia l  e l a s t i c  c ro ss -se c tio n  cfQ( 0 ) ,  the

average f ra c t io n a l  energy lo ss  p e r c o ll is io n  i s  th e re fo re
it -fti

^ = Safe J J^ -coae)  d"o(© )sin0d0d^ ( l « 5 )

0 o
The t o t a l  momentum-transfer c ro ss -se c tio n  is  defined as 

\  **

~ J  -cos©) tf(©)sin©d0 d^ ( l* 6 )
0 o

so the mean f ra c t io n a l  energy lo ss  fo r  e la s t i c  c o l l is io n s

becomes
T _ 2m Sim ( j  y)
A ~ M * Qo
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Qm is  th e re fo re  the p ro b a b ili ty , per u n it  d is tan ce  and u n it  

ta rg e t  d en s ity , of c o l l is io n a l  t r a n s fe r  of a  f ra c t io n  2n/M of e le c tro n  

energy to  ta rg e t  k in e t ic  energy. I t  i s  thus s im ila r  to  the  to t a l  

c ro ss -se c tio n  but weighted according to  the an istro p y  o f the c o l l is io n s .

The above d e f in itio n s  are purely  phenomenological, no assumptions 

being made about the mechanisms of s c a tte r in g  or any in term ediate  s ta te s  

formed.

This work i s  concerned almost e n t ire ly  w ith  c o ll is io n s  by 

e lec tro n s  of in c id en t energy ranging from therm al (.037  eV a t  300°K) 

to  a maximum of around 5 eV. This i s  w ell below the f i r s t  io n isa tio n  

p o te n t ia l  fo r  most simple m olecules, and l i t t l e  a t te n tio n  w il l  be p a id  

to  e le c tro n ic  e x c ita tio n . The ch ie f  processes Involved, besides e l a s t i c  

s c a t te r in g , are v ib ra tio n a l and ro ta t io n a l  e x c ita tio n  and d e -e x c ita tio n  

o f the  m olecules. In  th is  chapter the experim ental and th e o re t ic a l  

methods fo r  in v e s tig a tin g  such processes are  reviewed, to  provide a 

background fo r  the in te rp re ta t io n  of the  r e s u l ts  of th i s  work.

1 . 2 .  EXPERIMENTAL METHODS

A comprehensive review of the experim ental methods i s  included in

2 3the works by Massey and Burhop . The experiments f a l l  in to  two main 

ca teg o rie s : d ire c t  s in g le  c o l l is io n  beam experim ents; and a v a r ie ty  of

m u ltip le -c o ll is io n  experim ents, of which those g en era lly  re fe r re d  to  as 

" e le c tro n  swarm" experiments c o n s titu te  the  most im portant group a t  low 

en erg ies . Although the p resen t work i s  not concerned w ith  e le c tro n
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"beams, experiments o f th is  type approach c lo se s t  to  g iv in g  a d e ta iled  

view of the sca tter in g  p rocess, and th e ir  r e su lts  must constan tly  be 

borne in  mind when in terp retin g  swarm work. A b r ie f  d escr ip tio n  o f  

beam experiments w i l l  therefore be given in  1 .2 .1 . H is to r ic a lly , both  

types o f experiment orig in ated  at roughly the same tim e, and have been 

developed in  p a r a lle l  as tech n o log ica l and th eo r e tic a l advances have 

enabled an increasin g amount o f inform ation to  be extracted  from th e ir  

execution .

1 .2 .1 .  E lectron beam experiments

The f i r s t  qu an tita tive  measurements o f sca tter in g  were performed
2by Ramsaner in  1921, who simply measured to t a l  c ro ss -se c tio n s  by the

attenuation  o f a beam in  passing  through a gas. The method was la te r

adapted by Golden and Bandel^. Although sharp structure i s  not generally

observed in  t o t a l  c ro ss -sec tio n s  severa l in te r e s t in g  fea tu res were

apparent, one being the observation o f a marked transparency in  the

in er t gases Ar, Kr, and Xe at low impact en erg ies ( ~ 1  eV). This
5

phenomenon was discovered independently by Townsend , and became known 

as the Ramsauer-Townsend e f f e c t .  The quantum mechanical p red ic tio n  o f  

th is  e f f e c t ,  which remained unexplained c la s s ic a l ly ,  was held  to  be a 

convincing ea r ly  proof o f the th eo r ies  o f wave mechanics. Another 

unexpected e f f e c t  was the presence o f quite sharp maxima in  the  

cro ss -se c tio n s  o f N£, CO, and N̂ O a t around 2 eV. More e a s i ly  explained  

however were the steep  r is e s  as low impact en erg ies  were approached in
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the c ro ss-sec tio n s  of d ip o la r  m olecules, a  consequence of the  v e lo c ity

dependence of e lec tro n -d ip o le  sc a tte rin g ^ .

The advent of e le c t r o s ta t ic  ana lysers  and improved e le c tro n -o p tic a l

systems increased  energy re so lu tio n  and encouraged th e  study of in e la s t ic

p rocesses trjr energy a n a ly s is  of the  sc a tte re d  e le c tro n s . Many experiments
2 5 6of th is  type have been performed 9 9 , using one or more e le c t r o s ta t ic

analysers  to  measure fix ed  or v a riab le  angle s c a tte r in g . One experim ental

d i f f ic u l ty  encountered is  th a t  as re so lu tio n  is  increased  and energy

lowered, in te n s ity  f a l l s  o ff  rap id ly  and experiments become in c reasin g ly

d i f f i c u l t  to  perform . N evertheless, recen t experiments have produced

good energy-loss sp ec tre  a t impact energ ies of a v o lt  o r two and in  one

extreme case Ehrhardt and Linder^ have resolved the  s tru c tu re  due to

e x c ita t io n  of d is c re te  ro ta tio n a l le v e ls  accompanying the v ib ra tio n a l

e x c ita tio n  of Hg.

In  g en era l, however, observation of n ea r-th resh o ld  e x c ita tio n  of

m olecular v ib ra tio n  is  beyond the scope o f most beam techn iques, and

a tte n t io n  has been concentrated  on e le c tro n ic  t r a n s i t io n s .  At high

impact energ ies  (>  200 eV) the  p r in c ip a l fea tu re  i s  the  observation  of

o p tic a l ly  allowed (d ip o le ) t r a n s i t io n s  , in  accordance w ith  the g eneral

p r in c ip le  th a t high-energy e lec tro n s  resemble electrom agnetic ra d ia tio n

in  behaviour. At in term ediate  energ ies (50 -  200 eV) e le c t r i c  quadrupole
9

t r a n s i t io n s  a lso  occur , and a t s t i l l  lower energ ies sp in-fo rb idden  

( s in g l e t - t r i p l e t )  t r a n s i t io n s  ap p ear^ '10. The l a t t e r  are in te rp re te d  

as occurring  through the  mechanism of e le c tro n  exchange; the  p ro b a b ility
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of e x c ita tio n  increases as impact energy decreases to  th re sh o ld  and as 

s c a tte r in g  angle in c reases . This phenomenon i s  of g re a t importance to  

the study of m olecular e le c tro n ic  s tru c tu re  as  i t  perm its  the 

id e n tif ic a t io n  of s ta te s  not normally observed in  electrom agnetic sp ec tra .

A ra th e r  d if fe re n t  type of beam technique which has y ie ld ed

valuable re s u l ts  i s  th e  "e lec tro n  trap" introduced by S c h u lz ^ . This

involves trapp ing  and c o lle c tin g  in e la s t ic a l ly  sc a tte re d  e lec tro n s

which have lo s t  p ra c t ic a l ly  a l l  of th e i r  k in e tic  energy in  a  shallow

e le c t r o s ta t i c  p o te n tia l  w ell of around 100 mV depth. Scanning the

in c id en t energy a t  f ix e d  w ell depth produces a th resh o ld  spectrum in

which the peaks are p ro p o rtio n a l to  the magnitudes of the t o t a l  in e la s t ic

c ro ss -sec tio n s  in  the region immediately above th resh o ld . The technique

d e te c ts  both o p tic a lly  allowed and sp in-fo rb idden  t r a n s i t io n s  w ith

s im ila r  in te n s i t ie s ,  and a lso  extends in to  the reg ion  of pure v ib ra tio n a l
12e x c ita tio n . Many simple m olecules, includ ing  sev era l hydrocarbons ,

have been s tu d ied  by th i s  method.

A consequence of the improvement in  beam re so lu tio n  over th a t  of

1 3e a r ly  experim ents was the  d iscovery of "resonances" in  the ea rly  1960 ' s  .

These were a t t r ib u te d  to  the form ation of sh o r t- liv e d  negative ion s ta te s  

and m anifested them selves as marked s tru c tu re  in  both  e l a s t i c  and 

in e la s t i c  c ro ss -se c tio n s . Some d iscu ssio n  of m olecular resonances w il l  

be p resen ted  in  se c tio n s  1 . 3*4 * send 1*4*

Low-energy e lec tro n  beam experiments tend  to  be lim ite d  by 

u n ce rta in ty  in  both the energy sca le  and the abso lu te  magnitude of the
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c ro ss -sec tio n s . In  th i s  resp ec t they are complemented by swarm 

experim ents, which although in h eren tly  incapable of re so lv in g  rap id  

v a r ia tio n s  in  c ro ss -sec tio n  magnitude and ty p e , do have an e s ta b lish e d  

energy sca le  and are capable of g iv ing  abso lu te  magnitude w ith  high 

accuracy.

1 .2 .2 . E lectron  swarm experiments: Introduction

An e le c tro n  swarm may be defined  as a cu rren t of e le c tro n s  moving 

through a  gas in  an e le c t r ic  f i e ld  under such conditions th a t  the 

e le c tro n  mean f re e  p a th  i s  much sm aller than the  apparatus dimensions. 

Each e le c tro n  th e re fo re  undergoes many c o ll is io n s  and i t s  motion i s  

e s s e n tia l ly  random, modified only by an o v e ra ll d r i f t  in  the  f i e ld  

d ire c tio n . This causes a broad d is tr ib u tio n  of e le c tro n  v e lo c itie s ; 

and so e lec tro n s  o f a  sp e c if ic  energy cannot be s tu d ied  as in  beam 

experim ents, i t  being only p o ssib le  to  observe averaged macroscopic 

p ro p e r tie s .  Typical conditions fo r  swarms are  gas p ressu res  from ~  1 

t o r r  to  g re a te r  than  atm ospheric, and f ie ld s  o f up to  sev era l hundred

in  uniform D.C. f ie ld s .  Under th is  cond ition  a swarm has two u se fu l

Although inform ation on c o ll is io n s  has been gained from swarms 
2in  A.C. f ie ld s  , the p resen t work is  concerned only w ith  swarms moving

measurable p ro p e rtie s  ( ” tra n sp o rt c o e f f ic ie n ts ” )? the d r i f t  v e lo c ity  (w) 

and the d iffu s io n  c o e ff ic ie n t (D ). These are defined  as  fo llow s.

o
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where f(y ) = f ra c t io n  of e lec tro n s  having v e lo c ity  v.

D = -  L / Y j 1 ( 1 . 9 )

( in  the  absence of ex te rn a l fo rc e s ) ,

where J  = e le c tro n  curren t d e n s ity , n = e lec tro n  d ensity .

1.2.3* Measurement of tra n sp o rt c o e ff ic ie n ts

( a) D r if t  v e lo c ity  W: The f i r s t  d r i f t  v e lo c ity  measurements were

made in d ire c tly  by observing the d e f le c tio n  of a swarm in  a  tra n sv e rse
5

magnetic f i e ld  , but th i s  method was l a t e r  superceded by d ire c t

t im e -o f - f lig h t techn iques, of which the  Bradbury-NieIson s h u tte r  m ethod^

has y ie ld ed  most of the av a ilab le  accurate d a ta . The method employs

two e le c tro n -s h u tte r  g r id s , spaced widely ap a rt along the d r i f t  p a th ,

and sw itched in  phase by a  v a riab le  frequency A.C. s ig n a l. Current i s

tran sm itted  only when the p erio d  of the s ig n a l is  an in te g ra l  sub-m ultip le

of the swarm d r i f t  tim e; thus observation of cu rren t v a r ia tio n  w ith

sw itching frequency gives an accurate measure of the d r i f t  v e lo c ity .
15Another w e ll-e s tab lish e d  method u t i l i s e s  a pu lsed  source and 

e le c tro n ic a l ly  measures the d r i f t  time as the  delay between source and 

c o lle c te d  p u lses .

(b) D iffu sio n  c o e f f ic ie n t D: A few experiments have measured D 

directly*' ^ >16 A7 but most have measured the r a t io  D/W, which i s  of 

g rea t s ig n ifican ce  in  the in te rp re ta tio n  o f swarm behaviour. The most 

w idely used technique i s  derived  from Townsend* s o r ig in a l apparatus^
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51and is  commonly c a lled  the Townsend-Bhxley experiment . A f u l l  

d e sc rip tio n  of such an apparatus, as  used in  the p resen t re sea rch , i s  

given in  Chapter I I .  B as ica lly  the technique co n s is ts  o f determ ining 

the l a t e r a l  spread of a  swarm issu ing  from a small ap e rtu re  by 

measuring the  cu rren t d is t r ib u tio n  on a  d ivided c o lle c to r .  This 

d is t r ib u t io n  i s  re la te d  to  the r a t io  D/W through the app ropria te  

so lu tio n  of the d iffu s io n  equation fo r  an app lied  f i e ld  in  the z 

d ire c tio n .

D V  2 -  W ~  = 0 (1 .10)-n  dz x '

1 .2 .4 . S ign ificance of tra n sp o rt c o e ff ic ie n ts

The re la tio n s h ip  between the tra n sp o rt c o e ffic ien ts , and the

c o l l is io n  c ro ss -sec tio n s  can be seen from a  crude sem i-q u an tita tiv e  
17d e sc rip tio n  . For a  swarm moving in  a  uniform f i e ld  E w ith  mean d r i f t  

v e lo c ity  W, the  mean displacement of an e lec tro n  in  the  f ie ld  d ire c tio n  

between c o llis io n s  is

w t = (1 .1 1 )

assuming iso tro p ic  s c a tte r in g . Under the usual swarm co n d itio n  

th a t  the mean e le c tro n  speed v » W , the time between c o ll is io n s  t  is  

equal to  l / v ,  where 1 i s  the mean free  path . This gives

W = ( 1 . 1 2 )2mv

I f  X is  the mean f ra c t io n a l  k in e tic  energy lo s s  p e r  c o l l i s io n ,
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the energy lo s t  in  t r a v e l l in g  a d istance  z in  the f i e ld  d ire c tio n  is  

given by

- A € = . ^ 5  = Eez ( i . 13)

since in  a steady s ta te  the  power lo ss  i s  balanced by the power 

input from the f i e ld  (E ez). Combining (1 .12) and (1 .13) gives

A = w 2/ * 2 (1 .1 4 )

and in troducing  the t o t a l  c ro ss-sec tio n  Q = l / l l f  (where 1$ = gas 

density ) y ie ld s  the expression

W2 = (E/M) ( I .1 5 )

Evidently  i f  v can be measured, both) A and Q may be ca lc u la te d . 

Turning to  E instein* s formula fo r  the d iffu s io n  c o e ff ic ie n t -

D = v i/3  ( 1 . 16)

and u sin g  ( 1 . 12)

D/W *  v2/B (1 .17)

I f  the m obility  i s  defined  as p  -  W/E, then

D/p <x v2 (<* 6 ) (I„18)

Thus by combining measurements of W and D/p., Q and A may be 

a t  le a s t  estim ated . Since fo r  e l a s t i c  c o ll is io n s  only , A ^  2n/M, any
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increase in X over this value is a measure of the relative importance

of inelastic collisions.

The foregoing expressions give both W and D/p to  be functions

of Ê /Ni (and hence E/P, where P = gas p re ssu re ) . This remains tru e

even in  rigorous swarm th eo ry , except a t  very high p ressu res  ( »  1

atmosphere) where th e  mean free  p a th  becomes so sh o rt th a t  the
18m olecular dimensions are  r e la t iv e ly  s ig n if ic a n t . Thus the ch ie f

experim ental v a ria b le  (a p a rt from tem perature) i s  E /P , u su a lly  

-1  -1expressed in  V cm t o r r  , and tra n sp o rt c o e ff ic ie n ts  are normally 

measured as a  fu n c tio n  of th is .

V a ria tio n  of E/P gives con tro l over the  mean swarm energy.

At zero E}/P, the  swarm i s  in  therm al equilibrium  w ith  the gas,

i . e .  ^mv^ 3kT/ 2  ( l .1 9 )

which lead s to

D/jjl = kT/e (1 .20)

As E/P is  r a is e d , the mean swarm energy in c reases , and since 

D/p  i s  a measure of t h i s  i t  has been c a lle d  the Mc h a ra c te r is t ic

tem perature” of the swarm. Another qu an tity  sometimes re fe r re d  to  i s

the Townsend energy c o e ff ic ie n t k̂  , defined  as

P/n
*1 “ W e  ( 1 *21)

For a  swarm w ith  a  Maxwellian v e lo c ity  d is t r ib u t io n  th is  i s  

sim ply the r a t io  of swarm k in e tic  energy to  gas k in e tic  energy. However
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the u n certa in ty  a sso c ia ted  w ith  the v e lo c ity  d is t r ib u t io n  and the l ik e ly  

confusion a r is in g  from d iffe re n t d e f in itio n s  of k̂  give i t  l i t t l e  

advantage in  use over D/j i , which w i l l  th e re fo re  be used throughout th is  

work.

I t  i s  in s tru c tiv e  to  no tice  how the tra n sp o rt c o e ff ic ie n ts  

vary. Other th ings being equal, both W and D/^i increase w ith  ~S/ P  and 

decrease w ith  Q. However although T>/ji decreases w ith  A , W in c reases . 

This i s  because in e la s t ic  c o llis io n s  serve to  reduce the random v e lo c ity  

of the swarm, consequently the  time in te rv a l  between c o ll is io n s  i s  g re a te r  

and the  e lec tro n s  d r i f t  fu r th e r  in  the f ie ld  d ire c tio n  between c o l l is io n s .  

I t  i s  th i s  opposite p o la r i ty  in  the  v a r ia tio n  of W w ith  Q and A th a t  

allow s th e  sep ara tio n  of e la s t i c  and in e la s t ic  e f fe c ts .

1.2.5* In te rp re ta tio n  of swarm experiments

The preceding an a ly s is  i s  extremely crude in  th a t  i t  num erically

combines various d iffe re n t averages. A co rrec t s t a t i s t i c a l  a n a ly s is  has

been performed which gives the follow ing formulae:
©o
C 2 d f

W = ‘  3 1, m * I  * J  q J * ) - d T ’ dv ( I *22^
0

D -  ? • * •  / f o Q ^ I ' dv ( I ’ 23)
0

where f  i s  the sp h e rica lly  symmetric term in  the  expansion 

of th e  e le c tro n  v e lo c ity  d is tr ib u tio n  function .

These expressions req u ire  knowledge of both the v e lo c ity
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d is tr ib u tio n  fu n c tio n , and the v a r ia tio n  of Q w ith  v. I f  a Maxwellianm
d is tr ib u tio n  i s  assumed

i . e .  f(v ) = Av2e“Bv (1 .24)

Qm and X may be ca lcu la ted  provided is  assumed to  vary 

slowly w ith v. This w il l  be a reasonable approximation where th e  

swarm has neai>-thermal energy (low E /P ), but a t  h igher energ ies the 

e r ro r  introduced cannot be estim ated .

Much of the  e a r ly  an aly sis  of swarm experiments assumed a 

Maxwellian v e lo c ity  d is tr ib u tio n . Massey^ tab u la ted  X values c a lcu la te d  

from e a rly  d a ta , and observed th a t these  were frequen tly  sev era l orders 

of magnitude g re a te r  than the e la s t ic  value (~ 1 0  ^ ) .  I t  was thus 

recognised  th a t  in e la s t ic  c o llis io n s  were important in  swarms where th e  

mean energy was so low th a t  the energy lo ss  could only be a t t r ib u te d  to  

ro ta tio n a l  and v ib ra tio n a l e x c ita tio n  close to  th resho ld .

C o ttr e l l  and W a lk s r^ * ^  stud ied  a number of hydrocarbons and 

hydrides and p lo tte d  X as a  function  of the  mean swarm energy, derived  

from D/^i* The most s tr ik in g  fea tu re  of th e i r  r e s u l ts  was th e  la rg e  peak 

observed in  many of the  X p lo ts  a t  energies around 0.1  eV. The h ighest 

values of A observed were those f o r  CH  ̂ and 

analogues which reached around and 45#  re sp e c tiv e ly  a t  energ ies 

corresponding c lo se ly  to  the  e x c ita tio n  quanta of th e  lowest v ib ra tio n a l 

modes, namely the  C-H and Si-H bending modes. This was te n ta t iv e ly  

suggested to  be e x c ita tio n  occurring through an in term ediate  resonant 

s ta te .

SiBI and th e ir  deuterium
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20 21Phelps and co-workers '  attem pted to  overcome the v e lo c ity  

d is t r ib u tio n  problem by measuring the tem perature v a r ia t io n  of th e  d r i f t  

v e lo c ity  a t  low E}/P where th e  swarm is  v ir tu a l ly  in  therm al equilibrium  

w ith  the gas, th is  condition  being assumed when W v a r ie s  l in e a r ly  w ith  

S/P. At thermal equ ilib rium ,

f Q(v) = (m/2irkC) 3//2 exp(-mv2/ 2kT) ( 1 . 25)

I f  th i s  i s  su b s titu te d  in to  ( l .2 2 )  to g e th e r w ith  a  su ita b ly

param eterised a n a ly tic a l  form fo r  Qm(v ) ,  an expression r e la t in g  W to  T

is  ob ta ined , whence Qm(v) can be ca lcu la ted  from the experim ental r e s u l ts .
22This method was adopted by Christophorou e t  a l .  , and by Bowman and 

23Gordon , the accumulated re s u l ts  covering same twenty gases. The energy 

range over which Qm can be determined i s  lim ited  by the p ra c tic a b le  

tem perature range to  .01 £ 6 ~  .1 eV.

The most so p h is tica ted  approach to  swarm an a ly s is  was in troduced
n\

by F ro st and Phelps and subsequently app lied  to  sev era l simple 

m olecular gases23-2^. The v e lo c ity  d is tr ib u tio n  fu n c tio n  a t any 

p a r t ic u la r  E/P is  here obtained by solving the Boltzmann equation . The 

so lu tio n  req u ires  knowledge of th e  c ro ss-sec tio n s  fo r  a l l  p rocesses 

involved, so a t r i a l  s e t of c ro ss-sec tio n s  must be assumed to  begin w ith . 

From the re su lt in g  v e lo c ity  d is tr ib u tio n  the tran sp o rt c o e f f ic ie n ts  are 

re ad ily  c a lcu la ted , and comparison w ith experim ental values in d ica te s  

the  l ik e ly  changes requ ired  in  th e  t r i a l  c ro ss -sec tio n s . The process i s  

repeated  u n t i l  a se t of c ro ss-sec tio n s  i s  found which reproduces the
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experim ental re su lts*  A f u l l  account of the method, the  assumptions 

and approximations involved, and a d iscussion  of the uniqueness and 

accuracy of the r e s u l t in g  c ro ss-sec tio n s  is  given in  chapter IV, 

Although the energy reso lu tio n  of swarm experiments remains in h e ren tly  

lim ite d  "by the "breadth of the d is tr ib u tio n , th i s  approach i s  a 

considerable improvement an the an a ly s is  prev iously  described: p a r t ly  

because the c ro ss-sec tio n s  a t any sp e c ific  energy are involved in  

c a lcu la tio n s  of tra n sp o rt c o e ff ic ie n ts  a t  a wide range of E/F values; 

and p a r t ly  because the  d is tr ib u tio n  function  i s  p a r t ic u la r ly  s e n s itiv e  

to  rap id  v a r ia tio n s  in  c ro ss -sec t io n s , increasing  the e ffe c tiv e  

re so lu tio n  where these  occur,

1 . 2 . 6 . Other types o f swarm experiment

By sampling one e le c tro n  p er pulse in  a tim e -o f- f lig h t 
15d r i f t  tube Hurst e t  a l .  constructed  the d is t r ib u t io n  of a r r iv a l  tim es, 

and hence by comparing th e  lo n g itu d in a l pulse w idth a t  beginning and 

end of the  d r i f t  period  they calcu la ted  the lo n g itu d in a l d iffu s io n  

c o e ff ic ie n t (Dj )  fo r  sev era l gases. The r a t io  (Bj/W  tu rned  out to  

be v a s tly  d if fe re n t from th a t  obtained from transverse  d iffu s io n  

experim ents ( i . e .  I}j/^u). This discrepancy was subsequently explained
71 pO

by Parker and Lowke and Skullerud , who showed in  rig o ro u s analyses 

th a t  lo n g itu d in a l d iffu s io n  cannot be conveniently separated  from d r i f t  

as can tran sv erse  d iffu s io n , due to  the  ac tio n  of the e l e c t r i c  f ie ld  on 

the d iffu s io n  cu rren ts . According to  the sem i-q u an tita tiv e  model given
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ty  Parker and Lowke fo r  e l a s t i c  c o l l is io n s ,  the cu rren t d en sity  

J  i s  given by

J  = 11 Enk -  D — I o o
dn* djQA 
.dx1 + dyJ . -  Do i - r ? - 5 = ] | § £  d - 26)1 + 2y )

where the su b sc rip t o re fe rs  to  values a t zero d ensity

grad ien t ( i . e .  a t the  pu lse c e n tre ) , and y  i s  given by

_ ( dtf  ̂ 6 o / »
y  = ( «  to o

V being the  c o ll is io n  frequency. Dq i s  ev iden tly  equal to  

the tran sv erse  d iffu s io n  c o e ffic ie n t D,p, while the lo n g itu d in a l 

c o e ff ic ie n t is  given by

dl

Thus may be g rea te r  or sm aller than Ê , according to  

w hether (d*>/d£ ) i s  negative or p o s itiv e  re sp e c tiv e ly . The p h y sica l 

in te rp re ta t io n  of th i s  i s  th a t in  the lead ing  edge o f the  pulse the 

mean energy i s  ra ise d  above € by the f ie ld  working on the d iffu s io n
i_

c u r re n t,  and in  the  case of a constant c ro ss -sec tio n  ( y x x  6 2) the 

m obility  i s  th e re fo re  reduced below The reverse ap p lie s  in  the

t r a i l i n g  edge, so the o v e ra ll e f fe c t  i s  a reduction  in  the r a te  of 

pu lse  broadening, giving <  DT*

The accurate  d esc rip tio n  of pulse broadening, including the  

e f f e c t  of in e la s t ic  c o l l is io n s ,  n e c e s s ita te s  the so lu tio n  of the 

Boltzmann equation fo r  a s p a tia l ly  dependent v e lo c ity  d is tr ib u t io n 3 4 .
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The treatm ent ia  very complex and so although D^ can probably be 

measured w ith high accuracy i t  i s  doubtful whether th is  quan tity  can 

be o f much use in  the determ ination of c ro ss -sec tio n s .

In  the case of zero app lied  f ie ld ,  the swarm v e lo c ity

d is tr ib u tio n  becomes p e r fe c tly  sp h erica lly  symmetric and the

d is t in c t io n  between lo n g itu d in a l and tran sv erse  d iffu s io n  d isappears.

This i s  the b a s is  of the " d r if t -d w e ll-d r if  t"  adap ta tion  of the
29tu n e -o f- f l ig h t technique by Nelson and Davis . A swarm pulse  was 

d r if te d  in to  the centre of the d iffu s io n  reg ion , whereupon the f i e ld  

was cut o ff  fo r  a measured in te rv a l before being re -ap p lied  to  

acce le ra te  the e lec tro n s  to  the d e tec tion  apparatus where the a rr iv a l- tim e  

d is t r ib u tio n  was determined a s  before. During the "dwell" perio d  the 

swarm re lax ed  to  therm al d is tr ib u tio n  and d iffu sed  is o tro p ic a l ly ,  so 

by varying the r e la t iv e  periods of " d r i f t"  and "dwell" the  ex ten t of 

d iffu s io n  during the z e ro -f ie ld  in te rv a l was determined enab ling  the 

therm al d iffu s io n  c o e ff ic ie n t (D^) to  be ca lcu la ted . This value is  of 

in te re s t  since the  therm al m obility  may be ca lcu la ted  from

D^at <r kT/e ( l . 29)

p  is  the lim itin g  slope a t  E/P = 0 of the curve of W vs l / P  

a t  th e  appropriate  tem perature•
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1 .3 . BASIC PRINCIPLES OP SCATTERING THEORY1

C o llis io n s  between e le c tro n s , io n s, atoms and molecules are 

the sub jec t o f much of p resen t research in  th e o re tic a l  p h y s ics , so 

the f ie ld  i s  vast and the th eo rie s  p r o l i f ic .  This sec tio n  p resen ts  a 

b r ie f  o u tlin e  of fundamental concepts and approaches.

C la ss ic a l mechanics is  not generally  app licab le  to  c o ll is io n s  

involving slow e le c tro n s . This i s  seen from H eisenberg 's u n ce rta in ty  

p r in c ip le :

A z . A p ~ h ( 1 . 30)z

I f  the u n certa in ty  A z in  the p o s itio n  of the c o llid in g
—8e le c tro n  i s  to  be no g re a te r  than the ta rg e t  dimensions (<^10  cm),

equation ( I . 30) gives a re su lta n t u n certa in ty  in  momentum A p^
8 —1corresponding to  a v e lo c ity  u n certa in ty  A of ~ 1 0  cms , which is  

roughly the v e lo c ity  of a 3 eV e lec tro n . The s c a tte r in g  problem must 

th e re fo re  be tre a te d  by quantum mechanics.

1 .3 .1 . S o lu tion  of the Schrftdinger equation

An exact d e sc rip tio n  of a sca tte rin g  process involves so lu tio n  

of th e  SchrCxlinger equation

H ¥  = E ¥  (1 .31)

fo r  the complete system of p ro je c tile  and ta rg e t .  For the 

case of an e le c tro n  sc a tte re d  by a p o te n tia l V(^) the e le c tro n
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wavefunction ijs must obey the wave equation

V 2f  + [k2 -  U (r)]^  = 0 ( 1 . 32)

where the  inciden t e lec tro n  wavenumber k is  given in  terms 

of i t s  v e lo c ity  v by

k s mv/h ( 1 . 33)

and

U(r) = 2mV(r)/h2

At d istances f a r  from the s c a tte r in g  centre ^  must rep resen t 

the  in c id en t and sc a tte re d  wave, having the asymptotic form

f ( r ) / T 7 ^ )  ^  + r ’ 1 < iik rf( e ) (1*35)

The s c a tte re d  amplitude f(©) is  re la te d  to  the d i f f e r e n t ia l  

c ro ss -se c tio n  tf(©) by

< j(e) = | f ( e ) | 2 (1 .3 6 )

Thus i f  so lu tio n s  fo r  <p can be obtained the c ro ss-sec tio n s  

may be ca lcu la ted . In  p ra c tic e , even the sim plest electron-atom  

c o l l i s io n  (e  + H) is  a three-body problem and cannot be solved ex ac tly . 

Resort must be made to  approxim ations, the v a l id i t ie s  of which are not 

always easy to  p re d ic t .  Some o f these approximate approaches are 

o u tlin ed  in  the  next sec tio n  ( l . 3 »2 .)



The complexity of* quantum—mechanical form ulations may be seen 

in  the  e + H system • For d ire c t s c a tte r in g , the to t a l  e le c tro n ic  

wave function  fo r  the two e lec tro n s  is  given by

^ ( x ,» i :2) = e x p t i k n ^ )  y 'J r g )  + (1 .37)

The f i r s t  term on the r ig h t hand side rep resen ts  the in c id en t 

wave and the ground s ta te  of the atom, the term in  the summation w ith  

j  = o rep resen ts  e la s t i c  s c a tte r in g , and those w ith  j  > o rep resen t 

the  j t h  in e la s t ic  p rocesses, the sum including a l l  possib le  d is c re te  

and continuum s ta te s  of the atom.

The wavefunct ion must s a tis fy  the  Schrftdinger equation  ( 1 . 31) ,

thus
r  2F  r y 2

2m + (E -  > = C l  *  (£ l ’- 2 ) r n (^ 2 )di 2 d - # )

In  p r in c ip le , i f  the hydrogen atom wavefunct ions V'n(^ 2 ) 

known, so lu tio n s  fo r  the sc a tte re d  wavefunctions F^( r^ ) can be found.

The problem i s  fu r th e r  complicated by the p o s s ib i l i ty  of exchange 

occurring  between p ro je c t i le  and ta rg e t e le c tro n s , which in troduces a 

fu r th e r  s e t  of s c a tte r in g  c o e ff ic ie n ts  obtained in  an analagous

way to  the Fn( r ^ ) by interchanging the su b scrip ts  in  the summation term 

of (1 .3 7 ); and the t o t a l  wavefunction must a lso  obey the  P au li exclusion  

p r in c ip le ,  which in troduces the  sp in  quantum numbers.

I . 3 . 2 . Approximate so lu tio n s  of the s c a tte r in g  problem

One of the most widely used approaches is  the Bom approxim ation.
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This assumes th a t ,  f o r  cases where the inc iden t e le c tro n  energy g rea tly

exceeds the in te ra c tio n  energy, the e f fe c t  of s c a tte r in g  is  small and

may be tre a te d  as a f i r s t - o r d e r  p e rtu rb a tio n . Expanding y ( r )  fo r  the

p r o je c t i le  by the method of Green*s function  y ie ld s
a

r (r) = fo(r) - h  k r’>r(r,) exp( 1 ** (i-»)
The Bom approximation assumes ( ^ ( r 1) ~  r ) = e 2̂ 2, which 

r e s u l ts  in  the  follow ing expression fo r  the sc a tte re d  am plitude:

f ( 0) = -  “ jj^ |exp^k(no -  n ) r ' ]  U(r*)dr* (1 .40)

nQ and n being u n it  vectors in  the inciden t and s c a tte re d  

d ire c tio n s  re sp ec tiv e ly .

In the case of d ire c t sc a tte r in g  by the hydrogen atom ( I .3 .1 . )  

the follow ing s u b s ti tu tio n  is  made in  equation ( 1 . 38) :

¥  ( r ,  , r 2) ~  exp(ikonor 1)

The equation can now be solved fo r  Pn( ) ,  and the  re su lt in g  

expression  fo r  the  d i f f e r e n t ia l  c ro ss-sec tio n  i s

k , -*2 2 
✓  ( e )  = ?  . A i j B -n

[exp [ i ( k n o- k n ) ^ ]
"2  2 e e

12
(1 .42)

The Bom approximation has been widely app lied  to  both e la s t i c  

and in e la s t ic  s c a tte r in g  by atoms and molecules. I t s  success la rg e ly  

depends on the accuracy o f the in te ra c tio n  p o te n tia ls  used. F or impact 

energ ies of 100 eV or more i t  has y ie ld ed  accurate  c ro ss -se c tio n  va lues,
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and many general fea tu res  of c ro ss-sec tio n s  a t  much lower energ ies have
pbeen p red ic ted  a t le a s t  q u a li ta t iv e ly . One im portant r e s u l t  is  the 

p red ic tio n  t h a t , a t  energies f a r  above th re sh o ld , in e la s t ic  p rocesses 

are governed by the same se le c tio n  ru les  as axe o p tic a l t r a n s i t io n s .

At low en erg ies , where the Bom approximation is  poor, the 

method of p a r t ia l  waves has proved u se fu l, p a r t ic u la r ly  in  the  case of 

e la s t i c  s c a tte r in g  by sp h e rica lly  symmetrical p o te n tia ls .  The e lec tro n

wave function  i s  expanded in  a se rie s  of Legendre polynomials
oo

-1  C ~

1=0

 oo

s  f l ( r )  P ^ co se ) ( 1 . 43)

which on su b s titu tio n  in to  the Schrbdinger equation gives 

d\
-  ^  + [k2 -  u ( r ) ]  h  = 0 C1- ^ )

^  r  fo r  1 = 0 , 1 , 2 ................ <*>
The asym ptotic so lu tio n  fo r  th is  may be w ritten

f l  \  o i n  (.1s t  -  i l l  + i^) (1.45)

i s  p h y sica lly  in terpretated  as being the phase s h i f t  caused 

by sca tter in g  o f the 1th p a r t ia l  wave, 1 being the quantum number 

a sso c ia ted  w ith  the angular momentum of the incident e lec tro n . By 

analogy w ith  o p tica l spectroscopy, waves w ith  1 = 0 , 1,  2 . . . . e t c .  are 

termed s ,  p , d . . .  r e sp ec tiv e ly .

The r esu lt in g  expressions fo r  the sca ttered  amplitude and to t a l

c r o ss -se c tio n s  are resp ec tiv e ly

f ( e )  = ^  (21 + 1) e x p ^ ii^  -  1) Bj(cos©) (1.1^6)



The phase s h if t s  can only be obtained a n a ly tic a lly  fo r  some 

simple p o te n tia ls .  In  o ther cases, v a r ia tio n a l methods may be used 

a t low energ ies, or the Bom approximation a t  higher e n e rg ie s . A 

fu r th e r  method, u se fu l a t  lower energy than the Born approxim ation, 

is  J e f f re y ’s (WKB) approximation, which i s  sem i-c la ss ica l and r e l ie s  

on a slowly varying V (r).

An improvement on the Bom approximation a t  low energies i s  

the d is to r te d  wave approximation. As in  the former case s c a tte r in g  

through in term ediate s ta te s  i s  ignored, but account i s  taken o f the 

d is to r t io n  of in c id en t and sc a tte re d  waves by the f ie ld  of the ta rg e t .  

T his approximation has proved to  be p a r t ic u la r ly  u se fu l in  the 

d e sc rip tio n  of in e la s t ic  c o ll is io n s  a t energies not f a r  above th re sh o ld . 

The close-coup ling  and re la te d  approximations go a  stage fu r th e r  by 

includ ing  the wavefunct ions fo r  a lim ited  number of h igher ta rg e t  

s ta te s  in  the c a lcu la tio n .

1.3.3* E lectron-m olecule sc a tte r in g

When the  p rin c ip le  used in  ca lcu la tio n s  of electron-atom  

s c a tte r in g  are app lied  to  molecules even more form idable complexity 

re  s u i t  s ^ ' ^ .  The ad iab a tic  approximation in  molecular wave 

mechanics allow s separation  o f the to ta l  molecular wavefunct ion in to  

e le c tro n ic ,  v ib ra tio n a l and ro ta tio n a l  components?



25

,J = f a t e

where , R 3y t and 6^ rep resen t re sp ec tiv e ly  the s e ts  o f

e le c tro n ic , v ib ra tio n a l ,  and ro ta tio n a l co-ord inates and n , v , and 

J  the  corresponding s e ts  of quantum numbers.

room tem perature i s  sh o rt compared to  a v ib ra tio n a l or ro ta tio n a l

p e rio d , i t  i s  necessary to  consider the orien ta tion-dependent

in te ra c tio n  of the e le c tro n  w ith a molecule of fixed  n u c le i. The

c ro ss -se c tio n  obtained may then be averaged over the ro ta tio n a l

and v ib ra tio n a l wavefunctions.

The only molecule which is  s u f f ic ie n tly  simple to  allow

c a lc u la tio n s  based d ire c t ly  on the th e o re tic a l e le c tro n ic  s tru c tu re  
51i s  • In  o th e r cases i t  i s  necessary to  assume some form of 

in te ra c tio n  p o te n t ia l ,  which may include both d ire c t and exchange 

term s, and proceed to  determine phase s h if ts  as fo r  electron-atom  

s c a tte r in g . A fu r th e r  d i f f ic u l ty  i s  th a t to  perm it separa tion  of 

co -o rd in a tes  in  the wave equation e i th e r  a  sp h e rica lly  or a x ia lly  

symmetric p o te n tia l  must be used, the l a t t e r  being described in  terms 

of sphero id  co -o rd ina tes . This r e s t r i c t s  accurate ca lcu la tio n s  to

simple m olecules.

Where long range forces are dominant i t  may be s u f f ic ie n t  

to  use the asym ptotic form of the in te ra c tio n  a t  la rg e  d istance

As the c o ll is io n  duration fo r  even a thermal e le c tro n  a t



Here q is  the net charge, p. the e le c t r ic  d ipole moment, Q the 

quadrupole moment, <x. and resp ec tiv e ly  the sp h e rica l and n on-spherical 

p a r ts  of the p o la r is a b i l i ty ,  and Pn is  the Legendre polynomial.

In e la s t ic  c o ll is io n  processes include e le c tro n ic , v ib ra tio n a l ,  

and ro ta tio n a l  e x c ita tio n . I f  v£ ^ j  rep resen ts  the m olecular 

wavefunction as in  ( l . 4S ), the d i f f e r e n t ia l  c ro ss-sec tio n  fo r  e x c ita tio n  

from a s ta te  nvJ to  one n 'v ' J ’ by impact of an e lec tro n  w ith i n i t i a l  and 

f in a l  wave vectors ko ,k^ i s  given by Born’ s approximation to  be

(T his i s  a g en e ra lisa tio n  of the form given by Craggs and

51 • \Massey fo r  the  diatomic case.J

Using (i.i+B), the squared term in  ( l.5 0 )  becomes

 ̂] jv (£ ,H » ,a B)w p  ^  ( I -51>

where V (r,R p,6B) i s  the mean in te ra c tio n  energy of the  inc iden t e le c tro n  

w ith  the  molecule in  i t s  ground s ta te  a t fixed  nuclear co—ord inates 

and i s  given by
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I t  should be noted th a t the condition  fo r  v a l id i ty  of the 

Bom approximation in  the above approach is  th a t k  ̂ and th e re fo re

good r e s u l ts  near th resh o ld  are not to  be expected,

I . 3*4* Resonances
2 52 53A considerable body of theory * 9 has accumulated over the

la s t  decade to  exp la in  experim ental observations of resonances. A

resonance in  electron-m olecule s c a tte r in g  may be defined as a temporary

negative ion s ta te  which is  unstab le  towards auto-detachm ent. The

—5 —16l ife tim e  of such a s ta te  may be anywhere between about 10 and 10  s .

I f  the life tim e  i s  long compared w ith the time the e lec tro n  takes to

tra v e rse  the ta r g e t ,  severe d is to r t io n  of the p ro je c t i le  wavefunct ion

occurs r e s u l t in g  in  the observation  of marked s tru c tu re  in  the

s c a tte r in g  c ro ss -sec tio n s . The nuclear motion of the ta rg e t  molecule

w i l l  a lso  be severe ly  d is to r te d  and g rea tly  enhanced in e la s t ic

c ro ss -sec tio n s  w il l  be l ik e ly .

The c la s s i f ic a t io n  of resonances i s  based on the  mechanism

whereby the  e le c tro n  i s  trapped, but as the  models have been developed

independently on the b a s is  of experim ental r e s u lts  the c la s s i f ic a t io n

and nomenclature d i f f e r s  somewhat between authors. The most
2

fundamental d iv is io n  i s  used by Massey and Burhop who r e f e r  to  Type I  

(Peshbach o r compound s ta te )  and Type I I  (one-body or shape) 

resonances. The former i s  sa id  to  occur when a molecule i s  ex c ited
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"by an e lec tro n  of k in e tic  energy s l ig h tly  lower than  the th resh o ld  

energy of the ex c ited  s ta te .  The e lec tro n  p o te n tia l  energy thus 

hecomes negative r e la t iv e  to  in f in i te  separa tion  due to  trapp ing  in  

the f ie ld  of the  ex c ited  s ta te .  The re su lta n t negative ion 

approximates to  a hound s ta te ,  the wavefunct ion being dominated by 

closed-channel components, which u sually  leads to  a r e la t iv e ly  

long lived  s ta te  of narrowly defined resonance energy.

A Type I I  resonance on the o ther hand occurs a t an energy above 

but close to  a ta rg e t s ta te  (ground or e x c ite d ) , the e le c tro n  being 

tem porarily  trapped by a p o te n tia l  b a r r ie r  which is  u su a lly  regarded as 

being a c e n tr ifu g a l b a r r ie r  s e t  up by the combination of the p ro je c t i le  

angular momentum and the  p o te n tia l  w ell caused by the short-range 

a t t r a c t iv e  fo rces . The phenomenon i s  thus not observed in  s-wave 

s c a tte r in g . The resonance i s  a  v ir tu a l  s ta te  which can decay by 

tu n n e llin g  through the p o te n tia l  b a r r ie r ,  and the wavefunct ion is  

dominated by open-channel components. As such b a r r ie r s  are u su a lly

sm all, the  s ta te s  tend to  be sh o rt- liv e d  and thus broad in  energy.
52Bardsley and Mandl consider Type I  resonances under the  two 

headings of e le c tro n -e x c ite d  and n u c lea r-ex c ited  Feshbach resonances 

re sp e c tiv e ly , according as to  whether the compound s ta te  i s  a sso c ia ted  

re sp e c tiv e ly  w ith  an e le c tro n ic a lly , or v ib ra tio n a lly  and /or
53ro ta tio n a lly  ex c ited  s ta te  of the ta rg e t .  On the o th e r hand, Taylor 

c la s se s  both  to g e th e r  as co re-exc ited  Type I  resonances, and subdivides 

the  Type I I  (shape resonances) in to  co re-exc ited  Type I I  and
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sin g le  p a r t ic le  resonances, the former occurring w ith ta rg e t

e x c ita tio n  and the l a t t e r  where the e le c tro n ic  ground s ta te  only is

involved, the p o te n tia l  w ell being a ttr ib u te d  to  p o la r is a tio n  of the 
54ta rg e t .  N azaroff has re c e n tly  described a l l  the above types by a 

s ing le  th e o re t ic a l  model, emphasising the  phenomenological natu re  of 

the c la s s i f ic a t io n .

Quantum mechanically a resonant s ta te  '¥  can be tre a te d  as 

having form ally the same time dependence as a bound s ta te

* n <X eip(-iW t/H ) (1.53)

but d if fe r in g  in  having a complex energy

W = E -  £ i P  (1.54)n n 2 n '

which leads to  the exponential decay of the s ta te

I ^ J 2 (X expC-f^ t /h )  (1 .55)

P i s  thus the width of th e  resonant s ta t e ,  and r  = y r  is  n n
th e  life t im e .

Provided the Bom-Oppenheimer sep ara tio n  of nuclear motion 

can be ap p lied  ( th i s  i s  not tru e  fo r  nucleaj>-excited Feshbach resonances), 

the wavefunction may be expressed as a c lo se—coupling expansion

'P C r .q .H ) = ( J *5 6)

where h> ,Y  , and f  are  resp ec tiv e ly  the e le c tro n ic , n u c lea r and p ro je c t i le
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wavefunct ions and denotes c o lle c tiv e ly  the re lev an t system quantum

numbers. The ob jec t o f  the an a ly s is  i s  to  c a lc u la te  the  sc a tte re d

amplitude and hence the c ro ss -sec tio n  fo r  decay in to  the various e x i t

channels. Many approaches depend upon neglect o f terms in  the above

expansion, based on such knowledge as whether a p a r t ic u la r  e le c tro n ic

s ta te  i s  dominant, and whether the open-channel components are s m all or

la rg e  ( i . e .  whether the resonance is  narrow or broad).

The theory of v ib ra tio n a l e x c i ta t io n  through resonance has been

developed w ith  a considerable degree o f success, by Herzenberg and 

55 56Mandl and Chen amongst o th ers . Chen considers the  v to  v* v ib ra tio n a l 

t r a n s i t io n  through an interm ediate resonant e le c tro n ic  s ta te  n in  a 

v ib ra tio n a l s ta te  u

i . e .  Ov * nu Ov*

and gives the  amplitude fo r  the t ra n s i t io n  as
Ov1

(1 .57)

the  P ' s  here being the p a r t ia l  widths of the s t a t e  nu due to  

break up in to  s ta te s  Ov and Ov1; and P u the to ta l  w idth w ith  respect 

to  a l l  modes of decay. The p a r t ia l  w idths are  given by

Ov
nu

(1.58)

Here H i s  the  t o t a l  system Hamiltonian a n d l ^ ,
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re sp ec tiv e ly  the wavefunctions fo r  the resonant s ta te  and the i n i t i a l  

s ta te  Ov, the l a t t e r  including  the wavefunct ion o f the  p ro je c t i le  

e le c tro n .

The c ro ss-sec tio n  fo r  the  e x c ita tio n  process depends strong ly
n  55on the w idth o f the s ta te  I nu» The extreme cases of the  compound

molecule l im it  and the impulse lim it occur re sp ec tiv e ly  when

f-1 «  "fa*j and P 4 »  "feco ( l / 2vto = v ib ra tio n a l period)nu ' nu '

In  the former case, the resonant s ta te  w i l l  possess d e f in ite  

v ib ra tio n a l le v e ls ,  and the cross-section  w il l  co n s is t of a s e r ie s  of 

peaks separated  approximately by tioo , the peaks occurring a t the same 

energy f o r  a l l  e x i t  channels. In  the impulse l im i t ,  no d e f in ite  le v e ls  

e x is t  and the peaks w il l  occur a t  d iffe re n t energ ies fo r  d if fe re n t  e x it  

channels.

1 . 4 . COMPARISON CF THEQKT AND EXPERIMENT

In  th i s  sec tio n  a  b r ie f  o u tlin e  w i l l  be given of th e  successes 

and f a i lu r e s  of th e o re tic a l  c a lc u la tio n s  on e la s t i c  s c a tte r in g  and 

v ib ra tio n a l  and ro ta tio n a l  e x c ita tio n . Not su rp r is in g ly , almost a l l  

the th e o re t ic a l  worjt to  date has r e la te d  to  diatom ic molecules £ 

because of the importance of v ib ra tio n a l e x c ita tio n  to  the p resen t 

re se a rch , th i s  w i l l  be considered sep ara te ly  fo r  diatom ic and polyatom ic 

m olecules.
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1.4*1 • E la s tic  s c a tte r in g

Some of* the  e a r l ie s t  ca lcu la tio n s  on e l a s t i c  s c a tte r in g  by

molecules were performed by F i s k ^  who considered such homonuclear

diatom ics as Hgj and His method was sem i-em pirical, u sing

ad ju stab le  param eters to  describe the sc a tte r in g  p o te n tia l  from which

phase s h if ts  were ca lcu la ted . In  th is  way he achieved reasonable

q u a li ta t iv e  agreement w ith experim ental r e s u l ts  fo r  both the en e rg e tic

51and angular v a r ia tio n s  of the c ro ss-sec tio n s  . L a te r, c a lcu la tio n s
58were done fo r  based on the ac tu a l e le c tro n ic  s tru c tu re  . I t  was 

found e s se n tia l  to  include the e f fe c ts  of e le c tro n  exchange in  o rder

to  give reasonable agreement w ith  experiment a t  around 1 - 2  eV. More

59recen t c a lcu la tio n s  have s tre s se d  the importance of including the

m olecular quadrupole and d ipole p o la r is a tio n  in  the e f fe c tiv e  s c a t te r in g

p o te n t ia l ,  even a t  r e la t iv e ly  high energ ies.
60 61

Methane has been shown by both beam and swarm experiments to  

posses a deep minimum in  the t o t a l  c ro ss -sec tio n  a t around .2 - .5  eV, 

resem bling argon strong ly  in  th is  re sp ec t. This so -ca lled  

Ramsauer-Townsend e f fe c t  in  the in e r t  gases i s  in te rp re te d  as occurring 

where the s-wave phase s h i f t  passes through an in te g ra l  m ultip le  of -ft ,

h igher o rder waves being l i t t l e  a ffec ted  by the very short-range fo rces
62of these  h igh ly  symmetrical atoms. Buckingham, Massey, and Tibbs 

took advantage of the high symmetry of CH  ̂ in  ca lcu la tin g  a s e lf -c o n s is te n t 

f i e ld  by averaging the charge of the pro tons over a sphere. C alcu la tions 

using th i s  f i e ld  showed a marked s im ila r i ty  to  those fo r  argon and the  

au thors concluded th a t methane occupied the  p lace of neon in  the
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Samsauer-Townaend s e r ie s .  T heir ca lcu la tio n s  of the e l a s t i c

c ro ss -sec tio n s  d id  however give poor correspondence w ith experim ent

below about 10 eV in  both gases. Swarm experiments in  SiH. in d ica te
4

th a t  th i s  molecule ex h ib its  a s im ila r e f f e c t^  •

Another c la ss  of molecules which are amenable to  th e o re t ic a l  

study is  those having a permanent dipole moment. A ltsh u le r  derived  

the  momentum-transfer c ro ss-sec tio n  of a s ta tio n a ry  po in t d ipole by 

the  Born approximation. His r e s u l t  was

2egm

* 2
(1 .59)

64where i s  th e  dipole moment. Mittleman and von Holdt made

an exact c a lc u la tio n  fo r  a  poin t dipole but found th a t  no so lu tio n  

e x is te d  fo r  p. ^  1 .6 2 5  D due to  the s c a tte r in g  p o te n tia l  being too 

a t t r a c t iv e  and g iv ing  r is e  to  an in f in i ty  of bound s ta te s .  By 

assuming the form of the c ro ss-sec tio n  v a r ia tio n

Q = A/v  ̂ (l.6o)m

50 65given by ( 1 . 59) ,  sev era l authors * have obtained  values of

A from d r i f t  v e lo c ity  d a ta . Most molecules show an approximate

agreement w ith  A ltsh u le r’s theory , although the experim ental

c ro ss -se c tio n s  are mostly h igher than th e  th e o re tic a l  values. Crawford

e t  a l .^ °  have shown th a t  Q i s  dominated by in e la s t ic  s c a tte r in gm

( i . e .  ro ta tio n a l  e x c ita tio n  and d e -ex c ita tio n ) in  p o la r  molecules a t 

therm al en erg ies , and have q u a li ta t iv e ly  accounted fo r  the d iscrepancies
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in  th e  A ltsh u le r theory as being due to  neg lect of* h ig h er-o rd er terms

in  th e  assumed in te ra c tio n  p o te n tia l. However su b s ta n tia l d iscrepancies

seem to  e x is t  fo r  c e r ta in  molecules, notably  1̂ 0 , HgS, NH ,̂ FH^, and

AsH^, a l l  of which possess anomalously high c ro ss -sec tio n s . The minimum

dipole moment above which bound s ta te s  e x is t  fo r  a f i n i t e  s ta tio n a ry

dipole has been ca lcu la ted  to  be 1.625  D, which appeared to  co rre la te
66 67to  a c e r ta in  ex tent w ith  th e  observed anomalies * . More re c e n tly ,

68G arre tt has taken account of the dipole ro ta tio n  and found th a t  in

r e a l  cases the c r i t i c a l  moment w ill  always be g rea te r  than  the  above

value and w ill  depend on the masses and separation  of th e  d ipole charges. 
69B ottcher has confirmed th i s  and a lso  p red ic ted  the  ex istence  of shape 

resonances fo r  dipole moments le s s  than  the c r i t i c a l  value.

A d if fe re n t  approach was taken by Takayanagi and I t ik a w a ^  who 

performed a  p a r t i a l  wave an a ly s is  and found th e  appearance of a 

p o te n tia l  resonance in  the momentum-transfer c ro ss -se c tio n  p lo t te d  as 

a  fu n c tio n  of th e  d ipole moment when the magnitudes of the charges
67

were v a ried  a t  f ix e d  separation . Christophorou and C hristodoulides 

in te rp re te d  th e i r  swarm r e s u l ts  as bearing out the general p re d ic tio n  

o f th i s  theory .

The only p o la r  molecule fo r  which a Phelps-type an a ly s is  of
27swarm d a ta  has been attem pted is  CO . Here the Qm obtained  appears 

to  merge w ith  A ltsh u le r 's  value a t low energ ies where the  dipole 

dom inates, a t h igher energ ies tak ing  values s im ila r  to  Ng w ith  which 

CO i s  iso e le c tro n ic .
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I  • A-»2 • R o ta tional e x c ita tio n  of diatomic molecules

The f i r s t  theory of ro ta tio n a l e x c ita tio n  in  homonuclear

diatom ics to  meet w ith  any degree of success was th a t o f Gerjuoy and 
71 72S te in  * who used the molecular quadrupole as the s c a tte r in g  

p o te n tia l  in  a  Bom approximation ca lcu la tio n . Their expression  fo r  

the J  ■»> J 's : J+2 ro ta tio n a l ex c ita tio n  c ro ss -se c t ion was

eao<
k ’ ( J  + 1 ) ( J  »  2 ) , T

• k ‘ ( a r  + i ; ( 2 J  + 3) C1 * ^ )

Although a lim ited  amount of inform ation on ro ta tio n a l
3

e x c ita tio n  has been deduced from microwave in te ra c tio n  s tu d ie s  , the

main t e s t  of theory has been in  the in te rp re ta tio n  of swarm d a ta  by the

method o f Phelps. In  H^, s u ff ic ie n tly  few ro ta tio n a l  le v e ls  are

involved, p a r t ic u la r ly  a t  low tem perature, to  allow  unique determ ination

o f c ro ss -se c tio n s  in  a lim ited  region above the e x c ita tio n  th re s h o ld ^ .

Successive improvements cn the  above theory have been made, such as the

in c lu sio n  o f p o la r is a t io n ^ ,  d is to r te d  w ave^  and d o s e -c o u p lin g ^

c a lc u la tio n s , and agreement w ithin  2% of the experim ental values has
76been achieved by Henry and Lane who included p o la r is a tio n  and 

exchange in  a c lose-coupling  ca lcu la tio n . Abram and H erzenberg^ have 

a lso  c a lcu la te d  the c ro ss -sec t ions fo r  e x c ita tio n  of the in d iv id u a l 

le v e ls  accompanying the  v = 0  ♦ 1 v ib ra tio n a l ex c ita tio n  of Hg through 

a  resonance p rocess , and obtained f a i r  agreement w ith the r e s u l ts  of

Ehrhardt and Linder^.

For molecules o ther than too many ro ta tio n a l  lev e ls  are
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involved to  allow  unique determ ination of c ro ss-sec tio n s  from swarm 

d a ta , but F rost and Phelps obtained agreement w ith  Gerjuoy and

S te in 's  theory fo r  by ad justing  the value of the quadrupole 

moment used in  the theory . As the l a t t e r  is  n o t known to  any high 

degree of accuracy from o ther sources, i t  is  not y e t p o ssib le  to  say 

which th e o re tic a l  approach gives the best agreement w ith  experiment.

The v a lid ity  of the Bom approximation a t  these energies might 

a t  f i r s t  s ig h t appear to  be extremely dubious, but a strong  case has
30been argued by G-erjuoy and S te in  and supported by a p a r t ia l  wave a n a ly s is  • 

The argument i s  th a t ,  in  order to  cause a ro ta tio n a l t r a n s i t io n ,  the 

in c id en t e le c tro n  must have non-zero angular* momentum and th ere fo re  a t 

low in c id en t v e lo c ity  a large impact param eter. At such a d istance  the 

dominant quadrupole p o te n tia l w ill  be re la t iv e ly  weak and the p-wave w il l  

be only s l ig h t ly  d is to r te d , so the Bom approximation i s  an acceptable 

approach.

In  the case of heteronuclear diatom ics, s im ila r  arguments apply, 

the dominant in te ra c tio n  now being due to  the permanent d ipo le .

T akayanagi^  app lied  the Bom approximation to  s c a tte r in g  by a p o in t 

d ipo le  and obtained

dipo le  moment and found good agreement w ith swarm tra n sp o rt c o e f f ic ie n ts . 

However, fo r  high values of p. the in te ra c tio n  w ill  be s trong  enough to

J+J+i
J  + 1 , k + k'
2J  + 1 111 k -  k» ( 1. 62)

Hake Mid Phelpa used a  w e ll-e s tab lish ed  value fo r  the CO
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cause s ig n if ic a n t d is to r t io n  of the incident p-wave, and Massey^ has 

shown the Bom approximation to  be v a lid  only fo r  8 IT 2/uen/h2«  1 .

I.4«3« V ib ra tiona l e x c ita tio n  of diatomic molecules

The f i r s t  attem pts to  ca lcu late  v ib ra tio n a l e x c ita tio n  

c ro ss -sec tio n s  fo r  homonuclear diatomics were based on the f i r s t  ^om  

approximation ( I . 50) ,  using a simple 2 -centre e le c t r o s ta t ic  p o te n tia l  

dependent on the in tem u c lea r  distance R -

V(r,R) = U ( | r + i K | )  + U ( | r - ^ | )  ( 1 . 63)

The re s u lt in g  c ro ss-sec t ions were considerably sm aller than

the re s u l ts  of swarm experiments suggested, even when the R-dependence

of U was taken in to  account. In  the early  days th is  was taken  as  a

s tro n g  argument against ’’d ire c t” v ib ra tio n a l e x c ita tio n . However 
30Takayanagi has found th a t the magnitude of the observed v = 0 +  1 

c ro ss -sec tio n  in  H2 can be explained by the R-dependence of the 

p o la r is a t io n  in te ra c tio n , making use of the d is to r te d  wave approximation. 

The p o s s ib i l i ty  of e x c ita tio n  occurring through a resonant s ta te  was
yg

f i r s t  experim entally  ind ica ted  by Schulz who observed c ro ss-sec tio n s

fo r  e x c ita tio n  to  v = 1 and 2 peaking broadly around 2 -  3 eV. Bardsley

e t  a l . ^  explained the magnitude of the c ross-sec tions by ca lcu la tin g
2 2\_

e x c ita t io n  through a resonant s ta te  Hg ( i s ^ ^ )  ( 2p^^-) fo r  which

they estim ated  the p o te n tia l energy curve. The l a t t e r  was l a t e r  confirmed 

by T aylor-^  using the s ta b i l is a t io n  method. The resonance was thus



38

in te rp re te d  as a ground s ta te  shape resonance w ith a life tim e  of 

around 10 s . U n til recen tly , ana lysis  of swarm ex p e rim e n ts^ ’^  

in  and a lso  Takayanagi’s theory ind icated  a v = 0 +  1 c ro ss -sec tio n  

r is in g  sharply from th resho ld , whereas Schulz1 s beam experim ent^  and 

the theory  of Bardsley e t a l .  (which was p a r tly  param eterised to  f i t  

Schulz’ s data) in d ica ted  a very low cross-sec tion  between 0.5 and 1 eV.

This discrepancy has recen tly  been resolved by experiments of Ehrhardt
80 81e t  a l .  and Burrow and Schulz who confirm th a t the c ro ss -s e c tio n

r is e s  from th resho ld , although the i n i t i a l  slope is  in  d ispu te . The

two apparent th e o re tic a l  explanations fo r  the e x c ita tio n  are not
52incom patible as both Takayanagi and Bardsley and Mandl have p o in ted  

out th a t  the ground s ta te  shape resonance is  so sh o rt- liv e d  th a t  

l i t t l e  d ifference  here e x is ts  between ’’d ire c t” and resonance s c a t te r in g .

A s im ila r  s itu a tio n  e x is ts  in  N^, which has been examined in
78 82g rea t d e ta i l  by e lec tro n  beam experiments ' • C ross-sections fo r  

e x c ita tio n  of th e  f i r s t  e ig h t v ib ra tio n a l modes have been measured, a l l  

w ith  maxima in  the v ic in ity  of 2 -  3 «V, and each co n sis tin g  of a s e r ie s

of evenly spaced peaks. This is  consisten t w ith  the an a ly s is  of
26 83tra n sp o rt c o e ff ic ie n ts  . T heoretical c a lcu la tio n s  by Chen and by

Herzenberg and Mandl^ on the basis  of a resonant TT ̂  s ta te  of

have reproduced the observed data  w ell, a lb e i t  using ad ju stab le

param eters, -̂ n co n trast w ith H^, the resonant Ng s ta te  must be

r e la t iv e ly  lo n g -liv ed  to  show the observed s tru c tu re . The resonance

was in  f a c t  f i r s t  thought to  be a core-excited  type I ,  but th i s  was

l a t e r  re je c te d  in  favour of a type I I  in  view of the  unreasonably high
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e lec tro n  a f f in i ty  a type I  model would imply fo r  the exc ited  s ta te .

This conclusion has been supported in  recen t improved ca lcu la tio n s
O I

by Soshnikov .

For heteronuclear diatom ics, the la rg e s t Md ire c tM co n trib u tio n
30comes from the dipole in te ra c tio n . Takayanagi gives the c ro ss-sec tio n  

in  the Bom approximation to  be

cfv v ' = v+1 = T 2 H ^ ) | 2 H H k H  ( I *64)3k

From th is  he ca lcu la ted  the ex c ita tio n  c ro ss-sec tio n  fo r  CO

from the in fra red  t ra n s i t io n  p ro b a b ility . In  the region from th re sh o ld
85to  eV th is  va lu e , and to  a le s s e r  ex ten t th a t of Breig and Lin

who included p o la r is a tio n , gave good agreement w ith the swarm an a ly s is
27of Hake and Phelps • Above th is  energy the c ro ss -se c tio n  appears to

be dominated by a resonant process very s im ila r to  th a t  in  N^, which

has been the subject of extensive experim ental aid th e o re t ic a l  
S3

inve s t  ig a t ion.

1 .4 .4 . V ib ra tio n a l e x c ita tio n  of •polyatomic molecules
3 43I t  has long been known th a t high e lec tro n  swarm energy 

lo sses  occur in  polyatomic gases, but in  sp ite  of a considerable body 

of data  l i t t l e  th e o re tic a l  work has been done in  th is  f i e ld  presumably 

because of the complexity introduced by the  ad d itio n a l degrees of 

freedom. A case in  po in t is  th a t  of COg, one of the sim plest species 

in  th is  category, the v ib ra tio n a l ex c ita tio n  of which has only recen tly  

begun to  be understood.
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27Hake and Phelps based th e i r  CĈ  swarm analysis  on Schulz’s 

observation of energy lo sses of ~ 0 .3 , 0 .6 , and 0.9 eV, te n ta tiv e ly  

asso c ia tin g  these w ith v = 0 * 1 , 2 and 3 e x c ita tio n s  of the
3

antisymmetric s tre tc h  mode, and postu la ted  large  reso n an t-lik e  

c ro ss-sec tio n  peaks to  explain  the swftnn energy lo sses . They were 

however unable to  reconcile  th is  w ith experiment without including  a 

fu r th e r  large  peak a t 0.08 eV lo ss  (corresponding to  the v = 0 *  1 

e x c ita tio n  of the bending mode). Furthermore, i t  was necessary to  

place these "resonances '1 very close to  th resh o ld , in  co n trast to  the  

s itu a tio n s  observed in  H^, , and CO where the resonance peaks occur

w ell above the v ib ra tio n a l th resho ld .
86A la t e r  p u b lica tio n  by Boness and Schulz showed unresolved 

energy lo sses  around 0.1 eV but ru led  out any strong ex c ita tio n  of the 

symmetrical s tr e tc h  mode a t  0.17 eV. However they d id  observe 

apparent e x c ita tio n  of up to  s ix  lev e ls  of th is  mode a t incident 

energ ies of 3 -  4.5 eV.

A d ig ressio n  a t th i s  po in t i s  worthwhile. Most th e o re tic a l  

d esc rip tio n s  of d ire c t s c a tte r in g  assume an in te ra c tio n  p o te n tia l  based 

on the equ ilib rium  p o s itio n s  of the n u cle i. However the t r a n s i t  time 

fo r  a therm al e lec tro n  ( ~ 10~1^s) is  considerably sh o rte r  than  a 

v ib ra tio n a l period  ( i c f 12-  10~1^s) so the n u c le i can be considered as 

fixed  during a c o llis io n . For diatomic m olecules, averaging the 

cro ss-sec tio n s  fo r  ind iv idual values of the in term olecular d istance R 

over the p ro b a b ility  d is tr ib u tio n  of R should give much the same re su lt
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as a sing le  ca lcu la tio n  based on the  equilibrium  value of R. However

fo r  molecules w ith th ree  o r more atoms th is  w ill  not generally  be the

case, since the in te ra c tio n  p o te n tia l fo r  any p a r t ic u la r  nuclear

configuration  may contain  low er-order terms than are presen t in  the

"equilibrium ” in te ra c tio n  p o te n tia l . Thus in  CÔ  the two degenerate

bending modes and the asymmetric s tre tc h  give r is e  to  temporaiy d ipoles

which appear in  the in fra re d  t ra n s i t io n  moment, and should therefo re

according to  ( I . 64) influence the v ib ra tio n a l ex c ita tio n . Furthermore,

since the Born approximations fo r  momentum-1ra n sfe r  (1 .59) and

ro ta tio n a l  ( 1 . 62) c ro ss-sec tio n s  involve the square of the dipole

moment which does not average to  zero over the  v ib ra tio n , these
27c ro ss-sec tio n s  w ill  be s im ila rly  a ffec ted . Hake and Phelps appeared 

to  overlook th is  in  ca lcu la tin g  ro ta tio n a l e x c ita tio n  from the 

permanent quadrupole of CO t̂ so i t  i s  not su rp ris in g  th a t the

c ro ss -sec tio n s  they obtained were too low to  explain the swarm data .
87Recently Singh found the energy dependence of experim ental Qm values 

fo r  C02 d iffe re d  from th a t expected fo r  a quadrupole-dominated 

in te ra c tio n , and s ta te d  th a t th is  was "probably due to  the small d ipole 

moment embedded in  the CÔ  molecule.”

I t  i s  in te re s tin g  to  consider the magnitude of the C02 temporaiy 

d ip o les. For the  1>2 bending modes, the dipole moment i s  given in  terms 

of the deformation angle 0 by

yU ~

where is  the C=0 bond moment. At the c la s s ic a l  l im i t ,  0 i s
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given fry

hi>2 = F0 .e 2 ( 1 . 65)

F0 being the force constan t. P u tting  in  spec tro scop ica lly  
88determined values gives p. ~ 0.18 D, which may be compared w ith  the

permanent moments of CO (0.12D) and N20 (o.17P).

For any one v ib ra tio n  the mean square dipole moment is

obtained by averaging over the quantum-mechanical p ro b a b ility

d is tr ib u tio n  of the normal co-ordinate Q, :k

2
he

-oO
ijj^ is  the ground-state v ib ra tio n a l wave function  -

f 0( Qk) = ( l / 0' kTT)i exp(4 < J ^ lc) ( 1. 67)

2where c*k = h/l+n 2^. For small deform ations, /^(Q^) is  

given by

p. = Qk(dp/dQk) o ( 1 .6 8 )

S u b stitu tin g  in  (1 .66) and in teg ra tin g  gives

} \  = (1*^9)

(dp/dQk)Q is  obtainable from measurements of in fra red  

absorption in te n s i t ie s 88. From ( 1 ^69) we fin d  th a t (p2) 2] fo r

the Pg mo^es c02 is  approximately 0.12  D, and fo r  the mode

0.26 D. The to t a l  û2 fo r  the molecule w ill be roughly the sum of the
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2
in d iv id u a l ji which gives a to ta l  -  0 .3  D. This is  the e ffe c tiv e  

value which should appear in  A lts h u le r^  Bom approximation expression 

( l .5 9 ) .  I t  i s  worth noting th a t a t low energies Pack e t  a l . 21 found Q
m

fo r  COg was 2.69  times th a t  fo r  NgO. Taking the NgO dipole moment as
Q-J

0 .1 66 D , th is  suggests an e ffec tiv e  C02 dipole moment of ~ 0 .2 7  D,

which agrees roughly w ith  the ca lcu la tio n  above.

For v ib ra tio n a l e x c ita tio n , however, the c ro ss-sec tio n  depends

on the tra n s i t io n  moment in  ( I . 64) ,  which involves (d^/dQ^)^ and i s

independent of the permanent d ipo le . This is  consisten t w ith

observations in  severa l molecules a t  medium and high energ ies, e .g . by

L a s s e t t r e ^  a t  48 eV, and by Geiger and W ittmaack^ a t 33 k»V. In  the

l a t t e r  case ex c ita tio n  of the in fra red -ac tiv e  modes of COg, NgO and

0oH, was found to  be consisten t w ith  ca lcu la tions based on the in fra re d  ^ 4
91

abs orpt ion in te n s i t  ie s  •

At low energ ies, Takayanagi’s Bom approximation ca lcu la tio n s
27

could not explain  the magnitude of the threshold  processes in  COg ,
92but more recen t ca lcu la tions by Clay don, Segal, and Taylor have

supported the idea of d ire c t e x c ita tio n  of the o p tic a lly  ac tive  modes.

They ca lcu la ted  approximate p o te n tia l  curves fo r  COg using a

se lf -c o n s is te n t f ie ld  v a ria tio n a l approach and a ttr ib u te d  the observed

e x c ita tio n  in  the 3.0 -  4 .5  ©V region to  the formation o f a 7TU
-15compound s ta te  w ith  a life tim e  of around 10 s . However they concluded 

th a t  no compound s ta te  was formed below 3 eV and advanced an a l te rn a t iv e  

theory of d ire c t e x c ita tio n  fo r  the  lower energy processes. They made 

sem i-q u an tita tiv e  estim ates of the c ross-sec tions based on the e le c t r i c
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dipole and h igher order t ra n s i t io n  moments, concluding th a t
*“"16 2cro ss-sec tio n s  of the order of 10 cm "were to  be expected fo r  

the and ex c ita tio n s  but a much lower value fo r  the mode 

due to  (d^/dQ^)^ being zero. They s ta ted  th a t Takayanagi’s approach 

f a i le d  not because of ad d itio n a l resonant processes but the 

shortcomings of the stra igh tfo rw ard  Bora ca lcu la tio n  a t these energ ies. 

Furthermore, they firm ly s ta ted  th a t d ire c t v ib ra tio n a l c ro ss-sec tio n s  

of th is  order are l ik e ly  to  be encountered in  non-dipolar polyatomic 

molecules wherever the v ib ra tio n a l modes concerned give r is e  to  a 

tra n s ie n t d ipole ( i . e .  are in fra re d -a c tiv e ) .

Since th is  p u b lica tio n  fre sh  evidence has appeared in  the work
10il.of Stamatovic and Schulz , who used a trocho ida l monochromator to

produce a h igh-re so lu tio n  low-energy beam, and obtained th resho ld

energy-loss spec tra  by SF^ scavenging of the sc a tte re d  e lec tro n s .

T heir re s u l ts  ind ica ted  th a t ,  fo r  a l l  v ib ra tio n a l modes of CÔ  including

V , th e  e x c ita tio n  c ross-sec tions a re  of s im ila r magnitude w ith in  < .05 eV 
1

105above th resh o ld . Itikaw a has attem pted to  explain  the e x c ita tio n  

by a Bora approximation ca lcu la tio n  based on the p o la r is a tio n  in te ra c tio n , 

but found th a t the magnitude of the c ro ss -sec tio n , w h ilst always much 

g rea te r  than th a t  derived from the quadrupole in te ra c tio n , depends 

strongly  on the value of the short-range cu to ff  param eter used to  

describe the p o la r is a tio n  p o te n tia l .  This would seem to  demonstrate 

the inadequacy of such long-range p o te n tia ls  in  a system where the 

short-range fo rces are im portant.
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1 .5 . BACKGROUND TO THS PRESENT STUB!

Following observations of large mean f ra c t io n a l  energy lo ss

( X )  values in  swarms by C o ttre l l  and Walker1^, P o llo c k ^  obtained

improved d r i f t  v e lo c ity  data  in  a large  number of p o la r , quadrupolar,

and non-polar gases. He then applied Phelps' method of a n a ly s is ^  to

CH ,̂ CD ,̂ SiH^, and SiD^ and obtained rough values fo r  the

momentum-transfer c ro ss-sec tio n  and a to t a l  in e la s t ic  c ro ss -s e c tio n

based in  each case on an energy lo ss  corresponding to  the lowest

v ib ra tio n a l mode He encountered d i f f ic u l t ie s  however,4
la rg e ly  owing to  the lack  of re lia b le  low-energy D/p measurements in

these gases. In  methane he was unable to  reproduce tran sp o rt
—1c o e ffic ie n ts  fo r  E/P <  0 .5  V cm to r r  , and attem pts to  f i t  the

/ 43c ro ss-sec tio n s  to  Walker’ s D/p measurements tended to  produce a
45 /sharp peak in  the in e la s t ic  c ro ss-sec tio n  a t th resho ld  . The D/p 

values of Cochran and Forester*^" were not compatible w ith  the d r i f t  

v e lo c ity  d a ta , and Pollock concluded th a t  reasonable c ro ss -sec tio n s  

could only be derived i f  D/p lay  somewhere between the two s e ts  of 

r e s u l ts .  Because of th is  i t  was impossible to  judge whether or not 

ro ta tio n a l e x c ita tio n  was having a s ig n if ic a n t e f fe c t .

In  view of the apparent importance of v ib ra tio n a l e x c ita tio n  

in  polyatomic gases, i t  seemed worthwhile to  pursue th is  method of 

a n a ly s is , i f  p o ssib le  to  give some clue as to  which v ib ra tio n a l modes 

might be involved, and whether ro ta tio n a l e x c ita tio n  occurs. However 

th ere  appeared to  be a lack  of re lia b le  D/p da ta  fo r  most gases of
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in te re s t  a t Ej/P below about 0 .5  V cm ^ to r r  ^ , as the published da ta  

in  th i s  range has been almost exclusively  fo r  diatom ic molecules.

As the separation  of e la s t ic  and in e la s t ic  processes in  the Phelps 

an a ly s is  is  extremely sen sitiv e  to  v a ria tio n  in  D/p a t  low v a lues, 

i t  was decided to  proceed w ith  an experiment p rim arily  to  measure 

D/p a t neax-therm al values (£-0.2 V), and to  improve the accuracy 

and v e r s a t i l i ty  of the computer ana lysis  to  make best use of the 

experim ental r e s u l ts .



Sim p lified  D iffu s ion  Tube Geometry.
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f i e l c

c o l le c t o r  e lectrod e

D iffu s io n  Equation.

D.Vn - W.fj = 0

where n = e lec tron  d ensity
D = d if fu s io n  c o e f f ic ie n t  
W = d r i f t  v e lo c i t y

Huxley1s S o lu t io n .

R  = current to inner c o l le c to r  
t o t a l  current
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CHAPTER I I  

APPARATUS DESIGN & CONST HUCTIQTf

I I . 1. BASIC REQUIREMENTS CF THE APPARATUS

The ob ject of the experim ental p ro je c t was to  measure e le c tro n  

d iffu s io n  c o e ff ic ie n ts  transverse  to  an app lied  f i e ld  in  a  v a r ie ty  of 

gases. For the reasons discussed in  chapter I ,  accuracy of measurement 

a t  low values of E/P was considered to  he of prime importance, and the  

f a c i l i t y  to  vary tem perature was d esired .
31The conventional Townsend-ELxley d iffu s io n  tube method was 

chosen, no o th er technique of comparable accuracy being known, and the 

design  of an apparatus was undertaken w ith  the  follow ing b asic  requirem ents.

(a )  The p r in c ip a l param eters h  and b of the d iffu s io n  tube 

(F ig . I I . O  must be chosen to  allow accurate measurement of the 

f u l l  range of W/!d values lik e ly  to  be encountered. These values 

correspond to  swarms of c h a ra c te r is t ic  energy qD/ji ranging from 

therm al to  sev era l eV, in  gas p ressu res  varying from a  few to r r  

to  g rea te r  than  atmospheric*

(b ) The p rec is io n  of the measurements must be m aintained 

throughout the working range by close adherence to  the id e a lise d  

geometry, uniform ity of the e le c t r o s ta t ic  f i e ld  and accuracy o f  

co llec ted  curren t measurements.
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(©); As the low-energy l im it of the swarm i s  determined by 

the  £ .̂s tem perature, i t  may be found d es irab le  to  reduce the 

l a t t e r  below room tem perature to  extend the range of 

in v e s tig a tio n . The accuracy of the apparatus must th ere fo re  

be susta ined  over a  wide range of operating  tem peratures.

The le v e l of accuracy requ ired  in  determ inations of D/p i s  

decreed by the c ro ss-sec tio n  an a ly sis  used (Ch. IV) .  Although the
1

e f fe c tiv e  momentum-transfer c ro ss-sec tio n  i s  only dependent on (d/ju)^, 

the e ffe c tiv e  in e la s t ic  c ro ss-sec tio n  involves the d ifference  term 

(D/p-kT/e) which approaches zero as E/P approaches zero. Small e r ro rs  

in  D/p therefo re  become extremely serio u s in  the an a ly s is  of near-therm al 

swarm d ata  -  the very region where measurements become increasing ly  

d i f f i c u l t .  With p resen t techniques i t  i s  u n re a l is t ic  to  hope fo r  an 

o v e ra ll accuracy of b e t te r  than a few p ercen t, and in  attem pts to  

e lim inate  ind iv idual sources of e r ro r  in  th is  work the le v e l of p re c is io n  

u su a lly  aimed a t i s  of the order of 0*5% or b e t te r .

I I . 2. DESIGBrCCM5IDERATIQN3

I I .  2*1 • Choice of P rin c ip a l Param eters

P rec ise  measurement o t  the cu rren t r a t io  R req u ires  the cu rren ts

I  and I rt to  be of s im ila r  magnitude. A lso, the g radient d l /d ( w / D )  given 
1 2

try the Huxley formula (F ig . I I . l )  becomes very small as R tends to  0 or 

1 , so th a t  the u se fu l range of R fo r  p rec ise  measurement of D/p i s  a t
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most 0 .2 < R < 0 .9 . An apparatus o f fix e d  dimensions h and b can measure 

a very r e s tr ic te d  range o f D /W , and hence a re s tr ic te d  range o f D/p 

since the u s e fu l range o f f ie ld  s tren g th  E is  a lso  lim ite d . I t  is  

th e re fo re  necessary to  choose the param eters b and h to  s u it the  range 

o f D/p values under in v e s tig a tio n .

A t n e ar-th e rm a l D/p, the low er l im it  o f a few  v o lts  p e r  

cen tim eter which must be p laced  on E means th a t a very  sm all r a t io  

t / h  H O "  )  must be employed i f  the fra c tio n  ( l - R )  o f the e le c tro n  

cu rren t to  the o u te r c o lle c to r  is  to  be s ig n if ic a n t. Due to  the  f in i t e  

s iz e  o f the gap between c o lle c to rs , w hich lim its  the p re c is io n  o f the  

e ffe c tiv e  in n e r c o lle c to r  d iam eter, the sm allest p ra c tic a l rad iu s  was 

determ ined to  be 0 .2 5  cm. P ra c tic a l considerations a lso  le d  to  a choice  

o f 10 cm fo r  the d r i f t  d istance h , since as the divergence o f the  swarm 

increases w ith  the square o f the d r i f t  d is ta n c e , a  s ig n if ic a n t fu r th e r  

in crease in  divergence could only be achieved by making the apparatus  

unduly cumbersome.

The choice o f such a  low t /h  r a t io  a ls o  re s tr ic te d  th e  upper 

l im it  o f D/p measurable a t the  maximum a v a ila b le  f ie ld  s tre n g th  E 

(ap p ro x . 150 V cm"1) .  To p rovide fo r  measurement o f la rg e r  D/W v a lu e s , 

the anode was fu r th e r  d iv id e d  a t r a d ii  o f 1 cm and 2 cm re s p e c tiv e ly , 

thereby g iv in g  th re e  values o f b to  cover th e  f u l l  d e s ire d  range o f 

the  apparatus.
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I I .  2 ,2 . Choice Of o ther diraftn.ginng

The sources of system atic e r ro r  and fa c to rs  in fluencing  the

accuracy of the Townsend-Huxley d iffu s io n  experiment have "been
32 33thoroughly in v estig a ted  "by Cronpton and co-workers , and the 

magnitudes of the e rro rs  a r is in g  assessed  both by numerical c a lcu la tio n  

and by experiment. T heir r e s u l ts  were used as a  b as is  fo r  reducing 

inaccuracy in  the p resen t experim ent, as described below.

(a ) Diameter of source ho le ; The f in i t e  s ize  of the  source 

hole i s  a departure from the id ea l po in t-source d iffu s io n  

geometry,, tu t  in  p ra c tic e  the source must be s u f f ic ie n t ly  la rge  

to  transm it the requ ired  cu rren t. By making the hole diam eter 

1 mm, the maximum e rro r  was kept below 0 .5$  .

(b) Width of annular cans in  anode: The u n certa in ty  in  b 

i s  of the o rder of the gap width. The in n er two gaps were 

designed to  be .005 ®m wide, the sm allest p o ssib le  in  p ra c tic e . 

When lo ca tio n  to lerances were allowed f o r ,  the maximum e r ro r  

from th i s  source would not exceed 1$.

(c )  Diameter of the d iffu a io n  reg ion : To approach the id e a l 

boundary condition o f no w a lls , the  d iffu s io n  reg ion  diam eter 

must be la rg e  enough to  give n e g lig ib le  e le c tro n  density  a t  

the w a lls , and to  ensure uniform f ie ld  over the reg ion  where 

e lec tro n  den sity  i s  s ig n if ic a n t.  The diam eter depends on the 

guard e lectrode system employed, and i s  discussed in  I I .  2.3*

(d ) Prel^™-i”«T"v f ie ld  region: Before reaching the source hole



51

th e  swarm must, have re la xed  to  the  e q u ilib riu m  v e lo c ity  

d is tr ib u tio n *  When e la s t ic  c o llis io n s  on ly are; considered , 

th e  energy re la x a tio n  d istance is  g iven  b y ^

j  v  MeE /  \
«* -  ~ 2 ~ 2

2m v

where is  th e  c o llis io n  frequency. Bbccept a t pressures < 1 t o r r  

th is  d is tan ce is  extrem ely sh o rt and the chosen d is tan ce o f 

1*67  cm was more than adaquate.

(e )  Alignm ent o f source: The to le ran ce  an the a x ia l alignm ent

o f the  source hole to  the c o lle c to r  was p laced  a t  i> 0 2  cm. 

A ccording to  Crompton and J o iy , th is  should l im it  the e rro r  in  

D/ji to  0 .1 &

IX .2 .3 *  Guard e le c tro d e  s tru c tu re

S lig h t v a r ia tio n s  in  f ie ld  s tre n g th  along the tube a x is  have 

l i t t l e  e f fe c t  on the measured value o f D/W , as the re s u ltin g  s lig h t  

v a ria tio n s  in  v e lo c ity  d is tr ib u tio n  la rg e ly  average out over the d iffu s io n  

le n g th . Any r a d ia l f ie ld  component a r is in g  from geom etrica l 

in a ccu rac ies  w i l l  however' s e rio u s ly  a ffe c t  the transverse  d iffu s io n *  

D eparture  o f th e  c o lle c to r  surface from tru e  p la n a r ity  w i l l  have the  

most serio u s  e ffe c t, as r a d ia l f ie ld s  w i l l  then e x is t, in  the  v ic in ity  o f 

the  an n u lar gaps > causing a spurious cu rren t d is tr ib u tio n .

Any d is to r tio n  o r m isalignm ent o f the guard e lec tro d es  w hich  

produce th e  f ie ld :  w i l l  lik e w is e  in troduce ra d ia l f ie ld  components.
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Crompton, E lfo rd  and Gascoigne^^ rep laced  the conventional th in  

k n ife -ed g ed  guard rin g s  w ith  deep clo sely-spaced  c y lin d r ic a l e lec tro d es* 

I t  was decided to  employ these in  the present apparatus since "besides 

c o n fe rrin g  g eo m etrica l accuracy and m echanical s ta b il ity  an the system  

th ey  p ro v id e  a h ig h  degree o f s h ie ld in g  from  e x te rn a l f ie ld s , and 

e lim in a te  la rg e  in s u la tin g  spacers w ith in  the d iffu s io n  reg io n  which may 

cause f ie ld  d is to r t io n  through d ie le c tr ic  soakage and surface charging* 

A lthough th e  f ie ld  is  h ig h ly  d is to rte d  close to  the e le c tro d e s , the  

degree o f d is to r tio n  is  a c c u ra te ly  known and can be arranged to  be 

n e g lig ib le  w ith in  the reg io n  o f s ig n if ic a n t e le c tro n  d e n s ity *

F ig . I I .  2 . shows a module o f the  f ie ld  and the equation g iv in g  

th e  form  o f the e q u ip o te n tia ls , which is  the s o lu tio n  to  the Laplace  

e q u a tio n  w ith  the  ap p ro p ria te  boundary co n d itio n s . C a lcu la tio n s  were 

c a rr ie d  out to  determ ine s u ita b le  e lec tro d e  dim ensions. The c r ite r io n  

used was th a t , fo r  c u rren t r a t io  R > 0.25  re fe rre d  to  the outerm ost 

an n u lar gap, 99*3% o f the  e le c tro n  f lu x  a t the anode should f a l l  w ith in  

a ra d iu s  a t w hich th e  f ie ld  d e v ia tio n  is  les s  than 0 .0 5 $ * T h is  rad iu s  

was e ja c u la te d  to  be ju s t under 5 cm. F u rth e r c a lc u la tio n s  to  determ ine  

th e  b est compromise between number o f e lec tro d es  and e lec tro d e  d iam eter 

le d  to  a choice o f 6> f u l l  e lec tro d es  p er 10 cm d r i f t  d is ta n c e , o f in n e r  

d iam eter 6 cm, and separated  by 0 .5  cm {^ps.

I I . 2 .4 *  E ffe c t: o f co n tact p o te n tia ls

C ontact p o te n tia l d iffe re n c e s  between e lec tro d es  a lso  cause



P o te n t ia l  at point Q

n=1

( I q= zero-order modified B essel function)

FIG. I I . 2. E le c tr ic  f i e l d  geometry.
T h e  d o t t e d  l i n e s  i n d i c a t e  t h e  s h a p e s  o f  t h e  

e q u i p o t  e n t  i a l s  •
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f i e ld  d is to r t io n , p a r ticu la r ly  at low f ie ld  stren gths. Most seriou s

i s  any v a r ia tio n  in  contact p o te n tia l across the c o lle c to r  surface

33where a few m il l iv o lt s  can produce noticeab le  errors » Parker and 

35Warren in v estig a ted  the v a r ia tio n  in  contact p o ten tia l across various 

surfaces and found th at even e lec tro p la ted  gold gave d ifferen ces  o f the 

order o f 100 mV in  a centim eter, Crompton e t  a l .  succeeded in  reducing 

the d ifferen ces  to  a few mV by ca refu lly  developed gold evaporation  

techniques, but sin ce  Parker and Warren found c o llo id a l graphite gave 

v aria tion s o f le s s  than 10 mV the la t t e r  sim pler surface treatment was 

chosen in  t h is  case,

I I . 2.5* Magnetic e f fe c t s

An e lectron  swarm in  an e le c t r ic  f i e ld  o f strength  E i s  d e fle c te d

through an angle 6 by a transverse magnetic f i e ld  B according to  the 

31r e la t  ionship

ta n  0 = C .-^  ( I I .  2)

C being a constant o f  the order o f u n ity , tinder cer ta in  

conditions even the earth* s f i e ld  can cause a s ig n if ic a n t d e flec tio n :  

fo r  instance in  methane at 5 to rr  pressure, E/P = 1 V cm to rr  , a 

f i e l d  o f  0 ,5  gauss would cause an error equivalent to  a source 

displacement o f 1 mm. To preserve the required accuracy f ie ld s  o f  

greater than 0,1 gauss have to  be elim inated , and to  do th is  the apparatus 

was surrounded w ith  three mutually prependicular p a irs  o f Helmholtz c o i l s .  

Square c o i l s  were used , each p a ir  being separated by a distance equal to
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0 *54 4  tim es the le n g th  of* one s id e  (approx* 1m ), g iv in g  a h ig h ly  uniform  

f ie ld  over a volume o f approxim ately 15 cm diam eter centred  on th e  

d iffu s io n  re g io n . ^  The cu rren ts  through each p a ir  o f c o ils  

( ~ j80  tu rn s  each) necessary to  produce n e ar-zero  f ie ld  a t the centre  

were found e x p e rim e n ta lly  using a H a ll-e ffe c t; gaussmeter*.

H ig h ly  lo c a lis e d  m agnetic f ie ld s  a r is in g  from m agnetised tube 

components could have an even more serious e f fe c t , p a r t ic u la r ly  a t the  

c o lle c to r  s u rfa c e , so nonmagnetic m etals were used throughout the  

e le c tro d e  assem bly.

1 1 .2 .6 . C o lle c to r  in s u la tio n

The In s u la tio n  between c o lle c to rs  and from c o lle c to rs  to  e a rth  

must be o f the o rd er o f 10^ tim es the in p u t re s is ta n ce  ( 10^ / 2 ) o f th e  

v ib ra tin g  reed  e le c tro m ete rs  used to  measure the c u rre n ts . T h is  

c r ite r io n  was adhered to  when designing  the c o lle c to r  supports in  both  

the  o r ig in a l and m o d ified  versions o f the  anode ( I I . 3 ) .

1 1 .2 .7 . Cathode design

I t  is  usual in  swarm experim ents to  produce e le c tro n s  by 

u lt r a v io le t  illu m in a tio n  o f & g o ld -su rfaced  cathode. A disadvantage  

o f th is  technique is  th a t l ig h t  s c a tte re d  through the source ap ertu re  

may g ive  r is e  to  spurious e le c tro n  c u rre n ts , and excessive ir r a d ia t io n  

may in i t ia t e  chem ical re a c tio n s  in  some gases as w e ll as h e a tin g  the  

sample gas. In  an attem pt to  reduce these e ffe c ts , a photocathode o f 

the type described  by M o ru zzi-^  chosen, where the  gold  surface is
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evaporated onto a s i l i c a  window and illum inated from the rear. To 

minimise the l ig h t  transm itted to  the source aperture, the d irectio n  

o f illu m ination  was f ix e d  at 35° to  the tube a x is . The e lectrod es in  

the v ic in it y  o f the cathode (F ig . I I . 3) were designed to  orien tate  the 

swarm leav in g  the cathode towards the source aperture fo r  mum 

current. This was achieved by f ie ld -p lo t t in g  w ith the aid  o f a 

res is ta n ce  paper model,.

I I . 2 .8 . S ta b ility  to  tem perature v a r ia tio n

To p erm it low  o p era tin g  and h igh  bake out tem peratu res, 

g eo m etrica l accuracy had to  be preserved over a 600° range. T h is  

presented  problems owing to  the h igh  d if fe r e n t ia l expansion between 

s u ita b le  m etals and in s u la to rs . The s o lu tio n  was to  a llo w  a l l  e lec tro d es  

to  move c o n c e n tric a lly  w ith  resp ec t to  th e  tube ax is  by em ploying a  

system o f r a d ia l lo c a tio n  ( I I . 3 )•

I I .  3 . CQK3TRUCTION CF THE DIFFUSION' TUBE

F ig s . I I . 4  and I I . 3 show re s p e c tiv e ly  a cutaway view  and a 

diagram m atic s e c tio n  o f the  e le c tro d e  assembly. E lec tro d e s , support 

tube and vacuum ta n k  were fa b ric a te d  from F ir th —V ickers  M Immaculate 5t1 

s ta in le s s  s te e l.
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_ MO. I I . 4 . C u t-a w a y  view o f the d iffu s io n  tube.
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The p r in c ip a l dimensions are summarised below.

Table II.1

h -  measured d r i f t  d is tan ce = 10.073 cm

bj -  rad iu s  to  centre  o f 1s t anode gap = 0.251 cm

bg -  ra d iu s  to  centre o f 2nd anode gap = 0.500  cm

b^ -  rad iu s  to  centre  o f 3rd  anode gap = 1.000 cm

1 -  height, o f f ie ld  module = 1.676 cm

g -  gap between f ie ld  e le c tro d es  = 0.051 cm

2c -  in n e r d iam eter o f f ie ld  e lec tro d es  = 12.3  cm

s -  d iam eter o f source ap ertu re  = 0.11 cm

11.3*1  • Support tube and f ie ld  e lec tro d es

A ll e lectrod es were supported from a 6” diameter s ta in le s s  s t e e l  

tube which rested  on the baseplate o f the vacuum tank. The ^  th ick  

f i e l d  e lec tro d es were each located  and supported r a d ia lly  by three 

in su la tin g  rods mounted at 120° in te r v a ls , free  to  s l id e  in  the support, 

tube and thus allow ing fo r  d if fe r e n t ia l  expansion. These rods were 

in  diameter* p rec is io n  made in  "Ceramtec" machinable ceramic. The d is c  

sec tio n s  o f  the upper e lectrod es were o f .025” th ick  s ta in le s s  s t e e l .

11. 3* 2 . Anode assembly

The c o lle c to r s  were made th ick  to  ensure mechanical s t a b i l i t y ,



( a )  B o ro n  n i t r i d e  p i n  m o u n t in g .

B -  b o r o n  n i t r i d e  p i n  

C -  b e r y l l i u m - c o p p e r  c o n d u c t o r  

P  -  p y r e x  b a s e  p l a t e

3  -  l o c a t i n g  s t u d  f o r  c e n t r a l  c o l l e c t o r

( b )  Q u a r t z  r i n g  m o u n tin g *

Q -  q u a r t z  s p a c i n g  r i n g

FIGr* I I  .5  D e t a i l  o f  c o l l e c t o r  a s s e m b ly
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and were smooth-machined u n t i l  th e ir  th ickness matched to  . 0001" .

The o r ig in a l design fo r  the mounting system is  illu s tr a te d  in  

F ig . 1 1 ..5 (a ). In  th is  v e rs io n , the c o lle c to rs  were supported c le a r  o f 

the  Fyrex basep la te  by h ig h -in s u la tio n  boron n it r id e  p in s , lo c a te d  in  

c lo s e - f it t in g  holes d r il le d  in  the b asep la te . Each annu lar s ec tio n  

was mounted on th re e  p ins a t 120°  in te rv a ls , which f i t t e d  in to  r a d ia lly  

elongated  s lo ts  in  the underside o f the c o lle c to r , thus a ll  owing 

expansion and c o n tra c tio n  to  occur w ith  co n cen tric  movement o n ly . The 

c e n tra l c o lle c to r  was lo c a te d  on a s in g le  b ery lliu m -co p p er stud  and 

spaced from  the  basep late  by a boron n itr id e  washer.

I t  was thought that th is  arrangement would provide a high degree 

of e le c t r ic a l  in su la tio n  and maintain c lo se  to lerances on the c o lle c to r  

alignment over a wide temperature range* However the system proved 

u n sa tis fa c to ry , as owing to  the accumulation o f sm all machining erro rs , 

p a r tic u la r ly  in  the boron n itr id e  p in s , and in  d r i l l in g  the baseplate  

h o le s , the alignment o f the c o lle c to r s  was poor in  so fa r  as the upper 

surfaces were not coplanar, and there was s u ff ic ie n t  movement in  the 

system to  allow  adjacent c o lle c to r s  to  touch.

To r e c t if y  th is  w ith  the minimum o f re co n s tru c tio n  the  assembly 

i l lu s tr a te d  in  F ig . 1 1 .5 (b ) was adopted. The boron n itr id e  p in  mounting 

was abandoned on the  in n e r two annu lar c o lle c to rs  ( and a ^ ), and 

in s te a d  a l l  c o lle c to rs  were supported on p re c is io n  ground q u a rtz  rin g s  

which lo c a te d  in to  machined recesses on the undersides o f th e  c o lle c to rs  

as il lu s t r a te d . The c learances between the rin g s  and the recesses were 

c a lc u la te d  to  a llo w  fo r  d if fe r e n t ia l expansion. These clearances d id



58

a llo w  s lig h t la t e r a l  movement, bat as the boron n itr id e  p in s  were 

re ta in e d  on th e  o u te r annulus ( a^) the mavinnim possib le  movement a t 

room tem perature was .005 cm on ay

The Pyrex basep late  supporting the anode was s im ila r ly  lo c a te d  

by th re e  p in s  re s tin g  in  ra d ia l s lo ts  in  ceram ic mounting blocks  

secured to  the o u te r support tube.

1 1 .3 .3 *  Assembly and checking

P r io r  to  assembly a l l  components were thoroughly cleaned by 

u ltra s o n ic  a g ita t io n , then f in a l ly  heated to  1000° C in  a high-vacuum  

flxrnace to  ensure surface c le a n lin e s s . The la t t e r  treatm ent a lso  

hardened the "Ceramtec11 components and was known to  reduce th e ir -  

out gas s in g  r a te . A l l  m etal surfaces w ith in  the d iffu s io n  re g io n  were 

then coated w ith  c o llo id a l g ra p h ite  by app ly in g  an a lc o h o lic  suspension 

(DAG 580) and burnished when d ry . D uring and a f te r  assembly alignm ents  

were checked by p re c is io n  tr a v e llin g  m icroscope, and accurate values fo r  

the  param eters h and b were recorded (T a b le  I I . l ) .

I I . 4 . THE FHOTOGATHCm

The complete photocathode assembly (F ig . I I . 6) was flange-m ounted  

and could be independently  w ithdrawn from  the apparatus. U lt r a v io le t  

l ig h t  was adm itted  through a l "  d iam eter sapphire vacuum window. To 

in s u la te  the  cathode from e a rth  and f a c i l i t a t e  rep lacem ent, the gold
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surface was evaporated onto a th in  s i l i c a  d isc  which was supported V1 

in sid e  the window "by a ceramic tube. Connection to  the cathode was 

made through two tantalum con tacts. One o f these served as a spring, 

(contact to  the topmost f i e ld  e lec tro d e , and a lead  connected the other 

to  a feedthrough on the cathode fla n g e , thereby g iv in g  two independent 

connections.

The f i r s t  cathodes were obtained from E .M .I. L td . and gave 

ra th e r  low  em ission w hich ra p id ly  d e te rio ra te d  on prolonged exposure 

to  atm osphere. To m inim ise the amount o f handling in  atm osphere, and 

to  enable o p tim is a tio n  o f f ilm  th ickness fo r  maximum em ission, a sm all 

evap o ra tio n  u n it was b u i l t .  Th is  consisted  o f a g lass vacuum tan k  

pumped by the re fe re n c e  pressure g a s -lin e  (F ig . I I . 7 ) which accepted  

the  e n tire  cathode assembly through the upper e n d -p la te . A 1 mm th ic k  

tungsten  fila m e n t p laced  about 1M below the cathode d is c  served as an 

evaporation; source, heated  by a 30 A V a ria c -c o n tro lle d  power supply. 

D uring  evap o ratio n  th e  cathode was h e ld  200 V n eg ative  w ith  resp ect to  

the  earth ed  basep late  and fila m e n t, and ir ra d ia te d  w ith  u .v . lig h t  

through th e  sapphire window. The p h o to e le c tric  em ission cu rren t was 

m onitored and evaporation  continued u n t i l  peak em ission was ju s t passed. 

The cathode assembly could then be tra n s fe rre d  d ire c tly  to  the  main 

vacuum ta n k  w ith  on ly  a b r ie f  exposure to  atm osphere.

Two u lt r a v io le t  sources were used: a 5.5 W MPen-Rayfl lam p, and 

a 100 W Hanovia UY 100 system . The form er was a very  compact U-shaped 

source w hich f i t t e d  in to  the s te e l tube im m ediately behind the vacuum 

window, and was used whenever the re s u ltin g  cu rren ts  were com pletely
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FT -  f o r e l i n e  t r a p
IG  -  i o n i s a t i o n  g a u g e
I P  -  i o n  pum p
M -  m e r c u r y  m a n o m e te r
MD -  m e r c u r y  d i f f u s i o n  pum p

-  d ia p h r a g m  v a l v e

CD -  o i l  d i f f u s i o n  pum p
R -  r o t a i y  pum p
RC -  r o t a r y  pum p c o n n e c t i o n
S P  -  s o r p t i o n  pum p
T -  l i q u i d  n i t r o g e n  t r a p
TG -  t h e r m o c o u p le  g a u g e
VT -  m a in  v acu u m  t a n k

F IG . I I . 7* V acuum  a n d  g a s - h a n d l i n g  s y s te m s *
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adequate ( >  10 ^ A ) .  A t o th er tim es i t  was necessary to  use the  

Hanovia system , w hich was an o p tic a lly  focussed source p ro je c tin g  

a 1 cm d iam eter spot a t a d istance o f 30 cm.

No d e ta ile d  in v e s tig a tio n s  o f cathode behaviour were made, 

but to ta l, c o lle c te d  cu rren ts  appeared to  obey roughly a re la tio n s h ip  

o f the form

Io c e V p 13 (a  >b  > 0)

The magnitudes o f the cu rren ts  v a rie d  between sample gases 

by s e v e ra l fa c to rs  o f ten ..

I I . 5 . VACUUM AND GAS-HANDLING SYSTEMS

The vacuum system lay o u t is  illu s tr a te d  in  F ig . I I .  7* The 

e le c tro d e  assembly was contained in  an 8" d iam eter welded s ta in le s s  

s te e l ta n k . The removable en d -p la te s  sealed  on gold w ire  gaskets and 

c a rr ie d  h ig h -in s u la tio n  Leybold CM-12/1 feedthroughs. The cathode p o rt 

and * n  vacuum connections were s itu a te d  on the upper e n d -p la te . T h is  

a llow ed  easy access to  the  e le c tro d e  assembly which re s ted  on the low er 

p la te . The ta n k  was designed to  be immersed in  a low -tenrperature bath  

when re q u ire d .

U ltra -h ig h  vacuum pumping was provided  by a 30 1 s M illia rd

magnetron s p u tte r-io n  pump. Two stages o f p re lim in a ry  pumping were
-1

used: a  trapped  ro ta ry  pump down to  10 t o r r ,  and a m olecular s ieve

-3s o rp tio n  pump to  fu r th e r  reduce the pressure to  below 10 to r r  p r io r  

to  io n  pumping.
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W ith in  the bakeable reg io n  (F ig . I I . 7 ) a ll-m e ta l sea ls  and 

valves were employed. The vacuum tank and io n  pump could he surrounded  

by ovens c a rry in g  ra d ia n t heaters  capable o f ra is in g  the tem perature to  

over 300°  C.

Sample gases were handled in  a sim ple glass-blow n system , pumped 

by a sm all mercury d iffu s io n  pump.

To avoid  m ercury vapour contam ination , sample pressures were

measured in d ire c tly  v ia  a diaphragm type capacitance manometer

( G ra n v ille -P h illip s  212) w ith  a 100 to r r  sensing head. The re feren ce

pressure fo r  th is  was measured by a mercury manometer constructed  from

10 mm bore th in -w a lle d  tu b in g  and viewed w ith  a  cathetom eter read in g

to  .0 5  mm. A lthough the  capacitance manometer could be c a lib ra te d  fo r

d ire c t read ing  i t  was norm ally  used as a n u ll-re a d in g  instrum ent fo r  the

sake o f accuracy, th e  pressure being read  d ire c tly  on the mercury

-1manometer. The re fe ren ce  side could be pumped by a 25 1 s o i l  

d iffu s io n  pump w hich a ls o  served to  evacuate the cathode evaporation  

chamber*

I I .  6 . ELECTRICAL DETAILS

V o ltag es  to  the f ie ld  e lec tro d es  were provided  ty  a p o te n tia l 

d iv id in g  netw o rk, co n s is tin g  o f a chain o f 200 k f t  re s is to rs  connected 

between ad jacen t e le c tro d e s . The low est e le c tro d e  was earth ed  and the  

uppermost connected to  a F lu ke  412B 0-2200 V s ta b ilis e d  supply, connection  

being v ia  a sprin g  contact a ttach ed  to  a feedthrough in  the  tan k
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top  p la te . The cathode was h e ld  a t the same p o te n tia l by the  d ii» l

connection system described .

The re s is to rs  (P y ro film  FT60) were g lass-encapsu lated  carbon

f ilm  ty p e , of ± "\% to le ran c e  and c lo s e ly  matched tem perature c o e ffic ie n ts .

Due to  s lig h t in accu rac ies  in  the v e r t ic a l p o s itio n in g  o f the holes fo r

the f ie ld  e le c tro d e  support ro d s, the e lec tro d e  p o s itio n s  d ev ia ted

s lig h t ly  from  e q u id is ta n t spacing. These d e v ia tio n s  were measured

a f te r  assembly and re s is to rs  chosen to  match the spacings, thereby

im proving the v e r t ic a l f ie ld  u n ifo rm ity  to  b e tte r  than 0.3% in  the

d iffu s io n  re g io n .

C o lle c te d  cu rren ts  were measured by two K e ith le y  62*0 v ib ra tin g

-15c ap a c ito r e le c tro m e te rs , capable o f read ing  10 A f u l l  sca le  w ith  a 

1210 i l  in p u t re s is to r . Each c o lle c to r  was connected to  a three-way- 

h ig h -in s u la tio n  sw itch  w hich made connection to  e ith e r  e le c tro m e te r o r 

e a rth  as d e s ire d . These sw itches were enclosed in  a f u l ly  sh ie ld ed  box 

p laced  d ir e c t ly  between the ta n k  baseplate and the input sockets- o f the  

e le c tro m e te r remote heads.
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CHAJTEP TTT

EXPERIMENTAL PROCEDURE AMD BESUI1TS

I l l . t *  OPERATING PROCEDURE

The norm al sequence o f o p eratio n  was as fo llo w s :

(1 )  Adm it gas sample to  se le c ted  p ressure.

(2 )  S e le c t a p p lie d  vo ltag e V to  g ive d esired  f ie ld  s tre n g th  R .

( 3) S e le c t o p era tin g  mode 1 , 2, o r 3 ty  sw itch ing  c o lle c to rs  to  th e  

two e le c tro m ete rs  to  g ive an e ffe c tiv e  in n e r c o lle c to r  ra d iu s  o f

h j , b ^ , o r re s p e c tiv e ly  (T a b le  I I . l ) .

( 4 ) Measure background cu rren ts  ( i . e .  w ith  u .v . l ig h t  o f f )  then  

cu rren ts  w ith  cathode illu m in a te d  and o b ta in  tru e  c o lle c te d  c u rran ts  

by s u b tra c tio n .

I I I . 1 . 1 .  Sample pressures

Gas. samples were adm itted  to  the tan k  only when th e  background 

pressure had fa lle n  to  below 10 ' t o r r ,  the  system being baked i f  

necessary to  achieve th is .. To reduce contam ination the tan k  was f i r s t  

flu s h e d  w ith  a  h igh pressure o f th e  sample gas. The gas tem perature was 

m onitored w ith  a ccpper-Eureka thermocouple and kept steady to  w ith in 1

± 1° c .

Sample pressures v a rie d  between 3 and 1000 to r r  and were checked
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a t  in te rv a ls  throughout the run* A lthough the re fe ren ce  pressure could  

be read  to  i  0 .1  to r r  the lim it in g  fa c to r  was the zero  d r i f t  o f the  

capacitance manometer w hich reduced the accuracy to  about + 0 .2  to r r .

I I I . 1 .2 . V o ltage s e ttin g

The range over which the  f ie ld  s tre n g th  E could be v a rie d  was 

lim ite d  by two fa c to rs .

(1 )  A t h igh  E /P  va lu es  ( £ > * 5  V c n f^ to rr"^ ) e le c tr ic a l breakdown 

ocurred w ith  sparking  between e le c tro d e s . To extend th is  range 

would re q u ire  la rg e r  gaps between the f ie ld  e le c tro d e s ,, w hich would 

render such an apparatus u n su ita b le  fo r  low f ie ld  strengths due to  

f ie ld  p e n e tra tio n .

(2 )  A t low  l / P  the  c o lle c te d  cu rren ts  dim inished and a poor s ig n a l

to  no ise r a t io  caused ra p id  lo ss  o f accuracy. A t the low er pressures

used, h ig h cu rren ts  could be obta ined  even w ith  very  low  f ie ld
-1

s tre n g th s , but w ith  f ie ld s  below about 3 V cm ir re g u la r  re s u lts  

were observed,, probab ly  due to  the re la t iv e  im portance o f contact 

p o te n tia ls .

I I I . 1 .3 •  C urrent measurement

38To avo id  in tro d u c in g  space charge e ffe c ts  in  the swarm ,,

-12c u rre n ts  were n o t a llow ed to  exceed 10 A. I t  was possib le  to  

measure cu rren ts  u s in g  e ith e r  o f two e lec tro m eter in p u t re s is to rs , o f 

valu e  101<j0 and 1012i l  re s p e c tiv e ly . The sm alle r re s is to r  had the  

disadvantage o f g iv in g  a h ig h er no ise le v e l and g re a te r zero d r i f t ,



65

12
whereas when the 10 SI re s is to r  was used the system re q u ire d  s e v e ra l

m inutes to  come to  e q u ilib riu m . Another co n sid era tio n  was th a t the  in p u t

re s is to r  in troduces a p o te n tia l d iffe re n c e  between the c o lle c to rs  and

e a r th , thereby d is to r tin g  the f ie ld  a t the anode su rface . Thus i t  is

d e s ira b le  to  use a low  re s is to r  when measuring h igh  cu rre n ts , in

p ra c tic e , the c o lle c te d  cu rren t v a rie d  roughly p ro p o rtio n a te ly  to  the

a p p lie d  f ie ld ,  so the p o te n tia l d iffe re n c e  a t the anode was a f a i r ly

constant sm all fra c tio n  o f the a p p lie d  f ie ld ,  and a t the low er values o f

E was probably s m a lle r than the contact p o te n tia ls *  In  a d d itio n , accurate

measurements were made w ith  the cu rren ts  to  the two c o lle c to rs  as equal

as p o s s ib le , so th e  p o te n tia l d iffe re n c e  between c o lle c to rs  was m inim ised.

10I t  was found b est to  use the  10 / I  re s is to r  fo r  curren ts  g re a te r than  

1 0 -1? A.

In  the absence o f cathode illu m in a tio n , f a i r ly  constant to ta l

-15background cu rren ts  o f around + 10 A were recorded, probably a r is in g  

from  in s u la tio n  leakag e. Any increase in  background above th is  le v e l 

could u s u a lly  be rem edied by baking the apparatus. Slow flu c tu a tio n s  

in  the measured background reduced the accuracy w ith  which tru e  curren ts  

could be ob ta in ed  by s u b tra c tio n , so poor re s u lts  were obta ined  when the  

t o t a l  c o lle c te d  cu rren t was les s  than IC T1*1' A* W ith  h ig h er c u rre n ts , 

however, th e  flu c tu a tio n  was unim portant and i t  was only necessary to  

measure background cu rren ts  occasionally  d u rin g  a ru n .

C urrents a r is in g  from lig h t  p e n e tra tio n  through the  source ap ertu re  

were in v e s tig a te d  by b iass in g  the cathode p o s itiv e  w ith  respect to  the
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source e le c tro d e - No measurable cu rren ts  were c o lle c te d , in d ic a tin g  

th a t such cu rren ts  would c e rta in ly  not exceed 0A% o f the to ta l c u rre n t.

I I I . 1 .4 *  D ata  lo g g in g

To improve accuracy in  cu rren t measurement a S o la rtro n  s e rie s  2 

d ata  lo g g in g  system was used to  c o lle c t most o f the d ata  presented  in  

th is  c h ap te r. The e le c tro m e te r feedback vo ltag es  were fe d  to  the system 's  

d ig ita l  v o ltm e te r and sampled a t 15 s in te rv a ls  fo r  tim es v a iy in g  from 2 

to  10 m inutes. The a p p lie d  vo ltag e  was a lso  sampled, along w ith  s ig n als  

in d ic a tin g  the c o lle c to r  mode and the u .v .  l ig h t  o n /o ff p o s itio n , thus  

en ab lin g  D /p  values to  be computed d ir e c t ly  from the punched tape output 

by a sim ple averaging o f sampled cu rren t v a lu e s . The averaging  improved 

the s ig n a l to  noise r a t io  somewhat and le d  to  more co n sis ten t re s u lts  

than  manual read in g  o f the  e le c tro m e te rs .

I I I . 1 . 5 .  C a lc u la tio n  o f re s u lts

31Values o f D /p  were c a lc u la te d  from H u xley 's  form ula :

R s j  + t  = 1 “ "5 e2£  [~  ZD ^d“h) ]  ( i l l . l )
1 2

where 1  ̂ and Ig  are the  curren ts  to  in n e r and o u te r c o lle c to rs  

re s p e c tiv e ly - The use o f th is  form ula was ju s t if ie d  by the  d e term in atio n  

o f e m p iric a l cu rren t r a t io  curves ( X IX .2 . 2 } .

P reference was g iven  to  re s u lts  where 0 .3 <  R < 0 . 8 .  Where i t  

was p o ss ib le  to  compare re s u lts  from  th e  use o f d iffe re n t c o lle c to r  modes, 

these agreed w ith in  th e  general exp erim en tal s c a tte r . O ccasionally  a
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s l ig h t  but co n sis ten t d ifference was no ticed  between r e s u lts  obtained 

in  modes i and 2; the d ifference v aried  in  magnitude and sense between 

d if fe re n t  runs, and was put down to  v a ria tio n  in  c o lle c to r  contact 

p o te n tia ls  w ith  d if fe re n t gas samples and p ressu res.

I I I .  2. GALIBRATM AND ESTIMATION. OP ERRORS

111.2.1. Results in HU
Measurements were made in  hydrogen at: 294°K, a t  e ig h t p ressures

ranging from 10 to  970 to r r .  The gas was obtained from a  B.O.C. cy lin d er

( s ta te d  p u r ity  99*9$). The re s u l ts  are p lo tte d  in  F ig . I I I .1 and compared
39w ith  the r e s u l ts  of Crompton, E lfo rd , and McIntosh , who claim an

accuracy of + The p re sen t r e s u l ts  are seen to  ex h ib it a  s c a t te r  which

is  around + 5$ over most o f the E/P range, becoming large  below ~ 0 .0 2  
-1  -1V cm to r r  .. However a smooth curve drawn through the experim ental 

p o in ts  would rot deviate from the r e s u l ts  of Crompton e t  a l .  by more th an
jk mmA

fo r  E /P  > 10" V cm to r r "  • This procedure was therefo re  adopted 

w ith  a l l  r e s u l ts  to  obtain  the D/u values used in  the cross sec tio n  

c a lc u la t ions•

111.2 .2 . Em pirical current r a t io  curves

HLixley1 s formula fo r  the current r a t io  R was obtained by so lu tio n  

of the d iffu s io n  equation using  boundary conditions of a  po in t source, 

no w a lls , and ignoring the e ffe c t of the c o lle c to r . I t  has been found 

to  give the best agreement w ith  experiment fo r  d iffu s io n  geom etries where



aoo

•  •a p ir ie a l 
 Huxlay'a f  crania

600 -

Kod* 1 
■ 0.25 cm)

«  200-

Iftode 2
« 0 .5  oa)

0.6 0 .80 0 .2 1 . 0

current r a tio  R

FIO* III.2. E ep iriea l currant ra tio  function* from CĤ  data.
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A-l j, 9h » b  * This conclusion was supported by Francey using  an a lte rn a tiv e

th e o re t ic a l  approach, namely the so lu tio n  of the Boltzmann equation fo r

c e r ta in  forms of the e la s t i c  c ro ss-sec tio n , Warren and P a rk e r^

ascribed  apparent dev ia tions from th is  formula in  th e i r  experiments to

system atic e r ro r s ,  p a r t ic u la r ly  in  apparatus geometry, and ca lcu la ted

th e i r  r e s u l ts  from e x p ir ic a l  r a t io  curves obtained as follow s:

I t  i s  assumed th a t

D/ju = d E /? )  (X II.2 )

and pE/2P = £(e) ( I I I .  3)

This gives

lo g  ( e /2 )  = lo g  ♦ lo g  [ f ( a ) ]  ( i i i . 4 )

The experim ental da ta  i s  p lo tte d  on a graph of R vs E , and

smooth curves a re  drawn through the p o in ts  corresponding to  each 

p re ssu re . For R values a t  su itab le  in te rv a ls  from 0 to  1 , E values are 

taken from the in te rse c tio n s  of the curves w ith each R value and p lo t te d  

on a  new graph of log(jS/2) vs log( E/P) ,  Smooth curves are drawn fo r  each 

R value and f(R) i s  estim ated from the displacement of each curve given 

by equation  ( i l l . i f ) , u sing  th e  requirement th a t log  |f(R}] = 0 fb r  

D /p — l / 2  and D/p  kT/e as E ♦ 0 , A graph of f(R) vs R is  thus obtained  

fb r  the apparatus*.

T his prbcedure was c a rr ie d  out w ith  the p resen t r e s u l ts  in  

methane, fo r  the curren t r a t io s  corresponding to  c o lle c to r  modes 1 and 2, 

F ig , I I I . 2 compares the r e s u lt in g  f(R) curves w ith  those obtained  from
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Huxley* s form ula. The agreement is  good fo r  mode 1 , and although s l ig h t  

dev ia tions occur fo r  mode 2 these are apparently  random and probably a r ise  

from a  shortage of experim ental p o in ts , F or mode 3> in s u f f ic ie n t  da ta  

■was av a ilab le  to  make the process meaningful. To c a lib ra te  the apparatus

fu lly  fo r  a l l  th ree  modes in  th is  way would requ ire  a very la rg e  number

of data  p o in ts ,  p re fe rab ly  in  a gas w ith high D/p (e ,g , the in e r t  gases). 

However in  view of the close correspondence of the em pirical curves 

derived  fo r  methane, and the agreement of the hydrogen r e s u l t s  w ith  

previous d a ta , the use o f Huxley’s formula was considered ju s t i f ie d ,

I I I .  2,3* Sources of e r ro r

( a) Error- in  'S/Pi The uncerta in ty  in  E/P is  almost wholly due to  

the  random e r ro r  of + 0 .2  t o r r  in  p ressure measurement. This 

became important a t  p ressu res  below 10 t o r r  and lim ited  the accuracy

of h igh  'St/V da ta . At low E/P the v a r ia tio n  of i / j i  w ith  E/P i s  small

and e r ro r s  in  E/P were consequently in s ig n if ic a n t.

(b) E rro r  in  cu rren t r a t io  R: Random e rro rs  in  cu rren t
-14measurement were la rg e  when cu rren ts  were < 1 0  A. The d a ta  

logging  procedure gave a s ligh t, improvement, but over much of the 

E/P  range system atic e rro rs  were probably dominant, and could not 

be q u a n tita tiv e ly  assessed  as contact p o te n tia ls  and c o lle c to r  

v a r ia tio n s  probably played a  major ro le .  The o v e ra ll accuracy may 

be roughly assessed  from the s c a t te r  in  experim ental p o in ts  and th e  

d ev ia tio n  of the hydrogen r e s u lts  from those of Crompton e t  a l ,  A 

safe estim ate of accuracy in  the averaged values would be ± 9^  fo r



1

m

$

%

*  a s *

_  VO KMN- Q • VO 
CMov in M a \  i t \



70

D/jt values above ~ 0 .0 4  Y, r is in g  to  nearer + 10$ close to  thermal 

values*

I I I .  3. EXPERIMENTAL RESULTS

111*3*1 • Methane CĤ

B.O.C. p u r if ie d  grade methane w ith  a s ta te d  m in im um  p u rity  of

99$ was pumped b r ie f ly  a t  77 °K and d i s t i l l e d  from an ethanol s lu sh  bath

( i6 i° k ) .  F ig . I I I .  3 shows J)/ji r e s u l ts  a t 294°K and Table 111*1 g ives
43the best average values. The r e s u l ts  of C o ttre l l  and Walker and

Cochran and F o r e s t e r ^  are a lso  shown in  F ig. III . 3 fo r  comparison
45P ollock  discounted the re s u l ts  of Cochran and F o re s te r , as 

when p lo t te d  on a  small sca le  l in e a r  graph the D/ji values d id  not appear 

to  e x trap o la te  to  kP/e a t  E/P = 0. However, as i s  seen from a logarithm ic 

p lo t ,  D/ji approaches kT/e asym ptotically  as E/P 0, and l i t t l e  

d is t in c t io n  can be drawn between any of the  e x is tin g  re s u l ts  on th is  

b a s is . The logarithm ic p lo t  i s  the b e t te r  method of p resen ta tio n  fo r  

a l l  tra n sp o rt c o e ff ic ie n ts  as they generally  vaiy most rap id ly  a t low E/P.

I I I . 3 .2 . Tetradenteromethane CD̂

A sample o f CD  ̂was obtained from Merck, Sharp and Dohme L td . , 

who s ta te d  97$ p u r i ty ,  and tre a te d  as was methane.

The resu lts obtained (F ig , I I I .4) wer© completely anomalous.

From C o ttr e l l  and Walker* s v a lu e s ^ ,  close s im ila r ity  to  methane was
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expected but in  fa c t near-therm al values of D/p were obtained fo r  ~S/P  
-1  -1up to  2 V cm to r r  • The re s u l ts  showed no pressure e f fe c t  between

20 and 160 t o r r  and were reproducible a f te r  evacuating the tank and

adm itting CB  ̂ samples to  check fo r  apparatus m alfunction. An

e lec tro n eg a tiv e  contaminant was th erefo re  suspected, which would give

a  negative ion current w ith  a low D/w value, but as successive

d i s t i l l a t io n s  from ethanol slu sh  and liq u id  argon baths had no e ffe c t

on the r e s u l t s ,  i t  seemed th a t  a i r  could be the only major im purity,

as the m anufacturers an a ly sis  ind icated . H igh-resolution

m ass-spectrom etry f a i le d  to  de tec t any contaminants o ther than Ng, Og,

and HgO -  the l a t t e r  a t  instrum ent background le v e l. A ddition of 10$

air to methane gave le ss  than 20$ reduction in D/p at E/P -  0.3

V cm t o r r  • R esults in  are known to  be sen sitiv e  to  very small
39concentrations of oxygen , but in  th is  case the GD  ̂ values were a 

fa c to r  of te n  lower than r e s u l ts  fo r  pure Og^* Negative ion formation 

would appear to  be a p o ssib le  explanation but fu rth e r  experiments would 

be req u ired  to  determine the nature of the species and the dependence 

on the gases p resen t.

III . 3.3. Ethylene

Ethylene (A ir Products L td .) of s ta te d  p u r ity  99.8$ was pumped 

a t  77°K to  an u ltim a te  pressure of 5 x 10~^ to r r ,  and d i s t i l l e d  from an 

e thano l s lu sh  ba th . (A s im ila r p u r if ic a tio n  procedure was used fo r  the 

rem aining gases in  th is  chap ter.) The co llec ted  cu rren ts  were le s s  than
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a te n th  of those obtained in  methane, which were excep tionally  high.

D/p r e s u l ts  are shown in  F ig. I I I .  5 and best values are given 

in  Table I I I . 1 . At interm ediate E/P the re s u l ts  again f a l l  between 

those of Cochran and F o re s te r 4̂ - and C o ttre l l  and W alker^ . Also shown 

in  F ig . I I I .  5 are the tim e -o f-flig h t r e s u l ts  of Wagner, Davis and H u rs t^

fo r  lo n g itu d in a l d iffu s io n  which have been used to  estim ate mean swarm
. 48energ ies •

I I I .  3.A Cyclopropane Ĉ Ĥ -

Cyclopropane was obtained from a Mathesan cy lin d er, s ta te d

p u r ity  9 9 .9# ,  and p u r if ie d  by low temperature d is t i l la t io n *  The co llec ted
—14cu rren ts  in  th is  gas were low, ra re ly  exceeding 5 x 10 A, and

—2 - imeasurements were not po ssib le  a t  E/P < 4- x  10 V cm to r r  . F ig . I I I .  6 

shows D/p r e s u l ts  and Table I I I .1 gives b es t average values. The only 

o th er d a ta  fo r  cyclopropane is  th a t of Cochran and F o reste r* ^ , and as 

w ith  the  o th e r gases s tu d ied  th e i r  D/p. values are s ig n if ic a n tly  higher
/ —1 —Athan the p resen t r e s u l ts  fo r  E/P < 2 V cm t o r r  . Both s e ts  of re s u l ts  

show a c lose s im ila r i ty  in  the bahaviour of cyclopropane and e tly le n e , 

in  keeping w ith  many of th e i r  chemical p ro p e rtie s .
•

I I I  .3.5* Acetylene CJBk

The sample was from a  Matheson cy lin d er, s ta te d  p u r ity  99 .8&  

and the cu rren ts  obtained were of the same order as those in  e thy lene.

D/p r e s u l ts  are given in  F ig . I I I .  7 and best values in  Table I I I . 1 .

Bb o th er data  i s  av a ilab le  fo r  comparison, the only known
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k9previous measurements in  acetylene "being those "by May dan which

ex h ib it a wide s c a t te r  and do not extend "below E/P = 10 V cm”^torr~^.

The two s e ts  of r e s u l ts  do however appear to  jo in  up smoothly,

H I .  3 .6 . Hydrogen sulphide HJ3

The sample was Matheson C.P. grade, s ta te d  p u r ity  99• The 

gas appeared to  have a very adverse e f fe c t on the photocathode and i t  

was only possib le  to  obtain  measurable curren ts a t low gas p ressures 

( £ 5 0  to r r ) .  Although the cathode recovered almost fu lly  a f te r  evacuation 

and f i l l i n g  w ith  th is  treatm ent d id  not improve the subsequent

em ission in  HgS. I t  was not p ossib le  to  make measurements a t  E/P<  0.1 

V cm”  ̂torr~^ , but as the T)/ji value appears to  be n early  thermal fo r  

E /P<  1 th i s  was o f l i t t l e  importance.

Ho o ther measurements appear to  have been mads in  H^S, but i t  

was n o ticed  th a t  the r e s u l ts  resembled published d a ta ^  fo r  NH^, which 

i s  b e liev ed  to  have a t o t a l  c ro ss-sec tio n  close to  th a t of HgS a t low 

e n e rg ie s ^ .



Pable I I I .1 .  Best experim ental values of D/p. (v )

'E/P
(V cm ^ to r r (294°K)

° 2\
( 298 it)

C3H6
( 298°K) ( 298\ ) (298°K)

8 . 0x10~^ 3 . 05x10“2

1 .0XI0-2 3 .10 2 . 75x10*"2

1.5 3.15 2.80
2 .0 3 .20 2.85 2 . 70x10“ 2

2.5 3.25 2 .90 2 .70

3.0 3.35 2.95 3 . 25x10”2 2 .70

4.0 3.45 3 .00 3.30 2 .70

5.0 3.55 3.05 3.¥> 2.70
6 .0 3.65 3.10 3.50 2.70

8 .0 3.90 3.20 3.65 2 .70

1 . 0x10 ^ 4.15 3.35 3.80 2 .70

1.5 4.85 3 .6 0 4 .1 0 2.75
2 .0 5.6 3.95 4. *»0 2.85 2 . 50x10

2.5 6.3 4.25 4.70 2 .9 0 2 .50

3.0 7.1 4.55 5.0 2.95 2 .50

4.0 8.7 5.2 5.6' 3.05 2.55
5.0 1 . 05x10 ^ 5.7 6 .2 3 .20 2.55
6 .0 1.24 6 .2 6.7 3.35 2 .60

8 .0 1 .6 2 7 .4 7.8 3 .60 2 .7 0

1 . 0x10° 2.05 8.5 8.9 3.90 2.80

1.5 3.35 1.19x10 1 1.14x10~1 4.55 3.05

2 .0 5.0 1.57 1 .40 5.3 3.30

2.5 6 .8 1.67 6 .2 3.55

3 .0 8*6 1.97 7.2 3.85

4.0 1 . 26x 10° 1 . 02x1Cf1 4.50

5.0 1.36 5.3

6 .0 6 .2

8 .0 8 .6

1 .OxTO1 1 . 30x10
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CHATTER IV

ANALYSIS OF SWARM DATA 

The method of analysis described in  th is  chapter was
pi

introduced by F rost and Phelps , and has met w ith success in  the 

treatm ent of very simple molecules. Only a b r ie f  outline w il l  be 

given of the mathematical treatm ent, which has been described in  

d e ta i l  elsewhere, and emphasis w ill  be placed on the computational 

approach used in  th is  research .

IV.1. DERIVATION OF THE BOLTZMANN EQUATION

The cen tra l fea tu re  of the analysis  is  the determ ination of

the  e lec tro n  v e lo c ity  d is tr ib u tio n  by so lu tion  of the Boltzmann

equation , which i s  b a s ic a lly  a statement of a l l  forms of energy gain

and lo ss  by the swarm. The equation appropriate to  a s tead y -s ta te

112swarm was derived by H olstein . The veloc ity  d is tr ib u tio n  function  

f ( v , r , t ) d y  dV is  defined as the f ra c tio n  of e lec trons a t time t  in  an 

element of v e lo c ity -p o s itio n  space d y  dV w ith co-ordinates v , r .  I f  f  

i s  s p a t ia l ly  independent (see IV.5.2) and the sole ex te rn a l force is  a 

f i e ld  E along the z a x is , the re su lt  of expressing f  in  terms of p a r t ia l
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d e riv a tiv e s  is

I f  _ _ Ee /  / -a t]
3 t  m \ +  ̂S t  J co llis io n s  IV.1 /

which is  the appropriate non-explic it form of the Boltzmann 

equation. F u rther, the steady s ta te  assumption im plies 2f/2t = 0.

The second term on the rig h t of ( iV .l)  must be w ritte n  in  te rn s  

of the re levan t c o llis io n  cross-sections, which is  done by considering 

the ra te s  of sca tte rin g  in  and out of dV. For example, the 

p ro b a b ility  of e la s t ic  sca tte rin g  through an angle ijj in to  a so lid  

angle d*a * is

P(v, (jJ ,do3! ,d t)  = Nvd"o( v ,^  )d^f dt, (17.2)

which when m ultip lied  by f  and in tegrated  over to ta l  so lid  

angle gives the ra te  of e la s t ic  sca tte rin g  from d ^  dV. Considering 

thus a l l  s c a tte r in g  in  and out of d ^  dV by e la s t ic  and in e la s tic  

c o l l is io n s ,  equation (IV .l) becomes ( in  p o lar co-ordinates re fe rre d  to  

the z-ax is)

if = -fr-tr +
r  vf

+ Nv“2  ̂ ( l - c o s ^ ) v iff ( e l,v) ,v)d*>f

+ ^  I [f ( e ' v ')  ^  f  » v ') (v '/v )2- f (e ,v )  tf\(  Y  ,v)J cW 

1 (IV.3)

the summation in  the la s t  term including su p e re la s tic  c o llis io n s ,

The above in te g ro -d iffe re n tia l equation has two v ariab les
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(© and v) and is  in trac ta b le  in  th is  form. H o lste in 's  aporoach was 

to  expand f  in  spherical harmonics, re ta in in g  only the f i r s t  two terms:

f ( e ,v )  *  f Q(v) + cosefjCv) ( i v . 4)

This i s  v a lid  provided th a t (a) the d is tr ib u tio n  is  nearly

sp h e rica l (v  >> W-) , and (b) ^  these assumptions w ill be

discussed in  IV.5.2.

This su b s titu tio n  perm its in teg ra tio n  of (lV .3) . Conversion
2is  made to  energy u n its  ( £ = -Jmv ) ,  f(v ) being replaced by f(€. ) such 

th a t the normalised p ro b ab ility  d is tr ib u tio n  of 6. is  given by

1
)d£ = € ^ f ( 6 )afc (IV .5)

A fter inclusion of am add itional term to  allcw  fo r  the thermal 

motion of the gas molecules, the re su ltan t s im plified  Boltzmann equation 

is

0  = ^  • h [ i j j r y  • f  • h [ f 2% < €  > - ( f o+Kr &

+ Y . + e i ) f o ( 6 + -  f 0 ( e  )m qi ( s  >]
i

+ Y _  ^  f o(e  " t o(' 6  )J (IV-S)
i

Here, the f i r s t  term is  associated  w ith the energy input by the

f ie ld ,  the second with the energy exchange through e la s t ic  c o llis io n s ,

and the th ird  and fourth  w ith in e la s tic  and su p ere las tic  energy exchange

resp ec tiv e ly . The nonspherical component f^ is  re la te d  to  f Q by

df (6 )

= -r  -Q j t )  • ~ d e  (IV -7)
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The object 13 to  solve (lV .6) fo r a given se t of c ro ss-sec tio n s 

and use the re su ltin g  ) ^9 calcu la te  transport c o e ffic ien ts .

IV. 2. SOLUTION QF THE BQUPZMAKET EQUATION

The summation terms in  (lV.6) complicate the so lu tion  

considerably and the availab le  numerical methods a l l  involve 

approx imat ions •

IV .2 .1 . Solution neglecting  supe r e la s t  ic  co llis io n s

This i s  the method upon which the present computer program is

based. For convenience, the following normalised variab les are used:

These are su b stitu ted  in  (lV .6 ), om itting the su p ere las tic  

term , giving upon in teg ra tio n

z = € /k T

o o

i}± = (M/2m)(Q±/Q0)

Of = (M/6m)(eE/l#J KT)2 (IV.8)

= (H/2m)(Qi/<Jo)

=  M ) 2 (W . 8 )

Z
Introducing the functions

h(z) = zw/e + z20 

g( z) = z2e/h( z)

(IV.10)

( i v . 1 1 )
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and fa c to ris in g  f  as o z
f Q(z) = v(z)e:xp[- Jg(x)dxj (IV. 12)

o

where v(z) is  a measure of the influence of in e la s t ic

c o llis io n s  on f  , (IV .9 ) becomes
Z*Zi.r t \ f \ *

dv(z) V 1 f F , , ■
** = " Z _   hT3----- e ^ > - J g ( y ) d y

i =1 z
dx (IV .13)

A th ree-po in t Simpson’s ru le in teg ra tion  from z. to  z
J-1 0+1

with step  length  L y ie ld s

= ^ zj+1  ̂ + + Z^s(z^) + s ( z .̂+1)J (IV .14)

x^±( x)v(x)
where .

5T— [xpAxMxJ r r
(*j} = z_ I h(».) expr dx (IV.15)

J
This perm its d irec t ca lcu la tio n  of v (z . .)  and hence f  ( z .  , )  

*  j - V  o '  j - 1 7

fo r  any j  provided th a t v (z , .)  is  known. The ca lcu la tio n  is  therefo re
±

ca rrie d  out by ”backward prolongation” . At high energy, as z2f Q( z) 0 . 

v(z) is  assigned the value 1 , and calcu la tion  proceeds stepwise down 

the energy sca le .

The foregoing approximation is  usefu l when the power absorbed by 

ro ta tio n a l  tra n s itio n s  is  neg lig ib le  compared to  th a t by v ib ra tio n a l 

and/or e lec tro n ic  tra n s it io n s . A very spec ia l case a lso  is  th a t of 

hydrogen a t low tem perature, where su p e re la s tic  c o llis io n s  may be 

d isregarded owing to  the low populations of excited  le v e ls .
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IV .2 .2 . Exact so lu tion

When the superelastic  term is  re tained  in  (lV .6) ,  the 

mathematical treatm ent is  s im ila r, hut as f ( ^  ) now depends on both

^or eac^ in e la s tic  process, the backward 

prolongation technique is  inapplicable. The approach taken by Frost 

and Phelps was to  in teg ra te  the equation and approximate the re su lt  

by a se t of l in e a r  equations, one equation fo r  each energy g rid  po in t 

involving f Q(£  ) a t  eveiy o ther g rid  po in t. However, as the spacing 

of the g rid  p o in ts  must be ra th e r  sm aller than the lowest ro ta tio n a l 

quantum, the number of g rid  po in ts N required fo r  a ty p ica l ca lcu la tio n  

i s  la rg e , and so lu tion  n ecessita te s  Inversion of an N x N m atrix w ith 

ca lcu la tio n  of a l l  the co e ffic ien ts , so the energy range of the 

so lu tio n  is  lim ited  by the f e a s ib i l i ty  of the ca lcu la tion . In  n itrogen , 

fo r  example, F rost and Phelps were able to  use th is  method only fo r  

J)/ji ^  .02 V a t 77°K. As the ro ta tio n a l spacing of simple polyatomic 

molecules is  s im ila r  in  magnitude, so lu tion  by th is  method would 

probably be lim ited  to  subthermal energies, so no attem pts have been 

made a t an exact solu tion  in  the present ana ly sis .

G ib s o n ^  has modified th is  approach by combining backward
t
prolongation  w ith  a Gauss-Seidel i te ra tio n  method of ca lcu la tin g  

f  (£  _€ a t  each £ . This has been found usefu l fo r and but 

in  polyatomic gases a large energy g rid  would s t i l l  be e s s e n tia l ,  and 

each so lu tio n  requ ires several i te ra tio n s  to  produce the desired  

accuracy.
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IV*2.3* Continuous approximation to  ro ta tio n a l ex c ita tio n

At energies well above the ro ta tio n a l thresholds the e f fe c ts  of 

energy exchange with the many leve ls  can be approximated by a sing le  

fu n c tio n . When the se lec tion  iu le  is  = + 1 , the la s t  two terms of

equation (lV .6) become

k X  vj b  +eJ)fo(€ +€j>‘W € + € j> - ^  )
j

^  - 6- J ) f o(e  - 6- P  - e- j )  -  f o(e  )] ^ - 16>

where F_ is  the frac tio n a l population of the J ' t h  lev e l. Providedtf
th a t fo r  the important J  levels  6  j  « 6  , the following Taylor se rie s  

expansions can be made:

f o(£ + <J) -  fo(e '> + ) (W-17)

f  (e -e_j) - fo(£ ) ) (r/.-ie)

I f  the cross-sections are assumed independent of £ over an 

in te rv a l  of the order of 6 Jt (lV.16) reduces to

z « »  Y_ pj [ (j+i)<rJw +1 -  2Bo l i [ e f o(6  >] ( iv -i9)
j

where B is  the ro ta tio n a l constant. Phelps e t a l .  used 
o

24th e o re tic a l  cross-section  forms fo r  the cases of homonuclear and 

heteronuclear27 diatomics to  derive expressions corresponding to  ( XV.19 ) . 

However fo r  the general case i t  is  convenient to  define a net 

ro ta tio n a l  c ross-sec t ion” as
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(IV. 20)J

in  which case (lV .19) becomes

z = 2mo h ^ i  ( i v . 2 1 )

This can now be added to  (lV .6 ), and using the normalised 

param eters

%  = (M/2m )(^ Q 0)

\  * (IV. 22)

the new version of (lV.9) is

^  ^  2 2 K - T
—  < V ° > * - ■» <■»•»>

where the summation includes a l l  in e la s tic  processes o ther than 

ro ta tio n . This equation can be solved in  the same way as (lV .19) ,  

making use of a new function

g '( z )  = (z2e + zzr 9r )/h (z) (IV. 2 0

The o v era ll e ffec t of ro ta tio n  in  th is  approximation i s  to  add 

a co n trib u tio n  to  the e la s t ic  energy-loss term. However, the condition 

€ T «  6  means the approximation is  valued only when D/yj»  kT/e. At 

room tem perature, i t  i s  therefore applicable to  polyatomic gases only 

in  the region of n/P where v ib ra tio n a l e x c ita tio n  is  im portant, and 

thus unique determ ination of highly un likely .
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IV. 3 . COMPUTATIONAL APPRO Ann

IV. 3 .1 . Energy d is tr ib u tio n  calcu la tion

The so lu tion  fo r  f q(€  ) by the method of IV. 2.1, was obtained

by d ire c t ca lcu la tio n  of s (z ) ,  v(z) and hence f Q( z) through equations

(IV.15) , ( IV.14) and (lV .12). For th is  a g rid  of energy po in ts z .

was se le c ted , characterised  by a step-length  L. To optimise the

accuracy of the various in teg ra tio n s , cross-section  values were input

a t  h a lf-s te p  in te rv a ls . To minimise the computer time usage, recursive

ca lcu la tio n s  were used wherever possib le, which elim inated the re p e titio n

involved in  evaluating long se rie s  of overlapping in teg ra ls .

The high-energy s ta r tin g  point fo r  the backward prolongation

can be te s te d  through the requirement th a t a fu rth e r  increase in  the

s ta r t in g  energy should not effect the calculated  tran sp o rt c o e ff ic ie n ts .

A s im ila r  te s t  may be applied to  check th a t the step  length  L is

s u f f ic ie n t ly  sm all, in  addition to  the power-balance check (lV .3 .5 ).

Prelim inary  investiga tions indicated  th a t su ff ic ie n t accuracy re su lted

from an energy range of about 5( eE/^i) and a step  length  around (eD/ji)/lO .

The adoption of 250-step grids in  the program (lV .4 . 1) was thus

considered to  allow su ff ic ie n t margin.

The precise  choice of L is  governed by the requirement th a t zi

be an in te g ra l  m ultiple of L to  permit numerical in teg ra tio n  of (lV .15).

Where more than one in e la s tic  threshold  is  involved, a value L mustmax

be fixed  as the highest common fac to r of the various z^t and the choice

of L i s  then  r e s tr ic te d  to  in te g ra l subdivisions of L^ .
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IV .3 .2 . C alculation of transport coeffic ien ts

This follows d ire c tly  from fQ(z) through the expressions (1.22) 

and ( l . 23) ,  which in  normalised variables become
00

w e r  2 ~\i f  Z ^ o , , .
~ " 3 [m trj NQ J 9 * dz Z (IV .23)op6 o

E = w  1 1  ^  ^ - 2S)

IV.3 .3 . F i t t in g  parameters
pi

F rost and Phelps introduced two combinations of transport 

c o e f f ic ie n ts ,  V and i > k n o w n  as the momentum-transfer and 

energy-exchange c o llis io n  frequencies respectively , to  separate the 

e f fe c ts  of e la s t ic  and in e la s tic  c o llis io n s  on W and D/ji. By comparing 

values of these calcu la ted  from the observed and calcu lated  tran sp o rt 

c o e f f ic ie n ts ,  an in d ica t ion was received of the required changes in  

the t r i a l  cross- sect ions. The co llis io n  frequencies were thus used as 

" f i t t i n g  parameters" in  the cross-section  refinement. Crompton, Gibson 

and M cIntosh^ la te r  proposed two a lte rn a tiv e  parameters which they 

claimed e ffec te d  a b e tte r  e la s t ic / in e la s t ic  separation . These are the 

e ffe c tiv e  momentum-transfer cross-section  (q^) and the e ffec tiv e  

in e la s t ic  c ross-section  (q ? ), defined as

* = ( iv .2 7 )

• = b . M S ^  C .  (XV.28)
^  (D/^)2 L J
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where A and B are constants. Improved separation is  here 

achieved by considering the power input to  e la s tic  co llis io n s  when 

deriv in g  the e ffec tiv e  in e la s tic  cross-sections, whereas the formula 

fo r  assumes th is  to  be neg lig ib le . Within a reasonable range,

the r a t io  of observed to  calculated values of and qt should represent 

the r a t io  of ac tual to  assumed and ^ r e s p e c t i v e l y ,  averaged over 

the energy d is tr ib u tio n .

IV. 3 .4 . Adjustments to  cross-sections

At each E/P considered, comparison of the observed and ca lcu la ted  

f i t t i n g  param eters y ie ld s  adjustment factor's and Ch applicable to  the 

momentum-transfer and to ta l  in e la s tic  cross-sections respective ly , v iz .

°m = obs) /  calc)

Ci  = ^ s) / ^ ( ob1 c) (IV. 29)

These cannot be applied over the en tire  swarm energy range, as 

the l a t t e r  w ill  normally overlap with the energy range of swarms a t 

o th e r E/P values fo r  which d iffe ren t adjustment fac to rs  are  obtained. 

In s te a d , the fac to rs  are applied a t the points on the energy scale  where 

the c ro ss-sec tio n s have g reatest influence on the energy d is tr ib u tio n .

For each process, th is  is  the point of maximum power absorption; in  

the case of e la s t ic  co llis io n s , the power absorbed is  p roportional to  

£ ^ f ( 6  )q (e. ) ,  and fo r  an in e la s tic  process is  p roportional to  

£  ^  f( ^  )q .(£  ) . The energies a t which these functions maximise are
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th e re fo re  the po in ts where the adjustment fac to rs should be applied  to  

the  cross-sections# Where several in e la s tic  processes occur, the 

adjustm ent fa c to r  applies prim arily to  that process causing the g rea tes t 

power absorp tion , th is  dominant cross-section being tha t fo r which the 

maximum of ^ i ^ f (€ r )Q i (€  ) is  g rea test.

I f  ca lcu la tions are made at a large number of E/P values, there 

i s  obtained fo r  each cross-section a set of adjustment fac to rs  re levan t 

a t  d if fe re n t energ ies, which may then be in terpo la ted  to  give the 

adjustm ent as a continuous function of energy. This method was used fo r  

re f in in g  the cross-sections between successive t r i a l s ,  and was found 

to  be s a tis fa c to ry , usually  leading to  a fa ir ly  rap id  agreement w ith 

experiment.

IV .3 .5 . Power balance
i_

I f  (IV .6) i s  m ultip lied  by ( 2/m) 2 and in tegrated  twice with 

respect to  £  , the re su lt  (neglecting su p ere las tic  co llis io n s) is

df (6 )
eEW = 2m

M

^ 1 
~2 ' 
m )m f  ( £  )+kavo d£ dfe + f ] 2 V" € .ml L—  i £ f  ( 6  )NQ±( 6  )d 6

(IV .30)

The term on the l e f t  i s  the power per e lectron  input by the 

f i e ld  while the f i r s t  and second terms on the r ig h t are resp ec tiv e ly  

the net power losses to  e la s t ic  and in e la s tic  c o llis io n s . The balance 

provides a check on the accuracy of the computation, as any discrepancy 

found when the terms are evaluated is  lik e ly  to  have a r ise n  from



87

cumulative e rro rs  in  the many numerical in teg ra tions and d if fe re n tia tio n s .

ca lcu la ted  and used as a rough ind ication  of the accuracy. Unacceptably 

high values were normally remedied by reducing the s tep -leng th  of the 

energy g rid .

I7 .3 .6 .  Energy lim it

P ra c tic a l considerations se t an upper lim it on the energy range 

covered, thereby excluding a c e rta in  frac tio n  of the swarm from the 

ca lcu la tio n s . For accuracy's sake i t  was considered u n sa tis fac to ry  

fo r  th is  remainder R to  exceed so an estim ate of R was requ ired  in  

each case. This was in fe rred  from the corresponding Maxwellian 

d is tr ib u tio n  ( i . e .  th a t producing the same T)/y) which in  normalised form

where K = (eD/p)/kT. R is  obtained by in teg ra tin g  <f>{ z) from 

the upper energy lim it z to  in f in i ty ,  which i s  possible i f  the e r ro r  

function  is  approximated as

a.

(v a lid  in  the high-energy t a i l  of the d is tr ib u tio n ) . The 

re su ltin g  expression fo r  the remainder is

At each E/P considered, the percentage e rro r  in  the power balance was

i s

( IV .  31)

( i v .32)

2 exp(- z j t )  J (  Zj/K) 2 + zn/ K) 2J (TV. 3 3 )
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IV. 4. CROSS-SECT ION EBFINBMENT FRffiRAM

The labour involved in  making successive manual adjustm ents to  

the input c ro ss-sec tio n s  puts a p ra c tic a l  lim it on the number of f i t t i n g  

a ttem pts. However the establishm ent of a f a i r ly  mechanical adjustment 

ro u tin e  as described in  IV.3 .4  stim ulated the development of an 

autom atic c ro ss-sec tio n  refinement program to  carry  out the successive 

ca lc u la tio n s  and adjustm ents w ithin the computing ro u tin e .

IV .4*1 • Outline o f program

Pig . IV. 1. i l lu s t r a te s  the main program steps. The s ta r t in g  

c ro ss-sec tio n s  are input (o r  generated by su ita b le  functions) a t  each 

of the energy g rid -p o in ts . The l a t t e r  may cover several energy ranges, 

each of 230 equal s teps from zero energy, the cross-sections being 

tab u la ted  a t h a lf -s te p  in te rv a ls . The f i r s t  500 c ro ss-sec tio n  values 

a f t e r  the zero-energy value therefo re  co n s titu te  the lowest energy 

range; each succeeding higher range extends to  twice the energy of the 

preceding range, the f i r s t  250 po in ts being provided by a lte rn a te  po in ts 

from the l a t t e r .  P r io r  to  the Boltzmann equation so lu tion  procedure the 

c ro ss -sec tio n  values corresponding to  ihe appropriate energy range are 

tra n s fe rre d  to  an array  which holds the working energy g rid . The choice 

of range i s  co n tro lled  by the program; working through the E/F values in  

ascending o rder, the next higher range i s  autom atically  se lec ted  

whenever the remainder R exceeds on the lower range.

At each E/F value fo r  which experim ental data i s  input



89

( ‘ty p ica lly  15~^5 po in ts) , f  ( £ ) is  obtained and the associa ted
o

ca lcu la tio n s  described in  IV.3 are performed. Parameters of in te re s t 

are ou tput, these being the calcu lated  tran sp o rt c o e ffic ien ts  and 

percentage dev ia tion  from experiment, f i t t i n g  param eters, adjustment 

fa c to rs  along w ith  the energies of peak s e n s i t iv i ty  at which they are 

ap p licab le , estim ates of e r ro r  and remainder, and the energy range used. 

The adjustm ent fac to rs  axe sto red  and the ca lcu la tio n  repeated fo r each 

desired  value of E/P. The adjustment fac to rs  are in te rp o la ted  over the 

whole energy range and used to  re fin e  the cro ss-sec tio n s, when requ ired . 

The e n tire  process may be repeated any number of times to  achieve the 

desired  concordance with experiment.

IV .14-.2 . Program te s tin g

The backward prolongation procedure was te s te d  by the use of 

two sp e c ia l a n a ly tic a l forms of the e la s t ic  c ro ss-sec tio n :

The computed d is tr ib u tio n s  agreed close ly  w ith the above 

expressions.

The autom atic refinement program was te s te d  on the data  fo r  

para-hydrogen a t  77°K, which was the subject of s im ila r  ca lcu la tio n s

(Maxwell d is tr ib u tio n )

( Druyve s t  eyn d is t  r ib u t ion)
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"by Crompton, Gibson and McIntosh^. In th is  case the only low-energy 

processes o f importance are J = 0  2  ro ta tio n a l ex c ita tio n  (threshold

.0439 eV) and v = 0 1 v ibrational ex c ita tio n  (threshold  .51 eV).

S tarting  cro ss-sec tio n s were chosen which were lin ea r  functions of  

energy and bore poor resemblance to the real s itu a tio n . The program 

was operated w ith nine E/P values from .015 to  7 V cm ^torr  ̂ , using  

the data o f Crompton et a l . . Although in i t ia l ly  the d iscrepancies in  

transport c o e ff ic ie n ts  were 50^ or more, a fter  three or four refinements 

they had been reduced to  < 1 0fo. A fter about 1 0  refinements agreement 

was to  b e tter  than 2% and the derived cro ss-sec tio n s  were almost id en tica l  

to  those o f Crompton et a l .  between .01 and 1 eV, except for the 

ro ta tio n a l c ro ss-sec tio n  which is  not uniquely determinable above 

about 0 . 4  eV due to  domination by Q^.

IV.4.3* Use o f the program

The program performed extremely w e ll fo r  p-Hg at 77°K, "but th is  

i s  a very sp ec ia l case as i s  the only molecule which e x is ts  almost 

e n t ir e ly  in  the ground rotation al s ta te  at th is  temperature. This

combined w ith the large threshold energy d ifference between and Qv

means that th ese cro ss-sec t ions can be obtained w ith a high degree of 

uniqueness at le a s t  to  w ithin a few tim es th e ir  respective threshold  

en erg ies .

In the majority o f cases, however, quite apart from the 

com plications when many rota tion a l le v e ls  are involved, the various
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v ib ra tio n a l modes are close in  energy. This causes lo ss  of* uniqueness, 

and agreement w ith experiment may re su lt from varying the 

cro ss-sec tio n s  in  many d iffe ren t ways. When the power absorptions 

by d if fe re n t processes are sim ilar in  magnitude, the policy  of 

a d ju s tin g  only the "dominant" cross-sec tion  is  no longer ju s t i f ie d .

This s itu a tio n  was encountered, fo r  example, in  methane (V .l) ,  where 

re so r t  had to  be made to  a d iffe ren t po licy , namely th a t of using only 

one in e la s t ic  c ro ss-sec tio n  as a variab le and f ix in g  the others re la t iv e  

to  i t .

Although a version of the program incorporating the continuous

approximation to  ro ta tio n a l exc ita tio n  has been used fo r H^S (V.5 ) , the

lack  of uniqueness negates any advantage to  be gained by computer

refinem ent of the net ro ta tio n a l cross-section  Q*.r
The program elim inates most of the labour in  adjusting  

c ro ss-sec tio n s  but does not a lto g eth er elim inate the need fo r  human 

in te rfe re n c e . Apart from the uniqueness problem, another s itu a tio n  

c a l l in g  fo r  in terven tion  a rise s  when the shortcomings of the adjustment 

f a c to r  energy scaling  and in te rp o la tio n  procedures cause spurious 

"bumps" in  the c ross-sec tions. These generally a r ise  in  the i n i t i a l  

s tages where d ra s tic  adjustments occur and tend to  remain th e re a f te r  

throughout many refinement stages.
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IV .5. ACCURACY OF THE ANALYSIS.

IV .5 .1 . Uniqueness of derived c ro ss-sec tio n s

Only in  sp e c ia l cases ( e .g .  th a t of above) does the

uniqueness of the derived c ro ss -se c tio n s  u ltim a te ly  depend on the 

accuracy of the experim ental measurements. This occurs when over a 

range of energy which i s  appreciable in  terms of swarm w idth, only 

one in e la s t ic  process i s  s ig n if ic a n t .  I t  i s  fundamentally im possible 

to  determine uniquely severa l microscopic p ro p e rtie s  from observation  

of only two macroscopic ones. On the o ther hand, by v ir tu e  of the 

s e p a ra b ili ty  of in e la s t ic  and e la s t i c  e f fe c ts  in  the  f i t t i n g  param eters, 

the  momentum-transfer c ro s s -s e c tio n  can be determined w ith  a high 

degree of uniqueness, p a r t ic u la r ly  when ca lc u la tio n s  are made over a 

wide range of S/P.

I f  simple assumptions are made regard ing  the shapes or

in te r r e la t io n s  of in e la s t ic  c ro ss -se c tio n s , the  s itu a t io n  may be

considerably  improved, but u su a lly  th e re  i s  l i t t l e  ground fo r  such

assum ptions. More p a r t ic u la r ly ,  where d ire c t  experim ental evidence

(e .g .  from beam stu d ies) is  a v a ila b le , th i s  can be combined w ith  swarm

an aly sis  to  provide good es tim ates  of the abso lu te  magnitudes, and

po ssib ly  the  energy sca le  c a lib ra tio n , of the  c ro ss-sec tio n s  concerned.
114As an example of what can be tack led , Myers has analysed swarm data  

fo r  oxygen in  terms o f nine in e la s t ic  p ro cesses, using a combination of 

beam evidenoe, attachm ent c o e f f ic ie n ts ,  and simple assumptions about 

c ro ss -se c tio n  shapes.
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IV .5 .2 . Approximations involved in  the  analysis

The accuracy of the Boltzmann equation i t s e l f  as given by

( IV .6) hinges on the  approximations made in  the d e riv a tio n . F i r s t ly ,

the  assumption o f s p a tia l  independence of the v e lo c ity  d is tr ib u tio n

is  tantamount to  ignoring the  d e n s ity  g rad ien ts  which must e x is t  in  a

r e a l  swarm experiment. A position-dependent d is tr ib u tio n  in  tu rn  means

th a t  the swarm cannot be ch a rac te rised  by a s in g le  d iffu s io n  c o e ff ic ie n t
1 1 7o r  m obility . P arker s tud ied  the e f fe c ts  o f th i s  approximation on the 

Townsend-Huxley D/p experim ent, by deriv ing  the  Boltzmann equation fo r  

a s p a tia l ly  dependent d is t r ib u tio n  and so lving fo r  sp ec ia l forms of 

e l a s t i c  -,cross-sections only. He concluded th a t  the e f fe c t on the 

measured D/p should only be s ig n if ic a n t when the swarm width i s  la rg e  

re la t iv e  to  the d r i f t  d is tan ce . The geometry of the p resent apparatus 

should lead  to  a n eg lig ib le  e f fe c t  i . e .  the measured D/p should not 

d i f f e r  s ig n if ic a n tly  from th a t  which would r e s u l t  from a  s p a t ia l ly  

uniform d is tr ib u tio n . The d r i f t  v e lo c ity  should s im ila r ly  be 

unaffec ted  since a t the  oentre of a  pulse a pseudo-uniform cond ition  

e x is ts  (ze ro  d en s ity  g rad ien t); however, in  considering  the  d iffu s io n  

of the p u lse , the  s p a t ia l  dependence of the v e lo c ity  d is tr ib u tio n  i s  

of paramount importance and leads to  the observation  of a d if fe re n t 

d iffu s io n  c o e f f ic ie n t .

The re te n tio n  o f only two term s in  the sp h erica l expansion 

o f the  d is tr ib u tio n  fu n c tio n  i s  a c e n tra l  fea tu re  of the  foregoing
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a n a ly s is , and depends on two im portant assumptions. The f i r s t ,  th a t

the v e lo c ity  v a r ia tio n  A v  between c o ll is io n s  i s  sm all compared to  v

( i . e .  mean cos0 i s  sm a ll) , i s  u n lik e ly  to  cause g rea t e r ro r  a t low

energ ies; however fo r  high d r i f t  v e lo c i t ie s  i t  may lead  to  an

underestim ate of W, and a corresponding overestim ate o f D/p. The

second assumption i s  th a t  the e l a s t i c  c ro ss-sec tio n  i s  much g re a te r  than

the t o t a l  in e la s t ic  c ro ss -sec tio n . This i s  r e a l ly  an a p o s te r io r i

co n d itio n , deduced by considering h igher order terms in  the expansion.

In  the  p resen t work, th i s  condition  i s  not s t r i c t l y  met, as in  methane

fo r  example, where th e  in e la s t ic  c ro ss -sec tio n s  derived (V. l )  are in

p laces  > 50fo o f the  momentum-transfer c ro ss -sec tio n . The e ffe c t o f the

approximation i s  not easy to  a sse ss , but probably again r e s u l ts  in  an

underestim ate of W, due to  neglect o f h igher order harmonics which

r e f le c t  the  high an iso tropy  caused by the lo ss  of random motion in

in e la s t ic  c o l l is io n s .  The e f fe c t  o f th i s  on the p resen t ana lysis  could

be to  reduce Q and increase Q. over the  tru e  va lues. This might cause m i
poor sep ara tio n  o f e l a s t i c  and in e la s t ic  e f f e c ts ,  but in  fa c t when the  

second was in troduced in  methane, no change in  Qm around th e  minimum 

was req u ired  in  sp ite  o f a 3*$ reduction  in  in  th i s  region.

C av a lle r i and S esta  derived a form of the  Boltzmann equation 

which obviated  the above assum ptions, by considering the " i n i t i a l ” 

d is t r ib u t io n  function  f  ( v ) rep resen tin g  th e  immediate p o s t-c o ll is io n  

v e lo c i t ie s .  They obtained  a rigorous expression  fo r  th e  d r i f t  v e lo c ity
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Wq of electrons having initial velocity vq, allowing the overall drift

v e lo c ity  to  he obtained  in  terms of ^0( v0)« However w ith  the exception

of the sp ec ia l case of e la s t i c  c o ll is io n s  only and constant f l ig h t  
116tim es , no general so lu tio n  of th i s  Boltzmann equation has so f a r  

been published .
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CHAPTER V 

RESULTS OF ANA3ZSI3 AND DISCUSSION!

V.1. METHANE

V.1 . 1 . Experim ental Data

The av a ilab le  tra n sp o rt c o e ff ic ie n t d a ta  governs th e  choice of
♦ *

the e f fe c tiv e  c ro ss -sec tio n s  and q^ used as f i t t i n g  param eters in  

the Boltzmann equation a n a ly s is . The p resen t D/p r e s u l ts  (Table I I I . 1 ) 

cover this range .008 ^  E/P ^  1 .5  V cm to r r  and merge w ell a t the 

upper l im it  w ith  Walker’s v a lu e s ^  which were used fo r  1 . 5 ^  E/P $  6 .

No d a ta  e x is ts  fo r  h igher E/P so the  p resen t an a ly sis  was r e s t r ic te d  

to  swarms fo r  which D/p < 2 V. The b es t d r i f t  v e lo c ity  d a ta  in  th is

range was taken to  be th a t  o f P o l lo c k ^ ,  ex trap o la ted  f o r  H/P < 0 . 5
23 2|_7

using  the r e s u l ts  of Bowman and Gordon and Wagner e t a l .  as a  guide

to  merge a t E/P 2  0 .2 5  w ith  the values p red ic ted  by the d w e ll-d r if t
29 ftherm al m obility  measurements of Nelson and Davies \ ji  = 9.97 

cm̂ V ^ps  ̂ t o r r  a t 300°K). (This might appear to  suggest a thermal 

swarm fo r  < •025» i *1 c o n trad ic tio n  to  th e  D/p measurements; however 

the tendency o f p  to  decrease as the  swarm energy r is e s  i s  probably 

being counteracted  by the e f fe c t  of in e la s t ic  c o llis io n s  g iving an 

in c reasin g ly  asymmetric energy d is t r ib u tio n , thus tending to  increase  p . )
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V .1 .2 . Prelim inary work

Before the present D/p. data became a v a ila b le , ca lcu la tio n s  were 

performed to  check the r e su lts  o f Pollock^**^ using a s im ilar  s e t  o f  

cro ss-sec tio n s  ( i . e .  one v ib ra tion a l e x c ita t io n  at 0.162 eV th resh o ld ). 

The r e s u lt s  agreed in  that the low D/p values o f C o ttr e ll and Walker 

were in co n sis ten t w ith  c ro ss-se c tio n s  derived from swarms o f mean energy 

around 0.1 to  0 .2  eV. This could have been due to  erroneous D/p data  

but could a lso  conceivably have been explained by large ro ta tio n a l 

e x c ita t io n  c ro ss-sec tio n s  which were not considered in  the c a lcu la tio n s .

However, the la t t e r  would have to  be extremely large to  account fo r  the
24 / -9  3 -1 xobserved energy exchange c o l l i s io n  frequency (,> 10 cm sec j m  a

27near-therm al swarm -  about 10 tim es that in  CO and 100 tim es th at in

In co n tra st, the present D/p r e su lts  give V values o f the 

order p red icted  by P ollock  fo r  v ib ra tion a l lo s s e s  alone. In view o f the 

d i f f i c u l t i e s  involved in  accounting fo r  ro ta tio n a l tr a n s it io n s , i t  was 

decided to  ignore these in  the cro ss -sec tio n  a n a ly s is , and use the 

Boltzmann equation so lu tio n  given in  chapter IV fo r  the case o f  

n e g lig ib le  su p e r e la stic  c o l l is io n s .

V .1 .3 .  Choice o f c ro ss -sec tio n s

Methane has nine normal v ib ra tio n a l modes, reducing by
103degeneracy to  four fundamental frequencies :
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1306 cnf1 (0.162 eV) asymmetric bend

1526 cm 1 (0.189 eV) symmetric bend

2914 cm 1 (0.361 eV) symmetric s tr e tc h

*3 3020 cm"1 (0 .374  eV) asymmetric s tre tc h

The th resh o ld  energy d iffe ren ces  between and i)^, and 

between and are c le a r ly  so small in  terms of swarm energy 

d is tr ib u tio n  widths th a t the e f fe c ts  of e x c ita tio n  of these modes w ill  

not be separable in  the c ro ss -sec tio n  a n a ly s is . This was confirmed by 

successive ca lc u la tio n s  using  re sp ec tiv e ly  the i a n d  e x c ita tio n s  

alone, r e s u l t in g  in  almost id e n tic a l  s e ts  of c ro ss-sec tio n s  (v ib ra tio n a l 

e x c ita tio n  and momentum-transfer) both p re d ic tin g  tra n sp o rt c o e ff ic ie n ts  

to  w ith in  a few percent of the observed over most of the E/P range

a v a ila b le . The c ro ss -sec tio n s  derived fo r  the *1 process ( s e t  l )  are4
shown by the broken curve in  P ig . V.1 . ,  and the p red ic ted  tra n sp o rt

c o e f f ic ie n ts  in  P ig . V.2.

An attem pt was made to  f i t  a  v ib ra tio n a l c ro ss -sec tio n  fo r  the

mode ( 0.361 eV) a lone, but th i s  d id  not succeed in  matching the
—1 “1observed d a ta  f o r  E}/P ^  2 V cm to r r  • Attempts to  ad ju st the

c ro ss -sec tio n s  to  improve the f i t  produced a  p e r s is te n t ly  in creasin g

sharp peak in  the  v ib ra tio n a l c ro ss -se c tio n  (Qv) a t  th resh o ld . This
45s i tu a t io n  i s  s im ila r  to  th a t  encountered by P ollock  in  try in g  to  f i t  

the c ro ss -se c tio n  to  the e a r l i e r  D/p d a ta , and i s  symptomatic of 

n eg lec t of low er-energy in e la s t ic  p rocesses. At b e s t ,  r e s u l ts  of these  

c a lcu la tio n s  gave W values 20-30$ low and D/p 60-70$ high fo r  E/P ^  0 .2
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-1  -1V cm to r r  . This i s  f a r  beyond expected experim ental e rro rs  so i t

seems th a t one o r both of the and modes must be involved to^ 4
a s ig n if ic a n t degree.

This is  the only separa tion  of the e ffe c ts  of d if f e re n t  v ib ra tio n a l

modes which can be made w ithout assumption of the c ro ss -sec tio n  energy

dependence fo r  which th e re  are as y e t no th e o re t ic a l  p red ic tio n s  or

experim ental evidence. I t  i s  likew ise im possible to  sep ara te  double

(v  = 0 2) e x c ita tio n  of the ^  ^  m0(̂ es ^rom sin g le  e x c ita tio n  of

and Pollock chose to  consider only the u. e x c ita tio n  on the1 3  4
b as is  of the sharp peak in  the observed f ra c tio n a l  energy lo ss  per 

c o l l is io n  (X ) a t a mean swarm energy of 0.15 eV; but the subsequent 

f a l l  in  X w ith  energy i s  almost c e r ta in ly  due to  the  increasing  e la s t i c  

c ro ss -sec tio n  (not to  a dim inishing v ib ra tio n a l  con tribu tion ) as 

supported by the derived  c ro ss -sec tio n s  (F ig . V .1 .) . In  f a c t ,  an most 

th eo rie s  of non-resonant v ib ra tio n a l e x c i ta t io n  po in t to  a  decreasing 

c ro ss -se c tio n  a t  energ ies much above th re sh o ld , the continuing high 

magnitude of the c ro ss -se c tio n  derived fo r  th e  process suggests 

th a t  h igher-energy processes a re  qu ite  probably co n trib u tin g .

On the b as is  of the arguments presented  in  1 .4 .4 . i t  appeared 

reasonable to  assume predominant e x c ita t io n  of the  two in fra red  ac tiv e  

modes and i) y  This im plies domination by the dipole in te ra c tio n , 

whereas 1*4, e x c ita tio n  would occur through a  quadrupole in te ra c tio n , and 

13 ( f o r  which the lowest order moment is  an octupole) mainly through 

p o la r is a tio n , ( i t  should be noted th a t  the mode is  s trong ly  Raman
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a c tiv e , in d ica tin g  a high dependence of the  p o la r is a b i l i ty  on the 

normal co -o rd in a te , so e x c ita tio n  should occur but through a sh o rte r  

range fo rce , g iv ing a sm aller c ro ss -sec tio n  than  fo r  the d ip o le -ac tiv e  

modes.)

V .1.4* Derived c ro ss-sec tio n s

The in e la s t ic  th resh o ld s used fo r  the  f in a l  s e t  of c ro ss-sec tio n s

were re sp e c tiv e ly  0.162 and 0.378 eV, the l a t t e r  being put ^ 1 $  above the

a c tu a l th resho ld  fo r  computational convenience. So lu tion  of the

Boltzmann equation was ca rrie d  out over the range 0.04 ^  E/P ^  6 
-1  -1V cm to r r  , which req u ired  th ree  energy ranges, the lowest having a

step-length of 6.75 meV and the highest extending to 6.75 eV.

I t  was found possib le  to  vary the r e la t iv e  magnitudes of the two

v ib ra tio n a l c ro ss -sec tio n s  qu ite  considerably , while s t i l l  ob ta in ing

good correspondence w ith  experim ent, the only p re re q u is ite  being a f a i r l y

steep  r is e  in  Qv(v> )̂ from th resh o ld  to  a  maximum of not le s s  than  
—16 24 x 1 0  cm . To overcome th is  absence of uniqueness some assumptions 

must be made about the shape and /or re la t iv e  magnitude of the 

c ro ss -se c tio n s . I t  was th e re fo re  decided to  make Qy( ^ )  and Qy( ^ )  

id e n tic a l  except fo r  a  displacement along the energy sc a le , v iz .

Q3( £  - h u 3) = Q4( e  - h » 4 ) (V.1)

Although Takayanagi's c ro ss -sec tio n  re su ltin g  from an 

e lec tro n -d ip o le  in te ra c tio n  depends ra th e r  le s s  simply on ( £ -  hi>), 

in  the high-energy lim it  the p resen t c ro ss -sec tio n s  become independent
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of as does the th e o re t ic a l  expression.

The f in a l  derived se t o f c ro ss-sec tio n s  ( s e t  2) i s  shown in

F ig . V.1 and values given in  Table V.1. The momentum-transfer

c ro ss-sec tio n  (Qm) °an be seen to  be v ir tu a l ly  independent of whether

one o r two v ib ra tio n a l processes are  included, confirm ing good

sep ara tio n  of e l a s t i c  and in e la s t ic  e f fe c ts .  The Qv 's  reach maxima 
“17 2of ~ 6  x 10 cm a t around 0.1 eV above th re sh o ld , dim inishing to

about h a lf  th is  value a t 0 .3  eV above th resho ld . Qm in  th is  reg ion

e x h ib its  a minimum a t  ^ 0 .2 5  eV, somewhat deeper and a t lower energy

than the minimum in  the to t a l  c ro ss -se c tio n  (Q .̂) measured by Ramsauer

experiments (F ig . V .l ) .  As 'd i r e c t 1 e x c ita tio n  lead s to  forward-peaked 
92s c a tte r in g  , Q should be le s s  than Q. a t  these energ ies. (A s im ila r  in v

97
s i tu a t io n  has been observed in  GOg .)

The tra n sp o rt c o e ff ic ie n ts  W and D/ji ca lcu la ted  from these 

c ro ss -sec tio n s  are given in  Table V.2 and compared w ith  experim ental 

r e s u l ts  in  F ig . V.2. The computational accuracy as in d ica ted  by the 

power balance (lV.3*5») i s  everywhere w ith in  + 2$, and w ith in  J  2$ fo r  

E/P > 0 .3 . The agreement w ith  experiment is  expressed by the tab u la ted  

r a t io  of observed to  c a lc u la te d  values fo r  the e ffe c tiv e  momentum-transfer 

and in e la s t ic  c ro ss-sec tio n s  and qj^, which are i l l u s t r a t e d  in  F ig . V.3« 

Correspondence is  mostly w ith in  t  5%, no worse th a t  the experim ental 

u n c e rta in ty , except fo r  E/P < 0 .2  (D/)i < .06 V) where th e re  i s  a 

s ig n if ic a n t discrepancy due to  the p red ic ted  W values being somewhat 

h igher than experim ental (F ig . V .2).
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PIG. V.3. E ffeo tiv a  c ro ss -sec tio n s  fo r  CH

D/^  ,n - 1 ,rPi------ 1—t—r~i f | ------- 1—r r  n  i n ) — r

o s l c u l & t a d  ( S a t  1 )  
" ( S e t  2 )

**
e x p e r i m e n t a l

2 .0 ,1-1 1010 10 10

E/P (V cnf^ torr*"1 )

♦* Experimental values are c a lcu la ted  from tra n sp o rt data  
used in  the c ro ss -se c tio n  an a ly sis  (se c tio n  V.2)
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P ig . V .4 i l l u s t r a t e s  th e  ca lcu la ted  e le c tro n  energy d is t r ib u t io n
/  -1  -1in  methane a t  E/P = 0 .4  V cm t o r r  • The unusual ’bump1 in  P o llo c k 's

45ca lcu la ted  d is tr ib u tio n  does not appear h ere , since th is  phenomenon - 

re su lte d  from attem pting to  fo rce  agreement w ith  the D/p values of 

C o t t r e l l  and Walker by giving the c ro ss -se c tio n  a sharp peak a t  

th resho ld . Compared w ith a  Maxwell d is tr ib u tio n , th ere  i s  a reduction  

in  f (€  ) a t  high energies and an increase a t  low, rep resen tin g  the 

e f fe c t  o f in e la s t ic  c o ll is io n s .

V .1.5. Low-energy behaviour

The derived c ro ss-sec tio n s  give qu ite  good agreement w ith  D/p

r e s u l ts  a t  low energ ies but the low observed values of W suggest a  much

h igher Qm is  req u ired . The derived Qm is  already r is in g  s teep ly  a t  low

energ ies and i t  does not seem p o ssib le  to  increase th i s  s u f f ic ie n t ly  to

give correspondence a t  low E/P w ithout adversely  a f fe c tin g  the agreement

a t h igher E/P. Neglect of ro ta tio n a l  e x c ita tio n  could not explain  t h i s

e f fe c t  as the discrepancy in  q^ suggests th a t  in e la s t ic  lo sse s  are in

fa c t lower than those p o s tu la ted . I n e la s t ic  c o ll is io n s  in  th is  energy

reg ion  would have l i t t l e  e f fe c t  on the  energy d is tr ib u tio n  which i s  c lose

to  therm al, and would only influence the d r i f t  v e lo c ity  through the

ad d itiv e  co n trib u tio n  to  Q .m
I t  would be d i f f i c u l t  to  include ro ta tio n a l  tra n s i t io n s  in  the 

methane computation. The low ro ta tio n a l constant (B = 6 .5  x 10 ^  eV )^^  

causes population  of many le v e ls  a t room tem perature, the maximum 

population  occurring  a t  J  = 6 .  Exact so lu tio n  of the ^oltzmann
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equation, tak ing  su p e re la s tic  c o llis io n s  in to  account, w ill  only be

p rac ticab le  fo r  T < 100°K, and even then w i l l  be lim ited  to  energies

below about .02 eV • The continuous approximation ( lV .2 .3 .)  i s  only

v a lid  fo r  D/p kT/e and req u ires  some assumptions concerning the

c ro ss-sec tio n  dependence on energy and J  i f  the re su lts  are to  be

meaningful. I t  would be fe a s ib le  to  apply th is  approximation fo r

E/P £  0 .2  V cm to r r  . However, owing to  the  low v ib ra tio n a l

th resho ld  in  fo r  D/p > >  kT/e the  ro ta tio n a l  energy lo sses  are
27l ik e ly  to  be swamped by v ib ra tio n a l lo sse s  as in  the  case of CÔ

This is  ev ident from the power-balance equation (lV .30). The power 

lo ss  to  an e x c ita tio n  process w ith  th resh o ld  is
oO
r±

P. = W(2e/m)2 € . (V.2)

For ) = 0 ,  and i f  Q^(6. ) i s  approximated by a

constan t Q. fo r  £ > € . ,  (V.2) becomes

)dfc (v.3)

*L
Hence the r a t io  of the power lo sses  fo r  two processes w ith

th resho lds and ^  is  given by
oO

P2 ^2Q2 f( fc )de
ex

(V.4)

Approximating f(fe ) by the Maxwell d is tr ib u tio n

f(fe ) = 2 if 2(eD /^)”3 /2ex p £ -€ /(eD /u )] (V.5)
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th i s  becomes

P, £ ,Q ,  O  .  + e V /p )  r
~2 -  2 + eD/^T exP L( S  - ^ ) / ( ^ / m ) J  (V.6)

Taking £«  = 0.162 eV ( i> ex c ita tio n )  and €  . = .009 eV 
^ q- 1

( j  = 6 * 7  ro ta tio n a l  e x c i ta t io n ) ,  (V.6) gives a t E/P = 0.2 (th e  

minimum used to  f ix  Q )V'

Pn/P 2 -  1 .4 Q /Q 2

and a t  E/P = 0 . 5  (mean energy /V ^ ^

P / P 2 ^  0.1 q/% 2

where here i s  equal to  m u ltip lied  by the f ra c t io n a l

population  Fg. I f  the ro ta tio n a l  and v ib ra tio n a l c ro ss-sec tio n s  are  of 

s im ila r  magnitudes then the co n trib u tio n  of any one ro ta tio n a l process 

to  the power lo s s  might appear from the above to  be qu ite  considerab le . 

However fo r  near*-thermal T>/p the  ro ta tio n a l  power lo ss  i s  la rg e ly

cancelled  by the su p e re la s tic  power gain . In  fa c t  the  Klein-Rosseland
2L . r e la t io n  gives

^ j +i ^ £ ) *  « p( - < v -7)J

which fo r  J  = 6 gives < 5 C: ^6«>7 x re ^ on °*

in te r e s t .  The power lo ss  fo r  th i s  e x c ita tio n  w i l l  th e re fo re  be reduced 

by ~'7C$ due to  su p e re la s tic  power gain . I t  thus seems th a t  un less th e  

ro ta tio n a l  c ro ss -sec tio n s  are unusually  la rg e  the  e f fe c t  of th e i r  

n eg lec t w i l l  be to  increase  the derived Qv * s over t h e i r  ac tu a l values 

by a r e la t iv e ly  sm all amount.
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As f a r  as the d r i f t  v e lo c it ie s  a t  low E/P are concerned, the

explanation must e i th e r  l i e  in  an extremely high Qm a t low energy or

in  the form ation of tra n s ie n t  negative ions by trapp ing  of low-energy

e lec tro n s  in  the m olecular f ie ld .  The p resen t Qm values cannot be

held  to  be of much s ig n ifican ce  w ell below kT/e, but a t  around .02 to

.1 eV appear to  have an energy dependence s im ila r  to  th a t of o th er

published r e s u l ts  (P ig . V .l ) .  The strongest long-range in te ra c tio n

(e lec tro n -d ip o le )  leads to  an C  ̂ dependence, whereas the  p resen t Qm
-2v a rie s  more n early  as € , the  power of an e lec tro n  monopole in te ra c tio n .

96Frommhold proposed low-energy ro ta tio n a l  resonances in  and

Ng to  explain  the density-dependent d r i f t  v e lo c i t ie s  reported  by
1 8  -1G-rtinberg • Taking the slope ex' of the l in e a r  W vs P graphs to  be

p ro p o rtio n a l to  D'T* (c o l l is io n  frequency x resonance life tim e )  he deduced

th a t  the c ro ss -se c tio n  fo r  resonance form ation in  might be around 
-15  22 x 10 cm . This could be a t t r ib u te d  to  a Feshbach-type compound

s ta te  resonance asso c ia ted  w ith  the m olecule 's ro ta tio n a l  le v e ls .
97 -9Frommhold l a t e r  suggested an upper l im it of ~ 1 0  s fo r  ^  in  by

examining the a f te rc u rre n ts  in  the pulsed d r i f t  experim ents.

High p ressu res  (up to  50 atmospheres) were employed by Grttnberg

in  c a lc u la tin g  the p ressure  dependence in  and Crompton and

R obertson^^  have rec e n tly  stud ied  (normal and p ara-) and Dg ^

d e ta i l  a t  p ressu res  from 0 to  1 atmosphere ( th e  W v a r ia tio n s  fo r  th i s

range are  only 1-2JI6). They considered the v a r ia tio n  of w ith  E/P

and found peaks a t  low energ ies which support the resonance hypothesis.
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Using the known energy d is tr ib u tio n s  and p o s tu la tin g  a narrow resonance 

w idth they were able to  p lace the resonances on the energy scale  a t  a 

l i t t l e  below the  0 + 2 and 1 + 3 th resho lds in  and the 0 2

th resho ld  in

Another explanation  fo r  the high-pressure e f fe c ts  has been put

forward by L e g le r^ ^ , who proposed th a t  when the e lec tro n  mean fre e  p a th

is  reduoed to  the same order o f magnitude as th e  inciden t wavelength,

the gas can be tre a te d  as a homogeneous s c a tte r in g  medium where the

wave decay time is  id e n tif ie d  w ith  the re la x a tio n  of e le c tro n  momentum.

His theory  gives a  good p re d ic tio n  of the experim ental r e s u l ts  in  ,

He and CH^. The l a t t e r  has been observed to  give an inverse dependence,
109i . e .  W increases w ith  P , between 8,000 and 32,000 to r r  , th i s  being 

a t tr ib u te d  by Legler to  negative s c a tte r in g  len g th , co n sis ten t w ith the 

Ramsauer minimum phenomenon.

I t  i s  probable th a t each theory  i s  co rrec t w ith in  i t s  ap p ro p ria te  

p ressu re  reg ion , hence helium shows no pressure e f fe c t  below 1 atmosphere 

(having no ro ta tio n a l  resonances) but does a t  high p ressu res  where the 

homogeneous theory i s  ap p licab le . The high p ressure  methane r e s u l ts  do 

no th e re fo re  n e c e ssa r ily  exclude a  p o s itiv e  value of oc a t  low p ressu res  

due to  ro ta tio n a l  t r a p p in g 1. I f  such an e f fe c t i s  responsib le  fo r  the 

cu rren t anomaly i t  must be qu ite  marked and an in v e s tig a tio n  of th i s  

would be w ell w orth w hile . Adso, conducting swarm experiments a t  low 

tem peratures would extend the energy range under in v e s tig a tio n  and 

produce firm er evidence on the low-energy behaviour of Qm»
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V .1.6 . Higher energy processes

The e f fe c t  of m ultip le e x c ita tio n  of any mode when considering 

only s in g le  e x c ita tio n  in  the p resen t an a ly sis  is  to  give a derived 

c ro ss -se c tio n

Qv " Q0y| + 2<̂ 0*2 + -^0*3 + .................  (V.8)

Thus i f  Qq^  -̂s comparable w ith  Qq^  , the derived  c ro ss -sec tio n

Q should continue to  increase ra p id ly  w ell above th resho ld . As the Q 's  v v
-17  2in  F ig . V.1 drop to  a minimum of ^ 2  x 10 cm a t  around twice the

th re sh o ld  energy, i t  appears th a t m ultip le  e x c ita tio n  i s  r e la t iv e ly

weak below 1-2 eV inc iden t energy. C o ttr e l l  and W alker^  suggested th a t

the methane v ib ra tio n a l e x c ita tio n  may occur v ia  a resonant s ta te  of

l ife tim e  comparable to  th a t  of the resonance ( ^ 1 0  ^  s ) .  The p resen t

r e s u l t s  however in d ic a te  th a t  any resonance involved must be extrem ely

sh o rt- liv e d  and broad in  energy ( c f .  Hg) since m ultip le  e x c ita tio n  is

weak and the c ro ss -sec tio n s  peak very close to  th resh o ld .

At h igher energ ies (2 -3  eV) the Qv 's  again r is e  somewhat.
98Brongersma and O osterhoff have fa i le d  to  observe any in e la s t ic  processes

in  an e le c tro n  tra p  experiment between roughly 2 and 7.5 ©V inc iden t

energy, the  l a t t e r  energy marking the onset of a process ascrib ed  to
99e x c ita tio n  to  a t r i p l e t  s ta te .  On the o th e r hand Boness e t  a l .  claim 

to  have observed a  ’ resonance' in  the transm ission  spectrum of methane in  

the reg ion  of 2 .5  ©V, w ith  superimposed secondary maxima of ^  .25 ©V 

sep ara tio n  suggestive of v ib ra tio n a l le v e ls .  This might be due to  a 

r e la t iv e ly  long liv e d  negative ion s ta te ,  which would decay causing the
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v ib ra tio n a l e x c ita tio n  suggested by the p resen t r e s u l ts  a t th is  energy.

V.2. ETHYLENE

V .2.1 . Experimental data

Considerable d iscrepancies e x is t  between the D/p values given 

by d if fe re n t au thors fo r  ethylene (F ig . V .6). To ca lcu la te  the f i t t i n g

param eters fo r  the a n a ly s is , the p resen t r e s u l ts  were taken  fo r
/  -1  -1.01 ^  5 /P  ^  2 V cm to r r  and ex trap o la ted  to  merge w ith  the values

95 /given by Bannon and Brose a t  h igher E/P. The d r i f t  v e lo c it ie s  used
65were those given by C o t t r e l l ,  P o llock , and Walker combined w ith  Nelson1s 

29d a ta  a t low E/P. These W values are  below those corresponding to

Nelson’ s thermal m obility  {p^/? = 10.86 cm̂ V ^jis ^ to rr )  fo r  E/P down to  
—1 “1<  . 01 V cm to r r  , in  support of the  p resen t D/p values which are 

s ig n if ic a n tly  above therm al under these  conditions.

V .2 .2 . C ross-sec tion  analysis

A ppropriate s ta r t in g  values of Qm were taken from a combination
22of the r e s u l ts  of C hristophorou, H urst, and Hendrick (tem perature

65dependence of d r i f t  v e lo c ity ) ;  C o t t r e l l ,  P o llock , and Walker (swarm

an a ly s is  based on Maxwellian d is tr ib u tio n ) ;  and Brliche ( Ramsauer

measurement). For in e la s t ic  c o ll is io n s  a  s im ila r  procedure was adopted

as w ith  methane. Pollock in fe rre d  e x c ita tio n  of the  mode from h ish-
X r e s u l t s ,  t h i s  having the lowest th re sh o ld  a t 0.102 eV, but in  the 

p resen t an a ly s is  only in fra re d  ac tiv e  modes were considered. Five of
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e th y len e’ s twelve normal modes sire in  th is  category*

^ 7 (vs) 949 cm ^ (0.117 eV)

V10 (m) 995 cm ^ (0.123 eV)

V12 (s ) 1444 cm ^ (0.179 eV)

P 11 (s ) 2990 cm"1 (0.370 eV)

V 9
(s ) 3106 cm ^ (0.385 eV)

In  the f i r s t  a n a ly s is , s ing le  e x c ita tio n  of the  mode was

taken as the only in e la s t ic  c ro ss-sec tio n . I t  was found th a t  the chosen

experim ental data  could he reproduced to  w ith in  + 5̂ > fo r  E/P <  5 

-1  -1V cm to r r  ahove which value there  i s  considerable u n c e rta in ty  in  the 

D/p. data . The c ro ss-sec tio n s  derived on th i s  b as is  are shown by the 

broken curves in  P ig . V .5. There i s  a n o ticeab le  second r is e  in  w ell 

above th re sh o ld  which suggests a co n trib u tio n  from higher energy-loss 

p rocesses.

The f in a l  s e t  o f c ro ss-sec tio n s  (S et 2, F ig . V.5 and Table V.3) 

were derived assuming s in g le  e x c ita tio n  of two v ib ra tio n a l modes

( i> and ^ Q) .  E x c ita tio n  of these modes alone was observed by Geiger7 9
and Wittmaack?^ a t  33 keV in c id en t energy. The o th er d ip o le -a c tiv e  modes

f a l l  between th ese  two in  energy and th e i r  in c lu s io n  would have small

e f fe c t o th er than to  th e  abso lu te  magnitudes of the in d iv id u a l Qv ’s .
—1 —1C alcu la tions were performed fo r  0.03 ^  E/P ^  14V  cm t o r r  , 

considering  in c id en t energ ies up to  4.87 meV. Four energy ranges were 

employed, the  lowest having a s tep -len g th  of 2 .44  rneV. The re s u lt in g
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tra n sp o rt c o e f f ic ie n ts  are given in  Table V.4 and compared w ith  

experim ental values in  Fig* V.6. Oyer most of the range, the agreement 

w ith  the favoured experiments i s  w ith in  5%, which is  about the 

accuracy of the  ca lcu la tio n s .

V .2 .3. F in a l c ro ss-sec tio n s

At low energ ies the  derived  Qm f a l l s  a l i t t l e  below the constant
22value of Christophorou e t  a l .  . This i s  expected since the  l a t t e r

assumed a thermal (Maxwellian) swarm fo r  E/P <  0.1 V cm " 'to rr  \  whereas

the p resen t D/̂ u r e s u l ts  re fu te  th is*  Such an assumption could lead to

an e r ro r  decreasing w ith  tem perature, which q u a li ta t iv e ly  accounts fo r

the p re sen t discrepancy below .05 eV. C alcu lations using  the very
23d if fe re n t Q values of Bowman and Gordon met w ith  no success, p red ic tin g  m

excessive ly  low d r i f t  v e lo c i t ie s .  These authors found a tem perature

dependence of W of th e  opposite p o la r i ty  to  th a t  repo rted  by

Christophorou e t a l . .

There i s  thus no in d ic a tio n  th a t  Qm r is e s  sharply  a t low energies

as in  the case of CH . This s i tu a t io n  i s  s im ila r  to  th a t found in  o ther
k-

quadrupolar molecules^ suggesting th a t  th i s  in te ra c tio n  dominates in  C^H  ̂

a t  low energy. However i t  should not be concluded th a t  no low-energy 

r is e  in  Qm e x is ts  as the  p resen t an a ly sis  i s  f a i r l y  in se n s itiv e  to  Qm 

below .01 eV. Low-1emperature swarm experiments would provide 

a d d itio n a l inform ation on th i s  to p ic .

At 2-3 eV the Q values are co n s is ten t w ith  Brtiche's Q.XQ v
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measurements. At in term ediate  en erg ies , a certain, amount of s tru c tu re

i s  observed. In  case th i s  had been a r t i f i c i a l l y  produced by the

refinem ent program, attem pts were made to  smooth out the  s tru c tu re ,

but i t  reappeared as agreement was sought in  the c a lc u la tio n s . I t  i s

po ssib le  th a t th i s  s tru c tu re  i s  a sso c ia ted  w ith the  v ib ra tio n a l

e x c ita tio n  processes.

The f in a l  Qv * s show d is t in c t  peaks close to  th re sh o ld , which

arose from try in g  to  match th e  observed D/p values a t low E/P , and are

probably an a r t i f i c i a l  fea tu re  caused by the neg lect of ro ta tio n a l

e x c ita tio n . The l a t t e r  would probably account fo r  the increasing

discrepancy between observed and ca lcu la ted  q* values a t  low E/P.

Above th re sh o ld , th e  Qv 's  show the expected f a l l  w ith  energy;

but in  co n tra s t to  the CH, r e s u l ts  th e re  i s  a very no ticeab le  steady

r is e  a f te r  the minimum, suggestive of h igher in e la s t ic  processes.

E x c ita tio n  of th e  f i r s t  t r i p l e t  s ta te  (4 .6  eV) is  known to  occur a t
12th re sh o ld  impact energy, showing up in  e lec tro n  tra p  and SFg 

100scavenger experim ents, a s  w ell as in  energy-loss sp ec tra  a t h igher
6 _i _-j

impact energ ies . At £ /P  = 10 Y cm to r r  , around 1 .5$  of the  p resen t

c a lcu la ted  energy d is tr ib u tio n  exceeds the t r i p l e t  energy, so i t  i s
-16 2

probable th a t a th re sh o ld  c ro ss -se c tio n  somewhat g re a te r  than 10 cm 

could exp lain  the  experim entally  observed q^ a t  th i s  and lower values of 

E/l*. To e s ta b lis h  a c ro ss -se c tio n  fo r  th is  process would however req u ire  

swarm da ta  a t h igher E/T than th a t cu rren tly  a v a ila b le .

On the o th er hand, th e re  i s  some evidence fo r  o th er energy-loss
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100processes below 4 .6  eV. Hubin-Franskin and C o llin  observed a weak

SF^ peak a t  2 .1 5  eV which they a t tr ib u te d  to  a t ra n s ie n t  s ta te ;
12and Bowman and M illa r reported  energy-loss th resho lds a t  1.7 eV. I t

is  po ssib le  th a t  a resonance could e x is t  in  th is  energy reg ion , which

by decaying to  ex c ited  v ib ra tio n a l le v e ls  of th e  ground s ta te  would

con tribu te  to  the c ro ss -sec tio n  r is e  found here. In  ad d itio n  Boness e t 
99a l .  reported  transm ission  " resonances’* a t 0 .2  and 1.3 eV. The former 

might possib ly  be due to  s trong ly  forward-peaked s c a tte r in g  a sso c ia ted  

w ith  "d irec t"  v ib ra tio n a l e x c ita tio n .

V .2 .4 . Energy d is tr ib u tio n  in  ethylene

F ig . V.7 i l l u s t r a t e s  the e le c tro n  energy d is tr ib u tio n s  in  ethylene
—*1 “"1ca lcu la ted  a t E/P = .05 and 1 V cm to r r  , assuming the  Set 2

c ro ss -sec tio n s  of F ig . V.5. The Maxwell d is tr ib u tio n s  corresponding to

the same D/p. values are shown fo r comparison. Both d is tr ib u tio n s  deviate

appreciably  from the Maxwellian form, the in e la s t ic  processes causing a

marked reduction  in  th e  number of high energy e lec tro n s . This d is to r t io n

is  m anifested in  the r a t io  6 /{eD /p .) , € being the  ca lcu la ted  mean energy;

the Maxwell d is tr ib u tio n  gives th is  r a t io  to  be ex ac tly  1 .5 , whereas the

presen t ca lcu la tio n s  give re sp ec tiv e ly  1 .39  sLnd 1 .29  a t  E/P = .05 and 1.
22Christophorou, H urst, and Hendrick assumed th a t  swarms in  C2H4

possessed a therm al Maxwellian d is t r ib u tio n  fo r  E/P < 0 .1 , and Bowman 
23and Gordon made a s im ila r  assumption. This was based on the  l in e a r  

r i s e  of W w ith E/P under these cond itions ( a  constant energy d is tr ib u tio n
IQ

giving  r is e  to  a constan t /iP ). L a te r Christophorou e t  a l  recognised
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th a t  the  mean swarm energy was above therm al a t E/P = 0 .5 , but continued

to  use a Maxwellian d is tr ib u tio n  to  ca lcu la te  mean energies from the

lo n g itu d in a l d iffu s io n  c o e ff ic ie n ts  of Wagner, Davis and H u rs t^

(F ig . I I I . 4) fo r  E/P up to  1 V cm 1t o r r  \

The p resen t r e s u l ts  demonstrate the e r ro r  in  the foregoing

assumptions. Although i t  must be recognised th a t  the energy d is tr ib u tio n s

of F ig . V.7 are not unique, and the  inc lusion  of ro ta tio n a l  t r a n s i t io n s  in

p a r t ic u la r  might serve to  reduce the departure from the  Maxwellian farm

s lig h t ly ,  two im portant p o in ts  a r is e .  F i r s t ly ,  i t  i s  in co rrec t to

assume th a t  a constant pP im plies a swarm in  therm al equ ilib rium  w ith  the

gas, since th is  may a r ise  from a combination of circum stances as

d iscussed in  V .1 .1 . This may be a s ig n if ic a n t source of e r ro r  in  the

ca lc u la tio n  of Qm from the tem perature v a r ia tio n  o f W ( l . 2 ) .  Secondly,

the  departure from Maxwellian may be large  even fo r  a swarm w ith  a very

n early  therm al D/p. value. This i s  tru e  because the  swarm cond ition  is

p rim arily  a s teady  s ta te  one; the  d is t in c t io n  between steady s ta te  and

equilibrium  has not been s u f f ic ie n t ly  s tre s se d  by some authors who have

tended to  assume equilibrium  p ro p e rtie s  as D/p ■> kT/e. The cond ition

fo r  tru e  equ ilib rium  i s  E/P 0 , which i s  only re a lis e d  in  such cases as
29the  d w e ll-d rif t technique

The energy d is tr ib u tio n s  of reference 46 were used p r in c ip a lly

fo r  e s ta b lish in g  a mean-energy sca le  fo r  measurements of mean e le c tro n
101attachm ent ra te s  in  swarms • The poor energy re so lu tio n  of re s u l ts  

thus expressed w i l l  not th e re fo re  be se n s itiv e  to  sm all v a r ia tio n s  in
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f  ( £ ) , but i t  should be noted th a t  the use of D^/p ra th e r  than D ^ p

to  ca lcu la te  £ does lead  to  an e r ro r  in  the energy sca le  of a t

0.1 eV. However, when the  energy d is tr ib u tio n  is  used to  derive the
102energy-dependence of the attachm ent c ro ss -sec tio n  , the use of a 

Maxwellian d is t r ib u tio n  may be qu ite  in approp ria te .

V .3. ACETYLENE

V .3 .1 . Experim ental d a ta

P i t t in g  param eters were c a lcu la ted  from the p resen t D/p.
”1 ”1measurements ex trap o la ted  fo r  5 ^  t / P  ^  19 V cm t o r r  by drawing

45a smooth curve through the sc a tte re d  re s u l ts  of Maydan . The two
2  ̂ 65published s e ts  of W d a ta  * are a t  considerable variance; however 

owing to  the general disagreement of a l l  the Bowman and Gordon r e s u l ts

w ith  those of o ther experim enters, the d r i f t  v e lo c it ie s  repo rted  by
65C o t t r e l l ,  P ollock  and Walker were considered more r e l ia b le  and used 

in  th is  a n a ly s is .

V .3 .2 . C ross-sec tion  an a ly s is

Approximate s ta r t in g  values fo r  the momentum-transfer
65c ro ss -se c tio n  were obtained by combining P o llock ’s mean Qm re s u l ts

45w ith  the t o t a l  c ro ss -se c tio n s  measured by Brliche

There i s  again no d ire c t  experim ental evidence fo r  e x c ita tio n  

of p a r t ic u la r  v ib ra tio n a l modes. The fundamentals of C^H  ̂ are as fo llow s:
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* 4 612 cm 1 (.076 eV) centrosymmetric bend

729 cm"1 (.090 eV) anticentrosym m etrie bend

^ 2 1974 cm 1 ( .224 eV) C=C s tr e tc h

3287 cm"1 (.437  eV) C-H antisym m etric s t r e tc h

3374 cm"1 (.418  eV) C-H symmetric s tre tc h

Of th ese , and5 are s trong ly  in fra re d  a c t iv e ,  w hile the

remaining modes have only Raman a c t iv i ty .  Furtherm ore, the V mode

gives a very weak Raman spectrum, and so should not he s trong ly  ex c ited

through a simple p o la r is a tio n  in te ra c tio n . I t  was th e re fo re  decided to

rep resen t in e la s t ic  c o l l is io n s  hy a c ro ss -sec tio n  fo r  v = 0 1

e x c ita tio n  of the fundamental.
5

C alcu la tions were c a rr ie d  out fo r  0.15 ^  E}/P ^  19 V cm 1to r r  1 

using  3 ranges of energy up to  2.81 eV, w ith a s tep -len g th  on the lowest 

range of 2.81 meV. Over most of the  range the c a lcu la tio n  accuracy was 

b e t te r  than ± 3%» D r if t  v e lo c i t ie s  were read ily  obtained which agreed w ith  

Pollock* s to  w ith in  tu t  the f in a l  s e t  of c ro ss -sec tio n s  gave D/p. 

values dev iating  from the p resen t experim ental r e s u l ts  by up to  10$.

This discrepancy suggested th a t  should be increased  somewhat a t

th resho ld  r e la t iv e  to  h igher en erg ies , but owing to  the u n c e rta in ty  of
mmA —A

the D/) i  da ta  a t  E/P > 5 V cm" to r r ” , and the neg lect of ro ta tio n a l  

tra n s i t io n s  in  the c a lc u la tio n s , i t  was not considered to  be worthwhile 

attem pting a b e t te r  f i t .

V .3 .3 . F in a l c ro ss-sec tio n s

The f in a l  derived  c ro ss -sec tio n s  are given in  Table V.5 and
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F ig . V .8, and the c a lcu la te d  tra n sp o rt c o e ff ic ie n ts  in  Table V.6 and 

F ig . V.9.

As w ith  e thy lene, the re s u lts  p la in ly  d isagree w ith those of 
23Bowman and Gordon in  the  energy range .02*. -  .07 eV. At around 1 eV

Qm exceeds Brliche* s by a fa c to r  of 2 -  a somewhat g re a te r  discrepancy

than th a t  found in  e thy lene. Whether th i s  is  due to  a n is tro p ic

s c a tte r in g  or experim ental e r ro rs  is  a question which must await new

measurements o f Q^.

There i s  no evidence fo r  a r is in g  Q a t  low energy. However Qm m
a t .01 eV appears to  exceed th a t fo r  ethylene by a fa c to r  of 2 .5 , 

suggesting th a t the tt -  e le c tro n  s tru c tu re  makes a considerable

co n trib u tio n  to  th e  sc a tte r in g  p o te n tia l  a t  these  energ ies.

The e x c ita tio n  c ro ss -se c tio n  r is e s  sharply a t th re sh o ld , 

le v e llin g  o ff  th e re a f te r  but w ith  a s lig h t r i s e  a t around .3  -  .5 eV.

This i s  p o ssib ly  due to  e x c ita tio n  of the  in fra re d  ac tiv e  mode. No 

attem pt has been made a t p resen t to  f i t  more than one v ib ra tio n a l 

c ro ss -se c tio n , but i t  i s  expected th a t  a s itu a tio n  s im ila r  to  th a t  in  

ethylene would r e s u l t  i f  the P  ̂  mode were included; namely, a peaking 

of the ind iv idual Qv ’s a l i t t l e  above th resho ld  w ith  a f a l l - o f f  a t 

h igher energy.

The p resen t da ta  does not perm it meaningful c ro ss -sec tio n  f i t t i n g  

fo r  € > 2 eV, so i t  i s  as y e t impossible to  conjecture on h igher

energy-loss p rocesses. The lowest e le c tro n ic a lly  ex c ited  s ta te  is
6 i oprobably a t r i p l e t  a t 5.2 eV . Bowman and M illa r 1̂  observed th resho ld
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99energy lo sse s  a t  about 2 eV, but Boness e t a l .  f a i le d  to  f in d  any 

transm ission  s tru c tu re  in d ic a tiv e  of a resonance a t th i s  energy.

V.4. CYCLOPROPANE

Experim ental d a ta

The p resen t D/p r e s u l ts  were used in  p reference to  those of 

Cochran and F o re s te r^ -. The only W r e s u l ts  are those of B ortner, H urst, 

and Stone fo r  .05 ^  E/P ^  1 .4  V cm to r r  • These were taken to  be
-1  -A

co rrec t and ex trap o la ted  to  3 V cm t o r r  by analogy w ith e thy lene.

I t  should be noted, however, th a t the d r i f t  v e lo c i t ie s  reported  by 

B ortner e t  a l .  fo r  ethylene are lower than those of most au thors, 

e sp e c ia lly  fo r  E/P 0 .4 , and t h e i r  cyclopropane d a ta  should th e re fo re  

be tre a te d  w ith cau tion .

V .4 .2 . C ross-sec tion  an a ly s is

S ta r tin g  values fo r  Qm were obtained from ca lcu la tio n s  based on
65 %a Maxwellian d is t r ib u t io n  • C alcu la tions of A on th i s  b as is  give a

—1 —1peak value of ~ .055  ait E/P = 0 .8  V cm to r r  , corresponding to  a mean 

swarm energy of approximately 0.11 eV. As w ith  a l l  the molecules 

p rev io u sly  d iscussed , t h i s  corresponds c lo se ly  to  the e x c ita tio n  energy 

of the lowest v ib ra tio n a l  modes.

The v ib ra tio n a l an a ly s is  of cyclopropane is  exceedingly complex 

as th ere  are 21 normal modes, but the in fra re d  spectrum shows only s ix  

ac tiv e  fundamentals:
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**11 (vs) 868 cm ^ (.108 eV) rin g  deform ation

* 7 (vs) 872 cm ^ ( .108 eV) CH2 rock

* 1 0 (s ) 1028 cm ^ (.127 eV) CĤ  bend

* 9 (s ) 1432 cm ^ (.178 eV) GĤ  deformation

* 8 (vs) 3024 cm ^ (.375 eV) C-H s tre tc h

(vs) 3103 cm ^ (.385 eV) C-H s tre tc h

There i s  l i t t l e  hope of d is tin g u ish in g  between these in  a swarm

experim ent, except po ssib ly  to  v e r ify  th a t  e x c ita tio n  must be occurring

a t  the lower th resh o ld s. No attem pt has been made a t th i s  s tage to  include

more than one Q^. As w ith  a s ing le  c ro ss -sec tio n  was used to

rep resen t in e la s t ic  p ro cesses, w ith  a th re sh o ld  a t  .108 eV corresponding

to  e x c ita tio n  of e i th e r  or both of and Using th i s  Q the11 7 v
f i t t i n g  procedure was c a rr ie d  out fo r  tra n sp o rt data  in  the range

/  —1 —1.05 ^  E/P ^  3 V cm to r r  . Two energy ranges were used, th e  lower

having a s te p -le n g th  of 1.69 meV and the upper extending to  0 .84  eV.

P in a l c ro ss -sec tio n s  are p resen ted  in  Table V.7 and P ig . V.10, and the 

c a lcu la ted  tra n sp o rt c o e f f ic ie n ts  in  Table V.8 and P ig . V.11. The 

ca lcu la ted  D/p. values appear to  be about 1C$ low a t  low E/P and 10-15$ 

high a t  the h igher E/P. F u rth e r c ro ss -se c tio n  adjustm ents could be made 

to  achieve a b e t te r  f i t  but in  view of the u n c e rta in ty  of the experim ental 

d a ta , p a r t ic u la r ly  the W v a lues, and the com putational time Involved, 

fu r th e r  refinem ent was not considered to  be ju s t i f i e d .
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V.A.3. F in a l c ro ss-sec tio n s

Qm again appears to  be constant a t  low energy, tak in g  the value 

4.6 x 10 cm fo r  E/P ^  .05 eV, qu ite  close to  the ethylene r e s u l t .

At h igher en erg ies , Qm seems to  r is e  much more sharply  than in  the 

ethylene case .

The derived  here d if f e r s  fiom the preceding cases in  r is in g

ra th e r  more slow ly from th re sh o ld . In  f a c t ,  i f  the presen t D/p. da ta

i s  c o rre c t, the tru e  ra te  of r i s e  i s  possib ly  even le s s  than th a t  shown

in  F ig . V.10 . However, i f  as suspected the experim ental W d a ta  i s  too

low, the e f fe c t  would be to  lower the o v e ra ll magnitude of the derived

Qv (sin ce  X W^). Again, the  continued r is e  a f t e r  th resho ld  could be
98due to  e x c ita t io n  of sev e ra l h igher modes. Brongersma and O osterhoff 

have obtained trap p ed -e lec tro n  sp ec tra  showing unresolved energy lo sses  

between 1 and 6 eV ( th e  onset of the f i r s t  t r i p l e t  s ta te )  but ex tension  

of swarm data  to  h igher E/P is  necessary before processes in  t h i s  energy 

region can be s tud ied .

V.5. HYDROGEN SULPHIDE

V .5 .1 . Experim ental da ta

The presen t D/p r e s u l ts  are the only known swarm measurements in

pure HgS. D r if t  v e lo c i t ie s  have only been measured in  low-concent r a t  ion
93 22mixtures w ith  C^H^ . By studying the  d r i f t  v e lo c ity  vs concentration

22dependence over various concentration  ranges, Christophorou e t a l .
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concluded th a t the d r i f t  v e lo c ity  Wp fo r  a pure p o la r  molecule could 

be r e la te d  to  th a t  fo r  ethylene (w.̂ ,) by0j

Wp = A.WE

over the E/F range where the swarms are therm al. For H^S, they

gave A = .0176. However th ese  authors assumed a thermal swarm in
/  -1  -1  ethylene fo r  E/F <  0.1 V cm to r r  , which has been found to  be untrue

(see  V .2 .4»). N evertheless, i f  th i s  value of A is  combined w ith  the
29therm al P fo r  ethylene repo rted  by Nelson and Davis , the re s u l t in g

estim ate of ^ .P  fo r  H^S (=  0.191 cn?V ^ to r r )  can be taken to  be

reasonably accurate . This allows ca lc u la tio n  of W values in  H^S fo r  
” 1 “ 1S/P ZS 1 V cm t o r r  , where according to  the  p resen t work the swarm i s  

p ra c t ic a l ly  therm al.

V .5 .2 . A p p lic a b ility  of c ro ss-sec tio n  an a ly sis

The p resen t method of c ro ss -sec tio n  analysis  cannot be app lied  

to  H^S fo r  the follow ing reasons:

(1)  W values are only av a ilab le  fo r  a therm al swarm, thus denying access

to  the  energy v a riab le  in  the usual way.

( 2 ) As the  gas i s  p o la r , the ro ta tio n a l  e x c ita tio n  c ro ss-sec tio n s  are

expected to  be h igh , and a la rg e  p roportion  of momentum t ra n s fe r
50c o ll is io n s  may involve exchange of r o ta tio n a l  energy . Since 

J)/p i s  close to  therm al over most o f the  E/F range s tu d ied , the  

continuous approximation i s  inapp licab le  in  th is  case. Exact
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so lu tio n  of the  Boltzmann equation would be d i f f i c u l t  owing to

(a ) th e  close spacing of ro ta tio n a l le v e ls ,  and

(b) the  ex istence  of' th re e  d iffe re n t ro ta tio n a l  constan ts as 

H^S is  an asymmetric top .

In  the previous gases s tu d ied , neglect of ro ta tio n  was ju s t i f ia b le  

as the higher v ib ra tio n a l energy lo sses  would be expected to  dominate. 

However, fo r  a p o la r  gas, the ro ta tio n a l  c ro ss-sec tio n s  might be 

considerably  la rg e r  than those fo r  v ib ra tio n a l e x c ita tio n  and th is  

assumption would not be ju s t i f ie d .  However, a few sample ca lc u la tio n s  

were made in  order to  assess whether th e  expected c ro ss-sec tio n  

magnitude could exp la in  the  p resen t D/ya r e s u l ts .

V.5 . 3 . C alcu la tions assuming e la s t i c  s c a tte r in g  only

I f  the A ltsh u le r form ( l . 6 o )  fo r  the  momentum-transfer 

c ro ss -sec tio n  i s  assumed, Christophorou e t  a l .  give the constant A
1 g

to  be 4.52 cm s • This leads to  a c ro ss -se c tio n

= 12.9 x i c f l6/ e  (V.8)

where 6  i s  the energy in  eV. C alcu la tions were made fo r  £  up 

to  0 .5  eV, I*/P up to  10 V cm~^torr lead ing  to  the  T)/p. values shown by 

the  d o tted  l in e  in  F ig . V.12, which are p la in ly  f a r  h igher than the 

observed values. I t  i s  th e re fo re , not su rp r is in g ly , e s s e n tia l  to  take 

in e la s t ic  c o l l is io n s  in to  account.
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V .5.4 . C alcu la tions assuming v ib ra tio n a l e x c ita tio n  only

To account fo r  the  observed values o f D/p., an in e la s t ic

c ro ss -sec tio n  was introduced corresponding to  sing le  e x c ita tio n  of the

bending mode (th resh o ld  0.160 eV). A constant value fo r  th is  of 
—16 2~ 3  x 10 cm in  the range 0 .1 6  < £ <  0 .5  eV was found to  give a f a i r  

p red ic tio n  of the observed D/p.. This i s  the rough order of magnitude 

expected fo r  such a c ro ss -se c tio n , but is  probably an overestim ate due 

to  neg lect of ro ta tio n  and o th er v ib ra tio n s . The tra n sp o rt c o e ff ic ie n ts  

obtained are shown in  F ig . V.12.

V .5 .5 . C alcu la tions assuming ro ta tio n a l  e x c ita tio n  only

. As s ta te d , in c lu sio n  of ro ta tio n a l  e x c ita tio n  p resen ts 

d i f f i c u l t i e s  in  th e  case o f However fo r  D/p »  kT/e the continuous

approximation should give a reasonable orde3>-of-magnitude r e s u l t .
27In  considering CO, Hake and Phelps derived the p a r t ic u la r  form 

o f the Boltzmann equation r e s u l t in g  from T-akayanagi1 s expression  fo r  the 

ro ta tio n a l  e x c ita tio n  c ro ss -se c tio n  of a d ip o la r  molecule ( l . 62) .

However the form o f the equation  involving the  "net ro ta tio n a l  

c ro ss-sec tio n "  (see  IV .2 .3 .)  i s  more f le x ib le  since any given energy 

dependence can be incorporated  in  the t r i a l  values of Q̂ ..

Takayanagi's theory gives

R t  a ” ^ t ) 2]
= i r -  i r h  ^ rT X — — ^  (V.9)

[£2 - ( e - g j ) 2]

J* J
, V j  [( e + 6 _ j ) 2 + € . j  ,

_ « ( * )  = - i r 2- z j T T  ^ t , t e  ^  (v -10)1 6 2J + 1 [(e * e  T)2 - £ 2]
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2 2where ( f  = Qn ji &Q/3  stnd II is  the  Rydberg. Using the
27approximation given by Hake and Phelps x'or the  logarithm ic term s, 

euqation (lV .20) fo r  Q̂ , becomes

Q'r  = J ~  [(J + 1 )7 /4  -  J 7/4] e x p [ - j ( j  + O b /K T ]/P T (V .1 l)
J

where P j i s  the ro ta tio n a l p a r t i t io n  function . For J  values of 

in te r e s t ,  ( J  + may be roughly approximated by (2J + 0 / 2 ,

which s im p lif ie s  (V .1 l) to

±  ±  3.

Q* -r 2 4B” 4R 6 ( v . 1 2 )r  o y r  7

The above d e riv a tio n  has assumed a s ing le  ro ta tio n a l  constant as

in  th e  hq teronuclear diatom ic case. however i s  an asymmetric top and

th e re fo re  has th re e  ro ta tio n a l  co n stan ts , two of which (A and C ) are9 o o
a sso c ia ted  w ith  ro ta tio n  of the t o t a l  m olecular d ipole p ,  w h ilst the  

th i r d  (Bq) is  o p tic a lly  in ac tiv e . As the above expression  fo r  is  

r e la t iv e ly  in se n s itiv e  to  the value of the  ro ta tio n a l  co n stan t, the 

constant Aq (10.39 cgi”1) was used here as i t  i s  a sso c ia ted  w ith a  g re a te r  

energy exchange. The re su lt in g  estim ate  fo r  Q1^ is

Q' C  7 . 9 £ ~ *  (V.13)r

A few t r i a l  ca lcu la tio n s  were ca rrie d  out s ta r t in g  from th i s

expression . In  a l l  cases no v ib ra tio n a l c ro ss -sec tio n  was incorporated ,

and Q was held  a t i t s  previous value. A general find ing  was th a t th e  m
ca lcu la ted  "D/jx was much more strong ly  dependent on E/P than  observed.

At low E/P (<  2 V cm”1 t o r r ”1) subtherm al D/p values re su lte d , a consequence
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of the "breakdown o f the continuous approximation as D/p kT/e.

R esults of the co rrec t order of magnitude were obtained using (V .13) 

a t E/P 2: 5 , but a t E/P = 1 0  the ca lcu la ted  values are  ^  60% high,
..3 A

This suggests e i th e r  th a t  decreases more rapddly than € 4 (<= 

was t r i e d  but gave in s ig n if ic a n t improvement); o r th a t v ib ra tio n a l 

e x c ita tio n  is  serving to  reduce D/p. With the p resent l im ite d  

Inform ation i t  i s  im possible to  examine the s itu a tio n  in  any d e ta i l ,  

or even to  assess the r e la t iv e  co n trib u tio n  of ro ta tio n a l, and 

v ib ra tio n a l e x c ita tio n ,

V.5 . 6 . Energy d is tr ib u tio n  in  ILS

Using the  of V.5.4* (3 x 10 ^  cm^), the  energy d is t r ib u tio n  

function  was c a lc u la ted  a t  E/P = 0 .2  and i s  shown in  P ig , V.13. Although 

i t  must be emphasised th a t  the la c k  of unique c ro ss-sec tio n s  leads to  lack  

of unique f (€  ) (and  p a r t ic u la r ly  the neg lec t of ro ta tio n a l  e x c ita tio n  

gives an exaggerated departure from the  Maxwellian), P ig . V.13 i l l u s t r a t e s  

an im portant p o in t; namely th a t  a near-therm al D/p. does not n ec e ssa rily  

imply a Maxwellian d is tr ib u tio n .

V .5 .7 . F u rth e r remarks

The momentum-transfer <ross-section given by Christophorou e t 

a l .  appears to  be c o n sis ten t w ith  the swarm data  a t low E/P, req u irin g

the in c lu sio n  of in e la s t ic  c ro ss -sec tio n s  to  explain  the D/p re s u l ts

/ 93 50a t h igher E/P. This value of Qm has been noted 9 to  be considerably
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in  excess Of that, given by A ltshu ler*s theory  ( l .5 9 ) ,  as i s  the  case
65 67 50w ith  sev e ra l o ther inorgan ic  hydrides ' . Crawford e t  a l .  stated.

th a t A ltshuler* s theory is  u n lik e ly  to  be re l ia b le  fo r  molecules w ith

low d ipole  moments such as f^S , owing to  the neg lect o f r e la t iv e ly

im portant h igher order in te ra c tio n  term s, but made no q u a n tita tiv e

estim ate o f th i s .  The p o s tu la te  o f temporary negative ion form ation

has been u n t i l  recen tly  con trad ic ted  by c a lc u la tio n s  of the c r i t i c a l

binding moment ( l .4 « 1 .) ,  hu t such th e o r ie s  based on simple p o in t-d ip o le

models are  no longer held  to  be r e a l i s t i c  and discussion  o f the

im plications o f re a l  p o te n tia ls  are continuing in  the l i t e r a t u r e ^
52Bardsley and Mandl have po in ted  out th a t  the combination of the 

d ip o la r  f i e ld  w ith  the sh o rt range fo rces may support low-energy bound 

s ta te s .  The sc a tte r in g  o f  e lec tro n s  by weakly p o la r  molecules such a s  

HgS is  thus probably not conducive to  simple dom inant-potentia l 

treatm ent such as th a t o f A ltsh u le r* s  theory .

V.6* CONCLUSIONS

I t  is  ev ident from the foregoing attem pts to  analyse swarm 

d a ta  th a t  the r e s u l t s  as they s tand  are f a r  from conclusive, and in  the 

absence of evidence from more d ire c t sources can only be regarded as a 

suggestion of what c o l l is io n  processes might reasonably be occurring . 

The v a r ie ty  o f p o ssib le  in e la s t ic  processes in  the polyatomic species 

under study d r a s t ic a l ly  reduces the degree of uniqueness in  the derived  

c ro ss -sec tio n s  r e la t iv e  to  th a t  a tta in a b le  fo r  diatom ic m olecules.
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N evertheless, some te n ta tiv e  conclusions can be drawn. The

re s u l ts  of the hydrocarbon an a ly s is  p o in t to  n ear-th resh o ld  s in g le - le v e l

e x c ita tio n  as being the dominant v ib ra tio n a l process. Furtherm ore, the

ra te  of energy lo ss  can be s a t i s f a c to r i ly  explained, by the  e x c ita tio n  o f

in fra red  ac tiv e  modes, using  c ro ss-sec tio n s  o f the order of magnitude
92suggested by cu rren t theory • However th ere  are no d e f in ite  grounds, 

experim ental o r  th e o re t ic a l ,  f o r  completely discounting  any co n trib u tio n  

from e x c ita tio n  of in ac tiv e  modes, p a r t ic u la r ly  a t  th resh o ld .

The uniqueness problem might be tack led  fu r th e r  by adopting 

p a r t ic u la r  forms fo r  the c ro ss -sec tio n  energy dependence, but such 

assumptions cannot re a d ily  be drawn from acisting  theory which i s  c le a r ly  

inadequate in  th i s  energy region . I t  i s  not f e l t  th a t the adoption of 

a s e r ie s  of peaks as used by Hake and Phelps would be re le v a n t, as th i s  

approach was based on th e  p o s tu la te  of narrow resonances.

There are no grounds a t  p resen t fo r  p o s tu la tin g  n ear-th resh o ld  

e x c ita tio n  through an in term ediate resonant s ta te .  In  fa c t  the p resen t 

r e s u l ts  do not appear to  be e a s ily  reco n c ilab le  w ith  th i s  p ic tu re ,  

c e r ta in ly  as f a r  as r e la t iv e ly  lo n g -liv ed  resonances are  concerned.

At impact energ ies below v ib ra tio n a l th re sh o ld s , few conclusions 

can be drawn from swarm an a ly sis  as c o l l i s io n  e f fe c ts  are  la rg e ly  masked 

by the thermal motion of the gas. Thus ro ta tio n a l  processes cannot 

e a s ily  be accounted fo r  in  the a n a ly s is  -  and even i f  they  could, th e  

in s e n s i t iv i ty  of tra n sp o rt c o e ff ic ie n ts  to  c ro ss-sec tio n s  in  a 

near-therm al swarm would give a h igh u n certa in ty  in  the r e s u l t .
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Low-temperature experiments are the only fo reseeab le  way of improving 

on th i s  s i tu a tio n . S im ila rly , the anomalies in  the apparent 

momentum-transfer -cross-sect ions fo r  CH  ̂ and H^S w il l  not be readily- 

reso lved  by room-tenrperature experim ents.

The correspondence between theory  and experiment in  th is  f i e ld

was fo r  many years u n sa tis fa c to ry , p r in c ip a lly  as a  r e s u l t  of o v er-s im p lified

theory . There i s  now a la rg e  and rap id ly  expanding body of complex theory

p e rta in in g  to  electron-m olecule c o l l is io n s ,  although a mere f ra c tio n  of

the e f fo r t  has been d ire c te d  towards polyatom ic m olecules. In  sp ite  of

the increasing  com plication of the th e o re t ic a l  models, i t  remains

p o ssib le  to  d is tin g u ish  between "resonance1* and "d ire c t"  approaches.

The fortner focus a t te n t io n  on the m olecular s ta te ,  regard ing  the c o llid in g

e le c tro n  as a time-dependent component of the s ta te ;  w hile the l a t t e r

cen tre  on the wavefunctions of the p ro je c t i le  and regard  the m olecular

f ie ld  p rim arily  as a p ertu rb in g  p o te n t ia l .  However th e re  are no r ig id

b a r r ie r s  between th e o r ie s . For example, the  ea rly  c la s s i f ic a t ia n  of

resonances, while u se fu l from an em pirica l view point, has become hazy
110w ith  increasing  so p h is tic a tio n  of treatm en t. B ittlem an has remarked 

th a t  the resonant s ta te  is  i l l -d e f in e d  and the  c la s s i f ic a t io n  is  only 

q u a li ta t iv e .  The tendency in  "d ire c t"  th e o rie s  i s  to  take in creasin g ly  

g re a te r  account of co n trib u tio n s  from excited  m olecular s ta te s  and 

e le c tro n  exchange, emphasising the ro le  of the "in term ediate" s ta te .

The c lose s im ila r i ty  of the broad sh o r t- liv e d  resonance model to  d ire c t 

s c a t te r in g  has already  been mentioned ( I .43)• I t  i s  probably best to
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regard  the two types o f sc a tte rin g  as a lte rn a tiv e  th e o re t ic a l  

s ta r t in g  p o in ts  f o r  examining a  complete spectrum of physica l 

phenomena, the models rep resen tin g  the  extreme cases which are not 

found in  r e a l i ty .

As an example of th is  f l e x ib i l i ty  in  approach, the work of 
111G ryzinski must be mentioned. This author has taken a completely 

independent approach using c la s s ic a l  mechanics in  preference to  wave 

mechanics. He t r e a t s  the atom or molecule as a dynamic system of 

p o in t charges moving in  c la s s ic a l  o rb its ,  in te ra c tin g  w ith  the p ro je c t i le  

through the re s u l t in g  o s c i l la t in g  m ultipole moments. In  th i s  way he has 

succeeded in  explain ing the Ramsauer e f f e c t ,  long held  to  be p roof of 

the omnipotence of wave mechanics -  mainly because of the f a i lu r e  of 

ea rly  c la s s ic a l  d esc rip tio n s  based on s t a t i c  f ie ld s .  In  some ways 

G ryzinski' s theory appears more c lo se ly  r e la te d  to  physica l r e a l i ty  

than the quantum approaches.

There i s  a danger in  c o l l is io n  p h y sics , as in  the wave mechanics 

of atomic and m olecular s tru c tu re , of the th e o r ie s  becoming in creasin g ly  

a b s tra c t and le s s  p h y sica lly  meaningful. In  such a  parad ise  of 

mathematics i t  should constan tly  be borne in  mind th a t  th e  relevance 

of any theory  l i e s  in  i t s  a b i l i ty  to  p re d ic t observed phenomena, and 

th a t  where two or more th e o rie s  have equal m erit in  th is  re sp e c t, 

p reference should be given to  th a t  which i s  most c lo se ly  id e n tif ie d  

w ith  the  p h y sica l p ic tu re .
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Table V.1. Cross-sectiona derived for CH^ (Set 2)

£

(eV)

O.OIO

0.015

0.020

0 .030

0.050

0 .0 7 0

0 .10

0.15

0.20

0 .3 0

0.50

0.70

1 . 0

1.5.

2 . 0

3 .0

5 .0

(,10 cm )

100

42

23

9 .0  

3.6 

1 .24  

1 .6 2  

1 . 2 2

1.04

1.04  

1.68  

2.2  

2.8  

3.8

5.1

7.2 

13.6

(lO~l6 cm2'

0

0

0

0

0

0

0

0

0 .3 5

0 .62

0 .2 4

0.19

0.20

0.23

0.28

0.31

0.30

qv( » 3)

( l0 _ l6om2)

0

0

0

0

0

0

0

0

0

0

0 .6 4  

0.28 

0 .19  

0 .22  

0.27 

0 .3 0  

0 .3 0
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(V

Le V.2. Transport c o e ff ic ie n ts  in  CH^

s /p W (calc.) DZ)i( c a lc . ) <^(obs.) c**(obs.)
-13m to r r (cm s (V) c a lc .) q*(calc.

0 .0 4 5.00x105 3.50x10“2 1.20 0.85

0.05 6 .46 3.64 1.11 0.93

0 .06 7.86 3.75 1.11 0.93

0.08 1.11x10 4.03 1.12 0.92

0.10 1 .4 t 4.31 1.20 0.86

0.15 2 .3 2 5.03 1.18 0.88

0.20 3.21 5.78 1.11 0.94

0 .3 0 4.89 7.35 1.06 0.97

0 .4 0 6 .36 8.97 1.01 1.02

0.50 7.59 1 • 06x10 ^ 0.97 1.04

0 .6 0 8 .6 0 1.23 0.97 1.01

0.80 1.00x107 1.57 0.97 0.98

1 .0 1.07 1.96 1.00 0.96

1.5 1.07 3.13 1.01 0.93

2.0 9.83x106 4.57 0.99 0.93

3.0 8.19 7.95 0.97 0 .9 6

4.0 7.21 1.15x10° 1.00 0.99

5 .0 6.57 1.50 1.00 0.98

6.0 6.10 1.84 0.99 1.01
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Table V .3 . Cros3 - s e c t io n s  derived  fo r  (S e t  2 )

e

0 .010  3 .7  0 0

0.015 3.75 0 0

0 .020  3 .8  0 0

0.030  3 .9  0 0

0.050  4 .2  0 0

0.070 4.2  0 0

0 .1 0  4.1  0 0

0.15 5 .0  1.10 0

0.20 6.8 O.96  0

0 .3 0  7.8 0.77 0

0.40 10.5 0.37 1.5

0.50 13.5 0.37 0 .92

0.70 16 0.45 O.36

1 .0  18 0.57 0 .4 2

1 .5  20 0 .74  O.6 4

2 .0  22 0.87 0.78

3 .0  27 1 .1 0  1 .05

4 .0  22 1.30 1.25
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Table V .4. Transport c o e f f ic ie n ts  - i s - 2 A

e/ p W (calc.) D/p( c a lc .) qjj( obs.) <£[( obs.)

cm  ̂t o r r  ^ ) (cm s  ̂) (v) q̂ C c a lc .) q ? (c a lc .)

0.02 1 .9 W 0 5 3.01x10 ^ 1.01 1.07

0.03 2.89 3 .06 1.02 1 .0 3

0 .0 4 3.83 3.09 1.00 1.03

0.05 4.76 3.13 1.00 1.02

0 .0 6 5.67 3 .16 1.02 1.00

0.08 7.45 3.24 1.03 0.99

0.10 9.18 3.32 1.00 0.99

0.15
c

1.33x10 3.53 0.97 1.01

0.20 1.70 3.76 0.98 0.97

0 .3 0 2.34 4.31 0.99 0.97

0.2*0 2.89 4.87 0.98 0.97

0.50 3.32 5.2f8 1.00 0 .96

0.60 3.66 6 .1 4 1.00 0.99

0.80 4.12 7.56 1.00 1.03

1 .0 4.41 9 .0 6 1.01 1.05

1.5 4.83 1.27xl0“1 1.01 1.05

2.0 5.01 1.62 1.01 1.04

3 .0 5.27 2.25 1.02 0.94

5 .0 5.04 3.71 1.01 0.89

6.0 4.91 4.49 0.98 0.89

8.0 4.70 6 .1 6 O.96 O.96

10 4.59 7.92 0.95 1.05

14 4.53 1 . 16x10° 0.92 . 1.28



Table V .5. C ros3-sections derived fo r  CLE4,

€  ^ 5

(eV) (lO ^cm ^) (lO*^cm^)

0.01 9.5 0

0.015 9.5 0

0.02 9 .5  0

0 .0 3  9 .5  0

0.05 10*3 0

0.07 12.5 0

0.10 15.5 4.8

0.15 17 4,9

0.20 18 4-9

0 .3 0  19 5 .3

0.2+0 20 5.7

0 .5 0  21 5.9

0.70 23 6.2

1 .0  26 6.3

1 .5  30 6.3

2.0  34 6.2

2.5  38 6.2
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s/p W (calc.) D/ji( c a lc .) q^( o b s .) q^(obs,

(V cm ^ to r r (cm s ^) (v) c a lc .) cf̂ ( cal<

0.15 5.51x10^ 2.83 0.98 1.07

0.20 7.25 2.95x10~2 0.97 1.07

0.30 1 .02*x10^ 3.11 0.99 1.06

0.2*0 1.34 3.27 1.00 1.07

0.5 0 1.61 3.2*2 1.01 1.06

0.60 1.87 3.57 1.00 1.07

0.80 2.33 3.88 1.02 1.06

1.0 2.74 4.19 1.04 1.03

1.5 3.55 4.99 1.05 1.04

2 .0 4.15 5.85 1.06 1~04

3.0 4.92 7.82 1.07 1.02

4.0 5.35 I.OIxlO”1 1.03 0.97

5.0 5.51 1.30

00• 0.96

6.0 5.66 1.61 1.01 0.94

8.0 5.68 2.36 1.02 0.97

10 5.69 3.18 1.04 1.00

14 5.53 5.14 0.91 1.04

19 5.87 8.23 0.97 1.05
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Table V .7. C ross-section s derived fo r

€

(eV)

0.15

0.20

0.30

0.50

0.70

s .

(lO _l6om2) (lO_ l6 cm2)

0.010 4.6 0

0.015 4.6 0

0.020  4 .6  0

0 .030  4 .6  0

0 .0 5 0  4.5 0

0 .070  4 .3  0

0 .1 0  4 .3  0

7.3 °* 89

12.5 1 -2»5

23 2-1

38 3.2

52 4.5
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Table V .8. Transport c o e f f ic ie n ts  in  C_,Ĥ

(V

e/ p W (calc.) D/ji( c a lc . ) q£(obs.) q^( obs.)

cm ^ to r r (cm s (v) q £ (ca lc .) q*( c a lc .)

0.05 4 . 25x105 3.05x10~2 1.01 0.89

0.08 6.55 3 .26 0.97 0 .9 2

0 .1 0 8 .00 3.39 0.94 0.94

0 .2 0
£

1.43x10 4.04 0 .9 8 0.94

0.30 1.93 4.71 0.99 O.96

0.50 2.59 6.15 0.99 1 .0 0

0.80 3.14 8 .2 6 1.04 1.01

1 .0 3.34 9 .6 6 1.05 1.03

1 .4 3.52 1 . 24x10 ^ 1.07 1 .0 6

2 .0 3.59 1 .64 1.08 1.09

3.0 3.55 2 .2 6 1.09 1 .06
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