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ABSTRACT

Bohr's correqundence principle relates quantum
phenomena to classical mechanices in the limit W(S=>o0 s
as the dynamical action variables S vpecome large in
comparison with Planck's constant. Relations between
quantum and classical mechanics which hold even for low
quantum numbers and relatively small values of the
classical action are called correspondence identities.
For the Coulomb potential the following three correspon-
dence identities are known:

(1) The Rutherford Scattering identity The

guantum-mechanical and classical angular differential
cross sections for the scattering of a charged particle
by a fixed charge are the same.

(2) The Bohr-Sommerfeld identity The o0ld quantum

theory, which postulated that only those orbits occur for
which the action around the classical path of a periodic
system is a multiple of 2mW | gives the correct energy
levels of the hydrogen atom and hydrogenic ions.

(3) The Fock identity The classical and quantal

microcanonical distributions in momentum of the electron
in the hydrogen atom are equal for all values of the
classical energy equal to the levels B, .

These correspondence identities concern the system



of electron and proton and in this thesis it is shown how
each of the identities follows from a complete correspon-
dence identity whereby the non-relativistic quantum
dynamics of the system is obtained from the solution of
the correspending classical problem. A complete corres-
pondence identity is provided by expressing the kernel of
the spectral operator 'IE = S(E-— H) in momentum
representation for all real non~zero energies & , as a
sum over paths of terms containing the classical action.
For the bound states the paths are the classical paths.
For positive energies they are the generalised classical
paths which arise from the analytic contingation in
energy of the bound state paths. The generalised
classical paths are built up from the paths of scatter-
ing of both electrons and positrons and are needed to
obtain the quantal barrier penetration in momentum space.

Because of the similarities between the techniques
used in this thesis to provide a complete correspondence
identity and those of the phase-integral approximation
the results are compared wherever possible with those
of Gutzwiller (1967).

Finally, a general derivation of a scattering cross
section from the spectral operator is presented which does
not require an explicit treatment of the long-range dis-

tortion in the case of the Coulomb potential.
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CHAPTER 1

THE CORRESPONDENCE IDENTITIES

1) The Purpose of This Thesis

The present day theory of quantum mechanics is used
widely in all fields of atomic physics. Its origins may
be traced back to the beginning of the twentieth century
and were due mainly to the failures of classical physies to
account for the properties of black~body radiation and line
spectra. The development of the subject from the very
early theories to the unified and consistent theory of
quantum mechanics took about twenty-five years and an
extremely full and detailed account of this development is
to be found in Jammer (1966).

For many years the theories of classical physics had
remained unchallenged, and perhaps it is not surprising
that quantum mechanics, being based on assumptions which
clearly contradict some of the basic principles of
classical mechanics and electrodynamics, took so long in
its development. However, some of the delay must beA
attributed to the femarkable success enjoyed by certain

theories of atomic structure which were, in fact, based on



classical mechanics. So striking was the success of these
classical theories that the results predicted, later, by
quantum mechanics were identical. Such identities we have
called correspondence identities, and the purpose of this
thesis is to explain the correspondence identities that
exist for the hydrogen atom and hydrogenic ions.

It is quite fair to say that the correspondence
identities associated with the hydrogen atom are the ones
which have had most effect in the development of. quantum
mechanics, and bearing this in mind it is necessary that
they be understood. Not all of the correspondence
identities, however, have had parts to play in the develop-
ment of the subject, and as we shall see one of the
identities was first discovered in 1935 - well after the
birth of quantum mechanics.

Because of the historical importance of the corres-
pondence identities and their relevance in the development
of quantum mechanies it will be necessary in the opening
sections of this chapter to consider in more detail than is
usual for theses on quantum mechanics some of the early
quantum theories and theories of atomic structure. The
chapter will be concluded with a discussion of the corres-
pondence identities with particular reference to both the

early quantum theory and also to their present day
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application in atomic physiecs.

2) The Nuclear Atom

Regularities in the lines of the hydrogen spectrum
were well known by spectroscopists and empirical formulae
had been produced to describe themn. No theoretical inter-
pretation of the regularities could be given however because
of the inconsistencies met with in each of the existing
models of the atom. The two most notable models were the
"plum~cake' model of Thomson and the nuclear model due to
Rutherford. The nuclear model of the atom ran into the
serious problem of instability: the electrons revolving
around the nucleus would constantly be emitting radiation,
losing energy, and would fall towards the centre. The
size of the atom would continually be decreasing, which was
in direct contradiction to the predictions of the Kinetic
Theory, and also continuous radiation and not line radiation
would be observed. The Thomson model, on the other hand,
could not explain the results of scattering experiments
with a-particles that were being carried out by Geiger,
Marsden-and Rutherford.

It was observed that a~particles mostly passed without

deviation through air and thin layers of foil, but
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occasionally they were scattered. through large angles, often
by as much as 1500. These large angles of scattering were
also due to single collisions and this was confirmed by
observing the collisions in a Wilson cloud chamber. The
large forces necessary to produce this type of collision
could only arise in the nuclear model and did not arise in
the Thomson model.

Rutherford produced firm evidence in favour of the
nuclear model by evaluating the angular differential cross
section (by means of classical mechanics) for the scattering
of a-particles by heavy nuclei. The well known formula
for the angular differential cross section - o0~-(®@)

is given by:

a—-(@) — (Zez)z c.«:ae.':'.“'__@"ZT (1.1)

mV%

where the a-particle is assumed to carry a charge 2e
have mass wm and an incident velocity V . This formula
was verified experimentally by Gelger and Marsden,‘and by
making absolute measurements for fixed values of @ and
V., Rutherford was then able to infer successfully the
nuclear structure of some of the elements. It was well

known at the time that quantal corrections had to be made

to certain classical formulae of atomic physics. No such
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corrections were needed in the Rutherford formula.

3) The Bohr-Sommerfeld Theory of Atomic Structure

The nuclear model of the atom was chosen by Bohr as
a basis for his theory of atcmic structure. He overcame
the problem of instability by postulating the existence of
stable orbits in which the electrons could rotate without
the emission of radiation. When an electron jumped from
one stable orbit to another of lower energy it would radiate
a photon of energy hv and the size of the atom would
be maintained by the existence of a ground state from which
the electron could not decay.

In 1913 Bohr applied these concepts to the hydrogen
atom, assuming the electron to move around the proton in a
planetary fashion according to tho laws of classical
mechanics. He considered only circular motion and obtained
the stable orbits by imposing a quantum condition on the
value of the classical angular momentum. By requiring
that the angular momentum be equal to a whole number mm
of units of h/amw he obtained for the energy levels

of these orbits the wvalues

— — et 2z
E, = 6-:;23 no=V,2, ... (1.2)
mn



With this model Bohr was able to explain the Balmer series
formula and confirm the predictions of the Ritz combination
principle. His expression for the Rydberg constant in
terms of well known constants was also in excellent agree-
ment with the experimentally observed value and the radius
of the smallest Bohr orbit was of the order of 10 % cm as
predicted by the Kinetic Theory.

Bohr's successful theory of the hydrogen atom was put
on a much more general and sophisticated basis by Sommerfeld.
He postulated that the stationary states of any periodic
system with £ degrees of freedom would be determined by

the quantum conditions

| é}]ako\wk = 'nhh, , \R=\,2,..,-(‘ (1.3)

where P and q are the usual canonical variables in
phase space. For the hydrogen atom he considered the
general elliptic motion of the electron and by taking polar
coordinates ( v, © ) 1in the plane of the orbit he obtained

for the energy levels

E, = —2wetu (1.4)
ht(“r"’ne)z

where N+ Ny = M and M is the reduced mass of



the electron and proton. The energy levels, however,
were the same as these cbtained by Bohr, who had only con-
sidered circular motion.

Sommerfeld was searching for some explanation of the
fine structure of the lines in the hydrogen spectrum and
considered the solution of the problem in three dimensions.
Again no new energy levels could be found, but by considering
the relativistic change in the mass of the clectron,
Sommerfeld was able to show that the orbits were then no
longer closed, but precessed about the nucleus. In this
way he was able to acccunt for the fine structure of the

hydrogen lines.

) The Correspondence Principle

An important development in the understanding of the
quantum theory was Bohr's correspondence principle. The
Bohr-Sommerfeld theory could be used effectively (in the
case of hydrogen) to obtain the atom's stationary states.
A description of the processes resulting from transitions
between these stationary states was the subject of the
correspondence principle.

It had its foundation in the assumption that quantum

theory contains classical mechanics as a limiting case.
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Planck had noted that as h - O his radiation formula goes
over into the Rayleigh-Jeans formula. Bohr noticed the
same was true as the frequency Y becomes small for fixed
h. For a periodic system the concept'of v > O may be
interpreted in the following way. In terms of the change
in energy, AE , the frequency of the emitted radiation

is given by

AE = hv . (1.5)

As v-0, then AE nust also tend to zero. This
situation arises when the energy levels almost form a con-
tinuum. 'In terms of quantum numbers, m , this suggests
that the change in wm must be small compared with wm .

In the case of the hydrogen atom this occurs in transitions
hetween highly excited states. From purely classical con-
siderations Bohr could conclude that an electron in an
orhit of large energy should, when i% jumped to an adjacent
orbit, radiate a photon whose frequency was equal to the
frequency of rotation of the electron itself. He also
insisted that any special properties that én electron might
have 'inéide' an atom must pass naturally to the classical
properties when the electron is far from the centre of the
atom.

To Bohr, the general method of solving a problem was
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clear. One had to calculate from an assumed classical model,
and then adjust the necessary formulae such that the change
was negligible for large quantum numbers, but was in good
agreement with experiment for low quantum numbers.

Classical electrodynamics provided a complete knowledge of
the intensities and states of polarization of spectral lines,
and in the manner just described Bohr was able to give a
full description of the radiation emitted by the motion of
electrons in atoms. This method of accounting for the
actual situation by means of the corresponding classical
situation was called the corrcespondence principle by Bohr.

He realised that the classical theory of radiation was the
limiting case of a more general thecry, but this theory

had then still to be discovered.

5) The Rise of Modern Quantum Theory

Although the Bohr-Scrmerfeld theory gave an excellent
account of atomic structure in the case of the hydrogen atom,
it often failed in its application to the more complicated
atoms and molecules. The theory did not for example predict
the electronic energy levels of the F4; molecule
correctly. The Bohr-Sommerfeld quantum theory was

essentially based on classical mechanics, and by the
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corrcspondence principle just discussed the description it
provides when gquantum numbers are high is perfectly adequate,
however the theory has no real justification in the case of
small quantum numbers. This was realised by many people

at the time and indeed completely new theories were developed

by Schrddinger and Heisenberp and the product of these
theories is what we now call the theory of quantum mechanics.
Schrddinger's approach had its origins in the wave-
particle properties of hoth radiation and matter. The
famous Schrodinger wave equation for matter waves was the
culmination of work done by Debye and de Broglie. Debye
noted that whenever the refractive index of a medium changes
slowly over distances comparable with the wavelength, then
the scalar wave equation of optics reduces to the eikonal
equation of geometrical optics (see for example Goldstein
1964, chap. 9, §8). De Broglie conjectured that since
geometrical optics was the limiting case of wave optics
then perhaps the Hamilton-Jacobi equation of classical
mechanics was the limiting form of an equation representing
matter waves, and he showed in 1924 that if one supposes
waves to be associated with matter, then the wavelength A

of the matter waves is given by

A

h/mv (1.6)
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where Vv is the particle velocity. Schrddinger in 1926
obtained the equation of matter waves which gave the wave-
length in accordance with de Broglie's result. Schrédinger
pointed out that just as wave optics must be used whenever
the refractive index changes considerably over a wavelength,
then wave mechanics must be considered whenever the path of
the system changes considerably over the dimensions of the
associated de Broglie wavelength, as it does for the electron
in an atom.

At the same time as these advances in wave mechanics
were taking place, Heisenberg took a decisive step in the
formulation of matrix mechanies. He rejected the idea of
the path of an electron on the grounds that no one had
actually observed it, and he developed a theory based on
observed quantities such as frequencies and intensities.

By using the correspondence principlec once and for all he
was able to guess the complete mathematical scheme of the
quantum theory.

The main feature of this new thecory was the fact that
physical quantities such as position and momentum were
represented by sets of time-dependent complex numbers - the
sets being infinite-dimensional matrices. Further the
theory predicted that a simultaneous knowledge of both the

momentum and position coordinates of a system was impossible
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and the famous uncertainty relations have never been
disproved. Heisenberg's theory of matrix mechanics was
shown to be equivalent to the wave-mechanical approach by
Schrddinger himself, and the two theories were later com-
bined and put on a rigorous axiomatric basis by Dirac,

Jordan and Hilbert,to name but a few.

6) The Correspondence Identities

When we consider the Bohr-Sommerfeld theory of atomic
structure in the light of quantum mechanics, it is easy to
understand its failures. The idea of electrons in atoms
moving in well defined orbits, so essential in the Bohr-
Sommerfeld theory, is in direct contradiction to Heisen-
berg's uncertainty principle and to the basic assumptions
of wave mechanics. It is extremely difficult to account
for the fact that in the case of the hydrogen atom the
Bohr-Sommerfeld theory did prove to te successful and indeed
gave results which were only to be confirmed by quantum
mechanics. The theory was based on the nuclear model of
the atom which as we have seen was strongly substantiated
by the results of Rutherford's scattering experiments with
a-particles. The success of both the Bohr-Sommerfeld

theory of the hydrogen atom and Rutherford's work on the
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nuclear structure of the elements can be attributed to two
correspondence identities:

(1) The Rutherford Scattering Identity. The quantum-~

mechanical and classical angular differential cross sections
for the scattering of a charged particle by a fixed charge
are the sane.

(2) The Bohr-Sommerfeld Identity. The electronic energy

levels of the hydrogen atom and the hydrogenic ions as
predicted by the theories of Bohr and Sommerfeld are the
same as those predicted by quantum mechanics.

In the case of a~particles scattered by nuclei, the
action integrals associated with the interaction are large
compared with Planck's constant and the approximation of
classical mechanies is valid. The success of Rutherford's
work can be accounted for in this manner. But this
argument cannot be applied to the case of electrons or
positrons being scattered by a central Coulomb potential,
where the value of the angular differential cross section
is still the same as that given by the Rutherford formula
(see Mott and Massey 1965, p.53). The Rutherford scattering
identity as it applies to the scattering of an electron by
a fixed proton will be considered in this thesis and
corresponds to the problem of the hydrogen atom for positive

values of the total energy.
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The Bohr-Sommerfeld identity concerns the bound-state
problem of the hydrogen atom, and whenever the atom is in
a highly excited level, the good agreement between the two
theories can be understood by means of the corrcspondence
principle. Why the identity holds for all quantum numbers,
large and small, will be explained in this thesis. This
correspondence identity obviously had a major effect on the
development of the gquantum theory. Transitions between
low levels of the hydrogen atom could be studied, and the
frequencies of the various spectral lines predicted
accurately. Those lines predicted in the far ultra-—
violet were discovered in 1914 by Lyman, and the lines of
ionized helium, corresponding to the Pickering series were
found experimentally by Bohr and Evans. It was successes
like these which suggested that the Bohr-Sommerfeld theory
held all the answers tc problems of atomic structure.
Indeed, the success of the theory and Sommerfeld's account
of the fine structure of hydrogen lines in terms of the
relativistic change in mass of the electron were probably
responsible for the delay in discovery of spin.

There is a third correspondence identity associated
with the hydrogen atom which played no part in the early
development of guantum mechanics. It was duec to Fock in

1935 and is an identity between the classical~ and quaatum-
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mechanical bound-state momentum distributions of the electron
in the hydrogen atom. Suppose that a statistical assembly
of hydrogen atoms all have the same negative energy En .
Then quantum-mechanically, neglecting spin, there are n*
states belonging to this level. If we assume that each of
these states is equally populated in this assembly, then

we have a quantal microcanonical distribution. Fock (1935)
showed that for such an assembly, the distribution in

momentum P, ( e) is given by

/On( P = SP,? (1.7)
- m(pr+ Pt

and has the same form for all values of n . In this

. Q. . .
equation P., is the mean square momentum whose value is

The corresponding momentum distribution obtained from

the classical microcanonical distribution is

Alp) = S

we(pe+ pY

(1.8)

and is identical to the quantal momentum distribution for
every value of the classical energy cqual to the levelsEZn .

We shall refer to this correspondence identity as the Fock

identity. It is interesting to note that no identity
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exists between distributions in position, since the classical
orbits in position space for a given negative energy are
bounded.

The Fock identity is of particular importance in the
study of p~H and e-w collisions by means of
classical mechanics (Abrines and Percival 1966ab;Abrines,
Percival and Valentine 1966). Here the target atoms are
chosen from a microcanonical assembly of hydrogen atoms for
which the distribution in momentum of the electron will be
that of equation (1.8 ). 1In particular, when the assembly
is chosen sc that each atom has the ground state value of
the enersy, then the classical distribution in electronic
momentum will bc identical to the quantum-mechanical (1s)
distribution. The p-H ionization and charge transfer
cross sections obtained by Abrines and Percival when the
atom is originally in its ground state agree with the
experimentally obtained values to within the error bars.
This good agreemcnt has been attributed in part to the
Rutherford scattering identity. However, to what extent
the agreement is due also to the Feck identity has not been
considered, and at this stage, it is still safest to regard
the agrz=ement as one more spcecial feature of the Coulomb
potential. The three correspondence identities to be con-

sidered in this thesis are special features of the Coulomb
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potential which must be understood before more complex

problems can be considered!
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CHAPTER 2

METHODS OF CLASSICAL MECHANICS

1) Introduction

The correspondence identities are relations between
classical and quantum mechanics which hold for all quantum
numbers and values of the classical action. One way of
explaining the three correspondence identities mentioned in
Chapter I is to obﬁain a complete correspondence identity
whereby the full quantum dynamics of the hydrogen atom for
both positive and negative energies is completely determined
by the solution of the corresponding classical problem.
Energy levels, state vectors and the evolution of the system
with time must all be obtained from the classical solution
and the other correspondence identities should then follow.
In this chapter the necessary techniques of classical
mechanics that are needed in the study of correspondence
identities are explained, and for the purposes of reference
a fairly detailed account will be given, however an excellent
and full account can be found in either Corben and Stehle
(1966), Goldstein (1950), or Landau and Lifshitz (1960).

Many problems arising in classical mechanics can be
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considered in the light of Lagrangian or Hamiltonian dynamics.
Let us consider first of all the Lagrangian formulation of

dynamics.

2) Lagrangian Dynamics

" The instantaneous configuration of a system with m
degrees of freedom can be described by the values of n
generalised coordinates LFR PRIEL #IEL PR The relations
between 9 Qq and %t are the equations of motion
which determine how the system point moves in configuration
space as time elapses. The equations of motion can be
obtained from Hamilton's principle: out of all possible
- paths by which the system point could travel from its
position qf’ at time %, to its position %P at ﬁime

t,, it will travel along that path for which the integral

<

S = St.L'(%f‘i/ut)“ (2.1)

7

where  L.(q,;, f{,;,t) is the classical Lagrangian of the
system, is an extremum. This stationary value is known
as Hamilton's principal function.

To derive the differential equations of motion we

assume that g, = aV.L(“c) are the coordinates for which 9
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is stétionary. We now vary 9. (&) so that they become:
: L

q.(e) + 8q.(8) . (2.2)

Since the coordinates of the system point at times <t , and

t, are ‘$D and q%) , then it follows that:

Swéh) = Swﬁt0‘=0 -V VR (2.3)

The principle may be written in the form

= SJ L(9;,9,,8)dt = O (2.4)

which, on carrylng out the variation gives
tz. n
[at. sﬂ j > (2L —d 3L)S5q ke
i=1 £, €, i= 3q/ d’tbq, ¢
= O . : (2.5)

By virtue of the condition (2.3) the first term on the
right-hand side of equation (2.5) is zero, and since this

equation holds good for all arbitrary 541, we must have
L

a (oL _ 3L _ L =1.9 .. (2.6)
o\xaéw) dey; © o rThmen

These are Lagrange's equations of motion and mathematically

they constitute a set of Y second order equations for M
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unknown functions oy, (t).

‘What is important about Lagrange's equations is that
they remain valid, in the same form, in any coordinate
system which can be related to the original coordinate
system by é point transformation. Such a transformation can
be regarded as a mapping of the w -dimensional configuration
space onto itself such that the new (barred) coordinates

may be expressed in terms of the original in the following way

q/& = .@A (CVHWL) ")q/L"'Jq/n) ) j:\)?')"’n' (2.7)

The functions - ,. ,%;,.,;f, must be single valued and
differentiable so that to a definite point P in the
original space there corresponds a definite point iS in
the new space. In this way we are at liberty to choose

the most convenient coordinate system in which the equations

of motion are easiest to integrate.

3) Hamiltonian Dynamics

An alternative formulation of classical mechanics,
which has a2 much broader application, is due to Hamilton.
In this formulation the independent variables are the vu

generalised coordinates 4§, together with w  generalised
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momenta P. > defined by

p. = 2L (2.8)

¥

where \_. is the Lagrangian function. The aim is now to
cbtain both the coordinates and generalised momenta as
explicit functions of time. The motion of the system is
represented hy a path in phase space of 2n ~dimensions.
The motion may start from any point of phase space, but
after specifying one point in this space, the motion is
subsequently determined.

fhe equations of motion may be formulated in terms

of the Hamiltonian function
H o= H(Wi,)pi,)t> (2.9)

which is related to the Lagrangian \. by a Legendre trans-

formation (see, for example, Goldstein 1950):

H o= {i-‘ \DL&V; -4 . (2.10)

The equations of motion then arise from a modified

Hamilton's principle:

€,  _n
oS = gjt‘f_§| P, H§°"< =0 (2.11)
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The & -variation here implies that the variations Sqq(€3
and 5Pi(¥) are to be regarded as independent. The
varied curve in phase space must be such that

S%(t,) = é%(tz) = o . (2.12)

Carrying out this type of variation we obtain:

§S = Jt{;(dngpi-q-ﬁ_&b) Z(bHSc’/ +3H SP)}o\t

-13

L

J vz | L= bq, ?
\

Z.FSCV}

L=y

= [HZ(a8r-pde)- LU 59, Jugp)iar
t

- o . (2.13)

Because of condition (2.12) the last term vanishes, and since

e

the independent variations 5;& and SOV‘ are quite
[N 8

arbitrary, we must have:

: = oH :
Y. T 3. ' ?;,:'—B‘tl“

These are Hamilton's equations of motion and together

(2.14)

comprise a set of 2n first-order differential equations

for the coordinates and momenta. Neither the coordinates

q,. nor the momenta p. are to be considered as the
C

more fundamental set of variables.
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by Principle of Least Action

The variational methods so far described are due to
Hamilton. However, if we are dealing with a system in
which the Hamiltonian is conserved, so that time is absent
from H , then we can determine the path of the system,
without any particular reference to time, by utilising the
principle of least action due originally to Maupertius.
This principle was correctly formulated by Euler and

Lagrange, and we consider the variation of the function
‘fii p.dq, . In this type of variation we require
L 8 L

that the variations of the end points are zero so that
O Q@)
bo, = 50\( = O | (2.15)

where (1) and (2) refer to initial and final values of the
coordinates. The times of the end points are in fact
allowed to vary. This is due to the fact that each of the
varied péths must have the same value of the energy, and as
a result the system point may have to speed up or slow down
in order to keep the Hamiltonian constant. Provided the
varied paths all have the same energy, then it can be shown

(Goldstein 1950, p.228) that
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)
W

AJ Z_P."dq/.t = O ‘ (2.16)

()
9

where the [3 variation allows for variations in the time
of the end points.

The condition of least action is in principle
sufficient to obtain the actual path of the system. The
value of _fzi-PaquL , taken over the path of the systen,
is known as Ha;ilton's characteristic function and only
yields a knowledge of the path when combined with the con-

dition

H(P) OV) - E = constant . (2.17)

The path is a curve on a (2wn-1)-D energy surface in phase
space, but can be treated as a curve in q - space, since

the various P have to be known functions of the 9,
before JZ P. O\OVL may be evaluated. We shall also
' \

refer to this function as the energy-dependent action
function. The same quantity is also referred to as the
abbreviated action (Landau and Lifshitz 1960), or simply as

the action function (Plumpton and Chirgwin 1966).
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5) Canonical Transformations

The differential equations which arise out of the
Hamiltonian formulation of mechanics are usually no easier
to solve than those appearing in the Lagrangian formulation.
In the first case we have 2n first-order equations to
solve, and in the latter case wn sccond-order equations.
We have already seen how Lagrange's equations of motion can
sometimes be made easier to solve by a change of variable
brought about by a point transformation. In the Hamiltonian
formulation, however, the generalised momenta as well as the
coordinates are regarded as the variables and the concept of
'change of variable' is now the simultaneous transformation

—

of both o9, and p.  to g, and p_ say, where

C-\!; = E‘—/L( P Y, )E)
(2.18)
Pp = Pi(?;, .J‘\q't)-

Transformations of this type are less restrictive than
point transformations and may be used to formulate classical
mechanics in various representative spaces, for example
momentum space, as well as making the solution of the

equations of motion easier in certain cases.
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In the new transformed space we naturally require QI

and P, to be canonical variables. We thus need some

new Hamiltonian function H(q,, P, ,‘t) with the
property:
= _ 2N 5 = -2H
Y. = 35 y P = "Ba_ (2.19)
P Yi

When equations (2.19) are valid, then transformations of

the kind (2.18) are said to be canonical (or contact) trans-

formations. If g, y P; and E@L) P. are related by a
L L

canonical transformation, then they each must satisfy:

2

S tRa - Rje =0 )

t, (2.20)
5 Ffre— s =0

The two integrals therefore differ at most by a total time

derivative of an arbitrary function (P s ®ay, called the
generating function of the transformation. When 4) is

given the transformation is completely specified.

(i) is at first sight a function of 4w variables

as well as time. However, by virtue of the transformation

equations (2.18) only 2n of these are independent and
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the generating function may be a function of either :

4oad) 5 (4,59 5 (g k) or (p,5,8) . (2:20)

The type of problem will usually indicate what the form of
the generating function must be. The most important
generating function, by analogy with unitary transformations
in quantum mechanics, is the one where gq,q4  are the

independent variables. In this case

cp = ¢(q,3,t) - | (2.22)

Equation (2.20) then gives

Z}:_PL&\/L—H = 2 37,~ H + 3 $(q,5,,t). (2.25)

(¥ L8

&

However :

d¢ = 5204 +F05 L 20 (.o
ax ¢ Oq; gt 3%

and when this relation is used in equation (2.23), together

with the condition that 9, and BI,L are independent
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variables, we obtain

b‘Vz
o= —20 (2.25)
H = H+ 2¢¢.

These equations together with (2.18) provide sufficient
information to establish a Hamiltonian dynamics in the new
space of variables.

In problems where the independent variables are to
be %, and R , then the transition from (q,,3 )
to (OV’ E) as independent variables may be carried out

by a Legendre transformation and we obtain

\\/(cl/’-é,t) = 4)(%)@)1:) +Z—é;§._ R (2.26)

It is easily shown that ‘Y generates the transformation

and we have now:

Ph e
. =
LE
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7= A
PL
} (2.27)
H = H+B+/3£—.J '

A third type of generating function of the form
7
N (¢,3,€) , where p and g are to be regarded

as independent, may be constructed from 43 as follows

Ct)(q(’a()t) = ZL'GV:.PL ¥ \\/’(;V) Ptt) (2.28)

and this leads to

. = -2t
9, =
—_ !
P, = —é—t_r—- (2.29)
24,
| = H + dY/at.

Finally, when p and P are to be taken as

independent variables the corresponding generating function

4
Cf) is related to ¢ by 2 double Legendre transformation:
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, — - .
O (p,5,8) = d(a,a,%) +2 53 -2-p9, - (2.30)
The transformation equations are

Y. T “3_‘9.’ \‘

9P

3. = 24’ P (2.31)
o P,

H = H + 2¢/ot . )

In considering these transformations we have assumed
them to be dependent on time. However in cases of con-
servative systems, where time is of secondary importance,
nothing is lost in considering time-independent trans-
formations. In cach case we see that the value of the new
Hamiltonian remains the same. The value of the energy-
dependent action is then related to its new value in terms
of the change in ¢> . This follows from equation (2.23)

and we have

b b

b
{Z;_\Didovl = [Z pAg. * [d)(q,,u‘y)] (2.32)

i a
a
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where a and Y stand for initial and final values. It
is shown by many authors that the generating functions of
the type C‘)(q,,b’v) form a group, and when 4? = O as

in the case of a point or identity transformation, we see
that the value of the energy-dependent action function
remains unchanged. Their functional forms, however, are

in general completely different.

In the iight of contact transformations, we see that
no representative space is necessarily more important for
the formulation of Hamilton's equations of motion. The
only criterion we use in choosing one particular represen-
tation as opposed to another is that we require the simplest

possible solution to the problem.

6) The Hamilton-Jacobi Equation

One way of obtaining a solution to 2 problem is to
seek a canonical transformation from the coordinates and
momenta (q, ) P) at time £ , to a new set of constant
quantities which could be the 2w initial values

(%o, Po) at time £ =0 . The equations of the
transformation are then the solution to thé mechanical

problem:
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q/ = C‘/(q/o’ Fo "t) )

(2.33)

F = P(W07Po’.b) :

We have then the coordinates and momenta as functions of

their original values and time.

To avoid confusion with what has been said in the

previous section, we shall label this constant (new) set

of initial values by (9§,,$) . To ensure that these

variables are constants, we require that the new Hamiltonian

function is zero. Then we have:
W o g = o \
P
s all ¢. (2.34)
"E__H_ = ?’ = O
25, t J

The new Hamiltonian is related to the old Hamiltonian by

means of the generating function Cb :

H = H+ 3d/at (2.35)
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and equations (2.34) will be satisfied if

H(‘\/) P)t) + -bcb/bt =0 . (2.36)

If we use the generating function Cb(;v-,éo,i:) , we
see that equation (2.36) may be written by virtue of

equation (2.25) in the form:

Hia, ... 59,20 .. 20 £)+2¢0 = o
(q,l q’n bc‘/" b ) > bt— . (2.37)

This is the well known Hamilton~Jacobi equation. It
is a first-order partial differential equation and will
depend on  wvi+ | arbitrary constants. The solution, <b s
is called Hamilton's principal function. It is not unique
since we could equally well have obtained the same Hamilton-
Jacobi equation by using the Y type of generating
function as described in the previous section. But in

this case Y differs only from 4> by an additive

constant Pgi') . Ignoring this, we may write

Ct) as 4)( Yor Var -+ 1 Y s Xir%ay-roknyt) « The o

are the new constant variables EL, . The equations
[
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20 - 5 = (

== = p = B 2.38)
bd.& PL éb

then provide the solution of 4,  in terms of «; , §;

and t , and finally the equations
o = 2 (2.39)
v 2
¥

then give the momenta e as functions of 9, and
L

.

. » and therefore as functions of £ , o and B .

We have thus obtained a solution to the problem in the form
of equation (2.33). To show that 43 is in fact

Hamilton’s principal function we note that

and as the E@_ coordinates are constants in time then
[ %

y—H =L . (2,50

o/
c

Ak caq,-!_‘ L

To within an additive constant, then:
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b = JLQU: . (2.41)

In the case when the Hamiltonian is conserved, the
time Y is absent from the Hamiltonian and the Hamilton-

Jacobi equation becomes:

20 + H(q,29) = o . (2.42)
ot 209
c&) depends on time only through a4>/at , and we

separate out the time by writing

,cb(%;‘*ut) = —EL + W(a %) (2.43)

where E is the constant value of the conserved Hamiltonian.

The Hamilton-Jacobl equation now reduces to

H(av.b,a_a_\»\_l = E (2.44)
Y.
and the function W generates a time-independent contact
transformation: the momenta being given by p. = oW
. oW,
aqf-

from equations (2.43) and €239). In equation (2.43), the
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generating function
generalised coordinates Y, » and w

The constant energy &

constants

4> is a function of the time, the n

Lo -

cannot be then independent of the

oLy - It is usual to make E one of the constants &, ,
say. The remaining equations of the transformation give
S"';('. - @y— Pg y b _\) )V\—l w
L
and
b
-W =gt = (2.45)
QE n n
P
The @L are all constants. The first wn-—| equations

describe the path of the system and the final equation gives

its time dependence. W

is just the energy dependent

action function or Hamilton's characteristic function.

This is easily seen since:

A ELEEEL-éﬁd. = 7 o4
o L dq,. dak ZC ?ig\';‘f‘

and so, to within an additive constant

W= J%Pc"\%

(2.46)

(2.47)

The important point to remember in solving the Hamilton-
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Jacobi equation is that a knowledge of either <§ or W
is sufficient to provide a solution. Alternatively, once
we have obtained the equivalent action functions we have in

principle a solution to the problem.

7) Extended Phase Space

We have seen how time-dependent contact transformations
usually lead to a new Hamiltonian whose value is different
to that of the old one. It is not unreasonable on symmet-
rical grounds, to expect that when contact transformations
depend on energy, the new value of the time will be changed.
The usual concept of time as a parameter must now be altered
and we have to regard time as one of the variables. t
may be labelled as the (n-+l) th coordinate and accord-~
ingly we make -H the corresponding conjugate momentum.
Canonical transformaticns which are energy dependent have
to be treated later on in this thesis and so it is worth
while outlining the changes in outlook that occur in dealing
with the (Qn-+§)~ dimensional phase space, called
extended phase space by Lanczos (1966).

In this space we take as variables Yo sV Vs = €
and PP, +- 1 Pas Py = — H . For convenience we

make the first n+| variables the generalised coordinates,
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and the remainder are the generalised momenta. Instead of
constructing a Hamiltonian function H , we now construct

an energy equation

’Q"(PL)D‘/') = Q. (2.48)

The solution to the problem in this cxtended space is going
to be one which involves expressing all the variables in
terms of some parameter, S , say. The relevant equations

of motion arise from a variational principle of the type

S
Z n)

o (2 p.da; — Ms)-O-QPUC\/Q) ds = 0 (2.49)
)s, =1 " ds

where the end values of 9, remain fixed and any variation
is subject to condition (2.48). We obtain the following

canonical equations of motion:

M — A =0 )
as ?p; ‘
L=h2,.. ,mea . (2.50)

‘ifb -+ .hGQEQQ: =0
as BcV-L

/

By proper choice of § we canmake A=1 , and § is

then a special parameter (see Synge 1960). By making the
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time & , in general, one of the variables we may then say
that thé systems are always conservative in the sense that
QL is conserved and is zero.

When considering canonical transformations we have to
treat the parameter § in the same light as we did *
previously. That is, the rocle of s as a parameter holds
in both the old and new representative smaces. The energy
function L is also to be regarded as an invariant so

that

L(p)q) = LL(GF3) - (2.51)

This does not mean, of course, that H=W . The treat-
ment of cancnical transformations is exactly analogous to
that already given, but now, of course, we have two more

variables, the time and the enecrgy.



CHAPTER 3

METHODS OF QUANTUM MECHANICS

This chapter is devoted to the methods of quantum
mechanics that are necessary for the study of correspondence
identities. As well as considering the quantum-mechanical
evolution and Green operators, we also consider the
generaiised function operator SCE?—l4> which is the
spectral operator of a system whose Hamiltonian is P{
and whose total energy is E . Changes of representation

by means of unitary operators are also discussed.

1) Description of a State in Quantum Mechanics

In classical mechanics we saw that it was necessary

to know both the values of the coordinates and momenta for

a complete description of the state of a system. In quantum
mechanics Heisenberg's uncertainty principle indicates the
impossibility of a simultaneous knowledge of both coordinates
and momenta and in quantum mechanics the state of a system
has to be described by fewer quantities. The maximum

number of independent observable quantities whose values con

all be measured simultaneously constitute what is known as
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a complete set of cbservable quantities and in quantum
mechanics the state of a system is described most fully in
terms of states which arise as a result of the simultaneous
measurcment of such a complete set. If all the possible
states of a system corresponding to the simultaneous measure-
ments of aAcomplete set of observahles are labelled \VL 5

then the most general state can be written as
Y= z:_ocn\\/n (3.1)

if v=m is a discrete label, or, if L:'v is a continuous

label, as

Y = jch; O N (3.2)

2) Operators in Quantum Mechanics

Measuring processes in quantum mechanics are repre-
sented mathematically by Hermitian operators. For every
observable quantity there is a Mermitian operator. The
results of measurement are the eigenvalues of the operator,

and the states which lead to these results are the eigen-
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states. If the operator is | , and the eigenvalues are

7\, then
n= ‘)1). .. (3-3)
if the spectrum of L. is discrete, or

\._\'\/7. = 7\\"7‘ (3.4)

if the values of A form a continuous set. If there is
more than one eigenstate corresponding to a given eigen-
value, then the eigenvalue is degenerate. In this section
we shall assume that eigenvalues are non-degenerate and only
deal with degeneracy when it arises.

Expanding the wave function representing the state
YV in terms of the eigenfunctions of L. we may write,

assuming the spectrum to be discrete,

Y(a) = c/_‘;o(,,“'\’,,(@ : (3.5)

Assuming that the eigenfunctions \K.(‘jc) are normalized,
the expansion coefficients o, can then be evaluated in

the usual manner, so that equation (3.5) becomes:
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Y@ = £ {dg Yalap it ¥(q) (5.6)

which we may express as:

T = 2§ dq Putyq) ¥e) - 3.7)

The function  P,(a/,9') is known as the kernel of the
projection operator Tﬂl . The completeness relation of

the eigenfunctions can be expressed in the form

%R(%qj) = S(g-9) (3.8)

where the delta function is the usual Dirac delta function
(see Dirac 1958, Lighthill 1960).
Operating on both sides of equation (3.6) with L

we obtain:

Lt (@) = 2 Jdg L¥a@ e Yig)

= 7 Jdg W) @) ey

i

Ly MRy ) YL (3.9)
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so that in the form of an operator equation

L =22\ B . (3.10)

This is the spectral resolution of the operator L. and
provides us with a knowledge of the eigenstates and eigen-
values of the bperator. It can easily be shown that for

functions of operators:

£y = 2;,‘40"‘)?“ (3.11)

and we shall assume that this is true also for generalised
functions of operators (Schénberg 1951).

In the case of . having a continuous spectrum, we
assume that we can choose N itself to label the states.

The eigenfunctions \\/7,(%) are then normalised as

(g ht@ = sa-0. o

In terms of these eigenfunctions the wave functions of the

system may be expressed

Vi) = [dremt@) (3.13)
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where the expansion cocfficients ol(d) are given by

o((?\) = jo{ﬂ!' k\/(i;)kk:(i;) (3.14)

The wave function may now be written

Y = ol Rt o

where ’Ph(oy/,ax') is the corresponding projection
operator kernel onto the states corresponding to N . The

completeness relation may be written

[arRlq, %) = 8a-) (3.26)

and the analogue of eguation (3.11) is just

£ = jo\?d;(h)’\%, . (3.17)

The wave functions and operator kernels in both the discrete
and continuous case are different in different represen-
tations; however operator equations hold independently of

representation.
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3) The Evolution Operator

In classical mechanics we can regard a problem as
solved when the state at any given time Yt may be

expressed in terms of the state at some given initial time

+_ say, as in equation (2.33). In quantum mechanies if
we can express any state ‘V(t) at time ¢ in terms of
the state Y(to,) at time To , then we also have, in

effect, solved the problem.

If the system is not subjected to any measuring process,
then it will evolve in an exactly predictable manner. We
assume that the evolution of the state of the system can be
represented by 2 linear operator U(t ,%o) called the

evolution operator, so that

Y(v) = Ut Y(te) ; ok t,k, . (3.18)

We shall also assume, without proof, that the state ‘V(t)

at any instant € satisfies the Schrddinger equation:

oY = Wy (3.19)
ot

where H is the Hamiltonian operator and R is Planck's

constant divided by 21T . And so:
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i Ubts) = HUK,E.) . (3.20)
2t

If we restrict our discussion to systems where the
Hamiltonian is conserved, we can solve this last equation

together with the condition

(3.21)

\l
—

SICPADY

and obtain:

U(k,to) = e»c?é-:;_H(b--bo)} ] (%.22)

Since the Hamiltonian operator is Hermitian, then the
evolution operator is unitary.
Using the relation (3.11) or (3.17) we see that the

evolution operator may be expressed in the form

Ut ko) = E‘;—- -Pn e”“?ii“é“E"(t—tJ} (3.23)

if the energy spectrum is discrete, or in the form

U(‘?,to) = SO\E encp %-%E(t-bo)}PE (3.20)



if it is continuous. If the spectrum is mixed, then the
evolution operator is given as a sum over the discrete
spectrum together with an integral over the continuous
spectrum. Should the energy levels be degenerate, then

the different states belonging to the particular level, have
to be distinguished with further labels (continuous or dis-
rete) k, L , m ,..., and the projection operator Pwn

is then given by

i —R),k,ﬂ,mj... (3.25)

" k,2jm,. ..

where 'S_ ' here, means sum over the discrete labels
together with integration over the continuous ones (over
the appropriate ranges of each). The same applies for
T . The normalization of the states has also to be
adjusted accordingly and equation (3.12) would read, in

the case of A being the energy:

gdi/\‘/slkiﬁl ‘V) \[/'k' ‘ S(E E) é(h k) . (3.26)

vthere the delta functions are either Kronecker or Dirac

delta functions.

Thus the kernel of the evolution onerator may be
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evaluated either by using the fact that it is a solution
of Schradinger's.equation with boundary condition (3.21),
or by means of the expansions (3.23) and (3.24).

In general the evolution operator U(t, to) is
defined for all times t ,t, . We may define the forward
evolution opsarator, L)+(*:,t°) by: |

U, &) 5 %0

Ut(e, k) = o0 bcs (3.27)
. ) o

and similarly the backward evoclution operator U“(t,t°>
by:
Uk, te) ; €<k,

U™k, &) = (3.28)
(@) ; €2t
so that:
Ut(e,ks) + Uk k) ; £+ Eo
U(t,t) = (3.29)

I- 3t=ba.

The backward and forward evolution operators are related by:

Uk = EU"’({—,O,-\:)]* (3.30)

and we shall refer to the kernmel of UV(t,t,) as the

propagator.



) Green Operators and Spectral Operator:

If we take the Fourier transformation of the forward
=
evolution operator with factors of the type (zwrh)"w\o_i_et,
. +
then we can define an operator denoted by Ut (E,S)

as follows:

[0 #) )]
t = o\tj dx,encp LEE UY LBt (3.31)
U (E,Eo) (anj—w ) e»oy_%__ U(t,-b,)em\o b__E__o )

. Using equation (3.27) together with equation (3.22), we
can write Ur(E,E,) as

oD oo
U*(E, E,) = L jdA:Jdkoex?iEt@xP-lHec—to)axf-LEoto - (3.32)
CLWR) tp, o k3 £ T

Putting +t -t =T , this reduces to

U*(E, Eo) Z(ELT“>JOWJ“° %P%(E'- E’o)bbm‘;%(_e.ﬂ)«c (3.33)
° “—o

Carrying out the integration over +t, , the right-hand

side of equation (3.33) becomes
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S(E—E’o)jd't’ e»opg(E—H)t . (3.34)
) 5y

To evaluate this latter integral we have to assume that the
parameter E 1is complex with a positive imaginary part

(Feynman and Hibbs 1965, p. 103) so that

E = E =+ t€ ;, €70 . (3.35)

The value of the integral then exists and we have

UT(E,E)) = Am S(E-E R (3.36)
&>o (E —H +LE)

If the parameter E 1is chosen to be the energy of the
system whose Hamiltonian is W , then the operator

(E — 1 + '._3)"‘ is just the Green operator Cﬁs' which
in the case of potential scattering corresponds to the Green
operator for outgoing waves (Roman 1965, chap. 3; Newton
1966, chap. 7). C\E is thus related to UY(E, Eo)

by

UN(E,E.) = % Cg S(E—EL) . (3.37)
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We can similarly take the Pourier transform of the
backward evolution operator U (t,£.) and obtain an
operator U(E,E,) which.is related to the Green
operator C;; (the Green operator for incoming waves)

and we have :

U (E,E,) = ~h Ge S(E-EL) (3.38)
where now
C,; = Aum (E-—H-—'ua)“ y £Y0. (3.39)
€20 ~

The QGreen operators may be expressed in terms of the
projection operators in the usual way. If the spectrum is

discrete and the energy' levels non~degenerate we may write

Ge = 2 _Pa . (3.40)

If the spectrum is continuous, then we have

+ '
C|E = j dE F/ . (3.41)
(E-E'xig)
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The integrands of equation (3.41) have poles at E'=€Exic
respectively. If we regard the energy = as a complex
variable, the integral over the continuous spectrum can be
evaluated without too much difficulty (see, for example,
appendix A). If the spectrum is mixed, the Green operators
are then expressed as a sum over the discrete spectrum
together with an integral over the continuous spectrum as

before. We require, by the definition of the projection

operators that in this case (and for the evolution operator):

Z“’P,, + JPE,dE' = 1 . (3.42)

Degeneracy is to be treated in exactly the same way as for
the evolution operator.
As functions of complex E , the Green operators

have poles at the bound state energy lecvels E and

n »
cuts along the real axis corresponding to the continuous
spectrum. The operators (;é are defined only in the
upper and lower half-plancs respectively. In the case of
the discrete spectrum (;é as € -5 0 are equal except
near the bcund state energy levels, and in the case of the
continuous spectrum the Green operators are discontinuous

across the cut in the complex E =-plane.

We can define an operator V(€ ,®,)  for real
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values of the energy E by taking the Pourier transform

of the full evolution operator Ulk,%t,)

U(g,E, A ae|dk LEtU A - Egt,
( )= @nk) -—cof L= ¢ )e”"\" S

(lﬁ)jdkjdt mptEf%F—LH(t-to)mP-LE to . (3.43)

~o0 ¥ — oo

To evaluate the transform we again use the substitution

T = t -%, and obtain

0o %o ’
WUE,E,)) = L lat.] ar L(E-Eo)t, esep L (E-H)T
( ! O) At Jico j..w mp-'_k— ) QMP L

= awh S(E-E,) (e -H)

1

awh S(E—-Eo) Le (3.44)

where the generalised function operator Tg 1is called the

It follows from the Fourier transform
of equation (3.29) that

spectral operator.

I = Lwm L (Ge-Gg)

(3.45)
£S5 0 Qi
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In future we shall omit the limiting process & -» O  when
it is obvious that it applies.

Expressed in terms of the projection operators the
spectral operator may be written, in the general case of a

mixed spectrum, as

Ie = ZR6(E-E) + fdé”PEf S(E-E")

Continvous see.ckvvm

= 2P O(E-EN) + EE)R (3.46)
n
where E(E) =1 if E is in the continuous spectrum
and zero otherwise. The completeness relation cf the

states may be expressed by

Jé(E-H)a\E = I . (3.7

Again, the problem of degeneracy is taken care of in the
manner previocusly described. A knowledge of the spectral
operator cr the Green operators of a system is sufficient
to determine the energy spectrum of the system and the pro-
jeetion operators onto the states corresponding to the
various values of the energy. The evolution of the state

of the system with time can be obtained by evaluating the
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inverse Fourier transformsof these operators which then
give the corresponding evolution operators.

From equation (3.45) we see that the spectral operator
at the wm th energy level En of the discrete spectrum

is determined by the residue of (E — RH)

and in the
continuous spectrum it is just given by the discontinuity
of (& - H)“| across the cut divided by 2wi .
Finally it should be pointed out that the operator S(E—-H)

is not to be confused with the operator

Ce = 4(GE +5E) (349

which is known as the standing wave Green operator. It is
L 3 - —‘ -

in fact the principal value of (E — H) and provides a
definition of the spectral operator in terms of either

X
qE in the following ways:
Y+ ~ .
Ge = pv. (E—H) — i S(E-H) 2

\ (3.49)

Gg = pv.(E- H) + wi S(e-H).



5) Change of Representation

In classical mechanics we saw that no particular
representative space had any real advantage over another
for the formulation of the subject. The same is true in
quantum mechanics. The theory may be formulated in any
representation, and usually the representation which is
chosen 1is the one best suited to the problem. In gquantum
mechanics the transformations which play the part of
canonical transformations are unitary transformations.

In classical mechanics we required Hamilton's equations
of motion to hold in the new representation. In gquantum
mechanics we require the results of measurement to be the
same in all representations. That is to say, we require
the eigenvalues of operators representing physical
quantities to be the same. Also we require the expectation
values of the operators to remain unchanged, and in
particular we require the normalization of wave functions
to be unaltered in different representations. Whenever
the transformation from one representation to another is
brought about by a unitary operator, the above conditions
will be automatically satisfied. If X is the unitary
operator specifying the transformation then operators and

states transform as follows:



L-> L = XLX

I

Y o (3.50)

In actually changing from one representation to another

¥

the operator X can be obtained by knowing how the states
of some physical quantity transform, for by linearity we
then know how any arbitrary state transforms, and the trans-
formation is specified. Transfcrmations that are not
unitary do arise in quantum mechanics and we shall have to
consider such transformation in this thesis.  However,
since no hard and fast rules apply to non-unitary trans-
formations we shall not discuss them here, and we shall
deal with the difficulties that arise as we meet them.

It is quite customary %o speak of different repre-
sentations in quantum mechanics, whilst the term 'repre-
sentation' in classical mechanics is nct widely used,
although it was mentioned in Chapter 2. In quantum
mechanics, for example, it is well known what is meant by
momentum reprcscntation: 2ll operator kernels and wave
functions are expressed as functions of the (momentum)
variable p . In this thesis we shall use freely the
term 'repéésentation' in classical mechanies, meaning,

in the case of momentum representation,the classical phase
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space (P, Q) whose coordinates & are the generalized
momenta .?L of usual phase space (p )°V) . The name of
the representation will usually refer to the variables that

play the role of the coordinates in the representative space.
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CHAPTER 4

RELATING THE TWO THEORIES

It is clear from the previous two chapters that the
methods of classical and quantum mechanics have very little
in common, and at first sight the only link between the two
theories is through the correspondence principle. Whenever
quantum numbers are small we know that the classical equations
of motion can no longer be used to describe the system
adequately and we have to resort to quantum mechanics.
However, the results of classical mechanies in such a
situation need not be discarded since it is possible to
obtain a quantum-mechanical solution to a problem by cal-
culating from an assumed classical model. Several ways of
doing this are described in this chapter. Some of the
resulting solutions are only approximations which depend for
validity on conditions concerning the associated de Broglie
wavelength, whilst others are exact solutions. The corres-~
poqdence identities for the hydrogen atom are explained by
the fact that the quantum-mechanical solution can be

expressed exactly in terms of the classical solution.
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1) The W.K.B. Method

When Schrddinger (1928) applied his wave-mechanical
approach to the hydrogen atom he obtained the same atomic
energy levels as did Bohr and Sommerfeld previously. His
method however indicated the serious inadequacies of using
classical mechanics for such a problem and the question
arose as to why the Bohr-Sommerfeld theory had been so
successful in this case. Interested in seeing to what
extent the quantum-mechanical solution could be obtained
from the classical solution to the problem, Wentzel,
Brillouin and Kramers introduced a new wave-mechanical
approximation method: the W.K.B. method.

The W.K.B. nethod is easiest to consider mathe-
matically in one dimension. We can write the tiﬁe-
independent Schrodinger equation in the usual notation as

M 4 2 (E-VE)Y =
bxz _h'l.( ) = O (14.1)

and the wave function Y/(x) in the form

Yx) = ef{“v@). (4.2')

o-(x) then satisfies the equation

(o_\g«) - t\a(o_\fy) = 2m(E-VGY) . (4.3)
dx dx”
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If we neglect the term in i , then this equation is just
the time-independent, one-dimensional, Hamilton-Jacobi
equation of classical mechanics. The value of 6 then
corresponds to Hamilton's characteristic function discussed
in Chapter 2. To solve equation (4.3) as it stands we

expand ©°(x) as a power series in Chlt) :

. 1 )
C o= o+ ho +(g_)g .. +C_¢)s;,+... (4.b)
L L L

and substitute back into equation (4.3). Equating powers

of % we obtain for the first two terms:

o= = e veoftee
o (4.5)
i = gy {amE vt

The term o0, is the classical action funetion and the wave

function corresponding to the first two terms in (4.4) is

given by
X x
\\/ — "/2 L f ; "‘/)_‘ N 4
(x) = C,prexplipdx + C,of W},Jde (4.6)
R X, Rx,
where

P = E?JW(E"- V(’C))}‘& (4.7)
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and C, and (C, are arbitrary constants.
The wave function “Y(x) in (4.6) is an approximation
to the full solution of equation (4.1). Nevertheless it has

been shown that provided

|4 (5)] « 1 R

then the approximation involving only &, and o is
valid. This is the same as insisting that the de Broglie
wavelength vary only slightly over distances of the order of
itself. (A more rigorous treatment on the validity of the
W.K.B. approximation is given in Frdman and Frdman 1965).
What is important about the W.K.B. method is the fact
that one can obtain an approximate quantum-mechanical wave
function in terms of the classical action and momentum, that
will provide a. truer description of the state of the system
than that given by the equations of classical mechanics.
For example interference phenomena can be accounted for
within the framework of the W.K.B. approximation (just as
interference in optics can be described by means of geo-
metrical optics, which also is a ray theory). The
Sommerfeld quantization conditions may be interpreted as

interference effects, and Wentzel showed that the condition

%?dov = nh (4.9)
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arises naturally in the W.K.B. approximation (see, for example,
Jammer 1966). A more detailed investigation leads to the

condition

§V°\W = (“"'Ji)\" (4.10)

and this is shown in many books on quantum mechanics, for
example Landau and Lifshitz (1965). However, why the
quantization conditions (4.9) and (4.10) happen to give the
exact energy levels for the hydrogen atom and harmonic
oscillator has always been considered more of a coincidence
than of a more general relation between the classical and

quantal solutions for each of these systems.

2) The Feynman Approach to Quantum Mechanics:
Path Integrals

The W.K.B. method relates quantum-mechanical wave
functions to classical action functions. An alternative way
of relating the two theories is through quantum-mechanical
operator kernels as opposed to the wave functions. Feynman
(1948) first of all showed how the quantum-mechanical -
evolution operator kernel could be related to the time-
dependent action function. His approach is related to the
Lagrangian formulation of classical mechanics and is directed

at expressing the propagator of equation (3.18) and (3.27)
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in terms of an integral over all possible paths from a given
point to another of terms involving the action for that
path. The method is discussed fully in Feynman and Hibbs
(1965) and can be described here without any loss of
generality in the case of a particle moving in one dimension.

The propagator O(x,t ; % ,%5) is such that

Y(x, %) = jU(m%)xo,to)“i’(xo,to)dxo,t>t° (4.11)

xo

and Feynman's recipe for evaluating the propagator is as
follows:

We denote by L1 the set of all continuous, piece-
wise differentiable functions 'x(t') , which satisfy the
conditions ‘x(_h,) = X, , (k) =x . For each function

of the set L)L we evaluate the action integral:

+ <
S[x(t’)) = JLAk' =j %.\imxcc‘)t—- \/(x(t'))} ax (4.12)
t, t,

The action function S{*(X¥)} is a function of the
particular path x(;t') and will only be equal to Hamilton's
prineipal function along the classical paths inSL . The

propagator can then be written in a shorthand version as

Ot xuks) = | g § ig, ST Alx(e)] . 19
N
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To evaluate this integral we partition the time interval

(+ - t,) so that the N th partition corresponds to:

o = bK<k, <k, ... Lty dey=t o (41w

We can assume for convenience that each time interval
iy - Ty is equal, and has the value & . For this
partition, a typical path in £ will be as shown in

Figure 4.1.

0
t
/
/
S [—% L
& £
3 [
vi _
t, e
& >
Figure U4.1. Typical path in (L .

The paths from Xj;Cxy)  to ja, (¥j4\)  can be

taken as straight lines and the action along these paths
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correct tc the first order in € is

2
| Xy — X4 — . .
T2
The action along the path in Figure 4.1 is thus

N - ‘

2
2 § yre(xims) — eVt = S, [xw). has
J—:o € 2

The N th. approximation to the propagator is defined to be:

A A —E A wf—ﬁ N -') (4.17)

where A is a normalization factor which ensures that

U (x,t ; Xoite) is unitary. Its value in this case
is EQ_—W Lt g/mi'/z . The exact value of the propagator
is then given by the limit of the expression (4.17) as
N->0 (or € >0 ), such that Ng& = t-t, , and
can be shown to satisfy Schrddinger's equation (3.20) for
times € > &, .

Feynman has considered the classical limit of the

propagator as given by equation (4.13). As the action
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functions S[)di:')} become large in comparison with W ,
then both the real and imaginary parts of encyp L/,K 5&"(‘3')]
are rapidly oscillating functions with respect to changes

in (%) . The only contributions to the propagator
arise from the paths 2 (t') for which S [ 2 (&)}

is stationary, and these are the classical paths. In the
classical 1limit, then, the propagator can be expressed as

a sum over only the classical paths (which we can label

by ¢ ):

U(x)t) Xo)to> = zc-_.'gc (X)f)’(o)%ODQACP%SC(_W)thO)’to)(4.18)

where £t are smoothly varying amplitude factors.
Whenever the action functions are comparable with H , then
contributions from all paths arise and no one particular
path can be singled out as being more important than the
next.

Feynman's approach to quentum mechanics is different
to both Schrddinger’s and Heisenberg's and again it
jllustrates the inadequacies of classical mechanics when-
ever values of action functions are small. Paths are,
however, an important feature in this approach, and it is
easier to follow through the transition from quantum to

classical mechanics since the notion of a path is perhaps
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easier to conceive of than that of a wave function.

3) Hamiltonian Path-Integral Method

The Feynman formulation of quantum mechanies is related
to Lagrangian rather than Hamiltonian dynamics. Garrod
(1966) has shown how the Feynman approach can be generalised
to include path integrals over phase-space trajectories and
his method is briefly as follows:

We consider this time the set *fo of all phase~space
trajectories which satisfy the condition x (ko) = X, 5
% () = x , with no condition on the energy or initial and
final values of the momentum. The action function now

considered is

t :
S [x(‘c'),?(*')) = J ipo’c - H(xct'>,?@c‘))§ dx’ (4.19)
5

and the propagator is written:

O(x)t 5 %0sts) = je/“‘f ‘%\_3["(*');9("?}‘J‘I"C*‘)JO\{P(V)] . (4.20)
_SL,

A typical phase-space trajectory corresponding to the N th.

partition of the time interval is shown in Figure 4.2.
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Pigure 4.2. The Hth approximation to the phase-space path.

The values of the momenta are now no longer reguired to be

continuous. The N‘ th. approximation to the action is

N-l £
Su[?“‘%"@)) = Z,';LF3+‘(xj+.~x3)~ Pjé'_\_f: - \/cH:'E ~ (4.21)
J=o 2m -t:",

and the propagator is given by the limit N 200 of the

expression:
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SS ...5«:\?’8&&. A?N SS 5"\’90\"17- AxN_'%P%iS[x@')’P({')J (4.22)

There is no need to introduce any normalization constant A
as in equation (4.17), and Garrod rightly points out that
the constant B  arises from the integration over momentum.
The propagator obtained in this manner is automatically
unitary. |

Garrod also considers the spectral operator kernel in
the light of phase~space trajectories. He takes the Fourier
transform (to energy representation) of the full evolution
operator kernel of equation (3.29) and shows that the

resulting kernel is given by:

x

Telurg) = Lom {f. dpag dp ([ dx,.dx,,_ S(E- T Jompi] o] .(4.23)

N> o
Now, only those trajectories for which the average value, ;\ R
of the Hamiltonian is equal té the encrgy of the system
contribute to the spectral operator kernel, and the action
function in the exponential is that corresponding to the
energy-dependent action of equation (2.16). The condition
that the averare value of H  be equal to E is the

encrgy analogue of the condition that all trajectories in



the time~depcndent representation have the same time
interval t —to ,

Garrod has not been the only person to consider path
integrals in phase space and some interesting work has been
done by Davies (1963). His approach is much more restrictive
than Garrod's and he assumes from the start that the system
under consideration may be described by coordinates in such
a way that the Hamiltonian is identically zerd. In this
representation he obtains the result that the propagator
may be expressed exactly in terms of the classical path.
This is important because it shows that there are instances,
other than the classical limit, when only the classical

paths contribute to the provnagator.

L) The Phase-Intesral Approximation

Although the propagator can sometimes be exnressed in
terms of the classical paths in certain representations, it
has in general to be expressed as a sum over all paths
between the two given points. However, the apnroximation
of summing over only the classical paths has been con-
sidered and is often used to obtain approximate values of
operator kernecls. This approach, which is closely related
to the W.K.B. method,is known as the phase-inteprral approxi-

mation and we shall discuss it here as it applies to general
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motion in three dimensions. In this approximation the
propagator is expressed in the form of equation (4.18) and
the problem is then that of obtaining the amplitude factors
corresnonding to the functions -¥ .

The phase-integral approximation is reviewed by
Gutzwiller (1967), who uses as a starting point Pauli's
result that the propagator of a particle moving in a
potential which has no singularities may be written for

small time intervals +* -%, as:

oL
U4%)9,t,) = (1“.‘“‘)‘@5)2%(’ _:_F\_ S(W,'\:}cvo;to) (4.24)

where 5<4Vft ) %%)t°> is the action evaluated along the
classical trajectory from 9, to 4, , and Dg  is the

determinant of mixed derivatives:
3 2
Dy = WAt [2°8/342q, ] (4.25)

The propagator as given in equation (4.24) satisfies
Sehrddinger's equation up to a remainder of the order of
#f', and it is assumed in the phase-integral approximation
that this is also going to be the form of the propagator

in the classical limit. lowever, we saw (equation 4.18)
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that in the classical limit, the propagator is given as a

sum over all classical paths leading from %Y, to 9, ,

and so whenever there is more than one classical path JOlnlng
4, to g, , we take as the phase-integral approximation to

the propagator a sum of terms, each one having the same form

as that given in equation (4.24), and each one evaluated

along one of the classical trajectories. Gutzwiller gives

as the phase-integral approximation to the propagatbr an

expression involvingz terms similar to those in equation (4.24):

U(ata,t0) = (th\) 5 (Do) _[s (0t i) Pheses) . (4. 26)
dassical I"‘N" ‘

The only difference is the presence of the phases in the
exponential term. These phases are usually multiples of

% 1v[2 and are inserted to provide a convenient way of
absorbing the different weighting factors, multiples of

L, associated with each term in equation (4.26). These
weighting factors apparently arisec naturally from the
“limiting process % > o of the Feynman expression for
the propagator. Gutzwiller investigates the singularities
of the determinant Ds and relates the phases to the
points along the classical trajectories which produce these
singularities. These singular points are the focal points.

The phase~-integral method can be employed to obtain
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approximate Green functions, and this too has been considered
by Gutzwiller. The approximate Green function is now a sum
over classical paths of terms involving the encrpy-dependent
action together with an amplitude factor involving another
determinant of mixed derivatives. In the phase-integral
approximation the operator kernel is always related to the
classical action function anpropriate to the particular
representation. This is shown by Gutzwiller who evaluates
the Green function in momentum representation and shows it
to be expressible in terms of the energy-dependent action
function of momentum space.

It is interesting to note that the phase-integral
approximation sometimes leads to results that are correct.
Gutzwiller's aim of developinn the phase-integral approxi-
mation was to obtain approximate analytic wave functions
for electrons in atoms and simple molecules. His appli-
cation of the method to the bound state nroblem of the
hydrogen atom in momentum space actually gives the correct
bound state energy levels and associated projection operator
kernels. However, although the poles and residues of his
approximate Green function happen to coincide with those of
the actual Green function, it does not follow that the
approximate Green function is in fact identical to the
actual one. Nevertheless, Gutzwiller's result sugrests

that there is a possibility of expressing the kernel of a



quantuin~-mechanical cperator exactly in terms of classical
path sums if the operator is zéero everywhere except at the
poles of the Green function. Such an operator is the
spectral operator S(E-'¥%7 and, as we shall show, wé
do obtain a complete correspondence identity between this
operator kernel and the classical solution in momentum

representation for the hydrogen atom.

5) Providing a Complete Correspondence Identity

In the introduction to Chapter 2 we considered how
the correspondence identities for the hydrogen atom were -~
going to be expliained, and the method put forward was to
obtain a complete correspondence identity. One method of
obtaining a complete correspondence identity is to exnress
either the propagator, Green functions or spectral operator
kernel exactly and precisely in terms of sums over classical
paths of terms involving the classical action. For the
purposes of this thesis the fact that we can express the
spectral operator kernel in this way is sufficient to
explain the three correspondence identities. Why we can
only obtain a complete correspondence identity for this
operator and not the others, and why we can only do this

in momentum representation are difficult questions to



- 78 -

answer. However, we are gulded by the Fock identity in
choosing to work in momentum representation, and by
Gutzwiller's work in chocsing the spectral operator.

The problem of finding out when an operator kernel
is expressible exactly in terms of the classical paths has
been considered by others, but only as far as we are aware
for the propagator. Feynman and Hibbs (1965) have shown
(see appendix B) that if the classical Lagrangian is a
quadratic function of position and velocities, then the
propagator is pgiven exactly in terms of the classical
paths. The propagator of the free particle and the
harmonic oscillator can thus be obtaincd explicitly in
terms of the classical naths in confipuration space and we
shall do this for the free particle in Chapter 5. Also,
to provide a simple introduction to the mathematics needed
later in dealing with the Coulomb potential, we shall
ottain the free-particle Green functions and spectral
operator kernel explicitly as sums over classical paths.

Clutton~Brock (1964) has also considered the problem
of expressing the pronagator exactly in terms of classical
paths and shows that even in the general case the nropagator
can be determined exactly by the classical paths. His
method is to assume that the kernel is first of all obtained

in the representation for which the Hamiltonian is
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identically zero (so that it is determined by the classical
paths as mentioned previously). The action in this repre-

sentation is (to use Clutton-Brock's notation)

<
j PQ dk (I.27)

A

and the action in any other representation is related to
this by the generating function of the transformation, so

that (see equation (2.23) and (2.26))

A

v
t
n ! ’= ? 4 / . 4,28
Jt Ew H (st At jqa"*'[*(%‘”,t)]to (4.28)

*o

Clutton~Brock then considers Feynman path integration in

phase space of terms of the form

t

w’c?[ i\. L?Qd{l m\p[.t;\-k"'(cv,f’,tjq/o,?o ,"C,,)J- (4.29)

and shows that only the classical paths contribute to the
propagator. However, his result is incorrect, since
equation (4.28) only holds for the classical naths and
not the generalised paths in phase snace as shown in

Figure 4.2, over which the terms given in (4.29) have to
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be summed.

It is unfortunate that Clutton-Brock's result is
invalid, as problems in classical mechanics are often
easier to solve than in quantum mechanics. - We have to be
content with the fact that operator kernels can only some-
times be expressea in terms of sums over classical paths.
When this turns out to be the case, and we do have a com-
plete correspondence identity, we find that there are
usually other correspondence identities associated with
the system which are consequences of this complete corres-
pondence identity. However we do not know if the reverse
is necessarily true, namely, when a system possesses
correspondaence identities does it follow that we can obtain
a complete correspondence identity? For the hydrogen
atom we have been able to do this, but the existence of
such an identity does depend crucially on the particular

choice of operator and also on the choice of representation.
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CHAPTER 5

OBTAINING A COMPLETE CORRESPONDENCE IDENTITY FOR
THE FREE PARTICLE, AS A SIMPLE EXAMPLE

1) Introduction

In appendix B it is shown that if the classical
Lagrangian of a system is a quadratic function of the co-
ordinates and velocities, then the quantum~mechanical
propagator can be expressed precisely in terms of the
classical action function. The classical Lagrangian of

a free particle moving in one dimension alons the x-axis is

L = XLwmx (5.1)

and the guantum-mechanical propagator can thus be expressed
in this manner. This result is in keeping with the fact
that a theory based on classical naths (or rays) is
entirely adequate for the treatment of free particles in
quantum mechanics provided that a phase is associated with
each path between two points in space-time. The analogy
in geometrical optics is of light waves passing throupgh a
homogeneous medium where it is well known that the eikonal

approximation is sufficient to furnish the exact plane-wave



- 872 -

solution of the scalar wave equation.

In this chapter we shall provide a complete corres-
pondence identity through each of the kernels of the
evolution operator, the Green operators and the spectral
operator. In cach case we shall express the kernel as
a sum over classical paths of terms involving the anpro-
priate action for the path. The original de Broglie
reclations between momentum and wavelength, and between
frequency and energy are correspondence identities which

follow from either of the complete correspondence identities.

2) The Concent of a Particle on a Ring

The system of electron and nroton to be discussed
in the following chapters posscsses both a continuous
and a discrete energy spectrum according to whether the
total energy of the system is positive or negative. A
frec particle can also exist in states for which the
energy spectrum is either continuous or discrete, depend-
ing on the boundary conditions. To provide a simple
introduction to the more difficult theory of the Coulomb
potential we shall consider the free particle with both
tynes of energy spectrum.

The simplest example of a continuous srectrum is



- 83 ~

that of a free particle moving in one dimension, and we take
the motion to be along the x~-axis. If we insist that the
motion he pefiodic in x, with period x = 9wasay, then
the spectrum of the free particle will be discrete (see for
example Merzbacher 1961, n. 85). The periodic motion is
then equivalent to that of a free particle moving on a

ring of radius a, as in PFigure 5.1.

o
X
Yms

p

-2+ x -'1\'¢\ o) i ﬁxo x T‘tc\ ').';‘q
A~-axis —>
Figure 5.1. The point x on the ring is identified
with the points ‘?;rccx + 2 on the x-axis.

The distance around the ring is demnoted by = , where
\'x\ & Tra > 4and quantum-mechanically the motion can be
described by free-particle wave functions which satisfy

the periodic boundary conditions:
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\‘\’(‘x,) Lo.t n = T"Q)

(5.2)

il

‘["(x)bk % =Tra) ‘\”('x_) (adcx = -T\’a.) L

For any time interval X 3+0© , the particle may
move classically along an infinite number of paths between
two points X, and X on the ring. In the figure,
the direct path from Ko to A corresponds to the
path from X, to x on the x-axis. The path from

x, , through Ta , past the origin ¢ times then to
x, corrésponds to the path from e to 2LWCa + X
on the x-axis. Alternatively the path from 2¢, , past

the origin ¢ times and then to = corresponds to the

path on the x-axis from 2>, to =—2Weca + »x . In
this way we can rclate each path on the ring to a path
between the points Xo and 2IWCa. ¥ X on the x-
axis, where < 1is a positive or nemative integer. We
shall label each classical path on the ring by < so

that the magnitude and sign of the integer < defines the
number of times that the particle passes around the ring in
a élockwise or anti-clockwise sense. Each one of the
points X 4+ 2Lwca , on the x~-axis is identified with
the point 2¢ on the ring, so that the ring can be

regarded as the x-axis coiled up onto itself. This device



- 85 -

is useful, as we shall see, in expressing the quantum-
mechanical nropagator of a particle on the ring in terms

of sums over classical paths. In the time-dependent treat-
ment of the problem the enerpy is different for each path:
the energy being large for large values of \cq . In the
time~independent treatment the enerpgy fof each path is the

same, but the times are now different.

3) Evaluating the Classical Action Functions

The time-dependent Hamilton-Jacobl equation for the

free particle may be written:

2
-t _é. -
S+ ) ) o . (5.3)

Assuming a separable solution for (#_ we obtain

¢> = m(e=f) (5.4)

2 (-8B

where A and B are constants to be determined. By
requiring that the initial values of X and & be >,

and t:o we obtain as Hamilton's principal function the
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following expression for ¢ :

. |
C\K«fc y XoyEy) = M (x-%o) (5.5)
2 (& -t,)

This is the valﬁe of the classical action function

S (5, % ; %o,ts) of a free particle travelling from

X, at time *_, , to % at time t . The value of
Hamilton's principal function for a particle travelling
along the x-axis from Ko to AW + 2 ~in the same

time is thus going to be

(P(X-t-?—‘\'tw\jt)’ Xo)t'o) = wm (’u.-»xo-(-'Z.WC.C\)z . (5.6)
2. (t —-t0)

Since all points 2 4+ LwWeea. are identified with the
point 2 on the ring, then the value of the classical
action S. for the path e from 2, to 2 in the

time +t -+t is going to be

_ 2
SC("‘)t ) Norto) = MM (=% +Iwca) cczoxVx)  (5.7)
2 Lt "‘tp) ?

wvhere |x|, |2,] £ wa.

The value of the time-independent action for the



motion between X, and 2 can be cbtained by consider-
ing the time-independent Hamilton-Jacobi equation. The

H~J equation for the characteristic function W now reads:

s é&\l)” = € (5.8)
2wm O

so that
W = iSQmE')( + C - (5.9)

where C 1is a constant to be determined. We have two

solutions depending on the sign of the square root:
— +
WY = JamE % + C

(5.10)
W~ "\S?.mE . C. .

il

A+
The constants (.~ can be obtained by again assuming that
the initial value of 2¢ is 3, . Since W= =o0

when 2 = %X, We have

\I\)+ = J2mE (x-—xo)

(5.11)
W~ = J?,mEon“ x) .
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We note that the value of the momentum at 2 is
given by dW=*/3% , and is positive for motion in the
positive =« direction. Thus we conclude that WY
and W ™, as given by equation (5.11), are respectively
the characteristic functions for XY X, and % £ %, -
We may therefore write for the characteristic function the

expression

W(")"o) = \E._Yv—\_é\x"xo\ X (5.12)

This is the value of the energy-.dependent action function
Se (% ,%x,) of a free particle moving along the x-axis

from %, to 7 with energy EE . The corresponding

value of the action along the path ¢ on the ring for

values of x| ,1%,| £ 7Twa is then

SceCix0) = JamE | x-o+mcal  cooxi 20 L (5.13)

L) The Kernels of the Quantum-Mechanical Evolution
Operator, Green Operators and Spectral Operator

The solutions of the free-particle time~independent

Schrédinger equation for a given value of the energy E ,
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may be written as

‘\";(—x) = A" exp iy, (amEYZ % l
(5.14)
*; (x) = A ercp - bl’ﬁ (@m E)’/zx J

+ - . - . s
where A~ are arbitrary constants involving the energy v .
+
If we choose to normalise “Yg (x) according to

equation (3.12), so that

¥
de H"'(E)[H"'(Ef):l*\‘/:(x) ["{’é;(x)] = é(_E. - E') (5.15)

and

" .
de H-(E)[ﬁ*(el)}**;(x)[‘{’;,(x)] = SCE-E') (5.16)

, ) ] X
we obtain for the normalised solutions *e (x) the

following (Merzbacher 1961, chap. 6):

l/'L '

"\\/et@) - (J’~ E“‘E) W’?t.%—,@ma)vzx : (5.17)

CAIL

"The kernel of the evolution operator, given by equation
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(3.24) for the free particle will now be

U(x,t)-xo ) J )egf_?-\ E(x - t.,)@xf (‘ZmE)z(‘x_ x,)

. 4

JdE [m - 2B (o -x>
erm “esxg- E(’c “to)expLla £ ex) (5.18)

With the substitution 2 mE = Ff' , equation (5.18)

becones:

'U(")t) xo)'\:o> = | 4% e"“?'}f;('k—ba &oo()__{:,\’o(x - %o)
L 2 TR 2nmith A

( bt Ywi..m_.(______’f =%
2w (t-t) w2 (= “v) (5.19)
which is the well known expression for th¢ free-particle
evolution operator kernel (see, for example, Feynman and
Hibbs 1965, Kur§uno§lu 1962).

The evolution operator kernel for the particle on a
ring may be obtained in two quite distinet ways. The
more conventional approach is to solve the time-independent

Schrodinger equation with periodic boundary conditions.
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The normalised solutions in the

interval -7ra £ X 41\‘0\
are then:
x) = Yx 5 Y=o,k
B0 = e veom, (5.20)
where the discrete energy spectrum is given by
S
£, = ¥h (5.21)
Y 2a%*wm

The evolution operator for a discrete spectrum is given

by equation (3.23) and in this case the kernel is:

At 5%y ; a V(G -x M °
(,x‘) ;_gzw)wp denp- 19t (k- ’E)

(5.22)
"2atwm

The other, more convenient approach, is to use the

device of coiling the x-axis upon itself as mentioned
before.

We consider a wave packet ‘*\’(ac,,,t_o) on the
ring at time J(:‘, , whose value and whose derivative at

Ny = is zero.

* o w

We can consider also the same
wave packet on the x-axis itself

For times t >t
this wave packet will move into regions where \'Jc\ > TTa
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and the motion will be determined by the evolution operator
kernel of (5.19). If we distinguish wave functions and
kernels on the x-axis by the superscript S L. (straight

line) we have:

sSL
Y (2,&) = j dx,USL('x’,t)' x,,,‘to) ‘l’s‘"(_‘»t'..-_.;l:,))J t>t,

-1-
= jdxo U™ Gt 5 %0550) Y(Grosts) (5.23)

The value of the amplitude on the ring is obtained by the
interference (constructive and destructive) of each of
the segments of the wave packet between (‘)..c- l) UG
and (Zc 4+ {)Wa  on the x-axis for every value of the

integer c¢ :

Y (5,) = Z{ +SL(x +2wea ,t) 3

12l 13} £ Rq
(5.24)

\
f

st
= Z‘:’de U (et Ziwea t5% )to) k‘/("‘t’)'t”)di

Therefore, the propagator for the particle on the ring is

S -



- given by

U+("C;t ')Xo)'\?o> = Zc_ USL+(x +2wea b xo)’C,)

= €@t - )}Vw\o g Geoxt2a)” (555
axh(t-tp ) (t - ko)
The & function is present in equation (5.25) since this
expression only holds for < > t, . However the back-
ward evolution operator kernel can be obtained from this
equation by the relation (3.30) and the full evolution

operator kernel is

S
U(’x,t 7(,,;E) Z, g e/x_Fw'n (¢ =% o¥rwea) | (5.26)
< mda(t—i—o) (e —-tL)

The two expressions (5.26) and (5.22) are different
expansions of the same operator Xernel, and their-effect
on an arbitrary wave function is the same.  There is,
however, no direct connection between the summation indices
v and ¢ as wve shall see.

The Green functions can be evaluated directly by
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summing (or integrating) over the energy states as given
by equations (3.40) and (3.41). This is done in appendix
A for the free particle moving along the x-axis. However,
we can make use of the relations (3.37) and (3.38), and
obtain the Green functions Qé (e, %) by taking
the respective Fourier transforms df cquations (5.19) and
(5.26). Noting that C(i () %) come from

X (a5 % yto) respectively,we obtain for the free

particle moving along the x-axis:

+ . L
G = A (m o= \(2mE)E
e(x,xo) m(ze Wt\k [¢

and: v (5.27)

. |
- : - z . 3
Ge ey = i %}uo\o-i\x—x,mme)% )

For the particle on the ring the Green functions are:

e (o) = L (e Yomp Lbexomal(ome)

and: (5.28)

- - < -1 " I _ b
Ce (e, ?C_ Tﬁ(.ﬂ’; -\ % - %o+ 2mca\(2mE)?

/
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The spectral operator kernel  Tg(ac, ’Co) is now given

by the result (3.45), so that for ths free particle:

0
1e6oo) = €() :'-‘t*“(i"-‘é)zcos(k-xa) (2mE)"™ (5.29)
-“

and for the free particle on the ring:

t 1
LeGony) = JOES m:>/‘% con(x=3ct2rea)Emi)t (5.30)
€ W

5) A Complete Correspondence Identity

We can prcvide a complete correspondence identity
through the kerncls of either the evcoclution operator, the
Green operators or the spectral operator. In the case of
the evolution operator, the guanbtum-mechanical kernel is
relatced to the solutions of the classical time-dependent
Lamilton~-Jacobi equation. In this way the operator
kernel is related directly to the classical time-depeident
astion functions S(x, & k,,£°> and Sc(ae,% xoj-t‘,)
given in the two cases by cquations (5.5) and (5.7). The

kerrnels of the Green operators and spectral operator arec
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related to the solutions of the time-independent Hamilton-
Jacobi equation which arc the time-independent action
functions Se (e ,%0)
(5.12) and (5.13).

For the free particle moving along the x-axis a

, Sce (¢, %) of equations

complete correspondence identity is obtained for each of
the operators as follows:

For the propagator:

\’
UYGebyxots) = EG-¢ z._"‘D______ %exp L S(oest i %ots).(5.31)
() ) ) O) 2k -t %P%‘(X)) ’ )

For the Green functions and spectral operator kernel:

A
Ge (x,xa> = * 1 (m e”ﬂ’i L Se(Ge,%0) (5.32)
LR LE

and

1 g06%) = 8(\':)116.“ IE)‘ cps% SE(‘&,'xo)g (5.33)
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For the free particle on the ring the respective

complete correspondence identities are very similar but

involve sums over all classical paths ¢ from X, tox :

U'\—(*JV’XO L) = e(x- t;) m Z_ Lg('x‘h x5,E0) . (5.34)
ok gum\ec—a—, b ).

C\E(xnco)- - ‘\7\(3) wa“‘k SQE(‘M’(o} (5.35)

Ig(x,xo) = E(E) (m_ Z_COSS(E(”()'XQ) (5.36)
A} ?

For completeness, we can also express the external

factors i and o (—-—- ,
2 i (- ) h \L2e

equations (5.31), (5.34) and (5.32), (5.35) in terms of
the classical action functions. For the free particle on

the x~axis the two factors are given by

'
h
= 2w it DD Sk jxo ke
E'L\nt\(t -to) G L) \ &D *‘S:'g—;~> (5.37)
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and

Vo N
A (l“_) — _\_..\ 3155(";%& . 2 Se:(")"‘o)\

ww\ae W 38 3= 2%x,0E (5.38)
The same applies for the particle on a ring, but

S(x,t "o.to) and SE(.'K)xo) are replaced by

Sc (% 5 Xoyto ) and  S.g (x,X%s) . These

results are just those given by the phase-integral approxi-
mation, which also leads to the samec results for the kernels

of the evolution and Green operators.

6) Discussion cof the Results

The free particle and particle on a ring have been
considered by Norcliffe and Percival (1968, to be referred
to as I). Most of the results are well known and have
been obtained by others. Feynman and Hibbs (1965)
évaluate the propagator for a free particle in one dimension
and relate the kernel to the classical action function.
They also consider the propagator for a free particle with
periodic boundary conditions. However they express the
propagator as a sum over quantum states as in equation (5.22),

which cannot casily be expressed as a sum over classical
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paths as compared with the cxpression (5.26).

Green functions as sums over classical paths are
considered by Gutzwiller (1967) and as we have stated
the phase-integral approximation leads to the correctb
Green functions for the free particle. Gutzwiller does
not evaluate the free particle ¢reen functions in his
review paper and is concerned solely with the Coulomb
potential. - However his general formula for the Green
functions does lead to the expressions (5.32) and (5.35).

Garrod (1966) using Feynman path summation in phase
space evaluates the spectral operator kernel for the free
particle and his result is the same as that given by
equation (5.29). Bezak (1968) evaluates the kernel of
the spectral operator (his'enevgy-level density funetion')
for a frece particle moving in a one-~dimensional square
well potential with perfectly rcflecting walls. He
expresses the result in terms of sums over classical
paths and shows (sce also I) that there is no simple
connection between sums over classical paths and sums
over quantum states.

The relation between sums over classical paths and
sums over quantum states is worth considering here and
the expansion in terms of quantum states can be obtained

from the expansion in terms of classical paths. If we
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consider the spectral operator kernel for a particle on a
ring (equation (5.36)) we can expand the cosine term and

obtain:

T Goxo) = Eci)( )cos{(’lmﬁ)t(_x-x )gg \-\-Z?.ms(?. } (5.39)

Now, in terms of Dirac & -functions (Lighthill 1960, p. 68)

oo n e 1
\ + 27 &> (2mEP2mac = Z.5 i(’lme)'a - ki (5.40)
=\ -t\ T~ -b\
where L is an integer. From the properties of the E>-

function we obtain

TeGoxo) = 2. L medl(x Iy ). (5.41)

{-—oD ').TCC\ . 2alwn

The integer f is just the quantum-mechanical label v

and so

TeGoxd = 2. L exp W (x-x,) $(E-Ex) (5.42)

= —w “Q
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which is the kernel equation analogous to equation (3.46).
The only connection between Y and ¢ 1is therefore
through equation (5.40) with =X .

The expansion in terms of classiéal paths can often
be more useful than summing over quantum states. The
Green functions, for example, for the particle moving on
a ring may be obtained in closed form. The sums over
classical paths in equation (5.35) is a geometric series
whose sum can be evaluated and the Green functions may be

written (see for example I):

C; () = Lo E) cos f(’«w\x—xoﬂ(ﬁms)v’/'ﬁg JE=Eaig
€20R\28 "o {Ra(2me)® (w3
(5.43)

el = Lim Lo )' "5 §(Wa~ |~ xel)omE)8fnd ; € = E-ic.
€20 B NE sin Lrazme)2 /w3

&+
Although the Green functions Ge (%) are apparently
equal they are defined only in the upper and lower halves
of the complex ¥ plane. Along the real axis as >0
they are equal everywhere except at the poles
v =\ . .
E, = Y% (2 a¥ ) » where ¥ is an integer.

At the poles, themselves, the Green functions are reclated
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directly to the spectral operator kernel, as given by
equation (3.49).

Finally, for the particle on a ring, the expansion in
terms of classical paths of the spectral operator kernel
shows how the spectrum is formed from the amplitudes of the
classical paths by constructive interference at the energy
levels E,

and by destructive interference elsewhere.

The onset of such interference is shown by the partial

summation of equation (5.36) for EEQx,x) in Figure 5.2.

5t |
]
\
\
{
/-.\ (\
2 \ 717 "~ L
3 ___és_ /\ /\///\ 5 h\

" VZAVAAVEL V *T
> W@e)r (4.0) >
5

W
[
-5 L J

Figure 5.2. Partial summation of equation (5.36) for

I&("‘"’O (atomic units) ,against 'zw('z.E.)"z (atomie

un_its), a = 1. The curve ~=--- is the partial summation

for 3 paths, and the curve

for eleven paths.
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Bezal (1968) also considers the voertial summation of
ti:e spectral operator kernel and commenis on the utilization
of such an approximation for the estimation of energy levels.
He claims that the peaks give approximate values of the
energy which are lower than the actual values | Eyv, in
contrast to the variational methods, which provide

energies greater than thc actual values.
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CHAPTER 6

THE BOHR-SOMMERFELD AND FOCK IDENTITIES

1) Introduction

In chapter 1 we discussed the three correspondence
identities associated with the hydrogen atom and considered
their role in the dévelopment of quantum mechanies and in
present-day atomic physics. The two identities which
concern the bound states of the hydrogen atom are the Bohr-
Sommerfeld identity and the Fock identity, and in this
chapter we shall explain how both these identities arise.
They follow from a complete correspondence identity
between the kernel of the quantum-mechanical spectral
operator and the solution of the classical problem. As
described in chapter 5 we shall express the kernel of this
operator explicitiy as a sum over classical paths of terms
involving the classical action function for the path, and
thus show that for the hydrogen atom a theory bascd on
rays is sufficient to describe the behaviour of matter
waves.

We shall represent the hydrogen atom by an electron
moving in the field of a central potcntial due to the

nucleus, which we shall take as having infinite mass in
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comparison with the electron, and we shall neglect all

relativistic effects.

2) Choosing The Representation and The Operator for
A Complete Correspondence Identity

An electron of mass s moving in the field of a

central potential

is described by a time-independent Hamiltonian.
Classically the motion can be determined by solving the
time-independent Hamilton-Jacobi equation. Amongst
other things we find that the motion in position space is

bounded: the energy equation may be written as

E = T +V

2T
= P _ v
1 c (6.2)
and since T must always be a positive quantity we see
that ¥ can only vary from O to Y enenx . as

illustrated in Figufe 6.1.
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y,
Em.vs_\j :
T=£-VvV |
I
|
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I
I
® "'nax > v
|
! V(r)
|
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l
{
!
|
|
=1 Vmax.
!
Figure 6.1. Graph showing values of the potential

energy V and kinetic energy 'V as functions of ¥

for a given negative value of the total energy & .

Quantum~mechanically, wave functions and onerator

kernels have non-zero values for ¥ 7 Ywmax., and con-

sequently to express an opcrator kernel in terms of
classical paths is not possible in position representation

and Y. which lie outside

since between two points Yo

the sphere |¥| = Ywmax. there is no classical path.

In momentum representation we do not run into this
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difficulty since for a given value of the energy there is
always a classical trajectory between any two points in
momentum spacc. We shall therefore choose this repre-
sentation in which to obtain a complete correspondence
identity. Gutzwiller (1967), using the phase-~-integral
method to obtain approximate Coulomb Green functions also
chose to work in momentum represcentation because of the
difficulty encountered in position space.

When the research on the hydrogen atom was initiated
it was decided to try and express the Green functions as
sums over classical paths. Following a method similar
to that of Schwinger (19G4) to obtain the Coulomb Green
functions in momentum representation, we found that only
part of the Green functions could be exnressed in this
way. We have already seen (equation 3.49) that the Green

operators may be expressed in the form

C% = p.V. (E-HY F wid(e-w)
and it was concluded that the part not exnressible in terms
of the classical path sums arose from the principal value
of the Green operator p-v. (E -—H)—‘ and not from the
spectral operator &(E —W) . Ve thus turned our
attention to the possibility of obtaining a complete

correspondence identity for the spectral operator kernel
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instead of the Grecn functions.

As we have already mentioned in chapter U
Gutzwiller's work also lends support to the possibility
of expressing the kernel of S(E-\*) exactly in terms
of classical path sums, since the spectral operator is
non zero only for those values of the energy for which
the phase-integral approximation is exact, namely at the

bound-state energy lecvels.

3) The Symmetric Representation

When we come to evaluate the gquantum-mechanical
spectral operator kerncl and the classical action functions
of momentum spacc we shall find it casier to consider the
Coulomb problem in a new reprecsentation, the symmetric
representation. This representation is due to Fock
(1935) who used it to show that the accidental degeneracy
with respect to L of the energy levels of the hydrogen
atom is connected with the four~dimensional rotation
group QO(4) . The symmctric representation is con-
sidered in the literature by Schwinger (1964), Bander and
Itzykson (1966a), Kur§uno§lu (1962) and others. The treat-
ment of this representation by each of these authors varies

and the symmetric representation uscd here will be as



follows:

Any point in momentum space is represented by a
momentum vector f, . This vector is then scaled by
some parameter @ so that ¢  now becomes the vector
P /& . The scaled vector is now represented by a unit
4-vector W obtained by the stereographic projection of
E/ Pe onto the surface of a four~dimensional unit
hypersphere (centred at the origin) from the north pole
given by ®n = (0,0,0,1) . Two examples of the pro-
jection are shown in Figure 6.2 restricted to three

dimensions for simplicity. Using four-dimensional

L

scaled
momentum
space
Figure 6.2. Two examples of the stereographic projection.
The points P,P in the scaled momentum space become

the points Q, &’ on the sphere.



~ 110 -

coordinate geometry we obtain the coordinates w.,,
WU, Uy, Uy Of the unit vector W in terms of the

parameter P and the coordinates

PxJ'P\:))Pz. Of?\,:

200, Y
P + P>

c
~
fl

%?EP:Q-,_
foxy L (6.3)

5
1

200,

fe + ¢*

2,
\/\.4‘. = Pl - P‘g

PE + P 7

Any point on the three-dimensional surface is most

conveniently' represented by the angles «, 6, 4) where

© and ¢ arc the usual spherical coordinates in

momentum space, and we have

w, = s ok S8 c.os¢ )
Uy = swmd swmO sfm(}
- OSALTE.
Wy = swd cos G (6.4)

Yy

U Cos &
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In terms of these spherical polar coordinates the line

element dg on the sphere is given by

. A . . A

o\é = dd% + SW\o(dQQ-\' Smd&m@d(k(‘) . (6.5)
The surface element is thus

dSL =  suld 3imBddd8dd (6.6)

and is related to the volume element in momentum space

by the relation

. Ky 13
d3‘> = ?zdPsde8d4>: M— aQ) |

(6.7)
B2

Finally, if we define a new variable by

> W

I

%‘ \,*\;O (6-8)

then for values O £wW £W , it represents the shortest

afc length along the surface of the sphere frcm Lo to

’

W. The actual distance between . Me and W is given
W .

by
= ‘\’?:\ﬁ-'ﬁo\z . (6.9)
FE+)(2+ 0d)

— Al
\‘;\\_" %ol = ﬁ‘sw«%’:




) The Classical Theory of the Hydrogen Atom

The Hamiltonian describing the classical motion of

the electron in the hydrogen atom is

H(pr) = ¢ - = €. (6.10)
'z/w Y
For bound motion, when the value of E 1s negative, the
electron moves around the nucleus in an elliptic orbit.
The Kepler problem for elliptic orbits in position
representation is. considered in almost every hook on
classical mechanics and will not be considered here in
any more destail.

In momentum representation the Kepler problen is
simpler. From the virial theorem of both classical and
quantum mechanics it follows that ﬁ? = -QyAE is the
mean square momentum of the electron in a bound state of
energy £ , and it can be shown (Sommerfeld 1952) that
the momentum vector z traces out a circle whose radius
is P&(‘ - 81)’V1 and whose centre is at a distance

Pe £ (1 — D)"Yz from the origin which is cnclosed by
the circle (see Figure 6.3). &  is the eccentricity of

the elliptic orbit in position space.
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Flahz. os- o~bil .

Figure 6.3. The circular orbit in momentum space. The
. . . -t
centre C is at a distance p.e(1—g*) 2

from the origin and the radius CP is p (- g2y 'z

The properties of this motion may be obtained by
formulating and solving the H-J equation in momentum
representation. The value of the characteristic function

is the same as the time-independent action function

: ’SE(-E’ gb) given by

v
SE(E,EO) = Jw;.ol ! . (6.11)

A

g O

?



Gutzwiller (1967) has evaluated this integral directly, but
we shall obtain it by now considering the problem in
symmetric representation.
e obtain the motion in symmetric representation

by scaling all coordinates in momentum space by the
quantity FE which is now the square root of the mean
square momentum ?£'== —Q¢A£5 . The transformation
relating momentum and symmetric space is now energy
dependent since the equations (6.3) contain the energy

£ explicitly. We shall thus consider the Coulomb
problem in its greatest generality in extended phase gpace.

The generalised coordinates of the extended momentum

space are now | Pac s ?3) P and -& , and we can take
ol, ®,d and E as the coordinates of the extended
symmetric space. A simple geometric picture of the
extended symmetric space is that of a cylinder whose cross
section is the unit hypersphere, and whose axils is taken
as the © -axis. The connection between the two spaces
is shown in Figure 6.4. As the momentum=-energy vector
moves in momentum-energy snace, the vector (%:ED will
trace out some curve on the surface of the cylinder;

for a particular fixed value of the energy E , the
motion will be restricted to lic on the unit hypersphere.

The two extended spaces can be relatcd by means of
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Figure 6.4, Diagram showing how the point (P',-E}
~
becones the point (d,s, @, E) .
a canonical transformation. The transformation is given

by equations (6.3) and (6.%) or more explicitly by:



P. = (ijAEykL sun«.shn63c0541 )
1l — casd

— \[2. . o B st

Py = -~ umE Sun & Swn smé

J ( ) —_ (6.12)
\ CoSA 3

P, = (- 2mE)*t  sin o cos®

\ — Cosd

H

—-E -(8) -

We shall generate the transformation by means of a function
‘*" of the type given by equation (2.28), that is ‘Y’

is a function of the (new) hyperspherical-energy coordinates

and the (0ld) conjugate momenta of momentum-encrgy repre-

sentation, which in this case are —%,-4 ,~Z ,-t .

We choose ' to have the form:

\‘\/ = 'Y'\ (‘1)914% -E)" + 'Y'z("lyaﬂb) E) 4 +{’3(°‘)9;¢’)E>1‘\’ 7?1_(4‘6,%&)[: (6.13)

where the functions-%u{3i¥3,§} can be obtained by the
transformation equations. Using equations (2.29) we

have

o = Y [ox .y —E = [ (6.14)



- 117 -

so that:

k {xsm&sm&cos@-\- \3Sm&5m95m¢+15md@98’3 Et . (6.15)

"\,L ( = ‘(:d\x\o\smogosqz-v \:)bm%MUMY-t‘LSMW&%O’S— ET.\0.1D)

(\ — wosK) ,

Corresponding to the generalised coordinates

<, 8, ¢ we can define the conjugate momenta
PP )94) and conjugate to E a fourth canonical
CRIRL -
momentum T . For convenience we shall regard
P ‘;§’g$ as being the coordinates of a hyperspherical

momentum vector given by:

A A
+ B8 + B (6.16)

swma s el SO

P. = &

R >

and 4 as being the new 'time' variable. These
canonical momenta are given in terms of the independent
variables of the transformaticn by means of the other

transformation equations:

P‘,('—'- _..Bq’ ekq) T = -?_éi’
d

EY! (6.17)

In particular, the new time variable 1s given by:



T = bt- px = £t — @ swmd | (6.18)

€ 2E£

The values of Px , P and Pq, may be expressed in

a similar fashion and it can be shown (Norcliffe and

Percival 1968, to be referred to as II) that

Y
f; - *'Q"Qf*E) z

(6.19)
(- cas&)

so that the value of the Hamiltonian is ncv_}ar going to be

u = _E(\-\- cosﬂ()__ k(-?.pE)"’-

(6.20
I — s« (Vv — cosw)fy )

We are now equipped to set up a Hamiltonian

dynamics in the extended symmetric space. We shall take

as our energy equation corrcesponding to L of eqguation

(2.38) the expression H -E , so that

Q = -E(itcet) - REAM* -E
|~ s O - wosyp,
(6.21)
=3 - 2

~ R(-2mE)2
O — cesx) P,
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To parameterize the variables we shall choose the time t .
We are quite at liberty to do this providing it is under-
stood that in terms of the parameter Yt the variable t

is given by:
t(oow\o\\p\e> = -?(t((.\o«o\me\’ex)) = t . (6.22)

Hamilton's equations of motion in terms of a Lagrange

multiplier () are thus

da = NNE) AN e, ]
ax XN
f (6.23)
d B = ~NME) 251 | ek,
ok da | J

These equations will determine the properties of
the classical trajectory on the surface of the cylinder.
However if we now consider the value of the energy E
to be fixed so that the motion is restricted to.the unit
hypersphere, we can obtain the path of motion on the |
hypersphere by means of the principle of leaét action.
To evaluate the classical action we need to obtain the
direction of the line element dg, on the hypersphere.

Ye note that
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!
o

ad
dk

[LOPS

+ s;mctc_i_?
ok

R>

. . A
* M“S”e%\%ﬁ (6.24)

&k

and using the first set of Hamilton's equations together

with the identity:

‘I'l_

Py = (?: v P o+ Py (6.25)
st d Simtd sin' ©
we have:
ds — ) kPR dk Py
~ . (6.26)

ﬂi(} — Cosd)

The line element ds is thus in the same direction as
the hyperspherical momentum vector Py . The path
on the hypersphere will be determined by the least

action principle:

A}(Pﬁo\our Fodo + P.Po\cf:) = 0

Aj fu.d8 = 0 . (6.27)
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Since both df and p,  have the same direction we

consider

A\ pds = QO . (6.28)
(VY

Since, however, £l = O , the magnitude of the hyper-

spherical momentum vector is

e

P\L = /M.\l - (6.29)

which, for a given value of E , is constant. The

least action principle thus reduces to

Pu AS ds = O (6.30)

and the path on the hypersphere is therefore a geodesic,
that is, a great circle, and the action is just the
product of ?u and the path length s .

We saw by considering the motion in extended
symmetric space that the new time variable was
T = +£ - P*simo(/Q_E » and we shall treat this
for fixed E as the new time variable associated with
the motion on the hypersphere. The second of Hamilton's

equations tells us that
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d"t | = - 7‘('!:)a__."c.?_-.
dt dE

The value of dv /4t for fixed € is then

ar ) (6.31)
ok . (= cosa)

so that the rate at which W traces out the great

circle is given by

\éé‘ = |45 at] — | ke M®0- cosd B (6.32)
dx dt dv eS (1 = wosxK) WE)
which is constant. This uniform motion on the hyper-

sphere has been obtained by Gydrgyi (1968). . The
situation is very similar to that of the free particle
moving on a ring, but now the path is traced out
uniformly with respect to ¥ and not t

Just as there was an infinite number of paths
joining two points on the ring, there is also an
infinite number joining two points on the hypersphere.
The geodesic between two points Yo and WU is of

length W , so the lengths Sc (4 ) o) of the
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possible paths ¢ between these two points are given by

sc(4,%0) = (W +2me| c¢=ox1,22 ... . (6.33)

and the corresponding action functions are just

Scelu,u,) = sl |w « ame| . (6.34)
fe

Since we need the value of the action function in
momentum representation it should be noted that the con-
tact transformation relating momentum and symmetric
representation is a coordinate transformation: the co-
ordinates of momentum and symmetric representation are
related by equations which do not involve the conjugate
momenta (see equation (6.12) for constant energy E ).
The value of the classical action is consequently the
same in either representation as was mentioned in
chapter 2. Thus if We and W in symmetric repre-
sentation correspond to f  and in momentum

representation, then

Sce(wiwe) = Seele,p)

i

sl Lo + 2ve |
3

(6.35)
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where now, in terms of momenta

0y = cos—f{w;‘g.gur (F*-e)(k-P2) 1 | (6.36)
Co+ p2)(or+ 82)

5) The Quantum-Mechanical Theory

To evaluate the spectral operator kernel in momentum
representation we shall again consider the problem first
of all in the symmetric representation. The quantum-
mechanical Coulomb problem has been considered in this
representation by Schwinger (1964), Bander and Itzykson
(19664), Féck (1935) and Kur§uno§1u (1962). Schwinger
makes use of this representation to obtain the Coulomb
Green functions in momentum representation. The other
authors are concerned mainly with the group theoretical
aspects of the Coulomb problem and show that the
Schrodinger equation in symmetric representation is mone
other than the integral equation for the spherical
harmohics of four-dimensional potential theory. We
shall use the symmetric representation to rrovide an

expression for the kernel of the spectral operator which
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is expressible directly in terms of classical path sums.

In chapter 3 we saw that different representative
spaces in quantum mechanics were in general related by
unitary transformations. This is true of position and
momentum representations, but unfortunately momentum and
symmetric representations cannot be related by a unitary
transformation. This does not mean that we cannot
formulate the problem in symmetric representation, it
just means that properties of operators and kernels which
hold in one space need not necessarily hold in the other.

We shall label wave functions by the energy E
which has a negative value; but which need not be an
energy level of the hydrogen atom, and we shall repre-
sent the transformation from momentum to symmetric
representation by A Any momentum wave function

\'\’(g,E> will be related to the wave function

Y, (u ,E.) of symmetric representation by

Y, (w,8) = AY(,E)

.

-5
2

fe

~
-

.
—% e+ Y(g,e) . (6.3D)

The factor in equation (6.37) is chosen so that if

\\’(?)g) is a normalised solution of the Coulomb
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Schrddinger equation in momentum space belonging to the

energy E , then Y5(4, E) will also be normalised:

Jam ol - [4 despreor

PR 9 P.E,_ ~

J e reeal

I

il

1 . (6.38)

This result depends on the fact that the mean value of |
the quantity ¢~ is po .

Now that we know how the wave functions are
related, we can obtain the relation between operator
kernels in the two representations. If L.(p,Q,)
is the kernel of an integral operator - in momentum
representation, and L (4, Wo) is the kernel in

symmetric representation, we have

,SQ—S}-" L (wuo) e (ue)E) = /SJ &, Lz, e 1{ga1E)

2 w?

= | dQo G+ (s 1) 2
Tt %:3 =L, Ys(uoy®) (6.39)
1=
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so that the two kernels are related by:

L(s,we) = 2w@(pe+e) (el + 02) L(¢g,5) . (6.40)
Bee

The kernel of the spectral operator can now be
obtained by deriving Schrddinger's equation in symmetric
representation. In momentum space Schrodinger's
equation has the form of the integral equation (Kuriunoélu,

1962, p. 364):

3
R R

Thus, if K is the Hamiltonian of the hydrogen atom then

(E- H)‘\’(P,E> (- _9_)‘%(9 E)He gd""(’o*(‘i E) . (6.42)
\p-e.\*

The form of this equation in symmetric representation can

be obtained via equations (6.3), (6.7) and (6.9) and is:

E-MYu,® = @“%)(IWQ)%(%)E) (6.43)
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where:

vk Qb(wE) = |4 Tsle,B) (6o
P v : AT\ - we |

The equation
(T-vQ)Ys(w,E) = o © (6.45)

is what is referred to by Fock and Kur?unoélu‘as
Schrddinger's equation in symmetric representation, and
for positive integer values Y = wn it is satisfied by

the hypePSpherical harmonics of order m , so that

QY ntm () = 0 Tt ) - (6.46)

These functions form a complete and orthonormai set on
the sphere. The functions in momentum space corres-
ponding to these hzrmonics also form a complete set;
but are no longer orthogonal.

The operator equation corresponding to equation -

(6.43) is

(E-) = (e -£)1-vQ). (6.47)
2p
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and assuming we can construct generalised functions of

both sides of this eqﬁation, we have in particular

S(E-H) = 8((5 -2 )1~ VQ)> , (6.48)
M

Since (€ - __pZ') is never zero for E < 0O , it can
2

be shown (appendix C) that

S(E-H) = -5(1—17@(‘2-_?_’:3-\, - (6.49)
I

The spectral operator is thus given by

le ""3:7(E".?:7 (6.50)
2
where:
Jy = -o(1-+Q). (6.51)

J, plays the analogous role in symmetric representation
as dces the spectral operator :EE in momentum repre-

sentation. It should be noted that although the operator
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T has a symmetric kernel in momentum representation, it is
Jy and not Tg which has a symmetric kernel in symmetric
space. Again this is due to the fact that the two repre-
sentations are connected by a transformation which is not
unitary.
In terms of the projection operators qnto the levels
Y =n in symmetric space we can express the operator

Jy as (see equation (3.11):

[ d

Ty = = Z Pub(I- /n)

n=

It

-—?n'__‘ﬂ?,,S(n~v) . (6.52)

The kernel of the projection operator ‘?; ‘can be obtained

directly from the spherical harmonic addition theorem (Fock

1935):

n-\

%P"~

Pal,u0) = ‘mmcu)\mm Cae)

L=0

T n Sbnkuﬂ

o (6.53)

where «» 1is the hyperspherical variable discussed

previously, and the kernel of 73, is thus
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o

Jp (4,0 = —2_ v snaw S(n-v)
n=1 s W
o0 + -
= —Z EDV SV d3(y-m) . (6.54)
- W=-o s W

This expression involves directly a sum over quantum
states and as we have seen in chapter 5 for the particle
on a ring the expansion in terms of quantum states bears
littlé resemblance to the same expression involving sums
over classical paths. An alternative expansion of
equation (6.5U4) can»be obtained by expressing the infinite
sum of delta functions in terms of trigonometfic functions
as given in Lighthill (1960), p. 68. The kernel of 3y

can now be written as

oo

’z_ -

j_v(‘*—’ Qo) = EMY Z_ Smiv(*zvc_~w)3 (6.55)
sSmuw) ¢=-® <

and as we shall see it is this expansion which is readily

expressible in terms of sums over classical paths. The

corresponding spectral operator kernel in momentum

representation can now be obtained from this equation



together with equation (6.50) and (6.4C), and we have

2
Llog) = =Bk P RCLSE S
™ ‘9‘*«?5)‘(9;-»«% S

where > 1is given in terms of the momenta by equation

(6.36).

- 6) A Compete Correspondence Identity

To provide a complete correspondence ideﬁtity we
shall now relate the kernel of Jy as given by
equation (6.55) to the classical action functions

Sce(w, wo) and the classical path lengths
sc(k&)‘QO) of symnetric representation. We have

explicitly:

Iy ayme) = = EO’)V Zsmgsd':(%’%)/ﬁg - (6.57)

= s seli,ua3

Th.is expansion in terms of classical paths is an

alternative expression for the kernelofiib as given in
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equation (6.54) which involves explicitly sums over
quantum states.
As in the phase-integral approximation (see

Gutzwiller 1967), the singularities of the expression

S ¢ Selu, @o) 3 give the focal points along the
classical trajectory on the hypersphere. The zeros of

sun g Sc(d) Qo) 3 occur when
Sc(4, Uo) = O,T, 1T, ... .. (6.58)

That is wvhen W is O or TV . The focal points thus
occur at M, , or its antipodal noint. This is not
surprising, since all paths leaving W | pass through
the antipodal point and return to UWe .

Corresponding;’to the complete correspondence
identity in symmetric representation, we also have a
complete correspondence identity for the kernel of the
spectral operator Ig in momentum representation.
Since the values of the classical action in both momentum
and symmetric representation are the same, then the
spectral operator kernel of equation (6.56) may be

expressed in terms of classical path sums as follows:

Lepp) = 82K S sin$ @RI

™R (p*+ P;')L(P;'-\— o BT le + 2we |

6.59)
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Now, the term sw | W + 2w has no direct inter-
pretation in momentum space. However if we expand
Swi W in terms of momenta ¢, e, and energy E .,

we may write equation (6.59) in the form:

M3

1 ' . .
Telop) = oo s § SceRp(® (6.60)
s c= —00 ~ o~ o
wnere
- b b
L) — © (6.61)

T (=28 (- WS p -0, (P € +0E ~tuEpp)

In this form we can relate the density factor
PeE LQ ) f") to the equivalent term obtained in the
phase-integral approximation. It is in fact identical
to the result obtained by Gutzwiller apart from a mass
factor in the numerator of (6.61), which must be¢ an
errof on Gutzwiller's part since the spectral operator
kernel (6.60) has the correct dimensions of (energy)”
(momen’cum)~3. The density becomes infinite now if
P =P (corresponding to W = w, ) or if
’\;?o _ ?;- ; ?.'?0 - —| (corresponding to the anti-

podal point of wu, ). The sign of the square root of
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P.e ( 2, ﬁa) » Wwhich is given naturally by the sign of
the expression -~ Sw \w+ 2awel , can be determined

by the foecal points. If the path ¢ from Co to

A

p » passes the focal points in total an even number of
;Emes, then the sign associated with aPcE<L£)g9)VZ

is positive. If the total number of times is odd, then
the corresponding sign is negative.

The complete correspondence identity that we have
obtained in momentum representation together with
_Gutzwiller's result for the density function )ocE(f_’Eo)
suggests that the phase-integral method formulated in
momentum representation for the spectral operator, and

not the Green operators, will lead to a rasult which

will be correct.

7 The Bohr-Sommerfeld Identity

Having obtained a complete correspondence identity
in both symmetric and momentum representation for the
. kernels of '3;, and Lg respectively we are now able
to explain the two correspondence identities associated
with the bound states of the hydrogen atom. The Bohr-

Sommerfeld identity follows at once:

From equation (6.54) we see that contributions to
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the kernel of 3y only arise from positive integer
values of v . These correspond to the bound states
and VY 1s the princinal quantum number wn . Since
the kernel of Jy in equation (6.57) is expressible
exactly in terms of the classical action functions it
follows by comparison with equation (6.54) that con-
tributions only arise from those classical paths for
which the energy is a bound state energy level. The
value of the action for one complete orbit in these cases
is going to be 2AwnW . This value 'is independent of
the representation and the value of the action for one
orbit in position space is also 2WwW . This is

how the Bohr-Sommerfeld identity arises, and indeed
those orbits for which the total action is 2TtwnR

do have energy ¥, given by

; _\Q?‘“
Lnwh

8) The Fock Identity

The Fock identity follows from dynamical symmetry.

The kernel of :ry in symmetric representation as
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given by equation (6.54) is invariant with respect. to
rotations on the hypersphere, and so is the kernel of
the projection operator P of equation (6.53). It
follows that the value of P,(4,¥) is thus constant

over the hypersphere so that:

n—\ £
Z Z \\/nkm(“)\l/nlm(u) = conslant . (6.63)
1z=0 m=-¢

In this sum each of the wn° states ‘corresponding to

the different L and w occur with the same weighting
or probability and the distribution in W over the
hypersphere is the quantal microcanonical distribution
for the level » = wn (seec Landau and Lifshitz 1958).
Because the kernel Iy, no) is expressible
in terms of the classical action functions as given in
equation (6.57), the classical action functions are thus
also invariant with respect to rotations on the hyper-
sphere. They are solutions of the Hamilton-Jacobi

equation:

\ {'L

Pu = i )L s:m’-v( k )Swnlsun ;3 - %

(6.64)
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which is also invariant with respect to rotations. The
classical microcanonical distribution function corres-
ponding to the quantum-mechanical operator Ty , namely
8( | \) is consequently independent of u
and th(:as?c‘ikistribution in W for all negative values of
the energy E is uniform.
Thus, for all values of E equal to E, , the
classical and quantal microcanonical distributions in
wu (suitably nofmalised) will be eqﬁal. This is the
origin of the Fock identity: from the properties of the
transformation relating momentum and symmetric spaces,
it then follows that the classical and quantal micro-
canonical distributions in g' are also equal. Now,

of course, the distributions are no longer uniform but

are given by

5
,p) = 3 fe , E=E, .  (6.65)

We have thus explained the two correspondence
identities associated with the bound states of the
hydrogen atom. The third identity, the Rutherford

scattering identity, will be considered in the

following chapters.
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CHAPTER 7

THE CLASSICAL THEORY OF THE H-ATOM FOR POSITIVE
ENERGIES AND RUTHERFORD SCATTERING

1) Introduction

The scattering of an electron by a fixed proton
corresponds to the positive energy states of the hydrogen
atom. The angular differential cross sections for this
tyne of scattering as predicted by the theories of
" classical and quantum mechanics are identical, énd this
is the well known Rutherford scattering identity. The
success of certain classical theories of scattering,
where the collision of two particles is the dominating
process, has been attributed to this identity (sce, for
example, Burgess and Percival, 1968). The Rutherford
scattering identity is the third and final correspondence
identity to be considered in this thesis and we shall
show that it follows from a complete correspondence
‘identity, whereby the non-relativistic quantum dynamics
of the system is obtained from the solution of the
corresponding classical problen.

In constrast to the bound states, we find that the

classical theory is complicated by the need to consider
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not only classical trajectories, but also generalised
classical trajectories. These generalised classical
trajectories are the analytic continuation in energy of
the classical paths of the bound state problem and are
needed for the derivation of the complete correspondence
identity. As we shall see, they are built up out of the
paths which occur in the Rutherford scattering of both
electrons and positrons by a fixed proton.

Since the complete correspondence identity involves
these generalised classical paths (Norcliffe, Percival and
Roberts 1969, to be referred to as III and IV), and since
the quantal theory is also more complicated than for the
bound states, *the derivation of the complete correspondence
identity, and the explanation of the Rutherford scattering
identity has been left until the next chapter. In this
chapter we will be concerned solely with the relevant

classical theory.

2) Choice of Representation

We shall again obtain a complete correspondence
identity through the kernel of the quantum-mechanical
spectral onerator. For the bound states one reason for

choosing to work in momentum representation was the fact



that a large region of position space was classically
inaccessible to a particle of given negative energy € .
For the positive energy states the reverse is true and a
part of momentum space is now classically inaccessible as
described in scction 4. At first sight position repre-
sentation would seem the obvious choice in which to obtain
a complete correspondence identity. Nevertheless we still
find that momentum represcntation as onposed to position
representation is more convenient for this purpose.

Once again there is a symmetric representation for
which the classical- and quantum-mechanical equations of
motion remain invariant with respect to rotations in four
dimensions. The symmetry group to which these rotations
belong is now no longer the group C)(4) but the group
of rotations ©O(1,3) . The treatment of both the
classical- and quantum-mechanical problem in momentum
representation is made easier by considering the problem
in this symmetric representation and the classical theory

will be given in section 4.

3) Classical and Generalised Classical Trajectories

Consider a particle of mass M and positive energy

E = %:/?%L moving in an attractive Coulomb notential
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V() = =Ry = -2&+ k>o. (7.1)

)
The trajectory in position space is well knéwn and is one
branch of a hyperbola which has one focus at the origin.
The momentum-space trajectory, or hodograph, is an arc of
a circle whose radius is pE(g"'-—))-./’- = R M | pe 5
and whose centre is at a distance E?E((-‘_z_ \>T'/2
from the origin. The eccentricity of the orbit is &
and b is the impact parameter. The tangents to the
circular hodograph at the extremities of the arc inter-
sect at the origin at an angle ® which is the scattering
angle, as shown in Pigure 7.1. The remaining arc of the
circle is the hodogranrh of a particle having the same
energy moving under the influence of a repulsive Coulomb
potential V(i)== kj?‘ . In position space this
corresponds to a trajectory which is just the other branch
of the same hyperbonla, and would be the trajectory of a
positron scattered by a fixed proton when the potential
is E}/T’ .

Tor attractive Coulomb scattering, as we have
menticned, the whole of position space is accessible to
a particle of positive energy & , since between any two

points there is always a classical trajectory. For
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momentum civele

Enevscj shell

Figure 7.1. The hyperbolic trajectory in position space
and the circular hodograph. The continuous curves
are the trajectories for the attractive Coulomb

potential and the dotted for the repulsive.
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repulsive scattering this is not the case and a small part
of position space is classically inaccessible to a particle
having the same positive energy E . However in momentum
space large regions are classically inaccessible in both
types of scattering. As can be seen in Figure 7.1 the

two regions \g\ > @ and \g\ & g are inaccessible
to a particle moving in a repulsive and an attractive
Coulomb potential respectively. Consequently there is

no classical trajectory in the normal sense joining two

momenta ¢ , P when, for example, |B| < ®¢ and
\el > Pe :
w/

The  two momenta, nevertheless, are joined by the
arc of the complete momentum circle (see Figure 7.2).and
we can regard this arc as a generalised classical trajec-
tory leading from 29 to © . The generalised
classical path PF @ of Figure 7.2 is only one of an
infinite number of generalised classical paths alil
leading from ’P to @ . For example any path from P
through F or E to @ , having passed around the
complete momentum circle ¢ times, is also another
such path.

It is through these generalised classical paths

and the properties of the action functions evaluated

along them that we arc able to obtain a complete
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Waccess ble \

accessible

Figure 7.2. The arc PFQ joining {, and p
. -~ ~o
can be regarded as a gencralised classical path
lsading from P to QR for attractive Coulomb: -

scattering.

correspondence identity. The spectral operator kernel
for the bound states is expressed as a sum over all paths
in momentum representation which run between ﬁ) and
ziéee equation 6.59) and it is obvious that thg
generalised classical paths are just the analogue of
these paths. One would thus expect the spectral

operator kernel for positive energies to include a sum

over all the generalised classical paths; but this is
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not the case, and it turns out that we only take a subset
of these paths. The number of paths in this subset is
still infinite, however, but the reason for the particular
choice of paths is a subtle one which depends on the
relative positions of ¢ and p, and will be dis-
cussed in the next chapter. N

Before the value of the action function along a
generalised classical path is obtained, we shall evaluate
the action between two points in the accessible region.
The action along a generalised classical path_is then
obtained by analytic continuation. From canonical trans-

formation theory the energy-dependent action function of

momentum space is given by

P
- l
SE(E‘E‘)} = “SP ‘:A,E (7.2)

and this can be evaluated directly by using the para-
meterization by means of the eccentric anomaly as given
in Landau and Lifshitz (1960). We shall obtain the
value of the action by considering the classical theory
of attractive Coulomb scattering in the symmetric repre-

sentation.
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D) The Symmetric Representation

The symmetric representation appropriate to the

electron-proton system for positive energies has been

discussed in the literature by Bander and Itzykson (1966b)

and others (see for example III). Let VN

(N = 0,1,2,3) denote a position vector in the
four-dimensional Minkowski space with a metric whose
signature is (' ,-!,-1,-1). The surface A of

a unit sphere in this space has the equation

2
WL = u,—ul -ul - = (7.3)
. L - ales
and consists of two sheets A and % -defined
by Uy, 2} and u, & —! respectively. In four-

dimensional Euclidean space A is just the surface of
a rectangular hyperboloid. A point Mx on 5 is
associated with a point E in momentum space by pro-
jecting the scaled momentum 4-vector (O, @ [pg )
from the the point (-1, 0,0, 0 ) on 57 onto the
surface /3 . For the time being we shall regard ?E

=8 a fixed pairameter 80 that the transformation between

romentum and symmetric spaces is not explicitly energy

dependent. Two examples of the projection are shown in

Figure 7.3 in 3 dimensions for simplicity. Explicitly
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Scaled womeritom space

Pigure 7.3. The sterecographic projection. The points
4

P ana P in the scaled momentum space project

onto the points @ and G{’ on the surface of

the hyperboloid.
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we have:

U, = (LOS\n-o(, s'wd\o(.é) ,uheve tanha oo = e
el <6 o
(7.4)
Un ==(coshd, suahd.$ ), whevemh 'ed = e [p
\el Yy e .

All points in the region of momentum space for which

\~} 2 Pe  are projected on A~ and all those in the
region \f\ £ Pe onto A¥ . Uhen we come to con-
sider the Coulomb problem for positive values of the
energy E , the transformation between the two spaces
becomes energy dependent since fe is now related to
the energy by ?EL= (Z/AE . A~ and At are
then respectively the classically accessible regions of
the attractive and repulsive Coulomb potentials in the
symmetric representation.

Considering, then, a particle moving in the influence

of an attractive Coulomb potential we see that the motion
is confined to -7 . Since the transformation is energy

dependent the full properties of the motion can only be

obtained by considering the energy E and time <+ as

-
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further variables. So, as for the bound states, we shall
regard —-E as the new coordinate in momentum space and
-t as its new conjugate momentum. In symmetric space
the energy & is taken as the new coordinate. Motion
in the four-dimensional momentum=-cecnergy space will corres-
pond to motion on the surface of a cylinder whose cross
section is the surface -9 of the Minkowski space (see
for comparison Figure 6.3).

The two spaces can be related by means of a contact

transformation generated by the function

\\/(;119,4’,5;":‘5;3,.&) = et sl 5nB s +ysunBsiond + w,e> —gt. (7.5)

We can define the geheralised momenta of the extended

symmetric space by the usual transformation equations:

P = '3\",730\ , ke §o¢ VQ,PQ
| (7.6)
T = -B‘Y'/EE )

In particular ¥ , which may be thought of as the new

time variable, is given by

T = % - Y.p[2E (7.7)
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and Pu, ¥ , P satisfy the relation
= 2smnha iR (7.8)
where:
X z . '
= (e + ?i;/squo(+ Pb [suld sun O) “ (7.9)

The value of the classical Hamiltonian is now given by

= Pe coR'a e Pe cosacho X (7.10)
2L 2.0 '

H=£ -
QjVL.

and to formulate a Hamiltonian dynamics in the extended

<\&

gymmetric space we construct the following energy equation:
Q. = W-E

= Pe coseeM ook _ e Pe casech ook
2 2N : (7.11)

As for the bound states we narameterize the variables by

the time t and obtain Hamilton's equations of motion
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in terms of a Lagrange nultiplier:

dd = WE) 9Ll | o
dx 3P,
(7.12)
Al = AE)EL | ek
ak DA

These equations will determine the properties of
the classical trajectory on the surface of the cylinder.
However for a fixed value of the energy, when the motion
is restricted to - we can obtain the trajectory by
means of the principle of least action. The element of

distance along a path in A~ is given by

A . . A
du, = o\d\;t,\-\- s-ur\\r\oLdgeh-\v%m\aost@dcb #)7, (7.13)

A A A
where oy |, O, c‘n are mutually orthonormal vectors
in the Minkowski space. Py means of Hamilton's equations
(7.12) the invariant distance s along the path is

given by

ds L [ dwnddVE_  NOWFe cosecdiin
ax (dr 20 - (7.18)
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For fixed values of thc energy, the condition £l =0

implies that

ﬂ = onstant = \Q/.Af Pe ‘ (7.15)

and a four-vector ﬂ). can be defined by

A
ﬂ» = ﬂé.‘}.a = P-t&x + %on + \’Q @. . (7.16)
das sunh o sl sin B

- This is consistent with the definition of N , Since

L N
0=-N0 . (7.17)
The value of the classical energy-dependent action
evaluated between two points \»\L;) , W is given by
“19)¢
(0)) — {
SE(“M“A = f&,dd',, B A6 + \’4;44)' (7.18)
do,eo,q)o
S
- »
- j- 1 dusded
So as'!

= ﬂrdS‘ . (7.19)
So
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The principle of stationary action

S
HAX ds' =0 (7.20)
S

-]

implies that the trajectories on /S' are thus geodesics
and in this case they are the curves in which planes
through the origin intersect A In a Euclidean sense
they are rectangular hyperbolae, and are analogous to

the great circles on the unit hypersphere in the case of

the bound states. If @ is the Minkowski distance

. () -
along a geodesic between Wy and U, on A  then
g3
©) 2 -
(.osk@ = UWuw =\ <+ E\g 3’\ (7.21)

M(o-B)T—E)

where the kinetic energies T and To are

T-= Pz’/g_/‘& , To = ?o"'{‘z/& , (7.22)

ﬁ is thus the hyperbolic angle between the two points
on A  and is given by the analytic continuation, as
we shall see in the next section, of the angle & of

equation (6.33). The valuc of the classical action is

thus
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SE(‘*M“‘?) = n? (7.23)

and once more, since the coordinates of both momentum and
symmetric space may be expressed in terms of one another
without involving the conjugate momenta (see eguation

(7.4)) the transformation relating the two spaces leaves

the value of the classical action unaltereced. Thus

Sen ) = Np = Selp s lellp)r b (7029

©)
where P corresponds to W, and P, to U .
A ~7
5) The Analytic Continuation

In the case of the discrete spectrum where E<o
the kernel g (g, PO) of the spectral operator can
be expressed as a sum over classical paths between \20
and p , each path being characterised by the number c
of t;mes that the particle passes around the circular
mcmentum orbit. The contribution from each classical
path depends on the corresponding action SQE(E,fc))

For the continuous spectrum we have seen that there is
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no ciassical path joining the points A and P if
one of them or both lie in the inaccessiﬁle region of
momentum space. WYe have to consider the generalised
classical paths which pass through the inaccessible fegion
and around the complete momentum circle any number of times.
Ve shall again characterize each of these generalised
classical paths by the integer ¢ , and the corresponding
classical actions S e (p,f) for € > O mnust be
obtained for all values of ¢ and ¢, - The classical
action functions S g (f_, &,) for £ <o are
defined for all f and P, and we shall obtain the
result for € D O by analytic continuation.

The action SCE;(E'E}) treated as a function
of complex cnergy is discontinuous across the positive
encrgy axis, and this is because the action is given in
terms of the square root of the energy. The value of
W, and hence of ScEf(f\gp) depends on whether
we analytically continue above or below the cut along

the positive energy axis and the two actions

x
Sc_E (E\Po)=-‘ '%”_:OSCE*‘“%(E’%) ) E,e>0 (7.25)

aré different.

From equation (6.35) we know that for the attractive

Coulomb potzntial the value of the action along the
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shortest path joining the two momenta

P, and ¢ for
a negative energy B is given.by
See(p,p0) = Mk (7.26)
L-’L/AE)
where
’ 2
oswy = )|+ E\ﬁ‘fo\ | (7.27)
' MIE=TH(E —To)
If we look at the function Z (B) of the complex
energy variable 5 given by
2
ZQQ) = \ + E\f-R) = (osW (7.28)

M(g\ _T>(§- "‘To>

we see that when [ is real and negative, W is real

~and lies between © and ™ as it should for the bound

states. We require the value of & for real positive

values of é and what we shall now obftain is

w+(§) = &:‘:\ow(e vie) , (Ee) >0 (7.29)
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for ?. fixed in the accessible region and ¢ on
different parts of the momentum circle as shown in

Figure T7.4.

\\5“5(3‘3 S\\e\x

ZRNG ynome n'k'um

wmomentuwm

cwrcle

Figure T.4. The different types of paths in momentum
space. Between A and B we have the path in the
accessible region and also AFDCEB which passes

through the inaccessible region.

Inverting the relation (7.28) we obtain

0w = = 1\03 Ez + (7}-\)((2% (7.30)
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which is a many-valued function of 2Z . The function
2 4+ (2¥ =072 is itself a double-valued function of
Z and all its values are given on the Riemann surface

consisting of two sheets R, , R, Jjoined by cuts from

- to —| and from |\ to 0O . on K, we define
Im (- \Y% > O ,then (2*—1)%  is uniquely
defined on the Riemann surface. On R, , (Z~1)"=

takes on values of opposite sign to those at the corres-
ponding points on R, . The argument of Z + (7_2—\)'/1
then varies continuously from O to 2T as Z passes
around the branch points X} on the two sheets. If

we now take an infinite set of such pairs of sheets

joined in the same way along the cuts, then cug(l-\-(‘Zf—\)'/z)
takes on all real values on the Riemann surface thus
cbtained, and J is a single~valued function of Z_

on this surface given by

W = o.xsiz_ +(73‘-\)‘/z§ - ll03\1.+L‘Z;L~\)‘IL\ ) (7.31)

We now consider Z. as a function of E + (& .
where E DO, with Po fixed at F\(go) say, and
 varying around the momentum circle from A  through
E and E and back to A in Figure 7.4, By examining
the real and imaginary parts of Z we find that Z.

describes the contour shown in Figure 7.5.
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COM?\e x 2 ?\Me

\J

M > > >
L ERGD) &-
_ +1

~{

——ed— Contou~y own R'

——=>—=== (ontouvy on Rz

Figure 7.5. The path on the Riemann sheets R, and
R,__ defined in equation (7.28) for £ = € +\‘e(E)g,>o>
and P, fixed in the accessible region, with

¢ varying round the hodograph.

~

The analytic continuation of w for o at A as

~

e lies on the different parts of the momentum circle

~

is thus as follows:
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(g, for p at B., where B varies from ﬁ(§=a)
to E (¢ =o),on path ABE (a)

T —lfi, for p at C, where C varies from E(p=e)

b .4 to D (8= 0), on path ABE D (b)
(7.32)
T\'+L(§ for p at C , where C varies fromD(ps= o)

to E( =e0),on path AFDE (e)

LW +f for f at B , where B varies fromE(f=c)
~ to A (@ =0) ,on path AFDED (a)

where p is the hyperbolic angle, always defined

. ©) /3— .
between two points W, , W«, on . Since ¢,
is in the acccssible region, the corresponding point u\(;)
belongs to AR~ . If ¢ for example lies at D in
Figure T7.U, then the point on X~ taken to correspond
to P is that point actually corresponding to P ?;/9"

~

which is the momentum at A . Thus

cosh b | \f\>(’e
coswt = (7.33)

—cosh ¢ \g\ LB -

To obtain the value of the action along the
generalised classical paths in momentum space we first

note that



‘ )
fim (~Ua(E+EE) = g (7.38)

E->0

so that the action along the shortest path between e,

~

and p is

~

1e le} > e

+
Se(pp,) = |
=2t N+ an)  fel < pe

(7.35)

For H::\ > P=  this agrees with equation (7.23) for
the value of the action between two points in the
accessible region. For \g\ < fg , with reference
to Figure 7.4, the action from A to C is the sum of
a real part corresponding to the action along the path
AB plus an imaginary action ew (] which comes from
passing from B through the energy shell at &  into
the inaccessible region at C .

If we had considered the analytic continuation in
energy to E—L& , for E,& » O, then we would
have obtained for (O~ the complex conjugate of terms

in equation (7.32), and consequently, since

. . "/7. .
K § - (E -1 = -{[g (7.36)

€>0



we have the result that:

_ . * '
Selpip,) = \_Sé(g,g)] - (7.37)

Since cAfb increase by a multiple of 2Tr each time
the momentum orbit is described, then the corresponding
action functions SEi (g yPo) increase by multiples of
+ owi ] . Hence if cﬁ’ denotes the number of com-
plete orbits described, the valuesof S:E (?,P)

for P and EP lying in each of the regions of
momentum space can be given for all the possible
generalised classical paths in table form as in Table 7.1l.
The analytic path length given in Table 7.1 is just the
analytic continuation of the path length for the bound
states. For encrgy E = E -i& the quantities in

the table become their complex conjugates.

6) Time along the Complete Orbits

The generalised classical paths in momentum space,
a3 we have scen, are made up from the hodographs of
particles of the same positive energy & moving in an
attractive and repulsive Coulomb potential. The

properties of the action along one of these generalised
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Table 7.1,
Path Analytic path Action
Rcyon ('G\auve e ‘l’) leagth w symm -

ebvic vepresentation,

SC+E (g, g?)

A (g‘,‘) to %(f)

\f\ el ¥ R 2we — LB ﬂg + Lweei(]
C=O0,t,.. ,%0
(u)., u‘;’ on /S—)
A(p,) & B(.E)‘M 2we + (B "ﬂ(& +‘zmtﬂ
F,E 5 c=12,..,%,
D o) To C(_?)
Pl lel< fe (&) T | ame +ip -1 roreil)
o C=0,V,.. ,0
(_U;U L\(;\)M&-")
D (f;) ® C(_f)vu\
2we ~ B g varic(]
F’E y €=242,.,00
8> 2. lel< P Ale) B C(Q) via [T(zcr) ~ L [1p+ wlcr)i )
E;,cz0f)-
(WP om A7,
wn o A0) 1AG) & Clpas T@e-D+ip  [le +uze-)id]
F;c=L,2,.. 00
\o) < e 1017 | DB & B Ly v tp [-IB+wzen)il]
(W& o AF [FiCT 0%
Up m 5) D(p)t Blp)sia
F’;C:.\,Z,.. ,00 TY(ZC—\)"L@ né"‘T‘(ZC—l)'Lﬂ
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classical paths are different to the properties of the
action for each particular path. For example, with
reference to Figure 7.4 again, the value of the action
from B to C along the generalised classical nath
AE C is not the sum of the action evaluated along

A to B (for attractive Coulomb scattering) and the
action from E to C (for repulsive Coulomb scatter-
ing). In the latter case of coursc the total action is
infinite which is not the case for the generalised
classical path AEC . Similar properties of
generalised classical paths arise when we consider the
time along these paths.

For the bound states, if ff, is taken to be
the momentum at the perihelion of the elliptic orbit,
then O 1is just the eccentric anomaly at the point
with momentum E (Landau and Lifshitz, 1960: Gydrgyi,
1968). The time taken by the particle in moving from

f, around the orbit ié given by Kepler's equation:

o>

NE = W — €s5umW (7.38)

34 '
where SL = (—?_/&E) /\Q)&z is the fundamental
angular frequency and € is the eccentricity. The

period for a complete revolution of the orbit is civen by
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BE OY\O\t

The analytic continuation of Y and € to positive

R ’/ /
energies are (L and € where

P

(7.39)

0 > = WL
E=EXi,Eyo. (7.00)

4

€ S €

Q= ?:/k/kf and € is real and greater than
unity. For positive energies, we again choose A

to be the momentum at the perihelion and using e&;ations
(7.%2) and (7.40), the analytic continuation of the

Kepler equation (7.38) is

) sinp- b @
FW— esihp — g | ()
fE= 2 . (7.41)
FLUW + esuwhp +g )
 Faiw - e'sihp + B (4)



where the rangszs of ? and B correspond to those of
equation (7.32).

In the accessible repgion the time obeys Kepler's
equation for attractive Coulomb scattering (Landau and
Lifshitz, 1960, p.38). The time taken for a particle to
pass from a point in the accessible region to a point in
the inaccessible region is complex. The time between any
two points in thc inaccessible region ECDF  of
Figure 7.4 is real, increases from -0 at F to + oo
at E  for clockwise motion and obeys Kepler's equation
for the repulsive case. Thus the analytic continuation
of the classical bound-state Kepler problem yields the
classical solutions to both the attractive and repulsive
scattering problem. The time along a peneralised
clascical path (as for the action), has different properties
to the time along the senarate paths and in passing through
the energy shell PQ‘= QyAEZ the particle makes a sudden
Jump to the past. The time to traverse the complete orbit
is * QJVL/_CL' , and follows also from the fact that the
action around the complete orbit is + owill |

Finally, with respect to © , the particle does not
move uniformly along a path in the symmetric space.
However, as for the bound states, the path will be traced

out uniformly with respect to the symmetric 'time' variable
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v of equation (7.6). We can obtain the value of

as (d‘ti and we obtain

3
_4_3_ = _fg_ —~ consYant
AT h}\{" (7.42)
and thus
/
T o= g[S . (7.4%)

With respect to T , the classical theory is symmetric
and time between events on the hyperboloid is unchanged
when the positions are rotated by the same amount on the

surface of the hyperboloid.
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CHAPTER 8

THE RUTHERFORD SCATTERING IDENTITY

1) Introduction

To explain the Rutherford scattering identity as it
applies to the scattering of an electron by a fixed proton
we have chosen to obtain a complete correspondence identity
and then to show that the scattering identity follows as a
consequence of this. The rclevant classical theory has
already been discussed‘in the previous chanter and we
shall obtain the kernel of the quantum-mechanieal spectral
operator in momentum representation and express it
explicitly as a sum over the generalised classical paths -
thus providing a complete correspondence identity.

The classical Rutherford formula for the angular
differential cross section 0’(@) for the system of

electron and (infinite mass) nroton is given by

o~ = — =
‘GEI 5%*(@‘)_,) ‘g_golzi (8.1)
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and concerns the initial and final values of the momentum

in the neighbourhood of thc enerpgy shell

i__ = -E: = E (8'2)

Thus we would expect the Rutherford scattering identity
to follow from the properties of the complete corres-
pondence identity close to the energy shell and this is
the case.

The quantum-mechanical angular differential cross
section is obtained from the spectral operator kernel in
section 4 of this chapter. There is no need to con-
sider the long~range distortion of the Coulomb potential
separately as it appears automatically in the analysis.
In the conventional derivation of the quantum-mechanical
differential cross section (seec, for example, Mott and
Massey 1965, chap. 3 ,%;2, or Rodberg and Thaler 1967,
chap. 3, §5) there appears to be no connection with the
classical derivation of equation (8.1) cxcept in the
initial specification of the same Hamiltonian and the
final identical result. , However, by deriving the
Rutherford formula from the spectral operator kernel, as
we do, we can see how the identity arises. This deri-

vation of the angular differential cross scction is
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of general application and independent of the correspondence
identity.

As well as providing a means of explaining the
scattering identity, the complete correspondence identity
also illustrates that the electron-proton system for
positive energies can be described completely and exactly
by a theory based on rays. Although the rays in this
case are the pgeneralised classical trajectories, they can
be identified with the paths which correspond to the
scattering of both positrons and electrons and as such
they are simpler in conception than Feynman paths dis-

cussed in chapter U.

2) The Spectral Operator

In terms of the Green onerators q§ , discussed

in chapter 3, the spectral operator Tg 1is given by

- +
IE = S(E—‘H) = Ge - Ge (Eveak). (8.3)
2L
For negative values of the energy the spectral operator
of the hydrogen atom is zero everywhere except at the

bound-state cnergy levels B, , and is a sum over delta




functions at these poles. For positive values of the
energy, Ig is a well-defined analytic operator function
of E , and ig the projection operator onto the spacefof
all states of energy E (see equation (3.46)). This space
is of infinite dimension because the energy E > O is
degencrate with respect to the azimuthal quantum number L
which has infinite range.

In momentum representation the kernel of Ig is

thus given by

Ms

|
2 T(M(E,E)\hf‘(go)e) (8.4)

=0 M=

Ié(fbﬁ)

~

o

where the momentum-space wave functions are solutions of

the time-independent Schrddinger wave equation:

(E-H), (38 = (E~ )‘ham(v B+ Jd”“"'*'(h) %(8.5)
avk) lp- P n*

and are normalised as follows

[Pt G (pE) = BEEVSu¢ S (0.0
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The kernel of the spectral onerator as given in
equation (8.4) is most conveniently evaluated by con-
sidering the quantum-mechanical problem in the symmetric
representation discussed in chanter 7. The problem has
been considered in this representation by Bander and
Itzykson (1966h) and in IV, If "P(ﬁ,ED is any
momentum wave function, not necessarily satisfying
equation (8.5), then the equivalent wave function

\%3 (uh, ED in the symmetric representation is defined

by
Ys(uy,E) = F](Pz_P;)z\\/(g,E) L EDoO (8.7)

where H is a constant to be determined by normalization.
How R , the Minkowski sphere on which the four —
vectop Ly lies, consists of two sheets /5+ and 25—,
These sheets are respectively the classically inaccessible
and accessible regions for the attractive Coulomh
notential. Quantum-mechanically, of course, nc one sheet
can be labelled inaccessible, but when we have to con-
sider quantities on A derined on one sheet only we
shall usually work with the sheet A7, The three-
dimensional surface element AaSL or ,)S is related

to the volume element of momentum space by the relation




- 174 -

A

5
(b2~ ant o4 &*
d3 S?EB
P = (8.8)
(P~ e)a .z
Boe

The distance between two points in momentum space is

related to the corresponding Minkowski distance by

2 o)\
\i’ p| = — (= eXe-RX(wn-uR) (8.9)
e
where \xﬁw and 4, correspond to p, and p .

The form of Schrddinger's equation in the symmetric

representation now becomes
(1-7Q@)T(wr,E)=0 . (8.10)

The continuous variable

M = \K}A/Ps’v\ (8.11)
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is the analogue of the discrete quantum number w s and

the integral operator ( is defined by

(8.12)

Q‘K(u,.,e) = &) an’ \\/s(“;\)E)

2m§‘\0xh-\ﬁ$1ﬁ

where

= wy e RY
E(U) = (8.13)

\ ; W 07\/%_1

Equation (8.10) is invariant with respect to rotations

on the surface /S and is the analogue of the O(4—->

invariant Schrddinger equation (6.45) of the bound states.
In the symmetric representation we can detfine the

kernel of the operator Jg (the analogue of Jy for

the bound states) as follows

2 (s 2 &
B;(UA)U(;s’U = A (rE~f) (= Pe) IE(?) Fc) : (8.14)
lom p2 o

This operator kernel, as opposed to the spectral operator
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kernel, is symmetric (equal to its transpose) in symmetric
representation. It is the kernel of the operator
IE(E -—~T'> where T  is the kinetic enersy operator
T= /2.
The kernel S (uy an)> may be written in

terms of the solutions of equation (8.10) as follows

tﬂg(}xh y W ) E%;

=0

pETr WG (8.15)

3 M~

~

and the wave functions \%,LQW\(}La) can be expressed
in terms of hyperspherical harmoniecs k*ﬂQvn (}&h) that
are defined on the sheet . In Bander and Itzykson
(1966b) the spherical harmonics are defined on At and
to convert to their convention we change the sign of

W, . The wave functions qﬁnfvn (L&X} for a given
value of the energy &, A and wy may be related to
the hyperspherical harmonics in twe different ways
depending on the sign of Rk . We have assumed so far that

R is nositive, corresponding to the attractive Coulomb
potential, but there are solutions of equation (8.10) for
both positive and negative values of k. These attracs
tive and repulsive states are discussed by Bander and

Itzykson and in terms of the hyperspherical harmonies on
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A7 the attractive solutions of (8.10) may be written

-'\T'I)
~-e \"‘ (’\A, . +
\‘/'Wm(uh) = Consqut ¥ ﬂ)ﬂm B) y Un W\/S

o tua(Ma) ) upom 87 (8.18)

Although the functions ¥4~)2w‘(}x;) form a complete

orthonormal set on the lower sheet /%“', the wave functions
qﬁnﬂw\(\&h) are not orthonormal or complete for the

entirc symmetric space D . In order to obtain the con-

stant ( C say) in equation (8.16) we note that in terms

of FLqun(}Aa) the momentum-space wave function
‘hw‘(g, E) normalized by equation (8.7) is given by

(Roberts, private communication)

' .
\\]M(f,E) = {3}&") e ’-% ”“P[l %Msf'((*-“;f?) +(L+l)ﬂ§

(- &N

-T%
X € K HygmCuwa) ; unon AT
(3.17)

Hofw (W) 53 wa A7,

From equations (8.7), (8.14) and (8.15) it can be seen
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that the wvalue of R, to within a phase factor, relating

‘\’,,,Qm(u,,) and \\Qm (E’E> is

A = _I¥

—r———— (8.18)
Inegl

It then follows from equation (8.7) with this value of
A together with equation (8.17) that the value of C

(to within a phase factor) is

C = (;} e_-‘m"lj&w({L {M3P(4+1~ay)+ ((-H)rrﬁ - (8.19)

To evaluate the sum (8.15) we make use of the
addition theorem for the hyperspherical harmonics on -8~

(Bander and Itzykson 1966b) viz:

o R

W '3 °
;.ZL Hogmlad My, () = 7578 (8.20)
z2oMm=-Q Swhp

where [ is the hyperbolic angle defined on A7 vy
equation (7.21). The value of J_,, (wa,u$) ,

which is the kernel of the projcction operator onto the



0-179-

states of positive energy E for the attractive Coulomb

potential is thus:

Jewlun, W) = E@) M sm78 (8.21)
Q- 6-2'“’7) sw\\q§

where, using Figure 8.1 to define the regions I, II, III,

IV,the function &() is given by

e | w 1

EM) = | €7 w I W 18.22)
L e ™ o TO
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Figure 8.1. The four regions of \9\ , \?o\ space.
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The value of the spectral operator kerncl in momentum

space can now be obtained via equation (8.14) and we have

Toupp) = E@RARY___ sure -2
Th (P =) (p2—72) (1= €*7) sk p

where P is again always defined on 3 . If p

~

(or P, ) is in the classically inaccessible region it

<
must be replaced by ¢ ?%/91 (or ?, ﬂ; /ﬁ: ) to obtain

the corresponding point on % .

3) A Complete Correspondence Identity

As we have already mentioned in chapter 7 the
classical paths that occur in attractive Coulomb scatter-
ing are insufficient to provide a complete correspondence
identity and we have to consider the peneralised classical

paths. There is an infinife number of such paths leading

from P, to ¢ or alternatively from U\(;) to wu,
and the gpectral operatoer kernel ]:E,h.(?,Po) and
the kernel Te,m( Wa »\‘;’,”) for & > 0O can

then be expressed respectively as a sum over them.

Before doing this we may note that the properties



of the enerpy spectrusm and the spectral operators for
positive and negsative energies are determined from the
different properties of the action functions. TFor
negative energies the form of the spectral operator is
determined by the sum 2—? sws § Sce(p, P/ 3 .
For complete orbits i.e. when ¢ = P - the sum over

classical paths consists of sums of exponential terms of

. w .
the form 2 encp e U Se) where [ Sgl 1is the
o 'R

value of the action for one orbit. This is a geometric
progression with each term having the same magnitude and
is not convergent except as a pencralised function.
Destructive interference reduces the sum (when combined
with its complex conjugate) to zero, unless the value of
E SE] is given by the Bour-Sommerfeld condition, and
then constructive interference builds up the discrete
spectrum.

For the positive cnergy case, the value of [ SE.]

is = Q_T(Lﬂ , as we saw in chapter 7, and if we con-
sider the sum Z__ e/auf \CESE] s Where [SE]

=2will , then we obtain
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Zow LC—\E\SE] = Z:;eaqv (QE"E,C—B) = Z';:,&F-v.m}
-
= (| = exp-21y)) | (8.24)

The series converges, and the sum is non-zero for all
positive energies. The spectrum is thus continuous.
The factor (\ — exp- Q.T\“)y}—‘ appears in the
expressions (8.21) and (8.23) and equation (8.24)
involving the sum over <€ provides the key to express-

ing the kernels as sums over generalised classical paths.

o0
First of all we note that the sum Z_ esxcp e L SE]
c=o ‘b‘\

where [ Sg ) is -am([] , diverges and we have to
be selective over which paths to include in the complete
correspondence identity. In Table 8.1 we have labelled
the various paths attractive or repulsive according to
whether the analytic path lensth has negative or positive
imaginary part. We have had to do this because it is
only in terms of the attractive paths that we can obtain
a complete correspondence identity for the attractive
Coulomb notential.

With reference to Table 8.1 and Figure 7.4 the
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Table 8.1
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kernel of the operator Jg g of equation (8.21) can
now be expressed as a sum over generalised classical paths

as

. + © -. - o
Topon)= 3 relinScdlon S celannf
aadivec ¢ SQA(MQB\'& path \M\S\'i«) )

The remaining paths, labelled repulsive, which do not

contribute to this sum do contribute to the kernel of

jE -k of the repulsive potential (corresponding to the
)

scattering of nositrons). Ve have

Tepulintt)s 72 cotfthSEbol-et LS8R o o,
5 vapuiswe ¢ 2 { stn (aumalytic pasia Jangiin)

The kernel of Jgx ¥ Jg, -% is thus the sum of the

expressions (8.25) and (8.26) and is

J_E A" (w n)u(?) + J-E)v\g,(\*}, )b\(;))

_ 77. Z exy %L/“S :E (“\7\)“@;) } - wg"&g;e(“m‘ﬁ;))}.( 8.27)
e 21 s (ameiie pan o )
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In momentum representation, since the classical
3 >
action functions S g ( ?, ?o) and S g (\AM \,\(;))
are respectively the same, the spectral operator kernel

for both notentials is thus given by

T
IE,’-"—\{(E!EO) = 8)‘}?6.\2
W (P -ee) (p2— P

et -

X Z_ : '%SCE(E)?D} - e»q?{’-% cs(g,(o)}
ovactwe ¢ id ~ (8.28)

ov vepulsive © L Siﬂ(av\als‘hc peth \e,nsu\)

and their sum by

Lsk(g’to> ¥ xE,*k(E)?.Q = 8'»&3 Pe k.z
LRGN C I o

. + N -
XS et S SR - = E 53l 00
alc AL s (oumadagtic pork\enﬁfk>

Now, the analytic path length of the equations (8.28)

and (8.29) can be evaluated in terms of the mcmenta in

the usual way with f positive by equation (7.21).
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The form of equation (8.29) is identical to equation

(6.55) for the bound states, since for the bound states

Sci; are identical as there is no cut in the action
function for E <O . There are no bound states for kR
negative and thus equation (8.29) is valid for all real
enerpgies B  and vilucs of the momenta P and P
except for a number of special singular points. Ig-
thus provides a complete correspondence identity for all
real energies and does not require the definition of
attractive and repulsive paths. However if we accept
the definition of 'attractive' and 'repulsive' as applied
to the generalised classical paths we can repgard the
expansions (8.25), (8.26) and (8.28) as valid comnilete
correspondence identities. It should be noted that the
attractive generalised classical paths, for example, arec
made un from the classical paths for both attractive and

repulsive scattering and cannot be related solely to the

classical paths of the attractive potential.

L) The Rutherford Scattering Identity

For values of P and f_,  in the classically

~ ~

acceseible resion of momentum space the spectral cperator

xernel Ig ,k.<ﬁ; p,) of equation (8.28) may be written
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in an analogous way to that of equation (6.60) for the

bound states, namely

Yy R e
Leae) = Uptpe)) 2 wpthielnotiiinn ; .,

alvachive ¢ Q L'\'r'}?'

where the fdensity factor'’ JOE(Q,‘%7 is given by

64
R . (8.71)

PE(YJQP = Py ) b A Y
T (p*-20E) (e:—yae)"\g-\}[ (+}“E"+9"7:— ‘r,\Ef.g)

This density factor, as a function of energy, is
identical to the corresponding factor for the bound states
(see equation (6.61)). The factor for E €O , we saw,
was identical to the equivalent factor obtained by
Gutzwiller {(1967) using the phase~integral approximation
in momentun representation for the Coulomb Green function.
In the phase-intcgral approximation the physical inter-
pretation of Ao (2,0) is that it is a measure of
the density of classical paths lcaving Eo that reach
P . We shall assume that p_(p, E") for positive

~

energies is also indicative of the density of classical
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paths, £ we investigate  pg (¢ \?;) near the energy
~ -~

shell we see that it becomes singular, and in terms of

the classical angular differential cross section 0'(@)

given by equation (8.1) it can be expressed as follows

2 oo
Pe(8,8) ~ 0-(©) A”*‘:h . (8.32)
o (P-p) (2 - )

This indicates that all classical trajectories start and
finish on the energy shell and that the dependence on
scattering angle of P (¢, f,) is the same as that of
the angular differential cross section, which is not
unexpected. It is because the factor  p_(¢, ié)
(and hence the quantum=-mechanical spectral operator
kernel I'E,\q,(g) \io) ) near the energy shell can be
exprezsed in terms of the classical angular differential
cross section that the Rutherford scattering identity
arises as we shall now show.

Near the cnergy shell, the spectral operator

kernel may now be written in terms of G‘(C)) s for

\g\ ,\go\ e PE s 88
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Va. \ LR
Lewm)n (@) 2,0k 7 empfbSiloll-enpfiScel
T 0 (7 02 )p2- g2) T 9 LR :

I} . .
A/ (0*(@)22/4“\2 C_m”;_ e“'")?’
Wee (- )R- 22) (1= &™) 2k

(8.33)

Since the asymptotic form, for large $ , of coshf

is Yo e® , it follows from equation (7.21) that

COS‘I\F ~o J{Q@N E \g"’ ger- (8.34)
M (T-E)(To - E)
so that
Q) 2E\p-p 7
7 o z €18~ tl % : (8.35)
N M (T-EXTe - E)
Regarding Te, (R o) as the sum of two terms
+ _ -
Tewe,p) + Tee (88D where Tg(¢,9,)
is just [:I:z,b. (e, p)3* , we may now write

+ -
Te e C £\ gy} near the energy shell in the form
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SAPE’P:L ("Qx'z)\v'-‘ (% _x*)..'\'v).. \
AT () = e ™)

I +
ek (9, %) = (8.36)

where
M= 1%/?% }
= ﬁ*%?

X< (g-pf = 24k [o(@)® s (8.37)

X4 = Pt"' Pgl . J
‘The Rutherford scattering identity is seen to arise when
we evaluate the quantum-mechanical anpgular differential
cross section from the spectral operator. The elaborate
evaluation is carried cut in detail in appendix D and
here we shall only point out the important steps.
FPirst of all we evaluate the evolution operator
\J(ﬂf) from the spectral operator by a Fourier trans-
formation as discussed in chapter 3. For our purposes

we are interested in the value of

Ul = J_f@,vlt@ TereD)=tCED)



- 19 -

for large values of T and g . Carrying out the inte-

gration over energy leads to the result

I 1‘“53“?6“7WD'3“PG“7A$ 2 Bk

qu(’ - (P'L+ ?:)'(} :I(,,,m.\.i{(?t-?:)f/‘\%ti (8.39)
%}*‘R r‘(\ + Lﬁ?m)

where the subscript w refers to the mean values of the
guantities near to ' and Vg (which for large @ are
almost equal but have to be treated scparately in the
analysis). The expression (8.39) containing the term X,
thus relates the evolution operator kernel for large
times T and large P  directly to the classical
quantity 0“(CU

In terms of the evolution operator kernel for
large times T the prebability P  of scattering into

unit solid angle is given by

00
® - .
>0 So Pel Utcg‘ﬁ’)\ : (8.40)
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On carrying out this integration, the value of ©P/2.0L

on the energy shell is

? - (@
[=29A 8+ uT

(8.41)

The quantum-mechanical angular differential cross section

%m(@) is related to %?/BS)_ by

~ o(©) ‘/yc I (8.42)
where | = @ [ )*(emt\? is the flux of the incident
wave. We thus see that the value of G;VWL(CJ) is
given by

%,m.(@) = o(®) (8.43)

which is the Rutherford Scattering identity.

Tracing the derivatioﬁ of the identity back from
equation (8.43), we see that the identity arises, as we
have said, because the quantum-mechanical spectral
onerator kernel as given in equation (8.36) may be
expressed in terms of the classical angular differential

. ¢ross section Q‘(@) . That 0"(@) occurs in this



- 193 -

equation to the correct power is a consequence of the
fact that near the energy shell, }DE( P, Po) R

although becoming singular, is also directly proportional

to o (@).

PR
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CHAPTER 9

CONCLUDING REMARKS

1) On the explanation of the Identities

The aim of this thesis has been primarily to explain
the three correspondence identities that exist for the
system of proton and electron. This has been achieved
by obtaining a complete correspondence identity for the
system and showing how cach of the identities follows as
a consequence of this. To provide a complete corres-
pondence identity we have expressed the kernel of the
gquantum-mechanical spectral operator in momentum repre-
sentation for 211 real values of the enersy explicitly as
a sum over paths of terms involving the classical action
for the path.

Prom the form of the complete correspondence
identity for negative values of the energy we have been
able to explain for the first time the Bohr-Sommerfecld
identity. It is well known that the Bohr~Sommerfeld
conditions can be derived from the W.K.B. method and also
from the phase-integral approximaticn: "The Bohr formula

is obtained without gimmickry®, Gutzwiller (1967), but nc
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satisfactory explanation of the Bohr-Sommerfeld identity
has ever been given: "The question why these quantum con-
ditions give nevertheless thc correct energy values for
several important cases, such as the hydrogen atom or the
linear oscillator is a nurely mathematical problem whose
discussion would lead us too far astray”, Jammer (1966).
We have scen that the question has been more one of ob-
taining a reprcsentation in which a ray theory is valid
and describes exactly the behaviour of matter waves,

than one purely of mathematics.

As well as obtaining a complete correspondence
identity in momentum representaticn we saw that it was
also possible to provide such an identity in the related
symmetric representation. From the ols) dynamical
symmetry pronerties exhibited by the classical- and
quantum-mechanical solutions of thc Coulomb problem in
this representation we were able to explain the Fock
identity. The CM:43 symmetry properties were useful
in the derivation of the complete correspondence identity
for the operator Jy , but to what extent the presence
of such dynamical symmetry is essential to the existence
of correspondence identities is as yet unknown.

For positive energies the CD(\;'3‘) symmetry

properties were also useful in obtaining the kernel of
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the operator :ye and in providing a complete corres-
pondence identity. Equally important in this derivation
was the analytic continuation of the paths and action
functions, through which we were able to obtain precisely
the quantal barrier penetration in momentum space. The
explanation of the Rutherford scattering identity, as
given, is perhaps rather lengthy and mathematical.
Nevertheless the origin of the identity can be traced
back to the fact that the spectral operator kernel near
the energy shell in momentum representation may be
expressed in terms of the classical differential cross
section in such a way that the quantal differential cross
section, when derived from the spectral operator kernel,
is identical to the classical result. This derivation
is of general application and provides an alternative
method of obtaining a differential cross section. It

is particularly useful for the Coulomb interaction since
the long range distortion of the incident wave (inter-
preted first of all by Gordon 1928) does not have to be
considered explicitly. It is interesting to note that
even when the distortion is deliberately not taken into
account as in the first Born approximation for the
difrerential cross section, the Rutherfeord formula is

still obtained, although thc phase of the scattering
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amplitude is then given incorrectly (see for example
Burhop 1961, Wu and Ohmura 1962). The long-range
effects of the Coulomb potential are implicit in the

kernel of the spectral operator.

2) On the Comnlete Correspondence Identity

One very important feature of the work doune in this
thesis is the fact that we have shown that a ray theory
does exist for the system of proton and electron which

describes completely and exactly the behaviour of matter
waves . Whether this is necessarily the case for other
systems and there does always exist some operator and
and a representation for which we can obtain a complete
correspondence identity is just not known. For thec
system in question we ought to note the following points
concerning the existence of the complete correspondence
identity.

The existence seems to denend crucially on the
choice of representation. We were not able to obtain
a complete correspondence identity in position repre-
sentation, for example, even though for positive energies

it did seem the more natural choice as opposed to

momentum representation. We were able to provide a
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complete correspondence identity only in momentum and
the related symmetric representations.

Secondly the choice of operator is also important.
We were not able to provide an expansion in terms of
classical naths for either the Green functions or
evolution operator kernel and only for the spectral
operator kernel could we obtain a complete correspondence
identity. Yet, for the free particle we were able to
express all the operator kernels just mentioned in terms
of sums over classical paths.

Finally, there were correspondence identities
associated with the system. Whether this last remark
has any bearing on the existence of a complete corres-
pondence identity acain is not knewn, but it seems
recasonable to suppose that correspondence identities
are consequences of a more general relation between the
theories of classical and quantum mechanies, as is given,
for example, by a complete correspondence identity. For
the electron-proton system it was the three identities
which stimulated the search for such a complete corres-
pondence identity in the first place.

¥We should also note the differences in the form of

the complete correspondence identity for nemative and

positive energies. For the bound states the spectral



operator kernel is cxpressed as a sum over classical paths:
for the continuum we have to consider generalised classical
paths. For the bound states all classical paths are
included in the expansion, whilst for positive energy
states the expansion includes only those generalised
classical paths associated with the particular potential
under consideration. In the sense that we have labelled
the generalised classical paths ‘attractive' or 'repulsive',
we have to label all the classical paths for the bound
states 'attractive'. Each set of peneralised classical
trajectories, whether it is labelled attractive or repul-
sive, includes paths which are built up out of the
classical trajectories of both the repulsive and attractive
Coulomb potential. Thus for vositive energiles, the
quantum-mechanical solution for one potential is intimately
related to the classical solutions of both types of
potential.

In contrast to the bound states the Fock identity
no longer holds for positive energies. For the attractive
potential the classical microcanonical momentum dis-
tribution /Q;"“(E) normalised to unit inward flux is

given by (Banks, private communication)

}’:'2?) - Chrkat x$ 1 ferpbpe
P (=Y L0 $orlpikre (9.1)



wherecas the quantal distribution, having the same

normalization in the classical limit is

Al - etV e
B (p - 2= €57) [ €™ Sor g\ < P .

That the identity does not hold is really to be expected
since the region of momentum space \Z) < P is classically
inaccessible. However in the classically accessible
region the two distributions differ by the factor

(v - 372“7)_l . This factor, as we saw in chapter

8, arises from the quantal barrier penetration in
momentum space. In the classical limit as 7)) > OO

the two distributions nevertheless become equal.

3) Extensions of the Theory

By means of the complete correspondence identity
for negative valucs of the energy we have thus provided
a model of the hydrogen atom based on classical electron
orbits. The model differs from the Bohr-Sommerfeld
model of the hydrogen atom in several respects. First

of all the electron orbits arce those in momentum and
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symmetric space as oppeosed to the elliptic orbits in the
Bohr-Sommerfeld model. Secondly, for a given energy
level, the model includes a statistical distribution of
orbits consistent with this energy, whereas the Bohr-
Sommerfeld model includes only those with particular
eccentricities and restricted orientations associated with
the quantum numbers R ana ™ . The model also leads
to the same physical results as modern non-relativistic
quantum theory and can be generalised to positive energies.
However, unlike the Bohr-Sommerfeld model, we cannot
account for the quantization of K and w in classical
terms, and this would seem a worthwhile problem to con-~
sider.

More ambitious problems to consider are those which
if solved could explain the difficulties encountered in
providing a complete correspondence identity. We should
expect, for the Coulomb interaction, that if we chose to
evaluate the spectral operator kernel by means of nath
summation then we should have to consider Feynman path
summation and not just sums over classical paths. As
we have seen summing over only thc classical paths is
comnletely adequate in momentum and the related symmetric
representations. Thus, why do the Feynman paths reduce

to the classical paths in these representations? Also,
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why is this not the case for the Green functions or
evolution operator kernels? Perhaps if these questions
can be answered we may be able to provide criteria where-
by for a given operator and a given potential we could
decide whether a representation existed in which a com-
plete correspondence identity was possible. If this is
the case we may well find ourselves discovering new
correspondence identities as well as explaining those

already known.




Appendix A

4
The Green functions Qg (-z,x.a) for the continuous
spectrum are given by

_;_, | ! *
G (02 = J 4t 00 e (x)

cO“hv\Uou’ (E - EI + ‘\_E) . (All)

Spectvyum

For the free particle the normalised wave functions are

FED = (L [2) gt Lome)®
g \¥) T (— | T i(ume) ¢ . (A.2)
Qﬁtji;;;> -t +

Thus substituting in equation (A.1) we have

\/ . WV
Gl = |45 (:_n. 2 g o (am EY P =)
(E-E'% {€)

oo \
b [ 42 () i 9" o
L2h 1B/ (- e’ x ig) - (A.3)

f
With the change of variable, éF== AwE . we have
A4
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w0
+ . ©w .
Gy = | g ompileny 4 [So ompiptaox)
o IR (g 4ig - szlm) 0 2T (E +i€ — /2m)

encp in P (e - o)
1““ (E+ e — Pfam) (A.4)

8‘-—-’\8

Regarding p as a complex variable, we see that the
integrand has poles whenever ¢ = 2mE +(& as

shown in the Figure A.l.

A

/ Cﬁ M?‘tx P- P\q ne \\
/
¥
/
= 2m E*‘lﬁ
4
—> & >
X
K © P=-hmE-ic
\\ C
\
\

Figure A.1. Diagram showing the poles ¢ = t,SQ_mE * (g

and the two contours @, and Cz
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If %« P 2, , then the integrand of equation (A.l4) tends
to zero when evaluated along a large semicircle in the
upper half-plane. Integrating over the contour &,

we obtain the result

“ A

J O\e encp i?/‘h(x—"o) = é’ éf_ @6\0;’['\7\?(:’""’(03

- 2t (€ +ig- ?."‘/‘Zm) 7R (E - P"/?,m)
\

= wi X (Residune ok p= Jome + i)

f

NG . )
..L.(m Temp L (2mE)*(e-2g) . (A.5)
R\ 2E ' 'h( )
For x (=, , We integrate over the contour G, and
obtain

0o

5 éﬁ_ vwei'?/t‘(x-”to) = $ éﬁ. yx,f;‘/\;‘?(xvx,)
loo Th (E+ig~ pY2m) 2R (E ~ ¢*/2wm)

2

-2t X (Rendue X p= -JzmE —i€)

——
St

i

”'L ' l/
A (m\* erpl (2mE)* (to-2) . (A.6)
1‘\‘«(9.‘\23 ‘t(

Thus for all values of %, X, , we obtain for the Green
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funection

4 ‘h .
GE Gc,-x,) = -L‘:\; (.‘%:_.) emp&{('z_me)u‘\%—xo\ (A.7)

and consequently, since Gg (’x,x,,) = [ G (‘Kﬁfo)}*

we have also

—_ 7% . \‘L
%) = —_ L W =t (ZmE M- A -
Ge (o) m(v;_\g) enp }R( mEY" | %- %) (4.8)
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Appnendix 3B

We assume that the Lagrangian L(—;‘c_,x,{:)
describing the system is a quadratic function of the

variables ¢ ,% S0 that
L = a(t)d+blE) xx + @) edt)se +e@)e + {G) . (B.1)

We are interested in evaluating the path integral

T {
Ulagt;xoito) = Sw\a[_;; j AX LG 68) | d (et Y (8.2)
S o

over all paths in L which go from (o, t,_.,} to
(")’C) . .

Let * (') ©be the classical path between the
specified end points. Along -this path the value of the
| action is an extremum. For any other path, we can

represent  in terms of 3 and a new variable )

= %Ay (B.3)

A point on the path is defined now in terms of the deviation
\J@‘) from the classical path as shown in Figure B.1l.

Since, for each given time +t' in the interval (% - +to)
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¢!
A\
2x(£)
R .
|
|
1 |
Holto) ! !
'
] {
» i
. }
& ‘ ’ >
% ¢ 'k(?)
Figure B.l. The point %) is given in terms of 526:')

and its deviation from the classical path.

the variables x and y differ by the constant %,

then we have

Al ()] = dly@l . (8.1)

The action along a path 2 (t') in L between ,(to)

and % (t) is given by

SCa@)] =  SC @)+ 4]
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j[q(e)(x+2x5+ De .. .. ]4r . (B.5)

Now since the valuc of the action along ) is
stationary, then in the expression (B.5) only the terms
that are of second order in 3,5_3 remain, together with

the action for the classical path, so that

+
STx @] = Sa (ks %)t [Lal®)g 1oy 4. (5.6
*o

The path integration by virtue of equation (B.4) does not

depend upon the classical path, so the kernel can be written

& t

Ulstat) = R ""’>Jw[%§w*’s vy + )T

© ®

Since all paths 3(8) start from and return to the
peint 9= o the integral over paths can only be a
function of the times (¥, to) of the end points and

the kernel is thus given by the classical path:

U(x,{:-,x,,t,) = F(t,-?c,)wvf*{ﬁ Sea(2st 5 %oyt0) . (B.8)
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Appendix C

We have the following operator equation:

= - p* -
(e-+) = (E-£)1 vQ) (c.1)

Taking the inverse of both sides we obtain

} - -\
—HY' = (1-vR) (E- ff2u) . (c.2)

Now by definition

S(E"\'O = i\{;baé\;()((e \-\-\E) ~ (&~ H+\Ej> (c.3)

Since the cperator (E — ¢/ ‘l/«> is never zero for
E<O , we may use equation (C.2) with (C.3), noting
that € %= (¢ corresponds to Y X (Vg (where

€, Yy are small) and we have

5(e-H) = L %(1 ©-92)Q) - (T j

Iwi ”1‘3‘0

-
X(e-¢/2u) . (c.1)
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The operator Gl‘is a positive definite operator whose
norm is bounded in symmetric space, so equation (C.14)

may be expressed as

SHEW) = i L (15 ) - (- va- 0]

V>0 27wi

X (E- "2/?—)0—\- (C.5)

Using the definition in equation (C.3), we may rewrite the
right-hand side of equation (C.5) and obtain the rsquired

result:

S(E-W) = - 5@~ va)E-Y"



Appendix D

4+
The form of L g,k (p, ©.) near the energy shell
is
+ 3 ,‘)1- ;.'Y)—\ -i")—-\
e WCoyp) = MPeh Coxa) | Guaxe) (D.1)
T A\ S QU S ) )
where
"M = ‘Pl/PE. 3
e
2
Ao = \?.-Eo\ r (D.2)
Xy = Po-fe
X, = - fe . y
In evaluating the evolution operator kernel
- Ux(e, EP) for large T anda B given by
o0
¥ - e
Oclpigy) = § 98 (Lo(a.0) + Tefp ) oov LET o)
-op

we note, by the Riemann~Lebesgpe Lemma, that the only

contributions will arise from the singularities in
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IE,\«;L (¢1g.) - These cccur when €  takes on the
values To = ®a[Zm , T=¢*[2m . Without loss
of generality we assume that T > To and investigate
the singularitics of Tg (g , 29) as the energzy E
ranges from - o to oo along the real axis. For '
negative energies there can be no contribution to the
scattering as the wave functions are bounded.

If ¢ ’EP lie in the accessible region; then by
taking the branch cuts of J<>3 (T'-Ei) in the complex
€ plane to run from ' to T — te0 , we can define

the phase of X4 , on the real axis, to be zero to the
left and -W tc the right of the branch point.
Similarly we can define the phases of X3 on either side
of the corresponding branch point to be © and—-W ;| so
that ]lé- is uniquely defined for all regions of
momentum space in accordance with equation (8.23).
Because of the factor er<yp CiET [R) in equation
(D.3), the contour must be closed in the lower half
plane to ensure convergence.

For L g (¢, zo) the singularities again arise
at the same points but the branch cuts are now from T
to T +i{e0 and Teo to To+io® . Again the
contour has to be closed in the lower half plane, and

thus for large positive T
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00
Jeeriigpem(ie) - o .
Thus

2 M) e _
Ue(ep) ‘j JE 8P, p. () (xs ) empCiEW)  (p.5)
A e et (- e ™)

where the contour ¢ 1is as shown in the Figure D.l.

Comv\ex E—P\ane 4\

s
A'Z

SRS A
~ l

Figure D.1. The contour C .

The terms in the integrand which are regular near



the singular points may be considered constant and taken
outside the integral. Since we are considering only
large values of B then T and T, are approxi-
mately equal and we may label the mean quantities with the

same subscript wm . So we can write

2 (M-
ut(g,go) = SMPM?: (xlx‘l—) o | 5 (D.6)
| (W1 empaw) )Y

where

Gj = JO\EQM(J(*:LE{E>(X3X.+Si “_“-\ (D.7)
G

To evaluate this latter integral we make the substitution

9w = S (p*+ pl) — 2028/ (p* — v)  and obtain

i

F- ?17_;%-\ ()T
i = —“°) \_m‘:{ > ch (D.8)

2 27x Mt

[
where fr is the integral

L4

ol 2 -3
é&j S (0.9)
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with
x = (F=P)T (D.10)
4 pmR
y = ™ - % (D.11)

[
and 6 is the contour shown in Figure D.2.

Complex v- y\ane

2 / AN
> » 7
N/ 7 >
=1 +
/
Pigure D.2. Contour G for the integral of equation

(D.9).

/

With this contour, i is just Hankel's integral for the
Bessel function J_,(®) given by (Yatson 1966, chap.
VI)
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Y (wy !
Iv(d) = r1(_"' "’v)('Lo()C_ j . (D.12)
awe (% )
It now follows that the kernel of the evolution operator

for large T is

2 " - . ~Lin -\ .
UtL Y,ﬁ) = L %?mﬂ (% 1)‘)“‘ ‘ (? ~-er (9';__ ?:)’C} Nt
T focp(m,) - expemr.} Bt

X W{L(Ehp")tg m..,.*l-{( )TI"UW‘E (D.13)
7NN O+ )

and

lugg) = TR ( 1(' = ?—)
w(wmm)—-wem.))

K Tigur s () Join e ()
T e § s (0 N3

= N LT, GOT, O (0.1%)
32T SR (T 9),) Pun w5 S04 @ Pt s
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where ® is the scattering angle.

For large times T  the value of lUv(E,E,)\z
as a function of ¢~ is small except near ?:' . The
probability of scattering into unit solid angle is given

by

£ = I melvege)

3 (N
= M T coseld T O XEAP Tl T s
>2 /‘\t( T(’z' S(lﬂ\'\(—\"")m)?m ? ‘)o " (D.15)

Noting that the only significant contribution to the
integral arises near ?7' = V:‘ , we shift the origin

to ?Z" and obtain

——

W L e Teonli® ja\(e ) T, T, W

~\ J.
AN 39 }.\‘V\T(LS.UI\\'\(_W")m) Pm o ? - PD : 1— ‘1 )
= M2 % cosec > @ ' S Uy TT% (D.16)

39.,& wosonh (C,0) P TN m

3 3
which on the energy shell becomes \23‘/‘4’(‘: coSaz@/z/t?FEn 30 .

The identity then follows as given in chapter 8.
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Correspondence identities: I

A. NORCLIFFEt and I. C. PERCIVALY}
Department of Physics, University of Stirling
MS. received 21st February 1968

Abstract. The complete quantum-dynamical solutions for a free particle moving in
one dimension and for a free particle moving on a ring are obtained in terms of
classical path sums. The propagators and Green operator kernels, and, in particular,
the kernel of the spectral operator Iy = 8(E — H) are expressed explicitly in this way.
Relations between quantum and classical mechanics which hold for low quantum
numbers and relatively small values of the classical action are discussed. They are the
correspondence identities.

1. Introduction

We consider when and how the solutions of a quantum-mechanical problem with time-
independent Hamiltonian may be obtained directly from the solution of the equivalent
classical problem. The correspondence limit # — 0 is well known, but in the words of
Schrédinger (1928), “The Hamiltonian analogy of mechanics to optics is an analogy to
geometrical optics, since to the paths of the representative points in configuration space
there corresponds, on the optical side, the light ray, which is only rigorously defined in
terms of geometrical optics. The undulatory elaboration of the optical picture leads to the
surrender of the idea of the path of the system as soon as the dimensions of the path are not
great in comparison with the wavelength”. However, in this and later papers we shall
discuss several important simple physical systems for which the ray picture is valid for
arbitrary wavelength, provided that an appropriate representation is chosen. For such
problems we are able to obtain a complete quantum-dynamical solution in terms of sums
- over classical paths. These sums are of the same general form as the Feynman path sums,
but are simpler in conception and analysis. From this general solution we obtain particular
relations between classical and quantum mechanics which are valid even for low quantum
numbers and for relatively small values of the action. These are the correspondence
identities.

In this paper we shall restrict ourselves to the simplest examples of a system with a
continuous and with a discrete energy spectrum, choosing the free particle moving in one
dimension and the free particle with periodic boundary conditions, that is, the particle on a
ring. The comparatively simple analysis is a useful introduction to the more difficult
theory of the Coulomb potential. Because of the divergent properties of the kernels of some
of the operators, generalized functions are used freely (Lighthill 1960, Messiah 1965,
Kurgunoglu 1962). '

As is well known, the solution of a quantum-mechanical problem may be expressed in
terms of the evolution operator (Messiah 1965, p. 310) or propagator (Kursunoglu 1962,
p. 152), or in terms of the Green operators Gz* (Newton 1966, p. 178). We shall also make
use of the ‘spectral operator’ given by

I; = 8(E—H) (1)

which provides a solution of the dynamical problem with Hamiltonian H through the
resolution of the identity. Each of these operators will be obtained as sums over classical
paths for the simple systems above.

In related work, Garrod (1966) considers the spectral operator but not in terms of the
classical path sums, whereas Gutzwiller (1967) expresses Green functions in terms of
classical paths, but does not consider the spectral operator.

t Previously at Queen Mary College, University of London.
774
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2. Operators

The development of a quantum-mechanical system in time is given by a unitary trans-
formation from the state Ji(£,) at time ¢, to the state i(¢) at another time £. Thus

P(t) = U(E, to)h(2y) all £y, ¢ 2)
where U is the evolution operator. As defined here, the evolution operator is two-sided and

relates the state at time ¢, to both earlier and later states )(z). Formally U may be expressed
in terms of the time-independent Hamiltonian H as

U(t, t,) = exp {ﬂﬁ — tO)}.

. 3)

The usual forward evolution operator U* (2, £,), which relates )(#,) to the wave function

at a later time ¢, is defined in terms of U(Z, ¢,) by the equations
U*(2, 20) = U(2, to), 1>t
= O i< to.

*)

The kernel of U™ is the propagator. The backward evolution operator is similarly
defined by the equations

U-(t, 1) =0, t >ty
(5)
: = U(t, t,), t <t,.
So that
U(z, to) = U™ (2, )+ U (2, t) (6)
and
U(t, to) = [U* (%, O)]" (7

The Green operators are obtained by transforming the forward and backward evolution
operators from time representation to energy representation by Fourier analysis. Using
factors of the form (2##)~1/2 exp (iEt/%) to preserve normalization, we have

1 p= iEt iH(t—t iE,t
U+(E, Eo) = ﬂf dtf dto G(t’_to) exp (_k—) €xXp {— —(72-} exp (— ! ho 0)

(8)

where ¢(t—t,) is the Heaviside unit function. The integration gives
i#
E—H+ie
i#O(E — Ep)Gyg™. 9)

U*(E, Eo) = (E—E,)

Similarly

. ' i#
. U™(E, Bo) = —8(E~Eo) p—pr—

~ —ilS(E—Eo)Gy~
— ili8(E— Ey)(Gg* ). (10)

On carrying out the transformation to energy representation of the two-sided evolution
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operator we obtain

- 3} . .
UE B = o f dt, f dtexp{—%(Eo—H)to}exp {%(E—H)t}

1 p> ® i i
= o . dt, f_ . dr exp {5 (E—Eo)to} exp (;i (E—H)-r}

= 20hS(E — Eo)S(E — H)
= 20hd(E — Ey)I; (11)

where I is the spectral operator. It follows from the Fourier transform of equation (6) that
1
Iy = T(GE——GE+)' (12)
i

Thus, at the vth energy level E, of the discrete spectrum, the form of the spectral operator
is given by the residue of (E—H)™%, and in the continuous spectrum it is given by the
discontinuity across the cut in the complex plane. In each case, the spectral operator has
the form of a projection operator.

This leads to an alternative treatment of the spectral operator. Any analytic function
f(H) of the Hamiltonian H can be expressed in terms of the projection operators P, onto
the subspaces of eigenstates belonging to discrete energy levels E,, and the projection
operators Py onto the subspaces belonging to the continuous spectrum &:

FH) = 5 P,f(E)+ f 4B Py (E). (13)

If we suppose that the same relations apply to generalized functions of H we obtain (Schén-
berg 1951)

I;= 8(E~H)y =S PSE—E)+ f dE’ PyS(E' —E)
v &
= Z PVS(E— Ev) + gY(E)PE - (14)

where & & (E) = 1 when E is in the continuous spectrum and zero otherwise. This equation
expresses the spectral operator explicitly in terms of projection operators. Care must be
taken to ensure that the projection operator Py is correctly normalized.

Thus a knowledge of the spectral operator enables us to perform a resolution of the
identity operator, and to diagonalize the Hamiltonian.

From equation (14) it follows that

f IpdE=1 (resolution of the identity) (15a)

HI; = EI; (specification of Hamiltonian). (155)

These properties can be used to define the spectral operator. It should be noted that the
integral in equation (154) is taken over the entire real axis.

3. Free particle in one dimension

A theory based on rays or classical paths is entirely adequate for the treatment of waves
in 2 homogeneous medium, or free particles in quantum mechanics, provided that a phase is
associated with each ray or classical path between two points in space-time. Thus the original
de Broglie relations between wave number and momentum, and between frequency and
energy, are valid for arbitrary values of the classical action, and these relations are, thereby,
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correspondence identities. They follow from the more general relations between the kernel
Ul(x, t; %4, t,) of the-evolution operator and the classical action Sy (x, ¢; x,, ¢,). Here we
restrict ourselves to motion in one dimension between the initial position x, at time #, and the
final position x at time ¢.

It follows directly from either the Feynman theory of non-relativistic quantum mech-
anics (Feynman and Hibbs 1965, p. 42) or the Schrédinger theory in momentum represen-
tation that the kernel of U* (%, to) is
im(x — xy)?

( o) : (16)

m 1/2
U"(x’t;xwto>=‘f<"‘“t°>{mt——z>} exp{zm—t) '
0 0

The action S («, 2; %o, ¢,), in position-time representation, for the classical path between the
initial point A(x,, £,) and final point B(x, £) is given by

B , m (% —x0)2
S,(x, t; %oy 1g) = fALdt - (17)
Thus
i
U™ (x, t; %9, to) = e(t—1,)C exp %Sc(x, t; %o, £0); (18)

the external factor C is a product of a normalization factor and a constant phase factor. By
transforming to energy representation (Feynman and Hibbs 1965, p. 357) we find the
usual outgoing wave form of the Green function:

Gy (v, 50) = — (Z";)llz exp {% |x—xo[(sz)1f2}. (19)

On carrying out the integration, care must be taken with the choice of square roots.

The classical action Sg(x, x,) in energy (time-independent) representation is obtained
from the classical action S,(x, ¢; %o, o) by adding the difference between the final and
initial values of the generating function for the canonical transformation from time to
energy representation.:

Sg(x, x0) = So(%, t; %0, to) + Et — Egty (20)

= fjp dwx o 1)
= ]p(x "xoﬂ
= (2mE)"2|x —x,|. ‘ (22)
Therefore
vz g .
G50 = 5 (3] exply Sser20). @)

Using equation (10), we find that
1 m 1/2 i
(e = = 5 (35) o] =555

= — _li—i (2";)112 exp{— % |x—x0|}(2mE)1’2. (24)

Now, from equation (12), we obtain the spectral operator in terms of the classical path:

Ig(x, x0) = e(E)%i (T’gmf)” 2 cos { il’z Se(x, xo)}. (25)




778 A. Norcliffe and I. C. Percival

For negative E, the Green functions G;* and Gy~ are equal; the spectral operator must be
defined for all real E, and hence the need for e(E). Since I is a- Hermitian operator, the
wave form must be real. For E >0 equation (25) can also be obtained directly as a projection
onto the eigenspace of the energy E in the continuous spectrum.

4. Particle on a ring

A particle moving along a line with periodic boundary conditions is equivalent to a
particle moving on a ring, which is a more convenient picture for our purposes (figure 1).

gt X Ta 27a+x
Figure 1. Illustration of the connection between the ring and the straight line. The
point x on the ring is identified with the points x +2mca on the straight line.

The distance around the ring is denoted by x, where |x| < 7a and a is the radius of the ring.
For any time interval = # 0 the particle may move along an infinite number of classical
paths ¢ between two points x, and x on the ring. Each of these paths corresponds to a path
between the points x4 and 2wca+ x on an infinite straight line, where ¢ is a positive or neg-
ative integer. In this way we relate the problem of a particle on a ring to that of a particle on
a line, which, as in the previous section, is without periodic boundary conditions. The
magnitude and sign of the integer ¢, the classical path index, defines the number of times
that the particle passes around the ring in a positive or negative sense. Evidently the velocity
of the particle will be high for large values of |¢|. There are also an infinite number of
classical paths for a given energy E; in this case the velocities are all the same. The connec-
tion between the paths on the ring and the paths on the straight line is made by coiling the
line onto itself and identifying all points on the line that were originally 2mca apart.
The classical action S,(x, ; x,, #,) for a particular path c on the ring is the action for the
equivalent path between (x,, #,) and (x+ 2mca, ) on the line, and the same applies for the
action S g(x, x,) in energy representation. Therefore
2
S, ; %o, 1) = SS(x+ 2mca, t; %o, o) = m (= %o+ 2mea)’ (26)
2 t—1,
and
Ser(%, %) = SpS(x+ 2mea, xo) = (2mE)*2|x — xq + 2mcal (27)

where the superscript SL refers to the straight line. In considering the motion between
%o and x on the ring we must take into account all the classical paths labelled by the index ¢
and corresponding values of the action. Thus, the presence of alternative classical paths
between two points x, and x is the basic distinction between the motion on a ring and the
motion along a straight line.

We have chosen to study a particle on a ring because it is the simplest dynamical system
with a discrete quantum-mechanical spectrum. It is tempting to identify the various
classical paths ¢ with the discrete levels », but in fact no such identification is possible. We
shall show that sums over classical paths are quite distinct from the expansion in eigenstates
of the energy, and in some respects are more useful. We shall use the device of coiling the
line upon itself to solve the equivalent quantum-mechanical problem of a particle on a ring.
Consider any wave packet i(x,, £,) on the ring at time #,, which is zero and has zero
derivative at x5 = +am. For times? > ¢, the corresponding wave packet §5%(x,, ¢,) on the
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straight line, which is originally confined to the region |x| < ma, will move into regions
where |x| > ma, and this motion will be determined by the evolution operator USY* (%, t,) so

that
PSH(E) = USH*(2; L) H(to)- (28)

The value of the amplitude on the ring is obtained by the interference (constructive and
destructive) of each of the segments of the wave packet between (2¢— 1)ma and (2¢+ 1)ma
on the straight line for every value of the integer ¢:

P(x, t) = > SU(x+2mca, t)

° : : 29
— Z USL+(t, tO)Sl’(xo; to) ]x] |x0] <ma ( )
c
Therefore, for the corresponding kernels,
Ut (x, t; %, o) = > USL*(x+2mca, t; X, 1o) (30)

m 12 i
= e(t—1o) % {m} exp{£ S8Y(x+ 2mca, t; %, to);

= e(t~1t;) zc: {Zri?i_g_:t-og}llz exp!;—i (%, ; %o, to)} (31)

, m 1z im (x—xg+ 2mca)?
= <t=t) é {Znih(t — tO)J eXp{%E t—t, } '

This kernel, as it stands, is divergent almost everywhere and must be treated as a generalized
function of x,.

On carrying out the transformation to energy representation we obtain the outgoing
wave form of the Green function:

(32)

1 /m\Y2 i
Gp*(%,%0) = > — (—) exp(% [x—x0+2wca|(2mE)1’2}

- i \2E
1/ m\Y2 i

-33 (ﬁ) exp{}-i Sealt xo)]. (33)

As before, from equation (10) it follows that

1 /7 m\2 i
Gz~ (%, %) = zc: — E (ﬁ) CXP{— % ex(®, xo)} (34)
and from equation (12)
1 m\ 12 ScE(xa xo) .

o) = <B) 5 (1) 3 eon = (35)

Equations (31), (33), (34) and (35) give the respective kernels, in position representation,
explicitly in terms of sums over the various classical paths ¢ on the ring between the points
%o and x.

We can carry out the summation over ¢ in equation (33) and obtain the Green function
Gy* (%, %) as a simple generalized function which possesses the desired properties of the
corresponding Green function obtained as sums over the quantum states v. In doing so we
appeal to Abel’s theorem (Whittaker and Watson 1962, p. 57) and assume that E is complex
with small positive imaginary part, so that

E=Ey+i, €>0. (36)
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Gzt (%, %) is now the sum

1 /m\22 i ' P
= (5};‘) exp {% | — %0+ 2mca ](sz)IIZ} (37)
c 1

for complex E. For x > x,,
1 m\¥2p2 i
Gy (e 70) = (ﬁ«) [a exp {% (%=1 +21rca)(2mE)1’2}
+ > exp {% (%o —x+2nca)(2mE)1’2}] . (38)
c=1

Summing the geometric series we obtain

1 12 —xo—ma)(ZmE)*2|[#
Gs* (%) = 7 (22 cosllw =% —maCmEYRE (39)
fi\2E sin{ma(2mE)*2 [#}
By the same process, for x < x,,
1 ¢ m\ Y2 cos{(x — xo +ma)(2mE)*2 |k}
Ge*(%, %) = - == , . 40
575 %) = 2 (ZE) sin{ma(2mE) 2%} <% (40)

The Green function G * (%, x,) for all x is then

1/ m\*2 cos{(ma— |x—x,|)(2mE)*?f#
Guttan9 = tim (21 "l = en “n
c-0F \2E sin{ra(2mE)'2[#}
Similarly 1 1/2 2mEV2 [}
m \ /2 cos{(ma— |x— x,|)(2m
G e = i (1) 5= @
e 0P \2E sin{ra(2mE)*2 [#i}
where
E = Ej —ie, e > 0. (43)

It should be noted that Gg* (%, %o) and G5~ (x, %), as given by equations (41) and (42), are
functions of the complex variable E, defined only in the upper and lower half planes
respectively. In the limit e >0 (i.e. on the real axis) this must not be forgotten Bearing
this in mind

1= f To(w, %) dE =

1 1/ m\*2 cos{(ma—~ |x—x,|)(2mE)*/2 [#}
2mi fﬁC% (EE) sin{ra(2mE)*2 %} dE (44

A

/M P N C
€
k > 7 -
L Ao N o N
E B 5 3 , C

Figure 2. 'The contours C; and C, for integration of Ix(x, x.) in the complex E plane.

where C is the contour C, + C, (figure 2) closed at infinity ase — 0. The contributions to the
integral arise from the various poles E, along the real positive axis. The Green functions




Correspondence identities: I 781

Gg*(x, %) have poles given by the zeros of sin{ma(2mE)'”?/#i}, and so the correspondmg
energy levels are given by

V22
Yo for integer v. (45)
The appropriate residues R, are
1 Y w
R, = [exp : (x— xo)} +exp { - —(x- xo)” (46)
2ra a

which confirms the fact that the normalized eigenfunctions corresponding to the eigen-
values E, are just

ivx
e exp( + —) , integer v. 47)
a

Equations (47) and (46) illustrate the twofold degeneracy of the eigenvalue E, and show that
the residue R, is just the kernel of the projection operator P,.

The spectral operator in equation (35) can also be used directly to obtain the kernels of
the projection operators onto the eigenstates of the energy eigenvalues E,:

1 /m\2 (%~ xo + 2mca)(2mE)*?
I(x, x0) = E) —|— . 48
() = 3 (B) ~ (77) { : } (48)
Expanding the cosine terms we obtain
12 2mEV2(x — o 2mE)22
I, 30) = (B) (ﬂ) cos {M}{1 +S 2cos M} (49)
2E # o1
In terms of Dirac 8-functions (Lighthill 1960, p. 68)
o 2mE)22 o 2mE)L/2
142 S cos OBV 2 S 3{(’” )"a z} (50)
c=1 h l=—o
and equation (49) may now be written
1 m\*? Q2mE)Y2(x—xo)) TP  ((2mE)*2a
I, xp) = E(E)— {— —_— 8{——————1} 51
- 0 ) PR e )
where / is an integer. From the properties of the delta function we obtain
il 252
Io(x, 2g) = l_z_w — exp{ (x—xo)l 5 (E— zazm)' (52)
The integer / is just the quantum—mechanical label v, and so
hww) = 3 5 exp[ (r=20)| (E-E). 63
From equation (14), the kernel of P, is given by
1 iv iv
Py, w0) = 5 [ expl (v—0)] + exp| ~ L (x| (54)
2ma a a

which is the residue R, of equation (46).
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5. Conclusion _

In the previous two sections we have obtained a complete quantum-dynamical solution
of the free-particle problem and of the problem of the particle on the ring in terms of
classical paths. The classical path sums provide an alternative to sums over quantum
states and to perturbation expansions, and are often more useful, as was shown in the
derivation of the closed form of the Green functions Gz *(%, x,) in equations (41) and (42).
The relation between sums over quantum states and sums over classical paths is shown at its
simplest in equation (50).

Clutton-Brock (1965) has suggested that propagators might be obtained in terms of
classical action functions for arbitrary potentials. However, his analysis is based on Feyn-
man-type path summations in phase space, and implicitly requires the steps in the co-
ordinates and conjugate momenta to tend to zero simultaneously, violating the uncertainty
principle. Counter examples to his results may be found. Nevertheless, the general form
that is suggested is clearly valid for some interesting particular cases, provided one takes into

- account the multiplicity of the classical paths between two points.

!
t
|
1
\
1
i
\
\
\
\

\

\/\/\f\/ _,f\’/.\\\

_ ! \/"\; O 7
v\_\[/\/ \jzw\/ \TT=E V4r <
2w (2622 (au)

I (x,x) (AU)
o

-5+

Figure 3. Partial summation of equation (35) for Iz(», x) (atomic units) against
27w (2E)"'2 (atomic units), a = 1. The curve ~~~mm=-= is the partial summation for three
paths, and the curve for eleven paths.

Finally, in the case of the particle on a ring, the classical path treatment of the spectral
operator shows how the spectrum is formed from the amplitudes of the classical paths by
constructive interference at the energy levels E, and by destructive interference elsewhere.

The onset of such interference is shown by partial summation of equation (35) for Ig(x, x,)
in figure 3.
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Correspondence identities
II. The Bohr—-Sommerfeld identity for the hydrogen atom

A. NORCLIFFEft and I. C. PERCIVALY}
Department of Physics, University of Stirling
MS. received 21st February 1968

Abstract. The Bohr—Sommerfeld identity between the hydrogen energy levels given
by the old quantum theory and the actual energy levels is explained. The quantum-
dynamical solution of the hydrogen-like problem is obtained for bound states in
terms of sums over classical paths using the symmetric representation of Fock. The
classical analogue of the Fock theory of the hydrogen atom is discussed.
Schwinger’s expression for the Green function is obtained in a new form.

1. Introduction

The correspondence principle of Bohr relates quantum phenomena to classical mechanics
in the limit as #/4 — 0, as the dynamical action variables 4 become large in comparison
with Planck’s constant. However, for particular potentials of physical importance some
of these relations hold even for low quantum numbers and for relatively small values of
the action. These are the correspondence identities.

There are correspondence identities for free particles, as described in the previous
paper (Norcliffe and Percival 1968, to be referred to as I), and for systems of harmonic
oscillators, as described by Feynman (Feynman and Hibbs 1965). For the Coulomb
potential, the following identities are known:

(i) The Rutherford scattering identity. The quantum-mechanical and classical angular
differential cross sections for the scattering of a charged particle by a fixed charge are the
same (see Mott and Massey 1965, p. 53).

(ii) The Bohr—Sommerfeld identity. The old quantum theory, which postulated that
only those orbits occur for which the action around the classical path of a periodic system
is a multiple of 2x#, gives the correct energy levels of the hydrogen atom and hydrogenic
ions.

(iif) The Fock identity. It was shown by Fock (1935) that the electron momentum
distribution for any energy level E, of the hydrogen atom has the form, with the usual
notation,

1 .
P(P) = 7?12 l/’#lm(.p)‘;[’nlm(P)

constant

@*+2.")*
provided that every quantum-mechanical state of that level has the same probability. It
follows from the correspondence principle that, for any #, the above momentum distribu-
tion is the same as that of a classical electron in an H atom of energy E,, provided that
every region of classical phase space at that energy has the same probability. This is the
classical microcanonical distribution (Landau and Lifshitz 1958, p. 12).

The first two identities were important in the early development of atomic physics:
Rutherford was able to study the structure of atoms without the need for minor quantum
corrections to his scattering formulae; Bohr and Sommerfeld were able to study transitions
between low levels of the H atom, whereas their theory has general validity only in the
limit of high quantum numbers. For neither of these identities does there appear to be
any obvious connection between the usual classical- and quantum-mechanical theories.

t Previously at Queen Mary College, University of London.
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The Fock identity was obtained as a consequence of the O(4) dynamical symmetry of
the hydrogen atom (Fock 1935, see also Bander and Itzykson 1966 and §§ 2 and 3 of this
paper). We shall here show that the Bohr—Sommerfeld identity follows from O(4) sym-
metry, and in a following paper that the Rutherford identity also has its origin in dynamical
symmetry.

For the bound states we further obtain a more general relation between the classical
and quantum mechanics of the H atom, in which the spectral operator (see I), and thus
also the projection operators onto the bound states of each level of the atom, are obtained
as sums over classical paths. Thus a solution of the quantum bound-state dynamical
problem is obtained in terms of a solution of the corresponding classical problem. At the
same time we show that for the hydrogen atom in symmetric representation, and in
momentum representation, a ‘ray’ treatment completely and exactly describes the behaviour
of matter waves.

This paper deals entirely with bound states, a subsequent paper with scattering states.
As in the previous paper, generalized functions are used extensively.

Gutzwiller (1967) has approached the subject of this paper: he obtained correspondence

“identities from the poles of an approximate Coulomb Green function which was obtained
by classical path summation. However, he did not obtain the complete destructive inter-
ference between classical paths at other negative energies, and did not relate the
identities to the symmetric representation.

2. Classical Fock theory

The symmetric representation for bound quantum states of hydrogenic systems has
been described in the literature by Fock (1935) and more recently by Kursunoglu (1962)
and by Bander and Itzykson (1966). The corresponding classical theory for elliptic orbits
follows similar lines. Let us consider a particle of mass p in the field of a central potential

k Zé?
V)= -~ = - ()
7 r
and moving in an elliptic orbit with energy
Ps
E= —""-, 2
o @)
The energy equation for the particle is
2k
-2 _% 3)
20 1

It follows from the virial theorem in both classical and quantum mechanics that pg? is
the mean square momentum of a particle in a bound state of energy E. The classical
theory of the Kepler problem (Sommerfeld 1952) is simpler in momentum representation,
in which the orbit is a circle, than in position representation, in which it is an ellipse.
If ¢ is the eccentricity of the ellipse, then the radius of the circle is pz(1—€?)~1/% and the
centre is at a distance pgye(1 —e2)~1/2 from the origin, which is enclosed by the circle.

The Fock theory gives further simplification. The momentum is first represented by
the vector p = (p1, pa, P3, 0) in a four-dimensional space. The scaled momentum vector
is then p/p. In the symmetric representation the classical state of the system is represented
by the unit 4-vector u obtained by projecting p/ps onto the unit hypersphere (centred at
the origin) from the ‘north pole’ given by n = (0, 0, 0, 1). The vector u is given in terms
of the momentum 4-vector by the equation

2pep +(p*—pp)n
PP +ps°
Two examples of the projection are shown in figure 1, restricted to three dimensions for
simplicity.
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To formulate the classical-dynamical problem in symmetric representation we must
obtain the energy equation and the stationary action principle. The vectors # and p are
related by a coordinate transformation. The corresponding canonical transformation from
momentum to symmetric representation is generated by the functiony’(«, 0, ¢; x, y, 2),
where («, 0, ¢) are the new coordinates and (—x, —y, —2) the old momenta (Corben and
Stehle 1966, p. 177). The action function S,z(&, #,) in the symmetric representation is
then given in terms of the energy-momentum action function by the equation

Sce(u, ug) = Sex(P, Po)—[¥'15 +[r . PR (5)

where A and B are the initial and final points of the motion. The generating function '
has the form

¥ = fule, 0, $)x+fole 0, )y +fa(2, 0, $)2
=f(,0,9).1. (6)

Figure 1. Two examples of the stereographic projection. The points P, P’ on the
scaled momentum circle become the points Q, Q’ on the sphere.

Unless otherwise stated, all vectors have fourth component zero. The angles «, 0, ¢ are
polar coordinates of u on the hypersphere (Fock 1935). By the general theory of canonical
transformations

P
p= 1—cosa
=f (a0, 4)
_ Pesma 5 (7)

1 —cos «

(sin asin 6 cos ¢, sin o sin 0 sin ¢, sin « cos 6, 0)

It should be noted that p,, p,, p. in the momentum (initial) representation are the gener-
alized coordinates and —x, —y, —= the generalized momenta; in the symmetric (final)
representation the generalized coordinates and momenta are «, 8, ¢ and p,, Pg Pos
respectively. By the transformation theory
o)
pe= - ®)

“ do

and similarly for the other angular variables. It is simpler to work with a vector form for
the hyperspherical momentum. As the line element ds on the hypersphere is

ds = dub+sin o d06 +sin « sin 0 dpd 9)
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we find that we can preserve the symmetry by defining the hyperspherical momentum p,,

to be" ~ ) 6 A
=it 20 __Pe? (10)
sino. sinoasinf
= —(l—uu.)v, (pEu ! ), (7 constant). (11)
1—cosa

The second equality is obtained from the canonical transformation; the factor (1 —uu.)
removes components parallel to . From equation (11)

_— pEr PEu T B ) R
Pu= 1—cosa (1—cosa)? {1 —cosa)u+sina@
= — bsf N pru .1 (u—n) -

l1—cosa (1—cosa)?

where, from the geometry (figure 2),

A . A
o= —mnsino-+ P cosa.

Figure 2. Illustration of the connection between the unit vectors n, u, pand &.

To obtain the energy (Hamilton—Jacobi) equation in symmetric representation, we express
r in terms of u and p, by taking the scalar product of equation (12) with n:

pu.n=— Pt -1 = pySina (13)
1—cosa
1
r = —{p,(l—cosa)—p,.n(n—u) (14)
>
1—cosa
r = Dl (15)
or P
The energy equation in momentum representation is
S
=L _2 (16)
TR
and therefore, using equation (15), the energy equation in symmetric representation is
PEz(l + Ccos a) ka
"~ 2u(l—cosa) (1—cosa)|p,|
ks
2|p|
kpg (17

2(po2 + pe2[sin® o+ p,? [sin? o sin? §)1/2 ’
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The symmetry of this equation on the hypersphere is evident. It should be noted that
the magnitude p, of p, is a function of energy alone. The explicit energy dependence of
the above transformation introduces no great difficulty into the theory. All that we require
is that the new Hamiltonian should be a function of p, alone, giving

o0
d= O (18)

and similarly for the other angles. Then the line element ds given by equation (9) is in
the direction of p,. The stationary action principle now becomes

0=Ap,.ds

= puA [ ds. (19)

The path on the hypersphere is therefore a geodesic, that is, a great circle.

This result can also be obtained directly from the circular orbits in momentum space
by projecting onto the hypersphere (see Gyorgyi 1967). As in the case of the particle on
a ring in I, there is an infinite number of classical paths ¢ between the initial point #, and
the final point # on the hypersphere for a given energy E. As before, the index ¢ will be
used to determine the number of times that the particle cycles around its elliptic orbit in
position space before reaching its final position.

In the symmetric representation the classical action for the path ¢ on the hypersphere
is thus given by

S, (1, 145) = f o ds

path ¢
B kpgs.(u, uy)
2E
pk|w + 2me|

where sy(14, 11,) is the path length and w is the corresponding angle between the initial
and final points on the sphere, so that

c=0,+1,+2... . (20)

CoOs w = U . Ug, 0< <), (21)

The value of the action function remains unchanged under a canonical transformation
which is only a coordinate transformation (see equations (5), (6) and (7), or Corben and
Stehle (1966, p. 178)), and therefore

Scx(t, g) = Scp(P, Po) = %2_[ (22)
From equation (4)
_4pEP - Do+ (07 —p5%)(p0” — P5°) (23)
N L e R
so that in terms of momenta
= cos-1 {4pE2p - Do+ (* — p&*)(D* —Pzz)}_ (24)
(0% +25%)(Bo® +P5%)

The value of S,x(p, Po) can be obtained directly from first principles. It is shown by
Gybrgyi (1967), for example, that for a given orbit the path length on the hypersphere is
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the magnitude-of the difference between the initial and final values of the eccentric ’
anomaly w. Using appropriate axes, the parametric equations of the orbit are

x = a(cos w—e)

y = a(l—€*)2sinw (25)
11a®\ 112 _
£ = (7) (w—e sin ) (26)

where @ is the semi-major axis of the elliptic orbit.
Using w as the independent variable, we have

dr dw 27
Pt : @7)
and therefore the classical action is
B
Sex(P> Po) =f —r.dp’
A
Elow—
_ ikl —wo| (28)
(—2pE)""*
where
|lw—wo| = |w+2mc|. (29) .

3. Quantum-mechanical Fock theory

For the elements of the quantum theory of the symmetric representation, the reader
is referred to the references quoted in the previous section. As in the classical theory the
transformation to symmetric representation is obtained by projecting the normalized
momentum P/pz onto the hypersphere.

We wish to transform the Green operators, and follow Schwinger (1964) and the above
classical theory in choosing an arbitrary negative real value for the energy E, in contrast
to Fock, who chose E to be an energy level of the hydrogen atom. For convenience we
label our wave functions with the energy E.

If Y(p, E) is a momentum wave function and & represents the transformation to
symmetric representation, then we define the equivalent symmetric wave function (1, E)

by
’:bs(u’ E) = y‘/‘(P’ E)

T
= —2be % (p5” + 7P, B). (30)
4/8
The factor in equation (30) is chosen so that if J)(p, E) is a solution of the Schrodinger
equation belonging to energy E, then

dQ P2+ p?
2 | d8p == ,E)2
fzﬂz (1, E)| f L l¥(p, E)|

= [ eslup. BYP
= 1. (1)

If L(p, po) is the kernel of an integral operator L in momentum'representation and
L(u, u,) is the kernel in symmetric representation, then for any {(p, E) we have

o L(u, o), B) = # [ &30 Lo, 2o)HPo, E)

_ 990 (2 +2°)*(5” +10°)
) 242 8ps3

2772L(P: Po)¢‘s(“o , E). (32)
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Noting that both sides are functions of &, we have . R
2 2 2\2 2 L
L(u, ug) = 7(pg® + %) (SZ;Ea"'Po ) (P, Po) (33)
&

A symmetric kernel in one representation is not a symmetric kernel in the other.
- Let H be the Hamiltonian of the hydrogen atom. Then by Fock’s theory, and with a
view to obtaining the Green function, we have

2

&po(Po; E)

?
(&1, B) = (B- L)k, B+ 37y [ PP (4
which in symmetric representation reduces via equation (4) to
(BB, E) = (B~ ) (U~vQ)u(w, £) (39)
)
where
kp
- (36)
Opu(u, By = [ oot T) @)

202 |u—uol?’

Assuming we can construct analytic functions of both sides of equation (35), in particular

the inverse, we have
-1

(E—H)"? = {(E— ;L:)(I—VQ)}

— (I—vQ)-? (E— g;:)_l. (38)

The Green operator (E— H)™?! is not uniquely defined when E is on the real axis, and as
usual we define

. 2
Gyt = lim {T—(v 4 )0}~ (E—- -P—) . (39)
V-0 2[1-
The spectral operator is thus given by

[{I—(v—ivI)Q}"l—{I—(erivI)Q}‘l] (E_ pj’)'l

V: “’0 2 2[1.

-7, (5~ 57») . (40)

Iy = S(E—H) =

4. The kernels of (I = vQ)-! and of the spectral operator

As in Schwinger’s (1964) theory of the Coulomb Green function, it follows directly
from Fock’s (1935) work that if ¢,(u, E) is a hyperspherical harmonic of order 7, and P,
is the projection operator onto the #th harmonics, then

Ofn(u, E) = n~ Y, (u, E)

0= i n~P, (41)
and n:)l P
I—Q) = 3 — (42)

n=1 l—V/'n.
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It should be noted that the stereographic projection used by Schwinger, and in this
paper;-depends on E and not on the E, belonging to a hyperspherical harmonic as with
Fock. The functionsin momeritum space corresponding to these harmonics are therefore

scaled hydrogen atom wave functions. They form a complete but not orthogonal set of
" functions in momentum space.

The kernel of (I—vQ)~* in symmetric representation is:

® 72 sinnw ® psinnw ® sinnw 124
— = > — +v > — - (43)
noin—vsinw 2 sinw iZ1sinw sinw
where
® sin #w
A= (44)
. n=1 B—V

All terms of equation (43) must be considered as generalized functions. The first two
terms are strongly divergent, but are eventually removed from the analysis. The term
with A4 has singularities at v = 1, 2, 3, ..., which are the poles of the Green function,
which is not uniquely defined unless the sign of »; (the imaginary part of ») is defined.
Suppose that A* corresponds to +v;, where v; > 0. Then

1
4% = '—.(B+_B—)
21

where
® exp(+inw)

B.= 3

n=1

(45)

n—v
For convergence of B, we make w slightly complex:

= exp{in(w+ic)

2,

B, e>0

n—v
o +ie

do’ exp{i(n —v)w'}

exp{iv(w+ie)} Z i
n=1 — o0 +ie

w+ie i(1— ’

exp{iv(w+ie)}if do SRU =) )

e T—explie) |

(46)

Since B_(w*,v) = {B.(w,v*)}*, we have
Aty = f , explil—v)e’}
2 1—exp(iw’)
N T Gk Ui Lt
2J o-te 1—exp(—iw’)
1 f‘”ie do’ exp{i(} —v)w'}

sinfw’

exp{iv(w +ie)}

—w +ie

exp{ - v(w—ie)}

exp{iv(w + ie)}

— o +ie

— lfm_ie do’ exp{ i V) }exP{—‘iV(w_ie)}' 7

4i sinlw’

The poles of each integrand lie at ' = 2mc, where ¢ is an integer, and we shall find
that the residues correspond to contributions from classical paths, but unfortunately the
contours are incomplete. For this reason we are unable to obtain the exact Coulomb Green
functions as sums over classical pathst, unlike the particle on a ring of I.

w—ie

t Gutzwiller (1967) has obtained approximate Green functions in this way, however.
2B
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However, the Green functions can be combined to form the spectral operator I, and
for the correspondmg operator J, in the symmetric¢ representatlon ‘the contours- are
complete.

Using the relation 4~ (v*) = {4*(v)}* with equations (40) and (43) and remembering
that the argument of 4~ must have a negative imaginary part, we have

sin w
v(u uo) = 11%——-— {A (,,*) 4 +(v)}
V f 3
@ —ie — L %)’
= —lim [ — exp{— v¥(w — 1)} f exp{ .1(2 :’ Jo'}
e —ole sinlw
®© +ie (1% ’
— exp{lv*(w + le)} f M
+ie sinsw
w +ie L ’
— exp{w(w +i€)} f M
@ +ie sin{w
1 © —i€ _i(1_ 1
+—8—- exp{ —iv(w —i€)} dw’ exp{ : l(f IV)‘“ }] ' (48)
™ w-1ie Sinw

The first and fourth terms may be combined together to give a single contour: the
functions are slightly different, but become the same as y; — 0. The same applies to the
second and third terms, giving

Si.n w T, ug) = — exp( —ivw) J‘ do’ exp{—. i} —v)o'}
2 8 1 sin}w’

+exp(ivw) J‘ doo’ exp{i} —v)w'}

W)
siniw

(49)

where the contours C, and C, are illustrated in figure 3.

F1gure 3. The contours C; and C; in the complex w plane over which the integrations
are taken.

For v < 0 the semicircles which may be used to complete the contours enclose no
poles, so that

J, =0 v <0). (50)




Correspondence identities: 11 793

Forv > 0 the contours C,; and C, may be completed by large semicircles in the positive
and negative half-planes respectively. On summing over the residues at the poles, we
obtain

T (1, o) =Si;we(v) é sin{y(2me — w)} (51)
®  sin{S z(u, uy) /%
iy 3 SndSes(n, w)/A} (52)

estw sin{s,(u, uy)}
We have thus succeeded in obtaining the operator J, in symmetric representation,
which is analogous to the operator I in momentum representation, in terms of sums over
classical paths. The expression for the spectral operator in momentum representation is
not so simple as it involves the path length on the hypersphere in terms of momenta:

— 8M3pEk2 2 Sln{ScE(P;PO)/h}
TP+ P (Po® +57)? 2w sin|w+2me| E<0 (33)

where w is given in terms of momenta by equation (24), and equation (22) may be used
to obtain the action explicitly. The denominator is the square root of the density of
classical paths from p, (Gutzwiller 1967), as can be seen clearly in the symmetric
representation.

Equation (51) may be summed using the generalized function expansion of Lighthill
(1960, p. 68), giving

I(p, po) =

©

> dv—n) (54)

sinw , 7

sinvw

Jy(8, 1) = —e(w)p®

and then transformed to momentum representation, giving the spectral operator in pro-
Jection operator form (I, equation (14)):

I;=8FE—H)= S(E—E,)P, (E <0) (55)
where "t .

p 8pr® nsinnw
R = b G 2 smw

is the projection operator onto the nth subspace (Fock 1935). The analysis may be reversed
to give equation (52) without using the complex variable theory, but we shall need the
latter for the continuous spectrum.

(56)

5. Conclusion
The Bohr—Sommerfeld identity now follows from equation (54), which shows that for
bound states » is a positive integer (), so that, by equation (20) and the definition of v, the
action once around an orbit when E is the energy of a bound state is
(Sg) orbis = 2mni. 57)

The left-hand side is independent of the representation as the initial and final points
are the same. :

The spectral operator has been expressed as a sum over classical paths, and this sum
thereby enables us to obtain the dynamical solution of the hydrogen atom problem in terms
of classical paths; but we have been unable to obtain the Green operators and the evolution
operators in these terms, so that our theory is not so general as for the free particle of I.

The theory will be completed by a study of the continuous spectrum and the Rutherford
scattering identity in a following paper. :
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Correspondénce identities .
III. Classical paths and Rutherford scattering

A. NORCLIFFE, 1. C. PERCIVAL and M. J. ROBERTS
Department of Physics, University of Stirling
MS. received 10th February 1969

Abstract. In preparation for the derivation of correspondence identities for the
Rutherford scattering problem, the relevant classical theory is developed. Convenient
conventions for classical canonical transformations are introduced. Classical O(1, 3)
symmetry properties are discussed. Classically accessible and inaccessible regions
of momentum space are defined, and, for the latter, generalized classical paths and
the corresponding action functions are obtained by analytic continuation.

1. Introduction

In this and the following paper the results of Norcliffe and Percival (1968, to be
referred to as II) are generalized to include the states of positive energy, which represent
the Rutherford scattering of an electron by a proton.

The original correspondence identities for the negative energy states, representing the
bound hydrogen atom, were obtained in momentum representation and the related
symmetric representation, and not in position representation. This appears to be a direct
consequence of the accessibility of every region of momentum space to a bound electron
of given negative energy E, which is confined in position space to a spherical region around
the centre of the potential.

By contrast, an electron of given positive energy E can reach every position, but a
large region of momentum space is inaccessible, as discussed in § 2. Nevertheless, we
still find correspondence identities in the symmetric and momentum representations only.
Inaccessibility in momentum space complicates the derivation of correspondence identities,
so this paper is restricted to a treatment of the relevant classical theory. The quantum
theory and correspondence identities are dealt with in the following paper (Norcliffe e al.
1969, to be referred to as IV).

Section 3 of this paper describes conventions and notations for classical canonical
transformations which resemble those of quantal unitary transformations more closely
than those of the standard texts. In the following section transformations and action
functions for the position, momentum and symmetric respresentations are introduced.
Although this treatment of Rutherford scattering is non-relativistic, much of the mathe-
matics resembles that of the relativistic motion of a free particle. This is because the
symmetry properties are the same: for each, the appropriate symmetry group is O(1, 3).

In § 5 generalized classical paths are introduced which pass through the inaccessible
region of momentum space. Their properties are determined by analytic continuation
from the usual physical classical paths. The action functions for the generalized paths are
usually complex; through them the correspondence identities which relate classical and
quantum mechanics are obtained, but the treatment of these relations is left to IV.

2. Classical trajectories

Consider a particle of mass p and positive energy E = pz®/2u moving in an attractive

Coulomb potential
k Ze?
Viry= ——=—-——  k>0. (1)

¥ ¥

The trajectory in position space is one branch of a hyperbola which has one focus at
the origin. The momentum-space trajectory, or hodograph, is an arc of a circle whose
radius is py(e2 — 1)~ Y2 = ku/bpy, and whose centre is at a distance epg(e® — 1)7%/2 from

578
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the origin. 'The eccentricity of the orbit is € and 4 is the impact parameter. The tangents
to the circular hodograph at the extremities of the arc intersect at the origin at an angle ®
which is the scattering angle, as shown in figure 1. The remaining arc of the circle is the
hodograph of a particle having the same energy moving under the influénce .of a repulsive

Scattering centre

Momentum
circle

, Energy shell

Figure 1. The hyperbolic trajectory in position space and the circular hodograph.
The continuous curves are the trajectories for the attractive Coulomb potential and
the dotted for the repulsive.

Coulomb potential V(r) = k/r. In position space this corresponds to a trajectory which
| is the other branch of the same hyperbola. The two regions |p| > py and |p| < 'pg of
‘ momentum space are thus classically inaccessible to a particle moving in a repulsive and
‘ an attractive Coulomb potential respectively.

3. Classical canonical transformation theory

As described in textbooks on classical mechanics (e.g. Corben and Stehle 1960,
Goldstein 1950), the state of a classical system with a finite number of degrees of freedom
is represented by a point P(g;, p;) in phase space and is defined by any complete set of
canonical coordinates g; and conjugate momenta p;. The state at any time is determined
by the state at any other time. The relation between different choices of ¢; and conjugate
b1, which leave the form of Hamilton’s equations invariant, is the subject of canonical
transformation theory.

In this theory it is not usual, but it is convenient, to refer to a ‘classical representation’,
which is given the name of the set of variables which play the role of the canonical co-
ordinates. Canonical transformations are then transformations between different classical
representations.

For example, in the position representation for a particle in a scalar potential field the
coordinates #, y, z of the position vector r are the canonical coordinates. The conjugate
momenta are p,, p,, P., but this need not be stated explicitly. In the momentum repre-
sentation p,, p,, P, are the canonical coordinates, and, by canonical transformation theory,
—x, —y, —z are the conjugate momenta.

The solution of a quantum-mechanical problem can be obtained from a knowledge of
certain operators connecting initial and final quantal states, e.g. the evolution operator
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or propagator. Any representation may be used for the states, provided it is known how
to transform from this representation to others. Analogously the solution of a classical-
mechanical problem can be obtained from a knowledge of certain classical action functions
S connecting initial and final classical states.

The usual classical action integral of time-dependent theory can be represented in
position representation in a similar way to that given by Feynman and Hibbs (1965):

P(r),t

S(r, t; 1o, to) = f Ldt )

P(rod.to

where L is the Lagrangian evaluated along a classical path between r, and r which is
traversed by the particle from time £, to time £. The corresponding action function of
time-independent theory is usually known as Hamilton’s principal function, but we shall
refer to it simply as the time-independent action:

P(r),E

S(r, E; 1o, Eo) = f p.dr. (3)

P(r0).Eo

For a time-independent Hamiltonian the energy is conserved, one energy is redundant,
and we write Sg(r, #o). As in quantum mechanics the second coordinate refers to the
initial state.

Transformation to other representations is effected by generating functions which also
have the dimensions of action. There are four standard types of transformation (Corben
and Stehle 1960, § 59, Goldstein 1950, chap. 8), but only one of them, the ‘direct’ trans-
formation, is equivalent to a unitary transformation of quantum mechanics. This is the
one in which the generating function, here denoted by ¢, is an explicit function of the
canonical coordinates of both the original and final representation. The others are some-
times more convenient to use and consist of a direct transformation together with one or
two of the special transformations which transpose the canonical coordinates and momenta.

A generating function of a direct transformation is analogous to a unitary transformation
operator which effects a transformation in quantum mechanics. A classical action such as
Sg(r, ro) is analogous to a quantal operator. In quantal transformations of operators the
transformation operator appears twice: once for the initial and once for the final state.
Similarly, in a transformation of a classical action Sg(g, ¢,) from ¢ to § representation, the
generating function ¢ appears twice:

Se(d> §o) = — &% 9) + S5(g> 90) +$(40, Go)- *)

We note that the functional forms of Sg(g, §,) and Sx(q, ¢,) may be quite different,
just as in the quantal transformation
X =U'XU : (5)

the functional forms of the kernels X(g, §,) and X(g, ¢o) may be quite different, despite
the notation.

In a given classical representation the action function is defined by the initial and final
canonical coordinates, together with the energy. The classical path defined by these
coordinates may not be unique. Frequently there is a discrete set of classical paths. In
these cases a further label ¢ = 0, 1, 2, ... is required to specify a particular classical path
and the corresponding action function S,g(q, go).

Usually canonical transformations do not depend explicitly on energy or time. The
new canonical coordinates and momenta are functions of the old ones and certain fixed
parameters. The time variable remains unchanged. Such a transformation appears in
§ 4, and pj; is there a fixed parameter independent of the energy.

However, in the most general canonical transformations the time and energy appear
on the same footing as the canonical coordinates and momenta, as shown in § 86 of the
article by Synge (1960). For such transformations the new time variable can be a function
of the old coordinates and momenta, and in § 6 such a transformation is considered in
which the new coordinates are functions of the old coordinates and of the energy E.
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The variable py, is then energy dependent, and the new time variable is position dependent.
This transformation and the previous energy-independent transformation must be care-
fully distinguished.

4. The symmetric representation

Since the correspondence identities are most directly expressed in symmetric representa-
tion (see §3 of IV), we choose this representation to solve the classical dynamical problem
of the Coulomb potential. We then have the solution of the Coulomb scattering problem
in each representation. :

The symmetric representation has been discussed in the literature by Bander and
Itzykson (1966), and others. Let u, (A = 0, 1, 2, 3) denote a position vector in the four-
dimensional Minkowski space with a metric whose signature is (1, —1, —1, —1) (see
Dirac 1958, p. 253).

The surface & of a unit sphere in this space has equation

wut = ug?—u P —u2—uy? =1 (6)

and consists of two sheets &% and &~ defined by #, > 1andu, < — 1 respectively. In four-
dimensional Euclidean space . is the surface of a rectangular hyperboloid. A point «; on
& is associated with a point p in momentum space by projecting the scaled momentum
4-vector (0, p/py) from the point (—1, 0, 0, 0) on &, onto the surface &. At first we

Energy shell.g” el Momentum

=~ ‘ circle

Figure 2. The stereographic projection. The points P and P’ in the scaled momentum '
space project onto the points Q and Q’ on the surface of the hyperboloid.

choose py; to be a fixed parameter. The projection is shown in figure 2, in three dimen-
sions for simplicity. Explicitly,

u,; = (cosha, sinh « p), where tanh o = p/pg;

p| < ps  (70)
u, = —(cosha,sinh « p), where tanh Jo = pg/p;
1P| > ps (7)

All points in the region of momentum space for which |p| > pp are projected onto &~
and all those in the region |p| < pg onto S *. Thus &~ and '+ are respectively the classi-
cally accessible regions of the attractive and repulsive Coulomb potentials in the sym-
metric representation.

Rr2
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If 6 and ¢ are the usual polar angles defining the direction of the unit vector p, then
a, 0, ¢ may be taken as the generalized coordinates of the particle in the symmetric repre-
sentation. Let p,, p,, p,, be the canonical momenta conjugate to them. In the momentum
representation the canonical coordinates for a given energy may be expressed solely in
terms of the canonical coordinates in symmetric representation, viz. on &~ :

Pz = prcothfosin b cos ¢

py, = prcoth}osinfsiné (8)

p. = prcoth Jo cos 8
then the canonical transformation from symmetric to momentum representationf is a
coordinate transformation. The generating function of a contact transformation appro-
priate to such a coordinate transformation is given by Corben and Stehle (1960, p. 178,

equation (59.9)) and leaves the value of the classical action function unchanged, so
that

P(a,6.¢)
Ss(ir, 1) = Sx(p,20) = | (b do! +y'd6 +p,'d$) ©)
P(ao. 6o,d0)

where P represents a classical state of the system. As was seen in I1, the energy dependence
of the transformation (8) introduces no great difficulty into the theory. The generating
function " (Corben and Stehle 1960, § 59) is given explicitly by

P (a,0,;—x,—y,—2) = —r .p = —pgcothia(xsin 0 cos ¢+ysinfsind+ =z cos b).

(10)
In symmetric representation the generalized momenta are given by
ap .
p. = — and similarly for pg,p,. (11)
o
By a method analogous to that of IT we solve for r = |r| and find that
: ‘ -
7 = 2sinh? e — (12)
br
where
pez p¢2 1/2
II = |p.2+ + ) 13
(p sinh?x  sinh2« sin2f (13)

IT is the analogue of the magnitude |p,| of the hyperspherical momentum defined in II,
equation (10).

Since the transformation from symmetric to momentum representation does not depend
explicitly on time, the value of the Hamiltonian remains the same in either representation.
For the attractive potential, the expression for the Hamiltonian in symmetric representation
becomes

H(r, p) P> k  pg2coth?la kpgcosech? i«
P 2u r 2u 211 '

We can express the action integral in equation (9) along any path on %~ in a Lorentz-
invariant form, which is the same thing as symmetry under the group O(1, 3). The element
of distance along the path is

du;, = da g, +sinh «df §,+sinh asin 0 dé ¢, (15)

(14)

where d&,, 8,, ¢, are mutually orthonormal vectors in the Minkowski space. The invariant

t For convenience we choose the symmetric representation to be the initial representation in
contrast with II.
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distance s along the path is given by

ds du, dur\12

& (_ ___) (16)

de dz dt

From equations (13), (14) and (15) together with Hamilton’s equations
de oH
o et , (17)
dt  9p,
it follows that
ds __ kpg cosech? -%oc. (18)

dt 2112

The representation is symmetric only for the energy E = pz?/2u, and we limit our
consideration to this particular energy. A representation which is symmetric for all
positive energies is used in § 6.

For this energy, under the subsidiary condition H(r, p)—E = 0, we have from
equation (14)

I = constant = ku[pg. (19)
A 4-vector 1T can be defined as
du, Pob, Podba
N, =1—= = p,3, . 20
4 ds p j‘+sinhoc+sinhocsin0 (20)
This is consistent with the definition of II, since
nz = —1I,11%. (21
Hence * )
s duﬂ s
Sg(ug, u,®) = — f In* —(—1—,ds’ = Hf ds’. (22)
50 s so

The stationary action principle then implies that A [° ds’ = 0, and the trajectories on
. . S . .« .
&~ are thus geodesics. In this case they are the curves in which planes through the origin
intersect & ~, and in the Euclidean sense they are rectangular hyperbolae. They are
analogous to the great circles on the unit hypersphere in the case of the discrete spectrum.
In fact, if B is the Minkowski distance along a geodesic between the two points u,®
and #, on &, then

Elp—p.|2
coshB = u,Ou* =1+ L) (23)
W(To—E\T—F)
where the kinetic energies T and T, are
2 2 )
r-2 -2 (24)
2u 2u

B is thus the hyperbolic angle between the two points on &~ and, as we shall see in the
next section, is just the analytic continuation of the angle w defined in equation (21) of
II.

From equation (22) the action is thus

Spla,u,?) = B = Sg(P, Po), [pl, [Pol = Po- (25)

This result may be obtained from the Kepler theory using the parametrization by the
eccentric anomaly (the ¢ of Landau and Lifshitz 1960, § 15). 3, as defined in equation (23),
is just the difference in the eccentric anomalies corresponding to the points p, and p,
as shown for bound states by Gyérgyi (1963). We obtain a similar result for the action
between two points in the accessible region of the repulsive potential.
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The correspondence identities depend critically on the properties of the action function
as defined in equation (25). In quantum theory the electron has a finite probability of
being in the classically inaccessible region and, at first sight, this appears to exclude all
possibility of complete correspondence identities, because no classical paths reach this
inaccessible region. However, this is not the case and we shall show how the classical
path and the action function may be analytically continued into this region.

S. Paths through the inaccessible region

It is shown in II that, in the discrete spectrum E < 0, the kernel Iz(p, p,) of the spectral
operator can be expressed as a sum over classical paths between p, and p, each path being
characterized by the number ¢ of times that the particle passes around the complete circular
momentum orbit. The contribution from each path depends on the corresponding classical
action S¢g(P, Po).

*  For the continuous spectrum E > 0 there is one physical path between p, and p
if they both lie in the accessible region and no path if either p, or p are in the inacces-
sible region. Nevertheless, the kernel of the spectral operator I;(p, p,) is non-zero in the
latter region, so that a theory in terms of the usual classical paths is not possible.

A way out of this impasse is found by considering generalized classical paths which
can pass through the inaccessible region. For positive energies we consider paths which
pass around the momentum circle any number of times, as for classical paths of negative
energy. Here they may pass into and out of the inaccessible region. Between any two
points P, and p within or without the classically accessible region, there is an infinite
number of such paths, each path again being characterized by the number ¢ of times that
the particle passes around the complete momentum circle. The corresponding classical
actions S,z(P, Po) must then be defined for £ > 0. Since the action for E < 0 is defined
for arbitrary p and p, we obtain the result for E > 0 by analytic continuation.

It is well known that quantal scattering Green functions and scattering amplitudes
have a cut along the positive real axis in the complex energy plane. The same applies to
the classical action function S,z(p, P,), and for the same reason: that the kinetic energy
is a quadratic function of the momentum. The value of w, and hence of S (P, p,) depends
on whether we analytically continue above or below the cut, i.e. the two actions

S 2(PsPo) = h‘;‘} Se.p1ie(Ps Po) (E,e>0) (26)

are different. They are related to the two Green functions Gz'¥)(p, po)-
From IT we know that for the attractive Coulomb potential the action along the shortest
path between p, and p for a negative energy & is given by

nkw

(27 )

SOé”(P’PO) =

where
Elp—pol®
(& —T)(&—To)

2(&6) (28)

cosw = 1+

so that when & is real and negative w is real and lies between 0 and #; it is, in fact, the

angle between the position vectors of the points on the hypersphere corresponding to .

P and p,. Now for positive energies we first suppose that p, is fixed in the accessible
region and we shall obtain w from equation (28) for & = E+ig, i.e. 0*(E) = 1inr(1)a)(E +1e)
&

where E > 0 and ¢ is small and positive, and for p on different parts of the momentum
circle as shown in figure 3.
From equation (28) we have

w= +iln{z+(22-1)2} (29)

which is a many-valued function of z. The function 2+ (32—1)1/2 is itself a double-valued

S
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function of = and all its values are given on the Riemann surface consisting of two sheets
R}, Ryjoined by cuts from —ooto —1,and from +1to +o0. OnR; we define Im(2%—1)*/2>0.
Then (22 —1)Y2 is uniquely defined on the Riemann surface. On Ry, (22—1)*/2 takes on
values of opposite sign to those at the corresponding "points on R,. The argument of
2+ (22—1)42 then varies continuously from 0 to 27 as z passes around the branch points
+1 on the two sheets. If we now take an infinite set of such pairs of sheets joined in the

\Energy shell

Zero momentum @

——Y- Momentum
circle

A

Figure 3. The different types of paths in momentum space. Between A and B we
have the path in the accessible region and also AFDCEB which passess through the
inaccessible region.

usual way along the above cuts, then arg{z+(22—1)1/2} takes on all real values on the
Riemann surface thus obtained and from equation (29) w is a single-valued function of
z on this surface, given by

w = arg {g+ (22— 1)12} —iln |2+ (22— 1)'2|. (30)

When z is real and lies between —1 and +1 on R;, w is real and lies between 0 and
8

We now consider z as a function of E+ie defined by equation (28), where E > 0 with
D, fixed at A(p,), say, and p varying around the momentum circle from A through E and
F and back to A as in figure 3. By examination of the real and imaginary parts of z we

Complex z plane

\
/K
o\
&
7

-——— Contour on R
- -»-— Contour on R, .

Figure 4. The path on the Riemann sheets R, and R., described by z defined in
equation (28) for & = E+ie (E, £ > 0) and p, fixed in the accessible region, with p
varying round the hodograph.

find that = describes the contour shown in figure 4. Using equation (30) we find that the
analytic continuation of w for P, fixed in the accessible region at A, when p lies on different
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arcs of the momentum circle, is given by (see figure 3)

—ip, for p at B, where B varies from A(8 = 0)
to E(8 = ) on path ABE (a)

7 —1B, for p at C, where C varies from E(B = )
to D(B = 0) on path ABED ()]
(31)

g
+
i
JA‘

7+ 1B, for p at C, where C varies from D(8 = 0)
to E(8 = ) on path AFDE (¢)

27 +1B, for p at B, where B varies from E(8 = o)
to A(8 = 0) on path AFDEB (d)

where B is the hyperbolic angle, always defined between two points #,®, u, on ¥ ~.
The momentum p, projects onto u,'” and p projects onto u, if |p| > pz. It projects
onto —u, if |[p| < py, that is u, corresponds to the point p p;2/p? in this case (see figure 2).
Thus

h .
cos wt = { teoshf o] > 2 (32)
. —coshB [p| < ps-
Since
lim {— 2u(E+ ie)}~Y/2 = i(2uE)~12 = — (33)
&-0 pE
the classical action along the shortest path between p, and p is
1B if [p] > p
S5* (P Po) = 21> 2s (34)

(B +im) if |p| < pg

where II is defined in equation (19). For |p| > p; this agrees with equation (25) for the
action between two points in the accessible region. For |p| < pj, with reference to figure 3,
the action from A to C is the sum of a normal real part, which is just the action along the
physical path from A to B, plus an imaginary action i#II which comes from passing from
B through the energy shell at E into the inaccessible region at C.

For & = E—ie we find that

Sg™ (P, Po) = [Se™* (P, Po)]*. (35)

From equations (31) we see thatw* increases by a multiple of 27 each time the complete
momentum orbit is described, so that the action S;*(p, p,) increases by multiples of
+27iIl. Hence, if ¢ denotes the number of complete orbits described, then the value of
S.g* (P, Po) for p and p, lying in each of the regions of momentum space is given for all
the possible generalized paths in table 1, where = IT/#. This definition of 5 together with
the last three columns of the table will be used in IV.

6. Time along the complete orbits

For the discrete spectrum, if p,, is taken to be the momentum at the perihelion of the
elliptic orbit, then the angle w of equations (25)-(29) of II is just the eccentric anomaly at
the point with momentum p (Landau and Lifshitz 1960, Gyérgyi 1968); the time taken by
the particle in moving from p, around the orbit is given by Kepler’s equation

Qt = w—esinw (36)

where Q = (—2ué)?2[ku? is the fundamental angular frequency and ¢ is the eccentricity
of the elliptic orbit which is determined uniquely for a given energy & < 0 and given
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momenta p, and p. The period for a complete revolution of the orbit is given by

28 2
(—) il (37)
aéa orbit Q

The analytic continuation of Q and e to positive energies are Q' and €', where

Q- £1Q

€ >¢€

:forco@=Eiie, E>0 (38)

Q' = pg®lku? and €' is real and greater than unity.

For positive energy we may again choose p, to be the momentum of the particle at
the perihelion. Consequently, using equations (31) and (38), the analytic continuation of
- the Kepler equation (36) is

€ sinh B—B (@)

imr—¢ sinh f—B  (B)

I
F im+€ sinh B+8 )
F2im—¢€ sinh B+ (d).

Q't= (39)

The ranges of p and B in equations (39) correspond to those of equation (31).

We see that in the accessible region the time obeys Kepler’s equation for the attractive
hyperbolic orbit (Landau and Lifshitz 1960, p. 38). The time taken for a particle to pass
from a point in the accessible region to a point in the inaccessible region is complex. How-
ever, the time between any two points in the inaccessible region ECDF of figure 3 is real,
increases from —oo at F to +o0 at E for clockwise motion and obeys Kepler’s equation for
the repulsive hyperbolic orbit.

In passing through the energy shell p? = 2uE the particle thus picks up an action

Siey = +inll . (40)

and has made a sudden jump to the past. We note also that the time to traverse the complete
hyperbolic orbit is + 27i/Q’, from equation (39), which agrees with the analytic continuation
of equation (37). We have seen that the action around the complete momentum orbit is
+ 27ill.

Thus the analytic continuation of the classical bound-state Kepler problem yields the
classical solutions to both the attractive and repulsive scattering problem.

It will be noticed that the electron does not move uniformly along a path on the hyper-
boloid. When time # is introduced, the O(1, 3) Lorentz invariance is lost. This is because
time is obtained by differentiation with respect to energy, and in the above representation
O(1, 3) invariance holds only for the particular energy E = pz?/2u. A completely symmetric
representation is obtained by a general transformation of the type described at the end of
§ 3. The coordinate transformation relating the symmetric representation to momentum
representation still has the form of equation (8), but p is no longer an energy-independent
parameter. It is given by p? = 2uE for all energies E. The transformation is therefore
explicitly energy-dependent. In this representation the new time 7 is obtained from the
theory of canonical transformations in extended phase space. It is

T =t = —— (41)

and corresponds to the new time obtained by Gyorgyi (1968) for bound states. The new
theory is completely symmetric. Motion is uniform on the hypersphere with respect to
the new timer.
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Correspondence identities
IV. The Rutherford scattering identity

A. NORCLIFFE, 1. C. PERCIVAL and M. ]J. ROBERTS
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Abstract. A complete correspondence identity is obtained for the electron—proton
system, whereby the non-relativistic quantum dynamics of the system is obtained
from solutions of the corresponding classical problem and their analytic continuation
given by the authors in the previous paper. The kernels of the spectral operator
I; = 6(E — H) in momentum and symmetric representation are obtained as sums over
classical action functions for all non-zero real energies E. A general derivation of a
scattering cross section from a spectral operator is presented, and applied to this
system: the long-range distortion appears naturally. By this means and alternatively
in terms of transition operators it is shown how the correct quantum-mechanical
differential scattering formula follows from classical Rutherford theory. Complete
correspondence identities are discussed. Quantum-mechanical barrier penetration is
obtained through analytic continuation of classical action functions. A model of the
system based on classical electron orbits is an improvement on the Bohr-Sommerfeld
model.

1. Introduction

Correspondence identities are described by Norcliffe and Percival (1968a, b, to be
referred to as I and II, respectively). The Rutherford scattering identity is a particular
example: the quantum-mechanical and classical angular differential cross sections o(®) for
the scattering of a charged particle by a fixed charge are the same. For a system of electron
and (infinite mass) proton the Rutherford formula is

ot 2ue? |2
(0 = o sin*(30) {(p - po)z} O

where E is the energy of the incident electron, y is its mass and p, and p its initial and
final momenta. Because of this identity, as it applies to the scattering of alpha particles by
nuclei, Rutherford was able to use classical mechanics to demonstrate the nuclear structure
of the elements from the heaviest to the lightest, without the need for any small quantal
corrections to his classical formulae. There appears to be no connection between the usual
 classical and quantal derivations of equation (1), except the initial specification of the same
Hamiltonian and the final identical result (Landau and Lifshitz 1960, § 19, Mott and Massey
1965, chap. III, §2); nor is there any obvious connection between this correspondence
identity for the scattering states of the electron-proton system and the correspondence
identities of II for the hydrogen atom bound states.

In this paper these correspondence identities are all shown to follow from a complete
correspondence identity, whereby the quantum dynamics of electron and proton is completely
determined from the classical dynamics for both positive and negative energies E. The
classical paths in momentum representation, which are considered by Norcliffe et al. (1969,
to be referred to as I1I) play the role of rays in the sense of geometrical optics.

X The Rutherford scattering identity is concerned solely with relations close to the energy
shell

pPr=p =E (2)

and is thus much more restricted than the complete correspondence identity which is valid
for arbitrary p, and p. Unfortunately, the complete correspondence identity is more

590
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complicated off the energy shell than on it (equation (26c)), and the derivation of the
Rutherford scattering identity is not so straightforward as the derivation of the Bohr—
Sommerfeld identity of II. o

Off the energy shell the Rutherford identity requires the analytic continuation of
classical paths in momentum space, given by III, into the classically inacessible region.
The analytically continued paths are the usual classical paths for the scattering of positrons
by protons. As before, the quantum-mechanical problem is solved by summing over an
infinite number of classical paths in momentum space. For positive energies the complete
set of paths corresponds to scattering of both positrons and electrons, and the choice of
which path corresponds to which scattering process is a subtle one.

In momentum representation the scattering amplitudes and cross sections are .conven-
tionally obtained from the Green operators G;*, but the complete correspondence identity
is obtained in terms of the spectral operator I; = 8(E — H) of I and I1I. We therefore have
to show how the Rutherford scattering formula (1) is derived from I;. This is done first
in § 4 directly. There is then no need to consider the long-range distortion of the Coulomb
potential separately as in the conventional theory: it appears automatically in the analysis.
The theory of the derivation of the scattering amplitude and cross section from the spectral
operator is of general application and independent from the correspondence identity.
In § 5 the scattering formula is derived from the spectral operator by an alternative more
conventional route via the Green operators Gz* and transition operator T; whose elements
form the T matrix. _ ‘ '

The classical and quantal momentum distributions are compared in § 3. In contrast
with those for negative energy E, they are not identical. ' ‘ ‘

2. The spectral operator
For positive energies E the Green operators G* are defined on either side of the right-
hand cut in the complex E plane. In terms of G* the spectral operator I is obtained in I

as
Gy —Gg*

2mi

As shown in I, the evolution operator, and thus the solution of a quantum-dynamical
problem with Hamiltonian H, can be obtained by Fourier transformation of the spectral
operator.
For negative energies E the Green operators G5+ and G~ are equal except when E is -
a bound-state energy E,. The spectral operator I is thus zero for all negative energies
except the poles E, of Gz*, and is a sum over delta functions at these poles (see I and II).
By contrast, for positive energies, I is a well-defined analytic operator function of E.
It is then the projection operator onto the vector space of all states of energy E. The
space is of infinite dimension because the energy level E > 0 is degenerate with respect
to the azimuthal quantum number /; which has infinite range.
, As in II, the correspondence identities depend on the representation. They may be
derived in momentum-representation, or even more simply in symmetric representation.
In the former the kernel of I is

P2 = 3 3 thn(0: EW(p0, ) 4

The momentum-space wave functions ;,,(p, E) of energy E are normalized by the energy
condition

Iy = S(E—H) = (E real). 3)

| & Dy EVprm(p, E) = 8(E—E"NuBpume 5)

and are solutions of the Schrodinger equation

(g P B[ go V@ B) _
(B~ Eyn(p, B) = (E= o) o, By [ @9 22 =0 )
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The kernel of the spectral operator is most conveniently evaluated in symmetric
representation as used in III for the classical problem, which should be consulted for
notation and definitions. For the quantum-mechanical problem the methods of Bander and
Itzykson (1966) are used. If (p, E) is an arbitrary momentum wave function, not
necessarily the solution of the Schrédinger equation for any energy, as in 1I, then the
equivalent wave function in symmetric representation ,(x;, E) is given by

Yo, E) = A(p* —pe®)$(p, E)  (E > 0) ()

where A is a constant to be determined by normalization.

The 4-vector u, lies on a Minkowski sphere &, which consists of two sheets & * and
& ~, which are respectively classically inaccessible and accessible, as shownin ITI. As ¥~ is
classically accessible we shall usually work with this sheet when a choice is to be made. The
three-dimensional surface element dQ of % is related to the volume element of momentum

space by the relation
(ps”—p°)° dQ*

+
- 2_p 2340~
(» 1;; )a on P
E

The distance between two points in momentum space is related to the corresponding

Minkowski distance by
Ip—p !2 _ (PZ—-PEz)(POZ——PEz)
ol? =

452 (ur—u,0)? 9)
E

where #,9 and u, correspond to P, and p.
In symmetric representation the Schrédinger equation (6) reduces to

(I=nQ)hs(us, E) = 0 (10)
where the continuous variable
ky
g = -
pih
is analogous to the discrete quantum number #. The operator Q is defined by
dQ" 4y(u,’, E)
S(uy, E) = j _— 12
Ois(uz, E) = €(u,) % 202|(ut -y )] (12)
where
—1;u,on F+
= . 13
<(2) { l;u,{onY‘} (3

As in II, we define the kernel of the operator J; in symmetric representation to be

2m2(ps® —po®)*(p* — P5°)°

e 08 DN
E

Je(uz, u, ) =

Unlike the spectral operator, the kernel of J; is symmetric (equal to its transpose) in
symmetric representation. It is the kernel of the operator I (E — T), where the kinetic
energy operator T = p2[2u.

The kernel Jy(u,, u,() is obtained as a projection operator from the solutions (%)
of the Schrodinger equation (10), which are related to the four-dimensional spherical
harmonics thus:

T ) = S S bumlebim:®). (15)

I=0m=-1
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The functions y,;(1,) are defined on both sheets of the Minkowski sphere, and are given
byt
(16)

—e ""H, . (—u u,onL*
Yum(#;) = const. x un(—4a): 1 }

nlm(ul)y u,on S

The hyperspherical harmonics H,,;,(1;) are defined on one sheet only. For convenience
we choose this to be the lower classically accessible sheet #~. To convert to the convention
of Bander and Itzykson, we simply change the sign of #;.

Although the hypergeometric functions H,;,(#;) form a complete orthonormal set on
the lower sheet & ~, the wave functions i,,,, are not orthonormal or complete for the entire
symmetric space P = Pt +&~. In order to determine the external constant of
equation (16), it is necessary to transform back to momentum representation and use the
energy normalization of equation (5).

The addition theorem for the hyperspherical harmonics on &~ is (Bander and Itzykson
1966)

@ 1
7y sin 7B
zgo mg—szm(u;')H:;m(ul(o)) = smh,g (17)
where 8 is the hyperbolic angle de;ﬁned on &~ in III as
Elp— 2
cosh B = u,®ut = 1+ |P— Pol as)

WTo—EYT—E)

Using this addition theorem, the required kernel is obtained entirely in terms of trigono-
metric functions as

__ &(n)n*sin(nB)
T, u, ) = (1- e~ 2m) sinh ﬁ (19
#1y EVIRVIEIS
1 .
X 1
]
]
1 Accessible
e
m I
Fany i >

Figure 1. The four regions of |p], |Po] space.

Using figure 1 to define the regions I, I1, III, IV, the function £(n) is
linI »
&(n) ={— e ™inIland IV . (20)

e~277in III
where 7 is given in equation (11).

t There is a mistake in the sign of the exponential factor in the corresponding equation (36) of
Bander and Itzykson (1966). In the classical limit 9 — o the relative probability of being on &+
tends to zero, as it should for an attractive potential (see III), and not for a repulsive potential as
-implied by their equation.
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On transforming to momentum representation using equation (14), we obtain for the

kernel of the spectral operator E(m) 8 pok® in(n8)
7)8u°p sin(n
Ix(p, Po) = 2720 2 22/ 2 Ezz - ; ) 1)
7 H(p? — p”)(Po® — p5°)*(1— e~?"") sinh B

The variable 8 is given by its principal value in the second part of equation (18), but if p is
in the classically inaccessible region it must be replaced by pp;?/p? as in 111, equation (31).
The case is similar for p,.

' Equations (19) and (21) correspond to equations (51), (55) and (56) of II for the discrete
spectrum. For completeness we note that the normalization constant A of equation (7),
giving the momentum-space wave functions in terms of the hyperspherical harmonics, is

16unps® \ ~112
A= (I_—LZ%) exp[ —i{farg I(/+ 1 —in) + (I+ 1)n}]. (22)

3. Complete correspondence identity

Before obtaining a correspondence identity for the spectral operator when E > 0 it is
instructive to contrast the relevant properties of classical paths and spectral operators for
positive and negative energies, as in table 1.

Table 1
Negative energies, E < 0 Positive energies, E > 0

(a) All regions of momentum space are (a) The region p? < pz® of momentum

classically accessible. space is inaccessible. This corresponds
‘ to the sheet % * of the Minkowski
" sphere.

(b) There is an infinite number of classical (b) The number of classical pathsis O or 1,
paths between any two momenta P, unless we allow analytic continuation
and p. as in III, when it is infinite.

(¢) The quantum-mechanical spectrum is (c) The spectrum is continuous, the
discrete, the spectral operator a series spectral operator an analytic function
of delta functions in E. of E. .

(d) The spectral operator Ix(p,pP.) can (d) There is quantum-mechanical barrier
have non-zero values for all values of penetration in momentum space into
pPandp,. By (a)and (b) these momenta the classically inaccessible region, so
can always be joined by an infinite that there are momenta P, and p for
number of classical paths. which the spectral operator Iz(P, Po) is

non-zero; yet there are no classical paths
in the normal sense joining P, and p.

From table 1(d) the normal classical paths cannot be used to provide a correspondence
identity for positive energies. It was for this reason that the general theory of analytic
classical paths was considered in III. There is an infinite number of analytic classical
paths ¢ joining any two momenta p, and p whether the energy is positive or negative. To
obtain a correspondence identity for positive energies, it is necessary to sum over these.

Surprisingly the contrasting properties of the spectrum and the spectral operators are
obtained from the slightly different form of the action functions for positive and negative
energies. For negative energies the spectral operator was obtained in II, equation (53),
from the sum X, sin{S, (P, Po)/#}. The important properties remain if we consider only
the diagonal elements, for which p = p,, so that the classical paths consist of a number of
complete cycles of the classical orbit, and we separate the exponentials of the sine function:

Senp {iScE(z;o, o) _ i exp (ic[:g]> )

where [S;] is the increment in the action once around the orbit. This is a geometric
progression, in which each term has the same magnitude, and so is not convergent except

c
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as a generalized function. As shown in II, destructive interference reduces the sum (when .
combined with its complex conjugate) to zero, unless [.Sy] is given by the Bohr-Sommerfeld
condition, when constructive interference builds up the discrete spectrum.

Let us consider the same sum over the analytic classical paths of III for positive
energies E. In this case the increment [Sz] = +2iIl given by III, equation (40), is
purely imaginary, and if the positive sign is chosen we obtain

2,955 = 2 e (-5

c=0

I
\%E:

exp(— 2men)
c=0
1
=— (24)
1— exp(—2my)

The series converges, and the sum is non-zero for all positive energies: the spectrum is
thereby continuous. The factor (24) appears in the expression for the spectral operator (21).

If we consider the final momentum p to move around a fixed orbit continuously when
Do is fixed, then exp[i{S.z(P, Po)/#}] picks up a factor exp(—mn) every time the p passes
through the ‘barrier’, which is the energy shell. The classical limit is given by n — o0, so
that the barrier is then inpenetrable.

In symmetric representation, for positive energies E and for all regions I-IV, the
operator J of equation (19) can be written as a sum over classical paths as

Ty, u (o)) = m2 Z eXp{(i/h)S:E(uﬂ, ”A(O))}‘CXP{_(i/ﬁ)Str—E(u/l’ uﬂ(O))}
Ex\Uz Uy n attraotive ¢ 2isin(analytic path length) -

(254)

The analytic path length and the appropriate analytic continuations for the classical action
functions are given in table 1 of III. The sum is not over all paths, but only over those
labelled attractive in the table. The suffix 2 = Ze? indicates that, for the quantal problem,
the potential is attractive. The remaining paths contribute to the spectral operator of the
repulsive potential, corresponding to scattering of positrons and labelled —k: :

exp{(i[f)Sen(uz, 1)} — exp{— (i) Scaus, u,)}
2isin(analytic path length) )

Tp, -l @) =71 > (250)

repulsive ¢
To obtain a sum over all classical paths, these expressions have to be added together:
exp{(i#)S2p(ts, )} — exp{ ~ (i[#)Serlta, ™)}

— : (25¢)
2i sin(analytic path length)

Jext+Je k=17 2,

all ¢

The analytic path length is the analytic continuation of the path length for negative

energies. When both p and p, are in the classically accessible region, then for the shortest

path the magnitude of the analytic path length is the hyperbolic angle between the two

corresponding points on the Minkowski sphere. The analytic path length can be obtained

directly from the classical action S, z.,q When the energy of the incident particle, electron

or positron, is Z ryd.

In momentum representation the spectral operator (21), the spectral operator for the

repulsive potential and their sum are given by

SMSPEIcz 1
To.eslBo o) == (6 —p5")*(Po —P5")
exp{(i[%)Ses(P, Po)}—exp{—(i/A)Sca(P, Po)}
2i sin(analytic path length)

(E > 0)
(264, b)

x 2
attractive ¢
or repulsive ¢
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8u%pk? 1
T (P — p5®)*(Po® — P57

exp{(if)Ses} = exp{ = (i/#) Sz}
aire 21 sin(analytic path length)

Igy+1Ip o=

(E>0).  (26c)

These relations follow from equations (25) using the definition (14) of J; and the fact that
the action function for an analytic classical path between two momenta p, p, is the same as
the action function for the corresponding path between the corresponding points u,, u,®
on the Minkowski sphere (see III).

The form of equation (26¢) is identical with that of equation (53) of II, because S/ and
S,z are identical for negative energies, there being no cut in the action function there.
Also the spectral operator I _, is zero for negative energies because the repulsive poten-
tial possesses no discrete spectrum. It should be noted that p,? is defined with opposite
signs in this paper and II. The correspondence identity (26c) is therefore valid for all real E,
P and P, except for a number of special singular points. It is a complete correspondence
identity. The sum of the spectral operators integrated over the energy is twice the identity
operator.

We may consider the correspondence identities (264, b) for the separate spectral
operators I ., and I; _, to be complete correspondence identities only if we accept a
definition of ‘attractive’ and ‘repulsive’ paths which is different for positive and negative
energies E. These are defined for positive E in table 1 of III. It should be noted that they
are not the classical paths for the attractive and repulsive potentials, but the paths that are
required to make up the attractive and repulsive spectral operators. For negative E all
paths are attractive in this sense. A full understanding of the reason for this choice of paths
to make up the spectral operator would require a more detailed study of the analytic
properties of the action functions and amplitudes than we have carried out.

The form -of the equations (26) suggests that of equation (3). It is possible that the
positive and negative exponentials arise from the Green functions Gz* and G;~, which
tends to support the conjecture of Gutzwiller (1967) that the analytic continuation of his
phase integral approximation to the bound-state momentum representation Green
functions yields a well-defined discontinuity across the positive energy cut, even though
part of momentum space is classically inaccessible. Moreover, the discontinuity would give
the correct projection operators onto positive energy states.

The diagonal elements of the kernel of the spectral operator are proportional to the
quantal microcanonical momentum distribution pz*™(p). The classical microcanonical
momentum distribution pz°™(p), normalized to unit inward flux, can be obtained by
integrating over position on the energy surface in phase space. For the attractive potential
it is

f 64mk3put 1forp > pg

pet(P) = — 555 ¥ { } (27a)
pe*(p*—ps°)* O for p < pyg

From (26a) the quantal distribution, having the same normalization in the classical limit,
is

64mkiut 1 forp > pg
PEA(P* —pE?) (1 —e™ ") * {e‘”’" for p < pE;'

The Fock identity, whereby the classical and quantal momentum distributions are the
same, therefore no longer holds for positive energies. This is the source of many of the
difficulties which appear in subsequent sections.

pe*™(P) = (27b)

4. Scattering and the spectral operator

We here obtain the kernel of the evolution operator in momentum representation for
large times 7 and hence the well-known Rutherford differential scattering cross section for

T We should like to thank Mr. D. Banks for his derivation using classical theory.

. S
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an electron scattered by a fixed nucleus of charge Ze. Nowhere in the following analysis do

we need to consider the distorting effects of the Coulomb potential at large distances on the

incident electron wave. The effect is intrinsic in the kernel of the spectral operator itself.

In the classically accessible region of momentum space, the spectral operator kernel

Ig(p, po) may be written as the sum Iz*(p, po)+ Iz~ (P, Po), where Iz~ (P, po) is just
Lz (P, po)]*, and

8 3,2 ing

Is*(p, po) = P R

(1= e72)(p® ~ ps®)*(po” — pi”) 2isinh B

I;* are obtained as classical path sums in the previous section. To a sufficiently good

approximation, for large values of 8, we may use the asymptotic form of sinh 8, which is

E|[p—p,|?

(28)

sinh B ~ 1ef ~ . 29
T B) T B) *)
~ Near the energy shell equation (28) becomes
Bup Py ®(%,%5) "~ (o) 711
I*(P, Po) = '
=" (P> Po) (1 — o2 (304)
where
P,
n = —
Pr
weE (305)
%3 = |p— Pol
X3 = Po’ — p5°
x4 = p*—pg®

Here P, is the momentum of the electron in the first Bohr orbit. We see that the part
of the spectral operator kernel which does not contain singularities, for fixed ® # 0,
namely the term (p—p,)~2*2!" reappears in the expression (1) for the cross section, apart
from an irrelevant phase factor. The whole elaborate evaluation of this cross section which
- follows is only necessary to obtain the external constant. It does not alter the form, and it is
for this reason that the identity arises.

The evolution operator U(r) is related to the spectral operator by a Fourier trans-
formation (see I):

Ur) = f: dE (I;* +IE—)exp( ';ET). (31)

In evaluating the scattering amplitude we are interested in the value of U (p, p,) for
large 7 and B, and, by the Riemann—Lebesgue lemma, the only contributions to U.(p, Po)
will arise from the singularities in I;*(p, po). These singularities occur when E takes on
the values Ty = po2/2u, T = p?/2n. Without loss of generality we assume that T > T,
and investigate the singularities of I, (p, po) as the energy E ranges from — oo to oo along
the real energy axis. For negative energies there can be no contribution to the scattering
as the wave functions are bounded.

If p, p, lie in the accessible region, then, by taking the branch cuts of In(7'— E) in the
complex E plane to run from 7" to T'—ico, we can define the phase of x,, on the real axis,
to be zero to the left and — to the right of the branch point. Similarly we can define the
phases of x5 on either side of the corresponding branch point to be 0 and —, so that Iz* is
uniquely defined for all regions of momentum space in accordance with equation (21).
Because of the factor exp(—1E7/%) in equation (31), the contour must be closed in the lower
half E plane to ensure convergence.

For I~ (P, Po) the singularities again arise at the same points, but the branch cuts are
now from 7 to T+ico and T to Ty +ioo. Again the contour has to be closed in the lower

4B
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half plane for convergence, and this means that the integral

® — BT
[ aEL@.p0) exp(=7)

is zero for large positive 7. Thus -

dE 8P 2pg(o,x5) 7~ Y (xa2,) "7~ exp(—iEr %)

o i1 — e~ %)

(32)

U, p0) = |

where C is the contour shown in figure 2.

Complex £ plane

7 A
B~ N~
/]

Contour C

Figure 2. Contour C for integral of equation (32).

The terms in the integrand which are regular near the singularJpoints may be con-
sidered constant and taken outside the integral to give

S#P mplz(xlxz)i"m - lj

O o)™ a1 —exp(~ 2 )
where the subscript m refers to the constant mean value near T" and T, and
= f dE exp (_ iET) (wgrg) ~1m (34)
c
The substitution y = {(p2+po2) —2p5}/(p%— p,2) reduces this integral to the form
S (pz—pf)‘zi"m-l 1 eXp{ —i(p2+p02)7} S )
2 2u 4uti .
where 4’ is the integral
' = | ayeenyr-1y-s (36)
with ¢
« = —(Pt:;i o) (37)
v= —iny—3% (38)

and C’ is the contour shown in figure 3. With this contour, .#" is just Hankel’s integral for



Correspondence identities: IV f 599

v

Complex y plane

(Contour ¢

Figure 3. Contour C’ for integral of equation (36).

the Bessel function J_,(«) given by Watson (1966, chap. VI) ‘
, ()" e
27il'(3)

It now follows that the kernel of the evolution operator for large 7 is

T (@) = s (39)

_ 18P, Py X(,0g)iMm =1 P2 — po?\ ~2m=1 ((p2 — po2)r) 1t b

UP, po) = 72 {exp(mmm) — exp( _”ﬂm)}( 2 ) { St }

i H2 2 2 __ P .
X exp {_ i(p 4+2’o )7'} Jiﬂm+%]'-£(§ .Po) [4uti} (40)
d i (1+inm)
N |ULp, po)|? = 64pnPrvy Xy (pz—pf)-z (pz—pog)f
ST afexp(mn) —exp(— )P\ 2 St

% Tt 3(0) i+ 3(2) (41)

) {sinh(mny)} 2
’Yma‘r 1 1
 320% sinh(mnm)pyeh Sinth0 P2 —py?

Tinat 80 —inae 2(e)  (42)

where O is the scattering angle.
For large times = the value of |U(p, Po)|? as a function of p? is small except near py°.
The probability of scattering into unit solid angle is given by

dP © :
a0 - f 2% dp|U(p, po)|? (43)
0
Nm°7 cosectl® © p2dp
N 32ufim? sinh(m:n)pmz f o P2—po’ Tinat (@) it (). (44)

Noting that the only significant contribution to the integral arises near p? = p,?, we
‘shift’ the origin to p,% and obtain

oP o7 cosectl® © d(p?— po?)
ety L MCOL B R )
0Q  32u#n?sinh(my)pm P2—po

N7 cosect1® sinh (mn,,)

(46)

T 32ukn?sinh(mr)pmd ™ m
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which on the energy shell becomes 7,27 cosec* $0/32uin®p . The angular differential cross
section is given by
0) 1 oP “7)
) =7

where j = pg/u(27h)? is the flux of the incident wave. Therefore, if we substitute for the
variables 7., and j, the differential cross section is

o) = 2% 48
°®) = Tomzsn 10 (48)

which is the well-known Rutherford formula.

5. Scattering and transition operators

- In this section the scattering amplitude is derived from the spectral operator via the
more conventional route of Green operators and transition operators.
The Green functions Gz*(p, P,) and hence I4(p, p,) are singular as one approaches the
energy shell:
* o

=——>F, Ty =——>E. (49)
2u ° 2u -

In fact, for short-range potentials we have identically
8(P — Po) _ Tx(P, Po)
E-T (E-TYXE-Ty)

and similarly for G5~ with T replaced by T;. The T matrix Ty(p, p,) is finite on the
energy shell and for fixed values of p, and p:

Gs* (P, Po) = (30)

. 1
lim TE(P, PO) = -

D2 Po?-Pg? 4772h[1.

f(Ps Po)- (51)

We consider the limit for p, p, in the accessible region of momentum space. As |p|
and |p,| tend to p, then B — oo, and, using equation (35),

E\lp—po|? 3 8E2%sin?10
WE-TYE-Ty) (E—T)E—-T)

where O is the scattering angle.
Hence, from equation (3) and Schwinger (1964), we find that

(52)

Ze? 1 - . . _
P, P0) ~ = i T g Gonexplinnsin® 10)G,—c.c}  (53)
where
- 1 2mn  \Y? . 4E 5
Gir =5 (1_ e‘2’”') exp [—m In (?3)} (54)

This agrees with the result obtained by Schwinger from his integral representation of the
Coulomb Green functions. Gj  is the distorted free Green function, which in position
representation represents asymptotically a distorted incoming spherical wave. Hence we
identify the scattering amplitude

O)= —
®) 4Esin®10

We note that |f(®)|, which is the physically measurable quantity, arises from the density
of paths (sinh B)~%, while the phase of f(®) comes from the sums of the real part of the
actions SJi over the classical paths. The sums over the complex parts of S¢ build up

2

exp(in In sin?10). (55)
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into the normalization factor (1— e~2")~1 of the distorted free Green functions. This
1s in contrast with the discrete energy case, where the actions are all real and the phase terms
interfere with one another, so that Iz(p, p,) vanishes except at the bound-state energies.

A similar result is obtained as one approaches the energy shell from the other three
regions, the only difference being the presence of factors e~ in equation (53), as one passes
onto different sheets in the complex plane.

6. Conclusions

For the system of two charged particles we have obtained a complete correspondence
identity, whereby the quantum dynamics of relative motion is completely determined for
positive and negative energies E by rays in momentum space, which are the classical paths
and their analytic continuations. Initially the kernel of the spectral operator I, = §(E—H)
in momentum representation is obtained as a sum over classical paths involving classical
action functions. From this relation energy levels, state vectors and the evolution of the
system in time may all be obtained from the solution of the classical problem. The results
of Gutzwiller (1967) and Norcliffe and Percival (1968 b) have thereby been extended to
the continuous spectrum.

The study of correspondence identities, which are valid only for particular potentials,
shows clearly that the relationship between quantal and classical dynamics depends
crucially on the choice of representation. In the case of the Coulomb interaction the
momentum representation and the related symmetric representations must be used both
in the classical and quantal theory.

Also the choice of operator is important. The spectral operator Iy is given precisely by
the classical path sum, whereas the Green operators G * are not. AsshowninI, the Fourier
transform of I, for such a system is the two-sided evolution operator, which contains
within itself all information about the quantum dynamics of the system. In particular, the
scattering properties can be obtained directly from the spectral operator in momentum
representation, as shown in § 4 of this paper. For the Coulomb potential the direct deriva-
tion of the angular differential cross section from the spectral operator has advantages over
the more conventional approach using transition operators.

The three correspondence identities of II have all been derived from the complete
correspondence identity. However, the lengthy derivation in § 4 of the constant external
factor in the Rutherford scattering formula is not as satisfactory as the derivation of the
Bohr—Sommerfeld and Fock identities for the bound states. The Fock identity is not
valid for the continuum, and the quantum-mechanical phenomena which thereby intervene
complicate matters considerably.

The scattering processes involving charges of opposite sign are intimately related. For
positive energies, as seen in I1I, the classical orbit in momentum space for one is the analytic
continuation of that for the other, and the rays or analytic classical paths which contribute
to the spectral operator for, say, the attractive potential usually include many segments
which represent classical motion of a charge of opposite sign. Furthermore, not all the rays
contribute to the spectral operator, but only a set of them, although every ray contributes
to one spectral operator or the other. Which ray belongs to which spectral operator is
known, but not fully understood.

The O(4) (4-sphere) symmetry for the negative energies and the O(1, 3) (Minkowsk:
sphere) symmetry for the positive energies were very helpful in the derivation of the
correspondence identities, but we do not know if the presence of such dynamical sym-
metries is essential to the existence of correspondence identities.

Quantal barrier penetration in momentum space is obtained precisely, for the Coulomb
potential, through the analytic continuation of classical action functions. Such analytic
continuation is clearly of general importance for the study of the relation between classical
and quantal mechanics.

We have provided a model of the H atom based on classical electron orbits which is an
alternative to the Bohr—Sommerfeld model. The main difference between the two models
for a given energy level is that ours includes a statistical distribution over all elliptic orbits
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consistent with this energy, whereas the Bohr-Sommerfeld model includes only those with
particular eccentricities and restricted orientations, these being associated with quantum
numbers / and m. Our model is better in that it leads to precisely the same physical results
as modern non-relativistic quantum theory, and that it can be generalized to positive
energies; but the problem of / and m quantization has not been solved in classical terms, so it
is at a stage analogous to the original Bohr theory.
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