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Abstract

Fibroblasts are connective tissue cells that are responsible for the synthesis and 

turnover of extracellular components, including collagens, proteoglycans and 

glycosaminoglycans, and adhesive proteins such as fibronectin or laminin. The ability of 

fibroblasts to regulate their extracellular environment is largely dependent upon the action 

o f matrix metalloproteinases (MMPs), key proteolytic enzymes synthesised and secreted 

by fibroblasts. Fibroblasts regulate the synthesis of their surrounding extracellular matrix 

(ECM), which in turn has a profound effect on how cues are presented to and perceived by 

the cells themselves.

Fibroblasts are capable o f synthesising diverse connective tissues and exhibit 

differences in growth characteristics, metabolism and morphology based upon their tissue 

o f localisation. This thesis investigates the hypothesis that fibroblasts isolated from 

diverse connective tissues are phenotypically distinct. To test this, primary skin, comeal 

and tendon fibroblasts were subjected to shear stress produced by a parallel plate flow 

chamber. Prior to stimulation, the three fibroblast cell lines maintained discrete 

morphological differences based upon their tissue o f origin. Upon stimulation, skin 

fibroblasts exhibited a larger cell area and all cell lines became increasingly rounded. 

Furthermore, comeal and skin fibroblasts demonstrated an increased number o f focal 

adhesions per cell, while tendon fibroblasts exhibited a decrease in the number o f focal 

adhesions with stimulation. All three cell lines demonstrated an increase in gelatinase 

(MMP-2 and MMP-9) activity, though each maintained cell line-specific regulation o f 

gelatinase activity. Microarray analysis, validated by semi-quantitative RT-PCR and 

Western blotting, indicated that each cell line maintained unique, tissue-specific 

transcriptional and translational responses. Genes involved in these differential responses 

were functionally diverse and shown to be both up- and down-regulated with stimulation. 

Furthermore, levels o f encoded proteins from four genes o f interest -  lumican, dyxin, Crpl 

and neogenin -  altered with stimulation, though their expression did not correlate with 

mRNA levels in all cases.

The data presented here provide unequivocal evidence that tendon, comeal and skin 

fibroblasts are morphologically and phenotypically distinct. Furthermore, this 

investigation provides an invaluable resource for further study o f the factors that control 

fibroblast heterogeneity and may provide avenues for the manipulation and improvement 

o f tissue engineered prostheses and implants for reconstructive surgery.

x
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Chapter I: Introduction

Chapter 1 

Introduction

1.1 General

Fibroblasts are usually defined as cells of mesenchymal origin that are widely 

distributed in most vertebrate organisms and are responsible for the production of 

connective tissue components, including the extracellular matrix (ECM) (Camelliti et 

al., 2005; Sappino et al., 1990). The ECM has been shown to undergo dramatic 

degradation and re-synthesis during early development and post-natal growth. While 

this metabolic turnover diminishes with age, ECM maintenance remains crucial 

throughout life in numerous connective tissues, as is the case after injury, for example 

(Kjaer, 2004; Walker et al., 2001). Consequently, it is imperative that fibroblasts not 

only synthesise and secrete ECM, but also maintain homeostasis of the resultant 

connective tissue. This has been shown to occur by the fibroblastic production of 

numerous factors, including cytokines, growth factors, and proteases, all of which are 

involved in sustaining a balance between the synthesis and degradation of ECM 

components (Camelliti et al., 2005).

The diversity of connective tissues, each of which is adapted to the functional 

requirements of the particular tissue, is a direct consequence of the ability of fibroblasts 

not only to synthesise a wide variety of ECM macromolecules, but also regulate their 

secretion and organisation (Bron, 2001; Chichester et al., 1993; Gabbiani and Rungger- 

Brandle, 1981; Kessler et al., 2001; Sappino et al., 1990). The very fact that 

fibroblasts are capable of synthesising and maintaining such diverse tissues in vivo is 

intriguing and has raised significant interest in recent years. Ongoing research into this 

capacity has led to the hypothesis that strong variation exists between fibroblasts 

isolated from different tissues, arising from the cell phenotype as well as its
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environment. This introduction will provide a background to the identification, 

function, origin and diversity o f fibroblasts, as well as the mechanisms by which such 

diversity is thought to arise, in order to put the work presented in this thesis into 

context.

1.2 Identification o f  the fibroblast

The term “fibroblast” was first proposed by Schwann, a German microscopist 

who described the “fibre-cells o f areolar tissue” as “being spindle-shaped or longish 

corpuscles which are thickest in the middle and gradually elongated in both extremities 

into minute fibres” (Schwann, 1847). From his observations, Schwann ultimately 

concluded that these cell bodies split into the fibres he observed in the extracellular 

milieu. Schwann’s theory was challenged by subsequent researchers, who believed that 

the fibres were actively secreted by the fibroblast; this hypothesis was eventually 

substantiated by Steams, upon her observation that fibres were never found until 

fibroblasts had first appeared (Steams, 1940).

1.3 Fibroblast morphology and behaviour in culture

Fibroblasts were the first cells to be isolated in pure cultures and have 

subsequently become one o f the most widely used cell types to be maintained in vitro. 

Consequently, numerous morphological and ultrastructural studies have been 

performed on these cells. In vivo, fibroblasts occur as single cells surrounded by an 

extensive ECM; they are irregularly shaped, with stellate, polygonal or spindle-shaped 

outlines, contain substantial cytoplasm around the nucleus, and possess long, filopodial 

extensions o f the plasma membrane (Conrad et al., 1977b; Maximow, 1927). From 

ultrastructural studies, fibroblasts were observed to have prominent rough endoplasmic
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reticulum (RER) and Golgi apparatus, and their cytoplasm appeared to contain 

numerous vesicles, vacuoles, mitochondria and intermediate filaments (Chapman, 

1962). While fibroblasts do not appear to establish extensive contacts amongst 

themselves in vivo (Gabbiani and Rungger-Brandle, 1981), at least one instance of cell­

cell communication via gap junctions has been previously observed (Banes et al., 

1999b).

When fibroblasts are cultured, however, their morphology changes rather 

substantially. In vitro, fibroblasts are characterised by their ability to proliferate in 

culture with attached, well-spread morphology. The cells demonstrate a flattened and 

polarised morphology and contain numerous actin stress-fibres (Ross and Greenlee, Jr., 

1966). Moreover, cultured fibroblasts show close physical apposition and can be 

interconnected via integrins, adherens junctions and gap junctions (Banes et al., 1999b; 

Konttinen et al., 2000; Sappino et al., 1990).

Furthermore, when cultured, two populations of fibroblasts have been observed 

to exist, one o f which is made up o f larger, more epithelioid cells that are capable of 

only one or two divisions and another which is comprised of smaller, more proliferative 

cells (Martin et al., 1974). This phenomenon was later qualified by Bayreuther and 

colleagues, who observed that primary fibroblast cultures had definite mitotic lifespans, 

after which cellular degeneration occurred (Bayreuther et al., 1988). They observed 

that, in a given population o f primary fibroblasts, both mitotic and post-mitotic cells 

existed. The mitotic fibroblast population was observed to include three cell types: FI, 

a small, spindle-shaped cell; FII, a small, epithelioid cell; and Fill, a larger 

pleiomorphic epithelioid cell. The post-mitotic population, on the other hand, was 

found to consist o f four cell populations: FIV, which was large in appearance, with an 

overall spindle-shape; FV, a large cell with epithelioid morphology; FVI, an even larger
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cell with epithelioid appearance; and FVII, which corresponded to a degenerating 

fibroblast. In their study, Bayreuther and colleagues cultured a primary fibroblast cell 

line for 52 cumulative population doublings (CPD) and observed that, up to CPD 14, 

the population consisted o f mainly FI and FII fibroblasts. As the population progressed 

to CPD 52, there was an increasing occurrence o f FII and Fill fibroblasts. After CPD 

52, when the growth rate was less than 0.2 population doublings per day, fibroblasts 

were termed post-mitotic. At this point, cells were maintained for a further 315 days in 

culture without any further passaging. As the time in culture increased, there was an 

increasing appearance of FIV-FVI fibroblasts before degenerating fibroblasts were seen 

after approximately 280 days in stationary culture.

1.4 Developmental origin o f fibroblasts: the relationship between mesenchymal stem

cells and fibroblasts

Connective tissues, as well as the cells that synthesise them, arise from the 

mesoderm. The cells that synthesise these connective tissues are all characterised as 

being mesenchymal, due to their ability to spread and migrate in early embryonic 

development between the ectodermal and endodermal layers (Caplan, 1991). Such 

mesenchymal cells include members of the connective tissue cell family, such as 

fibroblasts, osteoblasts, chondrocytes, adipocytes and myoblasts. Together, these cells 

are capable o f synthesising and regenerating all types of mesenchymal tissues, 

including bone, cartilage, ligament, tendon, adipose, muscle and stroma (Pittenger et 

al., 1999).

All o f the aforementioned connective tissue cells are thought to share a common 

progenitor cell, currently termed the mesenchymal stem cell (MSC). MSCs are 

fibroblastic in appearance and can be isolated from bone marrow, around blood vessels,
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in adipose tissue, skin, muscle and various other locations, based upon their adherence 

in culture (Caplan and Bruder, 2001; Prockop, 1997). MSCs cultured in vitro can be 

induced to differentiate into osteoblasts, chondrocytes, adipocytes and myoblasts, and 

as a consequence, are thought to represent a unique cell population that is capable of 

differentiating along multiple mesenchymal cell lineages (Phinney et al., 1999).

This raises an obvious question: are fibroblasts the common connective tissue 

progenitor cell? Until this question was answered recently (Pittenger et al., 1999), 

interpretation following the observation of connective tissue cells in culture was 

sometimes difficult. For example, when Movat and Fernando were conducting the first 

systematic ultrastructural study of fibroblasts in various connective tissues, the 

difficulty of determining whether a given connective tissue cell was an 

'‘undifferentiated” mesenchyme cell, a fibroblast, a fibrocyte (meaning a terminally 

differentiated fibroblast), a chondrocyte, or osteoblast was discussed (Conrad et al., 

1977b).

Recently, however, in an elegant experiment performed by Pittenger et al., it 

was shown that fibroblasts and MSCs are not one and the same, despite their somewhat 

uncanny morphological similarities (Pittenger et al., 1999). In their study, the 

differentiation potential of MSCs isolated from bone marrow was tested alongside two 

strains of human fibroblasts under conditions known to promote adipogenic, 

chondrogenic or osteogenic lineages (Pittenger et al., 1999). According to their study, 

MSCs gave rise to adipocytes, chondrocytes and osteocytes after 1-3 weeks, whereas 

normal human fibroblasts did not undergo any such differentiation when cultured for as 

long as 28 days. It is clear from this evidence that MSCs have a differentiation 

capacity that is not present in primary fibroblasts, which are suggested to be “mature” 

mesenchymal cells. Nonetheless, it remains unknown when, where, and how
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mesodermal cells differentiate first into mesenchymal cells and then into fibroblasts 

(Shimizu and Yoshizato, 1992).

1.5 Fibroblasts exist in biochemically and morphologically distinct subpopulations

Despite the fact that fibroblasts were shown to be incapable of interconverting 

into other members o f the connective tissue cell family by Pittenger and colleagues 

(Pittenger et al., 1999), evidence has accumulated which indicates that they are, 

nonetheless, a highly diverse population of cells, which exhibit a considerable degree o f 

phenotypic heterogeneity. Such variability has been observed in overall morphology, 

as well as numerous, fundamental aspects o f cell behaviour, such as growth rate, 

proliferative potential and protein synthesis. Since differentiative cell behaviour has 

been identified in fibroblasts isolated from different regions o f the same tissues, or 

different tissues altogether, fibroblasts are currently hypothesised to demonstrate both 

intra- and inter-site heterogeneity. Evidence for this hypothesis follows.

1.5.1 Inter-site heterogeneity

Phenotypic heterogeneity, as well as the possibility that fibroblasts were not 

homogeneous populations, as so many studies presumed, was discussed in very early 

investigations o f fibroblast-like cells in vitro (Parker and Fischer, 1929; Parker, 1932; 

Porter and Vanamee, 1949). In one o f the earliest reports, for example, Parker and 

Fischer demonstrated that fibroblasts isolated from the same embryo and maintained 

under identical culture conditions displayed different proliferation rates and varying 

responses to increasing embryonic serum concentration (Parker and Fischer, 1929). In 

order to investigate this apparent fibroblast heterogeneity more rigorously, Parker went 

on to compare directly nine different fibroblast strains from various tissues o f the same
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organism and found that the cells could be distinguished based upon differing growth 

rates as well as the relative amount o f free acid that accumulated in the culture medium 

(Parker, 1932).

While the results obtained from the early studies of Parker and Porter were 

compelling, their isolation procedures were not rigorous, and hence could not rule out 

the possibility that the heterogeneity they were observing was due to contamination by 

non-fibroblastic cells, which can assume fibroblastic morphologies in vitro. 

Consequently, numerous studies followed, which used increasingly stringent isolation 

protocols in order to investigate the possibility that fibroblasts exist as heterogenous 

populations in vitro, and by implication, in vivo.

In one such investigation, Conrad and colleagues illustrated that corneal, heart 

and skin fibroblasts exhibited unique morphology and behaviour in culture (Conrad et 

al., 1977a; Conrad et al., 1977b). For example, the three fibroblast cell lines 

demonstrated differing cell density at saturation, behaviour upon reaching confluency, 

sensitivity to trypsin and EDTA, ability to be subcultured, and glycosaminoglycan 

synthesis. In the same year, embryonic skin and lung fibroblasts were compared, which 

revealed differences in proliferation, cell density at confluence, and DNA synthesis 

(Schneider et al., 1977).

The possibility o f inter-tissue fibroblast heterogeneity was carried further by the 

work o f Garret and Conrad. In this study, fibroblasts isolated from cornea, skin and 

heart were used as antigens to produce a series o f antibodies that were subsequently 

cross-absorbed for specificity. Based upon a series o f experiments including 

immunodiffusion, immune agglutination, immune cytotoxicity and indirect 

immunofluorescence, the three fibroblast cell lines were determined to be antigenically 

distinct (Garrett and Conrad, 1979). Furthermore, Shimizu and Yoshizato showed that
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heart, skin and lung fibroblasts demonstrate unique morphology and proliferative 

capacity. The same study also illustrated that the proteome of the cell lines, despite 

being largely similar, contained proteins that were produced in an organ-dependent 

manner (Shimizu and Yoshizato, 1992).

1.5.2 Intra-site heterogeneity

Not only do fibroblasts appear to display differences when isolated from diverse 

tissues, but evidence also exists suggesting that “subpopulations” o f fibroblasts exist 

within different regions of the same tissue. Two early studies demonstrated, for 

example, the presence o f subpopulations of skin fibroblasts derived from single 

foreskin explants, based upon variations in lysosomal enzyme activity (Milunsky et al., 

1972) and testosterone metabolism (Kaufman et al., 1975). Martin and colleagues 

corroborated these observations with data indicating that subclones o f human skin 

fibroblast cultures displayed differences in growth rates and morphology (Martin et al., 

1974).

Harper and Grove carried these investigations further, by directly comparing 

skin fibroblasts isolated from either the papillary or reticular dermis. Their 

investigation indicated that the two cultures demonstrated a subtle difference in cell 

density at saturation; indeed, papillary cultures were found to have greater saturation 

levels as opposed to reticular cultures, which was rationalised by the distinct 

physiological roles o f these cell populations in vivo (Harper and Grove, 1979). These 

reports were corroborated by the isolation and characterisation o f synovial and internal 

tendon fibroblasts by Riederer-Henderson and colleagues (Riederer-Henderson et al., 

1983). Based upon their investigations, it became apparent that synovial cells had 

lower attachment efficiencies when compared to internal tendon fibroblasts. These
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findings were later substantiated by Banes et al. in a study that reported synovial and 

internal tendon fibroblasts maintained distinct morphology, adherence and proliferation 

in culture (Banes et al., 1988a).

Carrying these investigations of intra-site heterogeneity further, Irwin and 

colleagues investigated the possibility of fibroblasts existing in culture as either 

migrating or synthesising fibroblasts (Irwin et al., 1994). In their study, fibroblasts 

isolated from the papillary tips or the deeper reticular region of the gingival tissue were 

compared. These two fibroblast populations were found to maintain differential 

expression o f migration stimulatory factor (MSF), a novel protein previously identified 

in their laboratory and found to be responsible for migratory phenotypes present in 

foetal fibroblasts that was otherwise missing in adult cells (Schor et al., 1988). 

Consequently, Irwin and colleagues reported that papillary fibroblasts displayed more 

foetal-like characteristics o f migration in conjunction with persistent MSF production 

(Irwin et al., 1994).

1.6 Fibroblast heterogeneity appears to be modulated by soluble factors and cell- 

matrix interactions

While it appears, from the evidence presented above, that fibroblasts display 

inter- and intra-site heterogeneity, it is nonetheless difficult to identify the precise 

mechanisms whereby this “differentiation” occurs, namely because there is no known 

universal marker for fibroblasts, much less fibroblast subpopulations. Consequently, it 

is difficult to determine whether a true population of fibroblasts is being studied, 

without any contaminating fibroblast-like mesenchymal precursors and/or committed 

fibroblast subpopulations.
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Nonetheless, differentiation of a variety of cell types has been shown to be 

mediated by soluble factors, such as growth factors or hormones, as well as cell-cell 

and cell-matrix interactions. While it is entirely possible that cell-cell interactions are 

important in fibroblast heterogeneity, this has not been validated to date. There does 

exist, however, a substantial body of evidence that suggests that both soluble factors 

and cell-matrix interactions play a role in driving and maintaining inter- and intra-site 

fibroblast heterogeneity.

1.6.1 The role o f soluble factors in fibroblast heterogeneity

One of the earliest reports to suggest that soluble factors, such as hormones or 

growth factors, could be used to distinguish fibroblast subpopulations came from 

Kaufman and colleagues, in which three populations of skin fibroblasts isolated from 

the same explant were distinguished based upon testosterone metabolism (Kaufman et 

al., 1975). Several years later, cultures of isolated gingival fibroblasts were found to 

contain subpopulations based upon the fact that prostaglandin E? (PGE2), a hormone­

like substance known to elicit a range of functions in various cell types, was found to 

inhibit protein synthesis, membrane transport, and DNA synthesis in only 50% of the 

cell population (Ko et al., 1977). Smith and colleagues substantiated these findings by 

demonstrating that only approximately 22-50% of a given population of human orbital 

fibroblasts demonstrated a PGE2 -dependent shape change (Smith et al., 1995). Finally, 

Lee and Eun revealed that the amount of collagen synthesised by dermal and oral 

mucosa fibroblasts could be altered after stimulation with transforming growth factor 

(TGF)-pi; oral fibroblasts were found to synthesise more collagen than dermal 

fibroblasts after stimulation (Lee and Eun, 1999).

10



Chapter 1: Introduction

1.6.2 The role o f  cell-matrix interactions in fibroblast heterogeneity

In addition to soluble factors, cell-matrix interactions also appear to be 

important in fibroblast heterogeneity. This is not surprising, given that fibroblasts are 

usually a sparse population surrounded by an extensive ECM in vivo (see sections 

1.7.1-1.7.3). Cell-matrix interactions are dependent upon transmembrane receptors, 

which are themselves capable of transducing chemical, topographical or mechanical 

cues to the actin cytoskeleton, thus eliciting an intracellular response (see section 1.7).

Chemical and topographical cues arise from the macromolecular composition 

and precise organisation o f the surrounding ECM. Numerous studies indicate that 

fibroblasts can be distinguished based upon the types of matrix macromolecules 

produced. For example, Conrad and colleagues identified that corneal, heart and skin 

fibroblasts maintain differences in the amounts of synthesised glycosaminoglycans 

(Conrad et al., 1977a). Such reports were corroborated by the isolation and 

characterisation o f synovial and internal tendon fibroblasts by Riederer-Henderson and 

colleagues. Based upon their investigations, it became apparent that synovial cells 

secreted less collagen and sulphated glycosaminoglycans when compared to internal 

tendon fibroblasts. Furthermore, the types o f collagen produced by each cell line was 

found to differ; synovial cells synthesised types I and III collagen, while internal tendon 

fibroblasts only synthesised type I collagen (Riederer-Henderson et al., 1983). Banes 

et al. identified differential synthesis and localisation of yet another matrix 

macromolecule, fibronectin (Banes et al., 1988b). In this study, synovial and tendon 

fibroblasts were distinguished based upon staining with an anti-fibronectin antibody; it 

was found that synovial fibroblasts were principally responsible for the synthesis o f this 

protein.
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Several years later, Breen and colleagues presented evidence that lung 

fibroblasts could be separated into two subpopulations based upon the ratios of 

associated type I to type III collagens to their plasma membranes. According to their 

results, generated by flow cytometry, one population demonstrated a high density of 

type I collagen receptors in conjunction with elevated cellular steady-state levels of 

p ro-al(I) and pro-a2(I) mRNA. In contrast, the other population had a higher density 

o f type III collagen surface receptors with higher cellular steady-state levels o f pro- 

ocl (III) mRNA (Breen et al., 1990). Finally, collagen and fibronectin secretion was 

also found to vary between skin, heart and lung fibroblasts, with heart cells 

demonstrating the highest levels of secretion for both proteins (Shimizu and Yoshizato, 

1992).

In addition to chemical and topographical cues, transmembrane receptors are 

also capable o f transducing mechanical cues, which arise from both the endogenous 

tension generated by the cytoskeleton as well as exogenous forces produced by or 

conveyed through the surrounding connective tissue. These mechanical cues also 

appear to influence and/or reinforce heterogeneity, as apparent from several studies that 

have observed the ability of fibroblasts from different tissues to generate altered 

magnitudes of internal cytoskeletal tension in vitro. As shown by Shimizu and 

Yoshizato, heart fibroblasts, when cultured in three-dimensional collagen gels, were 

capable of contracting the matrix more effectively than skin or lung fibroblasts 

(Shimizu and Yoshizato, 1992). Similar differential contractile capabilities were 

substantiated by Lee and Eun. In this study, fibroblasts isolated from the oral mucosa 

and normal skin demonstrated differential proliferation rates and also exhibited 

different contraction potencies when cultured in collagen gels. In this case, dermal 

fibroblasts demonstrated the greatest contractile potency (Lee and Eun, 1999). Evans
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and Trail carried these investigations further by presenting an exogenous mechanical 

stimulus to fibroblasts isolated from distinct regions of tendon. In this study, the group 

examined the response o f flexor and extensor tendon fibroblasts to mechanical strain in 

the form of a stretched, three-dimensional collagen matrix (Evans and Trail, 2001). 

Both cell lines were found to have similar morphology, though flexor tendon 

fibroblasts demonstrated increased cell numbers in comparison to extensor cells.

7.7 Fibroblasts synthesise the extracellular matrix

Since the early observations o f Schwann and Steams (Schwann, 1847; Steams, 

1940), it has become apparent that fibroblasts synthesise and secrete several proteins, 

including various types of collagen, adhesive proteins such as fibronectin and laminin, 

and proteoglycans, a class o f macromolecules consisting o f a protein core onto which 

numerous polysaccharide units, termed glycosaminoglycans, are bound (Breen et al., 

1990; Chichester et al., 1993; Dunphy, 1963; Gabbiani and Rungger-Brandle, 1981; 

Herrmann et al., 1980). Together, these macromolecules constitute the ECM, an 

organized meshwork that exists in close association to the connective tissue cells that 

produced it, namely fibroblasts, osteoblasts, adipocytes or chondrocytes.

The ECM is broadly defined as all secreted molecules that are immobilised 

outside o f cells, which collectively function to: (1) help regulate spatial and temporal 

properties o f growth factors, chemotropic agents, and other soluble factors (Kaname 

and Ruoslahti, 1996); (2) activate intracellular signalling pathways upon the binding o f 

ECM ligands to these factors (Burridge and Chrzanowska-Wodnicka, 1996; Schwartz 

et al., 1995); (3) permit the migration of cells and movement of growth cones 

(Reichardt and Tomaselli, 1991); and (4) contribute to the overall mechanical integrity, 

rigidity, and elasticity o f connective tissues such as skin, tendon, ligaments,
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vasculature, bone, and cartilage (Hynes, 1996). Consequently, the ECM has been 

implicated in the regulation of diverse cellular processes, such as proliferation, 

migration, cell survival, and differentiation.

The ECM consists of three major macromolecular constituents: (1) fibrillar 

proteins; (2) adhesive glycoproteins; and (3) proteoglycans. The fibrillar proteins 

present in the ECM, such as collagen and elastin, provide a largely structural role and 

impart strength and resilience to the tissue (Canty and Kadler, 2002). Adhesive 

glycoproteins, such as laminin and fibronectin, aid in the attachment of cells to, and the 

organisation of, the ECM. Adhesive proteins usually have multiple domains, each with 

binding sites for other matrix macromolecules, cell-surface proteins, signalling 

molecules, and/or proteases or protease inhibitors (Hynes, 1999). Consequently, 

adhesive proteins are capable of attaching cells to the ECM, as well as initiating various 

cellular responses through classical signal-transduction pathways. Proteoglycans, on 

the other hand, are a group of diverse glycoproteins, with functions mediated by both 

their protein cores and glycosaminoglycan side chains (Danielson et al., 1997; Kanwar 

et al., 1980). The protein core of proteoglycans contains numerous domains, including 

putative hyaluronic acid binding domains, calcium-dependent lectin (sugar-binding) 

domains, leucine-rich repeats, epidermal growth factor (EGF) repeats, and 

immunoglobulin-like domains. Collectively, these diverse domains hint toward the 

adhesive and mitogenic functions sometimes displayed by proteoglycans (Lander, 

1999). Overall, however, these proteins, and the charged polysaccharides which are 

attached to them, form a highly hydrated, swelled structure that is largely responsible 

for the volume of the ECM, allows for the diffusion of small molecules between cells 

and tissues, and offers compressive resilience to the tissue (Comper, 1996).
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Based upon the synthesis and secretion of such a wide variety o f molecules, 

fibroblasts, and other members o f the connective tissue cell family, are capable of 

synthesising a striking diversity of connective tissues, including bone, cartilage, 

muscle, ligament, tendon, adipose and stroma. This study has focused on fibroblasts 

isolated from three structurally diverse connective tissues: tendon, cornea and skin. A 

brief description of each follows.

1.7.1 Extracellular matrix o f  the tendon

Tendons are soft connective tissues with a densely packed and highly organised 

ECM, consisting of approximately 85% collagen, 1-5% proteoglycan, and 2% elastin, 

by dry weight (Figure 1.1) (Lin et al., 2004). Tendon is comprised o f predominantly 

type I collagen, though collagen types III, IV, V and VI are also present, albeit in much 

smaller quantities (Dressier et al., 2002; Hanson and Bentley, 1983; Vogel and Meyers, 

1999). In tendon, collagen is organised into tensile-resistant fibrils, fibres, fibre 

bundles, and eventually fascicles (Silver et al., 2003a). This hierarchical organisation of 

collagen increases its structural strength and helps to protect the tissue as a whole from 

minor damage that might occur from the high tensile forces that result from the 

transmission o f forces between muscle and bone (Rack and Westbury, 1984; Raspanti 

et al., 1990). A number o f proteoglycans have been identified in tendon, including 

decorin, cartilage oligomeric matrix protein (COMP), fibromodulin, biglycan, lumican, 

syndecan, perlecan, agrin, versican, and aggrecan. When hydrated, water is thought to 

account for 60-80% of the tendon’s total weight, a substantial amount of which is 

thought to be associated with proteoglycans (Lin et al., 2004). Tendon ECM has also 

been found to contain several adhesive proteins, such as laminin and flbronectin (Kjaer, 

2004).
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Figure 1.1: Extracellular matrix of the tendon. (A) Transmission electron micrograph 
showing the arrangement of collagen fibrils in tendon. (B) Higher magnification view 
of a collagen fibril bundle (A). (C) Transverse section of a hematoxylin and eosin 
stained tendon fascicle, illustrating the longitudinal arrangement of fibroblasts (arrows) 
in vivo. The fascicle is seen surrounded by loose connective tissue (arrowhead). (D) 
Confocal image of a transverse section of tendon illustrating adjacent fibroblasts 
(arrowhead) within a fascicle. The fibroblasts all contain sheet-like processes (arrows) 
that extend into the surrounding ECM. (A) and (B) modified from (Silver et al., 
2003a); (C) and (D) modified from (Kjaer, 2004).
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Tendons contain relatively few cells (Figure 1.1) (Lin et al., 2004). Of these, 

the fibroblast is the most predominant cell type, though other cell types such as 

epithelial cells, mast cells and axons are also present within the ECM (Kjaer, 2004; 

McNeilly et al., 1996). In vivo, tendon fibroblasts demonstrate a fusiform morphology, 

possess abundant, sheet-like extensions that extend into the ECM, and have been shown 

to be oriented along the lines of tension that exist in the long axis of the tendon (Banes 

et al., 1988a; McNeilly et al., 1996). Fibroblasts have been found to be linked to each 

other via gap junctions, and are thought to assist in the transduction of mechanical 

signals into biochemical responses, a phenomenon referred to as mechanotransduction 

(see section 1.8) (Banes et al., 1999b).

The mechanical properties of tendon are dependent on the properties and axial 

alignment of the collagenous network as well as cell-matrix interactions. This 

connective tissue serves to connect muscle to bone and hence forms a 

musculotendinous unit, whose primary function is to transmit tensile loads generated by 

muscle to move and stabilise joints (Banes et al., 1999a; Lin et al., 2004).

1.7.2 Extracellular matrix o f the cornea

The cornea is the only transparent connective tissue and is responsible for the 

majority of the refractive power of visible light in the eye (Karring et al., 2004). The 

bulk of the cornea consists of the corneal stroma, which itself is a hydrated ECM 

consisting of collagen and proteoglycans. Most collagens present in the stoma exist in 

the fibrillar form and are composed mostly of types I, III and V collagen, though some 

non-fibrillar collagens are also present, with types VI and XII being the most prominent 

(Marshall et al., 1991; Michelacci, 2003). In addition to collagen, the corneal stroma is 

also characterised by the prevalence of proteoglycans in its ECM, the most abundant of
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which are decorin, lumican, keratocan and mimecan (Bron, 2001; Funderburgh et al., 

2003).

Similar to that of the tendon, the ECM of the corneal stroma is highly organised 

(Figure 1.2). Collagen fibrils within the corneal stroma are arranged in broad lamellae 

that are aligned with corneal surface (Radner et al., 1998). Whilst fibrils in the same 

lamella run approximately parallel to one another, those in adjacent lamellae tend to lie 

at perpendicular angles; the fibrils within the lamellae have uniform diameter, and 

regular spacing (ibid.). This high degree of organisation, which is thought to be 

responsible for both the strength and transparency of the cornea (Bron, 2001), is a 

consequence of both the fibroblasts that synthesise it, as well as the biochemical 

properties of the matrix macromolecules themselves. For example, it is thought that the 

overall negative charge possessed by glycosaminoglycan side chains is capable of some 

degree of ordering, due to repulsive electrostatic forces. Furthermore, the mix of 

collagen types in this ECM seems to determine the ultimate size to which the collagen 

fibrils can grow laterally. Molecules of collagen type V, for example, serve to limit 

growth when incorporated into a growing type I fibril (Marchant et al., 1996).

The corneal stroma is populated by quiescent corneal fibroblasts, also called 

keratocytes, which are flattened, stellate-shaped cells interspersed between the collagen 

lamellae (Pei et al., 2004). Keratocytes can be maintained in their quiescent state by 

culturing in the absence of serum. If cultured with serum, however, keratocytes 

become “activated” and transform into spindle-shaped fibroblasts, which is reminiscent 

of the activation of keratocytes in vivo after injury (Matsuda and Smelser, 1973).
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Figure 1.2: Extracellular matrix o f the corneal stroma. (A) M icrograph o f 
hem atoxylin and eosin stained cornea. The comeal epithelium and
endothelium delineate the comeal stroma, which makes up the bulk o f the 
cornea. Comeal fibroblasts can be seen within the collagen fibrils o f the 
stroma (arrow). (B) Transmission electron micrograph illustrating the 
arrangement o f collagen fibrils in the comeal stroma. Fibrils are o f fixed 
diameter, regularly spaced, and ordered in broad lamellae that are 
perpendicular to one another. (A) modified from
http://www.siumed.edu/~dking2/intro/IN022b.htm; (B) modified modified 
from
http://www.optometry.co.uk/files/377a0e69e398a201252a0bb3680f7fB8_quan
tock20001215.pdf.

1.7.3 Extracellular matrix o f  the skin

Skin is a multilayered composite consisting o f an upper cellular layer and a 

lower connective tissue layer, called the epidermis and dermis, respectively (Figure 

1.3). The dermis, consisting o f both cells and ECM, is organised into a further two 

regions based upon the density and arrangement o f the connective tissue. The papillary 

dermis is the upper region, which appears as a feltwork o f randomly oriented, small- 

diameter collagen fibres, while the deeper region, known as the reticular dermis, 

consists o f  loosely interwoven, large, wavy, randomly oriented collagen bundles
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(Sorrell and Caplan, 2004; Silver et al., 2003b). The somewhat random arrangement of 

the collagen fibrils in the dermal tissue is in stark contrast to that seen in the tendon or 

cornea (see sections 1.7.1, 1.7.2).

Collagen is reported to compose approximately 66% and 69% of the total 

volume o f the papillary and reticular dermis, respectively (Lavker et al., 1987). The 

dermis, as a whole, contains fibrillar collagens, the majority of which are types I and III 

collagen (Light, 1985), as well as non-fibrillar forming collagens, such as types IV, VI, 

and VI (Silver et al., 2003b). Though collagen accounts for the bulk o f the dermal 

ECM, a number o f other matrix macromolecules are also present. For example, elastic 

tissue, consisting o f elastin, fibrillins and microfibrillar-associated glycoproteins, forms 

a three-dimensional network which spans the papillary and reticular dermis and helps 

impart elasticity to dermal tissue (Pasquali-Ronchetti and Baccarani-Contri, 1997). In 

addition, glycosaminoglycans, such as hyaluronan, and proteoglycans, including 

heparin, versican, lumican, decorin, and biglycan, are also present (Hassell et al., 1980; 

Iozzo and Murdoch, 1996).

Fibroblasts constitute the dominant cell type in the dermal tissue and appear to 

be associated with the surface of collagen fibrils (Silver et al., 2003b). Fibroblasts have 

been found to be more abundant, have higher rates o f metabolic activity, display 

enhanced proliferation, and a exhibit longer replicative life spans in the papillary 

dermis (Harper and Grove, 1979; Sorrell and Caplan, 2004; Tajima and Pinnell, 1981).

The organisation o f this ECM and, hence, the connective tissue of skin results 

from the internal and external forces to which the tissue is regularly subjected. 

External forces are defined as those that result from either tension, when skin is 

compressed or stressed, or shear, which results from friction. Such external forces arise
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Figure 1.3: Extracellular matrix of skin. (A) Transverse section of hematoxylin 
and eosin stained skin. The layers of skin are indicated, including the epidermis 
and the papillary and reticular layers of the dermis. (B) Electron micrograph 
demonstrating the arrangement of collagen fibrils in human skin. (A) modified 
from http://cellbio.utmb.edu/microanatomy/skin/cskin.jpg; (B) courtesy of 
Professor Peter Purslow, University of Guelph, Canada.

during physiological processes, such as wound healing (Silver et al., 2003b), or by 

environmental stimuli, such as gravity (Ingber, 1999). Internal forces, on the other 

hand, result from inherent tension incorporated into the collagen fibril network 

(Grinnell, 2000). Collagen is thought to prevent premature mechanical failure of the 

tissue by aligning in the direction of the load (Dunn and Silver, 1983; Daly, 1982), and 

elastic fibres are believed to contribute to the recovery of the collagen networks when 

skin is subjected to such internal or external forces (Oxlund et al., 1988).

1.7.4 Fibroblasts regulate the ECM by secreting proteolytic enzymes

Extracellular matrices are dynamic structures and thus are subject to diverse 

influences from external stimuli and internal changes, cell-matrix interactions and 

genetic regulation (Carlson and Hockfield, 1996). In addition to the macromolecules
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already mentioned, fibroblasts have also been shown to be capable of synthesising and 

secreting various proteolytic enzymes, including serine proteases and matrix 

metalloproteinases (MMPs), as well as some of their specific inhibitors, whose function 

is to modulate the formation of the ECM (Sappino et al., 1990). The ability of 

fibroblasts to degrade ECM macromolecules is essential for the cell to be able to 

interact properly with its microenvironment. Furthermore, the selective synthesis, 

secretion and activation of MMPs allows fibroblasts to exert fine control over the 

composition and turnover of the surrounding ECM (Stemlicht and Werb, 2001).

1.7.4.1 Matrix metalloproteinases

Matrix metalloproteinases are a family of zinc-containing proteases synthesised 

and secreted by fibroblasts that serve to alter the composition and structural 

organisation of the ECM, which is essential for various cell processes including 

migration, morphogenesis, tissue resorption and remodelling, embryonic development, 

and disease (Nelson et al., 2000; Phillips et al., 2003). MMPs can potentially influence 

cell behaviour by cleaving cell-cell adhesion proteins, releasing bioactive cell surface 

molecules, or cleaving cell surface molecules that transduce signals from the 

extracellular environment (Stemlicht and Werb, 2001).

MMPs belong to the metzincin superfamily of endopeptidases, which is 

characterised by two highly conserved sequence motifs: (1) three histidines that bind 

zinc at the catalytic site; and (2) a conserved methionine turn (“Met turn”) that sits 

beneath the active site zinc (Stocker et al., 1995). The metzincin superfamily is further 

subdivided into four multigene families -  the serralysins, astacins, 

ADAMs/adamalysins, and MMPs -  based upon the exact amino acid sequence of the
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MMP family MMP Common Name
Domain

organisation
Collagenases MMP-1 collagenase-1 B

MMP-8 collagenase-2 B
MMP-13 collagenase-3 B
MMP-18 collagenase-4 B

Gelatinases MMP-2 gelatinase-A C
MMP-9 gelatinase-B C

Stromelysins MMP-3 stromelysin-1 B
MMP-10 stromelysin-2 B
MMP-11 stromelysin-3 D

Matrilysin MMP-7 matrilysin A
Transmembrane MMP-14 MT1-MMP E

MMP-15 MT2-MMP E
MMP-16 MT3-MMP E
MMP-17 MT4-MMP F
MMP-24 MT5-MMP E
MMP-25 MT6-MMP F

Table 1.1: Common vertebrate MMPs, indicating their family (based on 
substrate specificity), common name, major substrates and domain 
organisation (see Figure 1.4). Adapted from (Nagase and Woessner, Jr., 
1999).

zinc-binding motif: HEBXHXBGBXHZ, where histidine (H), glutamic acid (E) and 

glycine (G) residues are invariant, (B) is a bulky hydrophobic amino acid, (X) is a 

variable residue and (Z) is a family-specific amino acid. Vertebrate MMPs are 

characterised by containing a serine residue in the Z position of their conserved zinc 

binding m otif (Stocker et al., 1995).

To date, 25 vertebrate, as well as several nonvertebrate, MMPs have been 

identified, each of which has distinct but often overlapping substrate specificities 

(Stemlicht and Werb, 2001). This functional redundancy, which most likely exists to 

compensate for any losses of regulatory control, enables MMPs, collectively, to cleave 

virtually all ECM proteins (Coussens and Werb, 1996).
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1.7.4.1.1 Domain structure

In addition to the conserved zinc binding and “Met turn” motifs, vertebrate 

MMPs also share stretches of sequence homology including a pre- and pro-peptide 

domain, a catalytic domain, and a C-terminal hemopexin domain that is linked to the 

catalytic domain by a flexible hinge region (Figure 1.4) (Nagase and Woessner, Jr., 

1999). Domain organisation is usually conserved within members o f given MMP 

families (Table 1.1).

The pre-domain is an N-terminal signal sequence, which is cleaved after it 

directs the synthesis of the protein to the endoplasmic reticulum (ER). As a 

consequence, most MMPs are secreted. There are, however, six MMPs that also 

contain a transmembrane domain or a glycosylphosphatidyl inositol (GPI)-anchoring 

domain, such that they are eventually expressed as cell surface enzymes (Stemlicht and 

Werb, 2001).

The pro-peptide domain, on the other hand, consists o f approximately 80 amino 

acids and has a conserved PRCG(V/N)PD sequence (Nagase and Woessner, Jr., 1999). 

The cysteine within this sequence, also termed the “cysteine switch,” maintains the 

latency o f pro-MMPs by ligating the catalytic zinc until it is removed or dismpted (see 

section 1.7.4.1.2) (Van Wart and Birkedal-Hansen, 1990).

Following on from the pro-peptide domain is a catalytic domain, which dictates 

cleavage site specificity through its active site cleft, comprises approximately 170 

amino acids, and contains the conserved zinc binding and “Met turn” motifs that 

characterise MMPs. The catalytic domains o f MMPs contain an additional structural 

zinc ion and several calcium ions, which are required for the stability and expression of 

enzymatic activity (Bode et al., 1993).
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Figure 1.4: Domain organisation of common vertebrate MMPs, including a signal 
sequence (Pre), propeptide (Pro) with a free zinc thiol group (SH), furin- 
susceptible site (F), zinc-binding site (Zn), collagen-binding fibronectin type II 
inserts (II), hinge region (H), transmembrane domain (TM), cytoplasmic tail (C), 
glycophosphatidyl inositol-anchoring domain (GPI) and hemopexin/vitronectin- 
like domain with the first and last repeats linked by a disulphide bond (S-S). (A) 
Minimal domain MMPs; (B) simple hemopexin domain-containing MMPs; (C) 
gelatin-binding MMPs; (D) furin-activated secreted MMPs; (E) transmembrane 
MMPs; (F) GPI-linked MMPs. Adapted from (Stemlicht and Werb, 2001).

The C-terminal hemopexin-like domain is an absolute requirement for 

collagenases to cleave triple helical interstitial collagens, although the catalytic 

domains alone retain proteolytic activity toward other substrates (Bode, 1995). 

Additionally, this domain has been found to influence the binding of the tissue 

inhibitors of matrix metalloproteinases (TIMPs) as well as certain other substrates and
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appears to play a role in MMP activation (Nagase and Woessner, Jr., 1999). The 

hemopexin-like domain is connected to the catalytic domain by a proline-rich linker 

peptide, which varies in length and composition among various MMPs and has also 

been found to influence substrate specificity (Knauper et al., 1997).

In addition to the common domain structures listed above, several classes of 

MMPs contain unique stretches of sequence homology. For example, membrane-type 

MMPs (MT-MMPs) contain a single-pass transmembrane domain as well as a short, 

cytoplasmic tail or a C-terminal hydrophobic region, both of which serve to anchor the 

enzymes to the cell surface (Itoh et al., 1999; Kojima et al., 2000). The gelatinases, on 

the other hand, are unique from other MMP family members in that they possess three 

head-to-tail cysteine-rich repeats, which resemble the collagen-binding type II repeats 

of fibronectin (Murphy et al., 1994). These domains are inserted in the catalytic 

domain and are required to bind and cleave collagens, gelatins and elastin (Shipley et 

al., 1996).

1.7.4.1.2 Activation o f latent metalloproteinases

Most MMPs are secreted from the cell as inactive zymogens, which are 

subsequently activated in vitro by proteinases and non-proteolytic agents such as SH- 

reactive agents, mercurial compounds, reactive oxygen and denaturants (Nagase and 

Woessner, Jr., 1999). In vivo, most MMPs can be activated by other, already activated, 

MMPs or by several serine proteinases that can cleave peptide bonds within MMP pro­

domains (Sato et al., 1994). In all cases, activation requires the disruption of the 

unpaired sulphydryl group near the C-terminal end of the pro-peptide domain, which 

acts as a fourth ligand for the active site zinc ion (Nagase, 1997). MMP activation 

requires that this cysteine-to-zinc switch be opened by normal proteolytic removal of
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the propeptide domain or by ectopic perturbation of the cysteine-zinc interaction (Van 

Wart and Birkedal-Hansen, 1990). Once displaced, the sulphydryl group is replaced by 

a water molecule that can subsequently attack the peptide bonds of MMP targets 

(Nagase, 1997).

1.7.4.1.3 Inhibition

MMPs are reversibly inhibited by a family of 20-29 kDa secreted proteins, 

known as the tissue inhibitors of matrix metalloproteinases (TIMPs) (Stemlicht and 

Werb, 2001). Four TIMPs have been identified to date, all of which share 37-51% 

overall sequence identity, a conserved gene structure, and 12 similarly separated 

cysteine residues (Gomez et al., 1997). TIMPs are not only important regulators of 

matrix turnover but have also been implicated in a variety of cellular activities in vitro, 

which are independent of their MMP-inhibitory activities (Nagase and Woessner, Jr.,

1999). For example, TIMP-1 and -2 have been shown to have mitogenic activities on 

number of cell types (Gomez et al., 1997) and TIMP-2 alone has been seen to inhibit 

fibroblast growth factor (FGF)-induced endothelial cell growth (Murphy et al., 1993). 

Additionally, TIMP-1 has been found to stimulate fibroblasts to produce MMP-1 and 

appears to accumulate in the nuclei of human fibroblasts in a cell-cycle dependent 

manner, suggesting a role in cell growth (Clark et al., 1994; Zhao et al., 1998).

1.8 Mechanotransduction

While one of the major functions of connective tissues is to sustain mechanical 

stresses, they also appear to require such stresses for tissue maintenance and 

homeostasis (Chiquet et al., 2003). As discussed in sections 1.7.1-1.7.3, tendon, 

corneal and skin connective tissues are constantly subjected to a wide range of
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mechanical cues, which can ultimately alter the behaviour of the fibroblasts within 

these tissues. The process whereby cells can transduce such physical, force-induced 

signals into biochemical responses is termed mechanotransduction and is critical, since 

connective tissues are invariably subjected to different mechanical environments during 

development, growth and aging (Ko and McCulloch, 2001). The evidence for the 

process o f mechanotransduction is far reaching and is presented in section 1.9. This 

section, therefore, will focus on the ways in which cells are thought to sense such 

mechanical cues.

Overall, four basic types of mechanical cues exist: tension, compression, fluid 

shear, and torsional shear (Eastwood et al., 1998). Generally, fibroblasts are 

considered in terms of tensile forces, vascular endothelial cells in terms of fluid shear, 

and chondrocytes in terms of compression. The complexity of the response of cells to 

mechanical cues is immense. For example, the basic types o f mechanical cues 

mentioned above can be further differentiated based upon the velocity o f loading or 

whether the force is cyclical or static. Furthermore, mechanical cues can be directional 

or non-directional, which is particularly important when cellular responses are 

polarised. The final level o f complexity arises from the interplay between fibroblasts 

and the ECM that they not only synthesise, but also remain surrounded within. By its 

very nature, the ECM is capable o f having a dramatic effect on the way mechanical 

cues are presented to the fibroblasts within it. Hence, a complicated feedback 

mechanism exists, whereby fibroblasts synthesise an ECM based upon the mechanical 

requirements o f the given connective tissue, and the ECM, in turn, alters the way 

subsequent mechanical cues are presented to the cell.

In general, cells are capable of sensing mechanical stress via cell-cell and cell- 

matrix adhesions. The finding that fibroblasts are sparsely populated within an
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extensive ECM in most connective tissues in vivo (see sections 1.7.1-1.7.3) suggests 

that mechanotransduction in fibroblasts relies largely on cell-matrix adhesions. Such 

adhesions form the physical link from the ECM across the plasma membrane to the 

actin cytoskeleton, and are thought to be dependent on two particular proteins based 

upon their strategic locations within such matrix adhesions: (1) integrins and (2) 

mechano-sensitive ion channels (Chiquet et a l , 2003). Both integrins and ion channels 

have been implicated in the transduction of mechanical signals in fibroblasts, in studies 

using functionally blocking antibodies directed toward Pi-integrins and inhibitors of 

stretch sensitive ion channels (Chiquet et a l , 2003; Eastwood et a l , 1998). 

Furthermore, integrins have been shown to be capable of triggering intracellular signals 

in response to pulling forces applied to their ECM ligands (Choquet et a l , 1997), the 

immediate consequences of which are three-fold: (1) a Rho-dependent assembly and 

growth of focal adhesion complexes at these sites (Geiger and Bershadsky, 2001); (2) 

an increase in cytoskeletal tractional force (Choquet et a l , 1997); and (3) an initiation 

of mitogen-activated protein (MAP) kinase and NF-kB pathways (MacKenna et a l , 

2000; Schmidt et a l, 1998).

Transmembrane receptors that interact with ECM components on the outside of 

the cell, such as integrins, are often aggregated at focal adhesions, regions where the 

surface of the cell comes into close proximity to the substrate. In addition to their 

interaction with ECM macromolecules, such transmembrane receptors are also capable 

of interacting with bundles of actin filaments, or stress fibres, on the inside of the cell 

(Geiger and Bershadsky, 2001). Numerous proteins have been identified in focal 

adhesions, the majority of which appear to be localised at their cytoplasmic face and 

either play structural roles or function in signal transduction. The relative abundance of 

such proteins is highly variable, with vinculin and talin being most prominent, and
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focal adhesion kinase (FAK), a-actinin, paxillin, tensin, zyxin, and many other 

components with signalling roles being less abundant (Zamir et al., 1999). Not 

surprisingly, a number of proteins found to be localised to focal adhesions, including 

talin, a-actinin, filamin and tensin, have direct actin-binding capabilities which is 

important in maintaining and stabilising the microfilament attachment in focal 

adhesions (Bershadsky et al., 2003).

Focal adhesions appear to evolve from small dot-like focal complexes, less than 

1 pm in diameter, into mature focal adhesions. Immature focal contacts appear to be 

formed during lamellipodial protrusions of the plasma membrane, which contain dense, 

rapidly polymerising branching networks of actin filaments and are induced by the 

small Rho-family G-protein, Rac (Geiger and Bershadsky, 2001). The transition of 

focal contacts to mature focal adhesions is accompanied by the transition of the 

associated actin mesh into densely packed, straight bundles of filaments known as 

stress fibres, which themselves contain many actin-associated proteins, including 

myosin II. Stress fibres are contractile structures that function to apply tension to the 

membrane-bound adhesion plaque, which are then transmitted to the ECM via 

transmembrane receptors such as integrins (Bershadsky et al., 2003). This internal 

cytoskeletal tension has been shown to be crucial in mechanotransduction; fibroblasts 

only seem capable of sensing external mechanical stresses if a certain amount of 

resistance by internal cytoskeletal tension is retained. This has been illustrated 

previously by culturing fibroblasts on soft type I collagen matrices; it was found that 

cellular force was reduced considerably by actin depolymerising agents (Kolodney and 

Wysolmerski, 1992).
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1.9 Use of mechanical stimulation to investigate cell behaviour

Fibroblasts are the main source for the production, maintenance and turnover of 

connective tissues (see section 1.7), the very function of which is mechanical in nature. 

Consequently, observations that fibroblasts contain a wide variety of mechanical 

responses are not surprising. In general, fibroblasts are thought to respond to the 

generation of endogenous mechanical loads in tissues, as well as react to externally 

applied mechanical loading (Eastwood et al., 1998). The ability of fibroblasts to 

respond to mechanical force was first described in 1940, when Steams demonstrated 

that fibroblasts, together with the fibres they secrete, aligned in the direction of stress 

“like iron filings to a magnet” (Steams, 1940).

Since this initial observation, fibroblasts have also been shown to be capable of 

generating endogenous tensional forces (Elsdale and Bard, 1972). The ability of 

fibroblasts to generate such forces has been measured by the use of fibroblast-populated 

collagen lattices (FPCL), which have been adapted in numerous studies in order to 

quantitate fibroblast contraction (Eastwood et al., 1998). From studies such as these, it 

has been calculated that fibroblasts are capable of producing average forces of 10'10 N, 

assuming that all the resident fibroblasts within the FPCL participate (Eastwood et al., 

1996). In addition to their contractile ability, fibroblasts populated in mechanically 

loaded FPCLs have been shown to increase synthesis of both MMP-2 and MMP-9, with 

MMP-9 being more sensitive to tension than its gelatinase counterpart (Prajapati et al., 

2000a).

Since the discovery that fibroblasts could both create and respond to 

endogenous and external mechanical loads, a number of studies have been published 

which reveal that mechanical stimulation of fibroblasts in vitro results in a variety of 

cellular responses, including induction of intra-cellular signalling pathways, changes in
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morphology and organisation of the actin cytoskeleton, altered gene and protein 

expression, as well as variations in focal adhesion formation.

1.9.1 Effect o f mechanical stimulation on cell signalling

Several reports have indicated that mechanical stimulation can lead to the 

activation of several intracellular signalling pathways, such as the mitogen-activated 

protein (MAP) kinase and the NF-kB pathways (Chiquet, 1999; Yamamoto et al.,

1999). The MAPKs are intracellular kinases, whose signalling pathways appear to 

consist of three major phosphorylation cascasdes: (1) extracellular signal-related 

protein kinases (ERKs); (2) c-Jun NFE-terminal kinases (JNK); and (3) p38 MAP 

kinases (Yamamoto et al., 1999). MAP kinases have been shown to respond to 

physical stimuli such as UV light, heat shock, osmotic challenge, and mechanical 

stimulation (Hung et al., 2000). For example, ERK 1 and 2 were demonstrated to be 

activated to a greater extent in chondrocytes subjected to shear stress (Hung et al.,

2000). Moreover, the JNK and p38 pathways have also been shown to be activated by 

various stress-related stimuli and, as such, are collectively known as stress-activated 

protein kinases (Force et al., 1996).

It has also been shown that the NF-kB pathway is induced upon mechanical 

stimulation. For example, various types of stresses are known to induce 

phosphorylation and degradation of I-kB, the cytoplasmic inhibitor of the transcription 

factor, NF-kB, which is consequently activated and translocated to the nucleus 

(Mercurio and Manning, 1999). Furthermore, the I-kB kinase complex has been 

recently shown to interact with two enzymes of the MAP kinase kinase kinase family, 

suggesting that there is functional crosstalk between the MAP kinase and NF-kB 

pathways during mechanotransduction. (Chiquet, 1999). Activation of the NF-kB
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pathway, via protein kinase C, is also required for the integrin-dependent ability of 

fibroblasts to contract collagen gels (Xu et al., 1998).

1.9.2 Effect o f  mechanical stimulation on cell morphology

Cell morphology has also been found to alter with stimulation in cultured 

connective tissue cells. Van Kooten and colleagues reported that human skin 

fibroblasts subjected to pulsations o f shear stress adopted an elongated morphology, 

aligned in the direction o f flow, and demonstrated more abundant filopodia (van 

Kooten et al., 1993). A similar response was also observed in mechanically stimulated 

osteoblasts (Pavalko et al., 1998). In this particular cell type, fluid shear resulted in the 

development of prominent stress fibres that were oriented roughly parallel to the long 

axis o f the cell. The effect o f fluid shear stress on connective tissue cells was 

investigated further by Billotte and Hofmann, who showed that NIH-3T3 fibroblasts 

acquired a more spindle-like morphology and demonstrated cytoskeletal reorganisation 

upon 12 hours o f exposure to fluid flow (Billotte and Hofmann, 1999). More recently, 

tendon fibroblasts were confirmed to align in the direction of flow after being subjected 

to six hours o f shear stress (Archambault et al., 2002b), and the actin cytoskeleton was 

shown to reorganise into distinct stress fibres that traversed the cell body (Kessler et al.,

2001) upon the application o f mechanical tension to skin fibroblasts.

1.9.3 Effect o f  mechanical stimulation on gene and protein expression

Given that mechanical stimulation has been shown to alter intracellular 

signalling pathways as well as gross cell morphology, it is not at all surprising that 

numerous genes and proteins demonstrate altered expression with stimulation. Fluid
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flow, for example, has been shown to alter the gene and protein expression of matrix 

macromolecules as well as focal adhesion proteins. In one of the first reports to 

indicate that the synthesis of ECM macromolecules alters with mechanical stimulation, 

the production of type I and III collagen, as well as proteoglycan synthesis, was shown 

to be up-regulated in vascular smooth muscle cells in response to cyclic strain (Leung 

et al., 1976). This phenomenon has since been corroborated by numerous studies. In 

one such report, Kessler et al. compared fibroblasts cultured in tensioned FPCLs to 

those cultured in free retracting lattices or in a monolayer (Kessler et al., 2001). 

According to their study, synthesis of collagen, as well as steady-state mRNA levels of 

procollagen types I, III, and VI, fibronectin, elastin, and P-actin, were highest in the 

fibroblasts cultured in the tensioned FPCL. Not surprisingly, proteins such as vinculin, 

zyxin and integrin-linked kinase were also altered in fibroblasts subjected to 

mechanical tension (Kessler et al., 2001).

Mechanical stimulation has also been found to alter MMP synthesis, secretion 

and activity (Archambault et al., 2002b; Archambault et al., 2002a; Blain et al., 2001; 

Lambert et al., 2001; Magid et a l, 2003; Prajapati et al., 2000b). More specifically, 

levels of MMP-2, -3, -9, -13, and -14 have shown to alter in response to shear stress, 

tensile forces, and compressive loading in a variety of cell types (Archambault et al., 

2002b; Lambert et al., 2001), and collagenase activity has been shown to be inversely 

regulated to collagen synthesis, with the highest activities and mRNA levels observed 

in fibroblasts cultured in free retracting FPCLs (Kessler et al., 2001).

Several studies have also reported the increased expression of cyclooxygenase 

II (COX-2) mRNA and protein levels. This key enzyme is responsible for the 

formation of prostaglandins, which themselves have been shown to be released in 

fibroblasts and osteoblasts in response to fluid flow (Archambault et al., 2002b; van der
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Pauw et al., 2000). COX-2 has been shown to respond quickly to mechanical 

stimulation in numerous cell types, including osteoblasts and fibroblasts (Archambault 

et al., 2002b; Chen et al., 2000; Pavalko et al., 1998). Interestingly, COX-2 up- 

regulation did not necessarily result in an increase in prostaglandin expression, as 

shown by Archambault and colleagues, indicating that mechanotransduction in these 

cells contains numerous regulatory pathways that have yet to be elucidated 

(Archambault et al., 2002b).

Growth factors, and in particular transforming growth factor (TGF)-pl, has also 

been found to be induced upon mechanical stimulation in fibroblasts (Brown et al., 

2002; Kessler et al., 2001). TGF-pl has been classified as a potent “profibrotic” agent, 

since it promotes rapid deposition of collagenous matrix in wound repair and stimulates 

collagen, fibronectin and TIMP synthesis while suppressing MMP production in 

fibroblasts (Brown et al., 2002).

1.9.4 Effect o f  mechanical stimulation on cell adhesion

Not surprisingly, mechanical stimulation has also been found to alter the 

prominence and composition of focal adhesions. Pavalko and colleagues demonstrated 

that Pi-integrin and a-actinin became concentrated in focal adhesions after subjecting 

osteoblasts to fluid shear, which was in stark contrast to the diffuse localisation of both 

proteins in control cells (Pavalko et al., 1998). Kessler et al. made a similar 

observation after they subjected skin fibroblasts to mechanical tension. In this case, 

vinculin was found to be localised to focal adhesions in skin fibroblasts that were 

subjected to mechanical tension, whereas the protein was more diffused throughout the 

cytoplasm in control cells (Kessler et al., 2001).
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1.10 Aims and Hypothesis

As described above, fibroblasts are responsible for the synthesis, maintenance 

and turnover of a wide variety of connective tissues. Despite the fact that all 

fibroblasts, irrespective of their tissue of origin, maintain similar morphological 

features, numerous studies have begun to identify inter- and intra-site heterogeneity in 

fibroblast populations. Such heterogeneity is manifested in differences in subtle 

morphological characteristics, behaviour in culture, protein synthesis, gene expression, 

proliferation rate, cell surface antigen presentation, in vitro life spans, responses to 

hormones and growth factors, migration and mechanosensation.

In order to test inter-site fibroblast heterogeneity, tendon, corneal and skin 

fibroblasts were subjected to a well defined shear stress produced by a parallel plate 

flow chamber. Following stimulation, cell morphology and gelatinase activity were 

examined, to determine if the three cell lines maintained differential cellular responses 

to an identical mechanical stimulus. Furthermore, microarray technology, semi- 

quantitative RT-PCR and Western blotting were employed to investigate gene and 

protein expression in stimulated and control cells, in order to provide a comprehensive 

analysis of any tissue-specific responses to mechanical stress.
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Chapter 2

Materials and Methods

2.1 Materials

2.1.1 Mammalian cell culture vessels and reagents

HeLa, C2C4 and NIH 3T3 cells were obtained from laboratory stocks, and the 

bovine skin fibroblasts (BOVS-1) used in production of the gelatinase standard were 

generously supplied by Dr. Emma Blain (University of Cardiff, Wales, UK).

All reagents used in the isolation and culture of cell lines, including collagenase 

type II, Hank’s Balanced Salt Solution (HBSS) without calcium and magnesium, trypsin- 

ethylenediaminetetraacetic acid (EDTA), foetal calf serum (lot # 40Q9021F), phosphate 

buffered saline (PBS), Dulbecco’s Modified Eagle’s medium (DMEM), 

penicillin/streptomycin, and EDTA, were all manufactured by Gibco and obtained from 

Invitrogen, Ltd. (Paisley). Cells were frozen in a cryo freezing container manufactured by 

Nalgene and obtained by Fisher Scientific UK, Ltd. (Loughborough).

Poly-L-lysine, porcine skin gelatin, tissue culture grade dimethyl sulphoxide 

(DMSO), and insulin, transferrin, selenium (ITS) liquid media supplement were all 

obtained from Sigma-Aldrich Company, Ltd. (Dorset). Cell culture flasks, dishes, six-well 

plates, cryovials, and centrifuge tubes were manufactured by Greiner (Stonehouse). 

Serological pipettes were manufactured by Coming and obtained from Fisher Scientific 

(UK), Ltd. The single-well plates used in mechanical stimulation experiments were 

manufactured by Nunc and obtained from VWR International (Lutterworth).

2.1.2 Molecular Biology Reagents

Total RNA was isolated from cells using the Absolutely RNA RT-PCR miniprep 

kit, Stratagene, Inc. (La Jolla, CA, USA). Contaminating RNases were inactivated with
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RNaseZap (Ambion (Europe) Ltd., Huntingdon) and diethylpyrocarbonate (DEPC) 

(Sigma-Aldrich Company, Ltd.). RT-PCR was based around the Titan One-Tube RT-PCR 

System, which was obtained from Roche Diagnostics, Ltd. (Lewes). Deoxyribonucleotide 

triphosphates (dNTPs) were from Bioline, Ltd. (London), and oligonucleotides were 

synthesized by Operon Biotechnologies GmbH, (Cologne, Germany).

DNA gels were cast and run in a Mini Sub Cell GT electrophoresis tank (Bio-Rad 

Laboratories, Ltd.). Electrophoresis grade, high gel strength agarose was purchased from 

Melford (Ipswich), and ethidium bromide was obtained from VWR International. 

Hyperladder I was from Bioline, Ltd. Agarose gels were visualised with a gel 

documentation system, comprised of a transilluminator (BST-15.M), camera, viewer, and 

video copy processor (Mitsubishi P91), all of which were obtained from UVItec, Ltd. 

(Cambridge).

2.1.3 Antibodies and additional immunofluorescence reagents

Primary antibodies directed toward vinculin (V-9131), desmin (D-1033), keratin 

(K-4252), and vimentin (V-4630) were obtained from Sigma-Aldrich Company, Ltd., 

while neogenin (sc-15337) and p-actin (sc-1616) anti-sera were manufactured by Santa 

Cruz Biotechnology, Inc. and supplied by Autogen Bioclear UK, Ltd. (Wiltshire). Anti- 

CRP-1 was from BD Biosciences, Ltd. (Oxford). The anti-lumican rabbit polyclonal 

antibody was kindly provided by Dr. Ake Oldberg (Division of Cell and Matrix Biology, 

University of Lund, Sweden) (Svensson et al., 1999), while anti-dyxin rabbit polyclonal 

was a generous gift from Dr. Rachelle Crosbie (Department of Physiological Science, 

University of California, Los Angeles, CA, USA) (Yi et al., 2003). All HRP- and alkaline 

phosphatase-conjugated anti-rabbit, anti-mouse, anti-goat and anti-guinea pig secondary 

antibodies were purchased from Sigma-Aldrich Company, Ltd.
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Glass coverslips, slides and paraformaldehyde were purchased from VWR 

International. Vectashield was obtained from Vector Laboratories (Peterborough). 

Rhodamine phalloidin and 4',6-Diamidino-2-phenylindole (DAPI) were manufactured by 

Molecular Probes, Inc. and obtained from Invitrogen, Ltd.

2.1.4 SDS-PAGE, Zymography and Western Blotting

All protease inhibitors, including aprotinin, pepstatin, 

phenylmethylsulphonylfluoride (PMSF), N-tosyl-L-phenylalanylchloromethyl ketone 

(TPCK), /7-toluenesulfonyl-L-arginine methyl ester (TAME), and benzamidine were 

obtained from Sigma-Aldrich Company, Ltd. The Micro BCA Protein Assay Kit was 

obtained from Perbio Science UK, Ltd. (Cramlington).

Broad range prestained protein molecular weight standards were purchased from 

New England Biolabs (Beverly, MA, USA). SDS-PAGE gels were cast and run using the 

Mini Protean II gel system, which was obtained from Bio-Rad Laboratories, Ltd. (Hemel 

Hempstead), while gradient zymograms were poured and electrophoresed in the EF100 

Rapid PAGE System from Cambridge Electrophoresis, Ltd. (Cambridge). Protein transfer 

was achieved using the Trans-Blot SD Semi-Dry Transfer Cell (Bio-Rad, Ltd.). Porcine 

skin gelatin, bromophenol blue, and N, N, N’, N’-tetramethylethylenediamine (TEMED) 

were purchased from Sigma-Aldrich Company, Ltd, while ammonium persulphate (APS) 

was obtained from VWR International. Acrylamideibisacrylamide (37.5:1) was purchased 

from GeneFlow, Ltd (Fradley), whereas polyvinylidene fluoride (PVDF) membrane (0.2 

pm), and Coomassie Brilliant Blue R-250 were obtained from Bio-Rad, Laboratories, Ltd. 

Marvel non-fat dry milk powder was purchased from a local supermarket.

Western blots developed with enhanced chemiluminescence were exposed on 

Kodak MXB film purchased from Xograph Imaging Systems, Ltd. (Tetbury). X-ray films
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were fixed in Kodak RP X-OMAT LO, developed in Kodak X-OMAT EX II, both of 

which were obtained from VWR International, and film was processed in an Optimax 1170 

film processor from IGP UK, Ltd. (Chelmsford). Western blots detected with 

chromogenic substrates were scanned with a UMAX Powerlook 1000 transmissive 

scanner.

2.1.5 Miscellaneous

Cells in culture were visualized on a Ceti Versus inverted brightfield microscope, 

while all morphological images were captured on a Leica DM IRE2 inverted fluorescence 

microscope in conjunction with a 1.3 megapixel CCD camera (DC 350F). Conditioned 

media was concentrated in Amicon Centricon YM-30 centrifugal filter devices, which 

were obtained from Millipore (UK), Ltd. (Watford). The parallel plate flow chamber used 

in the mechanical stimulation of fibroblasts was kindly provided by Dr. Joji Ando 

(Department of Biomedical Engineering, University of Tokyo, Japan), which was 

interfaced with a P-l peristaltic pump obtained from Amersham Biosciences (UK), Ltd. 

(Little Chalfont).

All other chemicals used were of standard or AnalaR reagent grade and were 

purchased from Sigma-Aldrich Company, Ltd., or VWR International.

2.2 Methods

Methods for all of the protocols utilised in this study are detailed in this section; the 

recipes for stock solutions, buffers and media compositions are listed the Appendix.
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2.2.1 Isolation o f fibroblast cell lines

Isolation o f primary, murine fibroblasts was carried out according to the method of 

Spector et al. (Spector et al., 1998), using 19-day gestation foetal CD1 mice (term = 21 

days). The pregnant mother was euthanized by carbon dioxide asphyxiation and 

immediately swabbed with 70% ethanol in a sterile hood. With the mouse on its back, an 

incision was made down its midsection with sterile scissors, thereby exposing the uterus 

and amniotic sacs. The embryos and uterine horns were pulled away from the abdomen, 

detached from the animal, and placed in a dish of sterile PBS. The uterine horns were then 

opened, thus releasing the embryos into the PBS. Embryos were detached from the 

amniotic sac, decapitated, and placed in a fresh dish of PBS in an attempt to eradicate as 

many red blood cells as possible. At this point, the corneas, tendons from the tail, and 

skin were isolated from the embryos and placed in sterile PBS. PBS was then carefully 

removed and tissues were overlaid with approximately 2 ml of HBSS, 0.25% trypsin, and 

0.25% collagenase type II. Tissues were minced and overlaid with an additional 10 ml of 

HBSS solution. To aid in collagenase digestion, the tissue homogenate was incubated at 

37 °C for 45 minutes. The suspension was transferred to sterile centrifuge tubes and the 

large tissue allowed to settle by gravity. The crude supernatant containing suspended cells 

was removed to a fresh sterile centrifuge tube containing 1 ml foetal calf serum (FCS) per 

10 ml o f suspension to inactivate the trypsin. The solution was then centrifuged at 1200 

rpm for five minutes in a bench-top Sigma 204 centrifuge with a swing-out rotor (# 11030) 

and the supernatant discarded. The resultant pelleted cells were resuspended in 

approximately 13 ml working medium (DMEM, 15% FCS), transferred to a fresh, sterile 

Petri dish, and incubated in a humidified incubator (5% CO2) at 37 °C. Cells at this stage 

were designated passage zero. When cultures reached confluence, culture medium was 

removed and the cells were washed with 10 ml of warm 0.53 mM EDTA in PBS. EDTA
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was removed and replaced with 10 ml of warm 0.05% trypsin-EDTA, and the cells 

incubated at 37 °C for five minutes. Using a sterile pipette, the cell suspension was 

transferred to a sterile centrifuge tube containing 1-2 ml of FCS and centrifuged at 1200 

rpm for five minutes. After discarding the supernatant, the pellet was resuspended in 15 

ml working medium, aliquoted into two tissue culture flasks, and designated passage one. 

Cells were maintained under standard tissue culture conditions (37 °C; 5% CO2 ).

2.2.2 Subculturing fibroblast monolayers

Primary murine fibroblasts were cultured in a humidified 5% CO2 atmosphere at 37 

°C in working medium. Cells were maintained until they reached approximately 80% 

confluence, at which point the cell sheet was rinsed with sterile PBS and the cells 

dissociated from the substrate upon treatment with trypsin-EDTA. Cells were re­

suspended in an appropriate volume of working medium and seeded in tissue culture flasks 

to yield the desired level of confluency. Because cultures were maintained in pre­

confluent conditions, cells were kept in the active log phase of growth and were only 

subcultured until passage number five. In all cases, splitting ratios ranged from 1:2 to 1:4, 

leading to 5-6 cumulative population doublings prior to experimentation.

2.2.3 Cryopreservation o f  cell lines

In order to preserve cell lines in liquid nitrogen, cells in the log phase o f growth 

were washed with sterile PBS and overlaid with trypsin-EDTA to dissociate the cell 

monolayer. Cells were resuspended in working medium, transferred to a 15 ml conical 

centrifuge tube and centrifuged at 1500 rpm for three minutes (Sigma 204 centrifuge; rotor 

#11030). After aspirating the supernatant, the cell pellet was resuspended in working 

medium supplemented with 5% DMSO and transferred to a sterile cryovials. Cryovials
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were placed in a cryo freezing container containing isopropanol and allowed to cool to at a 

rate of -1 °C/minute until samples reached -70 °C, at which point they were transferred to 

liquid nitrogen.

2.2.4 Thawing cells following cryopreservation

To revive cells frozen in liquid nitrogen, cryovials were rapidly thawed in a 37 °C 

waterbath. After the cell suspension was transferred to a sterile centrifuge tube, cold 

working medium was added drop-wise while shaking gently. The cell suspension was 

spun at 1500 rpm (Sigma 204 centrifuge; rotor #11030) for three minutes and the 

supernatant discarded. The cell pellet was resuspended in 10 ml fresh working medium, 

placed in a fresh, sterile tissue culture flask and allowed to grow under standard tissue 

culture conditions.

2.2.5 Immunofluorescence

Murine fibroblasts grown on sterile, ethanol-washed coverslips were rinsed with 

PBS and fixed in freshly prepared 3.7% (v/v) paraformaldehyde/PBS for 10 minutes at 

room temperature. After washing three times in PBS, coverslips were incubated in 

permeabilising buffer and blocking buffer at room temperature for five minutes and one 

hour, respectively. Primary antibody was diluted in blocking buffer at the appropriate 

concentrations (see Table I, Appendix) and added to the coverslips for one hour at room 

temperature, after which coverslips were washed for five minutes in blocking buffer 

followed by 3 x 5 minute washes in PBS.

For indirect immunofluorescence, coverslips were subsequently incubated with 

secondary antibodies diluted in blocking buffer for one hour at the supplier’s 

recommended dilution. Filamentous actin (F-actin) was detected using rhodamine
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phalloidin, which was added with the secondary antibody at 0.2 U/pl per coverslip. After 

subsequent washes in blocking buffer and PBS, coverslips were mounted onto glass slides 

with Vectashield mounting medium containing DAPI. Images were obtained with a Leica 

fluorescence microscope and processed through Adobe Photoshop 6 software.

2.2.6 Quantification o f  Focal Adhesions

After visualising with immunofluorescence (see section 2.2.5), focal adhesions 

were quantified by manually counting the number of focal contacts (< 1 pm ), focal 

adhesions (> 1 pm2) or fibrillar adhesions (> 1 pm in length) in sub-confluent cells. 

Fibroblasts that were in contact with other cells were disregarded for the purpose of this 

quantification. Counts were subsequently used in determining the total number o f focal 

adhesions (focal contacts, focal adhesions and fibrillar contacts) per cell or per cell area. 

Cell area was measured using the public domain ImageJ program, developed at the U.S. 

National Institutes o f Health and available on the Internet at http://rsb.info.nih.gov/ij/.

2.2.7 Measuring cell morphology

Quantification of morphological parameters, including area and circularity of cells, 

was performed using Image J. Circularity was calculated based upon the following 

equation:

perfect circle, whereas values approaching 0 indicate an increasingly elongated polygon.

circularity = 4/rl ( 1)

where A is area (pm2) and P  is perimeter (pm). A circularity value o f 1.0 indicates a
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2.2.8 Total Cell Lysates

Adherent fibroblasts were rinsed with PBS prior to the addition of modified sample 

buffer to lyse the cells. Cells were harvested using a cell scraper and transferred to an 

Eppendorf tube before being sonicated on ice. Protein concentration was determined using 

the Micro BCA assay kit (section 2.2.9), and adjusting solution was added to the samples 

prior to boiling and loading onto SDS-PAGE gels (section 2.2.10).

2.2.9 Determination o f Protein Concentration

Protein concentrations were determined using the Micro BCA Protein Assay Kit 

following the manufacturer’s instructions. Briefly, 10 pi of the sample to be tested, or the 

buffer in which the proteins were solubilised (control), was added to 490 pi of distilled 

water and incubated at 60°C for one hour with 500 pi of the Micro BCA reaction solution. 

After cooling to room temperature, the absorbance of the samples was measured at a 

wavelength of 562 nm, using the control reaction as the reference. Protein concentration 

was quantified by use of a standard curve, which was generated using known 

concentrations of bovine serum albumin (BSA) in the relevant sample buffer.

2.2.10 Polyacrylamide Gel Electrophoresis

SDS-PAGE was carried out according to Laemmli (Laemmli, 1970) in the Mini- 

Protean II system with 1 mm spacers using the components listed (Table II, Appendix). 

Resolving gels were typically 10% polymer, unless otherwise stated, and stacking gels 

were always 5% polymer, using the components listed. Prior to loading onto the gel, an 

equal volume of 2x SDS-PAGE sample buffer was added to samples, after which they 

were boiled for two minutes. Gels were electrophoresed in SDS-PAGE running buffer at a 

constant voltage of 150 V until the bromophenol blue tracking dye reached the bottom of
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the gel. Broad range pre-stained molecular weight markers were run in parallel to monitor 

the process of electrophoresis and ultimately aid in size determination.

2.2.11 SDS-PA GE gel staining

Proteins were visualized directly on SDS-PAGE polyacrylamide and zymogram 

gels following staining with Coomassie Blue stain for approximately 30 minutes. Gels 

were then rinsed in distilled water and washed in destaining solution.

2.2.12 Gelatin Zymograms

Gradient SDS-PAGE gelatin zymograms were produced using the components 

listed (Table III, Appendix), an adaptation of Kleiner and Stetler-Stevenson (Kleiner and 

Stetler-Stevenson, 1994), which provides a method by which to analyse MMP activity on 

denaturing, but non-reducing, gels. A solution o f dissolved porcine gelatin was co­

polymerised with 7.5 and 15% polyacrylamide gels, yielding a final gelatin concentration 

o f 1 mg/ml. TEMED and APS were added to catalyse polymerisation of the acrylamide, at 

which point the 7.5% and 15% polyacrylamide solutions were transferred to a gradient gel 

mixer and poured into a gradient mould containing sufficient numbers of glass plates and 1 

mm spacers for the simultaneous casting of eight gradient zymograms (Cambridge 

Electrophoresis Ltd, Cambridge, UK). The addition o f bromophenol blue into the 15% gel 

allowed the visualisation of the polyacrylamide gradient. After casting, zymograms were 

overlaid with water-saturated butanol and allowed to polymerise for approximately 40 

minutes before removal o f the butanol and addition o f the 5% stack. Sample wells were 

created upon insertion of combs into the stack prior to polymerization. Conditioned media 

isolated from mechanically stimulated and control fibroblasts were concentrated (as 

described in 2.2.19), prepared by dilution into zymogram sample buffer and allowed to
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incubate at room temperature for 10 minutes prior to loading. Determination of the 

concentration of proteins in conditioned media was not possible using classical methods 

because of the presence of interfering substances in DMEM. Consequently, the loading 

volume of individual samples was calculated as described in section 2.2.13. Protein 

molecular weight markers and a gelatinase standard (section 2.2.14) were loaded to aid in 

protein identification and determination o f molecular sizes. In some cases, the loading 

volume of a given sample exceeded 20 jul, in which case the sample was double-loaded. In 

order to ensure that double-loading did not result in the presence of erroneous doublets 

within the gel, molecular weight markers were also double-loaded. Zymograms were 

electrophoresed using the Rapid PAGE System in SDS-PAGE running buffer at a constant 

voltage of 250 V for two hours.

Following electrophoresis, gels were incubated at room temperature for 30 minutes 

in zymogram renaturation buffer, in order to remove SDS and allow for subsequent protein 

refolding. The renaturation buffer was decanted, and the gels were then incubated in two 

changes of zymogram developing buffer: the first for 30 minutes at room temperature and 

the second for 48 hours at 37 °C. Zymograms were washed briefly in distilled water prior 

to staining as described in section 2.2.11.

2.2.13 Normalisation, quantification and statistical analysis ofM M P activity

Determination of protein concentration in conditioned media samples was not 

possible due to the presence of interfering substances, such as phenol red, tyrosine, 

tryptophan, and iron, in the working medium. Consequently, loading volumes of samples 

were normalised for (1) the volume of medium remaining at the end of the 14-hour period, 

since a small amount of the original 30 ml perfusate evaporated during the course o f the 

experiment; (2) fold-concentration of the conditioned medium; and (3) differences in
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growth area, given that the stimulated glass plate was surrounded by a Teflon gasket, 

which reduced the growth area by approximately 20 cm2 compared to the static culture 

dish.

Prior to analysis, zymograms were scanned at 300 dpi on a UMAX PowerLook 

1000 scanner using Adobe Photoshop 6 and the UMAX Magic Scan software interface. 

The volume integration of cleared zones of gelatinolytic activity was subsequently 

quantified using the public domain NIH Image program (http://rsb.info.nih.gov/nih- 

image/). Resultant values were further normalized by subtracting the background 

gelatinase activity present in the mechanical stimulation working medium. Statistical 

analysis of all samples was performed with a Students /-test. Data represent the mean ± 

standard error (SE) from at least three experiments, and differences with p  < 0.05 were 

considered to be significant.

2.2.14 Production o f  gelatinase standard

Conditioned media, used as a positive control for MMP-2 and MMP-9 activity in 

gelatin zymography, was prepared by subculturing a bovine skin fibroblast secondary cell 

line (BOVS-1), kindly provided by Dr. Emma Blain (School of Biosciences, University of 

Cardiff). A frozen stock of BOVS-1 was thawed and maintained for five days under 

standard tissue culture conditions in DMEM supplemented with 10% FCS, at which point 

cells were subcultured at a dilution of 1:10. Following a further five days of incubation, 

culture media was removed from each tissue culture flask and replaced with 10 ml of ITS 

liquid media supplement. Cells were allowed to grow in ITS for a further five days, at 

which point the resultant conditioned culture media was harvested and stored at -20 °C.
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2.2.15 Western Blotting

Protein transfer to PVDF was performed using a semi-dry blotter in transfer buffer 

at a constant voltage of 25 V for 50 minutes. Following transfer, membranes were blocked 

in 5% (w/v) Marvel/Tris buffered saline with Tween-20 (TBST) for one hour at room 

temperature. Incubation with primary antibodies in 5% (w/v) Marvel/TBST was 

performed for one hour at room temperature at concentrations indicated in Table I 

(Appendix). Following extensive washing in TBST, blots were incubated with alkaline 

phosphatase- or horseradish peroxidase (HRP)-conjugated secondary antibodies diluted in 

5% (w/v) Marvel/TBST, according to the manufacturer’s instructions, for 1 hour at room 

temperature. After extensive washing in TBST, immunoreactive bands were detected by 

enhanced chemiluminescence (ECL) or chromogenic substrates.

2.2.16 Western Blot Detection Using Enhanced Chemiluminescence

Proteins were transferred to PVDF and the membranes probed with the appropriate 

primary antibody and a HRP-conjugated secondary antibody as described (see section 

2.2.15). Equal volumes of ECL solutions I and II were mixed and added to the 

membranes for one minute with minor agitation. Membranes were transferred to 

autoradiography cassettes and exposed to Kodak medical film. Film was developed in an 

Optimax 1170 film processor.

2.2.17 Western Blot Detection using Chromogenic Substrates

Proteins were transferred to PVDF and the membranes probed with the appropriate 

primary antibody and an alkaline phosphatase-conjugated secondary antibody as described 

(see section 2.2.15). 132 pi NBT stock was mixed with 10 ml of alkalkine phosphatase

buffer, to which 66 pi BCIP stock was added. Membranes were incubated with this
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solution until immunoreactive bands were of the desired intensity, at which point the 

membranes were washed with distilled water and allowed to dry.

2.2.18 Stripping and re-probing western blots

In cases where western blots were quantified, [3-actin was used as a loading control. 

After probing membranes with anti-sera directed toward a protein of interest and 

visualizing the immunoreactive bands with ECL, primary and secondary anti-sera directed 

to the protein of interest were removed from membranes by washing in TBST and 

incubating in stripping buffer after for one hour at room temperature. Stripped blots were 

then washed extensively in TBST, re-blocked for 1 hour with 5% (w/v) Marvel/TBST, and 

re-probed with anti-sera directed against P-actin.

2.2.19 Concentrating conditioned media

Conditioned media isolated from mechanically stimulated and control fibroblasts 

were concentrated using Amicon Centricon YM-30 centrifugal filter devices according to 

the manufacturer’s instructions. Briefly, 2 ml of conditioned media was placed in the 

sample reservoir and the Centricon device assembled after weighing each component with 

and without the sample. The device was then spun at 2500 rpm in a Sigma 4K15 table-top 

centrifuge using a spin-out rotor (# 11150) for 30 minutes at 4 °C. This resulted in an 

approximate two-fold concentration of the sample. The exact magnitude of concentration 

was determined by calculating the proportion of sample retentate compared to filtrate after 

spinning by weight. The filter device used had a molecular weight cut-off of 30 kDa, such 

that any molecules with a molecular weight exceeding 30 kDa were retained.
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2.2.20 RNA extraction and purification

RNA extractions were carried out with the Absolutely RNA RT-PCR Miniprep kit 

(Stratagene, La Jolla, CA, USA) according to the manufacturer’s instructions. Briefly, 

mechanically stimulated and control fibroblasts were lysed directly on a glass plate in 600 

pi of lysis buffer containing guanidine thiocyanate to denature proteins and prevent RNA 

degradation by ribonucleases. Because of the high viscosity of the lysates, samples were 

homogenised prior to purification by passing the lysate through a 19.5 gauge syringe 

needle. Homogenised lysates were then prefiltered to remove particles and contaminating 

DNA. The resulting filtrate was subsequently transferred to a spin cup containing a silica- 

based fibre matrix to which the RNA bound, making it possible to remove remaining 

protein and DNA contaminants upon a series of washes and treatment with DNase. 

Purified RNA was eluted from the matrix after two successive washes in 40 pi of a low- 

ionic-strength buffer. Isolated total RNA was quantified and qualified by measuring its 

optical density at 260 nm and 280 nm, according to the equation:

C = A260 x Df x CF (2)

where C is the concentration in pg/pl, A260 is the optical density (OD) of the sample at 260 

nm, Dp is the dilution factor used to measure the A260 of the RNA sample, and CF is the 

conversion factor for RNA (0.040 pg/pl per OD26o unit). Contaminating RNases were 

inactivated in solutions upon treatment with 0.1% (v/v) DEPC, and RNaseZap was used 

according to the manufacturer’s instructions to eliminate RNase contamination on work 

surfaces and pipettes.

2.2.21 RNA Amplification and Preparation

Amplification and processing of total RNA was carried out at the Sir Henry 

Wellcome Functional Genomics Facility (SHWFGF) at the University of Glasgow.
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Initially, total isolated RNA (see section 2.2.20) was subjected to two controls: quantity 

was determined using the NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, DE, USA) and quality verified using the BioAnalyzer2100 

(Agilent, Palo Alto, CA, USA). While RNA was of sufficient quality, the quantity was too 

low to obtain sufficient amounts of labelled complementary RNA (cRNA) targets for 

subsequent analysis with probe arrays.

Consequently, RNA was subjected to two rounds of amplification using the 

Superscript RNA Amplification system (Invitrogen). In the first round of amplification, 

complementary DNA (cDNA) was synthesised from total RNA using Superscript II 

Reverse Transcriptase, which synthesises a cDNA strand, primed with an anchored 

oligo(dT) primer containing a T7 promoter, from single stranded RNA. Following second- 

strand cDNA synthesis with Escherichia coli (E. coli) DNA polymerase and ligase, the 

cDNA template was amplified by an in vitro transcription (IVT) reaction. In this reaction, 

a bacteriophage T7 RNA polymerase was used to transcribe cRNA from the cDNA 

template.

The second round of amplification was carried out using the BioArray HighYield 

RNA Transcript Labelling kit (Enzo Life Sciences, Farmingdale, NY, USA) in order to 

produce high levels of hybridisable, biotin-labelled cRNA targets. In this case, 400 ng of 

cRNA generated in the first round of amplification was reverse transcribed using random 

primers, after which the T7-OHgo(dT) primer was used to facilitate double-stranded cDNA 

synthesis. This resultant double-stranded cDNA template containing T7 promoter 

sequences was then subjected to a second IVT reaction, but this time incorporating 

biotinylated ribonucleotides. The labelled cRNA was then purified using RNeasy mini 

columns (Qiagen, Crawley, West Sussex) and fragmented by metal-induced hydrolysis to
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generate 35-200 base fragments, which served to improve the kinetics of hybridisation to 

the gene chip.

2.2.22 Microarray Analysis

Microarray analysis was carried out at the SHWFGF, University of Glasgow. RNA 

samples from three separate control and stimulated experiments for each of the three tissue 

types were analysed on the Affymetrix GeneChip Mouse Expression Set 430, using 

standard Affymetrix protocols. Briefly, after amplification and preparation of target cRNA 

(see section 2.2.21), a hybridisation cocktail was prepared, which contained fragmented 

target cRNA, probe array controls, BSA, and herring sperm DNA to competitively block 

non-specific hybridisation. The probe array controls used were bio-B, bio-C and bio-D, all 

of which are implicated in the biosynthesis pathway of E. coli, as well as Cre from the 

recombinase gene of bacteriophage PI. A synthetic control oligo (B2) was also added to 

the hybridisation solution to generate a grid pattern at the border of the chip, which was 

ultimately used by the analysis software. The hybridisation cocktail was then allowed to 

hybridise to the GeneChip for 16 hours in a 45 °C oven rotating at 60 rpm.

After hybridisation to either the standard (Mouse Expression Set 430) or test arrays 

(discussed further in section 2.2.23), the chips were washed to remove any cRNA that had 

not hybridized to its complementary oligonucleotide probe. Bound cRNA was then 

fluorescently labelled with phycoerythrin-conjugated streptavidin (SAPE). After the initial 

staining with SAPE alone, the chips were incubated with a biotinylated antibody followed 

by additional staining with SAPE, in order to amplify the fluorescent signal. All washing 

and staining was carried out in the GeneChip Fluidics Station 400 (Affymetrix). Washed 

and stained chips were then scanned at 570 nm with the Agilent Gene Array Scanner 2500 

(Affymetrix).
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2.2.23 Statistical Analysis o f Microarrays

After hybridisation of cRNA to the gene chips, several methods were employed for 

quality control and data analysis. First, test arrays were used to assess target quality and 

labelling efficiency for each sample. Following hybridisation, washing, staining, and 

scanning of the test arrays, images were analysed according to five quality control 

parameters: (1) the 375’ ratio of housekeeping genes to assess the efficiency of the cDNA 

synthesis reaction; (2) the presence of control cRNAs (bio-B, C, D and Cre), which were 

spiked into the hybridization cocktail at varying concentrations and served as hybridization 

controls; (3) the background values of the signal intensity caused by autofluorescence of 

the array surface, as well as nonspecific binding of target or stain molecules (SAPE); (4) 

the noise (Q value), which resulted from small variations in the digitized signal observed 

by the scanner as it sampled the probe array’s surface; and finally (5) the scaling factor, 

which provided a measure of the brightness of the array, which can vary from array to 

array. In all cases, the data obtained from the test arrays were deemed satisfactory.

Information provided by the positions and intensities of the fluorescent emissions 

on scanned chips was converted into data relating to levels of gene expression in the 

original samples. This gene expression data, corresponding to the stimulated and control 

groups for tendon, corneal and skin fibroblasts, was compared using FunAlyse, a newly- 

established automated pipeline in SHWFGF

(http://www.gla.ac.uk/functionalgenomics/rp/affy_analysis.html). As a first step of this 

analysis, all 18 samples were normalized using the Robust Multichip Average (RMA) 

method (Irizarry et al., 2003) and differentially expressed genes were subsequently 

identified using the Rank Products (RP) method (Breitling et al., 2004b). For every 

comparison, the RP method ranked the genes according to differential expression measured
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by the non-parametric RP-statistic and assessed the statistical significance by producing 

false discovery rates (FDR). This method is particularly powerful for experiments 

involving small numbers of replicated samples. Differentially expressed functional gene 

classes were identified by iterative Group Analysis (iGA) (Breitling et al., 2004a) and 

assigned using GeneOntology annotations (http://www.geneontology.org/). The A and B 

arrays of the Affymetrix GeneChip Mouse Expression Set 430 were analysed separately.

The RP-generated list of differentially expressed genes (Table 4.2) was cut using 

FDR 10% and was further compared manually to identify the highest up- and lowest down- 

regulated genes in one or more cell lines. Indicated fold-change values correspond to the 

nominal fold-change (FCnom), which is itself obtained from the RMA fold-changes. It has 

been previously demonstrated that fold-changes calculated after RMA analysis are 

significantly lower than the nominal fold-changes calculated from the spiked-in control 

gene concentrations (Cope et al., 2004). Consequently, the relationship between these two 

fold-changes was calculated by a fitting procedure:

log2 (rmaFC) = 0.61 x log2 (FCnom) (3)

Equation (3) was used over all possible between-chip comparisons and, hence, contributed 

to between-group comparisons. Altered genes were manually classified into one of nine 

broad functional groups based upon their functional annotation in the SOURCE (Diehn et 

al., 2003), GenBank (Benson et al., 2004), and Mouse Genome Informatics (Blake et al., 

2003) databases.

2.2.24 Semi-Quantitative RT-PCR

RNA isolated from mechanically stimulated and control fibroblasts (section 2.2.20) 

was reverse transcribed and amplified using the Titan One Tube RT-PCR System (Roche, 

Lewes, East Sussex, UK) according to the manufacturer’s instructions. 10 ng of total RNA
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was used as the template in all reactions. The reverse transcription reaction was carried out 

at 50 °C for 30 minutes in a Biometra T-Gradient thermocycler, followed by denaturation 

for two minutes at 94 °C. The thermocycling conditions included 35 cycles of 10 seconds 

at 94 °C, 30 seconds at 45-65 °C (depending upon the melting temperature of the primer 

pairs used), 45 seconds at 68 °C, which was increased by five seconds for each cycle 

during cycles 11-25, and a final, prolonged elongation cycle of seven minutes at 68 °C. 

RT-PCR was performed using primers specific for each target gene (Table IV, Appendix) 

and conditions were chosen such that all of the RNAs analysed were in the exponential 

phase of amplification.

2.2.25 Primer Selection

The sequences of all primers used in this study were determined using the software 

Primer3 (Rozen and Skaletsky, 2000). Primers were always chosen according to the 

following parameters: length between 18 and 27 bases, optimal 20 bases; melting 

temperature (Tm) between 57 and 63°C, optimal Tm 60°C; length of amplification product 

between 200 and 800 bp; C+G content above 20% and below 80%; maximum self- 

complimentarity 8.0; maximum 3’ self-complimentarity 3.0; stretches of > 5 

mononucleotide repeats were avoided. Sequences were homologous to the RNA of 

interest, as compared with the GenBank database available at the National Center for 

Biotechnology Information (NCBI). All oligonucleotides were synthesized by Operon 

Biotechnologies (Cologne, Germany). Details of these primers are listed in Table IV 

(Appendix).
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2.2.26 Agarose Gel Electrophoresis

DNA samples were separated by non-denaturing electrophoresis on 1% (w/v) 

agarose/tris-acetate-EDTA (TAE) horizontal gels at a constant voltage of 100 V for 20 

minutes. Approximately 80 ng/ml ethidium bromide was incorporated into the 

agarose/TAE solution prior to casting to allow visualization of DNA under UV light 

following electrophoresis. Before dispensing samples on the gel, they were mixed with lx 

Orange G loading buffer. A DNA size ladder (5 pi) was loaded alongside the samples for 

molecular weight determination of the separated bands. Gels were visualized under UV 

light and images captured using a gel documentation system (UVItec, Ltd.).

2.2.27 Mechanical Stimulation

A parallel plate flow chamber, kindly provided by Dr. J. Ando, was used to 

introduce a laminar fluid flow (rate = 0.88 ml/min) over fibroblasts to produce a chamber 

wall shear stress of 0.1 dyn/cm2. Prior to stimulation, fibroblasts were seeded onto gelatin- 

coated glass plates (7 cm x 10 cm) (see section 2.2.28) at an approximate density of 10,000 

cells/cm2. Cells were seeded in WM and allowed to adhere for approximately seven hours. 

Fibroblast-seeded plates were rinsed three times with PBS and transferred to mechanical 

stimulation medium (DMEM, 2% FCS, 500 U/ml penicillin, 500 pg/ml streptomycin) prior 

to incorporation into the flow chamber (Figures 2.1, 3.4). A fluid flow of 0.88 ml/min, 

resulting in a steady shear stress of 0.1 dyn/cm2 (0.01 Pa), was applied to monolayer 

fibroblasts for a duration of 14 hours with the aid of a peristaltic pump (Amersham 

Biosciences). The wall shear stress is proportional to the flow rate and the geometry of the 

channel and can be calculated according to the equation:
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* = ?=? W
6vQ
bh:

where x is shear stress in dyn/cm2, p. is the fluid viscosity (0.01 dyn/cm2), Q is flow rate in 

ml/s, b is the flow channel width (5.5 cm) and h is the flow channel height (0.04 cm). The 

flow perfusate was mechanical stimulation medium and the volume of the perfusate was 30 

ml. Studies were performed in a 37 °C incubator. Static controls were performed similarly 

except the fibroblast-seeded glass plate was transferred to a single-well plate for the 

duration of the experiment. Each experiment was performed at least three times.

2.2.28 Coating Stimulation Plates

Glass plates used in mechanical stimulation reactions were coated with 0.1% (w/v) 

porcine gelatin or 0.1% (w/v) poly-L-lysine (PLL) prior to use. Glass plates were overlaid 

with approximately 7 ml of the gelatin or PLL solution and incubated for 30 minutes at 

room temperature in a sterile tissue culture hood, after which the plates were washed 3 x 

with sterile PBS. Glass plates were seeded with fibroblasts immediately after coating.
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Figure 2.1: An expanded view of the components of 
the parallel plate flow chamber. The flow chamber 
consisted of two metallic frames (a, h), two
polycarbonate components (b, d), two silicone gaskets 
(c, g), one Teflon gasket (e) with a thickness of 0.04 cm, 
a silicon tube (i) which was attached to (b) and 
functioned to trap air bubbles, and a glass plate (f) onto 
which the fibroblasts were seeded. Components are 
listed in the order in which they were assembled, with 
the lower metallic frame forming the base of the flow 
chamber. The flow chamber was created by the Teflon 
gasket (e) which acted as a spacer between the glass 
plate (f) and the lower polycarbonate component (d). 
The inlet and outlet ports of the chamber (b) were 
connected via silicone tubing to a reservoir (j) 
containing the flow perfusate. A peristaltic pump was 
used to pump fluid through the channel.
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Chapter 3 

Morphological characterisation of mechanically stimulated fibroblasts

3.1 Introduction

Despite their broad functional roles and widespread use in culture, fibroblasts are 

very poorly defined. To date, there are no known markers for fibroblasts, mainly due to 

the fact that all potential markers have also been identified in other members of the 

connective tissue cell family, such as osteoblasts, smooth muscle cells, and adipocytes 

(Wolf et al., 2003). To make matters more complicated, the term “fibroblast” has often 

been used to refer to the morphology of a fibroblast-like cell, rather than a specific cell 

type. This definition is based upon the fact that fibroblasts are traditionally considered to 

have a relatively uniform morphology, appearing elongated and spindle-shaped, with 

clear leading and trailing edges, characteristics sometimes shared in cells that are not of 

fibroblastic origin.

The observation that all fibroblasts are created morphologically equal has since 

been shown to be untrue, however, as demonstrated by the morphological differences 

detected between fibroblasts analyzed in vivo and those cultured in vitro (Gabbiani and 

Rungger-Brandle, 1981; Herrmann et al., 1980; Pinto and Gilula, 1972; Ross and 

Greenlee, Jr., 1966). Phenotypic plasticity in fibroblasts is further supported by findings 

that fibroblast populations derived from the same or distinct tissues demonstrate unique 

behaviour and morphology (see Table 3.1). Based upon their tissue localisation, 

fibroblasts have been shown to demonstrate unique responses in culture, such as 

sensitivity to trypsin and EDTA, replication rate, saturation density, attachment 

efficiency, and proliferative capacity (Banes et al., 1988a; Conrad et al., 1977b; Harper 

and Grove, 1979; Riederer-Henderson et al., 1983), discernible morphology (Banes et 

al., 1999a; Conrad et al., 1977b; Smith et al., 1995), differential synthesis of ECM
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Cell Populations Distinguished by Reference

Skin fibroblasts Proliferation rates, morphology (Martin et al., 1974)

Skin and lung fibroblasts Replication rates, [3H]thymidine incorporation 
into DNA, saturation density, cell volume, 
cellular RNA and protein contents, in vitro life 
spans

(Schneider et al., 
1977)

Gingival fibroblasts Cellular response to prostaglandin E2 (Ko eta l., 1977)

Corneal, heart and skin 
fibroblasts

Glycosaminoglycan synthesis, morphology, 
behaviour in monolayer (i.e. directionality, 
contact inhibition), saturation densities, sensitivity 
to trypsin and EDTA, cel 1-surface antigen 
presentation

(Conrad et al.. 
1977a), (Conrad et 

al., 1977b), (Garrett 
and Conrad, 1979)

Papillary and reticular skin 
fibroblasts

Saturation density, proliferative capacity (Harper and Grove, 
1979)

Synovial and internal tendon 
fibroblasts

Attachment efficiency, amount and type of 
collagen synthesis, glycosaminoglycan synthesis

(Riederer-Henderson 
etal., 1983)

Synovial and internal tendon 
fibroblasts

Morphology, presence of cytoplasmic, lipid- 
containing vesicles, decreased sensitivity to 
trypsin, reduced generation time

(Banes eta l., 1988a), 
(Banes et al., 1988b)

Skin, lung and heart fibroblasts Morphology at confluence, protein synthesis, 
proliferation rate, contraction potency in collagen 
gels, ECM protein secretion

(Shimizu K. and 
Yoshizato K„ 1992)

Papillary and reticular gingival 
fibroblasts

Migration, saturation density (Irwin et al., 1994)

Orbital fibroblasts Differential expression of surface glycoproteins, 
change in shape in response to prostaglandin E2, 
morphology

(Smith et al., 1995)

Orbital and dermal fibroblasts Morphology after treatment with compounds that 
increase endogenous cAMP production

(Reddy et al., 1998)

Oral mucosa and skin 
fibroblasts

Proliferation rate, contraction potency in collagen 
gels, effect o f TGF-pi on contraction and 
collagen synthesis

(Lee and Eun, 1999)

Flexor and extensor tendon 
fibroblasts

Synthesis of ECM proteins, effect o f mechanical 
strain on cell proliferation

(Evans and Trail, 
2001)

Myometrial and endometrial 
fibroblasts

Differential expression of surface glycoproteins, 
cytokine production

(Koumas et al., 2001)

Table 3.1: Phenotypic plasticity demonstrated by various fibroblast populations.
Phenotypic variations are found in subpopulations of fibroblasts isolated from the same 
tissue or distinct populations of fibroblasts isolated from diverse tissues. Fibroblasts have 
been shown to demonstrate differences in morphology, proliferation rates, saturation 
density, protein synthesis, antigen presentation, sensitivity to trypsin, response to growth 
factors, and in vitro life spans.
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proteins (Conrad et al., 1977a; Evans and Trail, 2001; Riederer-Henderson et al., 1983), 

and distinct cell-surface antigen presentation and surface receptors (Garrett and Conrad, 

1979; Koumas et a l, 2001).

The aforementioned studies all suggest that fibroblasts from different tissues, as 

well as fibroblast populations within a given tissue, are somehow differentiated. Thus 

far, however, such studies have been largely qualitative. Fibroblasts from different 

tissues have often been compared on a morphological or biochemical level, but only few 

reports exist which have characterised the transcriptional responses o f fibroblast cell 

lines to an exogenous stimulus, and in these cases, the fibroblast populations were all 

derived from the same tissue (Banes et al., 1999a). While this type o f investigation has 

been crucial in furthering the body of knowledge surrounding the possible differentiation 

o f fibroblasts, the scope of techniques currently available, ranging from quantification of 

cell morphology to microarray technology, enable a much more in-depth analysis of 

fibroblast populations.

In order to determine if fibroblasts from distinct tissues exhibit differential 

responses to an identical mechanical stimulus, tendon, skin and comeal fibroblasts were 

subjected to shear stress by fluid flow using a parallel plate flow chamber. This method 

of stimulation is well-documented in the literature, and is characterised by producing 

well-defined, replicable shear stresses (Brown, 2000). Furthermore, the parallel plate 

flow chamber has been successful in eliciting a variety o f cellular responses, ranging 

from changes in morphology to gene and protein expression (Table 3.2).

The following chapter details the isolation and characterisation of the cell lines 

used throughout this study, as well as the optimization of the method of mechanical 

stimulation. In addition, this work qualitatively and quantitatively assesses cell 

morphology, including cell size, shape, multinucleation, proliferation rate and focal
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Stimulation regime
Parameters
measured Cell Type

Magnitude
(dyn/cm2) Reference

Single shear stress for 
maximum of 210 min; 

incremental stress for 165 
and 195 min

Cell adhesion Skin fibroblasts 4.4, 8.8, 17.6, 
26.3

(van Kooten et al., 
1992)

Pulsatile stress applied for 
180 min

Morphology Skin fibroblasts 44 (min); 176 
(max)

(van Kooten et al., 
1993)

Single stress for 1 min with 
rest period of 3 min

Ca2+ transients Ligament
fibroblasts

25 (Hung et a!., 1997)

Single stress applied for 1 h Morphology, 
adhesion, gene and 
protein expression

Osteoblasts 12 (Pavalko et al., 
1998)

Stress applied for 12 h Morphology and 
proliferation

Osteoblasts, 
3T3 fibroblasts

0.1-4.0 (Billotte and 
Hofmann, 1999)

Single stress applied for 5, 
15, 30, 60, and 180 min

Gene expression Osteoblasts 12 (Chen et al., 2000)

Single stress applied for 2, 5 
or 15 min

Protein expression Chondrocytes 16 (Hung et al., 2000)

Stress applied for 1-3 min 
with rest period of 15 min

Ca2+ transients, 
protein expression

Intervertebral 
disc cells

1 ,3 ,5 , 10, 15, 
20, 25

(Elfervig et al., 
2001)

6 h at lowest magnitude; 3 h 
at higher magnitudes

Gene expression, 
cell alignment, 

protein secretion

Tendon
fibroblasts

1-25 (Archambault et al., 
2002b)

Table 3.2: Published instances of the use of parallel plate flow chamber to mechanically 
stimulate cells. The presentation of shear stress to a cell monolayer has been successful in 
stimulating a wide variety of cells, ranging from connective tissue cells to endothelial cells. 
Cell responses to such mechanical stimulus is varied, including both morphological 
responses to changes in gene and protein expression.
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adhesion formation, as well as gelatinase activity. This data provides strong evidence 

that tendon, corneal and skin fibroblasts are morphologically distinct and respond in 

unique ways to an identical mechanical stimulus.

3.2 Results

3.2.1 Isolation o f  primary murine tendon, corneal and skin fibroblasts

In order to investigate the morphology of fibroblasts from diverse tissues, the 

present study utilised primary, as opposed to transformed, cell lines. While the use of 

transformed cells is sometimes advantageous, due to higher growth rates and general 

ease of maintenance, transformed cells, and even primary cells that have been cultured 

extensively, display a loss of morphology and phenotype from the donor tissue 

(Herrmann et al., 1980; Majumdar et al., 1998). To ensure, as much as possible, that the 

cells used in this study reflected their in vivo phenotype, primary tendon, comeal and 

skin fibroblasts were isolated and used at low population doublings throughout this 

study.

Primary embryonic murine fibroblasts were obtained from a time mated CD1 

mouse, which was euthanized at 19 days post-conception. Embryos were detached from 

the embryonic sac, whereupon tail tendon, cornea, and skin were isolated and used in 

production of three fibroblast cell lines (as described in 2.2.1). The isolation procedure 

used here relied upon the rapid adhesion o f fibroblasts, in order to accomplish their 

separation from non-fibroblast-like cells (Spector et al., 1998). Isolated cells were 

grown under standard tissue culture conditions and examined microscopically. As 

shown in Figure 3.1, the isolated cell lines all displayed typical fibroblast morphology; 

cells appear elongated and spindle-like and possess long, filopodial extensions. In 

addition, cells are very clearly polarised, with a distinct leading and trailing edge, and
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appear flattened with an irregular outline. All three cell lines exhibited contact 

inhibition, after which cells maintained the same overall morphology.

While tendon, corneal, and skin fibroblast-like cells were isolated by techniques 

previously demonstrated to generate populations of authentic fibroblasts (Spector et al., 

1998) and displayed typical fibroblast morphology (Figure 3.1), the fibroblastic origin of 

the isolated cells was further substantiated. In lieu of a universal marker for fibroblasts, 

the presence or absence of tissue-specific intermediate filament proteins was used to 

distinguish fibroblasts from other contaminating cell types that could have survived the 

isolation process. This method is based upon the fact that epithelial cells have been 

found to predominantly express keratins (Moll et al., 1982), whereas cells of muscular 

origin express desmin, and mesenchymal cells express vimentin (Osborn and Weber, 

1982).

Primary tendon, corneal and skin fibroblasts, as well as HeLa cells, C2C4 

myoblasts and 3T3 fibroblasts, were lysed directly in their tissue culture vessels and 

subjected to immunoblotting. HeLa cells, C2C4 myoblasts and 3T3 fibroblasts served as 

both positive and negative controls. As shown in Figure 3.2, the cell lines isolated from 

tendon, cornea and skin are devoid of desmin and keratin intermediate filaments, but are 

rich in vimentin. This indicates that the isolated cell lines are not contaminated by 

epithelial or muscle-derived cells and confirms the mesenchymal origin of the isolated 

cell lines. While the presence of vimentin does not itself distinguish fibroblasts from 

other mesenchymal cells, such as monocytes, macrophages and lymphocytes, the 

existence of this intermediate filament, in conjunction with the isolation protocol and 

fibroblastic morphology of the isolated cell lines, is sufficient in confirming that these 

cells are likely to be fibroblasts.
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Figure 3.1: Phase contrast images o f isolated tendon, corneal and skin fibroblasts. 
Cells were isolated as described in section 2.2.1, cultured under standard tissue culture 
conditions, and imaged. Scale bars = 100 |im.
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3.2.2 Determination o f method o f  mechanical stimulation

There are numerous ways in which to mechanically stimulate cells in vitro, 

including compressive loading, stretch, substrate distension and fluid shear (Brown, 

2000). In this study, we have chosen to employ fluid shear as the method by which to 

mechanically stimulate primary tendon, corneal and skin fibroblasts. While this method 

is not necessarily physiologically relevant to all three tissues, it is thought that tendon 

fibroblasts may experience shear stress as the tendon moves within its sheath or as 

individual fascicles move past one another (Archambault et al., 2002b; Benjamin and 

Ralphs, 1997). Furthermore, tendon and skin fibroblasts have been shown previously to

a-Desmin

a-Keratin

a-Vimentin

Figure 3.2: Western blot indicating the presence of
intermediate filament proteins in various cell lines. 
Fibroblasts were isolated (as described in 2.2.1) and 
maintained under standard tissue culture conditions. 
Total cell lysates were prepared from tendon, corneal and 
skin fibroblast cell lines, as well as HeLa cells, 3T3 
fibroblasts, and C2C4 myoblasts. Proteins were separated 
by SDS-PAGE, transferred to PVDF, and probed with the 
indicated anti-sera.
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respond to fluid flow (Archambault et al., 2002a; Grierson and Meldolesi, 1995). 

Regardless, the fact that this type of stimulation may not be experienced by each of these 

cells in vivo is not necessarily relevant; this study aims to compare the response of three 

cell lines to an identical mechanical cue in order to determine if the generated responses 

are similar or distinct.

In order to generate fluid flow, two mechanical stimulation systems were tested. 

In the first instance, the Starwheel cell culture system was used, which is a novel three- 

dimensional culturing system capable of generating shear stresses by fluid flow (Figure 

3.3). This system consisted of three-dimensional matrices in which cells could be seeded 

and, theoretically, cultured to high densities. The matrices were immobilised in a star­

wheel assembly, which was rotated through the growth medium with the aid of a 

magnetic stirrer. By altering the rate at which the starwheel assembly rotated through the 

growth media, the fluid flow both through and around the matrices increased, as did the 

shear stresses presented to the cells resident within the matrices. This system initially 

appeared to surpass other available shear stress systems because of its three-dimensional 

growth substrate and potential to grow cells to such high density. In practice, however, it 

became clear that the shear stresses produced in this system were difficult to quantify. 

For example, calculation of the magnitude of mechanical stimulation being presented to 

the cells cultured in the system was difficult, given that each cell occupied a unique and 

distinct location in the three-dimensional matrix, and hence would sense completely 

unique mechanical cues. Moreover, imaging cells in the three-dimensional scaffold was 

difficult, the volumetric fluid requirement was high, the three-dimensional matrices were 

difficult to clean, and trypsinisation or cell lysis resulted in low yields.
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Figure 3.3: The Starwheel cell culture system, 
used initially as a method by which to subject 
primary tendon, corneal and skin fibroblasts to 
shear stress. The system is composed o f a two­
armed flask containing a star-wheel assembly, 
onto which tuning fork assemblies are mounted. 
Cells grow within porous disks, whose three- 
dimensional structure is said to mimic the three- 
dimensional structure o f bone marrow. (Images 
adapted from
http://www.cygenics.com/cellsciences)

In order to overcome these difficulties, subsequent mechanical stimulation was 

achieved using the parallel plate flow chamber. This system is well-documented and 

used to apply a well-defined, reproducible laminar flow over cell monolayers based upon 

a pressure differential between two slit openings at either end o f a rectangular chamber 

(Figure 3.4) (see section 2.2.27) (Brown, 2000). Despite the fact that the parallel plate 

flow chamber had a two-dimensional growth surface, it provided significant advantages 

over the Starwheel system, in that the stress stimulus was homogenous across the 

monolayer, perceived stresses were easy to calculate, the system had a small volumetric 

requirement, and sampling and exchange o f medium was easy. Furthermore, the parallel 

plate flow chamber is well documented in the literature and has been used in the 

production o f mechanical stimulus for a wide variety o f cell types, including members o f 

the connective tissue cell family (Table 3.1).
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V

Media Reservoir

Pump *

5 cm
Chamber

Figure 3.4: Parallel plate flow chamber used to produce laminar 
fluid flow over fibroblast monolayers. The system was 
interfaced with a paristaltic pump, which created a pressure 
differential between two slit openings in the rectangular chamber, 
thus creating laminar flow o f medium over the cell monolayer. 
The flow perfusate was contained within a glass reservoir. The 
cham ber’s components are detailed in section 2.2.27 or Figure

3.2.3 Optimising mechanical stimulation by laminar flu id  flow

After determining the method o f  stimulation to be used throughout this study, it 

was necessary to optimise the magnitude o f stimulation and culture conditions, in order 

to maximise the mechanical cue presented to the cells while minimising potential cell 

damage.

3.2.3.1 Magnitude o f  stimulation

In initial mechanical stimulation experiments, primary fibroblasts were 

subcultured until passage number five, at which point they were seeded onto two glass

2 . 1 .
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plates and allowed to adhere for approximately seven hours. The fibroblast-seeded 

plates were then rinsed with PBS and overlaid with mechanical stimulation medium. 

One plate was incorporated into the parallel plate flow chamber and subjected to a shear 

stress of 1 dyn/cm2 for 24 hours, while the other plate was placed in a single well plate 

and maintained under standard tissue culture conditions to act as a control. The 

magnitude and duration of stimulation used in this initial study were chosen because they 

lie within the range previously observed to elicit morphological and gene and protein 

expression changes in fibroblasts (Table 3.1). Upon examination of the cells following 

stimulation, however, it was clear that this magnitude of fluid flow resulted in complete 

loss of cells from the glass substrate (data not shown).

Consequently, lower magnitudes of stimulation were tested, and the glass plate 

onto which fibroblasts were seeded was coated with either 0.1% poly-L-lysine or 0.1% 

gelatin to facilitate cell adhesion (section 2.2.28). As illustrated in Figure 3.5, the 

number of adherent cells after stimulation varies with the magnitude of fluid flow. 

Stimulation at 0.5 dyn/cm2 results in a decrease in cell density compared to the control, 

in which cells not only remained adhered but also appear to have proliferated.

While there were notably more adherent cells remaining after 24 hours at 0.5 

dyn/cm2 as opposed to the higher magnitude of 1 dyn/cm2, this was, nonetheless, an 

unacceptable reduction in cell number. In contrast, cells stimulated with a fluid flow of 

0.1 dyn/cm2 display comparable cell density to the control. Because fibroblasts 

remained adhered to the substrate and still demonstrated typical fibroblast morphology 

after 24 hours of fluid flow, the magnitude of stimulation used hereafter in this study was 

0.1 dyn/cm2.

71



Chapter 3: Morphological characterisation o f  mechanically stimulated fibroblasts
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Figure 3.5: Phase contrast images o f  control and stimulated tendon fibroblasts at two 
magnitudes o f fluid flow. Fibroblasts were cultured until passage number five under 
standard tissue culture conditions, at which point they were seeded onto gelatin-coated 
glass plates. Cells were imaged after being allowed to adhere for approximately seven 
hours, but before stimulation (0 h). Cells were then placed either in a single well plate 
(control) or subjected to 24 hours o f fluid flow at the indicated magnitudes (stimulated). 
Cells were subsequently imaged (24 h) to examine the effect o f flow rate on cell density. 
The arrow indicates the direction o f fluid flow. Scale bar = 100 pm.
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3.2.3.2 Foetal ca lf serum concentration

Following the determination of a suitable magnitude for stimulation, specific cell 

culture conditions were analysed in order to facilitate analysis of cellular responses to 

stimulation, while still maintaining healthy cells. Prior to stimulation, primary 

embryonic fibroblasts were maintained in DMEM supplemented with 15% FCS. In 

initial stimulation experiments, this working medium was also used as the flow 

perfusate. With this level o f serum supplementation, however, subsequent proteomic 

analysis was increasingly difficult, because the levels of secreted proteins in the 

conditioned medium were overshadowed by the high protein levels already present in the 

medium. Consequently, the concentration of FCS used in the flow perfusate was 

optimised, in order to minimise background protein levels, while maintaining healthy 

fibroblast populations and eliciting quantifiable mechanical responses.

In this series of experiments, primary fibroblasts were transferred from DMEM 

supplemented with 15% FCS to DMEM supplemented with either 0.1% or 2% FCS 

immediately prior to stimulation. According to Figure 3.6, it is evident that decreasing 

the concentration o f FCS to 0.1% results in a dramatic loss of fibroblasts from the 

substrate, either with or without stimulation. When supplemented with 0.1% FCS, the 

cell density o f control fibroblasts at 24 h was approximately half of that seen prior to the 

stimulation experiment, while virtually all stimulated cells appear to have washed off the 

substrate. With the higher concentration of FCS, however, the cell density both before 

and after the stimulation experiment is comparable, and cells remained adhered to the 

substrate even in the presence of fluid flow. Consequently, the flow perfusate used in 

subsequent stimulation experiments was DMEM supplemented with 2% FCS, which 

enabled adhesion to the substrate while facilitating subsequent examination of protein 

levels in the conditioned medium. Furthermore, previous reports have shown that serum
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Oh 24 h

Figure 3.6: Phase contrast images o f control and stimulated embryonic fibroblasts.
Fibroblasts were cultured until passage number five, at which point they were seeded 
onto gelatin-coated glass plates. Cells were imaged after being allowed to adhere for 
approximately seven hours (0 h) and were then overlaid with DMEM supplemented with 
either 0.1% or 2% FCS. Control cells were placed in a single well plate, while 
stimulated cells were subjected to 24 hours o f fluid flow at 0.1 dyn/cm . Cells were 
imaged after the stimulation experiment (24 h) to examine the effects o f serum levels on 
cell adhesion after stimulation. The arrow indicates the direction o f  fluid flow. Scale bar 
= 100 pm.
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levels can modulate the mechanosensitivity of connective tissue type cells (Allen et al.,

2000). In this study, bone cells pre-treated with 2% serum prior to flow stimulation were 

found to demonstrate the maximal mechanical response in comparison to cells pre­

treated with 10% or 0% serum.

3.2.33 Substrate coating

In order to aid in cell attachment, glass stimulation plates were coated with either 

poly L-lysine (PLL) or gelatin. PLL was employed to provide a positively charged 

surface that would allow for non-specific fibroblast attachment. However, proteins 

sometimes lose biological activity when they bind to surfaces in a non-specific manner. 

Consequently, gelatin was also used, which allows for specific fibroblast attachment to 

the substrate. In order to test these two substrates, corneal fibroblasts were subcultured 

until passage number five, at which point they were seeded onto PLL- or gelatin-coated 

glass plates and allowed to adhere for approximately seven hours. Fibroblasts were then 

overlaid with DMEM supplemented with 2% FCS and either placed in a single well 

plate or mechanically stimulated at 0.1 dyn/cm for 24 hours. As apparent from Figure 

3.7, control corneal fibroblasts appear healthy and demonstrate typical fibroblast 

morphology at both time points, irrespective of the substrate onto which the cells were 

seeded. After 24 hours of stimulation, however, cells seeded onto PLL exhibit a 

dramatic decrease in cell density and those that remain exhibit an increasingly rounded 

morphology. Corneal fibroblasts plated on gelatin, however, still appear healthy and 

demonstrate typical elongated, spindle-like morphology after 24 hours of fluid flow. As 

a consequence, glass stimulation plates were coated with 0.1% gelatin prior to seeding 

cells for the duration of the mechanical stimulation experiments in this study.
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Oh 24 h

Figure 3.7: Phase contrast images o f control and stimulated corneal fibroblasts.
Fibroblasts were cultured until passage number five, at which point they were seeded 
onto either 0.1% gelatin- or 0.1% PLL-coated glass plates. Cells were allowed to adhere 
for approximately seven hours, at which point they were transferred to mechanical 
stimulation medium. Control cells were placed in a single well plate, while stimulated 
cells were subjected to 24 hours o f fluid flow at 0.1 dyn/cm . Cells were imaged both 
before (0 h) and after (24 h) the stimulation experiment. The arrow indicates the 
direction o f fluid flow. Scale bar = 100  pm.
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3.2.3.4 Duration o f stimulation

Initially, the duration of mechanical stimulation was chosen to be 24 hours, in 

order to allow measurement of both gene and protein expression changes. It was 

subsequently determined, however, that protein expression changes could be measured 

after 14 hours (see sections 3.2.6, 4.2.12, 4.2.13), so subsequent stimulation experiments 

were carried out accordingly.

3.2.4 Qualitative morphological examination o f mechanically stimulated fibroblasts

After optimising stimulation conditions (section 3.2.3), all subsequent mechanical

stimulation experiments were carried out in the following manner: tendon, corneal and 

skin fibroblasts were subcultured until passage number five, at which point they were 

seeded onto 0.1% gelatin-coated glass plates. Cells were imaged after being allowed to 

adhere for approximately seven hours, at which point they were shifted into mechanical 

stimulation medium. Control cells were placed in a single well plate and maintained 

under standard tissue culture conditions, while stimulated cells were subjected to 0.1 

dyn/cm2 of shear stress in a parallel plate flow chamber for 14 hours.

Initially, the effect of mechanical stimulation on the gross morphology and 

directionality of tendon, corneal and skin fibroblasts was investigated (Figures 3.8-3.10, 

3.12-3.15), after which the effect of stimulation on the actin cytoskeleton (Figure 3.11) 

and focal adhesion formation (Figures 3.15-3.16) was examined. In the case of the gross 

morphological studies, live cells were imaged either just prior to or just following the 14- 

hour stimulation experiment. To enable visualisation of the actin cytoskeleton and focal 

adhesion formation, however, cells were fixed immediately after the simulation 

experiment and stained with rhodamine phalloidin or anti-sera directed against vinculin, 

respectively.
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3.2.4.1 Gross morphology o f  tendon fibroblasts

Prior to stimulation, tendon fibroblasts demonstrate a large variability in cell size 

and shape with irregular, yet smooth, cell outlines (Figure 3.8). Based upon morphology 

alone, two populations o f tendon fibroblasts appear to exist: the first comprises 

elongated, spindle-like cells, while the other population consists o f larger and more 

rounded cells. After 14 hours, cell density o f both control and stimulated cells appears to 

increase. Furthermore, both control and stimulated cells appear to be more rounded after 

14 hours, which may have resulted from the decreased serum levels in the flow perfusate 

(MSM). There does not appear, however, to be a gross morphology change with 

stimulation and cells do not seem to align in the direction o f flow (see section 3.2.5.2).

Oh 14 h

Figure 3.8: Phase contrast images o f control and stimulated tendon
fibroblasts before (0 h) and after (14 h) being subjected to 0.1 dyn/cm" o f 
fluid flow for 14 hours. Arrow indicates direction o f flow. Scale bars = 
100 pm.
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3.2.4.2 Gross morphology o f corneal fibroblasts

In contrast to tendon cells, which demonstrate relatively smooth cell outlines, pre­

stimulated corneal fibroblasts contain long, hair-like protrusions, which make their cell 

outline considerably more “jagged” in appearance (Figure 3.9). Additionally, there 

appear to be fewer rounded corneal fibroblasts; instead, the cell population seems to 

contain more elongated cells. After 14 hours, the “jagged” morphology seems to have 

lessened and the presence o f rounded cells appears to have increased in control 

fibroblasts, perhaps a consequence o f decreased serum levels. As seen with tendon 

fibroblasts, the cell density o f control cells appears to have increased slightly. In 

stimulated corneal fibroblasts, cell shape appears even smoother and more rounded than 

in controls, and it is difficult to identify any hair-like protrusions.

Oh 14 h

Figure 3.9: Phase contrast images o f control and stimulated corneal 
fibroblasts before (0 h) and after (14 h) being subjected to 0.1 dyn/cm2 
o f fluid flow for 14 hours. Arrow indicates direction o f flow. Scale 
bars = 100 pm.
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3.2.4.3 Gross morphology o f skin fibroblasts

As with tendon and comeal fibroblasts, skin cells prior to simulation demonstrate 

variable cell size and irregular cell shape (Figure 3.10). In this case, a greater population 

o f rounded cells seems to exist, with a notable number o f stellate-shaped cells. On the 

whole, there are very few elongated, spindle-like cells in this population. The 

morphology o f skin fibroblasts appears to lie somewhere between that demonstrated by 

tendon and comeal cells; the outline o f skin cells is somewhat jagged, and some cells 

demonstrate the hair-like protrusions mentioned previously (3.2.4.2). Cell morphology 

seems to become more rounded and flattened in control cells after 14 hours, and there 

appears to be a slight increase in cell density. As with tendon and comeal fibroblasts,

Oh 14 h

Figure 3.10: Phase contrast images o f control and stimulated skin
fibroblasts before (0 h) and after (14 h) being subjected to 0.1 dyn/cm2 
o f fluid flow for 14 hours. Arrow indicates direction o f flow. Scale 
bars = 100 pm.
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there does not seem to be any gross morphological change upon stimulation. There do, 

however, appear to be confluent regions where cells share similar alignment. This is 

unlikely to be due to stimulation, however, since alignment does not correlate with the 

direction of flow and similar regions are also seen in control cells.

3.2.4.4 Effect o f stimulation on the actin cytoskeleton

The actin cytoskeleton functions in a wide variety of cellular processes, including 

movement, shape determination, formation of surface structures, such as filopodia and 

microvilli, adhesion, and cytokinesis. It is not surprising, then, that organisation of the 

actin cytoskeleton has been previously shown to alter with fluid shear stress (Davies et 

al., 1994; McGarry et al., 2005; Pavalko et al., 1998).

In order to visualise the actin cytoskeleton in control and stimulated tendon, 

corneal and skin fibroblasts, cells were fixed and subsequently stained with rhodamine 

phalloidin, which allowed for the visualisation of F-actin. Prior to stimulation, all three 

primary fibroblast cell lines show very prominent, highly organised stress fibres (Figure 

3.11). Tendon and corneal fibroblasts appear to demonstrate more intense cortical actin 

staining as opposed to skin fibroblasts, which have more uniform staining. Somewhat 

surprisingly, mechanical stimulation does not seem to have an effect on the gross 

organisation or abundance of stress fibres; in all three cell lines, phalloidin staining 

reveals prominent, organised stress fibres, very similar to that seen in control cells. In all 

cases, F-actin stress fibres were oriented roughly parallel to the long axis of the cell, but 

not in the direction of flow as seen in previous studies (Birukov et al., 2002; Pavalko et 

al., 1998).
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Control Stimulated

Figure 3.11: Organisation of the actin cytoskeleton in mechanically stimulated tendon, 
corneal and skin fibroblasts. Cells were seeded onto gelatin-coated glass plates and 
allowed to adhere for approximately seven hours. Control cells were placed in a single 
well plate for the duration of the experiment, while stimulated cells were subjected a shear 
stress of 0.1 dyn/cm2 for 14 hours. Control (a, c, and e) and stimulated (b, d, and f) 
fibroblasts were fixed and stained with rhodamine phalloidin and DAPI to visualise F-actin 
and the nucleus, respectively. Arrow indicates direction of flow. Scale bar = 50 pm.
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3.2.5 Quantitative morphological examination o f mechanically stimulated fibroblasts 

In addition to the qualitative assessment of cell morphology in control and 

stimulated tendon, corneal and skin fibroblasts, several morphological parameters, 

including multinucleation of cells, proliferation rate, cell area and circularity, and focal 

adhesion formation, were quantified.

Control

Stimulated

T

■ 1
Tendon Cornea Skin

Figure 3.12: Effect of mechanical stimulation on
multinucleation of primary fibroblasts. After seeding 
fibroblasts onto gelatin-coated glass plates and 
allowing cells to adhere, stimulated cells were 
subjected to a constant shear stress of 0.1 dyn/cirr for 
14 hours. Cells were then fixed, stained with DAP1 
to enable visualisation of the nucleus, and the 
proportion of multinucleated cells determined. 
Values are represented as mean percentage of 
multinucleated cells (±SE). Both control and 
stimulated tendon fibroblasts contain significantly 
more multinucleated cells than the other two cell 
lines. Significant differences between means are 
indicated. *, p  < 0.01 (n = 2; for each experiment, 
approximately 1300 cells were counted per sample).
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3.2.5.1 Multinucleation alters with cell type but not with mechanical stimulation in

primary fibroblasts

During culture and following stimulation of primary tendon, corneal and skin 

fibroblasts, it was observed that a notable proportion o f cells contained multiple nuclei. 

Consequently, the multinucleated cell population was quantified, in order to determine if 

the number altered with cell type or upon the application of mechanical stimulation. To 

achieve this, control and stimulated fibroblasts were fixed and stained with DAPI to 

allow for visualisation of the nucleus, and the number o f multinucleated cells as a 

percentage of the total cell population was determined. Counts were obtained after the 

14-hour stimulation experiment. According to the data represented in Figure 3.12, both 

control and stimulated tendon fibroblasts demonstrate a significantly larger proportion of 

multinucleated cells in comparison to corneal and skin fibroblasts. Furthermore, there 

appears to be a trend of increased proportions of multinucleated cells with stimulation in 

tendon and corneal fibroblasts, though this increase was not statistically significant 

(Students /-test). Consequently, it appears that multinucleation differs between cell lines, 

but does not alter significantly upon mechanical stimulation by fluid flow.

3.2.5.2 Mechanical stimulation does not alter the cell density ofprimary fibroblasts

The effect o f mechanical stimulation by fluid flow on the cell density of tendon, 

corneal and skin fibroblasts was assessed by observing the change in cell number after 

the 14-hour stimulation experiment. Live cells were imaged and manually counted 

before and after stimulation, and the change in cell density determined. According to 

Figure 3.13, control cells demonstrate approximately 20-30% increases in cell density. 

Stimulated tendon and skin cells display slightly lower cell numbers, with an 

approximate 10% increase in cell density. In contrast, corneal fibroblasts demonstrate a
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slight reduction in cell density with stimulation. While there appears to be a general 

trend o f a reduction in cell density with stimulation, neither the differences observed 

between control and stimulated cells, nor the variations between cell lines, are 

statistically significant.

160

Tendon Cornea Skin

Figure 3.13: Effect o f mechanical stimulation on cell density o f 
control (C) and stimulated (S) tendon, corneal and skin 
fibroblasts. After seeding fibroblasts onto gelatin-coated glass 
plates and allowing cells to adhere, stimulated cells were 
subjected to a constant shear stress o f 0.1 dyn/cm2 for 14 hours. 
Live cells were imaged before and after the stimulation 
experiment and the change in cell density determined. Values 
are represented as mean change in cell density (± SE). 
Differences between means are not significant (Students /-test), 
n = 4, n = 5 and n = 3 for tendon, comeal and skin cell lines, 
respectively; approximately 1300 cells were counted per sample.
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3.2.5.3 Mechanical stimulation does not alter the area but increases the roundedness o f

tendon, corneal and skin fibroblasts

Following examination of the effect of stimulation on multinucleation and 

proliferation rates, changes in cell morphology were also quantified. In order to achieve 

this, live cells were imaged before and after the stimulation experiment, and various 

morphological parameters, including cell area and circularity were measured using 

ImageJ (Abramoff M.D. et al., 2004). As previously stated in section 2.2.7, circularity 

was calculated according to the equation:

(circularity = 4 n  —-  (1)
\P  )

where A is area (pm2) and P is perimeter (pm). A circularity value of 1.0 corresponds to 

a perfect circle, whereas values approaching 0 indicate an increasingly elongated 

polygon.

Prior to stimulation, it is evident that the three cell lines are morphologically 

distinct (Figure 3.14). Skin cells, for example, have a significantly larger area than 

tendon or corneal fibroblasts. Furthermore, tendon and skin fibroblasts are significantly 

more rounded as compared to corneal cells. This data is in agreement with the visual, 

morphological assessment of the three fibroblast cell lines discussed previously (3.2.4.1- 

3.2.4.3).

Following the 14-hour stimulation experiment, however, it becomes possible to 

observe differences within and between cell lines, both as a result of mechanical 

stimulation and also serum deprivation, since the mechanical stimulation medium 

contains reduced FCS levels. In considering control cells before and after the 

stimulation experiment, all three cell lines demonstrate an increase in cell area (Figure

3.14). Because this increase is seen in both control and stimulated cells, it is likely to be
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Figure 3.14: Effect of serum levels and mechanical stimulation on the area and
circularity of control (C) and stimulated (S) tendon, corneal and skin fibroblasts. Cells 
were imaged both before (0 h) and after being subjected to a shear stress of 0.1 dyn/cm2 
for 14 hours (14 h). Control cells were maintained in a single well plate for the duration 
of the experiment. Area and circularity were measured using ImageJ (Abramoff M.D. et 
al., 2004). Data is represented as mean area or circularity (± SE). Significant 
differences between means are indicated, as determined by a Students /-test. *,p<  0.05; 
**,p < 0.01; ***,£> < 0.001; n = 3 and approximately 200 cells were counted per sample.
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a serum deprivation response. Nonetheless, this observation is interesting since skin 

fibroblasts responded to decreased serum levels with a significantly larger increase in 

cell size as compared to tendon and corneal fibroblasts. As apparent from Figure 3.14, 

fluid flow does not induce a further change in cell area in any cell line.

In considering the roundedness or circularity of the cells, it appears that serum- 

deprivation has a variable effect on the three fibroblast cell lines. Tendon and skin 

fibroblasts, for example, do not demonstrate any change in roundedness with decreased 

serum levels. Corneal cells, on the other hand, are more rounded with lower 

concentrations o f serum (Figure 3.14). Furthermore, mechanical stimulation appears to 

have no effect on the roundedness of skin cells, but tendon and comeal fibroblasts are 

increasingly rounded with fluid flow. Again, this is in agreement with the visual 

morphological assessment discussed previously (3.2.4.1-3.2.4.3), which further 

substantiates that the roundedness o f cells differs significantly between tendon and 

comeal, comeal and skin, but not skin and tendon fibroblasts.

3.2.5.4 Focal adhesions vary with cell type and stimulation

Previous investigators have shown that focal adhesions are remodelled in 

response to fluid flow, suggesting that these sites of cell attachment may be important in 

mechanotransduction (Butcher et al., 2004; Haier and Nicolson, 2002). Several “types” 

of focal adhesions have been identified and can be classified based upon their protein 

constituents and their size (Wozniak et al., 2004). For the purpose o f this study, focal 

adhesions were classified into three broad types based upon size alone: focal complexes, 

which are small in size (< 1 pm) and typically exist at the periphery o f spreading or 

migrating cells; focal adhesions, which are “mature” adhesions (> 1 pm) typically found 

both at the cell periphery and more centrally, associated with the ends of stress fibres;
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Figure 3.15: Effect of mechanical stimulation on the abundance of focal contacts
(arrow), focal adhesions (diamond) and fibrillar adhesions (arrowhead), as shown in (a). 
Fibroblasts were seeded onto gelatin-coated glass plates and allowed to adhere for 
approximately seven hours. Control cells were placed in a single well plate for the 
duration of the experiment (a, c, and e), while stimulated cells were subjected a shear 
stress of 0.1 dyn/cm2 for 14 hours (b, d, and f). Control and stimulated fibroblasts were 
fixed and stained with an anti-vinculin monoclonal antibody (green) and counterstained 
with rhodamine phalloidin (red) and DAPI (blue) to visualise focal adhesions, F-actin 
and the nucleus, respectively. Arrow indicates direction of flow. Scale bar = 50 p.m. See 
Figure A (Appendix) for mouse secondary antibody controls.
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and fibrillar adhesions, which appear as elongated focal adhesions and are usually found 

at the periphery of the cell. When not otherwise specified, the term “focal adhesion” 

refers to focal contacts, focal adhesions and fibrillar adhesions, collectively.

Because o f the implication of focal adhesions in mechanotransduction, the effect 

of cell type and mechanical stimulation on the abundance of focal adhesions in tendon, 

corneal and skin fibroblasts was investigated. To achieve this, control and stimulated 

cells were fixed and stained with an antibody directed against vinculin, a universal focal 

adhesion marker (Figure 3.15). Focal adhesions were then manually quantified using 

ImageJ (Figure 3.16).

As is apparent from Figure 3.15, both control and stimulated tendon, corneal and 

skin fibroblasts show abundant focal complexes, focal adhesions and fibrillar adhesions. 

Focal contacts and fibrillar adhesions appear at the periphery of control and stimulated 

cells from all three cell lines, whereas focal adhesions appear both at the periphery and in 

the centre of the cell. In most cases, focal contacts, focal adhesions and fibrillar 

adhesions associate with the ends o f stress fibres.

From visual inspection alone, however, it is difficult to ascertain if stimulation or 

cell type impacts the abundance of focal adhesions. Consequently, the number of focal 

contacts, focal adhesions and fibrillar adhesions present on sub-confluent cells was 

determined manually, by counting the focal adhesions present in sub-confluent control 

and stimulated cells. According to Figure 3.16, mechanical stimulation does not appear 

to have an effect on the number of focal adhesions per cell in tendon and skin fibroblasts. 

By contrast, corneal fibroblasts show a marked increase in the abundance of focal 

adhesions with stimulation. Interestingly, there is also a significant difference in the 

number of focal adhesions per cell between the three cell lines. Control tendon cells 

demonstrate increased numbers o f focal adhesions per cell when compared to corneal
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Figure 3.16: Total number and classification of focal adhesions in control and 
stimulated tendon, corneal and skin fibroblasts. Fibroblasts were seeded onto 
gelatin-coated glass plates and allowed to adhere for approximately seven hours. 
Control cells were placed in a single well plate for the duration of the 
experiment, while stimulated cells were subjected a shear stress of 0.1 dyn/cnr 
for 14 hours. Control and stimulated fibroblasts were stained with an anti- 
vinculin monoclonal antibody and focal contacts (FC; < 1 pm2), focal adhesions 
(FA; >1 pm2) and fibrillar adhesions (Fibrillar; > 1 pm in length) were counted. 
Data is represented as the mean number of focal adhesions per cell (A), mean 
number of focal adhesions per cell area (B), and percent composition of the 
different types of focal adhesions per cell (C) (± SE). Means that differ 
significantly are indicated. *,/? < 0.05; **, p < 0.01; ***,p < 0.001; n= 3 and 
the focal adhesions in 20 cells were measured for each sample.
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fibroblasts, while both control and stimulated skin fibroblasts display increased numbers 

o f focal adhesions when compared to corneal fibroblasts.

In order to investigate focal adhesion formation in more detail, the proportions of 

different types of focal adhesions per cell was also quantified. From initial inspection of 

Figure 3.16, it is obvious that focal contacts are most abundant type of focal adhesion, 

constituting approximately 70% of the total adhesions in each cell line. Fibrillar 

adhesions are the second most abundant type of adhesion, while focal adhesions form the 

smallest constituent. According to this quantification, the abundance of focal contacts 

does not vary significantly between cell lines, and only corneal fibroblasts demonstrate a 

statistically significant increase in focal contacts with stimulation. In contrast, the 

amount o f focal adhesions per cell is not affected by stimulation but does demonstrate 

cell-line specific variation. Control corneal fibroblasts have higher amounts of focal 

adhesions when compared to tendon and skin cells, whereas stimulated corneal and skin 

fibroblasts show increased focal adhesions compared with tendon fibroblasts. Fibrillar 

adhesions demonstrate the most variation, both between cell lines and upon stimulation. 

After being subjected to 14 hours of laminar fluid flow, corneal fibroblasts demonstrate a 

reduction in fibrillar adhesions. When comparing the cell lines to one another, however, 

it is apparent that control and stimulated tendon fibroblasts have larger numbers of 

fibrillar adhesions in comparison to control and stimulated corneal and skin cells.

3.2.6 Gelatinase activity increases with mechanical stimulation in primary fibroblasts

In addition to morphological changes discussed above, matrix metalloproteinase 

activity has also been shown to alter with mechanical stimulation in a variety of cell 

types (Archambault et al., 2002b; Blain et al., 2001; Prajapati et al., 2000a; Lambert et 

al., 2001). Consequently, the effect of shear stress on gelatinase (MMP-2, MMP-9)
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Figure 3.17: Detection of MMP-2 and MMP-9 activity by gelatin zymography.
Samples of conditioned medium from control (C) and stimulated (S) tendon, corneal and 
skin fibroblasts were resolved on 7.5-15% gradient gelatin zymograms. A sample of 
mechanical stimulation medium (WM) was also resolved to indicate background levels 
of gelatinase activity. Tendon and skin zymograms contain WM, C and S samples from 
three replicate experiments, while the corneal zymogram contains samples from four 
replicate experiments.
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activity in tendon, comeal and skin fibroblasts was investigated. To achieve this, 

conditioned medium from control and stimulated cells, as well as a sample of the flow 

perfusate prior to stimulation, was concentrated approximately two-fold and resolved by 

gelatin zymography, an electrophoretic technique that allows the visualisation of 

gelatinases upon their digestion of gelatin co-polymerised within a polyacrylamide gel 

(see section 2.2.12). Zymograms allow multiple forms of gelatinases to be separated by 

molecular mass and, after incubation in suitable buffers, gelatinases are easily visualised 

on the gel as cleared areas of gelatinolytic activity. Zymography is particularly useful, in 

that it is sensitive to picomolar range and allows the visualisation o f enzyme activity, as 

opposed to straightforward quantification.

Since determination of the protein concentration of conditioned media samples 

by classical protein assays was not possible due to the prevalence of interfering 

compounds in the mechanical stimulation medium, the loading volume of each sample 

was normalised according to several factors: (1) the volume of conditioned medium 

remaining after the 14-hour experiment, (2) fold-concentration of the conditioned 

medium and (3) differences in growth area, given that the stimulated glass plate was 

surrounded by a Teflon gasket which effectively reduced the growth area by 

approximately 20 cm2 (as described in 2.2.13).

Representative gelatin zymograms for each cell line are shown in Figure 3.17, 

which reveal seven prominent gelatinolytic bands with apparent molecular weights of 

227, 120, 96, 83, 79, 64 and 54 kDa under non-denaturing conditions. According to the 

literature, the five highest molecular weight species correspond to different forms of 

MMP-9. The 227 kDa species corresponds to an MMP-9 homodimer, while the 120 kDa 

species most likely corresponds to a MMP-9 heterodimer, where the enzyme is 

complexed with a TIMP or the neutrophil gelatinase B-associated lipocalin (NGAL)
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Figure 3.18: Quantification o f gelatinase activity in control and stimulated tendon (A), 
corneal (B) and skin (C) fibroblasts. Data is represented as mean activity (± SE). Means 
that differ significantly are indicated. *,/? < 0.05; **,/? < 0.01; *** ,p  < 0.001; n = 3 for 
tendon and skin cells; n = 4 for corneal fibroblasts.

(Waas et al., 2002; Rudd et al., 1999). The pro and active forms o f MMP-9 have an 

apparent molecular weight o f 94 and 83 kDa, respectively, which is agreement with 

previous reports (Waas et al., 2002; Zhao et al., 2003). The additional MMP-9 species 

with a molecular weight o f approximately 120 kDa most likely corresponds to a 

deglycosylated form (Fiore et al., 2002). The two remaining bands, with molecular 

weights o f 64 and 54 kDa, correspond to pro- and active-MMP-2. The molecular 

weights o f these MMP-2 species are approximately 10 kDa lower than that previously
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reported (Waas et al., 2002). This discrepancy most likely arises from the fact that 

samples in this study were resolved on 7.5-15% gradient zymograms in order to increase 

resolution of the multiple gelatinolytic bands, whereas previous published reports 

resolved gelatinases on single percentage gels.

The zymograms from each cell line demonstrate a similar banding pattern, with 

the most prominent gelatinolytic band corresponding to pro-MMP-2. This most likely 

results from the fact that fibroblasts constitutively secrete MMP-2 (Kobayashi et al., 

2003). It is also evident from initial inspection of the zymograms pictured in Figure 3.17 

that the activities of both pro- and active-MMP-2 and MMP-9 increase after being 

subjected to 14 hours of laminar fluid flow.

In order to quantify this apparent increase in gelatinase activity, intensity of the 

gelatinolytic bands was measured using NIH Image and the resultant intensity values 

further normalised by subtracting the background gelatinase activity present in the 

mechanical stimulation medium. This resulted in values corresponding to the gelatinase 

activity generated solely by the control or stimulated fibroblasts, without any background 

contribution from the flow perfusate (Figure 3.18). According to Figure 3.18, all cell 

lines demonstrate the up-regulation o f gelatinase activity with stimulation. In order to 

directly compare the gelatinase activity o f tendon, corneal and skin fibroblasts, however, 

data were further normalised to a gelatinase standard (Figure 3.19).

Upon initial inspection, it appears that skin fibroblasts typically demonstrate the 

highest gelatinase activity. This tendency appears to be conserved in most cases; the 

highest gelatinase activity is exhibited by skin fibroblasts, followed by tendon and then 

skin cell lines. The only exception to this otherwise conserved trend is in respect to the 

active form of MMP-9, in which tendon fibroblast gelatinase activity supersedes that 

exhibited by skin cells. While these data indicate that all three cell lines generate similar
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Figure 3.19: Direct comparison o f gelatinase activity in mechanically stimulated tendon, 
corneal and skin fibroblasts. MMP activity visualised on gelatin zymograms was 
normalised to a gelatinase standard to enable direct comparison o f gelatinase activity in the 
three cell lines; data are represented as normalised mean activity (± SE). Statistically 
significant differences between means are indicated. *, p < 0.05, **; p < 0.01; ***, p < 
0.001; n = 3 for tendon and skin cells; n = 4 for corneal fibroblasts.

increases in gelatinase activity in response to stimulation, there exist significant tissue- 

specific differences in the magnitude o f this response. In the case o f the homodimer o f 

MMP-9, for example, control skin fibroblasts demonstrate higher activity than tendon or 

corneal cells, while stimulation results in both tendon and skin fibroblasts having higher 

activity than corneal cells. Similarly, both control and stimulated skin fibroblasts 

demonstrate increased activity o f the heterodimer and latent forms o f MMP-9, as well as 

active-MMP-2. W hen the active or glycosylated forms o f MMP-9 are considered,
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however, both control and stimulated tendon and skin fibroblasts display virtually 

identical activity, which is notably higher than that seen in corneal cells. Finally, in the 

case of the latent form of MMP-2, which is constitutively secreted by fibroblasts 

(Kobayashi et al., 2003), all control cells demonstrate significantly different activity. 

For example, all three control fibroblast cell lines exhibit significantly different activity 

of latent MMP-2. After stimulation, however, the activity of latent MMP-2 in tendon 

and corneal fibroblasts appears to equalise, leaving skin fibroblasts as the only cell line 

to demonstrate significantly higher activity.

3.3 Discussion

Based upon preliminary data and evidence in the literature, we have investigated 

the response of fibroblasts isolated from tendon, cornea and skin to shear stress in order 

to test the hypothesis that fibroblasts maintain tissue-specific differences to an identical 

mechanical stimulus. To achieve this, changes in gelatinase activity and morphology 

were assessed qualitatively and quantitatively, including cell shape and size, 

multinucleation, proliferation rates, organisation of the actin cytoskeleton and abundance 

and organisation of focal adhesions.

Prior to stimulation, three fibroblast cell lines were isolated from tendon, cornea 

and skin. These connective tissues, in particular, were chosen because each demonstrate 

somewhat striking differences in the organisation of their ECM; tendon and corneal 

connective tissues both possess highly organised ECMs, while skin demonstrates a more 

disordered extracellular milieu (see sections 1.7.1-1.7.3). While, to date, there are no 

universal markers for fibroblasts, each of the three cell lines was shown to possess 

vimentin, an intermediate filament protein previously identified as being prevalent in 

mesenchymal cells (Osborn and Weber, 1982). Furthermore, the isolated cell lines were
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shown to be free of contamination by muscle and/or epithelial cells since they did not 

contain intermediate filament proteins prevalent in these cell types, namely desmin and 

keratin. Together, the presence of vimentin, absence of desmin and keratin, and the 

typical fibroblast morphology demonstrated by the cell lines was indicative that the 

isolated cells were, indeed, fibroblasts.

Fibroblasts have been previously shown to demonstrate unique morphologies 

based upon their tissue location (see Table 3.1). In order to investigate this further, the 

present study examined the gross morphology of tendon, corneal and skin fibroblasts in 

cells subjected to a shear stress of 0.1 dyn/cm2 and in static, no flow controls. Upon 

visual inspection, there appeared to be discrete differences between the three primary cell 

lines, which correlated with subsequent morphological quantification (Figures 3.8-3.10,

3.14). In particular, tendon fibroblasts displayed both elongated, spindle-like cells as 

well as a distinct population of more rounded cells. Upon stimulation, the number of 

cells demonstrating a more rounded morphology increased (Figures 3.8 and 3.14). 

Corneal fibroblasts, on the other hand, displayed a more jagged appearance, with more 

elongated cells containing long, hair-like protrusions. This observation was concurrent 

with a markedly reduced circularity index when corneal fibroblasts were compared with 

tendon or skin cells (Figures 3.9 and 3.14). After stimulation, the jagged morphology 

was reduced, leaving cells with a more rounded appearance. Finally, skin fibroblasts 

were unique, in that prior to stimulation, regions of the monolayer appeared to be 

arranged in somewhat parallel arrays and individual cells were significantly larger in 

area than the other two cell lines (Figures 3.10 and 3.14). Following stimulation, this 

increase in area became even more exaggerated. Because this increase in area was seen 

in both control and stimulated skin fibroblasts, it was most likely a consequence of 

reduced serum levels in the flow perfusate and not a direct response to stimulation.
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Interestingly, skin fibroblasts did not become significantly more rounded with 

stimulation, a trend exhibited by both tendon and corneal cells. Perhaps this is a 

consequence o f pre-stimulated skin fibroblasts demonstrating an inherently more 

rounded morphology.

While fibroblasts from tendon, cornea and skin have never been directly 

compared prior to this study, there are instances in the literature where the morphology 

of these cell types has been investigated. For example, the elongated morphology 

demonstrated by corneal fibroblasts in this investigation was observed previously when 

corneal fibroblasts were compared to those derived from heart and skin (Conrad et al., 

1977b). In the same study, Conrad et al. reported the alignment of confluent skin 

fibroblasts in parallel arrays, a tendency which was observed in sub-confluent skin cells 

{ibid.). Furthermore, distinct morphological populations o f tendon fibroblasts have been 

discussed previously in the literature (Banes et al., 1988a). The tendon fibroblasts in the 

present study appeared to consist of two discrete populations o f cells, one that was more 

elongated and another that was more rounded in appearance. This fibroblast 

heterogeneity has been reported previously by Banes et al. when comparing fibroblasts 

isolated from internal and external (synovial) regions of the tendon. After isolation and 

culture, synovial tendon cells appeared as large, round cells with ruffling plasma 

membranes, whereas internal fibroblasts were smaller, more fusiform cells (Banes et al., 

1988a). It is possible that, since the isolation protocol used in this study did not 

distinguish between the discrete locations of fibroblasts within tendon, the tendon cells 

used in the present work contain both synovial and internal tendon fibroblasts.

All three cell lines appeared to contain roughly two populations of cells -  one 

composed o f smaller, spindle- or stellate-shaped cells and another consisting of larger, 

more rounded cells -  though this was most obvious in tendon cells. Fibroblast
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subpopulations have been reported previously and were characterised by Bayreuther and 

colleagues (Bayreuther et al., 1988). According to their observations, fibroblasts exist as 

two distinct populations in culture: a mitotic, metabolically active population and a 

metabolically inactive, post-mitotic population, with the post-mitotic population 

becoming more prevalent with increasing age in culture. While the metabolism of the 

fibroblasts isolated in this study was not investigated directly, there appear to be distinct 

similarities in the gross morphology of the cell lines cultured here and those described by 

Bayreuther and colleagues. For example, pre-stimulated tendon, corneal and skin 

fibroblasts were seen to be composed of small spindle-like cells, stellate-like cells and 

slightly larger, more rounded cells (Figure 3.1, 3.8-3.10). These morphologies appear to 

correspond to the three cell types that predominantly comprise the mitotic fibroblast 

population, as classified by Bayreuther and colleagues (Bayreuther et al., 1988). After 

culturing cells in decreased serum, however, there was a significant increase in the area 

of tendon, corneal and skin fibroblasts, and stimulation resulted in progressively more 

rounded fibroblasts. These morphologies, which appeared after serum deprivation and 

stimulation, closely resemble the large, spindle-like and epithelioid cells that Bayreuther 

et al. described as the post-mitotic fibroblast population.

The presence of these so-called mitotic and post-mitotic fibroblast populations 

was suggested by Bayreuther and colleagues to represent differentiating cell 

compartments along a terminal stem-cell-like fibroblast lineage (Bayreuther et al., 1988). 

However, it is not clear from this study whether such fibroblast populations arise from 

true cell differentiation or an artefact of cell senescence induced by serum withdrawl. 

Since the prevalence of the larger post-mitotic cells increases with cumulative population 

doublings, the latter seems very likely. Nonetheless, the presence of these two distinct 

morphologies in the present study suggests that (1) the smaller spindle-like or stellate
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fibroblasts used in the present work are predominantly metabolically active, mitotic, 

“young” cells and (2) serum deprivation and/or mechanical stimulation appears to 

increase the prevalence of the metabolically inactive, post-mitotic cell population, 

suggesting that fibroblasts are “differentiating” along the aforementioned fibroblast 

lineage and/or increasing senescent behaviour. The possibility that serum deprivation 

and/or mechanical stimulation can drive cell differentiation or accelerate cell senescence 

warrants further investigation.

In addition to the size and shape of the cells, there were other morphological 

differences which distinguished tendon, comeal and skin fibroblasts from one another. 

Tendon cells, for example, were shown to contain significantly higher numbers of 

multinucleated cells than the other two cell lines. Multinucleation has been found to be 

indicative o f cell senescence, immortalisation, growth suppression, or serum deprivation. 

Because the cell lines used in this study were only cultured until passage number five, it 

is highly unlikely that multinucleation was a result of immortalisation. Furthermore, 

given that the proliferation rate of the cells does not differ significantly between control 

and stimulated (Figure 3.13), multinucleation is not likely to be due to suppression of 

cell growth. Consequently, the presence of multiple nuclei in tendon fibroblasts seen in 

this study is most likely a result o f cell senescence induced by serum deprivation. 

Nonetheless, tendon fibroblasts responded to this deprivation with a marked increase in 

multinucleated cells when compared to comeal or skin fibroblasts, which further 

substantiates the differentiative capacity o f fibroblasts isolated from different tissues.

Focal adhesions, the cell-matrix interactions that function in 

mechanotransduction, migration, and maintenance of cell morphology (Beningo et al.,

2001), were also shown to differ in control and stimulated tendon, comeal and skin 

fibroblasts. Such differences in the abundance of focal adhesions were difficult to
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determine by microsope, however, since all three cell lines were observed to contain 

prominent focal adhesions (Figure 3.15). The fact that focal adhesions did not become 

more prominent nor display re-orientation with the direction of flow was somewhat 

surprising, given that local forces have been shown to correlate with the orientation, total 

fluorescence intensity and area of focal adhesions in previous investigations (Balaban et 

al., 2001; Butcher et al., 2004; Fini et al., 1995; Haier and Nicolson, 2002). However, 

such studies have largely centred upon endothelial cells, since this cell type is routinely 

subjected to fluid flow in vivo. Perhaps the lack of gross focal adhesion reorganisation in 

this study is a consequence of unique cell type specific responses to shear stress.

While focal adhesions did not appear to re-orient with fluid flow, quantification 

revealed that the abundance of focal adhesions, as a whole, differed both amongst cell 

lines and with stimulation. Corneal fibroblasts, for example, demonstrated significantly 

fewer focal adhesions per cell when compared to tendon and skin fibroblasts and were 

the only cell line to exhibit an increase in the abundance of focal adhesions with 

stimulation (Figure 3.16). As mentioned previously, corneal fibroblasts were also the 

only cell line to demonstrate a reduction in cell number after stimulation. Perhaps this 

observation is a consequence of the reduced number of focal adhesions available to 

“anchor” corneal fibroblasts to the substrate during stimulation, thus resulting in a small 

proportion of cells being washed off the substrate.

In addition to the abundance of focal adhesions as a whole, the effect of 

stimulation on the specific types of focal adhesions was also examined. Small, dot-like 

focal contacts were the most abundant type of focal adhesion in all three cell lines, 

though the prevalence of these did not appear to vary significantly between cell lines and 

only corneal fibroblasts demonstrated an increase in focal contacts with stimulation 

(Figure 3.16). Elongated, fibrillar adhesions were the second most prominent type of
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focal adhesion in all three cell lines and were found to vary significantly between cell 

lines and upon stimulation. Tendon fibroblasts, for example, demonstrated significantly 

more fibrillar adhesions when compared to corneal and skin fibroblasts, but was the only 

cell line that did not demonstrate a reduction in the abundance of fibrillar adhesions with 

stimulation. This reduction in elongated, fibrillar adhesions seems counter-intuitive, 

since cells subjected to a steady shear stress for 14 hours would presumably require 

additional larger, robust adhesions to act as “anchors” to the substrate.

However, previous studies have reported that the tractional force generated by 

adhesions at the leading edge of the cell is not directly related to the size of the adhesion 

(Beningo et al., 2001; Geiger and Bershadsky, 2001). Beningo et al., for example, 

demonstrated that focal contacts transmitted the largest forces in fish scale fibroblasts, 

and as focal contacts either disassembled or matured into larger adhesions, their traction 

stress decreased. Furthermore, mature focal adhesions were found to exert only resistive 

forces against forward migration and thus appear to function primarily as persistent 

anchors to the substrate. In the present study, the decrease in fibrillar adhesions in 

corneal and skin fibroblasts occurred with a concomitant increase in the abundance of 

focal contacts. Perhaps these two cell lines responded to fluid flow by generating focal 

contacts, which are capable o f increased tractional forces in order to anchor them more 

securely to the substrate. This trend was not seen in tendon fibroblast, which further 

substantiates that fibroblasts isolated from distinct tissues respond to shear stress in 

unique ways.

The present study did not reveal any gross re-alignment of fibroblasts with fluid 

flow (Figures 3.5, 3.8-3.10), nor significant re-organisation of the actin cytoskeleton 

(Figure 3.11). This is in contrast to other mechanically stimulated cell lines: smooth 

muscle cells have been shown to re-align when the flexible substrate on which they are
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grown is stretched (Hayakawa et al., 2001); actin stress fibre formation has been reported 

to increase in endothelial cells subjected to fluid flow (Birukov et al., 2002); and 

osteoblasts subjected to fluid shear demonstrate more prominent stress fibres when 

compared to static controls (Pavalko et al., 1998). While alignment and/or reinforcement 

of the cell cytoskeleton in the direction of fluid flow seems somewhat intuitive, such 

behaviour has only rarely been demonstrated in fibroblasts (Archambault et al., 2002b). 

There have been numerous instances, however, of fibroblasts aligning in response to 

mechanical strain, for example when the substrate onto which the cells are cultured is 

subjected to uniaxial stretching (Lee et al., 2005; Neidlinger-Wilke et al., 2002; Wang et 

al., 2004a). In these cases, cytoskeletal reorganisation was observed within minutes, and 

reorientation of the cells in the direction of strain occurred within two to three hours 

(Neidlinger-Wilke et al., 2002). Given that the cells in the present study were subjected 

to shear stress for 14 hours, cells would have had sufficient time to demonstrate 

reorganisation of the cytoskeleton and/or alignment in the direction of flow. The fact 

that such responses were not observed here suggests that fibroblasts elicit distinct 

cellular responses based upon the type of exogenous mechanical stimulation. 

Furthermore, it is important to note that the fluid flow-induced responses reported 

previously have been found to vary significantly with species, cell type, flow type and 

flow medium (Table 3.2).

Fibroblasts are capable of producing and secreting numerous proteolytic 

enzymes, including MMPs, which enable these cells to maintain and remodel their 

surrounding ECM in response to exogenous and endogenous biochemical, mechanical 

and topographical cues (Birkedal-FIansen et al, 1976). Previous reports have shown that 

the amount and activity of MMPs secreted by fibroblasts alters with mechanical 

stimulation; moreover, this response has been found to be highly variable, and dependent
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upon cell type as well as the method of mechanical stimulation. For example, tendon 

fibroblasts have been shown to increase expression of MMP-1 and MMP-3 in response 

to fluid flow (Archambault et al., 2002b). By contrast, chondrocytes subjected to flow 

shear demonstrated decreased protein levels and activity of MMP-1 and MMP-13 

(Yokota et al., 2003). Furthermore, MMP-2 and MMP-9 were both found to increase 

with mechanical loading in fibroblasts (Prajapati et al., 2000a) and in articular cartilage 

(Blain et al., 2001). Here, the activity o f MMP-2 and MMP-9 was shown to increase in 

tendon, corneal and skin fibroblasts upon mechanical stimulation by fluid flow (Figure 

3.18). Interestingly, the magnitude of increase was shown to be cell line-dependent, with 

gelatinase activity, in general, being highest in skin fibroblasts and lowest in corneal 

cells (Figure 3.19). Perhaps the increase in gelatinase activity was generated by the 

fibroblast cell lines to counteract the effects of fluid flow. For example, increased 

activity in MMP-2 and MMP-9 could allow for increased degradation and turnover of the 

gelatin-coated substrate; fibroblasts could then secrete differential matrix 

macromolecules which could better “protect” them from shear stress and/or anchor them 

to the substrate more efficiently.

In summary, the data presented in this chapter clearly demonstrate that tendon, 

corneal and skin fibroblasts are morphologically distinct and respond in unique ways to 

both serum deprivation and an identical mechanical stimulus. Prior to stimulation, it was 

shown that the three cell lines were morphologically distinct, for example as determined 

by overall cell shape and multinucleation. Following stimulation, cells demonstrated 

specific changes in morphology, focal adhesion formation and gelatinase activity. 

Together, these data provide compelling evidence that fibroblasts isolated from distinct 

tissues are unique.
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Chapter 4

Mechanical stimulation alters mRNA and protein levels in fibroblasts

4.1 Introduction

From the data presented in Chapter 3, it is apparent that mechanical stimulation 

by shear stress induces morphological and biochemical alterations in tendon, corneal and 

skin fibroblasts. Furthermore, the response of these cells to fluid flow appears to be 

distinct based upon their tissue of localization. These investigations were subsequently 

carried further, upon analysis of mRNA expression levels, which were analysed in order 

to reveal the molecular mechanisms responsible for the tissue-specific responses of 

tendon, corneal and skin fibroblasts to an identical mechanical stimulus. Despite the fact 

that classical methods, such as RT-PCR and northern blotting, are reliable, they are time- 

consuming and, due to inherent experimental limitations, only allow the investigation of 

several genes in parallel. Differential display has also been employed in recent years to 

identify numerous differentially regulated genes in response to a given treatment, but the 

quantification of results gathered in this manner is difficult and the probability of false 

positives is undesirably high (Locklin et al., 2001). Consequently, this study employed 

Affymetrix GeneChip probe arrays, in order to simultaneously quantify the expression of

34,000 genes in parallel. Gene chips offer an advantage over typical microarray analysis 

because each array contains multiple probe-sets, and hence offers multiple, independent 

measurements for a given transcript (Schena et al., 1998). Semi-quantitative RT-PCR 

and Western blotting subsequently validated gene expression data.

While obtaining genetic expression information is important, it appears that such 

results only provide a correlative understanding of cellular responses to external stimuli. 

In order to understand the causative relationship between stimulation and cell behaviour, 

protein expression must also be investigated. This is due to the fact that, typically, only
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minimal correlations have been found between mRNA and protein expression levels 

(Lichtinghagen et al., 2002). This most likely results from (1) the possibility of 

regulating protein levels at either transcriptional or translational levels, and/or (2) the rate 

of protein turnover in vivo (Greenbaum et al., 2003). In order to further extrapolate the 

gene expression data, this study has investigated the level of protein expression of 

several genes initially identified by microarray analysis as being differentially regulated 

with stimulation.

Data presented in the following chapter illustrate that gene expression alters in 

tendon, corneal and skin fibroblasts following 14 hours of shear stress. While the cell 

lines show some similarities in their response, they also clearly maintain tissue-specific 

genetic responses, which are functionally diverse and both up- and down-regulated with 

mechanical stimulation. In addition, this chapter details the validation of microarray data 

using both semi-quantitative RT-PCR and Western blotting, and reveals that protein 

levels also changed with stimulation, though their expression did not necessarily 

correlate with mRNA levels.

4.2 Results

4.2.1 Tendon, corneal and skin fibroblasts demonstrate differential gene regulation

when subjected to an identical mechanical stimulus

In order to analyse comprehensively the genetic responses of tendon, corneal and 

skin fibroblasts to mechanical stimulation, gene regulation was examined in treated and 

non-treated cells by microarray analysis. Prior to this analysis, the three primary cell 

lines were subcultured until passage number five, seeded onto gelatin-coated glass plates, 

and were either subjected to 0.1 dyn/cm2 of linear fluid flow for 14 hours (treated), or 

maintained under standard tissue culture conditions (non-treated). Following lysis of the
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cells directly on the glass plate, total RNA was isolated and purified. Because the 

concentration of isolated total RNA was below that required for subsequent analysis, 

total cRNA was amplified from total RNA by two rounds of in vitro transcription and 

subsequently cleaned, labelled and fragmented prior to its hybridization to the probe 

array for 16 hours. In this case, the probe array used was the GeneChip Mouse 

Expression Set 430 (Affymetrix, High Wycombe, UK), which comprises more than

45,000 probe sets to analyse the expression of approximately 39,000 transcripts and 

variants and includes a set of mouse maintenance genes to facilitate normalization and 

scaling of array experiments. All RNA processing and preparation, as well as the 

subsequent microarray analysis, was performed at the SHWFGF, University of Glasgow.

The genes identified by microarray analysis were initially examined on a global 

scale, in order to better understand the commonality or individuality of the fibroblast cell 

lines demonstrated after being subjected to an identical stimulus. Approximately 344 

genes, all of which have false discovery rates of less than 10%, were shown to be 

differentially regulated with stimulation (Figure 4.1). O f these altered genes, 14.8% 

were identified as being common to all three cell lines, 16.6% were identified in two of 

the three cell lines, and 68.6% were differentially regulated in one cell line only. 

Interestingly, 34.3% and 27.3% of the total genes identified were found to be unique to 

either tendon or corneal fibroblasts, respectively. In contrast, only 7.0% of the genes 

identified were unique to skin fibroblasts. This immediately indicates that tendon, 

corneal and skin fibroblasts, despite their common developmental origin, mounted a 

unique transcriptional response to an identical mechanical stimulus. Upon closer 

inspection, it is apparent that tendon and corneal fibroblasts have approximately 6.4% of 

the identified genes in common, while tendon and skin fibroblasts share 7.6% of 

differentially regulated genes. Given that corneal and skin fibroblasts maintain only
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2.6% o f the altered genes in common, this hints to the possibility that skin and corneal 

fibroblasts demonstrate the most unique genetic response to stimulation.

24
(7.0%)

It 118%
(34.3%)

510 (14.8%) 2 2
(2.6%) (6.4%)

94
(27.3%)

Cornea

Figure 4.1: Venn Diagram representing 
the total number o f up- and down- 
regulated genes in tendon, corneal and 
skin fibroblasts after mechanical 
stimulation. In total, 344 genes were 
identified as being differentially 
regulated with stimulation by microarray 
analysis. The number o f genes identified 
in a given cell line are designated, and 
overlap regions denote genes common to 
the indicated cell lines.

4.2.2 Differentially regulated genes identified by microarray are functionally diverse

In order to place the transcriptional responses o f these cell lines to stimulation in

a more biological and physiological context, altered genes were manually classified into

one o f nine, broad functional groups based upon their functional annotation in the

SOURCE (Diehn et al., 2003), GenBank (Benson et al., 2004), and Mouse Genome

Informatics (Blake et al., 2003) databases. Upon initial inspection, it is clear that the

functional spectrum o f altered genes was diverse; transcripts were found to be implicated

in apoptosis, cell division, ECM and cytoskeletal remodelling, general cell maintenance

or housekeeping, cell signalling, stress response, transcription or cellular transport

(Figure 4.2). Furthermore, tendon fibroblasts demonstrated approximately equal

numbers o f up- and down-regulated genes with stimulation, whereas the majority o f

genes were down-regulated in corneal fibroblasts. W hen compared with the other two
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cell lines, skin fibroblasts exhibited a significantly lower number of altered genes with 

stimulation, the majority of which were up-regulated. It appears that housekeeping 

genes comprise the major category of up-regulated genes, while a significant number of 

genes associated with cell division, ECM and cytoskeletal remodelling, as well as 

signalling factors, showed reductions in mRNA levels.

Apoptosis Stress Response

re 120 120

Tendon Cornea Skin Tendon Cornea Skin

Figure 4.2: Total number and functional classification of genes up- and down-regulated 
following mechanical stimulation. Tendon, corneal and skin fibroblasts were subjected to 
14 hours of fluid flow at a magnitude of 0.1 dyn/cm' for 14 hours. Control and stimulated 
cells were then lysed directly on the glass plate. Following purification, total RNA was 
processed and microarray analysis performed at the SHWFGF, University of Glasgow. 
Genes identified as being differentially regulated with stimulation, and having false 
discovery rates of less than 10%, were grouped into one of nine broad categories based 
upon their functional annotation in the SOURCE, GenBank, NCBI, and Mouse Genome 
Informatics databases.
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4.2.3 The majority o f  genes identified in more than one cell line are classified as 

having housekeeping or signalling roles 

O f the total number o f genes altered in response to mechanical stimulation, the 

three cell lines maintained a number of altered genes in common. Corneal and tendon 

fibroblasts share approximately 45% of their altered genes with one of the other cell 

types, whereas skin fibroblasts share 78%, hinting that the response of the skin cell line 

to stimulation is less distinctive than its counterparts (Figure 4.1). In order to gain 

further insight into the types of genes shared between cell types, histograms of the 

functional classification of common genes were plotted, as shown in Figure 4.3. From 

this analysis, is appears that, o f the 22 genes in common between tendon and corneal 

fibroblasts, most are involved in cell division and housekeeping roles, with the second 

greatest contribution coming from signalling or stress response-related genes. Genes 

involved in apoptosis or transcription formed the smallest component of genes common 

to these two cell lines. Approximately 73% of the 22 genes shared between tendon and 

comeal fibroblasts were down-regulated.

In comparing the genes common to tendon and skin fibroblasts, however, it is 

apparent that most are signalling-related, and 58% are up-regulated. Comeal and skin 

fibroblasts have the fewest altered genes in common, and o f these, there appears to be a 

relatively even distribution of signalling, stress response, transcription, and transport- 

related genes. In this case, 78% of genes are down-regulated.

In addition to the genes found to be shared in two of the three cell lines, 51 genes 

were identified as being common to all three cell lines. O f these, the majority are 

thought to perform housekeeping functions within the cell and are up-regulated with 

stimulation. It is not surprising that housekeeping-related genes form the major
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Figure 4.3: Number and functional classification o f genes altered with stimulation and 
identified in more than one cell line. Histograms represent the total number o f genes 
altered in the indicated cell lines, with the up-regulated genes appearing in full colour 
and down-regulated genes appearing muted.

functional classification common between the cell lines, since the genes controlling such 

fundamental activities essential for maintenance o f cell function are likely to be highly 

conserved among similar cell lines. Genes involved in signalling or stress response 

formed the next highest contribution, but there were also contributions from genes 

classified as being involved in transcription, transport, apoptosis, cell division and 

ECM/cytoskeleton remodelling. O f the genes shared between all three cell lines, 78% 

were up-regulated with stimulation (Figure 4.3).
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Surprisingly, only one gene out of the total possible 108 genes in common 

between two or more cell lines was involved in ECM/cytoskeleton remodelling. This is 

notably less than any of the other functional classifications and suggests that 

ECM/cytoskeleton-related genes may contribute to the differential response o f these cell 

lines to stimulation. Taken further, this might explain the ability of these fibroblasts to 

synthesise and maintain such diverse tissues in vivo.

4.2.4 The regulation and functional classification o f  uniquely regulated genes alters in

tendon, corneal and skin fibroblasts

In addition to investigating the genes up- or down-regulated in common between

tendon, comeal and skin fibroblasts, it was also imperative to investigate the genes

uniquely regulated by each cell line with stimulation, in order to begin to understand the

unique behaviour o f these cells both in vitro and in vivo. To aid in this, the genes found

to be uniquely up- or down-regulated with stimulation in each cell line were functionally

characterized and represented as a histogram in Figure 4.4. In tendon fibroblasts, the

greatest proportion of genes uniquely regulated with stimulation fall into housekeeping

or signalling roles. ECM or cytoskeleton-related genes form the next largest component,

with a significant contribution also being made by genes involved in cell division, stress

response, and transcription. O f the genes unique to tendon fibroblasts, 60% were down-

regulated with stimulation.

Comeal fibroblasts demonstrate a very different trend, with similar proportions of

genes involved in cell division, ECM and cytoskeletal remodelling, housekeeping,

signalling, and transcription being uniquely altered with stimulation. Again, the majority

of these genes were down-regulated with stimulation, with only 8.5% of the transcripts

increasing with stimulation. Like tendon fibroblasts, the skin cell line demonstrates a

relatively large contribution from housekeeping and signalling-related messages,
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Figure 4.4: Number and functional classification of genes altered with 
stimulation and identified in only one cell line. Histograms represent the 
total number of genes altered in the indicated cell lines. Up-regulated genes 
appear in full colour and down-regulated genes appear muted.

followed by transcripts involved in transcription and cellular transport. Two-thirds of the 

transcripts unique to skin fibroblasts were up-regulated with stimulation. In contrast to 

tendon and corneal fibroblasts, the relative contribution of ECM- and cytoskeletal-related 

genes is somewhat lower in skin fibroblasts.

Overall, skin fibroblasts appeared distinct, in that the majority of its unique 

transcripts were up-regulated. This is in stark contrast to both tendon and corneal 

fibroblasts, in which uniquely altered genes were largely down-regulated with
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stimulation. Furthermore, ECM and cytoskeleton-related genes appear to play an 

important role in the unique response o f these cell lines to stimulation; only one ECM 

and cytoskeletal-related gene was shown to be common between the cell lines, while the 

remainder o f these transcripts were uniquely regulated in either tendon, corneal or skin 

fibroblasts.

4.2.5 The proportional contribution o f  functional classes in differentially regulated

genes alters with cell type

So far, microarray data indicate that tendon, comeal and skin fibroblasts 

demonstrate unique expression of broad functional classes of genes in response to 

stimulation. To carry this further, the proportional contribution o f the genes 

differentially regulated with stimulation was calculated and is represented in a series of 

pie charts, as shown in Figure 4.5. Upon consideration of the total number of altered 

genes, the three cell lines appear similar in the proportion of apoptosis- and transcription- 

related genes that change with stimulation. In these two cases, the proportions of the 

genes altered were within 3% of the other two cell lines. Tendon and comeal fibroblasts 

show a significantly higher proportion of genes involved in cell division and ECM and 

cytoskeleton remodelling as compared with skin fibroblasts. Furthermore, comeal 

fibroblasts demonstrate a lower contribution of genes involved in signalling when 

compared with the other two cell lines. O f the genes differentially regulated with 

stimulation in tendon and comeal fibroblasts, approximately 4% were involved in 

transport. This is in contrast to an approximate 8% contribution demonstrated by skin 

fibroblasts. Signalling- and housekeeping-related genes were altered in similar 

proportions in tendon and skin fibroblasts, whereas the proportion of signalling-related 

genes in comeal fibroblasts changed with stimulation was markedly less.
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Of the transcripts implicated in stress responses, skin fibroblasts demonstrated the largest 

proportion, followed by tendon and then corneal cells.

In considering only the up-regulated genes, it appears that the differentially 

regulated genes identified in mechanically stimulated tendon, corneal and skin 

fibroblasts share similar functional distributions. Indeed, the majority of housekeeping, 

stress response and transport related transcripts are up-regulated in all three cell lines 

with stimulation. While the distribution o f differentially up-regulated genes appears 

relatively conserved in all three cell lines, several tissue-specific differences can be 

observed. For example, tendon fibroblasts have the largest proportion of up-regulated 

genes involved in ECM/cytoskeletal remodelling, whereas skin fibroblasts have a 

markedly higher proportion of up-regulated signalling-, transport-, stress response- and 

transcription-related genes involved in signalling and transport.

As far as down-regulated genes are concerned, apoptosis-, cell division-, and 

signalling-related genes are largely down-regulated in all three cell lines. Furthermore, 

tendon, corneal and skin fibroblasts show similar proportions o f genes involved in 

apoptosis and transport-related functions, yet maintain differences in the proportions of 

other functional classifications. Tendon fibroblasts, for example, have a significantly 

higher proportion of ECM/cytoskeletal remodelling-, housekeeping- and signalling- 

related genes down-regulated with stimulation. In contrast to the fairly conserved 

distribution o f up-regulated genes discussed previously, the functional distribution of 

down-regulated genes appears to reveal greater tissue-specific gene expression. 

Interestingly, this trend reinforces that already seen in Figure 4.4, where the genes 

identified as being differentially regulated with stimulation were shown to be largely 

down-regulated.
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4.2.6 Iterative Group Analysis substantiates the manual classification o f  altered genes

In order to gain further information about the functional classes of genes that 

were significantly changed with stimulation, genes were subjected to Iterative Group 

Analysis (iGA) at the SHWFGF (University of Glasgow) (Breitling et al., 2004a). In 

contrast to the functional annotation discussed above (section 4.2.2), which was 

performed manually, iGA provides an automatic functional annotation for genes that are 

identified as being differentially regulated in microarray analysis, as well as a statistical 

confidence level for each. Initially, genes were assigned to a functional class as 

annotated in GeneOntology (Ashbumer et al., 2000), after which individual genes were 

sorted according to fold-change in differential expression. Finally, the members of a 

given functional class were counted and a probability of change (PC) value calculated. 

Table 4.1 represents groups of genes that were shown to be differentially regulated after 

stimulation and had confidence levels greater than 99%. Only gene families in which at 

least 70% of the total number of family members altered with stimulation were included 

in this table, in order to preferentially identify the families in which most genes were 

altered with stimulation. To aid in data analysis, gene families identified by iGA as 

being differentially regulated with stimulation were subsequently classified into one of 

seven broad functional roles based upon a consensus of database-derived searches, 

including GenBank, PubMed, GeneOntology and Reactome (Joshi-Tope et al., 2005).

According to iGA, the gene families differentially regulated with stimulation 

were diverse and implicated in a variety of cellular functions, including cell division, 

ECM/cytoskeletal maintenance, general cell maintenance or housekeeping, stress 

response, transcription or translation, signalling, or mechanotransduction. O f the six 

families differentially regulated with stimulation and identified in all three cell lines, 

three were implicated in cellular responses to oxidative stress. This finding is in
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Members
Group t 1 Function Total Changed T c s

pentose-phosphate shunt, oxidative branch ✓ Housekeeping 4 4 ✓ y y
phosphogluconate 2-dehydrogenase activity y Housekeeping 4 4 ✓ y y

activation of NF-kappaB-inducing kinase ✓ Mechanotransduction 2 2 ✓ y y
glutamate-cysteine ligase activity ✓ Oxidative Stress 2 2 ✓ y y

oxidoreductase activity, peroxide as acceptor Oxidative Stress 2 2 ✓ y y
catalase activity S Oxidative Stress 2 2 y y y

sterol 14-demethylase activity s Housekeeping 3 3 y y
transforming growth factor beta receptor binding y Mechanotransduction 7 5 y y
isopentenyl-diphosphate delta-isomerase activity y Housekeeping 2 2 y y

carotenoid biosynthesis ✓ Housekeeping 2 2 y y
CoA-transferase activity ✓ Signalling 4 3 y y

alpha DNA polymerase:primase complex ✓ Transcription/Translation 5 5 y
y

y
ribonucleoside-diphosphate reductase complex ✓ Transcription/Translation 5 5 y
ribonucleoside-diphosphate reductase activity y Transcription/Translation 6 5 y y
positive regulation of neuron differentiation y Signalling 3 3 y y

glutathione-disulfide reductase activity y Oxidative Stress 2 2 y y
'de novo' IMP biosynthesis y Transcription/Translation 6 5 y

extrachromosomal circular DNA y Transcripton/Translation 4 3 y
cyclooxygenase activity y Mechanotransduction 4 4 y

phosphatidylserine decarboxylase activity y Housekeeping 5 5 y
ornithine decarboxylase activity y Housekeeping 3 3 y

regulation of interleukin-6 biosynthesis y Transcription/
Mechanotransduction

2 2 y

malate dehydrogenase (NADP+) activity y Housekeeping 2 2 y
glycogen debranching enzyme activity y Housekeeping 2 2 y

bone mineralization y Cell Division 3 3 y
nitric-oxide synthase regulator activity y Mechanotransduction 5 4 y

activation of MAPKK ✓ Mechanotransduction 3 3 y
patterning of blood vessels ✓ Cell Division 2 2 y

procollagen-lysine 5-dioxygenase activity ✓
y

ECM/Cytoskeleton 4 4 y
centrosome separation Transcription/Translation 3 3 y

phenylalanyl-tRNA aminoacylation ✓ T ranscription/T ranslation 5 5 y
delta-DNA polymerase cofactor complex y Transcription/Translation 3 3 y

phenylalanine-tRNA ligase activity ✓ Transcription/Translation 5 5 y
phosphatidate cytidylyltransferase activity ✓

y
Housekeeping 5 4 y

cytoplasmic sequestering of transcription factor Transcription 3 3 y
Cajal body ✓ Transcription 7 6 y

ycarnitine metabolism ✓ Housekeeping 2 2
deoxyribonucleotide metabolism y Transcription/Translation 3 3 y

deoxyribonucleoside diphosphate metabolism y T ranscription/T ranslation 3 3 y
phosphatidylcholine biosynthesis

✓
y Housekeeping 5 5 y

aldehyde metabolism Housekeeping 4 4 y
autophagic vacuole ✓ Housekeeping 4 4 y

polynucleotide adenylyltransferase activity ✓ T ranscription/T ranslation 6 5 y
carboxylesterase activity ✓

y
Housekeeping 2 2 y

DNA primase activity
✓

Transcription/Translation 4 4 y
aminobutyraldehyde dehydrogenase activity Housekeeping 2 2 y

semaphorin receptor activity ✓ Signalling 3 3 y
methylthioadenosine phosphorylase activity y

y
Housekeeping 4 4 y

protein amino acid nitrosylation
y

Signalling 5 4 y
oxidoreductase activity, acting on aldehyde or oxo Housekeeping 2 2 y

group of donors, NAD or NADP as acceptor
y ydimethylargininase activity Mechanotransduction 5 4

microfibril y ECM/Cytoskeleton 7 5 y

Table 4.1: Iterative Group Analysis (iGA) of genes identified as being up- (T) or down- 
regulated ( i)  in tendon (T), corneal (C) or skin (S) fibroblasts by microarray analysis. 
Functional classes that altered with confidence levels greater than 99% are tabulated; only the 
groups in which the total number of family members altered with stimulation exceeded 70% are 
included. Functional annotation of the tabulated gene groups was obtained by a series of 
database-derived searches.
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agreement with the trends observed after the manual functional classifications of genes 

differentially regulated (discussed further in section 4.3.1). The overwhelming majority 

of families differentially regulated in one cell line only, however, functioned in 

signalling, transcription, mechanotransduction or general housekeeping roles. This 

corroborates findings from the manual classification of genes discussed previously 

(Figure 4.4).

It is important to note that the manual functional classification of genes discussed 

previously (sections 4.2.2-4.2.4) was completed prior to iGA. Data was analysed in this 

manner in order to rule out the possible erroneous automatic classification of genes. For 

example, while GenBank may classify a gene as being implicated in DNA binding and 

transcription, only manual investigation will reveal if  this transcription factor has been 

implicated in specific cellular processes, such as differentiation, division, or ECM 

biogenesis. Nonetheless, iGA is a valuable tool for both substantiating the manual 

classification of altered genes and visualising groups of genes with similar functions that 

are differentially regulated in tendon, corneal and skin fibroblasts after stimulation.

4.2.7 Microarray analysis is validated by semi-quantitative RT-PCR

In order to validate the changes in gene expression identified by microarray 

analysis, a subset of 14 genes was examined by semi-quantitative RT-PCR, representing 

eight down-regulated and six up-regulated genes. These particular genes were initially 

short-listed based upon their differential regulation in one or more cell lines and/or 

possible role in ECM biogenesis or cytoskeletal organization. Ultimately, these 14 genes 

were chosen because antibodies were available that were directed toward their protein 

products. This enabled the validation of the microarray analysis by both semi- 

quantitative RT-PCR and Western blotting (see section 4.2.8).
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Prior to validation by semi-quantitative RT-PCR, however, it was necessary to 

determine empirically the number of cycles of RT-PCR needed to take samples during 

the linear range of amplification, prior to saturation of the product. To accomplish this, 

forward and reverse primers were designed in order to amplify cyclin E2 (Ccne2) and 

cysteine and glycine-rich protein 1 (Crpl) in mRNA samples from skin and corneal 

controls. An aliquot of each of the reverse transcription-PCR products was taken at 

various cycles and subsequently resolved by agarose gel electrophoresis. NIH Image 

was used to calculate the intensity of the resultant bands against background. These 

values were directly proportional to the amount of product that had formed at various 

time points, and could be subsequently compared to the amount o f product that formed 

when the reaction was allowed to proceed to saturation. The cycle at which the RT-PCR 

product reached saturation yielded the highest integrated density value, and hence, was 

termed the “maximal density.” Figure 4.6 represents the integrated density 

measurements as a proportion of this maximal density. From this, it appears that cycle 

35 resulted in sufficient amplification of the desired RT-PCR product, while still falling 

within the linear portion of amplification. Consequently, each subsequent RT-PCR 

reaction was stopped at cycle 35, such that the amount o f product produced was both 

proportional to the amount of transcript present after mechanical stimulation and directly 

comparable to the microarray data.

Semi-quantitative RT-PCR was performed on 14 genes initially identified by 

microarray analysis as being differentially regulated with shear stress. The primers for 

these genes of interest were designed using Primer3, as described in section 2.2.25. 

RNA previously isolated from three replicate mechanical stimulation experiments for 

each cell line was used as a template and the resultant products were electrophoresed and 

visualized by ethidium bromide staining. As with the empirical determination described
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Figure 4.6: Empirical determination o f the number o f cycles to use in amplifying 
products for semi-quantitative RT-PCR validation o f microarray data. mRNA 
isolated from skin (A, B) or corneal control fibroblasts (C) were subjected to RT- 
PCR with forward and reverse primers for Ccne2 (A, C) or Crpl (B). Aliquots from 
these three RT-PCR products were taken at cycles 25, 27, 30, 33, 35, 40, and 45, 
resolved by electrophoresis, and visualized by ethidium bromide staining. NIH 
Image was used to calculate the intensity o f the resultant bands. Data is represented 
as the mean maximal integrated density (± SE), calculated from three independent 
experiments, which were generated from two samples o f mRNA and two unique 
forward and reverse primers (D).
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above, the intensity of each band was quantified with NIH Image and the fold change in 

gene expression compared to the experimental control was calculated (Figure 4.7).

The generated RT-PCR products migrated at their expected size and, in all cases, 

semi-quantitative RT-PCR substantiated the up- or down-regulation of transcription 

initially revealed by the microarray data. The RT-PCR does not contain a classical 

internal control, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), due 

tothe lack of sufficient amounts of RNA samples; however, numerous internal controls 

exist from the fact that each primer set was used to amplify products in three replicates 

from each of the three cell lines, despite the fact that, in many cases, microarray analysis 

only identified a given gene as being up- or down-regulated in one cell line. The RT- 

PCR shown here has been carried out in all three cell lines, thus generating numerous 

internal positive controls.

Interestingly, while the direction of regulation (i.e. up- or down-regulation) is 

conserved in all cases between RT-PCR and the microarray data, the magnitude of 

regulation differs significantly. It is important to note, however, that such discrepancies 

between the magnitudes of differential gene regulation as compared between semi- 

quantitative RT-PCR and microarray data have been discussed considerably within 

published literature. Quantitative RT-PCR, for example, has been shown to consistently 

reflect the up- and down-regulated status but will not accurately reflect the magnitude of 

the fold-changes as indicated by microarray (Marone et al., 2001). Furthermore, it has 

been reported that microarrays frequently underestimate the fold-change with respect to 

absolute changes in transcript levels (ibid.).

Further discrepancies between the RT-PCR results and microarray data result 

from complications in quantifying the magnitude o f up- or down-regulation. For 

example, in the case of the second replicate for neogenin in skin fibroblasts, the control
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Figure 4.7: Validation o f microarray data by semi-quantitative RT-PCR. 10 ng o f RNA 
isolated from control (C) and mechanically stimulated (S) tendon, cornea and skin 
fibroblasts was subjected to 35 cycles o f semi-quantitative RT-PCR using forward and 
reverse primers for 14 genes o f interest. Samples were taken during the linear phase o f 
amplification, resolved by electrophoresis and visualized by ethidium bromide staining. 
NIH Image was used to calculate the intensity o f the resultant bands. Genes are represented 
as being up- or down-regulated in tendon (T), corneal (C), or skin (S) fibroblasts by less 
than 2-fold (-/+), greater than or equal to 2-fold, but less than 10-fold (- -/ + +), or greater
than or equal to 10-fold (----- / + + +). As means o f comparison, the fold-change in gene
expression as determined by microarray analysis is listed alongside the semi-quantitative 
integrated density results from RT-PCR.
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sample shows very little, if  any product, whereas the stimulated sample exhibits a 

significant amount. Consequently, calculation o f the magnitude of regulation resulted in 

an apparent infinite up-regulation, since there was no visible product in the control. Due 

to these complications, and since semi-quantitative RT-PCR is ideally used to measure 

broad expression changes, quantification of the RT-PCR reactions are listed in a semi- 

quantitative manner, as shown in Figure 4.7.

4.2.8 Protein levels do not directly correlate with mRNA levels, but do change, in

mechanically stimulated fibroblasts

In an effort to gain a more comprehensive understanding of the response of 

fibroblasts to mechanical stimulation, levels of protein expression were investigated in 

addition to mRNA transcript levels. To achieve this, control and mechanically 

stimulated fibroblasts were lysed immediately after treatment in an SDS buffer 

containing a protease inhibitor cocktail. Samples were sonicated and the protein 

concentration determined. Equal concentrations of lysates were electrophoresed and 

subsequently visualized by Western blotting, using antibodies directed to lumican, dyxin, 

CRP1, and neogenin. Western blots were probed with horseradish peroxidase- 

conjugated secondary antibodies, and ultimately visualized by enhanced 

chemiluminescence at low exposures to ensure linearity of the response. The intensity of 

the resulting bands were quantified with NIH Image and normalized to the loading 

control (P-actin). Fold-changes in protein expression were calculated and the replicates 

of a given experiment averaged.

The lumican antibody identified four distinct bands, indicating proteins with 

apparent molecular weights o f 73, 62, 30 and 26 kDa. According to the literature, the 

highest molecular weight species corresponds to the intact glycoprotein, the 62 kDa
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Figure 4.8: Expression o f lumican (Lum), dyxin, cysteine and glycine-rich protein 1 (C rpl) 
and neogenin (Neo) in control (C) and mechanically stimulated (S) tendon, skin and comeal 
fibroblasts. Cell lysates were prepared from cultures o f fibroblasts following stimulation, 
subsequently resolved by SDS-PAGE, and submitted to immunoblot analysis with the 
indicated antibodies, n = 3 for all proteins in all cell lines, with the exception o f neogenin in 
skin fibroblasts. In this case, n = 2, since there was not sufficient quantities o f one o f the 
stimulated samples.

species represents an alternatively glycosylated form, and the lower molecular weight 30 

and 26 kDa species denote the two isoforms o f the core protein typically found in 

fibroblasts (Funderburgh and Conrad, 1990; Funderburgh et al., 1991). After 

quantification, it appears that stimulation has no effect on the levels o f the 73, 30 or 26 

kDa species in either o f the three cell lines (Table 4.2). However, the 62 kDa species, 

corresponding to the alternatively glycosylated form o f lumican, shows an increase o f 

approximately 6-, 3.5-, and 7-fold with stimulation in tendon, comeal and skin
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fibroblasts, respectively. While this apparent increase in the 62 kDa lumican species is 

at odds with the decreased levels of lumican mRNA with stimulation, as determined by 

both microarray and RT-PCR (Figure 4.7, Table 4.2), the appearance of an alternative 

glycosylated form upon stimulation is, in itself, interesting. This suggests that the post- 

translational processing of lumican is affected in a different direction than the 

transcriptional control, which may reveal an important functional insight into the role of 

lumican. This aspect of the study warrants further investigation.

The dyxin antibody, kindly provided by Dr. Rachelle Crosbie, revealed a band of 

approximately 40 kDa, which is in agreement with previous reports (Yi et al., 2003). 

After quantification and normalization against (3-actin, all three cell lines appear to 

demonstrate an increase in protein expression with stimulation. Skin and tendon 

fibroblasts show the greatest change in protein levels, with an approximate increase of 2- 

fold when compared to controls. This increase in dyxin protein levels is in contrast to 

reducing amounts of mRNA transcripts following stimulation (Table 4.2). This suggests 

that tendon, corneal and skin fibroblasts differentially regulated the transcriptional or 

translational levels of dyxin upon stimulation.

Probing cell lysates with the CRP1 anti-sera revealed a band of approximately 20 

kDa. Levels of transcripts encoding CRP1 were found to decrease in stimulated tendon 

fibroblasts, and this trend correlated with a concomitant 3.8-fold decrease in CRP1 

protein levels (Figure 4.8, Table 4.2). Furthermore, despite the fact that differential 

expression of CRP1 mRNA was not shown to be significantly altered in stimulated 

corneal or skin fibroblasts, levels of CRP1 protein in these cell lines was also shown to 

decrease by approximately 3-fold.
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Protein Species Tendon Cornea Skin
Lumican 62 kDa 6.07 ± 1.16 3.50 ±0.49 7.21 ±4.80

Dyxin 40 kDa 1.98 ±0.44 1.24 ±0.19 2.08 ± 0.69

Crpl 20 kDa -3.79 ± 1.62 -3.08 ±0.93 -2.78 ± 1.22

Neogenin 193 kDa _ -2.98 ± 0.97 2.16 ± 1.15
Table 4.2: Quantification of immunoblotting of ECM/cytoskeleton- 
related proteins differentially regulated with stimulation. Values are 
represented as the mean fold change between stimulated and control
cells ± SEM.

Neogenin immunoblots revealed a prominent band at approximately 193 kDa; 

this most likely differs from the protein’s theoretical molecular weight of 150 kDa 

because of glycosylation (Vielmetter et al., 1994). Shear stress resulted in the 

differential regulation of neogenin by skin and corneal fibroblasts. Neogenin was found 

to increase by approximately 2-fold upon the application of mechanical stimulation in 

skin fibroblasts, which correlated well with a 1.67-fold increase in neogenin transcript 

levels, as determined by microarray analysis (Figure 4.7, Table 4.3). Corneal fibroblasts, 

on the other hand, displayed an almost 3-fold decrease in neogenin following 

stimulation. In this case, the decrease in protein levels occurs without any apparent 

change in gene expression. Tendon fibroblasts did not show any change in neogenin 

protein levels with stimulation.

4.3 Discussion

4.3.1 Highest up-regulated genes are similar in tendon, corneal and skin fibroblasts

Following examination of the functional classifications of genes altered in 

common and unique to each cell line with stimulation, a number of genes of interest 

were selected based upon their functionality, magnitude of up- or down-regulation, or 

identification in one or more cell lines (Table 4.3). It is important to note that, while a
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gene may be identified in Table 4.3 as being one of the highest up- or lowest down- 

regulated genes in a given cell line, its absence from the other cell lines is not necessarily 

indicative that the gene was not altered in that cell line. Rather, the gene may have 

demonstrated differential regulation with stimulation in numerous cell lines, but the 

magnitude was not sufficient to fall within the top five highest up- or lowest down- 

regulated genes for the given cell line.

Three of the top five highest-regulated genes, glutathione-S-transferase alpha 2 

(GSTa2), heme oxygenease-1 (Hmoxl), and glutamate-cysteine ligase modifier subunit 

(Gclm), were identical in all three cell lines. GSTa2 is a phase II detoxifying enzyme 

which, in collaboration with phase I enzymes such as members of the cytochrome P450 

family, plays an important role in detoxification by catalyzing the conjugation of 

electrophilic compounds with reduced glutathione (Pearson et al., 1988). Furthermore, 

GSTa2 has been shown to play an important role in the protection of cells against 

oxidative stress. Hmoxl, one of three mammalian HO isoforms, is the rate-limiting 

enzyme in heme catabolism, which leads to the generation of carbon monoxide (CO), 

biliverdin, and free iron. In addition to its housekeeping role, Hmoxl is also a stress- 

responsive protein, has been shown to modulate cytokine production, cell proliferation, 

and apoptosis to protect organs and tissues from acute injury, and appears to be heavily 

involved in responses to oxidative stress (Choi et al., 2003); more specifically, Hmoxl 

prevents cell death by regulating intracellular iron levels (Konttinen et al., 2000). Gclm, 

also found to be highly up-regulated in all three cell lines, is the rate-limiting enzyme in 

the glutathione biosynthesis pathway and is another in the oxidative stress response 

(Yang et al., 2002a; Yang et al., 2002b).

In addition to the genes up-regulated in all cell lines, both tendon and skin 

fibroblasts showed a marked increase in expression of the angiopoietin-like 4 (Angptl4)
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gene. Angptl4 has been shown to be involved in lipid metabolism or glucose 

homeostasis (Yoon et al., 2000), and the recombinant protein has been shown to act as 

an apoptosis survival factor for vascular endothelial cells (Kim et al., 2000). 

Furthermore, Angptl4 has also been implicated in adipocyte differentiation, which is of 

particular interest given the capability o f “fibroblasts” to differentiate along various 

connective tissue cell-type lineages, such as to adipocytes (Mandard et al., 2004; Yoon et 

al., 2000).

In contrast to tendon and skin fibroblasts, comeal fibroblasts demonstrated an 

increase in the expression of the gene encoding heat shock protein 1A (Hsp72). Heat 

shock proteins, in general, serve as scaffolding or chaperone proteins that function to 

preserve the integrity of essential intracellular proteins during times of stress and have 

been found to be produced in response to a vast array of stimuli, including heat, heavy 

metals, oxidants, protein synthesis, and degradation inhibitors (Lindquist and Craig, 

1988). It is not surprising, then, that Hsp72 has been found to inhibit cell necrosis and 

apoptosis (Kabakov and Gabai, 1995), or help protect cells against oxidant-mediated 

injury (Musch et al., 2004).

Interestingly, Gsta2, Hmoxl, Gclm, Angptl4 and Hsp72, all o f which were all up- 

regulated to the highest magnitude in tendon, comeal and skin fibroblasts, are implicated 

in the protection of cells against oxidative stress, a phenomenon generated upon the 

production o f reactive oxygen species (ROS) through endogenous processes and 

exogenous stimuli such as the mitochondrial electron transport chain, cytochrome P450 

systems, nitric oxide synthetase, inflammation ultraviolet and ionizing radiation, and 

mechanical stress. Such oxidative stress can lead to subsequent changes to cellular 

macromolecules including nucleic acids, proteins and lipids (Yang et al., 2002b). Given 

the method by which these cells were stimulated, it is not surprising that all three cell
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lines responded by up-regulating oxidative response genes. An increase in these 

transcripts most likely serves to protect the cells from reactive oxygen species produced 

as a consequence of mechanical stimulation. Interestingly ROS have also been 

implicated in mechanotransduction (Yamamoto et al., 1999). Perhaps, in this case, an 

increase in ROS assists in the transduction of exogenous shear stress cues into the cell, 

while the cell itself counteracts the potentially harmful increase in ROS by up-regulating 

oxidative response genes, as discussed above.

4.3.2 Down-regulated genes vary between tendon, corneal and skin fibroblasts

Unlike the highest up-regulated genes, in which the three cell lines shared 

significant overlap, there was greater variation in the functional classification of lowest 

down-regulated genes. In tendon, for example, levels of mRNA encoding the 

CCAAT/enhancer binding protein delta (Cebpd), carbonic anhydrase 3 (Car3), 

chemokine (C-C motif) ligand 20 (Ccl20), pentaxin related gene (Ptx3) and early growth 

response 3 (Egr3) were all shown to be down-regulated to the greatest extent with 

stimulation. Cebpd is a transcription factor, which has been implicated in diverse 

cellular functions including the acute phase response, mammary epithelial cell growth 

control and adipocyte differentiation (Huang et al., 2004). Car3, in addition to its role in 

catalyzing the hydration of carbon dioxide, regulation of cellular pH and carbon dioxide 

transport (Kim et al., 2001), has also been implicated in the differentiation of adipocytes, 

with levels of Car3 having been found to be negligible in pre-adipocytes. Genes 

implicated in adipocyte differentiation have emerged several times, such as the up- 

regulation o f Angptl4 in tendon and skin fibroblasts (see section 4.3.1), and now with the 

down-regulation of Cebpd and Car3.
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Of the five genes found to be down-regulated to the greatest extent with 

stimulation in tendon fibroblasts, two genes were identified as being in common with 

skin fibroblasts. The first encodes a low molecular weight cytokine, Ccl20, which has 

been found to play an important role in inflammation as well as differentiation (Shiba et 

al., 2003; Shirane et al., 2004). Interestingly, Ccl20 was found to be up-regulated in 

tumour necrosis factor (TNF)-activated endothelial cells subjected to shear stress 

(Meissner et al., 2003). Perhaps its down-regulation in this case points to the differential 

response of diverse cell types to mechanical stresses. The second gene common to 

tendon and skin fibroblasts is Ptx3, which has been shown to be involved in the acute 

phase response (Goodman et al., 1996).

In contrast to tendon cells, comeal fibroblasts demonstrated the down-regulation 

o f forkhead box P2 (Foxp2), follistatin (Fst), cyclin E2 (Ccne2), engulfment adaptor PTB 

domain containing 1 (Gulpl), and solute carrier family 4, member 4 (Slc4a4) genes with 

stimulation, all o f which have very diverse cellular functions. Foxp2 is a large multi­

domain transcriptional regulator that belongs to the Fox family of winged helix-DNA 

binding proteins and functions as a transcriptional repressor (Li et al., 2004). Fst, on the 

other hand, encodes a TGFp superfamily binding protein, and has been shown to be an 

extracellular inhibitor or TGFp signalling and a downstream component of Wnt4 

signalling (Wang et al., 2004b; Yao et al., 2004). Ccne2, like other cyclins, is important 

in regulating cell cycle progression. Cyclin E2 levels have been shown to be low to 

undetectable in nontransformed cells and increased significantly in tumour-derived cells 

(Gudas et al., 1999). Furthermore, overexpression in mammalian cells accelerates G l, 

so cyclin E2 is believed to be rate limiting for Gl progression. Comeal fibroblasts also 

demonstrated significant down-regulation of Gulpl, which encodes an adapter protein 

that is ultimately thought to mediate the specific recognition and engulfment of apoptotic
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Cell Line
Gene description_____________________________________Function___________ T C S Assession #

A. Highest up-regulated genes
heme oxygenase (decycling) 1 (Hmoxl) 
glutathione S-transferase, alpha 2 (Gsta2) 
neoplastic progression 3 (Npn3) 
angiopoietin-like 4 (Angptl4) 
glutamate-cysteine ligase , modifier subunit (Gclm) 
heat shock protein 1A (Hsp72) 
proliferin (Plf)

B. Lowest down-regulated genes
CCAAT/enhancer binding protein delta (Cebpd)
carbonic anhydrase 3 (Car3)
chemokine (C-C motif) ligand 20 (Ccl20)
pentaxin related gene (Ptx3)
early growth response 3 (Egr3)
forkhead box P2 (Foxp2)
follistatin (Fst)
cyclin E2 (Ccne2)
GULP, engulfment adaptor PTB domain containing 1 

(Gulpl)
solute carrier family 4 (anion exchanger), member 4 

(Slc4a4)
chemokine (C-X-C motif) ligand 5 (Cxcl5) 
thymic stromal lymphopoietin (Tslp) 
lipocalin 2 (Lcn2)

C. Highest up-regulated genes found in only one cell line
dual specificity phosphatase 4 (Dusp4) 
xanthine dehydrogenase (Xdh)
mitogen activated protein kinase kinase kinase 4 (Map3k4) 
dystonin (Dst)
growth arrest specific 5 (Gas5)
gamma-aminobutyric acid (GABA(A)) receptor-associated 

protein-like 1 (Gabarapll) 
aldo-keto reductase family 1, member B3 (Akrlb3) 
sphingosine kinase 1 (Sphkl) 
cytochrome b-5 (Cyb5)
ectonucleotide pyrophosphatase/phosphodiesterase 2 

(Enpp2)
BTB (POZ) domain containing 11 (Btbdl 1) 
neogenin (Neo)
secretory leukocyte protease inhibitor (Slpi) 
endothelin receptor type B (Ednrb) 
centaurin, gamma 2 (Centg2)

D. Lowest down-regulated genes found in only one cell line
carbonic anhydrase 3 (Car3)
ELAV-like 2 (Hu antigen B) (Elavl2)
chemokine (C-X-C motif) ligand 14 (Cxcll4)
early growth response 2 (Egr2)
receptor activator of NF-kB Ligand (RANKL)
forkhead box P2 (Foxp2)
solute carrier family 4, member 4 (Slc4a4)
RAD51 homolog (S. cerevisiae) (Rad51)
Nik-related kinase (Nrk) 
anillin, actin binding protein (Anln) 
lipocalin 2 (Lcn2)
odd-skipped related 1 (Drosophila) (Osrl) 
endothelin 1 (Ednl)

E. Genes implicated in ECM/Cytoskeletal remodelling
lumican (Lum)
LIM and cysteine-rich domains 1 (Dyxin) 
cysteine and glycine-rich protein 1 (Crpl) 
myosin, light polypeptide kinase (Mick)
LIM domain containing preferred translocation partner in 

_________ lipoma (Lpp)________

Housekeeping 20.2 25.3 18.2 NM 010442
Stress Response 18.7 27.9 13.3 NM 008182
Transcription 11.9 9.8 NM 029688
Housekeeping 11.4 8.6 NM 020581
Housekeeping 11.1 9.3 8.5 NM 008129
Stress Response 9.0 NM 010479
Signalling 14.0 N M 0 3 1 191

Transcription -4.3 NM 007679
Housekeeping -4.3 NM 007606
Signalling -4.0 -2.5 NM 016960
Stress Response -4.0 -2.6 NM 008987
Transcription -3.5 NM 018781
Transcription -3.6 NM 053242
Signalling -3.4 NM 008046
Cell Division -3.3 NM 009830

Apoptosis -3.3 BB138485

Transport -3.1 NM 018760
Signalling -4.9 NM 009141
Signalling -2.8 NM 021367
Housekeeping -2.6 NM 008491

Signalling 4.8 NM 176933
Housekeeping 4.5 NM 011723
Signalling 3.9 NM 011948
ECM/Cytoskeleton 3.7 NM 133833
Cell Division 3.5 NM_013525

ECM/Cytoskeleton 4.4 NM 020590
Housekeeping 3.7 BB469763
ECM/Cytoskeleton 3.3 NM 011451
Housekeeping 2.9 NM_025797

Housekeeping 2.8 NM 015744
Transcription 3.5 BC072592
ECM/Cytoskeleton 2.7 NM 008684
Stress Response 2.5 NM 011414
Signalling 2.5 NM 007904
Transport 2.5 N M 178119

Housekeeping -4.3 NM 007606
Cell Division -3.0 NM 207685
Signalling -3.0 NM 019568
Transcription -3.0 N M 010118
Signalling -2.9 NM 011613
Transcription -3.6 NM 053242
Transport -3.1 NM 018760
Stress Response -2.7 NM 011234
Signalling -2.7 NM 013724
ECM/Cytoskeleton -2.6 NM 028390
Housekeeping -2.6 NM 008491
Transcription -2.3 NM 011859
Signalling -2.3 N M 010104

ECM/Cytoskeleton -2.5 NM 008524
EC M/Cytoskeleton -2.5 NM 144799
EC M/Cytoskeleton -2.4 NM 007791
EC M/Cytoskeleton -2.0 NM_139300
ECM/Cytoskeleton

-2.1 NM 178665
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Gene description Function T
Cell Line 

C S Assession #

FERM domain containing 3 (Frmd3) ECM/Cytoskeleton -2.0 NM 172869
A disintegrin and metalloprotease domain 33 (ADAM33) ECM/Cytoskeleton 2.1 NM 033615
chondroitin sulfate proteoglycan 4 (Cspg4)

F. Genes of interest identified in all cell lines
a disintegrin-like & metalloprotease with thrombospondin

ECM/Cytoskeleton 3.4 NM 139001

type 1 motif, 5 (Adamts5) 
serine (or cysteine) proteinase inhibitor, clade B, member

ECM/Cytoskeleton -1.8 -2.2 -1.9 NM_011782

lb (Serpinblb) Housekeeping 5.6 4.5 6.7 NM 173052
glutathione S-transferase, alpha 4 (Gsta4) Stress Response 6.6 4.3 5.9 NM 010357

Table 4.3: Genes of interest identified based upon their functionality, magnitude of up- or 
down-regulation, or identification in tendon (T), corneal (C), or skin (S) fibroblasts. The 
tabulated genes were manually clustered into the indicated functional groups based upon their 
annotation. The numerical intensity values shown indicate the fold-expression change, as 
described in 2.2.23. Positive values correspond to up-regulation, whilst negative values 
correspond to down-regulation. Triplicate microarray experiments were performed with each 
fibroblast cell line.

cells (Baneijee et al., 2003; Su et al., 2002). Finally, Slc4a4 was shown to decrease in 

stimulated corneal cells. The protein encoded by this gene functions to regulate 

intracellular pH levels by mediating the coupled movement of Na+ and H C O 3’ ions 

across the plasma membrane (Kim et al., 2003b).

In addition to Ccl20 and Ptx3, which were also identified in tendon fibroblasts, 

chemokine (C-X-C motif) ligand 5 (Cxcl5), thymic stromal lymphopoietin (Tslp) and 

lipocalin 2 (Lcn2) were also found to be down-regulated to a large extent in skin 

fibroblasts. Cxcl5, in contrast to Ccl20, encodes a C-X-C type chemokine, but is also 

responsible for the recruitment of inflammatory cells (Sachidanandan et al., 2002; Smith 

and Herschman, 1995). Tslp, which also functions as a signalling molecule, encodes a 

cytokine which controls murine B cell development (Vosshenrich et al., 2004) as well as 

CD(+) T cell expansion and survival (Al Shami et al., 2004). Finally, Lcn2 encodes 

lipocalin 2, a small, secreted acute-phase protein and functions in diverse biological 

processes by forming multimeric complexes o f small, hydrophobic molecules and cell 

surface receptors (Kamezaki et al., 2003; Shen et al., 2004). Lipocalin 2 has been found
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to be expressed highly in mature adipocytes (Kratchmarova et al., 2002), and, when 

induced in hematopoietic cells, has been found to induce apoptosis (Kamezaki et al.,

2003). O f the five genes identified as being down-regulated to the greatest extent in skin 

fibroblasts, four have been implicated either the inflammatory or the acute-phase 

response. It is interesting that, in contrast to the other two cell lines, the genes down- 

regulated to the greatest extent in skin fibroblasts were predominantly involved in stress- 

related functions.

4.3.3 Description o f  genes up-regulated with stimulation and identified in one line only 

In addition to the identification of the highest up- and lowest down-regulated 

genes found in more than one cell line, it is also crucial to investigate those genes with 

the greatest magnitude o f differential regulation found in only one cell line. In contrast 

to the genes identified above, the following genes were found to be differentially up- 

regulated in one cell line only, which inevitably provides information on the specific 

differential response these three cell lines had to an identical mechanical stimulus.

4.3.3.1 Tendon fibroblasts

O f the five genes up-regulated to the largest extent in tendon cells, two are 

implicated in signalling. Dual specificity phosphatase 4 (Dusp4) encodes a member of 

the dual specificity protein phosphatase subfamily, which function to inactivate their 

target kinases by dephosphorylating both phosphoserine/threonine and phosphotyrosine 

residues. In addition, they have been found to negatively regulate members of the 

mitogen-activated protein (MAP) kinase superfamily, specifically ERK1, ERK2 and c- 

Jun N-terminal kinase (JNK), which themselves, are implicated in cellular proliferation 

and differentiation (Guan and Butch, 1995). The activity and abundance of the MKP-2
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protein, but not MKP-2 mRNA levels, has been shown to increase in senescent 

fibroblasts when compared to their younger counterparts (Torres et al., 2003). Mitogen 

activated protein kinase kinase kinase 4 (Map3k4) was also found to be up-regulated in 

tendon fibroblasts. Map3k4 is a component of sequential kinase cascades activated in 

response to various extracellular signals and has been found to specifically activate the 

JNK pathway, but not ERKs or p38, and binds to Cdc42 and Rac (Gerwins et al., 1997). 

Map3k4 has been found to be involved in the regulation of JNK activation by Rac/Cdc42 

independent of PAK and has also been shown to bind Axin, a multidomain protein that 

plays a critical role in Wnt signalling (Fanger et al., 1997).

In addition to signalling-related genes, tendon fibroblasts also demonstrated an 

up-regulation of xanthine dehydrogenase (Xdh) with stimulation. This gene encodes for 

the rate-limiting enzyme in purine catabolism which converts hypoxanthine to xanthine 

and xanthine to urate/uric acid, a process which occurs in most cell types (Ohtsubo et al.,

2004). Xdh has been linked to conditions o f cellular injury and was also found to be 

capable of regulating cellular levels of cyclooxygenase-2 (COX-2), a protein inducible 

by oxidative stress (Ohtsubo et al., 2004). Tendon fibroblasts also demonstrated the up- 

regulation of dystonin (Dst), a cytoskeleton-related gene, which contains actin-binding 

and microtubule-binding domains at either end separated by a plakin domain and several 

spectrin repeats (Young et al., 2003). The protein encoded by this gene has been found 

co-aligning with actin stress fibres and has also been detected in the nuclei, most likely a 

result o f a functional nuclear localization signal within the plakin domain (Young et al., 

2003). This suggests that dystonin is not only an important cytoplasmic/membrane 

protein, but also serves a different functional role, given its localization in the nucleus 

(Young et al., 2003).
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4.3.3.2 Corneal fibroblasts

Three of the five differentially regulated genes shown to be highest up-regulated 

in corneal fibroblasts perform housekeeping roles within the cell. The first of which, 

aldo-keto reductase family 1, member B3 (AkrlB3), encodes for a protein that is the 

rate-limiting enzyme in the conversion of glucose to sorbitol, which is then converted to 

fructose by sorbitol dehydrogenase (Nishinaka and Yabe-Nishimura, 2005). Aldose 

reductase also catalyzes the reduction of a variety of aldehydes, and thus plays a 

protective role against the accumulation o f toxic aldehydes derived from lipid 

peroxidation and steroidogensis that could otherwise affect cell growth and 

differentiation (Lefrancois-Martinez et al., 2004). Expression of AkrlB3 has been found 

to be activated by osmotic and oxidative stress (Nishinaka and Yabe-Nishimura, 2005). 

Levels of cytochrome b-5 (Cyb5) transcripts were also shown to be up-regulated in 

corneal fibroblasts, the protein product of which plays a key role in sterol biosynthesis 

pathways (Kunic et al., 2001). Finally, the ectonucleotide

pyrophosphatase/phosphodiesterase 2 (Enpp2) gene was also shown to be up-regulated 

with stimulation in corneal fibroblasts. Despite its classical housekeeping role, it appears 

as though Enpp2 also functions in differentiation of mesenchymal cell lines. Levels of 

Enpp2 mRNA expression have been shown previously to be highly up-regulated during 

the differentiation in a primary culture o f mouse pre-adipocytes (Ferry et al., 2003). 

Furthermore, Enpp2 mRNA transcription was also induced during osteo/chondrogenic 

differentiation in vitro (Bachner et al., 1999).

In addition to these three genes, corneal fibroblasts also demonstrated the up- 

regulation o f two ECM/cytoskeletal-related transcripts. The first o f which is the gamma- 

aminobutyric acid receptor-associated protein-like 1, which encodes a protein that acts as 

a linker between microtubules and the gamma2 subunit of GABA(A) receptors (Xin et
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al., 2001). The second is sphingosine kinase 1 (Sphkl), a gene which encodes an 

enzyme that converts sphingosine into sphingosine-1-phosphate (S-l-P). S-l-P is the 

ligand for a family o f G protein-coupled receptors that regulate a wide range of cellular 

functions, including growth, survival, cytoskeletal rearrangements and cell motility. 

Overexpression of Sphkl has been shown to induce extensive stress fibres through the 

generation of excess S-l-P, which goes on to impair formation of the Src-focal adhesion 

kinase signalling complex, ultimately leading to aberrant focal adhesion turnover and 

impaired cell locomotion (Olivera et al., 2003). This overexpression in comeal 

fibroblasts could be a result o f the inherent shear stress being experienced by the cells, 

leading them to reinforce their contacts to the substrate with a concomitant reduction in 

locomotion.

4.3.3.3 Skin fibroblasts

In keeping with tendon and comeal fibroblasts, skin cells also demonstrated the 

up-regulation of a gene involved in the oxidative stress response. This gene encodes the 

secretory leukocyte protease inhibitor (Slpi), which is thought to act as an anti­

inflammatory factor by inhibiting a wide spectrum of proteases and has also been 

implicated in antimicrobial activity and the suppression of cyclooxygenase-2 (COX-2) 

production leading to a reduction o f prostaglandin E2 , MMP-1 and MMP-9 in monocytes 

(Kikuchi et al., 2000). Slpi has also been shown to inhibit the collagen gel contraction 

by fibroblasts in in vitro models of wound healing, by causing poor cytoskeletal 

organization most likely by hindrance of cell-matrix interactions (Sumi et al., 2000).

The remaining four genes shown to be most highly up-regulated in skin 

fibroblasts either have hitherto unknown functions or appear to play roles in the 

regulation of cell division or transcriptional regulation during development. The BTB
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(POZ) domain containing 11 gene, encodes a protein containing the Bric-a-brac, 

Tramtrack, Broad complex (BTB) or Poxvirus zinc finger (POZ) domain, which is a 

widely distributed protein-protein interaction domain. Classically, if the downstream 

domain is a zinc finger, the protein most likely functions as a transcriptional regulator, 

whereas if the downstream domain is a kelch motif, the protein most likely binds to actin 

(Kang et al., 2004; Melnick et al., 2000). Based upon information from the NCBI 

Conserved Domain Database (Marchler-Bauer et al., 2005), this gene does not contain 

any identifiable domains downstream of the BTB/POZ domain, so the function of the 

protein is unclear. Neogenin (Neo) was also shown to be up-regulated with stimulation 

in skin fibroblasts. Neogenin is a member of the family o f neural cell adhesion 

molecules (N-CAM), but little is known of its function in non-neuronal tissues in 

vertebrates. Nonetheless, neogenin transcripts have been found to be widely expressed in 

a broad spectrum of tissues throughout embryogenesis, which implies that it may play a 

critical role in differentiation and/or cell migration events within embryonic tissues 

(Keeling et al., 1997).

Endothelin receptor type B (Ednrb) gene was also up-regulated, which has been 

shown to activate a serum response factor via G proteins (Liu and Wu, 2003). Deletion 

o f this gene leads to arrest at embryonic day 8.5 due to defects associated with mesoderm 

development (Welsh and O'Brien, 2000). Centaurin, gamma 2 (Centg2), which encodes 

for a bifunctional GTP-binding and GTPase-activating protein, has been found to alter 

cell morphology and activation of gene transcription upon its overexpression (Xia et al., 

2003).

Overall, and in keeping with the trends discussed previously, genes involved in 

the oxidative stress response were shown to be differentially regulated with stimulation 

in each o f the cell lines. As mentioned previously, this is most likely a direct result of
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the fact that the cells were subjected to 14 hours of fluid flow as a means of stimulation. 

What is particularly interesting is not so much the fact that the cells are all mounting a 

similar stress response, but rather the way in which they go about it, for example with the 

differential regulation of unique oxidative-stress genes.

4.3.4 Genes that were down-regulated with stimulation and identified in one cell line 

only

In order to complete the picture regarding the differential response o f tendon, 

comeal and skin fibroblasts to fluid flow, the differentially down-regulated genes 

distinguished by their presence in only one cell line must also be discussed.

4.3.4.1 Tendon fibroblasts

The genes identified as being down-regulated to the greatest extent in tendon 

fibroblasts function in diverse cellular processes such as differentiation, proliferation and 

migration. Chemokine (C-X-C motif) ligand 14 (Cxcll4), for example, expresses a 

protein belonging to a family of cytokines that function in angiogenesis, inflammation, 

cell recmitment and migration. When Cxcll4 is overexpressed, however, tumour 

myoepithelial cells demonstrate enhanced proliferation, migration and invasion (Allinen 

et al., 2004). It would be interesting to determine if  the down-regulation o f this gene in 

the context o f mechanically stimulated tendon fibroblasts could lead to the reduction o f 

cell density and migration in these cells upon treatment with shear stress. Egr2, a 

sequence specific DNA-binding transcription factor, appears to be involved in the 

modulation o f cell proliferation (Chavrier et al., 1988; Parkinson et al., 2003). Egr2 has 

been shown to be transiently activated following serum stimulation of quiescent 

fibroblasts in culture (Chavrier et al., 1989), and is activated during the G0/G1 transition
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in cultured cells. Because serum stimulation of quiescent cells leads to a rapid and 

transient accumulation of Egr2 mRNA, perhaps the downregulation of Egr2 in tendon 

fibroblasts is a consequence of the lower serum levels present during stimulation.

In addition to Cxcll4 and Egr2, tendon fibroblasts also demonstrate the down- 

regulation of the receptor activator of NF-kB ligand (RANKL) as well as embryonic 

lethal, abnormal vision-like 2 (Elavl2), both o f which are implicated in connective tissue 

maintenance and/or turn-over. RANKL, for example, encodes for a protein that is a 

member of the TNF superfamily of cytokines and is implicated in stimulating the 

differentiation and subsequent activation of osteoclast progenitor cells, the cells 

responsible for bone resorption (Quinn and Gillespie, 2005). Elavl2, on the other hand, 

encodes an mRNA binding protein belonging to the RNA recognition motif family, 

which serves to bind to adenine- and uracil-rich elements in the 3’-untranslated regions 

o f various mRNAs, thus controlling the stability of the message (Jain et al., 1997). 

Interestingly, one study proposes that Elavl2 functions in selecting mRNAs essential for 

establishing and maintaining the adipocyte phenotype, chaperones them to the cytosol, 

and controls their expression (Gantt et al., 2004). Furthermore, Elavl2, has been shown 

to be down-regulated during the conversion o f preadipocytes to adipocytes (Qi et al., 

2002).

43.4.2 Corneal fibroblasts

In corneal fibroblasts, the functional classification of the five genes down- 

regulated to the greatest extent was very diverse. The gene encoding solute carrier 

family 4, member 4 (Slc4a4) is an ion transporter known to contribute to intracellular pH 

regulation during agonist-induced stimulation (Kim et al., 2003a). The anillin (Anln) 

gene, on the other hand, encodes a protein that has been found to localize to the nucleus
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of interphase cells, in the cytoplasm during metaphase, and becomes highly enriched in 

the cleavage furrow along with myosin II during anaphase-telophase, but is absent from 

cells that have left the cell cycle. Anillin isolated from embryo extracts has been found 

to bind directly to actin filaments and be capable of actin bundling. Consequently, 

anillin is thought to play a role in organizing and stabilizing the cleavage furrow and 

other cell cycle regulated, contractile domains o f the actin cytoskeleton (Field and 

Alberts, 1995).

The genes encoding Rad51 and Nik-related kinase (Nrk) also showed decreased 

levels of mRNA in response to mechanical stimulation in corneal fibroblasts. Rad51 

plays a pivotal role in various types of DNA repair in mammalian cells (Stark et al., 

2002), whereas Nrk is homologous to NCK-interacting kinase (Nik) and is expressed 

during the late stages of embryogenesis (Nakano et al., 2000). Nrk has been found to 

selectively activate the JNK pathway (Nakano et al., 2000) and is thought to play a role 

in cell migration since its protein product is highly homologous to the Drosophila 

Misshapen protein (Su et al., 1998). Misshapen has been found to function upstream of 

the JNK pathway to stimulate dorsal closure in the Drosophila embryo, a process known 

to involve cell migration (Su et al., 1998). When Nrk was overexpressed in COS-7 cells, 

however, polymerized actin accumulated, thus implicating Nrk in cytoskeletal 

organization (Nakano et al., 2003). In the same study, Nakano and colleagues identified 

cofdin, a protein involved in depolymerising and severing actin fdaments, as a substrate 

for Nrk. This finding led the group to postulate that Nrk may function in cell migration 

by regulating actin cytoskeletal organization through the cofilin phosphorylation 

(Nakano et al., 2003). Perhaps the downregulation of Nrk in corneal fibroblasts, as 

shown in this study, serves to decrease actin polymerization and/or migration in response 

to laminar fluid flow.
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4.3.4.3 Skin fibroblasts

Unlike tendon and comeal fibroblasts, only three functionally annotated genes 

could be identified as being uniquely down-regulated in skin fibroblasts. The first of 

these, lipocalin 2 (Lcn2), is a gene expressed during the acute phase response and has 

been shown to induce apoptosis in haematopoietic and mammary epithelial cells when 

overexpressed (Bong et al., 2004; Kamezaki et al., 2003). The odd-skipped related 1 

(Osrl) gene was also down-regulated in skin fibroblasts with stimulation. Osrl is widely 

expressed in mammalian tissues and cell lines and is activated by oxidative stresses and 

most likely functions as a transcription factor (Chen et al., 2004).

Finally, endothelin 1 (Ednl), which belongs to a multi-functional family of 

endothelium-derived peptides, was also down-regulated with stimulation in skin 

fibroblasts. In addition to its role as a potent vasopressor (Desmouliere, 1995), Ednl has 

been shown to be capable of modifying ECM metabolism and stimulating proliferation 

in fibroblasts and osteoblasts (Kopetz et al., 2002). Interestingly, in vitro studies have 

also revealed that Ednl increases osteoblast-specific gene expression (Kasperk et al.,

1997) and serves to induce expression of alpha-smooth muscle actin, ezrin, moesin and 

paxillin in lung fibroblasts, thus enhancing their ability to contract the ECM (Clarke et 

al., 2003; Lam et al., 2000; Shi-Wen et al., 2004). In this case, perhaps the down- 

regulation of Ednl is either a consequence or indicative o f the slower proliferation o f 

skin fibroblasts under fluid flow. Taken further, perhaps the downregulation of Ednl 

serves to reinforce the fibroblastic phenotype in these mechanically stimulated cells.
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4.3.5 Mechanical stimulation altered genes involved in ECM maintenance and/or actin 

cytoskeleton organisation

Cells are constantly subjected to a barrage of extracellular chemical, 

topographical and mechanical signals that ultimately modulate cell function by activating 

signal transduction pathways. The conversion of mechanical signals into biochemical 

responses relies on direct or indirect connections between the internal actin cytoskeleton 

and the ECM. Not surprisingly, numerous studies have shown that cells subjected to 

mechanical stimuli alter both the gene and protein expression of ECM and cytoskeletal 

components (Table 3.2). Consequently, several genes implicated in ECM biogenesis and 

maintenance or cytoskeletal organization identified in one cell line were distinguished.

4.3.5.1 Tendon fibroblasts

Lumican (Lum) is a member of the small leucine rich proteoglycans that has been 

shown to bind collagen, limit fibril diameter and regulate the kinetics of collagen 

fibrillogenesis in vitro (Doane et al., 1992; Vij et al., 2004). In addition to its role in 

maintaining the integrity and function of connective tissues, Lum has also been shown to 

decrease proliferation and increase apoptosis in cells derived from a Lum -/- mouse (Vij 

et al., 2004) and was shown to be down-regulated during corneal wound healing 

(Carlson et al., 2003). In this study, lumican was found to be down-regulated in 

mechanically stimulated tendon fibroblasts, which may indicate that these cells are 

responding to shear stress by decreasing proliferation and, perhaps, increasing apoptosis.

Levels of transcripts for cysteine and glycine-rich protein 1 (Crpl) were also 

found to be down-regulated in tendon fibroblasts with stimulation. Crpl belongs to a 

family o f highly conserved proteins containing two LIM domains with associated 

glycine-rich repeats. The LIM domain, named after three homeodomain containing
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proteins -  lin-11, isl-1 and mec-3 -  is implicated in protein-protein interactions, may 

target proteins to distinct subcellular locations, and is thought to mediate the assembly of 

multimeric protein complexes (Wang et al., 1992). All CRP family members 

characterized thus far have been shown to interact with alpha-actinin, a filamentious 

actin cross-linking protein (Harper et al., 2000), and Crpl itself has also been found to 

associate with adhesion plaques through its binding to the adhesion complex protein 

zyxin (Sadler et al., 1992). As a consequence, Crpl has been implicated in cell 

proliferation and differentiation, and it is also thought to regulate the stability and 

structure of adhesion complexes (Sadler et al., 1992). Crp levels have been shown to be 

induced by serum stimulation (Wang et al., 1992).

Transcripts for the myosin light polypeptide kinase (Mick) were also reduced in 

tendon fibroblasts upon stimulation. Mick is a calcium/calmodulin-dependent 

serine/threonine protein kinase that activates myosin motor activity by phosphorylating 

the myosin II regulatory light chain (Blue et al., 2002). Because it also binds actin 

filaments with high affinity, Mick has also been identified as regulating diverse cellular 

functions that rely on interactions o f myosin II with the actin cytoskeleton (Smith et al.,

2002). Mick has been previously identified by Ando et al. as a shear stress-response 

gene in endothelial cells, however in this case, Mick was up-regulated (Ando et al., 

1996). Furthermore, in Mlck-inhibited cells, MLC phosphorylation was blocked at the 

cell periphery but not at the centre o f the cell, and zyxin-containing adhesions were not 

assembled at the periphery of the cell but focal adhesions were maintained in the centre. 

These cells continued to generate membrane protrusions, but turned over more 

frequently and migrated less effectively (Totsukawa et al., 2004). Interestingly, despite 

the fact that transcript levels of Mick decreased in mechanically stimulated tendon 

fibroblasts, these cells did not demonstrate a noticeable decrease in the abundance of
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zyxin-containing focal contacts, as Totsukawa’s study would suggest (see Figure 3.17, 

section 3.1.5.4). The downregulation of Mick in tendon fibroblasts is nonetheless 

interesting and may result from reduced migration of these cells in the presence of fluid 

flow.

In contrast to Lum, Crpl and Mick, which were all down-regulated in tendon 

fibroblasts, a disintegrin and metalloprotease domain 33 (ADAM33) and chondroitin 

sulfate proteoglycan 4 (Cspg4) were up-regulated with stimulation. ADAM33 encodes 

for a relatively new protein, identified in 2002 (Yoshinaka et al., 2002), that belongs to 

the ADAM family of membrane-anchored proteins, each of which contains a disintegrin 

and metalloprotease domain. ADAM family proteins are implicated in cell-cell

interactions, cell fusion, cell signalling (Gunn et al., 2002) and integrin-mediated 

signalling pathways (Umland et al., 2004). Cspg4, on the other hand, encodes for a 

transmembrane chondroitin sulfate proteoglycan, a class of molecules containing a core 

polypeptide onto which numerous glycosaminoglycan chains are covalently attached. 

Proteoglycans have been implicated in various cellular roles, such as ECM assembly and 

structural organization, cellular response to growth and trophic factors, cell-matrix and 

cell-cell interactions, cell migration, metastasis, and axon outgrowth (Petrini et al.,

2003). Cspg4 is an integral membrane proteoglycan that has been shown to interact with 

ECM components and cell surface molecules (Petrini et al., 2003); it is developmentally 

regulated, with the highest level of expression being in immature cells and decreasing 

upon differentiation (Petrini et al., 2003).

4.3.5.2 Corneal fibroblasts

O f particular interest in corneal fibroblasts was the down-regulation o f two genes 

which both encode LIM-domain containing proteins. The first is dyxin, a novel gene
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encoding a protein containing a cysteine-rich domain at its N-terminus and two LIM 

domains in the C-terminal region. As above, the presence of LIM domains implies 

involvement in protein-protein interactions, whereas its prevalent expression in skeletal 

muscle, combined with the double zinc finger motif contained within the LIM domain 

has caused some speculation that dyxin could be involved in skeletal muscle 

development. The differential regulation of dyxin was of particular interest, however, 

since it is a potential binding partner for (3-dystroglycan1, an adhesion molecule and 

component of the dystrophin glycoprotein complex, which is itself implicated in 

muscular dystrophy, development, cell adhesion and signalling (Winder, 2001).

The second LIM domain-containing protein identified in comeal fibroblasts is the 

LIM domain containing preferred translocation partner in lipoma (Lpp), which contains 

three C-terminal LIM domains and has been found to localize to focal adhesions but can 

also be transiently translocated to the nucleus. At cell adhesions, Lpp interacts with the 

vasodilator-stimulated phosphoprotein (VASP) and alpha-actinin, suggesting that Lpp 

functions in cell motility and actin dynamics. In the nucleus, however, Lpp maintains 

transcriptional activation activity, which hints at a role in directly regulating gene 

expression (Petit et al., 2003).

Comeal fibroblasts also demonstrated a decrease in the level of transcripts for the 

FERM domain containing 3 (Frmd3) gene. The encoded protein is structurally related to

4.1 proteins, all of which contain a FERM domain (F, 4.1; E, ezrin; R, radixin; M, 

moesin), which itself comprises binding sites for the cytoplasmic tails of integral 

membrane proteins, as well as an internal 8-10 kDa domain containing spectrin-actin 

binding activity required for membrane stability (Ni et al., 2003). Other 4.1 proteins

1 Very soon after the identification o f  dyxin by Bespalova and Burmeister (Bespalova and Burmeister, 
2000), another group submitted a paper claiming dyxin was a novel intracellular binding partner o f  (i- 
dystroglycan (Holt et al., 1999). When this microarray data was first being compiled and analysed, this 
reference was accessible in PubMed, but appeared to have been “revoked” due to a publishing discrepancy 
detailed by the publisher. This reference has since been removed from the database.
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have been found to be required for the maintenance of cell shape and membrane 

mechanical properties through lateral interactions with spectrin and actin in the 

cytoskeleton and vertical interactions with cytoplasmic domains o f transmembrane 

proteins (Ni et al., 2003).

4.3.6 Genes o f  interest identified in all three cell lines

In addition to the extracellular matrix and/or cytoskeletal-related genes identified 

in one cell line only, there were also several genes identified in all three cell lines that 

were of particular interest. The first, a disintegrin-like and metalloproteinase with 

thrombospondin type I motif 5 (Adamts5), is akin to the genes discussed previously 

because it has a role in extracellular matrix remodelling. Adamts5 encodes for a protein 

that belongs to the ADAM-TS family of metalloproteases. All members of the ADAM- 

TS family share common domain organization: a pre-pro region to direct synthesis o f the 

protein to the endoplasmic reticulum and maintain the enzyme in its latent form prior to 

its proteolytic activation, a reprolysin-type catalytic domain, a disintegrin-like domain, 

and a thrombospondin type-1 module (Hurskainen et al., 1999). Members o f the 

ADAM-TS family have potential roles in embryonic development, cell migration, 

angiogenesis and ECM breakdown (Bevitt et al., 2003). Adamts5, in particular, is an 

aggrecanase, capable of degrading the interglobular domain of aggrecan at a specific 

Glu-Ala bond (Kevorkian et al., 2004). This action has been implicated in rheumatoid 

and osteoarthritis, where the increased expression of Adamts5 has been correlated with 

the degradation of aggrecan in cartilaginous tissues, as seen in osteoarthritis.

Genes encoding the serine (or cysteine) proteinase inhibitor, clade B, member lb  

(Serpinblb) and glutathione-S-transferase, alpha 4 (Gsta4) were up-regulated in all cell 

lines. Serpins are known to regulate intracellular and extracellular proteolytic events
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such as apoptosis, complement activation, fibrinolysis and blood coagulation. Clade B 

serpins have a high degree of sequence identity and are implicated in the regulation of 

tumour progression, inflammation and cell death. Serpinblb is known to be a potent 

inhibitor of the neutrophil granule proteases, which are responsible for the killing of 

phagocytosed pathogens. An excessive release of these proteases, however, impairs the 

clearance of apoptotic cells during the inflammatory process (Benarafa et al., 2002). 

Consequently, an up-regulation in the gene encoding Serpinblb could act as a 

mechanism by which to decrease the amount of neurophil proteases in the extracellular 

milieu, thus increasing the clearance of apoptotic cells.

4.3.7 Genes implicated in adipogenesis are differentially regulated in mechanically

stimulated fibroblasts

All three cell lines demonstrated the differential regulation of genes implicated in 

adipocyte differentiation, which is of particular interest given the capability o f fibroblast 

precursors to differentiate along various connective tissue cell-type lineages, such as 

adipocytes (Wolf et al., 2003). In the case of carbonic anhydrase 3 (Car3) or lipocalin 2 

(Lcn2), which have both been found to be expressed at high levels in mature adipocytes 

(Kim et al., 2001; Kratchmarova et al., 2002), it appears that stimulation is effectively 

reinforcing the fibroblast phenotype, since levels o f these genes were down-regulated 

with fluid flow. In contrast, however, angiopoietin-like 4 (Angptl4) and ectonucleotide 

pyrophosphatase/phosphodiesterase 2 (Enpp2) have been shown to be up-regulated 

during adipocyte differentiation (Ferry et al., 2003; Mandard et al., 2004; Yoon et al., 

2000). Because Angptl4 and Enpp2 were both up-regulated in this study in response to 

stimulation, this hints to the possibility that shear stress is inducing an adipogenic shift in 

tendon, corneal and skin fibroblasts. While this picture is currently conflicting and
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difficult to interpret, the implication of these genes in mesenchymal differentiation is 

nonetheless remarkable and should be investigated further.

4.3.8 Summary

In summary, we present data that demonstrates clearly that gene expression alters 

in tendon, corneal and skin fibroblasts following 14 hours o f shear stress. The three cell 

lines show some similarities in their response to stimulation, in particular, with the 

production of stress-response, signalling- and housekeeping-related genes, but they also 

clearly maintain unique genetic responses based upon their tissue of localization. Genes 

involved in these differential responses are functionally diverse, and are shown to be 

both up- and down-regulated with mechanical stimulation. RT-PCR successfully 

validated the microarray data in the direction, but not the magnitude, o f expression. 

Furthermore, the encoded proteins from several genes of interest were also shown to 

change with stimulation, though their expression did not necessarily correlate with 

mRNA levels. This study provides the first in-depth analysis of the tissue-specific 

transcriptional response of a cell type to a mechanical stimulus and its comparison to the 

same cell type in other tissues.
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Chapter 5 

Final Discussion

Fibroblasts are stromal cells that constitute the predominant cell type in 

mesenchymal tissues and are considered to be the primary source of most ECM 

macromolecules. Despite their fundamental role in connective tissue synthesis and 

widespread use in culture, surprisingly little is known about fibroblasts themselves. The 

study of these cells is often compromised by several factors, including the accidental 

inclusion of nonfibroblastic cell types (Boone and Scott, 1980; Kuznetsov and Gehron, 

1996), the fact that embryonic mesenchymal stem cells (MSCs) closely resemble 

fibroblasts themselves (Pittenger et al., 1999), and the distinct lack of knowledge 

surrounding the differentiation of MSCs into fibroblasts as well as any subsequent 

“differentiation” that gives rise to heterogeneity in given fibroblast populations. 

Furthermore, there is no known universal marker for fibroblasts or their differentiation 

states. This lack of characterization has led to the assumption that cultured fibroblasts 

are homogeneous, despite increasing evidence that these cells exist as heterogeneous 

populations based upon their tissue of localisation. In the past, such assumptions have 

resulted in erroneous interpretation of data (Thompson et al., 1983).

This study has attempted to characterise fibroblasts isolated from three diverse 

connective tissues based upon their differential responses to an identical mechanical 

stimulus. In order to circumvent the difficulties mentioned above, fibroblasts were 

isolated by an established and widely used method, which exploits the rapid adhesion of 

fibroblasts to facilitate their separation from nonfibroblast-like cells (Spector et al.,

1998). Furthermore, fibroblasts tend to overgrow any contaminating cell types after only 

relatively few cumulative population doublings (CPDs) (Gilbert and Migeon, 1975), so 

isolated cell lines were maintained in culture for approximately five CPD prior to

152



Chapter 5: Final Discussion

experimentation. Isolated cell lines were shown to be of mesenchymal origin based upon 

the presence and/or absence of tissue-specific intermediate filament types. Moreover, 

the probability of isolated cell lines consisting of “true” fibroblasts, as opposed to MSCs, 

was increased, since cells were obtained from 19-day old embryos; in contrast, MSCs are 

typically isolated from 12- to 13-day old embryos (Spector et al., 1998).

5.1 Morphological characterisation of tendon, corneal and skin fibroblasts

These studies substantiate previous reports (Table 3.1) that tendon, corneal and 

skin fibroblasts, despite demonstrating typical “fibroblastic” morphology, maintain 

discrete morphological differences based upon their tissue of origin. According to this 

study, all cell lines demonstrated an increasingly rounded morphology upon stimulation. 

There did not, however, appear to be any gross alignment of cells in the direction of 

flow, nor did stimulation reveal any further morphological distinctions between cells 

lines that were not already evident in the pre-stimulated fibroblasts. All cell lines 

demonstrated abundant, focal adhesions and directional stress fibres, though there did not 

appear to be any gross rearrangement of either with stimulation. There were, however, 

quantifiable differences in the abundance and classification of focal adhesions both 

between cell types and with stimulation. Corneal fibroblasts, for example, exhibited 

fewer focal adhesions per cell and were the only cell line to demonstrate an increase in 

focal adhesions with stimulation.

The present work also corroborates previous reports that MMP activity alters 

with mechanical stimulation (Archambault et al., 2002a; Lambert et al., 2001; Prajapati 

et al., 2000b), and reveals for the first time that tendon, corneal and skin fibroblasts 

display differential regulation of gelatinase activity, both with and without stimulation. 

Overall, there was a universal increase in gelatinase activity in each cell line after fluid
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flow, and although the cell lines shared this same broad response to stimulation, the 

magnitude of up-regulation varied based upon the tissue localisation of fibroblasts. In 

addition to gelatinases, the activity of other MMP subfamilies should be quantified, in 

order to obtain a comprehensive view of the effect of mechanical stimulation on, and 

differential regulation of, MMPs in tendon, corneal and skin fibroblasts.

Collectively, these data substantiate previous observations that fibroblasts from 

different tissues are heterogeneous (Table 3.1) and indicate, for the first time, that 

tendon, corneal and skin fibroblasts maintain differential morphological and biochemical 

responses to an identical mechanical stimulus. Had there been no time constraints, it 

would have been interesting to investigate the effects of variation in the magnitude, 

duration and type of mechanical stimulation. For example, tendon, corneal and skin 

fibroblasts may have aligned in the direction of flow or displayed a reorganisation of the 

actin cytoskeleton, as seen in other cell types (Archambault et al., 2002b; Birukov et al., 

2002; Pavalko et al., 1998), if stimulated for a shorter period of time but with a higher 

magnitude of fluid flow. Moreover, different methods of mechanical stimulation, such 

as substrate distension or compressive loading, may have revealed further morphological 

distinctions between the three cell lines. Such studies could further characterise the 

responses each cell line demonstrated to different mechanical environments, which could 

provide further insight into the biochemical responses each cell generates after such 

mechanotransduction in vivo.

Additionally, the effect of mechanical stimulation on focal adhesions would be 

worthy of further study. Recent research has shown that focal adhesions exist as 

heterogeneous structures, which display variable morphology, protein composition and 

phosphorylation states in response to chemical or physical parameters, such as the 

specific types of ECM macromolecules to which integrins can attach or the rigidity of
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the extracellular substrate (Katz et al., 2000; Zamir et al., 1999). It is possible, then, that 

the composition and phosphorylation states of focal adhesions also varies with 

mechanical stimulation. Although focal adhesions typically contain fundamental 

building blocks, such as vinculin, zyxin and paxillin, other proteins may positively 

correlate with exogenous mechanical forces. Investigation of these proteins could reveal 

possible roles in the regulation of cell-substrate mechanical interactions and shed more 

light on the process of mechanotransduction in fibroblasts.

5.2 Phenotypic expression o f fibroblasts following mechanical stimulation

While numerous investigations have attempted to distinguish fibroblasts from 

different tissues, this is the first study to examine the large-scale transcriptional 

responses of tendon, corneal and skin cell lines to mechanical stimulation. From this 

work, it is apparent that each cell line maintained numerous genes differentially 

regulated with stimulation. After identification and classification of these genes, it 

became evident that, while the majority were housekeeping-, signalling-, or stress 

response-related genes, a substantial number were implicated in adipocyte 

differentiation, mechanotransduction, and/or the protection of cells against oxidative 

stress.

The differential regulation of genes shown previously to play roles in adipocyte 

differentiation was of particular interest, given the capability of fibroblast precursors to 

differentiate along various connective tissue cell-type lineages (Wolf et al., 2003). In 

some cases, the differential regulation of these genes with stimulation appeared to be 

effectively reinforcing the fibroblast phenotype, whereas in others, the direction of 

regulation suggested some sort of adipogenic shift in tendon, corneal and skin 

fibroblasts. Consequently, the effect o f shear stress on possible fibroblastic and
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adipogenic conversions is difficult to interpret, especially since mature fibroblasts are 

thought to be incapable of differentiating into adipocytes (Pittenger et al., 1999). While 

it is unlikely that the fibroblasts in this study are exhibiting inter-lineage plasticity, it 

would be interesting to investigate these and other such genes implicated in adipocyte, 

chondrogenic and osteogenic differentiation further. For example, since genes 

previously implicated in adipogenesis were identified as being differentially regulated in 

mechanically stimulated tendon, corneal and skin fibroblasts, perhaps the mechanical 

environment of connective tissue cells serves to drive and/or reinforce their 

differentiation and possibly form the basis for connective tissue specialisation in vivo. 

Indeed, the implication of these genes in mesenchymal differentiation, and possibly 

mechanotransduction, is significant and requires further investigation.

Interestingly, this study revealed that numerous genes implicated in oxidative 

stress responses were up-regulated after stimulation, though differing oxidative stress 

response pathway genes were up-regulated among the cell lines. The production of 

reactive oxygen species (ROS) has been implicated previously in the activation of MAP 

kinase signalling pathways in various cell types (Baas and Berk, 1995; Bao et al., 2001), 

(Hojo et al., 2002; Kamata et al., 2005; Stevenson et al., 1994; Yamamoto et al., 1999). 

The present study corroborates such findings and suggests that ROS production also 

modulates mechanotransduction in tendon, corneal and skin fibroblasts. The effect of 

mechanical stimulation on such signalling pathways, as well as the possible tissue- 

specific modulation of these pathways in fibroblasts from different tissues, warrants 

further investigation.

Not surprisingly, a number of other genes that are thought to function in 

mechanotransduction, either through interactions with the cytoskeleton or providing 

links from the cytoskeleton to the ECM, were differentially regulated with stimulation.
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These genes were found to be both up- and down-regulated, and differed based upon the 

tissue localisation of the given cell lines. Furthermore, a substantial number of genes 

known to encode proteins that function in ECM/cytoskeletal remodelling were altered 

with stimulation. While this, perhaps, is to be expected, only one such gene was 

common to two or more cell lines after mechanical stimulation, with the rest being 

unique to one of the three lines tested. This trend is seen only in this functional 

classification and suggests that ECM/cytoskeleton-related genes may make a substantial 

contribution to the differential response of tendon, comeal and skin cell lines to 

stimulation, but in a tissue-specific manner.

Although this study has discussed the possible role of a number of differentially 

transcribed genes, their functions need to be investigated further, particularly in the 

context of mechanotransduction and maintenance o f fibroblast heterogeneity. For 

example, overexpression or knock-down techniques could be used to probe further the 

function of genes implicated in mechanical stress responses. Similar techniques could 

also be used to try to reinforce or revert fibroblast phenotypes to that demonstrated by 

fibroblasts in other tissues or other connective tissue cells altogether. Prior to these kinds 

o f studies, however, additional research into the differentiation of connective tissue cells 

from MSCs is necessary, in particular in the identification o f suitable markers for the 

differentiation states of MSCs, fibroblasts and other connective tissue cells. 

Furthermore, a comprehensive proteomic investigation of stimulated and control tendon, 

comeal and skin fibroblasts would complement this research. The present study 

demonstrated that levels of four proteins were altered in the fibroblast cell lines in 

response to stimulation, though these levels did not necessarily correlate with the 

microarray data. This occurrence has been documented elsewhere (Lichtinghagen et al., 

2002) and is most likely attributable to the regulation of protein levels at both the
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transcriptional and translational levels as well as the rate of protein turnover in vivo. 

Nonetheless, this variability indicates that cells possess very complex mechanisms by 

which they respond to external stimulation, and reinforces the importance of 

investigating gene as well as protein levels in the cell, in order to gain a comprehensive 

understanding of cell behaviour to a given stimulus.

While this study provides intriguing insights into both fibroblast heterogeneity 

and mechanotransduction, the results presented here are nonetheless very complex. For 

example, it is difficult to ascertain whether shear stress causes tendon fibroblasts to 

assume a more skin-like phenotype. This, and similar questions, are challenging to 

answer, given the indisputable gap in information regarding fibroblast heterogeneity and 

mesenchymal cell differentiation. In hindsight, perhaps these two processes should have 

been considered independently, for example, by first studying the genetic and proteomic 

mechanisms that drive and reinforce fibroblast heterogeneity. Perhaps 

mechanotransduction in different fibroblast cell lines should be investigated only after 

this heterogeneity was understood and organ- and differentiation-specific markers for 

fibroblast were identified. By approaching these questions independently, the 

identification of precise effects of shear stress on tendon, corneal and skin cells might 

have been more straightforward.

5.3 Summary and implications of fibroblast heterogeneity

In summary, the present study provides evidence that fibroblasts isolated from 

tendon, cornea and skin are morphologically and phenotypically distinct and respond in 

unique ways to an identical mechanical stimulus. While these three cell lines show some 

similarities in their response to stimulation, in particular, with increasingly rounded 

morphology, elevated gelatinase activity, and the production of stress-response,
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signalling- and housekeeping-related genes, they also maintain unique responses based 

upon their tissue of localisation. It is clear, from the results presented here, that the 

traditional definition of the fibroblast, which is too often based solely on morphological 

criteria, needs reappraisal. These findings will provide an invaluable resource for further 

study of the factors that control cell- and tissue-specific mechanotransduction, and may 

provide avenues for the manipulation and improvement of tissue engineered prostheses 

and implants for reconstructive surgery.
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A.l Stock solutions, buffers and media compositions

Adjusting Solution (lOx) Tris-HCl (pH 6.8)
SDS
Glycerol
P-mercamptoethanol 
Bromophenol blue

80 mM
50% (w/v) 
30% (v/v) 
40% (v/v)

Alkaline Phosphatase Buffer NaCl
MgCl2
Tris-HCl (pH 9.5)

100 mM 
5 mM 
100 mM

BCIP Stock BCIP
Made up in 
dimethylformamide

57.7 mM

Blocking Buffer Foetal Calf Serum 
BSA
Made up in PBS

5% (v/v)
1 % (w/v)

Coomassie Blue Stain Coomassie Blue R250
Methanol
Acetic Acid

0.1% (w/v) 
40% (v/v) 
10% (v/v)

Destaining Solution Methanol 
Acetic Acid

5% (v/v) 
10% (v/v)

Developing Buffer Tris-HCl 
NaCl 
CaC12 
Brij 35
pH 7.8 (adjusted with HC1)

500 mM 
2 M 
50 mM 
0.2% (w/v)

ECL Solution I Tris-HCl (pH 8.5) 
Luminol
/7-Coumaric Acid

100 mM 
25 mM 
396 pM

ECL Solution II Tris-HCl (pH 8.5)
h 2o 2

100 mM 
0.02% (v/v)

Mechanical Stimulation Medium FCS
Penicillin/Streptomycin 
in DMEM

2% (v/v) 
1% (v/v)
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Modified Sample Buffer Tris-HCl (pH 6.8)
SDS
Glycerol
Pepstatin
PMSF
TPCK
TAME
Benzamidine

50 mM 
1 % (w/v) 
10% (v/v) 
1 pM 
1 mM 
100 pM 
260 pM 
10 mM

NBT Stock NBT
Dimethylformamide

30.6 mM 
70% (v/v)

Orange G Loading Buffer Ficoll
EDTA (pH 8.0) 
Orange G to colour

30% (w/v) 
100 mM

Permeabilising Buffer Glycine 
Triton X-100 
Made up in PBS

20 mM 
0.05% (v/v)

Phosphate Buffered Saline NaCl
KC1
Na2HP04
KH2P04

137 mM 
2.68 mM 
10 mM 
1.76 mM

Renatuation Buffer Triton X-100 25% (v/v)

Resolving Gel Buffer Tris-HCl (pH 8.8) 
SDS

1.5 M 
0.4% (w/v)

SDS-PAGE Running Buffer (lOx) Tris 
SDS 
Glycine 
pH 8.3

250 mM 
1% (w/v) 
1.92 M

SDS-PAGE Sample Buffer (2x) Tris-HCl (pH 6.8)
SDS
Glycerol
Bromophenol Blue 
p-mercamptoethanol

62.5 mM 
2% (w/v) 
30% (v/v) 
0.01% (w/v) 
710 mM

Stacking Gel Buffer Tris-HCl (pH 6.8) 
SDS

0.5 M 
0.4% (w/v)

Stripping Buffer Glycine
SDS

0.2 M
1% (w/v)

pH 2.5 (adjusted with HC1)
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TAE (50x) Tris Base 2 M
Acetic Acid 1 M
EDTA 50 mM

TBST Tris-HCl 50 mM
NaCl 150 mM
Tween-20 
pH 8

0.05% (v/v)

Transfer Buffer Bicine 1.25 mM
Bis-Tris 1.25 mM
EDTA 50 pM
Methanol 
pH 7.2

10% (v/v)

Working Medium FCS
in DMEM

15% (v/v)

Zymogram Sample Buffer (2x) Tris-HCl (pH 6.8) 62.5 mM
SDS 2% (w/v)
Glycerol 30% (v/v)
Bromophenol Blue 0.01% (w/v)
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A. 2 Antibodies, polyacrylamide gel recipes and primers used in RT-PCR

Antibody
Raised In 
(Species)

Raised Against 
(Species)

Working
dilution Source

p-actin Goat Human 1:500 Santa Cruz
CRP-1 Mouse Mouse 1:100 BD Biosciences
Desmin Mouse Pig 1:200 Sigma
Dyxin Rabbit Mouse 1:50 R. Crosbie
Keratin Guinea Pig Cow 1:200 Sigma

Lumican Rabbit Mouse 1:500 A. Oldberg
Neogenin Rabbit Human 1:50 Santa Cruz
Vimentin Goat Human 1:400 Sigma
Vinculin Mouse Human 1:400 Sigma

Table I: Primary antibodies used in Western blotting and immunofluorescence.

Resolving Gel Stacking Gel
Reagents 10% 12% 15% 5%

Acrylamide 4.1 ml 5 ml 6.2 ml 1.5 ml
Resolving Gel Buffer 3.1 ml 3 ml 3 ml -

Stacking Gel Buffer - - - 2.5 ml
H?0 5.15 ml 4.3 ml 4.3 ml 5.7 ml

APS (10%) 125 pi 125 pi 125 pi 125 pi
TEMED 10 pi 10 pi 10 pi 10 pi

Table II: Regents used in casting SDS-PAGE gels. Buffer compositions are detailed 
in section 2.3.

Resolving Gel Stacking Gel
Reagents 7.5% 15% 5%

Acrylamide 6.25 ml 12.6 ml 3.32 ml
Resolving Gel Buffer 6.25 ml 6.25 ml -
Stacking Gel Buffer - - 5 ml
Gelatin (10 mg/ml) 2.5 ml 2.5 ml -

Glycerol 1.4 ml 2.8 ml -
h 2o 8.5 ml 2.16 11.52 ml

APS (10%) 150 pi 135 pi 120 pi
TEMED 12. 5 pi 12.5 pi 40 pi

Bromophenol Blue - + +

Table III: Reagents used in the production of 7.5-15% gradient gelatin
zymograms. Buffer compositions are listed in section 2.3.
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Gene F R Sequence (5' to 3’) Start Len
Tm

(°C) GC% Any 3' Size
Lumican ✓ ttctctcttgccttggcatt 103 20 58.35 45 6 2 378

✓ ggactcggtcaggttgttgt 480 20 62.45 55 4 0
Crpl ✓ gacacctgagcccacatctt 983 20 62.45 55 4 0 538

✓ gtgaggacttggggttcaaa 1520 20 60.4 50 3 2
Mylk gacgtgttcaccctggttct 2397 20 62.45 55 4 0 535

✓ agtcaacctgctgagggcta 2931 20 62.45 55 4 2
Marcks ✓ tgggtgggtcaaaaggaata 1702 20 58.35 45 2 2 619

✓ ttccacgtatcacagcttgg 2320 20 60.4 50 4 3
Cspg2 agacccactgttttgccaac 3211 20 60.4 50 5 3 442

✓ gtgactttccaggagcttcg 3652 20 62.45 55 5 2
Neogenin ctctaccgctgcattgttga 865 20 60.4 55 4 2 502

✓ cactggggataaccacatcc 1366 20 62.45 55 6 2
ADAM33 aacccactacaggccagatg 585 20 62.45 55 4 2 541

✓ gtcctgagtgatgcgactga 1125 20 62.45 55 3 2
Cspg4 tgattccttctccctggatg 4032 20 60.4 50 4 2 669

✓ agggctcctctgtgtgagaa 4700 20 62.45 55 4 1
Adamts5 gctggacctggagagagatg 317 20 64.5 60 3 0 531

y gagtcagccaccaagaggag 847 20 64.5 60 3 0
Serpinblb ccacacactgaaggaaagca 116 20 60.4 50 3 0 683

y taagacccgtggactcatcc 798 20 62.45 55 4 3
Ccne2 ggcatgttcacaggaggttt 318 20 60.4 50 4 0 539

y cgatggctagaatgcacaga 856 20 60.4 50 4 0
Gsta4 v' gccaagtacccttggttgaa 229 20 60.4 50 6 3 503

y caggacaatcctgaccacct 731 20 62.45 55 7 0
Cxcl5 gaaagctaagcggaatgcac 413 20 60.4 50 5 2 474

y ggtccccatttcatgagaga 886 20 60.4 50 6 3
Tslp y ccaggctaccctgaaactga 312 20 62.45 55 8 1 578

y cacctcatcatggcagtgac 889 20 62.45 55 5 3
Hmoxl aagaggctaagaccgccttc 730 20 62.45 55 5 3 591

y gtcgtggtcagtcaacatgg 1320 20 62.45 55 4 2
Foxp2 y tctaaggaacgcgaacgtct 1801 20 60.4 50 4 2 849

y cacgggttcttccttgacat 2649 20 60.4 50 3 2
Dyxin y tacatcgtcaccaagggtca 1163 20 60.4 50 3 3 430

y aggcaaacaaatgggagttg 1592 20 58.35 45 3 3

Table IV: Primers used in semi-quantitative RT-PCR reactions. For each primer, the 
sequences for the forward (F) and reverse (R) primers are listed, along with the start 
position (Start), length (Len) in base pairs, melting temperature (Tm), percent of G or C 
bases (GC%), self-complimentarity score (Any) according to the rodent mispriming 
library (http://frodo.wi.mit.edu/cgi-bin/primer3/cat_rodent_ref.cgi), the 3’ self- 
complimentarity and the size of the expected product in base pairs is listed.
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A.3 Secondary anti-sera controls

Vinculin Mouse Secondary

Figure I: Secondary antibody control. Sub-confluent tendon, corneal or skin fibroblasts 
were stained with either anti-vimentin monoclonal antibody or a mouse secondary 
antibody alone. Scale bar = 50 |um.
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