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Abstract

The primary aim of the work carried out in this thesis was to determine if season 

influences the rainbow trout (Oncorhynchus mykiss) immune system. It is already well 

established that seasonality dominates the life history of fish for example in 

reproductive activity, food intake, locomotor activity, body weight and body condition.

To accomplish this, a twelve month trial was carried out in which a variety of 

innate immune and haematological parameters were measured every month (Chapter 2). 

Several of the parameters studied exhibited seasonal patterns. Further trials were carried 

out to examine the proximate cues of temperature (Chapter 3) and photoperiod (Chapter 

4) and their effect on a variety of innate immune responses. These studies concluded 

that temperature exerted a significant effect on several of the parameters studied 

whereas, photoperiod, was found to have little or no effect. Furthermore, winter was 

generally found to have an immunosuppressive effect on the immune system.

A second twelve month trial was carried out, investigating possible methods of 

alleviating seasonal immunosuppression. The effect of melatonin on the immune system 

of O. mykiss was examine, firstly to determine if it acts as an immunostimulant and 

secondly to investigate if it improves vaccination protection. The results of this trial 

generally corroborated those of the Base Level Trial (Chapter 2) in that generally, 

parameters were suppressed in winter, with the exception of haematocrits which were 

suppressed in summer.

To investigate if the immune system of rainbow trout exhibits a circadian 

rhythm a trial was carried out where a variety of innate immune and haematological 

parameters were measured every 6 hours over a 24 h period (Chapter 6). None of the 

innate immune parameters studied were observed to exhibit a circadian rhythm.

It is anticipated that this research investigating the seasonal effects of natural and 

artificial photoperiods and temperatures on immune function will be of benefit to the 

aquaculture industry. It will provide information that will allow administration of 

commercial diets containing functional supplements to be timed effectively and will 

facilitate our understanding of the epidemiology of specific fish pathogens.
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1.1 General Introduction

Seasonality dominates the life history of fish. It co-ordinates reproductive 

activity, affects body weight and condition, affects food intake and locomotor activity 

and it co-ordinates the immune system. All of these events are synchronised with 

seasonal changes in climate, daylength and food supplies (Bromage et al., 2001). This 

response of eurythermal fish to the cyclic seasonal changes of the environment is a 

complex mechanism that demands the sensing of physical parameters (e.g. temperature 

and photoperiod) and the corresponding transduction into molecular signals (Molina et 

al., 2002). It is known that fish, together with most other known seasonally responsive 

animals, rely on cues from the environment e.g. photoperiod and temperature. These 

cues are described as ‘proximate’ and are the environmental conditions that give an 

animal the greatest chance of survival (Bromage et al., 2001).

Many organisms display a seasonal response be it physiological, behavioural or 

both. Studies have shown dramatic seasonal changes in the behaviour of salmonids, for 

example, in summer, they have been observed to forage during the day, but in winter 

they seek refuge and are found buried in the gravel bed of their home river or hiding 

amongst vegetation. Night-time observations in winter have shown, however, that these 

fish emerge from their daytime sheltering places. It has therefore been suggested that 

they switch from being predominantly diurnal in the summer to being nocturnal in 

winter (Valdimarsson et al., 1997). Fish display a strong association to season in their 

breeding strategies, with young fish being produced under the most favourable 

environmental conditions. Juveniles of high latitudes are produced in spring, a time of 

increasing photoperiod and temperature coinciding with an increase in food availability.
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Whereas, fish of tropical and sub-tropical regions are produced following seasonal 

rainfall or changes in oceans currents, again coinciding with a seasonal increase in food 

availability (Bromage et al., 2001). Immunity is another function in an organism’s life 

history that is thought to be influenced by season. In recent years this area has received 

increasing interest particularly in mammals (Nelson, 2004).

1.2 The Fish Immune System

During recent years considerable progress has been made in describing and 

understanding the immune system of fish. Gnathostomes, but not agnatha, contain 

thymus, spleen and gut-associated lymphoid aggregates, while the bone marrow appears 

for the first time in urodeles. There is functional and phenotypic evidence of 

lymphocyte heterogeneity in all vertebrates (Zapata et al., 1996). Fish above the level of 

the agnatha display typical vertebrate immune responses characterised by 

immunoglobulins, T-cell receptors, cytokines and major histocompatibility complex 

molecules. However, the immune system of fish is quite different in its efficiency and 

complexity from that of higher vertebrates, and is much simpler than that of mammals 

(Warr, 1997). Recent investigations of the teleost immune system have used similarities 

with the more characterised defence systems of higher vertebrates to identify genes and 

gene products. However, while genetic differences may be small and some molecular 

and cellular agents similar, the morphology, i.e. the structure and form of the immune 

system, is quite different between fish and mammals (Press and Evenson, 1999). 

Unfortunately, our knowledge is sufficiently limited that we do not yet have a full 

understanding of the reasons for this difference (Warr, 1997).
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Immunity is generally considered to be mediated by two major systems: the 

innate (non-specific) system and the adaptive (specific) immune system. The innate 

system is thought to be of ancient origin, while the adaptive immune system is 

characteristic of vertebrates above the level of agnathan fish (Warr, 1997). The innate 

immune response is often regarded as the primary line of defence in the fish immune 

system. If the pathogen successfully penetrates that first line of defence, it is then dealt 

with by the various components of the adaptive immune system. In both branches of the 

immune response, humoral and cellular components are present. This division of the 

immune system into innate and adaptive systems is simply to create a more concise 

understanding of immunoregulatory mechanisms. However, in reality they both react 

with each other and are interdependent (Kollner et al., 2002).

In fish, the first line of defence against infectious microorganisms is based on 

the innate system, which without prior specific activation can act in forming a more 

static barrier. This natural resistance is normally effective enough to protect fish from 

infectious diseases until adaptive immune responses are induced. It has been 

hypothesised that healthy fish exhibit both innate and adaptive immune responses 

depending directly on environmental temperature (Kollner et al., 2002).
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1.2.1 The Innate Immune Response

Innate immunity is often thought to be more important in fish than adaptive 

immunity (Ellis, 2001), because it has been proposed that it replaces adaptive immunity 

at low temperatures (le Morvan et al., 1996). The innate immune system consists of 

multiple components. Typically it includes inflammation, phagocytosis, release of 

cytokines, natural killer cell activity, non-classical complement activation, release of 

acute phase proteins and the production of broad spectrum antimicrobial substances, 

frequently mediated through peripheral blood leucocytes (Smith et a l, 2000). Fish are 

in intimate contact with their environment, which can contain very high concentrations 

of bacteria and viruses. Many are saprophytic, some are pathogenic and both bacteria 

and viruses are capable of digesting and degrading the fish’s tissues. However, under 

normal conditions the fish maintains a healthy state by defending itself against these 

potential invaders though the innate immune system. These mechanisms are both 

constitutive and responsive and provide protection by preventing the attachment, 

invasion or multiplication of microbes in or on the tissues. The protection is innate and 

does not depend upon recognition of the distinctive molecular structure of the invading 

species. Secondly, there is little or no time lag for them to act. However, even as 

recently as 2001, the innate system was considered to be unaffected by water 

temperature (Ellis, 2001). For ectothermic vertebrates, these characteristics are very 

important because the adaptive immune system defences take considerable time to 

respond (Ellis, 2001). It is well established that the adaptive system is very temperature 

dependent. Therefore the innate responses may be described as being more important in 

fish than in endothermic vertebrates. Indeed some of them such as lysozyme activity 

and complement appear to be more potent in fish than in mammals (Ellis, 2001).
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Physical barriers include the skin or scales of fish that vary from the thin layers 

of certain tropical species to the leather-like hides of sharks. Unless damaged, the skin 

provides ample protection against pathogenic invaders (Weber, 1999). Mucus also acts 

as a method of defence (Alexander and Ingram, 1992). Lysozymes are synthesised in 

both the liver and extra-hepatic sites, however the kinetics of synthesis and secretion are 

not yet clear (Bayne, 2001). Cell lysis is also accomplished by complement, following 

activation by immunoglobulins or other materials. Complement interacts with lysozyme 

activity and other components of fish mucus, such as C-reactive protein and it is 

possible that many significant facets of the ‘complement cascade’ are initiated in the 

mucus (Shephard, 1994). In addition, fish tissues and body fluids contain naturally 

occurring proteins or glycoproteins of a non-immunoglobulin (Ig) nature that react with 

a diverse array of environmental antigens and may confer an undefined degree of 

natural immunity to fish (Alexander and Ingram, 1992).

1.2.2 The Adaptive Immune System

The defining characteristics of the adaptive immune system are “exquisite 

specificity and memory” (Warr, 1997). The essential cells of adaptive immunity are the 

lymphocytes. One type of lymphocyte is thymic-derived (the T-cells) which recognises 

fragments of antigen bound to molecules encoded in the major histocompatibility 

complex (MHC). The MHC molecules that present processed antigens to T cells occur 

on most cell types, however antigen-presenting cells tend to be specialised, namely; 

macrophages, dendritic cells or B-lymphocytes. B-lymphocytes produce and secrete 

antibodies (known collectively as immunoglobulins Igs). T cells, in contrast, have 

multiple functions (mediated by different T-cell subsets) the two most important of 

which are direct killing of target cells and co-operating with B cells to help their

Chapter 1: Introduction 6



production of antibodies. The interactions between T cells, B cells, and other cells 

involved in immune reactions, are mediated by at least two other classes of molecule: 

(1) cell surface molecules (other than MHC, TCR or Ig) that are involved in cell-cell 

adhesion and signal transduction; and (2) cytokines (including the interleukins) which 

are polypeptide hormones that mediate cell growth division and differentiation in the 

immune system (Warr, 1997).

1.3 Seasonality of Disease Prevalence

In addition to the well-documented seasonal cycles of mating and birth, there are 

also significant seasonal cycles of illness and death among many animal populations. 

Challenging winter conditions (i.e., low ambient temperature and decreased food 

availability) can directly induce death via hypothermia, starvation or shock. Many 

environmental challenges are recurrent and thus predictable. Animals could enhance 

their survival, and presumably increase their fitness, if they could anticipate 

immunologically challenging conditions in order to cope with these seasonal threats to 

health (Nelson et al., 1995). As the seasons change animals face alterations in 

environmental stressors. In particular, the prevalence and intensity of pathogenic 

infection are often seasonal.

Seasonal fluctuations of illness and death among humans and non-human 

animals have been recognised for centuries (Table 1.1). Hippocrates observed that “in 

autumn, diseases are most acute, and most mortal on the whole”. The spring is the most 

healthy, and least mortal (Nelson et al., 2002). Fish also exhibit these seasonal 

fluctuations in disease prevalence. In a study of fish farms and rivers of northeast Spain, 

seasonal patterns of bacterial and viral diseases were revealed (Ortega et al., 1995).
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Bacterial diseases were found to be more prevalent during periods of high temperature, 

whereas viral infections were highest during seasons with low temperatures. 

Importantly the periods of greatest risk for any diseases were times of substantial 

temperature change i.e. spring and autumn (Ortega et al., 1995).

Table 1.1 Seasonal variation in peak prevalence of human illness and disease (adapted from Nelson, 
2004)

Disease Peak Prevalence

Malaria Winter-early spring

Influenza Winter-early spring

Human reovirus Winter

Respiratory syncytial virus Winter-early spring

Coronaviruses Winter-summer

Enteroviral infection Summer

Tuberculosis Winter

Legionnaires disease Summer

Brucellosis Spring-early summer

Pneumonia Winter-spring

Coronary heart disease Winter

Stroke

Cerebral infarction Spring-summer

Ischemic attacks Winter-spring

MS Spring-summer

IDDM Autumn-winter

Rheumatoid arthritis Autumn-winter

Breast cancer

No. of cases diagnosed Winter

Initial detection Spring-summer

Risk of death Summer

Season of removal Winter

Season of birth Summer

Lung cancer Summer-Autumn

Melanoma Spring-summer

Urinary bladder carcinoma Autumn-winter
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Vibrio salmonicida is an example of a bacterial disease that has a seasonal 

pattern. Also known as cold water vibriosis, it is generally considered to be non- 

pathogenic at water temperatures above 10°C. It is a haemorrhagic septicaemia that has 

remained an important disease in Norwegian marine salmonid aquaculture since its first 

recorded occurrence in 1977 (Colquhoun and Sprum, 2001). Cold water disease, as the 

name suggests, is commonly observed when the fish are held in cold water typically at 

temperatures between 4 and 10°C and it is caused by the Gram negative Myxobacterium 

Flavobacterium psychrophilum (Nematollahi et al., 2003).

Fish parasites can also exhibit seasonal patterns of infection (Gbankoto et al., 

2001; Clifton-Hadley et al., 1986). For example, the myxosporean parasite Myxobolus 

sp. demonstrated a clear seasonal pattern in the gills of two tilapia species from Lake 

Nokoue (Benin, West Africa). In this case it was found that these patterns could not be 

directly explained by temperature variations. Instead, it was found to be due to 

fluctuations in salinity, temperature, and pH between dry and wet seasons probably 

affecting the parasite cycle by causing modifications in host behaviour (Gbankoto et al., 

2001). Proliferative Kidney Disease (PKD) is a temperature dependent disease of 

freshwater salmonid fish. Studies have shown that naturally infected fish subsequently 

held under laboratory conditions had clinical PKD at 12-18°C but not at 9°C (Clifton- 

Hadley et al., 1986). Water temperature regimes have been used to prevent the 

occurrence of PKD. Rainbow trout were exposed to the parasite for 4 weeks in May at 

an average temperature of 15°C and then kept at 12°C for a year under laboratory 

conditions. No mortalities were observed in the fish and furthermore, when re-exposed 

to enzootic water at a permissive temperature the fish did not develop PKD (de Kinkelin 

and Loriot, 2001).
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Fungal infections have also been shown to demonstrate a seasonal pattern. 

Epizootic ulcerative syndrome (EUS) outbreaks across Asia-Pacific usually occur 

during the colder seasons of the year when the temperature is below 25°C. It is not clear 

whether this results from a reduced immunity in fish at low temperatures making them 

more prone to infection or from reduced infectivity of the pathogen at higher 

temperatures or a combination of both (Miles et al., 2001).

Some viral infections are also documented to have seasonal patterns of 

occurrence. Spring viraemia of carp (SVC) for example, shows a seasonal pattern of 

prevalence. SVC is a disease of several species of cyprinid fishes caused by 

Rhabdovirus carpio. It typically occurs when water temperatures are below 18°C and is 

most common in the spring. At 20-22°C infection occurs but clinical disease does not 

develop (Jeney and Jeney, 1995).

A suggested hypothesis adapted from Nelson et al. (2002), would be that the 

complex interactions between ambient temperature and altered immunocompetence 

throughout the seasons will likely lead to seasonal changes in disease and death among 

fishes.
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1.4 Seasonal Fluctuations in Immune Function

Studies have produced evidence that infection is cyclical with the seasons and 

that this phenomenon is mirrored in cycles of immune function (Nelson et a l, 2002). 

Changes most often reported include; histological changes in the lymphoid system, 

changes in the number of circulating lymphocytes and their response to mitogens, and 

changes in resting antibody titre and response to antigenic challenge. In general, all 

parameters are suppressed in winter and are highest in summer. This pattern, and the 

very nature of ectothermic metabolism, has led many researchers to investigate the role 

of temperature in the seasonal variation of immune response (Slater and Schreck, 1998).

The habitat of most organisms is subject to pronounced seasonal fluctuations. 

Literally, all physical environmental factors important to an organism, such as; 

temperature, daylength, and rainfall, vary with season. Animals have, therefore, to adapt 

themselves to these more, or less, large fluctuations of the environment, depending upon 

latitude (Csemus et al., 1998).

It is well documented that environmental parameters like temperature and 

dissolved oxygen affect the immune system of crustaceans. An increase in temperature 

has been reported to increase total haemocyte counts in several crustaceans, and high 

temperature is known to activate the prophenoxidase (ProPo) system (Johansson and 

Soderhall, 1989). A relationship between salinity and infectious hypodermal and 

haematopoetic necrosis has been documented recently (Cheng and Chen, 2000). 

Consequently, there is increasing interest in the possibility that seasonal neuroendocrine 

rhythms govern the immune system of ectothermic vertebrates. In addition, the 

underlying mechanisms may also be of relevance to environmental modulation, such as
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the immunomodulatory effects of low temperatures, stress, and pollution seen in fish. 

Immune responses of ectothermic animals are known to vary seasonally. Changes most 

often reported include histological changes in the lymphoid system (Nakanishi, 1986).

Most studies on the effect of temperature on the immune system of ectothermic 

vertebrates do not take the seasonal period into account. Even at a constant temperature, 

seasonal variations affect the structure and function of the ectotherm immune system, 

possibly because of the influence of neuroendocrine rhythms on immunity (Collazos et 

al., 1994a). Seasonal variation, affecting the structure and function of the ectotherm 

immune system, is an excellent ‘natural’ model of the influence of neuroendocrine 

rhythms on immunity (Zapata et al., 1992).

1.4.1 Leucocyte Responses

Immune responses are produced primarily by white blood cells. In a study 

carried out by Collazos et al. 1998, it was found that leukocyte counts for both male and 

female tench were significantly lower in winter and spring when compared with 

summer and autumn. Shortened daylength may be priming the immune system for 

winter, since the highest white cell count was observed in the autumn (Weber, 1999).

It has been revealed that there are statistically significant changes throughout the 

year in the number of lymphocytes in the lymphoid organs (Alvarez et al., 1998). The 

spleen and pronephros have similar annual patterns of lymphocyte distribution with 

high numbers in spring and autumn and two periods of lymphoid involution in summer 

and winter (Alvarez et al., 1998). In wild brown trout the highest numbers of 

thymocytes have been shown to occur in trout caught in May and August, and the 

lowest in winter (Alvarez et ah, 1998). In addition to normal lymphocytes, degenerated
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lymphoid cells that show pale cytoplasm devoid of cell organelles also occurred in all 

the lymphoid organs. A negative correlation exists between the numbers of normal 

lymphocytes and that of degenerated lymphoid cells (Alvarez et al., 1998).

1.4.2 Lysozyme Activity

Lysozyme is an antibacterial enzyme that catalyses the hydrolysis of 

(glycosaminoglycan) walls of bacteria, leading to rupture and death of the remaining 

protoplast (Abercrombie et a l, 1992). The enzyme predominantly attacks Gram positive 

bacteria, and to some extent, also Gram-negative bacteria. Lysozyme is localised in the 

lysosomes of neutrophils and macrophages and is released into the blood from these 

cells. Although the kidney appears to be the major site of lysozyme activity in teleosts, 

the blood is recommended as a more practical, less variable tissue for monitoring 

lysozyme activity in fish (Hutchinson and Manning, 1996). Seasonal changes in 

lysozyme activity have been reported in lumpsuckers, Fletcher et al. (1977), observed 

that between February and June there was a statistically significant decrease in 

lysozyme activity in the sera of males, but an increase in the females. This seasonal 

change was hypothesised to be related to the stage of the breeding cycle. In dab it has 

been shown that there is a generally consistent seasonal trend in serum lysozyme 

activity, with low values being associated with reduced sea temperatures, time of 

spawning and poor condition factor (Hutchinson and Manning, 1996). These results are 

in general agreement with the seasonal trends of serum lysozyme activity measured in 

North Sea plaice (Fletcher and White, 1976).
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1.4.3 Mortality Trends

Cold weather and the associated short photoperiod of winter, environmentally 

‘programs’ fish for reduced activity and food intake, and they do not respond to 

stressors with increased feeding. If the elevated metabolic demands persist, stored body 

lipid necessary for overwintering is depleted, body condition drops and the fish may die 

(Lemly, 1996). As the energetically challenging conditions can directly induce death via 

hypothermia, starvation or shock; surviving these demanding conditions likely puts 

individuals under great physiological stress (Nelson and Demas, 1997).

1.4.4 Phagocytosis

Phagocytosis is considered to be a prominent mechanism in antimicrobial 

natural defences (Michel and Hollebecq, 1999). Phagocytic cells include tissue 

macrophages, circulatory monocytes and neutrophils (Chen et al., 1996). Phagocytosis 

is the process whereby the plasma membrane of a cell encloses a particle in the external 

environment and traps it within a food vacuole. This is normally converted to a 

heterophagosome as lysosomes fuse with it and enable digestion of the contents 

(Abercrombie et al., 1992).

Few data are available with regard to the importance of phagocytosis in the 

defence mechanisms at low temperatures. In channel catfish the primary impact of 

temperature on phagocyte function was concluded to be due to the assay temperature, 

although phagocytes appeared to be more resistant to low temperature than lymphocytes 

(Scott et al., 1985; Ainsworth et al., 1991). However, adaptation to low temperature did 

lead to an improvement in the respiratory burst activity, which in turn would imply a 

greater bacterial killing ability. This greater effectiveness of phagocytosis at low
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environmental temperature has also been reported in tench (Collazos et al, 1994a). In 

addition, macrophages isolated from rainbow trout, cultured at low temperatures were 

responsive to macrophage activating factor and showed a higher relative increase in 

respiratory burst activity compared to counterparts cultured at higher temperatures 

(Hardie et al., 1994). This information emphasises the potential importance of innate 

immune functions with regard to the susceptibility of fish to disease at low temperatures 

(le Morvan et al., 1997).

1.4.5 Specific Antibody Titre

The general view is that higher temperatures enhance the adaptive immune 

response whereas lower temperatures inhibit it (Ellis, 2001). Hoare et al. (2002), 

observed that anti -Vibrio lipopolysaccharide (LPS) antibody levels of halibut increased 

with temperature. This observation is consistent with findings for other teleost species 

including carp, (Rijkers et al., 1980; le Morvan et al., 1996) and dab (Secombes et al., 

1991). This is corroborated by Avtalion et al. (1970), who demonstrated that carp 

immunized against bovine serum albumin had a suppressed primary antibody response 

at low temperatures. However, the secondary response can be elicited if immunological 

memory is established at high temperatures (Avtalion et a l, 1970).

1.4.6 Thymus Size

The teleost thymus is considered to be analogous to the mammalian thymus, and 

is therefore thought to constitute an antigen-free thymic micro-environment in which 

thymocytes mature (Castillo et al., 1998). The size of the thymus in wild brown trout, as 

well as that of the subcapsular, inner and outer thymic zones, undergoes very significant 

changes over the year (Alvarez et al., 1998). The thymic area has been shown to have
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three periods of maximum development: spring, September and mid-late autumn 

(November and December), while in March has the smallest rate of development for the 

year. The development observed in the subcapsular zone in December-January, and 

between June-October was interrupted by two periods of minimal development from 

February to April and in November. The inner zone (which always shows the greatest 

level of development) reaches its maximum size in April and November and the 

minimum in January and August. The outer zone has its maximal values in winter, 

between December-March, with low values over the rest of the year (Alvarez et al., 

1998).

1.5 The Effect of Temperature on the Immune System of Fish

Fish are poikilothermic animals, and as such are subject to the changes in 

temperature in which they live, as they are unable to regulate their internal temperature. 

Therefore, the levels of circulating blood cells and proteins can be affected by seasonal 

cycles. In particular, it has been observed that during cold periods, poikilothermic 

animals suffer immunodepression due to the low temperature (Collazos et al., 1998). 

Although water temperature is known to be an important regulator of the immune 

response of fish, its effect has been investigated in very few species. It has been 

suggested that the innate immune system is not affected by temperature, whereas the 

adaptive system is dependent upon it (Ellis, 2001).

In a study examining the effects of rearing temperature on immune functions in 

sockeye salmon the results obtained suggested that the immune apparatus of sockeye 

salmon reared at 8°C relied more heavily on the innate immune response, while the 

adaptive immune response was used to a greater extent when the fish were reared at
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12°C. However, in this particular study a seasonal effect was not detected, although fish 

maturation affected the results (Alcorn et al., 2002). Temperature has been shown to 

affect T and B cell function, antibody production and has been implicated in serum 

lysozyme activity and C-reactive protein fluctuations. Studies have demonstrated 

seasonal differences in immune response, even when temperature remained constant, 

suggesting that other factors such as photoperiod may be important. Furthermore, other 

studies have demonstrated continued seasonal variations in immune response even 

when both temperature and photoperiod have been held constant. It has been 

hypothesised that seasonal variations in the immune system may be driven by 

endogenous endocrine rhythms (Slater and Schreck, 1998).

It is generally accepted that higher temperatures enhance immune responses 

whereas lower temperatures adversely affect their expression. The fact that some fish 

like catfish and carp can survive extremely low temperatures implies that there is a 

means of defence other than adaptive immunity (le Morvan et a l, 1997).

Winter is energetically demanding and stressful; thermoregulatory demands 

increase when food availability usually decreases. The stress of coping with 

energetically demanding conditions may increase adrenocortical steroid levels that 

could indirectly cause illness and death by compromising immune function (Nelson and 

Demas, 1997).

Chapter 1: Introduction 17



1.6 The Effect of Photoperiod on the Immune System of Fish

The annual cycle of changing photoperiod provides an accurate indicator of time 

of year and thus allows immunological adjustments prior to the deterioration of 

conditions (Nelson et al., 1995). It may be considered to be the most reliable proximate 

cue in terms of predictability. In recent years, researchers have found an association 

between the duration of environmental light and some immune parameters of birds 

(Moore and Siopes, 2000).

To date very little research has been carried out on the effect of photoperiod on 

the immune response of fish. Initial research suggests that a prolonged change in the 

natural photoperiod adversely affects the immune function of rainbow trout (Leonardi 

and Klempau, 2003). This was illustrated by the elevated cortisol levels of the 

experimental trout in this study, suggesting an effect due to stress. This is corroborated 

by Olsen et al. (1993), who hypothesised that cortisol levels during the smolting period 

of Atlantic salmon are probably controlled more by photoperiod than by endogenous 

rhythms.

Short day lengths appear to be more effective at mediating immune function in 

individuals with robust reproductive responses to photoperiod (Nelson et al., 1995). For 

instance, splenic weights of deer mice were reduced in short days (Demas and Nelson, 

1998). Splenic masses, total splenic lymphocyte numbers and macrophage counts were 

significantly higher in hamsters exposed to short days as compared to animals exposed 

to long photoperiods (Yellon et a l, 1999). Animals maintained on short day lengths 

(8:16 LD) possessed more white blood cells than animals maintained on long day
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lengths (16:8 LD); neutrophil numbers were unaffected by day length in adult female 

mice (Nelson et a l, 1995).

Most of the research in mammals has indicated that on short photoperiods both 

the cellular and the humoral components of the immune system were enhanced 

compared to mammals kept on long photoperiods (Mahmoud et a l,  1994; Blom et a l, 

1994; Nelson and Blom, 1994; Demas et a l, 1996; Demas and Nelson, 1996). The 

pineal hormone melatonin codes day length information (Nelson et a l, 1995) and may 

be the mediator of these photoperiodic effects due to its indirect effects on immune 

function photoperiods (Moore and Siopes, 2000).

1.7 Proximate Mechanisms Underlying Seasonality

In recent years, it has become increasingly apparent that the mammalian immune 

and neuroendocrine systems are intimately linked and that bi-directional communication 

between the two is essential for the maintenance of homeostatic function (Table 1.2) 

(Harris and Bird, 2000).

Many fish species go through distinct life cycle stages that are associated with 

changes in levels of circulating hormones. The interactions between different hormones 

are often complex, but in many cases changes in plasma hormone levels correspond 

with changes in the immune status and the health of the fish. The modulatory effects of 

hormones on fish immune responses may have important implications for fish health 

and aquacultural practice and the study of these effects may lead to a better 

understanding of the interactions between the immune and endocrine systems in other
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Table 1.2 Neurotransmitters/hormone with immunomodulatory properties found in humans (taken 
from Roberts, 1995)

Hormone/Neurotransmitter Effect

Immune Enhancers

Prolactin Macrophage activation, proliferation of NK 
cells, IL-2 Production.

Growth Hormone Activates antibody synthesis, EL-2 production.

Somatostatin Proliferation of T, NK B cells and 
macrophages.

Vasointestinal Protein Proliferation of T, NK, and macrophages.

Substance P Proliferation of T, NK, and macrophages.

a  Melanin stimulating hormone Proliferation of NK cells, downregulates IL-1, 
TNF-alpha, upregulates IL-10.

Thyroxine T cell activation

B-Endorphin Activates T and macrophages, suppresses B 
cells.

Acetylcholine Stimulates T and NK cells increases y-IFN.

Melatonin Activates T, NK and B cells, upregulates IL-2.

Seratonin T-cell proliferation.

Dopamine Stimulates T and NK through acetylcholine 
stimulation.

Oestrogen Promotes y-IFN activates autoimmune 
response.

Immune Suppression

Serotonin Impairs T, NK, macrophages, blocks antibody 
production, inhibits IL-4; Ig-E.

Epinephrine/norepnephrine Blocks IL-1; IL-2.

Testosterone Impairs immune function through enhanced 
cortisol production.
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animals, including mammals. There is increasing interest in the possibility that seasonal 

neuroendocrine rhythms govern the immune system of ectothermic vertebrates. It has 

been documented that even at a constant temperature, seasonal variations occur in the 

fish humoral immune responses (Collazos et a l, 1994a).

1.8 Melatonin

The hormone melatonin is synthesised in the pineal gland and retinas of many 

vertebrate species. In many non-mammalian vertebrates, the hormone producing cells of 

the pineal organ are the directly light sensitive, pineal photoreceptors. Galen (130- 

200AD) documented the pineal gland first. It has been a subject of interest and 

speculation for more than 2000 years, since the Greek anatomists observed that the 

pineal gland as an unpaired structure in the brain. The French philosopher Descartes 

proposed an important role for this organ in brain function and regarded it as the “right 

hand” of the soul (after Zrenner, 1985). In 1958, Lemer and his co-workers were able to 

isolate melatonin from bovine pineals, initiating the modem era of pineal research 

(Lemer et a l, 1958). The pineal organ is now considered as a component of the 

circadian system in vertebrates and is thought to be involved in the timing and control 

of rhythmic functions and behaviours (Hastings et a l, 1989). This seems to be related to 

the ability of the pineal organ to transform environmental stimuli, mainly photoperiodic 

information, into nervous and hormonal signals. Among the hormonal signals, the 

indoleamide melatonin is considered to be an internal “zeitgeber” (time-giver) in 

vertebrates (Armstrong, 1989; Falcon and Colin, 1989; Underwood, 1989; Zachmann et 

al, 1992).
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The pineal gland is a neural structure in vertebrates that transduces 

environmental information into rhythmic endogenous signals via periodic secretion of 

its hormone melatonin (Okimoto and Stetson, 1999). The pineal organ and the retina of 

vertebrates are two components of the circadian system, primarily influenced by the 

ligh t: dark (L:D) cycle, which are involved in the control of various rhythms (circadian, 

circannual). Both the pineal and retina produce the neurohormone melatonin in a 

rhythmic manner. The nocturnal rise in melatonin production results from the increase 

in the activity of serotonin TV-acetyl-transferase (NAT), which catalyses the conversion 

of serotonin to //-acetylserotonin. This compound is then methylated by hydroxyindole- 

O-methytransferase to give melatonin (Begay et a l, 1994).

Melatonin has been studied extensively in vertebrate endocrinology and 

reproductive physiology. Initially, the contention that melatonin is a hormone was based 

on circumstantial evidence (Wurtman et al., 1968) until the demonstration and 

quantification of melatonin in the chicken serum by bioassay and gas chromatography- 

mass spectrometry (Pang, 1985).

1.8.1 Environmental Effects on Melatonin

1.8.1.1 Light

Environmental lighting is a major regulatory factor of melatonin synthesis and 

secretion in the pineal gland (Pang, 1985). It is obvious that melatonin has direct links 

with seasonality as its production is controlled by photoperiod. Consequently, it may 

cause an effect on the immune response that can be associated with seasonality.

Melatonin is a hormonal signal for photoperiod and is intricately involved in 

many aspects of circadian and seasonal physiology (Falcon, 1999). In many vertebrates
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the pineal gland converts information relating to the daily light or dark cycle into a daily 

rhythm of melatonin secretion, with levels low during the day and raised for all or part 

of the night (Randall et a l, 1995). Circadian oscillators located within the pineal are 

reset daily by the ambient light: dark cycle (Okimoto and Stetson, 1999). It has been 

suggested that the change in light intensity between light and dark phases is more 

important as an environmental zeitgeber than absolute intensity or wavelength (Kadri et 

al., 1997). Melatonin peaks at night, even in nocturnal animals (Reiter, 1986). The 

duration of the nocturnal increase in pineal and circulating melatonin is generally 

proportional to the length of the night (Randall et a l, 1995). Consequently, daily and 

seasonal fluctuations of melatonin occur as the amount of light decreases in the autumn 

and increases in the spring, serving to regulate the circadian clock (Arendt, 1998). In 

certain photoperiodic vertebrates, it is this feature of the melatonin signal which 

determines the timing of a variety of seasonal events (Randall et al., 1995). Many, if not 

most, biochemical, physiological and behavioural events are rhythmic. Rhythms with a 

periodicity of 24 h (daily) or one year (annual) represent major components in the 

adaptation of organisms to their environment.

Environmental factors such as light and temperature play an important role in 

the synchronisation of these rhythms. In vertebrates, synchronisation is mediated 

through the circadian system, which is composed of sensors and circadian oscillators. 

These include the lateral eyes, the suprachismatic nuclei of the hypothalamus and the 

pineal organ (Falcon et al., 1989).
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1.8.1.2 Temperature

Apart from illumination, pineal melatonin is, apparently, affected by other 

diverse environmental conditions. One of the most common environmental changes 

encountered by animals is the daily or seasonal temperature variability.

In poikilothermic vertebrates, the pineal and plasma rhythms have been shown 

to be thermosensitive as well as photosensitive. It has been suggested that with regard to 

the poikilotherm’s pineal gland, photoperiod controls the duration of the nocturnal rise 

in melatonin and temperature regulates the amplitude of the daily rhythm, and in the 

case of very low temperatures (during the winter), the melatonin rhythm disappears (this 

has been observed in the frog, Rana perezi (Delgado and Vivian-Roels, 1989). This dual 

regulation of melatonin synthesis would have an adaptive significance considering that 

very similar photoperiods, but different temperatures are experienced by animals twice 

during the seasonal cycle (Delgado et a l, 1993).

1.8.2 Melatonin Rhythms in Salmonids

Pronounced seasonal changes have been described for pineal iV-acetyl- 

transferase activity and pineal/plasma melatonin levels in many mammals (Steinlechner 

et a l, 1991). In some reptiles and amphibians dramatic seasonal variations in the 

amplitude of the nocturnal increase in pineal and circulating melatonin have been 

reported (Mayer, et a l, 1997). These variations appear to be related to seasonal changes 

in the environmental temperature, with the abolition of melatonin rhythms occurring in 

several species at low temperatures. In contrast, a study earned out by Randall et a l  

(1995), found well-defined melatonin rhythms were always present in Atlantic salmon, 

irrespective of time of year, photoperiod and temperature. The study also suggested that
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daylength per se did not influence the amplitude of the nocturnal increase in melatonin 

concentrations. However, night-time melatonin levels did tend to be higher in samples 

taken in June and August, when water temperatures ranged from 13 to 19.5°C, than 

during the other sampling periods when water ranged from 1.75 to 8.25°C.

Studies in vitro in the rainbow trout have demonstrated that pineal NAT activity 

and melatonin production are temperature dependent (Max and Menaker, 1992). The 

activity of pineal ganglion cells is also temperature dependent in the rainbow trout 

(Randall et al., 1995). Thus, the pineal of the Atlantic salmon and other salmonids may 

be able to integrate information on both photoperiod and temperature (Randall et al., 

1995).

1.8.3 The Role of Melatonin

Melatonin is a molecule to which an unusually large number of functions and 

have been ascribed (Gem and Kam, 1983). These functions include pigment 

aggregation and calcium-activated dopamine release in the retina, (Vemadakis et al., 

1998). Experiments carried out to ascertain the different functions of melatonin, have 

generated somewhat contradictory results as its function can differ from species to 

species (Hoffmann, 1981a). This has been shown in experiments where melatonin has 

been either implanted or injected into animals of different species. Some of these results 

are listed in Table 1.3. Unfortunately, only a few studies have examined melatonin 

effects in non-mammalian vertebrates (Gem and Kam, 1983).
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Table 1.3 Some melatonin effects listed by group (adapted from Gern and Karn, 1983).

Group Species Effect of Melatonin

Cyclostoma

Geotria australis Induces pallor

Lampetra Increases lightening in 
amocoetes

Osteichthyes

Mystus tengara
Depresses ovarian 
recrudescence in February and 
April

Heteropneutes fossilis
Inhibits vitellogenesis. Causes 
ovarian regression in spawning 
catfish

Gasterosteus aculeatus
Increases female gonadal 
weights under long 
photoperiods

Amphibians

Xenopus leavis
Induces retinal cone contraction 
in larvae

Hyla
Inhibits gonadal enlargement in 
long photoperiods

Rana Decreases in vitro ovulation

Ambystoma Delays endogenous clock

Reptiles

Columbia Increases growth hormone

Coturnix
Increases oviductal weights 
during sexual maturation
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1.8.3.1 Melatonin Circadian Rhythms

Since ancient times it has been documented that there are several seasonal and/or 

environmental variables on which animals can rely to cue changes in their biological 

systems e.g. reproduction, daylength, temperature, rainfall, food availability. Depending 

on the biotope however, some are more accurate predictors of the season than others. In 

temperate and arctic zones, for example, in which drastic climatic conditions impose a 

precise endocrine cycle, one of the most regularly changing phenomena is the daily 

change in daylength (photoperiod) (Csemus et al., 1998). Other environmental factors, 

however, should be considered. In the tropical and equatorial zones of the world, where 

the fauna is immensely rich in species, more irregularly recurring external stimuli such 

as rainfall are equally precise and used for timing seasonal functions (Csemus et a l, 

1998). Moreover, in the field there is always a co-variation of all these potential 

proximate factors. For example, in temperate zones in autumn the decrease in 

photoperiod is always associated with a decrease in mean temperature and food 

availability, and it is evident that interactions exist between the effects of all these 

factors (Csemus et al., 1998).

The understanding of photoperiodic and circadian systems in fish is important 

not only from the viewpoint of comparative physiology, but also from applied science 

because this may help the management of fisheries and aquaculture. As in mammals, 

melatonin could be a key molecule in the regulation of photoperiodic and circadian 

systems in fish (Iigo et al., 1997).

Despite having phylogenetically evolved for each class of vertebrate animals, 

rhythmic secretion of melatonin by the pineal gland has remained a vital component of 

the biological clock mechanism throughout the vertebrate phylum (Korf, 1994). The
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benefits of requiring a single hormone, such as melatonin, for controlling or initiating 

circadian rhythms in humans, are that potential treatments can be more readily 

discovered and synthesised for ailments such as jet lag, insomnia disorders, shiftwork or 

sleep problems associated with blindness (Bubenik et a l , 1998).

The immune system of mammals is influenced by their circadian rhythms (Haus 

et a l, 1983) and other biological and seasonal rhythms (Laerum and Aardal, 1981; 

Shifrine et al., 1982a). Careful consideration needs to be given to the time of day at 

which immuno-reactive substances are administered (Hrushesky, 1984) as well as other 

conditions such as the lighting regime and the length of time animals have been 

acclimatised. The light-dark cycle can influence the resultant humoral and cell-mediated 

immune responses (Hayashi and Kikuchi, 1982), and the time of day that antigenic 

exposure occurs can significantly influence the magnitude of the resulting immune 

response (Pownall et a l, 1979).

Immune defences are organised along both 24-hour and yearly time scales. Two 

circadian systems have been isolated in both experimental animals and man: (Levi et 

al, 1991) (1) the circulation of T, B or NK lymphocyte subsets in peripheral blood 

(Kronfol et a l, 1997) and (2) the density of epitope molecules at their surface 

(Mikolajczak et a l, 2000), which may relate to cell reactivity to antigen exposure. In a 

study examining For example, in mice, macrophage spreading and ingestion ability 

were significantly lower at the beginning and higher at the end of the dark period, while 

a significant increase in blood T-lymphocytes and helper-inducer T-lymphocyte 

percentages occurred during the dark period (Cardinali et al, 1997).
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1.9 The Effect of Immunostimulants on the Immune System of Fish

Many occasions arise in fish culture in which it is desirable to enhance the 

immune response. These include strengthening the normal immune response in order to 

enhance protection and the treatment of immunosuppressive conditions. Several 

substances are capable of increasing the immune response, and these can be classified 

into two main categories -  adjuvants and immunostimulants (Galeotti et al., 1998). An 

adjuvant is a substance which, when given with an antigen, enhances the immune 

response to that antigen. In contrast, immunostimulants need not be administered 

together with an antigen, they are generally given to induce a non antigen-specific 

enhancement of the immune system (Galeotti et al., 1998).

Multitudes of substances have proven effects in enhancing one or more aspects 

of the immune response. These compounds are applied to boost or stimulate the innate 

immune system of cultured fish Cook et ah, 2003). These compounds include; bacteria 

and bacterial products (Dalmo and Seljelid, 1995), complex carbohydrates (Castro et 

al., 1999), nutritional factors (Obach et al., 1993; Clerton et al., 2001), animal extracts, 

cytokines, lectins, plant extracts (reviewed by Galeotti, 1998)and synthetic drugs such 

as levamisole (Mulero et al., 1998). The use of immunostimulants in fish diets has been 

considered for many years, and there are a large number of academic publications on 

the subject (Burrells et a l,  2001a). In a study investigating the effects of prolonged 

administration of a commercial B-glucan based immunostimulant preparation, 

EcoActiva™, in the form of a feed supplement, on innate immune parameters and the 

growth rate of snapper (Pagrus aurata) it was found that fish fed on a diet 

supplemented with EcoActiva™ and held at a winter temperature had a significant 

enhancement of macrophage superoxide anion production upon stimulation with
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phorbol myristate acetate. However, EcoActiva™ failed to increase either classical or 

alternate complement activity (Cook et al., 2003). Despite the availability of effective 

vaccines for the most important aquaculture diseases, the potential of immunostimulants 

to enhance disease resistance to generalised infection remains attractive (Burrells et a l, 

2001b).Those discussed here will be studied during the course of this project.

1.9.1 Innate Immunostimulants

1.9.1.1 Immunomodulation by the Pineal Gland and Melatonin

Pinealectomy or any other experimental procedure that inhibits melatonin 

synthesis and secretion induces a state of immunosuppression that is counteracted by 

melatonin in several species (Maestroni and Conti, 1993). Melatonin in vivo displays an 

immunoenhancing effect, particularly apparent in immunodepressive states on various 

immune parameters (Cardinali et al., 1997)

Among melatonin’s versatile functions, immunomodulation has emerged as a 

major effect of the hormone in vertebrates (Cardinali et al., 1997). Melatonin is a 

natural hormone, which has been studied extensively in vertebrate endocrinology and 

reproductive physiology. Recently, it has been purported as a panacea for various 

human ailments ranging from jet lag (Oxenkrug and Requintina, 2003) to cancer (Leon- 

Blanco et al., 2003). It is sold over the counter in the United States as a health food 

supplement. Research in the last decade has elucidated immunoregulatory properties of 

this hormone in human and rodent studies (Weber, 1999). However, a literature search 

failed to produce any studies investigating the interaction of melatonin and 

immunoregulation in fish. Based on data obtained for seasonal variations of immune 

function in mammals, birds and fish, coupled with current studies on immune function
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in vitro in mammals, neuroendocrine regulation of the fish immune system can also be 

explored (Weber, 1999).

Melatonin has been reported to enhance a variety of cellular and humoral 

immune responses, for example, administration has been shown to enhance lymphocyte 

proliferation (Huang et al.} 2003); rejuvenate degenerated thymus and redress peripheral 

immune functions in aged mice (Tian et a l, 2003). In addition, it had been shown that 

exogenous melatonin enhances the activities of B and T lymphocytes in immature 

chickens (Brennan et al., 2002). Furthermore, inhibition of melatonin synthesis has been 

observed to depress cellular and humoral immune responses in mice (Maestroni et al., 

1986).

Melatonin affects immune function both indirectly, acting through other 

hormones, and directly by acting on components of the immune system (Nelson and 

Drazen, 1999). Melatonin affects tumourigenesis and tumour development. Many of the 

indirect effects of melatonin on immune function are mediated through glucocorticoids 

and these in turn maybe part of an integrated series of adaptations to manage energy. 

Direct effects of melatonin on immune function appear to be mediated by melatonin 

receptors on lymphatic tissue or on immune cells in circulation. Melatonin may be part 

of an integrative system to; co-ordinate reproductive, immunologic and other 

physiological processes, to cope successfully with energetic stresses during winter 

(Nelson and Drazen, 1999).

The nature of the mechanisms involved in the immunomodulatory activity of 

melatonin remains unclear. There has been some suggestion of the existence of 

membrane specific binding sites for melatonin in immune cells, for example, within the
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spleen (Yu et al., 1991). Melatonin is also a potent anti-oxidant, acting by itself rather 

than through specific binding sites (Cardinali et a l, 1997)

1.9.2 Specific Immunostimulants

1.9.2.1 Vaccination

Vaccination is classed as a specific immunostimulation because it is educating 

the immune system against a specific pathogen. Fish farming has grown significantly 

during the last 20 years. Very often fish, like trout and salmon, are kept at high 

population densities. This will increase the risk for dramatic disease outbreaks (van 

Muiswinkel, 1992). Vaccines are inappropriate for juveniles. This is because the 

secondary immune response in teleosts is comparatively short lived and takes place only 

if the animals are above a certain size or age and are above their immunological 

permissible temperature. For salmonids the permissible temperature is often close to or 

above average winter temperature in the U.K. so it is likely that fish must spend a 

considerable proportion of their life without the benefit of specific immunoglobulins. At 

such times the fish are totally dependent upon the innate immune system to help in the 

maintenance of homeostatic integrity against pathogenic or opportunistic microbial 

invaders (Smith et al., 2000).

Injection is the most often used route of immunisation in mammals. However, 

this can be somewhat impractical for fish. As a result various other methods have been 

developed to allow mass vaccinations to take place. These include immersion, 

hyperosmotic immersion, bath, spray and oral modes of delivery. Although impractical, 

intraperitoneal injection has been used and in many instances is the most effective 

method (Kaattari and Piganelli, 1996).

Chapter 1: Introduction 32



1.9.3 Limitations of Some Immunostimulants

Although there are numerous positive effects of immunostimulatory compounds 

on the immune system in fish, in comparison with specific immunisation, the effect of 

innate immunostimulants (single application) is normally of short duration. The yeast B- 

glucan gave an increase in respiratory burst activity 4-7 days after treatment (Jdrgensen 

and Robertsen, 1995). However, the duration of protection offered through a single 

application of an immunostimulant is usually very brief. For example, Anderson and 

Siwicki (1994) gave groups of trout the immunostimulants glucan and chitosan. Those 

groups given the immunostimulants 1-3 days before the challenge were well protected, 

but 14 days after the immunostimulation the protection in all fish was greatly reduced 

(Galeotti et al., 1998).

In addition, it is also worthwhile considering that in several species, 

immunostimulants appear not to confer any objective advantage. For example, long

term oral administration of B-glucan to turbot does not reduce the level of mortality in 

fish after a challenge with a virulent Vibrio anguillarum (Galeotti et al., 1998).

There is a current trend to administer immunostimulants, especially in the diet, 

for prolonged periods of time or with doses which exceed the recommended levels, with 

the aim of obtaining better and faster productivity results. It is best to consider the 

possible negative effects of some immunostimulants, especially in the case of 

overdosage. Additionally, the permanent application of immunostimulatory substances 

may lead to sensitisation, with allergic reactions (over-dosage resulting in anaphylactic 

reactions) (Galeotti et al., 1998).
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1.10 The Use of Rainbow Trout in the Proposed Study

Salmonids (order Salmoniformes, Class Osteichthyes) were originally native to 

the northern Temperate Zone. However, they are now found in almost all waters of the 

worlds continents with the exception of Antarctica (Porter, 1996). The proposed study 

will look at the effect of seasonality on the immune response of rainbow trout which is 

now a recognised member of the Pacific Salmonidae (Kendall, 1988)

Transmissible diseases are known to have devastating effects on both wild and 

cultured stocks of fish. As with many animals, epidemics often strike juveniles or 

larvae, and this can pose serious economic problems for fish farming (Smith et al., 

2000). Fish farming has grown significantly during the last thirty years. Trout and 

salmon are often kept at high stocking densities. This can increase the risk of disease 

outbreaks. Although antibiotics can be used to treat bacterial diseases, there are some 

drawbacks with their use. Repeated use of these drugs can induce antibiotic resistance in 

microorganisms (Anderson and Levin, 1999). Moreover, harmful residues may be 

present in the fish brought to market. In this context it is not surprising that there is 

increasing prophylaxis of salmonid fish diseases by vaccination and immunostimulation 

(Sakai, 1999).
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1.11 Aims of Study

•  The principle aim of this thesis is to determine if immunity displays seasonal 

patterns in rainbow trout. This is investigated in Chapter 2.

• To determine which environmental cue(s) is used to detect changes in seasonality 

i.e. temperature (Chapter 3) and/or photoperiod (Chapter 4)

• If seasonal immunosuppression is observed, methods of alleviating it will be 

examined. This is presented in Chapter 5.

• The pineal hormone melatonin will be investigated to determine if it plays a role in 

relaying seasonal information to the fish immune system. This is investigated in 

Chapter 5.

• To determine if immunity displays circadian patterns of immunity. This is explored 

in Chapter 6.
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Chapter 2 Variations in Innate Immune Activity over a

12-Month Period
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2.1 General Introduction

2.1.1 Background

During a continuous twelve month period the temperate aquatic environment 

will be affected by the two primary components of season i.e. temperature and 

photoperiod. These components are interlinked and follow very similar cycles as shown 

in Fig. 2.1. Typically during the spring quarter, temperatures and photoperiod increase 

and the reverse occurs in autumn. This seasonality affects the life history of fish with 

the timing of developmental and maturational events dominated by and synchronized 

with seasonal changes in climate, daylength and food supplies (Bromage et a l, 2001).

18:00

14:00 - 10q
O)

110:00  -

Day length 
Temperature

06:00
Oct/01 Dec/01Aug/01Jun/01Apr/01Feb/01Dec/00

Month

Fig. 2.1 Over a twelve month period the cyclical cycles of photoperiod and temperature are closely 
correlated in the temperate environment. Consequently, any effect of season observed could in 
response to either or both of these parameters. Data presented is for the Niall Bromage Freshwater 
Research Facility (NBFRF).
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It is well documented that seasonality also affects the immune response of 

vertebrates (Zapata, 1992). It is already well established that during a twelve month 

period adaptive immunity exhibits a seasonal cycle in fish, in particular, changes in 

resting antibody titre and response to antigenic challenge (Nakanishi, 1986). Other 

studies state seasonal changes, in particular in the lymphoid system (Wojtowicz and 

Plytycz, 1997; Alvarez et al., 1998) and in the numbers of circulating lymphocytes 

(Slater and Schreck, 1998). It has generally been assumed that the innate immune 

response does not exhibit this seasonal cycle but remains constant throughout the year 

(Ellis, 2001), always providing a defence to invading pathogens.

Many environmental challenges are recurrent and thus predictable. Animals 

could enhance their survival and presumably increase their fitness, if they could 

anticipate immunologically challenging conditions in order to cope with these seasonal 

threats to health (Nelson et al., 1995). A potential mechanism to anticipate changes in 

season may involve the pineal hormone melatonin. It exhibits a strong circadian rhythm 

as the majority of the hormone is produced during the dark phase of the day. 

Consequently, its production is affected by the seasonality of photoperiod. During the 

winter months, when the dark phase is at its longest, melatonin is produced for a greater 

length of time compared to the shorter dark phase of summer days (Randall et al., 

1995). In addition, melatonin production is affected by temperature with higher levels 

reported in Atlantic salmon maintained at 12°C compared to fish maintained at 4°C 

(Porter et al., 2001).
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2.1.2 Aims

The primary aim of the work presented in this chapter was to establish a base 

line of data. The reasons for this are two fold. 1) To determine if the innate immune 

system of rainbow trout is affected by seasonality and what these effects are, and 2) 

Work carried out later in this thesis to examine the effect of different seasonal 

components, i.e. temperature and photoperiod could be compared to this baseline data 

set.
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2.2 Materials and Methods

2.2.1 Trial Set-Up and Fish Maintenance

This ‘Base Level’ trial was set up at the Niall Bromage Freshwater Research 

Facility (NBFRF) (Institute of Aquaculture, University of Stirling). Fish used at the 

NBFRF were all supplied from the farm itself. The tanks were set up in a flow through 

system supplied by a reservoir situated 1 km from the facility. Water was supplied to 

the tanks at a rate of approximately 2 L per second at ambient seasonal temperature. 

Light was supplied by 60-watt pearl, tungsten filament light bulbs housed within 

waterproof lamps providing an intensity of 17-19 lux at the water surface (Skye 

Instruments, Powys, UK). The photoperiods were controlled by 24 h digital electronic 

time switches and were set to simulate the natural photoperiod by a light sensor located 

on the outside of the building. Fish were fed a standard commercial pelleted trout feed 

(EWOS), and were fed according to the manufacturers tables. Fish showing any signs of 

disease or that were outside the required weight range were humanely euthanised using 

phenoxyethanol (Sigma Chemical Company Ltd.). Fish were held in 3 tanks (2 m 0  x 1 

m) with 100 fish per tank at the start of the experiment. All fish used were female. This 

was to prevent precocious males with a potentially compromised immune system from 

skewing the results.

Five fish were sampled per month. All fish were weighed and measured. A 

variety of immunological and haematological techniques were earned out, the methods 

for which are described in Section 2.2.3.
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2.2.2 General Experimental Procedures

2.2.2.1 Chemicals and Reagents

The chemicals, reagents and antibodies used in experimental procedures were 

purchased from Sigma Aldrich Chemicals, England, BDH, England and Diagnostics 

Scotland unless otherwise stated. Buffers and solutions were prepared using high 

quality or tissue culture grade components. All recipes are provided in Appendix A.

2.2.2.2 Anaesthesia

Anaesthesia was used whenever the fish were handled to reduce stress and 

damage to the fish. A 1:20,000 concentration of 2-phenoxyethanol (Sigma Aldrich 

Chemical Company Ltd) was used. Once anaesthetised, fish were measured, weighed 

and bled accordingly, then humanely sacrificed using a Schedule 1 method, in 

accordance with the Animals (Scientific Procedures) Act 1986, by severing the anterior 

spine. This was to ensure that the same fish was not sampled more than once.

2.2.2.3 Blood Sampling

Anaesthetised fish were bled by caudal venepuncture using 1 ml or 2 ml 

syringes and a 25 G or 23 G needle (Terumo Europe N.V. Belgium). Prior to sampling, 

syringes were rinsed with heparin (4 mg ml’1, Sigma Chemical Company) to allow 

collection of plasma and avoid coagulation. A complete venesection was performed. 

The blood was dispensed into dried, individual Eppendorfs and stored on ice for 

transporting to the laboratory. Plasma haematocrit and blood counts were carried out 

prior to centrifugation at 7000 rpm for 10 min at 4°C. The plasma from each fish was 

individually aliquoted and stored at -70°C until required.
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On several occasions blood sampling was carried out during the dark period for 

analysis of plasma melatonin levels. In total darkness fish were removed from the tank 

and placed in an anaesthetic bath for 2 min. The fish was then removed from the 

anaesthetic and the blood sample taken under a dim red light (X= 670-800 nm, 0.2 lux at 

0.5 m) (Porter, 1996). The samples were then transported back to the lab on ice and 

plasma collected as before.

2.2.3 Measurement of Innate Immune Parameters

2.2.3.1 Total White Blood Cell Counts

Ten /al of blood was added to 990 fil PBS (Appendix A) (a 1:100 dilution). An 

aliquot of diluted blood was placed on a Neubauer haemocytometer (Hawksley & son, 

England). White blood cells were discriminated from red blood cells since the former 

are rounded and refractile (Garbi, 1998). The average numbers of white blood cells per 

large square of the haemocytometer were counted under a phase contrast microscope at 

100 x magnification (Fig. 2.2). The counts were expressed as white blood cells (WBC) 

m l-1 (Equ. 2.1)

Equ. 2.1 White Blood Cell Count (ml

WBC m l_1 = WBC x dilution factor x 104

2.2.3.2 Total Red Blood Cell Counts

One hundred fil of the solution of blood prepared in Section 2.2.3.1 was added to 

900 fil of PBS (1:1000 dilution). The red blood cells were then counted as described for 

Section 2.2.3.1 and the red blood cells m l_1 calculated accordingly.
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Fig. 2.2 M easuring total white blood cell count.

2.2.3.3 Lysozyme Activity

The method used to detect lysozyme activity in trout plasma was based on the 

ability to lyse the Gram-positive bacterium Micrococcus lysodiekticus (Parry et al, 

1965; Peddie and Secombes, 2003). Lysozyme activity in plasma was measured 

turbidimetrically. A 0.04 M Sodium Phosphate Buffer (pH 5.8) was prepared. 

Lyophilised M. lysodiekticus was added at a concentration of 0.2 mg bacteria m l'1 and 

this was then incubated at 25°C for 20 min. Twenty mis of bacteria suspension was 

enough for one 96 well microplate.

Ten fi\ of plasma was added to 5 replicate wells of a non-coated 96 multiwell 

plate (NUNC, BDH). Two columns of the plate containing buffer only was used as a 

negative control. One hundred and ninety fi\ of the bacterial suspension was added to all 

but the control wells. This suspension was added quickly using a multi-channel pipette.
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Care was taken not to introduce bubbles into the samples. Using a Dynex MRX II plate 

reader absorbance was read at 540nm one min after buffer was added to all wells and 

then again after 5 min. Lysozyme activity was expressed as the amount of sample 

causing a decrease in absorbance of 0.001 min'1. Units used were units min'1 ml'1.

2.2.3.4 Isolation of Rainbow Trout Pronephros Macrophages

Aseptic techniques were used at all times using a laminar flow hood. The 

removal of the head kidney (pronephros) from rainbow trout renders a supply of 

macrophages available for immunological assays (Braun Nesje et a l, 1981). As much 

blood as possible was removed from the sacrificed fish prior to macrophage collection 

via total venesection. In a laminar flow cabinet 5 ml of Leibovitz-15 (L-15) medium 

containing 10 fi\ heparin, was added to a 30 mm 0  Petri dish. Using blunt sterile forceps 

the dish was covered with a square of pre-cut, sterile 100 [im mesh. Using a sterile 

scalpel an incision was made at the gill arches and sliced backward towards the anus 

just below the lateral line. This clearly exposed the swim bladder. The swim bladder 

was pierced and pulled away from above the kidney. The edges of the head kidney were 

cut and then scraped together using a sterile spatula. The head kidney was removed 

using sterile forceps and placed on the mesh overlaying a Petri dish.

The kidney was teased through the mesh using the sterile plunger from a 

syringe. The mesh was rinsed with 1 ml of L-15 and the mesh dragged backwards off 

the petri dish to ensure the maximum of macrophages were collected. Using a sterile 

plastic Pasteur pipette the macrophage solution was gently drawn up and dispensed into 

a sterile bijou and stored on ice. The collected macrophages were stored temporarily on 

ice ready for immediate use in respiratory burst and phagocytosis assays.
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2.2.3.5 Respiratory Burst Activity of Head Kidney Macrophages.

Method adapted from Rook et al. (1985). One hundred /xl of the macrophage 

suspension was aliquoted into 8 replicate wells of a sterile 96-well microtitre plate 

(NUNC) and left for 1 h at 21°C to allow the cells to adhere to the plate. Plates were 

then washed 3 times with L-15 medium to wash off non-adherent cells. To the first set 

of 3 replicate wells, 100 /xl of 1 mg ml"1 nitrobluetetrazolium (NBT) in L-15 was added. 

To the next 3 replicate wells 100 /xl of 1 mg ml"1 NBT solution containing 1 /xl ml"1 of 

phorbol myristate acetate (PMA) was added. To the remaining 2 wells, 100 /xl of lysis 

buffer (Appendix A) was added. Plates were incubated at 21°C for one hour. The 

solutions from the first 6 replicate wells were removed and the plates were then washed 

3 times with L-15 medium. To the first six replicate wells 100/xl of neat methanol was 

added for 5 min to stop the reaction. They were then washed 3 times with 70% 

methanol and the wells left to air-dry (a minimum of 30 min).

One hundred and twenty /xl of dimethyl sulfoxide (DMSO) and 140 /xl of 2M 

Potassium Hydroxide (KOH) were added to each of the washed wells. The absorbance 

of each well was read at 610 nm using an ELISA plate reader.

The average numbers of adherent cells in the wells containing lysis buffer was 

determined using a Neubauer haemocytometer. Numbers were adjusted to 

1 x 105 cells.

The average weight of fish was 20.5 g (SD = 2.84; SE = 0.73) at the first month 

of sampling (July 2002). Fish were maintained at an ambient temperature and a 

simulated natural photoperiod, throughout the 12 month period.

Chapter 2: Variations in Immune Activity over a 12-Month Period 45



2.2.4 Measurement of Melatonin

Blood samples were taken using heparinised syringes, twice daily, every three 

months at midday and two hours after darkness had fallen and transported back to the 

laboratory on ice. Collected plasma samples were collected were stored at -70°C as 

soon as possible until analysed using a melatonin radio immunoassay (RIA) method 

adapted from Randall (1992). The sensitivity of the assay is 3.9 pg ml"1 (Randall, 1992). 

Recipes for tricine buffer, charcoal solution, antibody, radiolabel and standards are 

provided in Appendix A.

A standard curve was produced for all assays carried out (Fig. 2.3). Standards 

were prepared in a range of dilutions from 0-500 pg/250/xl in polystyrene tubes (LP3; 

Luckhams Ltd). Two hundred /xl of tricine buffer was added to each of the sample 

tubes. A further two tubes had 450 /xl buffer added to them, and these were used to 

measure non-specific binding (NSB). An additional 250 /xl of buffer was added to the 

NSB and standard tubes. Two hundred and fifty /xl of sample plasma was added to the 

sample tubes. To all but the NSB tubes 200 /xl of antibody (sheep anti-melatonin) was 

added. All tubes were incubated for 30 min at 21°C. Tritiated melatonin (200 /xl) was 

added to all tubes, which were then vortexed. Tubes were incubated for 18 h at 4°C.

Charcoal solution was made immediately prior to use and stirred on ice for 30 

min. Five hundred /xl of this solution was added to all tubes which were then vortexed. 

They were incubated for 15 min at 4°C, then centrifuged at 4°C, 2000 rpm for 15 min. 

One ml of the supernatant was collected from each tube and aliquoted into6 ml 

polyethylene scintillation vials (Canberra Packard Ltd), to which was added 4 ml.
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Fig. 2.3 Typical melatonin radioassay standard curve. The concentration of melatonin within a 
sample is obtained from the intersect of the percentage binding in the sample.

of scintillation fluid (Ultima Gold; Canberra Packard Ltd). A further three tubes were 

prepared, each with 4 ml of scintillation fluid. One hundred fi\ of triatiated melatonin 

was added to two of these vials, this was to enable calculation of total radioactivity. The 

remaining tube was left blank, for the calculation of background radioactivity. All tubes 

were vortexed and radioactivity measured for 4 min in a scintillation counter (1900TR 

LSA; Canberra Packard Ltd).

2.2.5 Statistical analysis

Before analysis data was found to be normally distributed and homogenous 

without transformation. This test was performed using the appropriate function on the 

Minitab statistical Package (V. 10). Data was analysed (P<0.05) using an ANOVA 

General Linear Model, Tukey Pairwise comparison tests (Post-hoc) and Pearson’s 

correlation coefficient all using Minitab (V. 10).
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2.3 Results

2.3.1 Weight

At the time of first sampling (July 2002) fish the average weight of the fish was 

20.53 g and at the end of the 12-month trial (June 2003) average weight was 248.55 g 

(Fig. 2.4).
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Fig. 2.4 Weight of fish during the 12-month trial period (n=15; mean ± SE).

2.3.2 Condition Factor
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Condition factor had improved from 1.49 in July (2002) to 1.19 in June (2003) 

(Fig. 2.5). This represents a general decrease in condition factor over the year towards a 

more desirable condition factor of 1.

Chapter 2: Variations in Immune Activity over a 12-Month Period 48



1.6 16 18:00

3
10:00 X

14:00 £O)

ow

1.0 -I .---------,-------- .---------,-------- ,---------,---------,--------;---------,-------- ,---------,--------
Jul/02 Sep/02 Nov/02 Jan/03 Mar/03 May/03 Jul/03

06:00

Month Condition Factor 
Water Temperature 
Hours of Daylight

Fig. 2.5 Variations in condition factor over a twelve month period (n=15; mean ± SE).

2.3.3 Variations in Innate Immunity and Haematological Parameters Over a 12- 

Month Period

2.3.3.1 White Blood Cell Counts

Total white blood cell counts were measured every month over the twelve 

month period (Fig. 2.6). There was a general increase in white blood cell counts during 

the spring months peaking in July (2002)/June (2003). Total white blood cell numbers 

decreased during the autumn and winter months to their lowest in March (2003). Using 

an ANOVA (GLM) a significant effect by month was found on white blood cell counts 

(P=0.000). Using a Tukey post-hoc test pair wise comparisons test (Table 2.1) no 

significant differences were observed between the summer months of May (2003), June 

(2003) and July (2002) (P>0.05). There was also no significant difference in white 

blood cell numbers between the winter months of November (2002), December (2002)
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and January (2003) (P>0.05). However, total white blood cell counts in the winter 

months were significantly lower than that of the summer (P=0.000).
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Fig. 2.6 Variations in white blood cell counts over a twelve month period (n=15; mean ± SE).

Table 2.1 Tukey Pairwise Comparison Tests investigating changes in total white blood cell counts 
with season (n=15)

Jul ‘02 Aug‘02 Sep‘02 Oct‘02 Nov‘02 Dec‘02 Jan‘03 Feb‘03 Mar‘03 Apr‘03 May‘03 Jun‘03

Jul‘02 X

Aug‘02 P>0.05 X

Sep‘02 P=0.039 P>0.05 X

Oct‘02 P>0.05 P>0.05 P>0.05 X

Nov‘02 P=0.000 P=0.047 P>0.05 P=0.043 X

Dec‘02 P=0.000 P=0.000 P=0.000 P=0.000 P>0.05 X

Jan‘03 P=0.000 P=0.000 P=0.000 P=0.000 P>0.05 P>0.05 X

Feb‘03 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.043 P=0.036 X

Mar‘03 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P>0.05 P>0.05 P>0.05 X

Apr‘03 P=0.000 P>0.05 P>0.05 P>0.05 P>0.05 P=0.004 P=0.005 P=0.000 P=0.000 X

May‘03 P>0.05 P>0.05 P>0.05 P>0.05 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.0082 X

Jun‘03 P>0.05 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P>0.05 X
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2.3.3.2 Red Blood Cell Counts

Red blood cell counts peaked during July (2002) and June (2003) (Fig. 2.7), 

although very little difference was observed between the other sampling months. 

Statistical analysis revealed a significant effect with month on red blood cell counts 

(P=0.000). This was investigated further Using a Tukey post-hoc pairwise comparisons 

test (Table 2.2), and it was observed that the red blood cell counts obtained in July

(2002) were not significantly different from those taken in October (2002) or April

(2003) (P>0.05), but significantly lower than those taken in June (2002) (P=0.000) and 

significantly higher than those taken during the remaining sampling months (P>0.05).
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Fig. 2.7 Variations in red blood cell counts over a twelve month period (n—15; mean ± SE).
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Table 2.2 Results of Tukey Pairwise Comparison Tests investigating red blood cell counts with 
mouth (n=15)

Jul‘02 Aug‘02 Sep‘02 Oct‘02 Nov‘02 Dec‘02 Jan‘03 Feb‘03 Mar‘03 Apr‘03 May‘03 Jun‘03

Jul‘02 X

Aug‘02 P=0.016 X

Sep‘02 P=0.000 P<0.05 X

Oct‘02 P<0.05 P<0.05 P<0.05 X

Nov‘02 P=0.000 P<0.05 P<0.05 P<0.05 X

Dec‘02 P=0.000 P<0.05 P<0.05 P<0.05 P<0.05 X

Jan‘03 P=0.000 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 X

Feb‘03 P=0.025 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 X

Mar‘03 P=0.000 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 X

Apr‘03 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 X

May‘03 P=0.015 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 X

Jun‘03 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 X

2.3.3.3 Lysozyme Activity

Plasma lysozyme activity was also measured every month for twelve months 

throughout the trial period (Fig. 2.8). A clear seasonal pattern of activity was observed 

as plasma lysozyme activity decreased from October (2002) to April (2003) and 

increased from May (2003) to July (2003). The lowest levels of activity were recorded 

in April (2003). A significant effect on plasma lysozyme activity by month was found 

(P=0.000). Using a Tukey post-hoc test, it was revealed from pair wise comparisons 

(Table 2.3) that plasma lysozyme activity in September (2002) was not significantly 

different from that of August (2002), October (2002), or June (2003) (P>0.05), but it 

was significantly greater than all other months. Lysozyme activity measured in March

(2003) and April (2003) were significantly lower than those measured in; August

(2002), September (2002) and June (2003) (P<0.05).
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Fig. 2.8 Seasonal lysozyme activity over a twelve month period (n=15; mean ± SE).

Table 2.3 Results of Tukey Pairwise Comparison Tests investigating the effect of month on 
lysozyme activity (n=15).

Jul‘02 Aug‘02 Sep‘02 Oct‘02 Nov‘02 Dec‘02 Jan‘03 Feb‘03 Mar‘03 Apr‘03 May‘03 Jun‘03

Jul‘02 X

Aug‘02 P>0.05 X

Sep‘02 P=0.01 P>0.05 X

Oct‘02 P>0.05 P>0.05 P>0.05 X

Nov‘02 P>0.05 P>0.05 P=0.015 P>0.05 X

Dec‘02 P>0.05 P>0.05 P=0.017 P>0.05 P>0.05 X

Jan‘03 P>0.05 P>0.05 P=0.000 P>0.05 P>0.05 P>0.05 X

Feb‘03 P>0.05 P=0.0 05 P=0.000 P>0.05 P>0.05 P>0.05 P>0.05 X

Mar‘03 P>0.05 P=0.004 P=0.000 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 X

Apr‘03 P>0.05 P=0.000 P=0.000 P=0.019 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 X

May‘03 P>0.05 P=0.018 P=0.000 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 X

Jun‘03 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P=0.045 P=0.033 P=0.0015 P>0.05 X
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2.3.3.4 Respiratory Burst Activity

Respiratory burst activity (Fig. 2.9) was not observed to exhibit an obvious 

seasonal pattern. Activity was observed to be greatest during the winter month of 

February (2003) and lowest during the winter month of January (2003). This is 

corroborated by the GLM ANOVA which revealed significant differences of respiratory 

burst activity by month (P=0.000). However, using a Tukey post-hoc test, pairwise 

comparisons revealed that no significant difference in activity was observed between 

August and February (P= 1.000) (Table 2.4). The pairwise comparisons further revealed 

that respiratory burst activity levels recorded in February were significantly greater than 

all other months (P=0.000) except July and August (P>0.05). Respiratory burst activity 

in August was significantly greater than all months except October, February, and 

March (P<0.05). There was no significant difference between March, April, May and 

June (P>0.05).
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Fig. 2.9 Variations in respiratory burst activity over a twelve month period (n—15; mean ± SE).
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Table 2.4 Tukey Pairwise Comparisons examining the effect of month on respiratory burst activity 
(n=15)

Jul‘02 Aug‘02 Sep‘02 Oct‘02 Nov‘02 Dec‘02 Jan‘03 Feb‘03 Mar‘03 Apr‘03 May‘03 Jun‘03

Jul‘02 X

Aug‘02 P=0.000 X

Sep‘02 P>0.05 P=0.000 X

Oct‘02 P>0.05 P>0.05 P>0.05 X

Nov‘02 P>0.05 P=0.000 P>0.05 P>0.05 X

Dec‘02 P>0.05 P=0.000 P>0.05 P>0.05 P>0.05 X

Jan‘03 P>0.05 P=0.000 P>0.05 P=0.005 P>0.05 P>0.05 X

Feb‘03 P>0.05 P>0.05 P=0.000 P=0.012 P=0.000 p=0.000 P=0.000 X

Mar‘03 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P=0.013 P=0.004 X

Apr‘03 P>0.05 P=0.000 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P=0.000 P>0.05 X

May‘03 P=0.000 P=0.002 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P=0.000 P>0.05 P>0.05 X

Jun‘03 P>0.05 P=0.000 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P=0.000 P>0.05 P>0.05 P>0.05 X

2.3.3.5 Correlation of Seasonal Cues with Innate Immune Param eters

Seasonal patterns in the innate immune parameters were further investigated 

using Pearson’s Correlation Coefficient (Table 2.5). The profiles of photoperiod and 

temperature are very similar, and without specific investigation into each, it is 

impossible to determine which the true environmental cue is. However, together these 

cues are used to represent the typical seasonal pattern.

As would be expected there was a strong positive correlation between hours of 

daylight and temperature (P=0.000). Positive correlations (P=0.000) were also observed 

between both seasonal cues and total white blood cell counts and red blood cell counts. 

Lysozyme activity was positively correlated with temperature (P=0.000) but not 

photoperiod (P=0.069). Respiratory burst activity was not positively correlated with any
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of the seasonal cues, or any of the other innate immune parameters investigated 

(P>0.05).

Positive correlations are observed between all the immune and haematological 

parameters investigated with the exception of respiratory burst activity (P<0.05). 

However, although significant, the correlation between red blood cell counts and 

lysozyme activity was the weakest of all the significant correlations.

Table 2.5 Pearson Correlation Coefficients for immune parameters VS seasonal cues
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2.3.4 Variations in Melatonin Levels over the 12-Month Trial Period

Plasma melatonin was measured quarterly at midday and two hours after 

darkness over the twelve month trial period (Fig. 2.10). Melatonin levels were highest at 

night throughout the trial period. Summer plasma melatonin levels were higher than 

winter levels both during the night and the day. As expected there was a significant 

difference between night time melatonin levels and day time levels (P=0.000). It was 

determined from an ANOVA GLM that there was a significant difference between the 

summer melatonin samples of July (2002) and May (2003) sampling points and the 

winter months of November (2002) and January (2003) for both the day and night 

sampling (P=0.000).
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Fig. 2.10 Day and night melatonin levels over the twelve month trial period (n=15; mean ± SE).
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2.4 Discussion

An effect of season was observed on several of the innate immune and 

haematological parameters studied. The immune response of rainbow trout exhibited 

significant difference between months for all of the innate immune parameters studied. 

A general seasonal effect could be described for total white blood cell counts, lysozyme 

activity and red blood cell counts. However, seasonality appeared to have little or no 

effect on respiratory burst activity. This is corroborated by the results of the Pearsons 

Correlation Coefficients which revealed a positive correlation between the seasonal cue 

of temperature and values for all the parameters studied with the exception of 

respiratory burst activity. A positive correlation between hours of daylight and the 

values for the parameters studied was repeated with the exception of lysozyme activity 

(P=0.069). Plasma lysozyme activity was shown to be significantly positively correlated 

with temperature, but not photoperiod. This suggests from this data that temperature is 

potentially the more dominant seasonal cue for this parameter.

White blood cell counts increased steadily during the spring months peaking in 

July (2002)/ June (2003). They then decreased during the autumn and winter months to 

their lowest level in March (2003). This corroborates the work of previous studies in 

that white blood cell counts exhibited a seasonal rhythm (Slater and Schreck, 1998). It 

was observed in this trial that total white blood cell counts generally increase during 

spring, peaking in the summer and then decreasing in activity in autumn to their lowest 

levels in winter. This coincides with the seasonal increase in water temperature and day 

length. However although seasonal, the results of previous studies are somewhat 

different to those presented here i.e. the pattern of seasonality seen is not the same for
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example, Collazos et al. (1998), reported that leucocyte counts for both male and female 

tench were significantly lower in spring and winter when compared with summer and 

autumn. However, the seasonal variation in white blood cell counts corroborates with 

the hypothesis presented by Slater and Schreck (1998). “In general, all immune 

parameters are suppressed in winter and highest in summer”.

A slight seasonal effect was observed for red blood cell counts as lowest values 

were recorded in the winter months of November (2002), December (2002) and January

(2003) whereas the highest red blood cell counts were recorded during July (2002) and 

June (2003). It is well documented that cold water contains a greater quantity of 

dissolved oxygen compared to warmer water. Consequently, fewer red blood cells are 

required to carry oxygen around the body of the fish in colder weather as the oxygen is 

more readily available. However, in the warmer summer months of July (2002) and 

June (2003) the reduced availability of oxygen means that more red blood cells are 

required to absorb available oxygen. Furthermore, winter is a period of reduced activity 

and therefore less energy is expended i.e. a reduced metabolism, thus less oxygen would 

be required. This is another reason for the observed seasonality of red blood cell counts.

Lysozyme activity exhibited a seasonal pattern during the 12-month period. The 

pattern is very similar to that of the white blood cell counts in that activity increased in 

spring peaking in late summer and then decreased over autumn to its lowest level in late 

winter. This has also been shown in dab, in which a generally consistent seasonal trend 

in plasma lysozyme activity was observed, with low values being associated with winter 

(Fletcher and White 1976). Again, this corroborates the hypothesis of Slater and 

Schreck (1998) “In general, all parameters are suppressed in winter and highest in 

summer”.
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Although significant differences were recorded in respiratory burst activity 

(P<0.05) according to month, these cannot really be said to be seasonal. The highest 

levels of respiratory burst activity occurred in August (2002) and February (2003) and 

the lowest in January (2003). No known studies have been carried out to examine the 

effect of season on respiratory burst activity. Rather trials have concentrated on the 

parameter of temperature although disparate results have been published (Nikoskelainen 

et al, 2004). In this study the peaks observed in August (2002) and February (2003) 

were significantly higher than at all other sample times (P<0.05). Respiratory burst 

activity has been reported to increase in kidney leucocytes isolated from dab following a 

stress event (Pulsford et a l, 1994). It may be that the fish in the trial had underwent a 

stressful event in the 24 h period prior to sampling, e.g. perhaps the tanks had been 

cleaned. Unfortunately, there is no record of when such cleaning events were carried 

out.

A general seasonal pattern of the innate immune response and haematological 

parameters studied with the exception of respiratory burst activity was observed. 

Generally immune parameters were highest in summer and lowest in winter. The 

seasonality exhibited may be in response to seasonal increases in the level of potential 

pathogens in the environment. The seasonal patterns in immunity maybe correlated to 

seasonal patterns in pathogen load. For example, several diseases of the aquatic 

environment present a seasonal pattern, including proliferative kidney disease (PKD). 

One of the most economically important diseases among commercially reared rainbow 

trout in Europe. The disease is often seasonally dependent, occurring at water 

temperatures above 15°C in the summer and autumn months of the year (Hedrick et al., 

1993). Furunculosis (Aeromonas salmonicida) is also generally a seasonal disease, with 

acute outbreaks occurring when water temperatures are about 20 C and chronic
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infections occur when temperatures are 13°C (Hjeltnes et a l, 1995). This co-ordinates 

well with the seasonal patterns exhibited by lysozyme activity and white blood cells as 

the immune system is being built up in preparation for potential attack by seasonal 

pathogens. If this is the case, the change in climatic conditions must be being 

anticipated otherwise any preventative measures to combat the increased pathogen load 

would occur too late. However, the mechanisms that regulate these seasonal 

components have yet to be completely identified.

The closer the value of Pearson’s correlation coefficient is to 1 or -1 the stronger 

the correlation. Unsurprisingly, there is an extremely strong positive correlation 

between photoperiod and temperature, Pearson’s value = 0.691. White blood cell 

counts, red blood cell counts and lysozyme activity all exhibit a positive correlation 

with both temperature and photoperiod. Respiratory burst activity is the only parameter 

to exhibit no correlation with either of the seasonal cues. This could be that it is always 

maintained at a background level and only increases when it is required.

The strongest correlation was observed with white blood cell counts and were 

very strongly correlated with temperature, Pearson’s value = 0.747. Plasma lysozyme 

activity also showed a stronger correlation with temperature than for photoperiod. Red 

blood cell counts however, showed a greater correlation with photoperiod. These results 

suggest that temperature is the principle environmental cue for the seasonality for the 

immune parameters of white blood cell numbers and lysozyme activity. This will be 

investigated further in Chapters 3 and 4.

Melatonin is known to mediate the effects of daylength on both daily and 

seasonal behavioural and physiological events in certain vertebrates (Randall, 

et al., 1995). It is well documented that there is a cyclical daily rhythm of melatonin
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production, with the majority of the hormone produced during the dark phase 

(Hazlerigg et a l, 2001). This is corroborated by the results of this trial, as there is a 

significantly higher level of melatonin (P=0.000) in the night time samples compared to 

day time samples. In addition, the results indicate that melatonin levels change with 

season, with levels being significantly higher during the summer months compared to 

winter in both the day and night time samples. This may be an effect of temperature. 

Porter et a l  (2001), reported that plasma melatonin levels in Atlantic salmon were 

significantly higher in fish maintained at 12°C compared to those at 4°C. This 

corroborates the results of the trial presented in this chapter, as temperature in the 

summer months was obviously greater in summer than winter. Consequently, it is not 

unexpected that melatonin levels would be higher during the warmer, summer months.

The increasing age of the fish may have affected melatonin levels. The majority 

of studies examining the effect of melatonin and age have been carried out in mammals. 

A study in rats concluded that pineal and plasma melatonin concentrations decline with 

age (Djeridane and Touitou, 2001). This pattern was not observed in the trial presented 

here. A strong seasonal pattern was observed with the lowest values being observed at 

the first sampling point which took place in winter and the highest in the early summer 

month of May.
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2.5 Conclusion

The results of the trial have achieved the original aims of this study. Primarily, a 

base line of data for a variety of innate immune responses was compiled for a 12-month 

trial period. In addition, a seasonal pattern was observed for several of the parameters 

measured i.e. white and red blood cell counts and lysozyme activity has been recorded. 

However, the seasonal response observed for these parameters cannot be attributed to a 

specific seasonal parameter such as photoperiod or temperature because the annual 

profiles of photoperiod and temperature are closely correlated, consequently any 

association with season could be due to either photoperiod and/or temperature (Fig. 

2.1). Consequently, studies examining the seasonal parameters of photoperiod and 

temperature were carried out independently and are presented in the following chapters.

The pineal hormone, melatonin, has been shown to exhibit both a diurnal and a 

seasonal pattern. Production is known to be affected by both photoperiod and 

temperature. This trial has demonstrated the seasonality of the hormone melatonin. A 

trial carried out examining the effect of melatonin on the immune system is discussed in 

Chapter 5.

During the 12 month trial the seasonal peaks of some of the immune parameters 

studied may be occurring at times of the year when the rainbow trout are at the greatest 

risk disease. If this is the case, it would be advantageous to the fish to anticipate these 

risks and be prepared for them in advance. The mechanism that anticipates these 

seasonal changes is yet to be completely identified.
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Chapter 3 Temperature and Innate Immunity
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3.1 Introduction

Most fish species cannot regulate their internal temperature. Consequently, the 

effects of temperature on the immune response of ectotherms such as teleosts are of 

particular interest (Baras, 1995). In general, immune parameters are suppressed during 

winter and are highest in summer (Slater and Schreck, 1998).

Substantial literature is available on the immunological rhythms cell numbers 

and activity in vitro as well as in vivo, in both laboratory animals and man (Shifrine et 

al, 1982a and b). It is only within the last decade that there has been increased interest 

in the effect of temperature on the immune responses of fish. The susceptibility of fish 

to disease is partly dependent on their environment. This is a result of the close 

relationship that exists between teleost fish and their surroundings (Le Morvan et al., 

1998). Since fish are poikilothermic, environmental temperature will influence all 

aspects of their physiology, including the immune response (Collazos et a l, 1994a). 

There is currently a great deal of interest in determining how ectotherms, such as teleost 

fishes, are able to achieve homeostasis, considering that most fish cannot regulate their 

internal temperature. Moreover, the nature of the adaptive immune response is 

dependent on the time scale of the environmental change in relation to the generation 

time of the organism (Baras, 1995).

It has been observed that during cold periods, poikilothermic animals suffer 

immunodepression due to the low temperatures, especially in warm water fish such as 

the tench (Collazos et a l, 1998) and sea bream (Tort et a l, 2004). Due to the potential 

impact of this phenomenon on the aquaculture industry, the mechanism of low
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temperature-induced immunosuppression in fish has been the focus of considerable 

research in recent years (Bly and Clem, 1992).

3.1.1 The Effect of Temperature on the Occurrence of Fish Disease

The onset of infectious diseases within the aquaculture industry has often been 

related to changes in environmental temperature and as a result, a cause and effect 

relationship between low temperatures and immune competence in vivo is frequently 

inferred. For example, in southern USA, the passage of a severe cold weather front can 

decrease commercial catfish pond water temperatures as much as 9°C in 12 hours. 

Moreover, the designs of the catfish ponds are such that they are both shallow and have 

a large surface area and consequently yearly pond water temperatures can vary between 

4°C and 38°C. Winter temperatures are known to show the greatest fluctuations, having 

a normal range of 6-23°C. The fish within these ponds have to endure these rapidly 

changing and sometimes physiologically low temperatures. Under normal 

circumstances their primary behaviour to such hostile conditions would be to swim 

away from the adverse temperature to a more favourable one. Obviously this response 

cannot be carried out because the fish are enclosed within a farm pond (Bly and Clem, 

1992). This inauspicious environment is a direct cause of immunosuppression in the 

fish, primarily as a result of stress, leaving the fish more susceptible to disease through 

the creation of ‘immunological disasters’ (Bly and Clem, 1992).

Disease organisms themselves are affected by temperature. Many diseases have 

specific temperatures at which they are either optimised or inhibited. There are several 

published reports indicating significant temporal differences in the occurrence of 

infectious disease outbreaks in wild populations of fish (Table 3.1). For example, in the 

North Sea, populations of dab have been documented as having maximum prevalence s
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of epidermal papilloma and lymphocystis lesions during the spawning period (March- 

May), with minimal prevalence’s during June to October (Hutchinson and Manning, 

1996).

Table 3.1 Optimal temperature for a selection of bacterial diseases of fish (Adapted from Inglis et. 
a l ,1993)

Bacterial Disease Causative Agent Optimal Temperature of 
Occurrence

Bacterial Cold water Disease Flavobacterium psychrophilum 15°C

Columnaris Disease Flavobacterium columnare 20.5-22.2°C

Edwardsiella septicaemia Edwardsiella tarda
30°C in catfish

10-18°C Japanese eels

Enteric septicaemia of catfish Edwardsiella ictaluri 25°C

Vibriosis
Vibrio anguillarum 15°C

Vibrio salmonicida 15°C

Furunculosis Aeromonas salmonicida 22-28°C

Pasteurellosis Photobacterium damselae subspecies pisicida 25°C

Bacterial Kidney Disease Renibacterium salmoninarum 15-18°C

Streptococcal septicaemia Streptococcus sp. 20+°C

Mycobacteriosis Mycobacterium marinium 25°C
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3.1.2 The Effect of Temperature on the Adaptive Immune Response

It is generally accepted that higher temperatures enhance adaptive immune 

responses (Bly and Clem, 1992) i.e. the production of antibody is faster and of a higher 

magnitude, whereas lower temperatures adversely affect antibody expression (Le 

Morvan et a l, 1997). For example, the immune responses of channel catfish have been 

altered by both in vivo and in vitro temperature fluctuations. Lower temperatures tended 

to have an inhibitory effect on the production of specific antibody and warmer 

temperatures resulted in higher antibody responses (Clem et al., 1984; Bly & Clem, 

1992).

It has been suggested that all fish species have a thermal limit, below which 

there is no adaptive immune response. This ‘non-permissive’ temperature is dependent 

upon the species (including age and sex), the type of response being measured, the 

length of the acclimation period and the interaction with other environmental 

parameters (Carlson et al., 1995).

Several studies have been carried out looking at the effect of temperature on the 

adaptive immune response, in one such study it was observed that, in carp, the ability to 

produce antibodies is clearly suppressed at 10°C (Kurata et al., 1997). A functional 

decline in helper T-lymphocytes at lower temperatures may cause this suppression in 

antibody production (Kurata et a l, 1997). In a study carried out to investigate 

temperature dependent-activation of leucocyte populations in rainbow trout after 

intraperitoneal immunisation with A. salmonicida (Kollner and Kotterba, 2002), it was 

found that the amount of antibodies were higher in sera of trout kept at 10-12 C at day 

22 and day 28 post-injection, compared to that of trout kept at 15-17 C. In this case,
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immunity was better at a lower temperature, this suggests that there may be an optimum 

temperature for antibody production.

In a study investigating the immunological assessment of hybrid striped bass at 

three culture temperatures, it was found that the length of time required to develop a 

protective antibody response was affected by small temperature variations (3°C). A 

decrease in water temperature as slight as 3°C can result in suppression of the primary 

adaptive response for several days, even if this reduced water temperature is within the 

preferred physiological range of 24-30°C (Carlson et al., 1995). This is corroborated by 

Cecchini and Saroglia (2002) who reported that sea bass immunized against human- 

gamma globulins emulsified in Freund's complete adjuvant exhibited a higher antibody 

response was observed in fish reared at 24 and 30°C, than at 12 and 18°C.

In a study carried out by Xianle and Wengong (1997), grass carp were 

immunized with the killed cell-cultured vaccine against Fish Reovirus (Vaccine CFRV), 

The experimental results showed that the water temperature of 10°C is the critical point 

at which to immunize grass carp with Vaccine CFRV and that the immune response was 

inhibited below 10°C and enhanced with increasing water temperature. However, 

immunity decreased above 32°C (the temperature suitable for the growth of grass carp). 

This study concluded that the water temperature during the inductive phase is one of the 

key factors that determined the occurrence and strength of the immune response.

The majority of studies report immune suppression at low temperature (Bly and 

Clem, 1991; Bly et a l, 1997). Some studies observed no change at all; for example, 

seasonal levels of plasma immunoglobulin (presumably representing antibodies) have 

been assayed in channel catfish and appear to be maintained at -40 mg 1 whether fish 

were assayed during summer or winter (Bly and Clem, 1992).
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3.1.3 The Effect of Temperature on Innate Immune Response

The effects of seasonal temperatures in vitro on the fish’s immune response are 

well established, and there is little doubt that low temperatures can suppress adaptive 

immune responses (i.e. T and B cell mediated). However, there is still controversy over 

the effects of temperature on innate immune responses (Bly et a l, 1997). This is 

primarily because there is little data available concerning the thermosensitivity of innate 

immune responses (Le Morvan et al., 1997).

3.1.3.1 Phagocytosis

It has been documented that in channel catfish, the primary impact on 

phagocytic function was due to assay temperature, although phagocytes appear to be 

more resistant to low temperature than lymphocytes which implies the importance of 

phagocytosis in the defence mechanisms of channel catfish at low temperatures 

(Ainsworth et a l, 1991; Le Morvan et a l, 1997). Moreover, in tench it has been found 

that phagocytic functions were elevated during the colder winter temperatures (Bly et 

al, 1997).

Tench have been documented to show an increase in phagocytosis activity from 

autumn to winter, which was due to both a higher number of granulocytes with 

phagocytic activity and a greater efficiency of phagocytosis (Collazos et a l, 1995). In a 

later study, tench maintained at two different temperatures 12°C (the actual temperature 

of the natural habitat of these fish during winter) and 22°C (a commonly used 

temperature within the physiological range) exhibited an increased capacity to ingest 

inert particles at 12°C (Collazos et al, 1994b).
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3.1.3.2 M acrophage Respiratory Burst Activity

Little work has been earned out on the effect of temperature on respiratory burst 

activity of head kidney macrophages. However, it has been documented that in channel 

catfish this activity was improved at low temperature (12°C) which would imply 

improved bacterial killing ability (Dexiang and Ainsworth, 1991; Le Morvan et a l, 

1997), whereas in colder climates, it has been reported that respiratory burst activity in 

rainbow trout is stimulated by increased temperature (Nikoskelainen et a l, 2004).

3.1.3.3 Plasma Lysozyme Activity

It has been documented that with dab, there is a generally consistent seasonal 

trend in lysozyme activity with low values being associated with reduced sea 

temperatures, time of spawning and poor condition factor. This corroborates an 

investigation carried out on the seasonal trends of lysozyme activity in plaice (Fletcher 

and White, 1976).

3.1.3.4 Cellular R esponses in Trout Skin

External epithelial tissues such as skin form the primary barrier between the 

internal tissues and the external environment. Consequently, they are the first to 

experience environmental changes (Iger et al, 1994).

Following a three-hour period of moderate elevation in water temperature, 

pronounced and prolonged effects on the skin of rainbow trout have been documented 

(Iger et a l, 1994). The most prominent effects of temperature elevation on the trout 

epidermis were the increased secretory activity of the upper layers of the filament cells 

and the high incidence of apoptosis in the upper and inner layers of filament cells. Both 

migration and secretion of mucus cells were stimulated by elevated temperature. In
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addition, the thermal shock rapidly initiated extravasation of leucocytes and the 

penetration of these cells into the epidermis (Iger et al, 1994).

3.1.4 The Effect of Temperature on Haematological Parameters

Several studies have been carried out to investigate the effect of seasonal 

changes on haematological parameters (Collazos et a l, 1998; Ainsworth et a l, 1991). 

For example, Collazos et a l (1998), carried out one such study. It was designed to 

determine changes in red and white blood cell levels and plasma proteins in the blood of 

tench during the four seasons of the year. The haematological parameters of fish are 

used as an indicator of their physiological state and the use of these measurements has 

become widespread in the monitoring of pathologies in fish farming (Martinez et a l, 

1994). Langston et a l  (2002), reported that temperature exerts a considerable influence 

on some blood parameters and on some humoral parameters of halibut. For example, a 

high temperature of 18°C caused a decrease in the number of circulating blood cells and 

an increase in serum lysozyme levels.

3.1.4.1 Erythrocytes

Red blood cell counts have been found to be significantly higher in spring than 

in autumn or winter in male tench. This was thought to be an adaptation of the fish to 

the warmer seasons, reflecting the decline in the dissolved oxygen content of water 

making it necessary for improved oxygen uptake within the fish i.e. an increase in 

erythrocytes (Collazos et a l, 1998).
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3.1.4.2 Leucocytes

Seasonal changes in white blood cell counts have also been observed. In tench 

the highest values have been recorded in autumn followed by a sharp drop in winter 

(Collazos et a l, 1998). These values then became noticeably higher (although not 

significant) by the summer. It was suggested that the increase in total white blood cell 

levels in tench during the summer, pointed towards a possible protective role for the 

white blood cells during the warmer seasons. Potentially, this could be the cause of the 

immunosuppressed state of fish in winter (Collazos et a l, 1998).

Lymphocyte proliferation has been documented to exhibit seasonal fluctuations 

as a result of temperature (Bly et a l, 1997). In the tench lymphocyte proliferation was 

lower during the winter months with best responses obtained in vitro with an assay 

temperature about 5°C above ambient (Bly et a l, 1997). Lower temperatures can also 

cause a functional decline in cytotoxic T lymphocytes. In addition, lower temperatures 

also reduced production of macrophage activating factor (MAF) by T lymphocytes 

(Kurata et a l,  1997). As result, an adaptive immune system, controlled by T 

lymphocytes, would not be effective at lower water temperatures (Kurata et a l, 1997).

Different water-rearing temperatures have been shown to change the cellular 

composition of head kidney leucocytes in carp, with the percentage of neutrophilic 

granulocytes being higher in fish kept at 10°C compared to fish kept at 25°C. Re

acclimation of fish kept at 10°C to 25°C resulted in a reduction in the number of 

neutrophilic granulocytes (Kurata et a l, 1997).

More recently it has been reported that sudden drops in temperature (e.g. over a 

3 hour period of 9°C) which can cause a significant stress response which can be 

measured as a rise in cortisol (Tanck et al, 2000; Engelsma et a l, 2003). This in turn

Chapter 3: Temperature and Innate Immunity 73



has been shown to affect the dynamics of leucocyte populations, for example relative 

number of circulating B-lymphocytes in the total leucocyte population decreased 

significantly within 4 h after the onset of single or multiple cold shocks (Engelsma et 

al, 2003).

3.1.4.3 Haematocrit Values

Haematocrit values have been reported to be influenced by season, and these are 

reported to be lower in winter than spring (North, 2004). This was initially attributed to 

changes in water temperature. However, when a trial was carried out over a period of 

twelve months at a constant temperature, haematocrit was still observed to undergo 

seasonal changes (Denton and Yousef, 1975). Consequently, it was suggested that these 

seasonal changes were probably related to the degree of physical activity and to 

metabolic adaptations (Denton and Yousef, 1975). However, correlations have been 

found between haematocrit and temperature, but only at very high water temperatures 

(Martinez et a l, 1994)

3.1.5 Aims

This chapter is composed of two trials.

• The effect of three different water temperature treatments (5, 10 and 18°C) on a 

variety of innate immune and haematological parameters, were examined in the 

first trial (Trial A). The trial was carried out in winter and repeated in summer. 

The aims of this trial were to examine the effect of temperature and season on 

innate immunity.
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• The effect of acclimating fish held at the three different water temperature 

treatments (5, 10 and 18°C) to 15°C, was examined in the second trial (Trial B). 

This temperature was chosen because 15°C is the water temperature most 

effective for artificially challenging with V. anguillarum, which was carried out as 

part of Trial A. The aim of this study was to determine if acclimating the fish to 

15°C affected their innate immunity or haematological parameters. That is, the 

results observed from the artificial challenge in Trial A, may have been the result 

of the action of acclimating the fish to 15°C, rather than the effect of the original 

water treatment temperatures the fish were held at.
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3.2 Materials and Methods 

Trial A ■ Effect of Three Different Temperatures on Immunity

In this initial investigation into the effect of temperature on the innate immune 

response of rainbow trout, three different temperatures were used (5, 10 and 18°C (±2)). 

The trial was carried out in winter and then repeated in summer. All female fish were 

used and the same stock of fish was used in each trial. Difficulties were experienced 

with the chiller and heating equipment in that the system could not be relied upon for 

longer periods of time, consequently it was decided that sampling would occur at one 

sampling point during winter and summer. Twenty fish were analysed for each water 

temperature.

3.2.1 Trial Set-Up

The temperature trials were carried out at the Aquatic Research Facility (ARF) 

at the Institute of Aquaculture. This is because temperature manipulation is not possible 

at the NBFRF. Fish used in experiments at the ARF were purchased from local farms 

and transported by road to the aquarium facilities at the university. The source of the 

fish is indicated in the appropriate chapters. Upon arrival, the fish were distributed into 

disinfected aerated holding tanks (370 L) in a flow-through dechlorinated water system 

at ambient temperature.

The water capacity of the experimental and challenge tanks was 100 L, with a 

flow through of 1.5 L m l'1. During an acclimation period of three or more weeks, the 

fish were fed once daily with commercial pelleted trout feed (EWOS, Edinburgh)
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according to the manufacturers feed tables. Following acclimation the fish were graded 

according to their length and distributed into the experimental tanks, which again had 

been disinfected and were supplied with flow-through dechlorinated water. Fish were 

fed once daily according to the manufacturers feed tables. Throughout both the 

acclimation and experimental periods mortalities, feeding behaviour, water temperature 

and experimental procedures were recorded daily.

Fish were held in 6 circular tanks with 30 fish per tank at the start of the 

experiment. There were two tanks per temperature treatment. Fish were maintained 

under a 12:12 LD photoperiod throughout the trial (this is fixed for all research carried 

out at the ARF). Fish were acclimated to their respective temperatures for 4 weeks prior 

to sampling.

3.2.2 Measurement of Innate Immunity and Haematological Parameters

Sampling took place after 4 weeks of acclimation with ten fish sampled per tank 

allowing for a total of twenty fish to be sampled per temperature treatment. Fish lengths 

and weight were taken along with blood samples. Both fish and blood were transported 

back to the laboratory on ice.

In the laboratory a variety of innate parameters were measured: macrophage 

respiratory burst activity, white and red blood cell counts, haematocrit and lysozyme 

activity. Methods are described in Sections 2.2.2, 2.2.3, and 3.2.3 (haematocrit). In 

addition, fish were challenged with V. anguillarum at the Aquatic Research Facility 

(Section 3.2.4) at the Institute of Aquaculture to determine if temperature affects 

survival (20 fish per temperature treatment).
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3.2.3 Haematocrit

Heparinised capillary tubes were filled with blood, sealed with Critoseal™ 

(Hawksley & Son, England) and centrifuged in a Hawksley haematocrit centrifuge 

(Hawksley & Son, England) for 3 min. The percentage of packed cell volume 

(haematocrit) was calculated using a Hawksley reader (Hawksley & Son, England).

3.2.4 Bacterial Challenge with V. anguillarum

Bacterial challenge was used to measure the adaptive immune response in fish 

that had been previously vaccinated against V. anguillarum, by looking at the level of 

protection elicited by the vaccine in the different treatment groups. However, it was also 

used to examine the innate immune response in non-vaccinated fish not previously 

exposed to the bacterium.

3.2.4.1 Preparation of V. anguillarum Broth Culture for Injection Challenge.

Sixty ml of TSB + NaCl was prepared and inoculated with colonies taken from a 

stock culture plate of V. anguillarum (Serotype 1). The broth culture was incubated 

overnight at 22°C.

On Day 2 the optical density of the bacteria was measured at 610nm using a 

Cecil CE 2041 2000 Series spectrophotometer and the bacterial concentration of the 

suspension was calculated using the appropriate regression equation from a standard 

curve (Appendix B), and then diluted to 7 x 107 CFU m l1 using sterile PBS.
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3.2.4.2 Bacterial Challenge by Injection

The challenge was carried out in the challenge suite of the ARF. Tanks were set 

up with an ambient water supply and a 12:12 LD photoperiod. Fish from replicate tanks 

were mixed together and then divided into six separate tanks to reduce possible tank 

effects.

The fish were anaesthetised prior to injection with bacteria, and they received a 

dose, decided from pre-challenge results (the dose used in each challenge is described 

during the relevant trial). Bacteria were delivered by intraperitoneal injection. Fish were 

then allowed to recover in aerated baths before being returning them to their respective 

tanks.

Fish were monitored twice daily, and any mortalities recorded. Fish were 

analysed according to Section 3.2.4.4 to confirm that they had died as a result of 

infection with V. anguillarum.

3.2.4.3 Calculation of the Exact Dose of Bacteria Administered

Calculating the dose administered using optical density based on the regression 

equation alone is inaccurate because the suspension can contain both live and dead 

bacteria. The exact dose of bacteria was calculated using colony-forming unit (CFU) 

counts. One ml of the 7 x 107 CFU ml"1 sample was aliquoted into 9 mis sterile PBS. 

This results in a tenfold dilution of the original dose that was injected into the fish (10 1 

dilution). This serial dilution was repeated down to a 10'8 dilution. Tryptone Soya Agar 

(TSA + 2% NaCl) (Appendix A) plates were labelled with the dilution factor and 

divided equally into 6 segments. A 20 /x 1 aliquot of each prepared dilution was placed 

into the appropriate segment of the agar plate.
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The plates were incubated at 22°C overnight until small colonies that had not 

overlapped could be observed easily. The average number of colonies on the plate was 

calculated and multiplied by 50 to give CFU m l'1.

3.2.4.4 Confirmation of Specific Mortalities

Kidney swabs from fish that had died following artificial challenge with 

V. anguillarum were taken using a sterile loop. TSA 2% NaCl plates were streaked 4 

times. This allows colonies to be observed. The plates are then sealed with Nescofilm 

and incubated at 22°C overnight.

Gram Staining

A single bacterial colony was selected from the agar plate streaked with the 

kidney swab and emulsified in a single drop of sterile PBS on a clean microscope slide. 

This was spread around the slide using a sterile loop to obtain a thin bacterial film that 

was allowed to air dry. The slide was then gently heat fixed by passing the slide twice 

through, a hot bunsen flame. The slide was stained for 1 min with crystal violet solution, 

fixed for Imin with iodine solution and then destained with acetone for 5 sec. The slide 

was immersed in cold water for 5 sec and then counter stained in safarin for 2 min. 

Once dry* bacteria were observed under oil immersion x 1000 magnification and their 

colour and shape was recorded. Gram positive organisms stained blue/purple and Gram 

negative organisms stained red/pink. Vibrio, anguillarum is a Gram negative, rod 

shaped bacteria..

Chapter 3: Temperature and Innate Immunity 80



Sensitivity Discs

Two colonies of bacteria were suspended in 2 ml of sterile PBS, and 5-10 drops 

were placed onto the appropriate agar plate and then spread around the plate using a 

sterile glass spreader to allow a bacterial lawn to develop. Sensitivity discs specific to 

Vibrio 0129 (0 fig and 150 fig) were placed on top of the lawn. Plates were incubated at 

22°C overnight. Clear zones were evident around the discs if the bacteria were of the 

family Vibrio.

3.2.5 Measurement of Melatonin

Blood samples were taken during the final month of each trial at midday and 

two hours after darkness had fallen using heparinised syringes and transported on ice to 

the laboratory. Plasma was collected, samples were frozen at -70°C as soon as possible 

and later analysed using a melatonin radio immunoassay (RIA) as described in Section 

2.2.4.

3.2.6 Statistical Analysis

Before analysis, data was tested for normality and homogeneity of variance 

using fits and residuals. All data was found to be normal and homogenous without 

transformation. Data was analysed using an ANOVA General Linear Model (Minitab) 

and post hoc Tukey tests measuring Pairwise comparisons.

Statistical analysis of the survival to challenge data was performed using the 

survival test Kaplan Meier (SPSS).
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Trial B -Acclimation Trial

During the original investigation into the effect of temperature (Trial A) general 

resistance to disease was assessed by artificial challenge with 

V. anguillarum. In order to successfully challenge with the bacterium, the water 

temperature was adjusted to 15°C. The action of changing the temperature from the 

original three treatment temperatures (5, 10 and 18°C) to 15°C on total red and white 

blood cell counts and lysozyme activity was investigated.

3.2.7 Trial Set-Up

The investigation was carried out at the ARF. Five fish from each tank i.e. ten 

fish per treatment (5, 10 and 18°C) were slowly acclimated to 15°C over one week. The 

trial was carried out using duplicate tanks. Fish were maintained under the original 

12:12LD photoperiod. This experiment was carried out during the summer. 

Measurement of immune parameters and statistical analysis were earned out as per 

Sections 2 .2 .2 , 2.2.3 and 3.2.6.
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3.3 Results

Trial A - Effect of Three Different Temperatures on Immunity

The same stock of fish was used for both the winter and summer trials. 

Consequently the fish used in the summer trial were significantly larger than those of 

the winter trial. Average fish weight during the winter trial was 16.25 g (SD = 3.45; SE 

= 0.77) and 80.04 g (SD = 21.09; SE = 4.71) during the summer trial.

3.3.1 The Effect of Temperature on Immune and Haematological Parameters

3.3.1.1 White Blood Cell Counts

No significant difference was recorded in relation to the total white blood cell 

counts obtained with season (P=0.817), however, white blood cell counts were 

significantly affected by temperature (P=0.000) (Fig. 3.1). To determine where this 

significance occurred, Tukey tests were carried out. Fish held at 5°C exhibited a 

significantly lower white blood cell count compared to fish held at either 10 or 18°C 

(P=0.000), regardless of the season. No significant difference was recorded between the 

winter and summer 5°C groups of fish (P=1.000). Fish held at 10°C exhibited a 

significantly lower white blood cell count compared to fish held at 18°C (P=0.000), 

regardless of season. No significant difference was recorded between the winter and the 

summer with groups of fish held at 10°C (P= 1.000). Fish held at 18°C exhibited a 

significantly higher white blood cell count compared to fish held at either 5 or 10°C 

(P=0.000), regardless of season. No significant difference was recorded in the white 

blood cell counts of fish held at 18°C between winter and summer groups (P=1.000).
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Season

Fig. 3.1 Effect of season and temperature on total white blood cell counts for fish held at three 
different water temperatures (5, 10 and 18°C) (n=20/treatment/season; mean ± SE). Subscripts 
denote statistical significance, ‘a’ is significantly lower than ‘b’ and ‘c’; ‘b’ is significantly lower 
than ‘c’ (P<0.05).

3.3.1.2 Red Blood Cell Counts

Red blood cell counts (Fig. 3.2) were found to be significantly different 

according to both the season (P=0.045) and the water temperature (P=0.000). Further 

examination of the data using Tukey Pairwise comparisons determined that the red 

blood cell counts of fish held at 5 and 10°C were significantly lower than those of fish 

held at 18°C (P=0.000). This was revealed to be a season/temperature interaction, since 

the red blood cell counts of fish held at 18°C were only significant greater than fish held 

at 5 and 10°C during summer (Table 3.2).
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Season

Fig. 3.2 Effect of season and temperature on red blood cell counts for fish held at three different 
water temperatures (5, 10 and 18°C) (n=20/treatment/season; mean ± SE). Subscripts denote 
statistical significance, ‘a’ is significantly lower than ‘b’; ‘c’ is significantly greater than ‘a’ and ‘b’; 
‘ab’ is significantly lower than ‘c’ but not significantly different from either ‘a’ or ‘b’(P<0.05).

Table 3.2 Tukey Pairwise Comparisons for season / temperature (n=20)

Winter
/

5°C

Winter
/

10°C

Winter
/

18°C

Summer
/

5°C

Summer
/

10°C

Summer
/

18°C
Winter

/
5°C

X

Winter
/

10°C
P>0.05 X

Winter
/

18°C
P=0.005 P>0.05 X

Summer
/

5°C
P>0.05 P>0.05 P=0.000 X

Summer
/

10°C
P>0.05 P>0.05 P=0.000 P>0.05 X

Summer
/

18°C
P=0.000 P=0.000

_

P=0.000 P=0.000 P=0.000 X
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3.3.1.3 Haematocrit Value

The haematocrit levels in fish (Fig. 3.3) were not significantly different between 

seasons (P=0.079) or temperature treatment (P=0.355). However, a season/temperature 

treatment interaction was recorded (P=0.000). This was further investigated using 

Tukey Pairwise comparisons (Table 3.3). Fish held at 18°C during winter had a 

haematocrit level significantly lower (P=0.0006) than that of fish held at 18°C during 

summer. Fish held at 5°C during summer had a significantly lower haematocrit value 

(P=0.0033) compared with fish held at 18°C during summer.
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Fig. 3.3 Effect of season and temperature on haematocrit values for fish held at three different 
water temperatures (5, 10 and 18°C) (n=20/treatment/season; mean ± SE). Subscripts denote 
statistical significance, ‘a’ is significantly lower than ‘b’; ‘ab’ is not significantly different from 
either ‘a’ or ‘b’ (P<0.05).
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Table 3.3 Tukey Pairwise comparisons investigating the interaction between season / temperature 
was observed (n=20/treatment/season)

Winter
/

5°C

Winter
/

10°C

Winter
/

18°C

Summer
/

5°C

Summer
/

10°C

Summer
/

18°C
Winter

/
5°C

X

Winter
/

10°C
P>0.05 X

Winter
/

18°C
P>0.05 P>0.05 X

Summer
/

5°C
P>0.05 P>0.05 P>0.05 X

Summer
/

10°C
P>0.05 P>0.05 P>0.05 P>0.05 X

Summer
/

18°C
P>0.05 P>0.05 P=0.0006 P=0.0033 P>0.05 X

3.3.1.4 Macrophage Respiratory Burst Activity

Fish held under different water temperatures did not exhibit a significant 

difference in the respiratory activity of macrophages between each other (P=0.783). 

However, a large significant difference, in this activity was observed between seasons 

(P=0.000). Macrophage respiratory burst activity was significantly lower in winter than 

in summer (Fig. 3.4).
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Fig. 3.4 The effect of season and temperature on macrophage respiratory burst activity for fish held 
at three different water temperatures (5, 10 and 18°C) (n=20/treatment/season; mean ± SE). 
Subscripts denote statistical significance, ‘a’ is significantly lower than ‘b’ (P<0.05).

3.3.1.5 Plasma Lysozyme Activity

Plasma lysozyme activity of fish held under three different temperature 

treatments (Fig. 3.5) was found to be significantly affected by temperature (P=0.000) 

and the seasons of winter and summer (P=0.04). In winter, fish held at 10°C exhibited 

the lowest lysozyme activity however, during the summer the opposite was true. An 

interaction between temperature and season was revealed from Tukey Pairwise 

Comparisons (Table 3.4). Fish held at 10°C in summer exhibited a significantly higher 

plasma lysozyme activity compared to fish held at 5, 10 and 18°C in winter, and this 

was significantly higher than fish held at 18°C in summer.
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Season

Fig. 3.5 Effect of season and temperature on lysozyme activity for fish held at three different water 
temperatures (5, 10 and 18°C) (n=20/treatment/season; mean ± SE). Subscripts denote statistical 
significance, ‘a’ is significantly lower than ‘b’; ‘ab’ is not significantly different from either ‘a’ or 
‘b’ (P<0.05).

Table 3.4 Results of Tukey Pairwise Comparisons investigating a season / temperature interaction 
(n=20).

Winter
/

5°C

Winter
/

10°C

Winter
/

18°C

Summer
/

5°C

Summer
/

10°C

Summer
/

18°C
Winter

/
5°C

X

Winter
/

10°C
P>0.05 X

Winter
/

18°C
P>0.05 P>0.05 X

Summer
/

5°C
P>0.05 P=0.0004 P>0.05 X

Summer
/

10°C
P=0.0069 P=0.000 P=0.0005 P>0.05 X

Summer
/

18°C
P>0.05 P>0.05 P>0.05 P>0.05 P=0002 X
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3.3.1.6 Challenge with Vibrio anguillarum

Unvaccinated fish were artificially challenged during the final month during 

each trial (February and August) with V. anguillarum. Prior to the challenge fish were 

acclimated to 15°C whilst still being maintained under a 12:12LD photoperiod for one 

week prior to injection.

Winter Trial. (Fig. 3.6a)

A significant difference in survival following challenge with V. anguillarum was 

observed between treatments (P=0.0184). From Pairwise comparisons it was determined 

that fish that had originally been held at 5°C had a significantly greater level of survival 

compared to fish held at 18°C (P=0.0298); and that fish held at 10°C had a significantly 

greater level of survival compared to fish held at 18°C (P=0.0037). Median survival was 

day 3 for fish from both the 5 and 18°C treatments; and day 4 for fish from the 10°C 

treatment.

Summer Trial (Fig. 3.6b)

A significant difference in survival following challenge was observed between 

treatments (P=0.0094). It was determined using Pairwise comparisons that fish from the 

5°C treatment had a significantly higher level of survival compared to fish from the 

18°C treatment (P=0.0056); and that fish held at 10°C had a significantly greater level 

of survival compared to fish held at 18°C (P=0.0507). Median survival was day 5 for 

fish from the 10°C treatment; and day 7 for fish from the 18°C treatment. No median 

survival day could be calculated for the 5°C group because there were too few 

mortalities.
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Fig. 3.6 Mortality following artificial challenge with V. anguillarum for fish from the winter (a) and 
summer (b) challenges. Fish were challenged under a 12:12 LD photoperiod following acclimation 
to 15°C for a week. Fish were originally held at three different temperature treatments (5, 10 and 
15°C) for three months. Increased bacterial dose for the summer challenge is because of the 
increased size of the fish.
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3.3.2 The Effect of Temperature on Melatonin

The fish used in the winter trial were too small to collect sufficient plasma to 

determine the level of plasma melatonin in the individual fish. Consequently, the 

plasma sample from the fish was pooled. Although five fish were sampled per treatment 

there was only enough plasma to carry out one melatonin assay per treatment on fish in 

winter experiment. This explains the lack of error bars on the winter treatment bars (Fig. 

3.7). This is also the reason why statistical analysis has only been carried out on the 

summer results

For the summer experiment, light (am) or dark phase (pm) photoperiod did not 

show any significant effect on plasma melatonin levels (P=0.086). However, water 

temperature did exert a significant effect on melatonin levels (P=0.032). Post-hoc 

analysis using Tukey Pairwise comparison tests on the data from the summer trial 

(Table 3.5) revealed that plasma melatonin levels of fish from the 10°C group were not 

significantly different from either the 5 or 18°C treatment fish. Fish maintained at 18°C 

had a significantly higher plasma melatonin level regardless of am or pm sampling 

compared to fish held at 5°C. No significant interactions of am, pm or treatment were 

observed (P>0.05).
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Fig. 3.7 Effect of season and temperature on plasma melatonin levels for fish held at three different 
water temperatures (5, 10 and 18°C) (n=5; mean ± SE,). Subscripts denote statistical significance, 
‘a’ is significantly lower than ‘b’; ‘ab’ is not significantly different from either ‘a’ or ‘b’ (P<0.05). 
Statistical analysis not carried out for the Winter trial as plasma was pooled from five fish to obtain 
one result per treatment.

Table 3.5 Tukey Pairwise comparison results for the effect of temperature on melatonin levels 
during the summer trial (n=5)

5°C 10°C 18°C

5°C X

10°C P>0.05 X

18°C P=0.0261 P>0.05 X

ab

3 I

b

ab
a -rI
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Trial B-Acclimation Trial

3.3.3 The Effect of Acclimating to 15°C on Immune and Haematological 

Parameters

3.3.3.1 White Blood Cell Counts

The total white blood cell counts of fish held at the three original temperatures 

(5, 10 and 18°C) (Fig. 3.8) were significantly different to each other following 

acclimation to 15°C (P=0.000). This was investigated further using Tukey Pairwise 

Comparison tests (Table 3.6). Fish originally held at 5°C exhibited a significant increase 

in white blood cell numbers following acclimation to 15°C. While fish originally held at 

18°C exhibited a significant decrease in white blood cell numbers following acclimation 

to 15°C. However, fish originally held at 10°C did not exhibit a significant change in 

white blood cell counts following acclimation.

Pre Acclimation Acclimated to 15C

Fig. 3.8 The effect of acclimating the three treatment groups (5, 10 and 18 C) to 15 C on white 
blood cell numbers (n=20 pre-acclimation and n=10 acclimated; mean ± SE). Subscripts denote 
statistical significance, ‘a’ is significantly lower than ‘b’; ‘a’, ‘b’ and ‘c’ are significantly lower than 
‘d’ (P<0.05).
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Table 3.6 Investigation into the interaction of acclimation and original temperature on white blood 
cell counts using Tukey Pairwise Comparisons.

5°C 10°C 18°C
Acclimated

from
5°C

Acclimated
from
10°C

Acclimated
from
18°C

5°C X

10°C P=0.000 X

18°C P=0.000 P=0.000 X

Acclimated
from
5°C

P=0.000 P>0.05 P=0.000 X

Acclimated
from
10°C

P=0.000 P>0.05 P=0.000 P>0.05 X

Acclimated
from
18°C

P>0.05 P>0.05 P=0.000 P>0.05 P>0.05 X

3.3.3.2 Red Blood Cell Counts

The effect of acclimating fish from the three different water temperatures (5, 10 

and 18°C) to 15°C, significantly affected their red blood cell numbers (P=0.000) (Fig.

3.9). It was revealed from Tukey Pairwise comparisons that the greatest effect of 

acclimation to 15°C was observed in fish that were previously acclimated to 18°C 

(Table 3.7). Following acclimation to 15°C, fish in this treatment group had 

significantly lower red blood cell numbers (P=0.000). Although red blood cell numbers 

rose in fish originally held at 5 and 10°C following acclimation to 15 C, the difference 

was not found to be significant (P>0.05).
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Pre Acclimation Acclimated to 15C

Fig. 3.9 The effect of acclimating the three treatment groups (5,10 and 18°C) to 15°C on red blood 
cell numbers (n=20 pre-acclimation and n=10 acclimated; mean ± SE). Subscripts denote statistical 
significance, ‘a’ is significantly lower than ‘b’ (P<0.05).

Table 3.7 Investigation into the interaction of acclimation and original temperature on red blood 
cell counts using Tukey Pairwise Comparisons

5°C 10°C 18°C
Acclimated

from
5°C

Acclimated
from
10°C

Acclimated
from
18°C

5°C X

10°C P>0.05 X

18°C P=0.000 P=0.000 X

Acclimated
from
5°C

P>0.05 P>0.05 P=0.000 X

Acclimated
from
10°C

P>0.05 P>0.05 P=0.000 P>0.05 X

Acclimated
from
18°C

P>0.05 P>0.05 P=0.000 P>0.05 P>0.05 X
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3.3.3.3 Plasma Lysozyme Activity

Plasma lysozyme activity appeared to be affected by the acclimation period (Fig.

3.10), however the results of the GLM ANOVA show no significant effect of 

acclimation (P=0.764) on the fish. This was probably due to an observed significant 

tank effect (P=0.006). This tank effect occurred in fish that were acclimated to 15°C 

from the 10°C treatment, the lysozyme activity of two fish in tank 1 were significantly 

lower than that of the other fish sampled from that tank, whereas no significant 

difference between fish from tank 2 was observed (P<0.05). However, homogeneity of 

the data was not found to be affected.

Although not significant, fish originally held at 5 and 10°C exhibited an increase 

in plasma lysozyme activity following acclimation to 15°C. Fish originally held at 10°C 

exhibit a lower plasma lysozyme activity following acclimation. It was shown from 

Tukey Pairwise comparison tests that this difference was not significant (Table 3.8).

Pre Acclimation Acclimated to 15C

Fig. 3.10 The effect of acclimating the three treatment groups (5, 10 and 18°C) to 15°C on plasma 
lysozyme activity (n—20 pre -acclimation and n=10 acclimated; mean ± SE). Subscripts denote 
statistical significance, ‘a’ is significantly lower than ‘b’; ‘ab’ is not significantly different from 
either ‘a’ or ‘b’ (P<0.05).
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Table 3.8 Results of Tukey Pairwise Comparisons investigating the effect of acclimating fish from 
three treatment temperatures to 15°C on plasma lysozyme activity.

5°C 10°C 18°C
Acclimated

from
5°C

Acclimated
from
10°C

Acclimated
from
18°C

5°C X

10°C P>0.05 X

18°C P>0.05 P=0.000 X

Acclimated
from
5°C

P>0.05 P>0.05 P>0.05 X

Acclimated
from
10°C

P>0.05 P>0.05 P>0.05 P>0.05 X

Acclimated
from
18°C

P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 X
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3.4 Discussion

According to the results shown in this chapter, there is obviously a direct effect 

of temperature on the kinetics of the innate immunological responsiveness of rainbow 

trout, corroborating the work of Carlson et a l, (1995). It is often reported that 

regardless of the fish species examined, elevated water temperatures within the 

physiological range of the fish (i.e. ~5-10°C above ambient temperature) enhance 

immune functions (Bly et a l, 1997). This is generally corroborated by the data 

presented here. White blood cell counts regardless of the trial season exhibited a 

positive correlation with temperature with the lowest counts observed in fish maintained 

at 5°C and the highest in fish maintained at 18°C. This is further corroborated by the 

results of the acclimation trial. Fish maintained at 5 and 10°C, and then acclimatised to 

the higher temperature of 15°C, exhibited an increased level of white blood cell counts, 

whereas fish originally maintained at 18°C exhibited a drop in white blood cell counts 

following acclimation to the lower temperature of 15°C. This was also found for red 

blood cell counts.

Macrophage respiratory burst activity was significantly affected by the season in 

which the measurements were taken. Since the fish were maintained under the same 

photoperiod and temperature for each trial, it appears that neither photoperiod or 

temperature are the principle cue in controlling respiratory burst activity. This does not 

corroborate Nikoskelainen et a l, (2004) who reported that respiratory burst activity is 

stimulated by increased temperature. Macrophage respiratory burst activity may be 

affected by the size of the fish i.e. the larger the fish the greater the level of macrophage 

respiratory burst activity. However, in the Base Level Trial (Chapter 2) macrophage
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respiratory burst activity was measured over a twelve month period and there was no 

correlation between fish size and macrophage respiratory burst activity. It is therefore 

suggested that the observed response was due to an as yet unknown endogenous 

rhythm. Further studies are required to determine what this rhythm may be i.e. 

investigation into the effect of seasonal hormones such as cortisol and melatonin on 

respiratory burst activity. However, because there was only one sampling point per trial 

the possibility of human error must not be disregarded.

Plasma lysozyme activity was significantly affected by water temperature, 

however, unlike the haematological parameters it was not correlated with increasing 

temperature. Lysozyme activity was greatest at the temperature most relevant to the 

particular season in which sampling took place. For example, during the winter trial, 

lysozyme activity was highest in fish maintained at 5°C. Lysozyme activity was shown 

to exhibit a seasonal effect in the Base Level Trial (Chapter 2). During the trial, 

lysozyme activity was observed to be at its greatest in summer and at its lowest in 

winter. Consequently, an endogenous rhythm is suspected to be involved in maintaining 

its seasonal pattern. Changes in lysozyme activity were observed following acclimation 

to 15°C, however they were not significant. It maybe that the seasonal cues of 

photoperiod and temperature have to be taken together to elicit a true seasonal response 

for this immune parameter. Bowden et al., (2004) corroborates this idea as they reported 

that serum lysozyme measured in halibut was not significantly affected by either 

temperature or photoperiod however a seasonal influence was observed. It was 

suggested that taken individually photoperiod and temperature are not capable of 

mimicking the seasonal pattern of lysozyme activity and that other unknown factors 

may be involved.
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Following artificial challenge with V. anguillarum, a significant difference in 

survival was observed between fish from the original treatment temperatures (5, 10 and 

18°C). The pattern of survival was the same for the winter and summer challenges. It 

would seem that the higher the original water temperature treatment, the higher the level 

of mortality, regardless of season. Fish held at 18°C exhibited the highest level of 

mortality following challenge with V. anguillarum, whereas fish held at 5°C exhibited 

the lowest levels of mortality. To successfully challenge the fish with V. anguillarum, 

fish from the three treatment temperatures (5, 10 and 18°C) were acclimatized to 15°C. 

It is suspected that the action of acclimating to this new temperature stimulated the 

immune response and this maybe mimicking the “Spring Effect” i.e. the movement 

from the cold water temperatures of winter to the rapidly increasing temperatures of 

spring. This is corroborated by the seasonal effect observed in the Base Level Trial 

(Chapter 2).

Temperature obviously plays an important role in the seasonal effect seen on the 

innate immune response and haematology of rainbow trout. Healthy fish exhibit innate 

immune responses depending directly on environmental temperature (Kollner et al., 

2002). Particularly with the haematological parameters, there appears to be a strong 

correlation between increasing temperature and increasing blood cell counts. To 

examine the effect of gradually increasing temperature on immune response a third trial 

was set up. Fish were to be held at 5°C and every week the water temperature was 

increased by 2°C. At the time of setting up the experiment, only very small tanks were 

available such that it was only possible to sample one fish per tank per week. 

Consequently it was necessary to set up 15 tanks. Unfortunately, the combination of the 

size of the tanks, the fact that they were not opaque and the size of the available fish led 

to fighting within the tanks, and high levels of mortalities occurred. Consequently, the
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trial was terminated in the sixth week. This made the data unusable as it would not have 

been accurate to state that any observed change in immune response was due to the 

increase in tank temperature and not the effect of stress. It is hoped that this trial will be 

repeated under more suitable conditions.

The results of the temperature trials carried out in Trials A and B, suggest that 

generally the immune response of rainbow trout is lower under cold water temperatures. 

This corroborates work by Tort et a l (2004), who concluded that for sea bream the 

lower the temperature, the lower the immune response.

Previous studies suggest that in non-mammalian species, temperature is an 

important modulator of pineal function. This is corroborated by the data of Trial A and 

the earlier work of Porter, et al. (2001), where the higher the water temperature the 

greater the level of measured plasma melatonin in fish. It is surprising that although 

melatonin production was affected by photoperiod this was not significant. Typically 

melatonin production is significantly greater during the dark phase (Porter et al., 2001). 

A possible explanation for the lower than expected plasma melatonin levels maybe due 

to the fact that it was not possible to fit a lamp to the underside of the tanks and 

consequently tanks were illuminated through the observation hatch using overhead 

lighting. As a result this limited the light from illuminating the whole tank area, and it 

was restricted to the area directly below the observation hatch. Therefore, although a 

difference was observed between light and dark plasma melatonin, it is not significant 

as would have normally be expected. This effect on plasma melatonin was not known 

until after the experiments were completed. Unfortunately, there was not sufficient fish 

available to measure plasma melatonin levels during the acclimation experiment.
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Plasma melatonin production also varied with season, this influence was almost 

significant (P=0.062). A study carried out by Porter et a l (2001), found that plasma 

melatonin increased with increasing temperature. However, in Trial A, a seasonal 

influence on plasma melatonin was observed, even though photoperiod and temperature 

were controlled. This may be a result of an as yet unknown endogenous rhythm 

involved in melatonin production.

3.5 Conclusion

The results of these studies investigating the effect of water temperature, suggest 

that temperature is the principle cue governing the seasonal effect seen with some of the 

immune parameters measured in rainbow trout. The exceptions are macrophage 

respiratory burst activity which may be governed by an as yet unknown endogenous 

rhythm and lysozyme activity which may require the presence of both photoperiod and 

temperature to induce a seasonal response.
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4.1 Introduction

In Chapter 2, it was observed that over a twelve month period the innate immune 

system of rainbow trout exhibited a seasonal pattern in its response. Generally, the 

greatest activity was observed during the summer and it was suppressed in winter. 

Seasonality consists of two major principle cues, photoperiod and temperature. In this 

chapter the effect of photoperiod on the innate immune response is examined. Few 

studies have been carried out examining the effect of photoperiod on the immune 

response of fish, consequently there is little work available to compare with the results 

of the trials carried out in this chapter. The effect of photoperiod on the immune 

response of other vertebrates is described here as an introduction to the topic.

Photoperiodic information is used to initiate or terminate specific seasonal 

physiological processes, including reproduction, to maintain a positive energy balance. 

The annual cycle of changing photoperiod is a very accurate temporal cue for 

determining the time of year (Nelson and Demas, 1997). Indeed, photoperiod has been 

defined as being the light fraction of the 24 h day and its seasonal changes (Hoffmann, 

1981a and b). Photoperiodism was first proposed by the botanists Gamer and Allard in 

1920 to describe the response of plants to the length of day and night. Today, 

photoperiod is defined as the ability to determine day length in both plants and animals. 

Photoperiodism has evolved in virtually all taxa of plants and animals that experience 

seasonal changes in their habitats (Nelson et al., 2002)

It has already been well established that photoperiod influences growth, feeding, 

smoltification and reproduction in salmonids (Taylor et al., 2002; Beriill et al., 2003). It 

is therefore feasible that photoperiod also influences immune function in fish.
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Annual cycles are seen to occur for a host of different functions in 

poikilothermic vertebrates. Though these have been studied much less intensively 

compared with birds or mammals, photoperiodic effects have been reported in a number 

of species of fish, Reptilia and some Amphibia (Licht, 1969; Delgado et al., 1987). It 

has been stated that it is very difficult to make generalisations on the photoperiodic 

mechanism of poikilotherms (Hoffmann, 1981a). This is because temperature also has a 

major influence on annual cycles, replacing or often superseding the effect of 

photoperiod. The same photoperiod may have drastically different effects, depending 

not only on the phase of the annual cycle but also on ambient temperature (Hoffmann, 

1981a).

At a given latitude, the annual alteration in daylength is extremely predictable. If 

the internal neural event tracking daylength is equally predictable, and bears a constant 

relation to the duration of daylength (or night-time) then the animal will have a logical 

and reliable reference system representing daylength (Herbert, 1989). Using such a 

system, events such as growth, feeding, parr-smolt transformation, reproduction and 

immune function would all be cued in response to changes in seasonality.

4.1.1 The Effect of Photoperiod on Immune Response

4.1.1.1 Mammalian Immunity

One of the earlier studies carried out investigating the effect of photoperiod on 

immune response was performed in dogs (Shifrine et al., 1982b). The study concluded 

that dogs maintained under a 12:12LD light regime had a significantly lowered 

immunity relative to dogs with a natural photoperiod (Shifrine et al., 1982b). More 

recent photoperiod studies have also reported slight photoperiodic induced changes in
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the splenic masses of rats, deer mice and Syrian hamsters (Blom et al., 1994). 

Furthermore total lymphocyte and macrophage counts were significantly elevated in 

hamsters exposed to short day lengths compared with their long day counterparts (Blom 

etal., 1994).

The majority of studies looking at the effect of photoperiod on the immune 

response have used mice. One such study was carried out by Hayashi and Kikuchi 

(1982), in which the effects of photoperiod on humoral immune responses against sheep 

red blood cells (SRBC), a thymus dependent antigen, were investigated. It was observed 

that the maximal immune response against SRBC is seen in the early light part of the 

day.

Examples of work examining the effect of photoperiod on immune response in 

mammals are presented in Table 4.1.

Table 4.1 Laboratory based studies investigating the effect of photoperiod on various immune 
parameters (adapted from (Nelson et al., 1995).

Immunological Parameters 
Studied

Species Enhanced Under Short Day 
Photoperiod

Splenic Mass

Norway rats Yes

Deer mice Yes

Golden hamsters Yes

Thymic Mass Norway rats Yes

Lymphocyte Count Deer mice Yes

Neutrophil Count Deer mice Yes

White Blood Cell Count
Deer mice Yes

Common Voles Yes

Antibody Levels Deer mice Yes

Wound Healing Rates Deer mice Yes
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4.1.1.2 Avian Immunity

The majority of literature relating to the effects of photoperiodic effects on avian 

immunity is indirect, reflected by changes in growth, performance and reproductive 

changes (Moore and Siopes, 2000). However, it has been reported that immature 

cockerels reared under constant light compared to 12:12LD daily cycles, exhibit a 

suppressed cellular immunity and secondary antibody response (Moore and Siopes, 

2000; Kirby and Froman, 1991).

The practice of exposing broiler chickens to continuous light has been used by 

the poultry industry for many years. A study was set up to determine if a light:dark 

cycle would improve immune function in these birds. It was subsequently reported that 

birds reared under controlled lightrdark cycles exhibited milder reactions to live 

respiratory vaccines, higher ELISA titres from vaccines, fewer secondary bacterial 

infections, lower mortality rate and lower airsacculitis condemnations (Davis and 

Siopes, 1996).

4.1.1.3 Teleost Immunity

Photoperiod and the teleost immune response have received very little attention. 

Moreover, it would appear that there are only two papers specifically dealing with this 

topic, both published in the past two years (Melingen et al., 2002; and Leonardi and 

Klempau, 2003). Furthermore, the papers focused primarily on leucocyte counts. 

Leonardi and Klempau (2003) reported that constant light adversely affects the T-cell 

immune responses of rainbow trout. Melingen et al. (2002), reported lower B-cell 

populations following the onset of a winter photoperiod. Both papers provided evidence 

that photoperiod affects the immune system of teleost fish. Olsen et al. (1993), whilst 

examining gill Na+, K, -ATPase activity, plasma cortisol level, and non-specific
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immune responses in Atlantic salmon during parr-smolt transformation, hypothesised 

that cortisol levels during the smolting period of Atlantic salmon are probably 

controlled more by photoperiod than by endogenous rhythms.

4.1.2 The Effect of Photoperiod on Fish Life History

Although little had been published on the effect of photoperiod on the immune 

response of fish, much work has been carried out investigating the effect of photoperiod 

on several aspects of fish life history. It has even been hypothesised that virtually all 

biochemical processes, physiological functions and behaviours are rhythmic in nature 

and are synchronised by the 24 h light/dark cycle (Boeuf and Falcon, 2001).

4.1.2.1 Growth and Survival

Photoperiod has been documented to have a significant effect on both growth 

and survival of teleost fish. Available data indicates that fish growth follows a seasonal 

pattern which changes as a function of variations in daylength (Boeuf and Falcon, 

2001). For example, Atlantic halibut exhibit improved growth when exposed to 

continuous light, but only when the natural daylength is less than 18 h (Simensen et al., 

2000).

Giri et a l, (2002) reported reduced survival in larval Wallago attu when reared 

in permanent darkness. The same study reported that for highest survival and maximum 

biomass production, 24 h red light exposure was most effective. In 2002, Hemre et al. 

reported that juvenile Atlantic salmon had reduced growth when maintained under a 

typical winter photoperiod regime compared to fish maintained under constant light. It 

has been proposed that reduced activity and anabolic effects of photoperiod contribute
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in explaining the increased growth and growth efficiency in fish subjected to continuous 

light (Jonassen et a l, 2000).

The majority of studies report that photoperiod manipulation can be used to 

enhance growth and survival. However there are some exceptions. No significant 

growth of larval W. attu was observed when reared under different light and 

photoperiodic regimes when fed a live diet (Giri et al., 2002).

4.1.2.2 Parr-Smolt T ransformation

Photoperiod can be used to delay smoltification when Atlantic salmon are 

exposed to continuous light in autumn and winter (Bjomsson et al., 1995). This is in 

accordance with the hypothesis that the endogenous circannual cycle may ‘free-run’ 

under periods of continuous light, causing a progressively longer phase delay (Saunders 

et al, 1989; Bjomsson et a l, 1995).

4.1.2.3 Sexual Maturation

It is well known that photoperiod affects sexual maturation. Photoperiod 

alterations are frequently made to manipulate reproductive cycles in the aquaculture 

industry. For example, hatcheries control photoperiod to manipulate maturation and 

spawning time to produce all-year-round supplies of eggs and fry. A second example 

are ‘grow-out’ farms where programs of environmental control are set up that can 

prevent or delay maturation until after fish harvest, thus avoiding the deterioration in 

flesh quality which often accompanies maturation. Consequently farms can produce the 

year-round continuity of supply of product of consistent size and quality, which is 

demanded by the retail markets (Bromage et al, 2001).
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4.1.2.4 Fish Behaviour

Photoperiod has been documented to influence a selection of fish behaviours 

including feeding activity, aggression and locomotor activity. The African catfish when 

maintained under constant light had an increase of 27.1% in bite marks on the body 

when compared to fish on a 12:12LD photoperiod (Almazan-Rueda et al, 2001).

Under a long day photoperiod, rainbow trout have been observed to have a daily 

demand-feeding profile that is always confined to the light phase, and is chiefly 

composed of two main episodes, directly after lights on (light-elicited) and in 

anticipation of lights off (endogenous) (Sanchez-Vazquez andTabata, 1998).

In contrast to this documented feeding regime, the diel locomotor activity profile 

of rainbow trout has been observed to vary remarkably. A diurnal activity was observed 

at the tank bottom while a clearly nocturnal pattern was recorded at the water surface 

(Sanchez-Vazquez andTabata, 1998).

4.1.3 Aims

The primary aim of this study was to determine if different photoperiod regimes 

affect the innate immune system of rainbow trout. Secondly, to determine if there was 

any seasonal effect in this response, the trial was earned out in winter (December- 

February) and then repeated in summer (June-August).
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4.2 Materials and Methods

Three different photoperiodic regimes were used in the trial presented in this 

chapter, namely constant light (24:00 LD), long day (16:8LD) and short day (8:16LD). 

In addition to measuring the effect of photoperiod, the effect of seasonality was also 

examined in the same study. To accomplish this, a three month trial was carried out in 

winter (December 2001-February 2002), and this was then repeated in summer (June- 

August 2002). The average temperature during the winter trial was 2.5°C and 13.8°C 

during the summer trial. Fish from the same Niall Bromage Freshwater Research 

Facility (NBFRF) stock were used in both trials.

4.2.1 Trial Set-Up

The trials were carried out at the NBFRF and fish maintenance was as described 

in Section 2.21. Fish were held in 12 tanks (1 m 0  x 1 m) with 30 fish randomly 

allocated per tank with three tanks per photoperiodic treatment. Although the fish used 

in the trial were mixed sex, only immature fish were sampled. This was to prevent 

precocious males with a compromised immune system from potentially skewing the 

results. Fish were maintained under ambient temperature during each three month trial. 

Fish were acclimated to their respective photoperiods for one month prior to 

commencing the trial. The lengths and weights of all fish sampled were measured. Fish 

were sampled at random between 10 am and 12 pm each month. All tanks were in light 

phase at that time.
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4.2.2 Measurement of Innate Immunity and Haematological Parameters

Sampling of fish took place every month with three sample points per season 

(winter/summer). Four fish were sampled, per tank at each time point with a total of 

twelve fish sampled per treatment. As per the description in Section 2.2.2 fish lengths 

and weights were measured when blood was taken. Both fish and blood were 

transported back to the laboratory on ice.

A variety of innate parameters were measured, using the methods described in 

Sections 2.2.3 and 3.2.3, i.e. respiratory burst activity of head kidney macrophages, 

total white and red blood cell counts, haematocrit and plasma lysozyme activity.

In addition, fish were challenged at the Aquatic Research Facility at the Institute 

of Aquaculture (Section 3.2.4) with Vibrio anguillarum to determine if photoperiod 

affects survival to an experimental challenge with the bacterium (30 fish per treatment). 

The challenge took place in February of the winter trial and August of the summer trial. 

The fish challenged in winter were significantly smaller than those of summer, 

consequently bacterial dose was larger for the summer fish (winter 5*106 CFU ml 

summer 7*106 CFU m l1). Pre-challenges were used to determine the appropriate dose..

4.2.3 Measurement of Melatonin

Plasma melatonin levels of the experiment fish were measured during the 

February of the winter trial and August of the summer trial. This sampling took place on 

a different day to the normal sampling. Samples were taken at midday and two hours 

after darkness using heparinised syringes. Blood samples were transported to the 

laboratory on ice, from which plasma samples were collected and frozen at —70 C as
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soon as possible until analysed using a melatonin radio immunoassay (RIA) as 

described in Section 2.2.4.

4.2.4 Statistical Analysis

Before analysis, the data was tested for normality and homogeneity of variance 

using fits and residuals. All data was found to be normal and homogenous without 

transformation. Data was analysed using an ANOVA General Linear Model (Minitab). 

Where significant differences (P<0.05) were observed Post-hoc Tukey tests were 

carried out.

Statistical analysis of the survival to challenge data was performed using the 

Kaplan Meier survival test (SPSS).
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4.3 Results

Fish used in both the summer and winter phases of this trial were from the same 

original NBFRF stock. Fish weight and length were significantly different between the 

two sampling periods of winter and summer. Fish from the winter trial (at trial start 

average of 84.09 g; SD = 4.37; SE = 1.26) were significantly smaller and lighter 

(P=0.000) compared to fish from the summer trial (at trial start average of 158.54 g; SD 

= 28.9; SE = 8.344).

4.3.1 The Effect of Photoperiod on Immune and Haematological Parameters

4.3.1.1 Total White Blood Cell Counts

Photoperiod does not appear to affect fish white blood cell counts (P=0.199) 

(Fig. 4.1). The measured white blood cell counts of fish were significantly greater in 

summer than in winter, irrespective of photoperiodic treatment (P=0.000) There was no 

significant difference in the white blood cell counts between the three winter months 

(P= 1.000) or between the three summer months (P=1.000). Although the photoperiodic 

regime did not significantly affect white blood cell counts (P=0.199), there was a 

significant effect due to season and photoperiod (P=0.023). Tukey Pairwise comparison 

tests were used to analyse this further using a series of pair wise comparisons (Table 

4.2). The results of these pairwise comparisons corroborate the results of the earlier 

statistical analysis as photoperiodic treatments within a particular season do not have 

any significant effect on white blood cell counts. However, between the seasons there is 

a difference. Significant differences in white blood cell count levels are a direct result of 

season and not photoperiod.
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Fig. 4.1 The effect of three different regimes (18:6 LD, 6:18 LD and 24:00 LD) and season on total 
white blood cell counts (n=36/treatm ent; mean ± SE), Subscripts denote statistical significance, ‘a ’ 
is significantly lower than  ‘b ’ (P<0.05).

Table 4.2 Results of Tukey tests examining pairwise comparisons between the different photoperiod 
regimes within and between season for total white blood cell counts (n=36/treatment)
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Constant
P=0.000 P=0.000 P=0.000 P>0.05 X

Sum m er
/

Short Day
P=0.000 P=0.000 P=0.000 P>0.05 P>0.05 X

4.3.1.2 Total Red Blood Cell Counts

As with white blood cell counts no significant effect of photoperiod was 

observed on measured total red blood cell counts (P=0.435). Total red blood cell counts
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(Fig. 4.2) were significantly affected by season (P=0.000) as red blood cell counts were 

significantly higher in winter than in summer. Tukey Pairwise comparison tests were 

used to determine if there were any differences between the sample months of each trial 

season. These confirmed that although significant differences were observed between 

seasons (P<0.05) no significant differences were observed within a season (P>0.05).

12
■ ■  Long Day 
I • I Constant 

Short Day

Winter Summer

Season

Fig. 4.2 The effect of three different photoperiodic regimes (18:6 LD, 6:18 LD and 24:00 LD) and 
season on total red blood cell counts (n=36/treatment; mean ± SE). Subscripts denote statistical 
significance, ‘a ’ is significantly lower than ‘b ’ (P<0.05).
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4.3.1.3 Haematocrit Values

Haematocrit values (Fig. 4.3) were significantly affected by photoperiod 

(P=0.001). To determine where this significant difference occurred Tukey Pairwise 

comparisons were carried out. It was found that haematocrit values taken from fish held 

under a short day photoperiod during the winter were significantly greater (P<0.05) than 

those of fish held under either a long day or constant light. No such difference was 

observed during the summer trial. Furthermore, the observed haematocrit of fish in 

winter held under the short day photoperiod was significantly greater than that of fish 

held under any of the three treatments in summer (P>0.05).

At each sampling point during the winter trial, fish held under the short day 

photoperiod consistently exhibited a significantly increased haematocrit, compared to 

the other fish held under the photoperiodic regimes of long day and constant light (Fig.

4.4).

During the summer season (Fig. 4.5) haematocrit values during June for fish 

held under the short day photoperiod were significantly lower than that of July and 

August, as confirmed using a Tukey test. The haematocrit of fish held under the short 

day photoperiod in June was found to be significantly lower than that of all other 

photoperiodic treatments irrespective of sampling point or photoperiodic treatment 

during the summer trial. However, fish held under a short day photoperiod did not 

exhibit the lowest haematocrit levels during the July or August sampling points (Fig.

4.5).
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Fig. 4.3 The effect of photoperiod (18:6 LD, 6:18 LD and 24:00 LD) and season on haem atocrit 
(n=36/treatment; mean ± SE). Subscripts denote statistical significance, ‘a ’ is significantly lower 
than ‘b ’ (P<0.05).
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Fig. 4.4 H aem atocrit values for each of the winter sample months for the three photoperiodic 
treatments (18:6 LD, 6:18 LD and 24:00 LD) (n=12/treatment; mean ± SE). Subscripts denote 
statistical significance, ‘a ’ is significantly lower than ‘b ’ (P<0.05). Treatm ents; 18:6 LD, 6:18 LD, 
24:00 LD.
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Fig. 4.5 Haematocrit values for each of the summer sample months for the three photoperiodic 
treatments (18:6 LD, 6:18 LD and 24:00 LD) (n=12/treatment; mean ± SE). Subscripts denote 
statistical significance, ‘a’ is significantly lower than ‘b’ (P<0.05). Treatments; 18:6 LD, 6:18 LD, 
24:00 LD.
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4.3.1.4 Plasma Lysozyme Activity

Photoperiod was not observed to significantly affect lysozyme activity of fish 

during either the summer or winter trials (P=0.770).

A significant seasonal difference was recorded between fish from the summer 

and winter phases. Fish from the summer trial exhibited a significantly higher level of 

lysozyme activity compared to fish from the winter trial (P=0.000) (Fig. 4.6).
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Fig. 4.6 Comparison between seasons for lysozyme activity of fish held under the three different 
photoperiod treatments (18:6 LD, 6:18 LD and 24:00 LD) (n=36/treatment; mean ± SE). Subscripts 
denote statistical significance, ‘a’ is significantly lower than ‘b’ (P<0.05).
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4.3.1.5 Respiratory Burst Activity

Photoperiod did not significantly affect the respiratory burst activity of head 

kidney macrophages (Fig. 4.7) (P=0.870). However, respiratory burst activity was 

significantly affected by season (P=0.000). Respiratory burst activity was significantly 

greater in summer compared to winter. There is no significant differences between the 

months sampled within each season (P>0.05).
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Fig. 4.7 Comparison between seasons for respiratory burst activity of fish held under the three 
different photoperiod treatments (18:6 LD, 6:18 LD and 24:00 LD) (n=36/treatment; mean ± SE). 
Subscripts denote statistical significance, ‘a’ is significantly lower than ‘b’ (P<0.05).
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4.3.1.6 Challenge with Vibrio anguiliarum

Fish were artificially challenged at the end of each season with 

V. anguiliarum. Prior to challenge fish were acclimated to 15°C and a 12:12LD 

photoperiod for one week prior to injection.

Winter Trial (Fig. 4.8a)

A significant difference in survival was observed with treatment (P=0.0068). 

Pairwise comparisons determined that fish held under constant light had a significantly 

greater level of survival following challenge compared to fish held under the short day 

photoperiod (P=0.0021). Median survival was day 5 for all treatments.

Summer Trial fFig. 4.8b).

A significant difference in survival was observed with treatment (P=0.0114). 

Pairwise comparisons determined that fish held under a short day photoperiod had a 

significantly greater level of survival following challenge compared to fish held under 

the constant light (P=0.0026). Median survival was day 4 for fish held under the short 

day photoperiod, and day 5 for fish held under both constant light and the long day 

photoperiod.
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4.3.1.7 The Effect of Photoperiod on Melatonin

Plasma melatonin levels were significantly affected by photoperiod treatment 

(P=0.000) and by night and day (P=0.000) (Fig. 4.9). Fish held under the constant light 

regime irrespective of season had significantly lower plasma melatonin levels compared 

to fish from the short and long day photoperiods night time sampling (P=0.000). The 

typical diurnal rhythm of melatonin (i.e. the majority of melatonin is normally produced 

during the night phase, is overridden by the constant light treatment). Consequently fish 

from the constant light treatment exhibited little difference between day and night time 

melatonin production. The fish held on the short day and long day photoperiods 

exhibited a typical diurnal rhythm, with the majority of melatonin production occurring 

during the dark phase. Season was not observed to significantly affect plasma melatonin 

production (P>0.05).
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Fig. 4.9 The effect of photoperiod (18:6 LD, 6:18 LD and 24:00 LD) and time of sampling on plasma 
melatonin levels for fish from the summer and winter trials (n=5; mean ± SE). Subscripts denote 
statistical significance, ‘a’ is significantly lower than ‘b’ (P<0.05).
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4.4 Discussion

Photoperiod manipulation is extremely popular in finfish culture. The increasing 

importance of photoperiod manipulation makes it crucial that potential effects on the 

immune system are investigated. The results of these trials examining the effect of 

photoperiod on innate immune response suggest that photoperiod has little if any effect 

on the immune parameters studied. The haematological parameter, haematocrit, was the 

only parameter studied that was observed to be significantly affected by photoperiod. 

Fish held under a short day photoperiod exhibited a significantly greater haematocrit 

compared to the long day and constant photoperiods during the winter trial.

Few papers have been published, specifically examining the effect of 

photoperiod on immune response. Furthermore, the effect of photoperiod on teleost 

immunity has received little interest. Melingen et al. (2002), examined the effect of 

photoperiod on leucocyte populations in Atlantic salmon 0+ smolt. Variations in 

different leucocyte subpopulations were measured in photo-manipulated out-of-season 

(0+) Atlantic salmon smolt using flow cytometry and specific monoclonal antibodies. 

The 0+ smolts were produced by exposing parr to continuous light (24:00 LD) until 

June followed by a “ winter” photoperiod (12:12 LD) for 6 weeks, and then continuous 

light. It is almost impossible to compare the results of this work with the data presented 

here as the experiment structure was radically different. In the experiments described in 

this chapter once fish were assigned a photoperiod it remained unchanged throughout 

the trial. However, it is important to note that the effect of changing photoperiod from 

continuous to short day did result in changes in leucocyte populations, for example 

neutrophils increased and B-cells decreased (Melingen et al., 2002). This is
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corroborated by Leonardi and Klempau, (2003) who examined the effect of photoperiod 

on the immune system of juvenile rainbow trout in the Southern Hemisphere. Their 

work corroborates the findings of Melingen et a l (2002), in that a significant effect of 

photoperiod on immune response was observed, in particular, changes in leucocyte 

populations. It was recorded that constant light adversely affects the T cell immune 

responses of rainbow trout. If the trials were to be repeated, assays measuring T-cell 

responses would certainly need to be carried out. Furthermore, it is unfortunate that 

immune parameters were not measured before acclimating the fish to their respective 

photoperiods. It is therefore impossible to know if changes in immune response took 

place as a direct result of changing the photoperiodic regime. If the experiment was to 

be repeated this would certainly take place.

White blood cell counts have been shown to be affected by photoperiod in an 

avian study carried out by Moore and Siopes (2000). They observed that in Japanese 

Quail, constant light suppressed white blood cell counts compared to birds held under a 

long day photoperiod. This does not corroborate the results of this trial as there was no 

significant difference found between the photoperiod treatments and total white blood 

cell counts.

Unfortunately, a literature search found no previous studies examining the effect 

of photoperiod on respiratory burst or lysozyme activity. In this study photoperiod was 

not found to significantly affect either respiratory burst or lysozyme activity.

The results of the challenge with V. anguiliarum are interesting as the results for 

each season are contrary to each other. During the winter trial, fish held under constant 

light photoperiod exhibited the greatest level of survival whereas during the summer 

trial, fish held under short day exhibited the greatest level of survival. The method of
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challenge required fish to be moved from their original photoperiodic treatments to a 

12:12 LD photoperiod. Challenge was carried out one week after the fish were moved to 

their new photoperiod regimes. This could therefore be the reason for the observed 

photoperiod effect, particularly as challenge took place relatively quickly after starting 

the new photoperiod regimes. Sprague* (pers. comm., 2004), reported that cortisol 

levels are significantly increased when changing to a constant light photoperiod from a 

natural situation. This increase in cortisol may have affected the immune system (Slater 

and Shreck, 1993; Slater et al., 1995; Hassig et al., 1996), and consequently caused the 

observed significant results in the challenges.

Haematocrit values were also affected by photoperiod, where the correct 

seasonal photoperiod for each trial resulted in the highest percentage of packed cell 

volume. For both trials fish held under a constant light photoperiod exhibited the 

medium level of survival. Unfortunately, again there are no studies available to compare 

this work to. However, the effect of photoperiod on general survival has been studied. 

Nile Tilapia fry (but not fingerlings) survival has been shown to be significantly 

affected by photoperiod. Fish fry subjected to long light periods (24 and 18 h) had 

significantly better growth and feed utilization efficiency than those exposed to 

intermediate or short light periods (12 or 6 h) (El-Sayed and Kawanna, 2004). 

Furthermore, the results this study indicated that the response of Nile tilapia to 

photoperiod cycles depends on fish developmental stage. Tilapia fry were more 

sensitive to photoperiod than fingerlings and juveniles (El-Sayed and Kawanna, 2004). 

The suggestion that photoperiod affects survival only in the earliest developmental 

phase (El-Sayed and Kawanna, 2004) may also apply to immune response.

 Sprague, M. (2004). Institute of Aquaculture, University of Stirling
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Photoperiod was observed to significantly affect plasma melatonin levels. Fish 

held under constant light had significantly lower levels of melatonin compared to fish 

during the dark phase periods of both the short and long day photoperiodic regimes. No 

seasonal difference in plasma melatonin levels was recorded for any of the 

photoperiodic treatments investigated. The fact that no seasonal difference was 

observed is surprising as the results of Chapter 3, suggest that temperature does affect 

plasma melatonin, with increasing levels as temperature increases. However, this also 

corroborates the work of Porter et al. (2001), which concluded that temperature does 

affect plasma melatonin levels.

Significant seasonal differences were observed in several of the parameters 

studied. This seasonal difference could be a result of fish age/size as the fish of the 

summer trial were several months older than those of the winter trial and were 

significantly larger. Conversely, the seasonality observed could be due to an unknown 

endogenous rhythm that was not studied during the course of this study. The results of 

Chapter 3, examining the effect of temperature on the innate immune response and 

haematological parameters, indicated that temperature does significantly affect the 

majority of these parameters. It is therefore likely that the significant differences 

observed between the summer and winter trials are a result of temperature.

The results of this trial corroborate those of the ‘Base Level Trial’ in Chapter 2 

for white blood cell counts, haematocrit and lysozyme activity. Respiratory burst 

activity exhibited a clear seasonality effect, more so than during the ‘Base Level Trial’, 

with activity being significantly greater in summer. However, the red blood cell counts 

were contrary to what might have been expected, with levels being greatest in the winter 

compared to the summer. The red blood cell counts of the Base Level Trial showed
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little seasonality effect, although the greatest levels were recorded in the summer month 

of July which had a significantly higher red blood cell counts than all other months. 

These increased levels of red blood cells may be due to the increased metabolism of 

these fish at this time.

The annual cycle of changing photoperiod provides an accurate indicator of time 

of year and if it is utilised as a seasonal cue would allow immunological adjustments to 

be made prior to the deterioration of conditions experienced in winter (Nelson et al, 

1995). Although photoperiod has not been shown to act as a principle seasonal cue for 

the parameters of this study, other teleost studies have observed photoperiodic effects 

on leucocyte populations (Leonardi and Klempau, 2003) and cortisol levels (Leonardi 

and Klempau, 2003; Melingen et al, 2002). Together these results suggest that 

photoperiod may mediate seasonal changes for some aspects of the teleost immune 

system (Blom et al., 1994). The enhancement of immune response is an adaptation that 

has evolved to increase the chances of survival, thereby increasing the chance of 

reproduction. Winter survival may be dependant on an immunological balance between 

photoperiod-mediated enhancement and winter environment immune suppression 

(Blom etal., 1994).

4.5 Conclusion

In conclusion, photoperiod was not found to act as a cue for the innate immune 

parameters of respiratory burst activity, plasma lysozyme activity and total white and 

red blood cell counts. The only parameter that was significantly affected by photoperiod 

was haematocrit and that was only during the winter trial. Photoperiod may act as a cue 

for seasonality for other parameters not studied in these trials. It has already been shown
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to significantly affect the production of cortisol (Olsen et al., 1993). Season was shown 

to affect several of the parameters studied regardless of treatment e.g. total white blood 

cell counts were significantly higher in summer compared to winter. The cue for this 

seasonality effect could be temperature or an as yet unknown endogenous rhythm. 

Several studies have demonstrated continued seasonal variations in immune response 

even when both temperature and photoperiod have been held constant (Leceta and 

Zapata, 1986; Zapata et al., 1983), this suggests that that seasonal variations of the 

immune system may be driven by endogenous rhythms (Zapata et al., 1992).

Sampling took place after a minimum of four weeks acclimation to the treatment 

photoperiods (18:6 LD, 6:18 LD and 24:00 LD). Sampling did not take place either 

prior to, or during this acclimation period, it is possible that a change in photoperiod 

does affect the parameters studied, but only for a very short period of time before a 

natural balance is resumed. If this is the case, this short term effect could have been 

missed as sampling took place only when the fish had been acclimatized to their 

respective treatments. It is suggested that in future trials samples should be taken both 

prior to and during the acclimation period.

During this study, the element of photoperiod examined was the effect of day 

length. However, photoperiod may affect immunity through light intensity and 

wavelength. These were not investigated during the course of the trial. Although 

relatively few studies have investigated the effect of these aspects of photoperiod on 

teleost life history, one study has shown that feeding incidence increases with light 

intensity (Puvanendran and Brown, 2002).
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Chapter 5 Melatonin, Immunity and Seasonality
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5.1 Introduction

5.1.1 Hormones and Seasonality

Seasonality of the immune system has been the principle subject of investigation 

during this thesis. The principle cues of seasonality have been studied in previous 

chapters i.e. temperature (Chapter 3) and photoperiod (Chapter 4) However, how this 

seasonal information is transduced to the brain and integrated to co-ordinate the 

immune system requires further investigation. The mechanisms that synchronise 

immune activity with the appropriate time of year are not yet understood. Furthermore, 

it was observed from the earlier work carried out in this thesis that seasonal 

immunosuppression tends to occur in winter. It may be possible to alleviate this 

seasonal immunosuppression; for example using dietary immunostimulants.

Of particular importance is the maintenance of the synchronicity of the physical 

immunological components with the appropriate time of year. There is now 

considerable evidence that both neural and endocrine factors act to maintain 

homeostasis of the immune system (Nelson et al., 2002). The hormone melatonin 

produced mainly by the pineal gland has been implicated in the mechanism that 

regulates the seasonality of the immune system. “Seasonal variation, affecting the 

structure and function of the ectotherm immune system, is an excellent ‘natural’ model 

of the influence of neuroendocrine rhythms on immunity” (Zapata et al.,, 1996) (Fig. 

5.1, Fig. 5.3).
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CENTRAL NERVOUS SYSTEM

Neurohormones Cytokines
Endorphine 
Prolactin 
Growth Hormone

SPLEEN

IMMUNE RESPONSE

Fig. 5.1 Neuroendocrine immune modulation is bidirectional. In mammals, cytokines released from 
immune activated cells modify neurohormones. The spleen can produce neurohormones in 
response to immune stimulation. The central nervous system produces a variety of 
neurotransmitters and neurohormones that bind to receptors in immune cells and modify their 
activities (Adapted from Roberts, 1995).

5.1.1.1 Cellular and Molecular Biology of Melatonin Synthesis

Melatonin is a product of tryptophan (TRP) metabolism produced by the pineal 

gland (Reiter, 1991) (Fig. 5.2). As pineal melatonin production increases at night, there 

is a parallel rise in blood levels of the hormone. Evidence that the nocturnal surge of 

blood melatonin is a consequence of pineal secretion comes from the fact that both 

pinealectomy and the sympathetic denervation of the gland by bilateral superior cervical 

ganglionectomy prevents the night-time rise in plasma melatonin. Although there are 

other organs that produce melatonin such as the retina, blood concentrations of the 

hormone derive primarily from the pineal gland (Reiter, 1991).
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Fig. 5.2 Melatonin synthesis pathway. Serotonin is formed from trytophan. During the light hours 
of the day, tryptophan is converted in a two-step reaction to serotonin. In darkness (shaded area), 
increased norepinephrine secretion causes an increase in A-acetyltransferase, the first of two 
enzymes that convert serotonin to melatonin. SAM, S-adenosylmethionine; HIOMT, 
hydroxyindole-O-methyltransferase (taken from Nelson et al., 2002)

The characteristic of melatonin that apparently allows for its rapid escape from 

pinealocytes into the blood vascular system is its lipophilicity, which also probably 

helps its rapid entrance into other body fluids. Even though the bulk of the melatonin in
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the blood (—70%) is bound to albumin, there seems to be no impediment in its entrance 

into all body fluids and, indeed its presence has been found in every fluid tested for the 

hormone (Reiter, 1991).

5.1.1.2 Photoperiod as  a Modulator of Pineal Function

Melatonin is synthesised and secreted by the pineal gland in a precise, regulated 

temporal pattern. The best known and probably best-studied biological function of 

melatonin is its provision of annual day length information. Melatonin encoding day 

length (photoperiod) information, appears to be the primary hormone orchestrating the 

seasonal changes in reproductive function observed among many mammals living in 

mid to high latitude habitats (Nelson and Demas, 1997). Low levels of melatonin 

synthesis and secretion occur during the day, but this increases at night to result in 

elevated levels of melatonin in the blood. The levels of melatonin remain high for a 

duration that is directly related to the length of the dark period. Consequently, winter 

and summer photoperiods are reflected in long and short duration melatonin signals 

respectively. Studies have established that the duration of elevated melatonin is the 

essential characteristic which conveys the photoperiodic message (Morgan and Mercer, 

1994). The secretory pattern of melatonin allows individuals to ascertain the time of 

year and thus anticipate predictable seasonal environmental changes (Nelson and 

Demas, 1997). Research into this mechanism in fish is limited, and although it has been 

shown to exist, there is still a lack of understanding into the role of melatonin.

Rainbow trout is one of the few known fish species where an absence of an 

endogenous component regulating melatonin secretion has been reported (Randall et ah, 

1991). Unlike many other fish species studied, melatonin production in rainbow trout 

does not follow a persistent rhythm. Melatonin production in rainbow trout appears to
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be a direct response to darkness (Randall et a l, 1991). It has been suggested that the 

rainbow trout pineal does not contain a circadian oscillator capable of regulating 

melatonin production (Gem and Greenhouse, 1988; Randall et a l, 1991). Increased 

levels of melatonin have been reported in the common carp before lights have been 

switched off (Kezuka et a l, 1988). While cultured pineals of pike do not exhibit an 

increase in melatonin production when exposed to darkness at midday (Falcon et a l, 

1989).

5.1.1.3 Temperature a s  a Modulator of Pineal Function

Unlike mammalian pineal glands which respond primarily to photoperiodic cues 

perceived by the eyes, there is evidence that the pineal complex of many non

mammalian species extracts both thermal and photoperiod information directly from the 

environment. As a consequence, the pineal generates a rhythm of melatonin production 

which reflects the changes in time, duration and amplitude of the complex variations of 

the daily and seasonal photothermal environment (Moyer et a l 1995). There have been 

very few studies reported in which the effect of temperature on melatonin production in 

fish have been investigated. However, one such study carried out by Porter et a l  (2001), 

found that juvenile Atlantic salmon maintained at 12°C showed significantly higher 

levels of dark phase plasma melatonin compared with groups of fish maintained at 4°C. 

Moyer et a l  concluded from his 1997 study, that both light and temperature are 

important modulators of pineal function although the combined effects of these on 

pineal melatonin production is complex and unclear. Obviously, a great deal more study 

is required in this area.

In addition to responding to changes in environmental temperature melatonin 

has been shown to affect the body temperature of animals itself. This corroborates the
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hypothesis that temperature and melatonin are inextricably linked. For example 

experiments where Japanese quail were injected with melatonin resulted in reduced 

locomotor activity in the birds as well as a simultaneous decrease in their body 

temperature (Nakahara et a l, 2003).

5.1.1.4 Neuroendocrine System and Immunity

In recent years evidence has been collected which confirms that the 

neuroendocrine and immune systems communicate and cooperate extensively to form a 

single, complex regulatory network that ensures homeostasis (Weyts et al, 1999). 

Corticosteroids and the sex steroids are thought to play a vital part in this system (Fig.

5.3).

It has been found in humans that physiological levels of estrogen stimulate 

humoral and cell-mediated immune responses, while the male hormone, testosterone, 

does the opposite (Weinstein et a l, 1984). This is corrobated in fish as testosterone in 

Chinook salmon has been shown to have a significant immunosuppressive effect in 

vitro (Slater and Shreck, 1997).

Cortisol is biologically the most active corticosteroid in the circulating blood of 

teleost fish (Esteban et a l, 2004). Cortisol has also been found to have an 

immunosuppressive effect on the fish’s immune system (Slater and Shreck, 1993).
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5.1.2 Melatonin and Immunity

It has already been well established that the central nervous system plays an 

important role in modulating the immune response. Cytokines, neurohormones and 

neurotransmitters are essential factors in this neuro-immuno-communication. The 

neuroendocrine network which modulates immune response is bidirectional as shown in 

Fig. 5.2. Several papers have recently demonstrated that the hormone melatonin exerts 

important immunoregulatory functions in mammals (Pioli et al, 1993; Beskonakli et al,

2000) and birds (Moore et al., 2002; Moore and Siopes, 2002; Moore and Siopes, 

2003). However, little work has been carried out looking at the effect of melatonin on 

the immune response of fish.

Many vertebrates display profound changes in their physiology and behaviour, 

coincidental with their seasonal environment (Morgan and Mercer, 1994). Changes in 

biometeorological conditions signal the endocrine system to respond with an adaptive 

alteration to its physiological status in anticipation of the upcoming seasonal change 

(Pevet, 1984). In addition to the well-documented seasonal cycles of mating and birth 

(Rosa and Bryant, 2003), there are also significant seasonal cycles of illness and death 

among many animal populations (Kevan, 1979). Challenging winter conditions (i.e., 

low ambient temperature and decreased food availability) can directly induce death via 

hypothermia, starvation or shock. Many environmental challenges are recurrent and thus 

predictable. Animals maybe able to enhance their survival and presumably increase 

their fitness, if they could anticipate immunologically challenging conditions in order to 

cope with these seasonal threats to health (Nelson et al., 1995).
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The habitat of most organisms is subject to pronounced seasonal fluctuations. 

Literally all physical environmental factors important to an organism, such as 

temperature, daylength, and rainfall, vary with season. Animals therefore have to be 

able to adapt to these environmental fluctuations, depending upon their latitude (Pevet, 

1984) as seasonal effects usually intensify with increasing latitude (London, 1987).

The precise mechanisms, by which the central nervous system is able to 

perceive, differentiate and ultimately integrate this complex of various stimuli has not 

yet completely been identified. However, melatonin and the pineal gland are thought to 

be greatly implicated in such a mechanism (Pevet, 1984). Consequently, there is 

increasing interest in the possibility that seasonal endocrine rhythms are involved in the 

co-ordination of the immune system of ectothermic vertebrates. However, at present the 

linkage between the environment and the controlling neuroendocrine cascade remains 

unclear (Porter et al., 2000).

5.1.3 Alleviation of Seasonal Immunosuppression

One of the most promising areas of development for strengthening the immune 

defences of fish is the administration of immunostimulants. Knowledge of when to 

administer these immunostimulants is obviously of great importance. Immune 

parameters are not maintained at the same levels throughout the year, instead they 

fluctuate with season. Previous studies indicate that immune parameters tend to be 

suppressed during winter (Zapata, 1992, Slater and Schreck, 1998). This has been 

corroborated by the results of previous chapters in this thesis investigating the effect of 

season (Chapter 2) and temperature (Chapter 3). Therefore it could be beneficial to 

administer immunostimulants just prior to periods of immunosuppression. Furthermore,
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immunosuppression occurs at other times of the fish life history, for example at times of 

spawning, when more energy is put into reproduction instead of maintaining body 

condition and health, or moving fish as part of aquaculture production.

Several methods to alleviate immunosuppression are used in the aquaculture 

industry. It is well known that the immune system in fish can be immunostimulated 

using dietary supplements including p glucans (Engstad et al., 1992; Jorgensen and 

Robertsen, 1995; Couso et a l , 2003), p glucans plus vitamin C (Verlhac et al., 1996) or 

levamisole (Siwicki, 1989).

5.1.3.1 Vaccination

Vaccination is used as a method of educating the fish immune system to a 

specific pathogen. In this study, the vaccination used is against Vibrio anguillarum. A 

commercial vaccine against V. anguillarum as used in this study has been available in 

Europe since the late 1970’s (Lillehaug, 1989). In addition to its role in protecting the 

fish against a specific disease threat, vaccination has also been found to stimulate the 

innate immune system for example respiratory burst activity is generally reported to 

increase following vaccination, with peak activity being observed 30 days post-injection 

(Secombes, 1994).

5.1.3.2 Melatonin Administration

In recent years the role of melatonin as a potential immunostimulant has been 

investigated in mammals and birds. Melatonin has been shown to positively enhance 

both humoral and cell mediated immunity (Champney et al., 1997; Akbulut et al., 2001, 

Brennan et al., 2002; Moore and Siopes, 2002; Moore and Siopes, 2003). For example it 

has been shown that melatonin activates T helper cells in mice by means of binding
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directly to melatonin receptors on both Thl and Th2 cells (Currier et a l, 2000). 

Administration of melatonin during a pineal inactive periods such as daytime was found 

to enhance various aspects of immune function (Nelson and Drazen, 2000). In addition, 

degenerated immune function caused by retrovirus infection can also be restored by 

melatonin supplementation (Zhang et a l, 1999). Age related immunosuppression has 

been shown to be partially restored following administration of melatonin in rodents. It 

is therefore thought that administration of melatonin may augment the depressed 

humoral immune responses seen in elderly patients (Tian et a l, 2003; Akbulut et al,

2001). The studies use a variety of methods to administer melatonin including injection, 

dissolved in drinking water and implantation of slow release capsules.

5.1.4 Aims

In the present chapter a variety of immune (both innate and adaptive) and 

haematological parameters were measured over a twelve month period to ascertain if 

seasonality influences their levels and to determine when the immune system is at its 

weakest and therefore more susceptible to disease. The information collected from this 

trial will allow administration of immunostimulants to be timed more effectively.

The trial also aimed to determine is melatonin could be used as an 

immunostimulant. Fish were also vaccinated against V. anguillarum firstly to 

investigate the effect of season on the adaptive immune response, and secondly in 

conjunction with administration of melatonin to determine if vaccine efficacy is 

enhanced.
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5.2 Materials and Methods

5.2.1 Trial Set-up

A 12-month trial was earned out at the Niall Bromage Freshwater Research 

Facility (NBFRF) using pre-yearling (hatched June 2001), mixed sex, rainbow trout all 

originating from the University of Stirling’s freshwater research facility. First sampling 

took place in January 2002. Average weight of fish at the start of the trial was 82.07 g 

(SD = 12.89; SE = 0.911). At the start of the trial each tank contained 500 fish.

The fish were initially maintained in four replicate, round fibreglass tanks 

(1 m 0  x 0.70 m water depth,) at the University of Stirling’s freshwater research facility 

at the NBFRF. During May the fish were moved to larger tanks to prevent 

overcrowding (2 m 0  x 1 m). The tanks were set up in a flow through system supplied 

by a reservoir situated 1 km from the facility. The water was supplied to the tanks at a 

rate of approximately 2 L per second at ambient seasonal temperature. Light was 

supplied by two 60-watt pearl, tungsten filament light bulbs housed within waterproof 

lamps providing an intensity of 17-19 lux at the water surface. The photoperiods were 

controlled by 24 h digital electronic time switches, which were set to imitate natural 

photoperiod.
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5.2.1.1 Treatments

The treatments were carried out in duplicate. Each tank contained four treatment 

groups within it. The fish were fin clipped to allow easy identification of the different 

groups. A quarter of the fish were vaccinated against V. anguillarum, a quarter were 

implanted intra-muscularly with a slow release melatonin implant, a quarter of the fish 

were both vaccinated and had a melatonin implant and the remaining quarter of the fish 

were untreated (Fig. 5.4). Vaccination, melatonin implantation and fin clipping took 

place on the same day in early December 2001. This took place at the same time, whilst 

fish were under anaesthetic (1:20,000 concentration of 2-phenoxyethanol). Fish were 

placed in aerated water to recover and full recovery was usually seen within five 

minutes. Five mortalities were recorded the day following this procedure, no further 

mortalities were recorded.

FinTreatment

IntactTreatment 1 Untreated

No
Adipose

Melatonin
implantedTreatment 2

, No right 
Treatment 3 Vaccinated peivic

Vaccinated
No pelvicTreatment 4

implanted

Fig. 5.4 Treatment groups within any one tank
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5.2.1.2 Vaccination

Fish were vaccinated (0.1 ml/fish) intraperitoneally against V. anguillarum, with 

a commercial vibriosis vaccine, provided by Schering Plough Aquaculture.

5.2.2 Melatonin Implantation

Melatonin implants (18 mg, Regulin, Schering Pty. Ltd) were used in this trial. 

The implants permanently elevated plasma melatonin in excess of night-time 

physiological rhythms with the aim of ‘masking’ the natural rhythm in circulating 

melatonin levels (Porter, 1996). Regulin implants contain 18mg of melatonin and were 

coated in a polymer that allowed a slow and constant release of the hormone.

An implanter (Schering Pty. Ltd) was used to administer the implants 

intramuscularly 1 cm below the dorsal fin. Previous studies report that the level of 

melatonin released is dependent on the body weight of the fish (Porter, 1996). In 

addition, there is no significant difference between day and night melatonin levels of 

implanted fish, although night time levels are generally slightly higher (Porter, 1996).

5.2.2.1 Sampling

The duration of the trial was twelve months. Once fish were acclimated for four 

weeks prior to first sampling took place. Fish blood was sampled for antibody titre and 

lysozyme activity every month during the trial period. Macrophage respiratory burst 

activity, phagocytic activity, total blood counts and haematocrit were measured every 

alternate month. Weight and length of fish were measured each month. Methods used to 

measure these parameters are described in Sections 2.2.2, 2.2.3, 3.2.3, 3.2.4. and 5.3 

Forty fish were sampled at each sampling (10/treatment).
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5.3 Measurement of Innate Immune Parameters

5.3.1 Phagocytosis Activity of Head Kidney Macrophages

Microscope slides were dipped in 100% ethanol. Two circles were drawn on 

each slide using a PAP pen (AGAR Scientific) (one slide per fish). 

One hundred [i\ of the macrophage suspension (Section 2.2.3.4) was placed within both 

circles on the slide. The slides are then left for 1 h at 21°C to allow the cells to adhere to 

the glass. Following incubation, the slides were gently washed with L-15 using a sterile 

Pasteur pipette. A suspension of bakers’ yeast was prepared in L-15 at a concentration 

of 5 mg m l'1. To one circle of cells was added 100 /d of this suspension was added, 

while to the second well only L I5 medium was added. Phagocytosis was allowed to 

take place for lh, after which time the slides were washed with L-15. The slides were 

dipped in 70% methanol to fix the cells and then stained using a Quick Stain Kit 

(Raymond Lamb Ltd) and air dried.

The slides were mounted using Pertex-mounting medium. The cells were 

examined under oil immersion xlOOO magnification and the number of yeast engulfed 

by 100 macrophages determined where possible. Fig. 5.5 illustrates the appearances of 

macrophages engulfing yeast through phagocytosis. This information was used to 

calculate Phagocytic Ratio (PR) (Equ. 5.1) and the Phagocytic Index (PI) (Equ. 5.2)

Equ. 5.1 Phagocytic Ratio

PR = No. of macrophages with one or more ingested yeast cells
100

Equ. 5.2 Phagocytic Index

PI = No. of ingested veast cells in 100 macrophages
100

Chapter 5: Melatonin, Immunity and Seasonality 147



5 pm

Macrophage Containing 
3 Yeast Cells

Phagocytosed Yeast Cell

'Empty" Macrophage

Fig. 5.5 Measuring phagocytic activity of head kidney macrophages using yeast. Field of view under 
oil immersion.

5.4 Measurement of Adaptive Immune Parameters

The specific antibodies produced in response to vaccination against V. 

anguillarum were measured at various time points after vaccination and the level of 

protection was determined using an experimental challenge with the bacterium.

5.4.1 Measurement of Specific Antibody Titres Using an Indirect Enzyme Linked 

Immunosorbent Assay (ELISA)

5.4.1.1 Antigen Preparation

Cultures of V. anguillarum (Serotype I) obtained from Schering Plough 

Aquaculture were grown in tryptone soya broth + 2% NaCl (TSB+NaCl) for 24 h at 

22°C prior to use. The following day bacteria were collected by centrifugation at 3000 

ipm, for 30 min at 4°C. The broth was then decanted and the remaining bacterial pellet
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resuspended in sterile PBS. The bacteria were washed twice with sterile PBS by 

centrifuging as above. After washing the remaining pellet was resuspended in 2 ml PBS. 

The optical density of the bacterial suspension at 610 nm was determined, and its 

concentration adjusted to 1 x 108 CFU ml'1 in sterile PBS using a standard curve of 

CFU vs OD 610 (Appendix B). The bacterial suspension was then heat killed by 

incubating in a water bath at 60°C for 60 min.

5.4.1.2 ELISA Protocol

• Day one

A 0.05% (weight/volume) solution of poly-L-lysine in carbonate-bicarbonate 

buffer (coating buffer) was freshly prepared. Fifty jul well"1 of this was aliquoted into 

the ELISA plates and left for 1 h at 21 °C. The plates were washed three times with low 

salt wash (LSW) buffer (Appendix A). One hundred jttl of the heat-killed bacteria were 

aliquoted into each well. The plates were covered and stored at 4°C overnight.

• Day two

Gluteraldehyde in PBS (0.05% v/v) was added to the bacterial suspension at 50 

fil well"1. The plates were covered and left to incubate for 1 h at 21 °C for 

20 min. Plates were then washed three times with LSW.

To block non-specific binding sites, plates were post-coated with a 1% bovine 

serum albumin (BSA) solution. They were covered and left to incubate for 2h at 21 C, 

and then washed three times with LSW.

Plasma samples were diluted 1/5 in PBS and added to the first well in each row. 

One sample per row. Two fold dilutions were then made along the row up to and 

including column 11. Plates were then covered and incubated overnight at 4 C. Positive 
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control wells consisted of blood plasma taken from fish that survived challenge with V. 

anguillarum. Negative control wells consisted of blood plasma taken from fish that had 

never been exposed to V. anguillarum. PBS was used to measure background levels on 

the plate.

• Day three

Plates were washed five times with high salt wash buffer (HSW) (Appendix A). 

The fifth addition of HSW was left in the plate for five min before adding 100 jxl of neat 

anti-trout monoclonal antibody (supernatant) (4C10, Appendix B) was aliquoted into all 

wells. Plates were covered and incubated for lh at room temperature. Again plates were 

washed five times with high salt wash buffer (HSW), which was left for 5 min on the 

last wash.

Anti-mouse IgG horse radish peroxidase (HRP) conjugate (Diagnostics 

Scotland) was diluted 1/1000 in conjugate buffer (Appendix A). One hundred /x 1 w ell1 

of this solution was aliquoted into all of the wells. Plates were covered and incubated 

for 1 h at 20°C temperature. Again plates were washed five times with high salt wash 

buffer (HSW) to remove any unbound conjugate and incubated for 5 min on the last 

wash.

Substrate buffer (Appendix A) was added to the plates at 100/xl well . Plates 

were incubated at 21°C for 10 min. Positive results were indicated by a blue colour. The 

reaction was stopped by adding 50 (JlI well *of 2M ^ S O ^  where upon the colour 

changed from blue to yellow. The optical density was read at 450 nm using an ELISA 

plate reader.
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5.4.2 Statistical Analysis

Before analysis data was tested for normality and homogeneity of variance using 

fits and residuals. All data was found to be normal and homogenous without 

transformation. Data was analysed using an ANOVA General Linear Model (Minitab). 

The Post-hoc Tukey test was used to carry out Pairwise comparisons (Minitab). 

Correlation statistics were performed using Pearson’s Correlation Coefficient (Minitab). 

Statistical analysis of the survival to artificial challenge was carried out using the 

Kaplan Meier survival test statistic (SPSS).
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5.5 Results

The profile for temperature at the NBFRF over the sampling period (January 

2000-01) has been added to each of the following graphs. This is because the results of 

the previous two chapters suggest that temperature is the primary environmental cue 

used by the rainbow trout immune system.

5.5.1 Weight

Fish were weighed every month throughout the trial. At the start of the trial 

average weight was 82.7g. Treatment had no affect on weight until August, from which 

point to the end of the trial the vaccinated group were the heaviest of the treatment 

groups (P=0.030) (Fig. 5.6).

Fig. 5.6 The weight of fish measured every month for the duration of the trial for fish from the four 
treatment groups. (n=20; mean ± SE)

600 16
Untreated
Melatonin
Vaccine
Vaccine & Melatonin 
Water Temperature

0  H 1----------1----------- 1----------1-----------------  1

Jan/01 Mar/01 May/01 Jul/01

Month

Sep/01 Nov/01 Jan/02

Chapter 5: Melatonin, Immunity and Seasonality 152



5.5.2 Changes in Immune and Haematological Parameters

5.5.2.1 White Blood Cell Counts

No significant difference was recorded in white blood cell counts between fish 

in the four different treatment groups (P=0.306) (Fig. 5.7). An analysis of the GLM 

ANOVA results revealed a significant difference in white blood cell counts with month 

(P=0.000). Tukey Pairwise comparison tests were carried out (Table 5.1), analysis of 

which determined that a seasonal pattern in white blood cell counts was present. The 

white blood cell counts recorded in the summer months of June and August were 

significantly greater than all other months, but counts were not significantly different 

from each other at these two sampling times (P=0.9998). This summer peak is 

statistically very important because all white blood cell counts measured during the 

other sampling months are not significantly different from each other (P>0.05). There 

appears to be a strong relationship between total white blood cell counts and water 

temperature, particularly in June in August where rapid increase in white blood cells 

corresponds to a rapid increase in temperature.
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Fig. 5.7 White blood cell counts of fish from the four treatment groups (n=20; mean ± SE), there is 
no significant difference between the groups (P=0.306).

Table 5.1 Tukey Pairwise Comparisons used to determine the months in which white blood cell 
counts were significantly different to each other (n=80).

February April June August October December

February X

April P>0.05 X

June P=0.000 P=0.000 X

August P=0.000 P=0.000 P>0.05 X

October P>0.05 P>0.05 P=0.000 P=0.000 X

December P>0.05 P>0.05 P=0.000 P=0.000 P>0.05 X
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S.5.2.2 Red Blood Cell Counts

Red blood cell counts of fish from the various treatment groups were found to 

vary during the twelve month trial period, however there was no obvious affect due to 

treatment (Fig. 5.8). This was confirmed using a GLM ANOVA. Significant differences 

were found with month P=0.000, but not with treatment (P=0.141). The significant 

effect with month was further investigated using Tukey Pairwise Comparison tests 

(Table 5.2). Red blood counts in February were significantly greater than at any other 

point during the trial (P=0.000) for all four treatments. Red blood cell counts in June 

were significantly greater than in August, October and December (P<0.05), while no 

significant differences were observed in red blood cell counts between October, August 

or April (P>0.05).
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Fig. 5.8 Red blood cell counts of fish from the four different treatment groups over the 12-month 
trial period (n=20; mean ± SE).
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Table 5.2 Tukey Pairwise comparison tests investigating the effect of month on red blood cell 
counts (n=80)

February April June August October December

February X

April P=0.000 X

June P=0.000 P>0.05 X

August P=0.000 P>0.05 P=0.007 X

October P=0.000 P>0.05 P=0.000 P>0.05 X

December P=0.000 P>0.05 P=0.000 P>0.05 P>0.05 X

5.5.2.3 Haematocrit

No significant differences were found between the four treatment groups 

(P=0.147) (Fig. 5.9). Haematocrit values appear to have a negative relationship with 

season, i.e. values were at their lowest during the summer and greatest during the winter 

sampling. Significant differences in haematocrit were found in relation to month 

(P=0.000). This was analysed further using Tukey Pairwise Comparison tests (Table

5.3), from which it was determined that haematocrit values measured in February were 

significantly higher compared to all other months (P=0.000), for all treatments, 

haematocrits measured in April were significantly higher than in June, August or 

October (P=0.0001). Haematocrits measured in October were significantly lower than in 

December (P=0.000).

Chapter 5: Melatonin, Immunity and Seasonality 156



60 -
CD
E
|  5 5 -  
>  
o
O  50 -
T3OO
CO 45 - -oQ)
O
S. 4 ° -

v \

35 -

30 4— 
Jan/01 Mar/01 May/01 Jul/01 Sep/01 Nov/01 Jan/02

Month Water Temperature 
Control 
Melatonin 
Vaccine
Vaccine & Melatonin

oo0)3
S0}
CLE
|2

Fig. 5.9 Haematocrit of fish from the four treatment groups over the 12-month period (n=20; mean 
± SE). There is no significant difference between the treatment groups (P=0.306).

Table 5.3 Tukey Pairwise Comparisons to determine differences in haematocrit values between the 
sample months (n=80)

February April June August October December

February X

April P=0.000 X

June P=0.000 P=0.000 X

August P=0.000 P=0.000 P>0.05 X

October P=0.000 P=0.000 P>0.05 P>0.05 X

December P=0.000 P>0.05 P>0.05 P=0.000 P=0.000 X
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S.5.2.4 M acrophage Respiratory Burst

It was established that in June, macrophage respiratory burst activity was 

significantly greater than at any other point of the trial (P<0.05). No significant 

difference was observed in macrophage respiratory burst activity between the fish under 

the four treatments (P=0.660). However, a significant difference was observed between 

months (P=0.000). This confirms the graphical observations that macrophage 

respiratory burst activity was at it greatest in June (Fig. 5.10). This activity was 

significantly higher in fish sampled in June, compared to any other time during the trial 

(P=0.000).
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Fig. 5.10 Macrophage respiratory burst activity of fish from the four study treatments. No 
significant difference was observed in respiratory burst activity (n-20, mean ±
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5.5.2.5 Phagocytosis

Phagocytic activity was assessed by determining the number of yeast cells 

ingested by head kidney macrophages (Phagocytic Index PI) and the number of 

macrophages that ingested yeast (Phagocytic Ratio PR). PR and PI were significantly 

affected with month (P=0.000). This was further investigated using the Tukey Pairwise 

comparison test (Table 5.4, Table 5.6). Treatment had a significant effect on both PR 

and PI (Fig. 5.11, Fig. 5.13). Analysis of data using Tukey Pairwise comparison tests 

revealed that fish with melatonin implants had a significantly higher PR and PI 

(P=0.000) than those fish without an implant (Table 5.5, Table 5.7). Melatonin 

significantly enhanced phagocytic activity by both increasing the number of 

macrophages ingesting target yeast cells and increasing the number of target yeast cells 

ingested by a macrophage cell (Fig. 5.12, Fig. 5.14)
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Fig. 5.11 Phagocytic ratio of fish from the four treatment groups over the 12-month trial period 
(n=20; mean ± SE)
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5.12 Phagocytic ratio for fish with a melatonin implant and compared to fish without (n—20; 
®ean ± SE).
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Table 5.4 Tukey Pairwise comparison test results for phagocytic ratio by month (n=80)

February April June August October December

February X

April P>0.05 X

June P=0.000 P=0.005 X

August P=0.000 P=0.000 P=0.000 X

October P>0.05 P>0.05 P>0.05 P=0.000 X

December P=0.035 P>0.05 P>0.05 P=0.000 P>0.05 X

Table 5.5 Tukey Pairwise comparisons investigating difference in phagocytic ratio by treatment 
over the 12-month trial period (n=20).

Untreated Melatonin Vaccinated Vaccinated & 
Melatonin

Untreated X

Melatonin P=0.000 X

Vaccinated P>0.05 P=0.000 X

Vaccinated & 
Melatonin P=0.000 P>0.05 P=0.000 X
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Fig. 5.13 The effect of treatment on phagocytic index over the 12-month trial period (n=20, 
mean ± SE)
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Fig. 5.14 Phagocytic index of fish with a melatonin implant compared to those without 
(n=20, mean ± SE).
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Table 5.6 Tukey Pairwise comparison test results for phagocytic index by month (n=80)

February April June August October December

February X

April P>0.05 X

June P=0.000 P=0.000 X

August P=0.000 P=0.000 P=0.000 X

October P>0.05 P>0.05 P=0.000 P=0.000 X

December P>0.05 P>0.05 P=0.000 P=0.000 P>0.05 X

Table 5.7 Tukey Pairwise comparisons investigating difference in phagocytic index by treatment 
over the 12-month period (n=20/treatment).

Untreated Melatonin Vaccinated Vaccinated & 
Melatonin

Untreated X

Melatonin P=0.000 X

Vaccinated P>0.05 P=0.000 X

Vaccinated & 
Melatonin P=0.000 P>0.05 P=0.000 X

5.5.2.6 Lysozyme Activity

No significant difference was observed in lysozyme activity between the 

treatment groups (P=0.058). Lysozyme activity differed significantly with month 

(P=0.000). Tukey Pairwise Comparisons were used to determine when these differences
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occurred (Table 5.8). Fish sampled in January, February, March and April had 

significantly lower lysozyme activity than months May to December inclusive 

(P=0.000). Fish sampled in May had a significantly lower lysozyme activity than the 

months June to November inclusive (P=0.000). Fish sampled in August, October and 

December had a significantly higher lysozyme activity than November and December 

(P<0.05) while fish sampled in September had a significantly higher lysozyme activity 

than December (P=0.000).

Graphically lysozyme activity showed a very good positive relationship with 

temperature and exhibited a seasonal pattern (Fig. 5.15)
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Fig. 5.15 Lysozyme activity of fish held under the four different treatment groups 
(n=20, mean ± SE). No significant difference was observed between the treatment groups (P=0.058)
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Table 5.8 Tukey Pairwise Comparisons to determine when the significant differences in lysozyme
activity occur (n=80).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan X

Feb P>0.05 X

Mar P>0.05 P>0.05 X

Apr P>0.05 P>0.05 P>0.05 X

May P=0.000 P=0.000 P=0.000 P=0.000 X

Jun P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 X

Jul P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 X

Aug P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P>0.05 X

Sep P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P>0.05 P>0.05 P>0.05 X

Oct P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P>0.05 P>0.05 P>0.05 X

Nov P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P>0.05 P>0.05 P=0.000 P>0.05 P=0.000 X

Dec P=0.000 P=0.000 P=0.000 P=0.000 P>0.05 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 X

5.5.2.7 M easurement of Antibody Titre with ELISA

Antibody titre against V. anguillarum in the plasma of experimental fish was 

measured every month throughout the 12-trial. Significant differences in antibody titre 

were observed between the treatment groups (P=0.000) (Fig. 5.16). Tukey Pairwise 

Comparison tests were used to determine where these significant differences occurred, 

and as would be expected, differences were found between the vaccinated and 

unvaccinated fish (P=0.000) (Fig. 5.17).

Seasonality of antibody titres was observed. This is clearly illustrated in Fig. 

5.16 and Fig. 5.17. Temperature is used on the graphical figures to illustrate season and 

there is an obvious close positive correlation to season, with the highest antibody titres 

observed during the summer months and the lowest during the winter. This was studied 

further using Tukey Pairwise Comparisons (Table 5.9). There was no significant 

difference (P>0.05) in antibody titre between the summer months (May-September),
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and no significant difference between the winter months of October-December 

(P>0.05). The antibody titre of the winter months were significantly lower (P=0.000) 

than the summer months (P—0.000). These results are true regardless of diet or 

treatment.
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Fig. 5.16 Antibody titre against V. anguillarum of fish from the four different treatment groups 
measured throughout the twelve month period (n=20; mean ± SE)
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Fig* 5.17 Comparison between the antibody titre of fish vaccinated against V. anguillarum and 
unvaccinated fish (n=40; mean ± SE).

Chapter 5: Melatonin, Immunity and Seasonality 166



Table 5.9 Tukey Pairwise Comparisons to determine when the significant differences in antibody
titre occur (n=80).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan X

Feb P>0.05 X

Mar P=0.000 P>0.05 X

Apr P=0.000 P>0.05 P>0.05 X

May P=0.000 P=0.000 P=0.000 P=0.000 X

Jun P=0.000 P=0.000 P=0.000 P=0.000 P>0.05 X

Jul P=0.000 P=0.000 P=0.000 P=0.000 P>0.05 P>0.05 X

Aug P=0.000 P=0.000 P=0.000 P=0.000 P>0.05 P>0.05 P>0.05 X

Sep P=0.000 P=0.000 P=0.000 P=0.000 P>0.05 P>0.05 P>0.05 P>0.05 X

Oct P=0.000 P=0.000 P>0.05 P>0.05 P=0.000 P=0.000 P=0.000 P>0.05 P=0.000 X

Nov P=0.000 P>0.05 P>0.05 P>0.05 P=0.000 P=0.000 P=0.000 P=0.000 P=0.000 P>0.05 X

Dec P=0.000 P=0.000 P>0.05 P>0.05 P=0.000 P=0.000 P=0.000 P>0.05 P=0.000 P>0.05 P>0.05 X

5.5.2.8 Challenge with Vibrio anguillarum

Fish were challenged in March, June and September. A December challenge was 

planned but unfortunately the fish did not survive being transported from the fish farm 

to the challenge suite at the Institute of Aquaculture. Veterinary investigation concluded 

that this was probably due to the large size of the fish being transported.

March Challenge fFig. 5.18)

A significant difference in the levels of survival were observed between the 

treatment groups (P=0.000). Fish that were vaccinated exhibited a significantly greater 

level of survival compared to fish that were not (P=0.000). Pairwise comparisons 

revealed a significant difference in survival between the untreated fish and the 

melatonin implanted fish (P=0.003). No significant difference between the vaccinated 

fish and the vaccinated fish with a melatonin implant was recorded (P—0.3173). Fish 

that were vaccinated and had a melatonin implant were the only group to exhibit 100%
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survival. The median survival time for both the untreated and the melatonin implanted 

fish was 2 days. However, the median survival time for both the vaccinated fish and 

vaccinated with a melatonin implant could not be calculated; this is because so little 

mortality was recorded.
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Fig. 5.18 Cumulative survival of fish from the four different treatment groups following artificial 
challenge with V. anguillarum in March (n=20/treatment).

June Challenge (Tig. 5.19)

The June challenge was not very successful as only a total of six fish died as a 

result of challenge. A significant effect of treatment was recorded (P=0.0477). Pairwise 

comparisons determined that both vaccinated treatment groups had a significantly 

higher level of survival compared to untreated fish (P=0.0375). Levels of survival for 

melatonin implanted fish were not significantly different from untreated fish 

(P=0.3856); nor from either of the vaccinated treatments (P=0.152). Median survival 

could not be calculated as too few fish died as a result of challenge.
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Fig. 5.19 Cumulative survival of fish from the four different treatment groups following artificial 
challenge with V. anguillarum in June (n=20/treatment).

October Challenge (Pig. 5.20)

A significant difference in survival following challenge was recorded between 

treatments (P=0.000). Pairwise comparisons revealed that both vaccinated and 

vaccinated/melatonin implanted fish had a significantly higher level of survival 

following challenge, compared to both untreated fish, and fish with a melatonin implant 

(P=0.000). Untreated fish had a median survival of day 5; melatonin implanted fish had

a. median survival of day 6, Fish from both of the vaccinated treatments had no 

mortalities, consequently no median of survival could be calculated.
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Fig. 5.20 Cumulative survival of Fish from the four different treatment groups following artificial 
challenge with V. anguillarum in October (n=20/treatment).

5.5.3 Correlation Between the Immunity and Seasonal Cues

Pearson correlation coefficients were used to determine if the seasonal cues of 

photoperiod and temperature were correlated with any of the immune parameters 

studied (Table 5.10). The majority of cues were correlated with temperature rather than 

photoperiod. The immune parameters which exhibited the strongest positive seasonal 

correlations were plasma lysozyme activity, antibody titres to V. anguillarum (ELISA), 

and total white blood cell counts. Haematocrit values exhibited a strong negative 

seasonal correlation.
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Table 5.10 Correlation coefficients between seasonal cues and immune parameters studied
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Temperature
0.691

P=0.000
X

WBC
0.492

P=0.000

0.583

P=0.000
X

RBC
-0.023

P=0.619

-0.279

P=0.000

0,050

P=0.275
X

Lysozyme
0.266

P=0.000

0.673

P=0.000

0.363

P=0.000

-0.305

P=0.000
X

Resp. Burst
0.366

P=0.000

0.215

P=0.000

0.336

P̂ O.OOO

0.117

P=0.011

0.134

P=0.000
X

Haematocrit
-0.176

P=0.000

-0.488

P=0.000

-0.223

P=0.000

0.456

P=0.000

-0.441

P=0.000

-0.076

P=0.000
X

Ab Titre
0.323

P=0.000

0.362

P=0.000

0.204

P=0.000

-0.069

P=0.138

0.252

P=0.000

0.191
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X

PI
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P=0.024
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-0.187
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P=0.676
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P=0.008
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X

PR
-0.000

P=0.999
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P=0.015
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P=0.618
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P=0.025
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P=0.003

0.072

P=0.187

0,034

P=0.541

0.916
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X

Cell Contents: Pearson correlation 
P-Value

Table Abbreviations: WBC = Total white blood cell count; RBC = Red blood cell 
count; Resp. Burst = Respiratory burst of head kidney macrophages; Ab Titre - 
antibody titre to V. anguillarum; PI = Phagocytic index and PR - Phagocytic 
ratio
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5.5.4 Measured Plasma Melatonin During the Trial Period

A significant difference in plasma melatonin levels was recorded between fish 

from the different treatment groups (P=0.000). Fish with a melatonin implant had 

significantly higher levels of plasma melatonin compared to those without (P=0.000). 

Fish without a melatonin implant exhibited clear differences in plasma melatonin levels 

by month and time of sampling (am/pm) (P=0.000) (Fig. 5.21a) (Table 5.11). Whereas 

treatments in which fish had a melatonin implant, no difference was recorded between 

samples taken during the day or night (P=0.641). Plasma melatonin levels were 

significantly higher in March than at any other sample point (P=0.000) (Fig. 5.21b).
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Fig. 5.21 Melatonin levels of treatment groups without melatonin implants (a) and with melatonin 
implants (b) measured at both AM and PM over the trial period (n=16; mean ± SE). Subscripts 
denote significance, ‘a’ is significantly lower than ‘b \
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Table 5.11 Tukey pairwise comparisons between treatments (n=8; mean ± SE).

Untreated Melatonin Vaccinated Vaccinated & 
Melatonin

Untreated X

Melatonin P=0.000 X

Vaccinated P>0.05 P=0.000 X

Vaccinated & 
Melatonin P=0.000 P>0.05 P>0.05 X
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5.6 Discussion

One of the aims of this trial was to investigate melatonin administration as a 

method of alleviating the winter immunosuppression observed in the ‘Base Level Trial’ 

in Chapter 2. However, phagocytosis was one of only two parameters studied which 

were found to be significantly enhanced by the melatonin implant. The second 

parameter was challenge; fish from the June challenge with a melatonin implant 

survived longer compared to untreated fish. A possible explanation as to why so few 

parameters were enhanced by the melatonin may have been because the first sampling 

point did not take place until 6 weeks after administering the melatonin implants. Any 

resulting immunostimulatory effect by the melatonin implant may have only been for a 

very short period of time after implantation and as the fish may have quickly adapted, 

elicited by the implant. Thus an effect may have been missed by Week 6. Weber (1999), 

in a preliminary study carried out at the Institute of Aquaculture, University of Stirling, 

found that fish given a melatonin implant exhibited a higher, although not significant, 

level of survival following challenge with V. anguillarum. Weber also found significant 

differences in lysozyme activity and cytochrome C activity, with implanted fish 

exhibiting an increased level in these activities. This might be because the trial was 

shorter than the trial carried out here and sampling also took place four weeks after 

implantation rather than the six weeks performed here. Another reason why melatonin 

had no real effect on stimulating the immune parameters measured may have been the 

quantity of melatonin used. High doses of melatonin (~200mg/Kg) have been reported 

to suppress immunological responses (Maestroni, 1988). This information relates to 

mammalian studies, and no data is available for teleosts, but it is likely that melatonin 

levels above these physiological levels may suppress the immune response of fish. The
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implants used in this trial were the only ones commercially available at the time of 

setting up the experiment and were originally developed to regulate reproduction in 

sheep. Obviously being designed for sheep, the implants are large and may have been 

inappropriate for this particular experiment. Since setting up this trial, technology has 

been developed that would allow the production of melatonin implants in the laboratory 

to the scientists specifications and these maybe more suitable for use in fish. It is 

recommended from this work that further trials examining the effect of melatonin on the 

immune response of fish use less than 18 mg melatonin.

The melatonin implants constantly released melatonin throughout the course of 

the 12 month trial. However, the amount of melatonin measured in March in implanted 

fish was significantly greater than at any other time of year. It can therefore be 

concluded that although the implants released melatonin constantly, it was not released 

uniformly. This was also observed by Taylor et al. (2004). However, this does not 

corroborate earlier work carried out by Porter (1996) who reported that plasma levels of 

melatonin in implanted fish did not decrease significantly over a twelve month period 

after implantation. This may have had a detrimental effect on the fish, and could 

account for the lack of any noticeable responses throughout the trial.

Melatonin implantation affected the appearance of the fish. An observation 

made during the trial was that melatonin implanted fish were much lighter in colour by 

the end of the sampling period, to the extent that it was possible to visually select a 

melatonin implanted fish just by its colour. A suggested reason for this marked colour 

change is the role melatonin plays in pigmentation i.e. melatonin is an important 

determinant of an individual's production of melanin (Constantinescu, 1995). Melatonin 

is a weak dose-independent lightening agonist in fish skin (Filadelfi and Castrucci,
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1994). Furthermore, melatonin is successfully used as a treatment for Acanthosis 

nigricans. This is a disorder of hyperpigmentation (an increase of the dark pigment 

melanin) in the skin. Injections of melatonin are used to reverse the effects of this 

hyperpigmentation (Scott et a l, 1995). It is therefore not surprising that the implanted 

fish had become much lighter in colour.

Vaccination significantly increased survival to challenge and antibody titre to V. 

anguillarum. Fish which had a melatonin implant that were also vaccinated did not 

exhibit any significant enhancement in antibody titre to V. anguillarum. Secombes, in 

1994, reported that vaccination stimulates respiratory burst activity, with peak activity 

being recorded 30 days post-injection. Unfortunately, immune activity was not 

measured until Week 6 of setting up the trial, and any significant effect of the melatonin 

implants on the innate immune response, may have been missed by this time.

It is interesting to note that in the final five months of the trial, with the 

exception of the last sample point in December, fish that were vaccinated (without a 

melatonin implant) were significantly larger than fish from the other treatment groups. 

This is the opposite of previously published data where it has been reported that 

vaccination has a negative effect on fish growth performance (P<0.05) (Kitlen et al., 

1997). However, the trial carried out by Kitlen was not as long as the trial described 

here. It is possible that if their trial had continued, the vaccinated fish may have 

exhibited increased growth.

The results of this trial produced further evidence that many of the immune and 

haematological parameters studied in rainbow trout are influenced by season. For 

example the strongest seasonal correlation was exhibited by plasma lysozyme activity, 

while the phagocytic ratio had the weakest seasonal correlation and was only correlated
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with temperature not photoperiod. It was impossible to measure the effect of seasonality 

during the challenge as any seasonal difference that was observed may have been due to 

the quantities of bacteria injected into the fish at each challenge. The challenge 

procedure used in this investigation was intraperitoneal injection of the pathogen. This 

ensured that each fish received the same dose of bacteria. However, this method does 

not take into account how well a fish takes up a pathogen, as this too may be influenced 

by season. Therefore to examine this effect it is recommended that an immersion 

technique be used instead.

Haematocrit was the only parameter examined which exhibited a strong negative 

correlation with season, i.e. the highest level was observed during the winter months 

and the lowest during the summer. This data corroborates the work of North (2004), 

who reported similar results for both lysozyme activity and haematocrit levels.

The results of this trial suggest that over the course of a year some of the 

parameters examined may not have only one peak a year, but in fact have two or three 

peaks. This may contradict the statement that ‘immune parameters are generally 

suppressed in winter and greatest in summer’ (Nelson, 2004). For example, Phagocytic 

Index appeared to exhibit a biannual rhythm. The periods of greatest temperature 

change i.e. autumn and spring were the times when PI was greatest. However as 

sampling only took place every second month it is possible that the drop in PI observed 

in August was the result of a stress event or sampling error.
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5.7 Conclusion

The results of this study confirmed the presence of seasonal patterns of 

immunity, as described in the ‘Base Level Trial’ (Chapter 2).

Melatonin has been shown to significantly enhance phagocytic activity however 

with all other parameters studied it did not appear to act as a significant 

immunostimulant. The reason why no other immune parameters were affected maybe 

because melatonin was administered at a non-physiological dose, and although it was 

not enough to induce an immunosuppressive effect, it may have counteracted any 

positive effect on the immune response of rainbow trout. Alternative methods and 

timing of melatonin administration need to be established, with a better control over the 

levels of melatonin released. There is certainly evidence to support the 

immunostimulatory effects of melatonin in previous studies (Akbulut et al., 2001; 

Brennan et al.t 2002; Champney et a l, 1997). It is possible that any immunostimulatory 

effect occurred within the first couple of weeks of administration. As the first sample 

was not taken until Week 6 of the trial, any immunostimulatory effect of melatonin may 

have been missed. Melatonin was not found to enhance the effects of vaccination to V. 

anguiUarum. Neither was vaccination found to enhance any of the innate immune 

parameters studied.

Chapter 5: Melatonin, Immunity and Seasonality 179



Chapter 6 Circadian Rhythms and Innate Immunity
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6.1 Introduction

6.1.1 Circadian Rhythms

Circadian rhythms are endogenous or self sustaining rhythms with period 

lengths of approximately twenty-four hours (Nelson et a l, 2002). They are regulated by 
‘clocks’ located in specific structures of the central nervous system, such as the 

suprachiasmatic nucleus (SCN) in mammals, and by peripheral oscillators present in 

other various tissues (Cermakian and Sassone-Corsi, 2002). Environmental cues such as 

light and temperature are thought to control these circadian rhythms and to be able to 

reset the daily phase of molecular rhythms, thus ensuring that the organisms behaviour 

remains tied to the environment (Cermakian and Sassone-Corsi, 2002).

6.1.2 Hormonal Entrainment of Circadian Rhythms

Melatonin is produced in a diumal rhythm, with the majority of melatonin being 

produced during the dark phase of the day. Melatonin is thought to have an active 

involvement in the entrainment of circadian rhythms because of its diumal pattern of 

production. This is corroborated by Maestroni and Conti (1989) who repotted a 

circadian rhythm in analogue with the effects of melatonin. Melatonin plays an 

important role in the regulation of physiological functions in fish such as body 

colouration, seasonal reproduction and circadian locomotor activity. These actions are 

mediated via melatonin receptors (Estrom and Meissl. 1997). Melatonin receptors are 

also subject to circadian rhythms. In goldfish, the density of melatonin binding sites 

exhibited day-night changes (Iigo et al., 2003). In rainbow trout the greatest abundance 

or melatonin receptors occurs in the early afternoon. According to Putter (2003), this
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occurred at 14:00 (under natural photoperiod) at the Niall Bromage Freshwater 

Research Facility (NBFRF). In addition to its role in the entrainment of seasonal 

rhythms, melatonin has also been demonstrated to act as an immunostimulant (Nelson 

and Drazen, 1999; Moore and Siopes, 2000). Furthermore, it has been hypothesized that 

a circadian rhythm of immune response may exist (Davies et a l, 2001), the circadian 

rhythm of melatonin may be part of the mechanism eliciting the potential circadian 

rhythm of immunity.

6.1.3 Endocrine Circadian Rhythms

Circadian rhythms are thought to be regulated by clocks located in specific 

structures of the central nervous system, such as the suprachiasmatic nucleus and by 

peripheral oscillators present in various other tissues. Recent discoveries have 

elucidated the control of central and peripheral clocks by environmental signals. The 

major synchroniser in animals is light (Cermakian and Sassone-Corsi, 2002). Several 

endocrine hormones have been investigated in teleost fish and found to exhibit a 

circadian rhythm.

Daily rhythms of circulating cortisol has been extensively studied in freshwater 

fish species (Boujard and Leatherland, 1992). Different rhythms in cortisol levels have 

been reported in different fish species. Peak values have been reported at night in carp 

and brown trout (Redgate, 1974; Ranee et a l, 1982; Pickering and Pottinger, 1983). 

Whereas peak values during the day have been reported in gulf killifish and rainbow 

trout (Garcia and Meier, 1973; Boujard and Leatherland, 1992). Peak values during both 

day and night periods have also been reported in the goldfish and carp (Peter et a l, 

1978; Kuhn et a l, 1986).
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Reproduction in fish is cyclical and timed to guarantee the survival of the 

offspring. (Bayarri et a l, 2004). Studies have investigated both seasonal and circadian 

rhythms of the endocrine hormones involved in reproduction. A study measuring 

cyclical patterns in reproductive hormone levels in sea bass observed that daily 

variations in plasma luteinizing hormone occurred with the highest levels being found 

in the dark phase, in fish held under natural conditions. This pattern was suppressed 

under a long photoperiodic regime (Bayarri et a l, 2004). Daily variations in pituitary 

gonadotrophin-releasing hormone of sea bass were also observed (Bayarri et al., 2004). 

Cyprinid fishes have also been observed to exhibit a reproductive circadian rhythm and 

that the onset of the pre-ovulatory gonadotrophin hormone surge is determined by a 

photoperiodic cue (Aida, 1988). The synchrony of the gonadotrophin hormone surge is 

observed in both sexes and allows ovulation and milt preparation to occur at the same 

time, thus optimizing the chances of successful fertilization (Aida, 1988). Bayarri et a l, 

(2004), concluded the observed daily rhythms in luteninizing hormone and 

gonadotrophin releasing hormone, were co-ordinated by the hormone melatonin. 

Melatonin is thought to be of major importance for the transduction of photoperiodic 

information and the regulation of reproduction the reproduction in sea bass. They also 

hypothesized that the pineal might have a role in physiological performance and 

behavioural regulation to seasonally changing light-dark cycles.

6.1.4 Circadian Rhythms and Immunity

Virtually all immunological variables investigated to date in animals and 

humans display biological periodicity (Esquifino et a l, 2004). Circadian rhythmicity is 

revealed in circulating cells, lymphocyte metabolism and transformability, circulating 

hormones, phagocytic activity and other substances of the immune system, cytokines,
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receptors, and adhesion molecules (Miyawaki et a l, 1984; Melchart et a l, 1992; Hriscu 

etal, 1998; Petrovsky and Harrison, 1998; Esquifino et a l, 2004).

Human studies examining the effect of circadian rhythm on immunity have been 

carried out (Miyawaki et a l, 1984; Melchart et a l, 1992; Hriscu et a l, 1998; Petrovsky 

and Harrison, 1998; Esquifino et a l, 2004). The potential importance of circadian 

cycles with regard to the incidence of cancer has recently been brought to the publics’ 

attention. Female night shift workers who have been exposed to light during the time of 

the usual peak in melatonin levels, may have elevated oestrogen production resulting in 

an increased incidence of breast cancer (Davies et a l, 2001). Furthermore, data from 

recent clinical studies have shown show that release from circadian regulation causes a 

dramatic acceleration in cancer progression (Sephton and Spiegel, 2003).

In humans there are physiological variations in the levels of leucocytes and 

lymphocyte subsets, among them the circadian rhythm is very important in terms of 

magnitude (Elmadjian et a l, 1946; Bertouch et al, 1983; Suzuki et a l, 1997). It has 

been observed that total white blood cell counts peak in the evening/night (Plytyzc and 

Seljelid, 1997; Suzuki et a l, 1997). All studied leucocytes have been observed to vary 

in number or proportion with a circadian rhythm and can be classified into two groups. 

Group one — granulocytes, macrophages, neutrophils, natural killer cells, extrathymic T 

cells, monocytes, lymphocytes, y5 T cells, and CD8+ subset exhibit an increase in the 

daytime (Suzuki et a l, 1997; Plytyzc and Seljelid, 1997; Smaaland, 1997). The other 

group T cells, B cells, a|3 T cells and the CD4+ subset exhibit an increase at night. 

(Suzuki et a l, 1997; Plytyzc and Seljelid, 1997; Smaaland, 1997). This is further 

corroborated by Kronfol et al (1997), who reported in healthy humans, that the 

following immune measures exhibited a significant circadian rhythm; the percentages of
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neutrophils, CD4+ cells, and CD56+ cells; the absolute number of total lymphocytes, 

CD3+ cells and CD8+ cells and Natural Killer cells. The study also indicated that there 

was a strong inverse correlation between the circadian rhythms of cortisol and the 

different T cell subsets. Furthermore, a strong direct correlation between the rhythms of 

cortisol and the percentage of CD56+ and NKCA were also reported.

Cytokine production in human whole blood exhibits a diumal rhythm (Petrovsky 

and Harrison, 1998). Peak production of the pro-inflammatory cytokines EFN-gamma, 

TNF-alpha, IL-1 and IL-12 occurs during the night and early morning at a time when 

plasma cortisol is lowest (Petrovsky and Harrison, 1998). The finding of diurnal 

cytokine rhythms may be relevant to understanding why immuno-inflammatory 

disorders such as rheumatoid arthritis or asthma exhibit night-time or early morning 

exacerbations and to the optimisation of treatment for these disorders (Petrovsky and 

Harrison, 1998). It has also been reported that the numbers of circulating T eels, in 

particular CD4+ T cells peak during the early morning hours when plasma cortisol is 

low (Ritchie et a l, 1983; Abo et a l, 1981; Levi et a l, 1988). These peaks in diculating 

lymphocytes and whole blood cytokine production have been found to be synchronous, 

this raises the possibility that diumal variation in cytokine production is the 

consequence of variations in circulating cell numbers (Petrovsky et al, 1998). Diurnal 

rhythmicity of cytokine production also has implications for the timing of Mood 

samples drawn for diagnostic T-cell assays (Petrovsky and Harrison, 1998).

Diumal variation of immune function is not restricted to humans but is also 

present in a wide range of species including mice, rats, birds and fish (Hnsen et al, 

1998; Loubaris et a l, 1983; Stinson et a l, 1980; Nevid and Meier, 1993; Petrovsky e:t 

al, 1998). In nocturnal animals like rat and mouse, the number of total white blood
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cells, lymphocytes (Th and B cells) peak during the resting period (Depres-Brummer et 

al, 1997; Griffin and Whitacre, 1991; Li et a l, 1999; McNulty et a l, 1990). However, 

Kurepa et al. (1992), reported the reverse of this rhythm as total T and Th cell 

percentages increased during the activity period rather than during periods of rest. 

Further examples of circadian rhythms of immunity in these animals include a circadian 

variation in phagocytosis by mouse blood neutrophils (Hriscu et a l, 1998). Total white 

blood cell counts have been reported to exhibit a predominant semi-circadian period in 

mice, regardless of gender (Weigl et a l, 2004). The migration of T-cells was studied in 

New Hampshire chickens over a 24 h period. It was reported that the migration of T 

cells at 2:00 a.m. was markedly lower than at other time periods (Stinson et a l, 1980).

In fish, the majority of work has focused on the circadian patterns for demand 

feeding (Sanchez-Vazquez et a l, 2000 and Chen and Tabata, 2002). However, the 

results of these studies suggest that it is the action of regular periodic feeding acting as 

the zeitgeber, rather than hormonal entrainment by melatonin. Furthermore, only one 

paper appears to have been published in reference to circadian rhythms and immunity in 

teleost fish (Nevid and Meier, 1993). In this paper a day-night rhythm of immune 

activity during scale allograft rejection in the gulf killifish was studied. Measuring 

melanophore breakdown as an indicator of immunity, it was reported that breakdown 

was two to three times greater during the dark than during the light.

6.1.5 Aim

The aim of this study was to determine if any innate immune parameters of 

rainbow trout exhibit a circadian rhythm under different photoperiod regimes and if the 

nature of these potential rhythms was endogenous.
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6.2 Materials and Methods

6.2.1 Trial Set-up

The trials were carried out at the Aquatic Research Facility and fish maintenance 

took place as per the description in the Section 3.2.1. Fish were held in 4 tanks (1 m 0  x 

1 m) with 25 fish per tank at the start of the experiment. All fish in the trial were female. 

This was to prevent precocious males with a compromised immune system from 

potentially skewing the results.

Due to limited tank space it was not possible to have replicate treatments. 

Consequently, the four different treatments performed were carried out singularly. The 

four treatments were 12:12 LD, 12:12 DL (reverse of the previous treatment), constant 

light and 1:23 LD. It was not possible to have a treatment of 24 h darkness because of 

restrictions in the Home Office Licence at this time. In the first tank held on the 12:12 

LD photoperiod the lights came on at midnight and went off at midday. The second 

tank, held on the 12:12 DL photoperiod, was the reverse of this. In the tank held on the 

1:23 LD photoperiod, the lights came on at midday and went off at 13:00.

The Aquatic Research Facility has a programmed photoperiod of 12:12 LD that 

cannot be overturned. For this reason the tank were lit with individual lamps under a 

black plastic cover to prevent any outside light shining through when the lamps were 

turned off (Fig. 6.1). Fish were acclimated to their respective photoperiods for two 

weeks prior to the commencing of the trial. All sampled fish were weighed at each 

sampling point, average weight was 106.45 g (SD = 23.89; SE = 11.11). Fish were 

sampled every six hours starting at 06:30 (Day 1) and finishing at 06:30 (Day 2) the
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following morning. They were m aintained under an ambient tem perature (remained 

10°C during the sam pling period).

Tank

Opaque 
cover —

W ater
Light
cone

Lamp

Fig. 6.1 Typical tank  set up illustrating the cone of light produced by the lamp shining through the 
viewing panel.

6.2.2 M easurem en t of the  Im m une R esp o n se

Sam pling took place every 6 h with five fish sampled per tank at each time 

point. As per the description in Section 2.2.2 fish lengths and weight were taken 

together along with blood samples. Both fish and blood were transported on ice back to 

the laboratory. Sam ples were kept in the fridge until assayed within 6 h of sampling. A 

variety of innate param eters were measured, methods for which are described in 

Sections 2.2.3 and 3.2.3. M acrophage respiratory burst activity and total white and red 

blood cell counts, haem atocrit and plasma lysozyme activity were the param eters 

measured during the trial.
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6.2.3 Measurement of Melatonin

Blood samples were taken at every sampling point using heparinised syringes 

and transported on ice to the laboratory. Plasma samples were collected and frozen at -  

70°C as soon as possible. Samples were analysed using a melatonin radio immunoassay 

(RIA) as described in Section 2.2.4.

6.2.4 Statistical Analysis

Before analysis data was tested for normality and homogeneity of variance using 

fits and residuals. All data was found to be normal and homogenous without 

transformation. Data was analysed using an ANOVA General Linear Model (Minitab). 

Tukey Pairwise Comparisons were carried out to further analyse data (Minitab).
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6.3 Results

6.3.1 Plasma Melatonin Levels

Plasma melatonin levels were found to be significantly affected by light (Fig.

6.2) (P=0.03). However, fish held under constant light did exhibit significant differences 

in melatonin levels between the sampling periods, even though there was no dark phase 

(P=0.001). Using Tukey Pairwise comparisons it was determined that fish held under 

constant light had significantly higher levels of plasma melatonin at 06:30, on Day 1, 

than at any other point during the trial. No further significant differences were recorded 

between the later sampling periods.

Melatonin levels measured in fish held under the 1:23 LD photoperiod also 

exhibited significant differences over the 24 h period (P=0.000) (Fig. 6.2). Using Tukey 

Pairwise comparisons it was determined that higher plasma melatonin levels were 

observed at sampling point 1 (06:30, Day 1), 4 (00:30, Day 2 and 5 (06:30, Day 2) 

corresponding to dark periods compared to sampling point 2 (12:30, Day 1) performed 

during the light phase.

Melatonin production by fish held under the 12:12 LD photoperiod also 

exhibited significant differences over the 24 h period (P=0.019) (Fig. 6.2) with 

significantly higher plasma melatonin levels during the dark period (sampling point 3, 

18:30, Day 1) than at sampling point 4 (00:30, Day 2), taken 30 min after lights were 

turned on.

Chapter 6: Circadian Rhythms and Innate Immunity 190



450

C on stan t

3 5 0  -

2 5 0  -

1 5 0

4 5 0  -

3 5 0  -

g  2 5 0  

D>3
c  1 5 0  
c o
CO 

0

4 5 0

3 5 0  -

2 5 0  -

\
\ a

b

A

a b  b ^

-------- A - —  1:23L D

- O -  12:12L D

- b

ab

5 ~ —

ab

\ a

ab

 V —  12:12D L

1 5 0  J
0 6 :3 0  1 2 :30  1 8 :30  0 0 :3 0  0 6 :3 0

Sample Periods (6 hour intervals)

Fig. 6.2 Plasma melatonin levels over the 24 h sampling period for fish held under four different 
photoperiodic treatments (constant light, 12:12 LD, 12:12 DL and 1:23 LD) (n=5; mean ± SE ). 
Subscripts denotes significance, ‘b’ is significantly greater than ‘a . ‘ab no significant difference 
from either ‘a’ or ‘b \

Chapter 6: Circadian Rhythms and Innate Immunity 191



Melatonin production by fish held under the 12:12 DL photoperiod exhibited 

significant differences over the 24 h period (P=0.018) (Fig. 6.2). Using Tukey Pairwise 

comparisons it was determined that melatonin levels measured at 18:30, Day 1, 6.5 h 

into the light-phase was significantly lower (P=0.0143) than that at 06:30, Day 2, 6.5 h 

into the dark-phase.

6.3.2 Immune and Haematological Parameters

6.3.2.1 Total White Blood Cell Counts

In this trial the levels of white blood cell counts did not appear to exhibit a 

circadian rhythm (Fig. 6.3), and there was no significant difference between the four 

photoperiod treatments (P=0.143).

Fish held under constant light did exhibit a significant difference in white blood 

cell levels with sampling period (P=0.023). Using Tukey Pairwise comparisons it was 

determined that the results of the first four sampling periods were not significantly 

different from each other (P>0.05). However the final white blood cell count (06:30, 

Day 1) was significantly lower than at the first sampling point (06:30, Day 2) 

(P=0.0207).

White blood cell counts of fish held under the 1:23 LD photoperiod did 

significantly differ over the sampling period (P=0.006). However, this was not 

significantly related to whether the fish were sampled during the dark or light phase 

(P>0.05). Using Tukey Pairwise comparisons it was determined that the white blood 

cell counts of fish sampled at 00:30, Day 2 were significantly lower than those of fish 

sampled at 06:30, Day 1. At both sample points the tank was in darkness.
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White blood cell counts of fish held under the 12:12 LD photoperiod did not 

exhibit any significant differences between sampling periods (P=0.724). This was 

verified using Tukey Pairwise Comparisons. However in the reverse 

12:12 DL treatment, significant differences were found in white blood cell counts 

between sampling periods. Tukey Pairwise Comparisons were used to determine when 

these differences occurred. At the first sampling (06:30, Day 1) when the lights were off 

the white blood cell counts were significantly higher than at all but the second and third 

sampling periods (12:30, Day 1; 18:30, Day 1) when the lights were on.

Significant differences were not reported in any of the treatments as a direct 

result of the lights being either on or off.

6.3.2.2 Total Red Blood Cell Counts

The levels of red blood cell counts in this trial did not appear to exhibit a 

circadian rhythm (Fig. 6.4) and there was no significant difference between the four 

treatments (P=0.699).

The red blood cell counts of fish held under the 12:12 LD photoperiod did 

exhibit a significant difference between sampling periods (P=0.05). However, no 

differences were observed in the remaining three treatments (Constant light P=0.102; 

1:23 LD P=0.358 and 12:12 DL P=0.151). Tukey Pairwise Comparisons were used to 

determine where the significant difference under the 12:12 LD photoperiod occurred. It 

was found that the total red blood cell count measured at 00:30, Day 2 was significantly 

higher than at 06:30, Day 1.
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Significant differences were not reported in any of the treatments as a direct 

result of the lights being either on or off (P=0.699).

6.3.2.3 Haematocrit

The levels of haematocrit did not appear to exhibit a circadian rhythm (Fig. 6.5). 

There was no significant difference between the four treatments (P>0.05).

The haematocrit did not vary significantly throughout the 24 h period for fish 

held under constant light (P=0.297), 1:23 LD photoperiod (P=0.055), or 12:12 DL 

(P=0.129). However, significant variations were found in haematocrit levels during the 

24 h sample period for fish held under the 12:12 LD photoperiod. Using Tukey Pairwise 

comparisons to determine where these variations occurred, it was found that haematocrit 

levels of fish taken at 12:30, Day 1 just after the lights were turned off, were 

significantly lower than at 18:30, Day 1 (P=0.0233), also during the dark phase, or at 

06:30, Day 2 (P=0.03) during the light phase.

Significant differences were not reported in any of the treatments as a direct 

result of the lights being either on or off.
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6.3.2.4 Plasma Lysozyme Activity

Plasma lysozyme activity did not appear to exhibit a circadian rhythm (Fig. 6.6), 

and no significant differences were observed between the four treatments (P=0.735).

Plasma lysozyme activity did not vary significantly throughout the 24 h period 

for three of the treatments, constant light (P=0.073), 1:23 LD photoperiod (P=0.1) and 

12:12 DL (P=0.129). However, in the 12:12 LD treatment plasma lysozyme activity did 

vary significantly during the 24 h period (P=0.016). To determine where these 

significant changes took place Tukey Pairwise comparisons were performed. Plasma 

lysozyme activity measured at 06:30, Day 2 light phase, was significantly lower than 

that at 12:30, Day 1 (P=0.0365) and 18:30, Day 1 both samplings took place in the dark 

phase (P=0.0166). Significant differences were not reported in any of the treatments as a 

direct result of the lights being either on or off

6.3.2.5 M acrophage Respiratory Burst

Respiratory burst activity of head kidney macrophages, did not show a circadian 

rhythm in any of the photoperiod treatments studied (Fig. 6.7). There was no significant 

difference observed between treatments (P=0.0296). Neither were significant 

differences reported between fish sampled during the dark phase and those during the 

light phase. No significant differences in respiratory burst activity were observed during 

the 24 h period within any of photoperiodic treatments.
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6.4 Discussion

In most non-mammalian species, the pineal gland serves as a direct 

photoreceptor, conveying ambient day length information directly to the brain (Nelson 

et a l, 2002). This is corroborated here with melatonin levels being significantly greater 

during the dark phase compared to the light phase (P=0.03). Previous studies have 

suggested that circadian rhythms are entrained by the hormone melatonin (Sephton and 

Spiegel, 2003). The circadian pattern of plasma melatonin was shown in the contrary 

12:12 LD and 12:12 DL photoperiod regimes, consequently the patterns of melatonin 

are the reverse of each other (Fig. 6.2). This was corroborated further by the melatonin 

levels of fish in the 1:23 LD photoperiod, where melatonin levels were significantly 

greater during the dark phase. However, melatonin production in the constant light 

treatment did vary significantly during the 24 h trial even though no dark phase 

occurred. This was unexpected. Typically fish held under constant light exhibit a low 

level of plasma melatonin, possibly below the measurable limits of the assay. The 

lowest level of melatonin that can be measured using the melatonin radioimmunoassay 

is 3.9 pg m l'1 (Randall, 1992). Evidence of this is shown in the Photoperiod Trial of 

Chapter 4. Melatonin levels measured during the light phase of trial in Chapter 5 were 

never greater than 136 pg ml'1, however melatonin levels measured during the light 

phase of any of the treatments in the trial described here never measured less than 205 

pg m l'1. This is a sizeable difference, and it is therefore suggested that the pineal gland 

was being stimulated into producing melatonin, during the light phase. The lighting 

design of this trial might explain these patterns. The set light regime of the ARF was a 

12:12 LD photoperiod, supplied by overhead lighting. To enable the different 

photoperiods used in this trial, lights were placed above the observation ports of the
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tanks. These were then covered with black polythene to prevent any light from the 

overhead lighting entering the tanks. The light produced by the lamps was restricted by 

the size and position of the observation port as described in the Materials and Methods 

(Section 7.2). This resulted in a non-homogenous diffusion of light throughout the water 

(Fig. 6.1) It is therefore suggested that the fish generally avoided the areas of brightest 

light, thus resulting in the unnatural melatonin production. This could have resulted in 

the unexpected melatonin production variation under the constant light regime, and the 

fact that during the light phase of the other treatments melatonin production was still 

comparatively high. Light avoidance has been reported in Atlantic salmon where there 

was a negative correlation between light level and fish density at the surface (Femo et 

al, 1995). This behaviour could be attributed to a predator avoidance behaviour i.e. it 

would be easier for a predator to catch the fish if they were illuminated rather than 

hidden in the shadows (Fraser and Metcalfe, 1997). However, Migaud et al. (2004), 

have reported that fish are very light sensitive, and even very low light intensities such 

as 0.5 watts m'2 suppress melatonin production.

The trial was designed to examine the possibility of circadian patterns in 

immune parameter activity. The fact that melatonin was still being produced at an 

unnaturally high level during the light phase may have affected any circadian rhythms 

of immune parameter activity, possibly masking them or even over-riding them 

completely. This may be the reason why the immune parameters studied did not exhibit 

any obvious circadian rhythms.

Total white blood cell counts were not observed to follow a circadian rhythm. 

This is converse to previous trials in mice and humans where such rhythms have been 

reported. It is suggested that the unnaturally high level of melatonin during the light-
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phase my have overridden any circadian rhythm present in this parameter (Plytyzc and 

Seljelid, 1997; Smaaland, 1997; Weigl et al., 2004).

Similar patterns in red blood cell levels were observed for all four treatments. 

The lowest number of red blood cells was recorded at the first sampling (06:30, Day 1). 

This was followed by a rise in red blood cell number for the at least the following two 

sample points. By the fifth and final sampling point (06:30, Day 2), red blood cell 

counts were lower than those measured at 12: 30.

It is interesting to note that for the haematological parameter, haematocrit the 

lowest levels were recorded during the dark phase. If melatonin production has been 

“more natural” i.e. if lower levels of melatonin had been recorded during the light 

phase, it is possible that the lower levels of haematocrit recorded during the dark phase 

may have been significant. Likewise, other less obvious circadian rhythms may also 

have been revealed.

Significant differences in lysozyme activity were only observed in the 12:12 LD 

photoperiod treatment. However, regardless of treatment similar patterns of lysozyme 

activity were observed in each of the photoperiodic treatments. In all of the treatments 

the second sampling (12:30, Day 1) was always higher than at either of the 06:30 

samplings.

Respiratory burst activity of head kidney macrophages did not significantly 

change throughout the 24 h trial period or between treatments. However, within each 

photoperiodic treatment a similar pattern of peaks and troughs were observed for 

respiratory burst activity. Furthermore, for each treatment these peaks and troughs 

occurred at the same time e.g. respiratory burst activity was always lower at the second

Chapter 6: Circadian Rhythms and Innate Immunity 203



(12:30, Day 1) sampling and always higher at the third sampling (18:30, Day 1), for all 

treatments.

It maybe that these patterns observed for the parameters measured maybe a 

response to stress, the action of sampling may have stimulated the fish to produce 

cortisol. Cortisol is a stress hormone and is known to affect immunity in fish (Esteban et 

al, 2004). For example, it has been reported to play an important role in the down- 

regulation of phagocytic but not of cytotoxic activity in seabream leucocytes (Esteban et 

al, 2004). Furthermore, haematological parameters have also been shown to be affected 

by cortisol. For example, in the jundia fish, although red and white blood cell and 

haematocrit levels were not immediately affected by an acute stressor, after 10 days of 

chronic stimulation, all values changed, with a significant decrease observed in 

lymphocytes, eosinophils, monocytes and special granulocyte cells, as well in red blood 

cell and haematocrit levels (Barcellos et a l, 2004). It is therefore possible that the 

cortisol induced by sampling may have over-ridden any circadian rhythm in the 

parameters studied.

It has been reported that the action of regular periodic feeding, acts as the 

zeitgeber, rather than hormonal entrainment by melatonin (Sanchez—Vazquez et al, 

2000; Chen and Tabata, 2002). This offers a further explanation as to why no circadian 

rhythms were observed in the parameters studied as during the trial the fish were not fed 

and had been starved for a day prior to sampling. This was to aid the anaesthesia 

procedure and it is also easier to collect head kidney macrophages as there is no risk of 

contamination with uneaten food. However, it is suggested that in future trials periodic 

feeding be incorporated, so as to investigate if it affects levels of the parameters studied 

here.
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There is a variety of studies examining circadian rhythms and immunity. They 

provide evidence for rhythms in a variety of immunological parameters including total 

white blood cell counts, phagocytosis and cytokine production (Weigl et a l, 2004; 

Plytyzc and Seljelid, 1997; Smaaland, 1997; Hriscu et a l, 1998; Petrovsky et a l, 1998). 

However, a possible explanation for the lack of circadian rhythms recorded in this trial 

may be simply due to the fact that the ‘wrong’ immune parameters were studied. Future 

studies could investigate parameters such as cytokine production and phagocytosis 

which have already been shown to exhibit a circadian rhythm in mammals (Hriscu et 

al, 1998; Petrovsky et a l, 1998).

Finally the possible existence of diurnal rhythmicity of immune function 

suggests that the nature of an immune response, for example in response to vaccination, 

may be modified by the time of day of antigen administration and raises the possibility 

that immune responses could be therapeutically manipulated by co-administration of 

immuno-regulatory hormones such as glucocorticoids (Petrovsky and Hamson, 1998).
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6.5 Conclusion

The results of this trial are obviously inconclusive, because, without a typical 

diurnal rhythm of melatonin production it is unlikely that a circadian rhythm of immune 

parameters would occur. Consequently, this work must be considered as a preliminary 

trial and there is obviously a great need for it to be repeated. The first obvious change 

would be to ensure an equal spread of light across the tank. This could be achieved with 

either a lamp secured under the lid or illumination from the bottom of the tanks. It may 

be advantageous to ensure that sampling took place at least an hour after the lights 

either came on or were switched off. This would give the system producing melatonin 

to respond accordingly and have the potential to entrain and circadian rhythm of the 

immune parameters. It would also have been beneficial to run the trial over a 48 h 

period to examine if any circadian rhythm observed in the first 24 h was repeated, 

however, this is physically difficult to perform and would therefore have to be earned 

out on two separate and distinct days.
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The title of this thesis is “The Effect of Seasonality on the Immune Response of 

Rainbow Trout”, which reflects the primary aim of the project. The idea for this follows 

Nelson s hypothesis (2004) “that some individuals have evolved mechanisms to predict 

seasonal stressor-induced reductions in immune function, and make appropriate 

adjustments in anticipation of challenging conditions, as a temporal adaptation to 

promote survival”. The experimental trials in this thesis were aimed firstly at 

determining if the immune response of rainbow trout is influenced by season (Chapter 

2) and if so to determine which environmental cues i.e. temperature (Chapter 3) or 

photoperiod (Chapter 4) are used to detect changes in season, thus allowing the animal 

to anticipate the challenging conditions associated with season. Methods of alleviating 

seasonal immunosuppression in rainbow trout were also investigated (Chapter 5). 

Finally, the presence of circadian rhythms within the immune response of rainbow trout 

were examined (Chapter 6).

The results of the initial investigation into the presence of seasonal patterns in 

immunity corroborated earlier work, primarily carried out in mammals and birds 

(Nelson et a l,  2002). Generally, in mammals immune response is highest in summer 

and depressed during the winter months (Nelson et al., 2002). It was originally thought 

that adaptive immunity in fish was seasonal whereas innate immunity remained at a 

constant background level throughout the year (Ellis, 2001). However, the results of the 

“Base Level Trial” (Chapter 2) suggest that innate immunity is also influenced by 

season and exhibits a similar seasonal pattern to that of the adaptive immune response.

The two principle components of seasonality were investigated to determine 

which was the primary cue used by rainbow trout to convey seasonal information to the 

fish’s immune system. Photoperiod was found to have little or no effect on innate
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immunity (Chapter 4). Photoperiod is used widely in the aquaculture industry to 

manipulate fish life history (Berrill et al, 2003). For example, constant light has been 

used to significantly increase the weight of rainbow trout (Taylor, 2004). Photoperiodic 

regime has also been shown to have a primary effect on altering the timing of 

maturation in rainbow trout, irrespective of the prevailing water temperature in rainbow 

trout (Davies and Bromage, 2002). Knowledge of whether the photoperiodic regimes 

used in the aquaculture industry have a negative or even a positive effect on the fish 

immune response is of great importance, especially with regard to fish welfare. 

Challenge with Vibrio anguillarum, was found to be significantly affected by 

photoperiod. During the winter challenge, fish held under constant light exhibited a 

significantly higher level of survival compared to fish maintained originally under a 

short day photoperiod. The reverse of this situation was observed during the summer 

challenge. The method of challenge required fish to be moved from their original 

photoperiodic treatments to a 12:12 LD photoperiod. Challenge was carried out one 

week after the fish were moved to their new photoperiod regimes. This could therefore 

be the reason for the observed photoperiod effect, particularly as challenge took place 

relatively quickly after starting the new photoperiod regimes. Sprague (pers. comm., 

2004), reported that cortisol levels are significantly increased when changing to a 

constant light photoperiod from a natural situation. This increase in cortisol may have 

affected the immune system (Slater and Shreck, 1993; Slater et al., 1995; Hassig et a l, 

1996), and consequently caused the observed significant results in the challenges.

Temperature as a seasonal cue was investigated in Chapter 3. Most fish species 

cannot regulate their internal temperature (Baras, 1995). Consequently environmental

* Sprague, M. (2004). Institute of Aquaculture, University of Stirling 
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temperature has a direct affect on fish life history. The susceptibility of fish to disease is 

partly dependent on their environment. This is a result of the close relationship that 

exists between teleost fish and their surroundings (Le Morvan et a l, 1998). Since fish 

are poikilothermic, the environmental temperature influences all aspects of their 

physiology, including their immune response (Collazos et a l, 1994a). The results of the 

temperature trials in Chapter 3 indicated that temperature affected the majority of the 

parameters studied. For example, in Trial A the effect of three treatment temperatures 

(5, 10 and 18°C) on innate immune and haematological parameters was investigated. 

Total white and blood cell counts were found to increase with increasing temperature. 

Temperature was also found to affect lysozyme activity. In Trial B, where the affect of 

acclimating fish from three treatment temperatures to 15°C was investigated, it was 

found that temperature again affected total red and white blood cell counts although no 

significant affect on plasma lysozyme activity was recorded. Neither haematocrit nor 

respiratory burst activity were found to be significantly affected by temperature. The 

affect of temperature on total white and blood cell counts corroborate the findings of 

several other studies, in which it was reported that lower temperature elicits a lower 

immune response in mammals (Nelson, 2004) and fish (Slater and Shreck, 1993). 

Survival to challenge was also found to be significantly affected by temperature. Prior 

to challenge, fish were acclimated to a challenge temperature of 15°C from the original 

treatment temperatures of 5, 10 and 18°C. It was observed that the lower the original 

temperature, the higher the level of survival following challenge, regardless of season. It 

is suspected that the action of raising the water temperature from 5 to 15 C, stimulated 

the immune system, priming it and increasing the fish immune defences, consequently 

when the challenge took place, these fish were best equipped to survive.
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Photoperiod as a seasonal cue for the immune response was investigated in 

Chapter 4. To date, few studies have been carried out in which the effect of photoperiod 

on the immune response of fish has been investigated. Olsen et al. (1993), hypothesised 

that cortisol levels during the smolting period of Atlantic salmon are probably 

controlled more by photoperiod than by endogenous rhythms. This is corroborated by 

Sprague* (pers. comm., 2004) who reported significantly higher cortisol levels in 

Atlantic salmon moved from a natural photoperiod to constant light. In Sprague’s 

preliminary study, changing fish from a natural photoperiod to one of constant light 

resulted in significantly increased plasma cortisol levels. These did not return to the 

level observed before the change in photoperiod for up to 8 weeks after the photoperiod 

manipulation. Although, this was only a fairly short term effect, it is possible that the 

increased cortisol levels may have affected the fish immune system. It is generally 

accepted that an increase in plasma cortisol is associated with stress (Benfey and Biron, 

2000), and increased cortisol levels have been reported to have an immunosuppressive 

effect in fish (Slater and Shreck, 1993; Slater et al., 1995; Hassig et al., 1996). If the act 

of changing the photoperiod regime did increase cortisol levels and affect the immune 

response, the fact that such an affect appears to be short term would mean that in the 

trials investigating photoperiod (Chapter 4) such an effect could have been missed 

because sampling did not take place until the fish had been acclimatized to their 

respective photoperiod treatments (constant light, 18:6 LD, 6:18 LD) for four weeks 

(with the exception of challenge, where fish were moved to a new photoperiodic regime 

from the original treatments and challenged after one week).

* Sprague, M. (2004). Institute of Aquaculture, University of Stirling 
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The results of the investigation discussed in Chapter 4 suggest that the 

photoperiod is not the principle cue for seasonality for the innate immune and 

haematological parameters studied i.e. total blood cell counts, respiratory burst, 

lysozyme and resistance to challenge. However, other parts of the immune system in 

mammals have been observed to utilise photoperiod as a principle cue e.g. T-Cell 

populations (Leonardi and Klempau, 2003). It has been hypothesised that these changes 

in immunity are a direct response to increased cortisol level rather than photoperiod 

(pers. comm., Ellis*, 2004).

In the natural environment an animal is not only exposed to differing seasonal changes 

in daylength (as was studied in Chapter 4), but it is also subject to changes in light 

intensity and wavelength (Fig. 7.1, Fig. 7.2). To date, there are no known studies 

investigating the effect of wavelength on immunity of fish, but several studies have 

been carried out investigating the effect of lighting and health of poultry. It has been 

found that increased light intensity causes stress which results in acts of aggressive 

behaviour, which in turn leads to the birds being more susceptible to disease from open 

wounds which result (Sherwin et a l, 1999; Potzsch et a l, 2001). Few light intensity 

studies have been carried out in fish. However, as in the studies on poultry, light 

intensity has been linked to aggression in African catfish. Fish kept at a high light 

intensity were observed to suffer 2.46 times as many scars and wounds compared to 

those kept at low light intensities (Almazan-Rueda et a l, 2004). Open wounds are 

obviously susceptible to infection, increasing the risk of disease. Studies investigating

* Ellis, A.E. (2004). FRS Marine Laboratory, Victoria Road, Aberdeen 
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the effect of light intensity on feeding, particularly in marine fish larvae have reported 

that feeding incidence increases with light intensity (Puvanendran and Brown, 2002).

Fig. 7.1 Penetration through w ater of light from  the visible spectrum  by depth.

T

0.010 0.100 1.000 10.000 100.00 
Photon flux rate (pEs- 1 m"2)

Fig. 7.2 Light intensity decreases with increasing depth. G raph illustrates vertical light intensity 
gradients with lam ps subm erged to 3 and 6m depth (solid lines) or lamps mounted above surface 
(dotted lines) (adapted from  Juell et al., 2003).
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Seasonal differences were observed in immune activity even when photoperiod 

and water temperature remained constant (12:12 LD) (Chapter 4). An example of this is 

the respiratory burst activity of head kidney macrophages. During the first temperature 

trial (Chapter 3, Trial A), no significant effect of temperature was recorded within either 

the winter or summer trials i.e. as a result of treatment. However, respiratory burst 

activity was significantly greater between summer and winter samplings, irrespective of 

treatment. However, this was not corroborated by the results of the ‘Base Level Trial’ 

(Chapter 2) and only partially by the trial in Chapter 5. Lysozyme activity appears to be 

strongly correlated with season according to the results obtained from the 12-month 

trials in Chapters 2 and 5 and the photoperiod trial of Chapter 4 (seasonal effect was 

observed but this was not due to photoperiod). However, when investigated under a 

controlled temperature and photoperiod (Chapter 3), this influence of season on 

lysozyme activity is not observed. This is somewhat corroborated by the results of 

Bowden et al. (2004), who reported that serum lysozyme activity in halibut was not 

significantly affected by either temperature or photoperiod however a seasonal influence 

was observed. It was suggested that manipulated independently, photoperiod and 

temperature are not capable of mimicking the influence of season on lysozyme activity 

and that other unknown factors may be involved. This suggests the presence of an 

endogenous rhythm (Zapata et al., 1992), which corroborates the results of earlier 

studies in which, continued seasonal variations in immune response were demonstrated 

even when both temperature and photoperiod have been held constant (Leceta and 

Zapata, 1986; Zapata et al., 1983).

The seasonal patterns in immunity measured during this thesis varied between

the different trials. For example in the ‘Base Level Trial (Chapter 2) the highest total

white blood cell counts were recorded in June (2003), however in the trial of Chapter 5, 
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the highest total white blood cell counts were recorded in October (2002) and August 

(2003). Although, in both of these trials the lowest total white blood cell counts were 

recorded in February (2003). Several explanations for these differences are suggested. 

The first is that temperature profiles are not exactly the same every year and variations 

do take place. This could have had a direct effect on the immune parameters studied. 

Secondly although the fish within trials were from the same stock, the fish used at 

NBFRF had a different origin to those used at the ARF on campus. Thirdly, all trials 

used female fish with the exception of the trial described in Chapter 5. The differences 

observed between the seasonal patterns of the parameters measured between trials may 

also be due to the fact that male fish were present in the Chapter 5 trial whereas in all 

other trials only female fish were used. Alternatively, the fact that sampling took place 

every other month could mean that fluctuations were missed compared to the ‘Base 

Level Trial’ where sampling took place every month.

The primary aim of this project, to investigate the presence of seasonal patterns 

in immunity has been achieved. Furthermore, evidence from this project suggests that 

the proximate environmental cue used by rainbow trout to determine a change in season 

for some of the parameters studied is temperature rather than photoperiod. Generally, 

immunity in rainbow trout is at its peak during the summer months and at its lowest 

during the winter. This leads to the question, why are there seasonal patterns in 

immunity? If immunity was high throughout the year, wouldn’t this be more beneficial 

in promoting the health of the fish?

Why would it be beneficial to rainbow trout to have a depressed immune system 

in winter? Immune function is one of several competing life history functions that 

require substantial metabolic energy (Fig. 7.3). Nelson et a l  (2002), proposed that when
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demands are higher than the immediately available energy, individuals engage in trade

offs among various energy demands to reduce total energy needs. Winter is 

energetically the most demanding of the seasons. It is a period of reduced activity and 

foraging (Valdimarsson et a l, 1997). This is because the energy required to collect food

FOOD

ABIOTIC ENVIRONMENT SOCIAL ENVIRONMENT

METABOLIC
FUEL

IMMUNE FUNCTIONLOCOMOTION

CELLULAR MAINTENANCEREPRODUCTION

GROWTH

Fig. 7.3 Illustration of competing life history functions that require substantial metabolic energy 
(adapted from Nelson, 2004).

is greater than the energy gained from the food. The colder water temperatures of winter 

require fish to expend more energy in activities than they would in the warmer summer 

months. This is because fish are poikilothermic and the environmental temperature 

influences all aspects of their physiology (Collazos et a l, 1994a). It is therefore likely 

that the energy required maintaining their immune system in winter is considerably 

greater than that of summer, as maintaining optimal immune function is energetically
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expensive. The production of immune cells and humoral factors all require substantial 

energy (Demas et a l, 1997; Spurlock, 1997; Nelson et a l,  2002). Consequently 

mounting an immune response requires resources that would otherwise be allocated to 

other functions (Lochmiller and Deerenberg, 2000; Sheldon and Verhulst, 1996; Nelson 

et a l, 2002). In winter it is, therefore, probable that it makes greater energetic sense to 

maintain body condition rather than maintaining the immune system at an optimal level. 

This would account for the suppressed immunity of rainbow trout observed in winter.

The converse view of this situation is why would it be beneficial to have an 

increased immune response during the summer months? Winter is not just energetically 

demanding for rainbow trout, it affects all organisms of the environment from viruses 

and bacteria, to plants and animals. The majority of these organisms thrive during the 

warmer months compared to the winter. Consequently, there is a greater potential threat 

of disease in the summer than in the winter. It would therefore be extremely beneficial 

to rainbow trout to have an increased immune system in summer rather than in winter. 

None of the immune parameters exhibited a seasonal peak during the colder winter 

months. This could be because there is a lower pathogen load at this time of year. 

Rather it makes more energetic sense to maintain all immune parameters at a 

background level. Alternatively, the immune parameters which do increase activity 

during the winter may not have been studied during this project. Nelson et a l  (2002), 

proposed that individuals optimize immune function so that they can tolerate minor 

infections if the energetic costs of mounting an immune response outweigh the benefits. 

Evidence of this is shown in precocious male salmonids. In this case, energy is used to 

promote a reproductive state rather than in maintaining a high immune response (Maule 

etal, 1987; Maule et a l, 1996).
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It is easier for an organism to defend itself from a pathogen attack if its immune 

system is maintained at an optimal level. If pathogen attack is more likely to occur 

during the summer months the rainbow trout immune system must be primed at this 

time. In order for it to be successful in doing this, an ability to anticipate a change in 

season is required i.e. detect that summer is coming. Furthermore, as the season passes 

into autumn and then winter, rainbow trout must be able to detect that the seasons are 

changing towards a period where the threat of disease is not as great, therefore 

maintaining the immune system at an optimal level would be a waste of energy. It is not 

known what mechanism is involved in mediating this seasonal information, however 

melatonin was shown to exhibit a seasonal pattern in both the ‘Base Level’ (Chapter 2) 

and Melatonin trials (Chapter 5). Melatonin levels were higher during the summer 

months compared to the winter months. Melatonin production was also shown to be 

affected by the two principle seasonal cues of temperature (Chapter 3) and photoperiod 

(Chapter 4). The results corroborated the results of earlier investigations that reported 

that melatonin is primarily produced during the dark phase (Bayam et a l , 2004) and 

melatonin production increases with increasing temperature (Porter et a l, 2001). It is 

highly plausible that plasma melatonin is involved in conveying seasonal information to 

the fish immune system because it is cued by photoperiod and temperature, the principle 

cues of seasonality.

Enzyme activity involved in the fish immune system, will also be influenced by 

season. According to the kinetic theory as temperatures increase molecules move faster. 

In an enzyme-catalysed reaction this increases the rate at which enzyme and substrate 

molecules meet and hence the rate at which the product is formed. However, eventually 

as the temperature continues to rise, the hydrogen and ionic bonds that hold the enzyme 

molecule in shape are broken. When this happens the molecular structure is disrupted
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and the enzyme fails to function because the active site no longer accommodates the 

enzyme. At this point the enzyme is said to be denatured (Fig. 7.4) (Toole and Toole, 

1993). Several of the parameters studied involve enzyme activity e.g. the key enzyme in 

respiratory burst activity is NADPH oxidase, various hydrolytic enzymes are involved 

in phagocytosis, and the key enzyme for melatonin production is N-acetyltransferase. 

Lysozyme is a class of enzyme that catalyses the hydrolysis of cell walls of bacteria. In

Increased rate due to 
greater kinetic movement 
of m olecules

D ecreased rate 
due to denaturation 
of enzym eo

Actual rate of reaction: 
a balance betw een the 
other two opposing influences

Optimum
temperature

30
Temperature / °C

Fig. 7.4 The effect of temperature on an enzyme catalysed reaction (Toole and Toole, 1993).

the 12-month trials (Chapters 2 and 5) plasma lysozyme activity exhibited a strong 

correlation with temperature. Lysozyme has an optimum temperature of 25°C, so 

obviously summer water temperatures are closer to this optimum level than in winter, 

therefore it is not unreasonable to suggest that the organism is more reliant on this 

immune defence in summer than in winter and consequently produces more of it at that 

time. There would be little point in producing an immune defence that does not work 

well, as it would be a waste of energy, more so in winter. Measurement of lysozyme
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activity in the laboratory was performed under controlled conditions i.e. all samples 

were measured at 25°C with different rates of activity measured. This suggests that the 

quantity of lysozyme in the samples varied with season. Fish are poikilothermic and as 

such are affected by the temperature of the surrounding water. This will obviously 

directly affect lysozyme activity and production. However, this idea is perhaps too 

simplistic. Lysozyme is produced by macrophages which are obviously involved in 

numerous other aspects of the immune system. The immune system should not be 

considered as being made up of separate components as they are all integrated and part 

of a whole. However, temperature obviously affects the parameters studied and 

probably the enzyme activity associated with them.

Seasonal immunosuppression was observed during the winter months of the 

‘Base Level Trial’ (Chapter 2). It would be beneficial to the aquaculture industry if this 

seasonal immunosuppression could be alleviated. Fish farming has grown significantly 

during the last thirty years and very often trout and salmon are kept at high population 

densities, which are known to increase the risk of disease. This is of particular 

importance as transmissible diseases are known to have devastating effects on both wild 

and cultured stocks of fish (Smith et a l, 2000). This may increase the risk for dramatic 

disease outbreaks, particularly when the fish immune system is not at its optimum.

Alleviation of seasonal immunosuppression was investigated as part of the trial 

described in Chapter 5. Melatonin is known to act as an immunostimulant in mammals 

and birds (Champney et a l, 1997 Moore and Siopes, 2000; Akbulut et a l, 2001; 

Brennan et a l, 2002). One group of fish were implanted with an 

18 mg implant. Phagocytosis activity and challenge with V. anguillarum were the only 

parameters to be significantly enhanced by melatonin. However, only fish from the June
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challenge exhibited a significant difference in length of survival following challenge 

between untreated and melatonin implanted fish. Phagocytosis was enhanced in fish 

with a melatonin implant regardless of time of year. A second group of fish were 

vaccinated against V. anguillarum and had a melatonin implant; this was to investigate 

if melatonin improved the level of protection given by the vaccine. Although vaccinated 

fish with a melatonin implant did have an increased antibody titre to V. anguillarum and 

an increased level of survival to challenge with the pathogen compared to non

vaccinated fish, the levels were not significantly different from those fish that had been 

vaccinated alone. Reports have been published providing evidence that vaccination of 

fish can also enhance the innate immune response of fish. For example, the plasma 

lysozyme activity of the European whitefish responded strongly following vaccination 

with two commercial vaccines (Apoject 1800® and Lipogen duo®) (Koskela et a l, 

2004). However, no such effect was observed during the trial of Chapter 5.

It is possible that any enhancement of the rainbow trout immune system due to 

the melatonin was short term and as first sampling did not take place until Week 6 after 

initial administration, this enhancement may have been missed. Furthermore, the 

melatonin implant was comparatively large (18 mg). The implants used were actually 

designed to control reproduction in sheep and were the only ones available on the 

market at the time of setting up the experiment. Maestroni et al. (1988), reported that 

high doses of melatonin ( -2 0 0  mg kg'1) can actually suppress immunological responses. 

The high levels of hormones administered in the trial of Chapter 5 may have 

counteracted any immunostimulatory effects.

Nelson et al. (2002), stated that “the most reliable environmental cue for time of 

year is the annual pattern of changing photoperiod”. However, although this may be true
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for land animals, this may not necessarily be the case for aquatic life. On land 

temperature is significantly different in the middle of the night compared to midday. 

This is not always the case in the aquatic environment. This was demonstrated in the 

Circadian Trial (Chapter 6), where water temperature was measured every 6 hours over 

a 24 hour period and remained a constant 10°C. Environmental water temperature 

changes gradually, exhibiting a very similar pattern to natural photoperiod (Fig. 7.5). A 

sudden drop in air temperature would not elicit a sudden drop in water temperature

18:00

Day length 
Temperature

06:00
Aug/01 Oct/01 Dec/01Jun/01Apr/01Feb/01Dec/00

16

oo
0)

Month

Fig. 7.5 Over a twelve month period the cyclical cycles of photoperiod and temperature are closely 
correlated in the temperate environment. Consequently any affect of season observed could in 
response to either or both of these parameters. Data presented is for the NBFRF.

because it takes a significantly longer period of time for a volume of water to change 

temperature compared to a similar volume of air. Nelson’s statement (2004) can 

therefore be amended, “in the aquatic environment the annual pattern of changing 

temperature and photoperiod are of similar importance as environmental cues for 

indicating time of year”. However, it would appear that different life history functions
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use different environmental cues. For example, photoperiod is the primary cue for 

reproduction in the Atlantic salmon. However, the results of the trials in Chapter 4 

suggest that temperature is the primary cue for lysozyme activity in rainbow trout. 

Furthermore, although photoperiod was not shown to affect immune response in any of 

the immune parameters studied in the trials presented here, it has been shown to affect T 

cell numbers (Leonardi and Klempau, 2003), and it has been shown to affect the stress 

hormone cortisol (Olsen et al., 1993). Photoperiod and temperature may be of equal 

importance as seasonal cues to the immune system of rainbow trout. Further study is 

required to ascertain if this is true.

In conclusion, the results of this study suggest that seasonality does affect both 

the innate and adaptive immune system of rainbow trout. Furthermore the proximate 

environmental cue used to determine season by the fish is temperature rather than 

photoperiod. The hormonal mechanism behind this system may use the hormone 

melatonin, which itself exhibits seasonality in its production, however, further study is 

required to determine if this is true.

It is anticipated that research investigating seasonal effects on basic immune 

function, and the effects of artificial photoperiods and temperature regimes on the 

immune response, may be of benefit to the aquaculture industry. It could provide 

information that will allow administration of commercial diets containing 

immunostimulants to be timed effectively. These methods could be used to alleviate 

periods of immunosuppression for example, during smoltification. In addition, 

vaccination strategies and fish movement from one farm to another could be improved 

by knowing periods of seasonal immunosuppression which could then be avoided.
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7.1 Further Study

Although this study has provided evidence for presence of seasonal patterns of 

immunity further study is still required. The mechanisms that relay the seasonal 

information of the changing patterns of photoperiod and temperature are not yet known. 

It is suspected that melatonin plays an important part in this mechanism. However, 

melatonin is not the only seasonal hormone. The corticosteroids and sex steroids also 

exhibit patterns of seasonality, and further investigation into immunity and seasonality 

should also consider these hormones.

Although the majority of parameters studied were unaffected by vaccination or 

melatonin implantation, the period of first sampling took place in Week 6 of the trial. It 

is therefore, recommended that in future, sampling should be carried be on a weekly 

basis rather than monthly. The effect of wavelength and light intensity on the immune 

response should also be considered in future work. This is of particular interest in the 

aquaculture industry where deep sea cages are used e.g. cod farming. If challenges are 

used it is suggested that bath immersion is used to administer the pathogen instead of 

injecting a calculated dose. How susceptible the fish is to a pathogen may also be 

seasonal.

Pathogen load of the water is also suspected to be influenced by season. It is 

possible that the observed seasonal patterns of the immunity observed in rainbow trout 

maybe in response to this pathogen load. It is therefore, recommended that future 

studies consider this, and possibly measure how different pathogen populations alter 

during a twelve month period in the trial environment.

Ultimately, the results of such work, examining the effect of seasonality on the 

immune response of fish may be used to develop a mathematical model which could be
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used to predict periods when fish are most susceptible to disease. By imputing data 

relating to certain photoperiodic regimes and water temperatures, it may be useful to 

predict the activity of various aspects of the immune system. This would be an 

extremely useful tool in the prevention and control of fish disease in aquaculture.
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Unless otherwise stated reagents were bought from Sigma Chemical Company Ltd.

A.1 Bacteriology 

A.1.1 Tryptone Soya Agar (TSA) with NaCI

Dissolve the following reagents in 1 L distilled water. Autoclave for 20 min and allow 

to cool to 50°C before pouring plates. Makes forty plates.

TSA 40 g

NaCI 1.5 g

A.1.2 Tryptone Soyal Broth (TSB) with NaCi

Dissolve the following reagents in 1 L distilled water. Autoclave for 20 min.

TSB 30 g

NaCi 1.5 g

A.1.3 Gram Stain

Dissolve the following reagents in 300 ml distilled water.

Iodine l g

Potassium Iodide 2 g
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A.2 ELISA

A.2.1 Cell Culture Medium

Prepared under sterile conditions using a laminar flow hood at all times. 

Dulbecco’s Modified Eagles Medium (DMEM) containing additives. To 10 ml DMEM 

add 0.5mM sodium pyruvate, 20mM L-glutamine and 10000U ml-1 penicillin, lmg/ml 

streptomyicin and 20% (v/v) foetal calf serum (heat inactivated for 1 h at 56°C). Before 

use the cell culture medium was always warmed to 37°C.

A.2.2 Chromagen (Substrate)

Prepare a solution of 1 part acetic acid: 2parts distilled water. For every 3ml of this 

prepared solution dissolve 0.0394g of 3 ’ 3 ’ 5 ’ 5 ’-tetramethylbenidine (TMB). The 

solution is 42mM.

A.2.3 Coating Buffer

Dissolve one carbonate-bicarbonate buffer tablet in 100ml distilled water. Add 1ml 

Poly-L-lysine . Solution should be pH 9.6.

A.2.4 Conjugate Buffer

1% (w/v) Bovine serum albumin (BSA) in LSW
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A.2.5 High Salt Wash Buffer (HSWxIO)

Prepared in 1 L of distilled water. Adjust to pH 7.2 and dilute 1/10 to use.

Trisma Base 24.2 g

NaCi 292.2 g

Tween 20 10 ml

A.2.6 Low Salt Wash Buffer (LSW x 10)

Prepared in 1 L of distilled water. Adjust to pH 7.3 and dilute 1/10 to use.

Trisma Base 24.2 g

NaCi 222.2 g

Tween 20 5 ml

A.2.7 Substrate Buffer

Dissolve the following reagents in 1 L of distilled water. Adjust pH to 5.4. Store at 4°C.

Citric Acid 21 g

Sodium Acetate 8.2 g
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A.3 General Use Reagents

A.3.1 Heparin

Dissolve the contents of one vial of heparin (containing 25,000 U) to 10 ml of L-15 

medium. Sterile filter to 40 /mi. Store at 4°C.

A.3.2 Phosphate Buffered Saline (PBS)

Dissolve in 1L of distilled water. Adjust to pH7.2 Autoclave for 20min.

NaH2P 0 4.2H20  0.876 g

NaHP04.2H20  2.56 g

NaCi 8.77 g

A.4 Macrophage Respiratory Burst Activity

A.4.1 Lysis Buffer

Prepared in distilled water. Store at 4°C.

Citric Acid 0.1 M

Tween 20 1.0 % (v/v)

Crystal Violet 0.05 % (w/v)
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A.5 Melatonin RIA

A.5.1 Antibody

Freeze dried sheep anti-melatonin antiserum (Stockgrand Ltd., Surrey, UK) was 

reconstituted with 2 ml of nanopure water to provide an intermediate solution. This was 

divided into 100 /xl aliquots and stored at -20°C in polystyrene tubes (LP3; Luckhams 

Ltd). The working solution was prepared by diluting one 100 [X1 aliquot to 20 ml with 

assay buffer.

A.5.2 Charcoal Solution

Mix 0.48 g charcoal to 50 ml of tricine buffer. Stir on ice for 30 min.

A.5.3 Melatonin Standards

A stock standard solution of 10 mg melatonin (N-acetyl-5-methoxytrptamine) was 

dissolved in 10 ml absolute ethanol and stored at -20°C. For each assay fresh standards 

were prepared from this stock solution. Serial dilutions of 250 fi\ aliquots were prepared 

from a working solution of 1 ng ml"1 to provide standards from 3.9 - 250 pg tube'1. An 

additional working solution of 2 ng ml"1 was used to provide a 500 pg 1 standard.

A.5.4 Radiolabel

A stock label of tritiated melatonin ([0-methyl-3H]melatonin) supplied by Aversham 

International Ltd. In 250 fxCi quantities with a specific activity of 70-85 Ci/mol. An 

intermediate solution was prepared by diluting 20 fil in 2 ml of absolute ethanol (Fisons
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Ltd). This solution was stored in 20 ml glass vials (Canberra Packard, Berks., UK) at - 

20°C. A working solution was freshly prepared for each assay by diluting the 

intermediate solution with assay buffer to give an activity of approximately 

40000 dpm fi\'m  (~ 20 fi\ of the intermediate solution in 10 ml of buffer).

A.5.5 Tricine Buffer

The following chemicals were dissolved in 150 ml of nanopure water.

Tricine [N-Tris(hydroxymethyl)methylglycine] 2.688 g

Sodium Chloride 1.35 g

Gelatin 0.15 g

A.6 Serum Lysozyme Activity

A.6.1 Sodium Phosphate Buffer (SPB)

Stock A: Prepare a 0.2 M solution of NaELPO^PLO in distilled water.

Stock B: Prepare a 0.2 M solution of NaHPO^PLO in distilled water.

Ninety-two ml Stock A was mixed with 8 ml Stock B to create a 0.1M SPB, pH 5.8. 

One hundred ml distilled water was added. Solution was diluted 2:5 to give a SPB of 

0.04 M, pH 5.8.
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B.1 Vibrio anguiiiarum Standard Curve

A culture of Vibrio anguiiiarum (Type 1) was prepared overnight. Next day the 

culture was spun at 3,500 rpm in a centrifuge for 10 min. Supernatant was poured off 

and the pellet resuspended in sterile phosphate buffered saline (PBS). This was repeated 

twice and the pellet resuspended in 10 mis sterile PBS. The absorbance of the overnight 

bacterial suspension was read at 610 nm using a spectrophotometer (Cecil 2041). The 

value represents the culture at 100%. A ten-fold dilution of this culture was performed 

from 10' 1 down to 10'7. For each of the dilutions place six 20 fi\ drops onto six marked 

sections of a tryptone soya agar (TSA) plate (separate plate for each dilution). An 80% 

dilution of the original 100% bacterial solution was made and the serial dilutions 

repeated as before and the dilutions plated out. Dilutions were repeated at 60, 30 and 

20% and serial dilutions for each were performed.

Plates were left on a level surface until the drops dry into the agar. The plates 

were then inverted and incubated overnight at 22°C. Next day, colonies were counted 

from each concentration and serial dilution showing 10-50 colonies per drop. Calculate 

average colonies per drop and calculate for each dilution. Plot optical density against 

viable bacteria (Fig. B .l).
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Fig. B.l Standard curve of the optical density at 610nm of V. anguiiiarum (Type 1), suspension 
against the number of CFU.

B.2 Cell Culture of 4C10 Hybridoma Cells

Specific antibodies to V. anguiiiarum were detected using the anti-trout 

monoclonal antibody (Mab 4C10) which was obtained from a 4C10 hybridoma cell line 

provided by Dr. A. Thuvander and stored in liquid nitrogen (Thuvander et al., 1990). 

After rapid thawing, hybridoma cells were revived by placing in 10ml cell culture 

medium (Appendix A) that had been warmed to 37°C. The solution was centrifuged at 

1000 xg for 7 min, the resulting supernatant was discarded and the pellet was 

resuspended in 5 ml cell culture medium. Cells were incubated at 37°C overnight, in an 

atmosphere containing 5% carbon dioxide using a Galaxy C 0 2 incubator (RS Biotech, 

Finedon, UK). To verify satisfactory growth, cells were observed under an inverted 

microscope (Carla Zeiss Jena Televal) where a growing stock of hybridoma cells was 

maintained in 10 ml of cell culture medium in a 25 ml tissue culture flask (Nunc, UK). 

Stock was kept in the incubator and the media was changed regularly.

Cells were expanded by taking 5 ml of the growing stock of 4C10 hybridoma 

cells and placing in a 150 ml tissue culture flask, to which was added 15 ml of fresh
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culture medium. The flask was maintained in an upright position for 2 days, to 

encourage cell growth After 2 days, 60 ml cell culture medium was added to the cell 

solution and the flask was placed flat and kept in an incubator at 37°C for 10 days. The 

cell solution was then centrifuged at 100 xg for 7 min and the antibody rich supernatant 

collected and frozen at -20°C until required.
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C.1 Peer Reviewed Oral Presentations

C.1.1 4th International Symposium on Aquatic Animal Health, September 1-5,2002, 

New Orleans, Louisiana, USA

The effect of seasonality on the immune responses of rainbow trout (Oncorhynchus 
mykiss)
Morgan, A.L.1, Porter, J.R.1, Burrells, C.2, and Thompson, K.D.1

institute of Aquaculture, Pathfoot Building, University of Stirling, Scotland FK9 4LA

2EWOS Innovation, Westfield, Bathgate, West Lothian, Scotland, EH48 3BP

Immune responses of ectotherms are known to vary seasonally, although little work has been carried out 
on the effect of seasonality on immune responses in fish. Environmental factors, mainly temperature and 
photoperiod, are known to undergo circadian and circumannual rhythms and have been proposed to be 
direct causative agents of these variations. The effects of variation and/or constant release melatonin 
implantation on the seasonal variation in the immune response of rainbow trout maintained under a 
simulated natural photoperiod were examined. Preliminary studies at the Institute have demonstrated that 
long-term administration (9 weeks) of melatonin via intramuscular implants significantly enhances a 
number of immune parameters and improves disease resistance. In conjunction with this trial, half the 
fish were maintained on EWOS “Boost” diet, which is rich in nucleotides, to see if it could alleviate 
seasonal immunosuppression when compared to a standard commercial diet. Immune parameters of both 
the specific and the non-specific immune system were assessed over the course of the trial. Seasonality 
was shown to effect fish haematology and lysozyme activity. An improvement in survival following 
challenge Vibrio anguiiiarum  as a result of using the EWOS “Boost” diet and melatonin implants were 
observed. It is anticipated that this examination of seasonality on basic immune function will be of 
benefit to the aquaculture industry. It will provide information that will allow administration of 
commercial diets containing functional supplements to be times effectively and will facilitate our 
understanding of the epidemiology of specific fish pathogens.
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C.1.2 11th International Conference of the European Association of Fish 

Pathologists, “Diseases of Fish and Shellfish”, 21-26 September 2003, 

Corinthia San Gorg Conference Center, St Julians, Malta

The Effect of Season on the Immune Response of Rainbow Trout {Oncorhynchus 
mykiss)
Morgan, A .L.fl), Porter, M.J.R.(2), Burrells, C.(3), Bromage, N .(l) and Thompson, K.D.(l).

Institute of Aquaculture, University of Stirling, Scotland.

School of Aquaculture, University of Tasmania, Tasmania 

EWOS Innovation, Scotland.

Immune responses of ectotherms are known to vary seasonally, although little work has been carried out 
on the effect of seasonality on immune response in fish. Four different trials were carried out to 
determine the principle environmental cue stimulating this seasonal immune response was the ambient 
photoperiod and/or temperature. Trials were carried out once in winter and once in summer, to determine 
if time of year affected these potential cues. In trials designed to investigate the effects of temperature the 
photoperiod was maintained at 12:12 LD and the temperature during photoperiod trials was ambient. 
Melatonin, a hormone produced in the pineal gland of teleosts, regulates seasonal events and is thought to 
be involved in the regulation of the immune system was measured at regular intervals. A variety of ‘non
specific’ immune responses were studied. To date the majority of work in this area has concentrated on 
the ‘specific’ immune response as it has been generally assumed that the ‘non-specific’ immune 
responses remain constant throughout the year.

Temperature was found to have a significant effect on several of the immune parameters studied 
including blood counts and respiratory burst. Haematocrit was not affected by temperature. Conversely, 
photoperiod was found to have no effect on the immune parameters studied with the exception of 
haematocrit in winter. It is anticipated that the data from this study will lead to the development of a 
simple model that can be used to predict times of immunosuppression in fish as a result of projected 
temperature and photoperiod regimes. Knowledge of when immunosuppression occurs in fish allows the 
farmer to provide adequate immunostimulation to reduce the risk of associated health problems.

Appendix C: Conference Presentations 272



C.1.3 6th International Symposium on Fish Immunology, 24-29 May 2004, 

University of Turku, Turku, Finland

TITLE: THE EFFECT OF SEASON ON THE IMMUNE REPONSE OF 
RAINBOW TROUT (ONCORHYNCHUS MYKISS)
Author(s): A. L. Morgan* (1), M.J.R. Porter(2), Migaud, H .(l), N. Bromage (1) and K.D.Thompson (1).

Affiliation(s): (1) Institute of Aquaculture, University of Stirling, Scotland. (2) School of Aquaculture, 
University of Tasmania, Tasmania.

Seasonality is inextricably linked with the life history of fish. It is becoming increasingly apparent that 
season affects the immune system of many vertebrates. The data presented here focuses on the effect of 
season on the non-specific immune response of rainbow trout.

A 12 month seasonality trial was carried out. Fish studied were all female and had an average weight of 
20g at the start of the trial. The fish were divided into three tanks and allowed to acclimatize to ambient 
temperature and photoperiod for one month prior to sampling. Each month fish were sampled and a 
variety of non-specific immune responses measured including respiratory burst, phagocytosis, red and 
blood cell counts. A seasonal response was observed however, the environmental cue for the observed 
response couldn't be identified from this trial. Consequently, trials were set up to determine if photoperiod 
or temperature (primary seasonal cues) were the environmental trigger for the seasonal changes observed 
in the immune response of O. mykiss. Temperature was found to have a significant effect on several of the 
immune parameters studied including blood counts and respiratory burst. Haematocrit was not affected by 
temperature. Conversely, photoperiod was found to have no effect on the parameters studied with the 
exception of haematocrit in winter. It is anticipated that the data from this study will form the basis of a 
simple model and together with results from other seasonality trials could be used to predict times of 
immunosuppression in fish as a result of projected seasonal variation. Knowledge of when 
immunosuppression occurs in fish allows the farmer to provide adequate immunostimulation to reduce 
the risk of associated health problems.
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C.1.4 Aquaculture Europe 2004, “Biotechnologies for Quality”, 20-23 October 

2004, Barcelona, Spain

TEMPERATURE AND IMMUNITY IN RAINBOW TROUT (ONCORHYNCHUS 
MYKISS)
A.L. Morgan1, M J.R . Porter2, H. Migaud1, N.R. Bromage1, and K.D. Thompson1

1 Institute of Aquaculture, University of Stirling, Stirling, Scotland. FK9 4LA 

E-mail: a.l.morgan@stir.ac.uk

2 School of Aquaculture, University of Tasmania, Tasmania,

Introduction

Seasonality dominates the life history of fish. It affects a variety of factors including growth, reproduction 
and immune response. Environmental factors, mainly temperature and photoperiod, are known to undergo 
circadian and circumannual rhythms and have been proposed to be direct causative agents of these 
variations. This work examines the effect of temperature on serum lysozyme activity, blood counts and 
general disease resistance at three treatment temperatures (5, 10 and 18°C) and then after acclimation to a 
challenge temperature of 15°C.

Materials and methods

To examine the effect of temperature on the immune response of rainbow trout a trial was carried out 
consisting of duplicate tanks of fish held at three different temperatures (5, 10 and 18°C). After four 
weeks at their respective temperatures serum lysozyme and blood cell counts were measured, n = 
20/treatment (fish were culled following sampling). The remaining fish were then gradually acclimated to 
15°C for one week and serum lysozyme and blood cell counts were remeasured, n = 20/treatment (fish 
were culled following sampling). The remaining fish were challenged with Vibrio anguiiiarum, n = 
30/treatment Only female fish were used and their starting weight was 65g. Photoperiod was 12:12LD 
throughout the trial.

Results

White blood cell counts measured in fish maintained at the original three treatment temperatures (5, 10 
and 18°C) were significantly affected by temperature (Fig. 1). It was observed that the greater the 
temperature the higher the number of white blood cells.

Following acclimation to 15°C fish originally held at 5°C exhibited a significantly increased white blood 
cell count (P=0.000). Whereas fish originally held at 18°C exhibited a significant reduction in their white 
blood cell counts (P=0.000). This observed pattern of results was repeated for serum lysozyme activity.

Survival to challenge with V. anguiiiarum  varied between treatment groups, (Fig. 2). Fish originally held 
at the lowest treatment temperature of 5°C exhibited the highest level of survival and at 18°C the lowest.

Appendix C: Conference Presentations 274

mailto:a.l.morgan@stir.ac.uk


E *-

3
8
■8 H

I

I 10°C
i ie°c

Fig. 1. The effect of acclimating fish 
originally held at the three original 
treatment temperatures to 15°C, on 
white blood cell counts (n=20/treatment, 
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Discussion

This data corroborates the well established theory that temperature significantly affects immunity. A 
suggested hypothesis for the observed changes in immune activity following acclimation is that the act of 
raising temperature from 5°C to 15°C maybe mimicking the natural spring immune activity. A previous 
study carried out at the Institute of Aquaculture observed that the majority of immune responses increase 
in activity during spring and peak in summer (1). Further work is required, for example a trial where the 
water temperature is gradual increased and a variety of immune parameters measured at set increments 
would help to better understand this phenomenon.
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C.2 Poster Presentations

C.2.1 10th International Conference of the European Association of Fish 

Pathologists, 9-14 September 2001, Trinity College, Dublin, Ireland

The Effects of Seasonality on the Immune Response of Rainbow Trout 
(Oncorynchus mykiss)
Morgan, A.L., K.D. Thompson, M.J.R. Porter, N. Auchinachie and C. Burrels1.

Institute of Aquaculture, Stirling, Scotland;

1EWOS Technology Centre, Livingston, Scotland

Whilst immune responses of ectotherms are known to vary seasonally, little work has been carried out on 
the seasonal variations in immune function in fish. Many vertebrates display profound changes in their 
physiology and behaviour coincident with variations in their seasonal environment. These include 
changes in reproductive activity, immune response, food intake, locomotor activity, body weight and 
body condition. Due to the long-term nature of these physiological changes, such adaptations cannot be 
reactive, but instead must be initiated before the anticipated changes in climatic conditions. Therefore, the 
mechanisms that regulate these seasonal changes demand a temporal component, which ensures that 
physiological changes remain synchronised with the appropriate time of the year. Photoperiod provides a 
highly predictable environmental time cue which is used by many vertebrates to co-ordinate their 
seasonal physiological cycles. In addition, it is well documented that within the animal photoperiodic 
messages are conveyed by the pineal hormone, melatonin (1).

At present two 12 month trials are being performed. One is examining the effect of temperature on the 
immune system of Oncorhynchus mykiss under a constant 12h light/12h dark photoperiod. The second 
examines the effects of variation and/or constant release melatonin implantation on the seasonal variation 
in the immune response of O. mykiss maintained under a simulated natural photoperiod. Preliminary 
studies at the Institute have demonstrated that long-term administration (9 weeks) of melatonin via 
intramuscular implants significantly enhances a number of immune parameters and improves disease 
resistance (2). In conjunction with this trial, half of the fish were maintained on EWOS ‘Booster’ diet, 
which is rich in nucleotides, to see if it could alleviate seasonal immunosuppression when compared to a 
standard commercial diet which was fed to the remaining fish. Immune parameters of both the specific 
and the non-specific immune system are being assessed over the course of the two trials, results of which 
will be presented here.

It is anticipated that this research investigating the seasonal effects of natural and artificial photoperiods 
on basic immune function will be of benefit to the aquaculture industry. It will provide information that 
will allow administration of commercial diets containing functional supplements to be timed effectively 
and will facilitate our understanding of the epidemiology of specific fish pathogens.

1. Morgan, P J . and Mercer, J. (1994). Control of Seasonality by melatonin, Proceedings o f  the 
Nutrition Society: Symposium on ‘Seasonality’, 53,483-493.

2. Weber, E.P. (1999). The effects of melatonin on the innate immune system of rainbow trout 
{Oncorhynchus mykiss), MSc. Thesis, Institute of Aquaculture, Stirling, Scotland.
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C.2.2 3rd International Symposium on Fish Vaccinology, 9-11 April 2003, Bergen, 

Norway

The Effect of Season on the Specific Immune Response of Rainbow Trout 
(Oncorhynchus mykiss)
Alison L. Morgan (1). Mark J.R. Porter(2), Charlie Burrells (3), Niall Bromage (1) and Kim D. 
Thompson (1).

Institute of Aquaculture, Pathfoot Building, University of Stirling, Scotland. FK9 4LA.

School of Aquaculture, University of Tasmania, Launceston, Tasmania, Australia 

EWOS Innovation, Westfield, Bathgate, West Lothian, Scotland. EH48 3BP.

Immune responses of ectotherms are known to vary seasonally, although little work has been carried out 
on the effect of seasonality on immune responses in fish. Environmental factors, mainly temperature and 
photoperiod, are known to be subject to circadian and circumannual rhythms and have been proposed to 
be directly entrained by these variations. Preliminary studies have demonstrated that long-term 
administration (9 weeks) of melatonin via intramuscular implants significantly enhanced a number of 
immune parameters and improved disease resistance. The effects of seasonal variation and/or constant 
release melatonin implants on the specific immune response of rainbow trout were examined when 
maintained under a simulated natural photoperiod. In conjunction with this trial, half the fish were fed the 
EWOS ‘Boost’ diet, which is rich in nucleotides, to assess whether it could alleviate seasonal 
immunosuppression when compared to a standard commercial diet.

In addition, fish were vaccinated against V. anguiiiarum. Antibody titres of fish were measured monthly 
using ELISA. Four months after vaccination, fish were challenged with V. anguiiiarum; this was repeated 
three times at 3-month increments. Boost diet and melatonin had no effect on antibody titre. Boost diet 
improved survival following challenge with V. anguiiiarum. Season significantly effected antibody titre. 
Rapidly increasing antibody titres were observed during spring -  this correlated with increasing spring 
temperatures. The implications of season i.e. time and the seasonal fluctuations of temperature and 
photoperiod will be discussed.
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