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Abstract 1 

Current analyses and predictions of spatially-explicit patterns and processes in ecology most often rely 2 

on climate data interpolated from standardized weather stations. This interpolated climate data 3 

represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many 4 

climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is 5 

particularly important in relation to effects of observation height (e.g. vegetation, snow and soil 6 

characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. 7 

topography, radiative forcing, or cold-air pooling). Since organisms living close to the ground relate 8 

more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground 9 

and near-surface data are needed to provide realistic forecasts of the fate of such organisms under 10 

anthropogenic climate change, as well as of the functioning of the ecosystems they live in. 11 

To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a 12 

geospatial database initiative compiling soil and near-surface temperature data from all over the 13 

world. Currently this database contains time series from 7538 temperature sensors from 51 countries 14 

across all key biomes. The database will pave the way towards an improved global understanding of 15 

microclimate and bridge the gap between the available climate data and the climate at fine 16 

spatiotemporal resolutions relevant to most organisms and ecosystem processes.  17 

Keywords: microclimate, soil climate, climate change, topoclimate, database, temperature, species 18 

distributions, ecosystem processes  19 



 

 

Introduction 20 

Current ecological research increasingly deals with large-scale patterns and processes, with global 21 

databases of species distributions and traits becoming increasingly available (Bruelheide et al., 2018, 22 

Kissling et al., 2018, Kattge et al., 2019). Analyses of these patterns and processes – and their 23 

predictions under anthropogenic climate change – often rely on global climatic grids at coarse spatial 24 

resolutions interpolated from standardized weather stations that represent long-term average 25 

atmospheric conditions (Lembrechts et al., 2018). Moreover, sensors in these weather stations are 26 

shielded from direct solar radiation and located at ~2 meters above a frequently mown lawn (free-air 27 

temperature or 'macroclimate', Jarraud, 2008). These climatic grids thus ignore many climate-forcing 28 

processes that operate near the ground surface, at fine spatiotemporal resolutions, and in 29 

environments that vary in their exposure to winds, radiation and moisture ('microclimate', Daly, 2006, 30 

Bramer et al., 2018, Körner & Hiltbrunner, 2018). Importantly, while these microclimatic processes 31 

often operate at fine spatiotemporal resolutions, they can affect ecological relations both at the local 32 

and the global scale (De Frenne et al., 2013, Ashcroft et al., 2014, Lembrechts et al., 2019). For 33 

example, they can potentially protect ground-dwelling biota against long-term climate variability, 34 

providing microrefugia for these species to survive in locations deemed unsuitable in models using 35 

climate data at coarse spatial resolutions, or buffer organisms against short-term extreme events (De 36 

Frenne et al., 2013, Lenoir et al., 2017, Bramer et al., 2018, Suggitt et al., 2018). Microclimates can 37 

however also expose organisms to more extreme temperatures, in which case distribution models 38 

that ignore such microclimates may erroneously predict species survival instead of extinction 39 

(Pincebourde & Casas, 2019). In order to provide realistic forecasts of species distributions and 40 

performance, as well as of the functioning of the ecosystems they operate in, climate data that 41 

incorporates microclimatic processes, ideally measured in-situ, are thus urgently needed (Körner & 42 

Hiltbrunner, 2018). 43 

Horizontal and vertical features driving microclimate 44 

The offset between micro- and macroclimate is particularly pronounced around the soil surface, as 45 

temperatures measured at 2 m above the ground can differ substantially from those at ground level, 46 

or in the layers just above and below it (Geiger, 1950, Lembrechts et al., 2019). This offset can result 47 

from both ‘horizontal’ and ‘vertical’ features (Fig. 1), and can exceed several degrees centigrade in 48 

annual averages. For example, Kearney (2019) modelled coarse-scale soil temperatures at various 49 

depths considering the vertical features affecting the radiation balance. These vertical features include 50 

the effects of vegetation characteristics (e.g. structure and cover), snow cover and soil characteristics 51 

(e.g. moisture content, geological types, texture and bulk density) (Li, 1926, Zhang et al., 2008, 52 



 

 

Lembrechts et al., 2019). The result of these vertical features is not only an instantaneous temperature 53 

offset between air and soil temperatures, but also a buffering effect, i.e. the temporal variability in 54 

temperature changes is lower in the soil than in the air (Geiger, 1950, Ashcroft & Gollan, 2013). 55 

Horizontal processes on the other hand relate more to the spatial resolution of the climatic data. They 56 

can be broken up into those that require only fine-resolution environmental information for specific 57 

sites (e.g. effects of slope and aspect on radiation balances; Bennie et al., 2008), and those where 58 

temperatures are also affected by neighboring locations (e.g. topographic shading, cold-air drainage 59 

and atmospheric temperature inversions, which are landscape context dependent; Whiteman, 1982, 60 

Ashcroft & Gollan, 2012).  61 

How horizontal and vertical features interact to define differences between soil and air temperature 62 

may differ with the biome, season and day time. For example, in grasslands during summer, incoming 63 

short-wave solar radiation is usually the dominant factor determining daytime soil surface 64 

temperatures, which in turn result in higher air temperatures through convective heating (Geiger, 65 

1950). However, during winter, horizontal processes such as cold-air drainage and coastal buffering 66 

can have larger effects, especially on overnight air temperatures, when air temperatures may be 67 

driving soil temperatures rather than vice-versa (Vitasse et al., 2017). In dense forests, the situation is 68 

even more complex: upper canopies block the bulk of short wave solar radiation, such that sub-canopy 69 

temperatures are determined by convective heat transfer between the air surrounding the canopy 70 

and direct conductance through physical contact of different parts of the canopy layer, in addition to 71 

the limited radiation that does permeate the canopy  (Körner & Paulsen, 2004, Lenoir et al., 2017, 72 

Zellweger et al., 2019). As a result, horizontal processes such as passing fronts, and winds blowing in 73 

hotter or colder air from outside the forest, will in large part define the – dampened – temperature 74 

patterns under forest canopies (Ashcroft et al., 2008).  75 

The need for microclimate data across the field of ecology 76 

Many organisms living in the soil and close to the soil surface (e.g. soil micro-organisms like fungi, 77 

ground arthropods, herbs, mosses, tree seedlings and small vertebrates) only experience fine-scale 78 

soil and/or near-surface temperatures, and thus likely relate less strongly to free-air temperatures 79 

(Randin et al., 2009, Niittynen & Luoto, 2017, Lembrechts et al., 2019). This may be reflected in a 80 

species’ distribution, but also their morphology, physiology and behavior (Körner & Paulsen, 2004, 81 

Kearney et al., 2009, Opedal et al., 2015, de Boeck et al., 2016). Many species indeed survive, live and 82 

reproduce where average background climate appears unsuitable, and equally may be gone from sites 83 

within apparently suitable areas where microclimatic extremes exceed their limits (Suggitt et al., 84 

2011). Without microclimate data, we not only lack information on the potential thermal 85 



 

 

heterogeneity that is available for species to thermoregulate in situ, but also on the true magnitude 86 

of climate change that species will be exposed to (Pincebourde et al., 2016, Maclean et al., 2017). 87 

Accurately predicting how species' ranges will shift under climate change requires a good 88 

understanding of the variety of climate niches truly available to them (Maclean et al., 2015, Lenoir et 89 

al., 2017). The latter requires both a good understanding of what defines current microclimates, as 90 

well of how climate change will interact with the drivers of microclimatic conditions (Maclean, 2019). 91 

Additionally, it is the soil temperature rather than the air temperature that defines many ecosystem 92 

functions in and close to the soil, like evapotranspiration, decomposition, root growth, 93 

biogeochemical cycling and soil respiration (Pleim & Gilliam, 2009, Portillo-Estrada et al., 2016, Hursh 94 

et al., 2017, Gottschall et al., 2019, Medinets et al., 2019). Given the repeatedly proven sensitivity of 95 

many of these processes to temperatures (Rosenberg et al., 1990, Coûteaux et al., 1995, Schimel et 96 

al., 1996), here again having accurate measurements will be of utmost importance. The carbon 97 

balance in boreal forests, for example, is largely dependent on soil thaw and thus soil rather than air 98 

temperatures (Goulden et al., 1998).  99 

These realizations highlight the urgency to start using soil and near-surface microclimate data when 100 

modelling the ecology and biogeography of surface and soil-dwelling organisms, as well as the 101 

functioning of soil ecosystems, instead of readily available coarse-scaled free-air climate data (from 102 

e.g. CHELSA (Karger et al., 2017), TerraClimate (Abatzoglou et al., 2018) or WorldClim (Fick & Hijmans, 103 

2017)). While a suit of models now exist that produce fine-scale climate data (Bramer et al., 2018, 104 

Lembrechts et al., 2018), we do not yet fully understand whether models using data that represent 105 

average conditions over large areas provide adequate “mean field approximations” of (i.e. are 106 

representative for) more complex spatiotemporal effects driven by the climatic conditions that 107 

organisms experience (Bennie et al., 2014). To accomplish the latter, global in-situ data is needed for 108 

large-scale fine-resolution calibration and validation of these models. However, while the quality and 109 

resolution of free-air temperature data and models at the global scale is rapidly improving (Bramer et 110 

al., 2018), soil temperature datasets used in biogeography and biogeochemistry are still largely 111 

restricted to the landscape or regional scale, at best, and from intensively studied regions only 112 

(Ashcroft et al., 2008, Ashcroft et al., 2009, Carter et al., 2015, Aalto et al., 2018), or they are derived 113 

from models lacking fine-grained ground-truthing data (e.g. Copernicus Climate Change Service (C3S), 114 

2019). Land surface temperatures as obtained from satellite data, on the other hand, are hampered 115 

by their inability to measure below the vegetation cover (Bramer et al., 2018).  116 

In order to accurately describe and predict the (future) distribution and/or traits of surface and soil-117 

dwelling species at larger scales, we need to improve our general knowledge of the offsets and 118 



 

 

spatiotemporal changes in variability between soil-level and free-air temperatures (Aalto et al., 2018, 119 

Lembrechts et al., 2019). There is an urgent need to work towards globally available soil and near-120 

surface temperature data based on in-situ measurements and at relevant spatiotemporal resolutions 121 

(Ashcroft & Gollan, 2012, Pradervand et al., 2014, Slavich et al., 2014, Opedal et al., 2015, Meineri & 122 

Hylander, 2017). 123 

Launch of the SoilTemp database 124 

To tackle these issues, we launch an ambitious database initiative, compiling soil and near-surface 125 

temperature data from all over the world into a global geospatial database: SoilTemp. At the time of 126 

writing, we brought together temperature data from 7538 sensors placed both below, at and above 127 

(up to 2 m) the soil surface (Fig. 2a), which is an accumulation of over 180.000 months of temperature 128 

data with measurement intervals between 1 and 240 minutes (>30% every 60 minutes). The database 129 

hosts loggers from 51 different countries spread across all continents, with a broad distribution across 130 

the world’s climatic space (Fig. 2b). There is a dominance of time series from Europe and areas below 131 

1500 m a.s.l. (Fig. 2c, d). More than 75% of sensor measurements occurred within the last decade, but 132 

the database does contain several time series covering longer time periods as well, with a maximum 133 

of 42 years (Fig. 2d). 134 

When the remaining critical gaps in our spatial coverage will be filled (see below), this database will 135 

allow global assessments of the long-established theories on boundary layer climatology in 136 

heterogeneous environments (Geiger, 1950), which has so far been lacking. The growing database 137 

provides a unique opportunity to disentangle the role of the different horizontal and vertical features 138 

influencing soil and near-surface temperature across all biomes of the world, with high spatial and 139 

temporal resolutions. It will allow relating patterns in soil temperature to processes in the lower air 140 

layers and calibrate and validate global models of soil temperature and (micro)climate (Kearney et al., 141 

2014a, Kearney et al., 2014b, Carter et al., 2015, Maclean et al., 2017). It will also allow us to create 142 

global maps of a wide array of general and microclimate-specific bioclimatic variables (e.g. growing 143 

degree days, growing season length) at relevant spatiotemporal resolutions (Körner & Hiltbrunner, 144 

2018).  145 

Ultimately, this joint global effort and the resulting global microclimatic products will enable us to 146 

improve analyses of the relationships between species’ macroecology and the microclimate they 147 

experience, identify microrefugia and stepping stones and improve global models of ecosystem 148 

functioning and element cycling. Indeed, replacing the coarse-scaled free-air temperature averages 149 

used traditionally in models in all fields of ecology with these more relevant soil-specific data products 150 



 

 

is likely to increase their descriptive and predictive power, as the countless above-mentioned regional 151 

studies exemplify (Lembrechts et al., 2019). Additionally, this first global effort to combine and collect 152 

in-situ measurements will help solve long-standing issues regarding sensor comparability and data 153 

collection variability (Bramer et al., 2018), as well as the question at what spatial scale microclimate 154 

data can prove most informative for ecological modelling  (Jucker et al., 2020). The temperature time 155 

series in the database, many of which are covering increasingly long time periods of up to a decade or 156 

more, will also allow fine-tuning forecasts of microclimate data into the future by deepening our 157 

understanding of the link between microclimatic dynamics in the soil and the air (Lenoir et al., 2017, 158 

Wason et al., 2017, Bramer et al., 2018, Maclean, 2019), improving our predictions of biodiversity and 159 

ecosystem functioning under climate change. 160 

Dig out your loggers! A call for contributions 161 

To reach these goals, we encourage scientists owning in-situ measured temperature data to submit 162 

these to the growing SoilTemp database. All time series spanning one month or more, with 163 

temperature measurements a maximum of 4 hours apart, all soil depths, all heights above the ground 164 

up till two meters, all biomes, and all sensor types and brands will be accepted. Note that both spatially 165 

dense and sparse logger networks, as well as single loggers are accepted. The achieved spatial 166 

resolution is dependent on the provision of spatially precise coordinates to achieve a good relationship 167 

with potential explanatory variables (e.g. high resolution remotely sensed environmental data). If we 168 

have these coordinates and thus the location and distance between loggers, we can effectively obtain 169 

the extent and spacing for each logger network (Western et al., 2002).  170 

We include data from both observational and experimental plots, yet sensors have to be measuring 171 

in-situ and not in pots, and experiments manipulating the local climate (e.g. open-top chambers, rain-172 

out shelters or vegetation-removal experiments) are excluded (Table 1). Given currently less well-173 

represented climate regions, we especially encourage submissions from extreme cold and hot 174 

environments to fill the remaining gaps in our global coverage. More specifically, hot tropical climates 175 

(both tropical rainforests and tropical seasonal forests and savannas) and cold and hot deserts are 176 

currently still largely underrepresented (Fig. 2b), in particular from Africa, Asia, Antarctica and the 177 

Americas (Fig. 2a). Data contributors will be invited as co-authors on the main global papers resulting 178 

from this database (see Supplementary Materials for details on terms of use and data ownership).  179 

By encouraging sampling and submissions from remote areas, we aim to help solve the global sampling 180 

bias in soil ecological data (Cameron et al., 2018, Guerra et al., 2019), and we hope to build a truly 181 

global network representing – and actively engaging - scientists from a wide diversity of cultural 182 



 

 

backgrounds (Maestre & Eisenhauer, 2019). More information is available on the SoilTemp website, 183 

accessible via Figshare (DOI 10.6084/m9.figshare.12126516).  184 

When fully established, the SoilTemp database and its derivative products (e.g. bioclimatic variables) 185 

will be made freely available to facilitate the analysis of global patterns in microclimates, increase the 186 

comparability between regional studies and simplify the use of accurate microclimatic data in ecology 187 

(Bramer et al., 2018). At the moment, critical metadata is already freely accessible via Figshare (DOI 188 

10.6084/m9.figshare.12126516). Given the absence of and the need for globally available soil 189 

microclimate data products at relevant spatial resolutions for use in ecological analyses, we believe 190 

that SoilTemp has the potential to become a highly important resource that will enable a step change 191 

in ecological modelling. 192 

  193 
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Table 194 

Table 1: Minimal data requirements and obligatory metadata for submission to the database. For 195 

more details, see Supplementary Material. 196 

 197 

Minimum data requirements Obligatory metadata 

Minimum one consecutive month of in-situ 
measured temperature time series 

Accurate (handheld GPS or finer) spatial 
coordinates of the loggers (+ estimated 
accuracy) 

Maximum time interval between measurements: 4 
hours 

Height/depth of the sensor relative to the 
soil surface  

No climate manipulation experiments (only control 
plots of those experiments, or observational studies) 

Type or brand of temperature sensor used, 
and type of shelter (e.g. no shelter, home-
made shelter, Stevenson screen…)  

No modelling studies (only empirical data) Temporal resolution of the sensor 

 Habitat classification 

  

 198 

  199 



 

 

Figures 200 

Figure 1: the horizontal and vertical drivers of the offset between in-situ soil and free-air 201 

temperatures. Conceptually, there are two different sets of features responsible for the offset between 202 

coarse-scale free air temperatures (top left, e.g. WorldClim, Fick & Hijmans, 2017) and fine-scale soil 203 

temperatures (bottom right, e.g. Ashcroft & Gollan, 2012, Lembrechts et al., 2019),. Firstly, one can 204 

incorporate fine-scale horizontal climate-forcing factors like topography and terrain-related features, 205 

land cover types and distance to water bodies to go from coarse-scaled to finer resolutions (top right, 206 

e.g. Aalto et al., 2017, Macek et al., 2019). Secondly, one can consider observation height, and the 207 

effects of vegetation characteristics (like structure and cover), snow cover and soil characteristics (like 208 

moisture, geological types, texture and bulk density) on the radiation balance to convert from free-air 209 

to soil temperatures (e.g. Kearney, 2019). Both horizontal and vertical features can introduce positive 210 

or negative differences (offset values) between soil and air temperatures through their effects on 211 

processes related to the radiation balance, like wind, convective heat transfer and surface albedo. The 212 

complexities of these horizontal and vertical processes can vary with biome, season and time of day. 213 

Temperatures are represented here using an unspecified temperature range from cold (blue) to warm 214 

(red).  215 



 

 

Figure 2: Overview of the status of the SoilTemp-database as of March 2020. Spatial (a), climatic (b), 216 

elevational (c) and temporal (d) distribution of sensors in the SoilTemp-database as of March 2020. (a) 217 

Background world map in WGS1984, hexagons with a resolution of approximately 70.000 km² using 218 

the dggridR-package in R. (b) Colors of hexagons indicate the number of sensors at each climatic 219 

location, with a 40 × 40 bin resolution. Small dots in the background represent the global variation in 220 

climatic space (obtained by sampling 1.000.000 random locations from the CHELSA world maps at a 221 

spatial resolution of 2.5 arc minutes. Overlay with dotted lines and numbers (from 1 to 9) depict a 222 

delineation of Whittaker biomes (adapted from Whittaker, 1970): (1) tundra and ice, (2) boreal forest, 223 

(3) temperate seasonal forest, (4) temperate rainforest, (5) tropical rainforest, (6) tropical seasonal 224 

forest/savanna, (7) subtropical desert, (8) temperate grassland/desert, (9) woodland/shrubland. (c) 225 

Number of sensors in each elevation class. (d) Time span covered by each sensor in the database, 226 

ranked by starting date. Data showed from 1992 onwards, note that the time period covered by 4 227 

loggers with starting dates in 1976 is truncated.  228 
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