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Abstract
Parasite infections of individual hosts are determined largely by their exposure, resistance and 

susceptibility to parasites. Heterogeneity in patterns of infections between individual hosts 

reflects the outcome of a variety of host-parasite interactions, which will be influenced by factors 

such as host physiology, behaviour, and habitat, as well as parasite-related factors. Establishing 

patterns of parasite infection among individual hosts, and identifying the complex interactions 

that create them, is of interest not only to epidemiologists, but also has relevance within the wider 

field of ecology. Using a variety of statistical and experimental techniques, this study examined 

particular patterns and associated processes acting to create heterogeneities in parasite infection 

in individual red grouse (Lagopus lagopus scoticus), a species of ecological and socio-economic 

importance. This study began by calibrating the use of faecal egg counts to estimate intensities of 

infection of the gastrointestinal nematode Trichostrongylus tenuis, an important parasite of red 

grouse. Analyses of patterns of infection within and between breeding pairs and broods of chicks 

showed that there was no relationship between infection intensities of paired males and females 

or between genetically similar individuals. This suggested that both exposure and host resistance 

may be important in determining an individual’s parasite infection. A cross-fostering experiment 

was attempted to tease apart the relative contribution of exposure and resistance, but was not 

successful due to extraneous events. Within breeding pairs, red grouse were found to exhibit 

positive assortative mating with respect to body condition and, in both sexes, bigger ornamental 

combs were associated with better body condition, suggesting that comb size might function as a 

signal of individual quality. Comb size is testosterone dependent and in males, further 

experimental work showed that experimentally elevated testosterone in male red grouse imposed 

a cost through reduced immunocompetence and higher intensities of T. tenuis. These interactions 

have important implications for our understanding of sexual selection and cyclic population 

dynamics.
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General introduction

1.1 Host-parasite interactions

Parasites have the ability to impact considerably on their hosts, by reducing their survival, 

fecundity and thus general fitness (Gulland, 1995; Goater & Holmes, 1997). As such, much 

quantitative research has focussed on understanding the epidemiology of host-parasites 

interactions. The impact of parasites on their hosts is of particular interest when hosts are of 

conservational importance (Daszak et al., 2000) and socio-economic importance, such as those 

affecting human health (Crompton, 1994; Woolhouse, 1994) or commercial activities such as 

livestock production (Grenfell et al., 1995) and the harvesting of fish and game (Hudson et al., 

1985; Burt, 1994; Tompkins et al., 2000). Furthermore, host-parasite interactions are also of 

considerable ecological interest (Grenfell & Dobson, 1995). Recent theoretical advances suggest 

that parasites may play an important role within natural animal populations in areas such as life 

history evolution (Moller, 1997), sexual selection (Hamilton & Zuk, 1982; Read, 1988; Maynard- 

Smith, 1991; Moller, et al., 1999), the maintenance of genetic variation (Anderson & May, 1982; 

Hamilton, 1982) and the evolution of sex (Jaenike, 1978; Hamilton, 1980; Hamilton et al., 1990). 

A further area of interest to ecologists is the role of parasites in population dynamics (Anderson 

& May, 1978, 1979; May & Anderson, 1978; Roberts et al., 1995).

1.2 The effect of parasites on host population dynamics

Several northern species of vertebrates exhibit recurrent fluctuations in population abundance, 

commonly referred to as population cycles (Watson, 1979; Keith, 1990; Korpimaki & Norrdahl, 

1991; Small et al., 1993; Krebs, 1996; Stenseth et al., 1996; Hanski & Henttonen, 2002).
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Chapter 1. General introduction

Since the work of Elton, who first described regular oscillations in numbers of the snowshoe hare 

(Lepus americanus) and its associated predator the Canadian lynx {Lynx Canadensis) (Elton, 

1924), identifying the mechanisms driving such fluctuations in numbers, has been the subject of 

considerable theoretical and empirical research programs over the past 6 decades (Batzli, 1992; 

Oli & Dobson, 2000; Bjomstad & Grenfell, 2001; Moss & Watson, 2001) and the source of much 

controversy (Chitty, 1960 ; Krebs, 1996 ; Lidicker, 1988 ; Seldal et al., 1994 ).

A variety of mechanisms have been identified as capable of driving regular oscillations in 

population dynamics: those involving extrinsic factors such as food, parasites or predators (Krebs 

et al., 1995; Hudson et al., 1998; Korpimaki et al., 2002), and those involving intrinsic factors, 

such as changes in male aggressiveness or kin-facilitation (Chitty, 1967; Lambin & Yoccoz,1998; 

Moss & Watson, 2001; Mougeot et al., 2003 a, b). Much work to date has focussed on 

identifying the relative importance of extrinsic and intrinsic processes in driving these cyclic 

fluctuations and the topic remains widely debated (Lance & Lawton, 1990; Stenseth et al., 1996). 

However, the interaction between these two types of mechanism has received comparatively little 

attention (but see Grenfell et al., 1998; Coulson et al., 2001).

Theoretical models suggest that parasites may have a regulatory effect on their host populations if 

they reduce host survival and/or fecundity in a density-dependent manner (Anderson & May, 

1978; May & Anderson, 1978). However, given the difficulty in collecting long-term data 

necessary to explain the dynamics of natural populations, there are few studies providing 

empirical data to support these theoretical models. Evidence for a regulatory effect of parasites on 

population dynamics has so far been limited to studies of red grouse {Lagopus lagopus scoticus: 

Hudson et al., 1985, 1992, 1998; Dobson & Hudson, 1992), Svalbard reindeer {Rangifer



Chapter 1. General introduction

tarandus plathyrynchus: Albon et al., 2002), and more recently field voles (Microtus agrestis: 

Cavanagh et al., 2004).

Parasites are divided into microparasites and macroparasites (Anderson & May, 1979; May & 

Anderson, 1979). Microparasites (viruses, bacteria, and fungi) are characterized by their rapid 

reproduction directly within individual hosts, and their tendency to induce lasting immunity in 

recovered individuals (Dobson & Hudson, 1995). Macroparasites (helminths and arthropods), on 

the other hand, are usually visible to the naked eye and tend to have much longer generation 

times than microparasites. They do not usually reproduce directly within their definitive hosts 

and instead produce infective stages that usually pass out of the host before transmission to 

another host. Immune responses elicited by macroparasites depend on the number of parasites 

present in a given host, and tend to be of relatively short duration. Infections therefore tend to be 

of a persistent nature, with hosts being continually reinfected (Hudson & Dobson, 1995).

Within a host population, the overall impact of a macroparasite will depend on the interaction 

between both parasite pathogenicity and the frequency distribution of parasites within the host 

population (see Figure 1.1; Anderson, 1979; Anderson & Gordon, 1982; Hudson & Dobson,

1991). Highly pathogenic parasites that kill their host at low intensities will have an insignificant 

effect on the host population dynamics, as transmission rates will be low. On the other hand, 

moderately pathogenic parasites found at higher intensities, will have higher rate of transmission 

resulting in a greater impact on the population. Where parasites will have the greatest impact on 

host population equilibrium size, however, is where parasite pathogenicity is low enough not to 

impact on host mortality but where host fecundity is reduced (Hudson & Dobson, 1991). Thus, 

parasite pathogenicity can have contrasting effects on host population dynamics, either stabilising
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the host populations, where the parasite increases host mortality, or de-stabilising, where the 

effect of parasites reduces reproductive rate of their host (Anderson & May, 1978; May & 

Anderson, 1978).

Aggregated distribution 

in hosts Parasite extinct 

(too pathogenic)

Random distribution 

in hosts /

Q.

HighLow
Parasite pathogenicity

Figure 1.1: The effect of macroparasite pathogenicity and pattern of distribution on the 

host population (from Hudson & Dobson, 1991). Moderately pathogenic species tend to 

have the greatest effect on the host population size.

A characteristic of macroparasitic infections is that parasites tend to be unevenly distributed

throughout the host population. In the majority of cases parasites are clumped or aggregated

within a few individual hosts (Crofton, 1971; Anderson & May, 1978; Anderson & Gordon,

1982; Grenfell et al., 1995; Shaw & Dobson, 1995; Wilson et al., 1996; Shaw et al., 1998). A

measure of the degree of dispersion is the variance to mean ratio (Anderson & Gordon, 1982).

Where the variance in parasite numbers exceeds the mean, parasites are said to be over-dispersed

within the host population. This pattern of over-dispersion or aggregation, is commonly described

20



Chapter 1. General introduction

empirically by the negative binomial, which is governed by two parameters; the mean and k 

which is an inverse measure of the aggregation (Crofton, 1971; Anderson, 1979; Anderson & 

Gordon, 1982; Hudson & Dobson, 1991; Poulin, 1993; Grenfell et al., 1995; Shaw & Dobson, 

1995; Wilson et a l , 1996, 2002).

The degree to which parasites are aggregated within the host population has important 

implications for the dynamics of the parasite-host system (Dobson & Grenfell, 1995). Where a 

large proportion of the parasite population is concentrated into a small proportion of the hosts, 

host factors that regulate parasites will affect large numbers of parasites and aggregated 

distributions will tend to stabilise host-parasite interactions. Impacts of parasites on host survival 

and fecundity will then affect only a small number of individuals. On the other hand, where the 

distribution of parasites within the host population is less aggregated, a greater proportion of the 

host population will be affected by the impact of parasites and host-parasite interactions will tend 

to be de-stabilised (Anderson & May, 1978; May & Anderson, 1978; Hudson & Dobson, 1995; 

Jaenike, 1996).

1.3 Factors affecting patterns of parasite infection

As the degree of aggregation plays a significant role in determining the degree of stability of 

host-parasite interactions, knowledge of causes of aggregated distributions has important 

implications for our understanding of host population dynamics, (Anderson & May, 1978; 

Boulinier et al., 1996; Grenfell, 1988, 1992). Two main mechanisms may act on individuals to 

influence patterns of aggregated parasite distributions observed at the population level: 1) those 

creating variation in host exposure to parasite infective stages and 2) those relating to differences 

between individuals in their resistance or susceptibility to parasites (Anderson & Gordon, 1982;
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Chapter 1. General introduction

Wilson, 1983; Anderson, 1993; Boulinier et al, 1996; Holmstad & Skorping, 1998; Wilson et al., 

2002).

The words ‘susceptible’ and ‘resistant’ are used in a variety of contexts in parasitology. A 

susceptible individual is defined as being either naive (previously uninfected) or having lost 

immunity and the ability to control the infection (Watt et a l, 1995). The immune system is the 

main defense mechanism with which to fight or control parasite infections and vertebrates have 

evolved the ability to produce a sophisticated immune response that usually involves both 

antigen-specific cell-mediated responses and humoral responses (Sheldon & Verhulst, 1996; 

Saino et a l , 1997). Immunity involves the presence of antibodies or activated cells as a means of 

counteracting disease or infection and may have a heritable component (innate immunity) or may 

be acquired by an individual following recovery from a disease or infection (Watt et a l , 1995).

Resistance is generally defined as the ability of the host to resist infection by a parasite. 

Differences in resistance may be either innate or dependent on the genetic, physiological or 

morphological characteristics of individual hosts (Wakelin, 1984), or may be influenced by 

varying host immune responses as a result of past experience of infection (Anderson & Gordon, 

1982; Stear et a l , 1999). Natural or non-specific resistance to disease has been defined as “a 

physiological incompatibility between parasite and host environment, which prevents invasion or 

establishment without the intervention of immunologically-based protective responses” 

(Wakelin, 1984). Acquired resistance occurs when a host exhibits some degree of regulation of 

parasite infection through activity of the immune system (Wakelin, 1984). That parasite 

resistance, is at least partially genetically determined, is a key assumption of certain theoretical 

evolutionary models (Anderson & May, 1982; Hamilton & Zuk, 1982; Folstad & Karter, 1992;
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Chapter 1. General introduction

Brinkhof et al., 1999). However, evidence for genetic variability in parasite resistance in natural 

vertebrate hosts is limited to a handful of studies (Moller, 1990; Bouliner et al, 1997; Brinkhof et 

a l, 1999; Smith et a l, 1999; Appleby et al, 1999; Coltman et a l,2001 ).

Within a host population, intensities of parasite infection generally vary considerably between 

individuals. A wide variety of both extrinsic and intrinsic factors, may influence an individual’s 

exposure or susceptible to parasite infection, which may accentuate heterogeneities in patterns of 

parasite infection between individuals within a population (Wilson et a l, 2002). If all individuals 

within a population are equally susceptible to parasites, then parasite infections will be 

determined simply as a function of the exposure rate. Exposure rate may be affected by a number 

of factors, such as habitat, temporal or spatial changes in climate, and differences in host 

physiology or behaviour (Crofton, 1971; Anderson & Gordon, 1982; Apanius & Schad, 1994; 

Hudson & Dobson, 1995; Shaw & Dobson, 1995). Hosts engage in a variety of behaviours, 

including foraging, reproductive and social behaviours, which parasites can exploit for their 

transmission (Apanius & Schad, 1994). Heterogeneity in exposure may be further influenced by 

host age and length of exposure to parasite infection, continued self-infection of hosts and by 

other infected individuals in the immediate area (Hudson & Dobson, 1995).

Evidence from an extensive number of vertebrate studies, across a wide variety of taxa, however, 

has shown that individuals may vary widely in their resistance to infection (Scott, 1988; 

Chevassus & Dorson, 1990; Moller, 1990; Wakelin, 1994; Stear & Murray, 1994; Douch et al, 

1995; Holmstad & Skorping, 1998; Lysne & Skorping, 2002). Moreover, a number of host- 

related factors may modulate the development and/or expression of the immune system reducing 

the ability of a host to resist parasite infection, and thus increasing host susceptibility to parasites
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(Anderson & Gordon, 1982; Lloyd, 1995). Factors which have been hypothesized to increase 

individual susceptibility to parasites of factors including toxic chemicals in pollution (Khan, 

1990), thermal stress from climate change (Harvell et al, 1999) and host diet and nutritional 

status (Solomons & Scott, 1994; Beck & Levander, 2000; Ezenwa, 2003). Host malnutrition may 

lead to impaired immunity, and as such may facilitate the establishment and survival of parasites 

(Solomons & Scott, 1994). Studies of domestic ruminants have also highlighted the fact that a 

synergistic interaction may occur between malnutrition and infection, such that negative effects 

of gastrointestinal parasite infections may aggravate nutritional deficiencies, and dietary 

deficiencies may exacerbate the effect of infection on host metabolism (Scrimshaw et al., 1959; 

Van Houtert & Sykes, 1996; Coop & Kyriazakis, 2001).

1.4 Parasites, life-history and sexual selection

In the last decade, ecologists and evolutionary biologists have become increasingly interested in 

parasites, and in particular in how they may shape a host’s life-history (Loye & Zuk, 1991; 

Grenfell & Dobson, 1995; Clayton & Moore, 1997). Traditionally, life-history trade-offs have 

been regarded as those between life-history components such as breeding vs survival, or the 

number and quality of offspring in current vs future reproduction (Steams, 1992). However, 

growing interest in the field of evolutionary ecology, has increasingly focussed on how parasite 

defence may shape a host’s life history (Zuk & Stoehr, 2002).

As animals have only a limited amount of resources, individuals must allocate these resources 

optimally between competing life history activities such as growth, reproduction and parasite 

defence (Steams, 1989, 1992; Roff, 1992; Owens & Wilson, 1999). The main physiological 

means by which animals resist or fight parasitic or pathogenic infections is through the immune
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system. Mounting an immune defence is regarded as an investment, as it is likely to be costly 

(Sheldon & Verhulst, 1996; Owens & Wilson, 1999; Lochmiller & Deerenberg, 2000; Telia et 

al., 2002). Thus, an individual may allocate resources to parasite defence rather than in other life- 

history activities such as reproduction (Hakkarainen et al., 1998; Owens & Wilson, 1999; Telia 

et al., 2002; Lozano & Lank, 2003). The trade-off between current and future reproduction is the 

central concept to life-history theory and a cost of current reproduction is regarded as a reduction 

in reproductive success later in life (Norris et al., 1994; Sheldon & Verhulst, 1996). One way that 

parasites may play a role in shaping life-history traits, is where increased investment in activities 

associated with reproduction may lead to reduced parasite defence and ultimately to increased 

susceptibility to deleterious parasite infections (Zuk & Stoehr, 2002 ; Moller, 1997; Norris et al, 

1994; Sheldon & Verhulst, 1996; McKean & Nunney, 2001).

Trade-offs may be particularly significant in species where individuals require elevated hormone 

levels to ensure reproductive success. In many species the hormone testosterone (T) is necessary 

for the expression of sexual behaviour, or secondary sexual ornaments that function in intra- and 

inter-sexual selection (Folstad & Karter, 1992; Eens et al., 2000; Peters, 2000; Stoehr & Hill, 

2000). In vertebrate species males often have higher parasite intensities relative to females (Zuk, 

1990; Poulin, 1996; Schalk & Forbes, 1997; Sheridan et al., 2000; Reimchen, 2001; Moore & 

Wilson, 2002; Wilson et al., 2002). One possible mechanism causing sex biased parasitism may 

be immune suppression by androgens (Folstad & Karter, 1992; Grossman, 1985, 1989; Zuk, 

1992; Sheridan et al., 2000; but see Hillgarth & Wingfield, 1997; Hasselquist et al., 1999). 

Immune function is regulated by the gonadal steroids oestrogens, androgens and progesterone 

(Grossman, 1984). Whilst female oestrogens have a dichotomous effect on the immune system, 

male androgens, in particular (T), are thought to suppress the immune system (Folstad & Karter,

25



Chapter 1. General introduction

1982; Grossman, 1984; Marsh, 1992).

Many animals display bright colours or elaborate ornaments that appear unlikely to enhance 

survival. Darwin (1871) suggested such ornaments may assist members of one sex to acquire 

mates and it is now widely established that ornamental traits, as expressed in males, are a product 

of sexual selection, and evolved through female mate preference. Models of sexual selection 

argue that ornamental traits in males function as indicators of male quality (Zahavi, 1975; 

Hamilton and Zuk, 1982; Andersson, 1994). Females may thus be able to assess the variation in 

male quality and discriminate between potential mates, by basing their preference on the size of 

sexual ornaments or intensity of sexual displays (Andersson, 1994). One hypothesis regarding the 

role of these ornaments, is that they may function as indicators of health and resistance to 

parasites. First proposed by Hamilton and Zuk (1982), this hypothesis has attracted increasing 

interest in the role that parasites might play in sexual selection (reviewed in Moller, 1990; Zuk,

1992). This hypothesis proposes that secondary sexual characteristics function to provide an 

honest signal to females, of a male’s gene-based ability to resist parasites. By choosing a healthy 

male, a female may accrue indirect advantages of resistant offspring (Hamilton and Zuk, 1982). 

A female may also gain direct fitness benefits through decreased risk of exposure to contagious 

parasites (the parasite avoidance hypothesis) (Borgia, 1986; Borgia & Collis, 1989).

Following the landmark paper by Hamilton & Zuk (1982) on the possible role of parasites in 

sexual selection, many studies have focussed on the dilemma faced by males. If sexual signalling 

is to be reliable, then there should be a cost associated with ornament or display exaggeration, in 

order to prevent cheating (‘Handicap hypothesis’; Zahavi, 1975; Grafen, 1990). With the 

‘immunocompetence handicap hypothesis’, Folstad and Karter (1992) proposed that although
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males may benefit from sexual attractiveness or increased competitive ability derived from 

elevated T levels, a physiological cost would be imposed from T-related suppression of immune 

function. According to this hypothesis, the costs that males pay for elevated T depends on the 

detrimental effects of parasites and on their ability to cope with levels of parasite infection. Males 

with comparatively low susceptibility to parasites or high resistance to parasite should pay a 

lower cost, other things being equal, for high levels of T (Folstad & Karter, 1992). Thus, males 

that exhibit exaggerated T dependent ornaments or behaviour, should be reliably signalling to 

potential mates, their ability to cope with the potentially detrimental consequences of high T 

(Saino et al., 1995). The interaction between testosterone and parasites is of interest not only to 

furthering our understanding of the selective pressure of parasites on their hosts, but may also 

play an important role in advancing our understanding of host population dynamics (Sheldon & 

Verhulst, 1996; Holmstad & Skorping, 1998; Lysne & Skorping, 2002).

1.5 Outline of the Thesis

The red grouse (Lagopus lagopus scoticus) is a game-bird species specific to upland moorland 

areas of the UK, and the tendency of this species to exhibit regular population fluctuations is of 

considerable socio-economic, conservation and ecological interest (Jenkins et al., 1967; Potts et 

al., 1984; Hudson, 1986; Dobson & Hudson, 1994; Moss et al., 1996; Hudson et al., 1998; Moss 

& Watson, 2001). The red grouse-Trichostrongylus tenuis host-parasite system is believed to play 

a significant role in the cyclic population dynamics of the host, and has been widely studied both 

at individual host and at host population levels. However, factors that may contribute to an 

individual’s parasite infection remain poorly understood within this system.
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This thesis aims to describe and explore, using experimental manipulations, factors influencing 

patterns of T. tenuis infection in red grouse. The red grouse is a good model species in which to 

examine patterns of parasite infection within individuals for several reasons. The relative ease 

with which free-living individuals can be caught at night, relocated through radio-telemetry 

techniques and most importantly recaptured, allows us to examine temporal changes in parasite 

infection. It also allows us to experiment on individuals in their natural environment. In addition, 

the gastrointestinal nematode T. tenuis is the main parasite of red grouse. It is host specific and 

has a simple, direct life-cycle.

Chapter 2 describes the host study species and introduces the parasite species examined in this 

thesis. Background information on red-grouse host-parasite interactions is given and general 

methods relevant to various chapters are also described. Chapter 3 focuses on the importance of 

being able to accurately measure parasite infections in living hosts of natural populations. Among 

infected hosts of a population, macroparasite infection levels may vary greatly. For 

epidemiologists studying macroparasite infections, describing a host as infected is not enough, 

and knowledge of the degree of infection is required to model host-parasite interactions 

(McCallum & Scott, 1994). An important epidemiological aspect of studies of host-parasite 

interactions, is the requirement to assess the distribution of parasites within the host population. 

One of the main parasite sampling techniques essential to this project and to research into red 

grouse in general, is the use of faecal egg counts as an indicator of worm burden. The main aim 

of Chapter 3 is to examine the reliability of this sampling method as an indicator of worm burden 

in red grouse. In Chapter 4, I examine patterns of infection between paired adult grouse and 

between chicks of the same brood, to assess naturally occurring patterns of infection. I then go on 

to examine which factors may be important in determining the intensity of an individual’s
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parasite infection. In order to understand why patterns of parasite aggregation in host populations 

might occur, experiments are required to separate the effects of heterogeneities in exposure rate 

from heterogeneities in host susceptibility (Lysne & Skorping, 2002). This was attempted 

through a cross-fostering experiment, which aimed to identify a heritable component to parasite 

infection. In Chapter 5, I investigate the possible role of parasites in sexual selection. I examine 

whether potential mates may use sexual ornament size as a signal of an individual quality and 

health, reflecting a better condition or fewer parasites. I also examine whether there is any 

evidence of positive assortative mating in red grouse. Chapters 6 & 7 examine the potential 

interaction between the male hormone testosterone and parasite infection. Testosterone may act 

upon the immune system to alter an individual’s resistance to parasites, increasing their 

susceptibility to infection. Chapter 6, examines the effect of experimentally elevated testosterone 

levels on sexual ornament size and immunocompetence. Specifically, this chapter sets out to test 

key predictions of the Immunocompetence Handicap Hypothesis in red grouse. Also using 

experimentally manipulated levels of testosterone, Chapter 7 investigates more specifically the 

effect of elevated circulating testosterone levels on T. tenuis infection intensity in males. Finally, 

Chapter 8 contains a general discussion and examines the wider implications of these findings.
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2.1 Introduction

Detailed methods relevant to each results chapter are contained therein. However, a number of 

materials and methods are relevant to all chapters. These are set out below.

2.2 The study species

The red grouse Lagopus lagopus scoticus (Figures 2.1 a, b), a subspecies of the willow grouse 

{Lagopus lagopus), is a medium sized game bird (wing-span 55-66cm), which exhibits slight 

sexual dimorphism, males being c. 5% larger than females (Cramp & Simmons, 1980). Red 

grouse feed predominantly on highly fibrous, but protein poor heather (Calluna vulgaris) and 

thus are restricted in their distribution throughout the British Isles to heather-dominant 

moorland (Husdon & Watson, 1985). Males are generally socially monogamous but polygyny 

sometimes occurs (<5% of pairs). The normal pair-bond may last 2 or more years, and 

depends on the success of the male in securing and maintaining a territory in the autumn 

(Cramp & Simmons, 1980).

In August and September, old males compete first to maintain or enlarge their territory from 

the previous autumn, and later young males attempt to establish new territories in unoccupied 

areas or between existing ones (Jenkins et al., 1963). The reproductive success of male 

depends on his ability to establish and maintain a territory and to attract a mate, and both 

aggressive behaviour and the expression of secondary sexual ornamental combs during the 

autumn and spring require the hormone testosterone (Moss et a l, 1979; Mougeot et al., 

2004).
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Most males failing to establish a territory in the autumn will disperse or will die from 

starvation, predation or disease over winter and spring, as a result of being forced into 

marginal habitats (Jenkins et al., 1963). Thus, territorial behaviour determines not only 

whether an individual will breed, but also largely determines survival (Cramp & Simmons, 

1980). Having loosely secured a female in the autumn, males will generally remain with that 

female throughout the winter. From February through to May, sexual activity is at its most 

intensive; males defend their territories all day long and both males and females are 

aggressive towards birds of their own sex (Jenkins et al., 1963). Males advertise to females 

through courtship displays on their territories and females will visit and stay with the most 

vigorous males (Watson & Jenkins, 1964).

Many red grouse populations are harvested annually and as such, bag-records have provided 

long-term data from which to examine population dynamics. Using a combination of bag 

records and breeding density data, it is apparent that red grouse populations regularly exhibit 

cyclic fluctuations in abundance which vary in periodicity from 4-10 years depending on 

latitude (Potts et ah, 1984; Williams, 1985; Hudson, 1986a).
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Figures 2.1 (a) Male red grouse (above) and (b) female red grouse (below) 

(J. Renet, 2003)
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2.3 The parasites 

Trichostrongylus tenuis

One of the main parasites of red grouse is the nematode Trichostrongylus tenuis which 

inhabits the relatively large caeca of the red grouse and, like most other gastrointestinal 

nematodes, has a simple, direct life cycle (Figure 2.2). Eggs laid by adult worms are voided 

onto the moor once daily in caecal droppings, and when the temperature exceeds 5°C, 

embryos develop and the first two larval stages complete their development in the faeces. 

Under conditions of adequate temperature and moisture, during May to November, they 

develop into infective larvae, which ascend the heather Calluna vulgaris (the main plant food 

of red grouse) and are ingested (Hudson, 1986b; Shaw et al., 1989). During the summer the 

ingested larvae soon develop into adults, usually within 2 weeks. However, in autumn, 

ingested larvae may become hypobiotic and delay development until spring in March and 

April when many may mature simultaneously and begin to produce eggs (Shaw, 1988). In 

spring, the numbers of eggs can increase suddenly even though no larvae-have been ingested 

for months.

Coccidia

Red grouse are also frequently infected by coccidia. Coccidia are single celled protozoan 

parasites that infect the intestine and caecum. Oocysts, are passed in faeces where they begin 

to mature or sporulate, after which they become infective to any host. Once ingested, the 

oocyst breaks open and releases motile sporozoites, each of which finds an epithelial cell and 

begins to reproduce inside it to form merozoites. Ultimately, the cell becomes full that it 

bursts, releasing the merozoites which seek out their own intestinal cells and the process 

begins again. As the intestinal cells are destroyed in larger and larger numbers, denudation of 

the epithelium may occur and intestinal function may be disrupted resulting in bloody, watery 

diarrhoea which may be dangerously dehydrating to very young hosts (Boden, 1998).
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2.4 Red grouse- T. tenuis host-parasite interactions

Adult worm survival in the red grouse has been estimated at 34%, nematodes surviving for up 

to 2 years (Hudson & Dobson, 1997), a lifespan similar to that of a grouse. Described as a 

moderately pathogenic parasite (Hudson 1986a,b), T. tenuis has proved lethal at high 

intensities, however, as with most infections of macro-parasites, infections of T. tenuis tend to 

be chronic (Shaw & Moss, 1989), leading to sub-lethal effects.

The red grouse has an unusually long caecum up to 75 cm in length, compared with much 

shorter caeca found in other herbivorous grouse, presumably to cope with the nitrogen poor, 

highly fibrous diet. Degeneration of the caecal mucosa is associated with the presence of 

nematodes and the effect of large infections of T. tenuis may be to cause pathological changes 

to the caeca such as a thickening of caecal mucus and desquamation of the mucosal wall 

(Watson et al. 1987). By causing a decrease in the absorptive area of affected parts of the 

caecum, T. tenuis may interfere with the normal digestion of heather and thus may affect the 

survival, competitive ability and fitness of red grouse, particularly when stressed (Figure 2.2; 

Watson et al, 1987; Dobson & Hudson, 1994).

Hudson (1986a) showed that within a population of red grouse, prevalence of infection is

high, with 100% of old grouse and 99% of birds more than 3 months old found to be infected

with T. tenuis. Such high prevalence of this nematode in populations suggests that

transmission between individual hosts is extremely effective (Shaw, 1988). The

gastrointestinal nematode Trichostrongylus tenuis, is known to have important detrimental

effects on red grouse physiology and energetics (Wilson & Wilson, 1978; Watson et a l,

1987; Delahay, 1995; Delahay et al., 1995) as well as on life history traits such as survival

and reproduction (Hudson, 1986b; Shaw & Moss, 1990; Hudson et al., 1992). Coccidia, is

also an important parasite of gamebirds and infections may cause enteritis, decreases in body
49



Chapter 2. G eneral m ethodology

weight and mortality (Fantham, 1911). However, little is currently known about the effects of 

this parasite in grouse.

2.5 Study sites

The study was carried out at nine study sites (Figure 2.3). Data were collected from 

populations from six moors in Scotland. These were located in Aberdeenshire on Edinglassie 

estate (57° 12’N, 3° 07’W), Glas Choille (Invercauld estate) (57° 07’N, 3° 19’W), Glen Dye 

estate (56° 58’N, 2° 34’W), Glen Muick estate (56° 59’N, 3° 08’W) and Invercauld estate 

(57° 04’N, 3° 04’W), and in Angus, on Invermark estate (56° 55’N, 2° 56’W). Data were 

also collected from birds from three study moors in England, one at Moorhouse Nature 

Reserve, Alston (54° 46’N, 2° 24’W), and at Wathgill Army Training Camp (Catterick), 

Bellerby (54° 20’N, 1° 51’W) and Feldom Army Range, Richmond (54° 27’N, 1° 47’W).

2.6 Data collection and analyses 

Finding and Catching Birds at Night

During autumn (August-November) and spring (March-May) (2000-2002) roosting birds 

were dazzled at night and caught in hand-held nets (Hudson & Newborn, 1995). For safety 

and efficiency, night work was carried out in pairs. A 1000-watt halogen lamp powered by a 

12V motorbike battery was used to scan the moor, searching for eye reflections of the grouse. 

Walking straight towards the bird, the beam on the light was held steady on the bird thus 

dazzling it. A tape recording of a land-rover engine was played as “white noise” to muffle any 

noise of movement through the heather, enabling the person with the lamp to approach and 

bring the net down over the grouse. The grouse was removed immediately from under the net 

by an assistant, ringed with an individually numbered metal patagial wing tag or aluminium 

leg ring and placed in a well-ventilated rucksack. Group size was noted and birds were taken 

back to a central location on the moor to enable measurements and parasite samples to be
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taken. Birds were placed in a small cotton handling bag to enable several biometric 

measurements to be taken for each bird (see Table 2.1). Handling time was kept as brief and 

birds were monitored throughout handling for symptoms of stress such as a gaping behaviour 

with an open beak. Any birds exhibiting this behaviour were placed in a holding box and left 

to settle, before continuing.

Parasite sampling

After each bird had been measured, they were placed in an individual wooden holding box 

(Figure 2.4). Each box was approximately 30’ x 3 0 ’x 3 0 ’ in size, and was constructed with a 

wire netting floor. A layer of freshly cut heather was placed on the floor of box. Birds were 

kept in boxes overnight and released early the next morning, allowing enough time for the 

birds to produce a caecal faecal dropping for parasite sampling. The following morning, birds 

were released and their caecal faeces containing the parasite eggs and oocytes collected and 

taken to the lab for examination. Details of all laboratory methods used to carry out parasite 

sampling are contained in Chapter 3.

Relocating Individuals

Where captured birds were required to be relocated and recaptured, individuals were fitted 

with a c.l5g necklace type radio-tag (Figure 2.5) (TW3-necklace radio-tag Biotrack Ltd, 

Dorset, UK) and tracked using a YAGI 3-element field hand-held antennae (Wildlife 

Materials Inc, Illinois, USA) and a TR4 radio-receiver (Telonics Inc., Arizona, USA)
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Figure 2.2: Flow chart representing the direct life-cycle of Trichostrongy/us tenuis in 

red grouse, illustrating the various life, birth, death and transmission processes 

occurring in both the host and the parasite (Dobson & Hudson, 1994).
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Figure 2.3: Map of the study sites in Scotland (enlarged section (a): EG-Edinglassie, 

GC-Glas Choille, IC-Invercauld, GM-Glen Muick, IM-Invermark and GD-Glen Dye) and 

north of England (enlarged section (b): MH-Moorhouse, FE- Feldom, CA-Catterick).
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Figure 2.4 Boxes used for holding grouse overnight (F. Mougeot, 2003)

Figure 2.5: Male red grouse with necklace-type radio and wing tag (J. Renet, 2003)
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Table 2. 1 Biometric measurements

Variables Description

Date Date was recorded as julian date.

Sex Birds were sexed according to both plumage characteristics and comb size and

colour. Males tend to have dark rich reddish plumage, and larger deeper reddish 

combs, whilst the plumage of females is usually more golden in colour and 

speckled (Hudson & Newborn, 1995).

Age Birds were classified as “old” or “young” (hatched the previous summer) based

on both the pigmentation of their primaries, the shape & colour of their 2nd and 

3d primaries (pointed and dotted in young, round and plain in old birds) and 

from the texture of their claws (smooth in young, with a growth ridge in old 

birds; Parr, 1975).

Comb Size Supra-orbital combs were spread out and flattened and comb length measured 

as distance from left fringe edge to right fringe edge, and comb height recorded 

as the distance from a central position on the eye-lid to the fringe edge 

perpendicular to this point. Length and height of the comb (measured to the 

nearest 1 mm) were multiplied to give an index of comb size.

Weight Measured to the nearest gram with a Pesola spring scale (weight of the handling

bag deducted).

Wing The length from the carpal to the tip of the 10th primary was measured to the

nearest 1 mm using a wing ruler.

Tarsus The length of the tarsometatarsus was measured to the nearest 0 .1mm using dial

vernier callipers and also used as a measure of body size.
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2.7 Experimental procedures

All procedures were performed under Home Office project licence PPL 80/1437.

Hormone implants

Implanting procedures were carried out by F. Mougeot, F. Leckie & S. Redpath. Male grouse 

were randomly assigned one o f two treatments: testosterone treated (T-males) and control (C- 

males). Birds were each implanted with two silastic tubes (each one 20 mm long, 0.62 mm of 

inner and 0.95 mm of outer diameter; sealed with silastic glue (Polmer Systems Technology 

Ltd, Buckinghamshire) (see Figure 2.6). Implants were inserted between skin and breast 

muscles on the flank, under local anaesthesia . Control-males were given two empty implants, 

Testosterone-males two implants filled with crystalline testosterone proprionate (Sigma- 

Aldrich Co Ltd, Dorset). The length o f the tubing was previously determined during trials on 

captive grouse so that implants would last for 2-3 months.

Blood Sampling

Blood samples were taken by myself, F. Mougeot, F. Leckie & S. Redpath to enable

haematological analysis and testosterone assays to be carried out. Birds were held securely by

an assistant and the wing opened to allow the underside o f the wing to be exposed. The

brachial vein was located at the base o f the patagium, between the humerus and radius. The

area around the vein was swabbed with a sterile antiseptic wipe (Isopropyl Alcohol BP 70%)

and a 25G sterilized needle used to prick the vein. Blood was removed using sterile glass

capillary tubes (1mm x 75mm) and transferred into heparinized epindorf vials for the plasma

collection. The vein was wiped clean with cotton wool, compression applied to stop the

bleeding and dusted with antibiotic Aureomycin topical powder. Blood was collected tubes

and centrifuged immediately for 3 minutes at 12 000 rpm. Plasma was separated from the

packed cells stored in a cold box, taken to the lab within 3 hours after collection and kept
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frozen at -70°C for subsequent analyses. Testosterone assays were carried out by A. Dawson 

at the Centre for Ecology and Hydrology, Monkswood. For full details o f this method see 

Chapter 7).

Anthelmintic dosing & T. tenuis larvae challenge

Where an experimental protocol required an individual’s infection o f T. tenuis to be removed, 

birds were orally dosed with 1ml of anthelmintic (Nilverm Gold, Schering-Plough Ltd., 

Welwyn Garden City, UK) using a 10ml syringe with 10cm (2mm diameter) tube attached 

(see Figure 2.7). Individuals were challenged with 1-3 ml o f distilled water containing the 

2000 infective larvae using the same method. The exact volume was calculated so that each 

dose would contain c. 2000 larvae. The tube was carefully inserted over the tongue, down the 

throat and into the crop, and the anthemintic or larvae administered. The anthelmintic 

treatment acts simply to remove an existing parasite infection. Thus, the effects o f the 

anthelmintic are expected to be relatively short-lived.

Laboratory culture o f  T. tenuis infective larvae. In order to experimentally challenge 

individual red grouse with a standardised level o f parasite infection, T. tenuis infective larvae 

were cultured in the laboratory. Fresh caecal faeces were washed thoroughly over a 125/tm 

sieve (Endecotts Ltd, Moreden, London) with a je t o f tap water, to remove any coarse fibrous 

material. The faecal residue containing the parasite eggs was collected in a 25 pm  sieve 

(Endecotts Ltd, Moreden, London), rinsed thoroughly with distilled water and poured into 

plastic petri-dishes (88mm diameter, 12mm depth) to a depth o f about 5mm. The use of 

distilled water rather than tap-water is thought to improve yields o f larvae (pers. comm. D. 

Delahay) and poor hatching and mortality has been observed at depths above 5mm (Delahay,

1995). Approximately lOg o f unsieved caecal material was added to the contents o f each 

petri-dish to create a culture with a consistency similar to single cream. Dishes were covered
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and incubated at 20°C for 7 - 1 0  days, when the highest proportions o f infective larvae have 

been found be present (Delahay, 1995; Shaw, 1988). Cultures were stirred daily to aerate 

lower layers and sprayed with distilled water to prevent cultures from drying out. To remove 

infective T. tenuis infective larvae, the culture medium was washed through a 125/xm sieve 

with a 25 pm  below to collect the residue containing the infective larvae. This mixture was 

poured onto a filter paper (grade 113, 12.5 cm diameter, from W hatman Scientific Ltd, 

Maidstone, Kent) and the filter paper suspended in a Baerman apparatus containing distilled 

water. Larvae actively migrated out of the faecal residue into the water and collected at the 

bottom o f the funnel over a period o f 2-3 days, where they could be collected daily by 

drawing off a small amount o f water using the screw clamp.
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Figure 2.6: Male red grouse with testosterone implants (F. Mougeot, 2002)
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Figure 2.7: Technique used to administer anthelmintic or infective larvae 

(F. Mougeot, 2002)
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2.8 Cross-fostering experiment 

Catching o f  pairs in the spring

In order to try to tease apart the relative contribution o f environmental and genetic factors to 

variations in individual T. tenuis intensities, I carried out a partial cross-fostering experiment 

on Moorhouse in 2002. A total o f 63 pairs were caught at night using lamping techniques 

detailed in this chapter and sampled for parasites. As both parents are involved in caring for 

the chicks, it was necessary to record biometric and parasite details for both parents. As 

grouse chicks are precocial and nidifugous, leaving the nest shortly after hatching it was 

necessary for this experiment not only to be able to locate females whilst they were nesting, 

but also to be able to locate both females and their broods after hatching. In order to achieve 

this, females were fitted with a necklace-type radio collar at time o f capture in early spring.

Nest location and egg measuring

Females were radio-tracked at frequent intervals during April and May until the nest was 

found. Females lay a clutch o f between 2-15 eggs (average 7.5 eggs) from mid-April to mid- 

May (Jenkins et al., 1963) and incubation lasts on average 22 days. The nest was then marked 

using a 4 ’ green garden cane, located at 15 paces due north. The nest was not marked at its 

exact location, because it might increase predation risk. In order to swap chicks o f a similar 

age between broods, it was necessary to accurately predict when the eggs would hatch. To do 

this, when females had laid a full clutch o f eggs (or a minimum o f five eggs), I took egg 

measurements o f length and breadth, measured to the nearest 0.1mm using dial-callipers and 

the weight o f eggs taken to the nearest O.lg using a small pocket balance. These 

measurements were repeated for a total o f five eggs picked randomly from the nest and were 

then used to predict an average hatch date for the nest. This was done using the steps in Table 

2.2 (A. Smith, unpublished data).
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Table 2.2: Procedure for calculating hatch date from egg measurements

Step Parameter Calculation

1. Initial weight of egg 0.53 X (egg length X egg breadth2) + 0.07

2. Days incubated ((100 -  ((weight/initial weight )X 100)) /  13) X 21

3. Setting Date Date collected - Days incubated

4. Hatch date. Set date + 21

Although the predicting hatch date formulas were only deemed accurate to within 1-2 days, 

this still enable the nest monitoring effort to be concentrated only on those nests close to 

hatching and thus minimised the disturbance to other nests.

Identifying hatched nests

With the aid o f a hand-held Global Positioning System (GPS) and the signal from the hen’s 

radio-collar, nests were located daily around the time o f the predicted hatch date. In order to 

minimise disturbance to the incubating hen, the position o f the nest was identifiable from the 

position o f the cane, and hens were identified as still incubating if  the radio-signal could be 

triangulated to the approximate nest point, whilst remaining a reasonable distance from the 

nest. Hens may brood chicks while they are still small, therefore, a hen may have on occasion, 

been falsely identified as still incubating when in fact she may have been brooding chicks 

close to the nest site.

Chick hatching

Red grouse eggs hatch synchronously. Although chicks are precocial and leave the nest

shortly after hatching, broods tend to remain within 100 metres o f the nest during the first two

days (Hudson, 1986). If  the hen had moved away from the nest site, the nest was located and
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examined, and details o f the state o f the eggs noted. If  whole eggs were found in the nest, the 

nest would be relocated on a different day to check if  the hen had resumed incubation or to 

determine whether the eggs had been abandoned. Often, the discovery o f cold eggs in a nest, 

was enough to determine that it had been abandoned. I f  the eggs had been destroyed, either 

the nest would be completely empty or there would be remains o f small pieces o f eggshell. 

The state o f destroyed eggshells was distinguishable from eggshells left after chicks had 

hatched. For each nest deemed to have hatched, the potential number o f chicks was estimated 

from the number o f eggs that had hatched successfully and the number o f any whole eggs that 

remained unhatched.

Chick location

For the purpose o f this experiment, it was necessary to locate chicks when 5-10 days old. 

Chicks o f this age, however, are very small and as they are only capable o f precocial flight 

from about 12-13 days (Cramp & Simmons, 1980), they tend to try to freeze and in response 

to the parent’s call warning and alarm calls. Searching for chicks therefore can be extremely 

difficult. Even with the benefit o f being able locate and flush the hen with the aid o f radio

telemetry, the chicks may be scattered some distance from the hen. Searching for chicks in 

vegetation can therefore be tricky as chicks are extremely well camouflaged, and in heather 

especially, this may prove almost impossible, as chicks will tend to hide as close to the 

ground as possible, in amongst the woody stems and roots. Attempting to find hidden chicks 

also comes with risk of trampling them underfoot. In order to find chicks for this experiment, 

we used specially trained pointing dogs (Figure 2.8). The use o f pointing dogs makes the task 

o f chick finding much easier and less time consuming and greatly increases the chance of 

being able to locate a full brood o f chicks.
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Figure 2.8: Trained pointing dog locating a chick (F. Mougeot, 2003)

Partial cross-fostering o f chicks

Chicks grow rapidly during the first 10 days o f life, but mortality is also highest during this 

period, particularly from 0 to 5 days old (Hudson, 1986). The optimum opportunity for cross- 

fostering was when two similarly aged broods both over 5 days but less than 14 days, could 

be located and both containing a suitable number o f chicks (i.e. a minimum o f 4). Although 

broods remain close to the nest site for the first couple o f days, thereafter they tend to move 

longer distances, and in some cases have been found to more than a quarter o f a mile (400 

metres) from one roost site to the next (Hudson, 1986).

Due to the poor breeding success o f the hens in the year this experiment was conducted, only 

8 broods could be used for cross-fostering. Whilst such a small sample size o f broods
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rendered the original experiment worthless in terms o f data collection, three partial cross- 

fosterings were nevertheless attempted, in order to assess feasibility and to measure the 

success o f the actual methodology, in order to develop the protocol for future experiments.

Two teams o f experienced grouse researchers, each with a pointing dog, simultaneously 

radio-tracked and flushed the hens o f two broods o f similar age, and attempted to find as 

many chicks as possible from the brood. Pointing dogs searched the area close to where the 

female flushed for a maximum of 20 minutes. Each chick upon detection, was placed in a well 

ventilated cardboard box filled with heather. After 20 minutes, once either the whole brood 

had been located or a minimum of 4 chicks found, the wing length and weight of each chick 

was recorded and each chick was individually wing-tagged with a size 1 Monel metal tag 

(National Band & Tag Co., KY, USA). H alf the brood, or a minimum o f two chicks, picked at 

random, were kept in the box to be cross-fostered and the remaining chicks were placed 

together back into the heather, close to where the female had originally flushed.

With time as the critical factor, the two teams met to exchange chicks and each team returned 

as quickly as possible to where the brood had been originally found. As the non-fostered 

chicks were very young and unlikely to move very far in a short space o f time, and as the time 

taken by each team to return to the original brood location was relatively short (10-15 

minutes), fostered chicks were placed in the spot where the non-fostered chicks had been left. 

The team retreated to a safe distance, to a point from which the hen’s radio-tag signal could 

be checked, to ensure that she was in the area where the chicks had been left. When a hen 

wishes to locate her chicks and to muster them, she will give a soft cooing “assembly call” 

and similarly, chicks in distress will give a shrill cheep, repeated frequently, summoning the 

parent (Cramp & Simmons, 1980). We returned to the hen after two days to check that she 

was with the chicks and to check that the fostered chicks had survived.
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Faecal egg counts provide a reliable measure of Trichostrongylus tenuis 

intensities in free-living red grouse Lagopus iagopus scoticus.

3.1 Abstract

The reliability of different egg counting methods for estimating the intensity of Trichostrongylus 

tenuis infections in red grouse, Lagopus lagopus scoticus, was investigated in the autumn, when 

grouse may harbour high parasite intensities, and possible limitations to the use of these methods 

were also examined. Faecal egg counts were found to accurately estimate T. tenuis worm 

intensities, at least up to an observed maximum of c. 8000 worms. Two egg counting methods 

(smear and McMaster) gave consistent results, although the exact relationship with worm 

intensity differed according to the method used. Faecal egg counts significantly decreased with 

increasing length of sample storage time, but egg counts were reliable for estimating worm 

intensity for three weeks. The concentration of eggs in the caecum was also found to reliably 

estimate worm intensity. However, egg counts from frozen gut samples cannot be used to 

estimate worm intensities. These results conclude that, despite some limitations, faecal and 

caecum egg counts provide useful and reliable ways of measuring T. tenuis intensities in red 

grouse.
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3.2 Introduction

Host-parasite interactions have long been o f interest to ecologists, especially when they are 

thought to play an important role in host population dynamics (Anderson, 1978; May & 

Anderson, 1978; Hudson et al., 1985; Albon et al., 2002). Red grouse populations exhibit 

cyclic fluctuations, and T.tenuis parasites are suspected to play a major role in causing the 

population cycles (Hudson et al., 1992, 1998).

A quantitative understanding o f the population dynamics o f parasites and o f their impact on 

individual hosts and populations requires a good estimation o f the intensity o f infection in 

each host and how the parasites are distributed through the host population. In some systems, 

faecal egg counts are often the only measure available to estimate parasite intensity in free- 

living animals, and are routinely used in a range o f species (Gordon & Whitlock, 1939; Shaw 

& Moss, 1989b; Gulland & Fox, 1992; Guyatt & Bundy, 1993; Irvine et al., 2001). The 

validity o f using faecal egg counts to estimate host worm intensity has nevertheless been 

widely questioned and needs to be addressed in any host-parasite system (Michael & Bundy, 

1989; Sithithawom et al., 1991; Guyatt & Bundy, 1993). The primary concern is that egg 

counting might be an unreliable index o f worm intensity if  it is influenced by a number o f 

factors such as density-dependent constraints on worm fecundity (Anderson & Schad, 1985; 

Smith et al., 1987; Tompkins & Hudson, 1999) or seasonal variation in worm egg production 

rate (Hudson, 1986a; Shaw & Moss, 1989a).

In the T. tenuis- red grouse system, Moss et al., (1990) showed that egg counts are a reliable

measure o f  worm burdens. However, that work was limited to spring and used only one egg

counting method. Moreover, worm intensities in that study were relatively low (only two o f

the forty birds were found to have a worm intensity greater than 3000 worms). Since grouse

are routinely sampled for parasites during autumn and may carry worm intensities o f up to 24
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000 worms (Hudson, 1986b), it is important for the validity o f  ecological studies involving 

red grouse-T. tenuis interactions, to establish whether the relationship between T. tenuis egg 

counts and adult worm intensity holds for different seasons and for higher worms intensities.

In this paper, we assess the reliability o f various egg counting methods for estimating worm 

intensities o f red grouse, and possible limitations to the use o f  these methods. We examine the 

relationship between egg counts and T. tenuis worm intensities in red grouse harbouring up to 

7992 T. tenuis worms, during the autumn. Egg count reliability may depend on the method 

used to count eggs, as well as variability in the concentration o f  eggs in faecal material 

(Sinniah, 1982). We examine three different ways o f counting parasite eggs (smear and 

McMaster egg counts carried out on faecal samples, and McMaster egg counts carried out on 

material from the caecum) and assess the comparative reliability o f each for estimating worm 

intensity. Egg counts on gut material from the caecum have already been used previously for 

estimating T. tenuis intensities (Hudson & Dobson, 1997) and can provide a quicker and 

easier method o f estimating parasite infection levels than a straight worm count. However, T. 

tenuis worms are not evenly distributed within the caecum (Shaw, 1988b), so we examine in 

more detail, spatial patterns in egg concentrations, and the applicability o f using egg counts 

from different sections o f the gut to estimate worm intensities. Lastly, we examine potential 

limitations to the use o f egg counts, such as conditions for the storage o f  samples and storage 

time.

72



Chapter 3 M easuring  T. tenuis in red  grouse

3.3 Materials and methods 

Life cycle o f  Trichostrongylus tenuis

Trichostrongylus tenuis inhabits the relatively large caeca o f the red grouse, and like most 

other gastrointestinal nematodes, has a simple, direct life cycle. Eggs laid by adult worms are 

voided onto the moor once daily in caecal droppings, and when the temperature exceeds 5°C, 

embryos develop and the first two larval stages complete their development in the faeces. 

Under conditions o f adequate temperature and moisture, during May to November, they 

develop into infective larvae, which ascend the heather Calluna vulgaris (the main plant food 

o f red grouse) and are ingested (Hudson, 1986b; Shaw et al., 1989). During the summer the 

ingested larvae soon develop into adults, usually within 2 weeks. However, in autumn, 

ingested larvae may become hypobiotic and delay development until spring in March and 

April when many may mature simultaneously and begin to produce eggs (Shaw, 1988a). In 

spring, the numbers o f eggs can increase suddenly even though no larvae have been ingested 

for months.

Study Areas, Material Collection and Storage

Parasite counts were conducted on 36 cocks from three study sites located in northeast 

Scotland. Previous studies have found no evidence for sex-biased parasitism in grouse, as 

males have been shown to have approximately the same number o f worms as females 

(Wilson, 1983; Hudson, 1986b). Birds were caught at night using lamping techniques 

(Hudson & Newborn, 1995) in September and October 2001. Each bird was held in an 

individual holding box overnight and caecal faeces collected the following morning. Birds 

were then euthanased and their caeca removed for parasite and parasite egg estimation. Post

mortem parasite estimations were also conducted (using only the caeca) on 12 grouse shot on 

grouse moors in Aberdeenshire and Berwickshire in October 2001. All samples collected in
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the field were brought immediately to the lab and stored in a cold room at a constant 

temperature o f 5°C to inhibit the hatching o f eggs. The second caecum from each o f  10 shot 

birds was stored in a freezer at a temperature o f -4 0  °C for two weeks for studies on the effect 

o f freezing on caecum egg counts. In addition, the original data from 44 cocks from Moss et 

al., (1990) were used.

Laboratory analysis o f intensity o f T. tenuis worm infection and egg counts

Estimating worm intensity. Direct worm counts were carried out on one caecum from each 

grouse. Each caecum was opened lengthways and all the gut material flushed with water over 

150/xm gauze to collect the worms. The contents o f the sieve were washed into 300ml o f 

water, mixed thoroughly and adult worms counted with the aid o f a binocular dissecting 

microscope with 25x magnification (an objective lens 2.5x used in conjunction with a lOx 

ocular). Where possible, all worms in the sample were counted and this number doubled to 

obtain the total number o f worms per bird, as worm numbers do not significantly differ 

between the two caeca (Wilson, 1979, 1983). Otherwise, worms were counted from a 

minimum o f three 10 ml sub-samples. The average o f these counts was multiplied by 30 to 

obtain an estimate o f the total number o f worms in a single caecum, and this number was 

doubled to give the total number o f worms per bird.

Estimating egg intensity. The intensity o f parasite eggs per gram o f caecal faeces was 

estimated using two different counting methods. First, a measure o f eggs per gram (EPG) was 

carried out using the modified McMaster egg counting technique (MAFF, 1986). For this 

method, approximately 0.2g (range 0.19 -  0.2 lg) o f well-mixed faecal material was put into a 

shaker tube with approximately 10 glass balls and 5 ml o f saturated NaCl solution. The tube 

was shaken until the faecal matter was suspended. Using a Pasteur pipette, a sample o f the 

faecal suspension was extracted and carefully run into one chamber o f a McMaster counting
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slide. The tube was shaken again and another sample extracted and run into the second section 

o f the chamber. The saline suspension was left to settle for 2-3 min, allowing the eggs to float 

to the top o f each chamber. Eggs were then counted beneath a marked grid on each chamber 

using a compound microscope with lOOx magnification (an objective o f lOx used in 

conjunction with a lOx ocular). The number o f eggs per gram o f faeces was calculated by 

multiplying the total number o f eggs counted under both grids by the total volume o f faecal 

suspension contained in both chambers and then dividing this by the quantity o f faeces used 

in the suspension.

A second egg counting method (smear) was carried out on the same faecal sample, after Moss 

et al., (1990). These were carried out on the same day the M cM aster egg count was 

conducted, to allow a direct comparison between the two methods. In the smear method, 

caecal faeces were thoroughly mixed, and a 5-10 mg sub-sample was weighed onto a cover 

slip, which was then pressed onto a glass microscope slide. All the eggs in the sub-sample 

were counted using a compound microscope with lOOx magnification. Successive sub

samples from the same sample o f faeces were carried out until two counts varied by no more 

than 10%. The number o f eggs, either per 10 mg (to allow comparison with original data from 

Moss et al, (1990)) or per gram of faeces, was calculated according to the average o f the two 

counts and the average weight o f the sub-samples.

Having carried out a direct worm count on one caecum, the second caecum was used to 

investigate spatial variability in T. tenuis egg concentration in different sections o f the gut. 

The weight and length o f each caecum was recorded, then the caecum was divided into three 

sections o f approximately equal length. These were, namely, the proximal section, which is 

the end nearest the opening into the intestine, the mid section, and the distal section, that 

nearest the blind end o f the gut. The gut contents from each section were squeezed out,
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weighed and an egg count carried out on each section. The remaining material was combined, 

thoroughly mixed and also sampled for worm eggs. For gut material, only the modified 

Mcmaster egg counting technique was used.

Effect o f  freezing caeca on the relationship between egg counts and worm intensity.

The second caeca o f 10 birds which had been shot in September were frozen and used to 

compare egg counts from the frozen caecum with direct worm counts carried out on the first 

caecum prior to freezing. The frozen caeca were kept in the freezer for 14 days, then thawed 

at room temperature and a McMaster egg count was carried out on thoroughly mixed caecal 

material from the whole gut.

Effect o f  sample storage time on the relationship between egg counts and worm intensity.

Faecal samples from 13 birds were stored in a cold room at a constant temperature o f 5°C (to 

inhibit the hatching o f eggs) for a period o f 14 weeks. For each sample, a first egg count was 

conducted on the day o f sample collection, and thereafter on the same day weekly for a period 

o f 10 weeks, with a final egg count 3.5 months after collection. The McMaster faecal egg 

count technique was used throughout this section o f the study.

Statistical analyses

Statistical analyses were conducted using Minitab (version 13) and SAS (version 8.01, SAS, 

2001). Where necessary, data were transformed to approximate normal distribution. All 

relationships between egg counts and worm intensity were tested using regression analysis. 

ANCOVAs were used to compare the relationships between worm intensity and egg counts 

obtained in different seasons; spring (original data used from Moss et a l, (1990)) vs. autumn 

(this study), or obtained using different techniques (Smear and McMaster). As the original 

data from Moss et al, (1990) included low values o f eggs and worm intensities outside the
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range o f the autumn data from this study, in order to directly compare the two data sets, these 

low values were excluded from the spring data in the ANCOVA. An ANCOVA was also used 

to compare the relationships between worm intensity and EPG counts obtained from each gut 

section.

Generalized Linear Mixed Models (GLMMs) were used to test for differences in caecal egg 

counts between gut sections, and to test for an effect o f storage time on faecal egg counts. 

Models were fitted to the data using a Poisson error distribution and a log link function. 

Denominator degrees of freedom were estimated using Satterthwaite’s formula (Littell et al., 

1996). The total number o f eggs counted in both chambers o f the M cM aster slide was used as 

the response variable, with the exact amount o f faeces or caecal material sampled as an offset 

in the model. GLMMs were implemented in SAS using the GLIMMIX macro (Littell et al.,

1996). For differences in egg counts between gut sections, the model included ‘individual gut’ 

as a random effect, in order to identify counts within a given gut. For the effect o f storage 

time o f egg counts, the model included ‘individual sample’ and the ‘individual sample*time’ 

interaction as random effects, in order to account for the repeat sampling o f individual faecal 

samples at different time periods. The data were unbalanced, as some faecal samples ran out 

before the end o f the experiment. Time period (week number; 0-14) was included as a class 

variable. Difference o f Least Square Means (DLSM) was used to compare egg counts from 

different time periods and to determine when they differed significantly from the initial count 

(week 0).
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3.4 Results

Relationship between faecal egg and worm counts

The number o f adult T. tenuis worms found in the caeca o f individual birds was significantly 

correlated with corresponding counts o f eggs in caecal droppings (Fig. 3.1; F 1,29 = 294.24, P 

< 0.001). Trichostrongylus tenuis worm intensities in individual grouse ranged from 103 

worms to 7992, with at least 7 birds carrying intensities o f greater than 4000 worms. The 

relationship found between numbers o f adult worms (W worms b ird '1) and counts o f eggs (E 

eggs. 10 m g '1) in faecal droppings in autumn, using the smear egg counting technique, was 

very similar to that found in spring, using data from Moss et al., (1990). Shown below are the 

regression equations for both studies. The regression equation from this study is also given 

with standard errors for the slope and intercept.

Autumn : log10 (W +l) = 0.917 (± 0.053) logio (E+l) + 1.20 (± 0.116)

(r2 = 0.91, n = 31, P <  0.001).

Spring : logio (W +l) = 0.915 (± 0.076) logio (E+ l) + 1.28 (± 0.121)

(r2 = 0.77, n = 44, P <  0.001).

There was no significant effect o f season on the relationship between egg counts and worm 

intensity (Fi ,63 = 1.95, P = 0.168). 95% Confidence intervals for the slopes o f  both the autumn 

(0.917 + 0.109) and spring (0.919 + 0.153) regression equations include a slope o f unity, 

further suggesting that there is no density-dependent reduction in worm fecundity.
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Figure 3.1: Relationship between Trichostrongylus tenuis intensity (W, worms, bird ' 

*) and egg concentration (E, eggs. 10 mg _1) using smear egg counting method) in 

the caecal droppings of cock red grouse in relation to season. Symbols represent 

data for autumn from this study (□) and data for spring, from Moss et aL, (1990) 

(A) .
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Comparison o f  egg counting methods

Regression analysis carried out on the two egg counting methods (smear and Mcmaster) 

showed a highly significant relationship between egg concentration and worm intensity for 

both methods (Figure 3.2, Table 3.1; smear r2 = 0.90, F i ,29 = 287.73, P < 0.001; McMaster r2 = 

0.88, F i ,29 = 218.28, P < 0.001 respectively). However, there were significant differences both 

in the slopes o f the regression lines (smear slope = 0.895 (+ 0.053), M cM aster slope = 0.651 

(+ 0.044), F i>58 = 12.20, P = 0.001) and in the intercepts o f the regression lines (smear 

intercept = -0.541 (+ 0.218), McMaster intercept = 0.664 (± 0.17), F ij58 = 18.15, P < 0.001).

Spatial distribution o f  eggs in the caecum

EPG counts significantly differed between each o f the three sections, with the proximal end 

carrying significantly more eggs (Figure 3.3; Glimmix; F2 ,42 = 6.8, P = 0.003). Results o f a 

pairwise comparison showed a significant difference between the proximal and mid sections 

(t = -2.511, P < 0.05) and between the proximal and blind sections (t = -3.595, P < 0.05).

Relationship between caecum EPG counts and worm intensity

There were significant linear relationships between worm intensity and the EPG counts from 

each section o f the gut (Table 3.2; proximal r2 = 0.76, n = 15, P < 0.001; mid r2 = 0.88 and 

blind n = 15, P < 0.001; r2 = 0.87, n = 15, P < 0.001 respectively). There was no significant 

difference between the slopes o f the three regression lines (F2 ,39 = 0.15, P = 0.858) but the 

intercepts differed significantly (F2 ,4 i = 28.19, P < 0.001).
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Figure 3 .2  Relationship between Trichostrongylus tenuis worm intensity (W, worms, 

bird _1) and egg concentration (E, eggs, g _1) in the caecal droppings according to 

egg counting method (□ Smear technique; ♦McMaster technique).

81





Chapter 3 M easuring  T. tenuis in red  grouse

p
+
E<0u.O)
L_0a
</)
U)
U)

o ui
5) COo
c00
E
o
0
E

sz

<
Proximal Mid Blind

Figure 3.3: Arithmetic mean (+ S.E.M.) of Trichostrongylus tenuis egg 

concentration (logio eggs, g _1) in the proximal, mid & blind sections of the 

caecum (N = 15 guts), using the Mcmaster egg counting technique.
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Section Regression equation r5 N, P

Proximal Logio (W +l) = 0.977 (+ 0.143) lo g io ( E + l) - 1.23 (± 0.689) 0.76 N=15, P<0.001

Mid Log10 (W +l) = 1.07 (+ 0.104) lo g io (E + l)-  1.28 (± 0.464) 0.88 N=15, P<0.001

Blind Logio(W +l) = 1.01 (± 0.104) log10( E + l ) - 0.85 (± 0.446) 0.87 N=15, P<0.001

Table 3.2: Relationships between Trichostrongy/us tenuis intensity (W, worms, 

bird _1) and egg concentrations (E eggs, g -1) measured from three sections 

(proximal, mid and blind) of the gut. Regression equations are given with standard 

errors for the slope and intercept.
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Effect o f  freezing on the relationship between caecum egg counts and worm intensity

Eggs per gram counts using the McMaster method from mixed caecum contents, were 

strongly correlated with worm intensity (Table 3.1; r2 = 0.86, F i;30 = 188.72, P < 0.001). 

However, it would appear that the freezing process resulted in the deterioration o f eggs, 

since this relationship was no longer significant (F^g = 0.05, P = 0.829) when using egg 

counts carried out on frozen samples.

Effect o f sample storage time on egg counts

Analysis o f egg counts from 13 individual faecal samples, repeated over a period o f 14 

weeks, showed a significant decrease in egg counts with increased storage time ( F n ^  = 

4.55, P < 0.001). Pairwise comparisons (Table 3.3) indicated that egg counts conducted at 

week 1-3 do not differ from the initial egg count (week 0), but from week 4 onwards, egg 

counts were significantly lower than those o f the initial count.
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Pair-wise

comparisons DF t value Pr > |t|

Week 0 -  Week 1 58.4 -0.02 NS

Week 0 - Week 2 68.3 1.48 NS

Week 0 - Week 3 61.2 0.31 NS

Week 0 - Week 4 77.4 2.72 **

Week 0 - Week 5 79.1 3.05 **

Week 0 -  Week 6 83.1 3.56 ***

Week 0 - Week 7 83.6 3.5 ***

Week 0 -  Week 8 75.2 3.24 **

Week 0 -  Week 9 68 2.81 **

Week 0 -  Week 10 78.4 3.6 ***

Week 0 -  Week 14 77.1 3.89 ***

** P < 0.01, ***p< 0.001.

Table 3.3: Results of an analysis testing for differences between initial week 

(week 0) and subsequent weekly egg counts (weeks 1 to 14) repeated on the 

same faecal samples. Differences of Least Square Means analyses were used for 

the pair-wise comparisons.
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3.5 Discussion

Previous studies have shown that the reliability o f using worm egg counts to indirectly 

estimate the worm intensity within a living host may be influenced by both seasonal 

variation in worm egg production (Shaw & Moss, 1989a; Moss et al., 1993) and by 

density-dependent constraints in worm fecundity (Anderson & Schad, 1985; Smith et al., 

1987; Tompkins & Hudson, 1999). In this study however, we found that the strong 

relationship between faecal worm egg count and host worm intensity derived from samples 

collected in the autumn, is similar to that derived from samples collected during spring 

(Moss et al., 1990). Further, we found no evidence for a decline in egg count reliability 

with increasing worm intensity, up to an observed maximum worm intensity in this study, 

o f c. 8000. Although worm intensities in grouse may occasionally reach numbers as high 

as 24,000 worms (Hudson, 1986b), the maximum observed value in this study represents a 

level o f parasite intensity more routinely observed in the field.

These findings agree with a number o f other studies o f helminth infections, which have 

similarly demonstrated a significant relationship between parasite intensities and faecal egg 

counts. Faecal egg counts are strongly correlated with liver fluke (Opisthorchis viverrini) 

intensities in humans (Elkins et al., 1991; Sithithawom et al., 1991). In sheep, there is a 

good correlation between egg counts and intensities o f Haemonchus contortus (Le Jambre 

et al., 1971; Coadwell & Ward, 1982; Roberts & Swan, 1981) and intensities of 

Trichostrongylus colubriformis (Chiejina & Sewell, 1974; Gibson & Parfitt, 1973). 

However, in contrast, there are also many studies o f nematode infections where there is 

little or no correlation between the number o f eggs that a host produces and worm 

intensity. This is particularly evident for Ostertagia species, important parasites o f cattle 

and sheep (Michel, 1963, 1969; Callinan & Arundel, 1982; Coop et al., 1985).

87



Chapter 3 M easuring  T. tenuis in red  grouse

Such variation between parasitic helminth populations may be due to variations in the rate 

o f worm egg production, a regulatory mechanism considered to be important in the 

regulation o f many gastrointestinal parasite populations (Barger, 1987). In the red grouse- 

T. tenuis host-parasite system, our findings suggest that density-dependent suppression o f 

egg production is weak or non-existent, at least up to the observed worm intensity o f  c. 

8000 worms. A number o f other factors may influence egg production, but there are two 

main mechanisms thought to dominate. The first o f these mechanisms is the host’s 

immunological response to infection, which may cause density-dependent suppression of 

egg production (Hudson & Dobson, 1997). However, evidence suggests that there is little 

or no effective acquired immunity in red grouse to infections o f T. tenuis (Shaw & Moss, 

1989b; Wilson, 1979). Unlike artificially induced T. tenuis infections in domestic chickens, 

where young domestic chickens develop a resistance to the nematodes resulting in worms 

being actively expelled and the infection rejected (Watson et al., 1988), the number o f 

worms present in the caeca o f red grouse increases throughout the life o f the bird (Wilson, 

1983).

Secondly, competition between worms for resources, for example space, may also be an 

important mechanism influencing egg production. Adult T. tenuis worms are found only in 

the caeca o f red grouse, which is thought to play an important role in the absorption o f 

water and proteins and the digestion o f cellulose (Gasaway et al., 1976; Moss & Parkinson, 

1972). The length o f the caeca is known to vary amongst herbivorous birds, probably in 

relation to food digestibility, the length o f the caeca increasing as the diet becomes more 

fibrous (Leopold, 1953). The diet o f red grouse is composed mainly o f  heather (Calluna 

vulgaris), a high-fibre, low-protein food, and accordingly, the caecum of this bird is 

relatively long (Moss & Parkinson, 1972). Although colonizing T. tenuis favour the
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proximal regions o f the caeca (Shaw & Moss, 1988b), worms are distributed throughout 

the whole gut. Thus, at the level o f worm intensities observed in this study, it may be that 

space was not a limited resource.

Egg counts derived from two different methods were both highly correlated with worm 

intensity, although the smear method consistently gave a higher eggs per gram 

concentration than the McMaster method. This is a similar finding to that o f Sinniah 

(1982), who compared direct smear methods with a dilution egg count technique. As the 

exact form o f the relationship between egg count and worm intensity differed significantly 

between the two methods, care should be taken when using regression equations to 

estimate worm intensity, to ensure that the relevant equation is used. The decision as to 

which method to use, may be influenced by factors such as time and the relative ease of 

each carrying out different techniques. In our case, the smear count was the more time 

consuming o f the two methods. This was especially true where faecal samples contained 

bits o f grit and heather from the collection process, which ultimately affected contact 

between the slide and coverslip, making the actual counting o f eggs under the microscope 

more difficult.

Previous studies have demonstrated that egg counts may be carried out on caecum 

material (Hudson & Dobson, 1997) and have only used caecal material from the proximal 

end o f the gut. The research conducted here showed that the spatial concentration o f worm 

eggs varied significantly throughout the gut, with the concentration o f eggs falling as the 

distance from the opening o f the caecum (the proximal end) increased. This is consistent 

with the finding that worms are unevenly distributed throughout the gut, and tends to 

inhabit the proximal section (Shaw & Moss, 1988b). Despite this, egg counts from distinct 

sections o f the gut were significantly related to worm intensity. However, caution should
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again be applied if  using gut section EPG counts to estimate worm intensity, as the exact 

form o f the relationship to worm intensity differed between the egg counts from different 

sections o f the gut. If  using caeca to estimate worm intensity, it would therefore be more 

reliable to use egg counts from thoroughly mixed caecum contents, which were also found 

to strongly correlate with worm intensity.

Where this technique may be o f particular use, is where time is a limiting factor. Direct 

worm count method, can be very time consuming, whereas M cM aster egg counts are 

relatively quick. Depending on the concentration o f eggs in the sample, each direct worm 

count may take between 40 to 60 minutes to complete, whereas McMaster egg counts 

routinely take only a third o f that time. Using egg counts from the caecum may also be o f 

use where birds are shot or have been killed by predators and their guts have been broken. 

In this case a direct worm count is inaccurate due to loss o f caecal material. By removing 

some material from an unaffected section o f the caecum and using the EPG count in 

conjunction with the correct regression equation instead, it may be possible derive a 

reliable worm intensity estimate from an otherwise unusable sample.

Frozen guts are regularly used to carry out direct worm counts in red grouse. However, in 

this study freezing at a temperature o f -40  °C appeared to cause a deterioration o f eggs 

within the gut material. Thus, the possibilities for using caecum egg counts as an estimate 

o f worm intensity, are strictly limited to unfrozen gut samples. Further investigation is 

required to examine whether eggs may be preserved at freezing temperatures closer to 0 

°C.

Finally, even when storing faecal samples at an optimum temperature o f 5°C to inhibit the 

hatching o f eggs, we have acquired evidence to suggest that egg concentration in faecal
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samples decreases with increased storage time. In the fourth week o f repeated sampling, 

this egg loss resulted in a significant difference between the estimate o f worm intensity and 

actual worm intensity. We conclude therefore that, in order to maximise the accuracy o f 

our worm intensity estimates, faecal egg counts should be conducted as soon as possible 

after collection and within a period o f three weeks maximum.
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Variation in T. tenuis intensity between sexes, and within and 

between pairs and broods in red grouse

4.1 Abstract

Macroparasite infections tend to be aggregated within their host populations, with relatively few 

individuals harbouring the majority of parasites. Identifying the relative contributions of the main 

mechanisms thought to generate such patterns of infection, namely exposure to parasite infective 

stages and individual susceptibility or resistance to parasites, may have important consequences 

for studies of host-parasite dynamics and host population dynamics. After controlling for factors 

such as the study moor, date of sampling and age of the bird (which were all found to 

significantly explain variation in an individual’s level of T. tenuis infection), patterns of infection 

between related and non-related individuals were examined. There was no relationship in T.tenuis 

intensity between pairs of male and female grouse in the spring, although a significant difference 

between male and female parasite intensities was detected on one study moor, with males having 

more parasites than females. No relationship was found between parasite intensities of related 

individuals within broods. Sixty-one females were radio-tagged in the spring 2002, to carry out a 

cross-fostering experiment to examine the relative contributions of exposure and susceptibility. 

Of a potential of 61 broods only 8 survived; it was not possible thus to conduct the experiment. 

There was a significant effect of T. tenuis intensity on the breeding success outcomes of the 

female red grouse in this experiment. This study documents the first attempt at cross-fostering 

red grouse chicks.
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4.2 Introduction

Macroparasites tend to be unevenly distributed throughout their host population, with the 

majority of parasites being aggregated within a few individual hosts (Crofton, 1971; Anderson & 

May, 1978; Anderson & Gordon, 1982; Wilson et al., 1983; Grenfell et al., 1995; Shaw & 

Dobson, 1995; Shaw et al., 1998). Two main mechanisms are thought to influence patterns of 

aggregated parasite distributions observed at the population level: those creating variation in host 

exposure to parasite infective stages and those relating to differences between individuals in their 

resistance or susceptibility to parasites (Anderson & Gordon, 1982; Wilson, 1983; Anderson, 

1993; Boulinier et al., 1996; Holmstad & Skorping, 1998; Wilson et al., 2002).

The gastrointestinal nematode Trichostrongylus tenuis is typically over-dispersed within red 

grouse populations (Lagopus lagpus scoticus) (Wilson, 1983). As this moderately pathogenic 

parasite is known to have negative effects on the energetics, breeding success and even survival 

of its host, understanding the factors contributing to variations in individual intensities may have 

important consequences for studies of the population dynamics of red grouse (Hudson 1986a,b; 

Watson et al., 1987; Shaw & Moss, 1989a; Hudson et al., 1992, 1998; Delahay et al., 1995).

In red grouse, both exposure to infective stages and susceptibility may be contributing to 

determining an individual’s level of T. tenuis intensity. Within a population of red grouse, 

prevalence of infection is high, with 100% of grouse greater than one year old and 99% of birds 

more than 3 months old found to be infected (Hudson, 1986b). This suggests that the 

transmission between individual hosts must be extremely effective (Shaw & Moss, 1989a). Since
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grouse are highly territorial, it seems likely that a large proportion of the T. tenuis infection that a 

grouse carries may be derived from self-infection or from close relatives or mates (Saunders et 

al., 1999). Unlike domestic chickens, which can develop a form of resistance to experimental 

infections of T.tenuis, red grouse show a relatively poor acquired immune response to T. tenuis 

infection (Wilson, 1979; Shaw & Moss, 1989b).

This study had two main aims, the first being to investigate patterns of infection in pairs of 

grouse. If all individuals within a population are equally susceptible and exposure is a dominant 

mechanism in determining an individuals parasite infection, then given that pairs of grouse spend 

a significant proportion of the year together feeding and roosting in close proximity to one 

another, individuals should share similar levels of infection, with the variation within pairs of 

adult grouse being smaller than the variation observed between pairs. The second aim of this 

study was to look for evidence of a shared genetic component in resistance to parasites in red 

grouse chicks. I began by examining naturally occurring patterns of infection between chicks 

within families of chicks (broods) to explore whether genetically similar individuals shared 

similar levels of resistance to parasite infection. Whilst correlative studies are useful in 

identifying patterns of infection in natural populations, they tell us little about relative importance 

of the mechanisms involved in creating those pattern. Consequently, I set up a cross fostering 

experiment, which aimed to tease apart variation due to exposure and to susceptibility, and thus 

address the question of heritability of parasite resistance in red grouse.

Prior to addressing these questions, I examined a number of factors that may have explained

some of the heterogeneity in patterns of T. tenuis in red grouse observed in this study. As data

came from a number of geographically distinct moors from both Northern England and Scotland,
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and because birds were sampled on different nights over a period of two months, I first 

investigated the influence these factors might have on parasite intensities. As red grouse have 

been found to have little effective acquired immune response to re-infection (Wilson, 1983), the 

number of worms present in the caeca of red grouse increases throughout the life of the bird, so I 

examined the effect of age on parasite intensities. I also investigated the effect of sex, as it is 

often observed in vertebrate species, that males are more heavily parasitized than females (Moore 

& Wilson, 2002; Wilson et a l, 2002) perhaps due to differences in hormones affecting immune 

function (Grossman, 1984,1985; Schuurs & Verheul, 1990; Poulin, 1996; Hillgarth & Wingfield, 

1997).

Specifically, this study set out to test the following predictions: if  exposure is a dominant factor, 

individuals within a pair and within a brood will have similar levels o f infection, however if 

natural resistance is a dominant factor, genetically similar chicks from the same brood exposed to 

different levels parasite infection, will have similar levels of infection.

4.3 Methods 

Study Areas & Capture

Data from 83 pairs of grouse were collected from 6 grouse populations, two located in northern 

England (Catterick and Moorhouse in 2002) and four in northeast Scotland (Edinglassie, 

Invercauld, Invermark, Glas Choille in 2001). Pairs of male and female adult grouse were 

captured at night during spring (from 28th February to 2nd May) using standard lamping 

techniques (Hudson & Newborn, 1995). Paired grouse roost together in close proximity and,
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where possible, both males and females were caught together on the same evening. Where only 

one of a pair was caught, a necklace-type radio-collar was fitted to the bird and that individual 

relocated on a separate night to capture the second individual. Pairs were checked subsequently 

to confirm the pair bond. Data from 13 broods were collected from one site in Scotland (Glas 

Choille) in the autumn of 2001 and 2002. Families of grouse (chicks and adults) roost together 

and were located at night using lamping techniques during August, before the broods split up and 

dispersed. Although the actual hatch date of the chicks was not known, they were approximately 

2-3 months of age. At this age, chicks were considered old enough to have picked up an infection 

of T. tenuis. The number of individuals caught in each brood ranged from 2 to 6 and the date on 

which chicks were sampled also varied between broods. Plumage and morphological 

characteristics were used to sex and age birds. For birds caught in the spring, those hatched the 

previous summer, were classed as “young” and those greater than 1 year old classed as “old”. 

The sexing and aging of birds, are described in greater detail in Chapter 2. All individual birds 

(chicks and adults) were marked either with a numbered metal leg ring or with a numbered metal 

wing tag.

Parasite Data Collection

For a detailed description of the life-cycle of Trichostrongylus tenuis refer to Chapter 2. Parasite 

data were collected from pairs of grouse caught in the spring in order to examine patterns of T. 

tenuis infection within and between breeding pairs of individuals. Parasite data were also 

collected from broods caught during the autumn (a total of 41 individuals, ranging from 2-6 

individuals from each brood), in order to compare patterns o f T. tenuis infection within and 

between broods. Although invertebrates (a vital source of protein) are an important part of a

young grouse chick’s diet (Savory, 1977), chicks also start to feed on heather at an early age.
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Therefore, T. tenuis infections may begin when grouse are less than a month old and increase 

throughout the life of the bird (Hudson, 1986b). Upon capture, each bird was kept in an 

individual holding box overnight and caecal faeces collected the following morning for parasite 

sampling. The following morning, birds were released and their caecal faeces containing the 

parasite eggs collected and taken to the lab for examination.

Laboratory analysis o f T. tenuis egg intensity.

The intensity of T. tenuis eggs per gram (EPG) of caecal faeces were estimated from 

approximately 0.2g of faecal material using the modified McMaster egg counting technique 

(MAFF, 1986). For a detailed description of this method, refer to Chapter 3. Previous studies on 

T. tenuis faecal egg counts in red grouse indicate that there is a strong positive correlation 

between T. tenuis worm burden and EPG (Moss et al., 1990; Seivwright et al., 2004; see also 

Chapter 3). Worm burdens were calculated from average EPG counts (Seivwright et al., 2004; 

see also Chapter 3)

Partial Cross-Fostering Experiment

To try to tease apart the relative contribution of environmental and genetic factors to variations in 

individual T. tenuis intensities, I attempted to carry out a partial cross-fostering experiment on 

Moorhouse, N. England, in 2002. For full details of this experiment see Chapter 2. A total of 61 

pairs were caught at night on Moorhouse during early spring, sampled for parasites using the 

techniques outlined above and females fitted with a necklace-type radio to allow future 

relocation. Females were radio-tracked at frequent intervals during April and May until their 

nests was found. After clutch completion, egg measurements (length, breadth to the nearest 

0.1mm and weight to the nearest O.lg) were taken and used to predict an average hatch date for 

the nest (Smith, unpublished data).
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Statistical analyses

Factors influencing variation in parasite intensities

In order to explore the influence of moor, sampling date, age and sex as sources of variation in 

faecal egg counts (FEC) between individuals, parasite count data were analysed using generalized 

linear models (SAS GENMOD procedures). Models were fitted to the data using a negative 

binomial distribution and a log link function (Wilson & Grenfell, 1997), with the logarithm of the 

mass of faecal material sampled as an offset. The models were constructed using a backwards 

step-wise selection procedure, starting with all the terms in the model, then dropping the least 

significant term in the subsequent model until only terms significant at the 5% level remained, 

using SAS type I tests (SAS, 2001). As it is known that development of infective larval stages of 

the parasite is subject to seasonal effects (Shaw, 1988) and that parasite intensities increase with 

age, it was considered to be biologically meaningful to include parasite sampling date in all 

models, despite the fact that it was found to be no longer statistically significant in the full model.

Parasite intensities within and between pairs and broods.

The relationship between male and female parasite burdens within pairs was analysed initially 

using Spearman Rank Correlation and male and female indices of T. tenuis intensity. These 

indices were the residuals of T. tenuis count data after controlling for sampling date, study moor 

and age as fixed effects in a generalized linear model, as above. To compare parasite variation 

within and between pairs of grouse, T. tenuis count data were analysed using Generalized Linear 

Mixed Models. The method is based on the Poisson-lognormal model, and aims at partitioning 

the observed variance among sources of heterogeneity as described in Elston et al. (2001). In 

order to implement the Poisson-lognormal model, I made the following assumptions: that
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conditional on their respective means p  ^  the number of T. tenuis eggs counted from individual i

of pair j  from study site k followed a Poisson distribution. I then modelled the mean egg counts p

tjk with respect to the following dependent variables; sampling date, study site, sex, age and

individual nested within pair. Models were implemented in SAS using the GLIMMIX macro

(Littell et al., 1996) and were fitted to the data using a Poisson error distribution with a log link

function and included the logarithm of the mass of faecal material sampled as an offset.

Denominator degrees of freedom were estimated using Satterthwaite’s formula (Littell et al.,

1996). As I was interested in variance as a measure of non-randomness, the dispersion parameter

was fixed at 1.0. Using T. tenuis egg counts as the response variable, a series of models were run,

initially with no fixed effects and then with the addition of a number of explanatory variables

including categorical fixed effects of study moor (a pair-specific effect), sex and age, and a

continuous fixed effect of sample date (all individual-specific effects). Random effects of pair

and individual nested within pair were included in each model. If  the variance o f the pair means

(a e) is greater than zero, this implies that there is additional variation among pairs mean that

cannot be accounted for by Poisson variation or by the pair-specific fixed effects in the model. In

the same way, if  the variance of the individual nested within pair means (o2e) is greater than zero,

this implies that that there is additional variation in individual egg counts within pairs that cannot

be attributed to pair means, Poisson variation about the means or by the individual-specific

effects. Comparing values of the two variances components of the random effects (o2e and o2e)

from models with 1, 2, 3 or no fixed effects, not only gave an indication of the variance explained

by the fixed effects but also made it possible to quantify the amount of variance occurring

between individuals within pairs, relative to that occurring between pairs in the population.

Data on T. tenuis intensities collected from individual chicks within broods were also analysed

using this method. The explanatory variables then included a categorical fixed effect of year, a

106



Chapter 4. Variation in T.tenuis intensity

continuous fixed effect of sample date and random effects o f brood, and individual nested within 

brood. The parameters to be estimated were the effects of moor, sex, age and date, together with 

the variances of the random effects.

Breeding attempt outcome o f cross fostering experiment

Due to a parasite outbreak at Moorhouse during 2002, the reproductive success of individuals 

was particularly low. By the end of the breeding season, 16 pairs had failed to lay eggs, died or 

were lost, 21 pairs had laid eggs but failed to hatch chicks, and only 16 pairs successfully hatched 

chicks. I tested if the overall breeding success of a pair was explained by T. tenuis intensities in 

females or males, after controlling for age and parasite sampling date. To do so, I used 

generalised linear models, with the probability that an individual produced chicks (or not) as a 

binary measure, analysed with a binomial error structure and a logit link function (SAS 

GENMOD procedures).

Statistical analyses were conducted using Minitab (version 13) and SAS (version 8.01, SAS, 

2001). Where necessary, data were logio-transformed to approximate normal distribution.
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4.4 Results

Variation in individual T. Tenuis infections according to study moor, sampling date and age.

I used generalized linear models to explore the influence of moor, sampling date, age and sex as 

sources of variation in faecal egg counts (FEC) between individuals. Intensities of T. tenuis 

increased significantly over the sampling period across moors (GENMOD; x2 = 13.90, 1 d.f., P < 

0.001). After controlling for sampling date, intensities of T. tenuis varied significantly between 

study moors (Figure 4.1; Table 4.1) (GENMOD; x2 = 52.76, 5 d.f., P < 0.0001) but a significant 

interaction between sampling date and study moor (GENMOD; x2 = 43.70, 4 d.f., P < 0.0001), 

indicated that increases in T. tenuis intensities over sampling period were not consistent across all 

moors. After controlling for sampling date, study moor and a date*moor interaction, T. tenuis 

intensities varied significantly between age groups, with old birds having significantly higher 

intensities of T. tenuis than young birds (GENMOD; x2 = 14.60, 1 d.f., P = 0.0001) but a 

significant interaction between age and moor effect indicated that differences in T. tenuis 

intensities between age groups were not consistent across moors (GENMOD; j 2 = 21.80, 5 d.f., P 

< 0 .001).
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Figure 4.1: Arithmetic mean of T. tenuis egg concentrations (eggs, g '1) in the six 

study moors; CA (Catterick, N = 17), EG (Edinglassie, N = 4), GC (Glas Choille, N = 15), 

IC (Invercauld, N = 12), IM (Invermark, N = 6) and MH (Moorhouse, N = 114).
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EG GC 1C IM CA

GC
0.98
(NS)

1C
0.76
(NS)

0.02
(NS)

IM
0.55
(NS)

0.03
(NS)

0.00
(NS)

CA
0.89 8.40 8.22 5.40

(NS)

MH
14.49 25.41

^***|
22.49 12.17

n
1.92
(NS)

A  values: NS: P> 0.05; *: P< 0.05; **: P< 0.01; * * * : P< 0.001.

Table 4.1: Comparison of T.tenuis parasite intensities between study moors (see Fig. 

4.1). Chi-square values (P values below) for Difference of Least Square Means (DLSM). 

(GENMOD procedure, SAS, 2001).
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Sex differences in T.tenuis intensities.

Intensities of T. tenuis from birds sampled in this study ranged between 116 and 111279 eggs per 

gram in females (equivalent to approximately 100 to 8895 worms) and 165 to 141379 in males 

(approximately 128 to 10,396 worms). Using data from all sites, after controlling for sampling 

date, study moor, age and date*moor and moor*age interactions, T. tenuis intensities did not vary 

between male and female grouse (Figure 4.2). However, within age classes, although there was 

no difference between infection intensities between the sexes in old birds, young males had 

significantly more T. tenuis than in young females (Figure 4.3).

In order to further examine sex differences in individual T. tenuis intensities, data were examined 

from a single study site with the greatest sample size of individuals (Moorhouse, N = 114). The 

geometric mean worm burdens for males and females at Moorhouse were 4411(95% C.I: 3483 -  

5548) and 2732 (95% C.I: 2251- 3300) worms respectively. Males had significantly higher 

intensities of T. tenuis than females, after controlling for sampling date and age. Intensities of 

infection of T. tenuis increased significantly over time and (Figure 4.4). Increases in male and 

female T. tenuis intensities over the sampling period were also consistent between the sexes 

(Figure 4.4).
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Figure 4.2: Arithmetic mean of female and male T. tenuis egg concentrations 

(eggs, g '1) in the six study moors; CA (Catterick; Females N = 7, Males N = 10 ), EG 

(Edinglassie; Females N = 2, Males N = 2), GC (Glas Choille; Females N = 18, Males 

= 7), IC (Invercauld; Females N = 6, males = 6), IM (Inverm ark; Females N = 3, 

Males = 3) and MH (Moorhouse; Females N = 58, Males =56). For all study sites, 

after controlling for sampling date, study moor, age and date*m oor and moor*age 

interactions, there was no difference between male and female T tenuis intensities 

(GENMOD; x 2 = 1.03, 1 d.f., P = 0.3107).
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Figure 4.3: Arithmetic mean of T. tenuis egg concentration (eggs, g '1) in old and 

young male and female birds. In a general linear model with date o f sampling as a fixed 

effect, T. tenuis intensities varied significantly between the sexes in young birds. Young 

males had significantly higher T. tenuis intensities than young females (GENMOD; y2 = 

14.60, 1 d.f., P < 0.001). There was no difference in T. tenuis intensities between old 

males and females.
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Figure 4.4: The relationship between T. tenuis egg concentration (E, eggs, g *) and 

sampling date (Julian day) for Moorhouse data only. Symbols represent females ( A )and

males (□ ) Intensities o f T. tenuis increased significantly over tim e (Figure 4.1:

GENMOD; x2 = 43.99, 1 d.f., P < 0.0001). After controlling fo r sampling date and age, 

there was a significant different difference between male and female T. tenuis 

intensities (GENMOD; x2 = 4.22, 1 d.f., P < 0.05). No significant interaction between 

sampling date and sex (GENMOD; x2 = 0.18, 1 d.f., P = 0.67), indicated tha t increases 

in male and female T. tenuis intensities over the sampling period were consistent 

between the sexes.
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Variation in parasite intensities within and between pairs o f grouse.

To investigate patterns of T. tenuis infection in pairs of red grouse, FEC data were collected in 

the spring from pairs from all six study sites. Once the effects o f site, sampling date and 

individual age were corrected for, residual T. tenuis FECs between males and females within 

pairs were not correlated, (Figure 4.5: Spearman rank correlation rs = 0.241, n = 80, p  = 0.13). 

Although there was no direct relationship between T. tenuis intensities of males and females 

within pairs, I investigated whether the variation between individuals within pairs was less than 

variation among pairs using a method based on the Poisson-lognormal model, which enables the 

observed variance to be partitioned among sources of heterogeneity. Due to the significantly 

higher levels of parasites found on Moorhouse (Figure 4.1; Table 4.1), initial attempts to examine 

the data from all the moors combined, showed that the “moor” effect was so strong, no variance 

was explained between pairs, over and above that explained by “moor”. The data were therefore 

analysed, firstly using only Moorhouse data (site effect not included as a fixed effect) and 

secondly, using data from the remaining five moors (CA, EG, GC, IC& IM) combined.

Data from Moorhouse

After controlling for the effects of sampling date, sex and age, T. tenuis egg counts varied more

within pairs than between pairs: the estimated variance component for individuals nested within

pairs (0.391) was estimated to be almost 7 times as great as the variance component for pairs

(0.056) (Table 4.2, model 5). Comparing the variance component for mean T. tenuis counts for

individuals nested within pairs in model 1 without fixed effects (0.848), with that of model 5

(0.391), the difference between these variance components indicates that half the variation

attributable to individuals, was due to the effects of sample date, age and sex (Table 4.2). As all

these factors were specific to individuals nested within pairs, they explain only variation among
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individuals and not variation among pairs. The variance component associated with pairs in all 

the models was extremely small, and in the case of model 1, was negative. A negative variance 

component indicates that there was less variation between pairs than was to be expected, given 

the level of variation between individuals within pairs. Such a small effect found between pairs as 

compared to between individuals within pairs indicates that there was no evidence that males and 

females within a pair had similar parasite burdens.

Data from All moors (excluding Moorhouse)

The results from all the other moors combined, gave similar results to those from Moorhouse 

(Table 4.3). The estimated variance component after controlling for the effects of study moor, 

sampling date, age and sex, was 2.626 for individuals nested within pairs, compared with a 

relatively small negative variance component o f -0.177 for pairs. Again, this negative variance 

component indicated that there was less variation between pairs than was to be expected, given 

the level of variation between individuals within pairs. In contrast to the Moorhouse analysis, the 

addition of individual-specific effects of sampling date, age and sex in the models, explained only 

a small amount of the variation among individuals and the addition of the pair-specific effect of 

study moor explained none of the variation among pairs. There was thus no evidence that males 

and females within a pair have similar parasite burdens.
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Figure 4.5: Relationship between male and female residual T. tenuis FEC within pairs 

of grouse. There was non-significant relationship between FEC between paired males 

and females (Spearman rank correlation coefficient r = 0.241, n = 80, p = 0.13)
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Table 4.2: Variance components of random effects in different models. Data from 

Moorhouse site alone. The Poisson dispersion parameter was fixed at 1 throughout.

Model Fixed Effects Random

Effects

Variance

Component

95%  C.I.

1 Mean Pair -0.060 -0.168 to 0.048

Individual 0.848 0.687 to 1.01

2 Mean & Date Pair 0.0714 -0.007 to 0.150

Individual 0.454 0.363 to 0.546

3 Mean, Date & Sex Pair 0.062 -0.009 to 0.133

Individual 0.438 0.352 to 0.524

4 Mean, Date & Age Pair 0.067 -0.004 to 0.138

Individual 0.396 0.315 to 0.477

5 Mean, Date, Sex & Age Pair 0.056 -0.009 to 0.121

Individual 0.391 0.312 to 0.470
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Table 4.3: Variance components of random effects in different models. Data from all 

sites excluding Moorhouse. The Poisson dispersion parameter was fixed at 1 

throughout.

Model Fixed Effects Random

Effects

Variance

Component

95% C.I.

1 Mean Pair -0.04 -0.63 to 0.55

Individual 2.80 1.98 to 3.62

2 Mean & Date Pair -0.21 -0.79 to 0.37

Individual 2.85 2.01 to 3.68

3 Mean, Date & Site Pair -0.04 -0.64 to 0.56

Individual 2.81 1.99 to 3.63

4 Mean, Date & Age Pair 0.04 -0.61 to 0.68

Individual 2.60 1.78 to 3.43

5 Mean, Date & Sex Pair -0.18 -0.75 to 0.39

Individual 2.603 1.95 to 3.60

6 Mean, Date, Site, Pair -0.18 -0.58 to 0.81

Sex & Age

Individual 2.63 1.78 to 3.47
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Variation in parasite intensities within and between broods o f chicks.

Initial attempts to examine the brood data from Glas Choille in the autumn for years 2001 and 

2002 combined, using the Poisson-lognormal model, showed that the “year” effect was so strong, 

no variance was explained between pairs, over and above that explained by “year” (Figure 4.6; 

Table 4.4). The data were therefore re-analysed, using 2002 data alone, as the sample size of 

broods from 2001 was too small (N= 4 broods). Using only brood parasite data from 2002 (9 

broods), with sampling date as a fixed effect, the estimated variance component for individuals 

nested within broods was 1.041 compared with a relatively small negative variance component 

for broods o f-0.157 (Table 4.4, model 3). The addition of sex in this model, explained no further 

variation among broods or individuals nested within broods (Table 4.4, model 4). The negative 

variance component for broods indicates that there is less variation between broods than is to be 

expected, given the level of variation between individuals within broods. There was thus no 

evidence that chicks within broods had similar parasite burdens.

When T.tenuis infections were compared between male and female chicks, in a general linear 

model with year and date of sampling as a fixed effects, T. tenuis intensities were significantly 

higher in male chicks than in female chicks (Figure 4.7: GENMOD; %2 = 6.08, 1 d.f., P < 0.05).
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Figure 4.6: T.tenuis intensities of chicks from Glas Choille in 2001 (♦) and 2002 (□ )
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Table 4.4: Variance components (VC) of random effects in different models. Data from 

broods of chicks from Glas Choille. The Poisson dispersion parameter was fixed at 1 

throughout).

Glas Choille 

2001  & 2002

Random
Model Fixed Effects . VCEffects 95% C.I.

Glas Choille 

2002 Only

VC 95% C.I.

Mean Brood 1.10 0.32 to 1.87 -0.18 -0.36 to -0.01

Individual 1.01 0.65 to 1.37 1.05 0.61 to 1.48

Mean & Year Brood -0.25 -0.45 to -0.06

Individual 1.26 0.74 to 1.77

Mean & Date Brood 1.06 0.86 to 1.26 -0.16 -0.38 to 0.06

Individual 1.01 0.65 to 1.37 1.04 0.60 to 1.48

4 Mean, Date Brood 1.18 0.30 to 2.08 -0.16 -0.38 to -0.06

Sex

Individual 0.94 0.59 to 1.29 1.04 0.60 to 1.48

5 Mean, Date, Brood <0.000 <0.000 

Sex & Year

Individual 1.56 1.56
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Figure 4.7: Arithmetic mean of T. tenuis egg concentration (eggs, g '1) in female 

(N=15) and male (N=18) chicks from Glas Choille In a generalised linear model with 

year and date o f sampling as a fixed effects, T. tenuis intensities were significantly 

higher than male chicks than in female chicks (GENMOD; x 2 = 6.08, 1 d.f., P < 0.05).
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Cross-Fostering Experiment

Crash o f Experimental Population

During 2002, densities of grouse on the Moorhouse study population fell from 193 birds per km2 

in the spring to 40 birds per km2 in the following spring. The poor breeding success of the hens in 

this experiment, resulted in only 8 out of a potential of 61 broods surviving. Whilst such a small 

sample size of broods rendered the usefulness of data from the experiment redundant, three 

partial cross-fosterings were nevertheless attempted, in order to assess the feasibility of the actual 

method used and in order to develop the protocol for future experiments. Out of a total of 61 hens 

caught and radio-tagged in the spring for this experiment, 16 (26%) failed to lay eggs and 21 

nests (34%) were lost at the egg stage either through predation or desertion. Of the 16 nests that 

hatched out (26%), only 8 broods survived to greater than 5 days old. In the early stages of the 

experiment, 8 radio-tagged hens were lost (13%) (possibly due to either the radio battery failing 

or the hens moving a far enough distance from the study site for the radio signal not to be 

detected). Of the 8 surviving broods, 3 cross-fostering attempts were made between 6 broods. A 

total of 28 chicks were tagged and 13 chicks were placed into foster broods. Only 3 tagged chicks 

(1 fostered chick) were located the following autumn when the hens were relocated in order to 

remove the radio-tag.

Survival o f Radio-tagged Hens

Throughout the course of the experiment, of the 61 radio-tagged hens, a total of 14 hens were

found dead. Predation by either mustelids or raptors was identified in 8 cases (13%) (Hudson &

Newborn, 1995) and 6 cases (10%) were found with no obvious signs of predation. External

examination of these carcasses in the field revealed these hens to be in extremely poor condition,

highly emaciated with very little breast muscle tissue and the sternum generally protruding very
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obviously beneath the skin. These characteristics are consistent with the clinical symptoms of 

grouse suffering from the pathophysiological effects of a T.tenuis infection (Hudson et al., 1997). 

The FECs of these females in the spring corresponded to worm burdens in these females ranging 

from 2049 to 5292.

The effect o f T. tenuis on breeding success

Of the 53 pairs followed throughout the breeding season, only 16 pairs successfully produced 

chicks. Overall breeding success was negatively significantly related to hatch date (GENMOD; 

X2 = 3.97, 1 d.f., P = 0.046), and marginally significantly related to female age (x2 = 3.12, 1 d.f., 

P = 0.078), but not to male age (x2 = 0.64, 1 d.f., P = 0.424). After controlling for age and date of 

parasite sampling, a pair’s overall breeding success was significantly negatively related to 

intensity of infection of T. tenuis in females (Figure 4.8; x2 = 6.15, 1 d.f., P = 0.013) but not in 

males (x2 = 1.57, 1 d.f., P = 0.211).
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Figure 4.8:
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4.5 Discussion

Infection intensities of the caecal threadworm T. tenuis vary greatly between individual red 

grouse (Wilson, 1983). In the present study, I showed that spatial, temporal as well as biological 

factors may explain some of this variation.

Data for this study came from a number of moors from both England and Scotland and T. tenuis 

intensities varied significantly between study moors, with Moorhouse in northern England 

showing highest parasite intensities. Previous studies have attributed geographic variability in 

parasite intensities of red grouse to heterogeneities in climatic conditions and host density 

between moors, both of which may affect transmission rates between hosts (Wilson, 1983; 

Hudson, 1986b; Hudson & Dobson, 1995). Hudson (1986b) found greater worm burdens in 

grouse from moors in wetter regions with high densities of grouse. On a geographical scale, 

moors in the east of the country tend to be drier than in the west and desiccation and extreme low 

temperatures may significantly reduce the survival of free-living developing larval stages of T. 

tenuis (Shaw et al., 1989). To establish whether this may account for lower parasite intensities in 

the four moors located in north east Scotland, data on climate variables are required. Another 

explanation for the relatively higher intensities of infection observed on the two study sites in 

England, is that higher grouse densities may lead to greater concentration of parasite eggs being 

deposited onto the moor, thus increasing transmission of the parasite within and between hosts 

(Hudson, 1986b). At Moorhouse and Catterick, densities of grouse in the previous autumn and in 

the spring reached 193 and 111 birds per km2 respectively. This is high in comparison to 

densities of grouse found at Glas Choille (36.5 birds per km2,Autumn 2000) and Invercauld (35 

birds per km2, Autumn 2000) in Northeast Scotland.
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High grouse density may also explain the significant difference between male and female 

parasite intensities found on Moorhouse, the main study site. Males had significantly higher 

infections of T. tenuis than females, with over 70% of males having higher levels of infection 

than females within pairs. Sex differences may result from physiological differences between the 

sexes such as seasonal differences in levels of circulating steroid hormones, such as testosterone 

(Wilson et al, 2002). Elevated testosterone levels are often required during breeding periods for 

the expression of sexual traits and behaviour involved in male-male competition and female 

choice, but might also be associated with physiological costs, such as impaired immune function 

(Folstad & Karter, 1992; Grosmann, 1985; Hillgarth & Wingfield, 1997).

Grouse populations tend to exhibit regular cyclic fluctuations. Male aggressiveness and 

ornamental comb size, which are both testosterone dependent, have been shown to increase with 

population density (Moss et al., 1979; Watson et al., 1994; Moss et al., 1996). Previous studies 

conducted on red grouse found that males artificially implanted with testosterone in the autumn 

had lower cell-mediated immunity (Mougeot et al., 2004; see also Chapter 6). Thus males, 

particularly those in high density populations as in the case of Moorhouse, may be increasing 

their susceptibility to parasites by elevating their hormone levels during the spring breeding 

period.

In chicks from Glas Choille, and in young birds from all study sites, males had significantly

higher T. tenuis intensities than females. Again, these differences may be due to differences in

levels of circulating steroid hormones. In order to secure a territory in their first breeding season,

young males may have to compete not only against other young males, but also against old males

that have already established a territory. This may require young males to elevate their
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testosterone levels to facilitate aggressiveness at the expense of making themselves more 

susceptible to parasites. The relationship between testosterone and T. tenuis is examined in more 

detail in Chapter 7.

In this study, birds were sampled for parasites over a two-month period from early to late spring 

(28th February to 2nd May) and T. tenuis intensities increased significantly over this period. 

Developmental stages of T. tenuis infective larvae may account for this increase in the spring as 

larvae ingested in late autumn and winter may arrest their development, resuming maturation 

synchronously during late March and early April, causing an observed rise in T.tenuis egg output 

(Shaw, 1988; Moss et al., 1993). T. tenuis intensities also increased significantly with age as 

previously found in other studies, with old birds having more parasites than young (Wilson, 

1979; Hudson, 1986b). Unlike artificially induced T. tenuis infections in domestic chickens, 

where young domestic chickens develop a resistance to the nematodes resulting in worms being 

actively expelled and the infection rejected (Watson et al., 1988), the number of worms present in 

the caeca of red grouse increases throughout the life of the bird (Wilson, 1983).

This study went on to examine patterns of infection in pairs of male and female grouse in the 

spring and broods of grouse chicks in the autumn. Given that pairs spend a significant proportion 

of the year together, feeding and roosting in close proximity to one another, it was predicted that 

if exposure is a strong mechanism in determining an individual’s parasite burden, then the 

variation between individuals within pairs and broods, should be smaller than variation between 

random individuals. There was however, no evidence to suggest that pairs of grouse or broods of 

grouse chicks had similar parasite burdens. This was in contrast to the work of Elston et al.

129



Chapter 4. Variation in T.tenuis intensity

(2001) who examined patterns of infection of the sheep tick ectoparasites Ixodes ricinus in grouse 

chicks and found a greater similarity in levels of infection between chicks with the same brood 

than the variation in chicks from different broods. It may be however, that not enough broods 

were sampled to allow variation between and within broods to be detected. Similarly, it may also 

be that the sampling method (Mcmaster), which can be reliably used to count parasite eggs in 

faecal samples from adult grouse (Seivwright et al., 2004; see also Chapter 3), may not have been 

sensitive enough to detect variation between chicks of the age used in this study. A different 

sampling method, such as the flotation method (MAFF, 1986), where all the eggs present in 

faeces are separated from faecal debris and counted may have provided more accurate counts.

Unfortunately, correlative studies of this nature merely describe rather than explain patterns of 

infection. Thus, there may be a number of explanations to account for the variation in infection 

levels between individuals in pairs and broods. First, although pairs and broods feed and roost 

together, mostly within the male’s territory, it could be that heterogeneities in exposure to 

infective stages, may be operating on much smaller spatial scale, at the level of the heather plant 

and not at a territory level, as was predicted. Indeed previous studies have shown that not only is 

caecal faeces containing the parasites eggs generally aggregated on the moor, the resultant 

infective larval stages of T. tenuis may be aggregated on the tips of heather (Saunders et al., 

2000; Hudson, 1986b). Second, patterns of infection between pairs may be explained by variation 

in individual resistance to infection similar to that shown in captive grouse (Wilson, 1979; Shaw 

& Moss, 1989b; Moss et al., 1993). It has been shown previously in captive birds, however, that 

grouse show a wide variation in innate susceptibility to the same dose of T. tenuis larvae (Wilson, 

1979; Shaw & Moss, 1989b) and a study by Moss et al. (1993) found that relative differences in

parasite egg counts among individuals within years, tend to persist across years, so that relatively
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high or low egg counts were found to be characteristics of individual birds. Thirdly, as already 

mentioned, differences between male and female infection levels associated with differences in 

circulating hormones, may also explain the observed patterns of infection between pairs and 

broods.

In order to formally assess the contribution of environmental exposure versus innate resistance as 

determinants of an individual’s level of infection, experimental manipulations are required. I 

attempted to tease apart the environmental and genetic components of an individual’s parasite 

infection by carrying out a cross-fostering experiment. Unfortunately, poor breeding success 

resulted in only 8 broods from a total of 61 radio-tagged hens survived to 5 days of age. Whilst 

hens were being radio-tracked throughout the breeding season, every effort was made to 

minimise the disturbance to the hen and the nest and poor breeding success affected the whole 

moor in 2002. Breeding success on the control area of the moor was only 1.2 chicks per hen 

(pers. comm. F. Mougeot), which is below values observed in other studies of 1.8 chicks per hen 

(Hudson & Dobson, 1997).

There was a significant negative effect of female’s T. tenuis intensity on her overall breeding

success. The average worm burden for females at Moorhouse was estimated to be approximately

2700, ranging from 2049 to 5292 worms. A decline in body condition has been shown in adult

grouse with more than 4000 worms (Hudson, 1986b) however many of the females sampled for

parasites during early spring may have been harbouring high numbers of arrested infective larvae

which have been shown to be more pathogenic than adult worms (Shaw & Moss, 1990; Delahay

et al., 1995). Other evidence also suggests that the poor breeding success observed was due to

relatively high intensities of T. tenuis infection across the population, commonly referred to as an
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outbreak of “grouse disease” (Lovat, 1911). Not only were 8 radio-collared females found dead 

with clinical symptoms of grouse suffering from the pathophysiological effects of a T.tenuis 

infection (Hudson et al., 1997), throughout the course of this experiment, another 11 dead 

untagged birds with similar symptoms were found by chance. Furthermore, the breeding success 

of 1.2 chicks per hen observed on the 1 Km2 control area of the moor was in contrast to 3.1 

chicks per hen on a 1 Km2 treatment area of the moor where all birds had been caught and 

experimentally dosed with anthelmintic to remove parasites in the spring of 2002.

Parasites may play an important role in host life history by impacting on host reproductive effort 

(Minchella, 1985). A reduction in reproductive effort may be either as a result of the host 

reducing the negative impacts of parasitism or may be due to parasites impacting negatively on 

host physiology (Moller, 1997). Previous studies have demonstrated that T. tenuis can have a 

detrimental effect on female host reproduction. Hens treated with levimisole (an anthelmintic) to 

reduce worm burden produced more young; through improved clutch size and chick survival 

(Hudson, 1986a) and in the same study, heavily infected hens were shown to leave the nest more 

frequently during incubation than treated hens resulting in greater vulnerability of these nests to 

predation.

In conclusion, the poor breeding success on Moorhouse in 2002, was indicative of the start of a 

population crash. Grouse population are known to follow regular cyclic fluctuations in density, 

and moors in the north of England have been shown to peak on average every 4.8 years (Hudson, 

1986b). Although data on the densities of grouse on Moorhouse are unavailable for 2001 when 

counts were prohibited due to the Foot and Mouth epidemic, there was an estimated density of 80

birds per km2 for 2001 and densities of grouse in the spring of 2002 on Moorhouse reached 193
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per square kilometre. The following year, spring densities had fallen to 40 birds per km2 across 

the moor (pers. comm. F. Mougeot).

To my knowledge this study documents the first attempt at cross-fostering red grouse chicks and 

has shown, in principle, that the partial cross fostering of grouse chicks is possible. Although the 

question of whether resistance to parasite infection may be a heritable component remains 

unanswered, the experimental methodology to go about thoroughly testing this question has been 

developed as a result of this study, and it is hoped that future attempts to examine this question 

will prove successful.
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Ornamental combs as indicators of individual quality and 

assortative mating in red grouse

5.1 Abstract

Studies of the function of elaborate animal ornaments have largely focussed on the males of 

sexually dimorphic species. In contrast, in spite of the fact that many females also exhibit 

ornaments, comparatively little empirical information exists on the relationship between 

ornament size and individual quality in females. Using red grouse (.Lagopus lagopus scoticus), a 

species in which both males and females display ornamental supra-orbital combs, I first 

investigated whether the size of this main ornament may advertise aspects of individual quality, 

such as parasite resistance or a better body condition, in both sexes. Secondly, I looked for 

evidence of non-random assortative mating in pairs of red grouse, with respect to age, ornament 

size, body size, body condition and measures of parasite infection. Thirdly, I explored whether 

certain phenotypic traits could be used to predict breeding success in either of the sexes, in order 

to investigate the possibility of direct benefits from mate choice based on these traits. Ornamental 

combs in both males and females were identified as potential signals of individual quality, 

reflecting a better body condition, and their relevance as sexually selected traits is discussed. 

Adult red grouse were found to mate assortatively with respect to body condition and body size. 

Overall, breeding performance during the year of study was poor. The probability that a female 

would succeed in hatching a clutch was significantly greater for larger females with bigger combs 

and in better condition in early spring. In light of the findings, I discuss the possibility and 

potential benefits of mutual mate choice in red grouse.
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5.2 Introduction

An important determinant of an individual’s fitness is its choice of mate (Burley, 1981). Within a 

breeding population, individuals vary in qualities, leading to differential survival and 

reproduction. For the majority of animal species, an individual’s choice of mate is rarely random 

(Bateson, 1983; Real, 1990). The fitness benefits of mating with an individual of high quality 

may be both direct, leading to short-term material benefits such as avoidance of contagious 

pathogens, territorial resources or parental care (reviewed in Halliday, 1983; Moller, 1994; 

Kirkpatrick & Ryan, 1991), or may be indirect, whereby some advantage is accrued through 

increased attractiveness or viability of offspring (Fisher, 1930; Zahavi, 1975; Hamilton & Zuk, 

1982; Moller, 1994).

So, how do individuals choose a mate? It is now widely established that ornamental traits, as 

expressed in males, are a product of sexual selection, and have evolved through female mate 

preference and male competitive advantage (Darwin, 1871). Models of sexual selection argue 

that ornamental traits in males function as cues of male quality (Zahavi, 1975; Hamilton and Zuk, 

1982; Andersson, 1994). Females may thus be able to assess the variation in male qualities and 

discriminate between potential mates, by basing their preference on the size or brightness of 

sexual ornaments or intensity of sexual displays (Andersson, 1994). One hypothesis regarding the 

role of these ornaments, is that they may function as indicators of health and resistance to 

parasites. By choosing a healthy male, a female may accrue indirect advantages by acquiring for 

her offspring resistance important against prevailing parasites (Hamilton and Zuk, 1982). 

Alternatively, a female may also gain direct fitness benefits through decreased risk of exposure to 

contagious parasites (the “parasite avoidance” hypothesis) (Borgia, 1986; Borgia & Collis, 1989).
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When it conies to choosing a mate, females are generally the sex that chooses as they produce 

relatively few nutrient-rich energy-costly eggs compared to males who produce an enormous 

number o f low-investment sperms (Halliday, 1983). Females therefore tend to be selective of 

males, as they as they want their few progeny to be of the highest quality (Bateman, 1948; 

Manning, 1985). However, when sexes contribute to parental investment or where the mating 

system is monogamous and males mate only once, both are predicted to show selectivity in mate 

choice and mutual mate preferences may occur (Burley, 1977; Trivers, 1972; Parker, 1983).

Whilst males of many animal species display elaborate ornaments, females often show reduced 

expression of the same ornaments as males. Two main hypotheses have been proposed to explain 

female ornamentation (reviewed in Amundsen, 2000). The “correlated response” hypothesis 

suggests that female ornaments are themselves selectively neutral or even detrimental, but have 

occurred through non-adaptive genetic correlation between the sexes (Lande, 1980; Lande & 

Arnold, 1985) and several studies have demonstrated support for this hypothesis (Muma & 

Weatherhead, 1989; Hill, 1993; Cuervo et al., 1996; Telia et al., 1997). The “direct selection” 

hypothesis first proposed by Darwin (1871), suggests that the processes driving sexual selection 

for male ornaments i.e. intra-sexual competition and mate preference may also be acting upon 

female traits. Where resources such as territories or mates are limited, female ornaments may 

function in female-female contests to signal social dominance (West-Eberhard, 1983; Johnstone 

& Norris, 1993; Johnstone et al., 1996). Female ornaments may also function in mate choice by 

males and in a number of bird species, males have been shown to choose females on the basis of 

their ornaments (Jones & Hunter, 1993,1999; Moller, 1993; Amundsen et al., 1997; Roulin, 

1999). It is thought that these ornaments may advertise reproductive or genetic quality and hence
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may accrue fitness benefits to choosy males (Jones and Montgomerie, 1992; Moller, 1993; 

Johnsen et a l, 1996; Potti and Merino, 1996; Amundsen et al., 1997, Linville et al., 1998; Roulin 

et al., 1998; Roulin et al., 2000).

Since both male and female secondary sexual characteristics may be simultaneously subjected to 

inter-sexual selection, similar preferences among individuals of the two sexes may lead to a 

tendency for females and males with the most elaborate secondary sex traits to pair with each 

other, resulting in positive assortative mating (Bortolotti & Iko, 1992; Moller, 1993, Wiebe, 

2000; Forero et al., 2001). Assortative mating describes a non-random population pattern of 

mating in relation to phenotypic characteristics and may be positive or negative (Burley, 1983). 

Positive assortative mating is the most widely described mating pattern and occurs when 

individuals of a similar phenotype mate with each other more often than expected by chance 

(Burley, 1983). Assortative mating has been described in a number o f bird species with respect to 

age (Coulson et al., 1981; Reid, 1988; Cezilly et al., 1997; Jouventin et al., 1999), body or 

morphological size (Boag & Grant, 1978; Cooke & Davies, 1983; Masello & Quillfeldt, 2003), 

plumage (O' Donald, 1983) and ornaments (Jones & Hunter, 1993, 1999; Daunt et a l,2000).

In this study, I examined phenotypic trait variation, including sexual ornament size, in pairs of 

red grouse {Lagopus lagopus scoticus), a socially monogamous species, in which both sexes 

participate in guarding and protecting their precocial young. Red grouse exhibit only slight 

sexual size dimorphism in morphology, males being c. 5% larger than females, and both sexes 

possess red supra-orbital combs. The combs of male red grouse are larger and redder than those 

of females (Cramp & Simmons, 1980). Combs may be partially or completely hidden below the
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feathers during feeding, resting or preening activities, but are erected and shown during periods 

of sexual and agonistic activity (Watson & Jenkins, 1964). In male red grouse, it is well 

established that comb size plays a major role in intra-sexual competition: males with bigger 

combs are more aggressive, hold bigger territories and are more likely to establish a territory in 

autumn (Moss et al., 1979; MacColl et al., 2000).

Although it is unclear for red grouse whether male combs function in mate choice, a link between 

comb size and mating success has been demonstrated in a number of other, closely related grouse 

and gallinaceous species (Ligon et al., 1990; Zuk et al., 1990; Brodsky, 1988; Hannon & Eason, 

1995; Hanon & Dobush, 1997; Rintamaki et al, 2000). In contrast to numerous studies 

investigating the role of ornamental combs in males, the function of female combs in red grouse 

has not been investigated. Female red grouse can also erect their combs and appear to show them 

off in inter-sexual head-wagging displays, as well as during hostile encounters with other females 

associated with territorial defence (Watson & Jenkins, 1964). Female combs might therefore 

function in sexual selection in a similar way to male ornamental combs. Therefore, we 

hypothesise that rather than being a genetically-linked redundant feature, female combs in red 

grouse may function in sexual selection as indicators of quality.

Using data collected from 114 pairs of grouse caught in the spring, the first objective of this

study, was to investigate which aspect of quality underline comb size in male and in female red

grouse. Given that sexual ornament size is expected to be condition dependent, I analysed comb

size variation in both sexes in relation to age, phenotypic quality (size, condition) and parasite

intensities, and predicted that individuals with the biggest combs would be those in better
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condition and possibly also those with fewer parasites. Second, I looked at the level of variation 

in combs size in males and in females to examine what factors may influence comb size, and to 

look for evidence that ornamental combs in female red grouse may be sexually selected traits, as 

opposed to being selectively neutral. The third objective was to test the prediction that red grouse 

will exhibit some form of mutual mate preference and will mate non-randomly with respect to 

age or to some other phenotypic trait, such as comb size or condition. Finally, I investigated 

whether the quality of pairs was correlated with breeding success, to test the prediction that if 

assortative mating occurs, then individuals should benefit from pairing with a mate o f high 

quality.
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5.3 Methods 

Study Areas & Capture

Data on pairs of grouse were collected in 2002 from five grouse populations, two located in 

northern England (Catterick and Moorhouse) and three in northeast Scotland (Edinglassie, 

Invercauld and Invermark). Pairs of male and female adult grouse (N=114) were captured at 

night during spring (from 28th February to 2nd May) using standard lamping techniques (Hudson 

& Newborn, 1995). Paired grouse roost together in close proximity and, where possible, both the 

male and female were caught together on the same evening. Where only one o f a pair was caught, 

a necklace-type radio-collar was fitted to the bird and that individual was relocated on a 

subsequent night in an attempt to capture the second individual. All individual birds were marked 

either with a numbered metal leg ring or with a numbered metal patagial wing tag

Biometric & Parasite Data Collection

Plumage and morphological characteristics were used to sex and age birds (Cramp & Simmons, 

1980). Birds hatched the previous summer, were classed as “young” and those greater than 1 year 

old were classed as “old”, and four males were not aged in error. For full details on the sexing 

and aging of birds, as well as all of the measurements, see Chapter 2. For each individual caught, 

the following data were recorded: date of capture (recorded as Julian date), weight (to the nearest 

lg), wing length (to the nearest 1 mm), tarsus (length of tarsometatarsus to the nearest 0.1mm) 

and comb size (length and height of the comb were measured to the nearest 1mm and multiplied 

to give an index o f comb size).
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The parasites: Trichostrongylus tenuis and Coccidia

For a detailed description of the life-cycle of both parasites refer to Chapter 2. A main parasite of 

red grouse is the gastrointestinal nematode Trichostrongylus tenuis which inhabits the caeca o f 

the red grouse but red grouse are also frequently infected by coccidia, single celled parasites that 

also infects the intestine. Faecal samples were collected for parasite sampling by placing captured 

birds in individual holding boxes overnight. The following morning, birds were released and their 

caecal faeces containing the parasite eggs and oocytes collected and taken to the lab for 

examination.

Laboratory analysis o f T. tenuis egg and coccidia oocyte intensity.

The intensity of T. tenuis eggs per gram (EPG) and coccidia oocytes per gram (OPG) of caecal 

faeces were estimated determined from approximately 0.2g of faecal material using the modified 

McMaster egg counting technique (MAFF, 1986). For a detailed description of this method, refer 

to Chapter 3. Previous studies on T. tenuis faecal egg counts in red grouse indicate that there is a 

strong positive correlation between T. tenuis worm burden and EPG (Moss et al., 1990; 

Seivwright et al., 2004). Worm burdens were calculated from average eggs per gram counts 

(Seivwright et al., 2004). Indices of T. tenuis and coccidia infection intensities, were calculated 

as the residuals of count data after controlling for sampling date, study moor and age as fixed 

effects in a generalized linear model (SAS GENMOD procedures), with a negative binomial 

distribution and a log link function and were fitted with logio faecal sample quantity as an offset.
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Breeding success in relation to phenotypic traits

Breeding success was determined for 53 pairs captured at night during early spring on the 

Moorhouse study site. Individuals were sampled for parasites using the techniques outlined above 

and the females fitted with a necklace-type radio-tag to allow future relocation. Radio-collared 

females were relocated frequently during April and May until their nests were found, in order to 

determine the outcome of their breeding attempt (for details see Chapter 2). After a minimum of 

5 eggs had been laid, egg measurements (length, breadth and weight) were taken and used to 

predict an average hatch date for the nest using a nomogram (Smith, unpublished data).

Statistical analyses

Derivation o f residual measurements

For body condition, I used an index, calculated as the residuals of linear regression of body mass

on wing length (used as an indicator of body size (Brittas & Marcstrom, 1982) for each sex

separately. These data were derived using a General Linear Mixed Model (SAS PROC MIXED

procedures) with study moor and a study moor*wing interaction as random effects. Hence this

index is a measure of relative body mass controlling for differences in structural body mass,

which may vary between study moors, as indicated by wing length. Other phenotypic indices

were also calculated using residuals; comb area index, condition index and size index (tarsus

length). Residuals were calculated after controlling for the effects of date of sampling, study

moor, measurer and age included as fixed effects in a General Linear Model (SAS GLM

procedures). All residuals were produced for each sex separately, as males are larger than females

(Cramp & Simmons, 1980). Measurer was also included as a fixed effect, as data were collected

by four different observers. Coefficients of variation (CV) for comb size were derived to allow

the extent of variation in this trait to be compared with the variation of morphometric traits under
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sexual selection in other avian species. In order to control for the observer effect in measuring 

comb size, data from only one observer (80% of comb measurements) were used to calculate the 

CV.

Relationships between comb, condition and parasites

To explore what measures of quality might be advertised by ornamental combs in male and 

female red grouse, I examined the relationship between comb size, body condition, body size 

(tarsus length) and parasites. I controlled for any additional variation that might be present due to 

the influence of moor, sampling date and age by analyzing the data using General Linear Mixed 

Models with study site and measurer as random effects and controlling for age and sex as fixed 

effects, where necessary (SAS PROC MIXED procedures). The models were constructed using a 

backward step-wise selection procedure, starting with all the terms in the model, and dropping 

the least significant term in the model until only terms significant at the 5% level remained, using 

SAS type III tests (SAS, 2001).

Examining the evidence for assortative mating

To explore whether grouse mate assortatively according to age, I used data only from Moorhouse 

(the greatest sample size of 53 pairs). I tested whether the frequency with which old birds mate 

with old and young birds with young differed from that expected from random pairing using chi- 

square analysis. Evidence for assortative mating based on phenotypic or parasite variables was 

examined by exploring the relationship between phenotypic and parasite indices of the male and 

female of a pair using correlation analyses of data from all sites. In addition, Principle 

Component Analyses (PCA) scores were also computed to simultaneously explore variation in 

multiple traits between individuals in order to investigate which phenotypic traits provided the
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greatest contribution to variation between individuals. PCA were performed on males and 

females using residual values for four biometric traits; comb size, condition, tarsus and wing 

lengths, and one measures of parasite intensity (T.tenuis). Individual scores for PCI and PC2 

were stored and used to investigate whether there was a correlation between individual scores 

within pairs.

Relationship between breeding attempt outcome and phenotypic traits

Due to a population crash at Moorhouse in 2002, data on the reproductive success of individuals 

was particularly low. By the end of the breeding season, 16 pairs had failed to lay eggs, 21 pairs 

had laid eggs but failed to hatch chicks, and only 16 pairs successfully hatched chicks. As 

reproductive success may be influenced by hatch date, which in turn may be related to the 

condition or age of a female, I began by investigating the relationship between predicted hatch 

date and a female’s age or condition. Data were analysed in a General Linear Model with female 

age, and capture date and condition index as fixed effects (SAS GLM procedures).

I then tested whether breeding attempt outcome could be predicted either from an individual’s 

age or from phenotypic traits measured in the spring. Data were analyzed using Generalised 

Linear Models with breeding attempt outcome determined as overall breeding success (hens that 

produced chicks), laying success (eggs produced versus no eggs produced) or hatching success 

(pairs laying eggs hatching versus pairs laying failing to hatch), all as binary measures, analyzed 

with a binomial error structure and a logit link function (SAS GENMOD procedures). Breeding 

attempt outcome was examined initially with respect to individual age, and then with respect to 

comb size, condition index and tarsus (after controlling for age and capture date); included as 

fixed effects in the model.
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Statistical analyses were conducted using Minitab (version 13) and SAS (version 8.01, SAS, 

2001).
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5.4 Results

Male comb size, condition, size and parasites

There was considerable variation in male comb size in spring, the largest combs being twice the 

size of the smallest (Figure 5.1; mean comb size of 354.88 ± 52.83 mm2, range 240-480mm2, N  = 

112, CV = 14.7%). Comb size variation was not explained by sampling date, wing length or 

coccidia intensity (Table 5.1). Variation in comb size was, however, significantly explained by 

age (older birds had smaller combs than younger birds; Table 5.1), condition index (males in 

better condition had bigger combs; Table 5.1, Figure 5.2) and T.tenuis intensity (males with the 

biggest combs had more parasites; Table 5.1). There was also a significant interaction between 

condition index and age, indicating that the relationship between comb size and condition index 

differed between young and old birds (Table 5.1). In order to clarify this interaction, I considered 

old and young males separately. Comb size variation was significantly explained by condition 

index in young males, but not in old males (Figure 5.2). Thus, male red grouse with bigger combs 

appeared to be those in better condition, but not necessarily those with fewer parasites. A better 

condition may underline fewer parasites. However, condition index was not significantly 

explained by T.tenuis intensity (Fi,63 = 0.02, P = 0.890) or coccidia intensity (F1j63 = 0.07, P = 

0.80). Male condition was also not related to sampling date (Fi;67 = 1.82, P = 0.182) or age (F i^  

= 0.58, P= 0.45).
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Variable Num

DF

Den DF F Value Estimate Pr > F

Age 1 59 4.38 -20.38 (Old) 0.041

Condition 1 59 5.41 0.54 0.023

T. tenuis 1 59 4.00 21.30 0.050

Condition*Age 1 59 5.46 -0.54 (Old) 0.023

Non-significant terms

Date 1 58 2.49 0.27 0.460

Age* T. tenuis 1 57 0.51 12.49 (Old) 0.476

Tarsus 1 53 0.16 1.70 0.689

Coccidia 1 52 0.02 -1.08 0.876

Table 5.1: Results of the GLMM for male comb size. GLMM included site and measurer 

as random effects. F values and probabilities for non-significant terms are those 

obtained when the terms were added alone to the model containing all significant 

terms.
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Female comb size, condition, size and parasites

Comb size of females sampled in spring also varied two-fold and had a C V =  19.4 % (Figure 5.1; 

mean 143.43 + 27.83 mm2, range 84 - 210mm2, N  = 99). Comb size variation was not explained 

by sampling date, wing length, T. tenuis or coccidia intensity (Table 5.2). However, comb size 

variation was significantly explained by age (older females had larger combs than young females; 

Table 5.2), and condition index (female grouse with bigger combs were in better condition; Table 

5.2, Figure 5.3; this was true for both young and old females: non-significant age*condition 

interaction).

Female condition index increased during spring (Fi,67 = 7.68, P < 0.01) and differed between age 

groups, older females being in better condition than young females (F i^  = 6.98, P = 0.01). 

However, female condition was not influenced by intensities of either parasite (T. tenuis: Fi,66 = 

1.91, P = 0.172; coccidia; Fi,66 = 0.27, P = 0.607).
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Variable Num

DF

Den DF F Value Estimate Pr > F

Age 1 62 6.39 15.9 (Old) 0.014

Condition 1 62 8.17 0.18 0.006

Non-significant terms

Age* Condition 1 61 2.57 0.27 0.114

Coccidia 1 60 1.67 -6.71 0.201

Date 1 59 2.79 -0.36 0.100

T. tenuis 1 58 0.96 -5.98 0.330

Ag q* T. tenuis 1 57 0.01 -1.92 (Old) 0.905

Tarsus 1 56 0.06 0.54 0.807

Table 5.2: Results of the GLMM for female comb size. GLMM included site and 

measurer as random effects. F values and probabilities for non-significant terms are 

those obtained when the terms were added alone to the model containing all the 

significant terms.
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Figure 5.3: Relationship between female condition index and female comb size. 

Symbols represent young females (^ )  and old females (□ ). Condition index

significantly explained comb size variation in young (Fi^g = 4.88, P < 0.05) and old 

(F1/17 = 6.18, P < 0.05). The solid trend line is a simple linear regression through the 

points for old females and the broken trend line that for young females.
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Assortative mating

Assortative mating in relation to age.

In 109 pairs of grouse, 12 old males were paired with an old female, 25 old males paired with a 

young female; 17 young males paired with an old female and, 55 young males were paired with 

young females. Using pairs from the Moorhouse study site only where sample size was greatest 

(N = 53 pairs), I compared the observed frequency of pairing age-combinations with that 

expected if individuals mate randomly in relation to age (according to the potential number of 

young and old mates available in the population). A chi-square test for goodness of fit test 

showed that the observed frequencies by which old and young birds select mates were not 

significantly different from those expected by random mating according to age = 0.199, 3 d.f., 

P = 0.978) (Figure 5.4). I thus had no evidence of assortative mating according to age.

Assortative mating in relation to comb size, body condition, body size and parasite infection.

I used correlation analyses between residuals of male and female traits of pairs to further look for 

evidence of assortative mating. Female condition index was significantly positively correlated 

with male condition index {Pearson correlation, rp = 0.38, n — 69, P = 0.001) and male tarsus 

was significantly positively correlated with female tarsus (rp = 0.30, N = 69, P< 0.05). There was 

no relationship between male and female comb size (rp = 0.14, N = 98, P — 0.174), and as found 

previously (Chapter 4), no relationship between the parasite intensities of paired males and 

female (rp = 0.19, N = 73, P = 0.102). There was however, a significant positive relationship 

between female condition index and male comb size (rp — 0.23, N = 72, P = 0.047).
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I further conducted a PCA analysis using residual measures of: a sexual characteristic (comb 

size), condition (condition index), size (tarsus) and parasite intensity (T. tenuis). This analysis 

was conducted for each sex separately, but produced similar results in males and females with 

regards to the first principle component axis (Table 5.3). The first PCA axis represented 42.2% of 

the variance in females and 41.0% of the variance in males. For both males and females the first 

axes were heavily influenced by tarsus, condition and comb. Analysis of the relationship between 

male and female scores generated from PCI & PC2 showed that the PCI scores of paired males 

and females were significantly positively correlated (Figure 5.5: Pearson correlation, rp = 0.344, 

N = 63, P = 0.006) but PC2 scores were not correlated (rp = 0.144, N = 63, P = 0.265). These 

results suggest that red grouse may pair assortatively according to condition and size and provide 

further evidence for a positive, significant relationship between comb size and condition in both 

males and females.
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Figure 5.4: Expected and observed frequency of pairing between old and young males 

and females at Moorhouse.
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Sex Variable PCA 1 PCA 2

Females Comb Size 0.477 -0.394

Condition Index 0.596 -0.285

Tarsus 0.572 0.173

T. tenuis -0.302 -0.857

% variance 41.0% 27.0%

Males Comb Size 0.533 -0.352

Condition Index 0.652 0.065

Tarsus 0.537 0.357

T. tenuis 0.054 -0.863

% variance 42.2% 24.5%

Table 5.3: Weightings of eigenvectors by variable on PCA axes 1 and 2 for males and 

for females.
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Figure 5.5: Relationship between paired male and female PCI scores for PCA analysis 

of comb size, condition index, tarsus and T. tenuis intensity.
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Breeding success in relation to residual condition index, comb size and tarsus length

Of the 53 pairs on Moorhouse followed throughout the breeding season, only 16 paired females 

produced chicks (30%; N = 16). For the 16 paired females that failed to lay eggs (30%; N = 16), 

the probability of laying a clutch was not related to female age or body condition index, residual 

comb size or residual tarsus length (after controlling for age and date of capture) (Table 5.4). Nor 

was it related to any of these same variables in males (Table 5.5).

For the 37 pairs (70%) that laid a clutch, I firstly examined whether there was an effect of female 

or male age or condition on the predicted hatch date for the clutch. Predicted hatch date was 

marginally significantly explained by female age and was significantly related to male age 

(Figure 5.6). Older males and females were predicted to hatch later than young males and 

females. After controlling for age, there was no relationship between female (Fi,24 = 0.05, P = 

0.826) or male {F\^i= 1.24, P = 0.277) residual condition index and predicted hatch date

I then examined what factors might affect the probability of a clutch hatching (29.6% of clutches

successfully hatched; N = 16 pairs). The probability that a clutch of eggs would successfully 

hatch was significantly negatively related to predicted hatch date (GENMOD; %2 = 3.97, 1 d.f., P 

< 0.05), indicating that earlier laid clutches were more likely to hatch. Hatching probability 

differed between age groups, with younger females having a higher probability of hatching 

(Table 5.4). As hatch date differed between age groups, I controlled for only one of these terms 

(age), in subsequent analyses examining whether comb size, condition index or tarsus could 

predict hatching success. After controlling for both age and date of capture, the probability of a 

clutch hatching was significantly positively related to female comb size and condition index and
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female tarsus length (Table 5.4). Hatching probability was not significantly explained by male 

age, male condition index, male comb size or male tarsus length (Table 5.5).

The probability of a pair breeding successfully was marginally significantly related to female age 

(Table 5.4), with younger females being more likely to produce chicks and was also significantly 

positively related to female condition, comb size and marginally significantly positively related 

to body size (Table 5.4). Overall breeding success of pairs was not related to any of these same 

variables in males (Table 5.5).
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Probability of Breeding Outcome

Breeding outcome Trait df X2 Value P

Breeding Success Age 1 3.12 0.078

Laying Success Age 1 1.08 0.298

Hatching Probability Age 1 5.51 0.019

Breeding Success Condition Index 1 4.26 0.039

(after controlling for Comb Size 1 4.65 0.031

age & capture date). Tarsus Length 1 3.50 0.061

Laying Success Condition Index 1 0.16 0.485

(after controlling for Comb Size 1 0.49 0.255

age & capture date) Tarsus Length 1 0.00 0.957

Hatching Probability Condition Index 1 4.47 0.034

(after controlling for Comb Size 1 4.01 0.045

age & capture date) Tarsus Length 1 7.10 0.008

Table 5.4: Effects of female age and phenotypic traits: condition index, comb size and 

tarsus length (after controlling for age and capture date) on the probability of a pair 

producing chicks (breeding success), probability of laying a clutch, and the probability of 

clutch laid, hatching.
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Breeding outcome Trait

Probability of Breeding Outcome 

df X2 Value P

Breeding success Age 1 0.64 0.424

Laying success Age 1 1.26 0.263

Hatching success Age 1 0.11 0.739

Breeding success Condition index 1 0.36 0.557

(after controlling for Comb size 1 0.02 0.895

age & capture date) Tarsus length 1 0.52 0.469

Laying success Condition index 1 0.83 0.363

(after controlling for Comb size 1 0.81 0.367

age & capture date) Tarsus length 1 0.03 0.872

Hatching probability Condition index 1 0.07 0.790

(after controlling for Comb size 1 0.07 0.785

age & capture date) Tarsus length 1 0.99 0.319

Table 5.5: Effects of male age and phenotypic traits: condition index, comb size and 

tarsus length (after controlling for age and capture date) on the probability of a pair 

producing chicks (breeding success), probability of laying a clutch, and the probability of 

clutch laid, hatching.
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Figure 5.6: Arithm etic mean of average hatch date fo r old (N= 10) and young (N= 18) 

females. Predicted hatch date was significantly explained by male age (GLM: F1/26 = 

7.26, P < 0.05) and marginally significantly explained by female age (GLM: F1/26 = 3.26, 

P= 0.082).
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5.5 Discussion

Data from this study were consistent with the following predictions: 1) that individuals with the 

bigger combs would be those in better condition (although they were not those with fewer 

parasites), 2) that red grouse paired non-randomly with respect to phenotypic condition and 3) 

that males benefited from pairing with a female of high quality in terms of better breeding 

success. Data also supported the hypothesis that ornamental combs in female red grouse may 

function in sexual selection.

Ornamental combs as signals o f individual quality

In this study, I found that the size of supra-orbital combs of red grouse provided an indicator an 

individual’s phenotypic condition in young males and in both young and old females. A similar 

relationship between condition and comb size in red grouse males was also observed by Mougeot 

et al. (2004).

Models of sexual selection predict that as sexual ornaments are considered to be costly, they

should covary positively with condition (Andersson, 1994; Anderson & Iwasa, 1996). Male and

female grouse show off their combs in inter-sexual head-wagging sexual displays (Watson &

Jenkins, 1964). Both male and female red grouse may thus be able to assess variation in current

mate condition and discriminate between potential mates, by basing their preference on the size

of their combs (Andersson, 1994; Anderson & Iwasa, 1996). Evidepce that supra-orbital combs

of males function in sexual selection comes from a number of closely related tetranoid species.

In rock ptarmigan (Lagopus mutus), males use combs in both courtship and male-male

interactions (Brodsky, 1988; Holder & Montogomerie, 1993) and male pairing success was

positively correlated with comb size and comb condition (Brodsky, 1988; Holder &
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Montogomerie, 1993, Bart & Eamst, 1999). Similarly, in Willow Ptarmigan {L. lagopus), males 

with the smallest combs had the lowest pairing success (Elannon & Eason, 1995; Hannon & 

Dobush, 1997) and Rintamaki et al. (2000) observed a positive relationship between comb size 

and copulatory success in lekking black grouse (Tetao tetrix) males, further suggesting that 

combs may provide sampling females honest cues to individual quality.

In female red grouse, however, no other studies have looked at the function o f combs. Whilst 

female ornamental traits may occur through non-adaptive genetic correlation between the sexes 

(Lande, 1980; Lande & Arnold, 1985; Muma & Weatherhead, 1989), processes driving sexual 

selection for male ornaments i.e. intra-sexual competition and mate preference may also act 

directly upon female traits (West-Eberhard, 1983; Jones & Hunter, 1993,1999; Johnstone et al., 

1996; Roulin, 1999; Velando et al., 2001). Results from this study, support the hypothesis that 

female comb size may be under sexual selection. Firstly, the extent of variation in the size of 

female combs (CV = 19.4%) was greater than that of male combs (CV = 14.7%). Secondly the 

CV for comb size for both males and females was similar to the variation in traits assumed to be 

sexually selected for in other species (mean CV = 11.7%, range 6.0 -  25.6%; Alatalo et al., 

1988). Experimental work is now required to explicitly test the sexual function hypothesis in 

female red grouse.

Ornamental combs and parasite infection

Hamilton & Zuk (1982) suggested that ornaments may function to reliably signal an individual’s

state of health, and in particular, their resistance to parasites. Contrary to this hypothesis,

however, there was a significant positive relationship between comb size and T. tenuis infection

in red grouse males. In their study, Mougeot et al. (2004), (also see Chapter 6), observed no
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relationship between male red grouse comb size and parasites, and correlative studies of 

secondary sexual traits and parasite loads in other species, have also been inconsistent, providing 

a mix of support and negative evidence for reliable signal theory (review in Moller et al., 1999).

Thus, it seems unlikely that females are choosing males with bigger combs in order to avoid 

contamination of parasites. It may be however, that males with largest combs are advertising their 

ability to cope with parasites instead or that some other comb trait signal such as iridescence, in 

both the visible and ultraviolet (UV) spectra which were not measured in this study, may be 

important in signal parasite resistance (Mougeot, unpublished data). For ornaments to act as an 

honest signal o f quality, their expression should be costly to prevent poor quality individuals 

from cheating ( ‘Handicap principle’; Zahavi, 1975, 1977). One such cost may be greater 

conspicuousness and greater risk of predation (Andersson & Iwasa, 1996). Another cost, 

however, may be impaired immune function, the main defence against parasites. In male red 

grouse, comb size is testosterone dependent (Moss et al., 1979) a hormone associated with 

immune suppression (Grossman, 1985, 1989; Folstad & Karter, 1992; Poulin, 1996). Red grouse 

males implanted with testosterone in the autumn have been found to show lower cell-mediated 

immunity (Mougeot et al., 2004). Thus the positive relationship between red grouse comb size 

and T. tenuis infection intensity may represent a cost of elevated testosterone levels, through 

impaired immune function. In keeping with the “Immunocompetence” hypothesis (Folstad & 

Karter, 1992), male comb size may thus provide an honest signal to females, o f a male’s gene- 

based ability to cope with parasites. The relationship between testosterone and parasite infection 

is explored in further detail in Chapter 7.
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Until recently, studies on the effect of testosterone in the expression of ornaments and on the 

possible immunosuppressant effects of androgens have focused on males. However, recent work 

on moorhens (Gallinula chloropus) demonstrated the involvement of testosterone in the 

expression o f female ornaments (Eens et al., 2000). Little is known of the role o f androgens in 

female red grouse, although previous work found a positive correlation between female 

dominance and parasite burden in captive red grouse (Shaw, 1988). Further work is therefore 

required to examine the physiological mechanism and potential associated costs o f comb 

expression in female red grouse.

Assortative mating in red grouse

In breeding pairs of red grouse sampled in the spring, we found as predicted, evidence for 

positive assortative mating according to body condition and according to size (tarsus length). 

Positive assortative mating occurs when individuals of similar phenotype mate more often than 

expected by chance (Burley, 1983) but inferring how assortative mating patterns may arise is 

generally difficult as different processes can lead to similar patterns (equifinality; Burley, 1983). 

In monogamous bird species with bi-parental care, assortative mating is thought to arise from 

adaptive mutual mate choice by males and females for characters linked to individual quality that 

will increase fitness of the other mate (Trivers, 1972; Andersson, 1994).

Positive assortative mating according to size traits and condition has been previously observed in 

a number of species (Coulter, 1986; Hedenstrom, 1987; Stem & Jarvis, 1990; Bortolotti & Iko, 

1992; Heitmeyer, 1995; Olsen et al., 1998; Rosenfield & Bielefeldt, 1999). Assortative mating 

according to size or condition may be a by-product of mating preferences based on age, where 

condition or size increases with age. Unlike a number of other bird studies in which age of mates
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influences mate choice (Marzluff & Baida, 1988; Cezilly et al, 1997; Reid, 1988, Jouventin et al., 

1999; Potti, 2000), this study found no evidence of age assortative mating in red grouse. This 

could be explained by low mate fidelity and/or high mortality rate (survival of grouse over winter 

varies with density but may be as low as 37%; Hudson, 1986). If a mate dies in spring, females 

will associate with another male on a nearby territory (Cramp & Simmons, 1980). Although 

normal pair bonds may last 2 or more years, if  a male fails to gain or to hold a territory in the 

autumn, the pair bond will be broken.

It has been argued that patterns of non-random pairing based on body condition may be 

attributable not to mate choice but simply as a consequence of other external complementary 

factors such as territory quality (Rosenfield & Bielefeldt, 1999). Indeed, both male and female 

grouse forage almost entirely in the male’s territory from January until the chicks have hatched 

(Watson & Miller, 1971). Males and females from the same pair might thus have a similar 

condition because of similar feeding opportunities on the shared territory. However, in my radio

tracking study, I also noticed that in early spring females readily shift between male territories. A 

previous study on red grouse reports similar observations (Moss et al., 1987). Females may range 

across a number of territories until mate choice and pairing is definitive, which can be in late 

spring. It is likely therefore, that male and female foraging ranges differ. Moreover, although 

previous work showed that male territory size correlated both with the survival of cock grouse 

over winter and summer and the chance of acquiring a mate, there was no difference between 

territories in the overall productivity of the heather (Calluna vulgaris) (Watson & Miller, 1971; 

Miller & Watson, 1978). Although larger territories had more green shoots o f heather overall, 

weight of green shoots per bird was approximately the same (Miller & Watson, 1978). Although
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it cannot be ruled out, it seems unlikely that condition in both males and females was related 

simply to territory quality.

In this study, although we did not find assortative mating with respect to ornaments size, results 

of PCA analysis for a number of characteristics including phenotypic traits and parasite 

intensities, revealed high positive weightings for condition index, tarsus length and comb size in 

the first component, for both males and females. There was also a significant positive correlation 

between ranked first component scores of paired males and females, i.e. high-ranking males were 

paired with high-ranking females. Thus, it is difficult to tease apart which o f these cues may be 

used in mate choice. Indeed, in order to decrease the chances o f choosing a poor quality mate, 

selection may favour individuals choosing mates on the basis o f many characteristics that 

indicate fitness. In red jungle fowl (Gallus gallus), several male traits are important to females 

including tail length, hackle feather colour, comb length and colour and courtship display (Zuk et 

al., 1992), whilst rock doves (Columba livia) use a combination of plumage characteristics age, 

experience and dominance to select mate (Burley, 1981).

Ornaments in females and potential benefits o f mate choice

The potential benefits associated with mating preferences depend on the variation in quality 

among mating partners (Parker, 1983). I found female comb size and condition index to be a 

predictor of future breeding success and I found that the largest females with the largest combs 

and in better condition, were more likely to produce chicks and successfully hatch out eggs. 

Where differences in female quality relates to differences in fecundity, this is thought to lead to 

the evolution of male mating preferences (Andersson, 1994). Darwin (1871) proposed a specific
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hypothesis, which was later expanded by Fisher (1958), for monogamous birds, that males with 

the most exaggerated traits should receive a reproductive advantage through mating with the 

most fecund females. In this study I found a significant correlation between male comb size and 

female condition, indicating that red grouse males mating with the best quality females might 

benefit due from greater breeding success. This has also been observed in a number of other 

avian species including bam swallows (.Hirundo rustica; Moller, 1991), blackbirds (Turdus 

merula; Faivre et al., 2001), Inca tems (.Larosterna inca\ Velando et al., 2001) and European 

shags (.Phalacrocorax aristotelis; Daunt et al., 2003).

Ornaments in males and potential benefits o f mate choice

Whilst female red grouse “quality” may have influenced reproductive success, male red grouse 

“quality” did not. Consistent with observations in a study of willow ptarmigan (Hannon & Eason, 

1995), there was no relationship between the male red grouse traits and breeding outcome 

measured in this study. It may have been, however, that male red grouse quality could have 

influenced some other aspect of breeding success that we did not measure. In burrowing parrots 

(Cyanoliseus patagonus), whilst adult female phenotypes influenced parameters of breeding 

success and parameters of nestling body condition, male phenotypes strongly influenced 

structural characters of the nestlings such as bill, tarsus and wing length (Masello & Quillfeldt, 

2003). On the other hand, combs may function in males to indicate some other measure of quality 

such as territory size or quality (Moss et at., 1987), or ability to cope with parasites (Mougeot et 

al., 2004; also see Chapter 6)

Overall these results indicate that ornament d m  and phenotypic quality are linked in both sexes

in red grouse and results suggest that oonib size may have an important signalling function not
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just in males, but also in females. However, as I did not specifically test whether female combs 

are used as signals, I cannot refute the correlated response hypothesis. I also concentrated solely 

on measures of comb size in this study, and it may be that other qualities o f combs such as colour 

and ultra-violet reflectance may also be important. This study also documents for the first time, 

non-random assortative mating in pairs of red grouse: male and female red grouse mated

assortatively with respect to condition and body size. Furthermore, results also suggest that a 

potential benefit o f mate choice in red grouse may be improved breeding success, as females in 

better condition and with bigger combs, have better breeding success. Experimental studies are 

now required to test the role that red grouse ornaments play in mate choice and intra-sexual 

interactions and in signalling parental quality, particularly with respect to females.
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Testosterone, immunocompetence and honest sexual signaling

in male red grouse

6.1 Abstract

The expression of sexual ornaments has been suggested to reliably indicate individual quality, 

such as the ability to cope with parasites and diseases. The Immunocompetence Handicap 

Hypothesis (IHH) states that testosterone-dependent ornaments honestly signal such quality 

because of physiological costs associated with testosterone, such as impaired immune 

function. We tested predictions of the IHH both correlatively and experimentally in red 

grouse Lagopus lagopus scoticus. Male grouse exhibit supra-orbital red combs whose size is 

testosterone-dependent. We found that comb size was not correlated to infection intensity by 

two parasites (coccidia and the nematode Trichostrongylus tenuis), but significantly positively 

correlated with condition and T-cell-mediated immunity (the ability to mount a primary 

inflammatory response). We manipulated testosterone by the means o f implants and re-caught 

males after a month to investigate the effects on comb size, condition, immunity and parasite 

load. Males implanted with testosterone had increased comb size, lost more condition and had 

lower T-cell-mediated immunity than control males. Increased testosterone also resulted in a 

significant increase in coccidia infection intensity, but had no effect on T. tenuis burden. The 

results are consistent with predictions of the IHH and suggest that comb size honestly 

indicates immunocompetence and males’ ability to cope with certain parasites. Females could 

thus benefit from choosing mates based on the expression of this sexual trait.
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6.2 Introduction

In many species, males exhibit ornaments that probably evolved through intra- or inter-sexual 

selection. These sexual traits assume the dual function of dissuading other males competing 

for the same resources and facilitating mate choice, allowing females to identify the fittest 

males on the basis of their ornaments (Andersson, 1994). Hamilton & Zuk (1982) suggested 

that female preferences for males with the most exaggerated sexual traits evolved because 

ornament expression signals the genetic ability of males to resist parasite infections. Females 

could benefit by choosing a mate with fewer parasites, or whose ability to cope with parasites 

will be passed onto offspring (Andersson, 1994; Hamilton & Zuk, 1982; Moller, 1990; Moller 

et al., 1999; Zuk, 1992).

The role of parasites in sexual selection has been particularly well studied amongst birds. 

Many studies have looked for negative relationships between sexual signals and parasite 

loads. However, the results are inconsistent, with studies reporting either negative 

relationships, no relationship, or even positive relationships between signals and parasites (see 

Folstad & Karter, 1992; Getty, 2002; Moller et al., 1999). Moreover, the lack of relationship 

between sexual signal and infection intensity by a particular parasite does not, however, 

exclude the possibility that either the ornament expression relates to the ability to cope with 

the detrimental effects of the parasite rather than its abundance itself, or that other parasites 

act as a constraint on the level of signaling.

Measures of host immune responses may therefore provide more accurate indications of the 

role of parasite-mediated sexual selection than estimates of the intensity of infection (Moller 

et al., 1999; Moller et al, 1998b; Moller & Saino, 1994; Zuk, 1996). Indeed, several studies 

have shown that sexual signaling relates to immunocompetence (the ability of an individual to 

produce an immune response to pathogens), providing evidence that sexual signals can be

190



Chapter 6 Testosterone, immunocompetence and sexual signaling in red  grouse

used by females as cues to this aspect of male quality (Duffy & Ball, 2002; Folstad & Karter, 

1992; Moller et al., 1999; Moller & Saino, 1994; Saino et a l, 1997; Zuk, 1996; Zuk et al., 

1995). The relationship between signals and immunocompetence also appears to be stronger 

than that between signal and parasites (Moller et al., 1999).

Signaling theory predicts that signals of individual quality should be costly in order to ensure 

the honesty of the signaling system and prevent poor quality individuals from cheating 

(Zahavi & Zahavi, 1997). Elevated testosterone levels are usually required for the expression 

of sexual traits involved in male-male competition and female choice, but might also be 

associated with physiological costs, such as impaired immune function (Folstad & Karter, 

1992; Grosmann, 1985; Hillgarth & Wingfield, 1997). According to the Immunocompetence 

Handicap Hypothesis (IHH), testosterone dependent traits or behaviors would be particularly 

useful as honest signals of health, because of the immunosuppressive effects of elevated 

testosterone (Folstad & Karter, 1992). On the one hand, elevated testosterone levels increase 

the expression of ornaments relevant in an intra-sexual or a mate choice context, but on the 

other hand, they could reduce immune function and increase susceptibility to parasite 

infections (Folstad & Karter, 1992). It has been suggested that this ‘double-edged sword’ 

effect of testosterone would prevent cheating, as males have to trade the benefits against the 

costs of elevated testosterone and optimize their level of signaling accordingly. Although 

correlative studies may provide insights about the individual qualities underlined by sexual 

traits, they do not establish causality. Moreover, optimal signaling theory is unable to predict 

the relationship between signal intensity and parasite loads (Getty, 2002). The IHH is based 

on trade-offs within individuals (between testosterone, levels of signaling, 

immunocompetence and parasites), and experimental studies are therefore the most 

appropriate to investigate these trade-offs. Testosterone levels can be manipulated by the 

means o f implants, allowing workers to modify the level of signaling of males and investigate
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effects on immunocompetence and parasite infections (e.g. Casto et al., 2001; Duckworth et 

al., 2001; Saino et al., 1994) or on fitness components such as viability, mating and breeding 

success (e.g. Alatalo et al., 1996; Moss et al., 1994).

In this study, we investigated whether sexual ornamentation relates to condition, parasite 

burdens and / or immunocompetence, and we used an experimental approach to test 

predictions of the IHH in male red grouse Lagopus lagopus scoticus. Grouse combs are 

brightly colored ornaments that function in both male-male competition and female choice 

(Alatalo et a l, 1996; Bart & Eamst, 1999; Moss et al., 1979; Rintamaki et al., 2000). Their 

size is testosterone dependent (Moss et al., 1979; Rintamaki et al., 2000), so these ornaments 

might therefore be particularly useful as honest signals of health. We first looked at the 

relationships between comb size, condition, intensity of infection by two parasites (a gut 

nematode, Trichostrongylus tenuis and coccidia Isospora ssp.) and immunocompetence (T- 

cell-mediated immunity, the ability to mount a primary inflammatory immune response). If 

comb size signals male’s quality, we expected males with bigger combs (and more 

testosterone) to be those in better condition, with a greater T-cell-mediated immunity and 

fewer parasites. Second, we manipulated testosterone levels of males to test two main 

assumptions of the IHH, namely that testosterone enhances sexual ornamentation and impairs 

immune function. A previous study highlighted that males with more testosterone can be 

more immunocompetent despite the immunosuppressive effects of testosterone (Peters, 2000). 

Predictions in the experimental situation were thus different from those in the natural 

situation. If signaling is honest, changing the optimal level of sexual signaling by increasing 

testosterone should be associated with immunosuppressive effects and should therefore be 

costly. Thus, we expected increased testosterone levels to result in a reduction of T-cell- 

mediated immunity, a loss of condition and an increase in parasite intensity.
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6.3 Methods

Study species

The red grouse is a medium sized Tetraonid bird characteristic of the heather moorland 

habitats of the UK (Cramp & Simmons, 1980). This species is territorial and mostly 

monogamous (Cramp & Simmons, 1980). Male territorial behavior is particularly important 

in the autumn, during territory establishment, and in early spring. Pairing starts in autumn and 

continues throughout the winter until early spring, when breeding starts (Cramp & Simmons, 

1980; Watson, 1985). Like other grouse species, red grouse combs are larger and brighter in 

males, and their size is testosterone-dependent (Moss et al., 1979). These sexual ornaments 

are known to play an important role in male-male competition: male red grouse with big 

combs are dominant and more aggressive (Moss et al., 1979; Moss et al., 1994) and are more 

likely to obtain a breeding territory than others (MacColl et al., 2000). Comb size also 

functions in mate choice, females preferring males with the biggest combs (Bart & Eamst, 

1999; Brodsky, 1988; Rintamaki et a l, 2000). In willow grouse Lagopus lagopus lagopus, 

both territory size and comb size were found to be equally important for mate choice (Bart & 

Eamst, 1999).

Captures, measurements and testosterone manipulations

In September-November 2001, we caught male grouse at night by dazzling and netting them 

(Hudson, 1986b) on two sites located in the northeast of Scotland (Glen Dye and Edinglassie 

estates, Aberdeenshire). We aged males (young vs. old, i.e. > 1 year old) from the shape and 

colour of their 2nd and 3d primaries (tips pointed and mottled in young, round and plain in old 

birds) and the texture of their claws (smooth in young, with a growth ridge in old birds; 

Cramp & Simmons 1980). At the tune of first capture, we ringed all males, weighed them 

with a 1-kg balance, to the nearest 5g, and measured the following morphological features: 

length and width of flattened combs, wing length (with a ruler, to the nearest 1 mm) and

193



Chapter 6 Testosterone, immunocompetence and sexual signaling in red  grouse

pectoral angle (with a protractor, to the nearest degree), as a measure of the extent of breast 

muscles on either sides of the breast bone. The same person (FM) did all the measurements, 

and each was taken twice on a sample of 30 males to assess measurement errors. 

Repeatability values were calculated according to Lessells (1987), and were high and 

significant for all the above morphological features (all repeatability values > 0.93; all P < 

0.0001). We calculated a condition index (weight corrected for size) as the residuals from the 

relationship between logio-transformed body weight and logio-transformed wing length (Fijos 

= 52.31; P <  0.0001).

We randomly assigned males to one of three treatments: no implant, sham implants or 

testosterone implants. Implanted males were each given two silastic tubes (each 20 mm long, 

0.62 mm inner and 0.95 mm outer diameter) that were either empty (sham implanted males) 

or filled with testosterone proprionate (testosterone treated males) and sealed with glue at both 

ends. Implants were inserted in the chest, between the skin and breast muscles, under local 

anesthesia. The length of the tubing was determined previously during laboratory trials on 

captive grouse so that the testosterone implants lasted for 2-3 months. We fitted each male 

with a necklace radio-tag (TW3-necklace radio-tags, Biotrack) to facilitate subsequent re

capture, kept them overnight in an individual pen to collect faecal samples for parasite counts 

and released them the following morning.

We re-captured most males about a month (32 ± 8 days) after the first capture. However, 

some males were found killed by predators or could not be re-located, possibly because the 

radio failed, and were not re-sampled. Thus, sample size differed between capture and re

capture. At re-capture, we re-measured comb size, pectoral angle and body weight, collected 

another faecal sample for parasite load estimates and measured T-cell-mediated immunity.
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When analyzing the data, we found no significant differences between un-manipulated males 

and sham-implanted males in any of the study parameters or relationships. Therefore, in order 

to simplify the presentation of the results, we pooled the data from these two groups, hereafter 

referred to as control males (as opposed to testosterone implanted males).

Assessment o f  T-cell-mediated immunity

We measured T-cell-mediated immunity (CMI) by challenging the immune system through 

the subcutaneous injection of an innocuous plant lectin (phytohaemagglutinin, or PHA). The 

PHA test follows a long-established protocol developed in poultry science (Goto et al. 1978) 

and is routinely applied in avian studies (e.g. Smiths et al. 1999). The injection of PHA 

produces a prominent perivascular accumulation of T-lymphocytes followed by macrophage 

infiltration (Goto et al. 1978) and the intensity of the CMI response (swelling) indicates an 

individual’s ability to mount a primary inflammatory response. Each male was injected with 

0.1 ml of physiological saline solution (PBS) at a marked site on the right wing web (control) 

and with 0.2 mg of PHA in 0.1 ml of PBS (challenge) on the left wing. We measured the web 

thickness at each injection site four times prior to injection and 24 hr (± 10 min.) after 

injection, with a pressure-sensitive dial thickness gauge (to the nearest 0.01 mm). Wing web 

thickness measures were highly and significantly repeatable (R = 0.83; P < 0.01). CMI 

response was calculated as the change at 24 h in average thickness o f the left wing web (PHA 

test) minus that of the right wing web (control). For this procedure, males were kept in pens 

provided with food (heather) and water. After 24h, we removed the radio tags and released all 

males. Sample size for immune challenges included all the males that we re-caught one month 

after first capture. At the same time, we also caught other males (un-manipulated) on which 

we conducted measurement, parasite counts and immune challenges, in order to increase 

sample size.
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Parasite counts

Red grouse are host to a relatively small number of parasites. One of their main parasites is a 

gut nematode, the caecal threadworm T. tenuis, which has a direct life style with no 

alternative hosts within the same habitat (Hudson, 1986a). It is known to have important 

negative effects on the energetics, breeding success and survival of grouse (Delahay et al., 

1995; Hudson, 1986a; Hudson et al., 1992; Shaw & Moss, 1990). Red grouse are also 

frequently infected by coccidia Isospora ssp. (Fantham, 1911). Patterns o f infections and 

effects on red grouse are little known, but this parasite can have important adverse effects on 

avian host, in terms of reduced growth and condition (Fehlberg & Pohlmeyer, 1991). For this 

study, we focused on these two parasites for which infection intensity is relatively easy to 

measure on live birds.

We used faecal egg counts to measure intensity of infection by T. tenuis worms and coccidia. 

Samples collected in the field were kept in the lab at 4 degrees Celsius and were analyzed 

within two weeks of collection. For each, a sub-sample of 0.2 g was diluted into 5 ml of saline 

solution, mixed and placed in a MacMaster slide under a x 100 microscope where T. tenuis 

and coccidia eggs were counted. Parasite infection intensity was estimated as number of eggs 

per g. Faecal egg counts were shown to reliable estimate the number of T. tenuis worms in 

grouse both in spring (Moss et al., 1990) and autumn (Seivwright et al., in press). Infection 

rates by coccidia and the rate of oocyst shedding can show important diurnal and seasonal 

variations (Brawner & Hill, 1999; Hudman et al., 2000; Svoboda, 1992). Diurnal variation 

was minimized by collecting all faecal samples early morning and seasonal variations in 

parasite infections over the study period were taken into account by controlling for sampling 

date.
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Statistical analyses

We used SAS 8.01 for the statistical analyses (SAS, 2001). We used Generalized Linear 

Models to investigate natural correlates of comb size, condition or cell-mediated immunity. 

Dependent variables were fitted with a normal distribution and identity link function (comb 

size, condition index and pectoral angle) or with a Poisson distribution and log link function 

(coccidia and T. tenuis egg counts). For the correlation analyses, Coccidia and T. tenuis loads 

were logio-transformed as explanatory variables. We first tested for differences between study 

sites, age groups and variation according to sampling date, and controlled for these effects 

when necessary.

For the experiment, we used Generalized Linear Models to test for differences in study 

parameters between treatment groups prior to and (one month) after implanting with 

testosterone. Because most parameters varied between capture and recapture, we also tested 

whether within individual changes over time in parameters differed between treatment groups 

(testing for a time*treatment interaction). The data set was unbalanced (i.e. not all individuals 

were measured before and after treatment and not all parameters were measured at a given 

time, especially parasite loads). For these analyses, we used Generalized Linear Mixed 

Models (Glimmix, SAS) with individual males included as random effects (in order to 

account for the repeated measures on individual males and the unbalanced data set). Models 

included site, age, time (first capture vs. re-capture), treatment (control vs testosterone treated 

males) and the time*treatment interaction as fixed effects. All data are expressed as mean ± 

S.D and all tests are two-tailed.
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6.4 Results

Comb size, condition and parasites burdens

We investigated the relationships between comb size, condition and parasites, or between 

condition and parasites, using the measures made at the time of first capture (i.e. prior to 

treatment).

Comb size variation was not significantly explained by site (Fi>52 = 0.37; P = 0.54), age (Fi,52 

= 0.79; P = 0.34), sampling date (Fij5i = 1.55; P = 0.22), T. tenuis load (Fj^o = 0.35; P = 0.56) 

or coccida load (Fi>4o = 0.86; P = 0.36), but was significantly explained by both measures of 

condition: males with bigger combs had more breast muscles (pectoral angle: Fi,52 = 4.78; P < 

0.05) and were heavier relative to their size (condition index: F j^  = 7.06; P < 0.05). These 

relationships between comb size and condition were still significant after controlling for site, 

age and date (pectoral angle: Fi,49 = 2.09; P < 0.05; condition index: F ij49 = 6.75; P < 0.05).

Pectoral angle did not differ between study sites (Fii52 = 0.32; P = 0.57), but significantly 

decreased during autumn (Fi,52 = 9.94; P < 0.01) and differed between age groups after 

controlling for date (Fij5i = 6.31; P < 0.05), with old males having a greater pectoral angle 

(more breast muscles) than young males. However, both old and young males were similarly 

losing breast muscles during early autumn (non significant date*age interaction: Fij50 = 2.44; 

P = 0.13). After controlling for sampling date and age, pectoral angle was not related to T. 

tenuis load (Partial Fi>38 = 0.62; P = 0.44) or coccidia load (Partial FU8 = 0.16; P = 0.69). 

Condition index did not differ between study sites (F |,52 = 0.24; P = 0.63) or age groups (Fij52 

= 2.39; P = 0.13) and was not significantly related to sampling date (F1i51 = 0.09; P = 0.76), 

T. tenuis load (Fi,39 = 1.62; P = 0.21) or coccidia load (F ,<39 = 1.43; P = 0.24).
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Effects o f  testosterone on comb size, condition and parasites

Before treatment, none of study parameters (comb size, pectoral angle, condition index, T. 

tenuis and coccidia load) differed between treatment groups (control vs testosterone males; 

Generalised Linear Models controlling for site, sampling date and age; all F-values < 2.01; all 

P > 0.05; data in Table 6.1). One month after treatment, we found significant differences 

between T-implanted and control males in comb size (Fi^i = 43.45; P < 0.001), pectoral angle 

(Fi,5i ~ 17.95; P < 0 .001), condition index (Fi^i = 8.57; P < 0.01) and coccidia load (F139 = 

7.32; P < 0.01), but no difference in T. tenuis load (F1 3  = 0.75; P = 0.39; data in Table 6.1).

We further tested whether changes over time in study parameters (between first capture and 

re-capture) differed between treatment groups. Comb size increased in both groups, but 

increased significantly more in testosterone implanted than in control males (Table 6.2; 

significant time*treatment interaction; Figure 6.1). Both measures of condition (pectoral angle 

and condition index) also changed over time, and in relation to treatment: males lost condition 

between capture and re-capture, and testosterone treated males lost significantly more breast 

muscles (pectoral angle) and body weight (condition index) than control males (Table 6.1 & 

6.2). Experimentally increased testosterone levels thus resulted in enhanced sexual 

ornamentation but also in a greater loss of condition.

T. tenuis burdens decreased between capture and re-capture (Table 6.1 & 6.2), this decrease 

being similar in testosterone treated and control males (non significant time*treatment 

interaction; Table 6.2). In contrast, coccidia load increased between capture and re-capture 

(Table 6.2). This increase was greater in testosterone treated than in control males (Table 6.1 

& 6.2; Figure 6.1). Increased testosterone levels thus had no significant effect on changes in 

T. tenuis load but resulted in increased coccidia infection intensity.
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Table 6.1: Changes over time (between capture and re-capture, c. 1 month after 

treatment) in study parameters according to treatment. Sample size, in brackets, 

refers to number of individual males. Comb area, pectoral angle and condition index 

are expressed as arithmetic means ± SD. Coccidia and T. tenuis egg counts are

expressed as geometric means 21SD.

Treatment

Parameters Time* Control Testosterone treated

Comb area (mm2) to 273.3 ± 46.9 (35) 286.8 ± 38.6 (21)

t i 280.4 ± 47.8 (39) 401.5 ±60.9 (18)

Pectoral angle (°) to 43.4 ± 2.5 (35) 45.5 ± 3.8 (21)

ti 42.8 ± 4.0 (39) 39.7 ± 2 .7  (18)

Condition index t0 -0.001 ± 0.043 (35) 0.039 ± 0.053 (21)

ti -0.012 ± 0.044 (39) -0.005 ± 0.055 (18)

coccidia (egg /  g) t0 1180 * 4.8 (26) 1524 212.9 (16)

ti 1254 214.6 (30) 4486 213.7 (14).

T. tenuis (egg /  g ) t0 2342 21 3.3 (26) 1808 216.1 (16)

t i 1527 2111.0 (30) 1669 218.7 (14)

* t0: initial capture; t i: re-capture, c. 1 month later.
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Table 6.2: Results of the Generalized Mixed Models (Glimmix procedure, SAS 2001) 

testing for an effect of treatment (testosterone treated vs control) on changes over 

time in study parameters. Models included study site and age as a fixed effect and 

individual males as random effects. Dependent variables were fitted with a normal 

distribution and an identity link function, except for coccidia and T. tenuis egg 

counts, which were fitted with a Poisson distribution and a log link function, (ns: P > 

0.05; * * : P < 0.01; * * * :  P < 0.001).

Time Treatment Time*Treatment 

df F P F P F P

Comb size (mm2) 1,47 95.81 * * * 16.21 * * * 99.30 * * *

Pectoral angle (°) 1/47 24.87 * * * 4.48 * 31.37 * * *

Condition index 1,47 32.32 * * * 2.85 ns 13.41 * * *

Coccidia (egg.g'1) 1,39 42 8 * * * 1.28 ns 7.65 * *

T. tenuis (egg.g'*) 1,39 19.81 * * * 0.08 ns 0.20 ns
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T-cell-mediated immunity, comb size, condition and parasite burdens

We investigated the natural correlates of T-cell-mediated immunity in the control males only 

(we excluded testosterone treated males in these analyses, whose responses were affected by 

the treatment; see below). Variation in wing web swelling was not significantly explained by 

study site (GLM: F i>33 = 2.45; P = 0.13), sampling date (Fi>33 = 0.30; P = 0.59), age (Fij33 = 

3.03; P = 0.10) or T. tenuis load (Fi^s = 0.01; P = 0.93), but was significantly explained by 

coccidia load (F i ,28 = 5.38; P < 0.05), pectoral angle (Fij33 = 29.53; P < 0.001), condition 

index (Fi;33 = 4.62; P < 0.05) and comb size (Fi>32 = 20.08; P < 0.001). Males with greater T- 

cell-mediated immunity had fewer coccidia, more breast muscles, were heavier relative to 

their size and had bigger combs (Figure 6.3).

Effect o f  testosterone on T-cell-mediated immunity

In males caught one month after treatment, wing web swelling 24h post-challenge was 

significantly lower in testosterone treated than in control males (Figure 6.2; F i;45 = 6.59; P < 

0.05). Differences in wing web swelling between treatment groups were significant after 

controlling for site, age, comb size, pectoral angle and condition index (Fi>40= 5.57; P < 0.05). 

Experimentally increased testosterone levels thus resulted in reduced T-cell-mediated 

immunity.
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Figure 6.2: Mean (±  SED) wing web swelling according to  trea tm en t (C: control 

males; T: testosterone implanted males). Sample size, above bars, refers to  num ber 

o f individuals in each group.
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Chapter 6 Testosterone, immunocompetence and sexual signaling in red  grouse

6.5 Discussion

In red grouse, we found that males with the biggest combs were in better condition, had 

greater cell-mediated immunity but did not have fewer T. tenuis and coccidia parasites. We 

also found that experimentally increased testosterone enhanced comb size but reduced 

condition and cell-mediated immunity, and increased coccidia infection intensity. Below, we 

discuss these findings in line with predictions from the Immunocompetence Handicap 

Hypothesis.

Relationships between comb size, condition, immunity and parasite loads

We found that comb size during autumn was positively correlated with condition (males with 

bigger combs had more breast muscles). Levels o f sexual signaling are usually expected to be 

condition-dependent, so that only individuals in prime condition are able to produce the most 

exaggerated ornaments without compromising their ability to cope with the costs imposed by 

the production and maintenance of the signal (Andersson, 1994). Parasites and diseases 

usually negatively affect condition (Moller et al., 1998a; Wilson et al., in press), so males 

with big combs might also be expected to have fewer parasites. However, we did not find that 

bigger combs were associated with fewer T. tenuis worms or fewer coccidia. Other studies 

have nevertheless showed that infection by intestinal nematodes and coccidia can reduce 

levels of sexual signaling, such as comb size (Zuk et al., 1990a; Zuk et al., 1990b) or 

carotenoid-based color intensity (Brawner et al., 2000; Hill & Brawner, 1998).

We also found little evidence for a good condition to be associated with fewer of these 

parasites. T. tenuis is a main parasite of grouse, but previous work has shown that red grouse 

infected with T. tenuis worms lose more weight and condition than uninfected controls (Shaw 

& Moss, 1990; Wilson & Wilson, 1978). The T. tenuis infection levels found in this study 

were relatively low and decreasing, and might not have been sufficient to have noticeable
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detrimental effects on male condition or immune function. It is also possible that parasite 

transmission, which is low for T. tenuis in autumn, is more important than the parasite burden 

itself, as most damage is caused when ingested larvae develop into worms and bury in the 

caecal guts (Delahay, 1995). Similarly, coccidia infections can significantly reduce weight 

gain (Conway et al., 1995), although such an effect was not detected in this study. These 

results nevertheless suggested that comb size was unlikely to reliably indicate T. tenuis or 

coccidia infection levels, and thus that females were unlikely to prefer males with bigger 

combs because they have fewer of these parasites.

Our study shows that cell-mediated immunity, as measured by the response to the PHA skin 

test, was positively correlated with comb size and condition. Various aspects of the immune 

system are condition-dependent, because of the costs of raising an immune response, and poor 

condition might thus result in a weak immune responsiveness (Saino & Moller 1996, Sheldon 

& Verhulst 1996, Moller et al. 1998a). Accordingly, we found that cell-mediated immunity 

was positively correlated with condition, with responses to the PHA test being positively 

correlated to both the relative weight and the amount of breast muscles of males. The 

relationship between sexual ornamentation and immunocompetence might thus be mediated 

by condition. Male red grouse in better condition and with greater cell-mediated immunity 

were those with bigger combs, and were likely to be those of higher phenotypic / genetic 

quality. Females might therefore prefer males with bigger combs for their higher 

immunocompetence, which might underline a better ability to cope with parasite intentions.

Effects of testosterone on comb size, cell-mediated immunity and condition

Previous studies conducted on red grouse in spring showed that increased testosterone caused 

an increase in comb size (Moss ei al, 1979), so we expected a sim ilar effect in autumn. 

Indeed, we found that the testosterone implants caused a significant increase in comb size, up
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to the size that is usually exhibited by males in spring (and therefore within the range of 

natural variation). We also found that males implanted with testosterone had lower cell- 

mediated immunity (lower responsiveness to the PHA skin test) and lost more condition 

(body weight and breast muscles) than control and un-manipulated males.

Male red grouse implanted with testosterone typically call and display more often, are more 

aggressive and expand their territory to the detriment of others (Moss et al., 1979; Watson & 

Parr, 1981). All these activities are energetically costly, which might explain why testosterone 

implanted males lost condition. Because cell-mediated immunity was found to be condition 

dependent, the testosterone treatment might have indirectly affected immunity, via its effects 

on condition. However, differences in immune response between treatment groups were still 

significant after controlling for condition, suggesting a more direct, physiological, effect of 

testosterone on immunity. While many studies have showed that testosterone enhances the 

size or intensity of sexual ornaments (e.g. Rintamaki et al., 2000; Zuk et al., 1995; Hillgarth 

& Wingfield, 1997), direct experimental evidence for immunosuppressive effects of 

testosterone is still limited. Some studies found evidence for testosterone to be 

immunosuppressive (Casto et al., 2001; Peters, 2000), but others found little (Ros et a l, 1997) 

or no support (Hasselquist et al., 1999) for this prediction, which is central to the IHH. Our 

study provides experimental evidence for elevated testosterone levels to be associated with 

both enhanced sexual ornamentation and reduced immunocompetence. The experimental 

results were also consistent with the correlative results in showing that testosterone, comb 

size, condition and immunocompetence are all closely inter-related in male red grouse.

Males with bigger combs therefore had greater cell-mediated immunity despite having more 

testosterone and concomitant immunosuppression. These findings are similar to those from 

another study: in superb fairy-wrens Malurus cyaneus, testosterone treatment decreased
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immune responsiveness but wild males with more testosterone were found to be more 

immunocompetent (Peters, 2000). This association between immunosuppressive testosterone 

and immune responsiveness may arise if males with big combs enhance their immunity to 

compensate for and counter the impact of immunosuppression by testosterone, or if both 

testosterone and immunocompetence correlate with male quality and condition. In autumn, 

male red grouse extensively engage in territorial displays to establish territories, and in 

courtships, as females start assessing potential mates. Autumn territorial behavior is crucial 

for male red grouse, as most males failing to maintain or establish a territory usually die over

winter or will not reproduce (Watson, 1985). These activities require elevated testosterone, 

are energetically costly and potentially stressful, as they usually involve fights and associated 

risks of injuries. Autumn territorial and display behaviors might thus require enhanced 

immune responsiveness, as a compensatory measure. Our results suggest males with the 

biggest combs are those better able to do so and cope with immunosuppressive testosterone, 

possibly because they are also in better condition and of higher phenotypic / genetic quality 

than others.

Testosterone and parasite infections

Because increased testosterone reduced immunocompetence, it m ight also have had indirect 

effects on parasite infection levels. A num ber o f  studies have show n that increased 

testosterone levels can cause significant increase in parasite infection intensities (Duckworth 

et a l , 2001; H ughes & Randolph, 2001; Saino et al, 1995; Zuk et al., 1995). W e found that 

the testosterone treatm ent affected levels o f  coccidia infection of males. Infection intensities 

increased during the study, but the increase in coccidia load was significantly greater in 

testosterone implanted than in other males, The increased infection levels in testosterone 

males m ight reflect a greater exposure or a reduced ability to contiol infection by coccidia. In 

control birds, cell-m ediated immunity was found 10 correlate negatively with coccidia
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infection levels. The greater coccidia infection levels observed in testosterone males might 

thus have been caused by physiological effects associated with the testosterone treatment, 

which may have impaired the ability of males to control the establishment success or the 

reproductive rate of coccidia. In another study conducted on male house finches Carpodocus 

mexicanus, experimentally increased testosterone was found to accelerate the rate of coccicia 

infection, also suggesting that testosterone may have direct effects on resistance to this 

parasite (Duckworth et al., 2001). Elevated testosterone, however, does not always result in 

increased coccidia infection (e.g.Hudman et al., 2000). In contrast, we found no effect of 

testosterone on T. tenuis intensity. In this case, a possible explanation lies in the life history of 

T. tenuis. In autumn, ingested larvae become hypo biotic and delay development until the next 

spring when they mature into adult worms and begin to produce eggs (Shaw, 1988). The adult 

worms that die in autumn are not replaced, as shown in this study by a decrease in worm 

numbers throughout the autumn. It is thus possible that over the short time-scale of our 

experiment, the testosterone treatment had no effect on the adult wonns because transmission 

was low, but affected the arrestment of parasite larvae, which would affect parasite loads only 

in the following spring, when these larvae de-arrest. Further work is therefore needed to fully 

assess the effect that testosterone might have on this parasite.

Comb size as an honest signal oj male quality

Males red grouse with bigger combs, and more testosterone, benefit in term s of increased 

recruitment probability during autumn (M acColl et al., 2000) and increased territory size 

(Moss et al., 1994). They may also benefit bom  pairing earlier, attracting m ore than one 

female or a better quality female, and were shown to achieve a higher breeding success (M oss 

et al, 1994). Our results show that high testosterone levels are also costly, in term s o f  reduced 

im m unocom petence, condition and ability to contiol coccidia infection. Male red grouse 

therefore have to trade the benefits o f elevated testosterone against the associated costs. Our
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experimental results, supported by correlative data, provide conclusive evidence to support 

the Immunocompetence Handicap Hypothesis (Folstad & Karter 1992). In male red grouse, 

the ability to mount an immune response is condition dependent and testosterone dependent, 

and is signaled by comb size. Our findings suggest that males with the biggest combs are 

better able to cope with immunosuppressive testosterone and to control infection by certain 

parasites. Comb size is thus likely to reliably indicate the phenotypic and/or genetic quality of 

males, and females could benefit from choosing a mate based on this sexual trait.
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Interactions between hormones and parasites:

The effects of testosterone on Trichostrongylus tenuis infections

7.1 Abstract

Recent interest in the role parasites play in sexual selection and in shaping the life history of their 

hosts, and in the role of parasites in host population dynamics has led to growing interest in the 

trade-offs involved in parasite defence. In the red grouse (.Lagopus lagopus scoticus) males 

exhibit behaviour and sexual ornaments that are testosterone dependent. However, testosterone is 

thought to impair immune function, the main defence against parasites. This study experimentally 

investigated the effect of testosterone on parasite infections of Trichostrongylus tenuis in free- 

living male red grouse. There was no relationship between plasma testosterone levels and parasite 

infection level in males in autumn. However, male red grouse implanted with testosterone had 

significantly higher intensities of infection of T. tenuis one year after implanting than did control 

males that were implanted with sham implants. This study shows a cost of elevated testosterone, 

in terms of increased T. tenuis intensity, possibly because of immunosuppressive effects 

associated with elevated testosterone. The results suggest that parasites may be involved in a 

complex trade-off between current reproductive fitness, and future reproductive success and even 

survival, due to the potentially detrimental physiological effects of increased T. tenuis infections.
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7.2 Introduction

Growing interest in the field of evolutionary ecology has increasingly focussed on how parasite 

defence may shape a host’s life history (Zuk & Stoehr, 2002). As animals have only a limited 

amount of resources, individuals must allocate these resources optimally between competing life 

history activities such as such as growth, reproduction and parasite defence (Steams, 1989, 1992; 

Roff, 1992; Owens & Wilson, 1999). Thus, increased investment in activities associated with 

reproduction may lead to reduced parasite defence and ultimately to increased susceptibility to 

deleterious parasite infections (Zuk & Stoehr, 2002 ; Moller & Saino, 1994; Moller, 1997; Norris 

et al., 1994; Sheldon & Verhulst, 1996; McKean & Nunney, 2001).

Such trade-offs may be particularly significant for species in which individuals require elevated 

hormone levels to ensure reproductive success. Immune function, the main physiological means 

by which animals resist or fight parasitic or pathogenic infections, is regulated by the gonadal 

steroids oestrogens, androgens and progesterone (Grossman, 1984). The male androgen, 

testosterone (T), is required for the expression of many of the behaviours and morphological 

characters necessary to ensure reproductive success (Folstad & Karter, 1992; Eens et al., 2000; 

Peters, 2000; Stoehr & Hill, 2000). T is also thought to suppress the immune system (Folstad & 

Karter, 1982; Grossman, 1984; Marsh, 1992). As mounting an immune defence is likely to be 

costly (Sheldon & Verhulst, 1996; Owens & Wilson, 1999; Lochmiller & Deerenberg, 2000, 

Telia et al, 2002), individuals may trade off allocating resources to parasite defence against the 

cost of investing energy available for other life history activities such as survival or reproduction 

(Hakkarainen et ah, 1998; Owens & Wilson, fella et a l 2002; Lozano & Lank, 2003). 

Assessing the im i u n rn between test mu ne and parasites is important, not only to advancing
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our knowledge of the selective pressure of parasites on their hosts, but also to better understand 

host-parasite interactions and the role that interactions play in host population dynamics (Sheldon 

& Verhulst, 1996; Holmstad & Skorping, 1998; Lysne & Skorping, 2002). Much work to date 

has focussed on identifying the relative importance of extrinsic and intrinsic processes in 

regulating populations and the topic remains widely debated (Lance & Lawton, 1990; Stenseth et 

al., 1996). However, the interaction between these two mechanisms has received comparatively 

little attention.

Where interactions might be particularly important is in red grouse population dynamics. Red 

grouse populations commonly exhibit cyclic dynamics (Jenkins et al., 1967; Potts et al., 1984; 

Williams, 1985; Hudson, 1986a; Dobson & Hudson, 1994; Moss & Watson, 2001). Parasites, in 

particular the gastrointestinal nematode Trichostrongylus tenuis, play a major role in the unstable 

population dynamics of red grouse (Hudson et al., 1985,1992,1998). Moreover, there is 

increasing evidence that behavioural factors, such as changes in aggressiveness also play a 

significant role in the unstable population dynamics (Watson et al, 1984; Mountford et al., 1990; 

Watson et al., 1994, Moss et al., 1994; Moss et a l, 1996; Matthiopoulos et al., 2000; Mougeot et 

al., 2003a,b). This aggressive behaviour is dependent on the hormone testosterone (Moss et al., 

1979). While previous studies have tended to focus on the impact of intrinsic and extrinsic 

processes separately, this study considers how these processes may interact.

In this study, the effect of testosterone on parasite infections in individual male red grouse was 

investigated by experimentally manipulating T while controlling for parasite exposure. It was 

predicted that, if testosterone has immunosuppressive effects, it should reduce the ability of
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males to control the establishment of parasite infective larvae, and should result in increased 

intensities of parasite infection.

7.3 Methods 

Study A reas

This experiment was conducted on six study sites located in the northeast of Scotland (N = 62 

males; Edinglassie, Invermark and Invercauld estates, Aberdeenshire; 2000-2001) and in 

Northern England (N= 62 males; Feldom and Catterick, North Yorkshire and Moorhouse, 

Cumbria; 2002-2003).

Capture, measurements and samples

Adult male grouse (N = 124 birds) were captured at night using standard lamping techniques 

(Hudson & Newborn, 1995). Upon first capture (4th September- 16th October), males were 

marked either with a numbered metal leg ring or with a numbered metal patagial wing tag and 

were fitted with a radio-collar (TW3-necklace radio-tags, Biotrack) to facilitate future re-location 

and re-capture. Males were aged from the shape & colour of primaries and from the texture of 

their claws (Parr, 1975). Birds less than one year old, were classed as “young” and those greater 

than 1 year old classed as “old”. At the time of first capture the following data were recorded: 

date of capture (recorded as Julian date), weight (to the nearest lg), wing length (to the nearest 1 

mm) and comb size (length and height of the comb were measured to the nearest 1mm and 

multiplied to give an index of comb size). A body condition index (weight corrected for wing 

length) was calculated as the residuals from a General Linear Mixed Model (Proc Mixed 

procedures, SAS 2001), with weight as the response variable, wing length as the fixed effect and 

site and a site*wing length interaction as random effects. This index is a measure of relative body
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mass controlling for differences in structural body mass, which m ay vary between stud) moors, 

as indicated by wing length. At first capture, and at each re-capture a minimum o f one and six 

months post-implanting treatment, a blood sample (ca.lOOpA in heparimzed haematocrit capillary 

tubes) was taken from the brachial vein to measure plasma T levels. Faecal samples were 

collected at first capture, six and twelve months post-implanting treatm ent for parasite sampling. 

Birds were placed in individual holding boxes overnight and their caecal faeces containing the 

parasite eggs collected the following morning. In autumn 2001, 36 birds were euthanased and 

their caeca removed for parasite and parasite egg calibration (see Chapter 3). All faecal samples 

collected in the field were brought immediately to the lab and stored in a cold room at a constant 

temperature o f 5°C to inhibit the hatching o f parasite eggs

Hormone Implants

M ale grouse were randomly assigned one of two treatments: testosterone treated (T-males) and 

control (C-males). Birds were each implanted with two silastic tubes (each one 20 mm long, 0.62 

mm o f inner and 0.95 mm o f outer diameter) sealed with silastic glue. Implants were inserted 

between skin and breast muscles on the flank, under local anaesthesia and were either empty (C- 

males) or filled with crystalline testosterone proprionate (Sigma Aldrich Co Ltd, Poole, Dorset, 

UK) (T-Males). The length of the tubing was previously determined during trials on captive 

grouse so that implants would last for 2-3 months.

Testosterone assays

Blood samples were taken to enable testosterone assays to be carried out. Blood was collected in 

heparimzed capillary tubes and centrifuged immediately for 3 minutes at 12 000 rpm. Plasma was 

separated from the packed ceils stored in a cold box, taken to the lab within 3 hours after
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collection and kept frozen at -70°C for subsequent analyses Within two months of collection, 

plasma testosterone concentrations were measured using a direct double antibody radio-immuno- 

assay. Testosterone assays were carried out by A. Dawson at the Centre for Ecology and 

Hydrology, Monkswood. Duplicate 20 (pi) microlitre plasma samples were assayed. The 

standards, serially diluted in charcoal-stripped chicken serum, were assayed in triplicate. Both 

unknown samples and standards were heated to 80°C for 2 min to denature binding proteins. The 

primary antibody (8680-1419 Biogenesis, Poole, U.K.) was used at a dilution of 1:3500 and the 

tracer was [1,2,6,7-3H] testosterone (Amersham Pharmacia Biotech, Bucks. U.K.). After 24h 

incubation the second antibody (donkey anti-rabbit) was added and bound and free hormone were 

separated after a further 24h by centrifugation at 5 OOOg. The sensitivity of the assay was 0.2 

nmold’1. Intra- and inter-assay coefficients of variance were 8.2% and 12.4% respectively.

Parasite manipulations

At first capture, all males were dosed with an anthelminthic to clear them of their nematode 

parasites. One month after implanting (October-November), males were recaught and challenged 

with c.2000 T. tenuis infective larvae before releasing them, to standardise the initial parasite 

infection between males at the beginning of the experiment.

Parasite Counts

For a detailed description of the life-cycle of both parasites refer to Chapter 2. The main parasite 

of red grouse is the gastrointestinal nematode Trichostrongylus tenuis which inhabits the caeca. 

T. tenuis burdens were measured using faecal egg counts (live males) carried out using the 

McMaster technique (MAFF, 1986), or direct worm counts (dead males). For full details of these
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methods see Chapter 3. Worm burdens were calculated from average eggs per gram counts 

(Seivwright et ai, 2004; see also Chapter 3). Previous studies on T. tenuis faecal egg counts in 

red grouse indicate that there is a strong positive correlation between T. tenuis worm burden and 

EPG (Moss et al, 1990; Seivwright et al., 2004).

Statistical analyses

Where necessary, parasite measures were log (x+1) transformed to approach normality. The data 

were unbalanced as some individuals died throughout the course of the experiment and not all 

individual’s or parameters were measured at a given time (see Table 7.1). Testosterone assays 

were carried out only in Scotland. All available data were used in analyses conducted using SAS 

(version 8.01, SAS, 2001). General Linear Mixed Models (Mixed procedures), with study site as 

a random effect were used to check that time intervals between sampling events did not vary 

between treatment groups. Generalised Linear Mixed Models (Glimmix procedures, Littell et al,

1996) were used to test for an effect of sampling date, age, condition index and T. tenuis worm 

intensity on plasma testosterone levels prior to treatment. Models were fitted to the data using a 

Poisson error distribution and a log-link function. Denominator degrees of freedom were 

estimated using Satterthwaite’s formula (Littell et al., 1996).

To investigate whether changes in testosterone over time differed according to treatment all 

available data were used in General Linear Mixed Models which included study site and 

individual nested within site as random effects, and hormone treatment, time and a time*treament 

interaction as a fixed effect. Data on parasite infections of T. tenuis were highly over-dispersed 

and could not be analysed in mixed models. Parasite count data were therefore analysed by 

season using Generalised Linear Models (Genmod procedures) with a negative binomial
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distribution and a log link function. Models controlled for significant effects of study site, date of

sampling and age of male where necessary by including these terms as fixed effects in the model.
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Table 7.1: Timetable of Experimental Protocols

Year 1 Year 2

Autumn 0 Autumn 1 Spring Autumn 2

(4 Sept -16 Oct) (23 Sept - 5 Dec) (5 Mar - 29 May) (31 Aug- 25 Sept)

Total No. of
Birds (N = 124) (N = 114) (N = 82) (N = 50)

Testosterone
Implanted •  (N = 124)

Anthelmintic
Treatment • (N = 124)

Larvae
Challenge * (N= 114)

Testosterone
•  (N= 36) •  (N = 26) •  (N = 19)Sampled

T. tenuis
Count * = U 0) * (N = 73) * (N = 48)
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7.4 Results

The date of first capture (sampling period ‘Autumn O’; 4th September to 16th October) did not 

differ between treatment groups (Mixed model including site as a random effect: Fijh 7< 0.001, P 

= 0.954). Time intervals (number of days) between sampling events thereafter, also did not vary 

between treatment groups (Autumn 0 to Autumn 1, Fi,io7 = 0.23, P = 0.635; Autumn 1 to Spring , 

F iji = 0.26, P = 0.609; Spring to Autumn 2, Fij4o= 2.28, P = 0.139).

At the time of initial capture (i.e. prior to implant treatment) plasma testosterone levels varied 

from 0.3 nmol.I"1 to 2.6 nmol.I' 1 (N = 35). Variation in T plasma level was not significantly 

explained by sampling date (Mixed model including site as a random effect; F ]^  = 0.28, P = 

0.60), age ( F132 = 1-37, P = 0.25), condition index ( F132 = 1.18, P = 0.29) or T. tenuis worm load 

(Fi,29= 1-25, P = 0.27).

Effects o f testosterone implant treatment on plasma testosterone levels

Generalised Linear Mixed Models were used to test for an effect of treatment (testosterone 

treated vs control) on changes over time in plasma T. At the time of initial capture, T plasma 

levels of T-males were significantly higher than those of C-males (Mixed model including site as 

a random effect (Figure 7.1; Fi,34 = 6.04, P = 0.019). There was a significant natural increase in 

plasma T levels over time of C-males caught one month after treatment (Autumn 1), but T -males 

had significantly higher circulating levels of T plasma than C-males one month after implanting 

due to treatment (Table 7.2). A significant time*treatment interaction indicated that T-levels 

increased more in T-males than in C-males following treatment (Table 7.2; Figure 7.1). When 

males were challenged with larvae (Autumn 1), T-males had c. 4 times more
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circulating testosterone than C-males. Six months after hormone treatment (Spring), T-levels in 

both treatments groups had significantly increased over time compared with T-levels in autumn 

prior to treatment (Table 7.2: Figure 7.1). However, plasma T levels then did not differ between 

T-males and C-males (Figure 7.1; Fi.is = 0.10, P = 0.761 ) indicating that after a period of six 

months, there was no longer a significant effect on T concentration.
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Autumn 0 Autumn 1 Spring 

□ C-Males □ T-males

Figure 7.1: Arithmetic mean (+S.E.) for plasma testosterone levels (logionmol.l'1) for 

inert and testosterone treated males for Autumn 0 (N = 35), Autumn 1 (N= 26) and 

Spring (N= 19).
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Table 7.2: Results of the Generalised Linear Mixed Models (Glimmix procedures, SAS 

2001) testing fo r an effect o f treatm ent (testosterone treated vs control) on changes 

over tim e in plasma T levels. Models included study site and individual males nested 

w ith in site as random effects.

Parameter Fixed Effects df F P

Plasma T 
(nmol.r1)

Autumn 0 to 
Autumn 1

Time

Treatment

Time*Treatment

1.39.5

1.50.5

1.39.5

78.24

62.21

48.55

< 0.0001 

< 0.0001 

< 0.0001

Plasma T 
(nmol.l1)

Time 1,21.1 4.11 0.056

Autumn 1 to
Treatment 1,34.5 30.29 < 0.0001

Spring Time*Treatment 1,21.1 88.33 < 0.0001

Plasma T 
(nmol.l'1)

Time 1,31.9 177.71 < 0.0001

Autumn 0 to
Treatment 1,37.9 2.43 0.1277

Spring Time*Treatment 1,32.6 3.16 0.085

231



Chapter 7. Interactions between hormones and parasites

Effects o f testosterone implant treatment on parasite infections

At the time of initial capture (i.e. prior to implant treatment) T. tenuis levels varied from 4 to 

12225 worms per bird. Prior to treatment, differences between study site significantly explained 

variation in T. tenuis (Genmod; X2= 45.38, d.f. = 5, P < 0.0001). There was a significant effect of 

male age on parasite intensities, with old males having significantly more T. tenuis (X = 16.87, 

d.f. = 1, P < 0.0001) than young males. There was also a significant study site*age interaction for 

T. tenuis infections (X2= 11.88, d.f. = 5, P < 0.05) which indicated that differences in infection 

levels of T. tenuis between old and young birds were not consistent across sites. There was no 

effect of sampling date on T. tenuis intensity (X2= 0.70, d.f. = 1, P = 0.40).

Generalised Linear Models were used to test for differences between treatments groups in T. 

tenuis worm intensities 1) prior to treatment (Autumn 0), 2) six months later (Spring) and 12 

months later (Autumn2). Where necessary, models controlled for site and age effects. At the 

time of initial capture, there was no difference between C-Males and T-Males in infection levels 

of T. tenuis (X2= 1.02, d.f. = 1, P = 0.31) (Figure 7.2, Table 7.3). Following anthelmintic 

treatment and all birds receiving a dose of c. 2000 infective larval, in the spring, there were still 

no differences between C-Males and T-Males in intensities of T. tenuis (Figure 7.2, Table 7.3; 

X!2= 0.21, d.f. = 1, P = 0.65). One year on from the hormone treatment (c. 11 months following 

the T. tenuis larval challenge), a significant difference was found in intensities of T. tenuis 

infection between C-Males and T-Males in the second autumn (Autumn 2), (X2= 5.11, d.f. = 1, P 

< 0.05). T-Males had significantly more T. tenuis worms than C-Males (Figures 7.2, Table 7.3).
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Table 7.3: Results of effect of treatment on plasma testosterone and parasite infection 

levels and mean values prior to treatment and at points of re-capture (c. 1 month and 6 

months after treatment). Sample size, in brackets, refers to number of individual males. 

Plasma T and T. tenuis egg counts are expressed as geometric means 21SD.

Parameters Time*

Treatment

Control Testosterone treated

Plasma T Autumn 0 1.61 21 0.07 (18) 2.18 210.15 (17)
(nmol.l'1)

Autumn 1 2.25 21 0.27 (13 ) 8.61 21 0.22 (13 )

Spring 4.82 — 0.18 ( 9 ) 5.36 21 0.17 (10 )

T. tenuis Autumn 0 1319 21 0.74 (57 ) 1151.6 21 0.89 (58 )

(worm.bird'1)
Spring 349.5 21 0.74 (38) 278.7 21 0.83 (34 )

Autumn 2 1069.7 21 0.39 (23 ) 2013.5 21 0.40 (25)
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Figure 7.2: Arithmetic mean (+S.E.) for T. infections (log worms.bird'1) for inert 

and testosterone treated males for Autumn 0 (N = 115), Spring (N= 72) and Autumn 1 

(N= 48).
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7.5 Discussion

This study provides experimental evidence for a cost associated with elevated T levels in male 

red grouse. Males with elevated T had higher T. tenuis parasite infections one year later despite 

the fact that the effect of testosterone treatment on circulating T levels was no longer detectable 

after 6 months. Below I discuss these findings and their implications for our understanding of the 

role that parasites might play in shaping aspects of red grouse life-history traits and host 

population dynamics.

Relationships between testosterone and parasites

I found that parasite infections of males with artificially elevated levels of plasma T were higher 

than those of control males, 1 year after treatment. These results add to the growing body of 

evidence that increased levels of testosterone lead to increases in parasite infection intensities 

(Saino et al., 1995; Zuk et al., 1995; Eens et al, 2000; Duckworth et al, 2001; Hughes & 

Randolph, 2001a).

I found no difference in parasite levels either 1 month or 6 months after implanting (see also 

Mougeot et al, 2004; Chapter 6). A possible explanation to account for the difference between 

studies may be due to the length of time taken for T. tenuis infections to increase. Ingested 

T.tenuis infective larvae have been shown to cease development and enter into a state of 

hypobiosis during late autumn/winter, resuming development in the spring (Shaw, 1988), which 

may explain why no difference in intensity of parasite infection between hormone treatment 

groups was observed in this study until the following autumn ca 12 months after T-treatment and 

the larval challenge.
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So, what mechanisms lead to red grouse males with experimentally increased steroid levels 

having higher parasite infections? In free-ranging animals, there are two potential pathways.

First, testosterone may increase susceptibility to parasites by directly or indirectly, lowering an 

individual’s immunocompetence (Hillgarth & Wingfield, 1997). In previous studies, male red 

grouse with experimentally elevated T had reduced T-cell-mediated immunity (Mougeot et al., 

2004; see Chapter 6). Immunosuppression by T has also been shown in a number of other bird 

species (Saino et al., 1995; Zuk et al., 1995; Al-Afaleq & Homeida, 1998; Verhulst et al., 1999; 

Duffy et al., 2000; Peters, 2000 but see Hillgarth & Wingfield, 1997; Hasselquist et al, 1999). 

Little is currently known about the types of mechanisms of resistance associated with T. tenuis 

infections in red grouse. However, recent advances in the field of immunoparasitology have 

significantly enhanced our knowledge and understanding of the numerous and highly complex 

effector mechanisms involved in host protective immune defence against gastrointestinal 

nematodes (reviewed in Onah & Nawa, 2000). Although care must be taken in extrapolating from 

one host-parasite system to another, laboratory studies of rodents have been widely used as 

models of livestock and human gastrointestinal infections (Onah & Nawa, 2000), and may help to 

define the types of mechanisms involved in immune defence against T. tenuis in red grouse.

Second, testosterone, through its effect on behavioural traits such as increasing levels of 

aggression, movement and display rates, may also increase an individual’s exposure to, and 

contact with parasite infective stages (Randolph, 1977; Klein, 2000; Hughes & Randolph, 

2001b). In another gallinaceous species, the ring-necked pheasant (Phasianus colchicus), wattle 

size reliably indicates male testosterone levels at the beginning of the breeding season (Papeschi 

et a l, 2003) and males with well-developed wattles attracted more females and established 

territories early in spring, prior to the onset of feeding season of the ecto-parasitic ticks (Ixodes
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ricinus), whereas less attractive males were forced to roam greater distances in search of females 

(Hoodless et al., 2001). However, in red grouse, testosterone increased levels of aggression 

which in turn leads to increased territory size and a decline in population density (Watson & Parr, 

1981; Moss et al, 1994; Mougeot et a l  2003a). Male mountain spiny lizards (Sceloporus jarrovi) 

given T have also been observed to feed less (Klukowski et al., 2001). Both these factors would 

be likely to reduce rather than increase an individuals exposure to infective stages (Hughes & 

Randolph, 2001b). Thus, it seems most likely in the case of red grouse, that the mechanism 

increasing susceptibility to parasite infection is physiological rather than behavioural.

The role ofparasites and the immune system in host life history and population dynamics.

The role of parasites in life-history theory has gathered increasing attention (Forbes, 1993; 

Moller, 1997; Owens & Wilson, 1999; Dawson & Bortolotti, 2001) and evidence from this study, 

suggests that the parasite T. tenuis and parasite defence may play an important role in life-history 

trait trade-offs faced by male red grouse. Testosterone levels of T-implanted males in this study 

were elevated to levels significantly higher levels than in control birds, which allowed the costs 

of testosterone to become apparent. However, the absence of a relationship in this study between 

testosterone and parasites in males prior to treatment in this study indicates the self-regulatory 

aspect of testosterone levels in individuals. It is also consistent with the immunocompetence 

handicap hypothesis, in that males with higher levels of T did not pay higher costs in terms of 

parasites than males with lower levels of T (Folstad & Karter, 1992). Other studies have also 

reported a lack of association between testosterone levels and parasite resistance in natural 

populations (Weatherhead et al, 1993; Saino & Moller, 1994, Duckworth et al, 2001). From a 

female mate choice perspective, male red grouse that exhibit exaggerated T dependent ornaments 

appear to be reliably signalling their ability to cope with the detrimental effects of high T on the
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immune system (see also Mougeot et al., 2004). A number of studies also support this theory 

(Grossman, 1985; Saino et al, 1995; Hughes and Randolph, 2001 a,b).

Results from this study suggest that periods of high aggressiveness requiring higher T levels, 

could contribute to increasing parasite intensities in the next year. A key concept of life history 

theory is that individuals respond to environmental stresses and perceived risks through 

behavioural, physiological and anatomical adaptations (Ricklefs & Wikelski, 2002). As such, 

individuals must adapt to a constantly evolving social environment, and in order to survive and 

reproduce, must be able to account for the costs through a trade-off in the allocation of resources 

to fitness components (Steams, 1989). In red grouse agonistic interactions and the expression of 

secondary sexual ornamental combs during the autumn and spring, necessary for reproductive 

success, are T dependent (Moss et al., 1979; Mougeot et al., 2004). Results suggest that, if a male 

red grouse increases investment in reproduction through elevating levels of T necessary for the 

expression of sexual ornamental combs and aggressive territorial defence, this may elicit a trade

off in resources available for immune-defence and will result in increased susceptibility to 

parasitism. Parasites are costly because they have the potential to extract nutrients from their host 

(Price, 1980; Delahay et a l, 1995), so increases in intensity o f parasite infection have the 

potential to negatively impact on the availability of resources available for future reproduction 

(Moller, 1997).

A central premise of life-history theory is that investment in current reproduction is made at the 

expense of investment in future reproduction (Norris et al., 1994; Sheldon & Verhulst, 1996). 

This study showed that elevated levels of T increases T. tenuis infections, so males increasing 

investment in current T-dependent reproductive activities may have to bear the subsequent cost of
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not only potentially detrimental pathophysiological effects of increased intensities of parasites 

(Wilson & Wilson, 1978; Wilson, 1983), but also the effect of parasites on future reproductive 

success. Folstad & Karter (1992) suggested that the development of testosterone-dependent 

signals is a plastic response in that individuals can only exhibit such signals by producing high 

levels of testosterone and thus can do this only if they have a low parasite infection. Fox and 

Hudson (2001) showed that when parasites were removed from male grouse, aggressive 

behaviour was enhanced, suggesting that parasites at some level, may limit aggression and thus 

reproductive activity. Similarly, Duckworth et al. (2001) observed that there was a tendency for 

male house finches (Carpodacus mexicanus) infected with coccidia to have lower levels of 

testosterone than disease-free males. Thus, the relationship between testosterone and parasites is 

a complex one and identifying the circumstances in which aggression or parasites may dominate, 

requires further experimental work.

This study has also highlighted a number of other areas for future work. This experiment showed 

that elevated levels of the hormone T led to greater parasite infection in male red grouse. Further 

experimental work is required to support the assumption that the mechanism influencing 

susceptibility is the impact of testosterone on the immune system. Similarly, little is currently 

known about the mechanism through which T may affect the immune system. Recent studies 

have highlighted the potentially important role of corticosteroids as a mechanism through which 

T may be acting (Duffy et al, 2000; Evans et al., 2000). The possible role that corticosteroids 

play in suppressing the immune, requires further investigation.

Overall, the results from this study have important implications for understanding the population 

dynamics of red grouse and, in particular, for furthering our understanding of which factors may
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be important in driving cyclic population fluctuations. To date, studies have focussed on 

identifying the relative importance of extrinsic and intrinsic mechanisms, both of which may 

function in a density-dependent manner, to influence recruitment of young grouse into the 

population (Watson et al., 1984, 1994; Mountford et al., 1990; Moss et al, 1994, 1996; Hudson et 

al., 1992, 1998; Matthiopoulos et al., 2003; Mougeot et al., 2003). Whilst intrinsic factors such 

as density-dependent changes in male aggressiveness involving T and kin-facilitation have been 

recognised as being important (Moss & Watson, 2001, MacColl et al., 2000; Mougeot et al., 

2003), the role of parasites as an extrinsic mechanism driving cycles has focussed on the direct 

impact of parasites on females reproductive output (Hudson, 1986b; Hudson et al., 1992; Hudson 

et al., 1998). One way that the two mechanisms may interact is through a trade-off between 

reproductive behaviour and parasite defence via the immune system in males (Deerenberg et al.,

1997).

Previous studies have demonstrated that changes in population densities of red grouse throughout 

the cycle are accompanied by density-dependent changes, both in levels of aggression (Watson et 

al., 1984, 1994; Moss et al., 1979,1994, 1996; Mougeot et al., 2003) and in levels of infection 

intensities of parasites (Hudson et al., 1992; 1998). By increasing the susceptibility of individual 

males to parasite infection, the overall impact of elevated T. on the host population may be to 

reduce aggregation of T. tenuis. The degree to which T. tenuis are aggregated within red grouse 

populations has implications for the dynamics of this parasite-host system. Instead of just a few 

individuals harbouring the majority of the parasite population, T. tenuis will be distributed 

amongst a greater number of individuals. Where distribution of parasites within the host 

population is less aggregated and is more random or regular, host-parasite interactions tend to be 

de-stabilised, and a greater proportion of the host population will be affected by the impact of
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parasites (Anderson & May, 1978; May & Anderson, 1978; Hudson & Dobson, 1995; Jaenike,

1996).
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8.1 Introduction

The relationship between a macroparasite and its host is a highly complex, constantly evolving 

one. As such, the intensity of an individual host’s parasite infection will reflect the outcome of a 

variety of interactions, involving both host-related factors such as host physiology, behaviour, 

and habitat, as well as parasite-related factors, such as parasite density, pathogenicity and life

cycle (Anderson & Gordon, 1982; Wakelin, 1984; Barnard et al., 1993; Grenfell & Dobson, 

1995; Boulinier et a l, 1996; Poulin, 1996; Nordling et al., 1998; Gandon et al., 2002; Wilson et 

al., 2002). Given the heterogeneities that exist between individual hosts, not all hosts within a 

population will be infected by parasites to the same degree. Establishing patterns of parasite 

infection that occur within individual hosts, and identifying and isolating the complex 

interactions that may create them, is not only of interest to epidemiologists, ecologists and 

evolutionary biologists, but may also have wider social and economic implications (Dobson & 

Grenfell, 1995). This thesis represents an attempt to understand some of the patterns and 

associated processes acting to create heterogeneities in parasite infection in individual red grouse 

{Lagopus lagopus scoticus), a species of ecological and socio-economic importance.

Experimental manipulation of parasites provides the best test of host-parasite interactions and this 

was successfully accomplished through the use of both larvae culturing and challenging 

techniques (to increase parasite numbers) and the use of an anthelmintic drug (to remove 

parasites), developed for use in domestic livestock (in Chapter 7).
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Furthermore, advances in the use of parasitological statistical analyses (in Chapter 4), hormone 

implanting techniques (in Chapters 6 & 7) and methods to measure aspects of 

immunocompetence (in Chapter 6), provided the necessary tools with which to further our 

understanding of the intriguingly complex interactions between red grouse and T. tenuis. In 

addition, the findings from this thesis have relevance in general for the fields of parasitological 

methodology, population biology and evolutionary ecology, and as such, the aim of this chapter 

is to discuss the wider implications of this work, and to highlight areas for future research.

8.2 Implications of thesis findings 

Parasitological methodology

Central to this thesis, and indeed parasitological studies in general, is the need to make accurate 

quantitative measurements of parasite infection intensities in living hosts. This was achieved 

through calibration of the methodology used to estimate intensities of T. tenuis worm infection of 

red grouse from faecal egg counts (Seivwright et al., 2004; Chapter 3). For methods of parasite 

sampling that rely on faecal egg counts, a primary concern is that factors such as density- 

dependent constraints on worm fecundity (Anderson & Schad, 1985; Smith et al., 1987; 

Tompkins & Hudson, 1999) or seasonal variation in worm egg production rate (Hudson, 1986a; 

Shaw & Moss, 1989a) may create unreliable estimates of worm infection intensity. Findings from 

Chapter 3 (Seivwright et a l, 2004), however, were in agreement with earlier findings of Moss et 

al. (1990), and provided evidence that faecal and caecum egg counts can be used to reliably 

estimate worn infection intensity in red grouse at least up to an observed maximum of c. 8000 

worms. Furthermore, this method can be reliably used both during the spring and autumn, the 

seasons most commonly used for parasite sampling in red grouse.
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These findings are important not just for ecological studies of this host parasite system, but have 

practical implications for managers of commercial grouse moors. Traditionally, managers have 

used direct post-mortem counts from birds shot in the autumn, which are costly and time- 

consuming to perform. The use of faecal egg counts provides an opportunity to reliably monitor 

parasite infection intensities from living hosts on a regular basis, and may thus provide important 

information regarding the overall health of the population. In particular, the use of faecal eggs 

counts may enable managers to make informed decisions on whether to undertake costly 

anthelmintic treatment programmes.

Patterns o f infection in red grouse

Identifying underlying patterns of individual parasite infection, may provide important clues to 

unravelling and understanding complex host-parasite interactions (Sheldon & Velhurst, 1996; 

Hughes and Randolph, a, b, 2001). Since red grouse are highly territorial, transmission of T. 

tenuis between individual hosts is thought to be extremely effective (Shaw & Moss, 1989a). 

Breeding pairs of male and female red grouse spend a significant proportion of the year feeding 

and roosting in close proximity to one another. It was therefore predicted that individuals within 

pairs would be exposed to similar levels of infective larval stages, and would thus share similar 

levels of infection. This was not, however, reflected in the heterogeneities of infection observed 

between individuals within pairs (Chapters 4 & 5). Whilst heterogeneities in parasite exposure 

may have been operating at a microhabitat scale, a combination of both exposure and genetically 

determined resistance, as previously identified from experimentally manipulated parasite 

infections of captive grouse (Wilson, 1979; Shaw & Moss, 1989b; Moss et al., 1993), seems 

likely to have contributed to heterogeneities of infection between pairs. Similar analyses, 

investigating patterns of infection between individual chicks from within the same family,

254



Chapter 8. General discussion

however, also showed that infection intensities of genetically similar chicks varied considerably. 

Whilst it is likely that both exposure and host resistance are important in determining an 

individual’s parasite infection, it is also likely that a range of other factors such as differences in 

host nutrition, physiology or behaviour may also be acting to influence an individual’s parasite 

infection (Crofton, 1971; Anderson & Gordon, 1982; Apanius & Schad, 1994; Solomons & 

Scott, 1994; Hudson & Dobson, 1995; Shaw & Dobson, 1995; Beck & Levander, 2000; Ezenwa, 

2003). The information we can extrapolate from “noisy” patterns of infection, such as those 

described above, is clearly limited. Experimental manipulations, such as the cross-fostering 

experiment attempted in 2002 (Chapter5), however, provide a more powerful tool to tease apart 

and evaluate the influence of exposure and parasite resistance.

One aspect of parasite infection examined in this thesis that highlighted new and interesting 

results a difference in infection between sexes (Chapter 4). Contrary to previous studies, which 

found no overall sex differences in parasite infection levels between males and females (Hudson, 

1996a), young male red grouse had higher infection intensities than young females. This pattern 

between the sexes was also found for all age classes of males and females at one particular study 

site in northern England (Moorhouse). One explanation to account for the differences in findings 

between this study and that of Hudson, (1996a) may be related to the time of year that parasite 

sampling took place. Parasite sampling in this study took place in the spring, whereas parasite 

sampling in Hudson’s study was carried out on shot birds in the autumn. Differences between the 

sexes at different times of the year, may reflect seasonal physiological differences between the 

sexes. For example, sex differences in parasite infections have been suggested to arise from 

physiological differences between the sexes in levels of circulating steroid hormones, such as 

testosterone (Wilson et al, 2002). Elevated testosterone levels are often required during breeding
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periods for the expression of sexual traits and behaviour, but might also be associated with 

physiological costs, such as impaired immune function, an individual’s main defence against 

parasites (Folstad & Karter, 1992; Grosmann, 1985; Hillgarth & Wingfield, 1997).

In red grouse, agonistic interactions and the expression of secondary sexual ornamental combs 

during the autumn and spring are necessary for reproductive success. The expression of 

aggressive behaviour and combs are also testosterone dependent (Moss et al., 1979; Mougeot et 

al., 2004). By experimentally elevating levels of testosterone in male red grouse, Chapters 6 and 

7 provided evidence, that elevated testosterone reduced aspects of immune function (Chapter 6), 

and also increased T. tenuis intensities in males, one year after implanting (Chapter 7). The 

question arises, however, that if elevated levels of testosterone lead to increased levels of parasite 

infection, why did males not have higher intensities of parasite infection than females across all 

age classes and at all sites? (Chapter 4). A possible explanation may lie in life-history theory.

An individual must allocate limited resources optimally between competing life history activities 

such as such as growth, reproduction and parasite defence (Steams, 1989,1992; Roff, 1992; 

Owens & Wilson, 1999). Trade-offs made in the allocation of resources, will be dependent on, 

and will reflect, changes in environmental conditions. Territory establishment and defence is an 

essential requirement for male red grouse, not only for reproductive success but also for survival. 

At low population densities, territories are not a limited resource and aggression levels between 

males are relatively low. Males, therefore, may not be required to invest so heavily in 

reproductive activities and may allocate more resources to maintaining parasite defence. As 

population density increases, territory sizes become smaller and therefore, more limiting, and 

male aggressiveness and ornamental comb size, which are both testosterone dependent, increase
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(Moss et al., 1979; Watson et al., 1994; Moss et al., 1996). Males may be increasingly forced to 

invest in reproduction by elevating their testosterone levels to the extent that susceptibility to 

parasites becomes an inevitable cost. Such a cost may be particularly apparent in males where 

population densities reach peak levels, as in the case of Moorhouse. Similarly, young males may 

have higher T. tenuis infections than young females, as young red grouse males may need to 

elevate their testosterone levels to facilitate levels of aggressiveness in order to secure a territory 

in their first breeding season. Not only will they have to compete against other young males, but 

they will also have to compete against old males that have already established a territory, either 

earlier that autumn or in the previous year. Again, young males may be forced to bear the cost of 

susceptibility to parasites through investing heavily initially, to increase their chance of gaining a 

territory and reproducing. Thus, given the deleterious and potentially lethal effects of increased 

parasite intensities on their hosts, red grouse males may be forced to invest in current 

reproduction at the expense of investment in future reproduction; a central premise of life-history 

theory (Norris et al., 1994; Sheldon & Verhulst, 1996).

Parasites and sexual selection

Since the seminal work of Hamilton and Zuk (1982), the role that parasites might play in sexual 

selection has become increasing interesting to evolutionary ecologists (Zuk, 1992). In the process 

of examining patterns of parasite infection between male and female red grouse and the role that 

T.tenuis might play in sexual selection and mate choice (Chapter 5), several interesting findings 

were revealed. First, red grouse were found for the first time, to exhibit positive assortative 

mating with respect to condition. Second, in old and young females and in young males, the size 

of an individuafs combs was an indicator of an individual’s condition. Third, males can benefit 

from pairing with females with the largest combs (and in better condition), through increased
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reproductive success.

One hypothesis regarding the role of ornamental traits in males is that they may function as 

indicators of health and resistance to parasites. By mating with a male with elaborate ornaments, 

a female may gain direct fitness benefits through decreased risk of exposure to contagious 

parasites (the ‘parasite avoidance’ hypothesis) (Borgia, 1986; Borgia & Collis, 1989). Different 

chapters in this thesis however, gave varying results about the relationship between combs size 

and parasite infection in male red grouse. Whilst results from Chapter 5, found that parasite 

infections were positively correlated with comb size in male red grouse, Chapter 6 found no 

relationship between T. tenuis and comb size. Whilst both these findings rule out the parasite 

avoidance hypothesis, an alternative explanation is that ornamental combs in males may have 

been signalling a male’s ability to cope with or resist parasites, rather than their parasite burden 

(see also Mougeot & Redpath, in press)

Models of sexual selection argue that for ornaments to function as cues of male quality they must 

be honest signals and must be costly, to prevent males from cheating (Zahavi, 1975; Grafen, 

1990). The Tmmunocompetence Handicap Hypothesis’ (Folstad and Karter, 1992) proposes that, 

although males benefit from sexual attractiveness or increased competitive ability derived from 

elevated testosterone levels, they are also exposed to a physiological cost, from testosterone- 

related suppression of the immune system. This cost would prevent cheating and males who 

exhibit exaggerated testosterone dependent ornaments or behaviour, should be reliably signalling 

to potential mates, their ability to cope with the potentially detrimental consequences of high 

testosterone (Saino et al,, 1995).

258



Chapter 8. General discussion

By experimentally manipulating testosterone levels of male red grouse, Chapter 6, provided 

conclusive evidence to support several key assumptions of the Immunocompetence Handicap 

Hypothesis in red grouse. This chapter demonstrated, that the ability to mount an immune 

response is both condition and testosterone dependent, and is signalled by comb size. A key 

finding was that males with bigger combs (and thus more testosterone) had greater cell-mediated 

immunity, despite immunosuppression by testosterone. Males with artificially elevated 

testosterone had larger combs, but lost more condition and had lower T-cell-mediated immunity, 

than their comparative controls. In both chapter 6 and 7, males with elevated testosterone also 

had higher infections of both coccidia (Chapter 6) and T. tenuis (Chapter 7). Thus, it was 

demonstrated that males benefit from high testosterone in terms of increased expression of their 

sexual ornaments, but also suffer a cost in immunosuppression and increased parasites.

According to the Immunocompetence Handicap Hypothesis, the costs that males pay for elevated 

testosterone depends on the detrimental effects of parasites or the ability to cope with levels of 

parasite infection. Males with comparatively low susceptibility to parasites or high resistance to 

parasite should pay a lower cost, other things being equal, for higher levels of T (Folstad & 

Karter, 1992). Results from Chapters 5 and 6 provided contrasting evidence for this hypothesis. 

In support, no relationship was found between T. tenuis and comb size (Chapter 6). Whereas, 

results from Chapter 5 were contradictory, with results showing a positive correlation between 

male comb size and parasite infection. Other studies have also found positive correlations 

between sexual traits and parasites loads (reviews in Folstad & Karter, 1992; Moller et al., 1999). 

A recent paper by Getty (2002) argues that although signals may be positively, negatively or non

related to parasites, the Folstad-Karter (1992) immunocompetence signalling or the Hamilton-
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Zuk (1982) coevolution models should not be automatically refuted. Instead, relationships should 

be ideally tested through experiments.

The suggestion that the development of testosterone-dependent signals is a plastic response 

merits further investigation in red grouse. Folstad & Karter (1992) proposed that individuals can 

only exhibit testosterone signals by producing high levels of testosterone and thus can only do 

this if they have a low parasite infection, whilst Fox and Hudson (2001) showed that when 

parasites were removed from male grouse, aggressive behaviour was enhanced, suggesting that 

parasites at some level, may limit aggression and therefore comb size.

Implications o f thesis findings for host populations dynamics

The extent to which an individual is exposed, resistant and susceptible to parasites, is of 

particular interest to understanding host population dynamics (Anderson & Gordon, 1982; 

Wilson, 1983; Anderson, 1993; Boulinier et a l, 1996; Holmstad & Skorping, 1988; Wilson et al., 

2002). These mechanisms will all influence the extent to which parasites will be aggregated 

within the population, and therefore the extent to which parasite aggregation will have 

stabilising or de-stabilising effects on the host population. Identifying the mechanisms important 

in driving regular oscillations in population dynamics, such as those typically exhibited by many 

grouse populations, has been the central premise of considerable theoretical and empirical 

research programs over the past 6 decades (Batzli, 1992; Oli & Dobson, 2000; Bjomstad & 

Grenfell, 2001; Moss & Watson, 2001). Studies of red grouse population dynamics have, to date, 

identified two distinct mechanisms: changes in male aggressiveness involving testosterone and 

kin-facilitation (Moss & Watson, 2001, MacColl et a l, 2000; Mougeot et a l, 2003a,b) and the 

direct impact of parasites on a female’s reproductive output (Hudson, 1986b; Hudson et al.,
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1992; Hudson et al., 1998). Both these mechanisms have been shown independently, to function 

in a delayed density-dependent manner and to influence recruitment of young grouse into the 

population (Watson et al., 1984, 1994; Mountford et al., 1990; Moss et al, 1994, 1996; Hudson et 

al., 1992, 1998; Matthiopoulous et al., 2003; Mougeot et al, 2003). Until now, the interaction 

between these two mechanisms had received little attention. The key finding from Chapter 7, that 

experimental elevation of testosterone causes increased parasite infection of implanted male red 

grouse, provides a new perspective on how these two mechanisms, testosterone dependent 

aggressive behaviour and parasites, may interact.

Previous studies have demonstrated, using mathematical models, how the effect of T. tenuis on 

female red grouse fecundity (Hudson, 1986b; Hudson, 1992), could generate cyclic fluctuations 

(Hudson et al., 1992; Dobson & Hudson, 1992). It is recognised that the basic mechanism 

required to generate population cycles in any species is a time delay (Moss & Watson, 2001). The 

time taken for the development and infection of the parasite within its host creates the delayed 

impact necessary to cause cyclic dynamics. An alternative hypothesis proposes that changes in 

aggressiveness lagging behind density, and affecting recruitment into the population, causes the 

cycles. Findings from Chapter 7 showed that the effect of hormone treatment on parasite 

infections in males was not immediate and that there was a time lag of a year before the increases 

in I  tenuis infection became apparent. The lack of a correlation between parasite infections of 

paired males and females (Chapters 4 and 5), is suggestive of two scenarios; either that innate 

resistance in females defends against the effects of increased male parasite infection, or, more 

importantly for cyclic dynamics, that a further time lag may exists until increases in male 

infection intensities result in increased parasite infection intensities in females. Another 

theoretical possibility is that the interaction between testosterone and parasites may reduce the
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level of aggregation of T. tenuis at high population densities. Where aggression and testosterone 

levels increase with population density, a greater proportion of the male population may have 

lowered resistance to parasite infection. Instead of just a few individuals harbouring the majority 

of the parasite population, T. tenuis will be distributed amongst a greater number of individuals. 

Where distribution of parasites within the host population is less aggregated, host-parasite 

interactions tend to be de-stabilised (Anderson & May, 1978; May & Anderson, 1978; Hudson & 

Dobson, 1995; Jaenike, 1996). If levels of parasite aggregation were to change according to 

population density, quantification of this rate of change may be an important parameter to 

incorporate in future mathematical demographic models. The ability to quantify the contribution 

of individual-related processes to a population scale dynamics is not only of mathematical and 

ecological interest, but may also have practical implications in the fields of conservation and 

wildlife management.

Red grouse, are a species of high importance to upland areas of Scotland and the north of 

England not only due to their economic status as commercially harvestable game bird, but also 

because the habitat upon which they depend, heather (Calluna vulgaris) moorland, is also of 

considerable conservation importance. The active management of heather moorland benefits not 

only the red grouse but also provides an important breeding or feeding habitat for 57 bird species, 

of which 12 are of European importance (Thomson et al., 1995). From the 1870s onwards 

sporting estates thrived, but a decline in their economic value has resulted in fewer gamekeepers 

to manage the habitat, and rising sheep numbers coupled with falling standards of muirbum have 

contributed to a decline in the heather cover upon which grouse are dependent (Watson & Lance, 

1984). A contributing factor to the economic fragility of sporting estates, is that red grouse 

populations fluctuate over periods of many years. Many estates rely on income derived from
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driven grouse shooting which requires a minimum population density of 60 birds per km2 to be 

successful. By identifying the key individual-related processes involved in driving cyclic 

population dynamics, it may be possible to intervene at a management level to manipulate and 

alter red grouse population dynamics. A more predictable harvest from a greater stability in 

population density could lead to improved economic sustainability, which would benefit not only 

the currently fragile rural economy but would also ensure the continued management of a 

conservationally important, biodiverse habitat.

From the scientific evidence we have now, it seems that a traditional gamekeeping practice of 

removing old territorial males in the autumn at the end of the shooting season, may hold some 

validity in its intention to prevent population crashes. In addition to the experimental evidence 

from Moss et al. (1996) who successfully prevented a population crash by removing old 

territorial males experimentally, a recent study has highlighted the importance of sexually mature 

males in the transmission of parasites. This quantitative study on transmission patterns of tick 

{Ixodes ricinus) infection in the yellow-necked mouse (Apodemus Jlavicollis) highlighted that 

within a population, removal of a cohort of sexually mature males of high body mass 

representing 26% of the population, dramatically reduced the transmission potential of ticks by 

79%. Thus a relatively small proportion of the population is responsible for the greatest 

proportion of the transmission. If the same holds true for red grouse populations, sexually mature 

males could be the key driving force in the transmission of T. tenuis, particularly when 

aggression levels within the population are high and testosterone levels are also high. Removal 

of these cocks may result in reducing impact of T. tenuis on the population.
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8.3 Future Work

The findings of this thesis have highlighted a number of important areas for future work. Whilst 

correlative studies are useful in identifying patterns of infection in natural populations, they tell 

us little about relative importance of the mechanisms involved in creating those patterns. Despite 

best efforts to experimentally tease apart the variation in an individual’s parasite infection 

attributable to exposure and genetic resistance (Chapter 4), an attempt to carry out a large-scale 

cross-fostering experiment using red grouse chicks proved unsuccessful due to extraneous 

factors. The value of this type of experiment for furthering our understanding of what determines 

an individual’s level of infection and tackling the question of whether parasite resistance in red 

grouse is heritable, however, remains important and should remain a priority for future research. 

Studies on laboratory and domestic populations, where conditions can be standardized and 

sources of non-genetic variation controlled for, have provided evidence for heritability of 

resistance to endoparasites (Wagland et al., 1996; Douch et al, 1995). However, in wild 

populations, identifying genetic processes responsible for generating patterns of infection 

distribution has proved very difficult, due to confounding environmental and maternal effects 

(Anderson & Gordon, 1982; Sorci et a l, 1997; Smith et al., 1999). Thus, despite the implications 

not only for studies of host population dynamics (Hudson & Dobson, 1995) but also for 

furthering our understanding of the selective pressure of parasites on their hosts (Lysne & 

Skorping, 2002; Holmstad & Skorping, 1998), evidence for genetic variability in parasite 

resistance in natural vertebrate hosts is limited to a handful of studies (e.g. Moller, 1990; 

Bouliner et al. 1997; Brinkhof et al, 1999, Smith et al., 1999; Appleby et al, 1999; Coltman et 

al., 2001 ).

Hopefully experience from this attempt will help this to be achieved. A key assumption of certain
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theoretical evolutionary models, is that resistance to parasites, is at least partially, genetically 

determined (Anderson & May, 1982; Hamilton & Zuk, 1982; Folstad & Karter, 1992; Brinkhof 

et al., 1999). Within the red grouse-T. tenuis system, the presence of a heritable component to 

parasite resistance may have implications not only for expanding our knowledge of how 

mechanisms of sexual selection may operate in this species, but may also assist in furthering our 

understanding of factors that may influence red grouse populations dynamics. For example, an 

important finding in grouse behaviour, confirmed recently through advances in molecular DNA 

techniques, is the existence of differential male aggressive behaviour towards kin and non-kin 

(Moss & Watson, 1991; MaColl et al., 2000; Lock, 2004). Through kin-recognition, spatial 

clusters of genetically related territorial males appear within the population, and this is thought to 

be an important driving mechanism in population dynamics, through a corresponding decline in 

aggression with a resulting increase in density. An interesting question to address, therefore, 

would be whether these clusters of males share similar levels of resistance to parasites (Lewis, 

1998).

Other avenues for future work in red grouse lie in exploring in more detail, with the use of 

experimental tests, aspects of sexual selection in this species. This study described for the first 

time assortative mating in red grouse, and other findings from Chapter 5 highlighted the novel 

possibility that ornamental combs in female red grouse, rather than being residual appendages, 

may actually function as signals of quality, and could be used in mutual mate choice. 

Furthermore, whilst size of ornamental ornaments was the parameter measured and used in 

analyses, it may be that other measurable aspects of ornamental comb are also of importance in 

sexual signalling, such as comb colour and ultra-violet reflectance (Bright & Waas, 2002; 

Mougeot et al., MS).
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Lastly, Chapter 6 demonstrated the suppressive effect of testosterone on cell-mediated- 

immunity, and Chapter 7 showed that testosterone treatment resulted in higher infection 

intensities of T. tenuis. However, little is currently known about which specific aspects of 

immune function may be important in resisting or defending against parasite infection in red 

grouse. Furthermore, recent work has highlighted the role of corticosterone, a hormone typically 

secreted in response to stress, as a possible alternative mechanism causing immune suppression 

(Evans et al, 2000). Elevated testosterone may be associated with increased aggression and 

courtship behaviors which are energetically costly and which may be physiologically stressful 

(Duffy, 1989).

8.4 Conclusions

It is hoped that this thesis has increased our knowledge of patterns of T. tenuis infection in 

individual red grouse and that through a combination of correlative and experimental techniques, 

has contributed to furthering our understanding of the factors which may influence those patterns. 

It is also hoped, that whilst the findings from this thesis are specific to the red grouse-T. tenuis 

host parasite system, they may also be recognised as having relevance in the wider fields of life- 

history theory, sexual selection theory and population dynamics.

Within the field of population dynamics, there has been growing interest in use of ‘bottom-up’ 

individual-based models rather than population based ones, to examine patterns of population 

dynamics (DeAngelis & Goss, 1992; Goss-Custard & Sutherland, 1997; Pettifor et al., 2000; 

Stillman, et at., 2001; Johansson & Sumpter, 2003; Stillman, 2003; Persson & De Roos, 2003).

266



Chapter 8. General discussion

The important interplay of the various factors discussed and revealed throughout this thesis it is 

hoped, will be integral for developing such models, which would aim to link individual patterns 

to population processes in red grouse and in other species. Studies of red grouse population 

dynamics are reaching a fascinating and pivotal point in their long history. Recent advances in 

fields such as immunology and molecular genetics have enabled exciting breakthroughs to be 

made in studies of red grouse cyclic dynamics by paving the way to test empirically the many 

theoretical models and ideas that have developed over the decades since grouse research began at 

the beginning of the 1900’s. Whilst long-term studies, such as those on red grouse, provide us 

with an invaluable opportunity to identify long-term processes and anomalous events, their virtue 

also lies in giving models and short-term studies, such as those presented in this thesis, better 

meaning and context within the real world (Moss & Watson, 1991; Grenfell et al., 1995).

267



Chapter 8. General discussion

8.5 References

Anderson, R. M. (1993) Epidemiology. In Modern Parasitology- A textbook o f Parasitology (ed.

F. E. G. Cox) pp. 75-116. Blackwell Scientific Publications.

Anderson, R.M. & May, R. M. (1978) The regulation of host-parasite population interactions.

Part I. Regulatory processes. Journal o f Animal Ecology, 47, 219-47.

Anderson, R. M. & Gordon, D. M. (1982) Population dynamics of human helminth infections. 

Nature 297, 557-563.

Anderson, R. M. & Schad, G. A. (1985) Hookworm burdens and faecal egg counts: an analysis 

of the biological basis of variation. Transactions o f the Royal Society o f Tropical 

Medicine and Hygiene 79, 812-825.

Apanius, V. & Schad, G.A. (1994). Host Behaviour and the Flow of Parasites through Host

Populations, pp. 15-128 in M.E. Scott & G. Smith (Eds.) Parasitic and Infectious 

Diseases: epidemiology and ecology. Academic Press, Inc.

Appleby, B.M., Anwar, M. A., & Petty, S.J. (1999). Short-term and long-term effects of food 

supply on parasite burdens in Tawny Owls, Strix aluco. Functional Ecology 13, 315-321 

Barnard, C.J., Behnke, J.M. & Sewell, J. (1993). Social behaviour, stress and susceptibility to 

infection in house mice (.Mus musculus); effects of duration of grouping and aggressive 

bevaviour prior to infection on susceptibility to Babesia microti. Parasitology 107, 183- 

192.

Batzli, G. O. 1992, Dynamics of small mammal populations: a review: Pp. 831-850 in

Wildlife 2001: populations (D. R. McCullough and R. H. Barrett, eds.). Elsevier Applied 

Science, London, United Kingdom.

Beck, M.A. & Levander, O.A. (2000). Host nutritional status and its effect on a viral pathogen. 

Journal o f Infectious Diseases 182, S93-S96.



Chapter 8. General discussion

Bjornstad, O.N. & Grenfell, B.T. (2001). Noisy clockwork: time series analysis of population

fluctuations in animals. Science 293: 638-643.

Bright, A. & Waas, J.R. (2002). Effects of bill pigmentation and UV reflectance during 

territory establishment in blackbirds. Animal Behaviour 64, 207-213.

Borgia, G. (1986). Satin bowerbird parasites: A test of the bright male hypothesis. Behavioural 

Ecology and Sociobiology 19, 355-358.

Borgia, G. & Collis, K. (1989). Female choice for parasite-free male satin bowerbirds and the 

evolution of bright male plumage. Bahavioural Ecology and Sociobiology 25, 445-454.

Boulinier, T., Ives, A.R. & Danchin, E. (1996). Measuring aggregation of parasites at different 

host population levels. Parasitology 112, 581-587.

Boulinier, T., Sorci, G.Monnat, J.Y, & Danchin, E (1997). Parent-offspring regression

suggests heritable susceptibility to ectoparasites in a natural population of kittiwake, 

Rissa tridactyla: Journal o f Evolutionary Biology 10, 77-85

Brinkhof, M. W. G., Heeb, P., Kdlliker, M. & Richner, H. (1999). Immunocompetence of

nestling great tits in relation to rearing environment and parentage. Proceedings o f the 

Royal Society o f London Series B Biological Sciences 266, 2315-2322.

Coltman, D.W., Pilkington, J., Kruuk, L.E.B., Wilson, K & Pemberton, J.M. (2001).Positive 

genetic correlation between parasite resistance and body size in a free-living ungulate 

population. Evolution 55, 2116-2125.

Crofton, H. D. (1971). A quantitative approach to parasitism. Parasitology 63, 343-364.

DeAngelis, D.L. & Gross, L.J. (1992). Individual-based Models and Approaches in

Ecology: Populations, Communities and Ecosystems. Chapman & Hall, London.

269



Chapter 8. General discussion

Dobson, A.P. & Grenfell, B.T. (1995). Introduction, pp. 1-19 in Grenfell, B.T. & Dobson, A.P.

(Eds.) Ecology o f Infectious Diseases in Natural Populations. Cambridge University 

Press, Cambridge.

Dobson, A.P. & Hudson, P.J. (1992) Regulation and stability of a free-living host-parasite

system Trichostrongylus tenuis in Red Grouse. II Population models. Journal o f Animal 

Ecology 61, 487-500.

Douch, P. G. C., Green, R. S., Morris, C. A. & Hickey, S. M. (1995). Genetic Factors

Affecting Antibody Responses to Four Species of Nematode parasite in Romney Ewe 

Lambs. International Journal for Parasitology 25, 823 - 828.

Dufty Jr., A.M.(1989). Testosterone and survival: a cost of aggressiveness? Hormones and 

Behaviour. 23, 185-193.

Ezenwa, V.O. (2003). Interactions among host diet, nutritional status and gastrointestinal 

parasite infection in wild bovids. International Journal for Parasitology 34, 535-542.

Evans, M.R., Goldsmith, A.R. & Norris, S.R.A. (2000). The effects of testosterone on antibody 

production and plumage coloration in male house sparrows (Passer domesticus). 

Behavioural Ecology & Sociobiology 47, 156-163.

Folstad, I. & Karter, A. J. (1992). Parasites, bright males, and the immunocompetence 

handicap. American Naturalist 139, 603-622.

Fox, A. & Hudson, P.J. (2001). Parasites reduce territorial behaviour in red grouse (.Lagopus 

lagopus scoticus). Ecology Letters 4, 139-143.

Gandon, S., van Baalen, M. & Jansen, V.A.A. (2002). The evolution of Parasite Virulence, 

Superinfection, and Host Resistance. The American Naturalist 159, 658-669.

Getty, T. (2002). Signalling Health versus Parasites. The American Naturalist 159, 363-371.

270



Chapter 8. General discussion

Goss-Custard , J. D. & Sutherland, W. J. (1997). Individual behaviour, populations and

conservation, pp. 373-395 in Krebs, J. R. & Davies, N. B. (Eds). Behavioural ecology: 

an evolutionary approach. 4th edition. Oxford, Blackwell Science.

Grafen, A. (1990). Biological signals as handicaps. Journal o f Theoretical Biology 144,

517-546.

Grenfell, B.T. & Dobson, A.P. (1995). Ecology o f infectious diseases in natural populations. 

Cambridge, Cambridge University Press.

Grenfell, B.T., Amos, W., Arneberg, P., Bjornstad, O.N., Greenman, J.V., Harwood, J.,

Lanfranchi, P., McLean, A.R., Norman, R.A., Read, A.F. & Skorping, A. (1995). 

Visions for future research in wildlife epidemiology, pp 151-164 in Grenfell, B.T. & 

Dobson, A.P. (Eds.) Ecology o f infectious diseases in natural populations. Cambridge, 

Cambridge University Press.

Grenfell, B. T., Wilson, K., Isham, V. S., Boyd, H.E.G., & Dietz, K. (1995). Modelling

patterns of parasite aggregation in natural populations: trichostrongylid nematode- 

ruminant interactions as a case study. Parasitology 111, S135- S151.

Grossman, C.J. (1985). Interactions between gonadal steroids and the immune system. Science 

227, 257-261.

Hamilton, W. D. & Zuk, M. (1982). Heritable true fitness and bright birds: a role for 

parasites? Science, 218, 384—387.

Hillgarth, N. & Wingfield J. C. (1997). Parasite-mediated sexual selection: endocrine aspects

pp. 78-104 in Clayton, D.H. & Moore, J. (Eds) Host-parasite evolution: general 

principles and avian models. Oxford, Oxford University Press.

Holmstad, P.R. & Skorping, A. (1998). Covariation of parasite intensities in willow ptarmigan 

Lagopus lagopus. Canadian Journal o f Zoology 76, 1581-1588.

271



Chapter 8. General discussion

Hudson, P.J. ( 1986a). The red grouse: the biology and management o f a wild gamebird. 

Fordingbridge: The Game Conservancy Trust.

Hudson, P.J. (1986b). The Effect of a Parasitic Nematode on the Breeding Production of Red 

Grouse. Journal o f Animal Ecology 55, 85-92.

Hudson, P. J. & Dobson, A. P. (1995). Macroparasites: Observed Patterns in Naturally

Fluctuating Animal Populations. In Grenfell, B.T. & Dobson, A.P (Eds.) Ecology o f 

infectious diseases in natural populations. Cambridge, Cambridge University Press .

Hudson, P. J., Dobson, A. P. & Newborn, D. (1998) Prevention of population cycles by 

parasite removal. Science 282, 2256-2258.

Hudson, P.J., Newborn, D.& Dobson, A.P. (1992). Regulation and stability of a free-living

host-parasite system - Trichostrongylus tenuis in red grouse. I. Monitoring and parasite 

reduction experiments. Journal o f Animal Ecology 61:477-486.

Hughes V. L. & Randolph, S.E. (2001a). Testosterone depresses innate and acquired resistance 

to ticks in natural rodent hosts: a force for aggregated distributions of parasites. Journal o f  

Parasitology 87, 49-54.

Hughes V. L. & Randolph, S.E. (2001b). Testosterone increases the transmission potential of 

tick-borne parasites. Parasitology 123, 365-371.

Jaenike, J. (1996). Population-level consequences of parasite aggregation. OIKOS16, 155-160.

Johansson, A & Sumpter, D.J.T. (2003). From local interactions to population dynamics in

site-based models of ecology. Theoretical Population Biology 64, 497-517.

Lock, K. (2004). Kinship and Red Grouse: The Dynamics and Behaviour of a Declining 

Population. Unpublished Ph.D. Thesis. University of Aberdeen.

Lewis, K. (1998). Pathogen Resistance as the Origin of Kin Alturism. Journal o f Theoretical 

Biology 193, 359-363.



Chapter 8. General discussion

Lynse, D. A., & Skorping, A. (2002) The parasite Lernaeocera branchialis on caged cod:

infection pattern is caused by differences in host susceptibility. Parasitology 124, 69-76.

MacColl, A.D.C., Piertney, S.B., Moss, R. & Lambin, X. (2000). Spatial arrangement of kin 

affects recruitment success in young male red grouse. Oikos 90, 261-270.

Matthiopoulos, J., Moss, R., Mougeot, F., Lambin, X & Redpath, S.M. (2003). Territorial

behaviour and population dynamics in red grouse Lagopus lagopus scoticus. II. 

Population models. Journal o f Animal Ecology 72, 1083-1096.

May, R. M. & Anderson, R. M. (1978). Regulation and stability of host-parasite population 

interactions. Part II. Destabilising processes. Journal o f Animal Ecology 47, 249-268.

Moller, A. P. (1990). Effects of a haematophagous mite on the Bam Swallow (Hirundo 

rustica): a test of the Hamilton and Zuk Hypothesis. Evolution 44, 771-784.

Moller, A.P., Christe, P. & Lux, E. (1999). Parasitism, host immune function, and sexual 

selection. Quarterly Review o f Biology 74, 3-20.

Moss, R., Kolb, H. H., Marquiss, M., Watson, A., Treca, B., Watt, D. & Glennie, W. (1979). 

Aggressiveness and dominance in captive cock red grouse. Aggressive Behaviour 5, 58- 

84.

Moss, R., Parr, R. & Lambin, X. (1994). Effects of testosterone on breeding density, breeding 

success and survival of red grouse. Proceedings o f the Royal Society o f London Series B, 

Biological Sciences 258, 175-180.

Moss, R., Trenholm, I. B., Watson, A. & Parr, R. (1990). Parasitism, predation and survival of 

hen red grouse Lagopus lagopus scoticus in spring. Journal o f Animal Ecology 59, 631- 

642.

Moss R. & Watson, A. (1991). Population cycles and kin selection in red Grouse Lagopus 

lagopus scoticus. IBIS 133, 113-120



Chapter 8. General discussion

Moss, R. & Watson, A. (2001). Population Cycles in Birds of the Grouse Family (Tetraonidae). 

Advances in Ecological Research 32, 53-110.

Moss, R., Watson, A. & Parr, R. (1996). Experimental prevention of a population cycle in red 

grouse. Ecology 77, 1512-1530.

Moss, R., Watson, A., Trenholm, I. B. & Parr, R. (1993). Caecal threadworms

Trichostrongylus tenuis in red grouse Lagopus lagopus scoticus: effects of weather and 

host density upon estimated worm burdens. Parasitology 107, 119-209.

Mougeot, F. (MS) Ultra-violet reflectance of male and female red grouse {Lagopus lagopus 

scoticus) sexual ornaments reflect nematode parasite intensity.

Mougeot, F. & Redpath, S.M. (In press). Sexual ornamentation relates to immune function in 

male red grouse Lagopus lagopus scoticus. Journal o f Avian Biology.

Mougeot, F., Redpath, S.M., Moss, R., Matthiopoulos, J. & Hudson, P.J. (2003b). Territorial 

behaviour and population dynamics in red grouse Lagopus lagopus scoticus. I. Population 

experiements. Journal o f Animal Ecology 72, 1073-1082.

Mougeot, F., Irvine, J.R., Seivwright, L.J., Redpath, S.M. & Piertney, S. (2004).

Testosterone, immunocompetence and honest sexual signalling in male red grouse. 

Behavioural Ecology (in press).

Mountford, M.D., Watson, A., Moss, R., Parr, R. & Rothery, P. (1990). Land inheritance and 

population cycles of red grouse . pp. 78-83 in Lance, A.N. & Lawton, J.H. {Eds.) Red 

Grouse Population Processes. Sandy, UK, Royal Society for the Protection of Birds.

Norris, K., Anwar, M. & Read, A.F. (1994). Reproductive output influences the

prevalence of haematozoan parasites in great tits. Journal o f Animal Ecology 63, 

601-610.

274



Chapter 8. General discussion

Nordling, D., Andersson, M., Zohari, S. & Gustafsson, L. (1998). Reproductive effort

reduces specific immune response and parasite resistance. Proceedings o f the 

Royal Society o f London Series B 265, 1291 -  1298.

Oli, M.K. & Dobson, F.S. (2000). Population cycles in small mammals: the a- hypothesis. 

Journal ofMammology 82, 573-581.

Owens, I.P.F. & Wilson, K. (1999). Immunocompetence: a neglected life history traits or 

conspicuous red herring? Trends in Ecology & Evolution 14, 170-172.

Persson, L. & De Roos, A.M. (2003). Adaptive habitat use in size-structured populations: 

linking individual behaviour to population processes. Ecology 84, 1129-1139.

Perkins, S.E., Cattadori, I.M., Tagliapietra, V., Rizzoli, A. P. & Hudson, P.J. (2003).

Empirical evidence for key hosts in persistence of tick-borne disease. International 

Journal for Parasitology 33, 909-917.

Pettifor, R. A., Caldow, R. W. G., Rowcliffe, J. M., Goss-Custard, J. D., Black, J. M.,

Hodder, K. H., Houston, A. I., Lang, A. and Webb, J. (2000) Spatially explicit, 

individual-based behaviour models of the annual cycle of two migratory goose 

populations - model development, theoretical insights and applications. Journal o f 

Applied Ecology, 37 Supplement 1, 103-135.

Poulin, R. (1996) Sexual inequalities in helminth infections: accost of being male? American 

Naturalist 147, 287-295.

Roff, D.A. (1992). The evolution o f life histories. Chapman and Hall, New York.

Saino, N., Moller, A.P.& Bolzern, A.M. (1995). Testosterone effects on the immune system

and parasite infections in the bam swallow (Hirundo rustica): an experimental test of the 

immunocompetence hypothesis. Behavioral Ecology 6, 397-404.

275



Chapter 8. General discussion

Seivwright, L. J., Redpath, S. M., Mougeot, F., Watt, L. & Hudson, P. J. (2004). Faecal egg 

counts provide a reliable measure of Trichostrongylus tenuis intensities in free-living red 

grouse Lagopus lagopus scoticus. Journal o f Helminthology 78, 69-76.

Shaw, D. J. & Dobson, A. P. (1995). Patterns of macroparasite abundance and aggregation in 

wildlife populations: a quantitative review. Parasitology 111,S i l l - S 133.

Shaw, J. L. & Moss, R. (1989a) The role of parasite fecundity and longevity in the success of 

Trichostrongylus tenuis in low density red grouse populations. Parasitology 99, 253-258.

Shaw, J. L. & Moss, R. (1989b). Factors affecting the establishment threadworm

Trichostrongylus tenuis in red grouse {Lagopus lagopus scoticus). Parasitology 99, 259- 

264.

Sheldon, B.C. & Verhulst, S. (1996). Ecological immunology: costly parasite defences and 

trade-offs in evolutionary ecology. Trends in Ecology & Evolution 11: 317-321.

Smith, G., Grenfell, B. T. & Anderson, R. M. (1987) The regulation of Ostertagia ostertagi 

populations in calves: density dependent control of fecundity. Parasitology 95, 373-388.

Smith, J. A., Wilson, K., Pilkington, J. G. & Pemberton, J. M. (1999). Heritable variation in 

resistance to gastro-intestinal nematodes in an unmanaged mammal population. 

Proceedings o f the Royal Society o f London Series B Biological Sciences 266, 1283- 

1290.

Solomons, N.W. & Scott, M.E. (1994). Nutritional Status of Host Populations Influences

Parasitic Infections, pp 101-114 in Scott, M.E. & Smith G. {Eds.) In Parasitic and 

Infectious Diseases .Academic Press, Inc.

Sorci, G., Moller, A.P. & Boulinier, T. (1997). Genetics of host-parasite interactions. Trends in 

E c o lo g y  and Evolution 12, 196-200.

Stearns, S.C. (1989). Trade-offs in life-history evolution. Functional Ecology 3,259-268.



Chapter 8. General discussion

Stearns, S.C. (1992). The evolution of life histories. Oxford University Press, Oxford.

Stillman, R. A. (2003) Predicting wader mortality and body condition from optimal foraging

behaviour. Wader Study Group Bulletin, 100, 192-196.

Stillman, R. A., Goss-Custard, J. D., West, A. D., McGrorty, S., Caldow, R. W. G., Durell,

S. E. A. le V dit, Norris, K. J., Johnstone, I. G., Ens, B. J., van der Meer, J. and 

Triplet, P. (2001). Predicting oystercatcher mortality and population size under different 

regimes of shellfishery management. Journal o f Applied Ecology, 38, 857-868.

Thompson, D.B.A., Macdonald, A.J., Marsden, J.H. & Galbraith, C.A. (1995). Upland 

Heather moorland in Great Britain-a review of international importance, vegetation 

change and some objectives for nature conservation. Biological Conservation 71, 163- 

178.

Tompkins, D. M. & Hudson, P. J. (1999) Regulation of nematode fecundity in the ring-necked 

pheasant (Phasianus colchicus): not just density dependence. Parasitology 118, 417-423.

Wagland, B.M., Emery, D.L. & McClure, S.J. (1996). Studies on the host-parasite relationship 

between Trichostrongylus colubriformis and susceptible and resistant sheep. 

International Journal for Parasitology 26, 1279-1286.

Wakelin, D. (1984). Immunity to parasites. Edward Arnold, London.

Watson, A. & Lance, A.N. (1984). Ecological aspects of game shooting and upland 

conservation. ECOS, 5, 2-7.

Watson, A., Moss, R., Parr, R., Mountford, M. D. & Rothery, P. (1994). Kin landownership, 

differential aggression between kin and non-kin, and population fluctuations in red 

Grouse. Journal o f Animal Ecology 63, 39-50.

Watson, A., Moss, R., Rothery, P. & Parr, R. (1984) Demographic causes and predictive

models of population fluctuations in Red Grouse. Journal o f Animal Ecology 53, 639-662.

277



Chapter 8. General discussion

Wilson, G. R. (1979). Effects of the caecal threadworm Trichostrongylus tenuis on red grouse.

Unpublished PhD thesis, University of Aberdeen.

Wilson, G. R. (1983). The effects of caecal threadworm (Trichostrongylus tenuis) in red grouse 

(Lagopus lagopus scoticus). Oecologia 58, 265-268.

Wilson, K., Bjornstad, O. N., Dobson, A. P., Merler, S., Poglayen, G., Randolph, S. E., 

Read, A. F. and Skorping, A. (2002). Heterogeneities in macroparasite infections: patterns and 

processes pp. 6 - 4 4  in Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, H. & 

Dobson, A. P. (Eds.) The ecology o f wildlife diseases. Oxford, Oxford University Press. 

Zahavi, A. (1975). Mate selection-a selection for the handicap. Journal o f Theoretical Biology 

53, 205-214.

Zuk, M. (1992). The Role of Parasites in Sexual Selection - Current Evidence and Future- 

Directions. Advances in the Study o f Behaviour 21, 39-68.

278


