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ABSTRACT

An attempt was made to investigate the theoretical and 

methodological problems involved in the study of individual 

differences in verbal learning. Particular emphasis was placed 

upon association value scales and paired-associate learning.

An association value scale o f the test items used was obtained 

for each subjeot co llecting data on their behaviour in a number 

o f similar learning tasks. The scales so obtained were compared 

with association value scales which were obtained by subjects' 

rating the test items on a five-point scale. The comparisons 

between individual and group results indicated that a group 

association value scale could not su ffic ien tly  control the item 

homogeneity for individual subjects. However, the rated association 

value scales obtained for individual subjects were highly correlated 
with their own association value scales obtained in actual learning 

situations, indicating that subjects' own ratings of the items can 
be used to y ie ld  more accurate predictions of their performance in 

verbal learning tasks.

In studying individual differences in paired-associate learning 

the emphasis was placed upon various mathematical models with different 

theoretical assumptions. Thus, individual differences variables were 
investigated in terms of parameter values of paired-associate learning 

models. For each subjeot repeated measurements were taken by running 

them on a number of paralle l tasks which were designed according to 
their own association value scales. A set of parameter values was 

estimated for each subjeot separately. Changes in the values of the 

parameters representing various theoretical constructs of the models 

used were investigated with regard to changes in subjects' overall 

performance. Results indicated that when f it t in g  models to data from 

individual subjects, one particular model may best f i t  the behaviour 

of one group of subjects whereas the behaviour of other subjects 

may be better represented by other models.



QjiNEHAL INTRODUCTION

In a recent review which covers the period from approximately 

350 3.C. to 1969 A.D., with a strong emphasis on the litera tu re  

published between 1967 and 1969, Tulving and Madigan (1970) depict 
a gloomy picture of progress made in the f ie ld  o f "memory and verbal 

learning". One o f the c r ite r ia  chosen by Tulving and Madigan in 

evaluating the literatu re in th is f ie ld  is  that the function of 

experiments is  to allow the construction, elaboration, modification, 

and overthrow o f theories. Given such a criterion , the reasons 

behind the slow progress in the f ie ld  of memory and verbal learning 

seem to be more deep-rooted than appears at f ir s t  sight.

The h o s t ility  to theorizing which started at the turn of the 

century as a reaction against the dubious reputation of introspection 

and philosophical speculation s t i l l  seems to dominate the conceptual 

framework o f psychology. In other words, early American functionalism 

and Uatsonian behaviorism, in the footsteps of Comte, urged the 

restriction  o f psychology to observed facts. As a result, "the blind 

gathering and interoorrelation of data has led to selective emphasis 

upon regions re la tiv e ly  accessible to observation, thus sacrific in g  
relevence to convenience, and has opened the door to tac it presuppositions 

of a more theoretical kind as w ell" (Brunswik, 1969» P-48).

In fact, the history of psychology is  fu ll of such "sa c r ific e s " . 

Pew other sciences in a given time period develop so many new ideas 

and techniques which f a l l  into disuse, or publish so many experimental 

papers which are consigned to oblivion from the outset.

In many areas o f psychology, an outstanding example o f  "saorifioipg 

relevence to convenience1' is  the neglect of the study of individual 

differences. In verbal learning, for instance, although the importance 

of individual differences is  recognized, there has always been a dearth 

of research evidence, only a few works appear in the litera tu re (C f.
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Noble, 1961; Gagne', 1967} Jenkins, 1967} Pavio, 1970). Furthermore, 

as Travers (19^7) puts i t ,  most o f  the work on individual differences 

has had the outcome of discovering and rediscovering the nature of 

the d if f ic u lt ie s  involved in research of th is kind.

The aim of the present study is  to investigate the theoretical 

and methodological problems involved in the study of individual 

differences in verbal learning. The problem has been treated on two 

d ifferent leve ls . At the f ir s t  le v e l,  individual difference in verbal 

learning is  viewed as a variable which simply expresses i t s e l f  as 

variance, hence the problem is  considered as a methodological one (e .g , 

Underwood, mentioned in Jenkins, 1967) .  In a l l  research where the 
inferences are based on group resu lts , th is kind of approach ta c it ly  
assumes that each individual has the same psychological mechanism for 
the phenomenon under study. Then the differences between subjects are 

assumed to be quantitative differences in their performance, not 

qualitative differences in the underlying psychological mechanism.

At a second leve l, postulating d ifferent psychological mechanisms 

for each individual or for groups o f individuals can be viewed as a 

theoretical problem. It  was not long ago that a deep concern about the 

inferences based on group curves brought up the issue of representation 

of individual performance in group results (e .g . ,  Sidman, 1952; 3akan, 

1954; Estes, 1956). The issue is  simply a mathematical one. I t  is  
possible to obtain a group function (curve) quite unlike those describing 

the individual observations themselves. I t  is  also possible to obtain 

different functional forms for each individual whioh are in no way 

similar to grpup results (C f. Audley and Jonokheere, 1956). I f  there 
is  no alternative explanation, then the p oss ib ility  o f obtaining different 

forms of functions for d ifferent individuals might simply mean that 

each individual has a different psychological mechanism for the same 
phenomenon. In th is case, the differences between subjects are 

assumed to represent qualitative differences in the underlying 
psychological meohanism, not just quantitative differences in their 

performance.

Given the assumption that eaoh individual has the same function
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(Case I ) ,  problems arising from the group function being d ifferen t 

from the individual observations themselves can easily  be handled 

within the general rules o f s ta tis tica l inferences depending upon 

given assumptions various hypotheses can be formulated abeut the 

form o f the group function and tested against the obtained data.

The second case where d ifferent individuals are represented 

by d iffe ren t functional forms does not immediately give a unique 

testable hypothesis, since the assumption of obtaining different 

functions for d ifferent individuals means that there is  an in fin ite  

number o f possible hypotheses to be formulated. This, of course, 

represents an extreme case. A lternatively, some intermediate solution 

such as obtaining a small number o f groups each of whose members 
show the same functional form would be much easier to handle.

Before mentioning the implications of these type o f approaches, 
a b r ie f review of individual difx’ erences in verbal learning w ill 

be presented. References to the above arguments w ill be given 

as they appear in th is review.

Individual d if fe r onces in Verbal Learning.

In the early days when the defin ition  of in telligence as 

"a b il ity  to learn" had many supporters among psychologists, individual 

differences in learning were considered as variations in IQ scores. 

This generally accepted view was f ir s t  questioned by Woodrow(1946)• 
Woodrowis findings were that data from laboratory and classroom 

experiments contradict the assumption that the a b ility  to learn, 

in the sense of a b ility  to improve with practice, is  identical 

with in telligence. Correlations between intelligence and gain 
were generally insign ifican tly  positive and often close to zero.

Woodrow interpreted his results by assuming that a score 

at any stage of praoJ;ioe consists of a general factor, G, and 

sp eo ific  faotors. He further pointed out that Bpeoifio factors 
ohange with praotioe. As a resu lt, there can be high correlation
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between the general factor and scores at a ll  stages o f practice, 

but i t  is  also possible for the correlation between G and gain 
to be neglig ib le when gain is  the result of a high degree of 

sp ec ific ity ; th is sp ec ific ity  results from task characteristics 

and individual differences in performing these tasks.

The line of work generated by Woodrow is  re flected  today 

in the psychometric, correlation-oriented studies as a result 

o f Gulliksen's active interest in the problem. This is  exemplified 

by the work of his students, such as Stake ( 1961) and Duncanson 

( 1964) .  In general, th is type of study was designed to investigate 

individual differences in certain learning tasks with reference 

to various aptitude and achievement tests . Data for performance 

on each task were intercorrelated and factor analysed.

As Glaser ( 1967) points out, a major inadequacy o f the 
factor analytic-psychometric approach is  the lack o f theoretical 
framework for the selection o f reference tests and learning 

measures. Another concern about the psychometric bias is  the 

preoccupation with ways of getting around error variance rather 

than investigating the conditions which influence i t .

A major approach in itia ted  by Hull (1945) was concerned 

with the e ffec ts  of individual differences on learning functions. 
As is  known, he adopted the point o f view of the natural sciences, 

of physics in particular. A s c ien tific  law is  expressed in terms 

of an equation of a particular form, and the empirical constants 

in the equation are determined by experimental conditions so 

that they vary with individual situations but do not change the 
general form of the law. Hull’ s notion was that individual 

differences find expression in these empirical constants. This 

approach formed the basis o f a number of illu s tra tiv e  studies.

The findings o f these studies o f psyohomotor performance (Reynolds 

and Adams, 1954; Zeaman and Kaufman, 1955) and verbal learning 

(Noble, Noble, and Aloook, 1958; Carroll and Burke, 1965)1 and 
many others generally support H u ll's notion that individual



differences affect the constans of a functional relationship 
rather than its  form.

A ll  of these studies were conducted with subjects placed 
into subgroups on the basis of either their in it ia l performance 
on the same task or th eir performance on some other relevant task.

The classification  was usually in terms of slow versus fast learners. 
Although the individual cases in these sub-groups have generally 

been neglected, the assesment o f subjects in terms of th e ir  in it ia l  

state measurements has yielded some interesting research findings.

In general, the idea o f in it ia l baselines requires sin intensive 

screening and classification  of subjeots prior to experimentation 

as is  done in experimental genetics. And it  is  hoped that with 

increased attention to  in it ia l baselines, our experimental methodology 
can change.

When the employment of "screening tests" is  viewed as a 

mere convenience to reduce the variance of subjects' performance 

in an experiment such methodological refinements contribute l i t t l e  

to  our understanding o f either individual differences or learning.

As Jenkins ( 1967) suggests, although for s ta tis tica l purposes it  
is  possible to screen subjects on a "work sample" and c lass ify  

them appropriately, i t  would be misleading to consider th is  approach 
as the primary goal o f research on individual differences in 

verbal learning.

Another point o f oonoern about individual differences has 

been the problem of inference from curves based on group data.
A review o f the literatu re on th is subject starts with M orre ll's  

(1931) observations on the relationship of individual growth 

to  average growth. Later, papers by Sidman (1952), Hayes (1953),

Bakan ( 1954) have raised serious questions on this topic, and 
Estes ( 1956) gave an exoellant disoussion of the problems introduced 

by applying models o f individual behaviour to group averages.

According to Estes, although the obtained group ourve remains one 

o f our most useful devioes both for summarizing information and



for theoretical analysis, inferences about the form o f individual 

curves require caution. In fa c t, a va lid  treatment o f averaged 

curves depends upon the fam iliar procedures of s ta tis tica l inference. 
Therefore, any "inductive" inference from average curves to 

individual ones becomes impossible. But given any specified 

assumption about the form o f individual curves, the characteristics 

o f an averaged curve can be deduced and the predictions can be 
tested against obtained data.

In testing quantitative theories against averaged data the 

main points o f concern ares
a) Theirform of the functional relationship,

b) The parameter values for the population o f organisms sampled.

Case (a ) covers a ll the studies operating on the tac it 

assumption that the form of an averaged curve w ill re flec t the 

form of the individual curves. Although th is assumption seems 

to be unwarranted, the psychological literatu re is  fu l l  of studies 

which try  to determine "the form of the learning curve". Case (b ) 

is  usually illustrated by attempts to determine the functional 

relation  between the experimental treatments and the parameter 

values o f a given learning curve. With regard to these considerations, 
Estes c lass ifies  functions into three types each of which requires 

d ifferent treatments

1) Functions unmodified by averaging. In th is oase the mean 

curve for the group is  the same as individual curves and 
the parameters of the group curve are simply the means of 

the corresponding parameter values fo r individual curves.

2) Functions for whioh averaging complicates the interpretation 
o f parameters but leaves the functional form unchanged. In 

th is oase testing hypotheses related to the form of the funotion 

raises no d if ficu lt ie s , but testing hypotheses involving changes 

in parameter values as a function o f experimental treatments 

requires oaution because o f averaging e ffeo ts .
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3) Functions modified in form by averaging. In some oases a 

function belonging to th is class can be moved into class (2) 

or even class ( l )  by means of an appropriate transformation. 

Then, tests appropriate to the form of the function can be 

conducted.

Estes's oomments are not meant to provide an exhaustive 
treatment o f the problem of averaging. He tr ie s  to point out 

that the va lid  interpretation of group curves depends on the 

principles common to a l l  problems of s ta tis tica l inference. 
Therefore, the form of a group curve does not determine the 

forms o f the individual curves, but i t  does provide a means of 

testin g  exact hypotheses about them. In th is case, the procedure 

suggested by Estes is  to  state the hypothesis under test for the 

individual curve and then to derive the properties that should 

hold for the averaged curve i f  the hypothesis is  correct.

With the development of stochastic learning models, individual 

differences have been considered as the differences in parameter 

values o f a model type. In most applications o f these learning 

models, i t  is  usually assumed that the same values of parameters 

characterize a l l  the subjects in an experimental group. This 

homogeneity assumption is  not usually postulated on any theoretical 
grounds, but i t  enables the pooling o f data from different subjects 

and the estimation of parameters from group results. But, as 

Sternberg ( 1963) points out, when this tac it assumption of individual 
homogeneity is  made in the application o f a model, that what is 

tested by comparisons between data and model is  the conjunction 

o f the assumption and the model type and not the model type alone.
" I t  is  usually thought that i f  the assumption is  not en tirely  

ju s t ified  then the discrepancy w ill  cause the model to underestimate 
the intersubject variances o f response-sequenoe s ta tis tics . I t  is 
hoped (but not known) that the discrepancy w ill  have no adverse 

effeots"(S ternberg, 1963).



However, some attempts have been made to estimate the 

parameters of a oertain learning model for each subject seperately 

(e .g . ,  Audley and Jonckheere, 1956). Audley (1957) has also 

developed th is procedure for a model which describes the learning 

behaviour of an individual subject in a two-choice situation.
Audley and Jonckheere argue that "the curve f it te d  to  the average 

o f the individual observations at each t r ia l  may imply a mathematical 
function quite unlike those describing the individual observations 

themselves even when the la tter  functions are in form the same 

fo r a l l  subjects, and d if fe r  only in the individual parameters 

required".

Some other suggestions for estimating individual parameters, 
in particular for testing the homogeneity assumption o f parameter 

values come from Bush and Wilson (1956), Anderson (1959)* Bush, 

Galanter, and Luce (1959)* Sternberg (1959)«

Research related to the variations in learning-rate parameters 

has drawn l i t t l e  attention. An early example appears in Bush and 

H oste ller 's  work (1959) where they consider a Hullian model with 

individual differences and a learning parameter c< which has a 

apaaatfaib specific distribution. In mental test theory, lo g is t ic  

test models proposed by Birnbaum ( 1969) operate on the assumption 

of a lo g is t ic  distribution for the a b ility  parameter 0. Gregg 
and Simon's ( I 967) concept iden tification  model assumes a 

uniform distribution on the conditioning parameter in a certain 

range. Their conclusion is  that almost a l l  the "fine-gra in " 

s ta tis tics  re flec t mainly a random component. Hence the sta tis tics 

are insensitive to individual differences, or, for that matter 

to any other psychological aspects o f the subjects' behaviour 

that might be expeoted to a ffect the s ta tis tics . Contrary to 
th is view, O ffir  (1972) tr ie s  to show that "fine-gra in " sta tistics 

are affected greatly when a correot distribution is  used to 
describe individual differences. By assuming a beta density 

function fo r the parameters o f the single-operator linear model
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and. "the long-short model, O ffir  studies the e ffect o f this 

heterogeneity modification on the predictions from these models. 

The results show that under the heterogeneity assumption the 

desoriptive and predictive power o f the models increases 

measurably.

Implications

As the foregoing review reveals methods adopted in the 

study of individual differences are as follows:

1) Faotor analytic methods,

2) The Hullian approach,
3) Subjects' in it ia l  baseline studies,

4) Inferences from group curves to individual curves,

5) Testing o f assumptions about the distribution o f individual 

parameter values in stochastic learning models.

For any kind of learning process, given the assumption 

that each subject has the same functional form, the choice of 

one of these methods might be sufficient to answer some restricted 

set of questions related to  individual differences. The general 
finding o f these types of studies, however, does not seem to go 

beyond rephrasing the quite well known fact that there are individual 
differences in learning. What should be done next, then? The 
answer to  th is question depends on what aspeots o f individual 

differences we are interested. For instanoe, i f  we were able 

to seperate the components of a certain learning process by 
postulating different stages in learning, then the ro le  o f individual 

differences in these stages or the transitions between stages 
might beoame an area of in terest. Similary, in faotor analytic 

studies, investigation o f individual differences in postulated 

faotors might reveal some interesting research findings. In fa o t, 

some evidenoe from faotor analytic studies suggests that two 

postulated faotors, span memory and rote memory faotors, play



different roles in d ifferent stages of learning (K elley , 1954).

Further study hy Games ( 1962) on th is subject emphasised the 

need for span memory and rote memory individual difference 

parameters.

From the foregoing arguments i t  becomes clear that a 

systematic investigation o f individual differences requires 
theoretical constructs for the learning process with which we 

want to work. The d if f ic u lty  of working on individual differences 

f ir s t ly  stems from the fact that there is  a dearth o f psychological 

theory and general laws from which appropriate deductions can be 

made for individual subjects. Secondly, the area o f individual 

differences in verbal learning, in particular, poses i t s  own 

methodological problems. Item homogeneity, for instance, as a 
confounding variable constitutes a majsr methodological problem, 

since it  is  d ifficu lt to determine whether the observed variance 

is  due to the differences between subjects or the differences 

between the test items. In fact, the problem of item homogeneity 

has drawn more attention than the problem o f subject homogeneity 

(e .g .,  Glaze, 1928} Hull, 1933} Noble, Stockwell, and Pryer, 1957J 

Noble, I 96I 5 Battig and Spera, I 962) .  But, the scales o f association 

value or meaningfulness o f test items have up t i l l  now been based 

on group results. The relationship between item homogeneity and 

an individual difference parameter has never been investigated.

When taken together, the problem o f subject homogeneity 

on the one hand and that o f item homogeneity on the other, res trict 

our choice of a verbal learning task to test materials for whioh 
rated association or meaningfulness scales sire readily obtainable.

The choice of such test materials w ill prove to be useful when we ce 

oome to oompare individual meaningfulness scales with those obtained 

from group data.

In order to study a given learning prooess from the individual 

differences point o f view, our f ir s t  desideratum for related theoretical
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constructs seems to be very d if f ic u lt  to meet. However, the 

recent developments in mathematical learning theories have 

generated a theoretical framework within which appropriate 
deductions can be made for individual subjects. The poss ib ility  

o f testing assumptions about subject and item homogeneity and 

the further poss ib ility  of deriving testable hypotheses for 

individual subjects, emphasis was placed upon mathematical 

learning models.

When one talks about mathematical learning models probably 

the f ir s t  thing which comes to mind is  the amount of research 

work which went into the paired-associate paradigm. In fact, 

from the very beginning, not only in mathematical learning theory, 

but also in non-mathematical psychology paired-associate learning 

has drawn enormous attention. The amount of research work 
pertaining to  th is f ie ld  especially in the last decade is  almost 
prohibitive o f any sort of concise review.

For the purpose o f studying individual differences, the 
choice of mathematical models for paired-associate learning 

brings more problems of its  own. With the choice of a mathematical 

learning model, the study o f individual differences becomes the 

investigation o f individual parameter values within a particular 
model type. Because o f the theoretical nature o f a particular 

model and it s  theoretical parameter values, there are problems 

in  the estimation and iden tification  of parameters.

The plan o f th is dissertation is  as follows. In the f ir s t  

part of the study, the association value or meaningfulness scale 

o f the paired associate test material w ill  be derived and presented. 

The obtained scale w ill  be compared with similar soales in the 
literature and various comparisons w ill  be made between individual 

results and group resu lts. This f ir s t  part is concluded with a 

presentation o f individual and group seria l position curves obtained 

under controlled presentation and testing orders. Striking 
differences in functional form of individual and group seria l
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position curves and the differences between the individual results 

themselves would be a demonstration of various misleading 

generalizations which may occur when inferences are based on 
group results.

In the second part, by u tiliz in g  the obtained association 
value scale paired-associate tasks w ill  be constructed. Bata 

fo r paired-associate learning w ill  be obtained by running the 

same subjects several times on the same type o f tasks. The 

e ffeo t o f suoh experimental variables as l is t  length, practice, 

and guessing w ill  also be investigated. Parameter values of 
group and individual data w ill  be estimated separately and the 

necessary comparisons made. The paired-associate models which 

w i l l  be used are as follows: The one-element model, the single- 

operator linear model, Norman's ( 1964) random t r ia l  increments 

model, Atkinson and Crother's ( 1964) long-short model (LS-3 and 

LS-2 versions). A modified version o f a general four-stage 

Markovian model w ill  be developed. Furthermore, problems 

arising from identification  o f parameters (in  the sense of 

Qreeno and Steiner, I 964) w ill  be investigated.

Each separate part has its  own introduction and discussion 
section. A general conclusion and discussion section which covers 
the whole project appears at the end o f the dissertation.





INDIVIDUAL DIFFERENCES IN  ASSOCIATION VALUE SCALES

Introduction

Item homogeneity is  considered to be one of the prime 

requirements o f controlled experimentation on verbal behaviour.

In the literatu re , the problem of homogeneity o f items has 

usually been studied with regard to the association value or 

meaningfulness o f the test materials. Because of other desirable 
properties of test materials such as sim plicity, numerousness, 

e tc ., consonant-vowel-consonant (CVC) trigrams have been used 

extensively in verbal learning studies. Therefore, much o f the 
work on association values or meaningfulness scales have been 

conducted using CVC trigrams as test materials.

In the fo llow ing review association value and meaningfulness 

w ill  be used interchangeably at the de fin itiona l leve l. Following 

the example o f Underwood and Schulz ( i 960) various scaling 

operations w ill  be referred  to by the names o f the investigators 

who generated them.

Glaze (l928)t Glaze's work represents the fir s t  systematic 

attempt to order CVC trigrams along a meaningfulness scale. The 

l is t  which was presented to the subjects consisted of 2019 CVC 

trigrams. A to ta l o f 15 subjects was used. A fter a short practice 
t r ia l  with 15 trigrams, the subjects were presented with the 

2019 trigrams at the rate of 252 per session. The trigrams were 

presented one at a time by use o f a tachistoscope for about 

2-3 seo. As each trigram was presented the experimenter spelt i t .  
The subjeots task was to indicate in a few words what the CVC 

trigram meant to  him. The association value or meaningfulness 

o f each trigram was oaloulated as the persentage of subjeots 

who gave an association to the trigram.



Hull (1933): Hull used 320 CVC trigrams which were divided 

into 20 l is ts  o f 16 each. Twenty subjects worked with a l l  20 l is ts  

in a rotational scheme caloulated to  spread the e ffects  of practice 

equally over a l l  items. Hull's procedure corresponds to simple 

seria l learning, since he wanted to  obtain a measure o f association 

value in an actual learning situation. Each l is t  was presented 

three times at a rate of one trigram every 2 second. A fter the 

f ir s t  t r ia l  subject was instructed to  anticipate the trigrams 

and to indicate o f what the trigrams made him think. In other 

words, the subject was not to try  think of associations to a 

trigrain, but i f  he did think of any, he was to report them. The 
association value scale was based on the number of associations 

reported for each trigram.

Krueger (1934): A to ta l o f 2183 CVC trigrams was used and 
586 subjects, each rating only 1200 trigrams, took part in the 

experiment. The experimenter spelt each trigram twice taking 

on average about 4 sec. for both spellings. The subject's task 
was to write the trigram as the experimenter spelt i t  and indicate 

the idea (with a word or phrase) arouse by that trigram. The 

meaningfulness scale was based on the frequenoy of the associations 

for each trigrara.

Witmer (1935)» Witmer worked with trigrams which consisted 

o f three consecutive consonants (CCC). A to ta l of 4534 items 

was used. Each trigram was presented for 4 sec. on a memory drum.

The subject's task was to spell the trigram and then state in a 

word or phrase what i t  meant to him. A ppecial record o f unverbalized 

associations was also obtained by instructing subjects to say 

merely "yes" i f  the trigram meant something but he could not 

verbalized its  meaning within the 4 seo. in terva l. The meaningfulness 

. scale was basqi on the reports o f 25 subjects.

Noble (1952): In determining the meaningfulness soale of 

items the method employed by Noble d iffered  from those used by



previous investigators. With the so-called production method 

the subject is  presented with an item and given 60 sec. to 

write a l l  the d ifferent words e lic ite d  by the item. By th is 

method Noble tried  to determine an index of meaningfulness 

fo r dyssyllables. A to ta l o f 119 subjects was used. The 

meaningfulness scale was based on the mean number of responses 

given to each word during a 60 sec. period.

Handler (1955); Mandler used the production method for 
CVC trigrams. Each printed trigram was presented in the middle 

o f a sheet o f paper ahd the subject was instructed to write his 

associations in 30 seo. A to ta l o f 100 trigrams was used. The 

scale o f meaningfulness was based on the mean number of responses 

obtained from 34 subjects.

Noble. Stockwell, and Fryer (1957): In th is  study a new 

method fo r  defining meaningfulness was introduced. The subjects 
rated CVC trigrams fo r the number o f d ifferen t things or ideas 

they thought each trigram suggested. A 5-point scale was used.

The subject had to indicate the association value of each trigram 

by putting a check mark in one of the fiv e  spaces provided. A 

to ta l o f 100 CVC trigrams was rated by 200 subjects. The mean 

rating o f each item was used as a basis for the meaningfulness 

scale.

Noble (1961): The method introduced in the Noble, et al 

( 1957) study was applied a l l  2100 possible combinations of 

English alphabet. A to ta l of 200 subjects was used. Different 
treatments o f the same data yielded the fo llow ing measures: 

association value (a ) ,  rated associations ( a ' ) ,  and scaled 

raeaningfulness (m ')« Sinoe then a l l  the research on meaningfulness 

and verbal learning have u tilized  these scales as standards.
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Implications

In the foregoing review of scaling procedures, three 

clearly  distinot methods of assessing meaningfulness have 
been used»

1) Methods which determine whether or not a CVC trigram arouses 

an association within a lim ited time interva l.
2) Determination of the number of different associations actually 

aroused by a CVC trifcram.

3) Subject's rating the number of different associations which 

he thinks a CVC trigram e l ic its .

Excepting Hull' 3 method, a l l  the other methods oan easily 

be included in one of the categories given above. Hull's method 

d iffe rs  from the others only in that i t  obtained an association 

value scale in an actual learning situation. Nevertheless, H ull's 

method could be inoluded into the f ir s t  category, as the fin a l 

assessment o f meaningfulness was based on the number of associations 

reported fo r each CVC trigram. The investigation o f correlations 

among raeaningfulness values for different scaling methods reveals 

that the Hull scale does not relate to other scales as highly as 

the other scales re la te  to one another (C f. Noble, Stookwell, 

and Pryer, 1957). I t  appears that since Hull l i t t l e  consideration 
has been given to the idea of obtaining a measure o f  association 

value in an actual learning situation. On the other hand, the 
importance of meaningfulness scales stems from the fact that 
there is  a high relationship between actual speed o f learning 

and subjects' ratings o f how long they think it  w i l l  take them 

to learn the items. Furthermore, the rating given a verbal 

unit as to how fast i t  w ill  be learned oan be predicted almost 
perfectly  from a knowledge of the number of associations that 

item e l ic its  (Underwood and Schulz, i 960) .  Investigations have 

shown also that the ease of learning depends on the meaningfulness 

o f the test items used (e .g . ,  Underwood, Rehula, and Keppel, 1962;
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Cohen and Husgrave, 1964; Carroll and Burke, 1965) .

The aim o f th is chapter is  to  deta il a method for determining 

an association value scale in an actual learning situation. As 

indicated ea r lie r , H u ll's  association value scale was based on 

the number of associations an item e l io its  in an actual learning 

situation. Contrary to H u ll's procedure, our association value 
scale w ill  be based on the number o f correct responses given to 

an item. In the light o f the evidence given above, a high 

relationship between actual speed of learning and the association 

value of an item can be taken as empirical support fo r our 
contention that association value scales based on frhe number o f 

correct responses w ill be measuring the same behavioral reactions 
as those measured by other scaling procedures.

In the present study two-digit numbers have been used 
instead of CVC trigrams. The reason for the choice o f two-digit 

numbers as test materials are practical ones. The intention is  

to obtain association value scales fo r each individual as well 
as for the group data. Therefore, given the 2100 possible CVC 

combinations of the alphabet and the required number o f replications 

for each item, the time taken to complete the experiment would 

be excessive. On the other hand, working with a small set of 

two- d ig it numbers, besides helping to  control such experimental 
variables as rep lica tion , serial position, e tc ., takes a re la tiv e ly  

shorter time.

The use o f numbers as materials in verbal learning experiments 

is  not uncommon. For example, employment of single or two-digit 

numbers in ser ia l learning experiments, CVC trigrams-number pairs 

in paired assooiate experiments. Rated association values of 

a l l  numbers from 0-100 have already been obtained by 3attig and 
Spera ( 1962) .  Their procedure corresponds closely to  those used 

previously to obtain similar information for CVC trigrams (e .g . ,  
Noble, I 96I ) .  A five-poin t scale was used. The subject was 

instructed to indicate h is choice by rating eaoh number with
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regard, to "how many different things or ideas are associated 

with the number, and how d iff io u lt  i t  is  to think of these 

associations". The rated association value scale was based 

on the mean number of ratings for each number obtained from 

95 subjects. For future reference Battig and Spera's rated 

association values of numbers from 0-100 are given in the 

Appendix I .

In the following experiment numbers ending with zeros 

(20, 30, . . . )  and numbers with the same two d ig its  (22, 33, •••) 
are excluded. In the Battig and Spera scale these numbers 

usually show high associations. The present study is  concerned 

with a task that is  near to paired-associate learnings following 
the presentation of a l is t  o f two-digit numbers, fo r each 

randomly chosen item in the l is t  the subject is  cued with the 

f ir s t  d ig it  and asked to respond with the second d ig it which 

was associated with i t .  In a learning situation like th is, 
association value scales for individual subjects were obtained 

by takin j their average number of correct responses for each 

item.

A  Ik
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EXPERB1ENT I

Method

The stimulus material were two-digit numbers between 

21 and 98 excluding the numbers ending with zeros and the 

numbers with the same two d ig its . Each l is t  contained eight 
numbers which were chosen from d ifferent number categories 

(one from the twenties, one from the th ir tie s , e t c . ) .  The 

second d ig its  were chosen without rep lication . A typical 

sequence might bes

62

58

91

47

35
89
26

74

One-hundred and sixty tasks were constructed in th is fashion.

The subjects were 24 university students. Eight of them 

were paid to  take part in a ll fiv e  sessions in each of which 

they completed 32 tasks. The remaining 16 subjects were volunteers 
and only took part in the fir s t  session, each o f them completed 

the f ir s t  32 tasks.

The apparatus used was the Wang 700B programmable electronic 

calculating machine with two number displays. According to a 

programmed schedule, 32 tasks in the f ir s t  session were presented 

in a rotational scheme to spread the seria l position e ffects 

equally over a l l  items. This prearranged rotational scheme ensured 

that each item had equal opportunity of appearing in a ll the serial 

positions fo r d ifferent subjects. The data thus obtained were used
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in determining the group association value scale. For the f iv e -  

session subjects the rotational presentation scheme was abondened 
a fter the f ir s t  session, since over the remaining four sessions 

each item had. equal opportunity of appearing in a ll possible 

seria l positions.

The items were presented at a rate of one per second. After 

the presentation o f a l l  the items the single d ig its representing 

the d ifferen t number categories were given according to  a pre

arranged schedule. The subjects were instructed to respond with 
the d ig it which was associated with that given number category.

A 30 sec. interval was given between the tasks. During each 

task correct and incorrect responses were recorded.

A fter the experiment, the subjects who took part in a ll 

the fiv e  sessions were requested to rate each number according 

to their association value. In other words, Battig and Spera's 

( 1962) procedure was used to obtain rated association values 
o f the numbers and compare them with the association value 

scales obtained in an actual learning situation.

Results and Discussion

In order to discover the relationship between the rated 

association values (obtained on a five-poin t scale) and the 
performance in an actual learning situation, Battig and Spera 
( 1962) compired their rated association value scale with performance 

in paired-associate learning experiments where nonsense shapes 

were used as stimuli and two-digit numbers as responses (Battig, 
1962; Battig and Brackett, I 96I ) .  In these studies, performance 

on two-digit numbers was measured by the proportion of to ta l 

presentations summed over subjects on whioh oorreot responses 

were given. The obtained correlation ooeffio ients were .516



and .489 for the two studies, respectively

In the present study the association values o f two-digit 

numbers were measured according to the following formulas

Ci
Association value (AV) »  — 1 1

_Ç__Pi

P

where

Cis to ta l number of correct responses on item i ,

Pi? to ta l number of presentation of item i ,
C s to ta l number of correct responses on a l l  the items,
P : to ta l number of presentations of a l l  the items.

This formula proved to  be useful in the determination of 

association value scales fo r each individual subject. In Battig 

and Spera's expression the ra tio  of to ta l oorrect responses to 

the to ta l presentations re fle c ts  not only the different associations 
values of a l l  the items, but also the different performance levels 

o f subjects. The above formula determines the association value 

scales re la tiv e  to the mean performance leve l o f eaoh subject.

In e ffe c t, both formulae give the same orderings o f the association 

values, one set of values being a linear function of the other.

Table 1 presents the association value scale obtained for 

group resu lts. A direct oheck on the relationship of the present 

scale values to  the Battig and Spera's rated associations gave 

a correlation of .487* This correlation coefficien t appears to 
be consistent with Battig and Spera's correlation coefficien ts 

(.516 and .489) whioh were obtained in the same way. Battig anft 

Spera's study also inoludes numbers in the teens (12, 13« •••) 
whereas in the present study these numbers are excluded on the



No. AV No. AV No. AV No. AV

59 • 59 73 .86 29 • 99 87 1.19
61 .69 46 .88 84 1.00 51 1.19
65 • 70 47 .89 92 1.00 42 1.19
58 .72 31 •89 76 1.00 54 1.21
85 .73 57 • 90 75 1.03 95 1.24
93 .76 26 .91 74 1.05 43 1.24
83 .76 78 • 92 63 1.05 41 1.24
68 .76 67 • 93 56 1.05 36 1.24
62 •76 72 • 94 35 1.05 27 1.24
86 .78 94 • 95 97 1.07 96 1.29
79 .80 49 • 95 71 1.08 23 1.34
89 .81 34 .95 69 1.10 21 1.34
38 .82 32 .95 64 1 .11 25 1.35
53 .83 28 • 97 81 1 .11 48 1.38
39 .84 62 •98 24 1.15 98 1.43
37 .84 82 • 99 45 1.17 91 1.54

Table 1: Association value scale for group results.



24

No» AV No. AV No. AV No. AV

79 .54 46 .83 35 1.02 51 1.19
65 .63 96 .84 73 1.02 76 1.20
56 .66 68 .84 83 1.05 41 1.20
78 .67 94 •85 47 1.05 34 1.20
61 .70 23 .87 29 1.05 54 1.21
93 •70 85 •91 24 1.05 37 1.25
92 .70 62 •91 31 1.07 21 1.25
81 .70 48 .91 98 1.09 57 1.27
64 •73 84 • 91 52 1.09 27 1.31
82 .74 28 .93 97 1.11 95 1.32
71 •75 69 .96 89 1.11 91 1.33
74 .76 72 • 97 36 1.13 75 1.34
45 .79 43 • 99 58 1.14 42 1.40
53 .80 26 1.00 25 1.15 39 1.40
63 .81 49 1.01 59 1.16 38 1.40
86 .83 87 1.02 67 1.18 32 1.40

Table 2: Association value scale for Subject 1.

No. AV No. AV No. AV No. AV

58 .45 72 • 74 85 1.00 35 1.21
86 •47 53 .76 75 1.01 27 1.21
65 .48 64 .77 37 1.02 46 1.26
76 .52 61 • 78 41 1.04 71 1.28
84 • 53 31 .81 78 1.05 96 1.29
79 .54 49 .81 68 1.09 29 1.33
32 .54 47 .81 45 1.10 59 1.34
43 • 57 34 .87 94 1.13 39 1.36
89 .64 54 .88 74 1.13 81 1.39
73 .65 83 • 91 95 1.14 91 1.40
87 .66 28 .92 56 1.14 67 1.40
63 .69 52 .94 26 1.15 97 1.53
36 .69 82 .95 23 1.15 21 1.79
93 .71 92 .97 98 1.21 69 1.82
62 .71 51 .97 57 1.21 24 1.82
48 .73 38 .97 42 1.21 25 1.87

T a b le  3» A s s o c ia t io n  va lu e  s ca le  f o r  S u b ject 2.

':èâ AtkJl
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No. AV No. AV No. AV No. AV

86 • 59 57 .86 39 .96 28 1.22
68 .60 35 .86 34 • 98 64 1.24
32 .63 93 .86 47 1.00 73 1.25
83 .64 81 .86 62 1.61 96 1.25
34 .67 76 .86 25 1.01 97 1.26
45 .70 52 .86 74 1.03 21 1.26
75 .71 42 .86 78 1.04 94 1.28
63 •73 61 .89 26 1.06 29 1.28
53 .75 67 .90 58 1.07 36 1.30
49 .76 85 .91 54 1.09 95 1.31
56 .81 71 .91 41 1.10 37 1.35
43 .81 65 .94 92 1 .11 51 1.37
91 .81 38 .94 31 1.14 48 1.37
89 .81 59 .94 87 1.17 24 1.37
72 .82 79 •95 27 1.18 23 1.39
69 .86 46 .95 82 1.19 98 1.43

Table 4: Association value scale for Subject 3.

No. AV No. AV No. AV No. AV

61 .63 84 .86 81 1.04 46 1.13
69 .66 32 .88 97 1.04 94 1.13
68 .66 53 • 91 93 1.05 79 1.17
82 .69 78 • 92 96 1.06 48 1.19
67 .70 51 .92 36 1.07 24 1.19
37 .70 38 •92 26 1.07 28 1.20
59 .73 41 .94 83 1.07 23 1.20
58 .74 57 •96 64 1.08 87 1.20
39 .74 91 .97 54 1.08 35 1.20
31 .75 29 .99 45 1.08 72 1.21
74 .79 27 .99 25 1.08 95 1.24
65 .79 63 1.01 56 1.08 62 1.24
47 .83 85 1.01 75 1.10 93 1.25
7 6 .85 43 1.01 42 1.10 89 1.25
34 .85 73 1.02 21 1.11 71 1.32
92 .86 52 1.03 86 1.12 49 1.32

T ab le  5» A s s o c ia t io n  va lu e  s c a le  f o r  Su b jeet 4
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No. AV No. AV No. AV No. AV

52 .17 94 •64 74 1.00 71 1.41
49 .17 84 .65 23 1.00 36 1.42
42 .17 72 .65 59 1.03 65 1.50
62 .18 32 .66 86 1.04 51 1.50
53 .19 64 .68 29 1.05 61 1.56
25 .27 85 .70 43 1.06 63 1.57
73 .35 82 .75 76 1.07 31 1.57
83 .37 48 .75 57 1.09 89 1.57
69 .37 38 .75 97 1.10 47 1.62
82 .39 93 •75 39 1.12 26 1.71
67 .47 78 .78 27 1.12 54 1.77
87 .54 96 .80 28 1.14 21 1.89
35 .54 89 .83 56 1.23 41 1.92
58 .56 79 .83 34 1.28 45 2.04
68 .60 81 .85 75 1.37 24 2.24
37 .63 46 .89 95 1.41 91 2.68

Table 6 j Association value scale for Subject 5*

No. AV No. AV No. AV No. AV

69 .22 63 .75 57 1.03 65 1.31
49 .39 53 • 76 96 1.04 26 1.33
72 .45 51 .78 94 1.06 23 1.33
59 • 54 47 .80 28 1.08 85 1.33
58 .54 71 .82 83 1.09 56 1.33
79 .58 78 .83 39 1.09 87 1.35
73 .60 32 .84 27 1.09 35 1.35
38 .61 93 •87 64 1.11 25 1.35
67 .64 75 .87 54 1.11 84 1.36
46 .64 34 .87 29 1.13 91 1.37
52 .68 32 .91 42 1.16 36 1.41
92 .70 89 • 92 24 1.22 48 1.48
74 •70 37 .92 41 1.24 21 1.56
63 .70 62 • 92 61 1.25 76 1.62
36 .74 43 • 92 98 1.26 45 1.66
81 .75 31 1.00 97 1.28 95 1.74

T a b le  7 : A s s o c ia t io n  v a lu e  s ca le  f o r  S u b jeot 6
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Mo. AV No. AV No. AV No. AV

47 .00 27 .61 81 1.04 34 1.39
57 .11 89 .64 28 1.04 31 1.39
37 .13 86 .66 32 1.06 21 I .41
79 .14 65 .73 53 1.06 56 1.43
58 .15 93 .81 87 1.11 42 1.49
39 .15 74 .81 75 1.12 32 1.53
59 .17 36 .81 96 1.14 54 1.55
63 .23 84 .85 48 1.22 94 1.56
97 .26 61 .83 26 1.27 45 1.66
49 • 27 64 .88 67 1.28 91 1.66
69 .30 46 • 90 62 1.29 51 1.83
78 .32 52 • 95 92 1.34 71 1.86
73 •47 68 .97 24 1.34 23 2.09
29 .49 35 1.00 98 1.35 25 2.10
38 .61 85 1.00 72 1.38 95 2.15
83 .61 43 1.00 76 1.39 41 2.26

Table 8s Association value scale for Sub je at 7.

No. AV No. AV No. AV No. AV

75 .45 37 .82 68 1.01 47 1.17
59 • 59 43 .82 24 1.01 27 1.17
52 .61 79 •87 54 1.06 85 1.19
51 .62 49 .87 73 1.08 42 1.21
56 .64 53 .88 82 1.08 76 1.22
39 .66 53 .88 73 1.08 93 1.23
61 .69 84 .88 43 1.09 36 1.26
86 .72 81 .39 32 1.10 45 1.27
62 •73 39 .97 94 1.11 98 1.30
97 •74 91 .98 28 1.11 65 1.32
67 .74 87 .99 26 1.11 63 1.33
83 .73 41 1.00 64 1.13 23 1.33
29 • 73 34 1.00 57 1.13 96 1.35
25 .73 95 1.01 35 1.13 74 1.35
4 6 .81 71 1.01 72 1.15 38 1.40
31 .32 92 i . e i 69 1.17 21 1.56

T a b le  9 : A s s o c ia t io n  va lu e  s c a le  f o r  S u b jeo t 8.



basis of the findings of a p ilo t study. The p ilo t study revealed 

that these numbers generally show high association values. I f  

these numbers were included in the analysis, the obtained 

correlation coeffic ien t would presumably be higher, since the 

same numbers show re la tiv e ly  high rated association values in 

Battig and Spera's scale, Furtherm ore, vocalization of the 

numbers in the teens per se do not show the same pattern as 

other two-digit numbers. For example, the vocalization of 

two-digit numbers from other categories start with a d ig it 
representing the number category whereas th is order is  reversedo
for numbers in the teens (e .g .,  twenty-seven, th irty -seven, 

e tc ., vs. seventeen) . In a paired-associate task this 

characteristic means that S-R pairings are reversed, the 
response coming before the stimulus. For these reasons, the 

two-digit numbers in the teens have been excluded from the 

present study.

A reliab ility  score for the group association value scale 

was obtained by randomly sp littin g  the subjects into two equal 

groups. The obtained correlation coeffic ien t between these two 

groups was .923.

Tables 2 to 9 present the association value scales fo r 

the individual subjects. Each table has been based on the 

performance of individual subjects who completed 160 tasks 

in an extended experiment. Table 10 presents the correlations 

between the group association value soale and the association 
value scales for the individual subjeots. The correlations 

between the Battig and Spera rated association value scale 

and the association value scales fo r individual subjeots are 

given in Table 11.

An inspection o f Table 11 reueals that the correlations 

between the association value scales obtained in an aotual 

learning situation and the Battig and Spera rated association



Subject

1 2 3 4 5 6 8

r .16 .34 .35 .37 .20 •49 •55 .26

Table 10i Correlations between the group association

value scale and "the association value scales 
for individual subjects.

Subject

1 2 3 4 5 6 7 8

r .14 .38 .17 .31 .12 .39 .23 .29

Table 11 i Correlations between the Battig and Spera 

rated association value scale and the 

association value soales for individual 

subjects obtained in an actual learning 

situation.



Subject

1 2 3 4 5 6 7 8

r -.06 .55 .54 .41 .18 .54 .48 .39

Table 12s Correlations between the Battig and Spera 
ratid  association value scale and the 

ratings of two-digit numbers by individual 

subjects.

Subject

1 2 3 4 5 6 7 8

r .44 .41 .23 • 54 .52 .40 •46 .58

Table 13: Correlations between the ratings of two-
d ig it numbers by individual subjects and 

their association value scales obtained 

in an actual learning situation.
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value scale are quite low and. in some cases ins ign ifican t. In 

Table 10 i t  can be seen that association value scales obtained 

in an actual learning situation both fo r group data and the 

data from individual subjects are highly correlated when 

compered with the correlations given in Table 11. In Table 10 

only subjects 1 and 5 gave insignificant correlations whereas 

in Table 11 there are four cases (Subjects 1, 3, 5* and 7) 

which gave insignificant correlations.

Table 12 presents the correlations between the Battig 

and Spera rated association value scale and the ratings of 
two-digit numbers by individual subjects. For each subject 
the ratings of two-digit numbers have been obtained by Battig 

and Spera's rating procedure which u t iliz e s  a five-point scale. 
Table 13 gives the correlations between the ratings o f two-digit 

numbers by individual subjects and their association values 

obtained in an actual learning situation.

Individual differences of condirable magnitude are 

indicated by the varying degrees of correlation in Table 10 

and 12 where under two different scaling procedures the 

individual results have been correlated with the group results.

In Table 11, the re la tiv e ly  low and in some cases insignificant 
correlations show that the predictions from the rated association 

scale values to the performance on such materials w ill  not be 

very accurate. Overall, the obtained results suggest that 
rated association value scales based on group data are far 
from satisfactory in controlling item homogeneity for individual 

subjects. On the other hand, the re la tiv e ly  high correlations 

in Table 13 indicate that subjects' own ratings of the items 
can be used to y ie ld  more accurate predictions of their performance 

in verbal learning tasks.
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Serial Position Curves

Each subject seria l position curve was obtained by cueing 

the reca ll o f specific items according to a prearranged schedule. 

Since each subject had completed 160 tasks, each seria l position 

was based on 20 independent t r ia ls .  A group curve was obtained 

by averaging performance over subjects for each of the eight 
serial positions. Figure 1 presents the serial position curve 

for the group results. The fam iliar shape of a group ser ia l 

position curve with differences in reca ll at the ends and middle 
of a l is t  i 3 demonstrated clearly . In verbal learning, studies 

on serial position curves are considered to be important in 

explaning the processes underlying acquisition of a given l is t .  

Despite the introduction o f new terminology such as recency 
and primacy e ffects , as Tulving and Kadigan put i t ,  our 

understanding of the phenomenon has advanced l i t t l e  since 

Ebbinghaus f i r s t  described i t .

In the literature, no work appears to have been done 

on individual differences in seria l position e ffec ts . Although 
the sim ilarity  of one seria l position curve to another is  no 
guarantee that both are consequences of one and the same set 

of underlying processes, th is has always been the tac it assumption 

in the study of group seria l position curves. Even i f  obtained 
group results on seria l position effects contradict the traditional 

"bow shaped curve", existing theoretical notions usually remain 

untouched, instead other reasons are given why the theory should 
emerge unscathed from contact with the data. The present study 

simply illu stra tes  the variations of serial position curves 

between individual subjects.

Figures 2 to 9 give the serial position curves o f eight 
different subjects. Table 14 summarizes the results o f the 
analysis o f variance which was carried out according to a mixed
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Source SS df MS F P

Rows
(Subjects)

206.18 7 29-45 14.56 p ^.001

Columns
(Conditions)

239.68 7 34.24 7.06 p ^.OOl

Interaction 
(Conditions by Subj

237-7 6
-)

49 4.35 2.40 p <-.001

Error 129.50 64 2.02

Total 813.12 127

Table 14: Summary of analysis of variance results.

model design. In the analysis, for each seria l position 20 

independent t r ia ls  were randomly divided into two equal groups 

and the resulting pairs were used as replications under each 
d ifferen t conditions. Analysis o f variance results give sufficient 

evidence to permit us to conclude that there are both seria l 
position and subjects e ffe c ts . Furthermore, the presence of 

interaction e ffects  indicate that there is  something about 

the combination o f a particular subject with a particular serial 
position that accounts for a significant amount o f variance in 

the data. Thus, fo r each subject, differences in seria l positions 
apparently ex ist, but these tend to be d ifferent for different 

subjects.

Figures 2 to 9 simply illu stra te  the differences in serial 

position curves fo r d ifferent subjects. Apart from random 

fluctuations, f iv e  out o f the eight subjeots seemed to give serial 
position curves o f the same shape as the traditional group serial 

position curve. The seria l position curves for Subjeots 2, 4» and.
5 clearly  d iffe r  from the obtained group resu lts. Although for a ll
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subjects there are strong recency e ffects , the primacy parts 

of the curves seem to be distorted, by the individual differences.

Some introspective reports obtained from subjects indicate 

that the different strategies used in the process o f acquisition 

of the l is t  may cause the observed differences in their serial 

position curves. I t  is  apparent that future research on serial 

position curves which includes some provision for the possib ility  

of different strategies used by the subjects would be more 

benefecial than gross geheralizations based on group results.





INDIVIDUAL DIFFERENCES IN PAIRED-ASSOCIATE LEARNING

Introduction

At the close o f a conference on learning and individual 

differences (University of Pittsburgh, I 965) , Melton's ( 1967) 

conclusion was that research on individual differences must be 
guided by theories o f human learning and performance; in other 

words, according to Melton "what is  necessary is  that we frame 

our hypothesis about individual differences variables in terms 

of process constructs of contemporary theories of learning and 

performance".

In the f ie ld  o f verbal learning the S-R association 

theories have been concerned primarly with changes in the 

frequency of certain response classes as a function of experimental 
conditions. However, the development of a new psychology of 

cognition has influenced the study of verbal learning very 

substantially. In particular, cognitive processes such as 

attention, storage, and retrieva l have become major areas in 
psychological research. Besides new e*perimental methods and 

techniques, several formal developments have provided superior 

tools for theoretical work. The developments in mathematical 

learning theory, fo r  instance, aided the generation of new 

concepts for psychological processes and structures.

Since research on individual differences should emphasize 

the process constructs of contemporary theories of learning, the 

present study is  an attempt to investigate the individual 
differences in terms of mathematical paired-associate learning 

models where an abundanoe of theoretical concepts can be found.
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As Melton ( 1967) puts i t ,  although the approach which 

emphasizes process variables is  no panacea, i t  is  a way to 

increase the likelihood of significant advances in the under

standing o f individual d ifferences. Melton further argues 
that our interest in finding and manupulating individual 

differences in the hypothesized process w ill  refine our 

analysis o f the process and contribute to a "taxonomy of 

processes". Another point is  that i f  there are observable 

individual differences in performance that can be traced 

d irectly  to  individual differences in a process, then the theory 

which id en tifie s  th is process gains greatly in predictive power 

and acceptability; i f ,  on the other hand, the process does not 
vary between individuals, or i f  i t  varies without significant 

correlated performance e ffe c ts , there is  probably something 
wrong with the process construct.

In the present study, individual differences in theoretical 

constructs such as long-term and short-term storage, acquisition, 

conditioning, and forgetting processes w ill be investigated in 

terms of particular model types. These paired-associate learning 
models and their major theoretical assumptions are given below:

The one-element model:

The one-element model, sometimes referred to as the a l l -  

or-none model, represents a special case of the more general 

models o f Stimulus Sampling Theory. A review of the literature 

shows that a wide array o f data on paired-associate learning 

has frequently been analysed in terms of an all-or-none process 

(e .g . ,  Bower, I 96I ,  1962; Crothers, 1962; EBtes, i 960, I 96I ; 

Suppes and Ginsberg, 1963) .

I f  paired-associate learning is  viewed as the learning 

of an association between the stimulus and response member of
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a given pair, then the main question is  how do the subjects learn 

to anticipate the response member o f a given pair when the stimulus 

member is  presented alone? As its  name implies, the all-or-none 

model assumes that a single reinforcement o f a previously unlearned 

pair produces either complete learning o f the association, or 

no learning whatsoever. The two principle assumptions of the 

model are as fo llow s:

1) Until the stimulus element is  conditioned, there is a constant 

probability g that the subject w ill respond correctly by 

guessing.

2) On each t r ia l  there is  a probability c that the stimulus 
element w ill become conditioned to the correct response.

Thus, on t r ia l  n o f an experiment the stimulus element can be 

regarded as being in one of two conditioning states: in state C 
or in state TTi I f  the stimulus element is  in state C, then the 

element is  conditioned to the correct response. I f  the stimulus 

element is  in state C, then the element i3 unconditioned and a 

correct response by the subject can only occur by guessing. At 
the beginning of the experiment, the element is  in the unconditioned 

state C and subsequently moves to state C as specified by the 

transition matrix:

C(n±l) C(n+l) Pr( Correct)

C(n)
r—

1 0 1

C(n) 0 1-c e

In general, the results reported in^Iiiterature indicate 

a remarkably close correspondence between observed values and 

those predicted by the one-element model. However, there are 

various aspects o f the data whioh oontradict the assumptions 

of the model. Although the issue of a ll-o r  none learning of



associations raises a number of important questions, the general 

consensus is , as Restle ( 1965) puts i t ,  that a l is t  entailing 
highly available responses and extremely strong interpair assoc

iations is  learned in the all-or-none fashion.

The 3in,-le-operator linear model:

As an alternative to the one-element model, the linear 

model views learning as a direct change in response probability 

from one t r ia l  to the next. Thus, the response probability on 

t r ia l  n+1 is  obtained by a transformation of the response probability 
observed on t r ia l  n. The simplest version of such a model was 

developed by Bush and Hosteller (1955)» and Bush and Sternberg 

( 1959)* This model assumes that the probability o f correct 
response increases according to the follow ing equations

p(n+l) -  (1 -  e) p(n) + © (2)

where p (l)= l/ r , and r is  the number of available response 

alternatives.

In general, the single operator-linear model has compared 

unfavourably with the one-element model. The result of such 

comparisons revealed that the obtained goodness-of-fit to the 
data of the linear model is  not as good that of the one-element 

model (C f. Atkinson, 3ower, and Crothers, 1965» Atkinson and 

Crothers, 1964) »

The random-trial-increments (RTl) model:

The random-trial increment model developed by Norman ( 1964) 

represents a combination of the one-element and linear models.
The model contains two parameters and with a suitable choice of



values for these the one-element model, the single-operator 

linear model, or a quasi-mixture ox the two can he obtained. 

In the random-trial increments model, the probability o f a 
correct response on t r ia l  n+1 is  given by the following 

equations

p(n+l)

(1 -  9) p(n) + 9

■p(n)

with probability c

with probability 1-c

(3)

In Eq. 3j c represents the probability o f an unobservable event, 

called an "e ffe c t iv e  reinforcement". Thus, on each t r ia l  only 

one of two events can occur: with probability (1-c) no e ffe c tiv e  
reinforcement occurs and no learning takes place; with probability 
c an e ffective  reinforcement occurs and the response probability 

receives an increment described by the linear transformation 

given in Eq. 2. In Eq. 3, i f  0 = 1 the process reduces to 
the one-element model, whereas i f  o »  1 the simple linear 

model is  obtained.

Since much of the data on paired-associate learning seems to 

fa l l  in between the one—element model and the linear model, the 

random-'trial increments model often gives a good f i t  to the 

obtained data. Norman ( 1964) and Atkinson and Crothers ( I 964) 
found that the random-trial increments model did a good job 

of predicting data which contraindicated the one-element and 

linear models.

The long-short model:

Although the one-element model gives a good f i t  to the 

data obtained from paired-associate tasks entailing highly 

available responses and extremely strong interpair associations, 

i t  soon became clear that th is model was insufficient fo r a



fa ir ly  large number of learning situations. Furthermore, there 

is  at least one contradictory aspect of the data which goes 

d irectly  to the core assumption of the one-element model; i . e . ,  
appropriate s ta tis tica l analysés usually reveal a nonstationary 
e ffe c t before the last error. In other words, there is a tendency 

fo r the probability of a correct response to increase over tr ia ls  

before the last error and not simply remain a constant g, as 

predicted by the theory. These considerations led theorists 

to  construct more general models which account fo r the observed 

discrepancies but which can be reduced to the one-element 

model by a suitable choice o f parameter values. The long-short 

model which was developed by Atkinson and Crothers ( 1964) is 

an eaample o f th is  type o f more general model.

The long-short model assumes four stages o f learning:

1) State U: Learning is  postulated to consist o f the encoding 
of the stimulus followed by the association o f the encoded 

stimulus with the correct response. Before encoding has 

occured, the stimulus is  said to be in state U (uncoded); 

in this state the subjec. is  assumed to respond by guessing 
randomly among the r response alternatives.

2) State F: This state represents forgetting o f a temporary 
connection between the encoded stimulus and the response.

I f  the stimulus element passes into state F, the subject 
guesses randomly, but the encoding of the stimulus is 

retained.

3) State S: This state represents a short-term memory state, 

expressing the notion that a temporary connection between 

the encoded stimulus and response may form prior to 

establishing the permanant association; while the association 

is  temporarily stored the correct response occurs with 

probability 1.

4 ) State L: Onoe the permanant association forms the stimulus 

element is  absorbed in state L (long-term memory) and the
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subject makes no error on subsequent presentation of the item. 

This model is  described by its  transition matrix, as follows:

L 3 F U Pr(Correot)

L 1 0  0 0 1

S a ( l - a ) ( l - f ) ( l - a ) f  0 1

F a ( l - a ) ( l - f ) ( l - a ) f  0 S

U ca c ( l - a ) ( l - f )  c ( l - a ) f  1-c B

(4)

where g = l/r represents the guessing probability. The probability 
that encoding occurs on t r ia l  n given that it  has not occured 

on previous t r ia l  is  c . I f  an encoded item is  presented, then 

with probability a i t  goes into state L and with probability 

( l - a )  i t  goes into state s. I t  is  assumed that with each 
intervening event between one presentation of an item and its  
next presentation, there is a probability f  that the item w ill 

move into state F.

Two different versions of the long-short model have been 

examined. The f ir s t  version is  the general model where a ll 

three parameters a, f ,  and o were taken into account. In the 
second case where c is  set equal to 1, only the parameters a 

and f  were considered. In the literature these two different 

versions are referred to as LS-3 and L3-2, respectively (the 

3 and 2 designate the number of free parameters to be estimated). 
When c -  1 and f  = 1 the model reduces to the simple one-element 

model.

/

. .  ,
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Implications

Although the parameters of the various models discussed 

above usually appear under different labels , they can be 

classified  in terms of their correspondance to changes in 
learning performance. For instance, the conditioning parameter 

c in the one-element model, 0 in the single-operator linear 

model, the "e ffe c tiv e  reinforcement" parameter c in the RTI 

model, and the parameter a in the long-short model can a ll be 

c lassified  as "learning rate parameters". The question is 

how do the observable individual differences in performance 

relate to  individual differences in learning rate parameters 

of a given model. In one parameter case individual differences 
in performance are expected to re flect the differences in the 

learning rate parameter alone. I f  a model contains more than 

one parameter, then a certain combination of these parameters 

might account for the observed ind ivitual differences in 
performance. For th is reason the RTI and the long-short models 

are of special interest, since they contain more than one 

parameter. Furhermore, the assumed states in the long-short 
model can be taken as an example of various attempts to incorparate 

psychological processes into a formal models in the long-short 
model, besides the forgetting state, there is a distinction 

between short-term memory and long-term memory; sim ilarly,
Atkinson and Sh iffrin  ( 1968) ,  and Bower ( 1967) make a d istiction  

between short-term memory (sometimes ca lled  a bu ffer) and long

term memory; Waugh and Norman ( 1965) distinguish these states 

as primary memory and secondary memory; Peterson ( 1966) distinguishes 

between an active trace and a structural trace.

The proposed forgetting state in the long-short model 

requires further consideration. It  can be shown that when the 

guessing parameter g is taken as a free parameter and estimated 

from the data there is  a one-to-one correspondence between the



parameter g  in the one-element model and the parameter f  in 

the LS-2 model. In other words, the one-element model with 

a free parameter g gives exactly the same f i t  as the LS-2 

model. Although there seems to be no convincing interpretation 
of the parameter g when estimated from the data, this close 

relationship between the parameters g and f  suggests that 
the parameter f  in the long-short model operates in such a 

way to compansate for the loss which is  caused by fix ing  the 

parameter g a3 l/r, where r is  the number o f available response 

a lternatives. I f  th is is  the case, then the incorporation of 

the parameter f  into the long-short model could be interpreted 

in more than one wayj i t  may just be the parameter of an 

" in te llig en t guess3ing" process.

Another drawback of the long-short model is  that the 

transition from state U to state F is  d if f ic u lt  to interpret.

In both the LS-3 and LS-2 models, i f  the state U oan be 

considered as an unlearned state, then the transition from 

state U to  state F oan only be interpreted as forgetting an 

item before actually learning i t .

A more general criticism  of a Markovian model with a 

row state guessing vector is  that in such a model the guessing 
parameter g plays no role whatsoever during the transitions 
from one state to another. In the forgetting state, for instance, 

besides other factors a correct guess might help the item to 

move to other states.

Keeping a ll these considerations in mind a modified version 

of a general four-stage Markovian model has been developed. The 
theoretical states and assumptions of th is model are given below:

The model assumes four stages of learning:

State SI: The model excludes the possib ility  of a direct transition 

from the starting state SI to the terminal state S4.
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Learning is  assumed to take place by forming an association 

between the stimulus and the response member of a given pair.

I t  is  also assumed that at each presentation an association 

is  formed between the stimulus and the response member of a 
given pair. Between the presentation of an item and its  test 
t r ia l  the association is  either forgotten with a probability 

f ,  or not forgotten with a probability (1 - f ) .  I f  the 
association is  not forgotten then the subject responds corretly  

and the item moves into state 33« I f  the association is  

forgotten then two things might happens either the subjeot 

guesses correctly and the item moves into state S2 or the 
subject fa i ls  to guess correctly and the item stays in state 

31. The transition probabilities from state SI to state S2 

and S3 can be summed, indicating that an item can only leave 

state SI by moving into one particular state. In the present 
model the transition probabilities from state SI to state S2 

and 33 have been summed and assigned to the transition probabilijr 

from state SI to state S2 such that an item can only leave state 

SI by moving into state 32. This restriction  might prove useful 
i f  i t  is  assumed that th is particular state represents a 

psychological process such as short-term storage, e tc ., and each 

item is  assumed to go through this state before reaching the 

terminal state 84*

State S2s An item can only move into state $2 from state 33« nach 
transition from state 33 to state 32 occurs with an error. 
Conversely, a correct response indicates a transition from 

state 32 to  state S3.

State S3* I f  an item is  in state S3, either it  moves into the terminal 
state 34 with a probability (a ) or fa i ls  to do so with a 
probability ( l - a ) .  Failure to move into state 34 results in 

either forgetting the association with a probability ( f )  or not 

forgetting i t  with a probability ( l —f ) .  Unforgotten items 

stay in state S3. I f  an item fa ils  to move into 
state 34 and also becomes forgotten then two things

.i. S -'..Jl ...'' L — lL3!r'flib (
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might be expected to happen; either the subject 

guesses correctly or fa i ls  to do so. Hence, with 

a probability ( l - a ) ( l - f )+ ( l - a ) f g  an item stays in 

state S3 and the subject responds correctly. After 

an item has fa iled  to move into state S4, i f  the 

association is  forgotten, and the subject makes an 

incorrect guess then the item moves into state S2.

State S4: This state represents a permanant association between 

the stimulus and the response members of an item pair. 

Once the item moves into state S4 the subject makes no 

error on subsequent presentations of the item.

This model is  described by it s  transition matrix, as follows:

S4 S3 S2 SI

S4 1 0 0 0

S3 a ( l - a ) ( l - f )+ ( l - a ) f g ( l - a ) ( l - g ) f 0

S2 a ( l - a ) ( l - f )+ ( l - a ) f g ( l - a ) ( l - g ) f 0

SI 0 ( l - f )+ fg 0 ( l - g ) f

(5)

where g = l/r represents the guessing probability, r being the 

number of available response alternatives. Eq. 5 can be written 

more compactly as follows;

S4 S3 S2 SI

84 1 0 0 0

S3 a ( l - a ) ( l - f ( l - g ) ) ( l - a ) ( l - g ) f 0

S2 a ( l ^ X l - f ( l - g ) ) ( l - a ) ( l - g ) f 0

SI 0 1 -  ( l - g ) f 0 (1-g )f_

(5A)

'mil* M
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In Eq. 5 there are two parameters to  "be estimated from the data.

In order to compare the model given in Eq. 5 with the other models

described above, the parameter estimation was based on the predicted
probabilities of 16 possible response sequftaces over t r ia ls  2 to 5*
A detailed discussion of thi3 estimation procedure is  given on page 57«

2
A minimum X estimation procedure was carried out searching a l l  possible

2
parameter values until a minimum X is  obtained that accurate to three

decimal places. Using the predictions o f the model given in ieiq. 5» the 
2

obtained X values for the data from the eight experiments described
in Atkinson and Crothers ( 1964) are given in Table 15« fo r the sake

2
of comparison, the minimum X values based on the predictions of other 

models have been reproduced from Atkinson and Crothers ( 1964, p.300). 
fo r  brevity, the model described in Hq. 5 w ill be referred to as the 
LOS model. The LOS-2 model refers to the general version where the 

two parameters a and f  are estimated. In  LOS-3 model, a d ifferent 
forgetting parameter has been assumed in  the in it ia l state SI and the 

three parameters a, f ,  and f^ are estimated. Table 16 gives the 

parameter estimates for the LOS-2 and the LOS-3 models together with 

the parameter estimates for the LS-2 and the LS-3 models which are 

reproduced from Atkinson and Crothers (19641 p.299).

One- Linear
Exp. Element Model RTI LS-2 LS-3 LOS-2 L0S-3

Ia 30.30 50.92 9.74* 6 .75* 5.67* 8. 50* 6.74*
Tb 39.31 95.36 13.09* 19 . 69* 12.42* 18.69* 18. 58*
I I 62.13 251.30 29. l l 3.73* 3.73* 13.29* 3.23*
I I I 150.66 296.30 51.12 33.02 33.02 21. 30* 17.98*
IV 44.43 146.95 10.66* 12.32* 10.77* I 6. 52* 16.13*
Va 102.02 201.98 40.17 24.41* 24.41* 24.15* 24.13*
Vc 246.96 236.15 46.43 27. 12* 27.12 20.33* 13.42*
Ve 161.03 262.56 84.07 20. 12* 20. 12* 25. 22* 16.74

TotalX* 2 836.89 1542.02 284.39 147.16 137.26 143.00 116.95

* Wot significant at .01 leve l.
2

Table 15: Minimum X values.
I



Model Parameter Experiment

la lb I I I I I IV Va Vc Ve

LS-2 a .352 .305 .250 .188 .266 .109 .156 .253
f .719 .805 .805 .739 .836 .844 .727 .680

LS-3 a .367 • 352 .250 .188 .289 .109 .156 .266
f .648 .375 .350 .789 .789 .844 .727 .688
c .844 .500 1.000 1.000 .789 1.000 1.000 • 992

LOS-2 a .418 .397 .308 .282 .369 .163 .224 .315
f .619 .709 .720 .734 .733 .812 .694 .609

LOS-3 a .355 .391 .254 .268 • 375 .167 .202 .288
f .726 .675 .822 .652 .776 .808 .591 .742
f i .001 .723 .051 .768 .715 .314 • 750 .162

Table 16: Parameter estimates fo r the LS and the LOS models.

An inspection of Table 15 reveals that in terms of the 

chosen significance leve l the LOS-2 model does a better job 

than the LS—2 and even the LS-3 models. For each 3eperate
p

experiment the X values obtained from the LOS—2 model are
2below the chosen significance leve l whereas jrhe X values obtained 

from the LS-2 and the LS-3 models exceed the required significance 

level especia lly  for the Experiments I I I  and Vc.

Iden tifica tion  of the parameter f  in the LOS model is , 

of course, as d if f ic u lt  as the parameter f  in the long-short 
model. In particular, introducing a new forgetting parameter f^ 

in the in i t ia l  state SI is  questionable. The main argument which 

motivated the introduction of a new model was that the parameter 
f  in the long-short model was operating in such a way to compansate 

for the loss which is  caused by fix in g  the parameter g. In the 

LOS model, by introducing the parameter f  over and above a fixed 
parameter g , i t  is  hoped that the obtained values o f the parameter f



would re fle c t  the assumed forgetting process better than the 

corresponding parameter values obtained with the long-short 

model.

Problems related to  the iden tification  of parameters 

have been deferred to a la ter section. The aim of this present 
section is  to investigate the changes in individual parameter 

values as a function of the observable individual differences 

in learning performance. In the experiments which follow, 

the average number o f t r ia ls  to the last error w ill be taken 
as an index of subject's overall performance, Experimental 
variables such as different l is t  lengths and guessing situations 

which are assumed to e ffe c t the subject's overall performance 

w ill  be employed.
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EXPERIMENTS I I  AND I I I

Method

The stimulus material was the same l is t  of two-digit 

numbers as used in Experiment I .  By u tiliz in g  the obtained 

association value scales, for each subjeot various tasks were 

constructed with the same d if f icu lty  le v e l. In Experiment I I  

the second d ig its  were chosen without replication whereas in 

Experiment I I I  the second d ig its  were chosen with replication. 

These two types o f experiment imply two different guessing 
situations. Examples of the two different types of task are 

as follows:

I t  was thought that the type of task used in Experiment 

I I  would allow subjects to guess ''in te lligen tly " by restricting 
t ’ .eir guesses only to the unlearned response alternatives. In 

Experiment I I I ,  however, the guessing probability would be the 

same for every unlearned item, since each possible response 

alternative is  equalljr lik e ly  to occur.

List length was one of the experimental variables, two 

d ifferent l is t  lengths being used. The tasks in experiments 

IIA  and IIIA  contained eight items whereas the tasks in 
Experiments IIB and IIIB  contained seven items. It  was thougth

In Experiment I I In Experiment I I I

62

58

91
47

35

89
26

74

28

85
98

73
56

38

67

47

/
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that the two d ifferent l is t  lengths used would have a direct 

e ffect on subjects' overall performance and that th is would 
he reflected in their parameter values.

The f ir s t  group of subjects were the same eight who had 

completed Experiment X in fiv e  sessions. This time they completed 

104 paired-associate tasks in six sessions, 52 tasks under each 

of the two experiments (26 tasks under both condition A and 

condition 3 ). Because of the extended nature o f previous experiments 

these eight subjects showed a substantial practice effect in 

working with two-digit numbers. Four of them, in particular, 

became so good that they could learn practica lly  a l l  the items 

in a given l is t  a fter a single presentation. Therefore, the 

data from these four subjects had to  be excluded from the analysis, 

since they did not provide su ffic ien tly  long response sequences.

Another group o f 36 subjects who took part in these experiments 

as an undergraduate course requirement were equally divided between 

the two conditions. A group of 18 subjects were allocated to 
Experiments XIA and IIB and completed six paired—associate tasks 

under each of the two conditions. The remaining group of 18 

subjects were sim ilarly allocated to  Experiments IIIA  and IIIB .
For these subjects, the obtained group association value scale 

was u tilized  in constructing various task3 with the same d ifficu lty  

le v e l. The data obtained from these subjects was analyzed 

separate ly .

The apparatus used was the Wang 7003 programmable electronic 

calculating maohine with two number displays. A fter two practice 

t r ia ls  subjects completed the required number o f paired-associate 

tasks with l is t  lengths seven and eight in an alternating order.

The two-digit numbers in a given l i s t  were presented at a rate 

of one a second. After the presentation of a l l  the items, the 

single d ig its  representing the d ifferen t number categories 

(twenties, th ir tie s , e tc .) were given according to a prearranged 
testing order. The subjects were instructed to respond with the

✓
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d ig it associated with that number category. At the end of each 

test t r ia l  the subjects were informed o f their incorrect responses 

by the presentation of single d ig its  representing the number 
categories to  which they responded incorrectly. This was followed 

by new presentation and test t r ia ls  until a l l  the items were 

correctly responded to  twice in succession. During each task 

correct and incorrect responses were recorded for each stimulus 

item.

Results and Discussion

The parameter values of the seven models described earlier
2

were estimated by using a minimum X estimation procedure. Apart

from having several desirable properties such as consistency
2

and e ffic ien cy  o f the resulting estimates, the minimum X also 

provides a measure of the adequacy of any single model and, i f  

the degrees of freedom are equal, a method for d irec tly  comparing 

the f i t  o f various models. I f  several models are being analyzed, 

each involving a d ifferen t number of free parameters, then the 
probabilty leve ls  of the X ' s may be compared (C f. Atkinson and 
Crothers, 1964) .  For each model, the parameter estimates were 

based on the 16 possible outcome sequence over t r ia ls  2 to 5«
To illu s tra te  the minimum X method le t Pr(0^; 0^, . . .  0^) denote 

the probability o f the event Ch , where i  ■» 1, . . .  n and 
( 0, ,  . . .  6. )  are the parameters to be estimated from the data. 
Further, le t  N (0 .) denote the observed frequency of the stimulus 

items with outcome 0  ̂ over t r ia ls  2 to 5»an<i i®t

T = N(0X) + N(02) + . . .  + N(0l6 ) .

Then define the function
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x 2( e l f  . . .  ek
t *  TT P r(0 .; ©l f

1» °1* *•* V  -  2
( 6 )

and select the estimates o f (e.^, . . .  ©k) so that they jo in tly  

minimize the X2 function. Because of the problems involved in 

earring out the minimization analytica lly  a numerical minimization 

procedure was used on a computer. Given the assumption that a l l  

the stimulus items are stochastically independent and identical, 
then under the null hypothesis it' can be shown that the degrees 

o f freedom associated with a model that requires k parameters 
to be estimated from the data are

df ■ n -  k -  1

where n is  the number o f possible outcomes.

Analysis o f the response tuples for t r ia ls  2 to 5 is  o f 

particular importance because a major portion of the learning 
occurred during the f ir s t  f iv e  t r ia ls .  For Experiments IXA,

IIB , IIIA , afid IIIB  the proportion of subjects who reached a 

oorreot response level were .89» «93» .86, . 92, respectively.

2
For each experiment described above, the X minimization 

procedure given by Eq. 6 was applied to the observed response

frequencies o f the 0. events obtained from the four experiments.
1 2Table 17 presents the parameter estimates and the associated X

values for the group data. For experiments I I  and I I I  the group 
data was based on the in it ia l  performance of two groups of 18 
subjects. There were 144 response sequences for both of the 

Experiments IIA  and I I IA , and 126 for both of the Experiments 
IIB and II IB . Tables 18 to 21 present the parameter estimates 

and the associated X2 values obtained for the individual subjects 

(Subjeot 2, 5, 7, and 8) who completed 52 tasks under each of
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T a b le  17s Param eter e s t im a tes  and th e  X va lu es

f o r  th e  group d a ta .

Model Parameter
Experiment

IIA IIB IIIA IIIB

One-Element o .245 .348 .244 .292

Linear 0 .325 .386 .366 .434

RTI 0 .429 .522 .579 .607

e .862 .905 .653 .828

LS-2 a .824 .396 .232 .387

f .765 .731 .694 .611

LS-3 a .121 .396 .287 .387

f .094 .731 .661 .611

0 .420 1.000 .902 1.000

LOS-2 a .448 .523 • 354 .483

f .658 .564 .587 .493

LOS-3 a .408 .512 .291 .467

f .481 .530 .7H .444

.694 .570 .041 .507

One-
Experiment Element

Linear
Model RTI LS-2 LS-3 LOS-2 LOS-3

IIA 136.74 167.71 13.96* 16.88* 11.39* 12.38* 8.86*

IIB 97*83 i 76. l l 21.31* 15.63* 15.63* 14.13* 14.02*

II1A 142.84 77.10 33.60 15.62* 15.24* 21.93* 15.45*

IIIB 157.13 108.97 24.78* 11.42* 11.42* 9.60* 9.38*

Total X 534.54 529.89 93.65 59-55 53.68 58.04 47.71

df 14 14 13 13 12 13 12

* Not aignifleant at »01 level.



Table 18 s Parameter estimates and the X2 values

for Subject 2.

Model Paraaeter
Experiment

IIA IIB IIIA IIIB

One-Element 0 • 519 .525 .597 .578

Linear e .582 .653 .618 .668

HTI 0 .875 .808 .707 .758

0 .813 .843 .911 .839

LS-2 a .510 .521 .544 .574

r .564 .393 .515 .622

LS-3 a .510 .521 .544 .574

f .564 .393 .515 .622

c 1.000 1.000 1.000 1.000

LOS-2 a .574 • 574 .640 .724

f .406 .313 .385 .450

LOS-3 a .609 .601 .734 • 731

f .534 .308 .666 .481

f i .365 .283 .350 .446

Experiment
One-
Element

Linear
Model HTI LS-2 LS-3 L0S-2 L0S-3

!

IIA 90.85 116.60 71.31 29.93 29.93 29.38 28.61

IIB 115.13 53.13 31.01 8.01* 8.01* 6.87* 6.57*

IIIA 72.21 102.57 55.66 26.34* 26.34 22.23* 19.89*

IIIB 54.88 49 «04 27.88 21.14* 21.14* 18.00* 17.98*

Total X* 333.07 321.34 185.86 85.42 85.42 76.48 73.05

df 14 14 13 13 12 13 12

* Not significant at .01 level.
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T ab le  19s Param eter e s tim a te s  and th e  X v a lu e s

f o r  S u b je c t 5»

Model Parameter
Experiment

IIA I IB IIIA IIIB

One-Element 0 .573 .644 .5 0 2 • 771

Linear 0 .512 .578 .499 .316

RTI c .6 9 8 .713 •661 .9 2 8

e .943 • 935 .8 52 .893

LS-2 a .5 8 0 .60 8 .530 .719
f .5 6 0 •606 •755 .4 8 6

LS-3 a .5 8 0 .60 8 .530 .701

f .5 6 0 .60 6 .755 .321

c 1.000 1.000 1.000 • 952

LOS-2 a .613 .60 5 • 594 .767
f .376 .383 • 490 .300

LOS-3 a • 581 .730 • 531 .882

f .561 .932 • 756 .999

*i .0 0 1 .192 .0 0 1 .2 2 2

One-
Experiment Element

Linear
Model RTI LS-2 L3-3 L0S-2 L0S-3

!

IIA 8 1 .50 158.33 36.57 1 5 .88* 1 5 .88* 1 8 . 1 9 * 15.88*

IIB 33.42 91.32 22.56* 7.99* 7.99* 14.32* 5.73*

IIIA 47.81 135.62 3 8 .1 6 15.15* 15.15* 28.14 15.56*

IIIB 1 9 .4 6* 9.21* 5-35* 3.49* 3.08* 4.45* 2.31*

Total X* 182.19 394.48 102.64 42.91 42.50 6 5 . 6O 39.48

i f 14 14 13 13 12 13 12

* Not aignifioant at .01 levol.

—  -_____ —
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T a b le  20s Param eter e s tim a te s  and the X v a lu e s

f o r  S u b je c t  7«

Model Parameter
Experiment

IIA IIB IIIA IIIB

One-Element 0 .830 .717 .591 .963

Linear e .397 .8 3 2 .8 4 6 .964

RTI C • 987 .935 • 959 1.000

0 .913 .906 .8 8 6 .964

LS-2 a .697 .6 4 8 .6 6 9 .963

f .185 .220 .215 1.000

LS-3 a .697 .629 .6 6 9 .98 0

f .1 8 5 .182 .215 .8 0 9

c 1.000 .98 8 1.000 • 978

LOS-2 a .709 .711 .6 9 7 .941

f .145 .190 .163 .180

LOS-3 a .743 .711 .424 .962

f .204 .190 .025 .999

f i .101 .190 .235 .001

One-
Experiment Element

Linear
Model RTI LS-2 LS-3 LOS-2 LOS-3

IIA 46.57 12.80* 11.60* 2.51* 2.51* 2.40* 2.34*

IIB 59.89 22.50* 1 7 .06* 6.06* 6.01* 5.02* 5.02*

IIIA 200.29 36.72 32.16 9.23* 9.23* 7.70* 2.93*

IIIB .23* .23* .23* .23* .18* 1.20* .24*

Total X* 306.93 72.25 61.05 18.03 17.93 16.32 10.53

df 14 14 13 13 12 13 12

* Not significant at .01 level.

L
I '¿ i l .
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Table 21: Param eter e s t im a te s  and th e  X va lu e s

fo r  S u b je c t  8 .

Model Parameter
Experiment

IIA IIB IIIA IIIB

One-Element 0 .828 .821 .881 • 999

Linear 0 • 782 .833 .734 • 975

HTI 0 .828 .915 .831 .995
0 .999 .936 • 999 .980

LS-2 a .749 .717 .881 .970

f .374 .308 1.000 .843

LS-3 a •749 .717 .881 .987

f .374 .30 8 1.0 0 0 .796

0 1.000 1.000 1.000 • 985

LOS-2 a .690 .837 .968 .953

f .2 0 1 .245 .30 9 .147

LOS-3 a .801 .949 .9 30 .970

f .482 • 999 .3 5 0 .370

f i .074 .223 .012 .310

Experiment
One- Linear 
Element Model RTI LS-2 LS-3 L0S-2 L0S-3

IIA 2 0 .7 1 * 44.67 2 0 .85* 6 .76* 6 . 1 6 * 9.19* 6.45*

IIB 23.40* 24.41* 15.27* 1 .6 0 * 7 .60* 5.15* 4.40*

IIIA 6.55* 68.87 6.63* 6.55* 6 .5 5* 4.45* 4.44*

IIIB 3 .76* . 10 * . 10* . 12* .08* .63* .33*

Total X* 5 4 .4 2  1 3 8 .0 5 42.85 21.03 20.99 19.42 1 5 .6 2

df 14 14 13 13 12 13 12

* Not significant at .01 level.
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■the two experiments (26 tasks under both condotion A and condotion 

B ). The results obtained from 36 subjects who completed 12 tasks 

in one session are given in the Appendix I I .  It  must be pointed out 

that the small sample o f response sequences obtained from the subjects 

who participated in the experiment only one session might have an 
undesirable e ffect on the resulting estimates.

Individual differences in the performance of different 

subjects are clearly re flected  in the estimated values o f the 

parameters. The learning rate parameters, in particular, were 
c losely  related with the observed mean t r ia l  number of last 

error. These correlations are given on page 64/a. The correlations 

obtained between the various forgetting parameters and the 
subjects' overall performance were re la tiv e ly  low and in some 
cases insign ificant, indicating that each subject's overall 
performance was more strongly related to the magnitude of the 
learning rate parameters rather than the forgetting parameters.

The role of learning rate parameters in relation to the 
forgetting parameters seems to  be rather crucial. I t  was 

assumed that for each in ividual subject the learning rate 

parameter would be about the same under different experimental 

conditions, since a ll the experiments were comparable except 

that they d iffered  in the l i s t  1sngths used. I t  was also 
assumed that only the forgetting parameters would be influenced 

by the l is t  length variable (C f. Atkinson and Crothers, I 964}

Calfee and Atkinson, 1965) .  An inspection o f Tables 18 to 21 

reveal that both the learning rate parameter and the forgetting 

parameter change depending on various experimental conditions.

Although the direction of change in the learning rate parameter 
closely  related with subjects' overall performance, the variations 

in the forgetting parameters were less tractable.

Comparisons of individual results with group results 

revealed that in some cases the one-element model does a better 
job for the group data than i t  does for the individual data,
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Correlations between the average number o f last 

error and. the learning rate parameters in various 

models:

Experiment
luodel

I I IIA I I I IIIA

One-
Element .838 .771 .733 .818

Linear .354 .322 .831 .843

RTI .794 .763 .748 .582

LS-2 .894 .757 .805 .859

L3-3 .464 •725 .614 • 743

L03-2 .936 .66 9 .653 .864

LOS-3 .476 .753 .733 .820



whereas the gooiness-of-fit of the linear model to the individual 

data was consistently better than the goodness-of-fit to the
p

group data. Tables 22 and 23 present the to ta l X values for
the group.and the individual data, respectively. The to ta l
2 2 X values for the groups have been summed over the X values

which were obtained seperately for the six d ifferent tasks
2

under each experiment. The to ta l X values for the individual
2

data are the summation o f the X values obtained fo r the one- 

session subjects. An inspection of Table 22 revealed that the 

one-element model gives a better f i t  to the group data obtained 

from the experiments IIB and IIIB , whereas the goodness-of-fit 

o f the linear model is  better than the goodness-of-fit of the

one-element model for the experiments IIA  and I I IA . The grand
2

to ta ls  summed over the to ta l X values for each experiment

indicated that there was l i t t l e  difference between the goodness-
2

o f - f i t  of the two models. The to ta l X values in Table 23 

showed that the goodne3s -o f- f it  o f the linear model to the 

individual data was consistently better that the goodness-of- 
f i t  of the one-element model. The differences between the 

goodness—o f- f i t  of the two models to the individual and the 

group data cast some doubt on the c red ib ility  of the one-element 
model. I t  appears that fo r the group data the better f i t  obtained 

under the one-element model is  mainly due to the e ffec t of 
pooling the data from different subjects. According to the 
results, the response sequences obtained from individual subjects 

can be more adequately described by the linear model.

Experiment

IIA IIB IIIA IIIB Grand
Total

One-Element 575.50 6I 4.O4 507.66 678.07 2375.27

Linear 591.38 506.91 74I . 9I 48I . 7I 232I . 9I

Table 22: Total X  ̂ values obtained for the group data 

under the one-element and the linear models.
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Experiment

Grand
TotalHA I  IB IIIA  IIIB

One-Element 336.61 1096.30 855.IO 962.80 3750.81

Linear 552.43 455*34 615.13 355.41 1978.31

Table 23: The to ta l X values obtained for the individual

data under the one-element and the linear models.

Of the two-parameter models, the random t r ia l  increments 

(HTl) model is  less accurate than both of the LS-2 and LOS-2 
models. But the variations in the goodness-of-fit o f these 

models to the individual data brings up the poss ib ility  that 

the data obtained from an individual subject can sometimes be 

more e f f ic ie n t ly  analyzed with the RTI model rather than the 

LS-2 or the LOS-2 models. Of the three-parameter models, 

the L03-3 model is  consistently more accurate than the LS-3 
model in a l l  applications to the group data. With only a few 

exception th is is  also true for the data obtained from 

individual subjects. In the analysis of group data, although 

the obtained X2 values might provide a measure of the adequacy 
of any single model, the choice between two models which d iffe r  

in their fundernental assumptions seems to be rather d ifficu lt  

when the goodness—of—f i t  to the individual and the group data 

show considerable discrepancies«

* m n .1 ■ J 7 I To
+  *  UulBM
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IDENTIFICATION OF PARAMETERS

A theory can be considered as a description of a system 

which generates sequences o f events. In the application of a 

theory to the results o f an experiment i t  is  generally assumed 

that the physical conditions of the e*periment produce sequences 

according to the rules specified in the theory. A theory provides 

a set of variables which can be used to describe a system at 

eaoh stage of an experiment. In some cases i t  happens that some 

of the variables or states specified by a theory cannot be 

identified  completely in an experiment. In such cases important 

questions arise as to whether the experiment is  relevant to 

certain assumptions of the theory. In learning theory, with 
the development of Markovian models these questions became the 

focus of a number of studies related to the identification  of 

theoretical states and the parameters of the all-or-none models 

(e .g .,  Greeno and Steiner, 1964» Greeno, 1967» Greeno, 19685 

Steiner and Greeno, 1 9 6 9 ; Poison, 1970). The method used in 

these studies is  that o f constructing a second theory with a l l  
of its  states iden tifiab le  in the outcome-space of the experiment 

and showing that these states are observable in the data—space 

generated by the orig ina l model.

Most of the learning models, including the two models 

described in the previous section (the LS and the LOS models), 

can be based on a simple extention of the a l l—or—none learning 
assumption. The extended theory with its  in it ia l  and transition 

probabilities has been stated (Greeno, 19 6 8 ) in general form 

as follows:



68

Pr ( L ( l ) ,  E ( l ) ,  C ( l ) ,  0(1) ) -  ( t ,  ( l - s - t ) r ,  (1 -s-t ) ( l - r ) , s )

L(n+l) E(n+1) C (ntl) 0(n+l)

L(n) i 0 0 0

E(a) d (l-d )q (l-d )p 0

C(n) c ( l- c )q (l-o )p 0

0(n) ah a (l-b )e a(1-h) ( 1-e) 1-a

where in States 0 and E only error occur and in State

(7)

correct responses occur« In the long—short model i t  has heen 

assumed that s - 1, e = q, and 0- -  d. Sim ilarly, when s - 1, 

a «  q, e «* 0, and b = 0 the LOS model is  obtained.

Consider the following Harkov chain whose in it ia l vector 

and the transition matrix are

V n)

) ,  r ( i ) i s ( i ) ,  i ^ (i )» I 2( l )  ••• ) *

0, ( 1- 10( 1- 0) .  ( i- * )® . 0 . . .  )

q (n+ l) H(n+l) S(n+l) . . . I j+l^n+l)

1 o 0 . . . 0

u (l-u )v (l-^ i ) ( l- v )  . . . 0

0 v 

• •

1-v . • • 

•

0

•

(8)

. • 

. •

o
04 J

•

•

h

•

•

%

-

rs fisn jL iw



where Q is  an absorbing state entered on the t r ia l  following

the last error, or the state on t r ia l  1 i f  there are no errors;

State R represents the occurence of an error on any t r ia l ;

State S represents the occurence of a success on any t r ia l

before the last error; I ,  , I „ ,  I . ,  . . .  s I .  applies on
C- J J

t r ia l  j i f  there are errors on a l l  o f the f ir s t  j t r ia ls .

Greeno and Steiner ( 1964) ,  Greeno ( 1967) have shown that Eq.3 

describes a theory with observable states. I t  has also been 

shown that Eq. 8 is  equivalent to the theory given by Eq. 7 . 

Furthermore, i t  has been proved that the values of the parameters 

o f Eq. 8 can be calculated as functions o f Eq. 7» I *1 other
words, any probability measure on data that can be generated 

by Eq. 7 corresponds to some (at least one) set o f parameter 
values fo r  Eq. 7 . And fo r any such set of parameter values, 
i t  is  possible to calculate a set o f parameter values for 

Eq. 8 that would generate exactly the same probability measure 

on the data.

The identifiab le parameters in Eq. 8 can easily be 

estimated from the data. But the values of these parameters 
w il l  not be of much interest unless the theoretical parameters 

o f Eq. 7 can be mapped to the identifiab le parameters of Eq. 8. 

The derivation of the function that maps the theoretical 
parameters to the iden tifiab le parameters has been given by 

Greeno ( 1968) and the result i 3 repeated here for conveniences

o
T\ - t + ( 1 -s-t) ( 1-r) ( q -+ po ),

( 1-X)0 = s + ( 1-s-t )r ,

( l-u )v  «* (l-d )q , (9)

v ■ q + po,

( l - n )0( w -(l-u )v )x -  s ( w -(l-u )v+ (l-w )(l-b )o  ) ,
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(l-T \ )e ( w -(l-u )v  )xy = s ( u -(l-w ) (b + (l-b ) ( l - e )  ----- 2-----  ) )
q + po '

where under the assumption that ( l - a )  f  (l-d )q

w = l-a»

(  s m  -, a( 1-h )e n
' s + ( l - s - t ) r ' '  + (,l-a )-(l-d ,)q  '*

( PC + qd -  a ( l - b ) ( l - e )c  _ ^  ,
V q + po ' * l

a (l-b )e  + ( l - a )  -  (l-d )q

Following the general notational scheme developed in 

earlier papers (Greeno and Steiner, 1964} Greeno, 1967» Greeno, 
1968) ,  the likelihood function can be written

l - (iOw(Ao) ( (i-A )(i-e ) )N(Bo) T T  (P (A j))N(A^

f ]  (P(B.))N(Bj } (l-u)n Ĥ)- n(R(i) un R̂Ci) (l-v)n 3̂) vn<R>

( 10)

where P (A j) is  the probability of an in it ia l run of j errors and 
no errors a fter the f ir s t  correct response; P (B j) I s the probability 

of an in it ia l  run of j errors and at least one error after the 

f ir s t  correct response; N(Ao) is  the number o f sequenoes with 

zero errors; N(Bo) is  the number of sequenoes that start in 
State S; N (Aj) i 3 the number of sequenoes with j errors before 

the f ir s t  correct response and no errors thereafter; N(Bj) is  
the number of sequences with j errors before the firs t  oorreot

n ' l , 1 li



responso and. at least one error a fter the f ir s t  correct response; 

n(l-i) is  the to ta l number of errors a fter the f ir s t  correct response; 

n(S) is  the to ta l number of correct responses before the last 

error; n(RQ) is  the number of transitions from State R to S.

In the estimation procedure an itera tive  search was u tilized  
by the aid of a computer to find the values o f IT» 0, u, v, w, x, y 
which minimize the value of -  2 lo g (L ). Since Eq. 9 can be

considered a3 a set o f six equations with eight unknowns, some 
identifying restrictions are needed on the unknown theoretical 

parameters such that these equations can have a unique solution.

Any testable res tr ic tion  onthe theoretical parameters of Eq. 7 

reduces the number o f  parameters to be estimated in Eq. 9* For 
notational convenience i f  we subscript the value o f -  2 log (L ) 

by the number o f estimated parameters, then the seven parameters 

o f the general model given in Eq. 8 can be estimated by minimizing

-  2 log (L? ) .

In the comparisons of d ifferent models to different oases 

the likelihood ra tio  test was used. As stated in Greeno ( I 968) ,

"th is  is  appropriate when the more general version of the model 

has k parameters, and when the restricted  version has a j —dimentional 

parameter space contained in the k—dimentional parameters space 

of the more general version. Then we test the null hypothesis 

that the true values o f the parameters l ie  on the j —dimentional 
surface, against the alternative that they are somewhere else 

in the k—dimentional space. The test s ta tis tic  is  - 2  log(L^/L^), 

which is  the difference between the two minimum values of
-  2 log (L ) obtained in estimating the two sets of parameters, 

and the asymptotic distribution of the test s ta tis tic  is  chi- 

square with (k - j)  degrees of freedom".

Because of theoretical or procedural considerations 

identifying restrictions can be imposed on the parameters of Eq. 7 .
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Two such cases w ill be considered:

Case 1:

In case 1 a free in it ia l  vector w ill be assumed. In this 

case i f  it  is  also assumed that e = q and b = d, then from Eq. 9

is  a testable hypothesis.

Case 2:

In case 2, since in the experiments described above i t  was 

possible to be correct on the f ir s t  test, i t  can be assumed that 
a l l  sequences were in State 0 at the beginning, and that the f ir s t  

study t r ia l  was equal to a l l  other study t r ia ls . In this case, 
the in it ia l  probabilities would be equal to the transition probabiliti 

from State 0. That is

u
y  »

1 -  ( l-u )v

r = e

s = 1-a ( U )
t = ab

The assumption imposes two restrictions on the identifiable 

parameters. Using Eq. 9 and 11 it  can be shown that these

restrictions are

),

0 - W -  X ( w -(l-u )v H l-vyJ

A
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In the present section the two Cases given above were 

compered with the general case both for the individual subjects 

and the group data. Table 24 presents these comparisons together 

with the likelihood ra tio  test results for the group data. 
Sim ilarly, Table 25 presents the results obtained from the fiv e -  

session subjects, io r  the one-session subjects, the results 

appear in Tables 26, 27, 28, and 29 for the experiments IIA , IIB, 

I I IA , and IIIB , respectively.

The likelihood ra tio  test results given in Tables 24 and 

25 did not allow us to  accept the hypothesis that a ll  the items 

were in State 0 at the beginning of the experiment (Case 2 ). The 

results were strongly in favour of Case 1 where i t  was assumed 

that at the beginning o f an experiment an item can be in any one 

o f the states with a probability specified by a free in it ia l 
vector. The results obtained from the one-session subjects 

were rather contradictory. Although Case 1 was acceptable nearly 

fo r a l l  the subjects, the obtained likelihood ratio test results 

showed that Case 2 was also acceptable for some of them.

A choice between Case 1 and Case 2 poses theoretical as 

well as methodological problems. In the development of mathematical 
learning theory the aim has been the representation of psychological 
processes in a formal model. The examples o f th is can be seen in 

various attempts to incorporate psychological processes into a 
mathematical models As mentioned earlier, in the long-short 
model, besides the forgetting state, there is  a distinction 

between short-term memory and long-term memory; similary, Atkinson 

and Shifrin ( 1968) ,  and Bower ( I 967) make a distinction short

term memory (sometimes called a bu ffer) and long-term memory;

Waugh and Norman distinguish these statas as primary and 
secondary memory; Peterson ( 1966) distinguishes between an active 

trace and a stvfructural trace. Since in a l l  these theoretical 

models an item usually starts in an unlearned state, then goes



General
Case Case 1 Case 2 Likelihood ratio test

Subj. Exp. - 21ogL -21ogLg - 2l 0gL|- -21og(L6/L7) -21og(L5/L? )

IIA 307.85 323.04 394.61 15.19 86.76

32 IIB 283.56 297.97 343.73 14.41 60.17
II IA 307.07 303.91 363.53 1.84* 56.51
IIIB 289.25 290.10 357.61 .35* 68.36

IIA 230.53 253.57 253.57 22.99 22.99
IIB 251.98 269.36 297.51 17.38 45.53
IIIA 280.36 286.34 329.63 5.98 49.27
IIIB 199.31 199.31 232.06 .00* 32.25

IIA 257.42 257.42 288.59 .00* 31.17

S7
IIB 158.35 158.40 177.11 .05* 13.76
IIIA 241.99 241.99 277.89 .00* 35.90
IIIB 64.82 64.82 77.65 .00* 12.83

IIA 170.80 170.84 203.91 .00* 33.07

38 IIB 111.66 111.66 145.73 .00* 34.07
IIIA 157.58 157.58 187.76 .00* 30.18
IIIB 42.79 42.79 52.61 .00* 9.82

* Not s ign ificant at .05 leve l.

Table 25: Comparisons between the minimized values of -2 log L’ s
and the likelihood ratio test results for the individual 

subjeots who participated for five  sessions.



General
Case Case 1 Case 2 Likelihood ratio  test

Subject - 21ogL7 - 21ogL6 - 21ogL5 -21og(L6/L? ) -21og(L5/L?)

1 88.36 88.52 97.69 .16* 9.33
2 164.10 I 64. I 4 178.37 .04* 14.27
3 197.44 197.48 203.40 .04* 5.96*

4 268.76 268.88 282.25 . 12* 13.49
5 29.28 30.20 31.07 • 92* 1.79*
6 16.25 20.09 21.40 3.84* 5.15*

7 31.79 32.47 87.25 .68 5.46*

8 37.85 37.94 40.18 .09* 2.33*

9 260.87 260.97 266.45 . 10* 5.58
10 132.01 132.07 136.09 .06* 4.O8*

11 230.83 242.00 245*68 11.12 14.30

12 121.57 121.60 125.02 .03* 3.45*

13 12.91 14.07 17.10 1 .16* 4.19*

14 72.29 72.86 33.21 .57* 10.92

15 112.58 112.60 119.12 .02* 6.54

16 21.01 22.56 29.23 1.55* 8.22

17 163.39 108.83 I I 8.64 .44* 10.25

18 97.19 93.41 IO I.84 1 .22* 4.65*

*  Not sign ificant at .05 lev e l.

Table 26s (Experiment I IA ).  Comparisons between the minimized 
values o f -2 log L 's and the likelihood ratio test 
results fo r the individual subjects who participated 

only for one session.



General
Case Case 1 Case 2 Likelihood ratio test

Subject —21ogL̂ - 2 1ogLg -2  log!,. -21og(L6/L?) -21og(L5/L?)

1 46.59 48.52 55.84 1.93* 9.25
2 153.61 153.68 157.59 .07* 3.98*
3 132.41 133.19 150.09 .78* 1 7 .6 8

4 187.70 187.71 19 8 .6 2 .0 1* 1 0 .9 2

5 5 6 .6 1 57.52 64.96 • 91* 3.35
6 11.63 1 4 .0 0 17 .8 0 2.37* 6 .1 7

7 1 1 . 1 0 12.93 16.80 1.83* 5.70*
8 19*67 21.64 2 8 .8 1 1.97* 9.14

9 273.48 273.60 235.90 . 12* 1 2 .4 2

10 105.53 1 0 6 .5 0 1 1 8 .9 1 .97* 13.38

1 1 154.60 154.77 165.77 .17* 1 1 . 1$

12 i 7 i . l l 1 7 1 .2 0 136.60 .09* 15.49

13 87*45 87.76 98.45 .31* 11.00

14 73.62 74.22 8 0 .7 0 .60* 7.08

15 124.32 125.05 137.83 .23* 1 3 .0 6

16 17.74 1 8 .3 6 25.81 .62* 8 .0 7

17 135.26 135.98 142.59 .72* 7.33

18 93.38 94.44 104.78 1 .06* 11.40

* Not significant at .05 level.

Table 27 s (Experiment IIB ). Comparisons between the minimized 

values of -2 log L's and the likelihood ratio test 
results for the individual subjeots who participated 

only for one session.



General
Case Case 1 Case 2 Likelihood

—

ratio test

Subject -21ogL^ - 21ogLg -21ogLj. -21og(L6/L?) - 21og(L5/L7)

1 59.00 59-57 61.89 • 57* 2 .89*

2 134*45 134.47 139-74 .02* 5.29*

3 73.05 73.33 75-55 .28* 2 . 50*

4 221.23 221.29 229.49 .06* 8.26

5 38.88 39.12 40.85 .24 1.97*
6 207.81 207.89 217.80 .08* 9.99

7 283.82 285.46 394-94 I . 64* 11 .12

8 33.06 84.57 95.86 1.51* 12.08

9 55.59 60.48 69.10 1 .89* 10.51

10 143.40 143.44 149.58 .04* 6.18

11 118.15 118.28 129.03 .13* 10.88

12 33.45 35.65 46.97 2. 20* 13.58

13 85.08 85.26 90.61 .18* 5.53*

14 233.27 233.34 245*08 .07* 11.81

15 210.75 210.83 218.38 .08* 7.63

16 184.02 184.30 192.62 .28* 8.06

17 93.64 93.71 102.63 .07* 8.99

18 160.74 160.81 171.94 .07* 11.20

* Wot significant at .05 leve l.

Table 28s (Kxperiment XIIA). Comparisons between the minimized 

values o f -2 log L 's and the likelihood ratio test 
results for the individual subjects who participated 

only fo r one session.



General
Case Case 1 Case 2 Likelihood ratio test

Subject —21ogL^ —21ogLg —21ogLj- ” 21og(L6/L7) -21og(L5/L7)

1 67.62 69.51 76.82 1.89* 9.20

2 77*32 73.13 81.48 .31* 3.66*

3 43.64 48.91 51.47 .27* 2.83*

4 58.40 58.92 61.09 • 52* 2.69*

5 11.49 13.69 17.54 2. 20* 6.05

6 250.35 250.40 259.62 .05* 9.27

7 222.41 222.47 232.07 .06* 9.66

8 134.00 134.06 137.49 .06* 3.49*

9 39*22 39.75 44.69 .53* 5.47*

10 176.92 177.03 133.54 . 11* 6.62

11 114.52 115.24 122.33 .72* 7.31

12 31.94 32.13 41.50 .24* 9.56

13 57.38 59.37 77.79 1.99* 20.41

14 207.05 218.35 218.69 11.30 I I .64

15 83.12 85.O8 93.19 1.96* 10.07

16 106.64 106.71 117.97 .07* 11.33

17 153.71 158.90 163.63 .19* 4.92*

13 51.51 52.01 55.84 .50* 4.33*

* Not significant at .05 leve l.

Table 29: (Experiment I I IB ).  Comparisons between the minimized 
values of -2 log L 's  and the likelihood ratio test 
results for the individual subjects who participated 

only for one session.
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through the other assumed states and fin a lly  becomes absorbed 

in a learned state, the data regarding the identification  of 

parameters and theoretical states can be more meaningfully- 

handled within the structure of Case 2. Although the results 

obtained from the group data do not support Case 2, there is 

some evidence for the acceptance of Case 2 only for the one- 

session subjects. On the other hand, i f  Case 1 is  accepted 
the task facing the learning theorists would be very hard, indeed. 

There are numerous questions involved in why an unlearned item 

starts from any one o f the assumed theoretical states at the 
f ir s t  presentation. One of the simplest but unsatisfactory 

explanation might be the acceptance of labels such as "correct 

state" and "error state" which bear no psychological meaning 

at a l l .  Therefore, th is section remains inconclusive, since 
parameter identification  could not be achieved without the 

use of a model which assumed presolution "correct" and "error" 

states. I f  th is model had been employed our study would have 

been res tricted  to its  parameters which bear no relationship 

to the psychological processes with which we want to work.



80

GENERAL CONCLUSIONS AND DISCUSSION

It  was argued that item homogeneity as a confounding 

variable constitu'lf' a major methodological problem in any study 

on individual differences in verbal learning, since it  is 

d if f ic u lt  to determine whether the observed variance is  due to 
the differences between subjects or the differences between 

the test items. In Part I  an attempt was made to study individual 

differences in association value scales of the test items used.

The correlations obtained between the individual association 

value scales and the group association value scale were quite 

low, indicating that such a scale based on group results was 
insu fficien t in controlling the item homogeneity fo r individual 

subjects. Sim ilarly, low correlations obtained between the 

individual association value scales (which were obtained in an 

actual learning situation) and the group rated association value 
scale (which was obtained from the ratings of the test items) 

showed that the predictions from the rated association scale 
values to the performance on such materials were not very 

accurate. On the other hand, the rated association value 

scales obtained for individual subjects were highly correlated 
with their own individual association value scales obtained in 

an actual learning situation. These results indicated that 

instead o f using a group association value scale, subjects' own 
ratings o f items can be used to y ie ld  more accurate predictions 

o f their performance in.verbal learning tasks.

The comparisons between the group serial position curve 

and the individual seria l position curves showed that there 
were considerable differences between the individual and the 
group results. Although for a ll the obtained seria l position 

curves there were strong recency e ffects , the primacy parts of
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the curves varied from subject to subject. Some introspective 

reports obtained from subjects indicated that the different 

strategies used in the process of acquisition of the l is t  

might have caused the observed differences in their serial 
position curves.

In Part I I  i t  was argued that research on individual 

differences in learning must be guided by contemporary theories 

o f human learning and performance. In an attempt to study 

individual differences in paired-associate learning the emphasis 
was placed upon various mathematical models with different 

theoretical assumptions. For each subject repeated measurements 

were taken by running them on a number of paralle l tasks which 

were based on their association value scales. It  was found that 
learning rate parameters, in particular, were closely related 

with the observed individual differences in performance. The 

correlations between the various forgetting parameters and 

the subjects' overall performance were re la tive ly  low and in 

some cases insign ifican t.

Comparisons of individual resuls with group resuls 
revealed that the linear model does a better job for the individual 

data than i t  does for the group data. Although, in the application 
o f the one-element and^the linear models to the group data the 

obtained to ta l s were about the same, the goodness-of-fit o f 
the linear model to the individual data was consistently better 
than the googness-of-fit o f the one-element model. The goodness- 

o f - f i t  o f the two-parameter models (RTI, LS-2, LOS-2) varied 

between subjects, indicating that a particular model with 
specific assumptions might not be the best one for the data 
obtained from every subject. Of the three-parameter models, 

the L03-3 model was consistently more aocurate than the LS-3 
model in a l l  the applications to the group data. With only 

a few exceptions this was also true for the data obtained 

from individual subjects.
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Since a study on individual differences in the parameter 

values o f the learning models would not be complete without 

the iden tification  of the theoretical parameters and the states 

of the models used, an attempt was made to examine the problems 

involved in the identification  o f these theoretical parameters 
and the stated. Unfortunately, the results indicate that the 

data obtained from most of the subjects can be best explained 

with a three-state Markov chain which is  equivalent to many 

of the current formalizations o f all-or-none learning theories. 

Such a general model assume« an in it ia l  transition vector whose 

transition probabilities determine the three starting states 

which can be best labeled as "correct state", "error state", 
and "absorbing state". In the face of this evidence, the 

generally accepted labels of the present models such as 
forgetting state, short-term and long-term memory states, e tc ., 

do not 3eem to be very well founded a3 far as the data regarding 
iden tifica tion  of theoretical parameters and states is  concerned. 

I t  was thought that a model with presolution "correct" and 

"error" states would not be satisfactory in the study of 

individual parameter values unless the parameters involved 

in this model bore some relationship to the psychological 

processes with which it  was intended to work.

I t  appears that the need fo r  a theory which affords a 

source o f testable hypothesis fo r the psychological processes 

which exist within individuals s t i l l  pervades the research on 

individual differences in verbal learning. When the present 
models or theories of learning are tested against the averaged 
characteristics of a group of subjects, the obtained goodness— 
o f—f i t  does not necessarily ind icat« that such models or theories 

o f learning rea lly  represent the state of a ffa irs  that exists 
within individuals. When these models are tested against data 

obtained from individual subjects, the goodness-of-fit seems to 

vary from subject to subject. I f  these variations were due only
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-fco differences in the parameter values of the models used, then 

it  would be possible to account for the variance by assuming a 

suitable distribution for the parameter values involved. However, 
when f i t t in g  models to data from individual subjects we find 

that one particular model may best f i t  the behaviour of one group 

of subjects whereas th= behaviour of other subjects may be better 

represented by other models. I f  one particular model gives the 

best f i t  to  the behaviour o f a particular subject (and this 

particular model might be different from subject to subject), 

then there is  a poss ib ility  that different psychological 

mechanisims take place in different subjects. These mechanisms 
are, we hope, re flected  in the assumptions o f best f it t in g  models.

I t  is  also possible that the behaviour of a particular subject 

may be f i t te d  equally well by more than one type o f model. In 
th is case, in order to make a choice between these models we 

have to test them further against data obtained with different 
experimental variables which are assumed to e ffec t the subjects' 

overall performance. In the present study only two such experimental 

variables were manipulated: length of task (or amount of material 

to be learned) and d ifferen t guessing situations. We could also 
manipulate such variables as association value or meaningfulness 

(in  our study we kept th is variable constant), task complexity, 
the amount o f practice on a given task or a particular class of 
tasks, orig ina l learning and relearning after some interpolated 

a c t iv ity , e to .. As suggested by Jensen ( 1967) ,  besides the 
ones lis ted  above, some other procedural variables such as 

stimulus duration, distribution of practice and instructional 
variables such as d iffe ren tia lly  motivating sets constitute one 

of the most important "dimensions" in the study of individual 

differences in learning.

Individual differences approach can be used as a further 

source o f information for the development and testing of psychological 

models. I t  is  our contention that by developing new models which
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postulate different psychological mechanisims for certain group 

of subjects, and testing these models against the data obtained 
from individual subjects, some progress can be made towards 

more general law and theories. This requires an extensive study 

of a l l  available data from individual subjects, not gross 
generalizations based on group results.

be useful to make a distinction between intrinsic and extrinsic 

individual differences (C f. Jensen, 1967) .  The essence o f the 

difference is  exemplified by the two expressions: a) individual 
differences in learning, and b) the e ffec ts  of individual differences 

on learning.

Certain attitudes and personality tra its , chronological age, 
mental age, IQ, sex, and other personal characteristics are included 
in the extrinsic individual differences category. A ll these variables 

exert some influence on the subject's performance in a learning 

situation. These variables operate in a way to exert some influence 
upon the functioning of more basic processes of perception and 

learning. Much of the research work in the past was aimed at 

eliminating or controlling this kind of individual differences, 
assuming that subjects would a l l  perform alike in the laboratory 

learning tasks when these controls have been applied. However, 
very l i t t l e  sucoess was achieved in reducing the variance among 

subject performance.

On the other hand, as Jensen ( 1967) puts i t ,  the term intrinsic 

individual differences refer to those individual differences whioh 
are inherent in learning and which do not exist independently of 
the learning process. That is , in trinsic individual differences 

consist of intersubjeot va riab ility  in the learning process it s e l f .

The present research was aimed at discovering some o f the 

experimental conditions under which these intrinsio differences show 

their e ffe c t . In trinsio individual differences were demonstrated by

In evaluating the findings of the present research i t  would



our findings on variations in association values, serial position 

curves, and paired-associate learning. I f  we consider the differences 

in association values as a product o f subjects' past experiences and 

some sort of a b ility  to attach meanings to the tests items used, 

then we would be dealing with an in trinsic  variable, probably a 

recognition process which is  assumed to play an important ro le  in 
the learning process i t s e l f .  Introspective reports obtained from 

different subjects indicate that d ifferent strategies used by the 

subjects cause the observed differences in seria l position curves.
In other words, i f  we can talk o f an a b ility  to develop new strategies, 

we might correlate th is a b ility  with chronological age, mental age, 

iy , and certain other personal characteristics. Sim ilarly, when 

f it t in g  models to data from individual subjects i f  we find that 
one particular model may best f i t  the behaviour of one group of 

subjects whereas the behaviour o f other subjects may be better 

explained by other models, then i t  is  interesting to know what sorts 

of extrinsic individual differences cause these different groups of 

subjects to show variations in the learning process i t s e l f .

This line of research might prove to be useful i f  we assume 
that the development of some extrinsic individual differences such as 

certain attitudes and personality tra its  are based on essential 

variables in the learning domain. In this case certain extrinsic 
individual differences and the learning performance both would have 
the same source, Future research on individual differences would be 

more benefic ia l i f  we could discover the relationship between the 
intersubject va r iab ility  in the learning process and the extrinsic 

individual differences which are based on essential variables in 

the learning domain.

84/a
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APPENDIX I

Mean rated, association values and SD's for numbers 0-100 

(B attig  and Spera, 1962) .

No M 3D No M SD No M SD No M SD

31 0.72 1.07 54 1.15 1.22 44 1.73 1.25 8 2.21 1.34
53 0.79 1.02 29 1.18 1.26 80 1.74 1.30 45 2.21 1.33
83 0.79 1.13 91 1.22 1.29 55 1.78 1.32 6 2.23 I .40
71 0.33 1.13 38 1.23 1.33 17 1.85 1.33 15 2.25 1.36
57 0.34 1.23 86 1.23 1.21 48 1.36 1.30 9 2.29 1.46
46 0.85 O.96 93 1.23 1.39 96 1.91 1.39 69 2.32 1.33
73 0.86 1.13 62 1.27 1.36 30 I .96 1.33 93 2.32 1.38
59 0.88 1.11 52 1.33 1.18 27 1.98 1.34 20 2.36 1.38
74 0.90 0.99 85 1.33 1.21 40 1.98 1.28 12 2.43 1.43
37 0.93 1.14 39 1.34 1.36 77 1.93 1.37 75 2.43 1.33
47 O.95 1.15 63 1.34 1.32 95 1.99 1.29 3 2.55 1.51
87 0.95 1.10 23 1.35 1.23 66 2.00 1.45 5 2.57 1.45
58 0.93 1.18 72 1.36 1.23 19 2.01 1.45 7 2.62 1.50
41 1.00 1.16 39 1.38 1.33 65 2.03 1.34 18 2.67 i«31
51 1.02 1.22 94 1.33 1.28 90 2.05 1.36 50 2.69 1.40

79 1.02 1.20 42 1.47 1.24 14 2.06 1.43 4 2.71 1.35
43 1.03 1.17 35 1.54 1.30 24 2.06 1.23 16 2.72 1.28
34 1.07 1.06 26 1.55 1.25 4 9 2.07 1.37 99 2.b0 1.30
78 1.09 1.19 56 1.55 1.26 64 2.07 1.45 25 2.35 1.26

84 1.09 1.11 81 1.61 1.34 11 2.08 1.43 10 2.96 1.37
61 1 .12 1.32 97 1.61 1.41 36 2.13 1.34 21 3.03 1.17
67 1 .12 1.16 70 1.65 1.30 60 2.14 1.36 13 3.06 1.28
63 1.14 1.22 28 I .69 1.32 33 2.15 1.39 2 ¿•11 1.28

82 1.14 1.14 32 1.69 1.35 88 2.15 1.37 0 3-31 1.16

92 1.14 1.19 76 I .69 1.45 22 2.13 1.30 1
100

3.53
3.56

1.20
0.93



APPENDIX I I

p
Parameter estimates and the X values for the data 

obtained from individual subjects who completed 12 

tasks in one session.
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Su b ject I I - l

Model Parameter
Experiment

IIA IIB

One-Element c .416 .506

Linear e •450 .425

ETC C • VJ1 to .510
e .896 • 994

LS-2 a .438 .506
f .838 •999

LS-3 a .438 .734
f .838 .999
c 1.000 .633

LOS-2 a .641 •864

f .632 .691

LOS-3 a .498 .506

f • 999 .999

*1 .149 .002

Exp.
One-
Element

Linear
Model RTI LS-2 LS-3 L0S-2 L0S-3

IIA 12.70* 32.20 8.93* 8.10* 8.10* 8 .48* 6.46*

IIB 3.97* 32.34 3.96* 3.97* 2.43* 8 .69* 3. 97*

Total X1 16.67 64.54 12.89 12.07 10.53 17.17 10.43

df 14 14 13 13 12 13 12

»  Not significant at .01 level.
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Subject II-l

Model Parameter
Experiment

IIA IIB

One-Element c .416 • 506

Linear e .430 • 425

BTI C .542 .510
6 .896 • 994

LS-2 a .438 .506

f .838 • 999

LS-3 a .438 .734
f .838 • 999
c 1.000 .633

LOS-2 a •641 .864

f .632 .691

LOS-3 a • 498 • 506

f • 999 • 999

h .149 .002

Exp.
One-
ELement

Linear
Model HTI LS-2 LS-3 LOS-2 LOS-3

IIA 12.70* 32.20 8.93* 8.10* 8.10* 8.48* 6.46*

IIB 3.97* 32.34 3.96* 3.97* 2.43* 8.69* 3.97*

Total X* 16.67 64.54 12.89 12.07 10.53 17.17 10.43

df 14 14 13 13 12 13 12

* Hot significant at .01 level
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Subject II-2

Model Parameter
Experiment

IIA IIB

One-Element c .283 .288

Linear 0 .437 .421

ETC c .639 • 721
0 .668 .568

LS-2 a .314 .283
f .718 .681

LS-3 a .336 .296
f .494 .594
c .684 .795

LOS-2 a .426 .37 6
f .598 .604

LOS-3 a .314 .323
r .719 • 771
*1 .001 • 159

Exp.
One-
Element

Linear
Model HTI LS-2 LS-3 LOS-2 LOS-3

IIA 39-79 17.74* 12.31* 12 . 33* 9.34* 13.98* 12.35*

IIB 57.03 22.11* 19.94* 17 .90* 17.45* 18.70* 17.24*

Total X* 96.82 39.85 32.25 30.23 26.79 32.68 29.59

df 14 14 13 13 12 13 12

»  Not significant at .01 level
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Subject II-3

Model Parameter
Experiment

IIA IIB

One-Element c .218 .355

Linear e .368 .464

RTI C • 517 .655
e .776 .722

LS-2 a .263 .334
f .684 .639

LS-3 a .234 .346
f .223 .582
c .477 .878

LOS-2 a .417 .467
f .621 .564

LOS-3 a .382 .479
f •433 .631

*1 .671 .544

Exp.
One-
Element

Linear
Model HTI LS-2 LS-3 LOS-2 LOS-3

IIA 86.88 52.79 17.02* 17.65* 17.22* 14.02* 12. 56*

IIB 33.40 15.37* 7.56* 6.86* 6.71* 5.67* 5.61*

Total X1 120.28 68.06 24.53 24.51 23.93 19.69 18.17

df 14 14 13 13 12 13 12

*  Not significant at .01 level



Su b ject I I - 4

Model Parameter
Experiment

IIA IIB

One-Element c .137 .190

Linear 6 .214 .275

HTI c .269 .436
e •744 .703

LS-2 a .138 .171
f .826 .675

LS -5 a .148 .024
f .810 .165
c .837 .398

LOS-2 a .276 .237
f .785 .643

LOS-3 a .273 .188
r .750 .372

*1 .796 • 711

Exp.
One-
Element

Linear
Model HTI L3-2 LS-3 LOS-2 LOS-3

I I A 41.34 48.34 11.16* 9*86* 9.66* 7. 71* 7 .60*

IIB 201.81 70.86 25.19* 25.05* 22.85* 21.72* 16.23*

Total X1 243.15 1 1 9 . 2 0 36.35 34.91 32.51 23.43 23.83

df 14 14 13 13 12 13 12

*  Hot significant at .01 level
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Su bject I I - 5

Model Parameter
Experiment

IIA IIB

One-Element c .455 • 458

Linear e .525 .721

RTI C .645 .983
e .906 • 733

LS-2 a .491 .513
f • 739 .456

LS-3 a .055 .421

f .024 • 173
c • 573 .840

LOS-2 a .659 .561

f .543 .357

LOS-3 a .416 .514
f .101 .457

h .604 .001

Exp.
One-
Element

Linear
Model HTI LS-2 LS-3 LOS-2 LOS-3

IIA 23.10* 22. 12* 3.68* 5.83* 4. 66* 6.43* 5.10*

IIB 35.18 1.19* 1.17* 3.03* 1.92* 3.46* 3.03*

Total X1 58.28 23.31 4.85 8.86 6.58 9.89 8.13

df 14 14 13 13 12 13 12

*  Not significant at .01 level
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S u b je c t  I I - 6

Model Parameter
Experiment

IIA IIB

One-Element c •499 .764

Linear 0 .688 .612

RTI c .800 .765

e .37 6 • 999

LS-2 a • 564 .764

r • 564 • 999

LS-3 a .001 .778

f .016 • 999
c • 748 • 778

LOS-2 a .658 • 999

f .410 • 424

LOS-3 a .088 .999

f .022 .001

*i .500 .424

Exp.
One-
Element

Linear
Model KTI LS-2 LS-3 LOS-2 LOS-3

IIA 33.35 10.20* 5.53* 5.92* 3.37* 6.14* 4.20*

IIB 4.84* 31.09 4.87* 4.34* 3.76* 1.02* 1.01*

Total X1 38.19 41.29 10.40 10.76 7-13 7.16 5.21

df 14 14 13 13 12 13 12

* Hot significant at .01 level



Su bject I I - 7

Model Parameter
Experiment

IIA 1 IB

One-Element c .443 .367

Linear e •451 .879

ETI C .630 • 999
e CMrO

CO• .880

LS-2 a .413 .867
f .657 • 999

LS-3 a .413 .938

f .657 • 999
c 1.000 .923

LOS-2 a .601 .868

f .545 .336

LOS-3 a • 732 .867
f .999 • 999

*1 .535 .001

Exp«
One-
Element

Linear
Model RTI LS-2 LS-3 LOS-2 LOS-3

IIA 30.25 54.57 18.43* 13. 50* 13.50* 9.79* 9.03*

IIB • 77* .70* .70* .77* .55* 2.30* .78*

Total X1 31.02 55.27 19.13 14.27 14.05 12.09 9.31

df 14 14 13 13 12 13 12

* Mot significant at .01 level
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Subject I I -8

Model Parameter
Experiment

IIA IIB

One-Element c .774 .851

Linear e .353 .797

DTI C • 999 .852
e lT\

C
O• .999

LS-2 a .732 .851

f • 532 •999

LS-3 a .710 .863
f .294 • 724
c • 934 .863

LOS-2 a • 752 • 998
f .306 .388

LOS-3 a .833 • 998

t .863 .166

*1 .146 .389

Exp.
One-
Element

Linear
Model HTI L3-2 LS-3 LOS-2 LOS-3

IIA 5.41* .33* .33* 1.38* 1.16* 2.14* 1.24*

IIB • 57* 5.48* .58* • 57* .27* .77* .77*

Total X* 5.93 5.81 •91 1.95 1.43 2.91 2.01

df 14 14 13 13 12 13 12

*  Not significant at .01 level.
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S u b jec t 11-10

Model Parameter
Experiment

IIA IIB

One-Element c .373 .168

Linear e .357 •444

DTI C .390 • 589
e .969 .762

LS-2 a .366 .253
f .870 .413

LS -3 a .366 .253
r .870 .413
c 1.000 1 .000

LOS-2 a .435 .282
r .641

rOOO

LOS-3 a .418 .261

f .999 .424

*1 .183 .054

Exp.
One-
Element

Linear
Model BTI LS-2 LS-3 LOS-2 LOS-3

IIA 12.03* 57.64 11 . 53* 3.52* 8.52* 16.15* 7.56*

IIB 205.81 40.80 25.49* 11.10* 11.10* 11.23* 11.02*

Total X* 217.84 98.44 37.02 19.62 19.62 27.43 18.58

df 14 14 13 13 12 13 12

* Hot significant at .01 level



S u b ject 11-11

•215 .284One-Element c

Linear e

DTI c
e

LS-2 a
f

LS-3 a
f
c

LOS-2 a
f

LOS-3 a

f
f .

.337 .398

.615 .763

.568 .518

,189 .252
,617 .0I 9

,192 .251
,509 .562

717 .861

,285 .345

594 • 576

278 • 393
567 •779
6 08 •493

Exp.
One-
Element

Linear
Model RTI LS-2 LS-3 LOS-2 LOS-3

IIA 127.44 22.14* 12.12* 12.85* 1 1 .48* 1 1 .02* 10.97*

IIB 55.18 17.73* 15.31* 14.68* 14.03* 13.92* 12.16*

Total X* 182.62 39*87 27.93 27.53 25.51 24.94 23.13

df 14 14 13 13 12 13 12

* Not significant at .01 level
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Subject 11-12

Model Parameter
Experiment

IIA IIB

One-Element c .260 .194

Linear e • 450 .362

RTI C • 552 • 432

e .846 .788

LS-2 a .352 .261

f .594 .630

LS-5 a •355 .262

f .581 .538

c • 972 .886

LOS-2 a • 430 .300

f .504 .549

LOS-3 a .443 .261

f .571 .630

*1 .463 .001

Exp.
One-
Element

Linear
Model HTI LS-2 LS-3 LOS-2 MS-3

IIA 79.IO 39.95 17. 10* n . 93* 11.89* 12.25* 11 .93*

IIB 106.76 39.27 22.61* 14.87* 14.14* 17.98* 14.88*

Total X* 185.86 79.22 39.71 20.80 26.33 30.23 26.86

df 14 14 13 13 12 13 12

»  Not significant at .01 level



Subject 11-13

Model Pai•ameter

i ia IIB

One-Element c .491 .394

Linear e .549 .487

HTI C .699 .649
e .915 • 736

LS-2 a .535 .392
f .675 .508

LS-3 a .535 .392

f .675 .508

c 1.000 1 . 0 0 0

LOS-2 a .680 .416

f • 472 .410

LOS-3 a .250 .443

f .039 .581

h • 539 .210

Exp.
One-
Element

Linear
Model RTI LS-2 LS-3 LOS-2 LOS-3

IIA 33.25 34.95 9.61* 10.53* 10.53* 9.46* 7.61*

IIB 41.68 43.55 32.40 10.86* 10.86* 11.93* IO.52*

Total X* 74.93 78.50 42.01 21.39 21.39 21.39 18.13

df 14 14 13 13 12 13 12

* Hot significant at .01 level.



Su bject I I - I 4

Model Parameter
Experiment

IIA IIB

One-Element c .336 .432

Linear 0 • 550 •598

HTI c .689 .915

e .786 .653

LS-2 a • 393 .375
f .648 .496

LS-3 a .220 •375
f .113 .496
c .618 1.000

LOS-2 a .515 .480

f • 539 .459

LOS-3 a • 329 .537
f .163 .719

*1 .630 .346

Exp.
One-
Element

Linear
Model RTI L3-2 LS-3 LOS-2 LOS-3

IIA 65.65 12.56* 8.17* 12.66* 7.63* 13.41* 11.37*

IIB 51.55 10. 91* IO.56* 13.00* 13.00* 11 .70* IO.69*

Total X* 117.20 23.47 18.73 25.66 20.63 25.11 22.06

df 14 14 13 13 12 13 12

* Hot significant at .01 level.
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S u b jec t 11-15

Model Parameter
Experiment

IIA I I B

One-Element c •377 .285

Linear e .514 • 502

HPI C .682 .703
e • 777 .703

LS-2 a •399 .319
f .650 • 544

LS -3 a .413 .302

f .396 .353
c • 729 • 772

LOS-2 a .536 .408
f .535 .435

LOS-3 a • 541 .397
r .570 • 437

* 1 • 524 • 512

One- LineariSxp. Element Model HTI L3-2 LS-3 L O S -2 L O S -3

I I A 27.39* 14.35* 5.90* 6.47* 5. 12* 6.05* 6.04*

I I B 79.52 17.05* 12.32* 10.46* 9. 10* 9.96* 9.88*

Total X* 106.91 31.40 18.22 16.93 14.22 16. 01 15.92

df 14 14 13 13 12 13 12

* Not significant at .01 level.

. .Jl. . - i~. . ----- -
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Subject 11-16

Model Parameter
Experiment

IIA IIB

One-Element c .774 • 787

Linear 6 .353 .388

HTI c • 999 • 999
e •853 .888

LS-2 a .730 .621
f .530 .156

LS-3 a .710 .621

*rt. r .294 .156
c • 934 1.000

LOS-2 a • 752 .624
r .306 .131

LOS-3 a •833 .659
f .863 .173

'1 .146 .075

Exp.
One-
Element

Linear
Model HTI LS-2 LS-3 LOS-2 LOS-3

IIA 5.41* .33* .33* 1.38* 1 . 16* 2. 14* 1.24*

IIB 9.36* 2.04* 2.04* .69* .69* 71* .65*

Total X1 14.77 2.37 2.37 2.07 1.85 2.85 1.89

df 14 14 13 13 12 13 12

»  Hot significant at .01 level.

4
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Subject 11-17

Model Parameter
Experiment

IIA IIB

One-Element c .379 .222

Linear 6 • 518 • 455

HTI c .721 • 797
e • 747 • 572

LS-2 a • 393 • 251
f .609 .523

LS-3 a .398 .243
f .403 • 441
c .771 .834

LOS-2 a .514 .331
f • 511 .503

LOS-3 a • 527 •319
f • 599 .463

'1 .430 • 524

Exp.
One-
Element

Linear
Model HTI L3-2 LS-3 LOS-2 LOS-3

IIA 34.51 14.69* 7.34* 8.32* 7.05* 7.75* 7.62*

IIB 113.33 11.15* 9.14* IO.65* 10. 21* 9. 21* 9.16*

Total X1 147.84 25.34 16.48 18.97 17.26 16.96 16.78

df 14 14 13 13 12 13 12

* Hot significant at .01 level.



Subject 11-18

Model Parameter
Experiment

IIA IIB

One-Element c • 396 .416

Linear 6 .410 • 552

HTI c • 500 .721
e .909 • 781

LS-2 a .388 •457
f .781 .636

LS-3 a .388 .468

frf. f .781 • 548
c 1.000 .886

LOS-2 a .587 .543
f .630 .486

LOS-3 a .580 • 457
f • 599 .637
*1 .634 .001

Sxp.
One-
Element

Linear
Model HTI Lo-2 LS-3 LOS-2 LOS-3

IIA 30.50 55.55 14.26* 13.16* 13.16* 11.30* 11.28*

IIB 27. l l * 10.60* 5.53* 4.11* 3.59* 5.26* 4.12*

Total X1 57.61 66.15 19.79 17.27 16.75 I 6.56 15.40

df 14 14 13 13 12 13 12

*  Hot significant at .01 level.

JfcafeOkJ' 'MklSÈL "iUL



105

Subject I I I - l

Model Parameter
Experiment

IIIA IIIB

One-Element c .483 .643

Linear 0 • 745 • 752

BTI c • 999 • 937
0 • 746 .807

LS-2 a .540 .609
f .481 • 539

LS-3 a .460 .591
f .180 •339
c .842 • 903

LOS-2 a • 583 .668
r .361 • 374

LOS-3 a • 541 .745
r .483 .850

f i .001 .222

£xp*
One-
Element

Linear
Model BTI Lo-2 LS-3 L0S-2 LOS-3

IlIA 35.97 1.45* I . 46* 5. 15* 3.58* 6.03* 5.15*

I IIB 10.28* 1.61* 1.20* 2.08* 1.83* 2.60* 1.63*

Total X* 46.25 3.06 2.66 7.23 5.41 8.63 6.78

df 14 14 13 13 12 13 12

* Mot significant at .01 level.



106

Subject III-2

Model Parameter
Experiment

HIA IIIB

One-Element c .296 .372

Linear e .398 .513

HPI C .626 .669
e .662 .757

LS-2 a .274 .394
f .626 .699

LS-3 a .279 .424
f .568 .506
c .866 .745

LOS-2 a .400 .535
f .578 • 572

LOS-3 a .421 • O-» VO

r .682 .699

*i • 544 .001

Exp.
One-
Element

Linear
Model HTI Lii-2 LS-3 LOS-2 LOS-3

i i n 62.14 35.33 20.71* 13.10* 17.80* 15.35* 14.96*

IIIB 28.50* 10.80* 6.45* 7.21* 5.64* 7.83* 7.22*

Total X* 90.64 46.13 27.16 25.31 23.44 23.18 22.18

df 14 14 13 13 12 13 12

* Hot significant at .01 level.
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S u b jec t I I I - 3

Model Parameter
Experiment

HIA IIIB

One-Element c .357 .643

Linear e • 569 • 752

RTI C .753 • 937
e .773 .807

LS-2 a • 427 .609
f .526 • 539

LS-3 a .428 • 591
r .458 • 339
c • 916 .903

LOS-2 a .495 .668

r •429 .374

LOS-3 a .428 •745
r • 527 .850

*1 .001 .222

Exp.
One-
Element

Linear
Model HTI

IIIA 68.54 14.48* 8.55*

IIIB 10.28* 1.61* 1.20*

Total X* 78.82 16.09 9.75

df 14 14 13

»  Hot significant at .01 level.

L3-2 LS-3 LOS-2 LOS-3

6.22* 6.02* 6.68* 6.22*

2.08* 1.83* 2.60* 1.63*

8.30 7.85 9.28 7.85

13 12 13 12

S L i k J  iiL. i ML.
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S u b ject I I I - 4

Exp.
One-
Element

Linear
Model HTI Lo-2 LS-3 LOS-2 LOS-3

n iA 41.66 54.59 28.41 14. 56* 14.56* 15.55* 14.56*

IIIB 33.56 16. 90* 16.10* 6 .03* 6.03* 6.97* 6.03*

Total X1 75.22 71.49 44.51 20.59 20.59 22.52 20.59

df 14 14 13 13 12 13 12

»  Not significant at .01 level.
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Su b ject I I I - 5

Model Parameter
Experiment

IIIA IIIB

One-Element C • 660 .919

Linear e •725 • 924

m i C .858 • 999
e .864 •925

LS-2 a .628 .919
f .603 •999

LS-3 a .628 • 961

f t -
r .603 •999
c 1.000 .956

LOS-2 a .720 .906

r .404 .263

LOS-3 a .767 .919
f • 999 • 999

h .217 .001

Exp.
One-
Element

Linear
Model m i Lo—2 LS-3 LOS-2 LOS-3

IIIA 9.27* 4 .88* 2.28* 2. 19* 2.19* 2.48* 1.70*

IIB . 26« .25* . 25* .26 .19* • 97* .27*

Total X* 10.53 5.13 2.53 2.45 2.38 3.45 1.97

df 14 14 13 13 12 13 12

*  Hot significant at .01 level.



S u b je c t I I I - 6

Model Parameter
Experiment

HIA IIIB

One-Element c .208 .109

Linear 0 .283 .269

KTI c .407 .669
e .723 .393

LS-2 a .217 .10 6
f .778 .627

LS-3 a .217 .106

f̂ V- f .778 .627
c 1.000 1.000

LOS-2 a .333 .135
f .690 .597

LOS-3 a .217 .123
f .778 .66 9

*1 .001 • 135

Exp.
One-
Element

Linear
Model RTI LS-2 LS-3 LOS-2 LOS-3

I1IA 40.31 57.04 16.84* 9.20* 9.20* 9.49* 9.21*

IIB 145.08 31.42 27.67* 13.54* 13.54* 14.24* 12.81*

Total X* 185-39 88.46 44.51 22.74 22.74 23.73 22.02

df 14 14 13 U 12 13 12

* Hot significant at .01 level



S u b je c t  I I I - 7

Model Parameter
Experiment

HIA IIIB

One-Element c .133 .158

Linear e .199 .310

HTI C • 255 .676
e .700 .438

LS-2 a .114 .166
f .812 .675

LS-3 a .114 .166
f .812 .631
c 1.000 .858

LOS-2 a .216 .212
f .780 .614

LOS-3 a .209 .166
f .726 .676

*1 • 799 .001

Exp.
One-
Element

Linear
Model HTI Lo—2 LS-3 L0S-2 LOS-3

IIIA 56.02 50.70 14.19* 10.90* 10. 90* 9.88* 9.58*

IIIB 65.17 25.72*- 23.34* 12.68* 12.49* 14.13* 12 .68*

Total X* 121.19 76.42 37.53 23.58 23.39 24.01 22.26

df 14 14 13 13 12 13 12

* Hot significant at .01 level
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S u b jec t I I I - 8

Model Parameter
Experiment

HlA IIIB

One-Element c .446 .233

Linear e .402 .505

HTI c •496 .825
e .930 .604

LS-2 a .434 .300
f • 935 .485

LS-3 a • 496 • 299
r •915 .474
c .734 .982

LOS-2 a • 729 .354
r .636 .439

LOS-3 a .435 .363

r .937 • 474
.002 .410

Exp.
One-
Element

Linear
Model HTI L3-2 LS-3 LOS-2 LOS-3

IIIA 10.20* 41.38 8.39* 9. 33* 8.5 6* 1 1 .19* 9.33*

IIB 90.61 13.39* 11.97* 6.38* 6.37* 6.07* 6.03*

Total X4 100.81 54.77 20.36 15.71 14.93 17.26 15.36

df 14 14 13 13 12 13 12

* Hot significant at .01 level.



Su b ject I I I -9

Model Parameter
Experiment

1 11A EIB

One-Element c .285 .537

Linear e • 569 .456

RTI c • 793 .537
e .715 •999

LS-2 a .404 • 559
r .421 .787

LS-3 a .404 •559
r .412 .737
e 1.000 1.000

LOS-2 a .428 .642
r .345 .475

LOS-3 a .404 .636

f .421 .999

*1 .001 .144

Sxp.
One-
Element

Linear
Model BTI LS-2 LS-3 LOS-2 LOS-3

I I IA 98.76 28.08* 23.12* 9.64* 9.64* 10.07* 9.64*

IIB 9.46* 56.16 9.46* 6.$<)* 6.00* 6.02* 4.96*

Total X* 108.22 84.24 32.58 15.64 15.64 16.09 14.60

df 14 14 13 13 12 13 12

* Hot significant at .01 level.
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Su b ject I I I - 1 0

Model Paiameter
Experiment

IIIA IIIB

One-Element c .323 • 274

Linear e .330 .3 66

HTI C .457 .425
e .868 • 798

LS-2 a .334 .264
f .873 .612

LS-3 a .410 .264
f .266 .609
c .410 • 992

LOS-2 a • 577 .300
f .712 • 533

LOS-3 a .528 .357
f .412

0
0

 
■—1 
r—

*1 .745 .397

Exp.
One-
Element

Linear
Model HTI LS-2 LS-3 LOS-2 LOS- 3

IIIA 19.78* 34.04 10.28* 13.60* 9.14* 16.26* 15 . 55*

IIIB 53.56 55.40 34.23 16.92* 16.92* 19.30* 15 . 25*

Total X* 73.34 89*44 44.51 30.52 26.06 35.56 30.80

df 14 14 13 13 12 13 12

*  Mot significant at .01 level.
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Sub je o t  I I I - l l

Model Parameter
Experiment

niA IIIB

One-Element c • 245 .239

Linear e .394 .520

HTI C • 541 .832
e .859 .622

LS-2 a .343 .343
f .641 .513

LS-3 a .001 .331
f .044 .408
c .516 .861

LOS-2 a .459 .389
f • 533 .439

LOS-3 a .406 .348
f .352 .522

* 1 .537 .020

Exp.
One-
Element

Linear
Model HTI Lo—2 LS-3 L0S-2 LOS-3

IIIA 104.64 61.15 13.21* 12.78* 9.65* 11.67* 9.96*

IIIB 88.33 12.11* 10. 52* 7 . 95* 7.44* 8.39* 7.95*

Total X* 192.97 73.26 23.73 20.73 17.09 20.06 17.91

df 14 14 13 13 12 13 12

# Hot significant at .01 level.

«■"iflu tn ir
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S u b ject I I I - 1 2

Model Parameter
Experiment

HIA IIIB

One-Element c • 725 • 780

Linear 0 • 744 .879

HTI c .823 • 999
e •yoo .879

LS-2 a • 725 .678
f •999 .263

LS-3 a .867 .671
f • 999 .244
c .823 .995

LOS-2 a .788 .685
f • 485 .193

LOS-3 a • 725 • 739
r .999 .322

' i .001 .106

Exp.
One-
Element

Linear
Model HTI Lo-2 LS-3 LOS-2 LOS-3

IIIA 3.08* 3.67* 3.10* 3.08* 1.73* 8.62* 3.10*

IIIB 7.86* 1.15* 1.15* .75* .75* .85* .68*

Total X* 10.94 4.82 4.25 3.83 2.48 9*47 3.78

df 14 14 13 13 12 13 12

*  Bbt significant at .01 level.

-------1______
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Su b ject I I I - 1 3

Model Parameter
Experiment

n iA IIIB

One-Element c .388 .507

Linear e • 442 .459

HTI C .661 • 530
6 .728 .966

LS-2 a .407 OO CO

f .628 •742

LS-3 a .407 .488
r .628 .742
c 1.000 1.000

LOS-2 a .475 .482
f .485 •495

LOS-3 a .442 .594
f .699 .999

f i .124 .206

Exp.
One-
Element

Linear
Model HTI Lo—2 LS-3 LOS-2 LOS-3

IIIA 29.02* 40.13 17.79* 5.02* 5.02* 5-40* 4.68*

IIIB 12.75* 43.78 11.95* 7. 14* 7.14* 11.99* 5.37*

Total X1 41.77 83.91 29.74 12.16 12.16 17.39 10.05

df 14 14 13 13 12 13 12

*  Hot significant at .01 level.
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Su b ject H I -1 4

Model Paxameter
Experiment

HIA HIE

One-Element c .200 .200

Linear e .339 .37 6

HTI C .422 • 525
e .802 .704

LS-2 a .258 .248
f • 752 .620

LS-3 a .301 .248
f • 570 .620
c .626 1 . 0 0 0

LOS-2 a .330 .331
f .650 .562

LOS-3 a .258 .335
f • 752 .534

*1 .001 .549

Exp.
One-
Element

Linear
Model mi L3-2 LS-3 LOS-2 LOS-3

IIIA 49.93 30.10 8.60* 9.29* 7.10* 10.68* 9.31*

IIIB 78.60 30.58 15.39* 6. 30* 6.30* 5.80* 5.78*

Total X* 123.53 60.68 23.99 15.59 13.40 I 6.48 15.09

df 14 14 13 13 12 13 12

»  Hot significant at .01 level.

ISbiCLJ 4SMLH»tf*SL; ^
nit
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Su bject I I I - 1 5

Model Parameter
Experiment

HIA I IIB

One-Element c .228 .332

Linear e .403 .630

RTI C .339 • 944
e .476 .665

LS-2 a .227 .396
f .515 .456

LS-3 a .201 .268

iHi
f .412 .160
c .822 • 774

LOS-2 a .265 .455
f .477 .393

LOS-3 a .290 .397
f .561 .458

*1 .393 .001

One- Linear
Exp. Element Model m i L0-2 LS-3 LOS-2 LOS-3

IIIA 99.83 17.55* 16.90* 14. 98* 12.77* 15.30* 14.70*

IIIB 75.86 3.42* 3.29* 5.63* 3.31* 5.70* 5.64*

Total X* 175.69 20.97 20.19 20.61 16.08 21 .00 20.34

df 14 14 13 13 12 13 12

* Hot significant at .01 level.

* r m t s k a j t i  ,
, v . *
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lH

Subject I I I - 1 6

Model Parameter
Experiment

HIA IIIB

One-Element c .275 .314

Linear e • 405 .516

KFI C .724 • 737
e .563 .630

LS-2 a .252 .341
f • 552 • 536

LS-3 a .252 .341
f • 552 .536
c 1.000 1.000

LOS-2 a .300 .404
r .500 .460

LOS-3 a .330 .401
f .660 .450

* 1 .317 .465

Exp.
One-
Element

Linear
Model RTI La-2 LS-3 LOS-2 LOS-3

IIIA 69.67 33.63 26.77* 10 .58* 10.58* 11.04* 8.93*

IIIB 55.32 23.13* 19.38* 10 .44* 10.44* 10.51* 10.51

Total X4 124.99 56.76 46.15 21.02 21.02 21.55 19.44

df 14 14 13 13 12 13 12

•  Hot significant at .01 level.
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Subject H I -17

Model Parameter
Experiment

IIIA IIIB

One-Element c •423 .242

Linear 0 .405 .407

HTI c .437 .691
e • 97 6 • 583

LS-2 a .403 .202

f • 724 .435

LS-3 a .408 .202
f .723 .435
c 1 .000 1.000

LOS-2 a .390 .237
f .506 .422

LOS-3 a • 543 .259
f .999 .489

*1 .296 .292

Exp.
One-
Element

Linear
Model BTI Lo—2 LS -3 LOS-2 LOS-3

IIIA 19.90* 62.13 19.52* 10.75* 10.75* 17.92* 7.71*

IIIB 163.00 22.67* 19.00* 8.71* 8.71* 8.59* 7.93*

Total X4 179.90 84.85 33.52 19.46 19.46 26.51 15.64

df 14 14 13 1 3 12 13 12

*  Hot significant at .01 level
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Subject III-18

Model Parameter
Experiment

HIA IIIB

One-Element c .251 .474

Linear e .358 .706

HTI c • 531

COIT
'n

CO

6 .68d .330

LS-2 a .293 .541

•4.
f • 748 .479

LS-3 a .293 .211
r • 748 .046
c 1.000 • 785

LOS-2 a .362 .608
f .604 .366

LOS-3 a .299 .400
r .763 .096

*1 .028 .450

One- Linear
Sxp. Element Model HTI Lo-2 LS-3 LOS-2 LOü—3

IIIA 36.38 44.75 22.86« 11.53* 1 1 . 53* 15. 92* 1 1 .49*

IIB 34.32 5.31* 3.37* 3.16 1 .79* 3.28* 2.62*

Total X* 70.70 50.06 26.23 14.69 13.32 19 .20 14.11

df 14 14 13 U 12 13 12

*  Mot significant at .01 level.

- y » *■ '¿'ft*.
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