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Abstract 

 

Cyanobacteria are a diverse group of primary producers that can form dense blooms which are 

a major threat to freshwater quality and global water security.  While nutrient enrichment is a 

key driver of cyanobacteria abundance, there is a broad consensus that ‘blooms like it hot’ and 

that climate warming will promote the proliferation of cyanobacterial blooms.  A highly cited 

hypothesis suggests that nutrients and temperature enhance cyanobacterial blooms 

synergistically, but only a few studies have tested this directly.  Furthermore, while climate 

change is often treated as a single stressor – warming – the impact on cyanobacteria of other 

potentially interacting factors, such as seasonal or extreme rainfall patterns, also need to be 

understood.  This thesis explores, the multiple stressor effects of global change factors – 

eutrophication, climate warming and changes in rainfall patterns – on cyanobacterial 

abundance.  This extends our knowledge from simple single stressor studies to dynamic, 

multiple-stressor studies using a range of approaches and scales. This includes analysis of 

European scale observational data from 494 lakes (chapter two), a mesocosm experiment 

(chapter three) and a process-based phytoplankton community model, PROTECH (chapter 

four).  Overall, it is hard to generalise cyanobacterial responses to multiple stressors; both 

synergistic and some surprising antagonistic relationships were observed influenced by:  lake 

characteristics (chapter two); the gradient of the stressor tested (chapter three); the measure of 

the response (chapter three); the timing and magnitude of the stressor (chapter four) and the 

location of the waterbody (chapters two and four).  Broad generalisations can be made within 

lake types, yet, despite the need for complex models to deliver improved understanding, 

complex solutions may not be required.  While precise sensitivities to climate stressors may 

vary, nutrient control remains the clearest mitigation measure to reduce the abundance of 

cyanobacteria in freshwaters, and this becomes even more important in the face of climate 

warming.   
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Chapter 1   

Introduction 

 

Fig. 1.1 Cyanobacteria in Windermere, the English Lake District in August 2015.  Top, a bloom 

of Dolichospermum sp., in a sheltered bay of this large mesotrophic lake.  Bottom left, a water 

sample from the bay left to stand to demonstrate buoyancy through the production of gas vesicles.  

Bottom right, the same sample under a microscope – the bloom is dominated by Dolichospermum 

sp., a nitrogen fixing genus, of which some species and variants within species can produce 

hepatoxins (cylindrospermopsin and microcystin) and neurotoxins (anatoxin-a, β-N-methylamino-

L-alanine, neosaxitoxins and saxitoxins). 
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1.1  The global problem of cyanobacterial blooms 

Cyanobacteria are microscopic, prokaryotic, phototrophic primary producers (blue-green 

algae) which evolved around 3.5 billion years ago (Schopf & Packer, 1987).  They are a diverse, 

cosmopolitan group with eco-physiological characteristics that allow them to survive in a wide 

range of environmental niches (Dokulil & Teubner, 2000; Carey et al., 2012).  These include: 

the ability to fix atmospheric nitrogen (Wood et al., 2010); the ability to regulate buoyancy 

through gas vesicle production (Ganf and Oliver, 1982); the production of resting cells, 

akinetes (Nichols & Adams, 1982; Adams & Duggan, 1999) allowing the survival of 

adverse/stressful conditions; higher temperature optima (Canale & Vogel, 1974; Reynolds, 

2006); affinity for phosphorus and nitrogen (e.g. Takamur et al., 1987); the ability to sequester 

luxury P intracellularly (Jacobsen and Halmann, 1982; Isvánovics et al., 2000); superior CO2 

uptake kinetics (Shapiro 1997), high pH optima (Dokulil & Teubner, 2000), and resistance to 

grazing because of their size and morphology (Burns, 1987; Lampert, 1987; Gliwicz, 1990) 

and toxin production (Fulton 1988; Gobler et al., 2007).  These traits are key to their success 

and dominance.  Not all genera and species possess all these properties and further differences 

in morphologies affect functional traits. This functional diversity opens up the potential for 

dominance in many environmental settings, for example Planktothrix can dominate in low light 

environments (Reynolds, 1984) because of its morphology and accessory pigments (Reynolds 

, 1997) while Dolichospermum can dominate in thermally stable, nutrient limited environments 

because of its ability to regulate buoyancy, allowing access to hypolimentic nutrient stores 

(Wagner & Adrian, 2009) as well as its ability to fix nitrogen (Reynolds et al., 2002; Dokulil 

& Teubner, 2000). 

Under certain environmental conditions cyanobacteria can dominate over other 

phytoplankton groups, forming dense blooms and surface scums.  While blooms have been 

documented for centuries (e.g. Hayman, 1992; Francis, 1878), the incidence and intensity of 

cyanobacterial blooms has increased in recent decades (O’Neil et al., 2012; Taranu et al., 

2015).  The ecological consequences of cyanobacterial dominance, and the challenges they 

present, are of particular interest.  Not only does their dominance and high biomass adversely 

affect biodiversity and aesthetics, reducing cultural, economic and functional ecosystem 

services (Steffensen 2008) but also their potential toxicity can pose serious health risks to 

aquatic organisms and humans (Chorus & Bartram, 1999; Codd et al., 2005).  Considering the 

importance of inland waters for the benefits of ecosystem goods and services (Postel & 

Carpenter, 1997), the increased threat from cyanobacterial blooms is of great concern. 
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1.2 Anthropogenic drivers of cyanobacterial blooms 

Human activities have been implicated in the rise in cyanobacterial blooms.  At the centre of 

this is the over-enrichment of freshwaters which has increased as human populations have 

expanded.  While nutrient enrichment is recognised as a key driver of cyanobacteria abundance 

(e.g. Taranu et al., 2015), there is also increasing interest in the role of climate change (Paerl 

& Huisman, 2008; Carey et al., 2012; O’Neil et al., 2012).  This has mainly focused on global 

warming, as warmer temperatures suit the traits of many bloom forming, and often toxic 

cyanobacteria (Paerl & Huisman, 2008; Kosten et al., 2009; Carey et al., 2012). 

1.2.1 Nutrient enrichment 

Anthropogenic overenrichment of freshwaters comes from sewage, industrial activities, 

agricultural runoff and urbanisation.  While many countries now regulate point sources of 

nutrients, non-point sources of nutrients such as runoff from agricultural or urban lands 

continues to be a major source of phosphorus and nitrogen to aquatic systems (Carpenter et al., 

1998).  Furthermore, the internal cycling of nutrients within lakes remains as a legacy of past 

activities (Nürnberg, 2009).  It is estimated that net phosphorus storage in terrestrial and 

freshwater ecosystems is 75% greater than pre-industrial levels of storage (Bennet et al., 2001).  

Nutrient loading and in-lake concentrations are also influenced by climate change.  Warming 

enhances the internal cycling of nutrients within lakes (e.g. Søndergaard et al., 2003; Jensen & 

Andersen, 1992) as well as affecting in-lake concentrations because of evaporative loss and 

reduced water inflow (Jepessen et al., 2009).  It is expected that nutrient loading will also 

become increasingly variable because of modified hydrology - the extent of these change will 

vary among regions and seasons (Jeppesen et al., 2009; Jeppesen et al., 2011).  For example, 

it is expected that there will be an increase in nitrogen loading in northern temperatre regions 

because of enhanced runoff (Sinha et al., 2017).  In Europe, nutrient enrichment is considered 

the primary stressor in inland freshwater (Nõges et al., 2015). 

Nutrient overenrichment leads to the eutrophication of freshwaters (Schindler 1977).  

This has become a global problem that will likely worsen as human populations expand and as 

countries develop (Millenium Ecosytem Assessment, 2005).  While nutrient enrichment 

stimulates all algal growth (Reynolds, 1984), paleolimnological studies from the past two 

centuries show that cyanobacteria have increased at a rate greater than other phytoplankton in 

respone to enrichment (Moorhouse et al., 2014; Taranu et al., 2015).  Cyanobacteria have traits 

which allow them to compete effectively for nutrients (Carey et al., 2012) such as the ability 
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to fix atmospheric nitrogen which can be advantageous under nitrogen deplete conditions 

(Smith 1983, Schindler et al., 2008; Vanni et al., 2011).  While nutrients are clearly an 

important driver of large biomass events, the specifics of the role of nutrients in the 

development of blooms of cyanobacteria are still being studied.  For example, whether 

phosphorus or nitrogen is the limiting nutrient (Smith, 1983; Elser et al., 2007; Paerl et al., 

2016).  Despite the advantages cyanobacteria have in the sequestration and storage of nutrients, 

being able to respond to nutrient enrichment depends on other factors and therefore while 

nutrient enrichment is a prerequiste for dominance, it is not necessarily predicted by it 

(Carvalho et al., 2013).   

1.2.2 Climate Warming  

In the past hundred years global temperatures have increased by 0.74 ± 0.18°C (Trenberth et 

al., 2007) and it is forecasted that this trend will continue with heatwaves predicted to be more 

intense, more frequent and lasting for longer (Meehl et al., 2007).  Lakes are responding rapidly 

to global warming, with an average increase in water temperature of 0.34°C a decade during 

the summer (O’Reilly et al., 2015).  Warming also influences the onset, strength and duration 

of the stratification of lakes, with stratification occurring earlier (McCormick 1990; Winder 

and Schindler, 2004) and for longer (Wagner and Adrian, 2009; Markensten et al., 2010).   

There are two principal mechanisms by which warming may enhance cyanobacteria 

dominance: (a) directly through enhanced growth rates and (b) indirectly through enhanced 

lake thermal stability.  Firstly, many common bloom forming cyanobacteria taxa, such as 

Microcystis and Dolichospermum, have growth optima at higher temperatures (Robarts and 

Zohary, 1987; Butterwick et al., 2005) which may provide them with a competitive advantage 

as water temperatures increase (De Senerpont Domis et al., 2007; Jöhnk et al., 2008).  Studies 

of natural systems have found positive relationships between temperature and cyanobacteria 

abundance (e.g. Kosten et al., 2009; Taranu et al., 2012; Rigosi et al., 2014), as well as evidence 

for the expansion of the geographic range of tropical species to temperate lakes (Wiedner et 

al., 2007).  Studies have also found evidence for the earlier onset of Microcystis growing season 

and the prolonged duration of blooms in response to elevated water temperatures (Zhang et al., 

2012; Deng et al., 2014).  Secondly, many bloom forming cyanobacteria can migrate vertically 

by altering their buoyancy.  This trait becomes advantageous under stratified conditions as they 

can migrate down to access nutrient-rich waters (e.g. Ganf & Oliver, 1982; Wagner & Adrian, 

2009) and upwards to access light near the surface (Ibelings et al., 1991).  Other phytoplankton 
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taxa such as diatoms, cannot compete as well under these conditions because of increased 

sinking rates and nutrient limitation (Paerl & Huisman, 2009).  Many studies have found 

stratification to be an important factor in explaining cyanobacterial bloom dynamics which is 

specifically linked to the ability of cyanobacteria to regulate buoyancy (Jöhnk et al, 2008; 

Wagner and Adrian, 2009).  Furthermore, there is evidence that blooms of cyanobacteria can 

initiate a positive feedback to strengthen stratification (Kumagai et al., 2000; Jones et al., 2005; 

Rinke et al., 2010) which can potentially prolong blooms.   

 It is expected that these stimulatory, direct and indirect, effects of warming on 

cyanobacteria will proliferate the expansion of cyanobacterial blooms in nutrient enriched 

lakes.  Specifically, it is hypothesised that there will be a synergistic interaction between 

temperature and nutrients (Paerl & Huisman, 2008; Moss et al., 2011; Havens & Paerl, 2015).  

While this is a popular hypothesis, until the past few years, very few studies have tested it.  The 

evidence so far tells a complex story, suggesting that it may be hard to generalise the effects of 

temperature on cyanobacterial blooms.  For example, evidence suggests that lake type plays an 

important role (e.g. Taranu et al., 2012; Rigosi et al., 2014) and that the response may change 

along stressor gradients (Rigosi et al., 2014; Adrian and Huber, 2009; Piggott et al., 2015).   

 

1.3  Global change – a multiple stressor view 

1.3.1 Other climate change effects 

To date, most studies have incorporated climate change as a single stressor on the natural 

environment– warming.  In reality, this masks a great deal of complexity as climate change is 

manifested as dynamic changes in the environment, incorporating ‘press’ disturbances – 

warming – and ‘pulse’ disturbances – extreme events (Lakes, 2000).  Associated with climate 

warming are global changes in hydrology, the extent of which will vary on a regional (Milly et 

al., 2005) and catchment (Fowler & Kilsby, 2007) basis.  Of particular interest, in terms of 

phytoplankton community dynamics, is the predicted (IPCC, 2013) and observed (Lehmann et 

al., 2015) increase in extreme rainfall and heatwave events.  These events are predicted to occur 

in the summer (July-September) at mid to high latitudes (Christensen and Christensen, 2003).  

Modified hydrology is considered as one of the main stressors in inland freshwaters because 

of the large effect changes in flushing rates has on the physical and chemical environment 

(Nõges et al., 2015). 
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Water movement influences nutrient loading, the retention time of lakes, the thermal 

stability of the water column as well as turbidity/colour and thus affects the selection pressures 

on phytoplankton community composition.  Extreme rainfall events result in sudden 

environmental changes in a lake (e.g. Sadro & Melack, 2012) – notably, an increased delivery 

of nutrients and organic material from the catchment, changes in the stability of the water 

column and losses of phytoplankton biomass as well as dissolved and biologically-bound 

nutrients through increased hydraulic flushing.  These changes result in shifts in phytoplankton 

community composition and diversity, favouring ruderal taxa with morphological and 

functional traits that suit conditions of lower light, higher nutrients and greater mixing (Padisák 

et al., 1988; Hudnell et al., 2010; Reynolds et al., 2012).  While some groups may be resilient 

to change, or even flourish, others will be excluded.  Cyanobacterial blooms may be 

particularly sensitive to flushing events as most bloom forming genera are sensitive to 

turbulence, are slow growing and have functional traits suited to stable water columns 

(Steinberg & Hartmann, 1988; Perry et al., 1990; Jöhnk et al., 2008; Huber et al., 2012).   

The extent of the impact of extreme events on phytoplankton assemblages will depend on 

many aspects relating to the event itself such as the timing (Verspagen et al., 2006; Padisák, 

1993; Padisák et al., 1999; Elliot, 2010), intensity (Harris & Baxter, 1996; Oh and Kim, 1995; 

Ahn et al., 2002) and frequency (Padisák et al., 1988) but also on the characteristics of the lake, 

catchment (Reichtwaldt & Ghadouani, 2012) and other factors such as climate and nutrient 

source (Elliott et al., 2009).  It is expected that disturbances will have the greatest effect at the 

time of seasonal succession when dominant taxa are more sensitive to the changes in light 

availability and mixing (Verspagen et al., 2006).  The timing of the event may also affect 

whether lagged effects can occur.  Spring extreme rainfall events could benefit summer blooms 

of cyanobacteria because of increased nutrient loading (Paerl & Huisman, 2008), and higher 

flushing through the winter can delay and reduce the vernal bloom with similar nutrient benefits 

for cyanobacteria later in the year (Moorhouse et al., 2014).  Events at higher frequencies may 

be more disruptive to cyanobacteria than one-off events (Connell, 1978; Padisák et al., 1988) 

but this may also be seasonally dependent - increasing the frequency of events during spring 

may have less effect on community composition as dominant vernal bloom taxa are suited to 

these conditions (Elliott, 2010).  

While the impact of extreme events are discussed as an important global change factor 

(Paerl & Huisman, 2008; Carey et al., 2012; O’Neil et al., 2012), pulse disturbances are poorly 

studied.  The difficulty is that available observational data only rarely includes extreme flow 
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events, making it hard to compare across systems or temporal scales.  Studies of single extreme 

events are highly system specific as the extent of physico-chemical change, and thus biological 

impacts, depends on event-, lake- and catchment characteristics.  Greater understanding of the 

biological impacts of extreme climatic events can be gained by studying (a) the response to 

different events and (b) the response to one event but in different contexts of catchment, lake 

type and antecedent weather.   

1.3.2 Global change – a multiple stressor view 

The global reach of anthropogenic pressures means that many lakes are now exposed to 

multiple stress.  In Europe, 45% of lakes are affected by multiple pressures such as agriculture, 

urbanisation and climate change.  Specifically, nutrient enrichment, warming and modified 

hydrology are the most common stressor combinations in lakes (Nõges et al., 2015).  Studies 

which have tested multiple stressor effects on cyanobacteria abundance have focused on the 

effects of nutrient enrichment and warming and show that the response may not be easily 

generalisable (Taranu et al., 2012; Rigosi et al., 2014).  Variability in biological responses to 

multiple stressors in aquatic systems are found across scales of space and time (Crain et al., 

2008; Côté et al., 2016; http://mars-project.eu/index.php/publications.html). These studies 

suggests that any inferences about the effect of multiple stressors that can be made from single-

factor studies are limited (i.e. you cannot just add them up), emphasising the need for more 

studies focusing on the response of organisms, communities and ecosystems to multiple 

stressor combinations.  Taking an inclusive, multiple stressor approach is increasingly 

necessary and should incorporate the full multiple stressor landscape, including press and pulse 

disturbances and realistic environmental change scenarios.   

 

1.4  Thesis contribution  

The overarching aim of this thesis is to contribute to our understanding of how the most 

important anthropogenic stressor that currently impact lakes – nutrient enrichment, warming 

and hydrological change – will affect cyanobacteria abundance and thus the future risk of 

cyanobacterial blooms.  This is achieved by using large scale spatial data to explore the 

response to these environmental gradients in different types of lakes (chapter two), a 

mesocosm scale experiment (chapter three) to explore the response to extreme rainfall events 

in combination with a future step change in water temperature (+4°C) and nutrient enrichment 

http://mars-project.eu/index.php/publications.html
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(eutrophic to hypertrophic) and finally, a process based phytoplankton community model 

(chapter four) to explore the effects of extreme flow events at different times of the year and 

of different magnitudes.   

The first objective of this thesis is to incorporate changes in hydrology as an important 

stressor, which to date has received relatively little attention compared to the effects of climate 

warming.  This factor will be incorporated into all chapters and will be explored as a press 

disturbance (retention time, on a continuum) and pulse disturbance (extreme rainfall events).  

The second objective is to move to a more multi-dimensional stressor space that is 

representative of the pressures that inland freshwaters are now experiencing, making use of 

advanced statistical methods, different approaches (observational, experimental and 

modelling) and different scales to disentangle the effects of multiple factors.  Other specific 

objectives which sit within these are to: (a) test the synergistic interaction between temperature 

and nutrients (chapter two and three) and (b) assess the response of cyanobacteria to multiple 

stressors in different types of lakes (chapter two).  Together, these objectives make a novel 

contribution which will contribute to our understanding of the risk of cyanobacterial blooms 

under future global change.   

 

1.5  Outline of thesis chapters 

Chapter two 

Chapter two makes use of an existing large dataset of nearly 500 lakes.  In this chapter the 

combined effect of temperature, nutrient enrichment and flow (retention time) on cyanobacteria 

biovolume was tested in different types of lakes which were defined by combinations of 

alkalinity, colour and mixing types.  A lake type approach was taken in recognition of the 

differential sensitivity of lakes of different types to environmental stressors.  While lake type 

has been considered by others in the context of cyanobacterial responses to nutrient enrichment 

and warming, these studies focus on single aspects of type – depth (Taranu et al., 2012) and 

nutrient trophic level (Rigosi et al., 2014) –this chapter is novel in incorporating multiple key 

environmental factors that shape phytoplankton community composition in lakes.  Hydraulic 

flow was incorporated in this chapter as a continuous variable, rather than as extreme events.   
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Chapter three 

Chapter three describes a shallow lake mesocosm experiment which assessed the potential 

interactions between warming, nutrient enrichment and extreme rainfall events on the 

abundance and composition of cyanobacteria.  This study is novel in focusing on the impact 

and recovery of biomass loss from flushing events, but also for testing the combined effects of 

three major freshwater stressors at once.  The response of cyanobacteria was compared to that 

of the whole phytoplankton community to assess whether there were any major compositional 

differences.  The response of genera within the cyanobacteria community was also tested to 

assess for genera specific responses.   

Chapter four 

Chapter four takes advantage of the computational power and short run times of computer 

models to explore the effects of extreme events.  Specifically, the phytoplankton community 

model PROTECH (Phytoplankton RespOnses to Environmental Change) was used to explore 

the sensitivity of cyanobacteria to one-off hydraulic flow events in a typical stratified lake.  The 

focus was on how event characteristics, specifically the timing and intensity, may affect the 

impact and recovery from perturbation and how this may be shaped by other environmental 

factors, specifically nutrient loading, weather (temperature and wind) and the location of the 

lake.  This chapter is novel in that it explores the effects of extreme events across temporal 

scales and stressor gradients (nutrients and flushing) while also incorporating other important 

environmental factors such as lake location and weather.  This experiment was designed in 

recognition that the sensitivity to extreme climatic events will depend on the characteristics of 

the event but also on many attributes intrinsic to the lake and its catchment. 
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Chapter 2.   

European scale study: an analysis of the combined effects of 

temperature, phosphorus and retention time in lake types across 

a large spatial scale. 

Richardson, J., C. Miller, S. C. Maberly, P. Taylor, L. Globevnik, P. Hunter, E. Jeppesen, U. 

Mischke, S. J. Moe, A. Pasztaleniec, M. Søndergaard and L. Carvalho (2018).  Effects of 

multiple stressors on cyanobacteria abundance vary with lake type.  Global Change Biology 

24(11): 5044-5055. 

 

Fig. 2.1 Chapter two graphical abstract – climate effects explaining cyanobacteria and chlorophyll in 

494 European lakes.   
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1.1 Abstract 

Blooms of cyanobacteria are a current threat to global water security that is expected to increase 

in the future because of increasing nutrient enrichment, increasing temperature and prolonged 

drought.  However, the responses to multiple stressors, such as those above, are often complex 

and there is contradictory evidence as to how they may interact.  Here we used broad scale data 

from 494 lakes in central and northern Europe, to assess how cyanobacteria respond to nutrients 

(phosphorus), temperature and water retention time in different types of lakes.  Eight lake types 

were examined based on combinations of major factors that determine phytoplankton 

composition and sensitivity to nutrients: alkalinity (low and medium-high), colour (clear and 

humic) and mixing intensity (polymictic and stratified).  In line with expectations, 

cyanobacteria increased with temperature and retention time in five of the eight lake types.  

However, the sensitivity of cyanobacteria to temperature, retention time and phosphorus 

differed among types highlighting the complex response of lakes to multiple stressors.  The 

analyses suggested that lake types currently not at risk could be affected by warming in the 

future, since temperature effects were greatest in lakes at higher latitudes.  More work is needed 

to separate geographical from typological effects in order to provide advice for managers.  It 

is already clear that climate change will need to be accounted for when managing risk of 

cyanobacteria in lakes and a ‘one-size fits-all’ approach is not appropriate.  Our analysis shows 

that our understanding is greatly improved by considering how multiple stressors interact in a 

range of different lake types and that this approach could help better predict responses to future 

nutrient and climate changes.   
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1.2 Introduction 

Blooms of cyanobacteria are becoming an increasing threat to global water security.  Through 

anthropogenic activities we are not only enhancing but also combining some of the optimal 

conditions for the dominance of cyanobacteria.  At the local scale, and despite remediation 

efforts, nutrient enrichment is hardly abating (Oliver et al., 2017) as human populations grow 

and become more urbanised, requiring intensive agriculture to expand, while internal cycling 

of nutrients within lakes occurs as a legacy of past activities (Nürnberg 2009).  At a global 

scale, and at the forefront of this paper, is the issue of climate change.  In part, the recent rise 

in cyanobacteria has been attributed to climate warming (Paerl & Huisman, 2008; Kosten et 

al., 2012).  Increases in water temperature (O’Reilly et al., 2015) alongside increases in the 

duration and strength of thermal stratification (Wagner & Adrian, 2009) create optimal 

conditions for the physiological and functional traits of many cyanobacteria taxa such as higher 

temperature growth optima and the ability to regulate buoyancy (Carey et al., 2012).  In 

combination with high nutrient concentrations, it is feared that warming will result in the 

accelerated deterioration of water quality (Paerl & Huisman, 2008; Jeppesen et al., 2009; Moss 

et al., 2011). This synergism is widely discussed as an important risk factor, however the 

evidence so far suggests that this will not be a generalisable response; others have found that 

the effect of temperature is dependent on other environmental factors such as trophic setting 

(Rigosi et al., 2014) or by the mixing state of the lake (Taranu et al., 2012).  

Climate change also affects rainfall patterns (Milly et al., 2005).  Extreme rainfall events 

followed by prolonged periods of drought are expected to favour cyanobacteria because of the 

combined effects of elevated nutrients and stable physical conditions (Paerl & Huisman, 2008).    

Although, the benefits to cyanobacteria may depend on the frequency, duration, seasonal 

timing and intensity of rainfall events as well as other factors such as catchment land use and 

the ratio of catchment area to lake surface area (Padisák et al., 1988; James et al., 2008; 

Reichwaldt & Ghadouani, 2012).  Studies exploring the effect of changes in flow on the 

abundance of cyanobacteria in combination with other anthropogenic stressors are limited, yet 

flow dynamics as a driver of the abundance, composition and succession of phytoplankton 

communities is well documented (e.g. Søballe & Kimmel, 1987; Tolotti et al., 2010).  In order 

to understand fully the effects of climate change on water quality in lakes, climate change 

effects other than that of incremental changes in temperature need to be incorporated.  Although 

more challenging, the effects of extreme rainfall events, heatwave events and prolonged 
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periods of drought need to be understood and quantified in combination with anthropogenic 

nutrient enrichment (Michalak 2016). 

The evidence so far indicates that the response of cyanobacteria to multiple anthropogenic 

stress may not be generalisable i.e. that a “one-size fits-all” approach is not appropriate across 

all lakes (e.g. Taranu et al., 2012).  This is not surprising given that  phytoplankton have varying 

sensitivities and tolerances to their physical and chemical environment (Reynolds et al., 2012) 

and so many other factors, aside from temperature, nutrients and flushing rates, are involved in 

shaping phytoplankton biomass and community structure.  Previous analyses have examined 

the effect of lake type on the sensitivity of cyanobacteria to nutrients and temperature in 

combination, focusing on the effect of trophic type (Rigosi et al., 2014), mixing type (Taranu 

et al., 2012) and depth x artificial vs natural lakes (Beaulieu et al., 2013).  While they all 

highlight the importance of environmental context, they exclude other key environmental 

factors that shape community composition; for example, alkalinity (Ptacnik et al., 2008; 

Carvalho et al., 2011; Maileht et al., 2013), pH (Kosten et al., 2012; Beaulieu et al., 2013) and 

colour (Ptacnik et al., 2008; Maileht et al., 2013).  Thus, when exploring how lake type might 

influence the response of cyanobacteria to multiple stressors such as eutrophication, climatic 

warming and changing rainfall patterns, including more types is necessary in order to provide 

robust information for the effective management of lakes.   

Here, we took advantage of existing broad scale data from 494 natural European lakes to 

test whether eutrophication (phosphorus), temperature, and prolonged periods of drought 

(retention time) interact to exacerbate the problem of cyanobacteria.  We modelled the response 

of chlorophyll-a concentration, as a proxy for total phytoplankton biomass, and cyanobacteria 

biovolume in eight different lake types which were defined by combinations of alkalinity (low 

and medium-high alkalinity), colour (clear and humic) and mixing types (polymictic and 

stratified).  These types broadly match the common lake typologies which have been agreed 

across >25 European countries as part of the European Water Framework Directive (WFD, 

http://ec.europa.eu/environment/water/water-framework/) in recognition of the differential 

sensitivity of lakes of different types to environmental stressors.  We hypothesised that elevated 

temperatures and increased retention time would have a greater positive effect on cyanobacteria 

than on total phytoplankton, and that their effect would be in synergy with phosphorus.  We 

further hypothesised the sensitivity of these response variables to the interactions between 

multiple stressors would vary among lake types. 

http://ec.europa.eu/environment/water/water-framework/
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1.3 Methods 

Data 

i. Biological and chemical data 

Data on cyanobacteria biovolume (mm3 L-1), chlorophyll-a concentration (μg L-1), total 

phosphorus concentration (μg L-1) and lake type variables - altitude, depth, surface area, mixing 

status, humic content and alkalinity - were extracted from the WISER database (Moe et al., 

2013) and supplemented by additional datasets.  Total phosphorus was used as measure of 

nutrient enrichment as it is a robust indicator of eutrophication in freshwater systems (Howarth 

& Marino, 2006) and was also available for all lakes (whereas total nitrogen was not).  

Chlorophyll-a was used as a proxy for total phytoplankton abundance as this is the most 

widespread global measure of ecosystem quality used in lake management (OECD 1982); 

chlorophyll-a and total phytoplankton biovolume were strongly positively correlated (R2 = 

0.64, p <0.001).  Biological and phosphorus data were summarised as monthly means for July, 

August and September; a period when cyanobacteria blooms are most reported in temperate, 

northern latitudes and when biological sampling fortunately is also most intense, thereby 

maximising data availability.  Data were selected between 2000 and 2009 as sampling methods 

from this period were most standardised.  Each lake contributed a variable number of 

observations; on average six monthly observations from different combinations of years (2000 

– 2009) and months (July-September), Table S2.1 summarises the number of lake months for 

each year, month combination.  The hierarchical structure of the statistical models accounts for 

differences in the number of observation per lakes, through the random effect error term.    

ii. Catchment data  

Catchment data – delineations and percent (%) CORINE land cover – were extracted from the 

MARS geodatabase (Globevnik et al., 2017). 

iii. Climate data 

Historical air temperature and effective rainfall data were downloaded from the Agri4Cast Data 

portal (Toreti, 2014) of the Joint Research Centre (JRC) which contains daily meteorological 

parameters from weather stations interpolated on a 25 x 25 km grid.  Each lake was matched 

to the JRC square which contained the coordinates of the lake’s sampling point.  Mean monthly 

air temperature (°C) was used as a proxy for water temperature.  For a subset of 299 lakes 

which had measurements of epilimnion temperature a significant linear relationship was found 

between mean monthly air and mean monthly water temperature with a slope of 0.89 ± 0.02 
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(R2 of 0.59, p <0.001).  Monthly effective rainfall was summed over the area of the catchment 

(catchment effective rainfall), correcting for the effect of different land cover types on 

evapotranspiration rates using correction coefficients adapted from Mircea-Mărgărit (2015).  

Catchment effective rainfall was then used as an estimate of the volume of water flowing into 

and out of the lake.  To validate this estimate of outflow, measured outflow from a subset of 

46 lakes from Norway and the UK were compared to the outflow estimated from effective 

rainfall.  These countries were used as they had national datasets of flow gauge data for lake 

outflows.  A significant positive linear relationship was found between measured and estimated 

outflow with a slope of 0.69 ± 0.02 (R2 of 0.56, p <0.001) and this was used to adjust the 

outflow, estimated from the catchment effective rainfall.  Lake volume was estimated by 

multiplying the mean depth by the area of the lake.  The monthly flushing rate of the lake was 

estimated by dividing the adjusted outflow by the volume of the lake.  The retention time, in 

days, was calculated from the monthly flushing rate divided by 30 days in all cases.  Retention 

time was used because the expected response of cyanobacteria to all explanatory variables were 

then in the same direction and because intuitively it is a better representation of prolonged 

periods of drought. 

iv. Defining lake types  

The lake types defined in this study are based on common European typology schemes, used 

across all European countries in the European Water Framework Directive (WFD) (EC-JRC, 

2014; Lyche Solheim et al., 2015).  These lake types are based on geology, humic substances, 

mixing type/depth, altitude, size and region (Mediterranean).  Modification to these types were 

made as some of the factors which define these types – altitude, depth and surface area – co-

varied with the stressors (TP, temperature and retention time) and so their influence was 

retained through these variables (Fig. S2.1).  Note that any additional lakes without information 

on these variables were then extracted from the WISER database (2 lakes).  Alkalinity also 

positively co-varied with TP (Fig. S2.1) but was retained as this relationship showed some non-

linearity; in low alkalinity lakes the relationship was not seen, yet in these lakes alkalinity and 

cyanobacteria showed statistically significant positive co-variation (R2 = 0.17, p <0.001) in the 

lakes, supplementary material (Fig. S2.2 and S2.3), suggesting that alkalinity is an ecologically 

relevant type variable to include.  Furthermore, others (e.g. Carvalho et al., 2011) have found 

alkalinity to be an important predictor of cyanobacteria. 
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Lake types were defined by combining the broad European type levels for alkalinity, 

humic substances and mixing to give 18 lake types.  These lake characteristics are central to 

the European typology schemes, and have been shown by others (Ptacnik et al., 2008; Maileht 

et al., 2013) to reflect ecologically meaningful characteristics that explain the distribution of 

phytoplankton and their response to eutrophication.  Gower distance clustering (using the daisy 

function from the cluster package for R statistical software (Maechler et al., 2012) confirmed 

that these lake types sufficiently explained variation in cyanobacteria (Fig. S2.4 and Fig. S2.5).  

Although a large number of lakes were included in the dataset, imbalances in the data meant 

that 18 types could not be adequately modelled, therefore we further modified these types by 

combining ecologically similar levels of alkalinity and humic type.  For alkalinity we retained 

‘low alkalinity’ (<0.2 mEq L-1) as a distinct level, and medium and high alkalinity (>0.2 mEq 

L-1) were combined into a new level – ‘medium-high alkalinity’.  For humic type we retained 

‘low humic’ as a distinct level (colour <30 mg Pt L-1), renaming the level as ‘clear’, and 

medium and high humic (colour > 30 mg Pt L-1) were combined into a new level – ‘humic’.  

This merging of levels is consistent with the finding that bloom-forming cyanobacteria have a 

preference for neutral-alkaline lakes (Shapiro, 1984; Carvalho et al., 2011; Maileht et al., 

2013), and that cyanobacteria dominate more often in clear lakes than in humic lakes (Ptacnik 

et al., 2008).  Furthermore, clusters formed from the Gower distance analysis also show a 

tendency for these levels to be grouped together (Fig. S2.6).  The biovolume of cyanobacteria 

differed statistically significantly between levels of each lake type variable (Fig. S2.7): 

alkalinity (low vs med-high alkalinity, t = -22.5, df = 1574, p <0.001); humic (clear vs humic, 

t = 7.78, df = 1579.8, p <0.001) and mixing type (stratified vs polymictic, t = -7.03, df = 600.97, 

p <0.001).  All combinations of these new levels gave eight types, Fig. 2.2 a shows the spatial 

distribution of the 494 lakes by type.  A plot of the Silhouette width, Fig. S2.4 (used to 

determine the number of clusters) indicates that most of the differences between clusters are 

captured within 10 clusters and so reducing the clusters from 17 to 8 can be supported.  

Variation in cyanobacteria biovolume was explained by the types (Table S2.3), although 

differences between polymictic and stratified lakes were less clear when humic type and 

alkalinity type were taken into account (Fig. 2.2b, see also supporting information).  The 

clearest difference in cyanobacteria biovolume was seen between levels of alkalinity, both as 

a single lake type variable but also in combination with other lake type variables (Fig. 2.2b and 

Fig. S2.7). 
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Table 2.1. Response and explanatory variables included in the analysis. Means ± standard deviations and minimum and maximum values 

in parentheses, are summarised by each lake type.  Total number of lakes in the analysis was 494.   

 Phytoplankton parameters Stressors 

Lake type Number 

of  lakes  

Total 

cyanobacterial 

biovolume (mm3 

L-1) 

Chlorophyll-a 

(μg L-1) 

Mean monthly 

total phosphorus 

(μg L-1) 

Mean monthly 

air temperature 

(°C) 

Monthly 

retention time 

(days) 

Polymictic       

low alkalinity, clear 

 

3 0.005 ± 0.01   

(0 – 0.02) 

3.21 ± 1.8   

(1.2 – 5.6) 

9.6 ± 5.1         

(4 – 15) 

15.7 ± 1.9  

(13.6 – 18.6) 

21.7 ± 22.8  

(7.6 – 61) 

low alkalinity, humic 

 

15 3.1 ± 17         

(0 – 114) 

10.1 ± 12.4  

(1.2 – 61) 

21.4 ± 17.5  

(3.6 – 91) 

14.6 ± 1.9  

(9.1- 18) 

17.3 ± 29.6  

(1.7 – 207.7) 

med-high alkalinity, clear 

 

89 7.9 ± 21         

(0 – 224) 

34 ± 33          

(2 – 238) 

50.1 ± 25.8  

(10 – 100) 

17 ± 2.9       

(9.1 – 24.0) 

48 ± 68.6     

(0.2 – 339.7) 

med-high alkalinity, 

humic 

 

45 1.0 ± 2.0        

(0 – 11) 

20.1 ± 22.1     

(1 – 120) 

35.8 ± 20.6     

(2 – 98) 

16.2 ± 2     

(10.6 – 20) 

32.9 ± 53.7  

(0.6 – 351) 

Stratified       

low alkalinity, clear 

 

70 0.05 ± 0.3      

(0 – 5.3) 

3.3 ± 2.6              

(0.2 – 21.5) 

8.2 ± 4.9              

(1 – 37.6) 

14.0 ± 2.6        

(6.6 – 19.9) 

82.3 ± 86.6        

(2.9 – 363.2) 

low alkalinity, humic 

 

70 0.17 ± 0.9      

(0 – 12.1) 

8 ± 11.8       

(0.3 – 110.3) 

14.5 ± 11.8          

(2 – 97) 

14.8 ± 2.4           

(6.2 – 20.2) 

63.3 ± 74.2          

(1.8 – 359.9) 

med-high alkalinity, clear 163 1.9 ± 3.7        

(0 – 31) 

16.5 ± 54         

(0.7 – 1025) 

31.7 ± 20.1          

(2 – 99) 

17.1 ± 2.7        

(5.5 – 24) 

83.0 ± 81.7          

(2.5 – 360) 

med-high alkalinity, 

humic 

39 1.0 ± 2.6            

(0 – 26) 

16.0 ± 22.3     

(1.4 - 185.8) 

33.2 ± 28.3      

(2 – 100) 

15.6 ± 3.0        

(5.3 – 20.6) 

82.5 ± 96.6       

(3.6 – 356) 
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Fig. 2.2 Distribution of lake location (a) and cyanobacteria biovolume (b) by lake type.  Lake types are 

combinations of: alkalinity, low (<0.2 mEq L-1) and med-high (>0.2 mEq L-1); humic content, clear 

(colour <30 mg Pt L-1) and humic (colour > 30 mg Pt L-1); and mixing type, stratified and polymictic.  

In (b) the shaded areas are for exceedance of low, 2 mm3 L-1, (light grey) and medium, 10 mm3 L-1, 

(dark grey) WHO (World Health Organisation) recommended threshold values for drinking and bathing 

(Chorus & Bartram, 1999), the conversion of WHO cell number guidelines to biovolume was taken 

from Carvalho et al., 2013.  Cyanobacteria biovolume (mm3 L-1) is log transformed and averaged for 

each individual lake.  Letters (a, ab, bc and c) indicate significant differences (at p <0.05) in mean 

cyanobacteria between groupings of lake types, Tukeys test for multiple comparison following an 

ANOVA (supplementary material).  Note that observations of cyanobacteria biovolume in polymictic, 

low, clear lakes are from three lakes only, this lake type is not subsequently modelled as there is 

insufficient data for more complex multi variable modelling. 
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Statistical analysis 

i. Relationships between variables 

Prior to the analysis, relationships between variables were investigated using pairwise 

scatterplots, inspecting for co-variation between explanatory variables and also for potentially 

non – linear responses using LOESS regression (Cleveland & Devlin, 1988).  Experimental 

studies have shown that interactions can change along the stressor gradient when the response 

to single stressors are non-linear (Piggott et al., 2015), therefore we chose to restrict the 

regression to the range of each stressor where the data were linearly related.  This was only 

relevant for the response to TP in which no relationship was found at high concentrations.  See 

‘exploratory analysis’ in the results section for more details.  

We found that TP and retention time negatively co-varied (Fig. S2.1), this relationship was 

influenced by lakes with very long retention times i.e. greater than a year.  To minimise 

potential issues with this co-variation confounding the response, as well as the potential of 

outliers skewing the response, we limited the data to lakes with monthly retention times of 

≤365 days (1 year).  This selection reduced the co-variation between retention time and TP 

(Fig. S2.9) while still representing 90% of the data 

ii. Lake type models 

Linear mixed effects models were fitted using the lme4 package for R statistical software 

(Bates et al., 2015) R, Version 3.4.1 (R Core Team (2017). To make distributions more 

symmetric, and assumptions of normality and homoscedasticity for error terms appropriate, 

cyanobacterial biovolume (mm3 L-1), chlorophyll-a (μg L-1), retention time (days) and TP (μg 

L-1) were ln-transformed.  All stressor variables were then standardised (mean centred and 

divided by the standard deviation) so that the size effect of single stressor effects (when no 

interaction terms were present) could be compared within models.   The potential interactive 

effects of TP, temperature and retention time on the biovolume of cyanobacteria and the 

concentration of chlorophyll-a were modelled in each lake type separately (seven models for 

cyanobacteria and seven models for chlorophyll-a).   For each lake type the following model 

was fitted:  

 

 

 



33 
 

Lake type model e.g. polymictic, medium-high alkalinity, clear lakes 

𝛾 = 𝛽0  +  𝛽1𝑋𝑇𝑃  +  𝛽2𝑋𝑇𝑒𝑚𝑝   +  𝛽3𝑋𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛  +  𝛽4𝑋𝑇𝑃 𝑥 𝑇𝑒𝑚𝑝  +  𝛽5𝑋𝑇𝑃 𝑥 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛  + 

 𝛽6𝑋𝑇𝑒𝑚𝑝 𝑥 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛  +  𝛽7𝑋𝑇𝑃 𝑥 𝑇𝑒𝑚𝑝 𝑥 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛  +  

𝛿𝑙𝑎𝑘𝑒𝐼𝐷 +  𝜀 , 𝛾~(0, 𝜎𝑙
2), 𝜀~(0, 𝜎𝑟

2) 

                     (2.1) 

where γ is the log response of interest (cyanobacteria biovolume, mm3 L-1 and chlorophyll-a, 

μg L-1), β0 is the intercept term, β1, β2, and β3 are model parameters for the TP term, temperature 

term and retention time term, respectively.  The model parameters for the interactions are β4 

(TP and temperature), β5 (TP and retention time), β6 (temperature and retention time) and β7 

(TP, temperature and retention time).  δ is the random effect term for lake ID which allows the 

response to vary on the intercept for individual lakes and ɛ is the overall error term, both with 

a mean of zero and unknown variance.  Initially, year and month were also incorporated into 

the model as random terms to account for sampling within lakes over multiple months and 

years but this did not explain additional variance so were removed from the final models for 

parsimony.  This model was then simplified by removing higher order interaction terms in turn, 

comparing simplified and more complex models using AIC and BIC, favouring simpler models 

when retaining more complex terms did not improve the model.  Degrees of freedom and p 

values were approximated using the lmerTest package (Kuznetsova et al., 2015) .  The variance 

explained by the model is reported as marginal R2 which describes the proportion of variance 

explained by the fixed factor(s) alone and conditional R2 which describes the proportion of 

variance explained by both the fixed and random factors (Nakagawa & Schielzeth, 2013).   
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1.4 Results 

Exploratory analysis  

Of the 572 lakes initially identified as being suitable for analysis i.e. lakes with complementary 

biological, climatic and typology data, 78 had mean monthly TP concentrations which 

exceeded 100 μg L-1 and therefore were omitted from the multiple stressor analysis as at high 

concentrations, TP explained little additional variation in the biovolume of cyanobacteria (Fig. 

S2.10).  Piecewise regression analysis (Muggeo, 2008) of the data (n = 2900) identified a break 

point of 4.1 natural log TP, or 60 μg L-1 (standard error = 0.16, R2 = 0.29).  However, to avoid 

potential biases of the dataset and to limit the number of lakes removed from the analysis we 

restricted regression to data where TP ≤ 100 μg L-1, which is also a more typical turning point 

identified in the literature for the widely reported asymptotic behaviours of chlorophyll-a  and 

cyanobacteria to TP (McCauley et al., 1989; Watson et al., 1992; Phillips et al., 2008; Carvalho 

et al., 2013).  The biovolume of cyanobacteria in these lakes was on average higher (mean 9.3 

mm3 L-1) than in lakes with TP concentrations below 100 μg L-1 (mean 1.9 mm3 L-1); t = -4.1, 

df = 277.9, p <0.001.  

In the 494 lakes analysed for the interactive effects of phosphorus, temperature and 

retention time, the mean monthly biovolume of cyanobacteria ranged from 0 to 225 mm3 L-1, 

while chlorophyll-a ranged from 0.2 - 1025 μg L-1.  23% of these lakes had an average 

cyanobacteria biovolume that exceed the WHO low risk threshold of 2 mm3 L-1 (Chorus & 

Bartram, 1999), the conversion of WHO cell number guidelines to biovolume was taken from 

Carvalho et al (2013).  These lakes were predominantly located in central Europe while lakes 

with lower cyanobacteria biovolume were located in northern regions (Fig. S2.11).  This spatial 

distribution of cyanobacterial abundance followed a pattern of decreasing temperature and 

decreasing TP concentrations with increasing latitude (R2 = 0.20, p <0.001 and R2 = 0.28, p 

<0.001 respectively).  Latitudinal patterns in TP concentrations also corresponded to a decrease 

in percentage arable land in the catchment with increasing latitude (Fig. S2.12). 

Multiple nutrient and climate effects on the abundance of cyanobacteria and phytoplankton   

Climate and phosphorus relationships varied across the different lake types and the response 

of cyanobacteria and chlorophyll-a differed (Table 2.2, Fig. 2.3).  
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Fig. 2.3 Model summaries highlighting climate effects (temperature and retention time) for the response 

of (a) cyanobacteria and (b) chlorophyll-a.   Each lake (point) is coloured according to statistically 

significant climate effects estimated for lake type to which the lake belongs.    Warmer colours represent 

positive climate effects, cooler colours represent either no climate effect or a negative climate effect 

(only applicable for retention time in chlorophyll-a models).  n/a are polymictic, low alkalinity, clear 

lakes (n = 3) which had insufficient data for analysis.  See Fig. 2.2 for the spatial distribution of lake 

types.  

We found that temperature and retention time had a stronger effect for cyanobacteria than for 

chlorophyll-a (Table 2.2, Fig. 2.3), being always positive for cyanobacteria, while we found 

negative retention time effects for chlorophyll-a in two of the lake types: polymictic, medium-

high alkalinity, clear lakes and stratified, medium-high alkalinity, clear lakes (Fig. S2.13).  

Total phosphorus was a significant predictor of chlorophyll-a in all lake types, while this was 

not the case for cyanobacteria: in some lake types retention time and temperature were 

identified as better explanatory variables. Statistically significant effects of temperature 

showed a spatial pattern, with most temperature effects (independent effects and synergistic 

interactions with phosphorus) in lakes at Northern latitudes (> 55º N).  The temperature 

gradient above this latitude ranged from 5.3 – 20.4 ºC (mean 14.8 ºC) while the gradient below 

this latitude ranged from 11.5 – 24 ºC (mean of 17.7 ºC). 
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Table 2.2.  Linear regression mixed effect models explaining cyanobacteria biovolume and chlorophyll-a concentration.  The models explain cyanobacterial 

biovolume (natural log, mm3 L-1) and chlorophyll-a concentration (natural log, μg L-1) in different lake types and result from backward stepwise selection, starting 

with a model with full interactions between the independent variables:  mean monthly total phosphorus (TP, μg L-1), mean monthly air temperature (ºC) and 

monthly retention time (days).  TP and retention time are log transformed and all explanatory variables are standardised (mean centred and divided by the standard 

deviation) for comparability.  Lakes are split into polymictic and stratified lakes (average conditions) and within each mixing regime into a further four types 

defined by combinations of alkalinity (low, med-high) and colour (clear, humic).  Each model has an additional error term which accounts for differences between 

individual lakes, after accounting for the fixed effects, this is the random intercept term.  The variance explained by the models is presented as marginal R2 which 

describes the proportion of variance explained by the fixed factor(s) alone and conditional R2 which describes the proportion of variance explained by both the 

fixed and random factors.  The significance level is denoted as ***p < 0.001; ** p < 0.01; *p < 0.05, ·p < 0.1 

   Model coefficients (standard error) R2 

Model  Lakes Lake Type TP Temp Retention TP x Temp Marginal Conditional 

 Cyanobacteria 

1a 3 polymictic, low Alk., clear Insufficient data 

2a 15 polymictic, low Alk., humic  1.25 (0.65)˙  1.15 (0.58)˙  1.71 (0.73)* 0.07 0.77 

3a 89 polymictic med-high Alk., clear   0.74 (0.27)**  0.05 0.69 

4a 45 polymictic med-high Alk., humic -0.05 (0.54) -0.22 (0.61) 0.78 (0.34)* 1.82 (0.73)* 0.16 0.61 

5a 70 stratified, low Alk., clear  0.54 (0.25)*  0.49 (0.16)**   0.05 0.63 

6a 70 stratified, low Alk., humic   0.29 (0.12)*  0.41 (0.19)*  0.03 0.61 

7a 163 stratified, med-high Alk., clear  0.77 (0.23)***    0.03 0.54 

8a 39 stratified, med-high Alk., humic     0.00 0.80 

 Chlorophyll-a 

1b 3 polymictic, low Alk., clear Insufficient data 

2b 15 polymictic, low Alk., humic  0.61 (0.17)***  0.45 (0.16)**   0.84 (0.20)*** 0.28 0.61 

3b 89 polymictic med-high Alk., clear  0.70 (0.10)***  -0.15 (0.06)*  0.21 0.78 

4b 45 polymictic med-high Alk., humic  0.32 (0.16)* -0.71 (0.19)***  0.30 (0.09)**  1.03 (0.22)*** 0.43 0.55 

5b 70 stratified, low Alk., clear  0.31 (0.07)***    0.09 0.58 

6b 70 stratified, low Alk., humic  0.35 (0.07)***    0.09 0.67 

7b 163 stratified, med-high Alk., clear  0.65 (0.07)***  -0.19 (0.06)**  0.29 0.63 

8b 39 stratified, med-high Alk., humic  0.51 (0.08)***  0.03 (0.04)   0.08 (0.04)* 0.35 0.81 



37 
 

There were synergistic interactions between temperature and TP in some lake types.  

However, unexpectedly, this interaction was not restricted to the response of cyanobacteria: in 

polymictic humic lakes, warming exacerbated the effect of TP on both the biovolume of 

cyanobacteria and chlorophyll-a concentration (Table 2.2, models 2 a, b and models 4 a, b; Fig. 

S2.14).  A statistically significant positive interaction was also found in stratified, medium-

high alkalinity, humic lakes but this was only significant for the response of chlorophyll-a  and 

much smaller in size effect than the interactions found in polymictic, humic lakes (Table 2.2, 

model 8b).  We did not find statistically significant evidence of interactive effects between 

retention time and phosphorus, nor between retention time and temperature, in any of the lake 

types for either response. 

The fixed effects of the regression models for chlorophyll-a concentration explained more 

variance than regression models for cyanobacteria biovolume (marginal R2, i.e. the proportion 

of variance explained by the fixed factor(s) alone, Table 2.2, Fig. 2.4a).  The percentage of 

cyanobacteria biovolume explained by TP concentration and climate effects (temperature and 

retention time) was less than 7% in all lake types, with the exception of polymictic, medium-

high alkalinity, humic lakes in which 16% of variance was explained.  The variance of 

chlorophyll-a explained by stressors ranged between 9 – 43%, with most models explaining 

over 20% of the variance (Fig. 2.4a).  

Although significant stressor relationships were detected, the natural variability between 

lakes was much larger.  As an example, Fig. 2.4b shows that despite the interaction between 

TP and temperature being the same in all polymictic, low alkalinity humic lakes for any given 

TP – temperature combination, the average biovolume of cyanobacteria varied among 

individual lakes.  The variance in the random intercept for each lake within each type is shown 

in Fig. S2.15.  
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Fig. 2.4 Marginal and conditional variance explained by the models. (a) Boxplot of conditional R2 (blue) 

and marginal R2 (green) from all lake type models (n = 7 lake types) for chlorophyll-a and cyanobacteria 

responses.  (b) Random effect plot of the response of cyanobacteria to TP in polymictic, low alkalinity, 

humic lakes (while keeping temperature constant).  The fixed response is shown by the bold black line, 

individual lake responses are shown by the orange lines (i.e. differences in the intercept). 
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1.5 Discussion 

 

The sensitivity of cyanobacteria to multiple stressors varies with lake type 

Our results are consistent with previous work which suggests that the response of cyanobacteria 

to environmental change will be shaped by other environmental factors (Taranu, Zurawell et 

al. 2012, Beaulieu, Pick et al. 2013, Rigosi, Carey et al. 2014, Haakonsson, Rodríguez-Gallego 

et al. 2017).  Unlike these studies, which mainly focused on one lake type factor, we combined 

a wider set of lake type variables that are also likely to shape community composition.  We 

found that the sensitivity of cyanobacteria to temperature, retention time and phosphorus varied 

between lake types, suggesting that these additional lake typology factors are important in 

shaping the response of cyanobacteria to environmental change and could help better predict 

responses to future nutrient and climate changes.  This is not surprising as the abundance of 

cyanobacteria is not just affected by factors that affect the amount of phytoplankton such as 

phosphorus, temperature and retention time but also by factors that shape community 

composition such as alkalinity, colour and mixing depth (Ptacnik, Lepistö et al. 2008, Maileht, 

Nõges et al. 2013, Lenard and Ejankowski 2017).  Our results corroborate other studies that 

show the importance of allowing for interactions between multiple lake type factors; for 

example, interactions between mixing regime and colour (Havens and Nürnberg 2004), 

alkalinity and colour (Ptacnik, Lepistö et al. 2008), depth and alkalinity (Phillips, Pietiläinen 

et al. 2008) have been shown to shape phytoplankton nutrient relationships.  Comparison of 

the sensitivity of chlorophyll-a and cyanobacteria to the effects of phosphorus, temperature and 

retention time among lake types suggests that chlorophyll-a may be less influenced by type 

(the response was similar between some lake types).  This is consistent with Phillips, 

Pietiläinen et al. (2008) who found that nutrient chlorophyll-a relationships could be grouped 

into fewer groups than the eighteen WFD types that they tested, reducing the number of types 

to three.  Our results suggest that more detailed groupings of lake types may be required to 

capture sensitivities of a community structure response, whereas chlorophyll-a, as a proxy for 

total biomass, appears to be less influenced by these finer details.  

Colour as an additional lake type factor is an important inclusion, not only because changes 

in colour can strongly alter phytoplankton biomass and community structure (e.g. Lenard & 

Ejankowski, 2017) but also because humic substances have increased in lakes in past decades 

(Monteith et al., 2007).   It is interesting that synergistic effects of temperature and phosphorus 
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were only detected in humic lakes (polymictic, humic types for cyanobacteria and chlorophyll-

a as well as stratified, medium-high alkalinity and humic type for chlorophyll-a).  The 

abundance of cyanobacteria is most often associated with clear lakes (data presented here, and 

e.g. Carvalho et al., 2011 and Ptacnik et al., 2008), consequently humic lakes are currently the 

least at risk (do not exceed WHO thresholds, Fig. S2.11), yet this interaction indicates that the 

deterioration of water quality may be accelerated in these lake types.  This synergism could be 

caused by enhanced heat absorption in the lake surface caused by humic substances, a process 

that also increases thermal stratification (Kirillin & Shatwell, 2016) .  It should be stressed that 

these relationships are for the levels of humic substances derived from the WFD European lake 

types, but it should be noted that many studies have demonstrated non-linear effects of colour 

on total biomass (Seekell et al., 2015) and cyanobacteria/composition (Carvalho et al., 2011; 

Rasconi et al., 2015; Urrutia-Cordero et al., 2016), adding further complexity.  Nevertheless, 

our results show the importance of colour as a lake type factor and emphasises that other 

environmental factors may alter our expectations of multiple stressor interactions.  

There is a risk that co-variation between environmental factors may lead to incorrect 

attribution of the processes behind a relationship.  In particular, the striking spatial pattern of 

statistically significant temperature effects on cyanobacteria and chlorophyll-a in lakes at more 

northern latitudes coincides with the distribution of polymictic humic lakes (in which 

interactive temperature effects were found for both cyanobacteria and chlorophyll-a).  The 

responses to changes in temperature have been shown to be greatest at lower latitudes because 

of larger shifts in metabolic rate which increases exponentially with temperature (Dillon, Wang 

et al. 2010, Kraemer, Mehner et al. 2017).  However, our results show a different picture with 

greatest effects, particularly for cyanobacteria biovolume, at higher latitudes, which suggests 

that this is a sensitive part of the temperature gradient for cyanobacteria, or that other latitudinal 

effects such as longer summer photoperiod at higher latitudes (Nicklisch et al., 2008) or the 

effect of lake type may enhance the temperature effect.  Another potential issue is the co-

variation between alkalinity and TP.  This co-variation is seen because many medium-high 

alkalinity lakes are located in central regions where the percentage arable land in the catchment 

and TP concentrations are higher.  At higher latitudes, in contrast, there were a larger number 

of humic, low alkalinity lakes reflecting the tendency for acidic, humic and forested catchments 

in Fenno-Scandian areas (Maileht et al., 2013), in which TP concentrations were lower.  

Nevertheless, although average differences in the abundance of cyanobacteria among types 

may be attributed to average differences in TP (Fig. 2.2b and Fig. S2.16), most lakes types 
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were modelled over similar TP gradients, and so differences between lake type models are 

likely caused by other factors.  The use of alkalinity as a type factor is both supported in the 

literature (e.g. Carvalho et al., 2011; Phillips et al., 2008 and Ptacnik et al., 2008) but also from 

an exploratory analysis of the relationships between alkalinity, cyanobacteria and TP in low vs 

medium-high alkalinity lakes (supporting information).   

Although we found statistically significant stressor relationships within lake types, in many 

cases the variation these explained was low and the natural variability among lakes within a 

lake type was much larger than the variance explained by the stressor effects.  Phosphorus, 

temperature and retention time are important drivers, but they are not the only factors which 

influence phytoplankton biomass.  Potential sources of variability can occur because of  

measurement error or missing covariate information e.g. other limiting nutrients (e.g. TN, 

(Downing et al., 2001; Dolman et al., 2012) grazer densities (Jeppesen et al., 2000), 

competition with macrophytes (Phillips, 2005), light climate (Mischke, 2003) and past events 

such as remediation and associated hysteresis (Scheffer 1998, França et al., 2016).  

Furthermore, the use of lake types as categorical variables may have reduced their explanatory 

power.  In the future, it might be possible to incorporate sampling event-specific values that 

might also take account of within-year variation as can occur for the presence and duration of 

stratification (Jöhnk, Huisman et al. 2008, Wagner and Adrian 2009, Huber, Wagner et al. 

2012), especially in polymictic lakes (Taranu, Zurawell et al. 2012) but also for colour variation 

(Lenard and Ejankowski 2017).  Nevertheless, the use of lake types is an efficient means of 

simplifying statistical models and of providing information for managers on types of lakes at 

risk of generating algal blooms.  It is possible that idiosyncratic responses to environmental 

change at the individual lake level could arise from interactions with other chemical, physical 

and biological environmental factors.  A way to account for this would be to allow slopes of 

individual lakes to vary in the model structure, but due to limited data points within a lake we 

were unable to do this; further exploration using long-term datasets would be informative.  

Implications for managing the risk of cyanobacteria in the future 

The first take-home message for management is that the sensitivity of cyanobacteria to multiple 

anthropogenic stressors, and consequently the risk of water quality issues, will not be the same 

for all lakes.  Thus, some lake types may require greater management intervention than others, 

and lakes that are currently not at risk (i.e. do not exceed WHO guideline thresholds) may 

develop problems in the future e.g. polymictic humic lakes. The broad typologies used are 
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similarly adopted (e.g. Havens & Nürnberg, 2004), and relevant, outside of Europe although 

some regions globally may have additional lake types that would need considering (e.g. 

endorheic lakes in North America and Africa).  The second take home message, and perhaps a 

more generalisable outcome, is that our results suggest that in most lake types, management 

will become increasingly necessary because of the additional effects of climate change 

(temperature and retention time) on cyanobacterial abundance.  As climate effects cannot be 

locally controlled, this means that existing models detailing phosphorus targets needed to 

minimise harmful algal blooms (Carvalho et al., 2013) may have to be revised to mitigate these 

effects (Jeppesen et al., 2009).  We do not make any quantitative recommendations here but 

indicate that this will be a likely management scenario for most lakes.  It should be emphasised 

that we make reference here to the effects and control of phosphorus as it is often considered 

the limiting nutrient in lakes (Phillips et al., 2008; Schindler et al., 2008), however nitrogen 

can also play a key role (Maberly et al., 2002; Conley et al., 2009; Beaulieu et al., 2013; Paerl 

et al., 2016).  Under projected climate scenarios, it is expected that there will be an increase in 

nitrogen loading because of enhanced runoff in the north temperate region (Sinha et al., 2017), 

the effects of which may also depend on ecosystem type.  For example, shallow lakes are likely 

often nitrogen limited during the summer (Dolman et al., 2016; Søngergaard et al., 2017) and 

so enhanced loading could increase the carrying capacity in lakes with sufficient phosphorus.  

Furthermore, an increase in nitrogen could trigger a shift from a macrophyte, clear water state 

to a turbid phytoplankton dominated state (e.g. Olsen et al., 2015). 

It should be emphasised that this is a broad view of management at a lake type level; the 

relationships that we present within lake types describe the generalised response for this 

population of lakes.  However, we found that the natural variability among lakes within a lake 

type was much larger than the variance explained by the stressor effects. The implications of 

this are that, for a given value of a stressor (or combination of stressors, depending on the 

model), the abundance of cyanobacteria may vary considerably among lakes of the same type 

(Fig. 2.4b).  Thus, while these models can be used to assess potential risk across a population 

of lakes (within a specific lake type), and inform where to prioritise monitoring for risk 

management, they are not appropriate for decision-making at the individual lake level.    This 

view reflects the perspective which warns of copy and paste management methods for different 

lakes (Lürling et al., 2016).  
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Final remarks 

Our results indicate that the response of cyanobacteria to favourable future conditions of 

enhanced nutrient enrichment, elevated temperatures and prolonged periods of drought may 

not be the same in all lake types.  While other studies have reached similar conclusions, here 

we provide evidence that these are not just limited to one type factor as has been explored 

before.  We do not conclude that these are definitive ‘end lake types’, however we suggest that 

our ability to generalise and manage the response of cyanobacteria to multiple stress and future 

environmental change lies in defining the types of environment in which the risk/sensitivity 

differs. 
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Chapter 3.   

Mesocosm experiment study: an experimental analysis of extreme 

rainfall events, warming and nutrient enrichment in a shallow 

lake mesocosm. 

Richardson, J., H. Feuchtmayr, C. Miller, P. Hunter. S. C. Maberly and L. Carvalho (2018)  

The response of cyanobacteria to warming, extreme rainfall events and nutrient enrichment.  

Under review in Global Change Biology. 

 

  

Fig. 3.1 Using a submersible fluorometer (bbe Moldaenke AlgaeTorch) to measure the fluorescence 

of phycocyanin, a quantitative biomarker for cyanobacteria. 
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Fig. 3.2  Chapter three graphical abstract – the effects of nutrients, warming and flushing on 

phytoplankton and cyanobacterial abundance. 
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3.1 Abstract 

Cyanobacterial blooms are an increasing threat to water quality and global water security 

caused by the nutrient enrichment of freshwaters.  There is also a broad consensus that blooms 

are increasing with global warming, but the impacts of other concomitant environmental 

changes, such as an increase in extreme rainfall events, may affect this response.  Here we used 

a shallow lake mesocosm experiment to test the combined effects of warming (ambient vs +4°C 

increase) and extreme rainfall events (no events vs seasonal extreme events) in high nutrient 

environments (eutrophic vs hypertrophic) on cyanobacterial abundance and composition.  We 

found that, as expected, warming stimulated both total phytoplankton and cyanobacterial 

growth, including the abundance of two of the most common bloom-forming harmful taxa: 

Microcystis spp. and Dolichospermum spp.  Unexpectedly, there was an antagonistic 

interaction between warming and nutrient enrichment for total cyanobacteria and chlorophyll-

a, indicating that at very high nutrient concentrations, other limiting factors may alter multiple 

stressor interactions and lead to ecological surprises.  Extreme rainfall events only had short-

term effects on phytoplankton abundance and composition during the growing season and the 

effects of nutrient addition and warming were not affected by these flushing events.  During 

the winter months, extreme rainfall events resulted in a slower recovery of phytoplankton in 

general but also, unexpectedly, increased cyanobacterial dominance in ambient, nutrient 

enriched mesocosms.  While this study highlights the clear need to mitigate against global 

warming, it also shows that ecological surprises can occur depending on the context of the 

multiple stressor environment.  As such, over-simplification of global change effects on 

cyanobacterial blooms should be avoided; stressor gradients and temporal factors such as 

seasonality or the variance of extreme events should be considered as important factors shaping 

the response.  
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3.2 Introduction 

Blooms of cyanobacteria are produced primarily in response to the eutrophication of lakes and 

reservoirs (Taranu et al., 2015) and are a major threat to freshwater quality and global water 

security (Codd et al., 2005, Steffensen et al., 2008).  However, there is a broad consensus that 

elevated water temperatures also promote the proliferation of cyanobacterial blooms (Paerl & 

Huisman, 2008) because cyanobacteria have a number of traits which provide them with an 

advantage under warmer conditions (Carey et al., 2012).  For example, many bloom-forming 

cyanobacteria reach their maximum growth rate at higher temperatures than other 

phytoplankton (Butterwick et al., 2005; Reynolds, 2006; De Senerpont Domis et al., 2007), 

benefit from warming-enhanced internal cycling of nutrients (McKee et al., 2003) and greater 

water column stability (Huber et al., 2012; Jöhnk et al., 2008 also see Carey et al., 2012).  

Studies over a range of scales: experimental (Lürling et al., 2017), single water body (Taranu 

et al., 2012; Zhang et al., 2012) and regional (Kosten et al., 2012; Beaulieu et al., 2013), 

provide ample evidence that higher temperatures promote higher cyanobacterial abundance and 

thus severely affect our ability to control blooms (Havens & Paerl, 2015).  The threat of 

cyanobacterial blooms is, therefore, expected to be increasing in response to rapid global 

warming.   

The response of cyanobacteria to warming may, however, be complicated by other large-

scale environmental changes which can alter phytoplankton growth and community structure.  

This includes the predicted increase in extreme stormy weather (IPCC, 2013).  More extreme 

rainfall events are now being observed globally (Lehmann et al., 2015) and, in particular, are 

predicted to increase during the summer months at mid- to high-latitudes (Christensen & 

Christensen, 2003).  These events result in sudden environmental changes (e.g. Sadro & 

Melack, 2012), with an increased delivery of nutrients and organic material from the 

catchment, changes in the stability of the water column and losses of phytoplankton biomass, 

dissolved and biologically-bound nutrients through increased hydraulic flushing.  While 

hydraulic flow is recognised to be an important factor in phytoplankton dynamics (e.g. Søballe 

& Kimmel, 1987; Tolotti et al., 2010) the physical effect of extreme rainfall events as a ‘climate 

change stressor’ on phytoplankton biomass and community composition has received relatively 

little attention.  The effect of climate warming on cyanobacterial bloom dynamics and species 

dominance is, therefore, likely to be complex, depending on how it interacts with other global 

factors such as extreme rainfall events and local factors such as nutrient availability.    
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To improve our ability to forecast the effect of global warming on cyanobacteria, we need 

to take a more complete view of future conditions, incorporating ‘event-focused’ pulse events 

as well as ‘trend-focused’ press climate effects (Jentsch et al., 2007; Michalak, 2016).  

Mechanistic insight of complex interactions can be gained through experimental manipulation.  

Lake mesocosms are useful to explore the effects of multiple stressors, by allowing 

environmental conditions to be manipulated while retaining ecosystem complexity (Fordham, 

2015; Stewart et al., 2013).  Small, shallow lakes are of particular interest as they are 

numerically dominant globally (Messager et al., 2016; Verpoorter et al., 2014), are especially 

sensitive to changes in air temperature (Butcher et al., 2015), have a higher exposure to nutrient 

pressures because of their abundance in lowland, impacted landscapes (Nõges, 2009) and a 

higher sensitivity to extreme rainfall events because of their smaller volume.  Here we describe 

a shallow lake mesocosm experiment that assessed the potential interactions between warming, 

nutrient enrichment and extreme rainfall events on the abundance and composition of 

cyanobacteria.  We hypothesised that warming would favour the growth of cyanobacteria over 

other phytoplankton, in particular taxa with higher temperature growth optima such as 

Microcystis spp. and Dolichospermum spp. (previously Anabaena), and that the effect would 

be synergistic with nutrient addition.  We expected the effects of extreme flushing events to 

broadly be negative but likely to differ among treatments and phytoplankton taxa.  For 

example, we hypothesised that the effects of flushing would be less prolonged in warmed, high 

nutrient mesocosms during the growing period when the conditions for growth – and recovery 

– would be optimal. 
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3.3 Methods 

A fully factorial experiment combining two temperature treatments, two nutrient treatments 

and two extreme rainfall treatments was performed in 32 outdoor mesocosms from July 2014 

to August 2015 at the Centre for Ecology & Hydrology’s Aquatic Mesocosm Facility located 

in the North West of England (54°1’N, 2°46’W) (https://www.ceh.ac.uk/our-science/research-

facility/aquatic-mesocosm-facility).  The levels of each treatment were chosen to simulate 

current and future scenarios.  The eight treatments (the full cross of each factor) were replicated 

four times, one replicate randomly assigned to a mesocosm in each experimental block of eight 

mesocosms (Fig. S3.1 and S3.2).   

Description of mesocosms 

The mesocosms are free-standing, open-topped, non-transparent and insulated cylinders, 

measuring one metre in depth and two metres in diameter (3000 L capacity), Fig. S3.2.  Each 

contains a heating element (Fig. S3.2c), located 14 - 15 cm above a 5 - 6 cm deep mixture of 

washed sand and lake sediment (in equal proportion), taken from Windermere, a large 

mesotrophic lake in the English Lake District, UK.  Mesocosms were filled with an equal 

volume of rain water and water from Windermere and were inoculated with phytoplankton, 

zooplankton and macroinvertebrates, also from Windermere, to simulate realistic natural 

community compositions (Reynolds & Irish, 2000).  Mesocosms were allowed to settle for 13 

months; during which, macroinvertebrates were re-stocked twice and also cross-mixed twice 

to ensure similar starting conditions.  At the start of the experiment there was no statistically 

significant difference in chlorophyll-a concentrations between the eight treatments (Table S1).  

Four adult three-spined sticklebacks (Gasterosteus aculeatus), two of each gender, were 

sourced from local streams (New Draught and Barton Brook, Lancashire) and were added to 

each mesocosm. Between capture and inoculation, fish were kept in 30 L glass aquaria, 

containing untreated water from Blea Tarn Reservoir.  Macrophyte populations established 

from natural seed-banks within the sediment.  Any water losses from evaporation were 

monitored and rectified by the addition of deionised water.  

Treatments 

Warming 

Half the mesocosms were left at ambient temperature, while the other half were warmed to 4 

°C above ambient using electric heating elements (Fig. 3.2c).  Water temperature (°C) was 

recorded every minute by sensors located 40 cm horizontally and vertically (mid-depth) within 
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each mesocosm and then stored on a data logger.  A computer program adjusted the water 

temperature in warmed mesocosms so that it tracked changes in temperature in ambient 

mesocosms (Fig. S3.3).  Daily mean temperatures in ambient mesocosms followed a seasonal 

cycle typical of temperate regions, varying between 2.4 °C in January and 23.4 °C at the end 

of July.  Each mesocosm contained an automatic mixer to prevent thermal stratification, so that 

direct effects of temperature could be assessed (Fig. S3.4).  

Nutrient enrichment 

The mesocosms were enriched with nitrogen and phosphorus, half of the mesocosms at high 

concentrations to create ‘nutrient enriched’ conditions and half at lower concentrations to 

create ‘ambient nutrient’ conditions.  A fortnightly load of nitrogen and phosphorus was added 

to nutrient enriched mesocosms to produce final Redfield ratio concentrations (Redfield, 1958) 

in each mesocosm equivalent to 510 μg L-1 nitrogen (sodium nitrate) and 70 μg L-1 phosphorus 

(trisodium phosphate).  Over the course of the experiment, this resulted in average nutrient 

concentrations of 314 ± 86 μg L-1
 for total phosphorus (TP) and 1576 ± 298 μg L-1 for total 

nitrogen (TN) which is similar to the upper range of concentrations recorded in natural lakes 

in agricultural catchments in Europe (Moe et al., 2013).  In the 16 ambient nutrient mesocosms, 

a fortnightly load equivalent to 73 μg L-1 of nitrogen and 10 μg L-1 of phosphorus was added 

until the 17th of December, after which any nutrients were derived from the lake water and from 

the sediment.  Over the course of the experiment, the average TP concentration in the ambient 

nutrient addition mesocosms was 100 μg L-1 ± 47 μg L-1 and the average TN concentration was 

692 μg L-1 ± 218 μg L-1.  Based on average TP concentrations over the duration of the 

experiment, nutrient enriched mesocosms were classified as being hypertrophic while ambient 

nutrient addition mesocosms were on the eutrophic-hypertrophic boundary (OECD 1982). 

Extreme rainfall events 

Half the mesocosms were exposed to extreme rainfall (flushing) simulations every twelve 

weeks – five events on the: 3rd of September 2014; 24th of November 2014; 17th of February 

2015; 12th of May 2015 and 4th of August 2015.  During each event, 1,500 litres of water (50% 

of the capacity of a mesocosm) was pumped into each treated mesocosm at a flow rate of 70 – 

100 L min-1 (duration of 15 – 21 minutes), taking care not to disturb the sediment while 

ensuring homogenous mixing; water was lost by overflowing the top of the mesocosms.  Water 

was sourced from Blea Tarn Reservoir, Hazelrigg, Lancaster, which was low in nutrients, 

phytoplankton and total suspended material.  Any dissolved nutrients lost during the flushing 
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event were replaced so that the effects of biomass loss could be isolated from other effects of 

extreme rainfall events such as increases in nutrient loading and other allochthonous material.  

This was calculated from the amount of nutrients lost by dilution (see supplementary methods 

for details) and that added by the water used for flushing.  Overall, there was no statistically 

significant effect of flushing on the concentration of SRP (soluble reactive phosphorus) or 

nitrate (NO3-N; Fig. 3.3, Table 3.1).    

Sampling 

Water samples were taken once every four weeks (regular sampling).  During extreme rainfall 

events, additional samples were collected immediately after the event, one week after the event 

and three weeks after the event, before returning to a four-weekly schedule (Fig. S3.5).  

Samples were collected using a one meter long plastic tube which integrated the whole water 

column.  Water samples were thoroughly mixed before further processing.   

Abiotic measurements 

TP and TN concentrations were measured following Johnes & Heathwaite (1992) and nitrate 

and SRP concentrations were measured following Mackereth et al. (1987).  Photosynthetic 

active radiation was measured every minute by sensors located 40 cm horizontally and 

vertically (mid-depth) within each mesocosm. 

Biotic measurements 

i. Phytoplankton and cyanobacterial abundance 

Chlorophyll-a concentration (μg L-1) was used as an estimate of total phytoplankton biomass.  

Known volumes (0.03 – 1 L, depending on the mesocosm) of the integrated water samples 

were filtered onto Whatman GF/C filters.  Concentrations of the pigment were determined 

spectrophotometrically after cold ethanol extraction (96 %) in darkness overnight (Jespersen 

1987); absorption was measured at 750 nm and at 665 nm. 

The proportion of total chlorophyll-a (μg L-1) assigned to cyanobacteria was measured 

using a submersible fluorometer (bbe Moldaenke AlgaeTorch) which measured the 

fluorescence of phycocyanin, a quantitative biomarker for cyanobacteria.  Measurements of 

cyanobacteria chlorophyll-a began in November 2014.  In some mesocosms, chlorophyll-a 

concentrations exceeded the calibrated range of the fluorimeter but because of an error at the 

user interface of the AlgaeTorch, these exceedances were undetected until the start of May 
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2015.  Data prior to May are presented (for measurements below the manufacture’s threshold 

of 200 μg L-1) and are discussed but are not statistically analysed.  From May the 5th onwards, 

mesocosms with chlorophyll-a concentrations that exceeded the manufacture’s threshold (200 

μg L-1) were diluted with deionised water before measurement.   

ii. Phytoplankton species composition 

Phytoplankton composition was identified and enumerated the week before and three weeks 

after the flushing event in May 2015 and August 2015 using the Utermöhl technique (Utermöhl 

1958, CEN 2014).  For each sample at least 400 phytoplankton units (single cell, filament or 

colony) were counted according to phytoplankton size classes in the whole chamber (x10), in 

transects (x100) or fields of view (x400 and occasionally x630 for pico cyanobacteria).  A 

minimum of ten measurements of key geometric dimensions were measured for each species 

from images taken on a digital camera (AxioCam MRc) attached to a Zeiss Axiovert 40 CFL 

inverted microscope using Zen software (2012 (blue edition) version 1.1.2.0.  The mean of 

these dimensions was used to calculate biovolume (organism mm3 L-1), following Brierley et 

al (2007). Where distinguishing features were present, organisms were identified to species, 

while the remainder were identified to genus, class or were unidentified.   

Statistical analysis 

Changes in chlorophyll-a, cyanobacteria chlorophyll-a, TP, TN, SRP, NO3-N and the 

biovolume of dominant cyanobacteria genera were analysed with mixed models using R 

version 3.2.2, R Core Team (2017).  The trend over time (for chlorophyll-a and nutrients) and 

relationships with treatments (for all response variables) was tested while accounting for the 

random variation induced by the repeated measurements for each of the multiple mesocosms. 

Trends in chlorophyll-a and nutrient concentrations were modelled over the duration of 

the experiment, between July 2014 and August 2015.  Linear mixed models (LMM), using the 

lme4 package (Bates et al., 2015) were used for temporal trends which could be fitted using a 

quadratic shape while additive mixed models (AMM) were used for more complex trends, 

using the gamm4 package (Wood & Scheipl, 2013), in addition to treatment covariates.  

Sampling date was converted into a decimal date and mean centred (mean of zero) so that the 

intercept related to the mid-point of the sampling period, mid-February (end of the northern 

hemisphere meteorological winter).   
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Measurements of cyanobacteria chlorophyll-a were restricted to a shorter time period - 

May 5th to August 26th 2015 - so no time component was included in the model i.e. the 

relationship between treatments and the average response was modelled.  For comparison, as 

cyanobacteria is a component of the whole phytoplankton community, the relationship of 

chlorophyll-a to the treatments was modelled for the same time period as cyanobacteria 

chlorophyll-a. 

Cyanobacteria genus biovolume data were zero-inflated and so the analysis followed a 

two-step process.  First, the effect of treatment on the probability of occurrence 

(presence/absence) of the dominant cyanobacteria genera (Aphanizomenon sp.; Microcystis 

sp.; Dolichospermum sp.; and Pseudanabaena sp.) was tested using a Generalised Linear 

Mixed Model (GLMM) with a binomial distribution, then the effect of treatment on the 

biovolume of genera (for non-zero data) was tested using a LMM.  Sampling date, as a 

categorical variable (four sampling dates), was included in the model as a potential co-variate; 

this was based on exploratory analyses of the data.  

To stabilise the variability, all response variables were natural log transformed, with 

the exception of genus presence/absence data.  As a result, the assumptions of normality and 

homogeneity of variance were appropriate for model error terms.  To account for the repeated 

measures within mesocosms, a random effect term was included in both the linear and additive 

models which allowed the intercept to vary at the mesocosm level.  This additional error term 

appropriately adjusts the coefficients and standard errors of the treatments but is also 

informative in quantifying additional among-mesocosm variance which cannot be explained 

by the fixed effects in the model (see, for example Bolker et al., 2009) 

Models were simplified by removing non-significant higher order interaction terms in 

turn. Simplified models were compared with more complex models using AIC and BIC and 

favoured, when retaining more complex terms did not improve the model. Satterthwaite 

approximations of degrees of freedom were used to obtain estimated p values (Gaylor, 2014).  

The variance explained by each model is reported as marginal R2 which describes the 

proportion of variance explained by the fixed factor(s) alone and conditional R2 which 

describes the proportion of variance explained by both the fixed and random factors (Nakagawa 

& Schielzeth, 2013). 
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3.4 Results 

Treatment effects on nutrient concentrations  

The effect of treatments on nutrient concentrations (total and biologically available) were 

statistically significant over the course of the experiment (Fig. 3.3, Table 3.1).  The 

concentration of TP increased from spring (March) onwards, in particular in nutrient enriched 

mesocosms and warmed mesocosms, in the latter case including both ambient-nutrient and 

nutrient enriched mesocosms (Fig. 3.3a).  The concentration of SRP decreased from spring 

onwards in all treatments except for warmed, nutrient enriched mesocosms in which 

concentrations increased (Fig. 3.3b).  The concentration of TN increased in ambient, nutrient 

enriched mesocosms but also in warmed, ambient-nutrient mesocosms (Fig. 3.3c).  During 

summer, spring and autumn, nitrate concentrations were low in all treatments (Fig. 3.3d).  The 

increase in concentrations during the winter was statistically significant in nutrient enriched 

mesocosms, and also, but to a lesser extent in warmed, ambient-nutrient mesocosms (Table 

3.2).  Flushing had no effect on nitrate concentrations. 
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Fig. 3.3  Effect of nutrient enrichment and extreme rainfall events on the concentration of (a) TP 

(marginal R2 = 0.55), (b) SRP (marginal R2 = 0.29), (c) TN (marginal R2 = 0.37) and (d) NO3-N (R2 

adjusted = 0.59) in ambient and warmed mesocosms over time (July 2014 – August 2015).  The response 

of each measured variable is ln transformed (note differences in the original scale); data points are mean 

responses for the treatment plotted.  Smooth lines in panels (a – c) are the predicted fitted responses 

from the best fitting LMM model (Table 3.1): blue, flushed; green, unflushed; solid line, nutrient 

enriched; dashed line, ambient-nutrient.  The smooth black lines in panel (d) are predicted fitted 

responses from the best fitting AMM (Table 3.2): solid line, nutrient enriched; dashed line, ambient-

nutrient addition.  For extreme rainfall treatments (blue lines in panels (a-c), all treatments in panel (d)) 

white data points show data from the sampling events the day immediately after an extreme rainfall 

event.  
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Table 3.1.  Summary of ANOVA tables of type III for responses fitted with LMMs.  For all measured 

variables, time is a second order quadratic term in the model. F values are presented with p-values 

based on Satterthwaite approximation for degrees of freedom.  Significant effects at the p < 0.05 level 

are highlighted in bold and at the p <0.1 level are underlined.  Variance explained by each model is 

given by marginal R2 for the fixed effects only and conditional R2 for fixed and random effects. N, 

nutrient enriched; W, warmed; F, flushed. 

 Chlorophyll-a TP SRP TN 

 F value F value F value F value 

time 216.5 166.5 19.3 20.8 

time x N  21.2 24.9 45.9 38.1 

time x W 5.3 12.7 13.3 2.4 

time x F 4.3 6.7 n.a 5.9 

time x N x W 14.9 2.9 4.3 3.8 

time x N x F 0.1 1.1 n.a 4.7 

time x W x F 5.0 2.3 n.a 0.2 

time x N x W x F 10.1 8.2 n.a 3.3 

N 59.8 55.8 33.8 38.6 

W 0.2 3.3 18.4 0.0 

F 4.4 10.2 4.0 7.3 

N x W 4.9 1.8 0 8.6 

N x F 1.7 1.0 4.3 0.9 

W x F 7.2 1.9 n.a 0.0 

N x W x F 3.4 1.4 n.a 0.4 

R2
marginal 0.57 0.55 0.29 0.37 

R2
conditional 0.70 0.69 0.34 0.50 

 

Table 3.2.  GAMM results for log nitrate (NO3-N, mg L-1) response (July 2014 – 

August 2015). Significant effects (p < 0.05) are highlighted in bold. R2 adjusted = 0.59 

a. Parametric coefficients.  Changes on the intercept (end of February) after 

removing non-significant terms sequentially.   

 (Intercept) Nutrient enriched   

estimate -3.71 0.67   

b. Estimated degrees of freedom (edf) for approximately significant time smooth 

terms for nutrient treatment and warming treatment.  

 Ambient-
nutrient 

Nutrient 
enriched 

Ambient Warmed 

edf 6.34 7.61 0.75 6.35  
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Treatment effects on total phytoplankton 

The concentration of chlorophyll-a showed statistically significant variation over time and with 

treatments (Table 3.1, Fig. 3.4a), with trends generally following changes in TP (Table 3.1, 

Fig. 3.3a).  Chlorophyll-a concentrations increased linearly with time in ambient, nutrient 

enriched mesocosms while the response in all other treatments showed different time-

dependent responses.  In warmed mesocosms, the greatest increases in chlorophyll a occurred 

from around March onwards in all treatments except for warmed, unflushed, nutrient enriched 

mesocosms in which concentrations remained broadly constant from this point.  After 

accounting for the effects of treatment and time, an additional 14% of variance was explained 

by between-mesocosm differences (conditional R2 = 0.72, Fig. S3.6). 

Treatment effects on total cyanobacteria 

During the period of sampling (December 2014 – August 2015) the abundance of cyanobacteria 

generally followed a seasonal pattern observed in many shallow, temperate lakes, with highest 

values in summer (Fig. 3.4b).  However, in nutrient enriched, flushed mesocosms, 

cyanobacterial dominance and abundance extended beyond the typical season (Fig. 3.4b).  In 

this treatment, on average 55% of winter (December 2014 – February 2015) phytoplankton 

abundance was accounted for by cyanobacteria, while the average percentage cyanobacteria 

during the same period in all other treatments was 15% ± 14%. 
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Fig. 3.4  Effect of warming, nutrient addition and extreme rainfall (flushing) events on the concentration 

of (a) ln total chlorophyll-a (μg L-1) and (b) ln cyanobacteria chlorophyll-a (μg L-1) over the duration 

of the experiment.  Data points are ln transformed mean responses: blue, flushed; green, unflushed; 

solid line, nutrient enriched; dashed line, ambient-nutrient; left hand side, ambient treatments; right 

hand side, warmed treatments.  For flushed treatments (blue lines), white data points are sampling 

events the day immediately after an extreme flushing event.  The smooth lines in panel (a) are the fitted 

response from the best fitting LMM (marginal R2 = 0.57).  In panel (b), cyanobacteria chlorophyll-a 

data is only presented qualitatively as, prior to May, in some treatments (nutrient enriched – flushed, 

warming –nutrient enriched and warming –nutrient enriched – flushed), replicates varied between n = 

0 (missing data point) and n = 4).  These data were not missing at random and so the data were not 

statistically modelled over this period. 
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The abundance of cyanobacteria, between May 2015 and August 2015, depended on a negative 

interaction between warming and nutrient enrichment. Warming and nutrient enrichment, as 

single stressors, resulted in statistically significantly higher cyanobacteria than in ambient 

mesocosms.  However, in combination, these stressors dampened the effect of one another, 

resulting in a weak antagonism (negative interaction).  The size effect of warming and nutrient 

enrichment as single stressors was similar (Fig. 3.5a, Table 3.3).  During the same period, the 

abundance of total phytoplankton also depended on a negative interaction between warming 

and nutrient enrichment.  In contrast to the response of cyanobacteria, the size effect of nutrient 

enrichment as a single stressor was greater than the effect of warming as a single stressor (Fig. 

3.5b, Table 3.3).  The extreme rainfall events – in May and August - had no statistically 

significant effects on total chlorophyll-a or on cyanobacterial chlorophyll-a; although, extreme 

rainfall events did result in a statistically significant reduction in phytoplankton and 

cyanobacterial abundance (Table S3.2), i.e. short-term effects. After accounting for the effects 

of treatment, an additional 28% and 14% of variance was explained by between-mesocosm 

differences for the response of cyanobacterial chlorophyll-a and total chlorophyll-a, 

respectively. 

 

Fig. 3.5 Total chlorophyll-a (μg L-1) and cyanobacteria chlorophyll-a (μg L-1) between the 5th of May 

2015 and 26th of August 2015.  Data are plotted by the statistically significant treatment effects from 

the best fitting LMM for each response (Table 3). A, ambient (without warming or nutrient enrichment); 

W, warming only; N, nutrient enrichment only and WN, warming and nutrient enrichment together.  

The lower and upper hinges correspond to the 25th and 75th percentiles, the whiskers extend to 1.5x the 

interquartile range. 
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Table 3.3.  LMM coefficients (± standard error) for ln total chlorophyll-a (μg L-1) and ln cyanobacteria 

chlorophyll-a (μg L-1) relationship to treatments between May and August 2015.  Significant effects (p < 0.05) 

are highlighted in bold.  The variance explained by each model is given by marginal R2m for the fixed effects 

only and conditional R2c for the fixed and random effects.   

 (Intercept) N W N x W R2m R2c 

ln total chlorophyll-a (μg L-1) 3.0 ± 0.2 2.6 ± 0.3 1.1 ± 0.3 -1.6 ± 0.4 0.53 0.67 

ln cyanobacteria chlorophyll-a 

(μg L-1) 

0.2 ± 0.6 2.5 ± 0.8 2.5 ± 0.8 -3.4 ± 1.1 0.15 0.43 

 

Treatment effects on the composition of cyanobacteria  

Cyanobacterial biovolume was mainly composed of nitrogen-fixing cyanobacteria (68%), in 

particular Aphanizomenon spp. (51%) but also Dolichospermum spp. (17%).  Other notable 

contributions to cyanobacterial composition were from Microcystis spp. (13%) and 

Pseudanabaena sp. (13%), Fig. S3.7, Table S3.3.  

At the genus level, the occurrence and abundance of the dominant genera -

Aphanizomenon spp., Dolichospermum spp., Microcystis spp. and Pseudanabaena spp. (Table 

3.4) - were explained by single stressor effects only; no statistically significant interactive 

effects of stressors were detected.  Aphanizomenon spp. was fairly ubiquitous, although its 

abundance was statistically significantly higher in nutrient enriched mesocosms (Table 3.4, 

Fig. 3.6b).  Dolichospermum spp. occurrence was statistically significantly higher in nutrient 

enriched mesocosms and in samples taken later in the summer (July and August) while 

biovolume was statistically significantly higher in warmed mesocosms (Table 3.4, Fig. 3.6c).  

Microcystis spp. occurrence and biovolume was strikingly related to warming: 94% of 

occurrences were in warmed mesocosms, although overall this genus was only present in 25% 

of the samples.  The occurrence of Microcystis spp. also depended on the time of the year, with 

statistically significantly higher occurrence during July and August compared to May (Table 

3.4, Fig. 3.6d).  The occurrence and abundance of Pseudanabaena spp. was positively 

explained by nutrient enrichment (Table 3.4, Fig. 3.6a).   

At a higher taxonomic grouping, statistically significant treatment interactions were 

detected for biovolume of the group Nostocales (Aphanizomenon spp. and Dolichospermum 

spp.).  The response at this higher grouping reflects the results obtained at the cyanobacterial 

community level (cyanobacterial chlorophyll-a) with positive effects of nutrient enrichment 
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and warming alone and a negative interaction together.  Most Aphanizomenon spp. and 

Dolichospermum spp. filaments contained specialised heterocyte cells that are involved in the 

fixation of nitrogen (Fig. S3.7). 

 

Fig. 3.6 Natural log biovolume (μm3 mL-1) of the dominant genera of cyanobacteria observed in May, 

June, July and August 2015, plotted by the statistically significant treatment effects from the best fitting 

LMM for each genus.  The lower and upper hinges correspond to the 25th and 75th percentiles, the 

whiskers extend to 1.5x the interquartile range. 
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Table 3.4  Summary (coefficient and standard error) of best fit GLMMs explaining the probability of the presence of dominant cyanobacteria taxa 

(present/absent) and LMMs explaining taxa biovolume (natural log mm3 L-1), when present – i.e. non-zero data. The variance explained by each model is 
given by marginal R2m for the fixed effects only and conditional R2c for the fixed and random effects. Date is a factor and relates to the sampling date (n 

= 4): 6th of May, 3rd of June, 29th of July and 26th of August 2015. In models where date is significant, the intercept relates to the 6th of May and all other 

levels of date are compared to data from this date. Significant effects (p < 0.05) are highlighted in bold, blanks signify that these terms did not significantly 

improve the model.   

Taxa Intercept Warming Nutrient 

enrichment 

Warming x 

Nutrient 

enrichment 

Date R2m R2c 

     3rd June 29th July 26th August   

Nostocales          

presence 1.50 ± 0.32       0.00 0.16 

biovolume 11.10 ± 0.57 2.15 ± 0.76 2.59 ± 0.79 -2.42 ± 1.12    0.13 0.18 
Aphanizomenon          

presence 0.62 ± 0.27       0.00 0.22 

biovolume 10.89  ± 0.52  2.30  ± 0.72     0.15 0.30 

Dolichospermum          
presence -1.1 ± 0.66  -2.41 ± 0.78  1.43 ± 0.73 3.05 ± 0.83 2.43 ± 0.83 0.36 0.58 

biovolume 11.10 ± 0.56 1.72 ± 0.75      0.11 0.29 

Other genera          

Microcystis          

presence -9.57 ± 2.72 7.27 ± 2.33   0.57 ± 1.09 2.53 ± 1.17 4.94 ± 1.63 0.36 0.68 

biovolume 12.17 ± 0.63        0.00 0.58 

Pseudanabaena          

presence -1.37 ± 0.31  1.49 ± 0.40     0.15 0.15 

biovolume 7.77 ± 0.78  3.45 ± 0.95      0.26 0.51 
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3.5  Discussion 

Climate change is often considered as a single stressor on the natural environment. In reality, 

this masks a great deal of complexity with changes in the timing and extremity of weather 

events often ignored in favour of responses to general climate trends that are more 

straightforward to analyse.  Experimental mesocosm studies offer an approach to investigate 

this complexity in order to develop a clearer mechanistic understanding of the interactions 

between multiple stressors, allowing quantification and comparison of individual stressor 

effects and their interactions (Crain et al., 2008; Feuchtmayr et al., 2009; Piggott et al., 2015). 

The effects of warming on cyanobacteria 

a. Nutrient enrichment 

In ambient-nutrient mesocosms, as expected, warming increased the abundance of 

cyanobacteria and phytoplankton.  The overall increase in phytoplankton abundance in these 

mesocosms can be explained by both direct effects of temperature on growth rates (Reynolds 

2006) and indirect effects of temperature on the release of phosphorus from the sediment 

(Jensen & Andersen, 1992).  The latter process, at least, seemed to be important from late 

spring into the summer in warmed mesocosms (Fig. 3.3a).  The direct effects of temperature 

on growth rates was particularly important for the abundance of cyanobacteria, for which we 

observed statistically significant increases in common bloom-forming taxa, Microcystis spp. 

and Dolichospermum spp. - the maximum growth rates of these genera are generally reached 

at higher temperatures compared to other cyanobacteria and phytoplankton (e.g. Lürling et al., 

2017).  This result supports the expectation that changes in water temperature will drive shifts 

in phytoplankton composition, with higher temperatures not only favouring cyanobacteria in 

general but, in particular, those genera that commonly form dense blooms in freshwaters and 

are known toxin producers (De Senerpont Domis et al., 2007; Jöhnk et al., 2008).  It should be 

emphasised that these effects of warming were observed in nutrient rich systems.  As has been 

discussed by others (Elliott, 2012; Lürling et al., 2017), the stimulatory effect of temperature 

depends on the carrying capacity of the system, thus warming in sites with low nutrient 

availability has less potential to increase biomass. 

 Unexpectedly, we found that warming in combination with high nutrient enrichment 

can reduce the abundance of cyanobacteria.  This result is striking because it contrasts with the 

widely hypothesised (Paerl & Huisman, 2008) and observed (Taranu et al., 2012; Rigosi et al., 

2014; Lürling et al., 2017) synergistic interaction between warming and nutrient enrichment 
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on cyanobacterial abundance.  However, although we detected a statistically significant 

negative interaction, it is important to point out that the effect size was small - cyanobacterial 

and total phytoplankton abundance were still generally higher than the ambient (control) 

mesocosms (Fig. 3.5) and still led to chlorophyll concentrations that exceeded WHO (World 

Health Organisation) threshold guidelines for drinking and bathing waters (Chorus & Bartram, 

1999).  The mechanism for the antagonism that we observed is unclear but is probably linked 

to the very high productivity of the mesocosms.  An antagonism between warming and nutrient 

enrichment was also detected for total phytoplankton, indicating that another factor(s) was 

limiting phytoplankton growth in general, not only cyanobacteria. Under these conditions, and 

in contrast to all other treatments, SRP was plentiful indicating that phosphorus limitation was 

not responsible for this response.  Nitrogen and light limitation are also excluded as 

mechanisms since nitrate concentrations were similar (and low) in all treatments during the 

summer and light attenuation was no higher in warmed, high nutrient addition mesocosms than 

in high nutrient addition mesocosms (supplementary material, light attenuation analysis).  A 

plausible explanation could be inorganic depletion of carbon that can lead to carbon limitation 

(Jansson et al., 2012), which has been shown to occur under nutrient enriched conditions 

(Maberly, 1996) and which may be exacerbated by warming (Yvon-Durocher et al., 2017).  

Unfortunately, available carbon was not measured, nor could it be estimated from the available 

data, and so this explanation cannot be tested. 

b. Composition 

The antagonistic effects of warming and nutrient enrichment was only detected at the 

community level (total cyanobacteria).  At the genus level, no statistically significant treatment 

interactions were found, rather warming resulted in the increased abundance of 

Dolichospermum spp. and Microcystis spp. and nutrient enrichment resulted in the increased 

abundance of Aphanizomenon spp. and Pseudanabaena spp.  Differences in the sensitivity of 

genera to anthropogenic stressors have been found before (Ekvall et al., 2013; Rigosi et al., 

2014), and should be expected as cyanobacteria are a diverse group with a wide range of eco-

physiological characteristics that will lead to varying responses (Carey et al., 2012; Reynolds 

et al., 2002).  Differences in community and population level responses (for a variety of 

biological responses) to multiple stressors have also been found by others, as reviewed in Crain 

et al (2008) and Côté et al (2016). 
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The effects of extreme rainfall events on cyanobacteria 

The effects of extreme rainfall events as a ‘climate change stressor’ on phytoplankton biomass 

and community composition has received relatively little attention compared to the effects of 

climate warming.  Of these studies, most discuss the effects of enhanced nutrient loading (e.g. 

Paerl & Huisman, 2008) and terrestrial inputs such as an increase in water colour (e.g. Graham 

& Vinebrooke, 2009; Urrutia-Cordero et al., 2017) while the effect of losses of biomass from 

the outflow during flow events has been understudied.  Two aspects of recovery of biomass 

from high flow events need to be considered: (a) the recovery of total phytoplankton abundance 

and (b) the recovery of community composition.   

It is expected that the general recovery of phytoplankton biomass after a large flow 

event will depend on the factors that limit growth; these may be influenced naturally by season, 

such as light and temperature or influenced by anthropogenic pressures on the system, such as 

land use (nutrient loading) and climate change e.g. warming.  In the spring and summer we 

found that extreme rainfall events only had short-term effects on phytoplankton abundance in 

all treatments while in the autumn and winter the effects of flushing were more prolonged.  It 

is likely that the conditions for growth (nutrients, light and temperature) during the spring and 

summer were suitable in all treatments to allow for rapid recovery while seasonally limiting 

factors such as light and temperature would have slowed down the recovery outside of the main 

growing season. 

The effect of flushing events on community composition is likely to be more influenced 

by the timing, intensity and frequency of the event (e.g. Padisák et al., 1999).  Other studies 

have shown that in highly flushed lakes the seasonal succession of phytoplankton is suppressed 

(Brook & Woodward, 1956; Margalef, 1978), this is because taxa, such as cyanobacteria, are 

slow-growing and thus more sensitive to flushing (Reynolds, Huszar et al. 2002).  However, 

we found no evidence that cyanobacteria, as a broad group or at the level of individual genera, 

were supressed in flushed mesocosms; this may be explained by the frequency of the events.  

The Intermediate Disturbance Hypothesis (Connell 1978) suggests that the frequency of 

disturbance influences the diversity of the phytoplankton community, with intermediate 

disturbances resulting in the highest diversity and infrequent disturbance resulting in 

competitive exclusion.  In lakes, this competitive exclusion in stable summer conditions is often 

produced by taxa such as cyanobacteria that may lose their competitive advantage as flushing 

rate increases (Carvalho et al., 2011).  For example, Padisák et al., (1999) found that 
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Aphanizomenon blooms were supressed when flushing rates were increased to a frequency of 

every 20 – 30 days and Wood et al., (2017) found that multiple heavy rainfall events weakened 

the ability of cyanobacteria to recover from further events.  The flushing events were likely too 

infrequent in the mesocosms for the competitive exclusion of cyanobacteria.   

Many studies relating to the effects of flushing on phytoplankton have focused on the 

response during the growing season, as this is when it is expected that the effects will be 

greatest.  Unexpectedly, we found that a flushing event increased cyanobacterial abundance 

and dominance in nutrient enriched mesocosms during the winter months.  Although 

uncommon, winter blooms of cyanobacteria can occur naturally, comprising taxa such as 

Planktothrix rubescens (Naselli-Flores et al., 2007) and Aphanizomenon spp. (Reynolds et al., 

2002) which are efficient at harvesting light under limiting conditions.  This striking response 

was observed consistently among the replicates suggesting that the conditions within these 

mesocosms strongly favoured the dominance of cyanobacteria.  The high abundance of winter 

cyanobacteria did not occur in unflushed, nutrient enriched mesocosms, indicating that short 

flushing events were key to this response.  Overall these results suggest that changes in the 

phytoplankton community in response to flushing may depend on seasonal timing as well as 

the frequency of the event(s).    

Management implications  

Our results suggest that under future climate and nutrient scenarios, nutrients may need to be 

substantially reduced in shallow lakes in order to: (a) mitigate against the indirect effects of 

warming through enhanced nutrient cycling, especially in previously impacted lakes, and (b) 

mitigate against the direct effects of enhanced growth rates of common bloom-forming species 

of cyanobacteria, that are widely recognised for their potential to produce harmful toxins (Codd 

et al., 2005). 

 It should be stressed that the combined effects of warming, nutrient enrichment and 

extreme rainfall events on cyanobacterial abundance are only relevant to these conditions i.e. 

both the lake environment - shallow, low humic lakes -and the stressor gradients tested.  Thus, 

these results should be applied with care.  For example, several studies have shown that the 

relationship between chlorophyll-a (McCauley et al., 1989) and cyanobacteria (Carvalho et al., 

2013) to TP concentrations, plateaus at high concentrations because of other limiting factors.  

This non-linear response means that the form of stressor interactions are likely to change along 

the nutrient gradient (Piggott et al., 2015; Rigosi et al., 2014).  Likewise, while we found that 
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short-lived, one-off extreme events are unlikely to reduce algal blooms, this may not be the 

case if the frequency or intensity of the flushing event is greater.  There may also be an 

important interaction between flushing and stratification that would not be captured in these 

well mixed mescoms.  Furthermore, concomitant changes in the environment as a result of high 

rainfall such as an increase in turbidity/colour (e.g. Urrutia-Cordero et al., 2017) and an 

increase in nutrient loading, especially N (e.g. Sinha et al., 2017; Wood et al., 2017) may 

further complicate this response.  The effects of warming may also differ between shallow and 

deep lakes (Richardson et al., 2018).  In shallow lakes, as observed in our shallow mesocosms, 

warming may benefit cyanobacteria through enhanced internal loading of P (Dolman et al., 

2016; Søndergaard et al., 2017) and potential increased benefits for N-fixers caused by 

increased denitrification rates (Veraart et al., 2011) while in deeper lakes, the benefits may 

emerge because of increased stability in the physical structure of the lake (Taranu et al., 2012).  

Trophic interactions such as the effects of macrophytes in shallow lakes may also alter the 

effects of warming (Feuchtmayr et al., 2009; McKee et al., 2003 and Moss et al., 2003).  Our 

study builds a foundation for understanding the complexity of how global climate change may 

impact on freshwater resources.  It highlights the clear need to mitigate against global warming, 

but indicates that ecological surprises may occur depending on the lake characteristics and 

landscape context (low or high nutrient loading). 
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Chapter 4.   

PROTECH modelling study: a process based model study of the 

effects of the timing and magnitude of one-off flow events under 

different nutrient loading and climate scenarios in a modelled 

stratified lake. 

 

1.1 Abstract 

There is great interest in the impact of climate change on the development and duration of 

harmful cyanobacterial blooms.  This has mostly focused on global warming as a ‘press’ 

disturbance (trends), however, associated with climate change are ‘pulse’ disturbances such as 

increases in extreme rainfall.  Pulse events are by definition short-lived, making their impacts 

difficult to assess using routine monitoring data.  Here, a phytoplankton community model, 

Phytoplankton RespOnses To Environmental Change (PROTECH), was used to explore the 

impact and recovery of cyanobacteria from one-off extreme flow events of different magnitude 

and timing.  The model was used to examine the responses of a typical deep, stratified lake in 

four different climate zones (Boreal, Continental, Atlantic and Mediterranean) and three 

nutrient load scenarios (baseline, +50% and -50% baseline nitrogen and phosphorus inflow 

concentrations), resulting in 64,800 model runs.  As expected, the major effect of high flow 

events was the loss of phytoplankton biomass and this increased with flow velocity and the 

productivity of the system at the time of the event.  Recovery of total and cyanobacterial 

chlorophyll-a from hydraulic loss depended on: (a) the magnitude of the event- the more 

biomass lost, the longer the recovery time; (b) the timing of the event– recovery took longer in 

winter when growth rates were limited by environmental conditions and (c) the climate region 

– higher latitude regions were least resilient to disturbance during the winter, when day length 

was short. Recovery time did not depend on nutrient load since although biomass loss was 

greater at high nutrient loading, high nutrient availability allowed more rapid recovery.  There 

were no compositional differences in recovery, suggesting no major compositional shifts as a 

result of perturbation. This study suggests that the response to single events (in clear water 

systems), even if extreme, are generally short-lived.  
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1.2 Introduction 

Harmful algal blooms (HABs) of cyanobacteria are a global water quality problem driven by 

widespread nutrient enrichment of fresh waters.  There has been increasing interest in the role 

of climate change in the development and duration of blooms because of their potential to 

produce potent toxins that can severely affect the health of people and animals (Codd et al., 

2005; WHO, 2011).  This interest has focused principally on the potential stimulatory effects 

of increasing lake water temperature on cyanobacteria (Paerl & Huisman, 2008; O’Neil et al., 

2012) especially those impacted by nutrient enrichment (Moss et al., 2011).  While there is 

evidence for the effects of warming on cyanobacteria (Elliott et al., 2006; Jöhnk et al., 2008; 

Kosten et al., 2012), in reality climate change is manifested as dynamic changes in the 

environment, incorporating press and pulse disturbances, such as heatwaves and extreme 

rainfall events (Lakes, 2000).  These short-lived disturbances can impact phytoplankton 

communities (James et al., 2008) which, depending on the characteristics of the event, could 

increase (Paerl & Huisman, 2008; Markensten et al., 2010) or decrease the impacts of HABs 

(Padisák et al., 1999; James et al., 2008).  Despite recognition of the potential impact of these 

events on phytoplankton dynamics, extreme climatic events have been poorly studied, in favour 

of responses to annual or seasonal ‘average’ climate trends that are more straightforward to 

analyse using available monitoring data (e.g. Kosten et al., 2012; Taranu et al., 2012; Rigosi 

et al., 2014).  Inclusion of short-term pulse events as well as longer-term press or ramp climate 

effects is needed for our ability to forecast cyanobacterial blooms under future 

climates/conditions (Jentsch et al., 2007; Michalak, 2016). 

Extreme rainfall events are increasingly being observed (Lehmann et al., 2015) and are 

predicted to increase in the future (IPCC, 2013), in particular during the summer months at 

mid- to high-latitudes (Christensen & Christensen, 2003).  These events result in large and 

sudden changes in the physico-chemical environment of lakes (Sadro & Melack, 2012) which 

can have large impacts on phytoplankton communities.  Firstly, increased hydraulic flushing 

impacts individuals and populations through loss to the outflow (Dickman, 1969; Sadro & 

Melack, 2012).  Secondly, changes to the environment along gradients of light availability, 

nutrient availability and mixing/turbulence can result in shifts in phytoplankton community 

composition and diversity (Padisák, 1988; Padisák, 1993; Bailey-Watts et al., 1990), driven by 

differences in morphology and functional traits among phytoplankton (Reynolds et al., 2002).  

So, while some groups may be resilient to change or flourish under the new conditions, others 

will be excluded.  Cyanobacterial blooms may be particularly sensitive to flushing events as 
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most bloom forming genera are sensitive to turbulence, are slow growing and have functional 

traits suited to stable water columns (Sherman et al., 1988; Reynolds et al., 2002; Hudnell et 

al., 2010; Cross et al., 2014). 

The extent of the impact of extreme events on phytoplankton assemblages will depend on 

many aspects relating to the event itself such as the timing (Verspagen et al., 2006; Padisák, 

1993; Padisák et al., 1999; Elliot, 2010), intensity (Harris & Baxter, 1996; Oh and Kim, 1995; 

Ahn et al., 2002) and frequency (Padisák, 1988) but also on the characteristics of the lake, 

catchment (Reichtwaldt & Ghadouani, 2012) and other factors such as climate and nutrient 

source (Elliott & Jones, 2009).  This interconnectedness makes studies of single extreme events 

very system specific and while the response measured gives insight into some of the effects of 

extreme rainfall events, the biological outcome may be just one of many.  An improved 

understanding of how extreme climatic events will impact cyanobacterial abundance can be 

achieved through (a) examining the effects of different events in the same lake and (b) 

examining the effects of one event given different lake- and catchment- characteristics, spatial 

variables and antecedent weather.  Experimental studies can offer an approach to explore some 

of this complexity (e.g. Bækkelie et al., 2017;  Zingel et al., 2018; Richardson et al., in review).  

In particular, computer modelling is a useful tool as the effects of many factors can be modelled 

separately and in combination, giving the scope to increase the complexity of experimental 

design (e.g. Elliott & Jones, 2009).  In this study, the phytoplankton community model 

PROTECH (Phytoplankton RespOnses to Environmental Change) was used to explore the 

sensitivity of cyanobacteria to one-off hydraulic flow events in a typical stratified lake.  The 

focus was on how event attributes, specifically the timing and intensity may affect the impact 

and recovery from perturbation and how this may be shaped by other environmental factors, 

specifically nutrient loading, weather (temperature and wind) and the location of the lake. 
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1.3 Methods 

Overview of the experiment 

A fully factorial modelling experiment was performed, combining one hundred and eighty 

different timings of the event (day of the year), six different magnitudes of the event, four 

climate zones, five climate models and three nutrient scenarios (Table 4.1).  This resulted in 

64,800 model runs. For each model run, ten different genera of phytoplankton (Table S4.2), 

with different growth rates, morphologies and traits, competed against each other over 365 

days in a typical stratified lake (maximum depth of 26 meters) with an average retention time 

equivalent to 240 days.  On one day of the year, the flushing was increased to simulate a 

hydraulic flow event (Table 4.1: retention times from 2.5 to 80 days).  The response to the flow 

event was measured as: (a) the difference in total chlorophyll-a and cyanobacterial chlorophyll-

a between the experimental and control run on the day of the event; (b) the number of days to 

recover from any changes in biomass and (c) the rate of recovery.   

 

PROTECH  

PROTECH simulates the response of phytoplankton in a 1D vertical water column at daily 

time steps.  The daily change in the chlorophyll a concentration (X/t) of each phytoplankton 

taxon depends on the growth rate (r’, this is a proportional increase over 24 hours), the loss due 

to sinking (S), the loss due to grazing by Daphnia (G, it is assumed any phytoplankton >50 μm 

diameter are not grazed - Table S4.1) and hydraulic loss (D, dilution):  

                                             X/t = (r’ – S – G –D) X                                                (4.1) 

The growth rate (r’) is further defined by: 

                                              r’ = min {r’(,I), r’P, r’N, r’Si}                                    (4.2) 

Table 4.1.  Experimental factors and levels.  Flow rate is given as the equivalent retention time in 

days of the lake.    

Factor Levels Description 

Timing of event (day of year) 180 Moving window of 2 days 

Flow intensity (retention time in days) 5 2.5, 5, 10, 20, 40, 80 

Climate zone 4 Boreal, Continental, Atlantic, 

Mediterranean 

Climate models 5 GFDL-ESM2M, HadGEM2-ES, 

IPSL-CM5A-LR, MIROC-ESM-

CHEM and NorESM1-M. 

Nutrient scenarios (N and P) 3 Baseline, +50%, -50% 
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where r’( ,I) is the growth rate at a given temperature and daily photoperiod and r’P, r’N, r’Si 

are the growth rates determined by phosphorus, nitrogen and silicon concentrations below these 

respective threshold concentrations: < 3, 80 and 500 mg m-3 (Reynolds, 2006).  The r’ values 

depend on phytoplankton morphology but also other taxon specific traits.  For example, non-

diatom taxa are not limitied by silica concentrations below 500 mg m3 and nitrogen-fixing 

cyanobacteria are not limited by nitrogen.  Nutrient loading remains constant for each daily 

time-step (expect for on the day of the event when nutrient loading increases) but availability 

varies with biological demand and mixed depth.  Temperature and light change at each time-

step throughut the simulated water column and depend on air temperature (modelled climate 

data) and the day of the year and latitude, respectively. 

 

The value of change in chlorophyll-a, ΔX/Δt (Equation 4.1), is modified on a daily time-

step for each algal taxon in each 0.1m layer of the water column.  The top 5 meters of the water 

column is sampled on each day.  For a full description of the model’s equations and concepts 

see Reynolds et al (2001) and  Elliott et al (2010). 

 

Driving data 

The hypothetical stratified lake 

Data from a set of European lakes (Moe et al., 2013) was used to specify the dimension of the 

hypothetical lake.  Median lake area, 1.67 km2,  and median annual retention time, 240 days, 

of 912 and 712 lakes, respectively, was used for the area and 712 lakes for the retention time 

of the experimental lake.  The median maximum depth, 26 meters, of 379 lakes classified as 

stratified was used for the depth of the lake.  A cone shaped bathymetry was assumed from 

which the volume of the lake, 3,620,000 m3, was calculated.  The volume was used to calculate 

the required inflow and outflow rate, 0.174 m3 s-1, to achieve a retention time of 240 days 

(Supplementary Box 1). 

Phytoplankton 

Ten phytoplankton were selected for the simulations:  Chlorella, Staurastrum, Asterionella, 

Cyclotella, Plagioselmis, Cryptomonas, Ceratium, Planktothrix, Dolichospermum (previously 

named Anabaena) and Dinobryon.  These were selected to represent the main taxonomic 

classes and a range of functional groups (Reynolds et al., 2002) in the community (Table S4.1).  

Each taxonomic class was restricted to two genera to avoid bias.  Two common bloom forming 
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filamentous cyanobacteria were selected that are known to perform well in the model: 

Planktothrix which is tolerant of low light and Dolichospermum which can regulate buoyancy 

and fix atmospheric nitrogen (Reynolds et al., 2002).  In the model, neither genera are grazed.  

Validation simulations were run to check that changes in the community over the year were 

realistic for a stratified lakes, specifically characterised by two peaks of biomass, one in the 

spring and one in the autumn, with a spring bloom of diatoms (Sommer et al., 1986; Sommer 

et al., 2012). 

Nutrients 

Inflow nutrient loads – N (nitrogen) and P (phosphorus) - were calibrated to create baseline 

conditions in which modelled annual mean chlorophyll-a and modelled proportion 

cyanobacteria were validated against observed data which were sourced from the WISER data 

set (Moe et al., 2013). WISER lakes that were classified as stratified were assigned to each 

climate zone based on the grid reference of the lake sampling point.   

Average winter (December – February) total nitrogen, 660 µg L-1, and total phosphorus, 

16 µg L-1, from 262 and 265 Boreal stratified lakes, respectively, was used as the starting point 

for calibration.  Incremental multipication factors, from 1.10 to 1.40 at 0.05 intervals, was 

applied to these starting concentrations of N and P and the model was run for 365 days for each 

climate zone.  The nutrient load which minimised the sum of the combined square root 

differences between modelled and observed chlorophyll-a and proportion cyanobacteria across 

all climate zones was selected (Supplementary material, Table S4.2, Fig S4.1).  The same 

driving nutrients were used for all climate zones as chlorophyll-a and proportion cyanobacteria 

were similar among these zones (Table S4.3).  

Simulations were run for three different nutrient scenarios: baseline nutrient load, low 

nutrient load (-50% of the baseline concentrations) and high nutrient load (+50% of the baseline 

concenrations).  As all nutrients loads were diffuse (non-point source), the load increased with 

increasing flow rates.   

Climate  

Temperature and wind data were obtained from an ensemble of five present day (2006-2015) 

RCP 4.5 climate models: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-

CHEM and NorESM1-M.  Multiple models were used for a measure of uncertainty.  These 

data were then summarised as daily means from four broad climate zones - Boreal, Atlantic, 
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Continental and Mediterranean - which were selected to represent the majority of Europe in 

terms of latitudinal and longitudinal gradients of weather and seasons i.e. photoperiod (Fig. 

4.1, Table S4.4).  Delineations of the climate zones were obtained from the European 

Environment Agency biogeographical regions (2015, https://www.eea.europa.eu/data-and-

maps/data/biogeographical-regions-europe-3). The centroid of the climate zone polygon 

(ArcGIS method) was used as the representative latitude for the zone (Fig. 4.1) which was used 

in the model to estimate daily changes in solar radiation. 

 

Fig. 4.1 Map of ‘climate zones’.  Delineations are from the European Environment Agency 

biogeographical regions (2015, https://www.eea.europa.eu/data-and-maps/data/biogeographical-

regions-europe-3).  The latitudinal centroid of each zone is given in parentheses. 

Simulations 

i. Control simulations 

For each nutrient scenario (baseline, low and high) the model was run twenty times, one run 

for each combination of climate zone (n = 4) and climate model (n = 5).  In the control 

simulations the daily flow rate was constant, at 0.174 m3 s-1, equivalent to a retention time of 

240 days. 

https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3
https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3
https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3
https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3
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ii. Extreme event simulations  

In the experimental simulations, the daily flow rate was also 0.174 m3 s-1 (equivalent to a 

retention time of 240 days) with exception of one day in the year when the rate of the inflow 

and outflow increased.  Different magnitudes of flow were applied which were equivalent to 

reducing the retention time to: 2.5, 5, 10, 20, 40 and 80 days with 2.5 days being the most 

extreme event and 80 days being the least extreme (Table S4.5).  Only one event occurred per 

year, the timing of which changed on a two day moving window starting from the 2nd of January 

and finishing on the 26th of December.  Model runs were executed to cover all combinations of 

the experimental factors listed in Table 4.1, to give a total of 64,800 simulations. 

Responses measured  

i. Immediate effects of the flushing event 

The effect of flushing on chlorophyll–a (µg L-1) and cyanobacterial chlorophyll-a (µg L-1) on 

the day of the event was calculated by taking the difference between biological responses in 

the control and the experimental run. 

ii. Number of days for cyanobacteria to recover 

The difference between cyanobacterial chlorophyll-a in the extreme event run and the control 

run was calculated for each consecutive day after the event until the difference was equal to, 

or greater than zero – the ‘recovery day’.  The day of the flow event was subtracted from this 

‘recovery day’ to give the number of days it took for chlorophyll-a and cyanobacteria 

chlorophyll-a to recover.   

iii. Rate of recovery 

The rate of recovery, chlorophyll-a (µg L-1 day-1), was calculated using the growth rate 

equation (4.3): 

 

log (𝑐ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙𝑑𝑎𝑦 𝑜𝑓 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦)− log (𝑐ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙𝑑𝑎𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡)

number of days to recover
                    (4.3) 

 

As changes in chlorophyll-a and cyanobacteria chlorophyll-a over time in the control and 

experimental simulations were not linear and were not always positive; the difference in the 
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growth rate between the experimental and control recovery period was calculated to give the 

difference in the rate of recovery.  This ensured that the growth rate was always positive. 

Statistical analysis 

All analyses was performed in R version 3.2.2, R Core Team (2017).   

Validation and control simulations 

In the validation/calibration step, differences in modelled and observed total chlorophyll-a and 

proportion cyanobacteria were tested using an independent t-test under standard assumptions.   

In the control simulations, differences in total chlorophyll µg L-1 and cyanobacteria chlorophyll 

µg L-1 among nutrient scenarios were tested using a linear model, with the difference as the 

response and nutrient scenario as a factor.  Temporal trends of chlorophyll-a and cyanobacteria 

chlorophyll-a in control simulations were plotted as the average and standard deviation from 

each biogeographic zone – nutrient scenario combination (average of the five climate models).   

Flushing simulations 

For the analysis of the biological response to extreme events – change on the day of the 

event, number of days to recover and the recovery rate – the day of the event was treated as a 

continuous variable while nutrient scenario, flow magnitude and biogeographic zone were 

retained as factors.  The shape of these responses over time was first explored using the ggplot 

loess smoother function in R.  Linear models were used for responses in which interactions 

among temporal trends and multiple factors were to be retained: (a) change of biomass on the 

day of the event and (b) the number of days to recover.  An additive model was used for the 

rate of recovery as exploratory analysis showed that higher order interactions were not 

important.  Models were simplified by removing non-significant higher order interaction terms 

in turn.  Simplified models were compared with more complex models using AIC and favoured, 

when retaining more complex terms did not significantly improve the model. 

i. Change in biomass on the day of the event  

To account for temporal auto-correlation the response was modelled at a bi-monthly resolution 

using the following model: 

𝑌 = 𝛽0 + 𝛽1𝑋𝑑𝑎𝑦𝑜𝑓𝑒𝑣𝑒𝑛𝑡 ∗ 𝛽2𝑋2
𝑑𝑎𝑦𝑜𝑓𝑒𝑣𝑒𝑛𝑡 ∗ 𝛽3𝑋3

𝑑𝑎𝑦𝑜𝑓𝑒𝑣𝑒𝑛𝑡  ∗ 𝛽4𝑋4
𝑑𝑎𝑦𝑜𝑓𝑒𝑣𝑒𝑛𝑡 ∗ 𝛿𝐹𝑙𝑢𝑠ℎ𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∗

 𝜁𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑍𝑜𝑛𝑒 ∗ 𝜂𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜  + 𝜀, 𝜀~(0, 𝜎𝑟
2) 

                              (4.4) 
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where Y is the response of interest: change in chlorophyll-a on the day of the event; change in 

cyanobacteria chlorophyll-a on the day of the event. β0 is the intercept term β1-4 are model 

parameters for the response to events on different days of the year (fourth order polynomial),  

δFlushingRate, ζClimateZone and ηNutrientScenario are the model parameters for each factor (Table 4.1 for 

factor levels).  ɛ is the overall error term, with a mean of zero and unknown variance. 

ii. The number of days to recover 

To account for temporal auto-correlation the response was modelled at a bi-monthly resolution 

using the following model: 

𝑌 = 𝛽0 + 𝛽1𝑋𝑑𝑎𝑦𝑜𝑓𝑒𝑣𝑒𝑛𝑡 ∗ 𝛽2𝑋2
𝑑𝑎𝑦𝑜𝑓𝑒𝑣𝑒𝑛𝑡 ∗ 𝛿𝐹𝑙𝑢𝑠ℎ𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∗ 𝜁𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑍𝑜𝑛𝑒 ∗ 𝜂𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜  + 

𝜀, 𝜀~(0, 𝜎𝑟
2)  

          (4.5) 

where Y is the response of interest: number of days for chlorophyll-a to recover and number 

of days for cyanobacteria chlorophyll-a to recover. β0 is the intercept term β1-2 are model 

parameters for the response to events on different days of the year (second order polynomial),  

δFlushingRate, ζClimateZone and ηNutrientScenario are the model parameters for each factor (Table 4.1 for 

factor levels).  ɛ is the overall error term, with a mean of zero and unknown variance. 

iii. Recovery rate 

The rate of recovery was modelled using the following additive model: 

 

𝑌 = 𝛽0 +  𝑠(𝑑𝑎𝑦𝑜𝑓𝐸𝑣𝑒𝑛𝑡) + 𝛿𝐹𝑙𝑢𝑠ℎ𝑖𝑛𝑔𝑅𝑎𝑡𝑒 

𝜀, 𝜀~(0, 𝜎𝑟
2)  

          (4.6) 

where Y is the response of interest, s(dayofEvent) is the smoothed term for the change in the 

response over time and δFlushingRate is the model parameters for flushing rate (Table 4.1 for factor 

levels).  ɛ is the overall error term, with a mean of zero and unknown variance.  Climate zone 

and nutrient scenario were excluded for parsimony as retaining them did not visibly alter 

temporal trends.    
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1.4  Results 

Validation (calibrated baseline nutrient scenario) 

Nutrient concentrations in the baseline scenario were calibrated so that modelled (9.9 µg L-1) 

and observed (10 µg L-1) annual mean chlorophyll-a and modelled (0.21) and observed (0.20) 

annual mean proportion cyanobacteria were not statistically significantly different (t = 0.12, df 

= 6, p-value = 0.92 and t = -0.45, df = 6, p-value = 0.66, respectively).  Using the same nutrient 

load but altering the climate drivers resulted in modelled annual mean chlorophyll-a and 

modelled annual mean proportion of cyanobacteria that were representative of observed data 

within each climate zone (Fig. 4.2).   

 

Fig. 4.2 Modelled and observed chlorophyll-a and proportion of cyanobacteria (annual averages).  

Orange dots are mean annual observed data for lakes classified as stratified in each of the climatic zones.  

Dashed lines are the mean annual cyanobacteria proportion and mean annual chlorophyll a from the 

observed data for each climate zone.  Black dots are modelled chlorophyll-a and modelled proportion 

of cyanobacteria from the best calibrated model.  There are 5 points for each climate zone, one for each 

climate model (Table 4.1).   
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Control simulations (no extreme event) 

a. Water temperature and mixed depth varied among climate zones  

Temporal trends in water temperature and mixed depth were similar in all climate zones (Fig. 

S4.2), with the highest temperatures during the summer (mid-July) and stratification of the 

water column occurring during the growing season (spring – autumn).  Average water 

temperatures and the average duration of stratification (mixed depth ≤ 5 meters) generally 

increased with decreasing latitude, with lowest mean temperatures (9.6 ˚C) and the shortest 

duration of stratification (216 days) in Boreal simulations and highest mean temperatures (13.3 

˚C) and the longest duration of stratification (333 days) in Mediterranean simulations (Table 

S4.6).  At similar latitudes i.e. Atlantic and Continental the differences were less distinct (see 

Fig. 4.1 for overlapping regions). 

b. Chlorophyll-a and cyanobacteria chlorophyll-a amount varied with nutrient load and 

phenology with climate zone    

Increasing the nutrient load resulted in statistically significant increases in total chlorophyll-a 

and cyanobacteria chlorophyll-a (Fig. S4.3, Table S4.7 and S4.8).  General temporal trends 

were similar among climate zones with a spring bloom composed of diatoms (Asterionella) 

and flagellates (Plagioselmis) and a later summer/autumn bloom of flagellates (Plagioselmis) 

and cyanobacteria (Planktothrix).  However, the phenology of these biomass events varied 

among zones, with earlier onset and later breakdown in Mediterranean lakes compared to 

Boreal lakes (Fig. 4.3).  This reflected differences in the timing of stratification among climate 

zones (Fig. S4.2).  The proportions of dominant taxa within these bloom events also varied 

among climate zones and among nutrient scenarios e.g. Planktothrix was more abundant in the 

Continental high nutrient scenario than the Continental low nutrient scenario (Fig. S4.4).  
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Fig. 4.3 Chlorophyll-a and cyanobacteria chlorophyll-a over a year simulation with no flushing events 

(control) for different climate zones and nutrient loads.  The coloured lines are the average of the 5 

climate models for each climate zone-nutrient load combination, the shaded area is the standard 

deviation.   

Short term impacts of hydraulic flow events 

Extreme flushing events predominantly resulted in net losses of chlorophyll-a (Fig. S4.5) and 

net losses of cyanobacteria chlorophyll-a (Fig. 4.4), although some gains were occassionally 

observed.  Overall, changes in total and cyanobacterial chlorophyll-a increased with increasing 

nutrient loading (productivity) and increasing flushing rates (event magnitude).  Temporal 

patterns of impact depended on the timing of the event, the climate zone and the response 

measured (total chlorophyll or cyanobacterial chlorophyll-a), Table 4.2 and Table S4.9).  
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Fig.4.4  Short term impact of hydraulic flow events on cyanobacteria chlorophyll-a at different flushing 

magnitudes (rate in days), nutrient scenarios and climate zones.  The coloured lines are the fitted 

response from the best fit linear model (Table 4.2).  

Table 4.2.  Analysis of Variance table of the best fit linear model for the change in cyanobacterial 

chlorophyll-a on the day of the event given different event timing, flushing rate, nutrient scenario 

and climate zone.  The terms are ordered in descending sum of squares.  R2 = 0.48. 

Term df sumsq meansq Statistic p.value 

Residuals 9360 4437 0.5   
poly(dayEvent, 4) 4 998 249.6 526.5 <0.001 

poly(dayEvent, 4):flushing 20 593 29.7 62.6 <0.001 

Flow 5 462 92.5 195.1 <0.001 

poly(dayEvent, 4):climate_zone 12 404 33.7 71.0 <0.001 

poly(dayEvent, 4):nutrient 8 387 48.3 101.9 <0.001 

poly(dayEvent, 4):climate_zone:flushing 60 250 4.2 8.8 <0.001 

poly(dayEvent, 4):flow:nutrient 40 235 5.9 12.4 <0.001 

Nutrient 2 229 114.5 241.4 <0.001 

flow:nutrient 10 162 16.2 34.2 <0.001 

poly(dayEvent, 4):climate_zone:nutrient 24 132 5.5 11.6 <0.001 

poly(dayEvent, 4):climate_zone:flushing:nutrient 120 109 0.9 1.9 <0.001 

climate_zone 3 39 12.9 27.2 <0.001 

climate_zone:nutrient 6 24 4.1 8.6 <0.001 

climate_zone:flushing 15 22 1.5 3.1 <0.001 

climate_zone:flushing:nutrient 30 22 0.7 1.5 <0.001 
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Recovery from extreme flow events 

Recovery from hydraulic flow events depended on the timing of the event, the magnitude of 

the event, the climate zone/region and to a lesser extent the nutrient scenario (Tables 4.3-4.4).  

There were no clear differences in the shape of the recovery (days to recover or recovery rate) 

for chlorophyll-a (Fig. S4.5 and S4.6, Tables S4.10 and S4.11) and cyanobacteria chlorophyll-

a with minimum recovery times occurring during the main summer period, around day 200 

(Fig. 4.5a and Fig. 4.5b).   

a. Pulse disturbances of different magnitudes 

The number of days to recover from a flow event depended on the magnitude of the event - the 

greater the magnitude of the event, the longer it took to recover (Fig 4.5a, coloured lines, Table 

4.3).  Conversely the greater the magnitude of the event, the higher the rate of recovery (Fig 

4.5b, coloured lines, Table 4.4). 

b. Pulse disturbances at different times of the year 

The number of days to recover and the rate of recovery also depended on the timing of the 

event.  The rate of recovery was slowest when the event occurred at either end of the year (Fig. 

4.5b), resulting in a longer time to recover (days to recover, Fig 4.5a).  Conversely, the rate of 

recovery was fastest when flow events occurred during the summer.  Recovery (days to recover 

and rate of recovery) depended on the daily solar energy input (J m2 day-1) so that when it 

increased, there was an increase in the rate of recovery (Fig. 4.6b, Table S4.12) and 

consequently a decrease in the number of days to recover (Fig. 4.7a, Table 4.8).  Naturally, 

incoming energy showed a seasonal pattern, with higher amounts in the summer and lower 

amounts in the winter (Fig. S4.7).  
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Fig. 4.5 Recovery of cyanobacteria chlorophyll-a from hydraulic flow events at different flushing 

magnitudes (rate in days), nutrient scenarios and climate zones. (a) the number of days to recover and 

(b) the rate of recovery.  The coloured lines are the fitted response from the best fit linear model (Table 

4.3 for (a) and Table 4.4 for (b)). 
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c. Pulse pressures in different climatic regions/across regions 

Recovery also depended on climate zone/region where differences in recovery were most 

evident for flow events that occurred at either end of the year.  Regions at higher lat itudes, 

especially Boreal, took longer to recover during the winter than regions at lower latitudes, e.g. 

Mediterranean (Fig. 4.5a).  Regional differences during the summer, if any, were not evident.  

d. Effect of nutrients 

Nutrient scenario was statistically significant in the explaining the number of days for total and 

cyanobacterial chlorophyll-a to recover but explained little additional variance in terms of 

temporal trends or overall effects. 

Table 4.3.  Analysis of variance table for best fit linear model for the number of days it took cyanobacterial 

chlorophyll-a to recover given the timing of the event, flushing rate, nutrient scenario and climate zone.  

The terms are ordered in descending sum of squares.  R2 = 0.57. 

Term Df Sumsq meansq statistic p.value 

Residuals 9504 16879106 1776   
poly(dayEvent, 2) 2 5685633 2842816.3 1600.7 <0.001 

Flushing 5 2648748 529749.7 298.3 <0.001 

poly(dayEvent, 2)*climate_zone 6 2591536 431922.7 243.2 <0.001 

poly(dayEvent, 2)*flushing 10 1822211 182221.1 102.6 <0.001 

climate_zone 3 1414748 471582.6 265.5 <0.001 

poly(dayEvent, 2)*climate_zone*flushing 30 616140 20538.0 11.6 <0.001 

climate_zone*flushing 15 365737 24382.5 13.7 <0.001 

poly(dayEvent, 

2)*climate_zone*nutrient:flushing 60 173403 2890.0 1.6 <0.001 

poly(dayEvent, 2)*nutrient 4 133330 33332.4 18.8 <0.001 

poly(dayEvent, 2)*climate_zone*nutrient 12 125713 10476.1 5.9 <0.001 

nutrient:flushing 10 81252 8125.2 4.6 <0.001 

poly(dayEvent, 2)*nutrient*flushing 20 37357 1867.8 1.1 <0.001 

climate_zone*nutrient*flushing 30 36459 1215.3 0.7 <0.001 

climate_zone*nutrient 6 22922 3820.3 2.2 <0.001 

Nutrient 2 9855 4927.7 2.8 <0.001 

 

Table 4.4 Additive model results for the difference in the rate of recovery of cyanobacterial 

chlorphyll-a given the timing of the event and the flushing rate. Significant effects (p < 

0.05) are highlighted in bold. R2 adjusted = 0.28 

Parametric coefficients.  Changes on the intercept. 

 (Intercept) Flush5 Flush10 Flush20 Flush40 Flush80 

estimate 0.07 -0.00 -0.00 -0.02 -0.03 -0.04 

Estimated degrees of freedom (edf) for approximately significant time smooth terms for 
the timing of the evnt 

Edf 8.44 
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Fig. 4.6 Relationship between recovery (days to recover (a) and rate of recovery (b)) and incoming solar 

energy (joules m2 day-1).  Lines are fitted values from the best fit linear model (Table S4.12 and S4.13, 

for (a) and (b), respectively).  
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1.5  Discussion 

Associated with climate warming are changes in the hydrological cycle.  Lake phytoplankton 

communities are impacted through more frequent and intense flushing events - pulse 

disturbances.  The effect of these changes could have large direct effects on phytoplankton 

communities caused by increased loss rates and changing selection pressures on community 

composition. Because of their slow rate of growth and general preference for stratified 

conditions, extreme flushing events may have a particularly negative effect on cyanobacteria.  

Control simulations 

In control simulations, the timing of the vernal phytoplankton bloom and the breakdown of 

autumnal biomass varied among climate zones.  This can be explained by the different onset 

and breakdown of thermal stratification among the zones.  In stratified lakes, interannual 

variability in light availability – the “starter and terminator” of the phytoplankton growth 

season (Sommer et al., 1986; Sommer et al., 2012) - is driven by stratification.  Earlier onset 

of thermal stratification results in earlier phytoplankton growth. Stratification varied among 

the zones because of differences in temperature.  Thus, factors which alter physical forcing - 

weather and geographical location – affect the timing and duration of the phytoplankton growth 

season (Sommer et al., 2012).  This demonstrates the influence of spatial and climate factors 

at broad scales in shaping biological responses, in the absence of disturbance.  Nutrients 

defined the carrying capacity of phytoplankton biomass but did not alter phenology (Sommer 

et al., 2012). 

Flushing events 

Biological impacts of flushing events  

The impact of flow events on biomass were predominantly negative.  This was expected and 

can be explained by loss of biomass by hydraulic loss (Phlips et al., 2002; Jeong et al., 2011; 

Reynolds et al., 2012; Sadro & Melack, 2012).  The amount of biomass lost was proportional 

to the magnitude of the disturbance but also to the productivity of the system.  Productivity 

was determined by the nutrient carrying capacity but also on seasonally varying factors, 

specifically light and temperature; as a result there was a seasonal trend in impact which 

mirrored seasonal changes in total chlorophyll-a and cyanobacteria chlorophyll-a.  For 

cyanobacteria, this will likely mean that flushing events will have the greatest short term 

impacts during the late summer to autumn when blooms most often occur.  As the timing of 
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biomass events varied among biogeographical zones, so too did temporal variation of the event 

impact - a large storm affecting multiple regions may have different biological impacts.   

Unexpectedly, in some scenarios there were small net increases in biomass as a result 

of flushing.  These increases can be explained by the stimulatory effect of increased nutrient 

loading offsetting any losses.  These gains wouldn’t occur in lakes with predominantly point 

sources of nutrients as increasing flow would result in nutrient dilution (Elliott et al., 2009). 

Recovery 

a. Timing and magnitude of the event 

Recovery from flow events depended both on the magnitude and the timing of the event.  With 

increased flushing, more biomass (total and cyanobacterial chlorophyll-a) was lost and so, at 

any time of the year, it took longer to recover.  This is expected, and is reported in the literature 

- severe events can have long term effects on phytoplankton biomass in the order of years 

(James et al., 2008; Harris and Baxter, 1996), while cyanobacteria can recover and even bloom 

preceding smaller precipitation events within days (Oh and Kim, 1995; Ahn et al., 2002).  In 

natural systems the relationship between the event magnitude and recovery may not be linear.  

Firstly, heterogenous distributions of flow in natural lakes can create hydraulic storage zones 

which can maintain slow growing populations, decreasing the time needed for recovery and 

even sustaining blooms if the low flow zone is large enough (Grover et al., 2011; Michalak et 

al., 2013).  Secondly, high flow events can result in increased delivery of terrestrial material, 

increasing turbidity, decreasing available light (Sadro & Melack, 2012; Zhou et al., 2012) and 

consequently prolonging recovery (James et al., 2008; Perga et al., 2018).  Perga et al (2018) 

showed that the ‘turbidity’ of an event can be independent of the event magnitude, instead 

depending on antecedent weather and catchment geology.  

Recovery was prolonged in the winter compared to the summer.  Phytoplankton 

communities were less resilient to change during the winter months because of limited 

resources for growth.  Seasonal differences in recovery can be expected and are reported 

elsewhere.  For example, Richardson et al (in review, chapter three) observed that the effect of 

autumn and winter extreme rainfall (flushing) events were more prolonged than spring and 

summer rainfall events.    
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b. Regional differences – lake location 

Recovery also depended on the climate zone - higher latitude regions were more seasonally 

sensitive to disturbance than lower latitude regions because of differences among regions in 

daily solar radiation.  This latitudinal effect in recovery was most apparent at either end of the 

year when the tilt of the earth exacerbates differences in day length and energy load among 

latitudes. 

 Other spatial differences in recovery may arise from heterogeneous distributions of lake 

types (Nõges, 2009).  Cyanobacterial responses to single (Phillips et al., 2008) and multiple 

stressors are shown to vary among lakes with different physical and chemical attributes 

(Richardson et al., 2018; Taranu et al., 2012).  Differences in surface area (which influences 

fetch) and depth (which influences mixing) may be particularly important lake type factors, the 

former affecting the extent of wind induced mixing and the latter affecting species composition 

prior to the event.  In fully mixed or polymictic lakes, conditions may likely already be tailored 

to taxa such as diatoms which can tolerate mixing (Carrick et al., 1993; Wagner & Adrian, 

2011).   

c. The role of nutrients in recovery 

While increased nutrient loading stimulated higher growth rates, there was no difference among 

nutrient scenarios in terms of the time to recover because of increased biomass lost in systems 

of higher productivity.  In natural systems, variation in nutrient loading may occur during high 

rainfall events depending on the season in which the event occurs (Donohue et al., 2005) which 

could alter recovery times.   Nutrient source is also likely to be an important factor as changes 

in flushing rates will alter in-lake nutrient concentrations in different ways depending on 

whether the nutrient source is point or diffuse (Elliott et al., 2009).  In point source systems, 

increased flow results in a loss of nutrients through the ouflow, without replacement, which 

could result in prolonged recovery. 

d. Compositional differences in recovery  

Unexpectedly, similar patterns of recovery were seen for total and cyanobacterial chlorophyll-

a, suggesting no major compositional shifts occurred in response to one-off flow events.  This 

is surprising because hydraulic flow is recognised as an important factor influencing 

phytoplankton composition, with different flow velocities suiting the tolerances of different 

functional groups (e.g. Harris & Baxter, 1996; Sherman et al., 1998; Katsiapi et al., 2011; 



89 
 

Bittencourt-Oliveira et al., 2012; Elliott & Defew, 2012; Cross et al., 2014).  The extent of 

physical disturbance will likely affect community resilience.  In this study the events were short 

lived, only temporarily changing the flow velocity, whereas rainfall events with changes in 

flushing rates as well as thorough wind-induced mixing (Woolway et al., 2018) may have 

greater impacts.    The frequency of distrubance is also discussed widely as an important factor 

(Connell, 1978) with increased distrubance supresssing slow growing taxa like cyanobacteria 

(Padisak et al, 1999).  

 Alternative responses may occur depending on the dominant taxa in the system.  In this 

study, Planktothrix and Dolichospermum were used, of which Planktothrix dominated under 

all climate and nutrient scenarios.  Planktothrix is tolerant to mixing and light limitation 

(Reynolds et al., 2002) and so may not be as sensitive to flow disturbances as other taxa such 

as Microcystis.  It should be expected that cyanobacteria genera with different functional traits 

and, therefore, different sensitivities and tolerances will respond to multiple stressors in 

different ways (Carey et al., 2012; Rigosi et al., 2014; Richardson et al., in review/chapter 

three).  

Final remarks  

This study is innovative and powerful in that it explores the effect of different extreme events 

in exactly the same lake under different climate and nutrient scenarios.  Multi-factorial 

experimental designs, such as this one, are required to disentangle the complex nature of 

extreme climatic events and can be achieved through lake models such as PROTECH.  

Particular areas that deserve further consideration are: (a) the effect of other physico-chemical 

changes, in particular changes in turbidity and colour on recovery; (b) the influence of lake 

type, focusing on polymictic and stratified lakes to start; (c) species/genera specific responses 

and (d) other event attributes, in particular event frequency. 
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Chapter 5 

General discussion 

Understanding and quantifying the response of cyanobacteria to multiple stressors resulting 

from climate, land-use and population changes can be considered as a wicked problem 

(Churchman , 1967).  With so many interdependent and changing factors at play, the outcome 

may be impossible to predict for any individual lake.  Despite this complexity, improving our 

understanding of the role of climate change, in combination with nutrient enrichment, is clearly 

important so that we can make more informed decisions for risk assessment and management.  

So, how can we make sense of it?  This thesis tackles some of the complexity of the response 

of cyanobacteria to a changing multiple stressor landscape by exploring combinations of 

stressors over multiple spatial and temporal scales.  It does this by adopting three different 

scientific approaches: (1) analysis of empirical (monitoring) data from a large population of 

lakes across a climatically-variable continental-scale; (2) a mesocosm experiment to 

investigate responses to within-year weather dynamics and (3) process-based modelling of a 

representative system across several European climatic zones.  These approaches provide 

independent lines of complementary evidence, incorporating multiple potentially interacting 

stressors and potentially confounding factors, such as lake type and geographical location and 

by incorporating the complex signature of pulse disturbances (i.e. different expressions of a 

stressor).  A synthesis of the outcomes from these studies provides more robust evidence to 

consider what generalisations, if any, can be made and how the increased knowledge gained 

can be applied to the management of lakes to reduce the risk of HABs.  Specifically, this 

discussion will focus on:  

(a) Synthesis of multiple stressor effects across scales and study designs, including the 

wider literature – are the responses of cyanobacteria to climate and nutrient stressors 

generalisable? What factors need to be considered for predicting future change? 

(b) Implications for management.  Is it necessary to understand interactions? Is there a 

stressor hierarchy to prioritise in management? 

(c) Future research directions – what gaps in our knowledge remain and what approaches 

could be used to fill these gaps? 
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5.1 A synthesis of multiple stressor effects across studies – are responses 

generalisable? 

The range of responses observed to multiple stressors across the chapters highlight that it is 

difficult to predict how stressors may interact, especially at a given individual site.  Additive, 

synergistic and antagonistic responses may be possible for the same stressor combination at 

sites with different characteristics or different levels of stress.  For example, the hypothesised 

synergism between warming and nutrient enrichment was not always identified (chapter two) 

and was not always synergistic (chapter three).  This suggests that the response to multiple 

stressors are context dependent.  In particular, this thesis identified that the response can depend 

on: the waterbody type (chapter two); the stressor gradient (chapter three); the response level 

considered (chapter three) and the geographical location of the lake (chapter four and to some 

extent chapter two).  Knowledge of how these factors shape variability in the response may 

provide some generalisations that may not be certain at an individual lake level, but provide a 

basis for more informed risk assessment and management of the pressures affecting lakes.  

These shaping factors are discussed in the following sub-sections in the context of the wider 

literature.   

5.1.1 Environmental context – ecosystem type 

Biological responses to environmental change can be shaped by their environment.  The lake 

type analytical approach taken in chapter two highlights the importance of allowing for 

interactions between multiple lake type factors when defining environmental context.  While 

other authors have identified trophic type (Rigosi et al., 2014), mixing type (Taranu et al., 

2012) and depth x artificial vs natural lakes (Beaulieu et al., 2013) as being important in shaping 

the response of cyanobacteria to the combined effects of nutrients and temperature, chapter two 

includes other key environmental factors – mixing type, alkalinity and colour - that could 

further influence the response.  ‘Lake types’ defined by multiple environmental factors may be 

especially relevant for capturing community structure response to change which may be 

sensitive to a greater number of interacting factors than general productivity (Phillips et al., 

2008). 

Findings from this chapter and the wider literature amount to convincing evidence that 

a lake type analytical approach could help better predict responses to future environmental 

change.  This could allow clear generalisations of lake responses that can be used to assess 
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potential risk across a population of lakes and inform where to prioritise monitoring for risk 

management.  However, a health warning comes with this approach because of the large natural 

variability found among lakes within a type.  Variability may arise from missing covariate 

information such as other limiting nutrients (Downing et al., 2001; Dolman et al., 2012) or it 

is possible that idiosyncratic responses to environmental change at the individual lake level 

could arise.  The latter can be explored with long-term datasets (e.g. MARS time series 

analysis).  In this thesis, chapter three and chapter four tackle some of this unexplained 

variability by taking a more individual lake type approach.  In chapter three, multiple stressor 

effects are explored in a shallow unstratified, clear water, high alkalinity system while in 

chapter four the analysis focuses on a typical stratified, clear water system.    

5.1.2 Stressor gradients alter perspectives 

Chapter three showed that stressor gradients are a key consideration in determining the 

response of cyanobacteria to multiple stress.  A striking outcome of this study was the detection 

of an antagonistic, rather than synergistic (as widely hypothesised), interaction between 

warming and nutrient enrichment.  This ‘ecological surprise’ warrants three key points of 

discussion: (a) the first is about the confidence of predicting outcomes from prior ecological 

knowledge; (b) the second is about ways in which we can sub set the problem to increase our 

confidence in predicting outcomes and (c) the third is a warning about the use and potential 

misinterpretation of multiple stressor terminology.  

 A major hypothesis in freshwater ecology is that cyanobacterial blooms will be 

enhanced because of a synergistic interaction between warming and nutrient enrichment.  This 

thesis shows that this interaction is not always detected (chapter two) and not always 

synergistic (chapter three).  Rigosi et al. (2014) also did not consistently detect this interaction 

among lakes of different nutrient trophy or among species responses.  Unexpected multiple 

stressor responses have also been found by others e.g. between nutrient enrichment and 

acidification in Boreal lakes (Christensen et al., 2006), emphasising the high degree of 

uncertainty of the expected impacts of global change on cyanobacterial blooms.  This 

highlights the need for multiple stressor studies to identify and understand these unexpected 

outcomes.   

 The unforeseen antagonism can be explained by differences in the response along non-

linear stressor gradients.  This has been highlighted previously by Piggott et al (2015) in a 

stream mesocosm experiment in which the response to sediment and nutrient loading changed 
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along a non-linear nutrient gradient.  Asymptotic behaviours of chlorophyll-a and 

cyanobacteria to TP are widely reported in the literature (Carvalho et al., 2013; McCauley et 

al., 1989; Phillips et al., 2008; Watson et al., 1992) with the typical turning point occurring at 

100 μg L-1, above which TP no longer explains total or cyanobacterial chlorophyll-a.  In chapter 

two, the regressions were restricted to the range of each stressor where the data were linearly 

related (this was only relevant for the response to TP).  In chapter three the nutrient gradient 

between the treatments spanned this asymptotic point, with TP concentrations >300 µg L-1 in 

the high nutrient loading scenario.  As systems move from eutrophic (positive nutrient 

relationship) to hypertrophic (no relationship) TP concentrations then it is not surprising that 

interactions may not be as expected.  It is very likely then that the response will be different 

along the TP gradient especially for lakes at different ends of the gradient e.g. oligotrophic-

mesotrophic compared to eutrophic-hypertrophic.  One other study has explored the response 

of cyanobacteria to temperature and nutrient enrichment for lakes at different nutrient trophic 

levels.  Contrary to results in chapter three, Rigosi et al (2014) detected synergisms to be more 

important in eutrophic and hypertrophic lakes.  They suggest that these synergisms may occur 

because of enhanced light limitation in higher nutrient lakes because of increased shading 

which may give an advantage to cyanobacteria.  The mechanisms for the antagonism detected 

in the mesocosm experiment is not clear but is hypothesised to be because of enhanced carbon 

limitation under warming and nutrient enrichment.  It is difficult to make conclusions based on 

these studies when comparing different statistical approaches and over different scales.  

Specifically, Rigosi et al (2014) analysed the response over a large continental scale in which 

the effect of other lake type factors were not included, which, as highlighted in chapter two, is 

an important factor.  Furthermore, the models presented in Rigosi et al (2014) explain very 

little variation, further limiting confidence in the comparison of effects.   

 Despite the detected antagonism, the effect size was small.  This means that currently 

severely impacted lakes may not noticeably get any worse but, in terms of water quality 

metrics, they may not really get any better either.  This leads onto the final point about 

terminology.  In theoretical terms, an ‘antagonism’ means a response that is statistically 

significantly less than an additive response i.e. the combined effect of stressors acting on their 

own.  While this terminology suggests a favourable outcome in terms of the risk of 

cyanobacterial blooms under future climate and nutrient conditions, in reality the size effect 

was small and the response was still greater than either individual stressor – just not quite 

additive.  Thus, there is a potential risk of misinterpretation in using the term ‘antagonism’ and 
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so the inclusion of a size effect alongside the type of interaction is very important when 

communicating multiple stressor results.   

5.1.3 Multiple stressor effects vary among response levels   

Variability in the response to multiple stressors was also observed because of the response level 

measured.  Specifically, differences in effects were seen when comparing the response at the 

producer (total phytoplankton), community (cyanobacteria) and population (genera or species) 

levels.  In chapter two, the influence of lake type was more important at the community – 

cyanobacteria- level than for producers in general and interactions were more common for 

cyanobacteria.  This is consistent with Phillips et al (2008) who found that nutrient – 

chlorophyll-a relationships could be grouped into fewer groups than the 18 WFD lake types 

that were tested, reducing the number of types to three.  In chapter three, interactions were only 

detected at the community – cyanobacteria – level while no interactions were detected at the 

population level – cyanobacteria genera.  Rigosi et al (2014) also found that interactions 

between warming and nutrient enrichment did not occur when testing genera specific responses 

while Ekvall et al (2013) found the opposite of interactions occurring at the species specific 

level but not at the whole community level.   

 Can generalisations be made about the type of interactions for different response levels?  

Christensen et al., 2006 suggested that higher taxonomic groups may be more susceptible to 

synergisms because reduced taxonomic-, physiological- and genetic- diversity may result in 

less ‘biological insurance’.  In this thesis, one instance of an antagonistic effects was detected 

at the producer level.  However, this effect is difficult to fit into the hypothetical framework 

proposed by Christensen et al. (2006) because of difference in the use of multiple stressor 

terminology; in this thesis, and in the wider literature, synergisms for cyanobacteria are 

discussed in terms of success for cyanobacteria which translates to negative impacts on water 

quality while in other studies synergisms are interpreted as being negative for the response in 

question because of stressors being suppressants rather than stimulants.  Such differences in 

the use of terminology could hamper our ability to generalise at this type of level (e.g. 

consumers vs. producers).  Others have also summarised responses by responses levels - in a 

meta-analyses of 171 marine and coastal studies, Crain et al. (2008) found antagonistic effects 

for communities and autotrophs and synergistic effects for populations and heterotrophs.  

Mechanisms would need to be made clear for such generalisations of interaction types at 

different response levels.   
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 Diverse taxonomic groups such as cyanobacteria are likely to respond in different ways 

to stressors (Carey et al., 2012) and so multiple stressor effects should be tested at the whole 

group, and functional type or genus level.  Other authors also conclude that there is no support 

that cyanobacteria – as a group – will respond in a coherent way to environmental change (e.g. 

Ekvall et al., 2013; Rigosi et al., 2014).  For example, in chapter three an antagonistic 

interaction between warming and nutrient enrichment was found for total cyanobacteria, yet 

underlying this response Microcystis sp. and Dolichospermum sp. (both common bloom 

forming, toxicogenic taxa) both increased in response to warming.   

5.1.4 Spatial factors influence multiple stressor effects 

Lake location is a key factor to consider when scaling up from single site studies.  In this thesis, 

the clearest spatially related effect was that of latitude on the resilience of phytoplankton and 

cyanobacteria to extreme flushing events (chapter four).  This was explained by differences in 

the extent of seasonal light and temperature limitation on growth rates among biogeographical 

zones at different latitudes.  Latitudinal effects on the energy avaiable for growth, and recovery, 

may be less important for the recovery of cyanobacterial blooms which mostly occur during 

the summer and autumn. 

 Differences in responses to multiple stressors across landscapes can also occur due 

the heterogeneous distribution of lake types (Nõges, 2009) and pressures (MARS).  In chapter 

two a striking spatial pattern of temperature effects was observed for cyanobacterial 

chlorophyll-a in lakes at more northern latitudes.  This coincided with the clustered distribution 

of a lake types and so these latitudinal effects could be explained by the effect of lake type, the 

effect of latitude such as longer summer photoperiod at higher latitude (Nicklisch et al., 2008) 

or an interaction between both factors.  This is an important consideration in generalising 

responses – the same lake type but different locations could result in different responses.   

 Other studies have identified other spatial factors that alter the response of 

cyanobacteria to local stressors, such as heterogeneous distribution of eco-regions (Beaver et 

al., 2014) and weather events (Mantzouki et al., in press).   Different landscape factors such a 

geology can alter the shape of the non-linear relationship between chlorophyll and TP (Wagner 

et al., 2011; Filstrup et al., 2014) which could alter responses when introducing another 

stressor.  The importance of multi-scale processes has been highlighted by others (Finley , 

2011; Taranu et al,. 2017) and is especially important as studies move towards large scale 

analyses such as the National Lake Assessment (Beaver et al., 2013; Beaulieu et al.,2013 ; 
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Rigosi et al., 2014) and the European Multi Lake Survey (Mantzouki et al., 2018).  

Incorporating cross-scale interactions (Peters et al., 2007) into models can help us to 

understand the heterogeneous responses of cyanobacteria to environmental change.   

5.1.5 Temporal factors 

The temporal variability of disturbance events can also be a key driver of ecosystem responses.  

This can be expected because of inherent seasonal variation in phytoplankton abundance and 

composition (Sommer et al., 1986; Sommer et al., 2012) and consequent seasonal sensitivities 

to disturbance, depending on the type of disturbance and the sensitives and tolerances of 

impacted communities.  The hypothesised effects of disturbances at different times, frequencies 

and intensities are deeply rooted in ecological theory in the form of the Intermediate 

Disturbance Hypothesis (Connell, 1978).  To date, the effects of temporal variations in 

disturbance have come from single systems whereas this thesis explores different event 

characteristics in systematic ways in the same lake.   

 In chapter three and four, the effects of flushing events were tested at different times of 

the year.  A clear response which emerged was that the recovery of cyanobacteria from 

perturbation (loss from the outflow) was limited by seasonally variable growth factors – 

recovery was slower in the winter when light and temperature were more limiting than during 

the summer (chapter three and four) and the extent of this limitation varied with latitude 

because of among latitude variations in solar input (chapter four).  This resulted in flushing 

disturbances having greatest impact, in terms of recovery, during the winter.  Unexpectedly, 

flushing events at times when cyanobacterial biomass was higher, did not have long term 

effects on cyanobacterial abundance, suggesting that one-off events will not impact blooms.  

This was unexpected as bloom forming genera are sensitive to higher flushing rates, having 

functional traits and slower growth rates which suit stable water columns (Sherman et al., 1998; 

Reynolds et al., 2002; Hudnell et al., 2010; Cross et al., 2014).  The key aspect of both chapter 

two and three is that the effect of one-off short lived events were tested.  Other authors have 

demonstrated that longer term increases in flushing rates can result in compositional shifts at 

times of the year when the dominant taxa are sensitive to alterations in flow or no change when 

the dominant taxa are not sensitive (Padisák, 1993; Padisák et al., 1999; Verspagen et al., 2006; 

Elliot, 2010).  Alternatively, higher frequencies of events may be required to disrupt seasonal 

succession (Padisák et al., 1988; Chellappa & Costa, 2003; Xiao et al., 2011).  Even greater 

complexity may arise from multiple pulse disturbances with different temporal patterns; 
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Molinos & Donohue (2010) show that interactions among temporal patterns of nutrient and 

sediment loading in streams varied the response of benthic communities.   

While experiments, especially those using computer models, provide the scope to 

explore multi-factorial problems, some assumptions are made that may affect the results.  For 

example, in terms of flow events, the model assumes homogenous distribution of flow whereas 

in reality heterogeneous flow can alter recovery from high rainfall events.  More generally, 

process based models are simplifications and generalisations of a more complex ecosystem and 

even the niche of representative taxa may not be perfectly described in the model.  Despite 

these caveats, modelling gives the scope to explore the variable signature of rare extreme 

events.  Overall, this thesis and the wider literature highlight that temporal patterns of 

disturbances are important for reliable prediction of impacts from, and affect the management 

of, multiple stressors.  This thesis also highlights the need to test stressor effects beyond the 

time of hypothesised greatest impact – recovery was longer from events which occurred in the 

winter (chapter three and four), but more striking and unexpected was the increase in 

cyanobacterial abundance and dominance after a winter flushing event in nutrient enriched 

mesocosms (chapter three).  
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5.2 Managing climate change effects 

5.2.1 Do we need to generalise the impacts of climate change or is it all about nutrients? 

Given a generally suitable environment for cyanobacteria (e.g. clear water, medium to high 

alkalinity lakes - Carvalho et al., 2011), nutrient enrichment is irrefutably the cause of enhanced 

cyanobacterial blooms.  Given the complexity in generalising the response of cyanobacteria to 

multiple nutrient and climatic stressors we, therefore, need to ask whether we need to 

understand further.  Are we over-complicating a simple situation when it is largely just about 

managing nutrients?  In general qualitative terms, managing nutrients clearly remains as the 

principal management tool.  However, it is important to get a more quantitative understanding 

of how climate may impact cyanobacterial abundance, to better understand where, and by how 

much, actions will require current nutrient targets to be amended (e.g. Carvalho et al., 2013) to 

mitigate against climate effects which are generally not controllable locally.   

 Significant effects of climatic variables are common, both in this thesis and in the wider 

literature, and so cannot be ignored.  However, the variability in the response of cyanobacteria 

to climate change, with no clear pattern of additive or interactive effects, means that 

quantifying measures becomes challenging.  Some lake types may require greater management 

intervention than others, and lakes that are currently not at risk (i.e. do not exceed WHO 

guideline thresholds for drinking water or recreational use) may develop problems in the future 

e.g. polymictic humic lakes (chapter two).  The most effective management actions, in terms 

of outcome and cost, will come from identifying and quantifying interactions so that lakes at 

most risk can be identified in order to mitigate against extreme warming or drought years.  

Furthermore, understanding the response at multiple scales and gradients is needed so that 

important effects are not overlooked (chapter three).   

5.2.2 Other management options 

Depending on the suitability of the system, some climate effects can be managed locally.  In 

chapter three, enhanced internal cycling of phosphorus was likely an important mechanism in 

the increase of algal biomass in warmed mesocosms.  This could be counteracted by application 

of P-binding products e.g. Phoslock (Lang et al., 2016).  While this is effective in reducing 

available phosphorus, the wider implications for the ecosystem are still being understood (e.g. 

Spears et al., 2016).  In deep lakes management of indirect effects of warming through artificial 
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mixing to breakdown thermal stratification may be beneficial, but can have unintended 

consequences, such as mixing nutrient rich waters (Visser et al., 2016).  Potential management 

options could be through limiting light availability (e.g. through solar panel farm schemes on 

lakes) or through better management of flushing rates (Carvalho et al., 2011).  Although in the 

long run these options may be more costly than reducing nutrient load as they do not treat the 

main cause of enhanced blooms.  The benefit of nutrient reductions is that multiple waterbodies 

within a catchment could benefit, including downstream lakes, estuaries and coastal waters.  

However, employing multiple management interventions in situations of synergisms may 

become useful.   

5.2.3 Lakes should be managed as individuals 

While stressor effects explained variation in cyanobacteria abundance, it is important to 

highlight that the natural variability among lakes and mesocosms of the same type/treatment 

was high.  This emphasises an important point that management should be designed at a lake 

level and reflects the perspective which warns of copy and paste management methods for 

different lakes (Lürling et al., 2016).  Although individual lakes tended to show idiosyncratic 

responses, the use of lake type categories or responses over different stressors gradients allows 

a clear generalisation of lake responses that are helpful to lake managers to prioritise which 

population of lakes to target measures to minimise risks.   

5.3  Future research directions   

What gaps in our knowledge remain and what approaches could be used to fill these gaps?  

There are two principal future research directions, one which focuses on furthering our 

understanding of multiple stressor effects for different contexts and the other which focuses on 

the trajectory of nutrient managed systems under multiple stress – is it what we expect?   

i. Forward direction studies 

A continuation of multiple stressor studies is clearly needed.  These should specifically test 

multiple stressor effects over spatial and temporal scales, across stressor gradients and for 

different response types and lake types.  Local factors such as nutrient source (point or diffuse), 

fish communities and macrophyte dominance should be incorporated to account for among 

lake variability and help strengthen our ability to develop a more predictable generalised 

framework.  As demonstrated in this thesis, these factors can be explored using existing 

datasets (e.g. European WISER, Moe et al., 2013; US National Lake Assessment, e.g. Riosi et 
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al., 2014; Taranu et al., 2017), question specific continental scale sampling campaigns 

(European Multi Lake Survey dataset,  Mantzouki et al., 2018) and experiments – both 

mesocosms and computer modelling.  A particular focus of future work should be on the 

directionality of disturbances which has largely been ignored in favour of general trends.  Other 

large scale environmental change, such as changes in lake colour (Monteith et al., 2007), 

should also be incorporated to test the whole suite of environmental change scenarios.   

ii. Backward direction/remediation studies 

As management becomes ever increasingly necessary, then it also becomes increasingly 

necessary for remediation studies.  What trajectories will phytoplankton communities, and 

cyanobacteria in particular, take when nutrients are reduced in systems under multiple stress?  

This can inform at what scale restoration through nutrient load reduction is needed, for example 

greater reductions may be necessary to account for hysteresis (Jeppesen et al., 2005).  

Mesocosm and modelling experiments are useful tools to complement single site remediation 

case studies.  
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5.4 Summary 

Multiple climatic and nutrient stressors are frequently present in lakes.  Many climate factors 

such as warming, enhanced stratification, and drought can stimulate bloom formation and so 

mitigating the effects of climate change is a key area to future research – how far do we need 

to reduce nutrient loads to restore current impacted sites or deliver resilience to current 

unimpacted sites?  The answer to this management question depends on the combined effects 

of nutrient and climatic stressors.  This study and the wider literature highlights that multiple 

stress effects on cyanobacteria abundance are highly context-specific, precluding 

generalisation.  With so many lakes under multiple stress (Nõges et al., 2015) we could end up 

with inaction from overwhelming complexity.  This thesis highlights demonstrable ways in 

which the problem can be subset to increase our understanding and identifies future directions 

of study.  
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Chapter 6.   

Supplementary material 

6.1 Chapter 2 supplementary material 

6.1.1 Chapter 2 supplementary analyses 

Relationships between TP, alkalinity and cyanobacteria 

Lakes which had numerical alkalinity data were used to explore the relationship between TP, 

alkalinity and cyanobacteria (number of observations = 1246, number of lakes = 271).   

Pairwise plots of alkalinity, TP and cyanobacteria show that they are all positively related (Fig. 

S2.2), although most paired relationships show some curvilinear tendency (quantification of 

these relationships are presented as Pearson correlation coefficients, which assume a linear 

relationship).  It is possible that the relationships between cyanobacteria and alkalinity could 

be because of the co-variation between TP and alkalinity, in which case there would be a case 

for removing alkalinity from the types.   

However, if we explore the relationship between the same variables but split between the two 

alkalinity types (low and medium-high) used in typology (Fig. S2.3) we can provide support 

for the inclusion of alkalinity:  

a) The response of cyanobacteria to TP is steeper in medium-high alkalinity 

lakes over a very similar gradient (Table S2.2).  This suggests that the 

response of cyanobacteria to TP may depend on alkalinity (Fig. S2.2a)  

b) In low alkalinity lakes there is no longer a relationship between TP and 

alkalinity (r = 0.04, p >0.05), yet in both low and high alkalinity lakes 

there’s a positive relationship between cyanobacteria and alkalinity (low 

alkalinity, r = 0.43, p <0.001; medium-high alkalinity, r = 0.25, p <0.001).  

This provides further evidence that alkalinity explains variation in 

cyanobacteria independent of TP and so should be included to categorise 

lakes into types.  Fig. S2.2b - c.   

 

Gower distance clustering 

Gower distance was calculated in R using the daisy function () from the cluster package with 

ln cyanobacteria biovolume (mm3 L-1) as the response and alkalinity (three levels: low, medium 
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and high), humic substances (three levels: low, medium and high) and mixing type (two levels: 

polymictic and stratified) as the categorical variables for clustering the data.  As a visual check, 

we returned the most and least similar lakes.  The two most similar lakes in term of 

cyanobacteria biovolume were both low alkalinity, medium humic and stratified lakes, the two 

least similar lakes were low alkalinity, medium humic and stratified vs medium alkalinity, low 

humic and polymictic.  This initial check satisfied a basic expectation that cyanobacteria can 

be explained in part by combinations of these type variables, and that the most dissimilar values 

of cyanobacteria were from distinct lake types.  We used the PAM algorithm (partitioning 

around medoids) for clustering and the silhouette width as the metric for helping to choose the 

number of clusters to be extracted (this is an aggregated measure of how similar an observation 

is to its own cluster compared to its closest neighbouring cluster, higher values are better).  We 

calculated the silhouette width for clusters ranging from 2 to 30 using the PAM algorithm (Fig. 

S2.4) which suggests 17 clusters.  These 17 clusters are broadly consistent with clustering 

cyanobacteria by a three way combination of alkalinity, humic and mixing types i.e. 18 types 

(Fig. S2.5).  Because of imbalances in the data the 18 types could not be adequately modelled, 

therefore we further modified these types by combining ecologically similar levels of alkalinity 

and humic type, see the manuscript methods, resulting in 8 types which are broadly consistent 

with clustering the data by 8 groups using Gower based distance clustering (Fig. S2.6).   

Differences in cyanobacteria among lake types 

To test the differences in cyanobacteria biovolume among lake types, an ANOVA (Table S2.3) 

was fit with the response of natural log cyanobacteria biovolume (mm3 L-1) and a factor of 

‘type’ (n=8) which was then followed up with a Tukey test for the differences between each 

type (using the HSD.test function from the agricolae package in R).    As some lakes had 

multiple data points, and thus violated the assumption of independence, one observation was 

randomly selected per lake.  This random selection of observations was done ten times and the 

results were compared (Fig. S2.7). Six of the random draws resulted in the same groupings 

(Fig. S2.8 f-k), although there were some broad consistencies between these grouping and the 

groupings (Fig. S2.8 b-e) from the other four draws.  In the paper we have presented the test 

based on the average response to complement what is presented in Fig. 2.2b (Fig. S2.7a). 
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6.1.2 Chapter 2 supplementary tables 

Table S2.1.  Number of monthly lake sample data for each year – month 

combination 

 Month  

Year July August September Grand Total 

2000 52 12 3 67 

2001 23 58 11 92 

2002 49 53 15 117 

2003 19 56 14 89 

2004 34 56 13 103 

2005 32 83 21 136 

2006 66 135 61 262 

2007 104 153 75 332 

2008 130 155 96 381 

2009 3 2 3 8 

Grand Total 512 763 312 1587 

 

Table S2.2.  Model summary for the linear relationship between cyanobacteria and TP in low and 

medium-high alkalinity lakes.  The intercept is for medium-high alkalinity lakes.   

Term estimate std.error Statistic p value 

(Intercept) 
-8.051 0.514 -15.652 <0.001 

log(TP) 
1.671 0.163 10.263 <0.001 

AlkalinityType, low 
0.560 0.630 0.889 0.374 

log(TP):AlkalinityType, low 
-0.762 0.226 -3.369 0.001 

 

Table S2.3.  ANOVA table for the difference in natural log 

cyanobacteria biovolume (mm3 L-1) among lake types (n=8). 

term df Sumsq meansq statistic p.value 

type 7 1245.059 177.8655 19.74748 <0.001 

Residuals 486 4377.401 9.006998 NA NA 
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6.1.3 Chapter 2 supplementary figures 

 

Fig. S2.1  Pair-wise plots showing the relationships between stressors (TP, temperature and retention 

time) and lake type variables (alkalinity, surface area, mean depth and altitude).  The smooth red line 

in the upper diagonal panels shows the lowess (locally-weighted polynomial regression) fit, the middle 

diagonal plot shows a histogram of the distribution of the data and the lower diagonal panels shows the 

linear Pearson correlation coefficients – the size of the text is relative to the size of the correlation 

coefficient.  Significance at the 0.05 level is denoted by *, at the 0.01 level by ** and <0.001 by ***.  

Relationships are for lakes in which TP was ≤ 100 μg L-1.  Where appropriate, variables were log 

transformed to make the distributions more symmetric. 
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Fig. S2.2 Pair-wise plots showing the relationships between ln TP (μg L-1), ln Alkalinity (mEq L-1) and 

ln cyanobacteria (mm3 L-1) (for 271 lakes, 1256 observations).  The left horizontal panels show Pearson 

correlation coefficients and the p value associated with this relationship: ***, <0.001. 

 

Fig. S2.3 Linear relationships between cyanobacteria, alkalinity and TP in low and medium-high 

alkalinity lakes.   In (c) alkalinity shows some overlap over low and medium-high alkalinity lakes as 

the types are based on an average state whereas alkalinity is for a sampling date.  
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Fig. S2.4 Sillhoutte width for clusters ranging from 2-30 for the PAM algorithm.  This suggests 17 

clusters, based on the highest value being the best.  

 

Fig. S2.5 Summary of Gower distance clustering based on 17 clusters. 
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Fig. S2.6 Summary of Gower distance clustering based on 8 clusters.   

 

Fig. S2.7 Natural log cyanobacteria (mm3 L-1) by lake type variables: (a) alkalinity, low (<0.2 mEq L-

1) and med-high (>0.2 mEq L-1); (b) humic content, clear (colour <30 mg Pt L-1) and humic (colour > 

30 mg Pt L-1); and (c) mixing type, stratified and polymictic. The biovolume of cyanobacteria was 

statistically significantly different, between levels of each lake type variable: alkalinity (low vs med-

high alkalinity, t = -22.5, df = 1574, p <0.001); humic (clear vs humic, t = 7.78, df = 1579.8, p <0.001) 

and mixing type (stratified vs polymictic, t = -7.03, df = 600.97, p <0.001). 
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Fig. S2.8  Similarities in ln cyanobacertia biovolume  (mm3 L-1) among Gower lake types.  Groupings 

are from Tukey test’s for multiple comparison following an ANOVA (Table S3): (a) are groupings from 

a comparison of mean cyanobacteria for each lake, (b-k) are groupings based on one observation 

selected per lake (to meet the assumptions of independence), these were randomly selected 10 times. 
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Fig. S2.9 Relationships between stressors (TP, temperature and retention time), longitude and latitude.  

The smooth red line in the upper diagonal panels shows the lowess (locally-weighted polynomial 

regression) fit, the middle diagonal plot shows a histogram of the distribution of the data and the lower 

diagonal panels shows the linear Pearson correlation coefficients – the size of the text is relative to the 

size of the correlation coefficient.  Significance at the 0.05 level is denoted by *, at the 0.01 level by ** 

and <0.001 by ***.  Relationships are for lakes in which TP was ≤ 100 μg L-1 and retention time was 

≤365 days.  Where appropriate, variables were log transformed to make the distributions more 

symmetric.   
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Fig. S2.10 Relationship between average monthly natural log cyanobacteria biovolume (mm3 L-1) and 

average monthly ln total phosphorus (μg L-1) using the global dataset (n = 572 lakes, number of monthly 

observations = 2900).  The red curve shows the smoothed area response of cyanobacteria.  Smoothing 

was fitted using locally weighted polynomial regression (LOESS), the grey shaded area shows 95% 

confidence intervals.  The dashed black line shows the TP concentration which we restricted the 

regression analysis to (≤100 μg L-1). 
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Fig. S2.11 Categories of average cyanobacteria biovolume (mm3 L-1) in lakes included in the study 

(n = 494).  Categories are based on World Health Organisation (WHO) recommended threshold 

values for drinking and bathing (Chorus & Bartram, 1999).   
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Fig S2.12 Relationships between TP, latitude, percent catchment forest land cover and percent 

catchment arable land cover.  The smooth red line in the upper diagonal panels shows the lowess 

(locally-weighted polynomial regression) fit, the middle diagonal plot shows a histogram of the 

distribution of the data and the lower diagonal panels shows the linear Pearson correlation 

coefficients – the size of the text is relative to the size of the correlation coefficient.  Significance at 

the 0.05 level is denoted by *, at the 0.01 level by ** and <0.001 by ***.  Relationships are for lakes 

in which TP was ≤ 100 μg L-1 and retention time was ≤365 days.  Where appropriate, variables were 

log transformed to make the distributions more symmetric.  Note that a constant was added to 

percentage arable land so that the data could be log transformed, these were sampled from a random 

generation of data from the distribution of percentage arable land data.     
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Fig. S2.13 The effect of retention time on (a) ln cyanobacteria biovolume (mm3 L-1) and (b) ln 

chlorophyll a (μg L-1) for the lake types which retention time effects were statistically significant. 

The effects of retention time are fitted from the models presented in Table 2, keeping temperature 

and TP constant (for models where this applies).  Retention time (days) is standardised (mean centred 

and divided by the standard deviation).   
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Fig. S2.14 Response of ln cyanobacteria biovolume (mm3 L-1) and ln chlorophyll a (μg L-1) to the 

interaction between standardised temperature (°C), and standardised total phosphorus (μg L-1) in 

polymictic, low alkalinity humic lakes (a and c) and polymictic medium-high alkalinity humic lakes 

(b and d).  Temperature and total phosphorus are standardised (mean centred and divided by their 

standard deviation).  Contour lines show the range of the response, colours show comparative 

differences: cooler colours are lower responses, warmer colours are higher responses.  Points show 

the underlying data driving the model. 
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Fig. S2.15 Variance of the random effect for each lake type model.  The point shows the intercept 

for each model and lake types are ordered from lowest to highest intercept.  S.L.MH, stratified, low 

alkalinity, humic; P.L.MH, polymictic, low alkalinity, humic; S.L.L, stratified, low alkalinity, clear; 

S.MH.MH, stratified, medium-high alkalinity, humic; P.MH.MH, polymictic, medium-high 

alkalinity, humic; S.MH.L, stratified, medium-high alkalinity, clear; P.MH.L, polymictic, medium-

high alkalinity, clear.   

 

Fig. S2.16 Natural log total phosphorus (μg L-1) by lake type.  Lake type are combinations of: alkalinity, 

low (<0.2 mEq L-1) and med-high (>0.2 mEq L-1); humic content, clear (colour <30 mg Pt L-1) and 

humic (colour > 30 mg Pt L-1); and mixing type, stratified and polymictic.  
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6.2 Chapter 3 supplementary material 

6.2.1 Chapter 3 supplementary analysis 

Estimates of nutrient loss through extreme rainfall events. 

To calculate the amount of nutrients lost during flushing events we used the following formula to 

calculate the dilution curve:  

𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑛 (𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 
 × (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑜𝑙𝑚𝑒 − 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒) 

in which the initial volume was 3000 L and the flow rate was calculated from the time it took to pump 

1500 L of water into the mesocosm; we used two different pumps, one with a flow rate of 71 L minute-

1 and the other with a flow rate of 100 L minute-1.  Nutrient concentrations were calculated after one 

minute of the given flow rate from initial nutrient concentrations (μg mL-1) within the mesocosm, these 

updated concentrations were then used to iteratively calculate the concentration after each successive 

minute until the total minutes of flushing was reached for each respective pump (15 minutes and 21 

minutes).   Initial nutrient concentrations were estimated from the preceding sampling event.  The 

difference in nutrient concentrations between the initial concentration and the concentration lost was 

replaced to each treated mesocosm (after subtracting nutrient concentrations recorded in the water used 

for flushing).   

Light attenuation analysis  

A potential explanation for the antagonistic interaction between warming and nutrient enrichment is 

that potential treatment effects on phytoplankton composition could result in greater self-shading.  To 

explore this we explored potential differences in light attenuation among treatments.    

A light attenuation coefficient (k m-1) was calculated from mean daily measurements of PAR 

(photosynthetically active radiation) using the following equation:  

k m−1 =
ln (

PARair
PARmesocosm

)

0.45
  

PAR was recorded every minute by sensors located 40cm horizontally and vertically (mid-depth) within 

each mesocosm.  K was higher in nutrient enriched mesocosms (Fig. S8, S9), in which attenuation from 

algae was higher (because of higher biomass in these mesocosms, main text Fig. 2-3) however K was 

no higher in warmed mesocosms than ambient mesocosms or in warmed x nutrient enriched 

mesocosms.  This indicates that the mechanisms of the antagonism is not light limitation through 

increased self-shading. 
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6.2.2 Chapter 3 supplementary tables 

Table S3.1.  Three way ANOVA of between treatment differences in chlorophyll-a at the first time 

point of the experiment.  

Treatment Df Sum 

Sq 

Mean Sq F value Pr(>F) 

nutrient addition  1 583 583.2 0.48 0.50 

Flushed 1 4 4.3 0.00 0.95 

Warming 1 2817 2817.5 2.31 0.14 
nutrient enriched x flushed 1 84 84.1 0.07 0.80 

nutrient enriched x warming 1 7 6.9 0.00 0.94 

flushed x warming 1 1115 1114.6 0.91 0.35 

nutrient enriched x flushed x 
warming 

1 133 1222.1 0.11 0.74 

 

Table S3.2.  Paired t-test - total chlorophyll-a and cyanobacteria chlorophyll-a concentration (μg L-1) 

before and after flushing. 

Variable estimate statistic p-value parameter conf.low conf.high 

Cyanobacteria 

chlorophyll-a 23.46 2.97 0.006 31 7.36 39.56 

Chlorophyll-a 142.91 2.67 0.01 31 33.93 251.90 

 

Table S3.3.  Percent (%) cyanobacteria genus biovolume of total 

cyanobacterial biovolume composition from four sampling events 
(May 5th, June 3rd, July 29th and August 26th 2015). 

Order genus % biovolume 

Nostocales 68 
 Dolichospermum  17 

 Aphanizomenon  51 

Oscillatoriales 14 

 Oscillatoria  <0.1 
 Pseudanabaena  13 

 Limnothrix  0.4 

Chroococcales 18 
 Aphanothece  0.6 

 Cyanodictyon  4 

 Microcystis  13 
 Unidentified  0.2 
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6.2.3 Chapter 3 supplementary figures 

 

 

Fig. S3.1 Schematic of the experimental set-up.  There were eight treatments in total, as represented by 

the different colours.  Each treatment was repeated four times, one replicate randomly assigned to a 

mesocosm in each experimental block.  U = unheated/ambient, W = warmed, N = nutrient enriched, F 

= flushed e.g. UNPF = unheated, nutrient enriched, flushed. 
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Fig. S3.2 Images of the mesocosm facility.  The mesocosms are organised into four experimental blocks 

of eight mesocosms (a) and (b).  Each mesocosm has a mechanical mixing system (white extended 

arm), a power supply (white box) for the heating system and a heating element (c) which sits above the 

sediment (the sediment is no shown in this image).  Measurements of cyanobacteria chlorophyll-a, 

turbidity, pH and conductivity were measured from the middle of each mesocosm using submersible 

sondes.  In (d) cyanobacteria chlorophyll-a μg L-1 is being measured using fluorescence, using a bbe 

Moldaenke Algae torch.   

 

Fig.  S3.3 Mean daily water temperatures (°C) in mesocosms between July 2014 and August 2015 in 

16 mesocosms at ambient temperature (blue) and 16 mesocosms warmed to 4°C above ambient (red). 
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Fig.  S3.4 Image showing mixers which are suspended in the middle of each mesocosm and move up 

and down to allow disruption of thermal stratification.   The top and bottom of the mixers are hollow to 

increase mixing.   

 

Fig.  S3.5 Schematic of the sampling schedule.  Water samples were taken once every four weeks 

(regular sampling, green circles), expect for when extreme rainfall events (blue circles) occurred, 

then sampling occurred the day after the event, one week after the event and three weeks after the 

event, then returning to a four weekly schedule.  The schema shows sampling events from the start 

of the experiment in July 2014 until three weeks after the second rainfall event.  This schedule was 

repeated until the last sampling event on the 26th of August, 2015.   
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Fig. S3.6 Variation in log mean chlorophyll-a (μg L-1) within and between treatments between July 

2014 and August 2015.  The dashed red line is the smoothed average response of chlorophyll-a in each 

treatment, the blue line is the smoothed response for each replicate within treatments.  Smoothing is 

fitted using locally weighted polynomial regression (LOESS), the shaded area shows 95% confidence 

intervals.  Treatments: A, ambient mesocosms; N, nutrient enriched; W, warmed; F, flushed; WN, 

warmed x nutrient enriched; NF, nutrient enriched x flushed; WF, warmed x flushed; WNF, warmed x 

nutrient enriched x flushed.  

 

Fig. S3.7 Images of some of the dominant cyanobacteria genera observed between the 5th of May 

and 26th of August 2015.  Image (a) and (b) are Dolichospermum spp.; (b) shows the high density of 

individual filaments seen within some of the samples; (c) shows a colony of Microcystis sp.  
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Fig. S3.8  Mean daily light attenuation coefficient (k m-1) in different treatments over the duration of 

the experiment.  Solid line, unflushed; dashed line, flushed; black line, nutrient enriched; grey line, 

ambient-nutrients; left hand side, ambient temperature; right hand side, warmed.  

 

Fig. S3.9 Boxplot of mean daily attenuation of light (k m-1) in different treatments.  Black, nutrient 

enriched; grey, ambient-nutrients.  The lower and upper hinges correspond to the 25th and 75th 

percentiles, the whiskers extend to 1.5x the interquartile range. 
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6.3 Chapter 4 supplementary material 

6.3.1 Chapter 4 supplementary tables 

Table S4.1.  Competing phytoplankton genera in the model.  Functional 

traits are according to Reynolds et al., 2011. 

Genus Class Nitrogen-
fixer 

Grazed Functional 
trait 

Chlorella Chlorophyte No Yes X1 

Staurastrum Chlorophyte No No N/P 
Asterionella Diatom No Yes C 

Cyclotella Diatom No Yes A 

Plagioselmis Cryptophyte No Yes X2 

Cryptomonas Cryptophyte No Yes Y 
Ceratium Dinophyte No No Lm 

Planktothrix Cyanophyte No No R/S1 

Dolichospermum Cyanophyte Yes No  
Dinobryon Chrysophyte No Yes E 

 

 

 

Table S4.3.  Annual averages of chlorophyll-a and 

proportion cyanobacteria from stratified lakes with 

annual retention times greater than 120 days.   

 Chlorophyll a Proportion 
cyanobacteria 

Boreal 8.9 0.20 

Med 8.5 0.14 
Continental 13.8 0.27 

Atlantic 8.5 0.16 

 

 

 

 

Table S4.2.  Sum of combined sum of square root difference of modelled cyanobacteria and 

chlorophyll for different nutrient calibration models compared to observed values.  P start 16 μg L-1, 

N start 660 μg L-1, multiplication factors:  model 1, 1.10; model 2, 1.15; model 3, 1.20; model 4, 
1.25; model 5, 1.30; model 6, 1.35; model 7, 1.40.  In bold is the best model, based on sum of square 

root differences, for each climate model.  Highlighte is the final model which was selected to 

represent all climate zones.  

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Atlantic 2.89 3.51 4.38 5.72 6.72 8.30 8.65 

Boreal 4.90 4.32 3.36 2.59 1.84 1.95 1.96 

Continental 21.42 20.67 19.45 17.41 16.65 15.50 15.52 
Mediterranean 6.80 8.22 8.96 11.65 13.50 17.12 17.62 

Table S4.4.  Centroid of polygon (ArcGIS) latitude and 

longitude for each climate zone.  

Zone Latitude Longitude 

Boreal 61 35 

Atlantic 52 1 

Continental 51 26 
Mediterranean 40 10 
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Table S4.5  Conversion between flow rate and retention time. 

Flow rate (m3 s-1) Retention time (days) 

0.010407 2.5 

0.020813 5 

0.041626 10 
0.083252 20 

0.166504 40 

0.333008 80 

 

Table S4.6.  Temperature and mixed depth in baseline lakes from different climate zones.  Mean, 

min and max of the means from the 5 climate models.  Duration of stratification (days) is when the 

lake is not fully mixed.  Mean (standard deviation of the means, n=5 means). 

Zone min max Mean stratification 

Boreal 3.9 (day 94) 19.56 (day 229) 9.6 (0.18) 216 

Atlantic 4.5 (day 74) 19.26 (day 230) 10.9 (0.40) 257 

Continental 4.95 (day 59) 20.98 (day 215) 11.8 (0.50) 260 

Mediterranean 5.8 (day 21) 19.88 (day 245) 13.3 (0.60) 333 

 

Table S4.7 Linear model summary of nutrient effects 

(cyanobacteria). 

nutrient level estimate std.error t value p.value 

(Intercept) low -0.7001 0.011622 -60.2377 <0.001 

baseline 0.728267 0.016437 44.30793 <0.001 

high 1.092722 0.016437 66.48144 <0.001 

 

Table S4.8 Linear model summary of nutrinet effects 
(chlorophyll-a). 

nutrient level estimate std.error t value p.value 

(Intercept) 1.564158 0.0089 175.7389 <0.001 

baseline 0.472851 0.012587 37.56618 <0.001 

high 0.673336 0.012587 53.4939 <0.001 
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Table S4.9  Analysis of Variance table of the best fit linear model for the change in chlorophyll-a on the 

day of the event given different event timing, flushing rate, nutrient scenario and climate zone.  The 
terms are ordered in descending sum of squares.  R2 = 0.51 

term df Sumsq meansq statistic p.value 

Residuals 9360 37809 4.0 NA NA 

flushing 5 13912 2782.5 688.8 <0.001 

poly(dayEvent, 4) 4 9254 2313.5 572.7 <0.001 

poly(dayEvent, 4)*flushing 20 5327 266.4 65.9 <0.001 

poly(dayEvent, 4)*climate_zone 12 4267 355.6 88.0 <0.001 

poly(dayEvent, 4)*flushing*climate_zone 60 2503 41.7 10.3 <0.001 

nutrient 2 1066 533.0 132.0 <0.001 

Flushing*nutrient 10 907 90.7 22.5 <0.001 

poly(dayEvent, 4)*nutrient 8 627 78.4 19.4 <0.001 

climate_zone 3 479 159.7 39.5 <0.001 

poly(dayEvent, 4)*climate_zone:nutrient 24 407 17.0 4.2 <0.001 

poly(dayEvent, 4)*flushing:nutrient 40 372 9.3 2.3 <0.001 

poly(dayEvent, 4)*flushing:climate_zone*nutrient 120 301 2.5 0.6 <0.001 

Flushing*climate_zone 15 286 19.1 4.7 <0.001 

climate_zone*nutrient 6 81 13.4 3.3 <0.001 

Flushing*climate_zone*nutrient 30 50 1.7 0.4 <0.001 

 

Table S4.10 Analysis of variance table for best fit linear model for the number of days it took 

chlorophyll-a to recover given the timing of the event, flushing rate, nutrient scenario and climate zone.  

The terms are ordered in descending sum of squares.  R2 = 0.58 

term df sumsq meansq statistic p.value 

Residuals 9504 3326101 350.0   

poly(dayStart, 2) 2 1556753 778376.7 2224.1 <0.001 

poly(dayStart, 2)*climate_zone 6 675057 112509.6 321.5 <0.001 

climate_zone 3 354560 118186.7 337.7 <0.001 

Flushing 5 338336 67667.1 193.4 <0.001 

poly(dayStart, 2)*flushing 10 284458 28445.8 81.3 <0.001 

poly(dayStart, 2)*climate_zone*flushing 30 220350 7345.0 21.0 <0.001 

poly(dayStart, 2)*climate_zone*nutrient 12 81033 6752.7 19.3 <0.001 

climate_zone*flushing 15 68768 4584.5 13.1 <0.001 

poly(dayStart, 
2)*climate_zone*nutrient*flushing 60 60784 1013.1 2.9 <0.001 

poly(dayStart, 2)*nutrient*flushing 20 24851 1242.5 3.6 <0.001 

poly(dayStart, 2)*nutrient 4 20391 5097.7 14.6 <0.001 

Nutrient*flushing 10 18816 1881.6 5.4 <0.001 

climate_zone*nutrient*flushing 30 17357 578.6 1.7 <0.001 

climate_zone*nutrient 6 11274 1879.0 5.4 <0.001 

Nutrient 2 2524 1261.8 3.6 <0.001 
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Table S4.11  Additive model results for the difference in the rate of recovery of chlorphyll-

a given the timing of the event and the flushing rate. Significant effects (p < 0.05) are 
highlighted in bold. R2 adjusted = 0.37 

Parametric coefficients.  Changes on the intercept. 

 (Intercept) Flush5 Flush10 Flush20 Flush40 Flush80 

estimate 0.09 -0.00 -0.02 -0.04 -0.05 -0.06 

Estimated degrees of freedom (edf) for approximately significant time smooth terms for 
nutrient treatment and warming treatment.  

edf 8.44 

 

Table S4.12 Analysis of variance table for linear model of number of days to recover given solar 

energy (J m2  day-1) and the response (chlorophyll-a and cyanobacterial chlorophyll-a).  R2 = 0.31. 

Term df sumsq meansq statistic p.value 

Residuals 129576 170440263 1315.4 NA NA 

poly(joules, 2) 2 55060456 27530228.0 20929.7 <0.001 

Response 1 9000600 9000600.0 6842.6 <0.001 

poly(joules, 2):response 2 7496362 3748181.1 2849.5 <0.001 

poly(joules, 2):climate_zone 6 4179527 696587.8 529.6 <0.001 

climate_zone 3 1635073 545024.2 414.4 <0.001 
poly(joules, 

2):climate_zone:response 6 630998 105166.3 80.0 <0.001 

climate_zone:response 3 289026 96341.9 73.2 <0.001 

 

 

Table S4.13 Analysis of variance table for linear model of rate of recovery given solar 

energy (J m2  day-1), response (chlorophyll-a and cyanobacterial chlorophyll-a).  R2 = 

0.19. 

Term df sumsq meansq statistic p.value 

Residuals 102195 1178 0.0 NA NA 

jolues 1 236 236.2 20483.3 <0.001 

Response 1 13 13.1 1136.4 <0.001 

Jolues*climate_zone 3 11 3.8 331.2 <0.001 

load.light*response 1 11 11.0 950.7 <0.001 

climate_zone 3 8 2.8 243.3 <0.001 

joules*climate_zone*response 3 2 0.6 53.1 <0.001 

climate_zone*response 3 0 0.1 9.5 <0.001 
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6.3.2 Chapter 4 supplementary figures 

 

Fig. S4.1  Modelled chlorophyll-a and proportion cyanobacteria for different concentrations of 

inflowing nutrients.  Dashed lines are the mean yearly cyanobacteria proportion and mean yearly 

chlorophyll a from the observed data.  There are 5 dots for each nutrient model, one for each climate 

model (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and NorESM1-M).   
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Fig. S4.2 Daily average water temperature and mixed depth in control simulations for different climate 

zones.  The different colour lines are the mean water temperature, ˚C (a) and mean mixed depth, meters 

(b) over the duration of the year simulation for different climate zones.  Means are calculated from daily 

output driven by the five different climate models. 

 

Fig. S4.3 Log cyanobacteria chlorophyll a (a) and total chlorophyll (b) for different nutrient scenarios.  

The lower and upper hinges correspond to the 25th and 75th percentiles, the whiskers extend to 1.5x 

the interquartile range. 
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Fig. S4.4  Composition in control simulations for different climate zones and nutrient scenarios.  The 

lines are the averaged response from five different climate models: GFDL-ESM2M, HadGEM2-ES, 

IPSL-CM5A-LR, MIROC-ESM-CHEM and NorESM1-M. 
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Fig. S4.5 Short term impact of hydraulic flow events on chlorophyll-a at different flushing 

magnitudes, nutrient scenarios and climate zones.  The coloured lines are the fitted response from the 

best fit linear model (Table S8). 
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Fig. S4.6  Number of days for chlorophyll-a to recover from hydraulic flow events at different flushing 

magnitudes, nutrient scenarios and climate zones.  The coloured lines are the fitted response from the 

best fit linear model (Table S4.10). 

 

 

Fig. S4.7 The rate of recovery of total chlorophyll-a from hydraulic flow events at different flushing 

magnitudes, nutrient scenarios and climate zones.  The coloured lines are the fitted response from the 

best fit linear model (Table S4.11).      
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Fig. S4.8  Incoming solar energy (jolues m2 day-1) over the course of a year in different climate zones.  

Coloured lines are from the best fit model.   
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