THE ENERGETICS OF NESTLING BIRDS

957

Mark J. Feltham, B.Sc.

Thesis submitted for the degree of Doctor of Philosophy

Department of Biological Sciences University of Stirling

September 1987

E.

I don't know why '

A. A. Milne

SUMMARY OF CONTENTS

			Page
	Abstract		(i)
	Acknowledgem	ents	(iii)
1.	Introduction		1
2.	Models and Th	neory	7
3.	Materials and	i Methods	31
	PART ONE:	The nestling energy budget	31
	PART TWO:	Hatching asynchrony; implications for nestling	- 4/
	Descript.	energetics	52
	Results		63
	PART ONE:	The nestling energy budget	63
	PART TWO:	Hatching asynchrony; implications for nestling	
		energetics	113
5.	Discussion		142
	PART ONE:	The nestling energy budget	142
	PART TWO:	Hatching asynchrony; implications for nestling energetics	204
	0		204
REFER	ENCES		
APPEN	DIX I: Energ	etics of nestling growth.	

- Data available and sources APPENDIX II:
 - Software for the microprocessor system

CONTENTS

X.

.

12

10

1.

N

						Page
	ABST	RACT				(i)
	ACKN	OWLED	GEMENTS	:		(111)
	1.	INT	RODUCTI	ON		
	•					· 1
	2.	MODI	ELS AND	TH	EORY	7
		2.1	The d	ail Pas	y energy budget of a theoretical serine nestling	7
			2.1.1	T	he nestling growth curve	7
			2.1.2	B	asal metabolic rate	8
			2.1.3	G	rowth	9
			2 1 5			10
			2.1.6		similation official	12
				gi	ross energy intake	12
			_			10
		2.2	Peak]	load	d reduction (PLR)	13
			2.2.1	Th	neory	12
			2.2.2	Tł	ne PLR model	14
		2.3	Reduce	d s	sibling rivalry (RSR)	15
	in.		2.3.1	Th	eory	\geq
	121		2.3.2	As	sumptions of the PSP model	15
			2.3.3	An	index of hatching acurchmone	16
			2.3.4	Pr	edicted changes in energy	17
		1 .	2.3.5	ex Pr	penditure for competition (CEE) edicted changes in nestling	18
				ma	SS	19
		2.4	The cos	st	of maintaining brood homeothermy	20
			2.4.1	Ne	stling cooling rates	
	4			a)	Adult heat transfer	20
					coefficients (h)	20
				Ъ)	The nestling heat transfer	20
			1		coefficient (h_)	20
				c)	Field heat transfer	
					coefficients (hf) and field	
	X				rates of heat loss (He)	21
				d)	Factors affecting he and He	24

Missiant Nol now Lader Introduction Hodala and T In a California R. NAME CHER

. . .

are Lonest 10 STAR PART

.7 mile manife STAT THEE

STORIES THE APPENDIX 1) En al

SUP Sym APPENDIX III

--I

.

+ - --

۰.

		Page	1
2.4.2	Brooding costs	25	- ,
	brooding costs	25	
TOARTERA	b) The specific heat of		
STREET TO THE DOCTOR	nestlings	26	
2.4.3	Models of parental inattentive-		
Introduction .I . Introduction	ness	26	
	energy gain' model to explain		
r dav, statutes	observed inattentiveness in		
at and Lit *	incubating Swallows	26	
1 A4.2	temperature' model	27	
THE R. P. LEWIS CO., LANSING MICH.	c) The 'maximal brooding time'	1.20	
Avan a	model	29	
3. METHODS ANI	D MATERIALS	31	
PART ONE	: The nestling energy budget	31	
3.1 Grov	wth .	31	
Const but			
3.1.	and House Martins	31	
3.1.	.2 Sexing Dipper nestlings	32	
3.1.	.3 The energetics of nestling		
Statistics and the second seco	growth in Dippers	33	
3.2 Meta	abolism	34	
3.2	2 Resting metabolism of Dipper	34	
terms and the second	nestlings	34	
2.2 mba			
3.3° Iner	moregulation	36	
3.3.	1 The microprocessor system	36	
3.3.	2 Field protocol	38	
5.5.	temperature measurement	40	
3.3.	4 Cooling rates of Dipper		
	nestlings in the laboratory	41	
3.3.	nestlings in the field	42	
3.3.	6 A mate removal experiment	-	
	and female inattentiveness		
	TH THE DIDDEL	43	

*

3.3.7 The use of heated dummy nestlings in examining the relative contribution of individual nestlings to brood homeothermy 44

١

2

0

	0.000			a product and the second se		
		-			Page	1 20-
				* *	rage	-11
Serves -	-	3	.4 Activ:	ity	45	1
			3.4.1	A Doppler radar device for		
and the second se				quantifying nestling activity	45	
			3.4.2	The energetic equivalent of one	46	
A.H.S.		-	3.4.3	Measuring nestling activity	+0	
-				costs in the laboratory	48	
		3	.5 The da	aily energy budget	49	
			3.5.1	The time-activity-laboratory		-
				(TAL) method	49	
10 P.			3.5.2	The doubly-labelled water	1.0	
	100			(D ₂ O ₂ O ₂ O) method	49	
in the second se	2. 19			a) Field protocol	50	
GHA TOOMIEM				by Marysis of blood samples	31	
EART ONLL		P	ART TWO:	Hatching asynchrony:		
				implications for nestling	52	
satura the				energetites .	52	
1.1.7 -	0.000	3.6	Peak loa	ad reduction (PLR)	52	
N. N.T.			3.6.1 1	Faecal collection and analysis	52	
L. LT		1	3.6.2 H	Hand-rearing nestlings	52	
			3.6.3 4	Assimilation efficiency	53	
ALTON		3.7	Nestling	g competition I: A laboratory		
	-		study or	h the Zebra Finch	54	
arter a	1000	100 B	3.7.1	Experimental treatments	54	
and a second sec	1.000		3.7.2 H	Handling time and feed		
			2 7 2 1	profitability	56	
3.3 Thursday	- A =		3.7.3	crop-score as an index of	57	20
1 0. 0 -			3.7.4	Nestling age and nestling mass	58	
S. S. C						
Felick -		3.8	Nestling	competition II: A field study		
212-			on the F	House Martin	59	
and a second			3.8.1 H	Peak mass and hatching asynchrony	59	
diece -			3.8.2 H	lierarchy stability and the		
			3 9 3 6	lexibility of House Martin growth	60	
3.3.1			3.0.3 (reduced sibling rivalry model	61	
			-			

. ____

1-

1000

	and the second se					
a the second	and the second		-			
	2					
				- 1	Page	- 1
VIIIA det	1 1 -	4. RESULT	S		63	
1000		PART	ONE:	The nestling energy budget	63	
	1		Diama	trice of Disson southings		
2		4.1	BIOME	trics of Dipper nestlings	63	
6.1.1	100		4.1.1	Mass, wing-length, body-length	63	
	-		4.1.2	Gape and bill-length growth	03	
\$2.005 /15				and their relationship to		
2. n. l			4.1.3	Feather growth	65	545
			4.1.4	Sexing Dipper nestlings from		
A1.6.1.1			4.1.5	Dody measurements The effect of sev on nectling	66	
				growth	68	
			4.1.6	The effect of nest type on	~~	
VART THEAT			4.1.7	The effect of brood-size on	69	
and that				nestling growth	70	
A		4.2	The e	nergetics of nestling growth		1
a.s. Fast In			in Di	ppers	70	
			4.2.1	Whole body water content loss		
5.0.0				dry mass, lipid and water		
E.L.C				indices	70	
al Cranthe T. K			4.2.2	components	71	
o theda			4.2.3	Lipid content of body		
		2.5.3	4 2 1	components Water indicas of body	73	
			4.2.4	components	74	
	2.4		4.2.5	Ash indices of nestling		
A+ + A	142		4.2.6	body components The energy content of postline	74	
65.6			+•2.0	body components	76	
		ш 3	Restin	a metabolism of Instrume!		
		4.5	Dipper	r nestlings	77	
		li li	Thomas	mogulation		
STATE.		4.4	inermo	Dregulation	78	
			4.4.1	Model parameters for predicting		
0 / De/a				Cooling and reheating rates of Dipper nestlings	79	
			4.4.2	A model of Dipper nestling	78	
		1		cooling rate in the laboratory	79	

4.4.3 A model of Dipper nestling cooling rate in the field 80 4.4.4 A model of Dipper nestling reheating rate in the field 83 (contd.) 3

* *

				1
			Page	1
		Note noncol and the co		
	4.4.5	on female brooding behaviour	26	1
	4.4.6	The cost of brooding in the	00	
		Dipper	88	
	4.4.7	Huddling and the contribution		
		or individual nestlings to		
		consideration of nestling size	90	
4.5	Activ	ity	92	
	4.5.1	The cost of one activity		· · ·
	4.0.1	(Doppler) unit	92	
	4.5.2	Definitions of nestling activit	v 94	1
	4.5.3	The cost of nestling activity	95	1
	mad		-	
4.0	ine d	ally energy budget of the Dipper	95	
	4.6.1	Basal metabolic rate	96	
	4.6.2	Thermoregulation	96	
	4.6.3	Activity	99	1
1		a) Unit costs of activity	99	
		b) Begging costs	100	
		c) Feeding costs	102	
		d) Defaecating costs	102	
	4.6.4	Growth	103	
	4.6.5	Biosynthesis	104	
		a) Biosynthetic efficiency		
1.4.2		constant with respect to		
		age and the lipid/protein		
		ratio	1.04	
		b) Biosynthetic efficiency		
and the second second		constant with respect to age		100
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		the lipid/protein natio	105	
		c) Biosynthetic efficiency	103	
		variable with respect to		
		both age and the lipid/		
	4.6.6	Alentness	105	
	4.6.7	The heat increment of feeding	108	
	4.6.8	Daily energy expenditure (DEE)	200	
1		and daily metabolised energy		
-		(DME)	109	
4.7	Field	energy expenditure (FFF) of		
	4.5 4.6	4.4.5 4.4.6 4.4.7 4.5 Activ 4.5.1 4.5.2 4.5.3 4.6 The d 4.6.1 4.6.2 4.6.3 4.6.4 4.6.5 4.6.5	 4.4.5 Mate removal and its effect on female brooding behaviour 4.4.6 The cost of brooding in the Dipper 4.4.7 Huddling and the contribution of individual nestlings to brood heat production: A consideration of nestling size 4.5 Activity 4.5 Activity 4.5 Activity 4.5 The cost of one activity (Doppler) unit 4.5.2 Definitions of nestling activity 4.6 The daily energy budget of the Dipper 4.6.1 Basal metabolic rate 4.6.2 Thermoregulation 4.6.3 Activity a) Defacating costs c) Feeding costs d) Defacating costs e) Movement costs 4.6.4 Growth 4.6.5 Biosynthesis a) Biosynthetic efficiency constant with respect to age and the lipid/protein ratio b) Biosynthetic efficiency constant with respect to age and the lipid/ protein ratio e) Biosynthetic efficiency constant with respect to the lipid/protein ratio e) Biosynthetic efficiency constant with respect to the lipid/protein ratio e) Biosynthetic efficiency constant with respect to the lipid/protein ratio e) Biosynthetic efficiency variable with respect to the lipid/protein ratio e) Biosynthetic efficiency variable with respect to both age and the lipid/ protein ratio e) Biosynthetic efficiency (NE) b) Dial protein ratio 	Page 4.4.5 Mate removal and its effect on female brooding behaviour 4.4.6 The cost of brooding in the Dipper 9.4.4.7 Huddling and the contribution of individual nestlings to brood heat production: A consideration of nestling size 90 4.5 Activity 92 4.5.1 The cost of one activity (Doppler) unit 92 4.5.2 Definitions of nestling activity 94 4.5.3 The cost of nestling activity 95 4.6 The daily energy budget of the Dipper 95 4.6.1 Basal metabolic rate 96 4.6.2 Thermoregulation 96 4.6.3 Activity 99 b) Begging costs 100 101 costs of activity 99 b) Begging costs 102 103 4.6.4 Growth 103 4.6.5 Biosynthesis 104 a) Biosynthetic efficiency constant with respect to age and the lipid/protein 104 b) Biosynthetic efficiency constant with respect to 105 b) Biosynthetic efficiency constant with respect to 105 105 105 105 105 105 106 105 105 105 106 105 106 105 107 105 107 105 106 105 107 106 105 107 108 109 109 109

Field energy expenditure (FEE) of 18-day Dipper nestlings measured using the doubly-labelled water (D_2O^{18}) method

111

		4	a the stand of the second s		
			- /		' v32
			- /	Page	- /
L . P. P.	PARI	TWO:	Hatching asynchrony:		1
0.4.5 ···			energetics	113	
	1				10-
Conce 1	4.8	Peak :	load reduction (PLR): A test	110	
		or the	e model	113	
		4.8.1	Assimilation efficiency	113	
4.5 Activ		4.8.2	Faecal output Peak energy demand	115	
	1000	4.0.0	reak energy demand	110	
Sall-e	4.9	Nestl	ing competition I: A laboratory		e *
2.2.2		study		116	
Turke A		4.9.1	Types of Zebra Finch begging		
in the second			behaviour	116	
allalar are		4.9.2	Zebra Finch begging behaviour	110	
1.1.4			in the laboratory	118	
2 . 0 - 0	4.10	Nestli	ing competition II: A field study	121	
and the second sec		4.10.1	Types of House Mantin bogging		
			behaviour	121	
		4.10.2	House Martin begging behaviour		
		4.10.3	IN THE FIEld A test of the RSR model on the	124	
5.3.4			House Martin	125	
0.0.0		Thursday .			
	4.11	model	r considerations of the RSR	100	*
	1.1.1			120	
		4.11.1	Peak mass and hatching		
		4.11.2	Asynchrony Hierarchy instability and the	129	
	2.7 *		flexibility of House Martin		
			growth	132	- 70
	4.12	Premat	ure fledging in the Dippen	120	
			are reading in the pipper	133	
	5. DISCUS	SION		142	
0.0,0	PART	ONE:	The nestling energy hudget	142	
1.3.P			and and an art of budger	142	
	5.1	Differ	ential growth and body composi-		
		CION 1	n the Dipper	142	
1/a)7 7.4	. 5.2	Sex-sp	ecific energetics and growth		
D-UI		dynami	cs in the Dipper	148	
action -	5.3	The fa	ilure of the 0.67 exponent of		
- Sel		body m	ass to explain heat loss in		

- - 5.3 The failure of the 0.67 exponent of body mass to explain heat loss in Dipper nestlings

(contd.)

156

-

Ĩ

								Deee	
							·· · ·	Page	1
1 YON	PART					5.3.1	'Constrained' and 'Unconstrained huddling	157	r
1.						5.3.2	Feather growth and heat loss in	107	
Elent							the Dipper	159	
AI1 10					5.4	Factor behavi	s influencing parental brooding our in the Dipper	161	-
· 自己的									
						5.4.1	Proximate causes of female		
				-			birds	161	
12 and 1						5.4.2	Factors regulating optimal	101	3 • M
							inattentiveness in the Dipper	167	
1.5.4					5.5	Nestli	ng activity costs	171	
								1/1	
and a						5.5.1	A comparison of activity costs		
						5 5 2	in the Dipper and House Martin	171	
171+11	4110					5.5.2	activity costs?	174	
					5.6	Reduci	ng begging costs: A detailed		
						anarys	is of the Zebra Finch	175	*
						5.6.1	Behaviour of nestlings prior		
							to a feed being offered	175	
						5.0.2	Benaviour of nestlings	176	
	IL if					5.6.3	Behaviour of nestlings not	1/0	
				Ter			receiving food	178	
						5.6.4	Behaviour of nestlings after		
Les u							having received 100d	181	
Person P					5.7	The da:	ily energy budget I: Parental		
			10.			errors	in estimating daily energy		
						expend	iture by the TAL method	183	
	SL-F					5.7.1	Thermoregulation	187	
and a	bisces	. 7				5.7.2	Activity and Biosynthesis	187	
						5.7.3	Growth	188	
4380	PAAG					3./.4	but and alertness	188	
-infe	2.2			-	5.8	The da:	ily energy budget II:		
10032						Conside	erations of brood energy		
						demand		192	
	0.0					5.8.1	Do nestlings in larger broods require less energy because		

the first

18(515)

0.0

11 ÷

• 1

- require less energy because of reduced thermoregulation costs? 5.8.2 Do nestlings in larger broods receive less energy because of constraints on the parents' ability to provision the brood?

195

192

-

						Page	
Seller.	10.0		PAR	T TWO:	Hatching Asynchrony:		. <u>R</u>
111-5		1.1			energetics	204	
	4.0		5.9	Peak	load reduction hypothesis	204	
HER OC			5.1	0 Reduc	ed sibling rivalry hypothesis	208	
			1	5.10. 5.10.	<pre>1 Is sibling rivalry facilitated by means other than begging behaviour? 2 Is sibling rivalry independent of hatching asynchrony?</pre>	208	÷ • .
lenell 1.k.z	1.1			5.10.	3 Do the costs of reduced sibling rivalry outweigh the benefits?	211	
die		- 21	5.11	Nest-	failure hypothesis	213	
	1.1	- 1		5.11.	l Is the relevant daily survival probability included in the		
		- 1		5.11.	model? 2 Is the estimates of the nest	217	
		100	in the second second	5.11.3	B Do values of 'D' confirm	218	
		1.1		5.11	failure model?	219	
		- 18	- 1 - 1	5.11.5	of asynchrony valid?	219	
		110			advantageous?	221	
The service	rue -	1.	5.12	Brood	reduction hypothesis	221	
417.9-			*	5.12.1	Is hatching asynchrony necessary for brood reduction		-1
		1.1		5.12.2	Brood reduction and food	222	
Sid				5.12.3	Are small late-hatched young	225	
ant i but				5.12.4	Is the reproductive success of brood-reducing parents higher than non-brood reducing parents under	227	
and the state					similar conditions?	231	

5.13 Hatching asynchrony; cost or benefit? 236 REFERENCES

X

APPENDICES

ABBREVIATIONS USED IN THE TEXT Α Activity costs F-MARTIN 3 After-begging Time ABT NOLDIN 01.0 'Alertness' costs AL 5.10.1 ALDM Ash free lean dry mass Brooding costs Bc 1.170.2 'Basal' metabolic rate BMR 5.30.3 Daily Energy Budget DEB DED Dry Energy Density 1-trail 11.0 DEE Daily Energy Expenditure Liber. DME Daily Metabolisable Energy DU Doppler Units (= DAU) S. H. S EGUT Elevated giving-up time 1.22.1 FCR Field Cooling Rates 1.23.2 FEE Field Energy Expenditure FRR Field Reheating Rates booms II.s FUC Fixed Unit Cost (for activity) 1.22.4 GEI Gross Energy Intake 6. 632 GUT Giving-up Time 5,11,1 GUTpre Prefeed giving-up time 4.51.2 GUTpost Post feed giving-up time H Rate of heat loss Hf in the field Ħ Hn 11 in a nest in the lab REFERENCES Ho

h

HT

HIF

D

APPENDICES

" out of a nest in the lab

Heat transfer coefficient Handling Time Heat Increment of Feeding Costs

		Abbreviations use	d in the Text (contd.)
	/	IHS	Index of Hierarchy Stability
1307 TEAN	/	LCR	Lab Cooling Rates
film to	/	LI	Lipid Index
Augt 6,2		LDM .	Lean Dry Mass
110 Made		M	Metabolism (= BME) Costs
1.10.		MTA	Mouth Target Area
ST.1		MUC .	Mean Unit Activity Cost
.01.2		Nl	Single Nestling
		N2	Paired Nestlings
-roal if.e		P	Growth Costs
		PDT	Parental Decision Time
		PLR	Peak Load Reduction
NARTS .		PUV	Proportionate Unit Activity Cost
hales a	Aller aller	r	Cooling rate (°C°Ch ⁻¹)
111.8		RDBM	Relative Difference in Body Mass
11.5		RDHM	Relative Difference in Hatching Mass
5, La limond	4.3	RLDM	Relative Lean Dry Mass
	-	RRHP	Relative Resonance Holding Power
		RSR	Reduced Sibling Rivalry
Later t	-	Ta	Ambient Temperature
		т _b	Nestling Body Temperature
5 .	•	Tlc	Lower Critical Temperature
		Tn	Nest Temperature
Marriel and a		TR	Thermoregulation Costs

•

mass of nestling
brood mass
Wet Energy Density
Wing-length/mass ratio
Wing-length/tarsus ratio

1

.

-0

•

.

ABSTRACT

(i)

The nestling energy budget is examined with particular reference to the Dipper. Dippers showed an adaptive strategy of differential growth allowing premature fledging. Sex-specific differences in energetics and growth dynamics were observed which may result in differential mortality between the sexes.

Field thermoregulation costs were lower than laboratory estimates, however heat loss did not obey the 0.67 exponent rule in the Dipper. Adults appear to adjust their brooding behaviour in response to nestling body temperature.

Activity costs measured directly were only about 10% of previous indirect estimates. Brood activity costs increased exponentially with increasing brood-size thus offsetting any reduction in thermoregulation costs through huddling; implications of these results are discussed.

Time-activity-laboratory estimates of daily energy expenditure provided excellent agreement with field measurements using doubly-labelled water on 'mature' Dipper nestlings. TAL estimates, however, progressively over-estimated daily metabolised energy (DME) in younger nestlings. Sources of this error are evaluated, and a predictive equation for nestling DME presented. Influences of brood DME on parental

1002 11 410

E. | Paule S S. IO Roudew S. IVIII S. 201.2

6.57.0

-Troll L

212.2.2

E. Black

5.11.8

5,22.

1.22.2

6-11.8

1.11.5

care are discussed.

Energetic implications of hatching asynchrony were examined in the House Martin. Four hypotheses are discussed.

(1)	Nest failure;
(2)	Brood reduction;
(3)	Peak load reduction, and
(4)	Reduced sibling rivalry.

STATISTICS.

A GUMANTI

13 102

States Hute distance

THERE AND A CONTRACTOR

d.D. monocen culo

did unitoned wheels

10% of province in

50 Lyne Bertswroell

any removies in a

tapifostima of the

to me englishinges

manth added, arrest

TAL METSCHENN, NC.

to para bencindates

newsland 1/L present

THIN SUTTON WINT

CONCERNMENT.

The latter two were modelled and tested in the field. Little evidence was found for the hypotheses considered, lending support to the view that hatching asynchrony is an incidental trait, and moreover one in which costs may outweigh benefits.

(ii)

ACKNOWLEDGMENTS

I would like firstly to thank Dr. D. M. Bryant for his valuable help and constructive criticism throughout the study. Dr. P. Tatner's instruction and assistance with the doubly-labelled water work is greatly appreciated; thanks Paul.

Facilities at the University were provided by Professor J. R. Sargent, Department of Biological Sciences.

Much of this study was carried out on private land, and I wish particularly to thank Mr. A. Dixon, Lanrick Castle; Moray Estates; and all at Braeleny Farm, Callander. Mr. G. Peacock gave permission to work in the University Library.

The microprocessor could not have been built without the many hours of supervision and practical help from Angus Annan, to whom I am indebted. Arlen Michaels built the Doppler radar device for me; to all at the microprocessor group, thanks.

Thanks also to S.T.A.V.S. who helped in the construction of numerous cages, nestboxes and metabolism chambers; the animal house staff for looking after the Finches, and the technicians in the Department of Biological Sciences, particularly John in the Stores (thanks for the lifts, John).

Special thanks to Deryck Irving for help in catching everything catchable and for keeping me from dis-

122 (五)) 623

THOLTON BOX ing a dir 007713 landing support an istant tont na THE PROBLEME

(iii)

-0

Thanks also to Steve Newton for all help with the tractions.

Dippers, and Maimie and Helen for coffee and biscuits, not to mention stimulating discourse. Thanks to Mrs. Joan Weber for her excellent typing facility, and to Mum and Dad for providing the funds!

Most of all I'd like to thank my wife, Deb, for helping with everything from field-work to writing-up, and for putting up with me and the long hours.

Finally, thanks to Katy, Hannah and wee Matthew for making it worthwhile.

The project was funded by an NERC studentship.

I would 1 for his valuality be the study. Dr. ". the doubly-labelies Fact.

Frodessor d. P. Ser Hadessor d. P. Ser

land, and I whit pa Castle: Morey Lete Mr. G. Pescor gross Library.

The store

the many hours of a Annan, to when I an rades device for a thanks. Thanks a Thanks a construction of num chambers: the toin and the testminians particularly john i Special t

catching everything

- - 0

(iv)

Dippers, and Maimie not to mention stim Mrs. Joan Weber for Mum and Dad for pro

helping with everyt for putting up with Finally, for making it worth The proje

11.1

CHAPTER ONE

1

INTRODUCTION

5

. . .

INTRODUCTION 1.

Selective pressures on the allocation of time and energy to major resource-demanding stages in the annual cycle of birds, such as moult, migration and reproduction, are likely to be strong. Reproduction involves trade-offs such that fitness will be maximized for those individuals which evolve adaptive strategies to optimize investment between current and future reproductive attempts (Williams, 1966; Schoener, 1971).

In any current reproductive attempt, "patterns of energy utilization from hatching until independence of the young have two components; the allocation of time and energy by the parents food gathering and direct care of the young, and the use of energy by the young themselves. These two components are ultimately related through strategies of development and parental care". (Ricklefs, 1974). Nonetheless, the interests of parents, offspring, siblings and individuals may conflict (Brockelman, 1975; Smith & Fretwell, 1974; Trivers, 1974). Selection may therefore favour offspring which induce parents to invest more in the current, rather than subsequent, reproductive attempts. Equally, as tradeoffs exist between the quality and quantity of young produced at a given time (Brockelman, 1975), parents are often likely to underinvest in the current reproductive attempt, from an individual offspring's point of view. This being so natural

selection will favour the evolution of nestling development patterns that result in efficient use by parent and brood of limited energy resources. The study of nestling energetics allows such efficiencies to be quantified and explored and therefore play an important part in increasing our understanding of the complex interactions between parent and offspring, on which the evolution of reproductive strategies depends.

Previous studies of nestling development provide a base from which to examine nestling energetics from this broader behavioural perspective. The nestling energy budget has been simply represented by the following equation:-

 $GEI - FU = P + R \qquad eqn. 1.1$

where GEI is the gross energy intake; FU is that energy voided as faecal and urinary waste; P is that energy accumulated as tissue growth; and R is the energy used in respiration (Kendeigh et al., 1977). The latter is often sub-divided into basal metabolism, thermoregulation and 'activity' costs. Initial interest in nestling development centred on two of the components of equation 1.1;

 (i) the study of growth, primarily body mass and external measurements as functions of nestling age, and

(ii) thermoregulation (see Calder and King, 1974;King & Farner, 1961, for early reviews).

The study of growth progressed from detailed examinations of inter-specific differences in mass changes with age, using curve fitting techniques (Ricklefs, 1967a), and constraints on growth rate (Ricklefs, 1979a; 1984), to the energetics of growth and the differential growth of body

energy to major rea of birds, such as a likely to be strong that fitness will b evolve adaptive str current and future Schoener, 1971). In any our energy utilization young have two comp by the parents food and the use of ener components are ulti development and pan the interasts of pa may confiler (Brock Trivers, 1979). Se which induce parent than subsequent, re offs exist between at a given time (ar to underdayest in t individual offerin

selection will favo

patterns that resul

1: 'INTRODUCTION'

Selective

2.

limited anargy manallows anab affices therefore play in t standing of the in depende.

Frevious a base from which in broader behaviours; has been simply rep (21 + 1

where GEI is the gr voided as Taecal an accountated as time respiration (Vender sub-divided into be hactivity, clats, (1) the etudy of (2) the etudy of staning & Verner vity aneroreguin sing of the etudy age, using our components, in particular with respect to developmental mode (Austin & Ricklefs, 1977; Blem, 1978; Brisbin & Tally, 1973; Bryant & Gardiner, 1979; Bryant & Hails, 1983; Cain, 1976; Clay et al., 1979; Diehl & Myrcha, 1973; Dunn & Brisbin, 1980; Hockey, 1984; Kohl, 1962; Kushlan, 1977; Montevecchi et al., 1984; Ricklefs, 1967; Ricklefs & White, 1981; Tatner, 1984).

3.

19

Previous studies of nestling thermoregulation have concentrated on laboratory measurements of metabolism, and examined the ontogeny of thermoregulation (Dawson et al., 1976; Diehl & Myrcha, 1973; Dunn, 1976a; Gotie & Kroll, 1973; Marsh, 1979); brood-size effects (Dunn, 1976b, 1979; Mertens, 1969; O'Connor, 1975), and factors affecting the timing of the onset of endothermy (Dunn, 1975).

Estimations of energy intake and assimilation efficiency (Blem, 1973; Bryant & Bryant, in press; Diehl, 1971; Gibb, 1957; Myrcha et al., 1972; Tiainen, 1983; Turner, 1980; Westerterp, 1973) together with measurements of nestling growth metabolism and thermoregulation have however only allowed the construction of daily energy budgets for a handful of species (Blem, 1975; Bryant & Gardiner, 1979; Cain, 1976; Diehl & Myrcha, 1973; Dunn, 1976, 1980; Koelink, 1972; Norton, 1970; Tiainen, 1983; Wijnandts, 1984; Williams & Prints, 1986; Westerterp, 1973). Furthermore current published energy budgets are incompletely parhtmed; few

and construction on

have measured biosynthesis costs directly, and no measurements

of nestling activity costs are presently available.

Recently the doubly-labelled water technique (Lifson et al., 1955) previously used largely for measuring daily energy expenditure in free-living adult birds (Bryant et al., 1985; Bryant & Tatner, 1984; Bryant & Westerterp, 1980; Hails, 1979; Nagy et al., 1984; Westerterp & Bryant, 1984; Westerterp & Drent, 1985) has been applied to nestlings thus allowing comparisons to be made between nestling energy budgets calculated from laboratory measurements and time budget data, and energy expenditure measured directly in the field (Fiala & Congdon, 1983; Williams & Prints, 1986).

One way in which such studies of nestling energetics may be used as tools for assessing the interactions between parents and offspring, and for quantifying costs and benefits of different behavioural strategies for both parties, is by examining one specific behaviour phenomenon. One example common in altricial birds that may have shaped patterns of energy utilization by nestlings, as well as patterns of parental care, is hatching asynchrony.

The asynchronous hatching of nestlings, as a result of incubation starting prior to the completion of the clutch, may result in a disproportionate allocation to some young at the expense of others, and may appreciably alter patterns of brood energy demand and parental behaviour. A number of hypotheses have been advanced to explain the adaptive signi-

mode (Austin & Sick
1973; Bryant & Sar
Caim, 1976; Clay e
Dunn & Brisbin, 198
1977; Montevecchi
White, 1981; Fatne
concentrated on lab
concentrated on lab
1978; Diehl & Myre
1973; Marsh, 1979)
Mertens, 1969; O'C
timing of the onset

components, in dart

efficiency (Slem, 1 1971; Gibb, 1357; Turner, 1980; Merr of nestling growth however only allewe for a handful of 39 for a handful of 39 Koelink, 1978; Bishi Koelink, 1978; Mer Williams & Prints.

have measured blos

nestling ac

ficance of asynchronous hatching.

Lack (1954) proposed that by producing offspring of

Retaining Retaining retaining
Gaily GREERS AL., 11
Gaily GREERS AL., 11
Gaily GREERS AL., 11
Retaining AL., 1100
Retaining AL., 1100
Been applied to the second of the second of

may be used as cont parents and offered of different behaving examining one epect domion in eitrefoial margy utilization: "

of inclination steel

PITYRO OD HOMEOLO

- 6 1 7 ----

different ages (and hence sizes) competitive hierarchies would be established within broods, which would tend to adjust allocation of food brought to the nest to prevailing food availability. In times of food shortage the later hatched nestling(s) would starve thus allowing remaining chicks to thrive. This 'brood reduction hypothesis' has been elaborated by 0'Connor (1978c) who proposed that natural selection may under certain extreme circumstances favour suicide of the smallest nestling, since its inclusive fitness would be increased as a result of genes shared with its surviving siblings and parents.

The brood reduction hypothesis has been challenged by Clark & Wilson (1981) who proposed that hatching asynchrony has evolved to minimise total nest failure through predation. They examined the survival probabilities of nest contents during the period of egg laying until fledging of the last chick in 87 altricial species and concluded that the ratio of nest failures during the egg stage to nest failures during the nestling phase (= nest failure ratio) is of primary importance in selection for hatching asynchrony in birds. Two other hypotheses have received some support; the 'peak load reduction (PLR) hypothesis' (Bryant & Gardiner, 1979; Hussell, 1972) and the 'reduced sibling rivalry (RSR) hypothesis' (Hahn, 1981).

The 'PLR hypothesis' suggests that by spreading out

5.

hatching times, parents also spread out the peak energy demand of nestlings, in turn reducing the brood energy demand and different ages (and would be evablished adjust elineations food availability) harohed anadiability) define ve therewo establishe ve therewo addition any under adision of the second sould be horeesed accepting similars

by Clare & Alleon I has evolved to simi They exemined the I during the fettod o chick in ST elistic neeting phase (* 1 hypotheses neve and to reduction (FLR) %2 (Mann, 18%1).

hatching times, pur

of newtinney, in the

maximum work load for the parent, itself limited by constraints on reproductive effort (von Haartman, 1955; Royama, 1966). The 'RSR hypothesis' suggests that by causing a size hierarchy to be established by asynchronous hatching, in which nestlings have specific positions within the hierarchy, energy is not dissipated on sibling competition that would occur if nestlings were of similar size (and hence competitive ability) and the outcome of contests for food was not clear to participants (Hamilton, 1964).

The main aims of this thesis are twofold: Firstly, to measure the activity component of the daily energy budget thus far unavailable for any species, and reassess the importance of all components of the energy budget, including activity costs, to nestling development and quality, using the Dipper, <u>Cinclus cinclus</u>, as a principal subject. Energy budget data derived from laboratory studies will be compared with daily energy expenditure measured in the field, and adaptive strategies of nestling development discussed. Secondly, the energetics of parent/offspring interactions will be examined with respect to hatching asynchrony in the House Martin, <u>Delichon urbica</u>: sib-sib competition in the House Martin and the Zebra Finch, <u>Taeniopygia castanotis</u>: and brooding behaviour and optimal inattentiveness in the Dipper.

By synthesizing ecological, behavioural, physiological and functional approaches using the techniques of 'behavioural energetics', a common rationale for exploring the many interrelated aspects of nestling development and parental care was adopted.

6.

-7

CHAPTER TWO

MODELS AND THEORY

50

Maximum work load a on reproductive at The 'RSR hypothesi to be established have specific posi dissipated on sibi dissipated on sibi and the outcome of participants (Hami The main

to measure the act thus far unavailab importance of all activity costs, to budget data derived with daily energy o adaptive strategied will be examined wi House Martin, <u>Delic</u> and brooding behavi Dipper, By synthes

(r).

2.1 THE DAILY ENERGY BUDGET OF A THEORETICAL 25g PASSERINE

2.1.1 The nestling growth curve

A theoretical Daily Energy Budget (DEB) was calculated for a 25g passerine from a synthesis of data in the literature, with the aim of using it to predict the consequence of various nestling strategies, for nestling growth and survival (see Sections 2.2 and 2.3). It was planned to examine the causes and consequences of the various strategies in the field using the House Martin, Dipper and other species as subjects. Using Ricklefs' curve fitting technique (Ricklefs, 1967a) the growth curve for a nestling with a 1.0g hatching mass and a 25g asymptotic mass was constructed (Figure 2.1). The equation is -

$$r = \frac{25.0}{1 + e^{-0.588(t-5175)}}$$

eqn. 2.1

7.

where w = mass of nestling (g), and t = age (days).

No mass recession (Ricklefs, 1968) was assumed to occur and the nestling period was arbitrarily set at 18 days, at which time the asymptotic mass was reached. From this basic growth curve the following components of the nestling energy were calculated; Basal Metabolic Rate (M), Activity (A), Growth (P), specifically the energy accumulating in tissue growth (biosynthetic costs were not included in this

preliminary model, see Chapter 5 for discussion) and Thermoregulation (TR).

1.1 THE DATLY HIGHT 1
2.1.1 The resting
3.1.1 The resting
4 theoremized

T-C-S + T

where w = maas of nearly No made redeet occurs and the newsling 3 at which the newsling 3 basic growth curve the f unargy were calculated; (A), Growth (9), rescir)

Figure 2.1

Growth curve for a theoretical 25g passerine.

t = inflexion point = 5.175 days

2.1.2 Basal metabolic rate

Strictly speaking the term basal metabolic rate (BMR) defined as: the metabolic rate of quiescent, non-growing, postabsorptive birds at thermoneutrality in the dark (Ricklefs, 1974; Calder & King, 1974) cannot be applied to nestling birds. Since nestling birds are growing, resting metabolism will contain a proportion of biosynthetic costs, this is likely even if no mass change is observed during experimental periods (see Section 4.6.2). Biosynthesis costs are composed of two components; replacement of degraded tissue and synthesis of new tissue during growth (Section 4.6.5). BMR of adult birds may contain some of the former cost, particularly during the daytime (Section 4.6.1) but nestlings resting metabolism will contain the latter cost also. By measuring nestling resting metabolism under suitable conditions the contribution of biosynthesis costs to resting metabolic costs may be minimised (Section 4.6). BMR is thus used in this study to signify resting metabolism in which the biosynthetic cost has been minimised, or when using equations of adult BMR to calculate basal metabolic costs in nestlings (see below). Nestling birds have water contents often up to 30% higher than adult birds (Section 4.2.1), and thus the amount of metabolising tissue for a given mass will be less in nestlings. The use of adult BMR equations will therefore tend to overestimate actual nestling 'BMR', all things being equal. This tendency to over-

8.

Figure 3.1 Grawth source for a theoretic to a latituden point

> estimate will decrease as nestlings mature, since water content (and hence dry mass and lean dry mass) approach adult proportions towards fledging (Section 4.2). Thus whilst it is recognised that adult BMR equations are imperfect predictors of nestling

resting metabolism, they remain the most suitable alternative for calculating basal costs at the present time. They are therefore used below for the construction of the theoretical DEB, and elsewhere in this study.

BMR was calculated from the following two equations put forward by Aschoff and Pohl (1970).

BMR resting phase = 114.8w ⁰ .	726 eqn. 2.2
BMR active phase = 140.9w ^{0.}	704 eqn. 2.3

where w = mass of nestling (Kg), and resting phase is the night-time resting metabolism in postabsorptive birds, at thermoneutrality in the dark. The active phase BMR is the equivalent measurement for daytime resting metabolism. For the purpose of constructing the theoretical DEB a 12 hour diurnal cycle was assumed, and so the mean of equations 2 and 3 were taken to predict daily resting metabolism (mean BMR, Table 2.1). Results for the final energy budget are expressed as watts bird⁻¹.

2.1.3 Growth

Daily energy increment (P) was calculated assuming the energetics of nestling growth to be a composite of available data (see Appendix I). Cumulative energy content was constructed from the following equations, and the daily increment arrived at by subtraction.

(a) Water content

Strincly span defined and the caused absorptive birds at the Calder & Eing, 19764 -s Since mestiling Sirds An contain a proper time al if no mass change in al 10 . (5.8.8 mulyon2 mes?). . . composentst replacement new tireve during ground ant in able alastabo van (1.8.) colynal) amirtush nortain the Lattai Dost. serabolian under sulreb synthesis costs to rest. (Section 1.9.1. SME is paneling mening in means has been minimized, or a delculer fated wielnislab Nuntling birds have said adult birds (Seartin +.3 tinging for a given many Adult (Mth equations wild neetiing 'Small, all only

SATAD INGAL S.L.S.

9.

towards Flatt dodress and towards Flatting theorid that adult 3ME squarions

Water content (%) calculations were based on the

House Martin (Bryant & Gardiner, 1979), in which % water decreased from approximately 90% to 60% during growth. For simplicity the

TABLE 2:1

. 1

Calculated BMR for a hypothetical 25g passerine

1.

		8	MR		
Age (days)	Mass (g)	Night-time	Daytime	Mean of N: (a BM	ight/Day R
		(ka d ⁻¹)	(ka d-1)	(k) (d ⁻¹)	(Watts bird ⁻¹)
0	1.00	0.762	1.089	0.926	0.044
1	1.64	1.091	1.543	1.317	0.064
2	2.75	1.588	2.218	1.903	0.092
3	4.41	2.238	3.095	2.667	0.129
4 .	6.83	3.074	4.215	3.645	0.177
5	9.91	4.028	5.472	4.750	0.230
6	13.35	5.000	6.749	5.870	0.284
7	16.68	5.878	7.895	6.890	0.334
8	19.39	6.557	8.777	7.670	0.372
9	21.45	7.056	9.424	8.240	0.399
10	22.84	7.385	9.850	8:570	0.415
11	23.72	7.591	10.116	8.853	0.429
12	24.24	7.711	10.271	8.990	0.436
13	24.55	7.783	10.364	9.070	0.440
14	24.75	7.829	10.423	9.126	0.442
15	24.86	7.854	10.456	9.155	0.444
16	24.92	7.868	10.473	9.171	0.444
17	24.96	7.877	10.485	9.181	0.445
18	25.00	7.882	10.491	9.187	0.445
1.0					

2-14

resting marshdian; m alternative for selout They are therefore use Theoretical Did , and p alao apu BHE part formed by Andres the reaching planes maning wildon AMI Into to space & as avenue. hight-time pasting and thereseavesites in the STARATONIANS TRAINING perferon to aubgring and dimmal cycle was accord This takes to make a Table 1-11. Service We "bald other as

· 9.1.3 Gourth to mine within a in the the energicities of partial available date (r ... App Wes monacrupyed from the Indegoant arrived at By Lai Water- out

change was assumed to be linear and was described by the following equation (see Figure 2.2);

Water content (%) = 9.0 - 2.14 Age

I:S BJUAT

€.

3.0

1.7

12.9

3.5

6.5

82.1

100-I

27.2

26.85

23.73

P5.75

18,42.

24,38

28.97

21,96

510.4

5,003

7.788

7.181

2.477

188.1

10.

eqn. 2.4

After 14 days of age water content was assumed to remain at 60%, comparable with a stable phase from House Martin data (Bryant & Gardiner, 1979). Water content, and hence dry mass (%) and dry mass (g) are presented in Table 2.2.

(b) Lipid mass and lean dry mass.

Dry mass was divided into lipid mass and lean dry mass (assumed to be protein, since ash content and other components are generally small, and the few data on change in ash content with age are inconclusive). Lipid mass was calculated from change in lipid index with age (Figure 2.2), based on the early change in lipid of House Martins (Bryant & Gardiner, 1979). Lipid index was assumed to change linearly and remain stable at 1.0, after day 14. The equation is;

Lipid index = 0.1 + 0.0643 Age eqn. 2.5

Since lipid index equals lipid mass/lean dry mass it was possible to calculate lean dry mass from the above equation (Table 2.2) since total dry mass was also known. Lipid and lean dry mass was converted to energy equivalents, using Lipid = 39.748 kJ g^{-1} (9.6 Kcal g⁻¹) and LDM (Protein) = 23.64 kJ g^{-1} (5.65 Kcal g⁻¹) (Brody, 1945). Daily energy increments of growth were calculated as described

above and expressed as Watts bird⁻¹ (Table 2.2).

2.1.4 Activity

The cost of nestling activity was initially calculated

(%) and dry mass (g) at
(b) Lipid m
(b) Lipid m
(b) Pry mass was
(assumed to be produced to mass was
(assumed to be produced as a components are general)
(alculated from change as based on the early chan
(ardiner, 1979). Lipid
(bipid index = 0.)

change was assumed to.

following equation (se

After 14 days of she w

a diik ofdaraqmoo , 808

(Bryant & Gardiner, 19

Mator content

Lipid index = 0. Since lipid index equal possible to calculate i (Table 2.2) since total lean dry mass was conve Lipid = 39.748 kJ g⁻¹ (DM (Protein) = 22.54 k

Age (days)	Mass	Water	Drry Mass	Dry Mass	Lipid	Liqid .	Lipid Mass	Lean Dry Mas	Energy is as lipid	Energy as protein	Cumulative Energy	Daily	energy
	(g)	(8)	(8)	(g)		(%)	(g)	(g)	([P])	(kJ)	(kJ)	(kJ d-1	(w bir
0	1.00	0.06	10.01	0.10	0.100	60.0	10.0	60.0	0.36	2.15	2.51	•	- 1
ı	1.64	87.86	12.14	0.20	0.164	0.14	0.03	0.17	1.11	4.07	5.18	2.67	0.031
2	2.75	85.72	14.28	0#0	0.228	0.19	0.08	0.32	3.02	7.66	10.68	5.50	0.064
B	14.4	83.58	16.42	0.73	0.293	0.23	0.17	0.56	6.68	13.29	19.97	9.29	0.106
=	6.83	HH.18	18.56	1.27	0.357	0.26	0.33	46.0	13.11	22.22	35.33	15.36	0.178
S	16.9	79.30	20.70	2.05	0.422	0.30	0.62	1.44	24.44	34.04	58.48	23.15	0.269
9	13.35	77.16	22.84	3.05	0.486	0.33	1.01	2.04	40.14	48.22	88.36	29.9	0.34
7	16.68	75.02	24.98	4.17	0.550	0.36	1.50	2.67	59.60	63.19	122.79	34.43	0.399
80	19.39	72.88	27.12	5.26	0.614	0.38	2.00	3.26	79.49	10.11	156.56	33.77	0.391
σ	21.45	70.74	. 29.26	6.27	0.679	0+0	2.51	3.76	11.66	88.89	188.30	32.30	0.37
9	22.84	68.60	31.40	1.17	0.743	0.43	3.08	4.09	122.42	69.96	11.912	30.31	0.351
Ħ	23.72	66.46	33.58	7.97	0.807	0.45	3.59	4.38	142.69	103.54	246.23	27.12	0.31
12	24.24	64.32	35.68	8.65	0.872	0.47	· . 00. #	4.58	161.77	108.27	270.04	23.81	0.270
13	24.55	62.19	37.82	9.28	0.936	0.48	4.45	4.83	176.88	81.411	291.06	21.02	0.24
14	24.75	60.00	140.00	06.9	1.000	0.49	4.45	4.95	18-161	117.0	309-82	92-81	12.0
15	24.86	60.00	40.00	#6. 9	1.000	0.50	4.97	4.97	197.55	6 ⁺ .711	315.04	1.29	10.0
16	24.92	60.00	40.00	96.96	1.000	0.50	4.98	4.98	197.95	117.73	315.68	0.64	00.00
17	24.96	60.00	40°00	9.98	1.000	0.50	4.99	4.99	198.34	117.96	316.30	0.62	0.00
18	25.00	60.00	10.00	99 99	1 000	0 50	2	5 00	100 71				0 00

above and expressed as

2.1.4 Activity

The cost of ne

		Dasaerine	01 9 5 2 PU	(P) (S)	WOTS 10	et nonents	Unital TH	daily en	berafusi	180
Daily energy	Cumulative Dengy	Fustion	biqil as a	Dich Maza	biqi.1 acaM	biqil	Ligit.	and Mass	Dry Mass	H
bridw)(I-h tal)	(F1)	- (tub	040	1(8)	(11)	(8)		(2)	(2)	
5		5.18	0.3E	60.0	10.0	20.0	0.100	01.0	0.01	
JED.O Va.C	1218	: TO. 4	HLL	Y1.0	60.0	PT.0	-0.16#	C 30	12.24	
5.30 0.064	80.01		3.02	0.35	9.08	er.o	0-558	00.0	82. al	155
801.0 EY.E	- 76.81	33.24	83,8	12.0	0.53	0:53	262.0		AN'SL	82
12.36 0.178		12.13		10-BH	0.33	0.32	128.0	1-52		
23.16 d.,269	84.83	31.04		10.2			00.635		07.05	
		in the second	- and allow	10 10	in the	2 65 6 2	0.460	00,000	20-24	10.00

Figure 2.2

Lipid index and water content as a function of age for a theoretical 25g passerine.

--- Water content (%) Lipid index

in two different ways. Before this study costs of activity had not been measured directly in nestlings; figures appearing in the literature were usually obtained by subtracting all other DEB components from the total and apportioning this residual to activity. By this method values of up to 100% BMR activity costs were calculated for the Double Crested Cormorant Phalacrocorax auritus (Dunn, 1980), up to 40% BMR for the Starling Sturnus vulgaris (Westerterp, 1973) and up to 70% BMR for the House Sparrow (Passer domesticus, Blem, 1975). An approximate mean value applicable over the whole nestling period was calculated as 50% BMR, and this was used to produce an estimate of activity costs (Table 2.3). Dunn (1980), however, presented a diagram of activity costs changing as a proportion of BMR in a similar way to Figure 2.3, for the Double Crested Cormorant, although the costs were higher. This pattern of changing activity costs was considered realistic since the locomotory capacity of nestlings change with increasing age (Ryden & Bengtsson, 1980) and parental inattentiveness. A value for activity costs at peak closer to those of the House Sparrow (70%) was however considered more realistic for a 25g passerine species on the basis of similarity in size.

The equations for sections a - c, Figure 2.3, are;

(a)	Activity cos	st = 1.82 Age	(0 - 5 days)	eqn. 2.6
(Ъ)	Activity cos	st = 40 Age - 200	(5 - 7 days)	eqn. 2.7

(c) Activity cost = 100 - 2.85 Age (7-14 days) eqn. 2.8

11.

Ligid index and sector contain 25g passerine.

in proget

where activity cost is expressed as percentage BMR. Total activity costs for the whole nesting period calculated using

in two differ had not been in-the liter. other DEB do activity. B costs were of Phalacrocova Starling Stur for the House approximate r period was of an estimate d however, pres proportion of Double Cresta pattern of cl since the loc age (Ryden & value for act Sparrow (703) passerine spi The The (a) Act (b) Act

TABLE 2.3: Calculated activity costs for a 25g passerine

١

Age (days)	BMR	50% BMR activity cost	activity cost	Variable % BM activity cost
	(W.bird ⁻¹)	(W.bird ⁻¹)	(% BMR)	(W.bird ⁻¹)
0	0.051	0.02	0.0	0.0
1	0.064	0.03	1.82	0.001
2	0.092	0.04	3.64	0.003
3	0.129	0.06	5.46	0.007
4	0.177	0.09	7.28	0.013
5	0.230	0.12	9.10	0.021
6	0.284	0.14	40.0	0.114
7	0.334	0.17	80.0	0.267
8	0.372	0.19	77.15	0.207
9	0.399	0.20	74.29	0.207
10	0.415	0.21	71.43	0.296
11	0.429	0.22	68.57	0.296
12	0.436	0.22	65.72	0.294
13	0.440	0.22	62.86	0.200
14	0.442	0.22	60.00	0.277
15	0.445	0.22	57.95	0.267
16	0.445	0.22	54.29	0.258
17	0.445	0.22	57 42	0.249
18	0.445	0.22	49 57	0.229
		Contraction of the second	40.37	0.216
OTALS:	6.074	3.03	-	3.381

a See equations 2.6, 2.7 and 2.8

10%

			*	
16.5.	3.11.17			
12	Age (days)			
d.sh				
0.08				
0.0				
0.0%	E.		100	
0.17	E		-	
	ji.		数 80 -	
0.23			*	
0.29			5 60 -	
			S S	
0.3VS			\$	
0,300	R		·3 40 -	(
4. M.	2.0		Act	
01429			20 -	
	12		Sec.	(a)
0- 40	11		-	-
(i)	H.L.			2 4
0,145	1.5			
		-		
0	17			
DIANS	SI	1.	Figure 2.3	1.5/
	. W. D. S. S. S. S. S.		Activity cos	ts as a function o
ATTRACT.	to Saturday		For regressi	on equations (a -

Activity costs as a function of age, expressed as percentage BMR. For regression equations (a - c) see text. 20

these equations is 11% higher than those calculated by the constant BMR proportion model (Table 2.3). The model in Figure 2.3 was used in subsequent calculations of DEB.

2.1.5 Thermoregulation

Three different equations were used to calculate thermoregulatory costs (Table 2.5, Fig. 2.4). Aschoff (1981) investigated heat loss in passerines and non-passerines and produced three predictive equations, one for non-passerines, and two for daytime and night-time resting passerines respectively (see below).

Ma	=	0.857	w ^{-0.463}	eqn.	2.9
Мρ	=	0.576	w ^{-0.410}	ean.	2.1

where Ma and Mp are daytime and night-time conductances in ml $0_2 \cdot g^{-1} \cdot h^{-1} \cdot C^{-1}$, and w is nestling mass in grams. A third model is Mertens (1977) model for heat loss in Great Tit broods.

 $M = 0.0035 w^{0.613}$

eqn. 2.11

where M = heat loss of nestling/brood in Watts nestling/brood bird⁻¹and w is the mass in grams. The latter is close to thatpredicted by Aschoff and Pohl for daytime conductance and liesbetween it and the night-time conductances (Figure 2.4,Table 2.5). Mertens' model was therefore used to calculatethe net thermoregulatory cost for the theoretical passerineat 15°C (T_a), assuming a body temperature (T_b) of 40°C.to

Figure 210 Activity costs o For regression e 12.

calculate gross costs and then subtracting BMR. This additional cost was added to the Gross energy intake (GEI) to give GEI at 15°C (Figure 2.6). Calculating thermoregulatory cost in this I.l.i The thermobegular investigated produced thre and two for a cmsphettynky

there equation

UME TRATEROD

Figure 2.3 in

where the and mi 0₂ s⁻¹.5⁻¹ model is Marc

N = N ettern H = hear and w La the r predicted by J

αH

predicted by a predicted by a between it and Table 3.53. A stud net thered of 16°C 17,1,1 calculate prop 2.4: Calculated DEB for a theoretical 25g passerine

BMR (w bird ⁻¹)	P (w bird ⁻¹)	A (w bird ⁻¹)	Assimilation efficiency \$	DEB calculated	DEB Kendeigh et al.	GEI (w bird ⁻¹)
 0.051	0.000	0.000	92.3	1- DITO M	(- DILG W)	0.055
0.064	0.031	100.0 -	0.06	0.096	0.084	101.0
0.092	0.064	0.003	87.7	0.159	0.128	0.181
0.129	0.108	0.007	85.4	0.244	0.187	0.285
0.177	0.178	0.013	83.1	0.368	0.268	0.443
0.230	0.269	0.021	80.8	0.520	0.362	0.644
0.284	0.347	+TL.0	78.5	0.745	0.461	646.0
0.334	0.399	0.267	76.2	1.000	0.553	1.312
0.372	0.391	0.287	73.8	1.050	0.626	1.423
0.399	0.375	0.296	71.5	1.070	0.679	1.497
0.415	0.351	0.296	69.2	1.062	0.715	1.535
0.429	0.314	0.294	. 6.99	1.037	0.737	1.550
0.436	0.276	0.286	64.6	0.998	0.754	1.545
0.440	0.243	0.277	62.3	0.960	0.758	1.540
0.442	0.262	0.268	60.0	0.972	0.763	1.162
0.445	0.015	0.258	60.0	0.718	0.766	1.197
0.445	0.007	0.249	60.0	0.701	0.767	1.157
0.445	0.007	0.229	60.0	0.681	0.768	1.135
0.445	0.007	0.216	60.0	0.668	0.769	1.113
 6.074	3.644	3.388	1	13.100	10.201	18.786

= Productivity

4

-8

A = Activity

TABLE 2.4: 13.35 16.68 19.39 1.00 1.64 2.75 14.41 24.90 21.45 24.55 24.75 6.83 9.91 24.40 24.86 24.92 25.00 TOTALS 22.84 23.72 Mass (g) Dathe Hew Jaco Age (days) LEPC (FLaura 1 0 5 1 10 e # S 9 ω σ 11 12 13 1 15 16 18 17

	1.	
	1.2	
A 8	1.10	
a. 1-		
-		
	GR EN	
	1 2 23	
	1.	
	1.44	
	12.2	
0.00		
	D. D. m.	
-	162.00	
-	1.16 (21)	
	The lat	
	12 2	12
	1 2 11	15
		12
		L.
		E.
		127
	1	
	1 m	12-
	T	
	13	
		161
	Sec. 1	10
	15 3	18
		12
		10.
		1-
	1. 17	10
		12-
1 20	1 8.	10
	1 22	100
	1 -1	
	12.3	120.
		125
	1 6	18
	1.5	12
	Pres.	101
	100	1200
5 h	1	P
	1 1 m	2
	200	
		12

0	0.051	0.118	0.075	0.088	0.094	0.043
1	0.064	0.150	0.103	0.118	0.124	0.060
2	0.092	0.200	0.150	0.163	0.171	0.079
3	0.129	0.275	0.175	0.217	0.222	0.093
4	0.177	0.325	0.225	0.275	0.275	0.098
5	0.230	0.400	0.275	0.350	0.342	0.117
6	0.284	0.475	0.325	0.425	0.408	0.124
7	0.334	0.525	0.350	0.475	0.450	0.116
8	0.372	0.575	0.400	0.534	0.503	0.131
9	0.399	0.600	0.425	0.572	. 0.532	0.133
10	0.415	0.625	0.437	0.545	0.552	0.137
11	0.429	0.645	0.450	0.610	0.568	0.139

0.450

0.453

0.455

0.458

0.460

0.463

0.465

TABLE 2.5: Thermoregulation costs for a theoretical 25g Passerine at 15°C. Body temperature assumed to be 40°C.

2₀

1_a

BMR

0.436

0.440

0.442

0.444

0.444

0.445

0.445

Age

12

13

14

15

16

17

18

1

2

3

4

5

3_m

0.618

0.623

0.625

0.628

0.629

0.630

0.630

5 mean

net

0.137

0.138

0.139

0.141

0.143

0.144

0.145

mean

0.573

0.578

0.581

0.585

0.587

0.589

0.590

gross

Aschoff & Pohl, Daytime conductance = a

0.650

0.658

0.663

0.668

0.672

0.675

0.675

Aschoff & Pohl, Night-time conductance = ρ

Mertens Model = m

Mean Gross = mean of α and ρ and is basal metabolism plus thermoregulation

Net = Mean Gross-BMR

Thermoregulation costs calculated from three different equations as a function of age for a theoretical 25g passerine.

Aschoff & Pohl, daytime model Mertens model Aschoff & Pohl, night-time model way shows that the Lower Critical Temperature (T_{lc}) and hence the thermoneutral zone changes as nestlings get older (Figure 2.5). Smaller nestlings can only tolerate relatively high ambient temperatures and so have to increase metabolism to compensate for heat loss relatively earlier than larger nestlings (Figure 2.5). For simplicity in subsequent calculations of nestling energy savings from various strategies, birds were assumed to be at thermoneutrality and hence have zero thermoregulation costs. This was because the strategies considered were concerned primarily with the activity and growth components of the energy budget, and assume TR cost is constant (see Sections 2.2, 2.3).

2.1.6 Assimilation efficiency and GEI

DME was calculated as the sum of M, P and A and is presented in Table 2.4, assuming nestling is at thermoneutrality. Gross Energy Intake (GEI) was calculated retrospectively, using the following equation;

Assimilation Efficiency (%) = 92.3 - 2.308 Age eqn. 2.12 based on data for the Willow Warbler (<u>Phylloscopus trochilus</u>, Tiainen, 1983), and is presented in Table 2.4.

2.2 PEAK LOAD REDUCTION

2.2.1 Theory

Nestling food (energy) demand reaches a peak during the nestling period and then declines (Sections 2.1.7, 4.6).

13.

Thermoregulation function of app

P.S. STITL!

states of plants it successive and

By spreading out hatching times, parents also spread out the individual nestling demand curves. The amount of food needed

way shown the the thermoney 2.5). Shalls and tent tamps occopensate to (Figure 1.5). nostling ener regulation to be regulation to be setions 1.5, 3setions 1.5,

avere V avere

presented in Gross Energy the following Assimi

bdned on data Tiainen, 1003) 2.3 <u>PEAK 108</u> 2.2.1 Th Nest

the nestling p

Figure 2.5

Range of thermoneutral zone (i.e. within which thermoregulatory costs are met by BMR), and the lower limit of the range (lower critical temperature).

Based on the Aschoff & Pohl (1970) equation for daytime resting conductance (see text).

The daily energy budget for a theoretical 25g passerine nestling.

by the brood at any one time therefore may be reduced, compared with synchronously hatched young in which the peak demand of individuals is expected to coincide (Bryant & Gardiner, 1979; Feltham, unpublished; Hussell, 1972). This may be particularly important in species which are limited by the amount of time during which they may forage, or those in which the nestling peak demand curves have more pronounced peaks; for example, the House Martin (Bryant & Gardiner, 1979; Section 4.8). Peak load reduction was investigated in the latter (see Sections 3.6, 4.8).

2.2.2 The PLR model

The daily many

Peak Load Reduction was modelled from the daily energy budget in Section 2.1. The peak energy requirement was arbitrarily defined as the three days of highest demand, and calculated for a brood of four nestlings (Figure 2.7) hatching over different periods. Asynchrony is expressed in days and represents the time between the first and the last hatched chicks, all others are assumed to have hatched at equal intervals during this period. Figure 2.7 shows the reduction in peak energy demand when compared to synchronous broods of four young.

Peak energy demand was calculated as 8.7 Watts brood⁻¹ from the model (Figure 2.7), and energy saving acquired by reducing the peak energy demand with increasing asynchrony, was calculated as the difference between peak energy demand for a

14.

synchronous brood of four (i.e. Watts brood⁻¹) and the peak

energy demand for broods with varying degrees of asynchrony. The results are presented in Figure 2.8. The model predicts by the level compared et demand of Gardiner, This day is italtan by pronounced for these is from these is for these is

andergy had andergy had anteation builden differ anteing rola discing rola anteing rola

es edy mort dy malantes betwiening

Figure 2.7

Three day peak energy demand as a function of hatching asynchrony for a brood of four theoretical 25g passerine nestlings.

Figure 7.7

Thread day peak an

for a Leood of fo

Energy saving from 'peak load reduction' in a brood of four theoretical 25g passerine nestlings, as a function of hatching asynchrony.

that increasing asynchrony should produce an exponential increase in energy savings.

The potential benefits of an asynchronous hatching strategy, in terms of energy saved at peak load, increases with brood-size (Figure 2.9). This shows that the peak energy saving calculated from the model DEB for brood-sizes 2 - 4, as a function of asynchrony. The values (maximum of approximately 9.5 x 10^{-2} Watts brood⁻¹ in brood-size four) are small. This represents a 1.1% reduction in DME, or a 1.7% reduction in GEI at thermoneutrality. This compares with a 0.1% reduction in DME and a 2.2% reduction in GEI respectively for broods of four House Martins (Bryant & Gardiner, 1979) calculated over the seven days of peak energy demand. The shape of the DME curve as a function of age is very important when considering energy saving from PLR. The more pronounced the peak the greater the reduction in energy demand. By measuring energy intake of broods of varying asynchrony the model of exponential increase in energy savings with increasing asynchrony may be tested.

2.3 REDUCING SIBLING RIVALRY

2.3.1 Theory

Hamilton (1964) suggested advantages to the brood and adults of reducing energy wastage during sibling-sibling competition, and suggested that even in a season with average food resources an increased survival of young would be aided by economic use of energy. The link between asynchrony and reduced sibling rivalry was discussed by Parker (1974), who stated that by imposing asynchronous hatching on the brood, the

15.

that increas increase in al , whereas a With produ-6 saving onlos a Punction o 9.5 x 207 W A STREEDIGET Denostoni 76 Lis a boa 3MG Boulze Martin HEPES SHOWER . Fanceign 10 元日 a meri gnivas reduction in The strates and MEDUCTICS 1.5.5 stints has , sel Tiregeoo

Figure 2.9

Energy savings for the three days of peak energy demand in brood sizes $(\triangle)4$, $(\square)3$, and $(\bigcirc)2$ respectively for a theoretical 25g passerine. The regression equations are;

treduced sibility atated that in

food resource

Brood size 4:y = 0.0343x - 0.000462Brood size 3:y = 0.0217x - 0.000381Brood size 2:y = 0.0115x - 0.000204

Assumes linearity between days 0-3, see Figure 2.8

disparity in size of young would result in marked differences in the "Resource Holding Power" of competing siblings; and thus should reduce the probability of conflict. There is, however, no evidence to suggest that "Resource Holding Power" is a fixed parameter. It is likely that RHP changes in an individual in response to a number of factors. For example, hunger level, position in the nest, the behaviour of siblings and of parents, nestling size, mass, age, etc. It is therefore more realistic to view RHP as a plastic parameter. The 'Relative Resource Holding Power' (RRHP) of an individual with respect to the above factors, is a way of interpreting the probablistic approach to sibling conflict suggested by Parker, and is used instead of RHP to indicate the plasticity of the parameter.

2.3.2 Assumptions of the RSR Model

A model of reduced sibling rivalry (RSR) was proposed based on the following assumptions:-

(i) The relative resource holding power of individuals is directly proportional to the size difference between those individuals (Parker, 1974);

(ii) Mass differences (see below) are a suitable measure of size difference between individuals due to correlation with body size (and hence physical 'dominance') and age (and hence greater locomotory development) (Bryant, 1978a);

cantras and cantras aparta (a 14, (0 10) 16.

Brood size vi Brood size 21 (iii) Disparity of size between nestlings should be optimised and actively maintained either throughout growth, or long enough to allow the establishment of a dominance hierarchy which then remains fixed even if size differences between individuals are not maintained; disparing in the "Be thus the "Be thus then however, n is a fixed in this dual is a fixed in a fi

based on the (ii Th (ii Th) shadly block body size (ch greater looos (iv) The cost of sibling competition is energetically expensive;

(v) Energy saved from RSR is reinvested into some component of fitness. For example, increased probability of brood survival (see below) or reduced reproductive cost to the parent.

2.3.3 Index of Hatching Asynchrony

If hatching asynchrony produces size differences between individuals (from the model, mass differences) these differences can be used as a more accurate measure of the importance of asynchrony in regulating competitive energy expenditure (CEE). The difference in body mass (DBM) between individuals (usually the first and last hatched) is a misleading index of asynchrony, and fails to reflect the importance of growth on the size hierarchy. For example, a DBM of 1.0g between two nestlings of average mass of 2.0g, is clearly more important than a similar DBM between nestlings of mean mass 20.0g, since it represents 50% of body mass in the small nestlings but only 5% in the larger nestlings. This discrepancy was overcome by using Relative Difference in Body Mass (RDBM) as an index of asynchrony and calculated as:-

RDBM = Mass of heaviest nestling-Mass of lightest nestling eqn.2.13 (Brood mass/Brood size)

Since hatching masses of nestlings, on which the model was to

(111) Dis and actively to allow the remains fixed not maintaine be tested were difficult to obtain without frequent disturbance to the birds (due to closed nest structure), the Relative Difference in Hatching Mass (RDHM) was used. This is the size difference between individuals after the hatch of the last chick,

CN21 10021009086 dompanent o 18 -1model (30) Jastice parts E.t.5 Setwaan ING aifferences importance of 1333) BYSHE CURVELEY THE a sprannent. sin sols our neutlings of ilels a nadi Sheepqeet 71 B% in the las LIBERT BELLEVIL

Since hatchie

arynchrony #

and hence that mainly attributable to hatching asynchrony. This was calculated by plotting RDBM for several ages for each brood against mean nestling mass and extrapolating a line through these points to a nestling mass of 2.0g, which is a close estimate of mean hatching mass based on the House Martin, in which asynchrony was to be investigated (Bryant, 1975b). For a discussion of how RDBM changes with growth see Section 4.11.2.

2.3.4 Predicted Changes in Competitive Energy Expenditure

Figure 2.10 shows how competitive energy expenditure (CEE) and energy savings may change with asynchrony (RDHM). As RDHM increases then the probability of the smallest sibling winning a contest decreases; or RRHP of the smallest sibling decreases. It is envisaged that at some maximum RDHM, the RRHP of the largest sibling will be maximal, i.e. it wins all contests. If a sibling is not receiving any feeds as a result of reducing it's own competitive costs (Hamilton, 1964), and 'waiting it's turn', then it will be eventually forced to expend increasing amounts of energy in competition in order to receive some energy returns (Part B, Figure 2.10). Part A, Figure 2.10, may therefore be viewed as nestlings maximising returns, by reducing competition, whilst Part B may be viewed as ensuring a net energy gain but at a much reduced level. The optimal asynchrony corresponds to the point at which net

18.

be texted war to the birds Difference in difference be

energy gains are maximised by the greatest reduction in CEE.

This was tested on the House Martin (Section 4.10).

And bence v This was ca brood again through the close estim in which as for a discut.11.2.

4.8.2

11

(CEE) and an RDNN increas winning a co decreases. of the large of reducing 'waiting it' waiting it' receive some figure 2.10. The optimal a

X.

Figure 2.10

Model of reduced sibling rivalry (see text).

X = optimal asynchrony

2.3.5 Predicted Changes in Peak Body Mass of Nestlings

Assumption (v) of the RSR model requires demonstration of some component of fitness that may be expected to follow the form of the energy saving curve (Figure 2.11). House Martins show a particularly flexible growth response (0'Connor, 1977) since food supply to nestlings is often unpredictable (Bryant, 1978b). They have developed a strategy (Resource Storage Strategy; 0'Connor, 1978a) of laying down substantial fat deposits to buffer against periods of food shortage.

One way in which energy saved from reduced siblingcompetition might be invested would be as fat deposits, or an acceleration of the growth rate, which would be reflected in peak nestling mass (Section 4.11.1). The proportion of nestling activity that can be assumed to be sibling-sibling competition is not known. The energy saved from reducing total activity cost from between 0% and 100% was calculated. The energy equivalent mass of body tissue was then calculated assuming either it was 100% Fat, 100% Protein or 75% Fat:25% Protein respectively and assuming a biosynthetic efficiency of 50% (Wijnandts, 1984) (Figure 2.11). This mass was then expressed as the percentage increase above the 25g peak mass of the theoretical passerine. Theoretically a maximum increase in body mass of between 11% and 19% might

Model of redap

19.

be achieved for each nestling if such savings were reallocated to growth. This was investigated in the House Martin (see Section 4.11.1). 2.3.

demonstrated explicited (Figure 2.1 growth rea nestlings developed 19782 of 10 periods of

competizios ancalmenta peak nesti nestiing ad activity ad activity

Figure 2.11

Percentage increase in peak body mass obtained by converting energy saving from reduced sibling-sibling competition, into growth as

be dohieved

Section 4.13

(O) 100% Protein, (\Box) 75% fat:25% protein, (Δ) 100% fat respectively (see text for explanation).

2.4 THE COST OF MAINTAINING BROOD HOMEOTHERMY

2.4.1 Nestling Cooling Rates

(a) The rate of heat loss (H) of adult birds is usually approximated satisfactorily by the following linear equation (Scholander et al., 1950);

 $H = h(T_b - T_a)$

where h is the heat transfer coefficient and usually expressed as calories per gram-hour-degree Celsius. h is also sometimes called the 'thermal conductance', but actually includes radiative and convective heat losses as well as conductive ones (Calder & King, 1974). Herreid and Kessel (1967) determined heat transfer coefficients from the cooling curves of thirteen species of bird carcasses, with and without plumage and produced the following two equations (Figure 2.12a);

> h = $4.57 \text{ w}^{-0.52}$ with feathers eqn. 2.14 h = $7.24 \text{ w}^{-0.44}$ without feathers eqn. 2.15

(b) Predicted nestling heat transfer coefficient (h_)

Smaller nestlings might be expected to have heat transfer coefficients nearer the second equation and older nestlings towards the first equation once feather growth occurs. This change between the two adult curves is illustrated by the pecked line in Figure 2.12b, and may be called the heat transfer coefficient of a nestling (h_c) or brood (h_b) if the

20.

C C 1 1000 From

LI WINK

brood behaves as a single mass (see Section 2.41(c)).

Figure 2.12

- (a) Heat transfer coefficients for adult birds with (h_{sf}) and without feathers (h_s) (Herreid & Kessel, 1967).
- (b) Heat transfer coefficient suggested for nestlings, h (see text).
- (c) The rate of heat loss for a poikilothermic brood in the laboratory (H_p) , in a nest in the wild (H_n) and a partially homeothermic brood in a nest in the wild (H_f) . The hatched area represents the cost of nestling thermoregulation.

an coloridau an coloridau colled the ' radiative an anos (Colden determined h produced

ZHT P-S

D. H. S.

1.11.2

stramikorigqa

(Scholandal)

1 1961

the paint of the state of the second state of

-0

(c) The 'field' heat transfer coefficient (h_f) and the 'field rate of heat loss' (H_f)

The ability of nestlings to raise their own metabolism at temperatures below their lower critical temperature varies as a function of age (Dawson et al., 1976; Dunn, 1976; Dyer, 1968; Gotie & Kroll, 1973) and causes under-estimates of true heat transfer coefficients (Ricklefs, 1974).

The apparent heat transfer coefficient of nestlings (not corrected for metabolism, Bartholomew & Tucker, 1963), may be used as an index of nestling thermoregulatory capacity under field conditions. This is referred to below as the field heat transfer coefficient, hf. It is a combination of the influence of nest insulation (see below, Figure 2.12c) and a nestling's ability to thermoregulate (Figures 2.12a and b). A predicted reduction in hf for nestlings is further modified by brood size. Dunn (1976c,1979) demonstrated that the age of effective homeothermy decreased with increasing brood-size in the Tree Swallow Iridoprocne bicolor, and the House Wren Troglodytes anedon, although she was unable to calculate hf from her data, since body temperature was expressed as the percentage of adult body temperature (% adult thermoregulation) and Ta was variable. Mertens (1969) demonstrated that the earlier onset of homeothermy in large broods of Great Tits Parus major was a result of the reduced surface area/mass ratio

21.

of the brood and was described by the following equation: $m = 0.0732 w^{0.672}$ eqn. 2.16

where m = brood metabolic rate (Watts) and w is brood mass in

tura verie Tura verie Dunn, 1976 Under-setie 19743

(bot corres Date Da usad Linder fiwili field heat the influence Wanilizana W A predicted by brubd als 64723587398 30 in the Tree Troylodytes from her det percentage o and To was w sarin dell'une Farus major

of the bread

ATOLA E PION

grams. This led him to later model heat loss in Great Tit broods and calculate the 'heat transfer coefficient' h_n (including convective and radiative heat loss) for broods in a nest box as:

$$n_n = 0.0719 w_0^{-0.613}$$
 eqn. 2.17

where h_n is the heat transfer coefficient of a brood within the nest (see below) and w_b is brood mass in grams (Mertens, 1972). This demonstrates the importance of measuring heat loss under field conditions, since nest structure modifies the "ambient" environment and will affect h_f . Nest structure has been shown to be important in reducing heat loss in incubating birds (Skowron & Kern, 1980) and birds roosting in the nest compared with conspecifics roosting nearby (Walsberg & King, 1978). A number of studies have shown that the heat transfer coefficients of nests (2.78-12.35 $Vm^{-2} \circ C^{-1}$) indicate that they are generally good insulators (Whitton & Berger, 1977; Walsberg & King, 1978; Skowron & Kern, 1980).

For a given set of ambient conditions (e.g. $T_b - T_a =$ constant) the rate of heat loss (H) is proportional to the heat transfer coefficient (h) (Calder & King, 1974), i.e.

 $H = h(T_b - T_a)$ eqn. 2.18

When T_b-T_a is constant the field rate of heat loss (H_f) may be substituted for the field heat transfer coefficient (h_f) . Figure 2.12c shows the rate of heat loss of a brood of

22.

nestlings within its nest measured within the laboratory (H_n) , compared with that of a brood not enclosed within a nest (H_b)

the latter being proportional to the brood heat transfer

aniluínal)

where an all the neer (a 1972). The under field "emblent" a birds (Skow birds (Skow 1976). A m gonffffelant s King, 199

danstant) ch

i When There i besurfraced Figure 2.170 coefficient (h_b) (Section 2.4.1b, Figure 2.12b). H_f is equal to H_n (for a given brood mass) in unfeathered nestlings, but declines with age, as nestlings contribute more and more to their thermoregulatory requirements (Figure 2.12c), until $H_f = 0$, when nestlings are fully homeothermic. This implies that the field heat transfer coefficient is also 0, but the true heat transfer coefficient is not.

The nest structure of the Dipper usually consists of a large moss ball with an inner nest cup of grass lined with dry leaves (see plates) and can be expected to have a marked effect on h_{f} . Mertens (1977b) measured the heat transfer coefficient of the nest material (primarily moss) in Great Tits' nests in relation to the relative proportions of water and air in the nest material, and found that the conductance increased by up to 13.6% when the volume water fraction of the nest (ϕ_w) was doubled. A number of points emerge from this discussion of heat loss. The first is that laboratory measurements of heat transfer coefficients are inadequate in trying to produce generalised predictive models of heat loss in field conditions. Detailed knowledge of a particular species and its nest environment can lead to workable (though very complex) predictive models (Mertens, 1972, 1977a, b) applicable to that particular species and under specified conditions. Laboratory measurements of heat loss for nestlings, within nests in the

presence of siblings, and under realistic 'ambient' temperature conditions may improve estimates of h_f and H_f . Nestlings may behave differently under laboratory conditions with respect

23.

nestlings up compared with the latter be coufficien equal to a but decise fo their t He 4 0; wh the 1 0; wh the the f

a large mo SEV. LEAVES DC TDW120 deltilleos PE GL ATEMA an the nerby up to 13 MAS doubled hant loss, SCALLER OG general tand Dagailed Kn surviconment predictive a particular 行口出的新空门自由的时 to heat loss (see Section 4.4.2), and nests often dry out. For example, Dipper nest domes are often moist in the field whereas the use of old nests in metabolism studies (Section 4.4) means that the physical properties of the nest structure differ from field conditions.

(d) Factors affecting h_f and H_f

Whilst it is often difficult to model heat loss of growing nestlings in the field, a number of factors may be identified which will be expected to affect H_f of individual nestlings. They are (1) nestling age, (2) brood mass, (3) nestling mass (since nestlings may not huddle all of the time), (4) brood-size; important with respect to its effect on brood mass but also since it will affect (5) position within the brood, nestlings in the middle of a huddle will expose less of their surface area than nestlings at the edge of a huddle, (6) T_b, nestling body temperature, which will vary with age (Gotie & Kroll, 1977; Mertens, 1977), (7) T_a, ambient temperature outside nest, (8) T_n , temperature within nest (see Section 3.3.3) this will be dependent on T_b and T_a as well as parental heat input to the brood and nest and also (9) nest insulation, which will affect the equilibrium nest temperature, and hence the temperature gradient to which the nestlings are exposed.

The heat transfer coefficient (h_f) can be calculated from the cooling rates of nestlings measured under

24.

calculated field condibased on th

field conditions and compared with theoretical predictions

based on the simple equations introduced earlier.

To heat lo for exampl whereas the means that from field (d)

growing ne Supprise 1 legal frien (1) hogells (4) ; (am2: un bachto no boord affe or thail to (B) T_b, net (Cotta & Kr renperature (204 Source can an Liew 122 TOBR (\$). Compervature. mastlings as The calculation of h_f from field data allows one to examine the ontogeny of thermoregulation of wild nestlings and calculate the costs of brooding the young by the parent bird.

2.4.2 Brooding costs

A model of brooding costs for female Dippers (single sex brooders) is presented below and is modified from Kendlegh's (1963) model of incubation costs. The equation allows for the contribution of the brood to overall brood thermoregulatory costs by measuring field cooling rate which is expected to decrease as nestlings get older, due to their own partial homeothermy (Chapter 5).

(a) An equation for calculating brooding cost $B_c = w_b \times S \times r \times (T_b - T_n) \times i \times (1 - ca)/1000 \times K$ eqn. 2.19 where B_c = Brooding costs (Watts)

- wb = Mass of brood (g)
 S = Specific heat of nestlings (cal.g⁻¹.°C⁻¹)
- r = Cooling rate (°C°C⁻¹.h⁻¹)

 T_b = Nestling body temperature (°C)

 T_n = Nest air temperature (°C)

i = Interval (h)

c = Proportion of brood surface covered by brooding bird assumed constant at 20% though it will actually decrease somewhat as nestlings grow

field condi-

a = Proportion of time bird spends brooding

K = A constant, transforming Kcals.day⁻¹ to Watts.

onžasto oy Lolet bar Lolet

 All of these variables were measured with the exception of S, the specific heat of nestlings. This is dealt with below. Brood costs were calculated for the Dipper and are discussed in Section 4.4.7.

(b) The specific heat of nestling birds

The specific heat of nestlings was calculated for the Dipper assuming a specific heat of water of 1.0, and a specific heat of dry animal tissue of 0.4 cal.g⁻¹ °C (Klieber, 1961). The percentage water content of Dipper nestlings with age was measured (see Section 4.2.1) and S calculated as; $\frac{(Percent water x Wet mass) + (Percent dry mass x Wet mass x 0.4)}{Wet mass} eqn. 2.20$ and expressed as cal.g⁻¹.°C⁻¹ (see Section 4.4.6).

2.4.3 Models of Parental Inattentiveness

(a) The likely failure of the "net energy gain" model to explain observed inattentiveness in incubating birds

During the early stage of nestling rearing, female Dippers brood the nestlings whilst males provide food for the growing young. The female leaves for short periods in order to feed, even on the day of hatch (pers.obs.) even though males may feed the female in the nest during the first few days of the nestling rearing period (pers.obs., and D. M. Bryant, pers.comm.). Females therefore must make decisions similar to those made by incubating birds, between keeping the brood warm

26.

and self feeding (Jones, 1985). Data on changing attentiveness by brooding birds are scarce though a pattern of progressive reduction in brooding as young become homeothermic has been All of the of S, the below. Br discussed (b) The s

the Dipper apaolfic h apaolfic h age was no (Freent wa and express

Dippere bra growing you to feed, av nay feed th the neetlin pers.com.l demonstrated in the European Starling (Sturnus vulgaris, Clark, 1984, Red-backed Shrike, Diehl & Myreha, 1973; House Sparrow, Seel, 1966; Willow Warbler, Tiainen, 1983; Pied Flycatcher, Winkel & Berndt, 1972), and reductions in brooding with increasing nestling age have been measured in some species (Johnson & Best, 1982; Wittenberger, 1982). The approximate causes of reduced brooding with increased nestling age have not been identified, although Clark (1984) has shown that decisions are based upon thermoregulatory considerations rather than brood feeding requirements per se. Jones (1985) constructed a model of optimal inattentiveness for incubating female swallows (Hirundo rustica) based upon maximization of net energy gain through foraging, once the cost of reheating the cooled clutch had been taken into account. He found that the model inattentiveness periods of Swallows were shorter than those predicted by the optimality model, and suggested that an additional constraint of reduced embryonic development or increased mortality below a temperature threshold may have forced females to return earlier to reheat the clutch, even though net energy gains would be increased by remaining away. This would also explain why birds do not have a single inattentive period each day (the theoretical optimal strategy considering the decelerating shape of egg cooling curves) which was not explained by the net foraging

27.

and saif fer

reduction is

gain model.

(b) The 'minimal temperature' model

A model of temperature threshold restrictions on

Genonserat CRAWE, 100 House Span PSed T190a brooding w Towns allon The approx nestling a has shown. gonsideret Jones (108) for incubat 12 TASEMINAN 194 30 TROD Ha found th ware shores suggested t Cavel Spanne a bindssid the clutch, by remainin have a stag optimal str gooling our Jahom gless

parental inattentiveness is presented in Figure 2.13. Line A represents the cooling curve of a nestling with a high cooling rate. The horizontal temperature threshold is crossed at time t_a , whilst in curve B the temperature threshold is crossed at time t_b , where $t_a < t_b$. Factors likely to cause cooling rates to approach curve A are young age, small brood-size and low ambient temperatures; whilst curve B would tend to occur with higher ambient temperatures, bigger brood-sizes and older nestlings. The temperature threshold line may represent the line below which growth is slowed significantly, thereby extending the developmental period and exposing the young to increased risks of predation (Koskimies, 1948). Conversely it may represent the temperature below which irreversible hypothermia occurs leading to death of the nestlings.

Although the temperature threshold is not known, a number of predictions may be made regarding cooling rates measured in the field, if such a model is operating.

(i) Minimal nestling body temperature should be independent of length of inattentive period;

(ii) The variation in minimal body temperature should
 be small, since parents should stay away as long as possible
 in order to maximise net energy gain (Jones, 1985);

(iii) Parental inattentiveness should be positively correlated with nestling age, brood-size and with ambient

28.

temperature. This model is discussed with respect to the Dipper in Section 4.4.5.

parental i Line A rep high cooli high cooli ta orocced ta orocced inicity to higher sealt shreahold thereohold shreahold inicity co temperature temperature

number of a measured in (1) 7 independent (11) 7 be mmail, a in order to (111) 9

Figure 2.13

Model of maximum inattentive periods (t_a, t_b) for broods with high cooling rates (A) and low cooling rates (B). t_{min} is the temperature threshold below which nestlings are not allowed to cool (see text).

The 'maximal brooding time' model (c)

An alternative model may also explain why parent birds return to their young earlier than predicted from the net energy gain consideration discussed previously. This model is similar to that of Jones (1985) but incorporates an additional cost which operates to reduce the time spent away by the female. It is based on the fact that brooding costs are composed of two separate costs, one borne directly by the female and the second, the most costly, borne indirectly. Figure 2.14a shows the cooling curve of a poikilothermic nestling (or brood). The horizontal line represents the normal nestling body temperature. The hatched area between the two curves is thus directly proportional to the cost of reheating the nestling when the parent returns. As nestlings get older and begin to thermoregulate they resist cooling by metabolic heat production (Figure 2.14b) and hence their cooling curves are shallower. The cost of brooding to the female is thus progressively reduced (the area between curves and horizontal line, Figure 2.14c), as nestlings get older, until they become fully homeothermic at which time the full cost of maintaining body temperature is borne by the nestling.

Whilst it costs the same amount of heat energy to maintain a brood at a given body temperature (whether this heat is produced by the brood or the brooding adult) there is an additional cost when this is produced by the brood.

LL.S. prinzi?? high cooling THE ALLOWER'S 29.

Figure 2.15a shows the theoretical costs involved in delivering the energy for thermoregulation. A parent will

(c) Change in cooling curves with age (see text).

dowellob at

bear a foraging cost (searching for and catching prey) and a travel cost (to and from the nest) during brooding. In order to collect and deliver a given amount of food energy to the brood requires making several trips to and from the nest. It is less costly for the female to brood the young herself than incur the additional travel costs necessary for provision of the brood in order that they may thermoregulate themselves.

30.

Figure 2.15b shows the combined cost of foraging/ travelling and maintaining brood temperature at near adult body temperature, assuming in this case that nestlings and parents contribute equally to brood thermoregulation costs (e.g. Figure 2.15(b)). It would therefore benefit the parent to reduce the amount of time that the young try to thermoregulate to a minimum or equally maximize the time spent brooding. There is another consideration which will force the parent to adjust its brooding level, and that is the energy demand of the growing brood. Most altricial species share in the feeding of their young, at least in the later part of the nestling period, and it seems unlikely that in the Dipper a single parent could adequately provide for the brood.

The 'maximal brooding model' predicts that (i) the length of inattentive period should be affected by the same factors as for the minimal T_b model, but without any constraint on the minimal T_b experienced by nestlings, (ii) minimal T_b should therefore be negatively correlated

mania

(c) Gamer in

with the length of the inattentive period. The predictions of this model and the 'minimal temperature model' are compared with data from the field measurements of nestling cooling rate (Section 4.4.3) and discussed in Chapter 5.4^{2}
bear a for a travel o arder to o the brood it is less than incur of the broo

travelling body temper parents don fo.c. figur to reduce to tregulate to the parent the parent the feeding aingle pare

(1) The Long the same far constraint of

Figure 2.15

- (a) Parental foraging costs to supply thermoregulatory energy requirement of the brood (t_c brood) and when brooding the young only (t_c parent).
- (b) The cost of parental (brooding) component of nestling thermoregulation (C_C parent) and the nestling (self-heat) component of nestling thermoregulation (C_C brood); based on equal heat input by parent and brood (Figure 2.14b).

CHAPTER THREE

(5)

Figure 2.15

requirence young and

The Cost

(a) Parental

(d)

MATERIALS AND METHODS

PART ONE: THE NESTLING ENERGY BUDGET

3.1 GROWTH

3.1.1 Body Measurements of nestling House Martins and Dippers

Growth data were collected daily or every two days for the Dipper and House Martin nestlings. Body measurements for the House Martin were as follows: wing-length (maximum chord, mm), mass (to the nearest 0.1g) and tarsus (to the nearest 0.1mm) following Svensson (1975). Growth curves for individual nestlings were constructed to compare peak masses (Section 4.11.1). It was not possible to fit growth curves to individual nestling growth data as the daily change in body mass was often erratic (Section 4.11.2). Growth curves for the House Martin are therefore presented as the original data. All measurements on the House Martin were made between 1400-1700 hours.

Measurements on the Dipper were confined where possible to the morning hours and the following measurements were recorded: wing-length, mass, tarsus (as above), bodylength; measured from the vent to tip of bill with neck gently extended to full stretch, bill-length; measured from the posterior edge of the fleshy gape to the tip of the bill, and thus differs from the typical measure of bill-length (Svensson, 1975); and gape-width; measured as the maximum width of the mouth from the edges of the fleshy gape. Mass was measured

31.

to the nearest 0.1 grams, wing-length and body-length to the nearest millimetre and tarsus, bill-length and gape width to the nearest 0.1 millimetre. Growth curves were fitted through R.1 .SHOWL

for the Di for the Ho the Ho there, and nearest 0. individual for Individual for the Hou data. All

possible dene beard length extended to thus differ 19751 and couth from these data (Section 4.1) using Ricklefs (1967a) graphical method, using the logistic model which fitted the data better than the Gompertz or von Berttalanffy curves. The Richards curve was not tested on these data (Richard, 1959). Dipper nestlings were aged to the nearest 0.5 day and from this sample a regression of wing-length on age (Section 4.1.1) was calculated for ageing young of unknown age.

3.1.2 Sexing Dipper Nestlings

Dipper nestlings were ringed and colour marked so that those recaptured postfledging might be sexed. Adult Dippers are sexually size-dimorphic and sexes may be separated on the basis of wing length and body mass (Anderson & Wester, 1971; Galbraith & Broadley, 1980). Since Dipper nestlings may disperse to other river systems (S. Newton pers.comm.) some recapture data was collected outwith the study area, and some adults recaptured in the study area were from nests on different river systems and therefore lacked the full set of body measurements as nestlings (Section 4.1.4). Further nestlings were sexed directly during carcass analysis (Section 4.2). Discriminant analysis was performed on nestling growth data for which the sex of nestlings had been subsequently established by one of the above methods (Section 4.1.4). Discriminant analysis is a method of combining several growth measurements to produce a single coefficient (the unstandardized

32.

to the near

turnamn ads

canonical function coefficient) that will allow the discrimination

of two populations (Sokal & Rohlf, 1969). This has been used

with some success on adult birds (Anderson, 1975;

these data neing the Gemperts o tested on aged ic th of wing-le

8.1.8

that those Bippers are phothe basis and the basis any dispers any dispers some recapt any dispers forme houlds different f body measure growth data growth data astabilehed bisertinican

Canonicosi

DED THO DED

With scan wu

Dunnet & Anderson, 1961; Green, 1982) but has yet to be applied to nestlings. Using the above coefficient 'unknown' nestlings were retrospectively sexed, and the growth curves for males and females are presented in Section 4.1.5.

3.1.3 The energetics of Dipper nestling growth

A sample of Dipper nestlings at various ages was taken under licence from the Nature Conservancy Council and sacrificed for carcass analysis. Eighteen birds were taken and these were supplemented by six birds which had died naturally (five deserted, one predated) making a total of twenty-four nestlings. Nestlings were weighed, measured and then killed by chloroform inhalation. Carcasses were frozen and later thawed for dissection into components. Once thawed nestlings were reweighed and dissected into: head, neck, gizzard and oesophagus, wings, legs, skin and body feathers, body shell, pectoral muscle, liver, kidney, heart, lung, intestine (empty), gut contents, primaries and secondaries, and tail feathers. Carcasses were then freeze dried for ten days, weighed to the nearest 0.0001g and lipids extracted for five days. The solvent was five parts diethyl ether: one part chloroform and refluxed in a soxhiet apparatus. The carcasses were then freeze dried for a further week and lipid free mass (Lean Dry Mass) measured. Total carcass analysis yielded the following data; Wet Mass (WM), Dry Mass (DM), percentage water or Water Content (WC), Lean Dry Mass (LDM), Lipid Mass (LM), Lipid Index (LM/LDM), Water Index (WC/LDM), Ash Mass (AM), Ash-free Lean Dry Mass (ALDM), Wet Energy Density (WED) and

33.

Dunnan 4 applied c nearlings for males

taken und saurtfloor these were ash syit) sunlisses. by dillored that Severiz Children Provides omnophic is pactors1 d gut conten Daixiassion, 10 TRATERS ole Trievine 1 Dexulter gup steers Mago) moan data: Net

Water Conte

Lapid Inda

Ash-frue La

Dry Energy Density, DED. The results are discussed in Section 4.2. A sample of carcasses was then reduced to ash in a muffle furnace at 500°C for twenty-four hours and ash free lean dry mass derived by difference. Energy density was then calculated by multiplying lipid mass and ash free lean dry mass, by the energy equivalents of lipid and protein respectively (see Section 4.2.6).

3.2 METABOLISM

3.2.1 The respirometry equipment

The respirometry equipment used is shown in Figure 3.1. It consisted of a metabolism chamber enclosed within a controlled temperature incubator, which could either be lit or left in the dark for overnight runs. Carbon dioxide was removed from incurrent air using carbasorb. Air leaving the respirometry chamber was dried with drierite and filtered before entering first the MSA Infrared gas analyser for monitoring carbon dioxide production, and then through a Beckman OM2 polarographic oxygen analyser. The analysers and chart output were zeroed using 100% nitrogen and spanned at 1% carbon dioxide and 21% oxygen respectively. The mean flow rate during experimental runs (Section 3.2.2) was 56 litres h^{-1} . Calibration was intermittently checked using 0.5% carbon dioxide.

3.2.2 Resting Metabolism of Dipper nestlings

34.

The respirometer was used in three ways, firstly to monitor metabolic rate of nestlings during short-term experiments on the cost of activity (Section 3.4). Secondly, to

atonE (ma 12 05 2200 Tean dry Galculate . 21.250 1202 ATTAN 15.18 Tigura D. nidt.lw 8 Til юď aldina with 10/0786 101100012/00# 850 Tieds bas 11 :20 OG1'DI NOT 9785 33 saufili 80.0 00180 51216

Diagram of the respirometry 'train' used for nestling metabolism measurements

way valves/stopcocks

agent

Air flow

Carbasorb; removes 002

measure the cost of huddling (Section 3.3.7) and, finally, it was used to measure overnight resting metabolism (overnight runs) in Dipper nestlings. The method for the latter is dealt with here.

An entire abandoned Dipper nest was placed in a large metabolism chamber. Homeothermic Dipper nestlings aged ≥ 12 days were brought to the laboratory just before dusk and placed in the nest within the chamber, having noted the mass of each nestling and the barometric pressure. For each of three broodsizes (1, 2 and 3) three replicates were performed at 5°C, 15°C and 25°C (see Section 4.3). Each overnight run was performed at just one temperature (± 0.5°C) and was divided into two hour sample periods interspersed with sampling of ambient air to check for zero and span drift. The first two hour period was not included in the calculation of mean night-time resting metabolism since nestlings were settling down during this period. Metabolism was higher during this period initially and then levelled off. Nestlings were returned to their own nest just after dawn the next morning having been reweighed. All results were then corrected to standard temperature and pressure and are discussed in Section 4.3.

29

In the metabolism measurements on single Zebra Finch and House Martin chicks a small (500ml) chamber was always used to replace the large (3500ml approximately) chamber used with the Dipper broods. All overnight runs were carried out in the dark.

35.

3.3 THERMOREGULATION

3.3.1 The microprocessor system

Software is given in Appendix II, discussion here is confined to the function, use and limitations of the major components of the system. Figure 3.2 shows a stylized drawing of the components and where they would be situated in the field (see also Plate 3.1).

The main microprocessor (a) was housed in a wooden box about the size of a large car battery. This contained the two nickel-cadmium rechargeable batteries which provided power for ten hours continuous data collection. It also contained the microprocessor board (Eurocube), A- to D- converter, additional battery backed RAM and microphone interface. Microphone sensitivity was set from the main box by adjusting a knob until an L.E.D. went out, this meant that background noise, such as waterflow and nearby traffic would not trigger the microphone and give false readings. "Replay"/"record" mode was also controlled from the main box as was "Run Program" and "Recharge" modes. A metre long cable joined the main microprocessor to a separate waterproofed box which contained the thermistor interface (b) to which seven miniature bead thermistors (c) were connected on 30 centimetre leads. The thermistors were insulated and waterproofed using a silicon rubber compound so as to retain their flexibility. They were first calibrated in air against a mercury thermometer (± 0.5°C)

2 101221日後期 EF WER 'TE mi (unite HIV FINE 1700 02164 # 11 days placed in aduniane 30 altree broo 11-10 P8 3M END WAR ON th bablyin to unlique The float : of mean rig wettling de this period paturned to having been er bushasta - S. . A.

H samol has

with the Di

the dark.

36.

and then more accurately against a quartz digital thermometer. The microprocessor was programmed to read all thermistors

A.S THE 2.4 11000 11 devolution in animera 2 out all :

box about two niaki Ecc. can b the plopo nnoiribha Microphon nu dont a paires, and prole off. onis saw "Rocharge. processor tharm.sto. There is a second tharmistor rubher con Lap realt

and then a

The minroy

Figure 3.2

Diagram of microprocessor components at a Dipper nest (see also plate31)

(a)	The microprocessor
(b)	Thermistor interface
(c)	Thermistor probes (1-7)
(d)	Condenser microphone

0

111

(e) (f) (g)

Remote switch box for logging parental visits Output to VDU for laboratory work Output to DEC VAX mainframe computer for data transfer

Plate 3.1:

L.E. STURE

Disgram of m

(0)

Field portable microprocessor system used for measuring nestling cooling rates and begging behaviour.

- A = Main microprocessor box
- B = Thermistor interface with attached thermistors
- C = Switch box to record parental arrival and departure, and to check microphone (Red LED) and micros memory (Green (LED)
- D = Microphone

- every time a parent arrived or departed (see below); (a)
- every time the nestlings begged, and (b)
- (c) every sixteen seconds during periods when the chicks were not being brooded and until the smallest nestling

regained body temperature prior to parental departure. Parental arrival and departure was observed and logged into the computer memory by throwing one of two switches on the switch box (e). This was connected to the microprocessor by a twenty metre cable. On/Off positions of each switch were converted to 'Male In'/'Male Out' and 'Female In'/'Female Out' data records, by the microprocessor and logged against the internal clock. The clock was set to zero automatically when the 'record' programme was activated and data collection commenced. All data collected was logged against time, providing accurate time budgeting at nests. Switch box (e) also had two L.E.D's - Red and Green. The red was programmed to come on each time chicks begged and acted as a check that the microphone (d) was working. The microphone was connected to box (a) by a thin three metre lead and acted as a simple sound switch. On/Off converted to 'BEG'/'NO BEG' signals for logging as previously. The green L.E.D. was programmed to come on when the memory of the microprocessor was full.

The main microprocessor (a) had two output lines. Line (f) could be connected to a V.D.U. for use in laboratory measurements and during calibration and also to a B.B.C.

37.

computer for development or modification of software. The software was stored in a PROM with 'Turnkey' facility which

meant that the programme started when the system was

crave (m) EZAVA (C) THE AVE INC BTEW. Inger. D IBTROUGH sugnoo enil word domlaws H THRDSY SH DOTTING TO PATH FROM La Lagran IX biddiag1 Bill obstantion. 17 BOBTODON E - E GIEN te mestr ripnos WILLS BRIDE to nint a wi BMIDIE donve -VIdBblyman the nearby a Ucs (3) Brits

'powered up' without any need to prime the system from a keyboard with a 'RUN' command, before taking it into the field. Output line (g) provided a direct link with a DEC VAX mainframe computer for transfer of data from the microprocessors RAM to VAX data files, for detailed analysis. The system is hence fully portable but retains a great deal of flexibility with respect to reprogramming and linking to other pieces of laboratory equipment.

3.3.2 Field protocol

The microprocessor was used to record begging behaviour in the House Martin (Section 3.8.3) and nestling body temperature in the Dipper (see below). The Dipper nestling measurements required the full microprocessor 'package' to be set up at the nest (see also Section 3.8.3). In House Martins the software was modified to ignore thermistors and switch box (e) and to record only begging of nestlings (see below). This required the minimum of preparation. The main microprocessor box (a) stood below a House Martin nest and the microphone was inserted into the nest, either through a hole bored in the mud of the nest or through the lid of the nest box, where it was taped in place with masking tape. The microphone lead was then restrained to prevent it flapping in the wind.

It was not possible to place the main microprocessor box very far from the nest during work on the Dipper due to

38.

topaputer for e defender wis e defender wis e I

the short length of cable between (a) and (b). Prior to experimental measurements the birds were acclimatized to the equipment by gradually building up a dummy set around the nest. Initially this was done over a period of days but this was

Negroupe 11 flaid. Dut MAX maintre Mo74VH BAL GF flexibil stalt yadan 2.8.8 GREAT IN A REPORT OF LT TA QU THE TIME FOLLOWING and bes (a) r cuttred the DON (a) STOC Inempted int de Lin nest als ai bages then restrai

Derteword List

box verv fi

gradually reduced to three or four hours without detrimental effect. In some cases the main microprocessor box had to be raised several feet above the water, usually by building a stone cairn below the nest; but in most cases it was possible to stand the box (within its waterproof jacket) half in the river or burn, and half out so that it resembled a rock. Box (b) was usually draped with vegetation at open sites or left as it was (matt black) in a tunnel or under bridge sites. In all cases where parents were watched during the setting up of 'dummies' they returned to the nest without apparent hesitation, or concern for the change in their surroundings.

On the morning of the experiment the dummy equipment was replaced with the microprocessor system during the first inattentive period of the female. Thermistors were placed in and around the nest and attached to the nestlings (see below); the microphone was pushed into the moss of the nest roof so that it just penetrated into the nest space and the system switched on. The parent bird was allowed to return to brood or feed the young and the switch on box (e) triggered to make the start of the observations. Data previous to this was edited out of the file prior to analysis. In some cases the cable to switch box (e) was too short to allow its use and so in such cases observations of parental arrival and departure were noted and timed using the second hand of a watch that had previously been synchronized to the microprocessor's internal

39.

the snort . experiment us equioment or

Initially th

clock. These data were added to the file at the computer terminal.

gradually r affect. In raised seven stone cairs to stand the river or bus laft as it a up of 'dumni hesitation,

van repland inattentive and around t fine micropho the micropho dr feed the ethe start of dd feed the she atart of in such case vere noted an previously b

clock.

. Isniminal.

3.3.3 Dipper nestling body temperature measurements

Body temperature measurements were logged on 6-7 day nestlings simultaneously with ambient temperature using the microprocessor and miniature bead thermistors. This was done to test the accuracy of skin temperature as an indicator of body (core) temperature, so breast, back, leg-pit (see Figure 3.3(a)), wing-pit and temperature was measured. This study showed that leg-pit temperature provided the best approximation to cloacal (body core) temperature. The regression is;

Cloacal temperature = -6.72 + 1.23 leg pit temperature $r^2 = 53.8$, n = 50, p < 0.001 eqn. 3.1

Hence leg-pit temperature lies below cloacal temperature by about one degree Celsius in the usual range of body temperatures shown by Dipper nestlings in the field. Cloacal temperature, whilst it perhaps provides the best approximation to core temperature (Calder & King, 1974), was found to be impractical to use, since the thermistors became dislodged. Leg-pit temperature was therefore chosen as the most suitable alternative; and hereafter when discussing body temperature it refers to leg-pit temperature.

Thermistors were attached by strapping them to the top of the left leg with a thin strip of sticking plaster, making sure that the head of the thermistor fitted snugly

40.

between the flap of skin between the leg and body, and the body itself (Figure 3.3(a-b)). Thermistor leads were long enough to allow movement within the nest (including defaecating out of it), and tangling of leads was never observed. At the end of

n saniirasa seacordonese entr rises or (arats) (cores) STELL STUELT Seworls (Duffe approximatio 1 upresentation 7 Cinagal ta . 8. 80 . 1 Hannes log-ply abaut one des alithan by Sipi und if an Item Ladporatized to use, eince a manipartagent and Servalter Agrio tig-BEA 112

5.5.1

e sine galies

.....

To interface

M

(Ъ)

Figure 3.3

(a) Diagram showing attachment of thermistor in leg-pit.

Flap of skin Strip of sticking plaster
(b) Thermistor in place in a one week old Dipper nestling.

0.0

an experimental period it was sometimes found that a thermistor had become detached from the leg. Such events were immediately obvious on examination of the data as they were accompanied by a sudden drop in 'body' temperature of up to 10°C followed by a more gradual drop in nest temperature. This was confirmed independently in laboratory experiments (Section 3.3.4). Such data were excluded from further analysis.

Other abberant temperature readings were caused by movement of nestlings (e.g. defaecation) which temporarily resulted in partial exposure of the thermistor and subsequent reheating. Such changes usually occurred subsequent to arrival or departure of a parent, and might last for several minutes. Temperature changes were less than for total thermistor loss but too rapid to reflect true body temperature changes. It could be argued that nestling activity may produce rapid shortterm increases in metabolism, and hence heat output. There is, however, no sound explanation to account for rapid short-term drops in body temperature. In such instances where it occurred therefore the data were noted but not included in calculation of cooling or reheating rates, which were measured over periods of temperature change consistent with the normal functioning of thermistor probes.

3.3.4 <u>Cooling rates of Dipper nestlings in the laboratory</u>

(a) Diagram (a) (b) Thermalart

41.

Many laboratory studies of nestling thermoregulation are carried out on single nestlings either out of the nest or occasionally within the nest (Dawson et al., 1976; an experime thermistor ware immedia ware accomp up to 10°C. This was co (Section 3. analysis)

novement of resulted in reseating. reseating. or departure but too repi term increas could be are drope in bod therefore th of temperaty of temperaty of temperaty

are carried

genarionally

Dawson & Bennet, 1980; Dunn, 1976; Dyer, 1968; Gotie & Kroll, 1977). In this study of Dipper nestling thermoregulation, the cooling rate of nestlings in broods of three were examined in chicks of aged seven to eight days. Single nestlings were not investigated since this represents an infrequent brood size in the Dipper; no broods of one were found in this study. Broods were placed in uninsulated glass chambers, held at a constant temperature in a water bath to investigate the importance of the nest in insulating nestlings (Section 4.4.2). Thermistors were connected as above and cooling rates measured. It was not possible to measure cooling rates of nestlings out of the nest in the field, since thermistors were first threaded through the nest dome before attachment to the nestlings. By the time the thermistors had been removed and re-attached the nestlings would already have cooled considerably. Results are discussed in Section 4.4.2.

42.

3.3.5 Cooling rates of Dipper nestlings in the field

All measurements were carried out between 0500-1200 hours. The equipment was set up as mentioned in Section 3.3.2 and some of the thermistors attached to nestlings (Section 3.3.3). The others were placed through the roof of the nest to monitor nest temperature, and outside the nest to monitor ambient temperature. The following data were collected; cooling rates, reheating rates, duration of

attentive and inattentive periods. Results are presented in Section 4.4.3. Begging rate and duration as well as feeding rate and duration, was also automatically logged and is discussed in Section 4.10.

Develor 5 Bo KROLL 1977 and state CIMENTS OTHER Ne Contraction Inuupartent dy al baires H .9%0Cmzdd stapligate A P NDIYSBBI Tin Inliebs ten to reserve ETUTEARTRICE t trancina 178 DEVOLUTE DEBO 28005 00 1003 6// 0051-COM .C.1 nol3082 E.E MOLITONIES

32 3307 002

idns toriman

epileosed |

18. 2V23/16228

.F. # dol 7000

VILLO DIRA 0707

al beautrels

From previous observations at the nest, chicks were categorized, for the purpose of measurements, as young (3-5 days old, poikilothermic), transition (6-8 days old) and old (9-12 days old, homeothermic). Chicks of less than three days were too small for the attachment of thermistors. The categories were assigned to be realistic for all brood-sizes examined (i.e. brood-sizes three to five). All nests used for cooling rate analysis were of the typical moss dome type . (see plates 3.2, 3.3). Additional time budget data was obtained from nests in which no equipment was present, these also included 'hole' and 'pipe' nests (see: plates 3.4, 3.5). After the field data had been collected, nestlings were weighed and measured and the sticking plaster removed with scissors. Nestlings were returned to the nest and the equipment removed. If broods were used more than once for an experiment it involved different age categories and different individual nestlings were monitored.

43.

3.3.6 <u>A mate removal experiment and female</u> inattentiveness in the Dipper

The possible trade off for female Dippers, between feeding and brooding one week old nestlings (i.e. transition) was investigated. Male Dippers were caught on the roost just before dawn and placed in a bird bag. The microprocessor equipment was set up as before and the behaviour of the nestlings logged. The data were then compared with nests

where males were not removed. All treatments were carried out on brood size three. At the end of the experiment chicks were weighed and measured and returned to the nest. The male was

3.2.5

AT

feeding and was investig before dawn equipment was nestlings lo

Plate 3.3:

Natural Dipper nest, exposed moss 'ball' type.

Dipper pipe nest of the enclosed type.

Plate 3.5: Site of pipe nest shown in Plate 3.4.

released and watched to confirm that he returned to the young. The results are presented in Section 4.4.5.

3.3.7. The use of heated dummy nestlings in examining the relative contribution of individual nestlings to brood homeothermy

This experiment consisted of three dummy nestlings, each of which contained a heating element and small thermostatic device so that temperature could be controlled from the main switch box (plate 3.6). The electrical part of each dummy was set in a resin which heated up uniformly to produce a warm block of known surface area.

Two of the dummy nestlings had a surface area of 16.95 cm^2 and the third was larger at 21.56 cm^2 . Each dummy was set at a surface temperature 40° C to mimic a nestling. This was done by placing the dummy in the metabolism chamber prior to insertion of any chick and the dummy's temperature measured using a mercury thermometer strapped to it with rubber bands. The temperature control knob on the main box was locked and the dummy removed from the chamber. The metabolism chamber (Section 3.2.1) was then allowed to equilibrate with the temperature of the incubator, which was set between 2-5°C (see plate 3.6, Figure 3.4).

A nestling of known mass and age was then placed in the chamber and metabolism was monitored for 30 minutes without a dummy present. A heated 'dummy' was then placed alongside the nestling, so that it might benefit from the heat output. Metabolism was monitored for thirty minutes and then the dummy removed and metabolism monitored for a further thirty minutes.

44.

e bio besses and a s allue results an 3.3.7.

1 dT

esch of which settern box (p) settern box (p) settern in a rest box loor

between 2 A n shamber a Summy prese

21.2

Plate 3.6:

Heated 'dummy' nestlings (A) and control unit (B).

This experiment was repeated with another nestling and then finally the metabolism of the two nestlings together in the absence of the dummy was measured. Results are presented in Section 4.4.7.

3.4 ACTIVITY

3.4.1 <u>A Doppler radar device for quantifying</u> nestling activity

Figure 3.4 shows an X-band Doppler radar module (RS Doppler module 308-017) (a) that was used to detect movement of nestlings in metabolism chambers (c) or artificial nests. It detects Doppler shift in reflected microwave radiation by comparing microwaves emitted from a Gunn oscillator with those reflected from the target; in this case the nestling. The output was amplified and displayed as a digital output (d). The amount of movement generated by a nestling is linearly related to Doppler output i.e. number of Doppler units (D.U.) registered during a given time. The sensitivity could be adjusted but since this affects the number of D.U. registered it was kept set near maximum sensitivity for all measurements. Distance from the target, in this case the nestling, also affects the Doppler score (Figure 3.5). This was tested using a metronome set at 128 beats per minute, with the weight covered with aluminium foil to aid reflectivity. As the figure shows, the closer to the target, the higher the Doppler score.

•

- the strape of

In all experiments nestlings were placed the same distance (within five centimeters) of the Doppler head and prevented from moving further away by inserting a cardboard partition behind them. Since microwaves can pass through

This experiment finally the me absence of the Section 4.4.7. YTIVITOA 4.8 8,4,1 A Figur (RS Doppler mod df nestlings in It detects Dopt comparing micro reflected from output was amp The amount of s related to Dop raub beretalger adjusted but s ise igak saw ji Distance from ' affects the Dog a metronome se covered with al shows, the close

System for measuring energy expenditure during bouts of nestling activity (see text).

0

Figure 3.5

Number of Doppler activity units registered per 15 seconds as a function of distance between Doppler device and 'target'.

The regression equation is;

y = 163-0.425x

Target area = 7.52 cm²

Metronome set at 128 beats min⁻¹ (see text)

POI

objects, care was taken to ensure that there was no extraneous triggering of the device from other sources, including the observer. The Doppler was isolated from other pieces of electrical equipment by using a different 'bank' of plug sockets, since it was found that the thermostat cutting in and out on the incubator (f) caused the Doppler to trigger, giving higher scores than possible from chick movements alone. Since movement of the Doppler head itself will cause a reading it was clamped in position with a retort stand. The digital display box (d) also had a "freeze" button, which when pressed stopped the Doppler registering and displayed the current score. This was most useful since during intense activity it was often difficult to read the rapidly changing output. A reset button allowed for resetting the score to zero and a 'run' button allowed the device to register again.

3.4.2 The energetic equivalent of one activity (Doppler) unit

Individual House Martin and Zebra Finch nestlings were placed in a glass metabolism chamber which was connected via its exhalent part to the gas analysers (g) (see Section 3.2.1). The Doppler head was positioned so that it touched the chamber wall and was clamped in place. The chamber and Doppler head were kept within an incubator set at 24°C, whilst the digital display (d) remained outside. It was thus possible

CARLEYS J.S.

Number of Doppler function of distants The regression equ

0.4

iarget area = 7.5

46.

to measure metabolism and nestling activity (quantified using the Doppler score of movement) simultaneously. The metabolism data (carbon dioxide and oxygen levels) were recorded on a chart recorder, whilst the cumulative Doppler score was read every five seconds, prompted by a five second bleeper. Data

ebjects, ci extransous tri including the pieces of sled plug societate. in and out on giving higher Sinds movement Lt una clamped display box (d stonest in Do This out nost difficult to r alloue allowed the de 11 S. H. E

were converted to kJ h^{-1} and DU h^{-1} for each five second interval, taking into account the lag in the system between the chamber and analysers (35 seconds at mean flow rate 56 (h^{-1})). The slope of the metabolism/Doppler unit regression yields the cost (kJ) of one Doppler unit (Figure 4.26).

Since metabolic rate remains high after activity until the oxygen debt incurred during that activity is repaid (Section 4.5.3) and activity may be either continuous or interrupted; the averaging of Doppler scores over periods in excess of five seconds may give more accurate results. Hence five second Doppler readings would only be expected to relate well to metabolism data (a) if activity occurred in discrete pulses, and (b) if these pulses (including repayment of oxygen debt) were less than or equal to five seconds. Patterns of activity varied considerably however between and amongst nestlings and so a computer programme was constructed to analyse the data in a stepwise fashion, until the best fit for a given set of data was found. This was achieved by progressively increasing, in five second steps, the period over which metabolism and Doppler scores were averaged (i.e. 5, 10, 15, 20 ... n seconds). The mean slope of the 'best fit' regression was then used to calculate energy costs (Section 4.5.3, 4.6.3, Chapter 5). The mean intercept represented

the Doppler so

data (carbon di

ceptosed tates

every five sec

metabolic rate at zero activity and is compared with predicted values in Section 4.5.

Mare Sonverted intervel, tabl the chamber in the (h⁻¹)). T regression yis

Sinc deb nenvzo enz (Section Visual Interrupted; (1 to senake hit Bance five seg or llow stripe distrate to this sa of axygen duby Parternia of ad LIGARN JEANNIE TO ADALYSA THE Top a given me progressively . Lodatem Solide 18. 20 ... n m regrassion van . 5.8. . . 5.8.8

3.4.3 <u>Measuring nestling activity costs</u> in the laboratory

Nestling activity was quantified in captive Zebra Finch nestlings and in hand-reared 'wild' House Martin nestlings. The equipment was set up as previously except that the metabolism chamber was replaced with an artificial nest which consisted of an open-topped glass pot with a cotton wool 'nest cup'. Experiments were carried out on the laboratory bench top, or in the Zebra Finch controlled temperature room (mean 23.9 ± 0.12). Data collection was carried out as part of other experiments on begging behaviour in the Zebra Finch (Section 4.9) and assimilation efficiency in the House Martin (Section 3.6.2, 4.8.2). House Martin nestlings were also removed from the field and brought to the laboratory for calculating their energetic equivalents of Doppler units (previous section). These were also used to quantify nestling activities. Nestlings were stimulated to beg either by touching lightly (Zebra Finches, see below) or by offering food (House Martins), and the duration of the begging activity recorded by stop-watch or speaking into a tape recorder. At the same time the Doppler device was set running (after having removed the stimulus to the nestling, to prevent false Doppler readings) and stopped at the end of the activity. The result was expressed as D.U. sec⁻¹. The same procedure was followed for spontaneous behaviour such as moving about the nest,

48.

setabolic rate

defaecating, scratching and feeding from an artificial bill (see Section 3.7.2). If nestlings appeared distraught or cold the test was abandoned.

2201 Finch neutling mestlings, IN malfodgram add Whigh consists guo feen! Loow bench top, of 0 ± 2.55 mmml medias degio jo [Section 9.8] (Saption 3.6.2 memoved from th wir galtaluting the (previous medb activition, M ANGNE) VITRUET bas (unires) stop-watch or The Doppler day stimulue to The and atopped at d as believerses spontaneous be

In addition to measurements on single nestlings the total number of Doppler units registered by broods of four House Martins in their nest box was also recorded. (This is discussed in Sections 4.6 and 4.10). 49.

Recovery times and their Doppler scores were measured in House Martins only (Section 4.5) and for the purpose of subsequent discussion it is assumed that recovery time as a proportion of activity time will not vary between the two species.

3.5 THE DAILY ENERGY BUDGET

3.5.1 The Time-Activity-Laboratory Method

Components of the Dipper nestling energy budget (Section 4.6) were measured in the laboratory and applied to time budget data collected in the field. The energetics of nestling growth were measured directly via carcass analysis (Section 4.2). Thermoregulatory costs were calculated from laboratory data (Section 4.3) and field data (Section 4.4). Activity costs were measured in the House Martin and Zebra Finch (Section 4.5) and applied to time-budget data collected for the Dipper (Section 3.3.2). 'Alertness' (Section 4.6.6) and biosynthesis costs (Section 4.6.5) were calculated using data in the literature. The daily energy budget calculated by this method was compared with the field metabolic rate (FMR) of eighteen day old Dipper nestlings, measured using the doubly-

labelled water technique (see below).

3.5.2 The doubly-labelled water method

The doubly-labelled water method for measuring carbon

B PTI the total numb four Mouse Man world at ald) Redo MARKENS ST. No. purpose of sub Tinn as a propi two species. 3.5 THE DAILY MT L.L.C COMP (Section 4.6) rims budget ta negring grown (Seation #.27. Laberatory data Activity costs (d.# mplitase) Dipper: (Section blosynthesis of in the literati mathod was comp alghteen-day of

Indian Balladal

There

dioxide output and hence daily energy expenditure was first described by Lifson, Gordon & McClintock (1955). The oxygen of respiratory carbon dioxide is in isotopic equilibrium with the oxygen of body water, thus by injecting water doublylabelled (D_20^{18}) , the oxygen of respiratory carbon dioxide and water are labelled, whilst the deuterism labels the hydrogen of body water. By measuring the difference in turn-over rates between the labelled hydrogen (lost in expired water) and labelled oxygen (lost in expired water and carbon dioxide), the oxygen turnover due to carbon dioxide production alone can be calculated (see equation Section 4.7). This was then converted to energy expenditure assuming an R.Q. of 0.86 (Section 4.7).

50.

(a) Field Protocol

Dipper nestlings were removed from the nest and body measurements taken. The dosage of the isotope (cm^3) to be injected (20 atom 0^{18} , 10 atom 0^{18}) was calculated as nestling mass (g) divided by 95. The isotope was then injected into the peritoneal cavity and the bird left for one hour in a bird bag, to allow for equilibration of the isotope with the body water. Blood samples were then taken from a vein in the leg (after having warmed the nestling for a few minutes to raise the vein) using 5-10 µl glass capillaries, which were then flame sealed using a fine-flame torch. In this state the

blood samples could be kept for as long as required before analysis was performed. The nestling was then returned to the nest. Twenty-four hours later a second series of blood samples were taken. Natural background isotope levels were obtained at the start of the experiment from individuals which were not subsequently labelled.

(b) Analysis of blood samples

The hydrogen/deuterium fraction of the blood was obtained by distilling water out of the blood under vacuum and passing it through a uranium furnace that had been heated to 800°C (Wong & Klein, 1987). The water oxidizes the uranium to liberate hydrogen/deuterium gas which is collected on activated carbon for subsequent analysis (Sackett, 1978). The carbon dioxide fraction of the blood was obtained by microdistillation of blood water into a tube, containing guanadine hydrochloride (Dugan et al., 1985; Tatner & Bryant, in press). The tube was flame sealed under vacuum and then baked in a muffle furnace for ten hours at 250°C. The guanadine tube was then broken under vacuum, in a vessel containing 100% phosphoric acid, and the whole assembly placed in an oven at 80°C for one hour. During this period the carbon dioxide is liberated (Tatner & Bryant, in press). The carbon dioxide gas was then purified by freezing down with liquid nitrogen under a vacuum, into collection tubes. Both hydrogen and carbon dioxide samples were then analysed on an isotope ratio mass spectrometer. All samples were analysed in duplicate to ensure that errors were quickly identified.

A total of eight eighteen-day old Dipper nestlings

dioxide output d we bedlypesh af respirences with the oxyge inbelled (0,04 water are labs body water. B bd sit inessied langer bellader THE OXYRAN TUP be ngloulared. is or betrevies (Sangtion 9.71. (a) EL D1004 baway meanurement be injected (70 Dean Indirated Late the partit bird bag, to al body water. BI log (aftar havi Palse the veln)

51.

were used in this study, and the results are presented in Section 4.7.

at the start of aubsequently 1 (b) An The

ib vd bealesde and pausing its TODEC (Wang to liberate ny dinad detevites asrbon diskide distillation o hydrochlarida" ine tube was f suffle furnace na newbrd news and the And the Mauno Canad (Tathor 1 Bryas purfitied by fre into obligation were then analy Hamples Ware Ht Quickiy identia A tot

is al bass over

. . T. F MELTONE

PART TWO: HATCHING ASYNCHRONY: IMPLICATIONS FOR NESTLING ENERGETICS

3.6 PEAK LOAD REDUCTION (PLR)

3.6.1 Faecal collection and analysis

House Martin faeces were collected in association with the manipulations mentioned in Section 3.8.1. Plastic funnels were suspended about half a metre below House Martin nest boxes, with the funnel spout blocked. Faeces were collected at least every other day from about eight days after brood hatch. Before this time parents carried all or some faeces away from the nest. Faeces from each funnel, together with those voided by chicks during handling, were placed in separate petri-dishes, labelled and placed in a freezer. Faeces were then freeze dried to constant mass, and the daily dry faecal output per brood calculated, see Section 4.8.1.

3.6.2 Hand-rearing nestlings

House Martin nestlings were brought to the laboratory and hand reared from the age of seven to nine days in a nest box. The box contained a nest lining from an abandoned nest, it was kept at 35-40°C by placing a cloth over the open nest box and positioning an anglepoise lamp with a 60 watt bulb over the nest. The air temperature in the nest was monitored with a mercury thermometer and heat output adjusted to keep within the temperature range required by raising or lowering

52.

the lamp. Nestlings were fed exclusively on Blowflies

<u>Calliphora</u> spp. that had been hatched from maggots and killed by freezing. Chicks were fed hourly in the brood of 3.0 FEAX LOR 3.0.1 FEAX LOR 3.0.1 Fe House with the manip furnals were a near boxes, wi near boxes, wi near boxes, wi bread hatch. Feeces sway fr separate percifeeces were th

FART

3.6.2 Man House House Isboratory and in a nest box. nest, it was in nest box and po over the nest. with a mercury two and half-hourly in the brood of four. Flies were offered to the chicks on forceps. Each feed consisted of between ten and twenty flies per chick, depending upon how quickly the chicks became satiated. Nestlings were collected in the early afternoon on the day before the experiments, and fed until 2230 hours without collecting any data during this period, to allow them to adapt to the experimental conditions.

Nestlings begged spontaneously on the first offer of food and there was never any problem in getting them to take food. On the day of the experiment the times of each feed, the number of flies taken, their mass and the mass of any faeces collected were recorded for calculation of the dry mass assimilation efficiency (see below).

3.6.3 Assimilation efficiency

From 0400 hours until 2230 hours nestlings were offered flies as mentioned above. Flies had been placed in small polythene bags after freezing to provide convenient batches for each feed, then returned to the freezer to keep them fresh. They were then thawed about an hour before a feed. During the period of feeding bags of flies were set aside for freezedrying to calculate any changes in water content, during storage. Since each bag of flies was of known wet mass, the mass of flies eaten by each chick was known for each feed. Nestlings regularly defaecated during feeding bouts or soon after, and it was always clear to which chick the faecal sac belonged. Faecal sacs were placed into polythene bags, sealed, and labelled with their owner's identity. Bags were then

the lamp. Nest <u>Califphore</u> spp. killed by freez the the object to the object and the object and then became afternoon on a siler them to her food and the food. On the number of file and lected were analisation of

ab 1, a. L.

strend files a small polychem for each feed, They ware then paried of feed drying to calco storage. Since Wasting regul frozen and freeze-dried to constant mass together with samples of the flies set aside previously. Faeces were collected up until, and including, the first defaecation of the next day (i.e. with the 0400 hour feed).

For each nestling therefore it was known how much food had been eaten, its water content, and the faecal output for a twenty-four hour period. The mass of each nestling was taken at the beginning and end of this period to check that nestlings had indeed gained mass. Dry mass assimilation efficiency was then calculated as;

Assimilation = Dry mass of flies eaten-Dry mass of faeces eqn. 3.2 Dry mass of flies eaten

Results are discussed in Section 4.4.

The energy intake was calculated for each nestling as a double-check against under-nourishment (Section 4.8.2).

3.7 <u>NESTLING COMPETITION I:</u> <u>A LABORATORY STUDY ON</u> <u>THE ZEBRA FINCH</u>

3.7.1 Experimental treatments

Begging behaviour was examined in nestling Zebra Finches. A breeding population of adults had been established from which nestlings were removed either singly (N1) or as pairs (N2) from the same nest, and subjected to a variety of experimental treatments (see below). All experiments were carried out within the room where adult birds were breeding_in cages, so that nestlings could hear adult birds as they would in the nest. Nestlings were removed an hour before the experiment and placed in an artificial nest which consisted

54.

siter, and it w belonged. Faco
fracencencend fre samples of the oullected up u the next day (food hed been four a twenty-fo

TAMEN AT the be nestlings had a efflorency was

Ansimilation a P efficiency a P Secults are dis 1.7 MESTLING 0 3.7.1 Exp

Baggin

1.00

Finches. A bre from which nest pairs (N2) from experimental tre darried out with in the nest. No of a small glass pot covered with brown paper and lined with cotton wool. During the hour before treatments no food was offered to nestlings. After 50 minutes the crop-score of each nestling was estimated (see below).

Nestlings were induced to beg by lightly touching each chick on the back of the head. This usually induced begging within 2 seconds. On some occasions, however, this failed, and if no begging was induced after 15 seconds of continual stimulation a value of zero was recorded. In the tests with two siblings both were simultaneously stimulated in this way, since induction of begging in one chick rarely induced begging in its sibling.

Nestlings were subjected to one of the following two treatments, and each treatment was replicated several times separated by two minute intervals. This produced an artificial but constant parental visit rate of 30 visits per hour, which was taken to be a realistic mean over all ages and natural brood sizes. Where additional treatments were carried out on particular individuals, they were separated by 10 minute 'rest' periods.

If nestlings appeared obviously disturbed or were cold the test was immediately terminated and the previous replicate removed from analysis. All treatments were carried out at 24°C and during daylight hours.

Treatment 1.

The time taken for a nestling to give up begging without being offered a feed (GUT = Giving-up Time) was timed

two treatments, separated by by but constant pa Man taken to be particular indi periods, : If na

cold the test w replicate renov

without being of

1011

I JNOMIANIL

to the nearest second. This was repeated 5 times. On the 6th occasion a feed was offered at one of two profitabilities, F = 1 or F = 0 (i.e. standard seed mix or nothing, see Section 3.7.2), and handling time measured. After a two minute interval another series of 5 measurements of GUT (without reward) were performed. The mean pre-feed GUT (GUTpre), mean post-feed GUT (GUTpost), and the ratio of GUTpre/GUTpost was calculated. In addition nestling mass, nestling age, crop-score, and in pairs Relative Difference in Body Mass (see RDBM' : previously) was also recorded.

Treatment 2

As above, but nestlings were offered food each time they were stimulated to beg. GUT was therefore not measured in treatment 2 tests. In treatments involving pairs, feeds were offered at random to one chick only, and the behaviour of the unfed sibling recorded. The handling time and behaviour of the fed sibling was timed to the nearest second as previously.

3.7.2 Handling time and feed profitability

Standard Finch Panicum Mix was offered to nestlings on a dummy bill. This consisted of a blunt wooden probe, 3mm in diameter, dipped first into a petri dish of water, and then into one half filled with the seed mix. The seed stuck to the wet tip and provided reasonably consistent load sizes 48.9 ± 4.2 mg). This corresponded to food profitability F = 1. Empty moist

56.

probe tips were also offered, F = 0. Food profitability was randomised with respect to chicks being offered a feed.

Immediately begging was induced the inside of the

per the nearest Ath nooasion a Freil-or F and Manuta interva eeverd) were p onicoulated. In previously were stim freetously was in treatment I And in pairs 3 And in pairs 3 And in pairs 3 And in the outed of the treatment I

of the unfed ai of the fed albi i.7.3 <u>Han</u> i.7.3 <u>Han</u> in diamater, di in diamater, di in diamater, di in ti ani pro file correspond probe tips ware randomized with

Indust

nestlings' bill was touched lightly with the dummy parent bill. Nestlings spontaneously 'fed' from the dummy bill (which was held still to minimise any variation in its stimulation effect) until they had finished feeding, when they voluntarily disengaged from the dummy bill and made no further attempt to feed. The dummy bill was then withdrawn so as not to interfere with any subsequent behaviour. This handling time (start to cessation of feeding) was recorded on a stop-watch. Handling time measurements were also randomised with respect to paired or single treatments, cropscore, length of each experimental run, previous handling experience and time of day. Hence handling time measurements were judged to be independent of each other even though several measurements were made on one individual. Results are therefore presented as individual handling time measurements versus the independent variables examined (Section 4.9).

No measure of natural loadsizes brought by parents were available, so the F = 1 profitability is arbitrary. However only very small chicks (< 3 days old) were unable to take food from the dummy bill with or without seed. Chicks older than 3 days were able to remove all seed without apparent difficulty.

3.7.3 Crop-score as an index of nestling hunger level

A measure of initial hunger level was made on all

57.

chicks by examination of crop contents. Zebra Finch nestlings have relatively transparent crops which bulge either side of the neck (Figure 6.1a), allowing the contents to be seen. By gently

nestlings' bil bill. Nestlin (which was hel effect) until disengaged from feed. The dum with any subseq deseation of fe time measurener single treatmen previous handly time measuremen aven though sev Results are the measurements ve (Section 4.9). No me , were available, However only vel take food from older than 3 day difficulty. Crot

B

Figure 3.6

Crop-scoring in Zebra Finch nestlings

- A. Natural arrangement of partly full crop
- B. Crop displaced by finger for scoring this would
 - score a '6'.

displacing the crop to one side with a finger (Figure 3.6), the proportion of the crop filled was estimated and ranked as follows;

58.

Empty 0 Some food present 1 Approximately one-quarter full 2 one-third full 11 3 one-third to one-half full 4 one-half full 5 two-thirds full 11 6 three-quarters full without 'air bubbles' 11 7 three-quarters full with 'air bubbles' 11 completely full but 'air bubbles'. 11 9

Hunger level was assumed to be inversely proportional to cropscore since individuals with low crop-scores still begged vigorously suggesting that they had not just emptied their crops and were therefore satiated. However, nestlings with more full crops often refused food, suggesting that they were somewhat more satiated.

3.7.4 Nestling age and nestling mass

Figure L.

.8

Eninoca-good

Termstell

Cross dis

B PIDOR

Growth data was collected on a limited number of Zebra Finch nestlings. Nestling mass was found to be linearly related to age between day 3 and day 9 after hatch inclusive.

displacing the she to proportion (

6006

Hunger level un annes since ind vigercualy sugg erops and were anses full crops semuchat more un \$.7.9 Mag

Scowin Seboa Finch nest related to age 5

the regranding and

e manM.

10 = 24

Nestling mass was used instead of age for comparing begging behaviour data for two reasons. Firstly, previous considerations of nestling competition (of which begging behaviour is considered important) have been based upon the relationship between the size of an individual and its siblings and how this will affect nestling dominance hierarchies, (Section 2.4) hence nestling mass is more pertinent to such discussions than age <u>per se</u>. Secondly, the age of nestlings used was often not known, but mass was always accurately measured. Nestling mass is therefore the independent variable against which other nestling parameters are considered (Section 4.9).

3.8 <u>NESTLING COMPETITION II:</u> <u>A FIELD STUDY ON THE</u> HOUSE MARTIN

The hypothesis of Reduced Sibling Rivalry (RSR) proposed in Section 2.3 is based on five assumptions (Section 2.3.2); four of these were examined in the House Martin.

3.8.1 Peak mass and hatching asynchrony

Nestling mass hierarchies were manipulated on broods of House Martins. Manipulations were of two types; synchronous and asynchronous. Synchronous broods were those in which individuals of similar mass were placed together from different broods and relative differences in body mass at hatch (RDHM) were small ≤ 0.35. Asynchronous broods were those in which

59.

nestlings were known to have hatched from different broods between three and five days apart. These broods ranged from 0.4-2.0 RDHM. Unmanipulated broods acted as controls. To tompering benef tompering beneficiend previous bonaid the relationship abblings and he discussion 2.41 h assaured. Noir measured. Noir faction 9.11. A.4 MERTING b.4 MERTING

pair at benoging

Side Paul

al House Martin and asynchronou individuals of broads and relainertings were between three a between three a these data were added a number of unmanipulated brood data from another site provided by D. M. Bryant. These included the brood-size two data (Section 4.111) which were lacking at this investigator's sites. Most manipulations were set at the more usual brood-sizes of three to five (mostly three to four, Sections 3.8, 4.10). Nestling mass was measured regularly (Section 3.1.1) and growth curves plotted from which peak masses could be obtained. These were compared with degree of hatching asynchrony (RDHM) to test the hypothesis that there is an optimal asynchrony which will be reflected in a maximal peak mass (Section 2.3.5). These results are presented in Section 4.11.1.

Peak masses of individuals within a given brood were taken as being independent with respect to asynchrony since hatching mass is independent of hatching order (Section 4.11.2).

3.8.2 <u>Hierarchy stability and the flexibility</u> of nestling growth

Consideration of the factors affecting nestling mass hierarchies showed that under certain circumstances changes in hierarchy structure may be expected to occur. Changes in hierarchy positions of individuals within given broods were examined from the growth data collected above in relation to initial hatching asynchrony (RDHM). The maintaining or

prolonging size differences between individuals was thought to be important in considerations of sibling rivalry (Section 2.3, assumption (iii)). The relative difference in body mass (RDBM) between individuals was therefore monitored throughout these dats wer from another i hrood-else two investigator's isouid brood-el festion 1.1.1 fouid be obtain asymptical asymptic fiest (festion 1

A DALLOW

15.11.4

Jeak ware taken an b since hatching

2.8.2 <u>His</u> <u>of</u> <u>of</u> Const noss blerwoohie changes in hise were examined fo to initial hard growth as a test of this assumption of the RSR model. Results are presented in Section 4.2.

3.8.3 <u>Competitive costs and the Reduced Sibling</u> <u>Rivalry (RSR) model</u>

The examination of sibling rivalry and competitive costs in House Martin nestlings can be split into three stages;

- (a) Laboratory costs of competitive activities(Section 3.4)
- (b) Brood manipulations (Section 3.1)

(c) Field measurements of begging behaviour.

The latter was carried out in two ways. The microprocessor system (Section 3.3.1) was modified so that it did not include the thermistor and thermistor interface. The software was modified so that only begging behaviour was recorded and logged. The system was placed below a House Martin nest at the time of the experiment. There was no need to build up a dummy prior to this (see Section 3.3.2). The condensor microphone was either inserted under the lid of the nest box and taped in place, or a small hole was bored into the side of a natural nest and the microphone fitted snuggly. The microphone lead was taped down to stop it flapping about since this was found to distract the parent birds. The microphone position within the nest was chosen to eliminate the risk of false triggering by nestlings

brushing against it, or wind blowing across the nest entrance. Sensitivity was adjusted to eliminate external noise

growth as a tas Results are pre moj 6.8.8 The e in House 23200 Labor (E) (Sect Brood (0) Field The 1 The microproces so that it did interface. The hahaviour was r below a House M There was no ne Section 3.3.2). under the lid of hole was bored phone fitted sn stop it flappin parent birds. chosen to elimit

(Section 3.3.2), nonetheless it was not practicable to record begging behaviour in this way at some nests. An alternative method was therefore applied. The microphone was connected to a cassette player and begging behaviour recorded on C120 cassette tapes. These were later transcribed, they provided additional information on the intensity of begging behaviour and therefore supplementing the frequency and duration measurements of the microprocessor (Section 4.10).

62.

5

CHAPTER FOUR

•

(Section 3.3.2)

begging behavio

method was then

a cassette play

cassette tapes.

additional info

and therefore s

messurements of

RESULTS

PART ONE: THE NESTLING ENERGY BUDGET

4.1 **BIOMETRICS OF DIPPER NESTLINGS**

4.1.1 Mass, wing-length, body-length and tarsus

Nestling body mass as a function of age (to the nearest 0.5 day) is plotted in Figure 4.1. Nestlings reach peak mass (56.1 \pm 3.88g, n = 25) around day 17, and then undergo a slight mass recession until fledging at about twentythree days (mean = $23.1 \pm 0.9d$, n = 36). The mass at peak is 87.8% of adult body mass whilst at fledging (55.2 ± 2.70, n = 14) it is 86.4% of adult body mass. Variation around the latter part of the growth curve is partly explained by the divergence of the male and female growth curves, mentioned earlier but reported and discussed below. Wing-length increased almost linearly with age (Figure 4.2) and is a good predictor of the latter $(r^2 = 0.97, n = 486, p < 0.001)$. Nestling wing-length is 80.8% of adult wing-length by fledging. Tarsus growth was completed by about day twelve (Figure 4.3) suggesting that leg growth is an important early requirement, not only related to nestling competition (Ryden & Bengtsson, 1980) but also as a nestling 'escape' mechanism from predation. Dipper nestlings can "explode" out of the nest after day twelve if danger threatens (pers.obs., Shaw, 1978). The ability to be mobile on the ground is clearly enhanced by the developed tarsi (see Chapter 5).

Nestling body-length increases quickly until day

63.

seven and then slows down (Figure 4.4). Body-length measurements of nestlings older than 17.5 days are impracticable but it seems that this levels off to about 138mm in older

LIND TRAP 87 BIOMETR I.P Lilia 11 Section M NARRARY ULS (L) (32) sens (20) Lis a optimized ani zyab asan stube bu devie =1 74 (PE = 11 10 JUNE DATE IC SORESTENDE WE JUS TELETHE DELS DEVARISONS corolbang Done -aniv antisumm "I edging. 1287 erun 13 00.W in , transarily no (Ryden & Dangts moni stinantes Dut of the nest 19787. . wardt plearly domance Nearl

Wing-length = 1.61 + 3.45 Age seven and then $r^2 = 0.97, p < 0.001$ menty of nently it seems that t .

Figure 4.4 (bottom): Body-length as a function of age in the Dipper.

n = 367

nestlings. Body-length is a crude indicator of how far a nestling can stretch out its head when competing with siblings for food. Since establishment of mass hierarchies takes place early in the growth period, a rapid increase in bodylength might be adaptive. Other features associated with the procurement of food show a similar early increase in size.

4.1.2 Gape and bill-length growth and their relationship to mouth "target area"

05

Figure 4.

A promit

Gape width (Figure 4.5) increases until day twelve and then decreases markedly whilst bill-length growth (Figure 4.6) increases linearly up to this point and then levels off. This tends to support O'Connor's (1977) view of adaptive growth of the bill, initially to increase the target area for parental feeding and then changing in shape towards fledging, to resemble the adult. Figure 4.7 shows that the reduction in gape width is more important in bringing this about than is bill-length growth.

An indicator of the importance of bill morphology to nestling food procurement is mouth 'target' area (MTA). MTA reflects both changes in bill-length and gape width, and in addition provides a measure of the effectiveness of combining gape width and bill length measurements. Two derivations of MTA were calculated and are shown in Figures 4.8 and 4.9. Figure 4.8 (MTA I) follows closely the pattern of gape with age but suggests that as chicks get older

64.

(> 12 days) mouth area decreases and presumably the ability to handle larger food items decreases as well. Figure 4.9 (MTA II) suggests that target area reaches an asymptote at

nestlings. RE . nustling can a for frod. place carly in TABLE STREET 5.5.1 C BE call? THE 6/2D (A) LUCD-MARKS OF REALT WART edi lo discus parental feeds to resemble th In gaps whith Aranal-1114 mg to neatling fo MTA reflects b and in additio combining gape derivations of .0.4 Dras 8.4

24

18

. O STATI

11

(Means and ranges)

about 14 days. The slopes of both curves during the linear phase (zero to eight days), are very similar. Indeed personal observations suggest that mouth shape changes from MTA I to MTA II as the nestling grows.

65.

When MTA is compared with nestling growth as shown by body mass, then two different patterns emerge (Figures 4.10 and 4.11). Both begin with a linear increase (b = 1.2 for both) but in Figure 4.11 the growth continues at this rate (i.e. is directly proportional to body mass), whilst in Figure 4.10, MTA levels off at around 60mm^2 . The possible adaptation of changing bill morphology in relation to nestling growth will be discussed in Chapter 5.

4.1.3 Feather growth

Figure 4.8:

7.44

IE.M MINTELE

The development of feathers in the Dipper is summarized in Table 4.1. Feathers prick first on the head at about day 3.5, followed by wing coverts (day 4.0), back (5.3), primaries (5.4) and belly (6.1). The first ones to split are the back (day 5.7), head (6.2) and belly (6.7), whilst the primaries and wing coverts split later (8.3 and 7.7 days respectively). Since young are becoming homeothermic at around seven to eight days of age, energy put into growth of insulating feathers, specifically the exposed back, but also the head, will be energetically beneficial. Feathers on the belly presumably provide little insulation

since this part of the nestling is rarely exposed. Development of feather covering on the wings will also provide insulation, although early development of primary and secondary feathers

about 14 days 17 CT101] O S. B. P. LT ssoo Lancater ATM by ATE 1970H by body mass, 11111 10mb both) but in I 1s. direc Migure 4.10, M allaptation of REGARD WILL DO Ed Samet 2/17 hi basiyannua E yab jpods ds insming . (E.d) ody win thigh whilst the pris T.7 days respec thermic at arou into growth of back, but also Feathers on the

state this part $r^2 = 0.91, n = 365, p < 0.001$ of feather cove (Means and ranges) Although mariy

17. Piguna 4. d.sel 1.60 , Ke 144. STATE

TABLE 4.1: The relationship of feather growth (length) with age for nestling Dippers

f	at day 23		2.2				1
Mean Growt completed § Adult		89.6	6*06	100.0	86.8	80.3	
length	S.E	2.84	2.50	5.86	5.90	5.88	
IIt 1	+		-	-	-		
Adh	1X	63.	2	25.	26.	9.5	
	significance	pK0.005	p<0.005	p<0.005	100.0M	p<0.05	
Total	r ²	93.4	86.7	98.2	85.8	30.4	
	д	2.86	2.28	1.55	1.37	0.39	
t' Rank	order	ഹ	*	T	m	2	
Int'	day split	8 3	1.7	5.7	6.7	6.2	
	Ą	1.07	0.62	0.75	64.0	0.32	
n Rank	order	+	3	m	S	٦	
iq nea	ay	5.4	0.4	5.3	5.1	3.5	

'Tuft' refers to the portion of feather split from the pin.

'Pricked' refers to the time when the feather pin just begins to break (prick) through the skin (see text).

١

might increase problems of heat loss (Section 4.4) due to long periods of pin exposure prior to splitting; three to four days for primaries and wing coverts. The main insulating feathers however (with the exception of the head) split almost as soon as the pins prick through the skin. The back feathers are by far the most important insulating group of feathers, and have completed growth by fledging. Primaries and wing coverts have completed almost 90% of growth at fledging whilst the head feathers have completed 80% of growth. The relative mass of the head is large in small nestlings and decreases as nestlings become older (Figure 4.19(d)), thus one might expect that the head becomes decreasingly important as an avenue of heat loss, whilst the body, leg, belly and back remain at a similar relative mass (Figure 4.19(a)). Early growth of head feathers may therefore initially reduce heat loss but slower growth later may not affect heat loss through the head appreciably. Table 4.2 shows the loge/loge slopes of each feather area versus mass. It can be seen that back feathers grow considerably quicker than the body as a whole and more so than the other feather areas, whilst the belly is the slowest feather growing area. The high exponents are due to the fact that feather growth only commences about a third of the way through body growth.

3

4.1.4 Sexing Dipper nestlings from body measurements

66.

It was often possible in mature (> 18 day old) Dipper

nestlings to separate members of a brood into one of two size

classes, depending on whether they were relatively large or

might increas long periods four days for feathers howe ds soon as th are by far th and have comp coverts have Whilst the hes relative mass degreases as a one might expe AS an avenue o back remain at Early growth o heat loss but through the ha slopes of each back feathers whole and more belly is the sl are due to the a third of the 4.1.1 Sex

TABLE 4.2: The exponent b, of the loge feather length (mm) versus loge nestling mass (g) relationship for the major areas of feather growth in the Dipper

The relationship is described by: feather length = a mass^b.

Feather area	<u>Þ</u> .	<u>r</u> ²	significance
Primary	3.42	83.4	p < 0.005
Wing Coverts	3.94	75.7	p < 0.005
Back	12.9	93.9	p < 0.005
Belly	2.94	99.3	p < 0.005
Head	3.28	35.9	p < 0.05

small for their age. It was suspected that this difference might be an early indication of sexual dimorphism found in the adult (Anderson & Wester, 1971). It was possible to sex eighty-three nestlings retrospectively; sixty-six from retrap measurements as adults and seventeen from carcass analysis (Section 3.1.2). Tarsus measurements were only available for twenty-seven nestlings.

TABLE 4.2:

reather area

Wing Coverce

Primary

Smok

Nestling mass, wing-length, tarsus length, age, wing/mass ratio (WMR) and wing/tarsus ratio (WTR), for these nestlings were entered into two and three-way discriminant analyses, using the 'Discriminant' program of SPSSX (Nie' et al., 1983). One set of measurements per nestling was entered into the analysis, or where several were available the measurement from the oldest chick was used. Nonetheless growth data were not confined to the latter part of the growth period and so a stepwise approach was used in which data was analysed progressively eliminating younger birds, so that the effect of age on the ability to discriminate the sex of a nestling was examined. Table 4.3 shows the significances of the various analysis performed. It can be seen that three-way analyses provide consistently better discrimination than twoway analyses, although the addition of a fourth parameter did not improve the relationship. Older birds (> 18 days old) produced a greater number of significant relationships than

67.

younger birds. Two analyses provided the most significant relationships; Age:Mass:Tarsus and Wing:Mass:Tarsus. The latter was the most significant and was therefore used to sex

and in the the Idala 24 .40 .0 the adult the elghty-three measury measury analysin (Sac available for 1805 Wing/mass rati neetlings were analyses, unit (E891 ,.18 3a entered into 7 this measured and growth data we perfod and no analysed progr uge in theirs neetling was a the various an analyses provi way analyses, not faprove the a beouborg

e significance of variables entered into a discriminant analysis in edicting the sex of nestling Dippers (Nie et al., 1983, SPSSX 'discriminant' program)

ered into	Analysis	5	14	16.5	18	
		0.0249* ^b	0.0525	0.0076**	0.0040***	
		4660.0	0.0858	0.0121*	0.0042***	
		0.2040	0.2118	0.1216	0.1446	
		*0+10.0	0.0263#	0.0072**	0.0055**	
		0.0484#	*T0+0*0	*0100	0.0050***	
		0.2414	0.2893	0.2048	0.1281	
		0.0124*	0.0165*	0.0076**	0.0048***	
		0.0322#	0.0364#	0.0207*	0.0138*	'
ns		0.0211*	0.0023***	0.0048***	*0110*0	
sus		0.0201*	0.0022***	0.0030***	#6110°0	
sus:Age		0.0440*	0.0064**	0.0089##	0.0296*	
•						

data; lu is birds with 49⁺ wing length; cds with 65⁺ wing length 0.05; ** = p < 0.01; *** = p < 0.005</pre>

16.5 is birds with 59⁺ wing length;

1

27

TABLE 43: The provide service of the provide servide servide service of the provide service of the provi		
TABLE 4.3: Th TABLE 4.3: Th Variables ente Age: WNR Ving: MASS Age: Mass Age Age <th></th> <th></th>		
TABLE 4.3: Th TABLE 4.3: Th Variables ente Age:WMR Ving:MMR Ving:MMR Ving:Mass:Tarsu		-
TABLE 4.3: Th TABLE 4.3: Th Variables ente Age:WMR Age:WMR Age:WMR Age:WMR Wing:WMR Wing:MMR Wing:MMR Wing:MMR Wing:MMR Wing:Mass Age:Mass:Tarsu Wing:Mass:Tarsu	р ж р	
TABLE 4.3: Th PER Variables ente Age: WMR Age: WMR Age: WMR Age: WMR Wing: WMR Wing: MMR Wing: MASS: Tarsu	18 is bi	
TABLE 4.3: Th TABLE 4.3: Th Variables ente Variables ente Age: WMR Age: WMR Age: WMR Ving: WMR Ving: MMR Ving: MMS Age: Mass: Ving Age: Mass: Tarsu Ving: Mass: Tarsu	a 5 is all	
TABLE 4.3: Th TABLE 4.3: Th Prince Variables ente Age:WMR Age:WMR Age:WMR Ving:WMR Ving:WMR Ving:MMR Ving:MMR Ving:MMR Ving:MMR Ving:MMR Ving:MMR Ving:MMR Ving:Mass:Ving Age:Mass:Tarsu Ving:Mass:Tarsu	Wing:Mass:Tars	
TABLE 4.3: Th TABLE 4.3: Th PE Variables ente Age:WNR Age:WNR Age:WNR Ving:WNR Ving:WNR Ving:MNR Ving:MNR Ving:MNR Ving:MNR Ving:MNR Ving:MNR Ving:MNR Ving:MNR Ving:Mass Age:Mass:Ving Age:Mass:Tarsu	Wing:Mass:Tars	
TABLE 4.3: Th TABLE 4.3: Th Pr Variables ente Age: WMR Age: WMR Wing: WMR Wing: WMR Wing: WTR Wing: Mass	Age:Mass:Tarsu	
TABLE 4.3: Th TABLE 4.3: Th Pr Variables ente Age : WMR Age : WMR Age : WTR Wing : WMR Wing : WTR Wing : WTR	Wing:Mass	
TABLE 4.3: Th TABLE 4.3: Th Pr Age: WMR Age: WMR Age: WTR Wing: WMR Wing: MWR	Wing:WTR	
TABLE 4.3: Th TABLE 4.3: Th Print Print Print Print <t< th=""><th>Wing:WMR Wing:MWR</th><th>-</th></t<>	Wing:WMR Wing:MWR	-
TABLE 4.3: Th TABLE 4.3: Th Pr Variables ente Age:WMR Age:MWR	Age:WTR	
TABLE 4.3: Th Pr	Age: WMR Age: MWR	
TABLE 4.3: Th	Variables ente	
	TABLE 4.3: Th	ALCONCO.
younger bi relationsi latter was	younger bi relations: latter was	

'unknown' birds for the subsequent comparison of male and female growth curves (Section 4.1.5).

The equation used to sex Dipper nestlings, calculated from the discriminant unstandardized canonical function coefficients is:-

sex = (0.101*Mass) - (0.076*Wing) + (1.041*Tarsus) - 29.65 eqn. 4.1 Values that are negative are classified as females and those that are positive are males.

Table 4.4 shows the percentage of birds correctly sexed using the above equation. The proportion of correctly sexed birds increases with nestling age. At age > 18 days all females were correctly classified. At all ages the ability to discriminate females was higher than for males, due to the incorrect sexing of small males.

4.1.5 The effect of sex on nestling growth

The Dipper growth data were re-analysed, and nestlings for which growth data measurement were available for the latter part of the growth period (i.e. > 14 days, see Figure 4.1) were sexed using the discriminant function.

Figure 4.12 shows male and female masses as functions of age. After five days males were significantly heavier than females of the same age, and averaged 11% heavier at fledging. Males had longer tarsi than females and averaged 5% longer towards the end of the growth period.

68.

Se: MME

Both sexes had completed tarsal growth after approximately

twelve days (Figure 4.13(a-b)).

'unicosen' bin femala growth nalculated fro function cost function cost star are [0.1014 rhar are post star are post anued binds in sill females we ability to dis due to the inc

4.1.5 The 4.1.5 The The The The The for the latter res Figure 5.1 Figu functions of s heavier than fo

sall to golvant

The percentage of Dipper nestlings correctly TABLE 4.4: sexed from a discriminant analysis of mass (g), winglength (mm) and tarsus length (mm) for three age classes > 16.5 days > 18 days > 14 days Sex % correct n % correct n % correct n 78.6 14 80.0 10 83.3 6 Male 90.0 100.0 Female 84.6 13 10 8 81.5 27 85.0 20 92.86 14 TOTAL:

. .

: *. v 3.30kg

S. F. B.H.

PARALO

:33707

2

Figure 4.13:

Tarsus length (mm) as a function of age in the Dipper.

(a) Males (b) Females (b)

Means ± 1 standard deviation

1.2

(3)

Tarsus Jength (hm)

Figure 4

(a) males (b) females means ± 1 standard deviation

The slopes of male and female regressions of winglength on age did not differ significantly, though males had slightly longer wing-lengths for a given age, as indicated by the intercept of the regression (Figure 4.14(a-b)).

At fledging females had completed 90% of adult growth for mass and wing-length, and males 84% and 83% respectively. Although males tended to be larger than females, especially late in the growth period, females grew proportionately faster. Table 4.5 shows the parameters for the fitted growth curves for male and female nestlings. The growth rate constants for mass and tarsus-length on age, are higher for females. This suggests that males are bigger at hatch and that this size difference is maintained during growth. The implications of this size dimorphism with respect to the energetic cost of rearing males and females is further discussed in Section 4.6 and Chapter 5.

A number of factors other than sex were thought to influence Dipper nestling growth. Two of these factors were analysed - nest type and brood-size. Dipper nests can be divided into two types; exposed and enclosed. Exposed nests consist of a large mass "ball" with usually a slightly downward facing nest entrance hole (Plates 3.2 and 3.3), and an inner nest cup of grass lined with dry leaves. Enclosed nests are built within holes, for example in stone bridges, or sometimes

69.

within drainage pipes (Plate 3.4).

四月二

F.H

845

540

332

45

26

SILPLY

4.1.6 The effect of nest type on nestling growth

Enclosed nests can become noticeably cramped,

especially as the young increased in size. A two-way analysis

length on age had slightly 1 by the interce growth for mas respectively. females, espec the fitted grou proportionately figher for fema hatch and that to the energeti

influence Dippe analysed - nest divided into tw consist of a la facing nest ent nest cup of gra built within ho

mun A

TABLE 4.5: ^aFitted growth parameters for male and female Dipper nestlings

Variable	Male ^b	Femaleb
Asymptotic Mass (g)	58.02	51.75
Growth rate (k)	0.300	0.380
Age of Inflexion (days)	6.26	6.08
Asymptotic Tarsus (mm)	28.28	26.94
Growth rate (k)	0.298	0.362
Slope Wing (b)	3.43	3.48
Intercept Wing (a)	2.03	0.934

 Data fitted using logistic equation from Ricklefs (1967). Asymptote for mass estimated as the mean mass of 14-23 day old nestlings. Tarsus asymptote estimated from 17-23 day old nestlings.

The logistic curve = A/[1 + ek(t-age)]

b Sexed from discriminant analysis, but including birds sexed directly as adults and through carcass analysis (Section 4.1.4)

of variance showed that nest type did not explain a significant amount of the variance in either peak nestling mass (asymptote) or growth rate. The latter was measured as the mass of nestling at the inflexion point on the fitted growth curve for all data (i.e. 6.3 days).

4.1.7 The effect of brood-size on nestling growth

Brood-size explained a significant amount of the variance and was therefore entered into a two-way analysis of variance with sex of nestling. The results are presented in Table 4.6. Sex of nestling accounts for 29.1% and 36.3% of the variance in growth rate and maximum mass respectively. Broodsize explained less of the variance but was still significant. Both brood-size and sex of nestling explained a higher percentage of the variance in maximum mass than growth rate.

4.2 THE ENERGETICS OF NESTLING GROWTH IN DIPPERS

4.2.1 Whole body water content, lean dry mass, lipid and water indices

Figures 4.15 and 4.16 show LDM, water indices, water content and lipid indices for nestlings as a function of age. They are presented with comparative data for fledged juveniles and adults. LDM increases linearly with age; $(y = -0.186 + 0.630x, r^2 = 94.7, n = 18, p < 0.001).$

Nestlings fledging at twenty-three days have attained 81% of adult LDM. Water indices (Figure 4.15(b))

Data fittad Asymptote f 14-23 day o

CANLE 4.5:

Variable

Asymptotic Mass

(N) sist find

Aze of Inflexic

Asymptotic Tara

Growth rate (k)

Slope Wing (b)

Intercept Wing

Sexed from dec

70.

decreased with age as tissues matured, and nestlings fledged with water indices about 11% higher than for adults. Whole body lipid index (Figure 4.16(a)) was considerably more

of variance sh add to Inutian or growth rate ny ye published (m.1) mint dis. HT T.I.P . eros5 Wariance and W Waslance with Table 4.0. Ser variance in gr state explained Holk hrood-sim To systempted H.J. THE ELER +.2.1 m Tiguz Water content. of age, They a ban eofinevul (y = -0.188 + 1 fertil

TABLE 4.6: The percentage variation in Dipper growth rate and asymptotic mass attributable to brood size and sex of nestlings, from a two-way analysis of variance

Source of variation	Growth rate ^a	Asymptotic mass ^b
Error	61.2%	53.9%
Brood size	4.7%	7.28**
Sex	29.1%*** ^C	36.3%***
Interaction	3.9%	2.7%

- a Mass at inflexion. Inflexion was calculated from the logistic curve fitted through combined Dipper nestling growth data (Section 4.1.1) and is equal to age 6.3 days
- b Mean mass 14-23 days of age
- c ** = p < 0.02; *** = p < 0.005

Figure 4.15:

variable than either LDM or water index, but increased with age, so that fledglings had lipid indices twice those of adults and juveniles. This can be viewed as a mechanism for ensuring sufficient fat reserves at fledging, when energy demands may increase sharply on leaving the nest. Young are capable of leaving the nest and surviving as early as day twelve. Even at this early age, lipid indices are substantially similar to those of adults and juveniles, Figure 4.16(a).

1. 6

:01.4 0117213

The mean whole body ash index (Ash mass/LDM) is 0.112 \pm 0.015 (Figure 4.21(m)), although individual variation among components with age is marked (Figure 4.21(a-1)). The calorific equivalent of tissue was obtained by multiplying lipid mass by 39.75 and ALDM by 23.64, carbohydrate was assumed to be negligible. Wet energy density (WED = kJ g⁻¹ wet weight) and dry energy density (DED = kJ g⁻¹ dry weight) were calculated using the mean ash index for the whole body and are plotted in Figure 4.17. WED increased with age so that nestlings fledged with similar WED's to adults and juveniles. DED was, however, more constant with the suggestion of a slight upward trend before tailing off to the lower adult and juvenile levels.

4.2.2 Lean dry mass of body components

All body components increased in LDM with age (Figure 4.18(a-1)), and with the exception of lungs and

71.

intestine appear to have lower LDM component masses than juveniles and adults. Differential growth rate of components was examined by calculating the relative lean dry mass of
variable than age, so that adults and ju ensuring suff demands may in capable of les Even twelve. similar to the The 0.112 ± 0.018 among componen Calorific equiv lipid mass by assumed to be n wet weight) and were calculated and are plotted that nestlings juveniles. DED of a slight upwa adult and juven 4.2.2 Lear All bo (Figure 4,18(a-1

-

Figure 4.18:

. -

Lean dry mass of Dipper body components as a

function of age

(a) Skin and feathers

(b) Wings

(c) Legs

(d) Pectoral muscle

(e) Neck

(f) Head

(g) Intestine

(h) Liver

(i) Heart

(j) Kidneys

(k) Lungs

(1) Body shell

each component (RLDM);

$$RLDM_{component} = \frac{LDM_{component}}{LDM_{total}} \times 100 \qquad eqn. 4.3$$

These are plotted in Figure 4.19 for each component. Growth of body components can also be related allometrically to LDM;

LDM component = a LDM total

where a is a constant, and b is the exponent of component LDM on total LDM (e.g. Jones (1985), O'Connor (1977), Tatner (1984)).

In Table 4.7 allometric growth constants for Dipper nestling LDM are also presented. RLDM is initially high and then decreases in the head, neck and liver as also demonstrated by the low values of b (Table 4.7). The RLDM of the gizzard actually peaks at around day six although the height of the peak may be exaggerated by the single high value at 4.5 days. This reflects the importance of the ability of the young to process food and grow rapidly. The peak RLDM of intestine and liver (6% and 7-8% of total LDM) in the Dipper are lower than for some other passerines (Blue Tit, House Sparrow, House Martin; O'Connor (1977)), and resembles more closely the figures for Double Grested Cormorants (8 and 6-7%, Dunn (1975)), and Herring Gulls, <u>Larus argentatus</u>, (8 and 6-7%, Hall (1979)). Ricklefs gives a figure of 7-9% for

72.

the liver fraction in the Cactus Wren, Campylorhynchus

brunneicapillus (1975) which is also a passerine.

neuocmon ilene

gaoo HGJA

These are plo moved of body

Where a 19 a (201 an coral Thinks (1994)

E 11

Freezides LDM a mineri decreases by the inu val ectually peaks This wifflance process food a ind liver (s) fouse Martin; Than for some fouse Martin; Dunn (1975)), S-7%, Hall (12

TABLE 4.7: Allometric growth constants for the lean dry mass of Dipper nestling body components. The relationship is described by;

Lean dry mass of component = a lean dry mass of whole body b

Body Component	Slope b	SE of b	Intercept log _e a	SE of log _e a
Skin and feathers	1.09	0.026	-1.71	0.060
Pectoral muscles	1.76	0.038	-4.25	0.050
Wings	1.10	0.025	-2.92	0.054
Legs	0.96	0.017	-1.87	0.048
Body Shell	0.90	0.018	-1.42	0.034
Head	0.68	0.012	-1.90	0.036
Gizzard and Oesoph agus	0.49	0.028	-1.64	0.055
Intestine.	0.73	0.019	-3.01	0.038
Liver	0.80	0.020	-2.67	0.038
Kidneys	0.98	0.020	-4.36	0.039
Lungs	0.60	0.030	-3.39	0.060
Heart	0.86	0.017	-4.06	0.034

-0

er bo

Figure 4.19: Relative lean dry mass of Dipper body components as a function of age

- (a) Body shell
- (b) Skin and feathers
- (c) Wings
- (d) Head
- (e) Legs
- (f) Neck
- (g) Pectoral muscles
- (h) Gizzard and oesophagus
- (i) Liver
- (j) Heart
- (k) Intestine
- (1) Lungs
- (m) Kidneys
- (n) Flight feathers and tail

x

AND COLUMN TRA

ž

10 H H

(13)

-0

82

.

O'Connor (1984) has shown a relationship between the relative growth of the liver (coefficient of allometry during the first few days of growth) and total body growth expressed in terms of the growth constant K. The Dipper fits well into this relationship: Relative growth of liver = 1.4, K = 0.328.

Skin and feather, leg and pectoral RLDM increase with age and have exponents of allometry of greater than b = 1 demonstrating that they grow faster than the body as a whole.

4.2.3 Lipid content of body components

In Table 4.9 nestling lipid content is given for each component as a function of total lipid. Lipid content combines that fraction of lipid within the tissues and the subcutaneous lipid deposits. Lipid content is therefore not a measure of actual fat stores, although it is likely to be directly proportional to these. The slope b partitions component lipid over the nestling period. Hence the skin and feathers component accounts for 31%, body shell 21% and legs 7.6% of total body lipid. Body lipid in the skin and feather component is subcutaneous hence feathers do not contribute to lipid content. The exponents in treatment II suggest, however, that lipid is preferentially stored in the skin, pectoral muscle and wing fractions of the body. Wings and pectoral muscle only account for about 10% of total body

73.

1.0

623

21

100

lipid however.

Correcting for autocorrelation (i.e. removing

component lipid in turn) between component lipid content and

a gyltsler edr Suring the fir sapressed in b "wall' into this E * 0.428 . . nlda. of bas aga arth demonstrating 4:2.3 LL 20 To audh component pashines that 1 alboutsneous L. a standing of ac directly propur acamponent ligid Easthars sampon logs 7.00 uf th fasther compone dentribute es 1 suggest, howeve picto, pactoraland protory her

The relationship is described by;							
Water	index of c	omponent =	whole body	X OI			
Body Component	Slope b	SE of b	Intercept log _e a	SE of log _e a			
Skin and feathers	1.78	0.029	-1.41	0.040			
Pectoral muscles	0.86	0.020	0.42	0.025			
Wings	1.30	0.012	-0.37	0.016			
Legs	0.97	0.014	-0.12	0.019			
Body Shell	0.76	0.010	0.34	0.013			
Head	0.93	0.026	0.38	0.035			
Neck	0.88	0.007	0.31	0.011			
Gizzard and Oesophagus	0.40	0.023	0.57	0.031			
Intestine	0.312	0.029	1.12	0.038			
Liver	0.51	0.016	0.72	0.021			
Kidneys	1.21	0.031	0.20	0.041			
Lungs	0.67	0.035	0.91	0.047			
Heart	0.81	0.041	0.58	0.054			

TABLE 4.8: Allometric growth constants for the water indices of Dipper nestling body components.

TABLE 4.8:

sady Component

Skin and feath

Pectoral muscl

agniw

Legs

BeeH

Neok

Body Shell

Gizzard and Gesophagus

Intestine

Liver

egnud

Heart

Kidneys

Fat content of Dipper nestling body components expressed as a function of total body fat

1.1	I Component function	fat as a of total fat	Loge (col function	II mponent fat) of loge (to	as a stal fat)	Component of "correc	III fat as a functi ted" total fat	ion
150	A	r	A	SE of b	s	А	r ²	
	0.308	0.905	1.10	0.031	0.894	0.389	0.634	1.4.
es	0.056	0.544#	1.27	0.084	0.787	0.053	0.215*	
	0.050	0.845	1.17	0.019	0.963	0.051	0.684	
	0.076	0.911	0.957	0.028	0.879	0.080	0.803	
?	0.210	0.905	0.960	0.027	468.0	0.247	0.712	1
	0.039	0.864	0.699	0.024	0.843	0+0.0	0.726	
	0.015	0.640	0.420	0.028	0.615	0.015	0.391	
	0.045	0.827	0.826	0.039	0.782	0.046	0.653	-
	0.029	0.666	0.678	0.023	0.8473	0.030	0.389	
	0.010	0.587	0.650	0.026	0.811	110.0	0.294	
	0.004	0.752	0.658	0.021	0.872	0.004	0.514	
	0.005	0.711	0.886	0.022	0.915	0.005	0.551	
		and the second second	Aller in milele ??	and a subscription of				1

Components were dissected as in Section 3.1.3 All regressions significant to p < 0.001, except * pectoral Treatment I (p < 0.05), n = 20 and Treatment III (p < 0.05), n = 20

a

11

: •

Pectoral muscle Gizzard and Oesophagus TABLE 4.9: aComponent Body Shell Intestine feathers Skin and Kidneys Liver Wings Lungs Heart Head Legs Ø

total lipid content, reduced the significance of the regression in all cases, although all still remained significant; the pectoral muscles just so (see Table 4.9(II)). The rank order of component lipid deposition as expressed by b in the Dipper is identical to that found in the Sand Martin (Jones, 1985), although the values differ slightly.

4.2.4 Water indices of body components

2

I DT B

1

-2 T

0

25

32

14.2

28

100

JEAT

10 10

Water indices are plotted as a function of age in Figure 4.20 for nestling body components. Water index decreased in all cases with age, but the gizzard, liver and lungs have declined to likely adult levels by the first week of growth, whilst the other components remain slightly higher than adults even among fledlings. Since low water indices are considered to represent advanced functional maturity of components (Ricklefs, 1974), then those associated with digestion (see above) become functionally mature relatively early as well as being of large size (see Section 4.2.2). This is borne out by the exponents in Table 4.8, for the liver, intestine and lungs which all have very low values suggesting they have lower water indices than the body as a whole. Skin, feather, and wings appear to mature notably slower than the rest of the body.

4.2.5 Ash indices of nestling body components

Data for whole body ash indices are scarce and

74.

exist for only a handful of species (Austin & Ricklefs, 1977; Bryant & Gardiner, 1979; Ricklefs, 1967,1975). Data for mean ash indices of individual body components have been

Figure 4.20:

com

us

Water index of Dipper body components as a function of age

- (a) Skin and feather
- (b) Pectoral muscles
- (c) Wings
- (d) Legs
- (e) Body shell
- (f) Head
- (g) Neck
- (h) Gizzard and oesophagus
- (i) Intestine
- (j) Liver
- (k) Kidneys
- (1) Lungs
- (m) Heart

x

-0

published for only two species; the House Martin (Bryant & Gardiner, 1979) and the Red-winged Blackbird, <u>Agelaius</u> <u>phoeniceus</u>, (Ricklefs, 1967b). These data are compared with those found in this study for the Dipper in Table 4.10. In each case the way ash index changes with age is noted and the range of values (maximum and minimum) representing changes from smaller chicks to older chicks (but see (c) Table 4.10) are also shown. The full data for the Dipper are plotted in Figure 4.20, and the significance of regression lines fitted through the data are presented in Table 4.11.

Ranges and trends for all components that contain skeletal material (wings, neck, legs, head) are remarkably similar, despite the difference in the size of the species concerned. The percentage of ash in those components which do not contain skeletal material (integument, heart, liver, gizzard, intestine) are more variable. House Martins have ash indices for these components about half that of Dippers, whilst the Red-winged Blackbird integument figures resemble those of the Dipper, perhaps due to its similar total body mass. The regression equations in Table 4.11 were used to calculate ash free lean dry mass (ALDM) for calculation of the energy content of body tissues with age (see 4.2.6).

Whilst there was no obvious increase or decrease of whole body ash index with age (Figure 4.21(m), Table 4.11), there is a suggestion that ash index falls from a high value at hatching until about day ten and then increases again. In this respect it is worth quoting Ricklefs' (1967b) work on the

75.

gublished for. Gardiner, 1979 phoeniceus, (S these found in sett bass fine the range of v from smaller o are also shown Figure 4.20; a through the da Rang Tetam Istsienter lgamb, daspi dongerned. Th lo not contain minard, inter Amh indices for whilet the Red-Mass of the B DANS. The rega daloulate ash :

the energy const While of whole body of there is a sugg at batching unt

TABLE 4.10: A comparison of ash index for nestling body components in three passerine species as a function of age. Table shows trend with age and range of values measured.

2 2

Ash Index = Ash mass/lean dry mass

Body Component	Red-Winged Blackbird ^a	Dipper	House Martin ^b
Wings	Increases	Increases	Increases
	9-23%	9-24.5%	9-23%
Legs	Increases	Increases	Increases
	11-21.0%	11.7-19.3%	11.6-16.55%
Head	Increases	Increases	No change ^C
	12.0-18.0%	15.0-17.8%	14.4%
Integument	Decreases	Decreasesd	No change
	10.0-3.0%	8.5-1.0%	3.0%
Pectoral Muscle	Decreases	No change 4.0%	- "
Heart	Decreases	No change	No change
	-	10.5%	5.2%
Liver .	Decreases	Decreases 16.7-0.6%	
Neck	-	Increases 13.1-16.8%	No change 13.2%
Gizzard and	-	No change	No change
Oesophagus		9.0%	4.9%
Intestine	-	No change 16.0%	No change 6.9%

a Ricklefs, 1967

b

Bryant & Gardiner, 1979, range shows minimum and maximum

value for the early part of the growth period only

c Single figures are mean values

d Skin and feather

SAMLE 4.10:

dranspiel dis

Inclusion

- pitter

typik.

Sectoral Russian

Tante

mul."

Des branzili Bugargose

Intentine

Bicklafs, 1967
Beyant & Gardi

TABLE 4.11: Regression equation parameters for the change in ash index with age (days) for Dipper nestling body components

Body Component	Intercept a	SE of a	Slope b	SE of b	r ²	significance
Skin and						
feathers	0.085	0.003	-0.0033	0.0004	84.4	p < 0.005
Wing	0.089	0.008	+0.0068	0.0006	66.8	p < 0.01
Legs	0.117	0.002	+0.0033	0.0002	83.8	p < 0.001
Head	0.150	0.002	+0.0012	0.0001	51.7	p < 0.02
Neck	0.131	0.003	+0.0016	0.0002	44.9	p < 0.05
Gizzard and oesophagus	0.090	0.007	-0.0009	0.0005	0.0	NS
Intestine	0.160	0.014	-0.0053	0.001	31.9	NS
Liver	0.167	0.012	-0.0070	0.0008	55.9	p < 0.05
Heart	0.105	0.013	-0.0026	0.0009	0.0	NS
Lungs	0.115	0.006	-0.0027	0.0005	34.8	NS
Kidney	0.191	0.010	-0.0082	0.0008	64.7	p < 0.02
Body Shell	0.104	0.006	+0.0031	0.0004	50.8	p < 0.05
Whole body	0.110	0.004	+0.0001	0.0003	0.0	NS

Figure 4.21:

IV

ha

Ash index of Dipper body components as a function of age

- (a) Skin and feather
- (b) Wings
- (c) Legs
- (d) Head
- (e) Neck
- (f) Gizzard and oesophagus
- (g) Intestine
- (h) Liver
- (i) Heart
- (j) Lung
- (k) Kidney
- (1) Body shell
- (m) Whole body

. .

1.2

Red-winged Blackbird and comparing his findings to Figure 4.20(m). He states that "the ash index of Red-winged Blackbird nestlings is high initially (13-15 per cent of hatching) and drops to about 10% at five days of age before rising to about 12% by the time of fledging". Austin & Ricklefs (1977) also found this pattern of change in the Cactus Wren, <u>Campylorhynchus brunneicapillus</u>: 10.7% at day 0, decreasing to 6.6% at day four, then increasing to 9.5% at fledging.

4.2.6 The energy content of nestling body components

The energy content of whole body and body components is plotted in Figures 4.23, 4.22. All components continue to increase in energy content until fledging, with the exception of the gizzard, which decreases from about half way through the nestling period. Bryant & Gardiner (1979) found a similar pattern of gizzard energy content change for the House Martin in the only other study that has published data on body component energy content changes with age. The liver energy content increases quickly initially and then levels off, again emphasising early investment of growth in food processing organs. Total energy content increases linearly with age (Figure 4.23). The exponent of the log-log regression (1.27) is lower than that quoted for other species; Barn Swallow 1.65, Cactus Wren 1.39, Rufous-winged Sparrow 1.39 (Austin &

U.L.W.

0.13

0.12

0.11

0.10

76.

Ricklefs, 1977). This is probably due to the fact that Dipper nestlings start with relatively high lipid indices (Figure 4.19), resulting in their high initial energy density

Figure 4.22:

body cr

gus

2 2

Energy content of Dipper body components as a function of age.

- (a) Skin and feather
- (b) Pectoral muscle

(c) Wings

(d) Legs

- (e) Body shell
- (f) Head
- (g) Neck
- (h) Gizzard and oesophagus
- (i) Intestine
- (j) Liver
- (k) Kidneys
- (1) Lungs
- (m) Heart

figures of 3.31 kJ g⁻¹, and low slopes of increase in energy density during growth, 3.38 kJ g⁻¹ day⁻¹ (0'Connor, 1984).

4.3 RESTING METABOLISM OF 'MATURE' DIPPER NESTLINGS

209

[mmw 4.23]

Night-time resting metabolism of well grown (> 12 days) dipper nestlings, able to thermoregulate was measured for brood sizes of 1 - 3 and at three different temperatures; 5°C, 15°C, 25°C. Chamber temperatures of 5°C and 15°C are comparable with field T_a (mean 7.6, range 2.9-14.6°C, n = 36 days observations), whilst field T_a never reached 25°C. The temperatures that nestlings experienced within the nest during periods of inattentiveness in the wild ranged from 12.7-18.7°C (mean = 15.1, n = 11 days observations).

The results of the metabolism study are presented in Table 4.12(a) and Figure 4.24. A two-way analysis of variance (Table 4.12(b)) of resting metabolism against brood-size and temperature was significant (F = 3.03, df 8,26 p < 0.05). Nestling metabolic rate tended to decrease with increasing brood-size and temperature. Metabolic rate at 5°C was higher than at 15°C and 20°C across brood-sizes, although single nestlings raised their metabolic rates to a higher level than broods of two or three (Figure 4.24). Single nestlings progressively reduced their metabolic rate as ambient temperature increased. There was no difference between metabolic rate at 15°C and 25°C for broods of two and three

77.

although it was lower than at 5°C and comparable to metabolism

of a single nestling at 25°C. Huddling thus reduces metabolic

costs at low (5°C) temperatures but has less effect at higher

figures of 3.3 densiry during 2.18 RESTING M High ib (symb ti () neasured for b :Rogutatognaj and live are of 3,9+14.69C, n 4 reached 25°C. within the news ranged from 12.

TOE T Table W.12(a) a (Table 4.12(b)) temperature was Sesting wetabo brood-wize and timn at 15°C and nestings raises broads of two or progressively re temperature inco metabolic rate A

Metabolic rate as a function of brood-size and temperature in Dipper nestlings (means ± 1 S.D.) See also Table 4.12

() Brood-size 1

Brood-size 2 ()

(•) Brood-size 3

Brood size	Chamber Temperature (°C)	Metabolic rate (Wg
1	5	0.0210 ± 0.0000
	15	0.0197 ± 0.0013
	25	0.0140 ± 0.0000
2	5	0.0173 ± 0.0020
	15	0.0160 ± 0.0007
	25	0.0133 ± 0.0010
3	5	0.0170 ± 0.0020
	15	0.0148 ± 0.0005
	25	0.0145 ± 0.0020

Two-way analysis of variance; F = 3.03, df 8.26, p < 0.05

.0.011 T

0.010

0.019

0.018

ee 0.017 8 0.016 2 0.015

410.014

0.013

0.012

TABLE 4,141 Th

Two-way analysis

TABLE 4.12(b): The effect of broodsize and temperature on resting metabolism in Dipper nestlings, from a two-way analysis of variance

Degrees of Significance Source of variation F Freedom 2 4.008 0.036 Broodsize 0.039 2 3.902 Temperature Main effects 0.017 4 3.992 combined 0.128 4 2.065 Interaction Main effects and interaction 8 0.024 3.028 combined

TABLE . W. IJEAT

Source of Varia

uroodsize.

Camperstury.

eroslin effects banldmoo

Interaction

Main sfrects

temperatures. Huddling in broods of three does not appear to significantly increase savings above broods of two.

THERMOREGULATION 4.4

4.4.1 Model parameters for predicting cooling and reheating rates of Dipper nestlings

Nestling cooling rates were examined in the Dipper in the laboratory and in the field using a portable microprocessor based logging device (Section 3.3.1). Reheating rates were examined in the field only. Rates are expressed as the slope of the fitted loge temperature versus time curve which implies a constant proportional change in temperature with time. The slope is the proportion by which initial body temperature drops and can be converted to cooling rate expressed as °C.°C. h using the equation in Section 4.4.6. All fitted curves were significant at p < 0.005.

Several parameters were expected to influence cooling and reheating rates (see Section 4.4.3, 4.4.4). These are presented in Table 4.126. The parameters were entered into a stepwise multiple regression analysis using the SPSSX statistical package (Nie et al., 1983). The procedure was halted when the next variable to be entered had a non-significant t-value. It was informative, however, on occasions (see below) to enter variables into the regression that would not have been entered first because of their lower levels of significance. Such variables are hereafter termed 'forced'

78.

variables.

, requireratures,	TABLE 4.12(c	c): Model parameters for predicting cooling
algnificantly		
BURNARS BURNARS	BSIZE	= Broodslze
and the second	BMASS	= Brood mass (g)
07 L(PAP	NMASS :	= Nestling mass (g)
Nest	TIME	= Duration of cooling/reheating event (mins)
in the laborat	AGE :	= Mean age of the brood (days)
processor base	RATE	Slope of the loge temperature (°C) on time (hours) curve. RATE is synonymous with LCR, FCR and FRR in the text
EX3 9.18M 192.92		
at the slope o	TA	= Ambient temperature (°C)
whilen implies	TB :	Initial nestling body (leg-pit) temperature (°C) i.e. immediately prior to cooling or reheating event
wir cine. The	TN	= Nest temperature (°C)
cemperature day	TBA	= TB-TA (°C)
aspressed 4.5 *1	TBN	= TB-TN (°C)
All fitted our	TAN	= TN-TA (°C)
. Sever	TBB	= K-TB (°C), for reheating only, where K is the
and reheating r		mean 'uncooled' nestling body (leg-pit) temperature and is equal to 35.1°C
T ni betnenews	TBA:	= The temperature gradient between nestling and
stanuise multip	1	environment taking into account nest insulation,
atatistical pag		and is given by TB- TBN x TA
halted when the	BSAM	= (Brood surface area:mass ratio) x 100
.egisv-t tran	NSAM	= (Nestling surface area:mass ratio) x 100
balow) to enter	MSAM	= Mean surface area:mass ratio, calculated as;
baya hean entar		NSAM + (BSAM/BSIZE) 2

1.1.1

4.4.2 A model of cooling rates of Dipper nestlings in the laboratory

The mean cooling rate of Dipper nestlings in broods of three was;

 0.849 ± 0.187 (range = 0.67 - 1.19, n = 9).

The following variables were entered into a stepwise multiple regression analysis; TA, NMASS, TIME, TB, TBA, BMASS, RATE and BSAM. 93.4% of the variance in cooling rate was explained by the variables NMASS, TA and TB (beta values are 7.68, -5.78 and 3.57 respectively). The relationship (see Table 4.13) is expressed as;

Laboratory = $0.56 + (0.051 \times NMASS) - (0.09 \times TA) + (0.022 \times TB)$ eqn. 4.3 cooling rate

F = 23.71, df 3, 5, p = 0.0023

A matrix of Pearson correlation coefficients is presented in Table 4.14. A number of relationships warrant discussion. Firstly, brood mass is highly correlated with all variables with the exception of TB. This is due in part to chance effects given the low number of broods examined (n = 3), for example the relationship with TA and TBA, since there is no reasonable explanation why brood mass should be correlated with either TA or TBA and brood mass shows no significant relationship with TB. BMASS and NMASS are correlated with each other, because as individual nestlings

TABLE 4 12(0); M BRASS 3MIT · IDA RATE 18.1 NI 12 ST 2.16 6.00 3.2 dT. 177.94 din: · · · (.8) BSAM. RARE 出入 (1) MAZN = Hod 79.

grow they contribute more towards brood mass, i.e. a brood of heavy individual nestlings will result in a heavy brood mass. Only NMASS is significantly correlated with cooling rate, yet A matr presented in Tab discussion. Fir all variables wi part to chance e examined (n = 3) TBA, since there shows no signific

The following v regression anal and 85AM. 93.4 by the variable and 3.57 respec expressed as: Laboratory = 0.86

4.4.2 <u>A maines</u> neer The r broods of three 0.849

Le Partial Sta regression par coefficient coe	ndardised tial regression ifficient	
b SE of b Bet	a t-value signifi	icance of

+1

p = 0.0006	p = 0.0022	p = 0.0161	
7.676	-5.778	3.566	
1.748	111.1-	0.636	
0.007	0.016	0.006	
SS) 0.051	(=TA) -0.091	TB) 0.022	

F = 23.71, df 3,5, p = 0.0022

the positive trend requires explanation, since it implies that bigger nestlings cool more quickly. Also, although not significant, the sign of BMASS correlated with RATE is positive, again at odds with an expected reduction in cooling rate with a reduction in surface area to mass ratio (NMASS)^{0.67}/NMASS).

A discussion of the possible reasons for this apparent anomaly will be deferred until the results for field cooling rate have been presented. Both NMASS and BMASS show positive correlations with TIME (Table 4.14). Since TIME (duration of cooling event) was under experimental control, and NMASS and BMASS are unlikely to be dependent on TIME the positive relationship between TIME and mass is an experimental artifact. It is likely that the experiment was terminated earlier in smaller nestlings so that they would not get too cold, larger nestlings may have been left for longer. As nestlings had been removed from the field for the purpose of the experiment, and were known not to be fully homeothermic, it is possible that considerations of nestling welfare produced the otherwise inexplicable relationships.

4.4.3 <u>A model of cooling rates of Dipper</u> nestlings in the field

The mean cooling rate of Dipper nestlings in their nest in the wild was

80.

 0.343 ± 0.281 (range 0.926-0.061, n = 35).

TWART

But Tiue

The cooling rate of nestlings aged 7-8.5 days

was significantly lower than for nestlings aged 3-4.5 days,
the positive bigger n TBAT significa 200 sza , svitiaco dopling rate (NMASS) DITEN b A うれらてあな住民 ALIOME cooling pate h positive corre (duration of o SAMS DES SAME the positive r experimental at terminated earl too cold, 1 百姓之 As nestlings ha experime SUL . Diaradt it is the ot produced - 11 . H 8 m A The me

in the wild

士命母代

 TABLE 4.14:
 Pearson correlation coefficient matrix of parameters entered into a step-down regression analysis of factors influencing laboratory cooling rate (LCR) of 7-8 day old Dipper nestlings in broods of three (n = 9)

NMASS	TIME	TB	TBA	BMASS	LCR	BSA
0.634*	0.737*	0.161ns	-0.279ns	0.671*	0.039ns	0.647*
1	0.941***	-0.478ns	-0.741*	0.945***	0.702*	0.946***
		0.466ns	-0.744##	0.996***	0.478ns	0.992***
	* *	•	0.903###	-0.533ns	-0.387ns	-0.555ns
				0.811**	-0.394ns	-0.822##
				•	0.519ns	
					•	0.533ns

< 0.05; 4 .. -** ns = not statistically significant; $\frac{488}{2} = p < 0.001$

1

and RATE are synonymous within the context discussed

Figure 4.24(b): Body t

: Body temperature of Dipper nestlings in the field in relation to parental attentiveness and inattentiveness.

- (a) Brood-size = 4, nestling mass = 12.1g, aged 3.5 days
- (b) Brood-size = 5, nestling mass = 15.3g, aged 4.0 days
- (c) Brood-size = 3, nestling mass = 26.5g, aged 7.5 days

+ = start of attentive period

+ = start of inattentive period

(a) 39 36. AA AA A A 33-30-120 150 30 60 90 (Ъ) 40-Nestling body temperature (°C) 4444 2222 4444 44444 4 ΔΔ Δ ΔΔ ΔΔΔΔ ΔΔ ΔΔ ΔΔ ΔΔ ΔΔ 444 4 24 24 4 4444 444 70 140 210 280 350 (c) 42 10 a⁰ 0a0 39 -

3.5 day 4.0 day 7.5 day

the values were 0.170 ± 0.110 and 0.467 ± 0.283 respectively. Since laboratory measurements were made on young aged 7-8.5 days, then nestlings of this age cool on average 5.0 times slower in the wild than in the laboratory at similar nest/chamber temperatures. All of the variables stated above were entered into the multiple regression analysis (with the exception of TBB). The equation explains 61.9% of the variation in field cooling rate (see Table 4.15).

 $FCR = -0.68 - (0.17 \times AGE) - (0.26 \times BSIZE) - (0.02 \times TBA) + (0.02 \times EMASS) + (0.1 \times MSAM) eq. 4.4$

F = 9.75, df 5, 30, P < 0.0001

2000

The positive sign of the BMASS parameter once AGE and BSIZE have been held constant is worthy of comment. Similarly, although it did not significantly increase the fit of the model the next most significant parameter was NMASS which also showed a positive slope. This resembles the laboratory model in which age (7-8.5 days) and brood size (3) were effectively held constant experimentally. MSAM was the least significant parameter included in the model, after both BMASS and AGE, yet Mertens (1977) found excellent agreement between rate of heat loss and an exponent of body mass of 0.613, close to that predicted by considerations of the surface area to mass ratio (i.e. 0.67). This suggests that

81.

Dipper nestlings within a brood do not conform to a spherical shape from which the 0.67 exponent is derived (see Chapter 5).

Examination of the Pearson correlation matrix

5,30, p < 0.0001 1 9.75, df The p ACE and BSIZE h. Similarly, altho ... of the model the 1.12c for derivation of MSAM which also showe laboratory model Were effectively least significan BMASS and AGE, Y between rate of 1 0.513, close to t surface area to m temperature and ambient temperatu (=TBA) (°C) ^aMean surface ar mass ratio (=MS Independent var 123 Brood size (BSI Temperature grad Brood mass (=BM See table TABLE Alpper nestlings eqada g⁻¹) from which Age (days) Examina (cm² (g) đ

the values wer respactively. paga gunov uo on average 5.0 laboratory it variables stat regression ana equation explarate (see Table FCR = -0,68 - (0.

.15:	Step-down multip field cooling ra	ole regressio ites (FCR) of	n analysis of fe Dipper nestline	ictors influend	ing
able	Partial regression coefficient b	SE of b	Standardised partial regr coefficient Beta	l ression t-value	significance
	-0.175	0.036	-1.270	46.4-	p < 0.0001
E)	-0.264	0.069	-0.916	-3.83	p = 0.0006
ient body					
ure	-0.022	0.006	-0.398	-3.32	p = 0.0024
(SS)	0.019	0.006	1.127	3.32	p = 0.0024
ea: AM)	0.098	0.039	0.945	2.50	p = 0.0182

of

(Table 4.16) indicates that nestlings with high initial TB are left to cool for longer, and that at low TA nestlings have higher initial TB's suggesting that under low ambient temperatures either brooding is more effective and/or nestlings invest more energy in trying to raise metabolic rate with a subsequent increase in TB. That initial TB is inversely related to cooling rate (FCR) suggests that birds with lower initial TB suffer due to their inability to raise body temperature, a factor which tends to mask temperature gradient effects in which the opposite relationship might be expected. Two further points support this view. The first is that in the laboratory experiments NMASS was the most important variable in explaining variation in cooling rate, and not TA. Secondly the predominance of size related factors (AGE, BSIZE, NMASS, BMASS, etc.) as consistently better predictors of cooling rates than temperature related factors (TA, TB, TBA, etc.) (Table 4.16). This will be further enhanced in the wild by the influence of nest insulation on the temperature gradient between nestling and TA, since the temperature gradient experienced by the nestling is that between itself and nest temperature. Nest temperature averaged 15.1°C and was always about 7.0°C higher than the local ambient temperature during periods of nestling cooling. This suggests TBN would have been a more suitable measure of temperature gradient and that

6

(qshe)

82.

the mean TAN: TBN ratio (TBA_i) is inadequate to compensate for this, explaining the slightly poorer relationship between FCR and TBA_i (Table 4.16).

ni (41.# eldeT) 动艺 000 191 ini nave higher le paquistaques invest more ane subsequent incr related to cool lower initial T temperature, a 1 effects in which Two funcher poin the Laboratory e variable in expl Secondly the prid MASS. SMASS, at cooling rates th etc.) (Table 4.1 the influence between nestling experienced by t temperature. Ne about 7.0°C high periods of nestl: tiva anom a nasd the mean TAN: TBN

this, explaining

and TBA: (Table

Pearson correlation coefficient matrix of parameters entered into a step-down multiple regression analysis of factors influencing field cooling rates (FCR) of Dipper nestlings

4	MASS	TA	TB	TIME	TBN	TBA	FCR	BSAM	NSAM	MSAM
0.91***		-0.14 ns	0.19 _{ns}	0.35*	4+#6h*0	0.20 _{ns}	-0.53***	-0.68***	-0.86***	++++64.0-
-0.82*##		0.17 _{ns}	-0.03 _{ns}	-0.11 _{ns}	-0.66***	-0.13 _{ns}	0.27 _{ns}	0.52##	0.82***	0.69***
0.81**	-	-0.32#	0.22 _{ns}	0.26 _{ns}	0.36*	0.33*	-0.31*	-0.99###	-0.86###	-0.92***
•		-0.22 _{ns}	0.15 _{ns}	0.18 _{ns}	0.53***	0.23 _{ns}	+++++ · O-	-0.79###	-0.97###	-0.94###
		•	-0.33#	0.27 _{ns}	-0.72***	-0.83###	0.26 _{ns}	0.30*	0.27 _{ns}	0.26 _{ns}
			•	0.30*	0.21 _{ns}	0.79***	++ ht . 0-	-0.24 _{ns}	-0.16 _{ns}	-0.19 _{ns}
				•	-0.13 _{ns}	0.01 _{ns}	-0.26 _{ns}	-0.30*	-0.18 ns	-0.20 _{ns}
					•	0.58###	-0.33*	-0.35*	-0.54###	+++h+ °O-
							-0.43##	-0.34#	-0.26 _{ne}	-0.28*

*** = p < 0.001 < 0.01; d = ** p < 0.05; 11 -# In the text FCR and RATE are synonymous within the context discussed, ns = not statistically significant; in' n

0.98###

1

1

0.92###

0.85***

0.39##

0.39##

0.28*

Measurements of FCR show that older nestlings cool slower than younger nestlings (see Section 4.4.2) and for a given age young in larger broods cool more slowly than in smaller broods. Table 4.16 shows that greater brood masses and heavier/larger individual nestlings also cool more slowly, although it is shown that this is largely because of age and not mass effects, since when these are taken into account heavier nestlings/broods cool more quickly.

It could be that heavier nestlings are allowing themselves to cool more quickly in order to dissipate heat although ambient temperatures ($\bar{x} = 7.6^{\circ}$ C, n = 36) and nest temperatures ($\bar{x} = 15.1^{\circ}$ C, n = 11) relative to TB ($\bar{x} = 35.1^{\circ}$ C, n = 35) suggest that this is unlikely.

4.4.4 <u>A model of Dipper nestling reheating</u> rate in the field

The mean reheating rate of Dipper broods in the wild was 0.239 + 0.174 (range 0.2-0.84, n = 42) (units as for cooling rates, Section 4.4.1), somewhat slower than the mean cooling rate; this being reflected in the longer duration of attentive periods (mean 36.9mins, n = 42) when compared with inattentive periods (mean = 17.6mins, n = 35). Examination of the Pearson correlation coefficients (Table 4.18) suggests that nestling age, TA, TBB, TBB and time may play significant rôles in regulating reheating rate, though none explain much of the variation in FRR on their own.

83.

A stepwise multiple regression analysis was performed on these data. The following equation explains Hbaeu abel slower that for a given ago for a given ago in maller brock withough it is heavier mestlin Preducer mestlin it op sithough ambient remperatures (x)

0787 H. W. H.

vilo mas 0.233 + vilo mas 0.233 + cooling rates, 5 of attentive per of attentive per atth instremtive that neutiencive of the veriation 52.8% of the variance (Table 4.17): FRR = -3.67 + (0.1xEMASS) + (10.5xBSAM) + (0.027xTBB) + (0.02xTA)

F = 10.34, df 4, 37, p < 0.0001

The importance of BMASS and BSAM as predictors of FRR and the absence of age, or individual size effects is in marked contrast to the importance of these parameters as predictors of FCR. This shift in emphasis is presumably due to the lack of rôle for nestlings in their own reheating; the cost being borne by the parent bird. When being brooded nestlings huddle together and hence behave as BMASS rather than as 'constrained' individuals (see Discussion). The lack of age effects suggest that nestlings "switch off" their thermogenesis thereby reducing metabolic costs. This lends support to the 'maximal brooding' model in which the cost of brood thermoregulation is cheaper for a parent, if it broods the young itself, than if the young partially thermoregulate themselves (Section 2.4.3(c)). It is of advantage to the nestlings since their thermoregulation costs are reduced. Although it would seem that mutual benefits are enjoyed by both parent and young, the need to attain homeothermy for independence and the increasing costs of provisioning the brood, force both the parents and brood to incur greater metabolic costs as the brood get older.

The FRR equation more closely resembles that

84.

eqn. 4.5

performed on the

A READ

expected from physical factors alone (see Section 2.4.2(a)). Specifically it includes a mass component (BMASS), a surface area component (BSAM), the temperature difference between

FRR = -3.67 + (0.1xBM F = 1.0.3The impor FRE and the absence in marked contrast predictors of FCR. to the lack of rôle cost being borne by nestlings huddle to than as 'constraine of age effects sugg thermogenesis there support to the 'max brood thermoregulat the young itself, t themselves (Section nestlings since the Although it would a both parent and you Independence and th force both the pare costs as the brood The FRR a

52.8% of the varian

	reheating rates	(FRR) of Dippe	rr nestlings		
ariable	Partial regression coefficient		Standardised partial regres coefficient	ssion	
	P	SE of b	Beta	t-value	significance of t
BMASS)	0.015	0.003	1.821	. L74.4	p = 0.0001
Area: BSAM)					
	10.510	2.814	1.522	3.735	p = 0.0006
led T _b					
	0.272	0.008	0.405	3.514	p = 0.0012
rrature (=TA) 0.019	0.007	0.344	2.996	p = 0.0049

TABL TABL Independent v (Brood Mass (=F (g) Normal T_b-cool (=TBB) (cC) Mubient Temper (cC)

10	to some	
- 0.00	in hours	FLOOD J
		Ind shine
192	aufav	
	atent T Leftbaur	
7:451	barta barta barta barta	Class and
	d. 10	11 21 015
1.B	35 001	011212110
210.0	Latitate Latitate Latitate	Laperty (16 7
(22)	a fdsi	1 100

TABLE 4.18: Pearson correlation coefficient matrix of parameters entered into a step-down multiple regression analysis of factors influencing field reheating rates (FRR) of Dipper nestlings

											-42	-#
MSAM	-0.17ns	-0°49##	-0.28*	-0.85##	-0.63##	0.01ns	-0.22ns	-0.04ns	0.22ns	-0.05ns	0.88##	0.64##
NSAM	-0.07ns	-0.78***	0.48##	-0.78***	-0.94444	0.18ns	-0.02ns	-0.04ms	-0.02ns	0.11ns	0.85###	
BSAM	-0.10ns	-0.65***	0.18ns	-0.96***	-0.81***	0.16ns	-0.16ns	-0.12ns	0.16ns	-0.02ns		
TBN	0.04ns	0.05ns	0.44ms	0.17ns	-0.03ns	0.13ns	0.90***	0.40hs	+++++0-0-	,		
TBB	0.32*	0.08ns	-0.21ns	-0.18ns	0.03ns	-0.0lns	-1.00 ⁴⁴⁴	-0.16ns				
TIME	0.31*	-0.05ns	-0.07ns	0.11ns	0.02ns	-0.42##	0.16ns					
TB	0.32*	-0.08ns	0.21ns	0.18ns	-0.03ns	-0.01ns						
TA	0.35*	0.03ns	0.25ns	-0.14ns	-0.11ns						*	
NMASS	0.17ns	0.87444	-0.46**	0.81444								
BMASS	0.24ns	0.66***	-0.15ns									
SIZE	09ns	0										

ħ.

= p < 0.001. ## = P < 0.01; * = p < 0.05; ns = not statistically significant; ·

are synonymous within the context discussed.

parent and nestling (effectively TBB) and the temperature difference between nestling and ambient temperature (effectively TA).

The inclusion of time as a fifth parameter in the equation did not significantly increase the fit of the model, although the negative slope of the FRR against TIME relationship both after inclusion of the first four variables, or considering TIME alone, is of interest. This implies that parent birds can make some decisions as to whether they heat the brood up quickly over a short period or more slowly over a longer period of time.

Another possible explanation for an inverse relationship between FRR and TIME is that rapid reheating over a short period may represent reheating rates of nestlings with a lower TB and hence higher TBB. These nestlings would therefore be expected to heat up more quickly even if parental effort were constant. This is because reheating rate is dependent upon the temperature gradient between the parent and nestling, hence a higher TBB will result in quicker heat transfer from considerations of physical factors alone. Indeed in some species a reduction in TB is a specific mechanism for maintaining a greater rate of heat transfer between parent and nestling (O'Connor, 1984). The lack of any significant relationship between TIME and either TBB or TB suggest this is not the case, similarly the maintenance of the negative coefficient of the FRR against TIME relationship after TBB is held constant (equation 4.5) confirms this.

85.

There was some evidence of a thermostatic setting of body temperature with age (0'Connor, 1975) in Dipper nestlings in the wild, but this was not significant between age groups. The mean body temperatures TB of 'young', 'transitional' and 'mature' nestlings were 34.6°C, 35.7°C and 36.6°C respectively (n = 22, 13 and 8 nestling body temperature measurements respectively). The mean TB of nestlings which were still brooded occasionally was 35.0°C(± 2.9), n = 35; appreciably less than the adult range of 38-41°C often quoted (Calder & King, 1974; Ricklefs, 1974) although the values fall within the range of incubation temperatures commonly found in birds (Drent, 1973). It was not possible to measure female body temperature in the field.

4.4.5 <u>Mate Dipper removal and its effect on</u> female brooding behaviour

Female Dipper brooding behaviour was examined in broods of three nestlings when males were present and feeding the young, and when males were removed so that females were forced to both brood and feed the young (Section 3.3.6). Table 4.19 summarizes the behaviour of female Dippers with and without male removal. It can be seen that female Dippers did not leave the brood for significantly longer periods when the male was absent (t = 0.13, n = 18, n.s.). Neither did they brood the young for significantly shorter periods (t = 0.086, n = 20, n.s.), or reheat them at different rates (t = 0.87, n = 15, n.s.). Females did, however, increase their rate of food delivery to the brood to a level that was not

difference between a (affectively TA). The inclus aguation did not sig although the negativ both after inclusion TIME alone, is of in take some decisions a over a short period o

parent and nestling

relationship between over a short period m neatlings with a lowe neatlings would there even if parental effor teneating rate is dep between the parent and physical factors alone of beat transfer betwe The lack of any signif either TBS or TB sugge 86.

There was of body temperature neetiings in the wel age groups. The near thematiings in the near thematiings which were neetes which were are 38; apprecially offer values fail with the values female bit

Mara Dipp

Female Dipp intends of three nextlithe young, and when an folded to both brood a fable will summarizes and without male remov and without male remov the male was abaunt (r TABLE 4.19: The brooding behaviour of female Dippers tending broods of three nestlings aged 7.0-8.5 days old, with and without their mates

	Male present	Male absent
Length of Inattentive period (mins)	$a_{19.1 \pm 12.6}$ (n = 24)	28.6 ± 20.4 (n = 22)
Length of Attentive period (mins)	30.3 ± 24.0 (n = 21)	28.9 ± 12.3 (n = 22)
Female ^C feeding rate (feeds h-l)	1.2 ± 0.7 (n = 16)	8.8 ± 5.7 (n = 14)
Male feeding rate (feeds h-l)	9.1 ± 5.4 (n = 18)	
^b Reheating rate	0.131 ± 0.240 (n = 6)	0.230 ± 0.147 (n = 7)

^a All values are means ± 1 standard deviation

^b Slope of the log_e temperature (°C) versus time (h) curve

All tests were non-significant, see text

c Feeding rate refers to nest visits with food delivered to nestlings

significantly different from the total food delivery to the brood when her mate was present (t = 0.064, n = 25, n.s.). It was not possible to tell whether this additional foraging for the brood resulted in less energy intake for the female, or whether she experienced energy imbalance from increased foraging costs. Clearly these points warrant further investigation.

Feeding rate was calculated for each complete hour of nest observation (Table 4.19) for both males and females. It was not known how long the male spent actually foraging or in other activities when he was away from the nest between feeding visits. Since females spent a significant amount of each brooding the young (\bar{x} 36.9 ± 21.8 mins, n = 13), provisioning for the brood was condensed into the relatively short inattentive period. Thus whilst males and females with males removed may have provisioned the young at the same rate, measures of feeding rate alone may underestimate the cost to the female in terms of energy expenditure. Winkel & Winkel (1970) found that female Pied fly catchers forced to provide for the young (7-8 days old) were significantly lighter after a week. There is anecdotal evidence to support the view that female Dippers suffer adverse effects when provisioning broods on their own.

On two occasions one particular male Dipper deserted

tants. of Inevential

TABLE 9.10: The Dra

Langth of Attentive

Finale "feeding rate (feeds h-1)

Date feeding rate

b Slope of the long

Teeding rate refer to an and the set of the set of the set lings

87.

two different females (1st and 2nd broods) when the chicks were about one week old. Both females continued to provision the brood for about one day and then deserted them, presumably unable or unwilling to incur the additional costs of provisioning the brood. One brood died, the other was 'rescued' by the observer and the young placed in other broods, where all but one survived.

4.4.6 The cost of brooding in the Dipper

The daily cost of brooding for all Dipper nestlings for which cooling rate data had been collected in the field, was calculated using the equation in Section 2.4.2. Field cooling rate (slope of the log_e temperature change with time, see Section 4.4.1) was converted to °C°C⁻¹h⁻¹ using the following equation;

Cooling rate (°C°C⁻¹h⁻¹) =
$$\frac{T_b \times FCR}{T_b - 15.1}$$
 eqn. 4.6

where T_b is initial nestling body temperature prior to cooling (°C), FCR is the field cooling rate and 15.1 is the mean nest temperature (see Section 3.3.3) measured throughout the study.

The specific heat of nestlings (S) was calculated as;

S = 0.91 - 0.0057 Age

eqn. 4.7

from carcass analysis data in Section 2.4.2. The time interval (i) over which inattentive periods occurred was taken as the length of the daylight period, 16 hours. From this proportion of time the bird spent brooding was known (Figure 4.28) and entered into the equation. Brooding cost was expressed as Watts, and is calculated for the twenty-four hour day, even though costs of reheating the brood were incurred during daylight hours only. The results for the

significannly differ inteod when her mate it was not possible for the brood results in wather the experi foraging costs. Sie kneetigstion.

Louging 16t of near observation (I's MALE NOT STORE HOW An other activities wh fanding winits. Since such prooding the hore for the brood was cond instrantive period. 1 males removed may have best in ascusses yeres ni elensi phi the female in Winksl (1970) found th provide for the young sfrar a wask. Thore is that female Dippare su stoods on their own. Dh the access

two different females (about one week old. Bo brood for about one day whable or unwilling to Provisioning the boot of provision of the observers all but

.. The cost The daily o for which cooling rat was fainulated using the fection 4.4.1) wa fellowing equation:

Masta T_b is initial na scoling (*C), FCR is near nest temperature the study.

The specific

Cooling rate

00.0-10.0 = 8

rrow carcass analysis forerval (1) over which as the length of the d proportion of time the *.38) and entered into kyrescad as Watts, an hour day, even though o incurrad during dayligh brooding cost of young nestlings (3.0-5.0 days old) and transition (6.0-8.5 days old), and the mean for all ages, are presented in Table 4.20. The cost of brooding in older birds is less (0.28 Watts) than in young birds (0.635 Watts) even though older birds are left unattended for 82% of daylight hours compared to only 18% in young nestlings. This is due to the reduction in cooling rate caused by partial homeothermy on the part of older nestlings (Figure 2.15(b) and (c)).

The field heat transfer coefficient (h_f) is comparable with h for eggs used in the calculation of incubation costs by Ricklefs (1974) although h_f includes a component of evaporative water loss, whilst Ricklefs' estimates do not. The 'conductance' of attricial clutches in their nests was calculated as 0.989 for the House Wren, 0.906 for the Zebra Finch and 0.744 for the Great Tit, all higher than h_f of nestling Dippers. Brooding costs of young Dippers are higher, however, when expressed as percentage BMR than incubation costs in the House Wren (where $T_{na} = 17.1^{\circ}C$ was close to the Dipper value of 15.1). The 90.7 per cent BMR cost is still lower than that which would be expected for poikilothermic nestlings, since some degree of homeothermy is present. Considering the large difference between the mass of the brood, however, (58.2g) and the mass of the House Wren clutch (8.2g) brooding costs are still relatively low. Clearly the heat producing capacity of the brood compensates for the higher rates of heat loss expected from considerations of brood mass, and effectively keeps parental brooding costs at a level not dissimilar to

89.

to teop galboord youn noltienst 6 3.8-0.8) IdsT presented ni 2.8 (0.28 W 1985 older bir rigwont dompared sanog Eno OJ. the reduction ni [000] 才在西京 older lo The field h A Asiy for eggs used SICKLeIS (1974) althou TOTOW whilst Ric . 2201 30 artandal clutches the House Wren, TOT 0 Great 9/13 . JIT hig ALL. STOODELINE 23,200 YOUD 10 Dessellers percentag TIS TI America ? SIL sil 80.7 per cent RMR 90 BLUOW betted 101 degree of homeothermy apterence between ent sht bas 20 巴君后川 JOH onit are still relatively lo

(Watts) (C&BMR) 90.78 0.280 40.0% 0.480 68.6% Daily brooding costs 0.635 transfer co-efficient,hfb cal.g-loC.h-l Field heat 0.528 0.263 0.719 The cost of brooding in the Dipper calculated from field cooling rates for young and transition nestlings Proportion of time bird spent brooding,c 0.70 0.18 0.82 temperature, T_b Initial body 34.6 35.7 35.1 (00) (°C°C⁻¹ ¹ ⁻¹) 0.600 0.808 0.303 Cooling rate,r Specific heat of nestlings,s (cal g⁻¹°C⁻¹) 0.890 0.880 0.868

transitional = 6-8.5 days old.

nf see Section 2.4.1.

^cAssumes a female body mass of 57.5g and BMR of 0.70 Watts.

incubation costs. Yet parents also have to provide the brood with energy for their 'contribution' to brood thermoregulation, with the associated extra travelling costs (Section 2.5.2) although this cost is shared by both parents (see Section 4.6 for Dipper nestling thermoregulation costs).

4.4.7 <u>Huddling and the contribution of individual</u> <u>nestlings to brood heat production:</u> <u>A consideration of nestling size</u>

In order to examine the relative contribution of individuals to brood metabolism during huddling in a cold environment it is necessary to separate and measure individual metabolism whilst retaining the effect on that individual, of being in the presence of its warm siblings. Heated dummy nestlings were used to mimic heat production of natural nestlings whilst contributing nothing to 'brood' metabolism.

The metabolic rates of homeothermic Zebra Finch nestlings were measured at a chamber/ambient temperature of 5° C, both in the presence and absence of a heated (40°C) dummy nestling of surface area 16.95 cm³. The ratio of metabolic rate without a dummy:metabolic rate with a dummy is shown as a function of nestling surface area:mass ratio in Figure 4.25. This suggests that nestlings with large surface area:mass ratio benefit relatively more in terms of thermoregulatory savings from the heated dummy, than do nestlings with smaller surface area to mass ratios. Since

90.

AL'OG

842

nestlings with large surface area:mass ratios tend to be small, it follows that larger nestlings contribute proportionally more to the cost of maintaining homeothermy by huddling than do smaller nestlings. indukation compa, Ye keepi kitk energy for regulation, with the Nametion 2.5.2) altho

In order to boond of a Daubly bal 1 main million 1 Million neci neci metal istidw mari-lat ret beire in the presence nastifies were used to mantlings whiles contra Ine metaloly MARTINES WHEN BOASNING seers and as dans and saue to pallowing training Thom in 9357 and to 17 La villen as a fundtion in Figure 4.25. This LINT TOOTLESIL STATUT Thermoregulatory saving Settings with smaller

Figure 4.25

Metabolic rate with/without a heated dummy nestling for Zebra Finch nestlings, as a function of nestling surface area/mass ratio

r = 0.76, n = 7, p < 0.05

Surface area calculated as mass^{0.67}

seallings with large su small, it follows that and to the dost of mat [Maller neatlings.

Consider the following data on two nestlings huddling together one with a mass of 11.33g, and the other of mass 8.76g. Their respective metabolic rates in the presence of a heated dummy were observed as 0.049 and 0.032 Watts g⁻¹. The pair would be expected to have a mean metabolic rate therefore of 0.0405 Wg⁻¹ assuming their body temperatures were 40°C (i.e. if each behaved as the dummy to the other). The heavier nestling therefore contributes 60% of total heat production of the 'brood' (i.e. pair) and the smaller only 40%. Whereas if there were no difference between their contribution each would contribute 50% of the cost. The smaller sibling therefore saves 20% of its own thermoregulatory contribution to brood homeothermy (i.e. 100(1-(40/50))) by virtue of its higher surface area to volume ratio. Whilst sample sizes were far too small to confirm such a relationship, the data demonstrate its potential relative importance. The view that nestlings contribute unequally to the cost of brood thermoregulation during huddling is therefore tentatively supported by these data and suggest that any such effect is in proportion to nestling size. Freed (1981) has shown that older nestlings help out their younger siblings energetically, due to earlier thermoregulation, in the House Wren, Troglodytes aedon. Such advantages to younger nestlings may help offset any disadvantages incurred through lower initial

List my-pill

8.0

Heromolido retos adith/withou Finen newellings, as a fina p = 0.76, n = 7, $p \in 0.05$ Surface area calculated as 91.

hierarchy position (Section 4.11.2), or through smaller size at a given age due to sexual-size dimorphism (see Chapter 5). The latter has been suggested as one way in which the energetic

Consider th huddling together one of mane 3,76g. Their berasi a lo epinesenio alog ant . Ine pair alte tharefore of G.D The heavier neerling production of the 'br wind il kapyadi . POL mosion such would con sibilar therefore save boord or molrudlermon virtes of its higher a uni oley sails wigner the data demonstrate f view that negtlings an thermoregulation durin supported by these day in propertion to nest! older nestlings help o oue to sarlier thermore Troglodytes seton, Suc nalp offeet any disady. cost of rearing male Yellow-headed Blackbirds, (Xanthocephalus xanthocephalus), might be reduced, as females may thermoregulate earlier in this sexually size-dimorphic species (Richter, 1983). This conclusion was however based on considerations of plumage development (Richter, 1983), which is not actually a major factor in the onset of thermoregulation (0'Connor, 1975). Indeed it is more likely that the larger males may help out their sisters energetically, from considerations of nestling size (see this section). This may partly explain why female Dippers (also size-dimorphic) grow more quickly than males (Section 4.1.5, Chapter 5).

4.5 ACTIVITY

A Doppler radar device (Section 3.4.1) was used to quantify nestling activity during metabolism measurements (Sections 3.4.2 and 3.2.1).

4.5.1 The cost of one activity (Doppler) unit

Figure 4.26 shows nestling metabolism as a function of activity (Doppler) units (Section 3.4.2) for a single House Martin nestling. The slope (b) of the regression is therefore the cost of one Doppler activity unit (DAU) and the intercept (a) the metabolic rate at zero activity. Combining the means of a number of replicates for House Martins and Zebra Finches (mean slope t-test, t = 0.063, n = 18, n.s.), the cost of one DAU was found to be 2.62 x $10^{-5} \pm 1.21 \times 10^{-5}$ kJ (n = 13).

92.

Hisrarchy position (Sec at a given age due to 1 The latter has been sug

The mean daytime resting metabolism at zero activity was 1.94 kJ h^{-1} , compared to a predicted value of 1.28 kJ h^{-1} for adult birds of similar mass (Aschoff & Pohl, 1970), 53% higher.

cost of rearing nale (Kanthe contraction xanth ha add fugsemmandt inte aperson (Stenter, 198 in considerations of to are something a pate (0)Common(1975). In-+ dalles way bull out the considerations of nest new plains wirace tor ands winter quinking when STIVISMA 7.2 A Doppler ra The stillson which are . & Long S. 4.1 approximate - I.L The cost of Figure N. 20

or equivity (Doppiari) Entin meating. The ine dawe of one Doppiar (a) the metabolic rate of a number of replicat (then ilope t-test, t a (AD was found to be 2.9

The moun dayrine restin 1.34 kJ h⁻¹, compared t abuit birds of similar 5

The mean mass of nestlings used for the measure of DAU cost was $14.9 \pm 0.15g$, n = 13.

The mean duration of begging in hand-reared House Martin chicks was 10.3 seconds (compared to 10.1 seconds for wild birds, Section 4.13). The mean number of DAU's registered during this time was 24.2; or 2.35 DAU sec⁻¹. However, registration of DAU's continued even when begging movements had ceased (Figure 4.27). This was caused by rapid breathing movements of nestlings so when these movements stopped, so also did the registration of DAU's. This is probably explained by the need of nestlings to repay an oxygen debt incurred during an activity, and is therefore an integral part of the cost of that activity. The mean duration of a begging bout, including recovery time was 21.3 seconds, with a mean of 36.4 DAU's registered. If for convenience it is assumed that recovery costs are paid back instantaneously then these can be added to begging costs and the total cost of begging (begging + recovery) recalculated and expressed in terms of the duration of the activity alone. When this is done, the DAU sec⁻¹ is found to be 1.5 times higher than when no oxygen debt is taken into account.

DAU's registered during the following activities were therefore multiplied by 1.5 to include recovery costs, and in subsequent discussion DAU refers to these adjusted

93.

nes Lou

CAPT #211

50,0 × N

The fean manu of nurt NAB 14.8 5 0.15g, 8 4 The sean du Wartin ohioks was 10. wild pirds, Section -. during this time see 1 s'UAG to noitheraises had ceaned (Figure 4.2 movements of nestlings o noirstrains and his the need of neerlings ity al box, galachana na that activity. The not E.IS HAW SHIP WAYSONS registered. If for out sinven wow posit back ins to message costs and th Deputy | redaloulated of the activity alone. found to be 1.5 times h taken into account.

DAU's registed Nate therefore multiply and in subsequent discus

Figure 4.27

Examples of cumulative 'Doppler' score with time after the start of nestling activity.

Activity stops

[†] Doppler stops registering, i.e. equilibration

(see text for explanation)

4.5.2 Definitions of nestling activities

(a) <u>Begging</u>: For the purpose of this study begging was divided into two types; 'Zebra Finch' begging and 'House Martin' begging. Zebra Finch begging was characterised by weak head waving and no accompanying extension of the neck, rather the head was tilted somewhat to the side. This type of behaviour did not change with an increase in the vocalizations associated with it. House Martin begging was characterised by a rapid extension of the neck on stimulation (see Section 3.7.1) and vigorous head waving, accompanied by vocalisations. Head waving appeared more vigourous when vocalisation volume was louder (pers.obs.).

94.

(b) <u>Feeding</u>: This is defined as the act of removing and swallowing food from the dummy bill. The latter was usually simultaneous with removing food.

(c) <u>Defaecating</u>: This is defined as the movement of the nestling to the edge of the nest, the raising of the posterior during the act of defaecation, and the movement back to its original position within the nest and subsequent 'settling down'.

(d) <u>Scratching</u>: The movement associated with the act of scratching with hind limbs.

(e) <u>Shivering</u>: The movement associated with involuntary contractions of muscles during thermogenesis.

Cime-infer

Deservice of completive 'Dep

*** Arcivity angle

ton squre milgod

free taxe for explorations

(f) Movement: All other movement not included above.

For example, huddling movements, movements to jostle for and maintain favoured positions within the nest for feeding, etc.

1011/11/14U S.c.4

(a) Bessing: 1
was divided into two the Martin' begging. Sebutions has the Martin' begging. Sebutions the head was the recharting head with of behaviour did not of behaviour did not of the section 2.1.1) and the volume we wolume volume we wolume volume ve and swallouing food for (b) Feeding! To defend the volume ve and swallouing food for (c) Defendation volume ve and similtaneous vertices (c) Defendation vertices vertices vertices and similtaneous vertices (c) Defendation vertices vertic

the nestling to the edu restarion during the ad hack to its original po

(d) Scratching t
(d) Scratching tith him
(e) Shivering):
(contractions of muscles)

4.5.3 The cost of nestling activities

Table 4.21 shows the costs of nestling activities in terms of DAU's, energetic cost (DAU = 2.12×10^{-5} kJ) and the energetic cost expressed as a percentage of BMR for a 14.9g bird (see Section 4.5.1) from the Aschoff & Pohl night-time resting metabolism equation (Section 2.1.2). Since all nestlings studied were of similar mass and age, it was not possible to tell whether activity is a constant proportion of BMR, or if there is a fixed activity cost independent of BMR. The latter would imply disproportionate activity costs with respect to nestling size. The implications of a 'fixed' or 'proportionate' model of activity costs is discussed in Section 4.6 and Chapter 5.

4.6 THE DAILY ENERGY BUDGET OF A NESTLING DIPPER CALCULATED USING THE TIME-ACTIVITY-LABORATORY METHOD

The nestling energy budget was examined in the Dipper in order to calculate daily energy expenditure (DEE) and daily metabolised energy (DME); where DME less DEE is the energy accumulated in tissue during growth (P). DEE can be partitioned into a number of components;

(1) Basal metabolic rate (M), the night-time resting metabolism of nestlings at thermoneutrality;

(2) The cost of biosynthesis (B), which includes both the cost of synthesizing new body tissue (B_n) as well as

95.

(f) Movement: Fut exemple, hundlin a maintain favour d posit replacing degraded tissue (B_d);

(3) The energy accumulating as new tissue (P), which may be sub-divided into fat (P_i) and protein (P_p);

(4) Thermoregulation (TR),

a Juor The Cost a

in the second of the second of

THE DATES SUPERIC VELSE

The meaning Disper in under ra-cale and deily metabolized a the energy normalated be parairioned into a p (1) Basai setabolic re metabolize of methodys (2) The cost of history

TABLE 4.21:	Martins a except be species (nd Zebra Finches gging are for the see below)	. All figur e mean of bo	res oth
Activity	DU s ⁻¹	Mean cost of a kJ s ⁻¹	activity ^b % BMR	N
^C Zebra Finch begging	3.05	6.47×10 ⁻⁵	24.7	71
^C House Marti begging	n 3.53	7.48x10 ⁻⁵	28.5	96
Feeding	6.51	1.38x10 ⁻⁴	52.6	41
Defaecating	5.52	1.17x10 ⁻⁴	44.6	13
Moving	7.25	1.54×10^{-4}	58.7	38
Scratching	3.90	8.27x10 ⁻⁵	31.5	2
Shivering	1.98	4.20x10 ⁻⁵	16.0	3

^a Using the mean cost of one Doppler activity unit as 2.12×10^{-5} kJ.

BMR refers to that of the mean mass of nestlings tested (= 14.9 ± 0.15), and is calculated using Aschoff & Pohl's daytime resting equation (Section 2.1.2).

t = 4.63, df 165, p < 0.001. All other t-tests nonsignificant, therefore data other than begging were combined.

(3) The energy accumul (4) Thereoregulation (4)

TABLE 9,21: The cost Harting Activity 00 a⁻¹ Stabra Finch Degging 3.05 Bagging 3.65 Bagging 5.55

> fefaedating 5.52 Noving 7.25 Screeching 3.90 Scivering 1.98

Uring the mean cost 1.12 × 10 5 kJ.

Held refers to that (* 14.9 ± 0.15), a coytine resting sq t = s.53, df 105,

. . benlamst

(5) Activity (A);
(6) Alertness (AL) (see below), and
(7) The heat increment of feeding (HIF).

Thus;

and

 $DME = M + P + B + HIF + A + AL + TR \qquad eqn. 4.8$

 $DEE = M + B + HIF + A + AL + TR = DME-P \qquad eqn. 4.9$

The daily energy budget of a single Dipper in a brood of four was constructed from laboratory data and using published data for calculating components not directly measured (i.e. B, HIF). These components will be dealt with separately and then a comparison made between DEE calculated from these data and DEE measured in the field (hereafter called field energy expenditure, FEE, to distinguish from the laboratory budget) using doubly-labelled water.

4.6.1 Basal metabolic rate (M)

Basal metabolic rate was calculated using the Aschoff & Pohl night-time resting equation (see Section 2.1.2). The masses used for each age of nestling in calculating basal metabolic rate are those for the fitted growth curve (see Section 4.1.1). The change in basal metabolic rate with age is presented in Table 4.24 and Figure 4.33.

4.6.2 Thermoregulation (TR)

96.

Nestlings were assumed to bear thermoregulatory costs only when they were not being brooded (Section 4.4.6). Figure 4.28 shows the hourly percentage time that nestlings were left unattended during daylight hours; the curve is fitted by eye. (A) ADELVITY (A);
(B) Alergnman (AL) (a)
(A) The heat increment
Thesi best increment

The deily and BURNED OF FOUR WAS COUST published data for cald (HIH , E .e. 1) betaunee coperately and then a c from these data and bit field anargy expenditur Laboratory hudget! usin W.S.I Basal metab Bagal metabol Anchoff # Pohl night-til The masses used for and BOILD BUR PARE BIR THOSE inc ent . (1.1. + malgues Io presented in Table + Lunermonieru.

Nestlings were brooded at night-time until around day ten (pers.obs.) and it is assumed that this is a result of the nestlings' inability to thermoregulate fully until this time (Figure 4.28). Thereafter nestlings were not brooded during the day or night. Newly hatched nestlings were brooded for about 90% of daylight hours; the female leaving to feed herself (pers.obs.) even though it seems likely that the male also fed her on the nest as well during the first few days of nestling life. Males were observed on occasions giving food to brooding females, but it was not possible to tell whether the female ate the food or distributed it amongst the brood. Such feeding visits by males lasted only a few seconds and were therefore of similar duration to feeding visits by both males and females to 'mature' nestlings (Figure 4.53), suggesting females may have eaten the food themselves.

Female inattentiveness increased sharply between day five and seven, until it was 100% at day ten.

The pattern of changing thermoregulatory capacity of nestlings was assumed to follow the pattern of female attentiveness (Clark, 1984). Hence nestlings bear 100% of their thermoregulatory costs at day ten, 60% at day six, and so on. Thermoregulatory costs not borne by the nestlings were assumed to be borne by the female (Section 4.4). The total cost of thermoregulation during female inattentiveness

97.

Heatlings ware cours only when they we figure 4,25 shows the ho i ware left unattended dus filted by eye. (see below)_d was therefore multiplied by the proportion of that cost met by the nestling only (Figure 4.28) to arrive at a nestling's thermoregulation costs (Table 4.24). The light/dark cycle at the time of nesting was taken as approximately 8:16 hours.

Mastlines M the (.ado.ress) her une of the newslings inch: t .(Wi. + equal) . T durfing the day or night livat in /00 such wes ve (.ado.siggy bleered and out an use her nelp nurviing life. Malos in brooding femilies, in she female ats the food yd sylwly inibast Kour ware therefore of simil miles and females to 'm Van asiamel intropaus Female inavia day five and seven, until The patrent of Semures was sanitizen 30

attentiveness (Glark, 19 their thermoregulatory o so on. Thermoregulatory wore assumed to be borne

Figure 4.28

Percentage of the 16 hour daylight period spent away from the nest by female Dippers as a function of nestling age. Curve fitted by eye.

The metabolic rate of Dipper nestlings as a function of temperature (enclosed within the nest) was presented in Section 4.3. Metabolic rate was taken as decreasing linearly as a function of ambient temperature (Figure 4.24), and the mean slope of this relationship for brood sizes two and three (see below) was used to calculate metabolic rate of Dipper nestlings at the mean field ambient temperature of 7.6°C (Section 4.4.3). Though the energy budget discussed in this chapter is for a nestling in a brood of four, it is not considered that there will be a significant over-estimate of TR using these data. Firstly, although thermoregulatory costs could be lower for a nestling in a brood of four, due to huddling, this is only likely to be important for mature nestlings during the night-time. Dipper nestlings are constrained in their huddling behaviour during daylight hours (Chapter 5), and are usually only in contact with one or two siblings. Secondly, there is little difference between the metabolic rates of nestlings in broods of two and three (Section 4.3), though they both differ significantly from the single nestling metabolic rates, suggesting further increases in brood-size have a limited effect on TR (Section 4.4).

Using these data, metabolic rate at 7.6°C is 1.35 x basal metabolic rate so the cost of thermoregulation

Z a <u>Parame 4.18</u>

from the next by for next for next by for 98.

alone is 0.35 x basal metabolic rate. Though resting metabolism in growing nestlings will contain a component of biosynthetic costs of synthesising new tissue (Section 2.1.2), night-time resting measurements were taken from shortly after bliodarss adr

Function of temperature breamted in Saction. 4 decreasing Linearty as interaction of the state of the brood sizes the and thr secold to with alloge Casperature (of 7, 6°C 13 bodget discussed in this of fours, it. is not cond the WT to eranitus-used stand Augustania brond of four, due to hu Mapareant for mature nea mestimgs are constrained daylight hours (Chapren stalldis out to ann at's cotween the netabolic ra Cases (Section 4.3), the fine the single newsling increases in brood-size ! .5

1.10 % basal metabolic re

dusk until just before dawn the next day (Section 3.2.2) to minimise this. It is likely that such biosynthetic costs will be incurred primarily in association with feeding in a similar way to HIF (Calder & King, 1974), thus reducing their contribution to night-time 'resting' metabolism. No mass increase was observed during Dipper nestling metabolism studies. The metabolic rate of Dipper nestlings (Section 4.3) was measured in nestlings greater than fourteen days old only, with a mean mass of 55g. In order therefore to calculate TR in younger nestlings, since the per gram metabolic rate of a bird increases with increasing mass, TR was assumed to change proportionally and calculated as 0.35 x basal metabolic rate for all ages, rather than taking a fixed cost. Using the data in Section 4.3, TR = 0 at 35°C. TR is presented in Table 4.25 and Figure 4.33.

4.6.3 <u>Activity (A)</u>

The cost of specific nestling activities (Section 4.5.3) were applied to Dipper time budget data collected in the field. Definitions of nestling activity are as in Section 4.5.2. The cost of begging used is that for the House Martin, since their begging behaviour, but not that of Zebra Finches, resembles the Dipper.

(i) Unit costs of Activity

The unit cost (kJ sec⁻¹) of activity was calculated

99.

Adama is 0.35 x basal mat metabolism in growing nas bicapathetic costs of syn might+time reating manpur

in two ways: A single figure of 2.2 x 10^{-5} kJ DU⁻¹ (Section 4.5.1) was used to calculate one set of activity costs and represents activity cost based on a "fixed unit cost model.

dusk until just before minimpse; this. It is 1 will be incurred primar similar way to HIF (Cat bontribution to night-r increase was observed of studies. The metabolic with a mean mass of 55g with a mean mass of 55g bird increases with incr for all ages, rather the in Section 4.3, TR = 0 a and Figure 4.33.

4.6.3 Activity (A)
The cost of spine 4.5.3), were applied to D
4.5.3), were applied to D
4.5.2), The cost of begging behaves the cost of begging behaves
(1) Unit costs of Activities the unit cost (B)

This implies proportionately increased cost per unit of activity in smaller nestlings. Since the figure of 2.12×10^{-5} kJ DU⁻¹ was measured in nestlings of similar mass (though in two different species, Section 4.5.3) it cannot be demonstrated that the cost is indeed fixed for all ages, and an alternative 'proportional unit cost' model may apply. A second set of activity costs was therefore calculated based on the assumption that <u>unit costs</u> are a percentage of basal metabolic rate for each activity type, respectively: 24.7% for begging, 52.6% for feeding, 58.8% for movement and 44.6% for defaecating (Section 4.5.3). Daily activity costs, based on a fixed unit cost (FUC) and proportional unit cost (PUC), together with the mean of the two (MUC) are presented in Table 4.22.

100.

(ii) Begging costs

Dipper nestlings are known to beg at each feeding visit, and also to beg when parents are not present (Section 4.10.2). The ratio of 'feed' begging frequency to 'non-feed' begging frequency is 1:97. At 'non-feed' begging occasions the mean giving-up time (GUT, see Section 4.9.1) is 3.9 seconds. At feeds parental decision time (PDT, Section 4.9.1) is approximately one second. A nestling in a brood of four is assumed to receive one feed every four visits, and to after-beg (ABT, Section 4.9.1) for the duration of the feed unless they

themselves are being fed. This view is supported by field recordings of begging behaviour in which vocalizations ceased only after the parent left the nest, although there is no This implies proportion activity in smaller a 2.12 x 10⁻⁶ kJ DU⁻¹ w mass (though in two di commot be demonstrated ases, and an alternation apply. A second set o based on the assumption based on the assumption based on the second set o based on a fixed unit o we.e% for defacating (int., together with th far Table 4.22.

(11) Jogging costs

Dipper nestiliuittt, and miso to ber will, and miso to ber will, and miso to ber berging frequency is 1,9 deresting frequency is 1,9 deresting equancy is 1,9 deresting equancy is 1,9 deresting parental decisi opproximately one second descend to receive one for thereedings of begging beh only ditter the parent is

Figure 4.29:

Mean feeding frequency of Dipper nestlings as a function of age.

Means ± 1 standard deviation for all brood sizes.

Number of brood days over which data collected in parentheses.

direct evidence to show that all unfed nestlings participated for the entire period. For a single nestling begging costs in ' a brood of four can be calculated as the sum of the following three behaviours;

hon-feed' begging cost = feed brood frequency x .97 x 3.9 x unit cost of begging eqn. 4.10 successful feed begging cost = (feed brood frequency/4) x 1 x unit cost of begging eqn. 4.11 unsuccessful feed begging cost = (feed brood frequency x feed duration/4) x 3 x 1 x unit cost of begging eqn. 4.12

where unit costs are either PUC or FUC. Figure 4.29 shows the mean feed frequency (feeds bird hr⁻¹) for the following age classes; 0-3.9, 4.0-7.9, 8.0-11.9, 12.0-23.0. The brood feed frequency (see above) is therefore four times this figure for a given age. Feed duration (secs) decreases with age (Figure 4.53) and this is allowed for in the above calculations. Begging cost as a percentage of total activity costs for the FUC and PUC models are shown graphically in Figure 4.30.

For the FUC model begging costs initially constitute about 38% of total activity costs, decreasing to about 4% when nestlings are six days old. The PUC model figures for newly hatched young are lower than the FUC model figure at 25%, but decrease to a similar figure of 4%.

Horan I An An A Horana Manhara

2-4

P PILLA

101.

The total cost of activity is however over twice as high for the PUC model (Table 4.22) when compared with the FUC model; 78.3 kJ and 36.95 kJ respectively, so that the total begging costs are 1.4 times higher than the PUC model.
where unit costs aré àir the mean feed frequency age classes; 0-3.9, 4.0 feed frequency (see abov for a given agé. Feed d (Figure 4.53) and this i Beggizg cost as a percen FUC and FUC models are s for the FUC mo figures for newly hatched figures for newly hatched

culated from proportion ivity cost calculated from	Daily activity	ixed unit cost cost calculated fr	rom Dwean Daily activ	rity
nate unit cost (PUC) (% BMR)	(kJ day)	(% BMR)	(kJ day ⁻¹)	& BMR
0.00	0.00	0.00	0.00	00.00
0.7	0.13	6.0	0.115	0.8
1.2	0.26	1.4	0.24	1.3
1.4	0.31	1.4	0.30	1.4
1.9	0.45	1.7	0.47	1.8
2.8	0.66	2.2	0.75	2.5
5.3	1.27	3.7	0.56	3.2
7.9	1.72	4.4	2.39	6.2
7.9	1.89	4.4	2.63	6.2
8.1	1.97		2.97	6.2
8.3	2.04	4.2	0.05	6.3
8.3	2.04	0.4	3.16	6.2
8.3	2.04	3.8	3.23	6.1
8.3	2.04	3.7	3.28	6.0
8.3	2.04	3.7	3.32	6.0
8.3	2.04	3.6	3.35	6.0
8.2	2.03	3.6	3.36	6.0
8.2	2.02	3.5	3.37	5.9
8.2	2.01	3.5	3.37	5.9
8.2	2.01	3.5	3.37	5.9
8.1	2.00	3.5	3.37	5.9
8.1	2.00	3.4	3.37	5.8
8.1	1.99	3.4	3.37	5.8
<u>-</u>	1.99 36.95	3.4 _	3.37 57.61	- 2 - 1

of PUC and FUC see text

mns 2 and 4, and columns 3 and 5 (= MUC, see text).

direct evidence to sho for the entire period. a brood of four can be three behaviours; hon-feed begging cost =

successful feed begging

unsuccessful feed beggin

abaily ac proportion day	0.00	0.10	0.22	0.30	64.0	0.83	1.84	3.05	2.37	3.75	4.06	4.28	4.42	4.52	4.60	4.66	4.69	4.71	4.72	4.73	4.73	4.73	4.73	4.73	explanation	nean of col
ABLE e ays)																								I'L':	For	The I
EI & D	0	-	3	•	*	s	9	2	8	6	2	Ħ	12	13	Ħ	15	16	17	18	19	20	21	22	23	rđ	р

(iii) Feeding costs

Feeding costs are calculated as; (Brood feeding frequency x feed duration/4) x

unit cost of feeding

eqn. 4.13

Feeding costs constitute approximately twice as much as a proportion of total activity costs for the PUC model compared with the FUC model throughout the nestling period. This is due primarily to the high unit cost of feeding (Section 4.5.3).

(iv) Defaecation costs

Faecal sacs were not removed by the adult at every nest visit in the Dipper (pers.obs.) and observations on handreared House Martin nestlings suggest faecal sacs are not produced at every offer of food.

For every two feeds a nestling received it was therefore assumed to defaecate once. Hence, the defaecation cost is calculated as;

(Brood feeding frequency/8) x unit cost of defaecation eqn. 4.14

Whilst faeces are removed from the nest by the parent birds until the young are about four days old, and thereafter the nestlings defaecate out of the nest entrance, observations of very young nestlings of other species shows that the presentation of the faecal sac to the parent still occurs, but that the movement associated with this is reduced (pers.obs.). Since feeding frequency is anyway low in the first few days, no attempt was made to allow for this moderate reduction in

102.

defaecation costs, and the full unit cost was applied to all nestling ages. A defaecation was assumed to take ten seconds, a rough average based on hand-reared House Martins. Defaecation costs are similar for both FUC and PUC models.

(v) Movement costs

The mean number of activity units registered per hour for a brood of four House Martin nestlings was 5000 Doppler units (Section 4.5.3) equivalent to 2.87 minutes of movement per nestling per hour. This was assumed to be constant through growth, though the unit cost was calculated from both PUC and FUC models as previously and applied to Dipper nestlings. Movement (Section 4.5.3) was assumed to occur only during periods of inattentiveness by the female (Figure 4.28). The relative importance of the above activities as a percentage of the total activities is presented in Figure 4.30. Movement accounts for the majority of total activity costs, 82.6% and 86.7% for the FUC and FUC models respectively.

Activity costs reach a peak (see Table 4.22, percentage BMR) earlier using the FUC model (day seven) compared with the PUC model (day ten), and decrease to a proportionally lower level. Activity costs drop by 22% of the peak activity cost (as a multiple of BMR) for the FUC model and 3% for the PUC model respectively.

Livi. <u>Defancation costs</u>
Facoal sacs variants, visit in the Dipper
reared House Hartin nest
produced at every offer o
rhdrefore assumbd, to defa
cost is calculated ast

Whiles fasces a birds until the young are the nestilage defascers o of very young nestlings o presentation of the fasce

Twood feeding frequency

103.

Biross trading frequency 1. Ideast trading frequency 1.

4.6.4 Growth

The amount of energy accumulating as tissue growth was calculated for lipid and protein separately from the

defaecation costs, and t all neatling ages. A de seconds, a rough average Defaecation costs are at Movement costs The mean numbe hour for a brood of four Doppler units (Section 4 movement per nestling per constant through growth, from both PUC and FUC mo. Dipper nestlings. Movem oncur only during periods (Figure 4.28). The relay as a percentage of the to Figure 4.30. Movement ac activity costs, 82.6% and respectively. Activity costs percentage BMR) earlier u dompared with the PUC mod propertionally lower leve

The peak activity cost (a

Figure 4.30

Activity costs for nestling Dippers as a function of age calculated using (a) FUC model, and (b) FUC model (see text).

Pigure 4.30

Antivity costs for nextli age calculated using (a) (see text). following two equations derived from Dipper carcass analysis data (Section 4.2.6);

PWED = 2.37 + 0.12 Age eqn. 4.14 LWED = 0.925 + 0.0965 Age eqn. 4.16

where PWED and LWED are protein and lipid wet energy densities respectively (kJ g^{-1} wet weight). Daily mass increments from the fitted growth data (Section 4.1.1) were therefore multiplied by the respective equations, and summed to produce figures for the total growth cost (Table 4.23). Protein accounts for 66.8% of total energy accumulated as tissue, and lipid 33.2%. Growth energy reaches a peak at around day seven and eight, shortly after the inflexion of the Dipper growth curve at about 6.5 days (Section 4.1.1).

4.6.5 Biosynthesis (B)

Biosynthesis costs, specifically the cost of producing new tissue (B), were calculated by three methods. Assumptions concerning biosynthetic efficiency previously employed here have been essentially arbitrary, and it was felt that such estimates of biosynthetic cost might be improved. Three models were used to calculate these costs and are presented below.

(a) Biosynthetic efficiency constant with respect to age and lipid:protein ratio

Ricklefs (1974) quoted a figure of 75% biosynthetic

104.

aningat in

efficiency, which has since been used in the construction of DEB from laboratory data (e.g. Williams & Prints, 1986). This cost is assumed to apply across all ages of nestlings and be following two equations data (Section #.2.81)

6.0 = 03W4

Anorements and LMED and Anorements rangestively (k) drorements from the intr were therefore multiplies summed to produce figure as closse, and lipid 23.0 as closse, and lipid 23.0 as closse, and lipid 23.0 around day seven and sign

A.S.S. <u>Stosynthesta</u>
Stosynthesta of
Stosynthesta of
Acounty new tissue (3),
Acounty tons concerning bi
Acounty below.

Ricklefe (1974)

independent of the relative amount of lipid and protein being produced.

(b) Biosynthetic efficiency constant with respect to age but variable with respect to the lipid:protein ratio

McDonald, Edward and Greenhalgh (1984) calculated the efficiency of lipid and protein production from a consideration of biochemical pathways, and concluded that the efficiencies were 82.6% and 59.8% respectively (based on an amino acid gram molecular weight for the latter of 70). Since the daily increment of lipid and protein was known for Dipper nestlings (see above), the relative amounts of each were allowed for in this calculation, unlike model one (Section 4.6.5(a)). This method assumes no difference in biosynthetic efficiency with age.

(c) Biosynthetic efficiency variable with respect to age and lipid:protein ratio

Wijnandts (1984) calculated the combined cost of growth (P) and biosynthesis in the Long-eared Owl (<u>Asio otus</u>) by relating metabolised energy to mass gain in captive reared nestlings of different ages. By extrapolating the curve of mass gain on metabolised energy back to zero, the metabolism at zero growth is obtained (see below). The slope of the curve is thus the cost of mass gain (i.e. P + B). By calculating P for various ages from the equation he provides, and subtracting this from the 'cost factor' (the total cost

efficiency, which has sind Will from Laboratory data of mass gain), the cost of biosynthesis remains. That this cost is likely to be exclusively biosynthesis can be demonstrated by examining the remaining components in the tedepardent of the relation feing produced.

McDonald, Edwa The efficiency of lipid monalderation of blochem the efficiencies were # an an amino acid gram mo fince the defity increment olipies nestifuge (see ab dere allowed for in this finution *.6.5(s)). Int bissyntheric efficiency a (o) <u>filosyntheric effici</u>

Wijnandre (1998 erowin (1) and biosynches evouin (1) and biosynches evouinting metabolieser modifierent a shot gain on setabolies of zero growth is obtain outwa is thus the cost of pairoulering F for veriout and septemoting this from nestling energy budget. The only components not included in metabolism at zero growth are growth (P), biosynthesis (B), and HIF. Using a conservative figure for HIF of 20% basal metabolic rate (Kendeigh et al., 1977) and subtracting this and growth (P) from the cost of mass gain in Long-eared Owls shows, (i) that HIF cost alone actually exceeds the total cost of weight gain late in the nestling period, (ii) that if a constant efficiency of biosynthesis (based on model 2, see later) of 66% is assumed and subtracted from the cost of mass gain together with growth (P) then the remaining 'unexplained' cost (presumed to be HIF) actually decreases with age, rather than increasing substantially as would be expected as a greater mass of food is processed. Inclusion of HIF as a component of the cost of mass gain is therefore inconsistent with the observed data, and biosynthetic costs calculated as above are likely to be realistic.

For the Long-eared Owl biosynthetic efficiency is low (38.5%) in one day old nestlings and increases throughout growth to about 66% in 34-35 day nestlings. Moreover, the change in biosynthetic efficiency does not appear to be related to either the lipid energy content/protein energy content ratio (LPR) or the amount of total energy increment daily. In the Dipper LPR increases from 0.38 in seven day old nestlings to 0.60 in twenty-one day old nestlings, but

pf mass gain), the cost of this cost is likely to be deconstructed by examining the corresponding change in biosynthetic efficiency is only 2% (i.e. 65% to 67%) when model 2 is applied to Dipper data. Using this model a mean biosynthetic efficiency of 66% is

nestling energy budget. metabolism at zero growth and HIF. Using a conser metabolic rate (Kendeigh and growth (P) from the shows, (1) that HIF cost of weight gain late in th constant efficiency of b later) of 66% is assumed gain together with growth cost (presumed to be HIF) than increasing substant? mass of food is processed the cost of mass gain is observed data, and blosyn are likely to be realisti For the Long-ea low (38.5%) in one day ol growth to about 66% in 3% change in biosynthetic ef related to either the 11p content ratio (LPR) or th daily. In the Dipper LPR old nestlings to 0.60 in

The daily cos	t of growth	for a	Jaddin 1	RITTICAL		
ulated in tissue Protein	(kJ bird ⁻¹) Total		ameti	Cost of bio od 3	synthesis (kJ bird ⁻¹) Method 2 Methoo	ч

3.01 3.02 5.27 5.27 5.27 5.27 5.27 5.27 5.27 5.2	4.15 4.17 4.19 140.62
- * 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.07 6.10 6.12 220.48
- 11 - 12 - 12 - 12 - 12 - 12 - 12 - 12	7.70 7.66 7.69 388.05
- 6.04 23.09 23.09 25.00 25.000 25.000 25.000 25.000 25.000 25.0000000000	12.30 12.36 12.40 429.22
- 9 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	7.67 7.70 7.73 282.17

text see ethods 1-3 used to calculate biosynthesis costs,

found. This figure is practically the same as that found for almost fully grown Long-eared Owl nestlings (and adult females gaining mass) in Wijnandts study. This suggests that McDonald, Edward & Greenhalgh's calculations are based on mature organisms. Wijnandts cost factor for calculating total mass gain cost (growth (P) + Biosynthesis (B)) is shown as a function of the percentage of growth completed in Long-eared Owl nestlings (Figure 4.31). This was then used to calculate biosynthetic costs for the Dipper (see above). A comparison of the three methods is presented in Table 4.23 and Figure 4.32.

The three models for calculating biosynthetic cost yield greatly differing results (Figure 4.32). The total biosynthetic costs for the nestling period for models one to three are; 78.0 kJ, 122.93 kJ and 228.64 kJ respectively. There is nearly a threefold difference in the estimate of biosynthetic costs between the three methods, with important implications for estimating nestling DEB (see Chapter 5). Biosynthetic costs peak at the same time as growth costs and exceed them until day 5 using model three, but are always lower (on a daily basis) using models one and two. Total biosynthetic costs are less than growth costs in all models (Table 4.23).

4.6.6 Alertness (AL)

107.

Resting metabolism is known to vary between night and day (Aschoff & Pohl, 1970), daytime resting metabolism being about one-third higher than night-time resting

Figure 4.31

Growth conversion factor (after Wijnandts, 1984) for calculating Dipper biosynthesis costs (see text) as a function of the percentage of nestling growth completed

found. This figure is p for almost fully grown t females gaining mass) in that McDonald, Edward & on mature organisms. Wi total mass gain cost (gro shown as a function of t Long-eared Owl nastlings to calculate biosynthetic A comparison of the three and Figure 4.32.

The three model yield greatly differing n synthetic costs for the n three are; 78.0 kJ, 122. There is nearly a threefo biosynthetic costs betwee implications for estimati siosynthetic costs peak a exceed them until day 5 u lower (on a daily basis) i biosynthetic costs are le

4.6.8 Alertness (AL)

E. H smint Growth conversion factor (at calculating Dipper biosynthe a function of the percentage

20

metabolism. This difference may be considered as energy used in preparing for muscular activity and increased awareness of surroundings (Kendeigh et al., 1977), and is termed the 'alertness' cost. By definition it cannot be classed as an 'activity' cost per se, but may be added to 'true' activity (A) above for considering the overall cost of activity as generally understood. For clarity the two are treated separately in this study.

108.

4.6.7 The heat increment of feeding (HIF)

S.A symptotic

to bes there is show we

BRETEV ACCUMULAT

CALINGOOS (CETRIC)

Singutesis con

Biosynthesis cost

Bicsynthesids

Meaningful estimates of HIF in wild birds are difficult to derive since published values for captive birds (mainly domestic fowl) on known diets range from a 20% to 60% elevation of basal metabolic rate (Ricklefs, 1974; Kendeigh et al., 1977). The assumption that HIF (as percentage basal metabolic rate) is independent of temperature is questionable (Kendeigh et al., 1977), so that estimating the proportion of HIF retained at low temperatures for thermoregulation is liable to error. An indirect method for estimating HIF would be that of independently measuring metabolised energy and subtracting the previous components from it, a method used elsewhere to arrive at 'activity' costs (Dunn, 1975; Westerterp, 1973). Metabolic rate at zero activity (Section 4.5.3) was found to be 2.06 x basal metabolic rate in Zebra Finch and House Martin nestlings. Subtracting (P) and (B)

for the period of the test (= 0.01 x BMR), and (AL), (=0.35 x BMR) leaves 0.8 x BMR 'unexplained'. Since the activity/metabolism tests were carried out at an ambient

setsholism, This differe used in oreparing for mus HARTERSEE OF SUPPORTING ferrad the 'slautness' bo "Heivizon" as an bassais "true" surivity fal above of activity as generally are treaved appointed at tions mend and C.o.e Masningrol ogti difficult to derive since testmly depending foul) on distant fazzd to dolfavela of al., 1977), The country matabolic rate) is indepe (Kendalgh et al., 1977), Hif rotained at low timpe Limbia to arror. An Undi would be that of independ and subtracting the previwind alsewhere to arrive . Wencestarp, 19734. Hatab +, 5, 33 was found to be 2. Finch and House Martin ne for the pariod of the test (=0.36 x BMR) leaves 0.9 activity/metabolism tests

temperature of 24°C, a thermoregulatory component must also be subtracted. Thermoregulation costs were not measured for , the two species used in the activity/metabolism tests so this cost was predicted using the equation for passerine daytime conductance (heat transfer coefficient) given by Aschoff (1981) (see Section 2.1.5). Nestlings used in the above test were well feathered and homeothermic (see Section 4.5.1).

Conductance = log 0.857-0.463 log mass eqn. 4.17 where conductance is measured in ml 02 g⁻¹.h⁻¹.°C⁻¹ and mass is in grams. An R.Q.* of 0.86 (see Section 3.2.2) was used for the nestlings. The lower critical temperature was taken to be 29.5°C for a 15g nestling (Figure 2.6). Subtracting the thermoregulation cost then leaves 0.21 x BMR (of the original 2.06) unexplained and attributable to HIF. Although this figure of 21% is within the range of published values it is clearly largely dependent on the accuracy of the thermoregulatory cost estimate. For example if the lower critical temperature was assumed to be 32.6°C then an additional 21% would be taken up by thermoregulation costs leaving HIF as zero. Since it was not possible to demonstrate conclusively a cost of HIF and that it may anyway have substituted a thermoregulatous requirement, this was not included in the Dipper nestling energy budget (Table 4.24 and Figure 4.33).

109.

4.6.8 Daily Energy Expenditure (DEE) and Daily Metabolised Energy (DME)

DEE and DME as a function of age are presented in Table 4.24 and Figure 4.33. They include the cost of activity

R.Q. based on measurements of Red-winged Blackbirds of similar mass to Dipper nestlings (Dyer, 1968).

temperature of 24°C, a be subtracted. Thermore the two species used in cost was predicted usin conductance (heat transf (see Section 2.1.5). NG well feathered and homed Conductance =

where conductance is mea in grams. An R.Q.* of O the nestlings. The lowe 29.5°C for a 15g nestlin thermoregulation cost th 2.06) unexplained and at figure of 21% is within

Daily Energy Budget of a Dipper Nestling clearly largely dependen regulatory cost estimate temperature was assumed would be taken up by the gero. Since it was not a cost of HIF and that i megulatous requirement, hestling energy budget (3 (kJ bird⁻¹ 4.6.8 Daily Energ The Daily 11.56 14.56 14.56 17.82 21.55 25.68 30.17 38.84 46.16 46.16 46.16 46.16 42.73 38.84 42.73 38.84 42.73 38.84 51.37 55.93 55.60 55.39 55.63 55.55.53 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55. Metabo BMR DEE and DME as TABLE 4.24: Table 4.24 and Figure 4.3 Mass (g) 5.9 8.1 110.7 110.7 117. . R.Q. based on measurements Age (days) mass to Dipper nestlings (0232222898765555 0 - 0 0 4 0 0 - 00 2

D.M.E. (kJ bird ⁻¹)	15.84 40.43 50.222 61.04 73.86 99.55 114.56 134.11 134.11 130.76 130.76 130.76 130.17 130.76 130.76 130.76 130.76 130.76 130.76 130.76 130.76 130.76 130.76 130.76 114.56 114.53 114.67 114.53 114.67 2510.54
D.E.E. (kJ bird ⁻¹)	15.84 38.74 38.74 46.08 55.01 73.70 55.01 73.70 86.75 63.24 63.24 63.24 63.24 63.24 63.24 102.38 108.08 108.41 108.62 108.62 108.62 108.62 108.62 108.62 108.23 106.75 105.53 106.25 105.53 102.28 102.28 102.20 102.17 102.27 102.27
'Alertness' (kJ bird ⁻¹)	4 28 5 24 6 42 6 42 6 42 8 73 8 73 8 73 8 73 12 82 17 96 17 96 17 96 17 96 17 96 17 96 18 00 18 000 18 000 18 000 18 000 18 000 18 000 18 000 18 0
bActivity (kJ bird ⁻¹)	- 0.00 - 0.00
Thermo- regulation (kJ bird ⁻¹)	
^a Bio- synthesis (kJ bird ⁻¹)	- - - - - - - - - - - - - -
Growth (kJ bird ⁻¹)	9.04 11.48 14.96 18.82 23.07 27.08 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.28 27.28 27.28 27.28 27.28 27.28 27.28 2
^	

^bCalculated using proportionate unit cost (PUC) model, see Section 4.6.3 on a single nestling in a brood of four, see Section 4.6 ^aCalculated using method 3. The energy budget is based

50	
10 2 5 12 C 5	
	2
(B.D.C.S.F.C.)	
	C - 4
	100
	1
	2
1.15万万斤0	2
in the factor and the	
	5 12
	1 -
N 10 M L H H M GI	2 3
13 - 00 -4 12-110 m-	the part
	4 0
KORGHO	
Series to Party and	
-00000	-
	5
a here (20) and (20) \$27.	
1.5553.	
	8 2
000000000	34
CARE FRANK	
String has applying the	
	in the second
	Part
19 19 19 19 19 19	
the run real of the ten ten	
any and and any any and and	

Figure 4.33

The daily energy budget of the nestling Dipper

calculated assuming PUC, and biosynthesis using model three. DEE as a multiple of BMR is shown in Table 4.24 and Figure 4.34.

110.

The daily metabolised energy (DME) of Dipper nestlings peaks around day nine (Figure 4.33), primarily due to the peak energy accumulated to growth (P) at this time (Section 4.6.4). Daily energy expenditure (DEE), however, peaked approximately two days later due in part to the reduction in (P) and in part to the increase in alertness, activity and thermoregulation components as nestlings become homeothermic and parental inattentiveness is complete (Figure 4.28). The components contribute the following proportions to the total daily metabolised energy; BMR 42.4%, growth 17.1%, biosynthesis 15.4%, thermoregulation 8.4%, activity 3.1%, alertness 13.4% (activity and alertness combined, see Section 4.6.6 is 16.5%). Basal metabolic rate is therefore the single most costly component, with alertness cost about one-third of BMR. Biosynthesis, growth and thermoregulation are each about one-third of BMR and activity is the least costly component at less than one-tenth BMR. Components are expressed as a percentage of BMR in Figure 4.34, the initial low DEE and DME values are because nestlings have just hatched (i.e. zero days old) and have effectively zero growth and biosynthesis costs, since the first growth increment occurs between day

Fighters 4,33

The daily energy budget

calculated assuming PUC DEE as a multiple of BN 4.34.

The daily met nestlings peaks around to the peak energy accu ISection 4.6.4). Daily peaked approximately tw in (P) and in part to th thermoregulation component and parental inattentive components contribute th daily metabolised energy biosynthesis 15.4%, there alertness 13.4% (activit 4.6.6 is 16.5%). / Basal most contly component, w Biosynthesis, grow about one-third of BMR a component at less than o as a percentage of BMR 1 DHE values are because n days old) and have effect costs, since the first gr

Figure 4.34

Components of the Dipper nestling energy budget expressed as a percentage of BMR

. 1

Simme 4. 74

Cargonanta of the Digost supervised as a percenter

TABLE 4.25:

Daily energy expenditure as a multiple of BMR for an eighteen day old Dipper nestling based on the different methods used when calculating activity and biosynthesis costs (see text)

Activity Costs	Method 1	osynthesis Cos Method 2	ts Method 3
Fixed Unit cost	1.72	1.73	1.75
Proportional Unit cost	1.78	1.79	1.80
Mean Unit cost	1.76	1.77	1.78

#125: 00411 wnwr BHR For at based on calculatis (nas fawr)

> Murinity Cant. Naved Units cout Court and Units

> > 1605 11414 Junit

energy budget is discussed in Chapter 5.

Assumptions concerning which models to use in calculating biosynthesis and activity costs affect the estimate of DEE and DME. Table 4.25 shows this with respect to DEE/BMR for eighteen day old Dipper nestlings for comparison with FEE/BMR (Table 4.26) measured using the doubly-labelled water technique and is discussed in Section 4.7.

4.7 FIELD METABOLIC RATE OF EIGHTEEN DAY NESTLING DIPPERS MEASURED USING THE DOUBLY-LABELLED WATER TECHNIQUE

Field metabolic rate, or field energy expenditure (FEE) was measured in eighteen day Dipper nestlings (n = 3) in the wild (Section 3.5.2). The results for each individual are presented in Table 4.26. Birds were sexed using an earlier version of the equation in Section 4.1.4, so that a sample of four males and four females might be obtained. Subsequent observations caused one male to be re-classified as a female and so the sample presented is for five females and three males. No initial blood samples for female one were obtained for female one, hence the initial isotope concentrations were estimated using the mean values for the per gram isotope loading of individuals injected from the same isotope batch (Ricklefs & Williams, 1984). Since all initial dosages were calculated from the same dosage curve, and body water content

was assumed to be a constant 67% (from carcass analysis,

Section 4.2), minimal errors should be incurred. FMR was

calculated using the following equation: -

to DEC/BMR for sighteen comparison with FEE/BMR doubly-labelled water te No.H. FIELD METABOLIC RAT Field metabolic (TEE) was measured in al in the wild (Section 3.5. are presented in Table 4 earlier version of the eq sample of four males and Subsequent observations o as a female and so the sa and three males. No init obtained for female one, were estimated using the loading of individuals in (Ricklefs & Williams, 198 Calculated from the same

energy budget is discuss

calculating blosynthesis

ebtimate of DEE and DME.

. Assumptions con

r nestling	FEE	1) DITK	1.86	1.77	1.63	1.62	1.52	1.68	1.85	2.06	
old Dipper	F.E.E.	(kJ g ⁻¹ d ⁻	1.947	1.942	1.741	1.721	1.595	1.713	1.976	2.152	
of eighteen day	F.E.E.	(kJ bird ⁻¹ d ⁻¹)	0.411	96.3	0.46	94.5	93.1	110.4	108.5	124.4	
lled water method,	D.E.E.	(kJ bird ⁻¹ d ⁻¹)	101.7	90.07	95.80	96.96	101.40	108.99	96.96	100.14	
doubly-labe	Brood-	size	1	3.5	+	5	5	+	5	5	
ing the	SS	* *	9	9.	0	6.	#.	.5	6.	#.	

desage calculated from mean of other birds

Initial

size 3.5 since initially brood of 4 but on visit for second blood sample only 3 present

Brood-size 3.5 chicks present FEE = $\left[\frac{\bar{N}}{2.08}(K_0 - K_D) - 0.015 K_D \bar{N}\right] Z$ eqn. 4.18

where \vec{N} = body water content in mM = mean body mass x 0.67 x 55.56

 $K_0 = Ln (Initial 0¹⁸ excess*)-Ln (final 0¹⁸ excess)/\DeltaT$ $K_D = Ln (Initial D excess)-Ln (final D excess)/\DeltaT$ Z = combined factors converting mMol CO₂.h⁻¹ to kJ.dayusing an RQ of 0.86 (see previously).

Comparing FEE of females with brood size showed a highly significant relationship (Figure 4.35). The equation is:

\$ FEE = 117.36-5.13 Brood-size $r^2 = 91.6$ eqn. 4.19 F = 32.55, df 1, 3, p < 0.05.</pre>

This relationship was very dependent upon female one, as the non-significant relationship when this point is removed demonstrates (F = 5.99, $d_f l$, 2 n.s.). So whilst it is tempting to infer a reduced cost of FEE with brood size it is clearly unwarranted on the basis of a small sample size, especially as the sexes together show no obvious correlation, although it is known that single nestlings do incur appreciably higher thermoregulatory costs (Section 4.3).

Excluding data for the brood sizes of one and Comparing the mean FEE for males and females of similar brood Size shows that males have significantly higher FEE costs

112.

than females (t = 4087, n = 7, p < 0.01), males averaging 21% higher FEE costs. This is due primarily to the sexual size-dimorphism found in Dipper nestlings (Section 4.1.4),

Field energy expenditure of 18 day old female Dipper nestlings (measured using the doubly-labelled water method) as a function of brood-size

 $r^2 = 0.92, n = 5, p < 0.05$

edise sho

inijquest.

Taolo el

#special

Ale though

spprecia

for on a per gram basis (FEE kJ g^{-1} , Table 7.5) there is no significant difference between the sexes (t = 1.91, n = 7, n.s.) The mean FEE for males and females was 114.3 and 98.8 kJ.bird.day respectively. If data for brood-size one is excluded, the mean FEE for females is 94.5 kJ.bird.day. FEE of nestlings of both sexes is approximately 1.75 x BMR. By virtue of their lower mass females appear to be less costly to rear than males of this species (see Chapter5).

Table 4.26 also shows data for DEE estimated by the time-activity-laboratory method (see Section 4.6). Whilst DEE was calculated for a nestling in a brood of four, and some error of applying such assumptions to other brood-sizes are expected, it can be seen that the two techniques yield similar results (i.e. within 5.0% of each other). If DEE/BMR is compared with FEE/BMR for brood-size four only, the ratios are 1.660 (using data in Table 4.25) and 1.655 respectively, though it should be noted that all DEE/BMR estimates (Table 4.24) fall within the 95% confidence limits of the brood-size four FEE/BMR figure. These results are discussed in Chapter 5.

PART TWO: HATCHING ASYNCHRONY: IMPLICATIONS FOR NESTLING ENERGETICS

4.8 PEAK LOAD REDUCTION (PLR): A TEST OF THE MODEL

4.8.1 Assimilation efficiency

Six House Martins aged 7-8 days old were hand-reared

113.

on a diet of Blowflies (<u>Calliphora</u> spp.) imagines to measure nestling apparent assimilation efficiencies (Sections 3.6.2, 3.6.3). The nestlings were kept in two broods. The first was a brood of two taken from a brood of four (and replaced after the experiment). The second was a brood of fine on e significa fieldocti realocti realocti reaces famales species

time-sur ver calc nf. opply (1. oun b (1. e, wi 1. oun b neted ch date in 1. onted ch 2. onte 1. onted ch 2. onte four taken from two broods and returned to three other broods to make up the broodsizes required for other brood manipulations (Section 3.8).

The dry mass of faeces produced over a twenty-four hour period for each nestling was measured (freeze-drying) and compared with the dry mass of food ingested. The mean water content of the flies used was $70.0^{\pm}1.8$. "Dry mass" assimilation efficiency was calculated as;

Dry mass of flies ingested-Dry mass of faeces Dry mass of flies ingested

eqn. 4.20

'Dry mass' assimilation efficiency for the six nestlings is presented in Table 4.27. The energy content of House Martin faeces of age 8-16 days is 17.91 kJ g⁻¹ (Bryant & Westerterp, 1983) whilst the mean calorific content of aerial insects (chiefly Diptera) has been measured as 22.83 kJ g⁻¹ (Turner, 1980). Using these figures 'energy' assimilation efficiencies were calculated by substituting the energy equivalents into the equation above (Table 4.27). The mean 'dry mass' assimilation efficiency was 60.5 \pm 3.2 per cent and the 'energy' assimilation efficiency is 69.0 \pm 2.5 per cent. These values are similar to those found in other insectivorous species, but differ from Bee-eaters (Krebs & Avery, 1984; Bryant & Bryant, in press). Metabolised energy for the captive birds was therefore calculated from these data as a check that the nestlings were not under-nourished.

114.

en a die bonaure i f.f., 1. flret man replaced

All nestlings put on mass during the experiment and their metabolised energy was on average 3.4 x Average daily metabolic

rate. There is no evidence therefore to suggest nestlings

TRANTE

Energy intake and assimilation efficiency of House Martin nestlings on a diet of Calliphora imagines

						-	+	
energy	81.9	76.9	1.94	48.7	48.1	68.7	62.3 15.4	
Metabolised (kJ) I	71.7	65.6	43.7	42.9	41.7	61.9	54.6 ± 13.3	
fficiency b _{II}	66.6	67.3	69.6	6.9	67.3	73.3	69.0 ± 2.5	
ation el (kJ)								
Assimil a _I	52.4	58.3	61.2	61.6	58.4	66.0	60.5 ± 3.2	
Energy content (kJ)	123.02	114.32	71.37	£9.71	44° T.L	93.75	90.60-± 23.40	
Frod dry mass (g)	5.388	5.007	3.126	3.053	3.129	4.106	3.968 ± 1.036	
Faeces dry mass (g)	2.295	2.086	1.213	1.11	1.303	1.395	1.577 ± 0.486	
Food wet mass (g)	17.96	16.69	10.42	10.18	10.43	13.69 ^t	13.22 ±. 3.45	

Dry mass assimilation efficiency (I), calculated as Dry mass food ingested-Dry mass faeces output Dry mass food ingested

Energy assimilation efficiency (II), calculated as Energy ingested-Energy in faeces, assumes a calorific content for food of 22.833 kJ g⁻¹ (Turner, 1980), faeces of 17.91 kJ g⁻¹ (Bryant & Westerterp, 1983).

Water content of food was measured as 70.0 ± 1.8%. TABLE 4.27: 24.2 ± 3.4 22.0 Wing (mi) ALL need 29.1 22.0 22.1 27.9 21.8 ALCON STA 12743 Mean nestling mass (g) SD 2.9 16.9 18.2 12.0 17.0 12.0 12.1 Д ۵

were under-nourished. The latter was calculated from Bryant & Gardiner (1979).

Figure 4.36 shows the energy intake of hand-reared House Martin nestlings behaviour is a highly significant function of faecal output (r^2 =91.7, p < 0.001). Faecal output was therefore considered a suitable measure of energy intake in the House Martin. Evidence for non-linearity is slight and therefore ignored. An assimilation of 69.0% was used to convert faecal output to energy intake for investigating Peak Load reduction (next Section) as follows:-

Energy Intake = $\frac{\text{Faecal Dry Mass x 17.91}}{69.0}$ x 100 eqn. 4.21 where energy intake is in kJ day⁻¹.

4.8.2 Faecal output

Peak Load Reduction (Section 2.2) was investigated in eighteen House Martin broods. The peak energy demand of each brood was measured indirectly by regularly collecting the total faecal output (Section 3.6.1) and converting this to gross energy intake (GEI) from the assimilation efficiency value given for hand-reared nestlings in the previous Section.

Peak faecal output was measured as the mean of three days of highest output, and this figure was used to calculate the mean peak energy demand of the brood (MPED_B).

115.

Figure 4.37 (a-c) shows the mean daily faecal output for broods of three to five House Martin nestlings throughout the nestling period. The mean peak faecal outputs

are approximately 6.0, 9.5 and 11.0 grams dry mass per brood

Figure 4.37:

Daily faecal output for House Martin broods as a function of the mean brood age.

- (a) Brood size 3 (n = 5)
- (b) Brood size 4 (n = 9)
- (c) Brood size 5 (n = 3)

per day, for broods of three to five respectively. The regression of peak faecal output on brood-sizes is significant (F = 8.46, n = 17, P < 0.05) although on a per nestling basis they were not (F = 1.12, n = 17, n.s.).

4.8.3 Peak Energy Demand

The mean peak faecal output per nestling was used to calculate mean peak energy demand of nestlings (MPED,) and these data were then used to test the model of exponential energy savings through reduced peak energy demand, as asynchrony was increased (Section 2.2). The model predicts that MPED_n should decrease in a curvilinear (concave-up) way with increasing brood-size (Figure 2.8). Figure 4.38 shows MPED_n as a function of asynchrony, measured as the relative difference in hatching mass, RDHM (Section 2.3.3). There is no evidence of a relationship between peak energy demand and hatching asynchrony. Bryant & Gardiner (1979) calculated a small reduction (2.2%) in (GEI) with asynchrony in House Martin broods of four using 'smoothed' data and assigning broods as either asynchronous or synchronous. There are a number of reasons why both of these data suggest that hatching asynchrony did not evolve (at least in this species) primarily as a means of reducing parental costs during peak nestling demand and these will be discussed in Chapter 5.

4.9 COMPETITIVE BEGGING BEHAVIOUR I: A LABORATORY STUDY

116.

4.9.1 Types of Zebra Finch begging behaviour

Nestling begging behaviour was examined in the Zebra Finch (Section 3.7). The following begging behaviours were measured.

Figure 4.38

The mean peak energy demand of House Martin nestlings as a function of hatching asynchrony for all broodsizes combined

(D. M. Bryant data, n = 4)

ACCED 7 4.15 abanci. ta cal And Bi ABARCE. 「日本がかい山内 M 20167 12 11720 REASE 1950 2255 no evis the Column diall'r nirtin proods. madman 物用如何注意和 (DRADH)

\$ 7mg

(a) Pre-feed giving-up time (GUT pre), the mean duration of begging (s) in a series of five tests in which nestlings were not offered food (Section 3.7.1) but allowed to beg until they gave up.

(b) Post-feed giving-up time (GUT_{post}), the mean duration of begging (s) in a series of five tests in which nestlings had previously received a single feed at a single profitability; either F = 0 or F = 1 (Sections 3.7.1, 3.7.2). Nestlings were allowed to continue begging as above.

(c) Handling time (HT), the time taken to remove and swallow food from the dummy bill (Section 3.7.2).

(d) Elevated giving-up time (EGUT), the duration of begging (s) an unfed nestling when its sibling was being fed. The unfed nestling may or may not have received a feed on the previous feeding offer (Section 3.7.1).

(e) Elevated giving-up time/giving-up time (EGUT/GUT), the ratio of EGUT to the mean pre- and post-feed giving-up times (see above). This is a measure of the relative increase in duration of begging during feeding of a sibling.

(f) After-begging (ABT), the duration of begging (s) of a nestling immediately after it has received a feed, and hence after HT.

(g) After-begging/handling time (ABT/HT), this ratio is a measure of the time a nestling will allocate to begging

taking into account its previous HT experience.

4.9.2 Zebra Finch begging behaviour in the laboratory

Pre-feed giving-up time (GUT_{pre}) was not found to be significantly different from post-feed giving-up time (GUT_{post}) for either F = 1 or F = 0 (Table 4.28). Comparing GUT_{pre} with the first begging bout immediately after the feed also showed no difference. The data were therefore lumped for subsequent analysis and are referred to as GUT without qualification. Nestlings with lower initial cropscores (< 4) (Section 3.7.3) did not beg for a significantly different time than more satiated nestlings with higher cropscores (> 5) (Table 4.28). The presence or absence of a sibling similarly had no apparent effect on the amount of time a nestling would beg without reward.

Neither GUT nor GUT_{pre}/GUT_{post} varied as a function of age. GUT_{pre}/GUT_{post} did not vary when a comparison of means for young chicks (4-6 days) and old chicks (7-9 days) was carried out (Table 4.28). In Zebra Finch nestlings GUT therefore appears to remain fixed at approximately 8.5 seconds $(\bar{x} = 8.4 \pm 0.46, n = 110)$ under a wide range of treatments.

Handling time and after-begging time (ABT, see below) are presented as a function of nestling age in Figures 4.39 and 4.40. In keeping with previous discussions of nestling size (mass) hierarchies, HT and ABT will be considered further in relation to nestling mass, rather than nestling age (Section 3.7.4). Handling time was found to decrease with mass for both F = 0 and F = 1 (Figures 4.41, 4.42). It had been expected that handling time for F = 0 would be less than the

to Dest Stores 4. na trian profilent TELY CONT WEST LOW 63 gril pges Inu adi LIKE VIPER SHY. 通用化 机均匀 a) south? BECKD NO (2) 000 0 100 Ed-7-

A STILLI

118.

TABLE 4.28: Giving-up time (GUT) of Zebra Finch nestlings in relation to crop-score, presence or absence of sibling, and food profitability (see Section 3.7.2); and GUT pre /GUT in relation to nestling age

Variable	Comparison	Mean ± SE	<u>n</u>	t-value	significance
Crop-score	High	10.2 ± 1.88	50	0.115	n.s.
	Low	9.65 ± 1.21	50		
Sibling	Present	10.98 ± 2.00	60	0.325	n.s.
	Absent	9.1 ± 1.25	60		
Feed F = 1	Before	10.48 ± 1.70	75	0.865	n.s.
	After	6.6 ± 1.41	60		
Feed F = Ø	Before	6.56 ± 1.42	60	0.357	n.s.
	After	8.30 ± 0.75	55		
Age	ayoung	2.07 ± 0.47	40	0.299	n.s.
	01d	1.31 ± 0.13	45	-	

below) a 4.33 and nestling further

be sig

(GUT po

sútpre

feed al

Lumped

tuoritiv

800268

differe

scores

sibling

time a

of aga.

means f

NAS CAP

therefor

4.8 = 32

a Young = 4-6 days old; Old = 7-9 days old

handling time for F = 1, yet the reverse was actually found, nestlings taking longer to 'handle' with the dummy bill empty (Table 4.28, 4.29). Paired nestlings had significantly higher handling times than singletons (Tables 4.28 and 4.29). When the data were examined to take into account load size however, it was found that lone nestlings receiving the empty bill (N1:FO), handled for less time than paired nestlings receiving the greater loadsize (N2:F1). This difference was not however significant. The overall relationship between handling time and mass (Section 3.7.4) can be expressed as;

Handling Time = 23.4-8.55 Ln Mass $r^2 = 0.523$, p < 0.001

eqn. 4.22

In paired nestling treatments it was found that the unfed nestling begged for much longer without reward before giving up ($\bar{x} = 24.5 \pm 1.54$). The sight/sound of its sibling being fed induced it to elevate its begging (= EGUT) above GUT levels, and this difference was significant (t = 4.84, df = 163, p < 0.001). The ratio of EGUT/GUT was not found to vary with either crop-score, mass of unfed nestling, mean brood age, or RDBM (Table 4.30). EGUT and EGUT/GUT therefore appear to be similar in many respects to GUT and GUT_{pre}/GUT_{post} , but at a consistently higher level. In addition to a change in begging behaviour of unfed nestlings in paired treatments, begging behaviour of nestlings receiving food was also found

119.

to vary. In both single and paired experiments, immediately after a nestling had finished handling the feed, it began to beg again. This after-begging time (ABT), was found to

^a Handling- time (s)	a Intercept	b Slope	r ²	Significance	
TOTAL	23.4	-8.55	0.546	p < 0.001	
F = 1	22.1	-8.17	0.452	p < 0.001	
F = 0	23.6	-8.30	0.538	p < 0.001	
Single (Nl)	22.7	-8.45	0.521	p < 0.001	
Pair (N2)	27.5	-10.5	0.523	p < 0.001	

TABLE 4.29: Handling-time as a function of log nestling mass in the Zebra Finch

NEED

neet

1202

(had)

\$12

16.72

12EF

16.02

1522.4 2

1.250

1 10:27

111111

antiod

Tip

- 20

Actions

1520

nd of

10 51

12174

^a For explanation of handling-time categories see text

Figure 4.41

. .

- 1

Handling-time as a function of nestling mass for Zebra Finches when food profitability is F = 1.

The regression equation,

$$y = 22.1 - 8.17 \log_e x$$

 $r^2 = 0.30, n = 88, p < 0.001$
Standard deviations: $a = 2.44, b = 1.34$

Figure 4.42

Handling-time as a function of nestling mass for Zebra Finch when food profitability is F = 0.

The regression equation,

$$y = 23.6 - 8.3 \log_{2} x$$

 $r^2 = 0.48$, n = 64, p < 0.001

Standard Deviations: a = 2.30, b = 1.35

TABLE 4.30:	Analysis of	covariance of	handling time
CANAL STREET,	versus loge.	nestling mass	when;
	F = 1 and F	= 0, and N $=$	1 and $N = 2$
<u>Comparison</u>	In	a tercepts	b Slopes
F = 1 and F	= 0 F :	= 0.028 n.s.	F = 166.102***
N = 1 and N	= 2 F	= 1.112 n.s.	F = 118.639***

*** = p < 0.001;

n.s. = not statistically significant

Degrees of freedom = 1,164 and 1,81 respectively

decrease with age for both F = 0 and F = 1 (Figures 4.43, 4.44) in a similar way to handling time and at a higher level (Table 4.28, 4.31). Nestlings after-begged for longer when F = 1 and when a sibling was present (i.e. paired treatments) and for less time when F = 0 and no sibling was present (Table 4.30).

Analysis of covariance of paired and single treatments splitting F = 1 and F = 0 data showed that N1:F1, N2:F1 and N2:F0 curves were not significantly different from each other and had higher values (ABT_{hi}) than N1:F0 (ABT₁₀) (Figure 4.45), from which they differed significantly (Tables 4.32, 4.33, Figure 4.46). Moreover ABT₁₀ though resembling the mean handling time curve (Figure 4.46) was significantly different from it (Table 4.33). After-begging is thus markedly different in its relationship to nestling age than either GUT or EGUT. The ratio of ABT/HT was found to decrease with crop-score (Figure 4.47). In other words, hungrier nestlings were after-begging proportionately longer for a given handling time than nestlings with higher crop-scores.

Summary of Zebra Finch begging behaviour

deres a

On arrival of a parent bird as inferred from experimental stimulation, nestlings began to beg and continued begging in anticipation of food for on average 8.5 seconds (= GUT). Nestlings that were offered food took a predictable amount of time to handle this food (= HT) and this decreased

120.

as they grew. After swallowing, these nestlings began begging

again (= ABT) and the duration of this too decreased with

age. Lone nestlings receiving food at low profitability

	giving-up time (EGUT) as functions of the of the unfed sibling, crop-score and mean size			mass brood	
EGUT versus:-	a Intercept	b Slope	r ²	significance	đf
Mass of unfed sibling	3.01	0.075	0.0	n.s.	47
^a Crop-score	3.37	0.013	2.0	n.s.	47
Mean brood age	1.25	0.317	1.7	n.s.	34

a For derivation of crop-score see Section 3.7.3

EAT? * 5 Nite 12.92 . coma 2 1121 deba inte 25.1 10/62 3322 Asra. 417.1.0 MT 14 7:05 16921 1 Canena NB CTUM 10483 18. 7

1000

it.a

TABLE 4.31: Regression equation parameters for elevated

Figure 4.43

100

2

52

After-begging time as a function of mass of nestling Zebra Finches which have received food at profitability F = 0.

The regression equation is,

$$y = 25.8 - 7.26 \log_{2} x$$

 $r^2 = 0.34$, n = 83; p < 0.005

Standard Deviations: a = 4.03, b = 2.37

After-begging time as a function of mass of nestling in Zebra Finches which received food at profitability F = 1

The regression equation is,

$$y = 66.4 - 29.1 \log_{10} x$$

 $p^2 = 0.47, n = 74, p < 0.001$

Standard Deviations: a = 6.12, b = 3.38

labt	a Intercept	b Slope	r ²	Significance
TOTAL	38.7	-14.3	0.483	p < 0.001
F = 1	66.4	-29.1	0.688	p < 0.001
F = 0	25.8	-7.26	0.339	p < 0.005
Single (N1)	33.0	-12.0	0.500	P < 0.001
Single (N2)	67.6	-2.87	0.637	p < 0.001
	-			

TABLE 4.32: Regression analysis of ABT against loge mass for Zebra Finch nestlings

For explanation of after-begging (ABT) categories see text

<u>TABLE 4.33</u>: Analysis of covariance of after-begging time (ABT) versus \log_e nestling mass when; F = 1 and N = 1 and N = 2, and when F = 0 and N = 2 only. Also ABT when F = 0 and N = 2, and handling time (HT) data combined versus \log_e mass (see text for explanation of categories)

Comparison	a Intercepts	b Slopes
ABT:N2:F=1		
v		
ABT:N1:F=1	F=2.837 n.s.	F=0.558
v		
ABT:N2:F=0		
ABT:N1:F=O		
v	Station in the second state of the	F=26.248
HT TOTAL		P < 0.001

13

F

Bithe

Sing

N2:F=0 -----

N1:F=0 N2:F=1 N1:F=1

r = 0.300, df 58, p < 0.02

٩.

Parental decision III ... n

Figure 4.48:

Summary of parent/nestling interactions in the Zebra Finch.

----> Behaviour of nestling or parent, see text for explanation of abbreviations (= N1:F0) begged at a lower level (= ABT₁₀) than other combination (= ABT_{hi}). In paired treatments unfed siblings elevated their begging to an average of 24.5 seconds (= EGUT), and this was found not to vary with any of the variables measured. The above behaviour is presented diagramatically in Figure 4.48.

4.10 COMPETITIVE BEGGING BEHAVIOUR II: A FIELD STUDY

4.10.1 Types of House Martin begging behaviour

The cost of House Martin begging behaviour (Section 3.4.3) was measured in hand-reared nestlings (Section 3.6.3) and nestlings brought to the laboratory for short periods specifically for this purpose (Section 3.8.3). In the field begging calls were also recorded and begging intensity ranked as either high or low intensity, see below (Section 3.3.1 and 3.8.3).

Begging behaviour was ranked as high, medium or low intensity begging from the tape transcripts, based on two criteria; frequency of 'cheeps' per second, and the volume of the begging calls which generally reflected the number of nestlings participating in the begging bout. Frequency of 'cheeps' was timed with a stopclock, and arbitrarily ranked as follows;

High frequency, 1+ 'cheeps' per second Medium frequency, 1 'cheep' every 1-2 seconds 121.

Volume of begging calls, were arbitrarily ranked as follows;

High volume, all nestlings begging Medium volume, most nestlings begging Low volume, single nestling begging.

In broods of three there was rarely much difficulty in distinguishing the number of nestlings begging; the ranked volume corresponds to three, two and one nestling respectively. In brood size four it was often difficult to distinguish between three and four young begging, so high frequency begging may be overestimated slightly in these broods. The ranked volume therefore corresponds to four, two-three, and one nestling respectively.

The above two ranked scores were combined (see below) to give a single intensity score which was used in subsequent analysis.

High intensity, high frequency and high/medium volume. medium frequency and high volume. Low intensity, medium frequency and medium/low volume. low frequency and low volume.

High frequency/low volume and low frequency/medium volume were not observed, and hence are not included in the begging intensity ranking.

It was possible to distinguish three types of begging behaviour from the tape transcripts and microprocessor

122.

1. - 3

VILO

bne

TLEN

01.2

. 4 . 1

0.776 0

(D) H (C)

「日日から

EN NE

1.1.1

35179

13 20

104022

40112"

62 55

'Spontaneous' begging by one individual rising in (a) frequency of 'cheeps' noted per second, and not associated with a feeding visit by the parent. This often resulted in other nestlings joining in with begging calls, but the duration of this begging time was generally short and was usually at low, but occasionally medium, intensity. A variety of stimuli induced this type of begging behaviour, e.g. vigorous movement or wing flapping by nestlings within the nest, shadows falling across the nest entrance, mistimed landing at the nest by parent birds with and without food. This type of behaviour was also observed in a Pied Wagtail (Motacilla alba) brood, which spontaneously begged to a Small Tortoiseshell butterfly that alighted on the edge of the nest. Such spontaneous begging is equivalent to the giving-up time (GUT) of Zebra Finch nestlings (Section 4.12.1), and was also noted in the Dipper (Section 4.6).

YoLt

10 115

Selb.

102 ov

In by

14290

175ad

intersta

ding h

27 07

WINGS

10 300

al Seiner

diggeta

FIEL

(b) High intensity feed begging occurred when a parent bird arrived with food. This behaviour was induced by an initial vocalisation by the parent bird and continued until the parent left the nest. It is equivalent to the elevated giving-up time (EGUT) of Zebra Finch nestlings, though it contains a component of after-begging (ABT) by the fed nestling (Section 4.12.1). Since this is always lower than EGUT in duration (Section 4.12.1) it does not affect the estimation of EGUT. High intensity EGUT is referred to below as EGUT_{hi}. (c) Low intensity feed begging was initially stimulated in the same way as EGUT_{hi}, but was characterised by repeated

123.

vocalisations by the parent bird throughout its duration until the parent left. These persistent parental vocalisations were usually 'echoed' by one or two nestlings. Low intensity feed begging is referred to below as EGUT₁₀.

100/2 2

HE LU

0050

部分しら

MATT

0 30

語りつ加

1011

20 (P)

11日月

15374

2247

00,083

Eindh

Dippe

5720

R#2n2

2 317

出现以上面

87/102

2002)

2012月1日

ate at

4.10.2 House Martin begging behaviour in the field

The mean giving-up time (GUT, Section 4.5.2) of Dipper nestlings was 3.9 ± 0.62 seconds (n = 21) and House Martins 10.1 \pm 1.58 seconds (n = 22). The latter did not differ significantly from Zebra Finch GUT (t = 0.624, df = 130, n.s.) (Table 4.35). All data hereafter refer to House Martin nestlings unless stated otherwise. GUT did not vary with either mean wing-length of the brood (as an index of brood age), RDBM, or brood-size (Table 4.34).

Nestlings were found to beg for longer when siblings were being fed, as was found in the Zebra Finch, and the mean EGUT measured in the field was 38.2 ± 5.7 seconds (n = 70). This corresponds to $3.73 \times \text{GUT}$, compared to $2.92 \times \text{GUT}$ in the Zebra Finch. EGUT is positively correlated with GUT (Figure 4.49), and decreases significantly with age as indicated by the mean wing-length of the brood (Table 4.34).

EGUT was ranked as high intensity begging (EGUT_{hi}) or low intensity begging (EGUT₁₀) (Section 3.8.3). EGUT_{hi} was significantly correlated with nestling age (Figure 4.50, Table 4.34), but EGUT₁₀ showed no such relationship ($r^2 = 0.0$,

124.

n = 14, n.s.). EGUT_{hi} and EGUT_{lo} appeared to be positively related (Figure 4.51), but this was not significant. The proportion of low intensity begging visits did not vary with ' age (Figure 4.52).

	BS	RDHM (g)	xWNG (mm)	GUT (s)
GUT (s)	0.26	0.0	0.0	-
EGUT (s)	0.34	0.0	-0.46	0.74**
EGUT _{HI} (s)		0.0	-0.87***	-
EGUTLO (s)		0.12	0.0	

N

1 . E .

H ST

11

Vqéa

19au

were

feed

. Dippe

diffe n.s.)

nešti

(egs

Marti

edthe

TUDE

avere

This

Sebra

m shit

(04.4

05 lo

signt

Table

TABLE 4.35: The me in som	an duration of begging a passerine nestlings	activities	
Activity	Species	Mean ± SE (secs)	n
^a Giving-up Time (GUT)	Zebra Finch House Martin	8.4 ± 0.62 10.1 ± 1.58	110 22
	Dipper	3.9 ± 0.46	21
Elevated	Zebra Finch	24.5 ± 2.7	96
(EGUT)	House Martin	38.2 ± 5.7	70

Definitions of begging behaviours are as given in Section 4.5.2

a

2115

480

116.12

The (a)

TURE (ei

EIRT

143

100

begging bout duration in the House Martin.

r = 0.829, n = 13, p < 0.05

Figure 4.50: The relationship of the mean duration of each nest visit, ranked one (see text) with the age of the brood, expressed as mean wing-length. Diagram shows means ± 1SE.

The regression equation for the means is:-

x = 93.0-0.991y, n = 13, p < 0.001

Data are for the House Martin

r = 0.46, n = 11, p < 0.1

It was not possible to measure handling time in House Martins in the field, but data for the Dipper (Figure 4.53) bear a close resemblance to the form of the handling time curve for the Zebra Finch studies (Figures 4.42, 4.43, 4.46). After-begging was found to occur in hand-reared House Martins (Figures 4.42(a-c)), the duration of which varied with handling time (Figure 4.55). Nestlings after-begged less when food profitability was low, F = 0 (Figure 4.54(c)), than when it was high, F = 1 (Figure 4.54(b)) and this difference was significant ($\chi^2 = 25.5$, df = 10, p < 0.001).

When the relationship of after-begging to handling time was compared in the House Martin and Zebra Finch using analysis of covariance and standardised units (Sokal & Rohlf, 1969; Figure 4.56) it was found that the slopes did not differ significantly (F = 0.073, df = 1, 201, n.s.). There is good agreement between laboratory begging behaviour measurements and measurements in the field. These results are discussed in Chapter 8.

4.10.3 <u>A test of the reduced sibling rivalry model</u> on the House Martin

The reduced sibling rivalry model (Section 2.3) was tested by comparing the amount of time and energy expended in competitive begging behaviour (Section 4.5) with the degree of hatching asynchrony within the brood, measured as the relative difference in hatching mass, RDHM (Section 2.3.3).

Field begging data were collected as previously (see above) for thirteen House Martin broods of three to four young which included both manipulated and unmanipulated broods. Measurements

Altop! CRE CA 1001.17 600.0 % Low intensity visits Marriel thead bont ahr 31 ing/c out19 Analy . 10001 64530 Mean wing-length of the brood (mm) on al **新贺内田田** The relationship of the percentage of weath Figure 4.52: low intensity begging visits with nestling age in the House Martin, expressed as the mean-winglength of the brood. 1857.87 addays. 0f har

Figure 4.53:

The mean duration of feeding visits to Dipper nestlings, as a function of nestling age. Curve fitted by eye.

Figure 4.54:

Frequency of after-begging per 5 second interval after cessation of feeding for House Martin nestlings in the laboratory.

- (a) All data (i.e. F = 1 and F = 0).
- (b) After feeding when F = 1 (see text).
- (c) After feeding when F = 0 (see text).

Figure 4.55:

Mean number of Doppler activity units (DAU's) accumulated in the 5 second time intervals immediately succeeding a feeding attempt, as an index of handling time (HT), as a function of after-begging time. The latter is expressed as the 5 second period in which no further DAU's were accumulated (see text for discussion). Bars represent S.D's.

The regression equation is:-

y = 4.65 + 0.801x, n = 92, p < 0.001

Data are for the House Martin.

were made over the period of highest brood energy demand and nestling peak mass, between days ten and twenty-one inclusive. The RSR model predicts a progressive reduction in competitive energy expenditure with increasing asynchrony, to a minimum, and then CEE is expected to rise again (Section 2.3.4). The pattern of changing CEE with asynchrony may be reflected in several measurements of nestling begging behaviour. One way in which nestlings might reduce CEE is to reduce the frequency of begging bouts with asynchrony (Figure 4.57), but there is no evidence of such a relationship. The mean duration of begging bouts might be regarded as a more accurate measure of CEE, and this is shown as a function of asynchrony in Figure 4.58. There is however, no evidence to support the RSR model from these data. Nestlings not only beg at feed times, but also when the parent is absent (Section 4.6). A reduction in the ratio of productive begging (i.e. when the parent arrives with food) to unproductive begging (i.e. when the parent is absent) may be an alternative method of reducing CEE. Figure 4.59 shows this, but again no significant relationship is demonstrable. Begging efficiency, the number of begging bouts/number of feeds delivered to the nest also shows no relationship (Figure 4.60). Begging intensity was ranked as either high or low (see Section 4.10.1). A decrease in the proportion of high intensity begging bouts with asynchrony

126.

would be consistent with the RSR model, yet this was not found (Figure 4.61). No measure of nestling begging behaviour therefore, was found to confirm the proposed mechanism of reduced sibling rivalry in House Martin broods. Assumption (v) of the RSR model (Section 2.3.2) is that nestling competitive costs are energetically expensive. The cost of begging in the House Martin was presented earlier (Section 4.5.3). The activity costs measured in the laboratory were applied to begging data collected in the field (see above) and the daily cost of nestling activities calculated for a single House Martin nestling, of mean mass 14.9 grams, and in a brood of four. This mass of nestling was chosen since it is equal to the mean mass of nestlings used to calculate activity costs (Section 4.5.3) and it is not known whether activity costs are 'fixed' or 'proportionate' (Section 4.6). Using this mass for calculating daily costs will therefore not be affected by assumptions regarding the validity of 'fixed' or 'proportionate' models of activity cost.

It was assumed that a nestling received on average one feed from four parental visits, and defaecated every other feed. Feeding rates were calculated from field begging data presented above (see also Section 3.8.3). The nestling was assumed to after-beg in the manner discussed in Section 4.9.1, and elevate its giving-up time (EGUT) similarly. It was also assumed that this nestling would incur begging costs at the mean level experienced by the birds which were examined in the field, although a bird of this mass will tend to be younger. The costs presented should therefore be regarded as the maximum

127.

1 binon erupit) ereducer buccher

5000

equive

Allis

TOLLOT

Tellegal

20, 60

120 10

etus 13

on 522

· romit

5111245

P/14 Date

cfinoly.

henrise

Let the

1921 24

1100017

cost a bird of this size will incur. The mean ABT was calculated for the mean handling time presented in Figure 4.56 (i.e. HT = 0 SD units). HT was not measured directly in the laboratory for House Martin nestlings. Since EGUT approximates

Figure 4.58 (bottom): Mean duration of begging bouts in the House Martin as a function of hatching asynchrony.

Solid symbols manipulated broods

•

1.10

. .

6 7805

Fueles

王、単、王)

Isborat

Figure 4.60 (bottom): Ratio of number of begging bouts to the number of feeding visits, during the entire observation period (see text), as a function of hatching asynchrony for the House Martin.

Manipulated broods: Top bottom •

Solid symbols manipulated broods

in the horizont

to the duration of a feeding visit (see above), and a nestling is either being fed during this visit or is begging (Section 4.9.2), by subtracting ABT of the fed nestling from EGUT will leave the time it spends actually feeding (i.e. HT ~ EGUT-ABT). Moving costs are the same as presented in Section 3.4.3.

Table 4.36 shows the cost of the above activities. The total activity cost is only 0.104 kJ h⁻¹, or 1.248 kJ day⁻¹, assuming a 12:12 hour diurnal cycle (see Section 4.6). This daily cost is equivalent to 5.5% BMR, calculated from Aschoff & Pohl (1970). All begging behaviours combined (GUT, EGUT, ABT) account for 56.7% of the total activity cost, handling food 14.4% and moving 26.0%. The final 2.9% is defaecation costs. Comparing the costs of the different begging behaviours as a percentage of total begging costs, shows that EGUT is most expensive (67.8%), followed by GUT (23.7%), and ABT (8.5%). So whilst begging costs form a large proportion of total activity costs in the House Martin (but see Section 4.6), these costs are much smaller as a proportion of the total DEB than previously assumed (Section 2.1.4). Though costs are low, and there is no evidence to support the RSR model, there is evidence to show that nestlings modify their begging behaviour (see above), and that this may itself lead to energy savings. This will be discussed in Chapter 5.

4.11 FURTHER CONSIDERATIONS OF THE RSR MODEL

128.

The RSR model (Section 2.3) predicts conditions that must be met if RSR is important (Section 2.3), briefly; that disparity in nestling size should be optimized and TABLE 4.36: The daily activity cost of a single 14.9g House Martin nestling in a brood of four

Activity	Frequency (Activity h ⁻¹)	Mean Activity Duration (s)	Mean time Spent in Activity (s.h ⁻¹)	Energy (kJ h ⁻¹)	Percentage of total Activity Cost (%)
agut	18.0	10.1	182	0.014	13.5
EGUT	14.1	38.2	538	0.40	38.4
^b ABT	4.7	14.4	68	0.005	4.8
CHI	4.7	23.8	112	0.015	14.4
Defaecating	2.8	10.0	23	0.003	2.9
Moving	-	-	172	0.027	26.0
TOTAL	-	-	1095	0.104	100.0

a For definitions of begging behaviour see Section 4.5.2

b, cFor calculation of ABT and HT see text

101 07 120 22 18.8.8 eVabJ Service of the servic 740 50 Ampiene HILMB. Point C 100001 14.42 ALC: NOT a parena Langers 20 MILES 法治公社会会の p marti with date MOZ NOT 1 woont Denny Lor -Onclose

maintained throughout growth, that competitive costs are substantial and that savings from RSR should be allocated to some component of fitness. The cost of competition is discussed in Sections 4.10 and 4.11, the other two points will be dealt with here.

4.11.1 Peak mass and hatching asynchrony

It was suggested in Section 2.3 that energy saved from reduced competition might be reallocated to growth in nestling House Martins, leading to some measure of nestling growth increasing with increasing asynchrony, peaking at an optimum and then declining again (Figure 2.11). House Martin nestlings grow quickly in the first two weeks and reach peak body mass at about 16 days (Bryant & Gardiner, 1979) thereafter they undergo a period of mass recession, associated with a decrease in water content, and feather growth (specifically wing and tail) in common with a number of species (Ricklefs, 1968; Turner & Bryant, 1979) (Figures 4.65(a-f)). Peak mass may be used as an index of nestling quality; poorly nourished young having lower peak masses than well-nourished young. If savings from RSR were reallocated to growth, for example progressively laying down greater fat reserves (Section 2.3.5), then this could be reflected in a higher peak mass. Peak mass (taken as the mean of the three days of greatest mass) was measured in 157 House Martin nestlings from 37 broods, both

129.

natural and experimentally manipulated. Table 4.37 shows the mean peak mass and asynchrony (RDHM) for brood-sizes two to five. The mean peak mass in broods of three and four were not significantly different (t = 0.06, n = 21, n.s.) and were

Figure 4.62:

Nestling mean peak mass as a function of hatching asynchrony, measured as the relative difference in hatching mass (RDHM), for House Martin broods.

(a) Brood-size 2. Dashed line is fitted curve (see text for explanation)

(b) Brood-size 3 and 4 data combined.

(c) Brood-size 5.

- Maximum degree of asynchrony found in unmanipulated House Martin broods.

(Refer to text)

Asynchrony (RDHM)

.

.

÷

therefore combined for subsequent analysis. The mean peak mass of broods of two is significantly higher than broods of three and four (t = 2.57, n = 117, p < 0.02) which are in turn higher than broods of five (t = 2.35, n = 137, p < 0.02). The mean hatching asynchrony increases with brood-size (Table 4.37). The difference in mean hatching asynchrony between brood-sizes two and three and brood-size five were statistically significant, t-tests on other pairs of brood-sizes were not (t = 2.66, n = 16, p < 0.01 and t = 3.42, n = 17, p < 0.01). Figure 4.62 (a-c) shows nestling peak mass as a function of hatching asynchrony (RDHM) for brood-sizes of two, three to four and five.

If these graphs are compared with that of the model for RSR (Figure 2.10), we find no similarity with the possible exception of broodsize two. The quadratic term of a second order polynomial regression was significant ($r^2 = 0.86$, F = 11.01, df 1, 9, p < 0.05). Given the small sample size and lack of any highly asynchronous brood data for brood-size two, however, it provides only weak support for the model. Also, if RSR is important then there is no reason to assume that this will not occur in all brood-sizes which is not the case.

RSR does not appear to determine the pattern of peak mass observed and therefore the Peak Load Reduction hypothesis

130.

will now be considered. If the mean peak mass of nestlings in highly asynchronous broods (right of dashed line, Figure 4.62) with that of moderately asynchronous broods (left of dashed TABLE 4.37: Mean (± SD) hatching asynchrony (expressed as RDHM, Section 2.3.3) and mean peak mass of House Martin nestlings as a function of brood size

Brood size	Mean peak mass (g)	an	RDHM	b _n
2	24.92 ± 1.39	20	0.300 ± 0.25	10
3	23.78 ± 1.48	45	0.275 ± 0.19	11
4	23.74 ± 1.40	52	0.417 ± 0.19	10
5	22.96 ± 1.80	40	0.628 ± 0.21	6

an = number of nestlings

 b_n = number of broods

Data for 18 broods from D. M. Bryant

thirde higher mean h foo di fo

arder p

11 = 14.

And Let

THE, he

E , DEIA

str thiff.

.

意味せたパラ

0 TILS

line, Figure 4.62) in broods of three/four highly asynchronous broods have a significantly higher mean peak mass (t = 2.15, df 108, p < 0.05), although the difference is small, 24.65 and 23.76 grams respectively (= nearly one gram of extra fat). This slight increase was not apparent in broods of five (t = 0.688, df 39, n.s.). If this slightly higher mean peak mass in highly asynchronous broods of three and four were accepted, it would require a 54% increase over the maximum asynchrony found in natural broods, to produce the observed 3.7% increase in peak mass. The mean asynchrony of the highly manipulated broods was 1.176, equivalent to a hatching spread of four days. If savings from PLR are reallocated to growth in the manner proposed for RSR, the predicted mass increase may be calculated (Section 2.3.5).

Predicted PLR savings increase linearly (Figure 2.9) over the range of asynchrony values found in unmanipulated House Martin broods (Figure 4.62 (b)), and are consistent with a slight trend of increasing peak mass with asynchrony (shown in Figure 4.62 (b)) although this was not significant.

Using the theoretical DEB, a brood of four would save 0.22 Watts brood⁻¹ from PLR if hatching was spread over four days (Figure 2.9). This is equivalent to 6.33 kJ per nestling per day, or the equivalent of 0.66g of additional fat, an increase of 2.8% over moderately asynchronous broods.

131.

Considering the differences that will occur between the

theoretical DEB and actual House Martin DEB's, the figure is consistent with that found. In summary, there does not appear to be any evidence to support the view that RSR, resulting in line. hroods af 100 af 100 7540 7540 aesto aesto aesto af four as fa in the a

folian and

tour day four day instrille dat, an Capeider to be any constrate increased peak nestling mass at some optimal asynchrony, occurs in House Martins. The differences in peak mass between highly and moderately asynchronous broods of three and four, although significant is small, and consistent with predicted savings from peak load reduction using the theoretical DEB. The latter would however require that parents allocate any saving accrued into producing bigger chicks and there is no direct evidence for this.

4.11.2 <u>Hierarchy stability and the flexibility</u> of House Martin growth

Central to the hypothesis of RSR is that bigger differences in nestling size produced by asynchrony result in less competition. If this is the case then natural selection should favour the maintenance of size differences between individuals either throughout growth, or until a fixed dominance hierarchy is established, which will then remain constant even though size differences may cease to be maintained (Section 2.3.2), with associated benefits to the highest ranked members. Examination of the size hierarchies within House Martin broods show that the relative difference in body mass (RDBM) is not maintained, but declines (Figure 4.63). Moreover, by about eleven days RDBM is similar for all broods irrespective of initial RDBM.

The House Martin growth curve may be approximated by a logistic curve until peak mass is reached. If nestlings hatch asynchronously then the growth curves do not 'coincide'; they progress 'out of phase'. Since daily mass increments

132.

Figure 4.63:RDBM as a function of age in the House Martin $O : \Box$ Asynchronous broods Δ , ∇ Synchronous broods

.

hy a log ma dotac rog wadt

increase until mid-growth and then decrease, individuals within a brood that hatch first will reach the inflexion point of their growth curve first and thereafter although still increasing in mass, will be doing so at a decellerating rate, whilst their late hatched siblings may be increasing in mass at a progressively greater rate (i.e. before their own inflexion point is reached). The relative difference in body mass will therefore decline in the manner shown (Figure 4.63). The initial drop in RDBM is therefore not due to mass recession, although after the first nestling has reached peak mass a slight reduction in RDBM may be attributable to this factor. As each nestling reaches peak mass and begins to undergo mass recession RDBM increases slightly again (Figure 4.63). Decreasing RDBM is not inconsistent with the establishment of a persistent dominance hierarchy during early growth, provided that the size difference remains reasonably large during this period for the reasons given in Section 2.3.2. The period over which mass difference should remain high during early growth will of course also be affected by how long it takes nestlings to establish their position within Suppose that a fixed hierarchy is established the hierarchy. in the first days after the brood has hatched so that in a brood of two the largest sibling consistently gets a greater proportion of the food brought to the nest and continues to

6.14

1.0.0

1.0

1.61

3.8

W.0.

1.0

1.1

133.

grow more quickly than its smaller sibling. The pattern of growth shown in Figure 4.64(a) might then apply. Note that even though the growth curves are parallel, RDBM as a measure

Age (days)

E REWER

avan thus

Figure 4.64: Models of nestling growth showing the potential for hierarchy instability (see text).

of proportionate size differences will still decline with age as shown previously. Due to the mass recession shown in House Martins, however, it is possible that there will be a time when the last hatched (and hence lowest ranked member of the brood) is actually heavier than its elder sibling (Figure 4.65(b)). Even so this size difference would be short-lived hence the youngest chick eventually returns to being the lightest. Neither of these patterns is inconsistent with the maintenance of a persistent dominance hierarchy, by initial large differences in nestling mass. In Figure 4.65(c) however, the lowest ranked nestling achieves a greater peak mass than the first ranked nestling.

The hypothesis that asynchrony evolved as a means of establishing size differences to reduce competitive costs is inconsistent with these data, since the lowest ranked siblings competitive ability appears to be independent of the size hierarchy. Such instability within nestling hierarchies is common amongst House Martins, and Figures 4.65(a-f) show examples of how hierarchies may change. Figure 4.65(a) shows a synchronously hatched brood of five in which the original hierarchy is reversed completely. This is an extreme example but noteworthy in that it might be interpreted as supporting the view that asynchrony is required to ensure that hierarchies are maintained, in accordance with the BSR hypothesis, since synchrony does not result in maintenance

134.

of the hierarchy in this example.

Figure 4.65(b) is an asynchronous brood of three

Figure 4.65:

ns o

1,

Individual nestling growth curves for House Martins showing the flexibility of growth and instability of nestling hierarchies.

- (a) 'Synchronous' brood of 5. IHS = 1.0
- (b) 'Asynchronous' brood of 3. IHS = 0.0
- (c) 'Asynchronous' brood of 4. IHS = 0.83
- (d) 'Asynchronous' brood of 3. IHS = 0.33

(two nestlings ranked equally, initially as 1, and finally as 2).

- (e) 'Synchronous' brood of 3. IHS = 0.17
- (f) 'Synchronous' brood of 4. IHS = 0.17

(three nestlings initially ranked equally as 1, and two nestlings finally ranked equally as 2).

and may be viewed as the classic hierarchy type that lends support to the RSR hypothesis (see Figure 4.65(a)). In this example, hatching asynchrony was artificially high (> 4 days) and it is the only example of its type found amongst 28 House Martin broods (see below). Figures 4.65(c) and (d) are for natural asynchronous broods of four and three respectively. In both cases the smallest nestling eventually becomes the largest. Figure 4.65(e) is a synchronous brood of three in which the smallest nestling remains the smallest, but the second ranked sibling, eventually peaks at a higher mass than its larger sibling. It also demonstrates that a high degree of asynchrony is not necessary to ensure that the smallest sibling remains the smallest. Finally, Figure 4.65(f) shows a synchronous brood of four in which the third size ranked individual peaked at an appreciably higher mass and remained heavier, even though the initial size difference between the top three ranked individuals was very small, and similar peak masses might be expected on this basis. To consider further the occurrence of permanent hierarchy shifts within House Martin broods, an Index of Hierarchy Stability was calculated as:-

 $\frac{2 \text{ x Number of growth curve crossovers}}{(Broodsize-1) \text{ x Broodsize}} = \frac{C_n}{C_m}$

eqn. 4.23

135.

where the number of crossovers is established by joining the curves between a nestling's initial mass ranking

and its final mass ranking allowing for age differences. Figure 4.66 shows the calculation of C_n and C_{max} for a

MER DIRE TROUGHT # Medanaya t and been S WE I TROUGH Incurses. In Doth Jangers! da Nodria binopion ten 1600 arryna, to meridia znanyn a up 1 y Ltrai a talvani 10113 207 a sector MOCHO MIST S STLEWAM

-128

1 × 1

dis esentiti

Figure 4.66: Calculating the index of hierarchy stability (IHS) from initial and final size ranking.

- (a) Maximum possible number of crossovers $(C_{max} + C_N)$ i.e. complete hierarchy reversal
- (b) Half the maximum number of crossovers (C_N), partial hierarchy instability

hypothetical hierarchy. So where IHS = 0, there is no change in hierarchy, and where IHS = 1 there is complete reversal of the hierarchy with intermediate values representing a degree of change between individuals (see Figures 4.65(a-f).

In 28 House Martin broods in which it was possible to measure IHS, only 11% of the hierarchies remained stable (IHS = 0). Of the remaining 89%, 68% showed some permanent change in hierarchy structure, (IHS = 0.16-0.88) and 21% showed complete hierarchy reversal (IHS = 1.0) of the 68% that showed some permanent hierarchy change 43% resulted in the initially highest ranked individual being superseded by lower ranked siblings and 14% of these became the lowest ranked individuals. Table 4.38 summarizes these results. In broods which showed partial hierarchy changes (IHS = 0.1-0.9) figures are presented with respect to the effect of the change in position of the highest ranked individual, rather than as ranked indices. This is because each IHS value represents several different combinations of hierarchy change, and does not specifically identify cases where the highest ranked individual was superseded by lower ranked individuals (Table 4.38). Thus IHS is useful for general comparison between species, brood-sizes, etc., but since there is such a large number of possible combinations of hierarchy change it is more informative to discuss specific combinations separately.

101

5m)

136.

The only instances (n = 3) in which hierarchies

were maintained was in the highly asynchronous brood shown in

hyperher abange i reversel a degree

to seast (195 s d ohange 2 showed q

that this

lower re

ranked 1 w abord

and and the

figures i

d badrist

several o

Individue

fTable %.

between a

a large z

son al ri

TABLE 4.38: The proportion of House Martin broods showing permanent changes in mass hierarchy within the brood (n = 28)

Hierarchy change		Percentage occurrence
(i)	No change (IHS = 0.0)	11%
(ii)	Partial change (IHS = 0.1-0.9)	
	(a) Highest ranked individual not superseded by lower ranked individuals	25%
	(b) Highest ranked individual ³ superseded by lower ranked individual (s), but not all of them	29%
	(c) Highest ranked individual superseded by all lower ranked individuals	14%
(iii)	² Complete change (IHS = 1.0)	21%
	TOTAL	100%

¹ See text for explanation of derivation of IHS

² Complete changes from the point of view of the highest ranked individual is as in (ii(b))

³ 'superseded' refers to the difference in initial and final size rankings

Figure 4.65(b) and in two broods of two. Since the number of suitable broods of two was small (n = 4) it is possible that hierarchy stability may be more common in this brood size. Yet no examples of hierarchy stability was found in the House Martin broods of 3 - 5 (with the exception of the above manipulated brood) and this begs the question, do initially lower ranked siblings in broods of three or more young in fact gain some advantage from their higher ranked siblings which enables them to peak at a higher mass and remain heavier? O'Connor (1975b) demonstrated that laterhatched young received more visits than did their earlier hatched siblings in the Blue Tit, thus enabling them to grow more quickly. Although this may occur also in the House Martin it is unlikely that this alone could explain hierarchy instability. Firstly there is no evidence to suggest that any advantage to early growth in the late-hatched young is maintained throughout growth in either the Blue Tit or House Martin, and it is more likely that limited early growth benefits might serve to narrow the size gap between individuals rather than produce changes in hierarchy. Secondly, if late-hatched nestlings had such a consistent advantage then one might expect the last hatched young to consistently increase its size rank, which does not occur. Finally, egg size effects were not controlled in this study and so differences in growth due to hatching mass variation cannot be ruled out. Indeed the data

Mlsfard

(1)

1123

BCILL

137.

on IHS are entirely consistent with that which one might expect from differences in egg mass. House Martins do not show any pattern of changing egg mass with laying sequence

Figure 4 stine to als rast . orica title Bota above ma flaitint. toung in alblings requally h benoter. Bern78/ EUD PTIM A altran 【注意到两方田理工 any advan anhere the AGENER, A ing Strain, Sorti madi neavilivaen. dund only NOD NOT WELCONT FROM hutching 20 215 02 1: 720-TAP THE MINE

(Bryant, 1975b, 1978b), so that the lightest egg may hatch first and the heaviest last. It has been shown for a number of species that heavier eggs produce heavier chicks (Bryant, 1978; Davis, 1975; Parsons, 1970; Schifferli, 1973) and that heavier hatchlings produce heavier fledglings with subsequent increased probability of survival (Horsfall, Lundburgh & Vaisanen, 1979) although not in House Martins (Bryant, 1978). If hatching mass in the House Martin is therefore independent of hatching order, nestling peak mass would be expected to reflect this initial hatching mass and not hatching order and so any given combination of hierarchy crossovers should occur with equal probability. For example, there are only two outcomes with respect to nestling hierarchy in a brood of two; maintenance or reversal. They would be expected to occur equally if hatching mass (and hence peak mass) is independent of hatching order. Of the four broods examined two had an IHS of 0, and two had an IHS of 1. For broods of three, four and five there are six, twelve and twenty possible combinations of hierarchy changes respectively. Sample sizes for IHS measurements were eleven, seven and six broods for the respective broodsizes and so, on the basis of such a small number of broods, it would not necessarily be expected that hierarchy maintenance in the larger brood sizes would be detected.

To summarise, the instability of hierarchies in

138.

House Martins is consistent with a model of peak mass independent

of hatching order. Examination of the literature shows that

TABYTE) 458 78523 Linega, lo 19761 0 thir hea Wir In Malays Lond brand Adding 2551 thereal and Mokild be DIAN JOA. BTOBBOYB: Pin errorit in a prese Derpeque miss) is due cilemanie. to showed DE VERBAR the signed brande fo TA & BOLT Detawithe NOVEE SHOW

Sound Mar

Idozen 10

hierarchy instability occurs in other species; Black Vultures, <u>Coragyps atratus</u> (McHargue, 1981); European Robin, <u>Erithacus</u> <u>rubecula</u> (Lack & Silva, 1949); Willow Warbler, <u>Phylloscopus</u> <u>trochilus</u>, Reed Warbler, <u>Acrocephalus scirpeus</u>, and Great Reed Warbler, <u>Acrocephalus arundinaceus</u> (Dyrcz, 1974). The importance of understanding changes in hierarchy will be further discussed in Chapter 5, with respect to the rôle of hatching asynchrony.

4.12 PREMATURE FLEDGING IN THE DIPPER

Dipper nestlings are capable of swimming and diving long before they can fly (as early as day 12, pers. obs., Shaw, 1978), and are able to continue development out of the nest if forced to fledge early. Data regarding the survival of prematurely fledged young are scarce, yet important, as there is evidence that in the Dipper differential growth occurs to maximize the chances of survival of prematurely fledged young (Section 5.1). For selection to favour such an adaptive strategy there must be significant mortality of nestlings that are unable to fledge early, and evidence that prematurely fledged young are able to survive and recruit into the adult population.

Table 4.39 shows data for prematurely fledged young which were subsequently either caught or sighted after they had become independent of their parents. The data,

though very few, demonstrate the ability of prematurely fledged nestlings to continue growth outside of the nest, and enter the adult population. hunenen dennen dennen hunen en se hunen hu

destinut.

110 P. 1.

Tang Lafa Tang Lafa Tang Lf 4 of press of press ta tagety f

ann217anr

後生い予約回転すり

Thus wir

they had

INN BDUCY

TABLE 4.39: Survival of prematurely fledged Dipper nestlings observed after independence from parents

Age at Time between fledging fledging and last sighting		Source	
^a 14 days	2 weeks	This study	
^b 14 days	Several months	Balát, 1964	
^a 16 days	3 weeks	This study	
16 days	3 months		
17 days	3 months	S. Newton, pers.comm.	
17 days	12 months	This study	
^C 17 days	20 months	H H	

Observed being fed by the parent after fledging

Two birds from one brood

a

Ъ

С

Known to have subsequently bred

TABLE 4 TABLE 4 Age at flodging 14 day 14 day 17 day 17 day 17 day

Three main factors may be responsible for nestling mortality that would provide selective pressure for premature fledging in the Dipper; human disturbance, predators and flooding. The latter two together account for 38.0% of nest failures (Shaw, 1978). Flooding is the single most important natural cause of nest failure (19.6%), and is even likely to be underestimated. This is because Shaw's figures were based on analysis of BTO nest record cards, which tend to be biased towards easily surveyed bridge nest sites, which are relatively secure compared with more natural sites. If egg stealing by humans is not included in the above considerations of nest failure causes, flooding and non-human predation account for a minimum of 54.5% of all nest failures. The ability to fledge early, whilst perhaps reducing the chances of brood survival, will however increase the likelihood of at least some young surviving, and thus may be selected for.

The ability to jump out of the nest, and climb out of the water once the immediate danger has been avoided, seems likely to be enhanced by well developed tarsi (Section 5.1). Dipper nestlings usually combine swimming on the surface with intermittent diving once they have left the nest, before climbing on to the river bank or a low rock ledge down stream (pers.obs.).

Though nestlings tend to use their wings when diving, surface swimming involves primarily the use of the feet

140.

(pers.obs.). This is also true of adults (Glutz & Bauer, 1985). Nestlings also appear to initially avoid deep pools once fledged

TILITIC Plantstees anthest's tallures. Intilder ranbour no on analy COMMETCIN | AND PERMIT 1. ucrainter failure : mminia -HAPLY, W wed Lity angevivina 07 5110 W 111Nely To Dipper ne

1 5513410A

271020702

anidmits

(jers, che

and remain near shallow rocky areas of river, where they can scramble over the rocks and surface swim (pers.obs.). One nestling that jumped from the nest at 16 days into a deep pool, surface swam for a while, but drowned during its first dive, perhaps due to strong undercurrents. Dipper nestlings, though, are capable of surviving leaps into very fast flowing water. One 14-day old individual having disappeared beneath the 'white water' at the bottom of a 1.5 metre waterfall below its nest, was found unharmed an hour later on the river bank downstream (see also legend, Table 4.39). The water below the nest however was relatively shallow. Dipper nestlings have been observed apparently attempting to self-feed as early as 17 days old, though parents continue to deliver food to fledged young (pers.obs.). It is not known in what way the allocation of parental care varies during post-fledging in prematurely fledged young compared with nestlings that fledge at around 23 days. Adaptations to surviving premature fledging are discussed in Section 5.1.

141.

and rema can sere One nest pol, loog dive, pe though, i . TRIEN the 'whi its nest. downstree nest howe been obse 17 days o fledged y ditsoolis 他们过后应进行交 bauors Ta fledging

CHAPTER FIVE

DISCUSSION

PART I: THE NESTLING ENERGY BUDGET

5.1 DIFFERENTIAL GROWTH AND BODY COMPOSITION IN THE DIPPER

Differential growth involves the allocation of limited resources to those tissues and organs of greatest current need. This necessarily involves trade-offs, since energy and materials diverted to specific organ growth result in deficits to other tissues, resulting in slower growth of the latter. In the short-term therefore certain tissues must pay the cost of slower growth, though in the longer term the overall benefits of such an adaptive strategy are realised by the organism as a whole. The relationship of this differential growth to nestling developmental strategy has been investigated in only a few species (Bryant & Gardiner, 1979; O'Connor, 1975; 1977; 1978; Ricklefs, 1975; 1979; Tatner, 1984). Differing patterns of growth have been identified between modes of development (i.e. precocial, semi-precocial, altricial; Ricklefs, 1979) and more importantly within a given mode, for example amongst altricial species (O'Connor, 1977; 1978). Dipper nestling development is characterized by two factors which have not been significant in previous studies; premature fledging (Section 4.12) and sexual size-dimorphism (Sections 4.1.4, 4.1.5). The latter will be discussed in Section 5.2. Differential growth and premature fledging will be discussed here.

142.

A number of adaptations which facilitate rapid early

growth ensure that nestlings are relatively 'mature' midway through the growth period, so that if premature fledging is

110 CAST 415 C about 15 de toligate nd 1205763 2800 MM2 20141528 tone a con and Creak a fee spe anasi7aq davie lopege MCH14554 gmank 501, bipper ne Whe Histowy 2011 BOULT A BALLA はたちのなることに , HYDE

growth and

tr mailern's

necessary the chances of nestling survival are enhanced.

Bill morphology in nestling birds is different from that of adult birds (O'Connor, 1977; Royama, 1966; this study), and in the Dipper may be divided into two types. In the first phase of bill growth, bill shape is likely to be governed by the need to provide a large target area to stimulate parents. During this phase mouth target area (MTA, Section 4.1.2) is circular and is referred to hereafter as MTAI. In phase two, the bill gradually changes in shape to the adult diamond shape (MTAII, Section 4.1.2), to enable the transition to self-feeding in fledged young.

Phase I of Dipper bill growth is characterised by an increase in both gape-width and bill-length (Section 4.1.2, Figures 4.8-4.11) such that MTAI continues to increase in size until day twelve. MTAI then decreases in size as the fleshy bill cushion atrophies. Since MTA changes shape to MTAII as the nestling grows, the shape of MTAI does not accurately reflect bill shape during the second phase of bill growth. MTAII (and that of the parent bill) conversely, describes well the shape of MTA during the second phase of bill growth but not the first phase. Figure 5.1 shows MTA calculated for both the 'circular' (MTAI) and 'diamond' (MTAII) shapes, as a function of age in the Dipper (see also Figures 4.8, 4.9; Section 4.1.2).

MTAI allows a larger target area for the parent,

143.

compared with MTAII up until day twelve when the two curves cross. This shape of mouth is likely to be beneficial to

nolithnit

Recting a

MTA II = diamond mouth shape

nestlings during early growth for a number of reasons. Firstly, it provides greater visual stimulation to the parent because of the larger target area. Secondly, it reduces the likelihood of food boluses being accidentally dropped by nestlings, during the stage when nestlings are least coordinated, particularly during the first few days after hatching. Thirdly, it allows nestlings to handle larger food boluses than would be possible if the mouth was diamond shaped (i.e. MTAII), since MTA is larger for MTAI.

The change in bill shape during phase two can also be viewed as adaptive for two reasons. After day twelve changing bill shape to MTAII ensures that mouth target area remains large (Figure 5.1), rather than decreasing which would happen if mouth shape remained circular (MTAI) due to the reduction in gape-width (Figure 4.5; Section 4.1.2). Also, change in bill shape to that of the adult occurs during the period when young can prematurely fledge, rather than later in the nestling period, or earlier which would involve a lower MTA during the period of peak energy demand (see below). Days 12-23 may represent the minimum time necessary to effect a change in bill shape to that of the adult, and may equally explain why the change in shape (MTAI + MTAII) does not occur later in the nestling period without the need to involve adaptive arguments with respect to premature fledging. It appears, however, that change in bill shape (and hence reduction

144.

in MTA) is deferred until after the period of peak nestling energy demand (day 9.0, Table 5.1), thus reducing foraging costs to the parent, since fewer feeding trips will be necessary to provide a given amount of food. inestiings firstly, feesuuse o likaiihoo nastiings dinated, Thirdly,

ATH WORLS

be viened changing i changing i venild hep the recus the recus from recus in inver in i change i change i i chan

6.0 Peak RLDM of Gizzard (i) ^aMain insulating feather (ii) tracts 'split' 6.0 Maximum growth rate of (iii) 6.5 body mass Peak daily metabolised (iv) energy (DME) 9.0 Growth rate of body-length (v) begins to slow down 10.0 ^DFull homeothermy attained 10.0 (vi) Peak daily energy expenditure (vii) 11.0 (DEE) Tarsus growth complete 12.0 (viii) Mouth target area (MTAI) (ix) 12.0 reaches a peak 17.0 ^CPeak nestling mass (\mathbf{x})

TABLE 5.1: A summary of the timing of some developmental stages during Dipper nestling growth

Developmental Stage

Age (days)

a primarily back feathers
b mean for all brood sizes estimated from parental inattentiveness patterns (Section 4.6.2)
c nestling mass reaches an asymptote earlier than this (Section 4.1.1) but mass recession starts about day 17.

Other structures associated with procurement of food show rapid early development and may be viewed as adaptations to permit maximum rate and efficiency of energy intake and processing. Body-length growth is a crude indicator of how far a nestling can stretch its neck to receive food (Section 4.1). Body-length growth begins to slow down at day ten (Table 5.1) having increased linearly thereto, so that approximately 90% of body length growth has occurred before day twelve. Tarsus-length similarly shows an early linear increase, whilst the leg as a whole (measured as LDM) grows more quickly than the rest of the body (Section 4.2.2). Early growth of the legs has been found in other species (Austin & Ricklefs, 1977; O'Connor, 1977), and is important both for thermogenesis through shivering and attaining and maintaining feeding positions within the nest (Rydén & Bengtsson, 1980; Werschkul, 1979; Calder & King, 1974; Marsh, 1979; O'Connor, 1975), the former being partly responsible for the attainment of homeothermy by day ten (Table 5.1). Hence nestlings, that fledge prematurely are capable of independent thermoregulation.

ABLE S

colsus(

(10)

1211

The growth of food processing organs undergoes early development and maturation which coincides with the maximum rate of mass growth. The relative lean dry mass (RLDM) of the gizzard peaks at day six and then starts to decline (Section 4.2.2). A similar pattern has been observed in

145.

the House Martin (Bryant & Gardiner, 1979). The RLDM of the liver is high initially and decreases in relative size during

food - shoot pitafiget: in board. al wor to (Swerplon) Cdat) nav simil Norponia Mint this · REAR/FORC plup orize DAY & DALL A TATADA1 Vorth Fort the last million Bengtreeon lansh, 29 bestions the Lidbile 6.5 to atduque

the procession of ma

BELICIE MER

Liver is h

growth, whilst both liver and intestine have lower water contents than the body as a whole (Section 4.2.4) reflecting their early maturation.

The large relative size of the head is one notable adaptation for food procurement since it includes the main trophic structure (0'Connor, 1984) though the head's initial large size may also reflect the need to provide strong protection for the well developed brain (Portmann, 1955). There may also be an adaptive conflict in having a large head, since it represents an area of high vascularization and heat loss (Marsh, 1979). Differential growth of feather tracts appear to partly compensate for this: feathers on the head 'prick' through the skin first (Section 4.1.3) and pins split early. Head feathers, however, grew slower than other insulating feather tracts (Section 4.1.3), but since the head decreases in size relative to the rest of the body, rapid continued growth of feathers becomes less important. Conversely, the emphasis on heat loss shifts from the head, to the rest of the body (notably the exposed back) which does not decrease in relative size as growth continues (Sections 4.2.2, 4.4). Energy for feather growth is therefore apparently transferred to allow rapid growth of the main insulating feather tracts on the back. The back feathers grow the quickest of all the insulating feather tracts (Section 4.1.3). At approximately 7-8 days Dipper nestlings therefore have a well established

146.

insulating layer of feathers on their dorsal surface. Nonetheless, larger nestlings tend to cool more quickly than smaller nestlings

"ILING'TS 500 tellt no zledi LTST CADA trophic la which ltimtora; 「前田」からかれる since it Louis (Mas TOPOLO ST "pescel s sarly, S TITAL/USAL 100000000000 beam! Piller Address Will whod air' ewinsies. LOBICEY TO

ro allow na tho ba freshatin fee days

ATTALIATION TO A

10.0 CHR/000

of similar age (Sections 4.4.2, 4.4.3). This would appear to be due to heat loss through the primary and secondary pins (see Section 5.3), which prick through the skin at about 5.5 days, but the feathers do not split from their pins until about 8.5 days (Section 4.1.3). Early pricking of primary and secondary feather pins may therefore represent a tradeoff, since these feathers have eventually to achieve the greatest length. Early pricking of the feather pins may thus be necessary to allow sufficient time for the flight feathers to grow. The rapid growth of these feathers lend support to this view (Section 4.1.3).

Dipper nestlings have high lipid indices compared with some other species (O'Connor, 1977; 1984), and even from a young age, lipid indices are substantially similar to adult/ juvenile lipid indices (Section 4.2.1). Nestlings that fledge prematurely therefore have significant energy reserves to utilise during the period in which energy demand is likely to be highest. Nestling lipid index gradually increases during growth so that young that fledge at around 23 days have lipid indices of about twice that of adults/juveniles. This may be an adaptive strategy since Dippers may nest as early as February in the study area, when ambient temperatures are still low and snowfall and frosts still occur. Thermoregulation costs of newly fledged Dippers are therefore likely to increase considerably, especially during the day, since they may return

147.

to the nest to roost at night (Shaw, 1979; pers.obs.).

Tarsal growth is complete by day 12 (Section 4.1.1), the earliest age nestlings were known to jump from the nest, of sinch to be du to be du (see Sec anys, bu showt f) showt f) off, ofn greatest bu becon to grow,

silin sond a young a jeventie prenature prenature be highes be highes destilin february february ousts of a consident whilst wing growth is only about 90% complete at 23 days. Growth of legs at the apparent expense of the wings can be viewed as an adaptation ultimately to favour efficient early locomotion in prematurely fledged young (see Section 4.12). This appears to be one of several adaptations for early growth allowing young to fledge prematurely if necessary, and yet in a relatively mature state. Since growth differs between the sexes in the Dipper (Section 4.1.5), differences in developmental strategy and nestling energetics may be expected. This is considered in the next section.

5.2 SEX-SPECIFIC ENERGETICS AND GROWTH DYNAMICS IN THE DIPPER

Adult Dippers are sexually size-dimorphic, males averaging larger than females (Anderson & Wester, 1971). In this study adult males were 20% heavier than females and had 20% greater wing-length. This size dimorphism was evident among nestlings (Section 4.1.5), and was reflected in the greater field energy expenditure of eighteen day old male nestlings compared to females (Section 4.7).

Whilst male nestlings average 11% heavier than female nestlings at fledging (Section 4.1.5), their daily field energy expenditure (FEE) was 21% higher than females (Section 4.7). Nonetheless the apparently high FEE is explained almost entirely by the lower mass difference, since this difference is primarily due to the associated increased metabolic costs as a result of greater body mass. This view is supported by the energy budget data presented in Section 4.6, in which an

result of greater body energy budget data pro w Tellde o dreod o dreod o bewele ltomocol dqs eld gqs eld solwoll's nl susse to Istree slehoo el

this drad this drad 201 feest shong neg graater f

female particulty and antically antically antically and antically an

TO FLUGBS

anergy bud

increase of 11% body mass produces a 20.7% increase in daily energy expenditure, in good agreement with that found in the field.

That the greater energy demand of male offspring is explained by the mass difference between the sexes has also been demonstrated for the sexually size-dimorphic Red-winged Blackbird (<u>Agelaius phoeniceus</u>), in which the higher male field metabolic rate was reflected in body size differences (Fiala & Congdon, 1983). Both studies thus show there is a greater cost of rearing males than females in such size-dimorphic species.

Sex ratio theory (Fisher, 1930) predicts that at the termination of parental care, equal total expenditure of energy, time or some other measure of parental investment should have occurred for both sexes within the brood. Such equality of investment may thus be expected to produce a sex ratio of one. Unequal investment on the sexes, as implied in the Dipper, may therefore be expected to produce a primary sex ratio skewed in favour of the least costly sex, i.e. females. Of the nestlings it was possible to sex pre-fledging, 37 were females and 32 were males, producing a sex ratio ($\frac{9}{\sigma}$) of 1.16, apparently skewed in favour of females, although not significantly so ($\chi^2 = 0.362$, n = 69, ns). Discriminant analysis showed that females were more reliably sexed than males (Section 4.1.4) which may explain the greater number of females

in the sample, due to the possible inclusion of small males.

Given that the Dipper appears to show both unequal

Increate anargy a いた正正正

BERKH #L been den Slackhile Modayez a Congdos 20.7100 ADRICT BERT

Em1207 667 anargy. should he guility 20 02784 the Dippe sign rates Of the ne a paismes 10 neviage finantly abowed th (Baction)

18 5117 11

energy expenditure on the sexes and a primary sex ratio not different from unity, some explanation is required. One explanation may be that the high energy demand of male offspring does not necessarily represent an unequal investment between the sexes by the parents. In other words, the energetic cost of rearing a particular sex may not reflect the reproductive cost to the parent. This may be because the effect of higher energy expenditure by the parent on future reproductive attempts is small, for example if parents can compensate for increased demand by adjusting their foraging behaviour. Another explanation is that there is differential mortality between the sexes during the nestling stage, biased against the more costly males, which tends to even out the extra cost of rearing male offspring.

Slagsvold et al. (1986) identify three possible mechanisms which may bring such differential mortality about :-(1) Parents distribute food more or less equally among all nestlings, irrespective of sex, but the higher energy demand of the offspring of one sex (in the Dipper, males) renders them more susceptible to starvation;

(2) Sibling competition, e.g. males fighting and injuring each other more than females:

(3) When parents cannot adequately feed the whole brood, they preferentially feed the less expensive sex, in the case of the Dipper, females.

150.

The latter necessarily implies sex recognition by

the parent. Hypotheses 1 and 2 are variations on the brood

endrugyien meruitin sanulana distana d

800 ACTER

in Pare (1) Pare noor (1) Pare inoor (1) Inon inoor (1) Ithin and (1) Inoor (1) (1) Pare inoor (1) Ithin anoor (1) Ithin (1) (1) Ithin (1) (1) Ithin (1) Ith reduction theme (see also Section 5.12), and all three hypotheses are concerned with partial brood loss. Three more hypotheses may be added:-

- (4) Females may be more able to avoid predation or flooding by premature fledging than males (Section 5.1), and once fledged have greater probability of survival;
- (5) Dipper adult males may selectively feed female nestlings in order to reduce the likelihood of future competition from male offspring (Harper, 1985). Males of the species tending to be more philopatric than females, as in many bird species (Greenwood, 1980);
- (6) Both parents invest more in the dispersive sex (in the Dipper, females, S. Newton, pers.comm.), resulting in greater likelihood of starvation or other mortality of males. This is similar to (3) but should occur irrespective of food availability.

Since no data are available on food distribution amongst brood members by each parent, and causes of nestling mortality are often difficult to assess with certainty, evidence for the hypotheses is indirect though suggestive.

Are male offspring more susceptible to starvation within the nest? Partial brood loss consistent with starvation of individuals was uncommon in this study. Of the 63 broods for which young were known to fledge, only six suffered loss of a single nestling, and one brood of six suffered the loss of two nestlings, prior to twelve days of age, at which time

151.

nestlings could fledge prematurely. In each case young were

bypothess bypothess (4) Pess (4) Pess (4) Pess (4) Piss (

de Indivita Res which

OF CHE BO

ann that the

missing from the nest on a subsequent visit by the observer, and so no details are available as to the cause of death, or likely sex of the individuals. Shaw (1978) examined the incidence of total brood loss and partial brood loss in a much larger sample of Dipper nests (n = 455) and found that of the young that hatched, 4.6% were lost through partial brood loss, whilst over twice as many were lost through whole brood loss (11.4%). There was no evidence to suggest partial brood loss was due to starvation. If feeding of nestlings were entirely at random (e.g. Reed, 1981) as proposed by hypothesis (1) then male mass might be expected to show a greater variance than female mass, since in times of food shortage males may suffer under-nourishment. Richter (1983) found that the variance in male mass was greater than the variance in female mass in the Yellow-headed Blackbird. (He also presented data for three other sexually size-dimorphic species in which the larger sex showed greater variation in mass than the smaller sex; Red-winged Blackbird, Common Grackle, and European Sparrowhawk). The variance in male mass in the Dipper was not significantly different from the variance in female mass (F = 1.56, df15,18 ns) for days twelve to twenty-one, though the number of sexed nestlings for which comparable growth data were available was small (n = 35). The misclassification of small males as females during 'Discriminant' analysis

152.

(Section 4.1.4) may perhaps be interpreted as suggesting males suffer more in times of food shortage than females. Large females, presumably those well nourished, were never classified as males (Section 4.1.4). The limited evidence

1 anlerIm on on him SE VISIES someblant auch Lirg or nis in yo Long, while lines (11: Lobe vas 12507227110 CHART (1) LIGO. FORM and you have Variance 1 ni okan. 100 50000 107 10 10 Sec. ball Dalls not stand 100. 1 to 100. fine member .817010 0720 N Lines to

available therefore suggests that whilst males may possibly suffer from undernourishment more frequently than females differential mortality through preferential starvation of males is likely to be uncommon.

Fighting between nestlings, as proposed by hypothesis (2) was never observed in the Dipper. No Dipper nestlings showed any signs of physical injury, or bald patches of feathers consistent with sibling fighting. Thus there is no support for hypothesis (2).

Preferential feeding of females is predicted by hypotheses (3), (5) and (6) though the reasons for it occurring are different. Hypothesis (3) specifically infers selective starvation of males (see also hypothesis (1)) which I have suggested is uncommon in the Dipper. None of the three hypotheses is however inconsistent with higher mortality of males predicted by hypothesis (4). Indeed the data suggest that differences in energy allocation to growth between the sexes, and not provisioning rates, are likely to explain the proportionately faster growth of females. This is because males grow more quickly in absolute mass terms and hence must receive proportionately more food than their sisters. There were too few carcases available however to test differential investment to early maturation of organs adapted for premature fledging, in females. Preferential feeding of females is thus not necessarily

153.

inferred by these data. If males were to preferentially feed

Philippinetto COLUMN TOG VO NAMES CREAK of Lusting TOQUICE ON he mound ALL DOCUMENTS ALL INSTITUTE Des Thomas ---RA DESCRIPTION CAFE 012013 MAR VINTE all'integrate N. FORD 337 Winser n

females as proposed by hypothesis (5), then it might be expected that adult females would compensate for this by preferentially feeding male young. Since it is the male that primarily feeds the young until they become fully homeothermic (pers.obs.) it seems unlikely that the female could compensate for this initially biased investment in female offspring. This view appears to be supported by the observation that males and females do not appear to differ markedly in their provisioning rates to mature young in this species (pers.obs.). Initial investment in early organ maturation by female offspring may be further aided by the ability of the more rapidly developing females to outcompete their brothers, and thus secure further shares of food brought to the nest. Conversely, the larger size of male nestlings may mean that they occupy higher positions within the nestling hierarchy and so offset any increased mobility of their sisters. There was no sex-specific difference in either body-length or mouth target area, as indices of competitive ability (see Table 5.2).

Since total brood loss is more common than partial brood loss (see earlier this Section), and premature fledging appears to be an adaptation to avoid this (Section 5.1), then the more rapid development of female young would speed up the time at which they could leave the nest. Their more rapidly

154.

developing tarsi, and greater completion of adult growth, would also improve their chances of survival over their less

Argunal Loval Argunal Loval Superator to Line more to two its white TABLE 5.2: Male and Female Dipper nestling body measurements as functions of age and mass respectively. a and b are regression constants.

		Age		Mass					
	Intercept a	Slope b	r ² I	intercept a	Slope b	r ²			
Female									
^a Mouth Target Area (mm²)	12.3	0.74	84.8	11.0	0.24	90.5			
^b Body-length (mm)	57.8	6.02	92.4	57.1	1.48	95.2			
Male									
Bill-length (mm)	12.7	0.74	83.5	11.0	0.23	94.0			
Body-length (mm)	58.1	6.00	92.6	56.7	1.43	95.2			

All regressions were significant at p < 0.001

a	Mouth Targe	Area;	n	=	139	female	s a	nd	n	= 9	9	males
Ъ	Body-length	•	n	=	126	female	s a	nd	n	= 7	6	males.
All regigrowth,	ressions were see Figures	e for the Section	e] 4.	.ir	near	phase	of	bod	у	соп	npc	nent

155.

'mature' brothers, as predicted by hypothesis (4). The advanced growth of females is unlikely to be an adaptation solely to produce differential mortality of males, but more likely to be a beneficial consequence of the need for early maturity for dispersal. Male offspring conversely have more to gain by investing energy into mass gain (increasing body size) at the expense of maturity, since dominance in males is likely to be size related, in part, and the males do not disperse widely.

SLAD97

To summarize: it seems probable that the higher energy demand of male offspring in the Dipper does involve unequal investment by parents in favour of males. This appears to be offset by differential mortality of male offspring due to a lower ability to avoid predation and/or the consequences of flooding. This is likely to be as a direct result of preferential feeding by males of female nestlings, though the underlying reason behind this has yet to be identified. Additional starvation mortality of males may occur, though this is likely to be less important than predation and flooding mortality.

5.3 THE FAILURE OF THE 0.67 EXPONENT TO EXPLAIN HEAT LOSS IN DIPPER NESTLINGS

Heavier Dipper nestlings cool more quickly than lighter Dipper nestlings of a similar age (Sections 4.4.2,

156.

4.4.3) at odds with that predicted from considerations of mass:surface area effect based on the 0.67 exponent (Calder & King, 1974). This suggests that Dipper nestlings within a Advance¹ Advance¹ Advance² Tilwiy Te maturity Te paint is Ideal

Annergy de Annergy de En in off A looding prefeient Anditziond file in lor file

Station D

· marily .

brood do not have the properties of a sphere. Mertens (1969), however, found a very strong relationship between log (brood mass) and log (brood heat production) in Great Tit broods at 12°C, with an exponent of 0.672. There are behavioural and nest structure differences between these two species however, which may account for this. Great Tits have large broods (mean broodsize = 7.5; Perrins, 1979) whilst Dippers have much smaller broods (mean broodsize = 3.2, this study), the former lending itself to more efficient huddling. There is also little room for moving away from siblings to increase convective heat loss in large broods confined within closed nest structures, such as the Great Tit. Indeed hyperthermia was found to be more of a problem than hypothermia in some large Great Tit broods (Mertens, 1977a). Dipper nestlings conversely show no signs of hyperthermia in the birds studied, even in older nestlings (> 12 days old). Great Tits are thus forced by their large broodsize and enclosed nest to behave as a single brood mass, even if this is sometimes detrimental. In Dipper nestling huddling behaviour is constrained by other factors which will be discussed below.

5.3.1 'Constrained' and 'unconstrained' huddling

Great Tits are fed from within the nest at all ages, with only a limited directional component to feeding site (i.e. parents do not feed from one direction only). Faecal sacs are removed by the parent birds (Perrins, 1979).

157.

There is thus no conflict between positioning to obtain feeds (or to defaecate) and huddling to reduce heat loss. Dipper nestlings (and House Martin nestlings) however, are constrained in their huddling behaviour by the directional nature of the feeding offers (Figure 5.2(a)). A trade-off exists between

Figure 5.2: Huddling positions of Dipper nestlings

- (a) The most common position in 7.0-8.5 day old Dipper nestlings in the field (brood-size 3)
- (b) Huddling in young nestlings (≤ 3.5 days) in the field, and 7.0-8.5 day old nestlings in the laboratory
- (c) (i) and (ii) Other positions observed in 7.0-8.5 day old Dippers in broods of three
 - (iii) and (iv) The two commonest positions in 7.0-8.5 day old Dippers in broods of four
 - (v) and (vi) The two commonest positions in 7.0-8.5 day old Dippers in broods of five
 - X = position that combines the most huddling benefits with the need to maintain a forward position for obtaining food
 - † = direction from which food is delivered to the brood

a ta fingent in an fingent in an

and any

Althouse in the

freed to and

(3)

the best nest position with respect to reducing cooling rate (i.e. in an effective huddle; Figure 5.2(b)) and the best position with respect to receiving a high proportion of feeds (i.e. at the front of the nest; Figure 5.2(a)). In the latter, nest position X would be the energetically preferred position, since it combines huddling with a central position for feeding. This might be expected to produce competition for this favoured nest position, with associated movement of nestlings further reducing the time spent in an effective huddle. Bryant & Gardiner (1979) attributed an increase in the metabolic rate of House Martin nestlings in broods of three to this factor. In addition, Dipper nestlings defaecate out of the nest entrance from about five days onwards (pers.obs.), unlike Great Tits, exposing themselves to further cooling. The high relative humidity outside of Dipper nests will again increase cooling rate of nestlings, since it will reduce the insulative capacity of the nest material (Section 2.5.1).

In the laboratory cooling rate experiments, when there was no constraint on feeding positions, Dipper nestlings assumed positions within the artificial nest as in Figure 5.2(b). This position was, however, only assumed by small nestlings in the field (approximately \leq 3.5 days old). These were fed within the nest, rather than from the nest hole, and also had their faeces removed by the parent (pers.obs.) and at this age, the

158.

pattern of behaviour thus resembled that found in Great Tit

broods. The difference between these two types of behaviour,

3.5d Dippers in the field, Great Tit nestlings of all ages,

seed not 11. delliiste 1) shant 67355£ 5 5 preferred position まずよきも内的しつ 2 inemity off WY173PT9m (ARES'2072) broute of あぎょうつかえらか anwarvia (BE 25413 62 Dipper na 171 abrila 10110230

there was assumed on This post the field the nest, facas res and Dippers in the laboratory compared with Dipper nestlings 3.5 days old in the field, may be called 'unconstrained' and 'constrained' huddling, respectively. Thus wild Dipper nestlings may be regarded as essentially 'constrained' huddlers, whilst Great Tits are 'unconstrained' huddlers. The characteristics of these two huddling types are summarized in Table 5.3.

Since the previous arguments of huddling constraints could equally apply to all nestlings of \geq 3.5 days old, then a positive relationship between age and field cooling rate would be expected due to the greater mobility of older nestlings and hence reduced huddling. Indeed, if brood mass or nestling mass (BMASS, NMASS; Section 4.4.1) are entered as 'forced' variables (Section 4.4.1) into the regression analysis of field cooling rate, ahead of age, such a positive relationship is found. Dipper nestlings are thus inefficient huddlers, and spend substantial amounts of time in little contact with their siblings. This partly explains why the 0.67 exponent of heat loss on brood mass does not hold for the Dipper.

5.3.2 Feather growth and heat loss in the Dipper

Feather growth results in a greatly increased surface area during transition to homeothermy, resulting in a potentially large source of heat loss. Larger nestlings show more advanced feather growth than smaller nestlings (Section 4.1.3) and this is more closely related to mass than age. This is because (a) nestlings of the same age will often have different

159.

masses due to the relative inaccuracy of the age estimate (Section 4.1.1) (\pm 0.5 days), compared with nestling mass

ing 22 kan be 215 day be 215 be 20 breat 712 of these

inpe bluce
postulyo
postu

5.2.2

targa durin larga iour advanced f and this i TABLE 5.3: The differences between 'constrained' and 'unconstrained' huddling broods in accounting for the failure of the 0.67 exponent of brood mass, to explain cooling rates of Dipper nestlings

Unconstrained

Constrained

Brood Factors

(i) Brood-size Large - little Small - greater opportunity for movement opportunity for within the nest. Heat movement. Heat dissipation slow.

- (ii) Feeding position Non-directional or of nestling limited directional component.
- (iii) Defaecation Parents remove faeces up until nestlings are near to fledging.
- (iv) Nestling age No differences between ages in the above parameters

(v) Removal of constraint in previously 'constrained' birds Directional. Young need to face nest entrance to be 'first in the queue'.

Nestlings defaecate out of the nest from a young age.

Nestlings ≤ 3.5d, behave as unconstrained huddlers.

Nestlings ≥ 3.5d, behave as constrained huddlers.

Behave as unconstrained huddlers.

Poor Baron

A SLIEAT

iberi (11)

entral (EER)

Eruali (uL)

body components are related to growth of the whole body (Section 4.2). O'Connor (1975) demonstrated that the stage of plumage development was not correlated with metabolic heat production in three altricial nestling species. Hence feather growth is viewed as a mechanism for reducing thermoregulatory costs once established. This being so it may be expected that larger nestlings with their associated advanced feather growth will cool more slowly for given age; the converse of what is seen (earlier this Section). Feather pins however, have both a rich blood supply, and a large surface area, and represent a significant source of heat loss until a sufficient length of feather has 'split' from the feather pin (Section 4.1.3). This violates the assumption that the brood (or individual nestling) approximates a sphere, and on which assumption surface area is predicted from body mass. In the Dipper, between ages six to eight days old the maximum amount of exposed feather pins are present, particularly on the wings (Section 4.1.3), with little if any insulation from feather tufts. Thus, for the majority of nestlings examined in the field, any reduction in cooling rate possible from feather insulation is of limited value until the 'transition' stage is complete. Thus the combination of greatly increased surface area and reduced huddling efficiency (Section 5.3.1) appear to explain the relationship between size/age and cooling rate

measurements (± 0.1g), and (b) because growth of individual

160.

5.4 FACTORS INFLUENCING PARENTAL BROODING BEHAVIOUR IN THE DIPPER

Parent birds must make decisions between keeping the brood warm and self-feeding (Section 2.4.3). Usually there is a gradual reduction in the amount of time adults spend brooding the young, until brooding ceases. The proximate causes of reduced brooding with increased nestling age have yet to be conclusively identified. Some possible causes will be discussed here.

Parent birds not only have to decide when and how often to leave the brood unattended, but how long to stay away. Three models of female Dipper inattentiveness were introduced in Section 2.4.3. The 'net energy gain' model (Section 2.4.3(a)) was found to overestimate the optimal inattentiveness of incubating Swallows (Jones', 1985). The 'minimal nestling temperature' model (Section 2.4.3(b)) and the 'maximal brooding time' model (Section 2.4.3(c)) incorporate two possible additional constraints which may account for the apparent failure of the 'net energy gain' model to predict female inattentiveness. This will be discussed in Section 5.4.2. The proximate causes of female inattentiveness will be discussed below.

5.4.1 Proximate causes of female inattentiveness in brooding birds

Many studies on female inattentiveness patterns have been concerned with incubating birds (Davis et al., 1984;

body oims (Sagt208 of pluma altowberts arowith 13 100.020.000 BOAL JANT IN ATMONT the set they have both 活躍無利用なななない 20 0172001 1 Chilie Laubly ibit! not reauses Dispar, De hereigne in 1 (0170HC) '

dT. . 0.273/7

vna .bipis

AG1\$A52001

. 107 0 Leans

d Dup wear

the explaint

d dl bausl

161.

Haftorn & Reinertsen, 1985; Jones, 1985; Morton & Pereyc, 1985). Proximate causes affecting these patterns are likely BER TACT

presid war a gradual the young constuent bere.

freen to i Three mote in Section une frund incuberin throuberin the procie the procie

bean conda

A macroph

19853. Pr

to be similar for brooding adults. A clutch of eggs, however, provides a relatively stable energetic reference point on which the female may base decisions regarding inattentiveness. Environmental conditions alone are thus likely to be of primary importance in regulating incubating behaviour. A brood of nestlings, however, generates additional factors since the cost of reheating the brood (Section 4.4.6), the broods ability for thermogenesis (Section 4.4.3) and brood energy requirements (Section 4.6) all change as nestlings grow. Brooding birds are thus subject to a wider range of energetic demands than incubating birds, and may thus provide some insight into decision making in the latter.

Three hypotheses may explain when, and how often a parent bird becomes inattentive:-

- (1) Nestling homeothermic capacity increases;
- (2) Increased energy demand as nestlings grow,necessitating increased time to feed the young;
- (3) Greater difficulty of the brooding bird to maintain energy balance during short inattentive periods.

Note that hypotheses (2) and (3) differ in that the proximate factor for brooding is chick hunger level in hypothesis (2) and parent hunger in hypothesis (3).

For hypothesis (1) to hold, adults must be able to assess nestling homeothermic capacity and respond accordingly.

162.

One way in which this may be done is by sensing nestling body

temperature. Indirect evidence for sensory perception of egg

to be aim howwert howwert point an inartenti inartenti taotore a energy rec denands ti denands ti

parent bin
(1) Haoti
(1) Inote
(1) Inote
(1) Grant
(1) meint

proximate Wpothesis

ERSSER OT

temperature in the Village Weaver (Ploceus cucullatus) via the brood patch has been suggested by increased inattentiveness in birds which had their brood patch anaesthetised (White & Kinney, 1974). White & Kinney (1974) suggest that inattentiveness is cued by the use of a 'release temperature' (for the Village Weaver, 37°C) at which point the bird leaves the nest. This hypothesis could equally apply to nestlings. As nestlings begin to thermoregulate for themselves, this is mirrored by a progressive increase in body temperature (Section 4.4.4; e.g. Dawson et al., 1976; Marsh, 1979; O'Connor, 1975; 1978), thus change in body temperature (T_b) also parallels change in attentiveness, i.e. as body temperature increase, inattentiveness also increases. Davis et al. (1984) artificially cooled eggs of the Savannah Sparrow and found female attentiveness increased. The reverse was found when the eggs were artificially warmed.

That birds sense nestling T_b and adjust attentiveness was shown in Section 4.4.3. Dipper nestlings with higher T_b were left for longer and cooled more slowly. This was not a result of higher ambient temperatures, since nestling T_b was negatively correlated with ambient temperature, suggesting parents may have additionally invested more in heating the brood when T_a was low. There were insufficient data available to test this in the Dipper, although there was evidence that parents could vary the rate of reheating the brood.

163.

日本の日本の日本の N 0.77 52V SAULTINGS A 28075880.00 17 7042205 107010600 Want bris CLETENN'OF eissimmit van body temps RAPPH: 207 EAST PROPERTY od the annan-seni binity Laris The revers

vera shown vera laft result of negatively brants an rest and parents of parents of Clark (1984) related the homeothermic capacity of Starling nestlings, measured in the laboratory, to field data on attentiveness patterns. She found that parents altered the proportion of time they brooded young in response to homeothermic capacity of nestlings rather than age or brood-size, per se.

Johnson & Best (1982) found the amount of brooding in the Gray Catbird (Dumtella carolinensis), was negatively correlated with nestling age, brood-size and ambient temperature (T_a). Alternatively parents could reheat the brood for longer but not at an increased rate. Davis et al. (1984) found that attentive periods lengthened on cool days in incubating Savannah Sparrows, lending support to this view. An alternative explanation of prolonged attentiveness may be that by having a few long attentive periods, particularly on cool days, adults may reduce their reheating costs, as well as obtaining shelter in the nest. Two other pieces of evidence lend support to the view that parent birds judge egg and nestling temperature and adjust attentiveness accordingly. Firstly it has been found that for the normal development of embryos, eggs must be maintained above a threshold temperature of about 25°C (Kendeigh et al., 1977). Sensory perception of egg temperature would therefore be selected for in order to avoid loss of the clutch through chilling. Morton & Pereyc (1985) found that eggs were kept above 25°C for 92.2% of daylight hours, and

164.

99.9% of the night-time in the Dusky Flycatcher (Empidonax oberholseri). Secondly, ambient temperature does not parallel the progressive change in brooding behaviour of nestlings as

Classe (1944 市当时立下学校会会 WW25785228 proportion thermite of - 20 380 Line lines 20112418181 (T) #YHY Langer 541 that atte Savancian ch S2FADBAUDU Tew Long a saly reduce san and hi View Ricks TTE TRUCING that for the 当時代上西罗行之前的 Eslabrios) sails privat eds dotulo BTOW STER

they get older, suggesting the relationship between attentiveness and T_a observed in some species (e.g. Johnson & Best, 1982) is an indirect one, and more likely sensed through egg/nestling temperature.

There is some evidence that adjustment of attentiveness in response to nestling/egg temperature is only part of the explanation of proximate causes of attentiveness in incubating/brooding birds. Clark (1984) found that brooding still occurred in Starlings in which the nest box was heated to regulate nestling thermoregulation costs. Female Dippers did not alter their attentiveness patterns, or reheat nestlings at different rates when males were removed despite an inferred additional cost to the female (Section 4.4.6). Davis et al. found that Savannah Sparrows continued to incubate even when egg temperature is held at 40°C (see earlier this Section) and implied that other factors might play a rôle. Haftorn (1981) suggests that incubating birds have a natural rhythm of attentiveness which can only be adjusted within certain limits in response to ambient conditions. One possible cause of this rhythm may be an alternation between the drive to incubate (or brood) and the drive to self-feed (Kendeigh, 1952). This is broadly similar to hypothesis (3) (see earlier this Section). Wittenberger (1982), however, found that female Bobolinks (Dolichonyx oryzivorous) actually increased their brooding of nestlings

165.

oberholeer

1 10 /E.EE

support and

when food was scarce and weather was poor, presumably at the expense of self-maintenance and at odds with Kendeigh (1952).

A sheering a

目的ないでのものでき 2247 glm. al al seen in sniboeni HES DUATES 126 slammi TADILOT TO is spicis Sur Charles TO Incubat di mplifice play a roll She h svar a basuutba done171one 613 MATTING LA 6 117 AV29D Co Nypothe BB , 502024 upnov1si(tt)

buol many

BET HELIDAGICE

Jones (1985) found that female Swallows returned to incubate earlier than predicted from considerations of maximizing net energy gain, suggesting that brooding to a degree took precedence over self maintenance.

In general, there is little support for the view that the brooding adult's hunger level is the primary proximate cause of inattentiveness, although the hypothesis is intuitively attractive.

Hypothesis (2) (earlier this Section) can hardly apply to incubating birds, in which attentiveness rhythms have been proposed (Davis et al., 1984; Haftorn, 1981). Johnson & Best (1982) suggest that in Gray Catbird, female attentiveness may be reduced in larger broods because of the higher total energy demand of the brood. Larger broods, however, effectively thermoregulate sooner, and so their data are also consistent with hypothesis (1).

Clark (1984) was able to demonstrate that Starling nestlings in heated and unheated nest boxes did not receive different frequencies of feeding visits, despite inferred differences in nestling hunger level due to the reduced energy demand of young in heated nest boxes. Dipper females were able to compensate for the absence of experimentally removed males when feeding young (Section 4.4.6) by increasing their feeding rate to the nestlings without affecting attentiveness patterns, at least in the short term.

166.

1 17

To summarise it seems likely that the proximate

causes regulating attentiveness in incubating birds is carried

.

Section (199 Section (199 Section (199 potential (199 fatential (199 fatential (199 fatential (199))

area houses para to the para t

neutlings difference difference bille te co nble te co feeding re

Spot spelphs

through to the brooding phase. This is supported by evidence of attentiveness adjustment in response to both nestling and egg temperature, and the lack of evidence for nestling food demand <u>per se</u> as an important factor. The latter would be obviously inapplicable to attentiveness in incubating birds lending further support to this view. Evidence for an internal attentiveness rhythm as suggested for incubating birds is at present lacking for the brooding phase, although it is implied by some of the data discussed. Yet further work is needed to identify the driving mechanism of any attentiveness rhythm, before brooding adult hunger level is dismissed as a possible candidate.

5.4.2 Factors regulating optimal inattentiveness in the Dipper

Both the 'minimal nestling temperature' model (MNT) and the 'maximal brooding time' model (MBT) (see earlier this Section) predict that parents should spend longer periods away from the young (a) as the nestlings get older, (b) in larger brood-sizes, due to the earlier onset of effective thermoregulation, and (c) when ambient temperatures are high, since this will affect nestling T_b (Section 5.4.1). Whilst away parents should seek to maximize net energy gain in accordance with the model proposed by Jones (1985) (see Section 2.4.3(a)). Female attentiveness did show a positive relationship with nestling age, brood-size and T_a (Section 4.4.3), although

167.

the relationship with brood-size was not significant when considered alone, suggesting it to be less important than nestling age. Nestling age was the most significant factor tinessi) fa aff iteration aff termini aff termini ter

(1017) and This Section NUMY From NUMY From Linger bro charmorogue airos this airos this Linger heren airos this Linger heren (ne relation (ne relation

Const.darweid

nestling a

influencing cooling rate in Dipper nestlings (Section 4.4.3), followed by brood-size and the temperature difference between nestlings (T_b) and T_a .

The two models differ in their predictions of how female inattentiveness should be related to the minimal nestling body temperature (T_{bmin}) (Section 2.4.3). The MNT model predicts attentiveness to be independent of Thmin, whilst the MBT model predicts a negative correlation between inattentiveness and T_{bmin}. Figure 5.3 shows T_{bmin} in relation to duration of the bouts of inattentiveness in the Dipper. There is no significant relationship (F = 3.26, df 1,33, ns) suggesting MNT to be a more realistic model, though the evidence is weak. The variance in T_{bmin} (6.76) is however greater than might have been expected if parents were staying away as long as possible until nestlings had cooled to a theoretical minimal threshold temperature. This threshold temperature may be similar to that suggested for eggs, approximately 25.0°C (Kendeigh et al., 1977). Figure 5.3 shows that in all but one case nestling T_{bmin} remained greater than 25.0°C, implying the presence of some threshold temperature. Nonetheless, parent birds appear to be returning to brood much earlier than predicted by the model, i.e. at values of T_{bmin} much greater than 25.0°C. Indeed the mean T_{bmin} was found to be 31.4 ± 2.6°C. There are several possible explanations for parents returning before the presumed minimal threshold

168.

temperature is reached. The time taken for a female Dipper

to maximize net energy gain (Jones, 1985) may be shorter than

influencin followed b nestlings

Semale ina d anistang b model pred the MBT mo tiveness a duration d There is n suggesting is weak. might have as possibl di Lambala may be sim dglebne%) lizan asap the presen parent bir than preds greater th 31.4 ± 2.6 parents re

the time taken for nestlings to cool to minimal threshold temperature. Parents may therefore return earlier than expected. There are several reasons why this time is likely to be shorter in the Dipper. Firstly, the Dipper's food supply is predictable, birds often returning to the same feeding site for long periods during nestling rearing (pers.obs.). Secondly, Dipper foraging is likely to be less costly than the aerial foraging of Swallows, upon which Jones (1985) based his (77) net energy gain model. Thirdly, Dipper nests are well insulated, which may reduce brooding/incubation costs below those of the Swallow, although the sheltered position of many Swallow nests (for example in farm buildings) may offset some of the difference. Finally as nestlings get older the brooding cost to the female decreases due to partial homeothermy of the brood (Section 4.4.6), and hence the time needed to regain energy used for brooding will also decrease.

Another explanation may be that parent birds are not sensing nestling T_b per se to decide adjustments in inattentiveness, but the amount of energy they have to invest in reheating the brood at a given time. This will itself partly depend on nestling T_b prior to reheating (Section 4.4.4), and will partly be responsible for changes in T_b subsequent to reheating. Parents would still be able to assess nestling homeothermic capacity even though nestlings 'switch off' thermogenesis during brooding. The difference between adult

169.

 T_b and nestling T_b will be a function of nestling homeothermy, and would affect reheating costs. The large variation in ene tine t to be shor to be shor to be shor feeding at feedin

nor sonsin accontives rohearing degend on edisersing rohearing formating democrane T_{bmin} may thus represent the inaccuracy with which T_b reflects reheating costs.

An alternative explanation may be that the MNT model and the MBT model are not mutually exclusive, but represent two aspects of a more complex decision making model. Parent birds may therefore have their maximum inattentive period set by considerations of minimal nestling temperature, but as the brood becomes homeothermic and this maximum period increases, indirect parental cost (e.g. travelling cost, Section 2.4.3(c)) also increases. The optimal inattentive period with respect to net energy gain will therefore decrease. Since nestlings are left to cool for less time than predicted by considerations of a minimal threshold temperature, their T_{bmin} will be higher than this minimal nestling temperature threshold. There are several lines of support for this hypothesis in the Dipper. (i) Nestlings with higher T_b (and hence more advanced homeothermy) are left unattended for longer (see previous

Section);

(ii) Nestlings are however rarely left long enough for body temperature to drop below a theoretical minimum threshold temperature of 25°C based on considerations of egg development; (iii) Parents often return earlier than $T_{bmin} = 25.0°C$; (iv) Dipper nestlings appear to switch off their own thermogenesis when the parent bird returns to brood (Section 4.4.4) consistent with the maximal brooding model.

blues has

ten brut d.

Additional variation in the length of the

inattentive period may arise as a result of any attentiveness

Thmin may

and the Ma 1d cruscos THINK THEFT Sonw1deret Docted District Ng 7:201223722 annar arls 101 BOR 100 LOFE DO DON Lominia La minis simt I to court frank 127 1730/170amp/ Section); 788N (135) TUTHIBURNT Samperd fury Man (1227 (1v) 'Dipp FTFF 0.2.0并目前2 THEFTER

Vitroitzon!

rhythm (see previous Section), so that birds neither stay away for extremely long periods or extremely short periods, even if ambient conditions dictate that they should. Further experimental work is needed before the mechanism by which adult birds assess nestling homeothermic capacity is fully understood.

5.5 NESTLING ACTIVITY COSTS

5.5.1 <u>A comparison of activity costs in the</u> Dipper and House Martin

Nestling activity costs have often been assumed to be high in the past (Section 2.1.4). Measurements of activity costs in this study, however, have shown this assumption to be incorrect (Sections 4.5, 4.6.3, 4.10.3), the error apparently being due to the non-inclusion of biosynthesis and 'alertness' components in previous energy budgets (Section 4.6).

Nestling energy expenditure on activity (as expressed by % BMR, Figure 4.34) as a function of nestling age follows that presented for the Double Crested Cormorant (Dunn, 1980), and that used in Section 2.1.4, although the absolute values are much smaller. Energy expenditure for nestling competition appears to vary between the species in this study. Table 5.4 shows the proportion of energy expenditure for each nestling activity component as a percentage

00

of the total, for the House Martin data presented earlier (Table 4.36) and Dipper nestlings of a comparable stage of etyrina (we amay ivr e even 1f an experiment eduir bird

1.2.2 1.2.2

to be high activity c ascumption the strop synthesis buickets (3

a

b

C

are follow are follow (Dunn, 198 absolute v nosting shis study

TABLE 5.4: A comparison of activity costs in the Dipper and House Martin: Proportions of total activity costs

	Dipper	activity	<u>costs</u>	House Mart	in activity sts
	^a PUC	FUC	MUC	^b PUC/FUC	^C HM/Dipper
Proportion of total activity costs (%)					
Defaecation	2.4	2.4	2.4	2.9	x 1.2
Feeding	2.8	2.8	2.8	14.4	x 5.1
Begging	7.3	5.3	6.3	56.7	x 9.0
Movement	87.5	89.5	88.5	26.0	x 0.3

PUC = Proportionate unit activity cost, FUC = Fixed unit activity cost, MUC = Mean unit activity cost (Section 4.6.3(a))

PUC/FUC = activity cost for a 14.9g House Martin, independent of either PUC or FUC models (Section 4.5.1)

House Martin/Dipper MUC estimate

TABLE N.

(I). araan

Ruthers

Liczsing

Radoroutit

development (see legend, Table 5.4). Movement costs predominate in the Dipper whilst begging costs predominate in the House Martin. It may be that most of the movement costs were associated with jostling to maintain favoured nest positions for feeding, and should hence be regarded as competitive costs in addition to begging. Total competitive costs would then be similar, for the Dipper, 94.8%, and for the House Martin, 82.7%.

Movement was not examined in this study of birds in the field. Reed (1981), however, noted that shifting of nestling position in the Song Sparrow occurred usually during and immediately after a feeding visit, and was in response to a loss of position during acts such as defaecation. A large part of any movement costs was therefore likely to have been included within the begging costs previously measured (Section 4.5.3). Thus whilst there may be a small additional 'movement' component to competitive costs it is unlikely to be dominant, particularly in the House Martin where begging costs were over twice as high as total movement costs.

Both Dippers and House Martins are 'constrained' huddlers (see Section 5.3), and thus may be expected to show similar responses with respect to shifting positions within the nest. If movement costs were associated with this then costs between the two species ought to be similar. House Martins expend nine times more energy begging than the Dipper

172.

(based on the mean unit cost model (MUC) (see Section 4.6.3(a)),

and five times as much energy feeding. This suggests that

Hevelonine predentine in the Nor obsta ware freektions tive posta sould the

in the fix and zend and zend to sant a part of a belocies particular part foular

huddlars aladlar ra the ness: bhats hots Martine m (hased on and sive

feeding frequency in House Martin broods is higher than in Dipper broods. The House Martin broods at the age examined received an average 18 feeds per hour (Table 4.36), whilst the Dipper broods received 9 feeds per hour (Figure 4.29). House Martin energy expenditure on begging and feeding might therefore have been expected to be approximately double that of the Dipper. Table 5.5 shows that total daily activity costs for the House Martin, expressed as % BMR is 1.3-1.6 times that of the Dipper, less than expected from feeding frequency considerations alone. This is probably due to the higher cost of nestling movement in the Dipper (Section 4.5.3), offsetting begging costs in the House Martin. This implies differences between species in competitive energy expenditure, on a per feed or per visit basis. Nonetheless, the range of daily activity costs for the two species (Table 5.5) are broadly similar; 2.9-9.7 % BMR for the Dipper and 5.5-11.0 % BMR for the House Martin. Peak daily activity cost in the Dipper is a little higher, 4.4-12.4 % BMR, whilst total activity cost for the whole nestling period is 3.5-10.4 % BMR, suggesting that an average activity cost of about 8% BMR may be realistic across species. A reduction in nestling activity costs (or indeed of any DEE component cost) may be of direct benefit to nestlings since it would allow more efficient utilization of energy resources and perhaps allow a greater allocation to growth, thus reducing the nestling period. This

173.

may also be of benefit to the parents, particularly in Larger

broods, since activity costs are to some extent dependent on feeding frequency which increases in larger broods (see above).

feading fr Dinger bro s beying a the Dipper Inapa Mart suctore; ata ana an tol stade vising that Traguency higher and dfIsetting difference 2 ung mind daily acti are proadl \$, 3-11.0. A in the Dig scelvity a maggesting te realist 401 H7200 白头 法上生的自由证 WEELERATIO holasbolls

				*
<u>TABLE 5.5</u> :	A comparison of act as % BMR calculated legend) and wet ene equations (BMR _{wed} - Dipper and House Ma	ivity c using rgy den see pa rtin	osts exp adult (B sity corr ge 190) f	ressed MR _{ad} - see rected BMR for the
	Dipper Unit Co		House Martin	
	a'Proportionate'	'Fixed'	'Mean'	'Mean'
(i)	· · · · ·			
Peak activity cost				
BMRad	8.3	4.4	6.4	-
BMRwed	12.4	6.3	9.4	-
(ii)				
Total activity cost				
BMRad	7.3	3.5	5.4	-
BMRwed	10.4	4.9	7.7	-
(iii)				
Activity costs one-quarter of the way throug the nestling period	h			
BMRad	4.0 -	2.9	3.5	5.5
BMD	9.7	6.7	8.2	11.0

1

For explanation of 'proportionate', 'fixed' and 'mean' unit activity costs see page 99.

te ; obcodi

may also b

fooding fr

a

WED corrections for the House Martin from Bryant & Gardiner, 1979.

This will be discussed in Section 5.7. The question of whether nestlings can and do reduce their activity costs will be dealt with now.

L & JJJdB3

With active

Day/Bher

53.

5.5.2 Do nestlings minimize their activity costs?

Reduced sibling rivalry is proposed as one mechanism for utilizing a resource more efficiently by not wasting energy on sibling-sibling competition (Hahn, 1981). A model of reduced sibling rivalry (RSR, Section 2.3) was tested in two ways; directly and indirectly. The direct method involved the measurement of begging behaviour and its associated energetic cost in the House Martin, with changing asynchrony (Section 2.3.4, 4.10). The indirect method involved the measurement of nestling growth to test if reallocation of savings predicted from the model (Section 2.3.4) were reflected in the peak mass of House Martin nestlings (Section 2.3.5, 4.11.1). Both methods showed independently that there was no reduction in sibling rivalry in association with hatching asynchrony, in this species. This may be because these are associated costs with reducing sibling rivalry which outweigh potential benefits through small energy savings, or because reduced sibling rivalry is independent of hatching asynchrony. This will be discussed in detail in Section 5.10.

The begging behaviour of House Martins in the field was found to be very similar to laboratory studies of begging behaviour in the Zebra Finch (Section 4.9). Since it was

however possible to examine Zebra Finch behaviour in more detail, this will be discussed with regard to reducing begging costs in the next Section.
5.6 REDUCING BEGGING COSTS: A DETAILED ANALYSIS OF THE ZEBRA FINCH

Zebra Finch begging behaviour may be divided into three sections; pre-feed behaviour, feed behaviour and postfeed behaviour. These will be discussed in turn.

5.6.1 <u>Behaviour of Zebra Finch nestlings prior to</u> a feed being offered

If nestlings simply beg for a duration (Giving-up time = GUT) directly proportional to their hunger level, then one could predict that this GUT should decrease as satiation is neared, or by analogy for the next feed, and that this reduction ought to be proportional to the size of that feed. However, GUT does not vary for either feed size when compared before and after a feed, neither is it correlated with hunger level as measured by crop-score (Table 4.28). Comparison of high and low crop-scores also show no such relationship. Whilst it is true that a single feed is unlikely to satiate a nestling it is also probable that even if a chick were sensitive to such small changes in hunger level, a flexible response with respect to GUT would be of limited value.

In the artificial laboratory system, nestlings were not offered food until they had given up begging. GUT thus represents the maximum time a nestling is prepared to spend begging without getting a reward. In practice the parent usually spends a few seconds deciding which chick to feed

this will?

entrademe. ne gattyness A uncel ut tested in Well budden bade a pointer MINT NEW MART SHYANGS DR \$00 BAS RL . . (Jakhit 101100000 SEYNOLLONY. 为10万元100月间前· Islzaszog 2 a Smoothey ILIN MINT

babavious

NOWNERS POR

tit', illeged

12 al 27200.

175.

(Parental Decision Time = PDT), and chicks rarely reach their giving up time before this. Since GUT is effectively 'cut short' by the parent, chicks will gain no advantage in a ante setta

then the GUT then the GUT setterized the this the this she the setetioned if a chick if a chick

hat offered represents bagging st

Lessental

JU TTIN

s vd 'stands

flexible reduction of GUT. A fixed cut off point is of advantage though when one considers begging without parents being present at the nest. In House Martins the mean number of begging events for each feeding visit is 2.72 ± 0.44 (n = 14) and in Dippers 1.97 ± 0.81 (n = 6), where n is the mean taken over each day's observations. Since PDT is much less than GUT the question arises as to why GUT is not shorter. Nestlings sometimes refuse food offered by a parent, in which case it is usually offered to another nestling thus effectively increasing PDT. Since parents only feed young which are begging, a higher GUT might therefore be regarded as an example of nestlings 'bet-hedging'. An alternative explanation may be that nestlings have to learn to reduce GUT by experience. A non-significant regression of GUT on age, however, suggests no such effect (Section 4.9.2).

In Zebra Finches GUT remains fixed at approximately 8.5 seconds and there is no difference between brood-sizes (i.e. one and two), whereas an increased investment in begging prior to feeding might have been expected with brood-size 2 since the number of siblings competing is increasing.

Once food has been allocated to an individual, nestlings may be conveniently divided into two categories; fed and unfed. Begging behaviour differs in these two categories.

5.6.2 Behaviour of nestlings receiving food

176.

Handling time (HT) as expected varied with age

(Figures 4.39, 4.41, 4.42), but surprisingly HT when F = 0

flexible a sdvaptage baing pres of beniin (n = 15) a den than to which a shorter. which are effective; a an examby experient by experient

anocas
 anocas
 anocas
 prime to fe
 alhos the t

nestlinge n red and un caregories.

N DOTUERT)

was greater than when F = 1. This might be explained by the artificial nature of the F = 0 treatment in which birds may have continued 'handling' the dummy bill, confused by the expectation of a reward that never came. In the same way that nestlings beg for a certain amount of time before giving up (GUT) when they are not offered a feed, HT when F = 0 is the equivalent time for handling without reward; a 'handling' GUT. Nestlings in pairs took longer over handling food than those alone. A possible explanation of this may be interference caused by either parental distraction through conflicting vocalisation cues by the nestling sibs, or by jostling by the latter. The mechanism would appear to be nestling mediated however, (since parental distraction was controlled for in the experiments by having an artificial parent), and may be viewed as analogous to increased vigilance observed in some birds when foraging in the presence of kleptoparasitic species. In this case, increased vigilance results in less efficient foraging behaviour. There is no evidence to suggest that unfed nestlings respond differentially to the variation in HT of their fed sibs (see below). A fixed response, in terms of competitive interference through begging behaviour, is not however inconsistent with the above hypothesis, provided that unfed nestlings beg for a sufficiently long time, and that this always exceeds HT. For a mechanism of interference to operate it is not necessary for unfed nestlings to actually

177.

intimidate their fed sib, since it is the fed sibs expectation of events that will be likely to underly its behaviour.

5.6.3 Behaviour of nestlings not receiving food

A number of hypotheses may be put forward to predict how nestlings not receiving food should behave once the parent has allocated food to one of their siblings.

<u>Hypothesis 1</u>: Stop begging immediately, since wasteful expenditure of energy without possibility of returns is disadvantageous;

<u>Hypothesis 2</u>: Continue begging until fed or until the parent leaves the nest;

<u>Hypothesis 3</u>: Continue begging until a threshold point is reached which itself is fixed by considerations of position within the brood hierarchy, or the Reduced Sibling Rivalry hypothesis (Section 2.3);

<u>Hypothesis 4</u>: Continue begging for a variable period in direct response to the behaviour of the fed nestling; <u>Hypothesis 5</u>: Continue begging for as long as is energetically profitable, i.e. until expectation of benefit = cost of begging for that benefit;

<u>Hypothesis 6</u>: Continue begging for a fixed time period before giving up.

These six hypotheses will be considered in turn. <u>Hypothesis 1</u>:

This hypothesis does not hold widely since in all but two cases (n = 53) nestlings begged for much longer when a sibling was being fed (\bar{x} = 24.5 ± 1.54s). The degree to which

えてはアサル 回信 C 3V60 V66 azonotatic ann Ifenie nedw (TOD)adurivelent. Stanif AND those alone Net basiles STORELERON. 1007050 P. A ARABIT street worth MotoLnick M. Tanaci christ ABVES BUILT Identifies by Lines lelled . at thank to 自分上す上きを成功のう BOUL TRUE TO theim Tull to with many -a78/19411 .01

stabinitysi

7 BJ7/18/18 31

MAN ST WALL

begging was elevated, does not vary with age, crop-score, mass of unfed nestling or relative difference in body mass (RDBM).

EARAS N Date Dage 12 BOOLLS MBH Mygothesis. entry 25 minutes Advantageo BIRACTORNE 807.059685 Bipothesis the bestioner add cilling hypothesis. htserizegti dipact roath Nypothau18 proficable. burgeing for #lassfrogth tiving wht

T THE OWN THE

anEidle +

begy ing west

BR DB1RU TO

The occurrence of continued begging by an unfed nestling after its sibling has been fed, and its elevated level both require explanation. Firstly, continued begging will ensure that the parent receives the correct cues regarding the hunger level of the brood (see above). Secondly, Zebra Finches regularly split the food brought to the nest, and to dependent fledged young between different young; up to ten times in the latter case (pers.obs.). Zebra Finches are therefore regarded as 'splitters' as opposed to 'lumpers', which do not generally split between individuals the food brought to the young (e.g. Great Tit).

Hypothesis 2:

Continuing to beg until fed or until the parent leaves the nest would be an energetically more expensive strategy than hypothesis 1. Since nestling handling time varies, the amount of time that a parent spends at the nest during a feeding bout will also vary. There is a reasonably fixed elevated giving up time (EGUT, Section 4.9.2). However, suggesting that nestlings do not continue to beg as expected by this hypothesis.

Hypothesis 3:

The reduced sibling rivalry hypothesis (Section 2.3) predicts that competitive energy expenditure (CEE, in this case the amount of begging), should decrease to a minimum and then increase again (Figure 2.10) with increasing relative size

179.

difference between nestlings. The relative difference in body mass (RDBM) was calculated for pairs of Zebra Finch nestlings.

1714 00 1287 15 requisit ThAT B Loval 1 regulat Fiedgas MDJJkl 15 '003 03100 1.2.11 Bygarth # Leaves [VADIANE augarapp. e bealt egrocthes

tto Lbaild

W-102711

TALL DEST.

The degree of elevation of begging (EGUT/GUT) is shown as a function of RDBM in Table 4.30, and there is no evidence to support hypothesis 3.

Hypothesis 4:

Parents only offer food regularly to nestlings that beg for it. The time taken by a parent in deciding which nestling to feed (PDT) is usually short (about 1 second or less (pers.obs.) on the Dipper and House Martin). Handling time, however, is variable in Zebra Finch nestlings (notably with respect to age). An unfed nestling which stopped begging once the parent had allocated the first food 'split' to its sibling and then waited until the feed had finished before starting to beg again, as predicted by this hypothesis, would run the risk of being too slow to react to the cessation of feeding, and not be begging during the short PDT. This would be a particular problem for young nestlings with no or limited visual cues and possible conflicting auditory cues from unfed siblings. The relatively constant values for EGUT lend support to this view and are inconsistent with hypothesis 4.

Hypothesis 5:

The relatively constant values of the elevated giving up time are consistent with this hypothesis provided that the mean 'split' energy content is reasonably constant. The fixed EGUT observed would then be equal to the energetic equivalent (taking into account assimilation efficiency) of the mean 'split' mass. Whilst it was not possible to test this directly, it seems likely that nestlings would have

A MAG S THAT 1 10G 233.000 20010 88. 71 ° 24-SETTING 1 12012174 HER YINT 10150003 PD 4 20 DELTO:A 9-03 -5

sites the site she evolved to maximise net energy gain at each feed. If feed ('split') size was indeed relatively constant then a reduction in begging costs would be the logical mechanism for bringing this about, yet there is no evidence of a reduction in EGUT in relation to any of the parameters examined (see Section 4.9.2). Similarly, there is no evidence to suggest that the energy content of a particular load size brought to the nest is constant (Carlson, 1983; Carlson & Moreno, 1983; Turner, 1980).

Hypothesis 6:

The fixed nature of EGUT (see above) and the apparent inability of nestlings to reduce their begging based on cues from their fed siblings (see above, and Section 4.9.2) are consistent with this hypothesis. Unfed Zebra Finch nestlings therefore beg for a fixed time period before giving up.

5.6.4 The behaviour of nestlings after having received food

As shown previously, nestlings began to beg again immediately after receiving a feed, and this after-begging decreased with age in a similar way to handling time. Thus nestlings that have been fed reduce their contribution to the begging of the brood. Two points, however, are worthy of comment. Firstly, why did the fed nestling not cease begging altogether? Secondly, why does after-begging decrease in a similar way to handling time with age? It may be that most

information on the mean hunger level of the brood is given by nestlings during and after a feed. For example, since parental decision time before a feed is short (see above), the amount of

(2501) 10-150 · BARS Lors mi 4.9.23 energy 16 608 Turnor Hypoth [idan? PTON IN CONSIST least inmedia BBATTORD nestlir the beg domment altoget visiliais

informar

nestlin

decision

evolvi

information that a parent would receive in this time alone may be small. An alternative or complementary explanation could be that since Zebra Finches split food between young at feeds, after-begging could be a means of securing an extra feed in a similar way to EGUT.

Neither of these explanations however explain the pattern of change of after-begging with age. Suppose a nestling receives a feed, it then begins after-begging, whilst one of its siblings receives a second 'split' of the food brought by the parent. Since after-begging is on average of longer duration than handling time (Section 4.9.2), the first fed nestling will be assured of begging when the parent offers the third 'split' as will those nestlings which elevate their begging (EGUT). However, if the parent were to leave without offering a second or third 'split', or does not offer it to the afterbegging nestling, then it would have wasted less energy in begging than its elevated begging sibs (Section 4.9.2). The change in after-begging with age may therefore be explained by the fed sibling adjusting its begging effort to a little over the duration of its own handling time. It therefore seems to use its own experience of handling time to estimate the handling time of its siblings.

There is some evidence that Zebra Finch nestlings may make decisions about how long to after-beg not only on the basis of their own experience of handling time, but possibly

182.

with respect to profitability of food ingested. There appear to be two levels of after-begging (Section 4.9.2) with little

gradation, corresponding to high and low food profitabilities offered i.e. F = 0 and F = 1. This appears to hold for single nestlings, but pairs of nestlings after-beg at the higher level only.

House Martins also appear to adjust after-begging in response to their experience of handling time (Section 4.10.2), and yet are not generally regarded as load 'splitters'. They do, however, split boluses brought to the young early in the growth period but this ceases after about a week (D. M. Bryant, pers.com.), yet older young still after-beg. It is likely therefore that a component of the after-begging behaviour is to contribute to communication of the mean brood hunger level to the parent.

THE DAILY ENERGY BUDGET: POTENTIAL ERRORS IN 5.7 ESTIMATING DAILY ENERGY EXPENDITURE BY THE TAL METHOD

The daily energy budget (DEB) of the Dipper was constructed from laboratory and field data, and from published data for components not directly measured (Section 4.6). Comparisons of a number of estimates of daily energy expenditure (DEE), based on different models of activity, biosynthesis and 'resting' metabolic costs (Section 4.6.3, 4.6.5) all showed good agreement with the energy expenditure of 18 day old Dipper nestlings measured directly in the field (FEE), using the doubly-labelled water method (Section 4.7).

Since FEE was however only measured at one nestling

Dued. 00000 121/2015 Reit? 2114 12545' (2)(7)(5)) 20005 al mail #BRAUT? with 101 the manufactures BULL DT ALCONDIA.

6 02.765

ant o'7

Staf

No.

dinos.

3 35

183.

age, the accuracy of the TAL method in estimating DEE for the whole nestling period should be considered. In addition,

assumptions regarding DEB component costs vary greatly between studies (see later this section for nestling DEB references). To what extent errors in these assumptions affect the accuracy of predicting DEB is not known. This will now be examined for the Dipper, with reference to the total current nestling DEB data available for altricial birds.

berry

10110

othigh

2010/12

E ,05

2400/21

· 西方田村

8450555

00,00

12 07

5.7

00B878

1000 2

CAMPAR

(1111)

Erser'

a 5005

105201

,050

Whole

Kendeigh et al. (1977) constructed a predictive equation for calculating the nestling DEB. Kendeigh et al. used the term DEB to represent daily metabolised energy. In subsequent discussion however DEB will be used for broad discussion of the nestling's daily energy budget in terms of its components and DME will be used specifically to discuss the daily energy expenditure (DEE) plus that energy accumulated as tissue during growth (P) (see also Section 4.6).

The equation presented by Kendeigh et al. was based on only two species; the House Sparrow, <u>Passer domesticus</u> (using data from Blem, 1975) and the Black-bellied Tree Duck, <u>Dendrocygna autumnalis</u> (using data from Cain, 1976). Drent & Daan (1980) subsequently published data for eight altricial species (including Blem's data for the House Sparrow), but provide no equation for these data. The original Kendeigh equation is:-

DME $(kJ.d^{-1}) = 5.660 \text{ mass } (g)^{0.814}$ eqn. 5.1 Data are now available for a total of fifteen altricial and

184.

semi-altricial species, and these are presented in Figure 5.4. Some of these data include thermoregulation (TR) costs, others do not, and some are not specified. Two equations were

Figure	5.4: The relationship of daily metabolised energy (DME) to nestling mass for 15 altricial species. Symbols are as follows -
(i)	Nestling mass 0-50 grams
	 A Savannah Sparrow, Passerculus sandwichensis (William & Prints, 1986)
	★ Red-winged Blackbird, Agelaius phoeniceus (Fiala & Congdon, 1983)
	▼ Willow Warbler, Phylloscopus trochilus (Tiainen, 1983)
	★ White-bellied Swiftlet, Collocalia esculenta (Bryant & Hails, 1983)
	* O House Sparrow, Passer domesticus (Blem, 1975)
	• House Martin, Delichon urbica (Bryant & Gardiner, 1979)
	* D Pacific Swallow, Hirundo tahitica (Bryant & Hails, 1983)
	* Blue-throated Bee-Eater, Merops viridis Bryant & Hails, 1983)
	++ • Red-backed Shrike, Lanius collurio (Diehl & Myrcha, 1973)
(**)	Necting mass 50-100 mams
	Nesting mass out of grand
	T O Dipper, <u>Cincius Cincius</u> (unis Study)
	▼ Starling, <u>Sturnus vulgaris</u> (westerterp, 1973)
(iii)	Nestling mass 100+ grams

٨

- D Herring Gull, Larus argentatus (Dunn, 1980)
- Double Crested Cormorant, Phalacrocorax auritus (Dunn, 1980)
- ++ ▼ Pigeon Guillemot, <u>Cephus columba</u> (Koelink, 1972)
 △ Long-eared Owl, <u>Asio otus</u> (Wijnandts, 1984)
- * Excludes thermoregulation

+ Measured using doubly-labelled water

++ Not known if thermoregulation costs included

Daily metabolised energy (kJ bird-1 day)

therefore constructed. One only used data for species in which TR costs were known to have been included. The other included data for those studies in which TR costs were known to have been - excluded by the experimental design used; subtracted from DME during this analysis using TR costs presented in the original published material; or unimportant because of high ambient temperature (e.g. Bryant et al., 1983) (see legend, Figure 5.4, for those species included in each analysis). The two equations are:-

DME	=	4.256	mass ^{0.825}	$r^2 =$	93.8	eqn.	5.2
DME-TR	=	4.055	mass ^{0.811}	r ² =	97.1	eqn.	5.3

(units are as in equation 5.1, as are all subsequent units used).

Less of the variance about the regression line is explained by mass in equation 5.2 suggesting variation in TR costs may have only a small effect on estimates of DME. Either brood-size (range 1-4) or environmental conditions, or both, however, varied in the studies examined and so greater error in DME estimate is to be expected on these grounds alone; the error is however small (r^2 of 94 and 97 respectively). Equation 5.3 resembles Kendeigh et al. (1977) original equation (though the intercept is somewhat lower) which also did not include TR costs. Inclusion of three species in which it was not known to what extent (if at all) TR costs had been included in DME estimates (DME

185.

in DME estimates (DME additional) (Diehl & Myrcha, 1973;

Koelink, 1972; Kushlan, 1977) had little effect on the

shuinda avad of autidus. STALLARD pering od al 200 Envinte ROMO -XDeed merital jun the a dated THE TOTES moltangi

I ITALIANT ?

A A BELETA

MILLING SOID

a dbl Jeo-

10000000

goodness of fit of the equations (see below), but increased estimates of slope and reduced estimates of intercept in both cases:-

DMEadditional	=	3.199	mass ^{0.888}	r ² =	94.6	eqn.	5.4
DME-TR additional	=	3.793	mass ^{0.837}	r ² =	96.5	eqn.	5.5

Equations 5.2 and 5.3 will be used in subsequent discussion since the nature of the data are known. Equation 5.2 was used to predict DME for Dipper nestlings in which FEE had been measured (Section 4.7); this is presented in Table 5.6. The equation tended to overestimate DME for the Dipper by an average 5% for eighteen day old young, even though the Dipper DEB was calculated using an RQ of 0.86 (Section 4.6, 4.7) whilst equation 5.2 was calculated from data using RQ's of 0.72-0.75. The overestimate is likely to be due to the very small growth costs in mature nestlings (Section 4.6.4) which results in a levelling off of log DME as a function of log mass (see Figure 5.4 also). In other words, DME of older nestlings tended to deviate from the linear relationship described by the equations.

Allometric equations were calculated for Dipper DME, using the various models previously discussed (Section 4.6), for comparison with equation 5.2, in order to assess the possible errors in each model. These equations are plotted as the log-log relationship of nestling DME versus mass in Figures

5.5-5.7. The effect of each component on the estimate of Dipper DME (i.e. the similarity between 'observed' DME and

using the

enborg

vanly so

-:******

using the for compi number the log-2

Mean ± SD	sexes combined	56.5 ± 4.3	112.6 ± 7.5	107.2 ± 11.6	95.3 ± 9.3
nestlings	ო	57.4	114.2	127.2	#.III
Dipper	2	54.9	109.8	111.3	4.101
day old	1	64.5	126.3	113.2	89.6
r eighteer	S	58.4	115.9	95.9	82.7
DME for		54.9	109.8	97.3	88.6
observed	emates 3	54.0	108.3	96.8	4.68
cted and	7	9.64	100.6	41.99	98.5
Predic	1	58.6	116.2	116.8	100.5
5.6		ω	Ea	A ,	

a Calculated from equation 5.2

b FEE (Table 4.26) + 2.84 kJ (i.e. P for 18 day old nestlings, Table 4.23) 1.

TABLE 5. TABLE 5. Nestling mass (g) Predicted DME^b (kJ day⁻¹) Observed/ DMe^b (kJ day⁻¹) Observed/ predicted percentage 'expected' DME curves, the latter calculated from equation 5.2) is discussed below.

5.7.1 Thermoregulation (TR)

Figure 5.5 shows Dipper DME (dashed line) calculated with TR costs included (Figure 5.5(a)) and excluded (Figure 5.5(b)), compared with equations 5.2 and equation 5.3 (solid lines) respectively. If TR costs have a large effect on the accuracy of predicting DME, then observed DME would be expected to more closely resemble equation 5.3 (Figure 5.5(b)), whilst if TR costs were not important no such relationship would be expected. Both figures show that Dipper DME is progressively higher in smaller nestlings, compared with that expected. Since the magnitude of the observed overestimate is similar in both cases (i.e. with or without TR costs included), TR appears to be unimportant in affecting the accuracy of DME estimates. Further support for this view is discussed in Section 5.8. Both Dipper equations do however provide reasonable estimates of DME in nestlings of around 50.0-65.0 grams, thus confirming the conclusions in Section 4.7.

5.7.2 Activity and Biosynthesis

Figure 5.6(a) shows Dipper DME calculated using a fixed unit cost (FUC) activity model (Section 4.6.3(a)) and three models for calculating biosynthesis costs; Model 3 (after Wijnandts, Section 4.6.5(c), curve A), Model 2 (after Greenalgh et al., Section 4.6.5(b), curve B), and Model 1

187.

(after Ricklefs, Section 4.6.5(a), curve C). Figure 5.6(b)

shows the corresponding biosynthesis models but using a

fadrer R NHONE THE

- runction or nestling mass
- (b) Daily metabolised energy excluding TR costs as a function of nestling mass
 - Dipper - -
 - 15 altricial species ------
 - Kendeigh et al., 1977 -----

- (a) FUC activity model, and three biosynthesis models (see below)
- (b) FUC activity model, and three biosynthesis models (see below)
 - A = Biosynthesis model 3) B = Biosynthesis model 2) see text C = Biosynthesis model 1)

proportionate unit cost (PUC) activity model (Section 4.6.3(a)). Using the FUC model, the various estimates of biosynthesis costs are very similar and have little effect in reducing the error in observed DME estimates of younger nestlings. The PUC model and biosynthesis model 3 (curve A, Figure 5.6(b)) is essentially the same as a mean of the FUC/biosynthesis curves presented in Figure 5.6(a). Biosynthesis models 2 and 1 slightly reduce the error in observed DME, but insufficiently to explain all of the error. Both activity and biosynthesis estimates therefore have little effect on estimates of DME.

5.7.3 Growth

Growth energy (strictly P; see Section 4.6.4) was measured accurately by carcass analysis (Section 4.2). Large over-estimates of this component are therefore unlikely. Some error may arise in measurements on very small nestlings due to the tiny size of individual body components and the possibility of some water uptake by freeze-dried tissue at weighing (see Section 3.1.3). This is only likely to be a source of error in nestlings of less than three days old. In older nestlings all body components were of sufficient size for water uptake by the tissue to be negligible. Growth is therefore unlikely to contribute much to errors in calculating DME.

5.7.4 BMR and 'alertness'

The single component which contributes most to the

188.

DEB is BMR (in the Dipper, 49.3%; based on Aschoff & Pohl, 1970) and may be regarded as a suitable candidate for propor (feation estimation little of your of the blooynt soth ac effect 5.

ADDARATING CVARTING CVARTING ADDARATING ADDARATING ADDARATING ADDARATING ADDARATING ADDARATING ADDARATING ADDARATING ADDARATING

0E 51 270

brs (ST01

contributing to the error in observed DME estimates. 'Alertness', the day-time additional 'resting' metabolism cost (Section 4.6.6) contributes 15.6% to the total Dipper DME, whilst all other components together account for only 35.0% of total DME (Section 4.6). Metabolism in nestlings may be over-estimated because of differences in body composition between adults (on which the Aschoff & Pohl equations are based, Section 2.1.1) and nestlings (Section 4.2). The proportion of metabolising tissue is lower in nestlings than in adult birds of similar mass, due partly to the greater water content of nestlings (Sections 4.2.1, 4.2.4). There are also differences in energy density of nestling tissue compared to that of adults (Section 4.2.1). Both energy density and the proportion of metabolising tissue (as indicated by dry mass, or lean dry mass) increase as nestlings grow, approaching adult levels in older nestlings (Section 4.2). This is consistent with the trend in the error noted when estimating DME in the Dipper. Increases in mass specific metabolism have been found for a number of nestling species (Mertens, 1977(a); Reyer & Westerterp, 1985; Wijnandts, 1984; Williams & Prints, 1985), though Myrcha et al. (1973) found it decreased in the House Sparrow. Other studies have found no detectable trend in mass specific metabolism (Marsh, 1979; O'Connor, 1975(c)). Given, however, the mass specific differences in body composition found in the majority of nestling energetics studies (Section

4.2, Appendix I), mass specific metabolism differences between nestlings (particularly very young nestlings) and adults are

11171190 El tson 6 10.15 may here 100-102 Mill20-mill LockJun Chiefe 30 自由主法学校内内 ampire ril 0.01110000 distant to n7 112.000 ob tablo nh brown measurent! quadrant at 107-107-51 ot rigardin STREET, MILE · 21315-44年 1 Jeverol al bruch 924 = 2. P

likely to be the rule. Wet energy density (WED) and lean dry mass (LDM) change with age in the Dipper as described by the equations in Section 4.2.1. Since BMR, 'alertness' and thermoregulation were calculated from equations for adult birds, the ratio of either WED or LDM in the nestling at a given age to that of the adult may be used to take into account the lower proportion of metabolising tissue in nestlings, and thereby adjust these components of the energy budget to more realistic nestling values by, for example:-

> DME_{adjusted} = WED_{nestling} x wet mass WED_{adult}

WED correction will tend to underestimate slightly DME since it over-emphasises the lipid component (with its low metabolic rate) of nestling tissue. An LDM correction conversely will tend to overestimate DME slightly, since it assumes all extracted lipid is in the form of storage components. Figures 5.7(a) and (b) show Dipper DME 'corrected' using LDM and WED respectively. It can be seen that this reduces the error in the observed DME considerably, such that the Dipper DME curves and the curve predicted by equation 5.2 are similar.

Inclusion of the Dipper DEB (corrected by WED) into equation 5.2 yields a new equation:-

DME = $3.78 \text{ mass}^{0.833} \text{ r}^2 93.1 \text{ eqn. 5.7}$

eqn. 5.6

The corrected Dipper DEB thus has a negligible effect on the goodness of fit of the regression (i.e. $r^2 = 93.1$ as opposed

to the original r^2 = 93.8; equation 5.2) suggesting that the previous error in observed DME was due almost entirely to the use of adult metabolism equations in calculating nestling metabolism.

This conclusion could be of some value if a general equation for nestling WED or LDM as a function of the proportion of growth completed could be extracted from a review of the literature. This could then be used to calculate nestling metabolism by correcting metabolism predicted by existing adult metabolism equations. Nestling energy budgets could then be constructed with some confidence for any altricial species of any age for which nestling mass as a function of age was known. Unfortunately the necessary data needed to construct such equations are rarely published.

A revised energy budget for the Dipper is presented in Table 5.7, taking into account the mass specific metabolism differences between small nestlings and adults. It is constructed using the mean of WED and LDM adjusted values for BMR, 'alertness' and thermoregulation, for each nestling age, and using the data presented in Table 4.25, Section 4.6.

Comparing Table 5.7 with Table 4.25 shows that recalculation of the components mentioned above, whilst altering absolute values has little effect on the relative importance of each component expressed as a percentage of total DME, although BMR is substantially lower than in the previous energy budget (Section 4.6). Conclusions drawn from

191.

the uncorrected budget (Section 4.6) are thus unlikely to be significantly invalidated by omission of the correction factor. enido add idan add ida ida ida ida ida ida ida ida

equalizates activates activates antestates activates act

in Teble different sonarrur als' els antes bas

teresteule alteriag impertage total DME Energy budget for the Dipper taking into account mass specific metabolism differences between nestlings and adults (see text)

, DME (kJ bird ⁻¹)	3.290	25.355	32.495	40.665	50.720	60.480	70.005	81.050	88.590	94.500	97.665	97.625	96.330	97.415-	95.355	95.705	98.090	98.335	100.165	101.890	103.300	104.615	107.515	110.445	1951.899
DEE (kJ bird ⁻¹)	3.290	16.315	21.015	25.705	31.900	37.36	44.155	53.240	59.870	65.950	70.195	72.665	73.650	76.245	76.565	78.325	82.290	83.635	85.965	88.260	90.290	92.315	95.155	98.155	1530.070
Bio- synthesis (kJ bird ⁻¹)		11.49	14.26	16.64	19.94	21.79	23.12	25.42	26.76	27.60	26.93	24.85	21.65	20.22	16.84	15.06	12.98	11.11	10.30	9.52	8.56	7.70	7.66	7.69	388.05
Activity (kJ bird ⁻¹)	0.00	0.10	0.22	0.30	0.49	0.83	1.84	3.05	3.37	3.75	4.06	4.28	4.42	4.52	4.60	4.66	4.69	4.71	4.72	4.73	4.73	4.73	4.73	4.73	78.26
(kJ bird ⁻¹)	0.890	1.250	1.730	2.270	2.895	3.615	4.500	5.450	6.235	7.195	7.880	8.740	9.555	10.365	11.075	11.770	12.985	13.620	14.245	14.865	15.465	16.045	16.620	17.210	316.04
Thermo- regulation (kJ bird ⁻¹)	0.000	0.000	0.005	0.015	0.055	0.180	1.065	2.815	4.020	4.920	5.875	6.585	7.195	7.780	8.335	8.860	9.765	10.250	10.730	11.185	11.645	12.080	12.520	12.950	148.77
(kJ bird ⁻¹)		9.04	11.48	14.96	18.82	23.07	25.85	27.81	28.72	28.55	27.49	25.01	22.68	21.17	18.79	17.38	15.80	14.70	14.20	13.63	13.01	12.30	12.36	12.40	429.22

1

1

TABLE 5.8: A comparison of Dipper energy budget components expressed as % total daily metabolised energy (DME) for adjusted and unadjusted DME (see text) over all ages

Component	DME ^a adjusted	DME ^b unadjusted	Difference between adjusted & unadjusted
BMR	34.9	42.4	- 7.5
Growth	21.6	17.1	+ 4.5
Thermoregulation	7.5	8.4	- 0.9
'Alertness'	16.0	13.4	+ 2.6
Activity	3.9	• 3.1	+ 0.8
Biosynthesis	19.6	15.4	+ 4.2

See text and Table 5.7

a

b

VGCTARTÀ

(1-brid (a))

第195

notialization

(1-10-100 La)

See Section 4.6.8

5.8 THE DAILY ENERGY BUDGET: CONSIDERATIONS OF BROOD ENERGY DEMAND

+ 10.00

ATT TO DA !

Nestlings in larger brood-sizes receive on average less feeding visits than nestlings in smaller brood-sizes (Best, 1977; Bryant, 1978; Bryant & Westerterp, 1983; Hails & Bryant, 1979; Lack, 1966; Perrins, 1970; Royama, 1966; Seel, 1960; Section 4.6.3(c)). Daily metabolised energy (DME) has been found to be lower in larger brood-sizes than in smaller broodsizes (Bryant & Gardiner, 1979; Bryant & Westerterp, 1983; Westerterp et al., 1982). Two possible explanations have been put forward to account for these observations. Firstly, nestlings in larger broods require less energy due to reduced thermoregulation costs through huddling (Mertens, 1969, 1977; Royama, 1966). Secondly, parent birds have some optimal working capacity (Drent & Daan, 1980; von Haartman, 1954; Royama, 1966) at which level they are unable to sustain work for long periods without detriment to survival chances (Reyer & Westerterp, 1985; Royama, 1966), and hence lifetime reproductive success. These two hypotheses will be considered in turn.

5.8.1 Do nestlings in larger broods require less energy because of reduced thermoregulation costs?

Nestlings in large broods do have lower thermoregulatory costs than smaller broods (Mertens 1969; 1977; Section 4.3) and this is reflected in the earlier onset of effective homeothermy (Dunn, 1976; 1979) in larger broods.

192.

Hails & Bryant (1979) found that in the House Martin feeding rate was proportional to brood mass raised to the 2/3 power, consistent with the hypothesis of reduced thermoregulatory costs due to reduced surface area: mass ratio in larger broods (Mertens, 1969). There is evidence, however, to suggest that such energy savings in larger broods are too small to account for the observed reduction in DME of nestlings. Reduced costs may be explained in another way.

Nestlings in larger broods tend to be lighter than nestlings in smaller broods (see references earlier in this Section), and this has been shown to result in reduced survival (Nur, 1984; Perrins, 1979). Birds of smaller mass have lower metabolic requirements (Aschoff & Pohl, 1970; Kendeigh et al., 1977; Lasiewski & Dawson, 1967) of which thermoregulation is only one component (Dunn, 1980; Section 4.6). For example, BMR and 'alertness' (Sections 4.6.1, 4.6.6) account for 65% of the Dipper energy budget, hence any reduction in mass will effect DME via these components considerably more so than thermoregulation which is only about 10% of the total energy budget. Drent & Daan (1980) found DME to be highly correlated with the maximum growth rate (g.d⁻¹) in 8 atricial nestlings lending support to this view. The age of the onset of endothermy is also highly correlated with nestling growth rate, in this case K in the logistic equation (Dunn, 1975), while the majority of thermoregulation costs are not incurred until after the maximum growth rate has been reached (Dunn, 1980; Section 4.6).

The equation of DME as a function of nestling mass

10 22.03 100001 i slimi MONTH AND 5 424 A 4.877 J.D.C.C Server Street THE REAL MILLIN OCH a states BOTHC DATE 8.2

日本アム人口国際 A 05.19912 offootive

@ =1.2mH

THY 5700

193.

presented in the previous section (equation 5.2 was calculated for species in which the data were taken from brood-sizes 1 to 5, consis costs c (Martan such u for the

1227000 Bwettine Linfer, 1 25110 1. Lt 30. TELUIDI TOP SIZE THUODER PETSUDER: opha lider about 10 ME Shudi 247 STATE Market N. COPPELAT alteigol linguinger the signature

bii:0820**0**723

Cor span

with little apparent effect on the variance about the regression line $(r^2 = 0.97)$ suggesting thermoregulation to be unimportant in affecting nestling DME. This may explain Hails & Bryant's (1979) observations, since it was brood mass not brood-size that was the important factor related to frequency of feeding visits in the House Martin. Elsewhere Bryant & Gardiner (1979) conclude that huddling had a small impact upon brood demands, whereas requirements for individual growth, maintenance metabolism, and different numbers of nestlings is of greater importance. Nur (1984) concludes that thermoregulation costs decrease as broodsize increases only up until a certain point and thereafter, larger brood-sizes do not experience reduced thermoregulation costs, but still receive reduced food levels.

Clark (1982) demonstrated that frequency of feeding visits and fledging mass in the Starling were similar for broods from heated nest boxes and natural broods, lending support to the view that thermoregulation costs are of little importance to nestling energy demand. Reduced thermoregulation costs may be offset in larger brood-sizes in a number of ways. The earlier reduction in parental brooding in larger broods may result in greater indirect cost to the parent of maintaining brood homeothermy by increasing travelling costs (see 'maximal brooding time' model, Section 2.4.3(c), Section 5.4).

Increased nestling competition for the most

194.

energetically profitable nest position (Section 5.4) may

explain the higher DME of House Martin broods of three compared

AUDIN B PERIOR PERIO

vestes at sood at sood at sood at sood at sood at so at so

leginge

minipus

with other brood-sizes thus negating the effect of huddling (Bryant & Gardiner, 1979). Deterioration of nest insulation due to trampling and faecal contamination have been put forward to explain the higher gross energy intake of Starling broods of seven, compared with broods of five (Westerterp et al., 1982).

A consistent reduction in thermoregulation costs of larger broods does not therefore explain the reduced frequency of feeding visits to, and reduced DME in large broodsizes.

5.8.2 Do nestlings in larger broods receive less energy because of constraints on the parents ability to provision the brood?

Parents rearing larger broods appear unable to adequately nourish their young and this may lead to reduced survival amongst light nestlings (Section 5.7.1). This seems to be due to an inability of the parent birds to increase food delivery to a sufficient level. In the House Sparrow, both males and females increase the rate of provisioning the brood, but females more so than males during the late nestling period. Nonetheless nestlings in larger broods were underweight (Seel, 1966). A similar pattern has been observed in the Field Sparrow (<u>Spizella pusula</u>; Best, 1975). In House Martin broods which were experimentally enlarged from brood-size 3 to 7, feeding rate per brood was reduced by 22% and faecal output (reflecting DME; Section 4.8.2) was reduced by 32% (Hails &

Bryant, 1979). Reduced feeding frequency may be offset by increased load size or energy content of the prey (van Balen, o (Erino) (Erigan) provint ericond (Ericon)

frequer slage-

Adequat antrolog antrolog to ba d dellyers but fean field by field by freeds freeds

STYANT,

the readed

1973; Bryant & Gardiner, 1979; Westerterp, 1973). Additionally, assimilation efficiency could be greater in larger broods (Bryant & Gardiner, 1979) although this is insufficient to prevent lower fledging masses in the House Martin. Energy delivery to the brood is not, however, an accurate estimate of parental workload (Bryant & Westerterp, 1983). In order to assess the constraints on the parents ability to provision different brood-sizes, some measure of energy expenditure of adult birds is required. The doublylabelled water technique (see Section 3.5.2) has provided the opportunity to examine this in a number of species. Measurements of DEE in adults feeding nestlings has suggested an upper limit of sustainable workload of approximately 4.0 x BMR (Drent & Daan, 1980). This appears to be confirmed by a number of studies (Bryant & Westerterp, 1983; Hails & Bryant, 1979; Reyer and Westerterp, 1985; Ricklefs & Williams, 1984; Utter, 1971; Utter & LeFebvre, 1973; Wijnandts, 1980; Williams & Nagy, 1985), which could limit the parents ability to provision large broods. There is also evidence, however, that parents are able to nourish larger broods and remain within this threshold.

Ricklefs & Williams (1984) found no significant differences between DEE of adult Starlings provisioning different brood-sizes (where brood-sizes ranged from 3 to 7, and involved a 50% increase in brood mass). Williams & Nagy

196.

(1985) found no significant difference in adult DEE in

Savannah Sparrows rearing broods of 2 or 3. The most

12731 targer. (mailed) Recetion . ancear a t 1.0033. erlitte. TINCHT opport tu 0.020100 T JULLA TrioreQ1 Burra ID 用. 中国大学和学 1,7181950 MALLET PA to prov 18/12 7/11/57 1211224 10-20 291R THE STORE

WWILL BIER

(2082)

Savanna)

informative study to date, however, is for the House Martin (Bryant & Westerterp, 1983) and shows that for a brood-size range of 1 to 8, and a corresponding 560% increase in brood DME, adult birds only increase their DEE by 16.1%. This is equivalent to a 0.028% increase in adult DEE per 1% increase in brood DME. In the above study DME of the brood was calculated indirectly from faecal output (see also Section 4.8) and took into account the reduced body mass of nestlings in larger brood-sizes (Bryant & Gardiner, 1979), DME calculated from faecal output was similar to the equation produced by Kendeigh et al. (Bryant & Westerterp, 1983; Section 5.6, equation 5.B).

DME required for broods of five House Martins was found to be 276.4 kJ d⁻¹ or 138.2 kJ d⁻¹ from each adult, assuming an equal share in brood provisioning (Bryant & Westerterp, 1980). The equivalent figure using Kendeigh et al. equation was 124.8 kJ d⁻¹ for each adult. Nestlings in large broods tend, however, to be undernourished in some species, or likely to be more susceptible to undernourishment. Nonetheless the cost of adequately nourishing the brood may be very small. This can be demonstrated using the House Martin as a model, and using fitted growth data for different broodsizes. Whilst House Martins are an example of one species in which consistent undernourishment of naturally large broods is not demonstrable (Bryant, 1975), the data show that mass differences between nestlings, of an order observed in other species, results in little additional energy expenditure by the parent.

inform (Reyan range range equival and to free fe Kendele

found a Muntury Muntury oligica ocudica is citea aliant aliant aliant aliant aliant aliant aliant aliant

の内上の登録に

HTHE BRT

Nestlings in broods of five tend to weigh on average 20.1g on day 10, just prior to peak energy demand (Bryant & Gardiner, 1979). If all nestlings were as well nourished as a nestling in a brood of one (i.e. 23.2g, for the same age) brood DME would be 135.6 kJ.d⁻¹.adult⁻¹, an increase of 8.7% DME. The corresponding increase in adult DEE necessary to allow adequate nourishment of a brood of 5 House Martins is only therefore 0.25%, or an increase from 99.29 kJ. day⁻¹.adult⁻¹ (Bryant & Westerterp, 1983) to 99.54 kJ.day⁻¹. adult⁻¹. Furthermore, adults could remain in net energy balance (Bryant & Westerterp, 1983; Table 6).

198.

Adult birds should therefore be able to adequately nourish their young without energy inbalance, or resorting to use of their own body reserves. Why then are large broods undernourished? An explanation could be that energy requirements per nestling actually increase with increasing brood-size, rather than decreasing because of reduced thermoregulation costs. One component of the DEB that increases with increasing brood-size is activity costs, specifically begging behaviour and associated movement within the nest (Section 4.6.3, 4.10). For example, although the cost of begging for a single House Martin chick in a brood of four is only about 3.0% BMR on average, the cost to the parent would be four times this. Indeed, since nestlings beg on each visit, irrespective of whether they are fed, and the number of nest visits increases

proportionately with brood-size then begging costs of the brood

would increase exponentially. Accelerating activity costs

average taryan taryan nonrtan the am therean Martin day 2, a day 2, a

daratan userar per ner recete recete bord-s fartin fartin topeach topeach topeach

22-20200-02

Would 1

might therefore be expected to negate savings from thermoregulation costs via huddling, and perhaps lead to a more or less linear increase in DME costs as a function of brood-size. Energy savings from huddling, and begging costs for the Great Tit and Blue Tit respectively, were calculated using the data presented in Table 5.9. Brood metabolism including thermoregulation costs were calculated for all brood-sizes between and including the mean and maximum brood-sizes observed (Table 5.9), using the following equations:-

Great Tit metabolism = 6.320 brood mass^{0.672} eqn. 5.8 Blue Tit metabolism = 6.340 brood mass^{0.750} eqn. 5.9 where metabolism (m_b) is in kJ.brood⁻¹ day⁻¹ and brood mass is in grams (Mertens, 1969; 0'Connor, 1975). The RQ used for both equations is 0.71.

In order to assess thermoregulatory savings in larger brood-sizes and test whether activity costs do indeed exceed savings, thermoregulation costs in the absence of huddling need to be calculated. By assuming all nestlings within a brood behave as discrete individuals and do not huddle, brood metabolism costs would be equal to:-

Brood metabolism = Single nestling metabolism x broodsize eqn. 5.10 However this method is likely to grossly overestimate potential savings since brood-sizes of one are very uncommon in the species considered here and are likely to be the result of partial clutch or brood loss. Since it is nestlings in larger than average brood-sizes which tend to be undernourished, a more

199.

a tidala regulat 1844,25 Energy bas the 7,0.0.0.17 2020205 and Inc (TADIR 1271 28 int intum/ter miners vit Bath mya a-based 101110 62 Bil 07 a, pradad Lonates Breist a Lavourt

azvinge

TABLE 5.9: Variables used in ca and begging costs in average sized broods	alculating thermo n average sized a s of Blue Tits an	regulation nd 1.5- d Great Tits
Variable	Blue Tit	Great Tit
Mean brood-size	a 10.0	^b 8.0
Age of nestling (days)	° 11.5	d 13.0
Ambient temperature (°C)	° 15.0	d 12.0
Mean nestling mass (g) (i) Mean brood-size	a 9.9	d 15.0
(ii) 1.5 x Mean brood-size	9.5	12.7
Brood mass (g) (i) Mean brood-size	99.0	120.0
(ii) 1.5 x mean brood-size	142.5	152.4
Feeding frequency (feeds brood ⁻¹ day ⁻¹)		
(i) Mean brood-size	e 740	d 375
(ii) 1.5 x mean brood-size	e 1072	d 575

111

.

.

a	Nur, 1984(a)
Ъ	Perrins & Moss, 1975
с	0'Connor, 1975
d	Royama, 1966
e	Nur. $1984(b)$

THENT

Ade Bank Main ha Marin ha Marin de Marin d useful estimate of thermoregulatory costs can be derived by brood comparison with the average brood-size. To derive predicted metabolic costs, assuming no additional benefits from huddling in larger than average brood-sizes, the mass specific metabolism of the mean brood-size was used:-

 $M_p = M_{sm} \times W_b$

where M_p is the predicted brood metabolic cost including thermoregulation (eqns. 5.8 & 5.9); M_{sm} is the mass specific metabolism of the mean brood-size; and W_b is the brood mass of the larger than average brood-sizes. The latter were calculated to include the progressive reduction in mass of individual nestlings found in large broods of the two species. Thermoregulation savings (TR_s) are thus calculated as:-

 $TR_{s} = M_{p} - M_{b} \qquad \text{eqn. 5.12}$

where M_p and M_b are the predicted and observed brood metabolism respectively (see equations 5.11 and 5.8, 5.9), and expressed as kJ.brood⁻¹, day⁻¹.

Begging costs were calculated assuming a one, five or ten second begging duration per nest visit, and a unit cost of 7.48 x 10^{-5} kJ.sec⁻¹ (Section 4.5.3). All nestlings were assumed to beg at each nest visit. Nestlings were also assumed to beg between nest visits as found in the House Martin and the Dipper (Sections 4.6, 4.10). Begging costs were therefore multiplied by 1.97, the ratio of 'begging between' to 'begging

200.

eqn. 5.11

during' nest visits found in the Dipper (Section 4.10). Feeding frequencies for the Great Tit were calculated from a tibbud Dodatan

thermore thermore astaboli ast the saleties heleties Therease

N prindle

200 Can 200 Can 200 Can 200 Can 201 Date

"Intras"

Teeding

Royama (1966) and for the Blue Tit from Nur (1984). Calculations are for 11.5 day old Blue Tits and 13.0 day old Great Tits (Table 5.9). Ambient temperatures are those used in calculating equations 5.8 and 5.9 (see Mertens, 1969; O'Connor, 1975). Figures 5.8 and 5.9 show that begging costs do negate thermoregulation savings, and may exceed them, under some circumstances. The relationship is clearly sensitive to ambient temperature; an increase in ambient temperature of 3.0°C (Figures 5.8 and 5.9) results in thermoregulation savings being exceeded by begging costs in all but the largest brood-size at 15°C for the Blue Tit (given a ten second begging duration). If a begging duration of five seconds is considered this leads to a reduction in TR savings of 33.0% for the Great Tit and 47.4% for the Blue Tit based on the largest brood-size. The reduction in TR savings increases as brood-size decreases. Since ambient temperatures are often likely to be higher than 12-15°C during the Spring and Summer in Britain, and parents may still brood nestlings at the ages used in these calculations (Mertens, 1969) TR savings may be overestimated. Additionally, nestlings do not thermoregulate fully until well grown; prior to this begging costs will exceed TR savings more often. A begging duration of ten seconds may be a realistic mean for all nestling ages since beg duration is initially much higher in the species examined during this study (Sections 4.9, 4.10), and may be longer than 10 seconds in some species even during the latter half of the nestling period (Section 4.10).

201.

Figures 5.8 and 5.9 thus show (a) that activity, specifically begging costs, may play an important rôle in modifying brood
http:// 7200 the values of threat 16 Lo nega a nation traildres. 1,090,0 a - Lockt SOLT PLUE set abdy thus ril ma upptit Ilda Vun ballansa. 2012 02 BuyEBog Swort 15p An The a and say 1

Thermoregulation savings. A

Begging costs assuming a begging duration of:

One second **A**

Figure 5.9:

5.9: Comparison of benefits through reduced thermoregulation costs via huddling at 15°C, and costs of nestling begging behaviour for the Blue Tit (see Table 5.) as a function of brood-size.

Thermoregulation savings.

Begging costs assuming a begging duration of:

One second	Δ
Five seconds	0
Ten seconds	

energetics in larger than average brood-sizes, and (b) that larger than average brood-sizes should be relatively economic to rear on a per nestling basis since TR savings tend to exceed begging costs in these brood-sizes. In conclusion, accelerating activity costs do not appear to explain why young in larger brood-sizes are undernourished.

In some species which have very large brood-sizes even the most common or most productive brood-sizes may show apparent undernourishment of the young. Nur (1984(b)) found this to be the case for the Blue Tit, and interpreted it as the result of a decision by the female not to adequately nourish the brood, based on her own probability of survival. Nur demonstrated that female Blue Tits incur progressive mass losses as a result of increasing their feeding frequency to larger brood-sizes. Elsewhere he showed that lighter females have lower survival probabilities (Nur, 1984(c)) and views feeding frequency to be optimized through a trade-off of parental versus nestling survival. The feasibility of his model does however depend to what extent costs to the adults are related to feeding frequency. For example, although mass loss of females was a linear function of feeding frequency, survival differences were only demonstrable above and below a 'threshold' mass of 10.6g. Heavier females may therefore be able to lose mass without affecting their survival (Jones, 1985). Also, since male Blue Tits suffer no apparent

202.

differences in survival as a function of feeding frequency

(Nur, 1984(b)), it is unclear why males do not compensate

anargan largan to rear exceed aboular

aven the appairent. chán tạ The read Nal-mina Gerais mult a managh d majoral MAL WORK (testine) 14.7 1901284 anti- (values and color Long of L · 产生的主义性和110 feesk?" b ben range in A . CUMPL for any reduced feeding by the females. By increasing their own feeding rates males would increase their fitness by producing heavier nestlings with subsequently better chances of survival (Nur, 1984(a)). In view of this the question of undernourishment among large altricial broods remains unresolved.

PART II: HATCHING ASYNCHRONY: IMPLICATIONS FOR NESTLING ENERGETICS

Hatching asynchrony is a widespread phenomenon amongst bird species. It is facilitated by starting incubation prior to completion of the clutch, so that the young may hatch some days apart (Lack, 1954; 1968). It is commonly assumed that such a hatching pattern has an ultimate, adaptive, value (Slagsvold, 1986). A number of hypotheses have been presented to explain its occurrence (Clark & Wilson, 1981; Hahn, 1981; Hussel, 1972; Lack, 1954; O'Connor, 1978).

Recently, however, the basic assumption of an adaptive value to hatching asynchrony has been questioned (Mead & Morton, 1985). Most attention has been focused on two hypotheses to explain hatching asynchrony, (i) the nest failure hypothesis (Clark & Wilson, 1981), and (ii) brood reduction (Lack, 1954; 1968). This study has further considered two more possible explanations of hatching asynchrony, (iii) the peak load reduction hypothesis (Bryant & Gardiner, 1979; Hussel, 1972) (Sections 2.2, 4.8), and (iv) the reduced sibling rivalry hypothesis (Hahn, 1981; Hamilton, 1964) (Sections 2.3, 4.10, 4.11). Many assumptions regarding the latter are pertinent to considerations of brood reduction (see Section 5.11), and so hypotheses (iii) and (iv) are considered first.

rean and see and district arretan arretan arretan 204.

5.9 PEAK LOAD REDUCTION

The assumption that the spread of hatching results in an equivalent spread in the peak energy demand curves have not been demonstrated for any species (see also Figures RANE I

anungut polon to stat day that aut idlagned to angly

autopates (Pead 1) (Pead 1) (Pead tate (Pead tates (Pead tates (Pead tates (Pead tates) (Pead tates) (Pead tates) (Pead tates) (Pead tates) (Pead tates)

- E. 19

th an eau

S mand Jon

4.65(a-f)). Data were presented in Section 4.8 which failed to show any trend in the mean peak energy demand of nestlings $(MPED_n)$ in relation to asynchrony. This was contrary to small predicted savings from the peak load reduction model, and from calculations based on the House Martin DME estimates (Bryant & Gardiner, 1979). This discrepancy will now be discussed.

Nestling energy demand is in part related to nestling growth (Section 4.6), indeed it is the growth and biosynthetic component of the nestling energy budget which is primarily responsible for the peaked shape of the DME curve (Figure 4.64). This holds for species that undergo mass recession (e.g. House Martin, <u>Delichon urbica</u>) as well as species which do not (e.g. Cactus Wren (<u>Campylorhynchus</u> <u>brunneicapillus</u>) contrary to what is sometimes assumed (Mead & Morton, 1985). Species which undergo mass recession will tend however to have "sharper" peaks to their's. DME curves and thus peak load reduction may be envisaged as producing greater potential benefits in such species. Nonetheless estimates of savings from peak load reduction, taking this into account, do not produce widely differing results, and savings in both cases are small (Section 4.8.2).

For the spread in peak energy demand to reflect the time between the first and subsequent hatchings, growth rate of the first and later hatched nestlings should be similar,

and yet the peak mass of later hatched nestlings was often higher than their earlier hatched siblings (Section 4.11.2),

a.55(2* WINES OF (GURAH) T LIGON ap south Triaver!!) # #BD# 25 nearline hlosymph is policia to swints DRY NUMP. **法**回应信用 (用)自 ploahted. (Measi A 2 Map + 1114 大臣 ときやすいひ producing a conioda dy malisy 10750195 wood gala

12 mit 20

ING DAD

do undalo

reflecting their faster growth. This acts to reduce the spread of the peak energy demand. It is possible, however, that benefits only accrue when food conditions are poor. In poor weather the last chick may grow more slowly so that its peak demand curve lags behind that of its more well nourished siblings, whereas in good conditions any tendency for synchrony of peak demand curves may be encouraged because parents can adequately provision the brood, and the nestling period would be completed more quickly. However, asynchrony of peak demand curves under poor conditions would be as a result of the slower growth of some nestlings, and not hatching asynchrony <u>per se</u>. There is evidence to suggest that a marked hatching asynchrony is not necessary to promote slow growth in later hatched young (see Sections 5.10, 5.12).

Nestling energy demand curves should be relatively stable, if asynchrony evolved for the purpose of peak load reduction and PLR was to be found in all broods and all conditions. Stability means not only similar growth rates (see above) but that the energy demand curve should be free of large unpredictable irregularities which could often smother the benefits of asynchrony. This might be expected for species which exploit predictable food resources.

House Martins, on the other hand, exploit unpredictably occurring patches of food resource (aerial insects), the abundance of which is influenced by weather conditions (Bryant,

206.

1975; Jones, 1985; Turner, 1980), which results in very irregular growth of the level of individual broods. This may

reflected o appression that then that then pace was pace was pace ought of pace the cought of stander appression pation of pation o

raduccian raduccian raduccian (tee abov the banes

Surgarora .

disrupt the synchrony of hatching spread and spread of peak energy demand.

Variation in peak energy demand can be extreme, for example in two broods of four House Martins, of similar asynchrony (RDHM 0.843 and 0.784), the mean peak energy usage by individuals was 44.6 and 89.0 kJ day⁻¹, the latter being similar to energy usage usually found in broods of five. Since energy intake can vary so greatly, even with similar asynchrony, and in such an apparently unpredictable way, asynchrony is unlikely to have evolved primarily as a means of reducing parental costs. Such an 'investment' in asynchrony for the purpose of small energy savings from peak load reduction could easily be negated by a change in weather conditions.

It was found in House Martins, that very asynchronous broods (manipulated experimentally) had significantly higher peak masses than moderately asynchronous natural broods. This was only found in brood-sizes of three and four and the increase in peak mass was only 0.89 grams. If this was a result of reallocation to nestling growth of savings from peak load reduction then a much greater degree of asynchrony would be expected to occur in House Martin broods (Section 4.11.1). Reallocation of energy savings to nestling growth would also require that nestlings could induce the parents to continue working at their original level, and presumably risk a reduction in fitness (see Section 5.8). There is no evidence

to suggest this occurs.

If peak load reduction evolved for the reason

discussed above then it should also be most easily detected

distant of

for day asymptic by indi similar filings asymptic of redu for the

broods pask mn bes ast bes ast realing redocti sesiios require reduces

discussio

in broods of five, which was not the case. It therefore seems most likely that hatching asynchrony, although on occasions possibly conferring energy savings through peak load reduction, did not evolve primarily for this purpose.

5.10 REDUCED SIBLING RIVALRY

A model of reduced sibling rivalry (RSR, Section 2.3) was tested by direct (Sections 2.3.4, 4.10) and indirect methods (Sections 2.3.5, 4.11.1). Both methods showed independently that a reduction in sibling rivalry in association with hatching asynchrony was not demonstrable in the House Martin. There are a number of possible explanations for this:-

- (1) Sibling rivalry is not primarily facilitated through begging behaviour;
- (2) Sibling rivalry is independent of hatching asynchrony;
- (3) Reduced sibling rivalry is unimportant because there are associated costs which outweigh potential benefits.

These will be discussed in turn.

5.10.1 Is sibling rivalry facilitated by means other than begging behaviour?

Jostling to maintain favoured nest positions for feeding may be an alternative or complementary way in which sibling rivalry is brought about. This would be more analogous

to the fighting seen in raptors and Ardeids. There was no

evidence however to suggest that a significant 'movement'

in trod

14 1 L L . L

aboriten

Indepen

tion wh

H NAUGH

207 701

(1) SI

EZ (21

WE (8.)

W Dittril

Mrs25mp2

lolidia

andsblvs

100

12.25

cost was excluded by analysis of begging behaviour alone in the House Martin (Section 5.5.1), since shifting in nestling position within the nest is anyway likely to occur during begging bouts (Reed, 1981).

5.10.2 Is sibling rivalry independent of hatching asynchrony?

This question can be restated as a number of separate questions. Firstly, is hatching asynchrony necessary to produce mass hierarchies within broods? Mass hierarchies may develop even when differences in hatching are small in House Martin broods (Section 4.11.2). A hatching spread of twelve to twenty-four hours may occur even when incubation commences with the last egg (Clark & Wilson, 1981), and this is sufficient to allow brood reduction within a number of species (Gibbons, 1987; Ligon, 1970; Poole, 1979; Ricklefs, 1965). In some species parents can effectively cause dominance hierarchies by preferential feeding, independent of nestling size (e.g. Coots, Fulica atra, Horsfall, 1984b). Hatching asynchrony is not therefore necessary to produce mass hierarchies. Mass hierarchies are, however, common within altricial broods and may still be important in regulating sibling rivalry. Does position within such mass hierarchies result in permanent dominance within the nest for the larger individuals? Significant correlations have been shown between nestling mass and 'size' in House Martins (O'Connor, 1975),

209.

yet changes within the mass hierarchy are common in this species (Section 4.11.2). Whilst it cannot be proven that changes in mass hierarchy are reflected by parallel changes

4 -- 1

tom Hot ATT DOG migned. 1012102010 90.20 02 Inty Gits Rouge: N BV LOWT O CALLS BRANCH 生生124、日本 Speciss. 1865), Pilezinge WJ molt ASSTRATION . 和由之间1771年8 12012250 mallate 1.25000-1 BIV1005 nations!

340 Jak

推动之口有信息

anguado

MF: 72:05

in dominance, the data in Section 4.11.2 does show that any benefits associated with such dominance, were it to remain fixed, do not confer persistent advantages to the highest ranked siblings. Conversely, other studies have found irreversible mass related dominance (Groves, 1984; Meyburg, 1974; Ricklefs & Hainsworth, 1967). In species in which siblings physically attack each other (e.g. raptors, Ardeids) such irreversible dominance is likely to be the rule: For example, in the Cattle Egret, dominance rank is decided by fighting and was not found to be correlated with either growth rate or winning ratios in food contests (Fujioka, 1985b). In species which do not fight however the establishment and maintenance of permanent dominance hierarchies may be less common. In such species hierarchy maintenance requires preferential feeding of some individuals by the parent. The cost of feeding nestlings lower in the hierarchy however may not be as great as in those species which fight (see Brood Reduction below), thus the selective pressure to feed the largest nestling and maintain a hierarchy may also be less. Support for this view may be found from a number of studies of nestling feeding behaviour.

Parents of species in which siblings do not fight do not consistently feed the largest nestling as is often stated (O'Connor, 1984). Food may be offered to the smallest sibling preferentially (pers.obs., Clark & Stamp, unpublished);

the 'hungriest' chick (Skutch, 1976); at random (Reed, 1981); to a specific sex of nestling (Harper, 1985; Horsfall, 1984b); to nestlings specific to a particular parent (Smith, 1978);

040450 1200233 Telast \$10 V S * 1 1 SING FORM and strain. a Tritis by は見けいたした NO 0015 1991.000ph ALC: NO. * spombo 2010/02/07/ 30 2000 Net disk of the 12/2010/01/2 DECT 10

stated -

154 C CC

19843 25

or to the most mobile nestling (Bengtsson & Ryden, 1983). In the latter case this was also the smallest nestling, as demonstrated in the Fieldfare. In such 'non-aggressive' species, therefore, dominance hierarchies may persist, change or not exist at all. Reduced sibling rivalry facilitated by differences in nestling mass cannot therefore be demonstrated conclusively for any species. If it occurs there is evidence to suggest that it is unlikely to exert a strong selective pressure on either nestlings (see Section 5.8) or parents; this is discussed further below.

5.10.3 Do the costs of reduced sibling rivalry outweigh the benefits?

There are two reasons why this may indeed be the case. Firstly, any potential saving from reducing sibling rivalry would be small (Section 5.5), and likely to be overriden by similar factors to those affecting Peak Load Reduction (see previous Section). Even so, benefits although small would be selected for if they increased fitness (Section 5.5, 5.6). Secondly, there may be associated costs with reduced sibling rivalry which outweigh any potential benefits. These have received little attention in past studies (e.g. Hahn, 1981). In those altricial nestlings which do not fight, reduced sibling rivalry is mediated through begging behaviour (Section 2.3.1, earlier this Section), thus reduced rivalry results in reduced begging. Von Haartman (1949) showed

211.

that feeding rate in the Pied Flycatcher (<u>Ficedula hypoleuca</u>) Was governed by the amount of begging that occurs. Thus, when recorded begging calls are played during feeding visits, parents

rivelry rivelry rivelry riten by fecaretic fecaretic fecaretic fecaretic fecaretic fecaretic fecaretic

BD3 TRUE

babyoamy

increase their food delivery rate (Bengtsson & Ryden, 1983; Rever & Westerterp, 1985). A reduction in begging due to reduced sibling rivalry would therefore lead to a reduction in parental delivery rate. No reduction in food delivery rate was observed in Great Tit broods in which mass differences between nestlings were manipulated to be large (Bengtsson & Ryden, 1983) suggesting there were no benefits from reduced sibling rivalry. There is evidence however from other studies, that birds in artificially synchronized broods may beg more than birds in asynchronous broods under similar food conditions. Fujioka (1985b) found that begging was greater in artificially synchronized broods of the Cattle Egret compared with naturally asynchronous nests. This resulted in more food being brought to the nest in the first part of the nestling period, although delivery rates were similar thereafter. The growth of chicks in such synchronous nests was almost as fast as first hatched chicks in asynchronous control broods. Since increased begging in synchronous broods appears to benefit these broods through increased food delivery, asynchrony would appear to involve a cost rather than a benefit (see Section 5.13). Does greater begging in synchronous broods mean greater sibling rivalry? Not necessarily, if begging frequency of a nestling on average reflects its DME curve, i.e. if begging is dependent on requirement, then nestlings that hatch synchronously may have synchronous peak begging curves in a similar way to the DME

212.

curves of the Peak Load Reduction model. A greater level of begging for a given age will therefore occur in more synchronous broods, other factors being equal, with no need to invoke more

zeron! 10.005 reduiter and al 1984790 1 mainell +1241+ Ed Sants zd madz ENGL(i/1 ayndinoo n=yxditte DO THE mavilat nous al Shicks | An nynal LDGT03.01 COUL LAD anluged. Hot nees 20a.12at meniulinam synainen

0 2BV100

anlaged

broads,

intense competition as an explanation. Fujioka (1985a) found that begging frequency in the Cattle Egret rose to a peak at about two-thirds of the way through the nestling period and then declined. This is consistent with pattern of DME change with age found in many species. (There are no figures published for the change in DME with age for this species).

To summarize; hatching asynchrony is not necessary to produce mass hierarchies within altricial species. Mass hierarchies, if they occur, do not consistently confer advantages to the largest nestlings, and there is little evidence to support the view that sibling rivalry is mediated by differential begging of high and low ranked nestlings. If sibling rivalry is important, and there is no evidence to suggest that it is, the associated costs of reduced food delivery by the parents (because of reduced begging) may outweigh benefits through energetic savings from this reduced begging which is relatively cheap. There is therefore little support for the view that hatching asynchrony evolved to reduce conflict among nestlings and to allow a more efficient utilization of energy resources.

5.11 THE NEST FAILURE HYPOTHESIS

The nest failure hypothesis and brood reduction hypothesis came to quite different conclusions regarding the adaptive significance of hatching asynchrony. The nest

213.

failure hypothesis views brood reduction as a necessary cost of hatching asynchrony evolved to minimize total nest failure through predation (Clark & Wilson, 1981). This view has been ad rant ad rant r tughe al. dant sh. dant nai dana

toria pa Advaranta A

Avioçui avirqabe criticized by Richter (1982) who argued that such a cost was unreasonably high to have allowed selection of hatching asynchrony for any other reason than brood reduction. This was subsequently challenged by Hussel (1985a) who showed a number of disimilarities between the assumptions of Clark & Wilson's model and Richter's critique.

Clark & Wilson begin by assuming no partial mortality occurs within the nest, and that the survival probability of nestlings (P2) is less than that of eggs (P1) and, also, that P2 is constant. Therefore the total number of offspring W(m) produced in any one nestling attempt, as a function of asynchrony, is given by

$$W(m) = P_1[(m-1)t_1 + t_2]P_2t_3(m + \sum_{i=1}^{N-m} P_2^{it_1})$$

where

N = clutch size

- m = egg at which incubation starts (m = 1 and m = N correspond to complete asynchrony and synchrony, respectively)
- t1 = laying interval (days between laying of successive
 eggs)
- t₂ = incubation period for a single egg (days)
- t₃ = nestling period for a single chick (days)
- P_1 = daily probability of survival of nest contents

214.

from the start of incubation to first hatch

P₂ = daily probability of survival from first hatch to first fledge. dreeund seenend seenend waaren vultee

0.20104

Although the model is simplistic in that it only considers two survivorship values (Hussel, 1985b; Slagsvold, 1986) addition of further survivorship values does not affect the predictions of the model (Clark & Wilson, 1981; Hussel, 1985b).

The model predicts that when total nest failure is high due to predation, asynchrony should be favoured, since it speeds up the time at which the first chick fledges. Also, when nest predation is concentrated in the nestling stage as opposed to egg stage of the nesting attempt, synchrony should be favoured since it reduces the time during which young are in the nest. This differential mortality between egg and nestling stage, Clark & Wilson call the nest-failure ratio (NFR) and is given by:-

NFR = $(1 - P_2)(1 - P_1)$

Thus the nest failure model predicts a trade-off between asynchrony favoured by total nest failure and synchrony favoured by high NFR. They demonstrated that it was the latter that was most important in regulating optimal asynchrony, and that an NFR of > 5.4 was needed to favour total synchrony. Thus, when the probability of nest failure is high, females should commence incubation prior to completion of the clutch. The model was tested with data from 87 altricial species of bird, and Clark & Wilson conclude that "... the distribution

and frequency of asynchronous hatching corresponds well to the general predictions of the nest-failure model", and "... in most cases hatching asynchrony is determined by selective pressures which have little to do with brood reduction". tives) a the pretid off, id off, a beechts be favo to rettin to the t

The second of th

0001 5000

BRINE MATE

mi atte

Does their model explain hatching asynchrony in the House Martin? It follows from the assumptions and the model, that asynchronous species such as the House Martin (Bryant, 1975b; 1978a; Section 4.11.1) are those in which total nest failure is high. No nest predation was observed during this study, and nest predation is generally rare in this species (Bryant, 1978b), a fact in common with some other hirundines (D. M. Bryant, pers.comm.). Occasional predation of House Martins may occur by Corvids, though there is no reason to suppose that this is concentrated in either egg or nestling stages of the nesting period. Species with low NFR's (this is not necessarily the same as high total nest failure as implied by the model) should tend to be asynchronous. The House Martin with an NFR close to one, should therefore commence incubation when m = 1 (Clark & Wilson, 1981) i.e. on the first egg. House Martins commence incubation when m > 2 (Table 1, Clark & Wilson, 1981; Bryant, 1975b). Slagsvold (1984b) analysed intraclutch variation in egg size and concluded that species which adopt the "brood-survival strategy" (nest failure model) should lay relatively heavy final eggs, whilst those adopting the brood-reduction strategy should lay relatively small final eggs. House Martins show no consistent pattern of egg size with laying order (Bryant, 1975b; 1978b) although embryo size did decrease with laying order (1975); the latter is not consistent with the nest failure model.

Snow Bunting data. He found the model only predicted a small increase in productivity of optimally asynchronous broods

Hussell (1985b) applied the nest-failure model to

Rouse . 20 7.017 137575 240044 AMB-GARD. 10 : 10 読作したなまた 細胞の空間辺形 223572 100 min 512/3 by the a na siziv Phen m a BOULS IIs A Wilson increally. be dblinw A ALLONDO ased all? 10. 12220 Mai Malv wood bin rerelation

STOR DUNE

STREET & A BER

compared with synchronous ones (1.5% and 2.4% increase in productivity in clutches of 5 and 6 respectively). In all cases the mean observed asynchrony was slightly less than predicted, though the variation was large. He concluded that the increasing asynchrony found with increasing broodsize tended to lend support to the nest-failure model. House Martins also show an increase in asynchrony with brood-size (Section 4.11.1, Bryant 1978a), but experience negligible nest predation. Clearly the nest failure model does not explain all these patterns.

There are a number of criticisms of the nest failure model.

5.11.1 Is the relevant daily survival probability included in the model?

The nest failure model implies independence of young at fledging, and that any consideration of minimizing loss of the brood from predation by adaptive hatching asynchrony, does not apply to fledged young. Yet in most altricial species parents continue to feed the young out of the nest for a period of time until independence is reached (Davies, 1978; O'Connor, 1984). Furthermore, the period when nestlings leave the nest is often the time at which predation risk is highest (Perrins, 1979). It is difficult to support the view that a period of high potential nestling loss, during which young are still dependent upon their parents, is not an important source of brood/nestling mortality which should also be encompassed by

the model. Perhaps the most relevant survival probability is that between fledging and independence. Independence is company produce produce produce produce size - ch size - ch morthe fareto company size size - ch size - ch

young an Jone of does not does not is its of its is often tann. his pob dependent however difficult to define, since parents gradually become 'mean' towards their offspring (Davies, 1978). The survival probability which would be theoretically appropriate, that of survival between the first and last young to become independent, may be, practically, unmeasurable. Survival between fledging and independence may therefore be a more suitable probability to use. If such a probability of survival (P_{μ}) is relatively low, then this will tend to raise the NFR (see below).

5.11.2 Is the estimation of nest-failure ratio accurate?

The nest failure model predicts that synchrony should be favoured only when NFR > 5.4. Absolute synchrony (or zero difference in hatching mass) is unlikely to occur regularly simply because of the variation in egg mass within clutches (Slagsvold et al., 1984) which will affect hatching mass. Eggs of differing mass/size tend to have slightly different incubation times (i.e. t₂ is variable), smaller eggs taking a little less time to incubate (Bryant, 1975b). This assumes that the heat transferred to the eggs via the brood patch is equal for all eggs. It is unlikely especially in large clutches that this will be the case, and is the likely reason for egg turning in many species (Ricklefs, 1974). The threshold of 5.4 is therefore likely to be unrealistically high. NFR's for most species tend to be less than 3.0 (Clark & Wilson, 1981; Table 1). These values may be under-estimated, therefore biasing them towards favouring asynchrony, for two

reasons. Firstly, the exclusion of a potentially high source of nestling mortality (P_{4}) , underestimates the nestling

Toning year Toning and toning and tonin to use. issue th

should be served
(or served
paration
barding
b

x D CTO O man's

component of NFR (see above). Secondly, total loss of eggs from nests which may be recorded as predation events can occur by other means, for example human predation (unlikely to affect the nestling stage), removal of damaged or infertile eggs by the parent, or even whole clutches of viable eggs after bad weather (O'Connor, 1979), or possibly after nest parasitism. Estimation of the egg component of NFR is therefore open to errors which may overestimate its importance. This may be one reason why species tended to be more synchronous than predicted by the model (Clark & Wilson, 1981).

5.1.3 Do values of D confirm the predictions of the nest-failure model?

Slagsvold et al. (1984b) used the deviation of the last laid eggs size (D) from the mean of the rest of the clutch to examine predictions regarding brood reduction and nestfailure hypotheses. Positive values of D should correspond to species which have evolved a high degree of asynchrony in response to a high risk of total nest failure or low NFR, since this will tend to offset the cost of losing young through non-adaptive brood reduction (Clark & Wilson, 1981).

Of the 67 species examined, there are corresponding NFR and total nest failure data for only 7 species, these are presented in Table 5.10. Though the sample is very small there is no consistent pattern that gives support to the nest failure model.

5.114 Is the use of 'm' as a measure of asynchrony valid?

The use of 'm', the egg on which incubation

commences has been criticised, as a measure of hatching

the road the road the road the road the road the road the the r the the r the the r

Lase 144 To analy failted to special strong th strong th

a

Ъ

C

freesary freesary fe ma cm TABLE 5.10: The relationship of the deviation of final egg size (D) from the rest of the clutch (Slagsvold et al., 1984) to the nest failure ratio and percentage of total nest failure (Clark & Wilson, 1981)

	Nest Failure Ratio	Total Nest Failure %	D ^b predicted sign	observed sign
Apus apus	^a 1.00	low	+	c- and +
Apus melba	a1.00	low	+	-
Hirundo rustica	0.11	low	+	+
Troglodytes aedon	0.34	-		+
Sturnus vulgaris	1.61	low	-	-
Passer domesticus	1.37	37%	+	-
Quiscalus quiscula	1.72	42%	+	+

Almost nil predation due to nest-site security, therefore assumes P1 = P2

Sign predicted on the basis of NFR and/or TNF. High TNF/low NFR = t; Low TNF/high NFR = -. See text for explanation.

Values in Slagsvold et al. are for three estimates from O'Connor (1979). Two are positive (one just so) and one is negative.

asynchrony, since it is automatically biased against small clutch sizes which can never obtain a markedly asynchronous score (Slagsvold, 1986). Another criticism is the inconsistency with which 'm' reflects hatching spread (see previously). It is hatching spread on which the nest failure model is based and yet it is 'm' on which Clark & Wilson base their conclusions, (Figure 6, Clark & Wilson, 1981). Their data (Table 1) were re-analysed using hatching spread instead of m, and compared with NFR for species given.

ADVIG- 31

BURGHISS

90138839

There was no significant difference between NFR in species in which young hatched < 24 hours apart (n = 8), compared with those in which the young hatched 24-48 hours apart (n = 10); Mann-Whitney U-test, Z = 0.11, p > 0.1. It was not possible to compare species in which hatching spread was greater than 48 hours for two reasons. Firstly, with the exception of the Scarlet Flycatcher (Pyrocephalus rubinus) for all species in which NFR is high (i.e. > 1.8) no data were available on hatching spread. Secondly, with the exception of the Cactus Wren for all species in which hatching spread was particularly high (> 72 hours), no data were available on hatching spread. My analysis did not include species for which hatching spread and NFR were measured in different studies (e.g. Lapland Longspur, Calcarius lapponicus) as these parameters often varied considerably between studies, especially the latter. The significance is however likely to be even less

220.

if these species were included, since several had both high hatching spread and high NFR values (e.g. Snow bunting, Lapland Longspur).

5.11.5 Is asynchronous fledging advantageous?

Asynchronous fledging of the young, as implied by the model, may be a disadvantage for two reasons. Firstly, a rapid transition of feeding young in the nest to feeding young out of the nest may benefit both parent and young. For example during three hours of observations on one Dipper brood, the single fledged youngster was not fed, though it begged twice as often as its sibs still within the nest, which were provisioned as usual by both parents (pers.obs.).

Secondly, if predation of newly fledged young is high, then synchronous fledging (and by implication, more synchronous hatching) might be favoured as a mechanism to 'swamp' predators. If synchronous fledging is advantageous it might be expected that late-hatched young would fledge earlier than expected. Highly asynchronous manipulated House Martin broods (five day age difference) fledged over two-three days (pers.obs.). The lightest or last-hatched young in Tree Swallow broods fledge significantly earlier than expected (Zach, 1982), suggesting asynchronous fledging is not adaptive.

The view that hatching asynchrony is an adaptation to reduce nest failure, does not hold for the House Martin. It is more likely that hatching asynchrony is determined by selective pressures that have little to do with nest-failure.

5.12 BROOD REDUCTION

221.

eluten scome i scome i stin wh stin wh stin wh sid per sin sol

neveries apare net apare net isse net isse net isse net isse net isse net isse net net iste net iste hating hating hating hating hating hating

if flicet hatchig Lapland L Hatching asynchrony has been interpreted as an

adaptation by adult birds to adjust their brood-size under

the mode trapid to dorting to dorting to alngin i Ad offer alnovigio

httph, th synchron 'munap' it stght it stght darliar itys (pe itys (pe (tech, t

enn al 71. Nitzowine

5.12 080

27074AD5

conditions of unpredictable food shortage, by selectively starving the later hatched young (Lack, 1954; 1968; 0'Connor, 1978c). Evidence for brood reduction as an adaptive strategy, however, remains largely circumstantial (Hahn, 1981). Hatching asynchrony and brood reduction have been inexorably linked since Lack first proposed this hypothesis yet two separate questions are outstanding.

(1) Is hatching asynchrony necessary for brood reduction to operate?

(2) Is brood reduction adaptive?

These questions will be dealt with in turn.

5.12.1 Is hatching asynchrony necessary for brood reduction to operate?

The mechanism that is envisaged as affecting brood reduction is a size hierarchy within the brood. Size hierarchy formation has been discussed in relation to sibling rivalry, and it has been shown that only small differences in the size of individuals is necessary to produce such hierarchies (Section 5.10) and these may not be permanent or confer persistent advantages to the highest ranked individuals, particularly in 'non-aggressive' species. The evidence suggests that brood reduction can and does occur in synchronous broods (as predicted by O'Connor, 1978c).

Gibbons (1987) found that 80% of chick mortality was due to starvation in both asynchronous and artificially

20

synchronized broods of the Jackdaw (Corvus monedula). Hahn

(1981) found no significant difference between partial brood loss and complete nest failure (assumed to be through hisitures
enkvime
enkvime
enkvime
enuitie

planette planette planette d. st bns planet. polaced perstant breedte), phored (

anp way.

starvation), between naturally asynchronous and artificially synchronized broods in the Laughing Gull. Brood reduction has been reported in experimentally synchronized broods of the White-bellied Swiftlet (D. M. Bryant, pers.comm.) in Blue-eyed Shags (<u>Phalacrocorax atriceps</u>, Shaw, 1985), in synchronous broods of the Curved-billed Thrasher (<u>Toxostoma curvirostre</u>, Ricklefs, 1965), and the Red-cockaded Woodpecker (<u>Picoides</u> borealis, Ligon, 1970).

Much attention has focussed on the relevance of the size of the last laid egg in considerations of brood reduction (Howe, 1976; 1978; O'Connor, 1978c; Clark & Wilson, 1981; Slagsvold et al., 1982). A large last egg has been alternatively viewed as supporting brood reduction (Howe, 1976) or refuting it (Clark & Wilson, 1981); whilst small last eggs are generally seen as an adaptation to increase size differences between individuals and hence support the brood reduction hypothesis (O'Connor, 1978c; Parsons, 1975; Slagsvold et al., 1984). Others have shown that egg size difference and trends with laying sequence are not consistent between years for a given species (Slagsvold et al., 1984; Mead & Morton, 1986). Smaller eggs produce slower growing young in the Great Tit (Schifferli, 1973), thus increasing size differences between siblings. Ricklefs (1982) found no evidence to support the view that growth rate varied between synchronous and asynchronous broods. Thus hatching asynchrony is not a pre-

requisite for brood reduction.

There is some evidence however that in broods in

ajaakiisen ajaakiisen haa aan kaatooob beenda beenda fiiskinfa

953 R . 1607 altruber. 25.12.001 201010710 21345 30 \$1245 ATL noewigad Nueds rog vi 19月1日日 19月1日 with lays NOT THINKING San Lint A 1031110020 RATER LEVE tarts white chirohaus. which size hierarchies are more marked brood reduction is facilitated more quickly. Edwards & Collopy (1983) found that in raptors obligate fratricide was characterized by a small increase in hatching spread and a two to four times increase in the difference in egg size between first and second laid eggs (approximately 12-13% mean percentage volume difference), when compared with faculatively fratricidal species. This suggests that egg size effects are more important than hatching asynchrony <u>per se</u>. In 'non-aggressive' species however similar and even greater mean percentage egg volume differences occur without obligate fratricide. For example, mean percentage egg volume differences from data presented by Slagsvold et al. (1984) for clutches of two, yield 11.6% for the House Sparrow and 45.4% for the Common Swift.

Hatching spread was found to be the most important factor affecting the relative difference in hatching mass in the House Martin (Bryant, 1978a), followed by food abundance at the time of laying, yet this was not due to differences in egg size. Gibbons (1987) found that in asynchronous broods, late hatched young died at an earlier age than in artificially synchronous broods; similar results have been found in the Fieldfare (Slagsvold, 1982).

Thus there is no consistent evidence to suggest that hatching asynchrony is more important than egg size

224.

effects in regulating the effectiveness of any supposed broodreduction strategy. Is brood reduction then adaptive? a delina alithents Ali 7000 Ali 7000 alithent anaconel become b

in sorana a beir on a beir on anna ban isnalaran isnalaran

Plast hatt

A number of assumptions are inherent in the idea of an adaptive value to brood reduction:-

- Brood reduction operates under conditions of food shortage when parents are unable to provision all of the brood (Lack, 1954);
- (2) Parents allow selective starvation of the nestling in which least energy has been invested; usually the last hatched and smallest nestling;
- (3) Such starvation results in increased reproductive success for parents operating brood reduction when compared with parents that do not operate brood reduction under similar food conditions.

These assumptions will be considered in turn.

5.12.2 Brood reduction and food shortage: Is there a link?

In the House Martin there is no evidence that the frequency of asynchronous hatching is correlated with direct measures of food supply nor any parameters that might indicate a deteriorating food supply, such as the progressive decline in clutch size, increased mortality amongst second broods, and failure of many pairs to attempt second broods at all (Bryant, 1975b). Conversely there is evidence that brood reduction might be maladaptive in this species. 17% of broods suffered death of the smallest chick although there was an adequate food supply. Of these 71% were from broods in which

affacts i

the relative difference in hatching mass was high and the remaining 29% from more synchronously hatching broods

(Bryant, 1975b). The breeding success of the Great Tit and Pied-flycatcher, <u>Ficedula hypoleuca</u>, was reduced to a greater degree in spruce-alder woodland than in rich deciduous woodland when hatching spread was experimentally increased, contrary to the prediction of the brood reduction hypothesis (Slagsvold, 1985).

Studies of Ardeids in which brood reduction is common suggest that parental inability to provision the brood is not linked with brood reduction. Mock (1985) showed that in fourteen of the seventeen Great Egret broods studied, brood reduction occurred, resulting in the loss of 26.5% of nestlings. Hand reared nestlings however given an unlimited food supply still fought suggesting that neither the hunger level of the largest sibling (O'Connor, 1978c) nor the food supply <u>per se</u> effects brood reduction. Similar results have been shown in Great Blue Herons fostered by Great Egrets (Mock, 1984), and in the Little Blue Heron (Werschkul, 1979). This suggests that it is the inability of parents to distribute food evenly amongst the brood, that regulates brood reduction.

Fujioka (1985a) found that no nestlings starved in artificially synchronized broods of the Cattle Egret, compared with asynchronous broods (where starvation was found) under similar food conditions, suggesting poor food supply is not the reason for brood reduction in this species. Braun & Hunt (1983) concluded that brood-reduction in Black-legged Kittiwakes,

10 100 200

1815

542

ml

0000

OVC!

Eded using

anteures a deverio in clutch and failo (Rryanr, reduction nuffered adequate

the relat

remaining

Rissa tridactyla, is related to the amount of food that chicks

receive. Whilst the implication of the Kittiwake study was

(Bryant Pled-112 degrass land who contrant (Sliggyo

dummin d is not i in foury broad re heetling frod aug frod aug file eug file eug file eug food aug

with anyon with anyon similar for the reason (1352) con

E-re wanter

Invison's

that food abundance determined the probability of brood reduction, the precise wording of their conclusion may be nearer the truth (see below).

5.12.3 Are small late-hatched young selectively starved?

I could only find evidence in one species that chick survival might be affected by the parents deliberately regulating food distribution between the young. In the Common Coot, <u>Fulica atra</u>, parents regulate which chicks accompany them on foraging trips and therefore actively maintain feeding differences within the brood (Horsfall, 1984b). This is viewed as a mechanism by which adults may preferentially feed chicks of the opposite sex (particularly by adult males) as a mechanism for reducing potential competitors for mates. There was no evidence to show that preferential feeding occurred during the period of chick mortality. Within the nest, though, this period is short.

There is more evidence to suggest it is the oldest siblings which regulate the occurrence of brood reduction. In 'aggressive' species such as raptors, Ardeids and some species of Bee-eater, older nestlings physically attack the smaller nestling and prevent access to food brought by the parents (Bryant, pers.comm.; Edwards & Collopy, 1983; Fujioka, 1985a; 1985b; Meyburg, 1974; Mock, 1984; 1985; O'Connor, 1978c; Ploger & Mock, 1986; Werschkul, 1979). In 'non-aggressive' species evidence that elder nestlings

actually prevent access to food is lacking. In the Blacklegged Kittiwake death of second hatched chicks does not there wind reduction reduction reduction rearwer r doutes on there win this per-

eiblinge In 'eggre species o sauller n retente (fojicka, d'Compor,

YELENTOP

Di benziel

directly result from reduced access to food (Braun & Hunt, 1983). In this species the smallest chick is forced from the nest by its bigger sibling and dies from exposure or starvation. In the Herring Gull, Laughing Gull and Blue-eyed Shag it appears that the smaller chick cannot compete effectively with its larger sibling (Hahn, 1981; Parsons, 1975; Shaw, 1985). Death of the smallest nestling due to overcrowding or trampling by larger siblings has been reported for a number of species (Holcombe, 1969; Rowan, 1967; Snow & Snow, 1973), and suggested as a possible factor in others (Slagsvold, 1982; 1985).

Accidental chilling of small young may be another explanation if parental brooding is inefficient, large siblings being more likely to obtain energetically advantageous positions within a huddle of chicks, and smaller nestlings forced to take positions around the edges of the huddle.

There is therefore evidence that in 'aggressive' species the smallest young are selectively starved, though in 'non-aggressive' species this has not been convincingly demonstrated.

The stage for brood reduction is theoretically set by the parent via either hatching asynchrony, or egg size, or both (O'Connor, 1978c), and brood reduction is viewed as an adaptive strategy whereby a parent increases its reproductive success. Is parental behaviour after hatching consistent

with this hypothesis? Horsfall (1985b) asks the question "... do the parents reinforce sibling inequalities or attempt to negate them?" The decision as to whether or not a parent direction 198394 the cast the cast start of start of 1983). tranglin and cast 1985).

erplane en being mon Mithin a posision

the (Dones the t

prosees.

alifs Rain

2 00 and

STABER N7

can successfully rear its brood must be made by that parent since it alone is sampling the environment with respect to food. If brood reduction is adaptive then parents should not persistently negate sibling inequalities. In some species, however, parents do attempt to prevent fights between siblings through brooding (Ingram, 1959; 1962; Meyburg, 1974; Proctor, 1975) although this may not be successful (Edwards & Collopy, 1983). In other 'aggressive' species no attempt is made by the parent to regulate sibling aggression (Edwards & Collopy, 1983; Fujioka, 1985b; Steyn, 1973).

Howe (1976) suggested that increasing egg mass with laying sequence was a means by which Common Grackles could 'insure' against brood reduction occurring too early. Conversely there is no evidence that parents actively reinforce sibling inequalities by ceasing to feed the smallest chick. This would be most effective if parents were to reduce their brood quickly and effeciently without wasting energy on feeding young which are doomed to die. This is one of the many paradoxes of the brood reduction hypothesis. It is assumed that parents would not let the smallest young die through starvation or physical attack from elder siblings if it were not in the parents interests to do so (Edwards & Collopy, 1983; Howe, 1978). A failure to negate sibling inequalities does not necessarily imply parental consent as suggested above. By preferentially feeding the largest

229.

sibling a parent may reduce the number of attacks on the smaller sibling and thus improve its survival chances in cases where sibling competition involves physical attacks. odn Buod singe-in food. not pere hneaver. tots) at tots) at tots) at parent t fuddote.

laying an insurat insurat insurated This would This would is it war the used is it war the second of is it war is any para is is op is is any para is is any para is is any para

a antidle

in mailings

todu peupo

Although, as stated above, in some species fighting still occurs when the eldest sibling is well fed. If a nestling were to effectively blackmail its parent by threatening to reduce parental fitness through siblicide (0'Connor, 1978c) then it would be in both the parents and eldest chicks interest to feed it first. This may explain why there is such a lack of evidence that late-hatched nestlings are selectively starved in 'non-aggressive' species since siblicide has not been demonstrated in such cases. Brown & Hunt (1983) suggest that replete chicks may be less aggressive in the Black-legged Kittiwake lending support to this view. Hence the original implication in the brood reduction hypothesis proposed by Lack (1954), that of a passive mechanism of selective starvation brought about solely by size differences within the brood, and which can be negated in times of food abundance, is not supported by detailed evidence from the literature.

Patterns of brood-reduction are not consistent between 'non-aggressive' species, and mechanisms which may bring this about have yet to be proven. In 'aggressive' species however there is strong evidence to support the view that it is the larger nestlings that determine brood reduction, but it is unclear if this is in the interest of the parent or not since parents seem regularly to attempt to reduce sibling conflict within some species. The adaptive significance of brood reduction thus remains unproven, by these data. The

only way in which this may be conclusively demonstrated is

if the lifetime reproductive success of brood reducing parents

is significantly higher than non-brood reducing parents under similar conditions.

This is considered below.

5.12.4 Is the reproductive success of brood-reducing parents higher than non-brood reducing parents under similar conditions?

Few studies have sought to answer this question, Hahn (1981) compared the reproductive success of parent Laughing Gulls rearing asynchronous and artificially synchronous broods, and concluded that "... data on parental reproductive success confirmed Lack's hypothesis that staggered hatching of the brood would allow parents to fledge more offspring on average than would synchronous hatching". Her data are discussed below since it is the most direct attempt to demonstrate the adaptive significance of brood reduction to date.

The average fledging rate of parents with asynchronously hatching broods was significantly higher than those with synchronously hatching broods, thus indeed appearing to confirm Lack's hypothesis. The higher fledging rate in asynchronous broods however, was largely due to the higher proportion of full broods fledged, i.e. those in which <u>no</u> brood reduction had occurred. Hahn acknowledges that this is a 'major source of the difference between groups', but contends that brood reduction is only activated in broods where parents cannot rear all of the young. The capability to increase

ALChough COLLEGE (1 155 M/32/W g acchers 22 0507 TRACEONE D ROAL B bevyatz provide the second 1001 7.047 コレッシュナラナン inglicat: [01] (19] ibad aply told' which 自由于经济委员议书

parteent sed

VAW VAN

2.1 on7 2

reproductive success will be reflected only in the relative

frequency with which asynchronous broods salvage partial broods

innis al

1.3.

Ealughthg Ealughthg by aods, suncesso the Brook deconste deconste date.

Endre uit Endre uit to somfic esynchron proportic telse so thet sood

and avert complete nest failure. The rationale behind this explanation is sound, however Hahn's data do not support her conclusions for several reasons. Firstly, the number of pairs fledging full broods in the study is the only significant source of difference between the groups. Neither partial broods raised nor those in which complete nest failure occurred were significantly different (Hahn, 1981, Table 1). Yet Hahn presents as evidence (Table II) in support of her view that synchronous nests have twice as many nest failures. By the same token, however, synchronous broods have 1.5 times as many partial broods reared, at odds with the brood reduction hypothesis. The ratio of partial broods reared to complete nest failure is higher in asynchronous broods, but is this relevant? Complete nest failure can be caused by factors other than death of the brood through starvation due to food shortage as proposed by the brood reduction hypothesis. For example, desertion due to disturbance could be one important source of error in this measurement. Partial brood failure is more consistent with death through starvation, though not conclusively so (see Section 5.12.3). It only requires one less complete brood failure in Hahn's synchronous broods for the two ratios to be almost identical. On the basis of such a small sample size such conclusions cannot be justified.

There are other inconsistences with the brood reduction hypothesis. The proportion of third chicks fledging

in the Laughing Gull was similar for synchronous and asynchronous broods (62.5 and 54.2% respectively). Mortality of the <u>first</u> hatched chicks occurred in partial loss broods,

MINUTE - STAN TAGELOON 12001001001 Eledging #22.15 To 10015 -70h #inantly an evide Brf striken , 129-279-5402 NY-B (SHOPE) ATAN MET the Dighter stalesoi To Kings AR proport 12,275+885 AL TOTAL to I a La field ciaviesico. Laise com 5 AV7 642 a tians a

relubrion

Ln thm L

approneus

tetrit - stis

6.3% for asynchronous and 23.5% for synchronous broods. Nestlings therefore did not consistently die in the order predicted by the brood reduction hypothesis, i.e. smallest first.

Survival of the third-hatched chicks in the Cattle Egret (<u>Bulbulcus ibis</u>) was not significantly different from first or second hatched chicks, despite losing more fights and receiving less food than their siblings (Ploger & Mock, 1986). Asynchronous and artificially synchronous broods of the Jackdaw did not differ in the number of chicks fledged, or mass, wing-length or tarsus length at 26 days of age (Gibbons, 1987). Artificially synchronized broods of the White-bellied Swiftlet fledged almost twice as many full broods 42%, compared with naturally asynchronous broods 23%, and artificially asynchronous broods 7% (Bryant, pers.comm.). Nor was there a difference in the quality of nestlings from synchronous and naturally asynchronous broods as indicated by fledging mass.

In enlarged Fieldfare broods, when only small age differences existed amongst hatchlings, their survival rate was higher than that of enlarged asynchronous broods (Slagsvold, 1982).

A study of the Blue-eyed Shag has shown that in a sample of artificially synchronized broods, chick survival was as high as normal asynchronously hatching broods, but there

were more cases of total brood loss (Shaw, 1985). Total brood

loss was found to be high in the House Sparrow even though it shows hatching asynchronous which supposedly favours brood

4.33 500 Nestline staticts + 2.542.25 Egret (B ac shall and water 10051. ting wash ADDAR TH amodd hD3 ac-arlas aboord # itra bas 105W 1750 anorula mea fladging.

different vas bight least. sample of schight s

WERG mon

daw seci

Chows had

reduction and thus avoids total brood loss (Clark & Wilson, 1981). There was no significant difference in survival of fledged young to eighty days old in broods of Magpies which had brood reduced young replaced with live young of similar age, when compared with control broods in which young were not replaced, and a third group in which nestlings were artificially brood reduced (Husby, 1986). Almost twice as many fifth-hatched young survived in synchronous broods (19.4%) compared with asynchronous broods (11.5%) in the Common Grackle (Howe, 1976).

These studies show that parents can fledge more young by synchronously hatching their broods than by asynchronously hatching them and apparently suffering a cost through brood reduction.

There is a possible explanation that could account for the apparent maladaptive nestling mortality due to hatching asynchrony. Egg-dumping has been reported in some species (e.g. Bertram, 1980; Bryant, pers.comm., Møller, 1987; Yom-Tov et al., 1974) and may be more widespread than previously thought due to difficulties in detecting dumped eggs. If egg dumping was found to be common amongst altricial birds, brood reduction might be an adaptation to protect against this. The powerful new tool of 'DNA fingerprinting' may be one way in which this could be examined (Jeffreys et al., 1985a,b) by looking at the identity of brood reduced individuals, or

234

'runts' and seeing if they are more likely to be 'dumped' young. This technique has the advantage over enzyme polymorphism studies in that individual-specific 'fingerprints'
reductio 1981), bettell had broo age, whe not repl ficially fifth-ha compared (Howe, ML young by chronous through 1 for the a asynchron (e.g. Ber Yom-Tov e thought d dumping w reduction Dowerful whitch thi may be detected (Hill, 1987). Though initially used primarily on humans it has recently been applied to wild birds (Burke & Buford, 1987; Wetton et al., 1987). Wetton et al. (1987) were able to detect mixed parentage among nestling House Sparrows by this method, and identify male House Sparrows engaged in extra-pair copulations by "fingerprinting" colony members.

To summarize:-

- Brood reduction occurs in even-aged and uneven-aged broods, although the latter may speed up the death of the smallest chick;
- (2) There is no evidence that hatching asynchrony is necessary to produce brood reduction;
- (3) The available evidence shows that brood reduction occurs independently of food availability for the brood, and that young may die when food remains abundant;
- (4) Little evidence exists to demonstrate a mechanism of selective starvation in 'non-aggressive' species,
 i.e. those in which sibling rivalry is mediated through begging behaviour alone.
- (5) Selective starvation is common in 'aggressive' species (e.g. raptors, Ardeids) and is primarily determined by aggressive behaviour of early-hatched siblings over later-hatched siblings and not by selective feeding by the parents;

looking a

(6) There is some evidence to suggest that parents attempt

to counteract this behaviour but that it is not

generally successful;

VI. PELCAN TE EN CBALLO 1 410 76 送流してナエルロ NOD DOLLAS 1007 TODOT (L) hobin 0/137 (1.6) abn: 22107 19522 ... plus W. W.L berger. · · · · · 3-30. 10.10

10701

to artic

- (7) There is no evidence to support the view that brood reduction results in a greater reproductive success in any particular breeding season;
- (8) There is evidence to suggest brood reduction may incur a cost and is likely to be maladaptive;
- (9) There appears to be distinct advantages to be gained through synchronously rather than asynchronously hatching broods and these will be discussed further below.

5.13 HATCHING ASYNCHRONY: COST OR BENEFIT?

The previous discussions on the evolution of hatching asynchrony in birds has shown that there is no evidence to confirm the view that hatching asynchrony is adaptive. There is evidence, however, to suggest that birds should tend to be as synchronous as possible in hatching their broods, since advantages do seem to be demonstrated in these instances (see above).

Why then do many atricial birds not commence incubation on the last egg? There are possibly two further explanations which should be considered in subsequent studies on birds. The first is that hatching asynchrony is an incidental rather than selected trait (Mead & Morton, 1985). The second is that reproductive fitness of a female (and perhaps her mate) is likely to be correlated with longevity. Hence any factor

which results in a high probability of female mortality would be selected against; selection against female mortality is thus likely to be greater than from losing the odd nestling

D'T INIT

5m2

harching to confin there is afnee adv

TAN CLAR

Annuberin asplanation on birds, rather the nur Toppe is likely

PRES NOTH

DS SHINCTO

than 24kea

(or brood) through hatching asynchrony.

It is possible that egg carrying females are more vulnerable to predation, or other mortality out of the nest, although as far as I am aware this has not been demonstrated. Whilst if this does occur, it may be advantageous for birds to be on the nest, it does not explain why they commence incubation before the last egg is laid, since birds can attend the nest without incubating. There are a number of factors which may select for early nest attendance. Guarding against predators in large species (Slagsvold et al., 1984), preventing the stealing of nest material (Blaker, 1969), prevention of egg freezing (Hussell, 1972), or overheating (Maclean, 1967); or even preventing destruction of eggs by potentially polyandrous males (Davies, 1985). None of these factors explain the lack of early incubation in most species.

It would therefore appear that a view of hatching asynchrony as an incidental trait may be a realistic alternative to current adaptive hypothesis. Mead & Morton (1985) suggest a hormonal hypothesis for hatching asynchrony. They provide some evidence that a single hormone possibly prolactin, is responsible for both the inhibition of ovulation and the initiation of incubation. Egg production and hatching asynchrony are thus envisaged as varying in response to the rate of prolactin synthesis and release. The hypothesis predicts that most birds should commence incubation on the penultimate

egg, a fact already confirmed for passerines (Clark & Wilson, 1981; Smith, 1983). Consideration of hatching asynchrony in (or brood

vulnerabl although Whilst-if to be on incubatio the nest which may the steal egg freez androus m the lack o

esynchrony to current a hormonal some evide responsibl dhitiation of prolact that most this study did not find support for current adaptive hypotheses, but rather lend support to the view that hatching asynchrony is an incidental trait, and one in which costs may outweigh benefits.

this stud hypothese asynchron outweigh

REFERENCES

REFERENCES

ALONSO, J.C., GONZALEZ, L.M., HEREDIA, B., GONZALEZ, J.L. (1987) Parental care and the transition to independence of Spanish Eagles Aquila leliata in Dnonana National Park, Southwest Spain. Ibis. 129: 212-225. ANDERSON, A. (1975) A method of sexing Moorhens. Wildfowl 26: 77-82. ANDERSON, J.S. and WESTER, A.L. (1971) Length of wing, bill and tarsus as a character of sex in the Dipper, Cinclus cinclus. Ornis Scand. 2: 75-79. ANKNEY, C.D. (1980) Egg weight, survival and growth of Lesser Snow Goose goslings. J.Wild.Manag. 44(1): 174-182. ASCHOFF, J. (1981) Thermal conductance in mammals and birds: its dependence on body size and circadian phase. Comp.biochem.physiol. 69(a): 611-619. AUSTIN, G.T., RICKLEFS, R.E. (1977) Growth and development of the Rufous-winged Sparrow (Aimophila carapalis). Condor 79: 37-50. BALAT, F. (1964) Breeding biology and population dynamics in the Dipper. Zool.Listy 11: 131-144. BANCROFT, G.T. (1984) Growth and sexual dimorphism of Boat-tailed Grackles. Condor 86: 423-432. BENGTSSON, H. and RYDEN, O. (1980) Differential begging and locomotory behaviour by early and late hatched nestlings affecting the distribution of food in asynchronously

hatched broods of altricial birds. Z.Tierpsychol. 53: 209-224.

ALONED, JA (198923) OF Span 000070000 , HORSEILA WEEDSCH . MCanadiana infill dan Cinclas AMMARCE, C. TROPEL . . TICHDAA thu dapa Comp. bio D , MITZERA of the R Conder 7 .3 . 7A3A2 Lo the D ANCROFT えのサーナルロロ 1.102270030 107 (MARDER] affecting

bering all

BENGTSSON, H. and RYDEN, O. (1981) Development of parentyoung interaction in asynchronously hatched broods of altricial birds. Z.Tierpsychol. <u>56</u>: 255-272.
BENGTSSON, H. and RYDEN, O. (1983) Parental feeding rate in relation to begging behaviour in asynchronously hatched broods of the Great Tit <u>Parus major</u>. Behav.Ecol. and Sociobiol. <u>12</u>: 243-251.

BERTRAM, B.G. (1980) Breeding system and strategies of Ostriches. Proc.17th Int.Orgn.Congr. : 890-894.
BEST, L.B. (1977) Nestling biology of the Field Sparrow.
Auk. 94: 309-319.

BIEBACH, H. (1981) Energetic costs of incubation on different clutch sizes in Starlings (<u>Sturnus vulgaris</u>) Ardea <u>69</u>: 141-142.
BIERMANN, G.C., SEALY, S.G. (1982) Parental feeding of nestling
Yellow Warblers in relation to brood size and prey availability.
Auk. <u>99</u>: 332-341.

BLAKER, D. (1969) Behaviour of the Cattle Egret Ardeold ibis. Ostrich 40(3): 75-129.

BLEM, C.R. (1975) Energetics of nestling House Sparrows Passer domesticus. Comp.Biochem. & Physiol. <u>52A</u>: 305-312.

BLEM, C.R. (1978) The energetics of young Japanese Quail (Coturnix, coturnic japonica). Comp.Biochem.Physiol. <u>59A</u>: 219-223.

BRAUN, B.M. and HUNT, G.L. (1983) Brood reduction in Blacklegged Kittiwakes. Auk. <u>100</u>: 469-476.

BRISBIN, I.L. and TALLY, L.J. (1973) Age-specific changes in the major body components and calorific value of growing Japanese Quail. Auk. <u>90</u>: 624-635.

SERVICE SO Bunof ALTENS OF DESTRUCTS iffnlori. shoots Scolob MANTAIN dal uyaQ 1, J , T038 ALLIS 93 ,HDAB318 Clurch WXANS316 Yellow / SLAKER, BI Moles 10 Half. C.S. Pauser b .S.J .NE38 (Coturns) 228-223 R. S . MDARD JOREAN K

I , MISSING

the major

Japanesa

BROCKELMAN, W.Y. (1975) Competition, the fitness of offspring, and optimal clutch size. Amer.Nat. 109: 677-699.
BRODY, S. (1945) Bioenergetics and growth. xii + 1023 pp.
New York: Rheinhold Publishing Company.
BRYANT, D.M. (1975a) Changes in incubation patch and weight in the nestling House Martin. Ringing and Migration I: 33-36.
BRYANT, D.M. (1975b) Breeding biology of House Martins <u>Delichon urbica</u> in relation to aerial insect abundance.
Ibis. 117: 180-216.

BRYANT, D.M. (1978a) Establishment of weight hierarchies in the broods of House Martins <u>Delichon urbica</u>. **1**bis. <u>120</u>: 16-26.
BRYANT, D.M. (1978b) Environmental influence on growth and survival of nestling House Martins <u>Delichon urbica</u>.
Ibis. 120: 271-283.

BRYANT, D.M. and BRYANT, V.M.T. Assimilation efficiency and growth of nestling insectivores. In press.
BRYANT, D.M. and GARDINER, A. (1979) Energetics of growth in House Martins <u>Delichon urbica</u>. J.Zool.Lond. <u>189</u>: 275-304.
BRYANT, D.M. and HAILS, C.J. (1983) Energetics and growth patterns of three tropical bird species. Auk. <u>100</u>: 425-439.
BRYANT, D.M. and HAILS, C.J. (1985) Energy expenditure by free-living Dippers in Winter. Condor <u>87</u>: 177-186.
BRYANT, D.M., HAILS, C.J. and PRYS-JONES, R. (1985)
Energy expenditure by free-living Dippers (<u>Cinclus cinclus</u>) in Winter. Condor <u>87</u>: 177-186.

BRYANT, D.M. and TATNER, P. (1984) Reproductive energetics

of two tropical bird species. Auk. 101: 25-37.

11M5, C.J

BROCKELM and opt B: YOOSE Naw Yor L. THAYNG gian mri2 E , TRAYRU Delstond I . sliff C . THAYNE Bronda HEYEANT, D ポリネソーニリオ Shide, 13 TRAYER, D. RECORTEL 6 THATER DI An House BRYANT, D. antertag . SPYANT, D. vll-skal . DI , THAYRE Energy at an Winter

C TRAINS

3 OW3

BRYANT, D.M. and WESTERTERP, K.R. (1980) The energy budget
of the House Martin <u>Delichon urbica</u>. Ardea <u>68</u>: 91-102.
BRYANT, D.M. and WESTERTERP, K.R. (1982) Evidence for
individual differences in foraging efficiency amongst
breeding birds: A Study of House Martins <u>Delichon urbica</u>
using the doubly labelled water technique. Ibis. <u>124</u>: 187-192.
BRYANT, D.M. and WESTERTERP, K.R. (1983a) Short-term variability
in energy turnover by breeding House Martins <u>Delichon urbica</u>:
A study using doubly labelled water (D₂ ¹⁸0).

× 1

J.Anim.Ecol. 52: 525-543.

BRYANT, D.M. and WESTERTERP, K.R. (1983b) Time and energy limits to brood size in House Martins (<u>Delichon urbica</u>). J.Anim.Ecol. <u>52</u>: 903-925.

BURKE, T. and BUFORD, M.W. (1987) DNA fingerprinting in birds. Nature 327: 149-152.

BUTTERMER, W.A., HAYWORTH, A.M., WEATHERS, W.W. and NAGY, K.A. (1986) Time budget estimates of avian energy expenditure: physiological and meteorological considerations. Physiol.Zool. <u>59</u>(2): 131-149.

CAIN, B.W. (1976) Energetics of growth for Black-bellied Tree Ducks. Condor 78: 124-127.

CALDER, W.A. (1964) Gaseous metabolism and water relations in the Zebra Finch, <u>Taenopygia castanotis</u>. Physiol.Zool. <u>37</u>: 400-413.

CALDER, W.A. and KING, J.R. (1974) Thermal and caloric

relations of birds. In Avian Biology. Volume IV. Eds. D. S. Farner & J. R. King, pp.259-413. New York: Academic Press.

TOREDE of the T. STORING breibnt ditwewd in a marken Q , TRASERS timps ni K study L.mina.L G , WHAYSH Curingle luminach. ST. SECOND C CTUTEN 19311月11月1日日 1 (2065) phyetold Physici. W.B. WEND . BUDKS. D CALDES, W. the Lebra 12CL==000 CALDER, W.J

relation

-G . ab3

12885.

CARLISLE, T.R. (1982) Brood success in variable environments: implications for parental care allocation. Anim.Behav. <u>30</u>: 824-836.

CARLSON, A. (1983) Maximizing energy delivery to dependent young: a field experiment with Red-backed Shrikes. J.Anim.Ecol. <u>52</u>: 697-704.

CARLSON, A. and MORENO, J. (1983) Sexual size dimorphism and its effect on load size and loading efficiency in Wheatears <u>Oenanthe oenanthe</u>. Ornis.Scand. <u>14</u>: 198-201.

CASE, R.M. (1973) Bioenergetics of a covey of Bobwhites. Wilson Bull. <u>85</u>: 52-57.

CHAPLIN, S.B. (1982) The energetic significance of huddling behaviour in Common Bushtits <u>Psaltriparus minimus</u>. Auk. <u>99</u>: 424-430.

CHAPPELL, M.A., GOLDSTEIN, D.L. and WINKLER, D.W. (1984) Oxygen consumption, evaporative water loss and temperature regulation of California Gull chicks <u>Larus californicus</u> in a desert rookery. Physiol.Zool. <u>57</u>(2): 204-214. CLARK, A.B. and WILSON, D.S. (1981) Avian breeding adaptations: hatching asynchrony, brood reduction and nest failure. Quart.Rev. of Biol. <u>56</u>: 253-277.

CLARK, L. (1984) Consequences of homeothermic capacity of nestlings on parental care in the European Starling. Oecologia (Berlin) <u>65</u>: 387-393.

CLAY, D., BRISBIN, I.L. and YOUNGSTROM, K. A. (1979) Age-specific changes in the major body components and

caloric values of growing Wood Duck. Auk. 96: 296-305.

CARLES inpla 3 10.5 1 **MIEJKAS** SELICY EnA.L CARLSON p. 221 信息:14-12 1 43843 经出生上的 CEAPLIN Delnagi ALLE . LISSIARO, OXY SWID 109.02 51-0.15 A , MEASO Edgend : Quarts CLARK, L 这正于命府门 0.00170 . 0 , XA10

Age-agA

caloris.

CONSTANTZ, G.D. (1980) Growth of nestling Rufous Hummingbirds. Auk. 97: 622-624.

CRONMILLER, J.R. and THOMPSON, C.F. (1980) Experimental manipulations of brood size in Red-winged Blackbirds. Auk. <u>97</u>; 559-565.

DAVIES, N.B. (1976) Parental care and the transition to independent feeding in the young Spotted Flycatcher <u>Muscicapa striata</u>. Behaviour <u>29</u> (3-4): 280-295.

DAVIES, N.B. (1978) Parental meanness and offspring independence: an experiment with hand-reared Great Tits Parus major. Ibis. <u>120</u>: 509-515.

DAVIES, N.B. (1985) Cooperation and conflict among Dunnocks, <u>Prunella modularis</u> in a variable mating system. Anim.Behav. 33: 628-648.

DAVIS, J.W.F. (1975) Age, egg-size and breeding success in the Herring Gull Larus argentatus. Ibis.117: 460-473.
DAVIS, S.D., WILLIAMS, J.B., ADAMS, W.J. and BROWN, S.L. (1984) The effect of egg temperature on attentiveness in the Beldings Savannah Sparrow. Auk. 101: 556-566.
DAWSON, W.R. and BENNET, A.F. (1980) Metabolism and thermoregulation in hatchling Western Gulls. Condor <u>82</u>: 103-105.
DAWSON, W.R., BENNET, A.F. and HUDSON, A.F. and HUDSON, J.W. (1976) Metabolism and thermoregulation in hatcing Ring-billed Gulls. Condor 78: 49-60.

DAWSON, W.R. and EVANS, F.C. (1957) Relation of growth and

development to temperature regulation in nestling Field and Chipping Sparrows. Physiol.Zool. 30: 315-327.

MATEMOS 17.200 I POWER ginar. AURP DAVIES rabut Phase of the gabri BUNDE T , sarvhc Protriez E.mina DAVIS, J the Se DAVID, S 20 DOL 代えた工作局 D / WORWAG ALDERS. D. ROBWAG 6297621 SULLAR

DIEHL, B. and MYRCHA, A. (1973) Bioenergetics of nestling Red-backed Shrikes Lanius collurio Condor 75: 259-264. DRENT, R.H. (1972) Adaptive aspects of the physiology of incubation, pp.255-280 in Proc. 15th Item.Ornithol.Congr. (K. H. Voous, Ed.) The Hague, Leiden E. J. Brill. DRENT, R.H. (1973) The natural history of incubation in D. S. Farner (Ed.) Breeding biology of Birds. National Academy of Sciences, Washington D.C., 262-311. DRENT, R.H. and DAAN, S. (1980) The prudent parent: energetic adjustments in avian breeding. Ardea 68: 225-252. DROBNEY, R.D. (1980) Reproductive bioenergetics of Wood Ducks. Auk. 97: 480-490. DUGAN, J.P., BORTHICK, J., HARMON, R.S., GAGNIER, M.A., GLAHN, J.E., KINSEL, E.P., MACLEOD, S. and VIGLINO, J.A. (1985) Guanadine hydrochloride method for determination of water oxygen isotope ratios and the oxygen-18 fractionation between carbon dioxide and water at 25°C. Anal.Chem. 57: 1734-1736. DUNN, E.H. (1975a) Growth, body components and energy content

of nestling Double-crested Cormorants. Condor <u>77</u>: 431-438. DUNN, E.H. (1975b) Caloric intake of nestling Double-crested Cormorants. Auk. <u>92</u>: 553-565.

DUNN, E.H. (1975c) The timing of endothermy in the development of altricial birds. Condor 77: 288-293.

DUNN, E.H. (1976a) Development of endothermy and existence

energy expenditure of nestling Double-crested Cormorants.

Condor 78: 350-356.

JESIG -ban ENZIG mont 1.7.1 - 21/2 HO D. 81 Asta TRARD adjus DROBMEY + K4A , MADUG GLABN (1965 120308 between 2734-1 E. WHUC 0.6 million DURAN, E. Cormor 3 WHAO 410 3P DUNN . E.

CR79(10

DUNN, E.H. (1976b) The development of endothermy and existence energy expenditure in Herring Gull chicks. Condor <u>78</u>: 493-498.

DUNN, E.H. (1976c) The relationship between brood-size and age of effective homeothermy in nestling House Wrens. Wilson Bull. <u>88</u>: 478-483.

DUNN, E.H. (1980) On the variability in energy allocation of nestling birds. Auk. <u>97</u>: 19-27.

DUNN, E.H. and BRISBIN, I.L. (1980) Age-specific changes in the major body components and calorific values of Herring Gull chicks. Condor <u>82</u>: 398-401.

DUNNET, G.M. and ANDERSON, A. (1961) A method of sexing live Fulmars in the hand. Bird Study <u>19</u>: 193-201.

DYER, M.I. (1968) Respiratory metabolism studies on Red-winged Blackbird nestlings. Canadian Journal of Zoology <u>46</u>: 223-233.
DYRCZ, A. (1974) Factors affecting growth rate of nestling Great Reed Warblers and Reed Warblers at Milicz, Poland.
Ibis. 116: 330-340.

EDWARDS, T.C. and CALLOPY, M.W. (1983) Obligate and faculative brood reduction in Eagles: an examination of factors that influence fratricide. Auk. 100: 630-635. ETTINGER, A.O. and KING, J.R. (1980) Time and energy budgets of the Willow Flycatcher Empidonax traillii during the breeding season. Auk. 97: 533-547.

FELTHAM, M.J. (1983) The effects of weather conditions on the

hunting behaviour of the Common Buzzard Buteo buteo.

Unpublished B.Sc. (Hons.) dissertation, University of Exeter.

作其主义 Canda See Los 0.035 12.2.SC DUNN . 13 LTEMAT a, Nonda Gull * TAMMIC Faint DU BIRAC 121 DE DYNCZ V See 20 ARTEL .. EGMARDS 1.112 2 fac the ELDMITTI P.M. 20 1Dupit L MARTING

althur

Unpulbil

FIALA, K.L. and CONGDON, J.D. (1983) Energetic consequences of sexual dimorphism in nestling Red-winged Blackbirds. Ecol. <u>64(4): 642-647</u>.

FISHER, R.A. (1930) The genetic theory of natural selection. Clarendon, Oxford.

FREED, L.A. (1981) Breeding biology of House Wrens: new views of avian life history phenomena. Ph.D diss. University of Iowa.

FUJIOKA, M. (1985a) Sibling competition and siblicide in asynchronously-hatched broods of the Cattle Egret <u>Bubulcus ibis</u>. Animal Behav. <u>33</u>: 1228-1242.

FUJIOKA, M. (1985b) Food delivery and sibling competition in experimentally even-aged broods of the Cattle Egret. Behav.Ecol.Sociobiol. <u>17</u>: 67-74.

GALBRAITH, H. and BROADLEY, B. (1980) Biometrics and sexing of the British race of the Dipper. Ringing and Migration 3:62-64.

GIBB, J. (1957) Food requirements and other observations on captive tits. Bird Study <u>4</u>: 207-215.
GIBBONS, D.W. (1987) Hatching asynchrony reduces parental investment in the Jackdaw. J.An.Ecol. <u>56</u>: 403-414.
GLUTZ VON BLOTZHEIM, U.N. and BAUER, K.M. (1985)
Handbuch der Vögel Mitteleuropas. 10/11 Passeriformes (1.Teil) Motacillidae-Prunellidae. Aula.Verlag Wiesbaden
GOTIE, R.F. and KROLL, J.C. (1973) Growth rate and ontogeny

of thermoregulation in nestling Great-tailed Grackles <u>Cassidix mexicanus prosopidicola (icteridae)</u>. Condor <u>75</u>: 190-199.

+ ATATS 15. CO Ecold 1 (昭和日本37) 122.03-(Con 201 17.192 6 ayad ANDIGUT 1000 Veries TARLING 01 211 184.458 A .8810 (主当校》)는 2日10日日3月 Trevel BY SICU ALLING BURGE 207,17

GREEN, P.T. (1982) Sexing rooks <u>Corvus frugilegus</u> by discriminant analysis. Ibis. <u>124</u>: 320-324.
GREENWOOD, P.J. (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim.Behav. <u>28</u>: 1140-1162.
GROVES, S. (1984) Chick growth, sibling rivalry, and chick production in American Black Oystercatchers. Auk. <u>101</u>: 525-531.
HAARTMAN, L. von (1949) Der Traverfliegenschnäpper I.

Alta.Zoolfenn. 56: 1-104.

HAARTMAN, L. von (1954) Der Trauerfliegenschnäpper III.
Die Nahrungsbiologie. Acta.Zoologica Fennica <u>83</u>: 1-96.
HAFTORN, S. (1981) Incubation rhythm in the Great Tit
Parus major. Cinclus <u>4</u>: 19-26.

HAFTORN, S. and REINERTSEN, R.E. (1985) The effect of temperature and clutch size on the energetic cost of incubation in a free-living Blue Tit <u>Parus caeruleus</u>. Auk. 102: 420-478.

HAILS, C.J. (1979) A comparison of flight energetics on hirundines and other birds. Comp.Biochem.Physiol. <u>63A</u>: 581-585.

HAHN, D. CALDWELL (1981) Asynchronous hatching in the Laughing Gull: cutting losses and reducing rivalry. Anim.Behav. 29: 421-427.

HALL, M.R. (1979) The ontogeny of thermoregulation in theHerring Gull. Unpublished PhD Thesis, University of Wales.HAMILTON, W.D. (1964) The genetical theory of social behaviour

I. J.theoret.Biol. 12: 12-45.

HARPER, D.G.C. (1985) Brood division in Robins. Anim.Behav. 33: 466-480.

, M32---dives 1445 \$1005D ··· produ AMERAAR . 82.084 ANTERAR 914 N MEDITAR BAPEN^T MROTIAE Carlon T LINGUER. A with 1 HALLS . C bound 884688 LE , HEAS Lingers 进, 出起在在 BALLEY MA 10.11100 WOT LTHAN

7.0 .1

834-125

SJS8AN

Physiology 21: 405-414. HILL, W.G. (1987) DNA fingerprints applied to animal and bird populations. Nature 327: 98-99. HOCKEY, P.A.R. (1984) Growth and energetics of the African Black Oystercatcher <u>Haematopus moquini</u>. Ardea <u>72</u>: 111-117. HOLCOMB, L.C. (1969) Age-specific mortality of American Goldfinch nestlings. Auk. 86: 760-761. HORSFALL, J.A. (1984a) Food supply and egg mass variation in the European Coot. Ecology 65(1): 89-95. HORSFALL, J.A. (1984b) Brood reduction and brood division in Coots. Anim.Behav. 32: 216-225. HOUSTON, D.C., JONES, P.J. and SIBLY, R.M. (1983) The effect of female body condition on egg laying in Lesser Black-backed Gulls Larus fuscus. J.Zool.Lon. 200: 509-520. HOWE, H.F. (1976) Egg size, hatching asynchrony, sex and brood reduction in the Common Grackle. Ecology 57: 1195-1207. HOWE, H.F. (1978) Initial investment, clutch size and brood reduction in the Common Grackle Quiscalus quiscalus L. Ecology 59(6): 1109-1122. HUSBY, M. (1986) On the adaptive value of brood reduction in birds: experiments with the Magpie Pica pica. J.Anim.Ecol. 55: 75-83. HUSSELL, D.J. (1972) Factors affecting clutch size in arctic

HERREID, C.F.H. and KESSEL, B. (1967) Thermal conductance

in birds and mammals. Comparative Biochemistry and

passerines. Ecol.Monogr. <u>42</u>: 317-364. HUSSELL, D.J. (1985a) Optimal hatching asynchrony in birds: comments on Richters critique of Clark and Wilson's model.

Am.Nat. 126: 123-128.

通信收付款: HITEL, M bard (YEXCON 83,004 801.00118 LIATZROU 010 1.11代元日内日 20079. "和我的201014 01 1413 Galle E.B , SMOR 301000 H.M., 3#0H COLUMN'S Sociad HUSSEY, M. impuld. June Land

Passer

the same southing -

. J. D.W. MA.

AJJESSUH

HUSSELL, D.J. (1985b) On the adaptive basis for hatching asynchrony: brood reduction, nest failure and asynchronous ... hatching in Snow Buntings. Ornis.Scand. 16: 205-212. INGRAM, C. (1959) The importance of juvenile cannibalism in the breeding biology of certain birds of prey. Auk. 76: 218-226. INGRAM, C. (1962) Cannibalism by nestling Short-eared Owls. Auk. 79: 715. JEFFREYS, A.J., WILSON, V. and THEIN, S.L. (1985a) Hypervariable 'minisatellite' regions in human DNA. Nature 314: 67-73. JEFFREYS, A.J., WILSON, V. and THEIN, S.L. (1985b) Individual-specific 'fingerprints' of human DNA. Nature 316: 76-79. JOHNSON, E.J. and BEST, L.B. (1982) Factors affecting feeding and brooding of Gray Catbird nestlings. Auk. 99: 148-156. JONES, G. (1985) Parent: offspring resource allocation strategies in birds; studies on Swallows (Hirundinidae). Unpublished Ph.D. Thesis, University of Stirling. KAHL, M.P. (1962) Bioenergetics of growth in nestling Wood Storks. Condor 64: 169-183. KENDEIGH, S.C. (1952) Parental care and its evolution in birds. Illinois Biological Monographs 22: x + 356. KENDEIGH, S.C. (1963) Thermodynamics of incubation in the House Wren, Troglodytes aedon. In The Proceedings of the 13th International Ornithological Congress, Vol.II: 884-904. Baton Rouge, Louisiana: The American Ornithologists' Union.

BIRE GE N LYTE 0000 MASDER 10 20 ALLIA GELARDWY Auto-NEGELS .. President V.F. 同時にはある NT THEY Lylbn7 第四日二日二日 "Wile Hellor and brain 2014ES, G 10/2 約73 三 Untrulet Ball Mall STOP'S LEWIS CONTROL AmALLIA. *NOTEDIAN. Maupa M

R good as

KENDEIGH, S.C., DOL'NIK, V.R. and GAWRILOV, V.M. (1977)
Avian Energetics in: Granivorous birds in ecosystems.
Eds. J. Pinowski and S. C. Kendeigh. IBPIZ; C.U.P.: 127-141.
KING, J.R. and FARNER, D.S. (1961) Energy metabolism,
thermoregulation and body temperature. In Biology and
Comparative Physiology of Birds. ed. A. J. Marshall, Vol.2:
215-288. New York: Academic Press.
KING, I.R. and HUBBARD, J.D. (1981) Comparative patterns of
nestling growth in White-crowned Sparrows. Condor <u>83</u>:
362-369.
KLEIBER, M. (1961) The fire of life: an introduction to
animal energetics. John Wiley & Sons, Inc.
KLOMP, H. (1970) The determination of clutch size in birds:

A review. Ardea 58: 1-124.

KOELINK, A.F. (1972) Bioenergetics of growth in the Pigeon Guillemot, <u>Cepphus columba</u>. M.S. thesis, University of British Columbia, Vancouver.

KOSKIMIES, J. (1948) On temperature regulation and metabolism in the Swift, <u>Micropus.a.apus L</u>., during fasting.

Experientia, <u>4</u>: 274-276.

KREBS, J.R. and AVERY, M.I. (1984) Chick growth and prey
quality in the European Bee-eater Merops apiaster.
Oecologia (Berlin) 64: 363-368.

KUSHLAN, J.A. (1977) Growth energetics of the White Ibis. Condor <u>79</u>: 31-36.

LACK, D. (1954) The natural regulation of animal numbers.

London: OUP.

LACK, D. (1968) Ecological adaptations for breeding in birds. London: Methuen. LACK, D. and SILVA, E.T. (1949) The weight of nestling Robins. Ibis. 91: 64-79. LECROY, M. and COLLINS, C.T. (1972) Growth and survival of Roseate and Common Tern Chicks. Auk. 89: 595-611. LEFEBVRE, E.A. (1964) The use of D_2 ¹⁸0 for measuring energy metabolism in Columba Livia at rest and in flight. Auk. 81: 403-416. LIFSON, N., GORDON, G.B. and McCLINTOCK, R. (1955) Measurement of total carbon dioxide production by means of D₂ ¹⁸0. J.Appl.Physiol. <u>7</u>: 704-710. LIFSON, N. and McCLINTOCK, R. (1966) Theory of use of the turnover rates of body water for measuring energy and material balance. J. Theoret. Biol. 12: 46-74. LIGHTBODY, J.P. and DAVIDSON ANKNEY, C. (1984) Seasonal influence on the strategies of growth and development of Canvasback and Lesser Scaup ducklings. Auk. 101: 121-133. LIGON, J.D. (1970) Behaviour and breeding biology of the Red-cockaded Woodpecker. Auk. 87: 255-278. LUNDBERG, C. and VAISANEN, R.A. (1979) Selective correlation of egg size with chick mortality in the Black-head Gull Larus ridibundus. Condor 81: 146-156. MAHER, W.R. (1964) Growth rate and development of endothermy in the Snow Bunting Plectrophenax nivalis and Lapland Longspur Calcarius lapponicus at Barrow, Alaska. Ecology 45:

ALASIWE:

inivA'

P.44 .

010/17

Compa

225-2

I , DMIN

17604

5-500

SLIM BER

X1.084P, 5

NOELINK,

EVIPS A.

Guillia

展立す主な法

8117 113

Experil.

diality;

Oscolog

, MAJIFISUN

KREBS, C.

NOSKINIE

[nethos

KING, S

520-528.

MAHONEY, S.A. and JEHL, J.R. (1984) Body water content in marine birds. Condor <u>86</u>: 208-209.

MARSH, R.L. (1979) Development of endothermy in nestling Bank Swallows (Riparia riparia). Physiol.Zool. 52: 340-353. McHARGUE, L.A. (1981) Black Vulture nestling behaviour and growth. Auk. 98: 182-185.

MEAD, P.S. and MORTON, M.L. (1985) Hatching asynchrony in the Mountain White-crowned Sparrow Zonotrichia leucaphyrys onantha a selected or incidental trait? Auk. 102: 781-782. MERTENS, J.A.L. (1969) The influence of brood size on the energy metabolism and water loss in nestling Great Tits Parus major major. Ibis. 111: 11-16.

MERTENS, J.A.L.)1972) A model for the prediction of heat loss of Great Tit broods. In Institute for Ecological Research, progress report, Royal Netherlands Academy of Arts and Sciences, ed. J. W. Woldendorp, pp.89-90, Arnhem. MERTENS, J.A.L. (1977a) Thermal conditions for successful breeding in Great Tits (Parus major L.). 1. Relation of growth and development of temperature regulation in nestling Great Tits. Oecologia 28: 1-29. MERTENS, J.A.L. (1977b) Thermal conditions for successful breeding in Great Tits (Parus major L.). 2. Thermal properties of nests and nestboxes and their implications for the range of temperature tolerance of Great Tit broods. Oecologia (Berlin) 28: 31-56.

MEYBURG, B.U. (1974) Sibling aggression and mortality among nestling eagles. Ibis. 116: 224-228.

1 ... 200 A.J. Robin LEGRON. Rocks RVHIR3. **BECLD** ALLK -Lifeson, Maasu 11 - 5⁰⁰ , HOREL, **TUPNOV** 2-1207768 TOBTHOID Staffor GISVED Arth, I KONTI Red-East DES CHURCH 339 20 Large 1 W , Alba . adt na bengspu

MOCK, D.W. (1985) Siblicidal brood reduction: the prey-size hypothesis. Am.Nat. 125: 327-343. MØLLER, A.P. (1984) On the use of feathers in birds nests; predictions and test. Ornis.Scand. 15: 38-42.

BRRAH Mr. n.H. **RoftA** Not NOTI . НЕАР, 1 R off Truncio 社民法工品法国 9110119 DEPY OF ENSTROM AD 10 prellorn. Science (문학)가 공격) (Bassid) 624043 Altoon 2NITENSK 258.044 100 HON OF TERM STOLIE YEN

MOCK, DJR

hypothe

Predict,

MØLLER, A.P. (1987) Intraspecific nest parasitism and antiparasite behaviour in swallows, <u>Hirundo rustica</u>. Anim.Behav. <u>35</u>: 247-254.

· 5

MONTEVECCHI, W.A., RICKLEFS, R.E., KIRKHAM, R. and GABALDON, O. (1984) Growth energetics of nestling Northern Gannets <u>Sula bossanus</u>. Auk. <u>101</u>: 334-341. MORENO, J. (1983) Foraging decisions in the Wheatear

Oenanthe oenanthe L. Abstracts of Uppsala dissertations from the Faculty of Science, 704, 29pp.

MORTON, M.L. and PEREYM, M.E. (1985) The regulation of egg temperatures and attentiveness of patterns in the Dusky Flycatcher Empidonax oberholser. Auk. 102: 25-37.
MUGAAS, J.N. and KING, J.R. (1985) Energy expenditure by the Black-billed Magpie. Studies in avian biology No. 5.
MYRCHA, A., PINOWSKI, J. and TOMEK, T. (1972) Energy balance of nestling Tree Sparrows Passer n.montanus (L-) and House Sparrows, Passer d.domesticus (L-). In Kendeigh, S.C., Pinowski, J. & Warszawa (Eds.). Productivity, Population Dynamics and Systematics of Granivorous Birds. IBP Publn: 59-83.
MYERS, J. (1978) Sex ratio adjustment under food stress: maximization of quality or numbers of offspring? Amer.Nat. 112: 381-388.

NAGY, K.A. (1980) CO₂ production in animals: analysis of potential errors in the doubly-labelled water method. Am.J.Physiol. <u>238</u>: R66-R473.

NAGY, K.A. and COSTA, D.P. (1980) Water flux in animals: analysis of potential errors in the tritiated water method. Am.J.Physiol. 238: R454-R465.

11512041 自由任命任 Astin RATING **GABAD** Ganniel DISTROM THE BOARD TO 11.00 "HDIXON 「作用目目ので Flydet L. BALOUR IB. pilt -AID/DY 00 000 Sparrog Pincell (Syriamit) . C.6232 elminne. M. TRAN NAGY, BAN 2010102 17. U. th

A.A . Tinkii

LOYIAM

HE.L.Ph

Sphensicus demersus. Ecology, 65: 1648-1655. NIE, N.H., HULL, C.H., JENKINS, J.G., STEINBRENNER, K. and BENT, D.H. (1975) Statistical packages for the social sciences. New York: McGraw Hill. NORTON, D.W. (1973) Ecological energetics of calidridine Sandpipers breeding in Northern Alaska. Ph.D. Thesis, University of Alaska, Fairbanks. NUR, N. (1984a) The consequences of brood-size for breeding Blue Tits: I. Adult survival, weight change and the cost of reproduction. J.Anim.Ecol. 53: 479-496. NUR, N. (1984b) The consequences of brood-size for breeding Blue Tits: II. Nestling weight, offspring survival and optimal brood size. J.Anim.Ecol. 53: 497-517. NUR, N. (1984c) Feeding frequencies of nestling Blue Tits (Parus caeruleus): costs, benefits and a model of optimal feeding frequency. Oecologia 65: 125-137. O'CONNOR, R.J. (1975a) Growth and metabolism in nestling passerines. Symp.Zool.Soc.Lond. 35: 277-306. O'CONNOR, R.J. (1975b) An adaptation for early growth in tits Parus spp. Ibis. 117: 523-526. O'CONNOR, R.J. (1977) Differential growth and body composition in altricial passerines. Ibis. 119: 147-166. O'CONNOR, R.J. (1978a) Growth strategies in nestling passerines. The Living Bird 16: 209-238. O'CONNOR, R.J. (1978b) Structure in avian growth patterns; a multivariate study of passerine development. J.Zool.Lond. 185: 147-172.

NAGY, K.A., SEIGFRIED, W.R. and WILSON, R.P. (1984)

Energy utilisation of free-ranging Jackass Penguins

Sur LOAN Energ autor. N. 611 TNES 02207 , MOTREN Sandp Burley #1 MUR. N. Blue DUD D D D D NUR, N. ELDG-T An1300. 1.11. . 2018 6 U'LL/27 21月1日前下 SOUND310 行行员和通信 2 0723 DICOMMON 1250 122 G*CONNOR: Genend . 8010/0810 · 田二月 - 田二月 185; 14

O'CONNOR, R.J. (1978c) Brood reduction in birds: selection for fratricide, infanticide and suicide? Anim.Behav. 26: 79-96. O'CONNOR, R.J. (1979) Egg weights and brood reduction in the European Swift Apus apus. Condor 81: 133-145. O'CONNOR, R.J. (1984) The growth and development of Birds. John Wiley & Sons, Chichester. PARKER, G.A. (1974) Assessment strategy and the evolution of fighting behaviour. J. Theor. Biol. 47: 223-243. PARSONS, J. (1970) Relationship between egg-size and posthatching chick mortality in the Herring Gull (Larus argentatus). Nature, Lond. 228: 1221-1222. PARSONS, J. (1975) Asynchronous hatching and chick morality in the Herring Gull Larus argentatus. Ibis. 117: 517-520. PENNY, J.G. and BAILY, E.D. (1970) Camparison of the energy requirements of fledging Black Ducks and American Coots. Journal of Wildlife Management 34: 105-113. PERRINS, C.M. (1979) British Tits. Collins, London. PERRINS, C.M. and MOSS, D. (1975) Reproductive rates in the Great Tit. J.Anim.Ecol. 44: 695-706. PETIT, T.N., GRANT, G.S. and CAUSEY WHITTON, G. (1984) Nestling metabolism and growth in the Black Noddy and White Tern. Condor 86: 83-85. PIANKA, E.R. and PARKER, W.S. (1975) Age-specific reproductive tactics. Amer.Nat. 109: 453-464.

PLOGER, B.J. and MOCK, D.W. (1986) Role of sibling aggression

in food distribution to nestling Cattle Egrets <u>Bubulcus ibis</u>. Auk. <u>103</u>: 768-776. POOLE, A. (1979) Sibling aggression among nestling Ospreys in

Florida Bay. Auk. <u>96</u>: 415-416.

日日本日日 Harney Star 101111007-10 Cohn W , TENERS 01 11g ARSONE, 1 no 7 an 3120300 LANDSHAR 10 110 L DINKIA 210pag AGUTTURE. 120128839 PERMINSA Sine all T TITLY YL1780N Farm. C E. ANHAIN 2217087 PLOGER, B

in food

Auk, 10

PORLEY A.

Ploylds

PORTMAN, A. (1955) Die postembryonale Entwicking der Vogel als Evolutionsproblem. Int.ornith.Cong. <u>11</u>: 138-151.PROCTER, D.L.C. (1975) The problem of chick loss in the South Polar Skua. Auk. <u>67</u>: 466-476.

PULLEN, N.D. (1945) Feeding of Blue Tit nestlings. Brit.Birds. <u>38</u>: 205-210.

QUINNEY, T.E. (1982) Growth, diet and mortality of nestling Great Blue Herons. Wilson Bull. <u>94(4)</u>: 577-579.

REED, J.R. (1981) Song Sparrow "rules" for feeding nestlings. Auk. <u>98</u>: 828-831.

REYER, HJ, WESTERTERP, K. (1985) Parental energy expenditure as a proximate cause of helper recruitment in the Pied Kingfisher <u>Ceryle rudis</u>. Behav.Ecol.Sociobiol. 17: 343-370 RICHARDS, F.J. (1959) A flexible growth function of empirical use. J.Exp.Bot. <u>10</u>: 290-300.

RICHTER, W. (1982) Hatching asynchrony: the nest failure hypothesis and brood reduction. Am.Nat. <u>120</u>: 828-832.
RICHTER, W. (1983) Balanced sex ratios in dimorphic altricial birds: the contribution of sex-specific growth dynamics.
RICHTER, W. (1984) Nestling survival and growth in the Yellowheaded Blackbird <u>Xanthocephalus xanthocephalus</u>.

Ecology 65(2): 597-608.

RICKLEFS, R.E. (1965) Brood reduction in the curved-billed Thrasher. Condor <u>67</u>: 505-570.

to growth curves. Ecology 48: 978-983.

RICKLEFS, R.E. (1967a) A graphical method of fitting equations

RICKLEFS, R.E. (1967b) Relative growth, body constituents, and energy content of nestling Barn Swallows and Red-winged Blackbirds. Auk. 84: 500-570.

RORTHAR ain S 20112-0.07 FOLKE 121304 10.7.10 D . 0334 111110 11:12131 2 1 4 1 L'Spack" RICHARDER 0.000 ARCITUDES. NUTOTS! , HE THOLD hebrid * KETHOIS Deb.ded) Edcil Oct 211100118 stin n'arri RIGKLEES

013 03

RIOKLEFS

VETSON

BINCH

RICKLEFS, R.E. (1968) Weight recession in nestling birds. Auk. 85: 30-35.

RICKLEFS, R.E. (1973) Patterns of growth in birds. II. Growth rate and mode of development. Ibis. <u>115</u>: 177-201.
RICKLEFS, R.E. (1974) Energetics of reproduction in birds.
From Avian Energetics. Ed. Paynter Publ. Nuttal Ornithol.
Club. 15: 152-292.

RICKLEFS, R.E. (1975) Patterns of growth in birds. III. Growth and development in the Cactus Wren. Condor <u>77</u>: 34-35. RICKLEFS, R.E. (1976) Growth rates of birds in the humid new world tropics. Ibis. 118: 179-207.

RICKLEFS, R.E. (1979a) Patterns of growth in birds. V. A comparative study of development in the Starling, Common Tern, and Japanese Quail. Auk. <u>96</u>: 10-30.

RICKLEFS, R.E. (1979b) Adaptation, constraint and compromise

in avian postnatal development. Biol.Rev. 54: 269-290. RICKLEFS, R.E. (1982) Some considerations on sibling competition and avian growth rates. Auk. 99: 141-147. RICKLEFS, R.E. (1984) Avian postnatal development. In Avian Biology, Volume VII. eds. D. S. Farner & J. R. King, pp.1-83. New York: Academic Press.

RICKLEFS, R.E., GALBALDON, D. and MONTEVECCHI, W.A. (1984) Postnatal development of the Northern Gannet <u>Sula bassanus</u>, and the general relationship between growth rate and adult size in birds. Ornis.Scand. <u>15</u>: 204-210.

RICKLEFS, R.E., HAHN, D. CALDWELL and MONTEVECCHI, W.A. (1978) The relationship between egg size and chick size in the Laughing Gull and Japanese Quail. Auk. <u>95</u>: 135-144.

RICKLEP ALLICE 8757 RICKLER 0.0011 . MALD-REJNOLR 624022 112232231 5110W RICKLERS 0.01710.00 G DPIDT RAZIXO13 LUE DI 2月一五,月月 ICREEPS. BATT BOS and the et anle

BRIDDES

The call

al tig to al

RICKLEFS, R.E. and HAINSWORTH, 14 (1967) The temporary establishment of dominance between two hand-raised juvenile Cactus Wrens (<u>Campylorhynchus brunneicapillus</u>). Condor 69: 528-

RICKLEFS, R.E., WHITE, S.C. and CULLEN, J. (1980) Energetics of postnatal growth in Leach's Storm Petrel. Auk. <u>97</u>: 566-575.

RICKLEFS, R.E. and WILLIAMS, J.B. (1984) Daily energy expenditure and water turnover rate of adult European Starlings <u>Sturnus vulgaris</u> during the nesting cycle. Auk. <u>101</u>: 707-716.

ROWAN, M.K. (1967) A study of the colies of Southern Africa. Ostrich 38: 63-115.

ROYAMA, T. (1966) Factors governing feeding rate, food requirement and brood size of nestling Great Tits <u>Parus major</u>. Ibis. 108: 313-347.

RYDEN, O. and BENGTSSON, H. (1980) Differential begging and locomotory behaviour by early and late hatched nestlings affecting the distribution of food in asynchronously hatched broods of altricial birds. Z.Tierphyschol. <u>53</u>: 209-224.SACKETT, W.M. (1978) Carbon and hydrogen isotope effects during thermocatalytic production of hydrocarbons in laboratory simulation experiments. Geochim.Cosmochim.Acta. <u>42</u>: 571-580.

SCHARF, W.C. and BALFOUR, E. (1971) Growth and development of

nestling Hen Harriers. Ibis. <u>113</u>: 323-329. SCHARTZ, R.L. and ZIMMERMAN (1971) The time and energy budget of the male Dickcissel <u>Spiza americana</u>. Condor 73: 65-76. SCHIFFERLI, L. (1973) The effect of egg-weight on subsequent growth in nestling Great Tits. Ibis. <u>115</u>: 549-558. SCHOENER, T.W. (1971) Theory of feeding strategies.

Ann.Rev.Ecol.Syst. 2: 369-404.

SCHOLANDER, P.F., WALTER, V., HOCK, R. and IRVING, L. (1950) Heat regulation in some arctic & tropical mammals and birds. Biol.Bull. <u>99</u>: 237-258.

SEALY, S.G. (1973) Adaptive significance of post-hatching developmental patterns and growth rates in the <u>Alcidae</u>. Ornis.Scand. <u>4</u>: 113-121.

SEEL, D.C. (1969) Food, feeding rates and body temperature in the nestling House Sparrow <u>Passer domesticus</u> at Oxford. Ibis. <u>111</u>: 36-47.

SHAW, G. (1978) The breeding biology of the Dipper. Bird Study 25: 149-160.

SHAW, P. (1985) Brood reduction in the Blue-eyed Shag <u>Phalacrocorax atriceps</u>. Ibis. <u>127</u>: 476-494.
SKOWRON, C. and KERN, M. (1980) The insulation in nests of selected North American songbirds. Auk. <u>97</u>: 816-824.
SKUTCH, A.F. (1976) Parent birds and their young. Austin, Texas, University of Texas Press.
SLAGSVOLD, T. (1982) Clutch size, nest size and hatching asynchrony in birds: experiments with the Fieldfare

SLAGSVOLD, T. (1984a) Clutch size variation of birds in

Turdis pilaris. Ecology 63: 1389-1399.

Constant State 800 00 CBARBE: 管理: いつつてき 的物质可能能 1141072 M , NAKOR (lateria) AMAYON PER LIPET. Charles 1 0 , MER'S 270-77 300090 SAVINETT : SULTIN TENOISI 1225 328

M , THANNE

nABELIN SOHARTZ, I budget 1 Condor 1 relation to nest predation: on the cost of reproduction. JAnim.Ecol. 53: 945-953.

经济生活制造管 2140713 STORIO SHOE B. nak DEF. DORDE Hoat . 1. lota FEALY, S days: 1.5 Ornin. SEPE, D. fin the This. AD THINK G. Bird R STAN, P. ins late . HORMENS いけたりご用い V POLISIE . 11.1 10.00 **BJOVERA**P SLADSVOLD.

altile?

SLAGSVOLD, T. (1984b) On the adaptive value of intra-clutch egg size variation in birds. Auk. <u>101</u>: 685-697.
SLAGSVOLD, T. (1985) Asynchronous hatching in passerine birds: influence of hatching failure and brood reduction.
Ornis.Scand. <u>16</u>: 81-87.

SLAGSVOLD, T. (1986) Hatching asynchrony: Interspecific comparisons of altricial birds. Amer.Nat. <u>128</u>: 120-125.SLAGSVOLD, T., RØSKAFT, E. and ENGEN, S. (1986) Sex ratio, differential cost of rearing young and differential mortality between the sexes during the period of parental care: Fisher's theory applied to birds. Ornis.Scand. <u>17</u>: 117-125.

SMITH, C.C. and FRETWELL, S.D. (1974) The optimal balance between size and number of offspring. Amer.Nat. <u>108</u>: 499-506. SMITH, J.N.M. (1978) Division of labour by Song Sparrows

feeding fledged young. Can.J.Zool. <u>56</u>: 187-201. SMITH, J.N.M. and ROFF, D.A. (1980) Temporal Spacing of broods, brood size and parental care in Song Sparrows <u>Melospiza melodia</u>. Can.J.Zool. <u>58</u>: 1007-1016. SNOW, D.W., and SNOW, B.K. (1973) The breeding of the Hairy Hermit <u>Glaucis hirsuta</u> in Trinidad. Ardea <u>61</u>: 106-122. SOKAL, R.E. and ROHLF, F.J. (1969) Biometry. San Francisco, W. H. Freeman. STEARNS, S.C. (1976) Life-history tactics: a review of the

ideas. Quart.Review of Biol. 51: 3-47.

STEYN, P. (1973) Observations on the Tawny Eagle. Ostrick <u>44</u>: 1-22. STREHL, C. (1978) Asynchrony of hatching in Red-winged Blackbirds and survival of late and early hatching birds. Wilson Bull. <u>90</u>: 653-655.

DOVERACI the parts Sections. UTTENA . LIOVENALIS SLAGNVOL 111202211 Lavyor 117-128 D .HTINS the Cover SMETH, J. Feeding SWITTLE JA , sbuoxi LOUGH IN W.C., MOHE HOSAL, R. 3 524 VM STEAMASS . 10pmg.

H. NYETT

D . JHERTS

Sitterick

Blackbi

Willson

SVENSSON, L. (1975) Identification guide to European passerines. Stockholm: Naturhistoriska Riksmuseet.
TATNER, P. (1984) Body component, growth and composition in the Magpie <u>Pica pica</u>. J.Zool.Lond. <u>203</u>: 397-410.
TATNER, P. and BRYANT, D.M. (1986) Flight cost of a small passerine measured using doubly-labelled water: implications for energetic studies. Auk. <u>103</u>: 169-180.
TATNER, P. and BRYANT, D.M. (In press) The doubly-labelled water technique for measuring energy expenditure. To appear in Techniques in Comparative Respiratory Physiology - An Experimental Approach. Eds. C. R. Bridges and P. J. Butter, C.U.P.

TIAINEN, J. (1983) Ecological energetics of nestling growth in the Willow Warbler <u>Phylloscopus trochilus</u>.

Ann.Zool.Fennici. 20: 13-24.

TURNER, A.K. (1980) The use of time and energy by aerial feeding birds. Unpubl. Ph.D. thesis, University of Stirling. TURNER, A.K. and BRYANT, D.M. (1979) Growth of nestling Sand Martins. Bird Study 26: 117-122.

UTTER, J.M. and LEFEBVRE, G.A. (1973) Daily energy expenditure of Purple Martins <u>Progne subis</u> during the breeding season: estimates using D_2^{18} and the budget methods. Ecology <u>54</u>: 597-604.

VEHRENCAMP, S.L. (1982) Body temperatures of incubating versus non-incubating Road Runners. Condor <u>84</u>: 203-207.

VLECK, C.M. (1981) Energetic cost of incubation in the Zebra Finch. Condor <u>83</u>: 229-237.
WALSBERG, G.E. (1978) Brood size and the use of time and energy by the <u>Phainopepla</u>. Ecology <u>59</u>: 147-154.

tin A CO · · / R / R / R / R 1,221190 101 . mol , REALING DINE THE nicedtx7 19.0.0 , MERIALI, ods al A REMEUT indima. AL, MENSON BADA ME LT . AUTTL Parall 17202010 MIRO CONT NUCLERCARS T DUSTRY

VEECK, O.

WALSBEERS .

Trustil (

Lobra Ti

WEATHERS, W.W. and NAGY, K.A. (1980) Simultaneous doublylabelled water (³HH¹⁸0) and time budget estimates of daily energy expenditure in <u>Phainopepla nitens</u>. Auk. <u>87</u>: 861-867. WERSCHKUL, D.F. (1979) Nestling mortality and the adaptive significance of early locomotion in the Little Blue Heron. Auk. <u>96</u>: 116-130.

WERSCHKUL, D.F. and JACKSON, J.A. (1979) Sibling competition and avian growth rates. Ibis. <u>121</u>: 97-102.

WESTERTERP, K.R. (1973) The energy budget of the nestling Starling <u>Sturnus vulgaris</u>: A field study. Ardea <u>61</u>: 137-158.
WESTERTERP, K.R. and BRYANT, D.M. (1984) Energetics of free existence in Swallows and Martins (<u>Hirundinidae</u>) during breeding: a comparative study using doubly-labelled water. Oecologia <u>62</u>: 376-381.

WESTERTERP, K.R. and DRENT, R.H. (1985) Energetic costs and energy saving mechanisms in parental care of free-living passerine birds as determined by the D²O¹⁸ method. Proc.18th Intern.Ornithol.Congr.Mescere
WESTERTERP, K., GORTMAKER, W. and WIJNGAARDEN, H. (1982) An energetic optimum in brood-raising in the Starling <u>Sturnus vulgaris</u>: an experimental study. Ardea <u>70</u>: 153-162.
WETTON, J.H., ROYSTON, E.C., PARKIN, D.T. and WALTERS, D. Demographic study of a wild House Sparrow population by DNA fingerprinting. Nature <u>327</u>: 147-149.
WHITE, F.N. and KINNEY, J.L. (1974) Avian Incubation.

Science 189: 107-115.

WIJNANDTS, H. (1984) Ecological energetics of the Long-eared

Owl Asio otus. Ardea 72: 1-92.

distal AX-THUS REPORT OF LOCAL "Lingshe Araber 198 MER-SCRXU1 WE' DEE WESTERIES STRP155 A PTHEFE 1997年上出版 Bracking. Campion (12710 7250 ALD TO CLE 2211日1日1月 IL, soul 的这个名法教教者的 Mm snur 車は研究性 L . NOTEW Periogent fingerpi 1.7 , 772 HW WIKLUND, C.G. (1985) Fieldfare <u>Turdis pilaris</u> breeding strategy: the importance of asynchronous hatching and the resources needed for egg formation. Ornis.Scand. <u>16</u>: 213-221.
WILLIAMS, J.B. and NAGY, K.A. (1984a) Validation of the doublylabelled water technique for measuring energy metabolism in Savannah Sparrows. Physiol.Zool. <u>57</u>: 325-328.
WILLIAMS, J.B. and NAGY, K.A. (1984b) Daily energy expenditure of Savannah Sparrows: comparison of time-energy budget and doubly-labelled water estimates. Auk. <u>101</u>: 221-229.
WILLIAMS, J.B. and NAGY, K.A. (1985a) Daily energy expenditure by female Savannah Sparrows feeding nestlings. Auk. <u>102</u>: 187-191.
WILLIAMS, J.B. and NAGY, K.A. (1985b) Water flux and energetics of nestling Savannah Sparrows in the field. Physiol.Zool. <u>58</u>: 515-525.

WILLIAMS, J.B. and PRINTS, A. (1986) Energetics of growth in nestling Savannah Sparrows: a comparison of doubly-labelled water and laboratory estimates. Condor <u>88</u>: 74-83.
WINKEL, W. and BERNDT, R. (1972) Beobachtungen und experimiente zur dauer der hunderperiode bein traverschnapper <u>Ficedula</u> <u>hypoleuca</u>. J.Orn.Lpz. <u>113</u>: 9-20.

WINKEL, W. and WINKEL, D. (1976) Uber die brutzeitliche Gewichtsentwicklung beim Trauerschnapper (<u>Ficedula hypoleuca</u>). Ein Beitrag zur Frage 'Belastung wahrend der Fortpflanzungsperiode'. J.Ornithol.<u>117</u>: 419-437.

WITTENBERGER, J.F. (1982) Factors affecting how male and female Bobolinks apportion parental investments.

Condor <u>84</u>: 22-39.

MINDER, \$2A774 THORNE RHALLATT Linculd vsê ki -MILLIAMS 26. Sav WonD's y WELLINS by form WILLIAMS. innerger. Physics, SMALJIN taan nil 6.120.528 MINNEL, S gur dau uslogud it MINIET' M Sew1ch to 200 pitt 自力の計学展開 WETTENEER

WONG, W.W. and KLEIN, P.D. (1986) A review of techniques for the preparation of biological samples for mass spectrometric measurements of hydrogen-2/hydrogen-1 and oxygen-18/oxygen-16 isotope ratios. Mass Spectrometry Reviews <u>5</u>: 313-342.

111 - 114

YOM-TOV, Y., DUNNET, G.M. and ANDERSON, A. (1974) Intraspecific nest parasitism in the Starling <u>Sturnus</u> <u>vulgaris</u>. Ibis. <u>116</u>: 87-90.

ZACH, R. (1982) Hatching asynchrony egg size, growth and fledging in Tree Swallow. Auk. <u>99</u>: 695-700.

NoNG, W.V

for the

speatre

oxygen-

Reviews

Intrasp

vulgari

rledgin

ZACH, R.

.

3

YON-TOV,

APPENDIX I

Energetics of nestling growth: Data available and sources

Species for which water index or water content data (a) are available and sources

(i) Water index of whole bird v. age

Ricklefs, 1979 Starling, Sturnus vulgaris Common Tern, Sterna hirundo Japanese Quail, Coturnixc.japonica Wood Duck, Aix sponsa Double Crested Cormorant, Phalacrocorax auritus Dunn, 1975 Sooty Tern, Sterna fuscata Rufous-winged Sparrow, 1977 Aimophila carpalis Cactus Wren, Campylorhynchus brunneicapillus 1977 House Martin, Delichon urbica Barn Swallow, Hirundo rustica Red-winged Blackbird, Agelaeus phoenicius Sand Martin, Riparia riparia Herring Gull, Larus argentatus White-bellied Swiftlet, Collacalia esculenta Blue-throated Bee-Eater, Merops viridis Pacific Swallow, Hirundo tahitica Magpie, Pica pica Dipper, Cinclus cinclus

Ricklefs & White, 1981 Brisbin et al., 1973 Clay et al., 1979

Ricklefs & White, 1981 Austin & Ricklefs, Austin & Ricklefs, Bryant & Gardiner, 1979 Ricklefs, 1967 Ricklefs, 1967

Jones, 1985 Dunn & Brisbin, 1980 Bryant & Hails, 1983

Bryant & Hails, 1983

Bryant & Hails, 1983 Tatner, 1984 This study

(ii) Water index of major body components

Sooty Tern Common Tern

Ricklefs & White, 1981 Ricklefs & White, 1981

Rufous-winged Sparrow Red-winged Blackbird Canvasback, Aythya valisena Lesser Scaup, Aythya affinis Austin & Ricklefs, 1977 Ricklefs, 1967 Lightbody & Ankey, 1984 Lightbody & Ankey, 1984

(a) (ii) continued...

Blue Tit, Parus caeruleus	0'Connor, 1977
House Sparrow, Passer domesticus	0'Connor, 1977
House Martin, Delichon urbica	0'Connor, 1977
Northern Gannet, <u>Sula bassana</u>	Ricklefs et al., 1984
(iii) Water index at hatching only	
Leach's Storm-Petrel Oceanodroma leucorhoa	Ricklefs et al., 1980
Sooty Tern	Ricklefs, 1981
Common Tern	Ricklefs, 1981
Starling	Ricklefs, 1979
Japanese Quail	Ricklefs, 1979

(iv) Water content of whole bird	
Blue Tit	0'Connor, 1977
House Sparrow	0'Connor, 1977
House Martin	0'Connor, 1977
White-bellied Swiftlet	Bryant & Hails, 1983
Blue-throated Bee-Eater	Bryant & Hails, 1983
Pacific Swallow	Bryant & Hails, 1983
Starling	Westerterp, 1973
Northern Gannet	Ricklefs et al., 1984
Dipper	This study

(b) Species for which lipid index or lipid content data are available and sources

(i) Lipid index of whole bird v. age Turner & Bryant, 1979 Sand Martin Clay et al., 1979 Wood Duck Dunn, 1975 Double Crested Cormorant Brisbin & Tally, 1973 Japanese Quail Bryant & Gardiner, 1979 House Martin Ricklefs, 1967 Barn Swallow Ricklefs, 1967 Red-winged Blackbird Herring Gull Dunn, 1980

White-bellied Swiftlet Blue-throated Bee-Eater Pacific Swallow

Bryant & Hails, 1983 Bryant & Hails, 1983 Bryant & Hails, 1983

(b)(i) continued...

1

House Martin	1.	0'Connor, 1977
House Sparrow		0'Connor, 1977
Blue Tit		0'Connor, 1977
Magpie		Tatner, 1984
Dipper		This study

(ii) Lipid content of whole bird v. age Blue Tit House Sparrow House Martin Barn Swallow Red-winged Blackbird Rufous-winged Sparrow Common Tern. Sooty Tern Leach's Storm-Petrel

0'Connor, 1977 0'Connor, 1977 0'Connor, 1977 Ricklefs, 1967 Ricklefs, 1967 Austin & Ricklefs, 1977 Ricklefs & White, 1981 Ricklefs & White, 1981 Ricklefs & White, 1981

(c) Species for which non-lipid data are available and sources References refer to lean dry mass unless asterixed which

refers to lean wet mass.

(i) Non-lipid content of whole bird v. age

Japanese Quail Starling Common Tern Sooty Tern *Leach's Storm-Petrel Rufous-winged Sparrow White-bellied Swiftlet Blue-throated Bee-Eater Pacific Swallow

Sand Martin

House Martin

House Sparrow

Ricklefs, 1979 Ricklefs, 1979 Ricklefs & White, 1981 Ricklefs & White, 1981 Ricklefs et al., 1980 Austin & Ricklefs, 1977 Bryant & Hails, 1983 Bryant & Hails, 1983 Bryant & Hails, 1983 Jones, 1985 0'Connor, 1977 0'Connor, 1977

Blue Tit Magpie *Northern Gannet Dipper

0'Connor, 1977 Tatner, 1984 Ricklefs et al., 1984 This study
Species for which energy content or energy density data (d) are available and sources

(i) Wet energy density v. age White-bellied Swiftlet Blue-throated Bee-Eater Pacific Swallow Barn Swallow House Martin Rufous-winged Sparrow Red-winged Blackbird Starling Herring Gull Japanese Quail Double Crested Cormorant Wood Duck Dipper

(ii) Dry energy density v. age House Martin Starling Double Crested Cormorant Dipper

(iii) Energy content v. age House Martin Barn Swallow Cactus Wren Red-backed Shrike, Lanius collurio House Sparrow Rufous-winged Sparrow Red-winged Blackbird Dipper

Bryant & Hails, 1983 Bryant & Hails, 1983 Bryant & Hails, 1983 Ricklefs, 1967 Bryant & Gardiner, 1979 Austin & Ricklefs, 1977 Ricklefs, 1967 Westerterp, 1973 Dunn & Brisbin, 1980 Brisbin & Tally, 1973 Dunn, 1975 Clay et al., 1979 This study

Bryant & Gardiner, 1979 Westerterp, 1973 Dunn, 1975 This study

Bryant & Gardiner, 1979 Austin & Ricklefs, 1977 This study

APPENDIX II

Software for the microprocessor system. This is primarily in BBC 'Basic' with minor alterations to allow compatability with the 'Eurocube' BBC card. The latter was the main microcomputer component and is essentially a BBC computer without the keyboard. The program reads thermistor signals via a 12 bit A-D converter and stores all data in a 32K memory card fitted with 'CMOS' RAM chips, to increase field usage time. The initial machine code section of programme logs the data against a real-time clock on another card within the microprocessor. Lines 10-2420 control the record mode whilst lines 2430-2860 control replay mode and sends the data to a DEC VAXA mainframe computer.

PORTA=&FEO1 10 20 DDRA=&FEO3 30 ?DDRA=16 40 ?PORTA=16 50 SW=?PORTA SW=SW AND 8 60 70 IF SW=0 GOTO 2430 IRQ2V=&0206 80 90 OLD2V = &3FF7100 Time=&3FFO ?(Time)=0 110 120 ?(Time+1)=0 130 ?(Time+2)=0 140 VIA=&FEOO P%=&3E00 150 160 FOR PASS=0 TO 2 COPT PASS 170 .Clk 180 190 PHA 200 CLC INC Time 210 . 220 LDA Time CMP #100 230 BCC OUT 240 LDA #0 250 STA Time 260 270 INC Time+1 280 CLC 290 LDA Time+1 300 CMP #100 BCC OUT 310 LDA #0 320 330 STA Time+1 340 INC Time+2 350 .OUT LDA &FEO4 360 PLA RTI 370 .Stclk SEI 380 390 LDA IRQ2V 400 STA OLD2V 410 LDA IRQ2V+1 420 STA OLD2V+1 LDA #Clk MOD 256:STA IRQ2V 430 440 LDA #Clk DIV 256:STA IRQ2V+1 450 LDA #&FF 460 STA VIA+&02 470 STA VIA 480 LDA #&CO 100 STA VTALLOR

490	DIN	ATW+00D
500	LDA	#&7F
510	STA	VIA&OD
520	STA	VIA+&OE
530	LDA	#&CO
540	STA	VIA+&OE

550	LDA #&10
560	STA VIA+&04
570	LDA #&27
580	STA VIA+05
590	CLI
600	RTS
610	.Stpclk SEI
620	LDA OLD2V
630	STA IRQ2V
640	LDA OLD2V+1
650	STA IRQ2V+1
660	LDA #&7F
670	STA VIA+&OD
680	STA VIA+&OE
690	LDA #&00
700	STA VIA+&OB
710	CLI
720	RTS
730]
740	NEXT PASS
750	M=0
760	F=O
770	SW2=0
780	BASE=&0800
790	MIN=44
800	CALLStclk
810	AT=?(Time+1)+(100*?(Time+2))
815	CT=AT DIV 60
820	BT=AT MOD 60
825	PRINT"TIME="CT"MINS", BT"SECS"
830	PROCSWCH
840	DEF PROCTEMP
850	PRINT"TEMP"
860	@%=&00020103
870	CH=0: PROCAD(CH): PROCMEM
880	CH=1:PROCAD(CH):PROCMEM
890	CH=2: PROCAD(CH): PROCMEM
900	CH=3:PROCAD(CH):PROCMEM
910	CH=4: PROCAD(CH): PROCMEM
920	CH=5:PROCAD(CH):PROCMEM
930	CH=6:PROCAD(CH):PROCMEM
935	PROCEOF
940	ENDPROC
950	DEF PROCAD(CH)
960	?&DCOE=&7F
970	?&DCOC=&00
980	?&DCO3=%FF
990	?&DCO2=&FF

.

1

\$CF.

1

Q

1000	:aDCOU-ars
1010	?&DCO1=(CH)
1020	?&DCOO=&F1
1030	?&DCOO=&F5
1040	?&DCO3=&00
1050	?&DCOO=&F7

?&DCOO=&F3 1060 MSB%=?&DCOF 1070 1080 ?&DCOO=&FB 1090 LSB%=?&DCOF 1100 $2^{DC00} = F5$?&DCO3=&FF 1110 LSB%=(LSB% AND 240)DIV 16 1120 $Z = (MSB^{*16}) + LSB^{*}$ 1130 V=(Z*10)/4095 1140 T=0.517+(13.9664*V)-(0.3298*V^2)+(0.4554*V^3) 1150 1160 PRINTT ENDPROC 1170 DEF PROCMEM 1180 1190 ?(BASE)=MSB% 1200 BASE=BASE+1 1210 IF (BASE)=&2000 THEN PROCRESET 1220 IF (BASE) = & 8000 THEN GOTO 1580 1230 ?(BASE)=LSB% 1240 1250 BASE=BASE+1 IF (BASE) = & 2000 THEN PROCRESET 1260 IF (BASE) = & 8000 THEN GOTO 1580 1270 1280 ENDPROC DEF PROCSWCHMEM 1290 1300 ?(BASE)=255 BASE=BASE+1 1310 PRINT"MARKER IS 255" 1320 1330 IF (BASE)=&2000 THEN PROCRESET 1340 IF (BASE)=&8000 THEN GOTO 1580 1350 ?(BASE)=SW BASE=BASE+1 1360 1370 IF (BASE)=&2000 THEN PROCRESET IF (BASE) = & 8000 THE .; GOTO 1580 1380 1390 ENDPROC DEF PROCTIME 1400 AT=?(Time+1)+(100*?(Time+2)) 1401 BT=AT MOD 60 1402 1403 CT=AT DIV 60 ?(BASE)=CT 1410 1420 BASE=BASE+1 1430 IF (BASE)=&2000 THEN PROCRESET 1440 IF (BASE)=&8000 THEN GOTO 1580 1450 ?(BASE)=BT 1460 BASE=BASE+1 IF (BASE)=&2000 THEN PROCRESET 1470 1480 IF (BASE)=&8000 THEN GOTO 1580 1490 @%=&00020003 PRINT"TIME="CT"MINS", BT"SECS" 1500 ENDPROC 1570

1580	?PORTA= 0
1590	CALL Stpclk
1600	END
1610	DEF PROCRESET
1620	BASE=&4000

200

1630	PRINT "CHECK"		
1640	ENDPROC		
1650	DEF PROCTEN		
1660	THERM=T		
1670	PRINT"THERM="THERM		
1680	GRND=?(Time+1)+(100*?(Time+2))		
1690	CURRENT=?(Time+1)+(100*?(Time+2	2))	
1700	SW=?PORTA		
1710	SW=SW AND 7		
1720	SW1=SW EOR 7		
1730	IF SW2=SW1 THEN GOTO 1770		
1740	PROCSWCHMEM		
1750	PROCPRNT		
1760	SW2 = SW1		
1770	IF CURRENT=GRND +15 THEN PROCNO	DE ELSE GOT	0 1630
1780	SW=?PORTA		
1790	SW=SW AND 7		
1800	SW=SW EOR 7		
1810	IF SW=0 THEN GOTO 1860		
1820	IF SW=1 THEN GOTO 1860		
1830	IF SW=2 THEN GOTO 1860		
1840	IF SW=3 THEN GOTO 1860		
1850	GOTO 1680	_	
1860	IF NOT (T <therm) 1880<="" goto="" td="" then=""><td>5</td><td></td></therm)>	5	
1870	GOTO 1680		
1880	PRINT"EXIT PROCTEN"		
1890	ENDPROC		
1900	DEF PROCSWCH		
1910	SW= ?PURTA		
1920	SW=SW AND /		
Ta30	SWI-SW LOK /		
1940	DROCCHCHMEM		
1950			
1980	CH2-CH1		
1970			
1900	FNDPROC		
2000	DEE PROCSTATUS		
2010	TE SWI = O PRINT"NO BEG M. IN	F.IN"	
2010	IF SW1=0 PROCTIME: PROCTEMP		
2030	TF SW1=1 PRINT" BEG M.IN	F.IN"	
2040	IF SWI=1 PROCTIME: PROCTEMP		
2050	IF SW1=2 PRINT"NO BEG M.OUT	F.IN"	
2060	IF SW1=2 PROCTIME: PROCTEMP		
2070	IF SW1=3 PRINT" BEG M.OUT	F.IN"	
2080	IF SW1=3 PROCTIME: PROCTEMP		
2090	IF SW1=4 PRINT"NO BEG M.IN	F.OUT"	
2100	IF SW1=4 PROCTIME: PROCTEMP		
2110	TE SWI = 5 PRINT" BEG M. IN	F.OUT"	

*

-11

TTTO .	TT OUT O				
2120	IF SW1=5	PROCTIME: P	ROCT	EMP	
2130	IF SW1=6	PRINT"NO B	BEG	M.OUT	F.OUT"
2140	IF SW1=6	PROCTIME: P	ROCT	EMP: PRO	CTEN
2150	IF SW1=7	PRINT" E	BEG	M.OUT	F.OUT"
2160	IF SW1=7	PROCTIME: F	ROCT	EMP: PRO	CTEN
2170	ENDPROC				

DEF PROCPRNT 2180 F.IN" IF SW1=0 PRINT"NO BEG 2190 M.IN IF SW1=0 PROCTIME: PROCTEMP 2200 F.IN" IF SW1=1 PRINT" M.IN BEG 2210 IF SW1=1 PROCTIME: PROCTEMP 2220 M.OUT F.IN" IF SW1=2 PRINT"NO BEG 2230 IF SW1=2 PROCTIME: PROCTEMP 2240 IF SW1=3 PRINT" BEG M.OUT F.IN" 2250 2260 IF SW1=3 PROCTIME: PROCTEMP 2270 IF SW1=4 PRINT"NO BEG M.IN F.OUT" 2280 IF SW1=4 PROCTIME: PROCTEMP 2290 IF SW1=5 PRINT" BEG M.IN F.IN" IF SW1=5 PROCTIME: PROCTEMP 2300 M.OUT F.OUT" IF SW1=6 PRINT"NO BEG 2310 2320 IF SW1=6 PROCTIME: PROCTEMP M.OUT F.OUT" 2330 IF SW1=7 PRINT" BEG IF SW1=7 PROCTIME: PROCTEMP 2340 ENDPROC 2350 DEF PROCNOB 2360 2370 SW=?PORTA SW=SW AND 7 2380 SW1=SW EOR 7 2390 2400 PROCSWCHMEM 2410 PROCPRNT 2420 ENDPROC 2430 **@%=&00020103** 2440 BASE=&0800 2450 M=?(BASE) 2400 PRINTM IF M=255 GOTO 2480 ELSE GOTO 2730 2470 2480 PROCINC 2490 SW=?(BASE) 2500 PF. INTSW 2510 PROCINC 2520 CT=?(BASE) 2530 PRINTCT 2540 PROCINC 2550 BT=?(BASE) 2560 PRINTBT 2570 PROCINC 2610 FOR K=1 TO 7 MSB%=?(BASE) 2620 PROCINC 2630 2640 LSB%=?(BASE) 2650 PROCINC LSB%=(LSB% AND 240)DIV 16 2660 2670 Z=(MSB%*16)+LSB% 2680 V=(Z*10)/4095 IF K=1 THEN T=47.4- $(37.4*V)+(12.2*V^2)$ 2690 2691 IF K=2 THEN $T=-7.21+(9.67*V)+(0.318*V^2)$ 2692 IF K=3 THEN T=8.02+(2.55*V)+(1.37*V^2) IF K=4 THEN T=8.04+(2.26*V)+(1.42*V^2) 2693 IF K=5 THEN T=8.05+(2.46*V)+(1.47*V^2) 2694 IF K=6 THEN T=8.24+(1.98*V)+(1.40*V^2) 2695 2696 IF K=7 THEN T=7.98+(2.80*V)+(2*V^2)

00.4

09.82

2700	PRINTT
2710	NEXT K
2711	G=?(BASE)
2712	IF G=250 GOTO 2745
2720	GOTO 2450
2730	PRINT"ERROR"
2740	END
2745	PRINT"END OF FILE"
2746	END
2750	ENDPROC
2760	DEF PROCINC
2770	BASE=BASE+1
2780	IF (BASE)=&2000 THEN BASE=&4000
2790	IF (BASE)=&4000 THEN PRINT"RESET'
2800	IF (BASE) = & 8000 THEN GOTO 2820
2810	ENDPROC
2820	PRINT"MEMORY FULL!"
2830	END
2840	DEF PROCEOF
2850	?(BASE)=250
2860	ENDPROC

+

.

2 - 1:

+11 - 11A-

....

i

F

1

