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Abstract

Asymmetry, color variegation and diameter are considered strong indicators of malignant

melanoma. The subjectivity inherent in the first two features and the fact that 10% of mela-

nomas tend to be missed in the early diagnosis due to having a diameter less than 6mm,

deem it necessary to develop an objective computer vision system to evaluate these criteria

and aid in the early detection of melanoma which could eventually lead to a higher 5-year

survival rate. This paper proposes an approach for evaluating the three criteria objectively,

whereby we develop a measure to find asymmetry with the aid of a decision tree which we

train on the extracted asymmetry measures and then use to predict the asymmetry of new

skin lesion images. A range of colors that demonstrate the suspicious colors for the color

variegation feature have been derived, and Feret’s diameter has been utilized to find the

diameter of the skin lesion. The decision tree is 80% accurate in determining the asymmetry

of skin lesions, and the number of suspicious colors and diameter values are objectively

identified.

Introduction

Melanoma can be recognizable by most physicians and patients when in its advanced stage.

However, it is highly curable if diagnosed early and treated timely [1–2]. With the advent of

immunotherapy and targeted therapy, melanoma treatments have improved significantly;

the five-year survival rate of early stage melanoma and metastatic melanoma (i.e. stage IV) is

98.4% and 22.5%, respectively [3]. A group of researchers at the New York University found

the ABCD rule (Asymmetry, Border irregularity, Color variegation, and Diameter greater than

6mm) in 1985 as a simple framework that physicians, novice dermatologists and non-physi-

cians could use to learn about the features of melanoma in its early curable stage [4]; the rule is

being promoted by the American Cancer Society as a method to help in seeking early medical

evaluation of any suspicious pigmented lesions. The ABCD rule provides a checklist of prema-

lignant changes in skin lesions and an appraisal of pigmented cutaneous lesions that may need
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to be further examined by a specialist which might result in further work of dermoscopy or

biopsy, or both.

Skin lesion asymmetry is a strong indicator of malignant melanoma [5] such that the degree

of asymmetry displayed by a skin lesion is indicative of its malignant potential. As opposed to

benign pigmented skin lesions that are usually circular and symmetric, melanomas tend to

develop in an uncontrolled fashion and grow at an irregular rate, rendering them to be asym-

metric [6]. In layman terms, asymmetry refers to the fact that when drawing a line through the

middle of the mole the two halves will not match, meaning that the shape of one half doesn’t

resemble the other half (lopsided in shape), providing a warning sign of melanoma. There is

no consensus on what asymmetry extent is required before one can tell that the skin lesion is

considered asymmetric. It has been shown that the percentage of disagreement between der-

matologists on the presence of asymmetry is around 5-10% [4]. A more objective measure-

ment of asymmetry is thus deemed necessary.

Asymmetry evaluation is carried out by separating the lesion into four sectors using orthog-

onal axes that pass through the lesion centroid and are aligned so that minimum asymmetry

(maximum symmetry) is obtained [7]. Different attempts have been made to automatically

determine the asymmetry of skin lesions in literature, which can be summarized as shown in

Table 1.

Color variegation is considered the earliest sign of melanoma, and has a high predictability

for the diagnosis of the disease. In fact, studies have demonstrated that color variegation might

be the most important singular discriminator of melanoma [15]. It refers to the presence of

two or more shades of pigment (two or more colors) within the skin lesion border. As opposed

to benign lesions which tend to be generally uniform in color, melanoma lesions tend to often

contain more than two colors, meaning that the color composition within the skin lesion is

inhomogeneous. Melanoma in particular contains one or more of these six suspicious shades

of color: white, red, light brown, dark brown, blue-gray, and black.

To characterize the color composition within lesions different approaches have been pro-

posed in literature as depicted in Table 2.

Table 1. Determining asymmetry of skin lesions in literature.

1 Measuring asymmetries of skin lesions [8]

2 Determining the asymmetry of skin lesion with fuzzy borders [9]

3 Automatic detection of asymmetry in skin tumors [4]

4 Digital videomicroscopy and image analysis with automatic classification for detection of thin melanomas [10]

5 Digital dermoscopy analysis for the differentiation of atypical nevi and early melanoma [11]

6 Qualitative asymmetry measure for melanoma detection [12]

7 Irregularity and asymmetry analysis of skin lesions based on multi-scale local fractal distributions [13]

8 Determination of optimal axes for skin lesion asymmetry quantification [14]

https://doi.org/10.1371/journal.pone.0234352.t001

Table 2. Characterizing color variegation in literature.

1 Skin cancer diagnostics with an all-inclusive smartphone application [16]

2 Detection of melanoma from dermoscopic images of naevi acquired under uncontrolled conditions [17]

3 Automatic color segmentation of images with applications in detection of variegated coloring in skin tumors [18]

4 Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule [19]

5 Automated malignant melanoma detection using Matlab [20]

https://doi.org/10.1371/journal.pone.0234352.t002
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Most early melanomas (i.e. stage 0) tend to be larger than 6mm in diameter (i.e. size of a

pencil eraser). Some studies argue that smaller diameters can exist in melanoma, which makes

this criterion not absolute especially that 10% of melanomas tend to be missed in the early

diagnosis (i.e. diameter <6mm) if the diagnosis was based only on diameter, making it prefer-

able to use a computer vision system when evaluating diameter [21]. Table 3 lists different

studies used to find the skin lesion diameter.

The aim of this paper is to present an automated approach to determining skin lesion asym-

metry, color variegation, and diameter in dermoscopic images, where different methods and

measures are proposed for carrying out this task. Border irregularity (i.e. the B feature in the

ABCD rule) has been discussed in our other work in [25].

Methods

Image segmentation

In this section we describe the segmentation method utilized in the paper. In particular, we

propose an improved version of Otsu’s method [26] for skin lesion segmentation coupled with

pre-processing and post-processing stages as described below.

Say we have two classes: lesion (L) and skin (S), the variance of the pixels in those two clas-

ses can be defined as:

s2
L kð Þ ¼

Xk� 1

i¼0

ði � mLðkÞÞ
2 pi
PLðkÞ

ð1Þ

s2
S kð Þ ¼

XL� 1

i¼k

ði � mSðkÞÞ
2 pi
PSðkÞ

ð2Þ

where k is the graylevel value, [0, L − 1] is the range of graylevel (intensity) levels, pi is the num-

ber of times pixel (graylevel) i occurred in the image which can be obtained from the image

histogram. The histogram is normalized and perceived as a probability distribution, that is:

pi ¼
ni

N
; pi � 0;

XL� 1

i¼0

pi ¼ 1 ð3Þ

where ni is the number of pixels at graylevel i, and N = (n0+ n1+ . . .nL − 1) represents the total

number of pixels in the image.

μL and μS represent the lesion class mean and skin class mean, respectively, which are

defined as:

mL kð Þ ¼
Xk� 1

i¼0

ipi
PLðkÞ

ð4Þ

Table 3. Measuring skin lesion diameter in literature.

1 Simple matlab tool for automated malignant melanoma diagnosis [22]

2 Skin cancer diagnostics with an all-inclusive smartphone application [16]

3 Computer-aided diagnosis ofmelanoma using border and wavelet-based texture analysis [23]

4 Diagnosis of skin lesions based on dermoscopic images using image processing techniques [24]

https://doi.org/10.1371/journal.pone.0234352.t003
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mS kð Þ ¼
XL� 1

i¼k

ipi
PSðkÞ

ð5Þ

PL and PS represent the probabilities of class occurrence of the lesion and skin, respectively,

defined as:

PLðkÞ ¼
Xk� 1

i¼0

pi ð6Þ

PSðkÞ ¼
XL� 1

i¼k

pi ð7Þ

The within class variance which Otsu’s method attempts to minimize by finding an optimal

threshold is defined as:

s2
WðkÞ ¼ PLðkÞ � s2

LðkÞ þ PSðkÞ � s2
SðkÞ ð8Þ

The between class variance on the other hand, which Otsu’s method attempts to maximize,

is defined as:

s2
BðkÞ ¼ PLðkÞ � ðmLðkÞ � mTðkÞÞ

2
þ PSðkÞ � ðmSðkÞ � mTðkÞÞ

2 ð9Þ

where μT(k) is the total mean, defined as:

mTðkÞ ¼ PLðkÞ � mLðkÞ þ PSðkÞ � mSðkÞ ð10Þ

This is equivalent to Eq 11, that is subtracting the within-class variance from the total vari-

ance (σ2) of the combined distribution.

s2
BðkÞ ¼ s

2 � s2
WðkÞ ð11Þ

The threshold k with the maximum between-class variance has also the minimum within-

class variance.

The class separability η is:

Z ¼
s2
BðkÞ

s2
WðkÞ

ð12Þ

In our proposed improvement, which we refer to here as Otsu-II, instead of using PL(k) and

PS(k) we use the new measures DL(k) and DS(k) defined as:

fLðkÞ ¼ ipi; fi 2 R : 0 < i < k � 1g ð13Þ

DLðkÞ ¼ s
0

ðfLðkÞÞ ð14Þ

fSðkÞ ¼ ipi; fi 2 R : k < i < L � 1g ð15Þ

DSðkÞ ¼ s
0

ðfSðkÞÞ ð16Þ
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where σ0 is the normalized standard deviation (s
0

¼
si
N). s2

W and s2
B can be rewritten as:

s2
WðkÞ ¼ DLðkÞ � s2

LðkÞ þ DSðkÞ � s2
SðkÞ ð17Þ

s2
BðkÞ ¼ DLðkÞ � ðmLðkÞ � mTðkÞÞ

2
þ DSðkÞ � ðmSðkÞ � mTðkÞÞ

2 ð18Þ

Thus, how spread out the pixel intensities are in each class is taken into account, such that

when the pixel intensities are spread apart D will be large and when they are tightly bunched

together D will be small. Standard deviation is used since it expresses the statistical distribution

of each class more accurately than variance, especially that the dispersion of classes are mea-

sured as the distance between the mean of a class and any intensity value, which is propor-

tional to the standard deviation rather than variance. This makes the optimal threshold less

biased towards the larger variance among two class variances (i.e. larger dispersion of two clas-

ses) [27]. Segmentation performance of using the new measures will be demonstrated in terms

of the Dice coefficient [28] in the results section.

To improve the segmentation process further, we introduce pre-processing and post-

processing operations which together form the proposed approach depicted in Fig 1. The

approach starts by locating the important parts of the image (i.e. lesion). Otsu-II is then

applied on the salient object to obtain a binary image that will be used as a groundtruth in the

trimap generation step in which each image pixel will be assigned to either the lesion, skin, or

as a mixture of both the foreground (lesion) and background (skin). The alpha matte is finally

created to distinguish more accurately between the skin and lesion, eventually finding the final

segmentation.

Fig 1. Proposed skin lesion segmentation approach.

https://doi.org/10.1371/journal.pone.0234352.g001
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Saliency detection is the process of automatically locating the important parts of an image,

where saliency refers to the unique features (i.e. pixels) of the image. The output of the saliency

detection step is a map where the intensity of each pixel represents the probability of the pixel

belonging to a salient object. In this work, we use a Discriminative Regional Feature Integra-

tion approach (DRFI) for saliency detection [29, 30] as it is considered one of the most efficient

algorithms for saliency detection [30].

After detecting the salient objects, we apply our improved Otsu method (i.e. Otsu-II) on the

objects to create binary images that will serve as image masks (i.e. groundtruth) in the trimap

generation step, in which each pixel in the image is assigned to three possible values: definite

foreground (lesion), definite background (skin) and uncertain (a mixture of foreground and

background pixels). To create the trimap, erosion and dilation morphological operations are

applied on the binary image mask of the skin lesions (i.e. salient objects). The trimap can be

generated using the following formula [31]:

MðRÞ ¼ FðEÞ [ BðDÞ [MðGÞ ð19Þ

where M(.) refers to a set of pixels in the image, and F(.) and B(.) are the functions that extract

the foreground and background pixels, respectively. R, E, D and G denote the trimap, eroded

image, dilated image, and the gap between the foreground and background resulting from the

morphological operations, respectively. F(E) represents the foreground pixels (white), B(D)

represents the background pixels (black), and M(G) represents the uncertain pixels (gray).

The final step in the proposed approach is matting, that is finding (creating) the alpha

matte/channel αn which is used to accurately distinguish between the foreground and back-

ground, rendering the final segmentation. In this step, we utilize KNN (K-nearest Neighbors)

matting [32] to find αn, which is represented as follows:

an ¼ KNN fIn;Tng ð20Þ

where the inputs In and Tn are the original input image and the corresponding trimap image,

respectively.

As we are going to measure asymmetry (especially when using Scale-invariant feature trans-

form (SIFT)) and color variegation using the original color image, we would like to focus only

on the extracted skin lesion rather than the background and any accompanying artefacts. This

can be achieved by merging the original image (i.e. color image) and its corresponding alpha

matte described above. Fig 2 shows some examples on original images and their extracted

lesions using this process.

The proposed segmentation approach was applied on 204 randomly chosen skin lesion

images (nevus: 175, melanoma: 29) extracted from the “ISIC 2018: Skin Lesion Analysis

Towards Melanoma Detection grand challenge datasets” [33, 34]. The Dice coefficient [28] is

used to measure the similarity between two images by finding the spatial overlap between two

binary images, resulting in a value that lies between 0 (no overlap) and 1 (agree perfectly). The

Dice coefficient can be defined as follows:

D ¼
2ðA \ GÞ
Aþ G

� 100% ð21Þ

where A is the algorithm output and G is the ground truth.

Asymmetry

For measuring asymmetry we build a vector of three measurements that will be subsequently

used to train and test a classifier (i.e. decision tree) as will be explained in more detail in the
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coming sections. Decision trees offer a structured way of decision making in pattern recogni-

tion and are characterized by an order of set nodes, such that each of the internal nodes is asso-

ciated with a decision variable of one or more features [35]. The decision tree algorithm used

in this paper is CART (Classification and Regression Trees) [36], which is represented as a

binary tree (i.e. two branches). Tree nodes are expanded (i.e. depth) until all leaves are consid-

ered pure, that is when no further splits can be made.

SIFT based similarity. SIFT [37] is used as a sparse local descriptor where interest key-

points are detected in an image to describe invariant features (invariant to image scaling, rota-

tion, and translation) in a local patch, such that an image will be represented as a collection of

local feature vectors (shape descriptors) provided that a feature is a 128-dimensional vector

representing a local region in the image. The goal of shape descriptors is to uniquely character-

ize the shape of the object to enable comparison of 2D object silhouettes. The group of feature

vectors created by SIFT would thus represent the shape of the image. Using SIFT, we are

detecting stable feature points in an image and then for each point a set of features that

describe a small region around the point are provided, meaning that we are eventually extract-

ing local information from digital images. Those extracted features are then used to match

objects between different scenes.

We split the extracted lesions (Fig 2) vertically and horizontally across the centre into four

equal halves, and use SIFT to measure the image similarity (showing correspondences)

between each opposite half (top vs. bottom and right vs. left) using the 128-dimensional local

feature vectors. The total similarity score is measured as vs + hs, where vs and hs are the vertical

and horizontal similarity, respectively. The greater the value the more similar the two halves of

the skin lesion, and vice versa. Asymmetry means that the two halves are not similar. In mea-

suring vs and hs, we identify the best two matches for each keypoint using OpenCV’s brute-

force matcher, where a feature descriptor on one image half will be matched with all feature

descriptors on the other half and the best (closest) two matches will be returned based on the

Euclidean distance. This is followed by the ratio test technique to remove any outliers (false

positives) resulting from the brute-force matching step. Since we select the best two matches

Fig 2. The original color image and its extracted lesion.

https://doi.org/10.1371/journal.pone.0234352.g002
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for each keypoint descriptor, ratio test considers a match to be good if the distance ratio

between the first and second match is smaller than a specific empirical value (we chose it to be

0.7 which is a typical value for Lowe’s ratio). It should be emphasized that we only investigate

the asymmetry of shape in this work, whilst dermatologists in general consider asymmetry in

shape, color and structural (border) distribution.

Fig 3(a) shows an example of an extracted skin lesion and its four halves (vertical and hori-

zontal halves), Fig 3(b) shows the keypoints of each half (in red), and Fig 3(c) shows the lines

connecting the matching keypoints between each half. The similarity evaluates to 23 between

the left and right halves and evaluates to 22 between the top and bottom halves. The total simi-

larity in this skin lesion is the sum of the two similarity values (i.e. 23 + 22 = 45), making it

tend to be more asymmetric and the likelihood to be a melanoma lesion.

Projection profiles. Projection profiles [38] are data structures that are used to store the

number of foreground pixels when the image is projected over the X-Y axes. They are one-

dimensional representations of a two-dimensional image content, and are considered as com-

pact representations of images since many useful information is retained in projections. In this

approach, symmetry is measured by projecting the segmented skin lesion in the x and y direc-

tions and then comparing their histograms. Assume we have a binary image of size M × N (M:

height, N: width), the projection of the image onto a line can be obtained by partitioning the

line into bins and finding the number of 1 valued pixels that are perpendicular to the bin. Hor-

izontal and vertical projections can then be obtained by counting the number of 1 pixels from

each bin in the horizontal and vertical directions, respectively.

The horizontal projection is the number of foreground (skin lesion) pixels in each row, and

is defined as:

H½i� ¼
Xm� 1

j¼0

B½i; j�; 0 < i < N ð22Þ

where B[i, j] is the pixel value at (i, j), and H[i] is the number of foreground pixels in the ith

horizontal row. Thus, for each horizontal line of pixels the number of foreground pixels are

computed.

On the other hand, the vertical projection represents the number of foreground pixels in

each column, and is defined as:

V½j� ¼
Xn� 1

i¼0

B½i; j�; 0 < j < M ð23Þ

where V[j] is the number of foreground pixels in the jth vertical column. The vertical projec-

tion of each column is thus computed.

The horizontal and vertical projection profiles can be represented as a histogram (Fig 4).

The values of each histogram represent the density distribution of the skin lesion.

After finding the two histograms, they are compared using a correlation method. Let I
denote the pixel intensity, H1(I) is the histogram which represents the number of pixels in the

first image having pixel intensity I, and H2(I) is the histogram which represents the number of

pixels in the second image having pixel intensity I. Using the correlation method, the two his-

tograms are compared based on the following equations:

d H1;H2ð Þ ¼

P
IðH1ðIÞ � H0

1ÞðH2ðIÞ � H0

2ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
IðH1ðIÞ � H0

1ÞðH2ðIÞ � H0

2Þ
p ð24Þ

PLOS ONE Towards the automatic detection of skin lesion shape asymmetry, color variegation and diameter

PLOS ONE | https://doi.org/10.1371/journal.pone.0234352 June 16, 2020 8 / 21

https://doi.org/10.1371/journal.pone.0234352


Fig 3. (a) Extracted skin lesion and its four halves along the vertical and horizontal axes (b) Keypoints (in red) of

each half (c) Matching keypoints between each half (top figure: Left and right halves, bottom figure: Top and

bottom halves).

https://doi.org/10.1371/journal.pone.0234352.g003
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where,

H0

k ¼
1

N

X

J

HkðJÞ ð25Þ

is the mean value of each pixel in image k, and N is the total number of histogram bins.

Symmetrical shapes (i.e. circle) evaluate to a correlation value of 1. The more asymmetrical

the shape the less the correlation value.

Skewness. Image moments are useful in describing objects after the segmentation is carried

out. They are scalar quantities that are used to capture the image’s signficant features. A mea-

sure of asymmetry in an image can be given by its skewness, which is a statistical measure of a

distribution’s degree of deviation of the respective projection from symmetry. If the projection

is symmetric with respect to the mean (origin), the corresponding skewness evaluates to zero.

The degree of skewness can be determined using two third order moments: M30 and M03.

To map from the image domain to the momenta domain, the uniqueness theorem of the

momenta [39] can be used which states that the momenta sequence (general moment) Mpq is

determined by the density distribution function (i.e. skin lesion image). A general/standard
moment Mpq of an image f(x, y) is defined as:

Mpq ¼
X

x

X

y

xpyqf ðx; yÞ ð26Þ

Fig 4. Histograms of horizontal and vertical projections.

https://doi.org/10.1371/journal.pone.0234352.g004
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where f(x, y) are the graylevels of individual pixels, p and q are positive integers, and r = p + q
is the order of the moment.

The third order moment is the skewness of distances between the pixels in the image and

its geometrical centre, measuring the bias of the distribution of pixels. The direction of the

skewness can be obtained from the sign of the result of the moment, such that when the

moment is negative the distribution will bias towards the left of the centre, and when positive

will bias towards the right of the centre [40].

The skewness of the horizontal and vertical projections can be defined as shown in Eqs 27

and 28, respectively.

skewnessH ¼
M30ffiffiffiffiffiffiffiffiffi
M20

3
p ð27Þ

skewnessV ¼
M03ffiffiffiffiffiffiffiffiffi
M02

3
p ð28Þ

Color variegation

The identification of colors in skin lesions is considered a subjective task even for experienced

dermatologists, which deems it necessary to develop an automatic objective approach to iden-

tifying colors in skin lesions. In this paper, we use the same rationale as in [19, 20] to deter-

mine the suspicious colors present in each skin lesion. However, we use the CIELab color

space which is more representable of the human perception than the RGB color space. More-

over, we derive the suspicious colors CIELab values based on the color distribution of our data-

set, making it more accurate in determining the suspicious colors. In addition, it is not clear

how the colors in [19, 20] are derived (apart from the white, black and red colors in [20] where

the standard RGB values are used), as the RGB value for the white color in [19] does not repre-

sent the actual color (another color is produced rather than the color of correspondence).

Authors of those two studies used only one representative value for each suspicious color

which might not be absolute (not representative enough) especially that we can have different

levels (shades) of the same color (i.e. light brown). As opposed to those two studies, we use

Minkowski distance instead of Euclidean distance.

Before attempting to find color variegation (The C feature in the ABCD rule) in the skin

lesion, we convert the RGB image to the CIELab (or CIEL�a�b�) color space [41] since the

RGB color space does not closely match the human visual perception, whereas the CIELab

color space is designed to approximate/model the human vision (i.e. the L component closely

matches the human perception of lightness) and contains in theory every single color the

human eye can perceive, allowing it to exploit the characteristics of the human visual perecep-

tion better. Moreover, CIELab is considered more precise since the distance between colors

using this color space corresponds to the perceived color distance. CIELab is device indepen-

dent, meaning that the color model is based on the perception of the human eye and is

designed to describe what colors look like regardless of what device they are displayed on.

To determine the range of color shades that represent the six suspicious colors of melanoma

based on our image dataset, we extract and analyze the color palettes of all our images based

on which we are able to determine the range of shades that would determine dark brown, light

brown, . . . etc. In particular, each image in the dataset is represented in terms of its dominant
colors which constitute the image’s palette, such that those dominant colors would be the best

possible colors by which we can display the image with the least amount of error. Clusters of

dominant colors (group of pixels) are formed using k-means clustering [42, 43], where each
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pixel in the image has a CIELab value associated with it. In this paper we set the number of

clusters to 7 (6 suspicious colors + pure black) since we omit the pure black color (i.e. CIELab

= [0, 0, 0]) in our measurement of the number of suspicious colors as it most likely belongs to

the background (skin).

The process consists of applying k-means with a specific number of clusters (i.e. dominant

colors) which is equal to the number of colors the color palette will be composed of. Each

pixel color is then affected to the nearest cluster centroid according to the Euclidean distance.

K-means minimizes the within-cluster sum of squared distances (i.e. Euclidean distance)

between the centroid and the other pixels in the cluster. Using Euclidean distance in the CIE-

Lab space is uniform with difference perceived by the eye.

K-means finds the dominant colors in an image through an iterative corrective process,

where colors can be thought of as points in the color space cloud that we aim to cluster around

some mean (dominant color). K-means starts with a random palette of seven dominant colors

{1, 2, . . ., k} as the starting point, where k is the number of clusters representing the dominant

colors. Each pixel is then assigned a color label of the nearest dominant color. Image pixels in

this case are thus grouped by their dominant color value. New averages are then computed to

update the cluster centers. If image pixels belong to the same clusters for two successive itera-

tions, the process is considered finished and the final color palette is formed. Fig 5 shows a

skin lesion image and its 3D scatter plot representing the different pixel colors in CIELab color

space, in addition to the lesion’s color palette resulting from k-means clustering with k = 7.

The CIELab values of the color palette from left to right are: [0, 0, 0], [59.263, 6.519, -1.826],

[47.051, 9.465, 2.307], [67.222, 3.355, -4.661], [22.237, 0.779, -3.284], [40.018, 10.696, 4.107],

[53.075, 8.206, -0.027].

Representing the image in terms of its dominant colors is a more realistic approach when

working on color variegation; for instance the image shown in Fig 5 is composed of 1480

unique colors, which makes it very difficult in determining the range of color shades that

would represent the 6 suspicious colors of melanoma.

Analyzing the images used in our experiments, the suspicious CIELab color ranges (i.e.

[min] − [max]) are determined as shown in Table 4. For the suspicious colors white, red and

blue-gray, since they are not expressed in our dataset we use their standard CIELab color val-

ues. Skin lesions which have any of their pixel CIELab color values belonging to the range of

black, dark brown, or light brown color values are considered to possess those colors. For the

colors of white, red and blue-gray, a skin lesion is considered to possess one of those colors if

the (i) Minkowski distance between the pixel color and any of the aforementioned colors is

less than a threshold T, measured as being the half of the Minkowski distance between the two

extremes of colors (white and black), which evaluates to 50 (ii) pixels that belong to the suspi-

cious color represent more the 5% of the skin lesion pixels.

Minkowski distance is considered a generalization of the Euclidean and Manhattan dis-

tances [44] and is defined as [45]:

dmðxi; xjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

k¼1

jxik � xjkj
pp

s

ð29Þ

where p� 1 is a real number. The distance represents the Manhattan distance and the Euclid-

ean distance when p = 1 and p = 2, respectively.

The advantage of using Minkowski distance is that mathematical results can be shown for

the whole class of distance functions, and users can adapt the distance function to suit the

needs of the application by modifying the Minkowski parameter p, which is set to p = 3 in this

paper. Based on the above, the image in Fig 5 is composed of 3 suspicious colors.
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Diameter

To measure the diameter of the skin lesion we utilize Feret’s diameter [46, 47], which is the

distance between two parallel tangents at the contour of the object (i.e. skin lesion) that are

Fig 5. (a) 3D scatter plot of skin lesion image pixels in CIELab color space (b) Skin lesion color palette showing

the 7 dominant colors in the image (the first color which represents the pure black color will be omitted from our

color variegation measurement).

https://doi.org/10.1371/journal.pone.0234352.g005

Table 4. CIELab melanoma suspicious color values.

Color CIELab

Black [0.06, 0.27, 0.10] − [39.91, 30.23, 22.10]

Dark brown [14.32, 6.85, 6.96] − [47.57, 27.14, 46.81]

Light brown [47.94, 11.89, 19.86] − [71.65, 44.81, 64.78]

White [100, 0, 0]

Red [54.29, 80.81, 69.89]

Blue-gray [50.28, −30.14, −11.96]

https://doi.org/10.1371/journal.pone.0234352.t004
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located on opposite sides of the object at an arbitrary selected angle. The maximum Feret

diameter of an object is the distance between its two furthest points measured in a given direc-

tion. The average value over many orientations can also be used, meaning that Feret’s diameter

can be referred to as the average distance between two tangents in the opposite sides of the

object parallel to some fixed direction. In this paper we use the maximum Feret diameter as

our diameter measure. Finding the Feret’s diameter of some object shape is a commonly used

measure in shape analysis.

Feret’s diameter is also called caliper diameter since the measurement involves placing the

object for which we want to find the diameter inside the jaws of a caliper, with the caliper ori-

ented at some specified angle (i.e. 0˚, 45˚, 90˚, 135˚). The jaws are then closed on the object

tightly while maintaining the angle. The distance between the jaws is the Feret diameter at

angle (direction) θ. In terms of digital images, this is made by isolating the corner pixels of the

object’s perimeter and taking the maximum distance between each corner pixel to all other

corner pixels, meaning that Feret’s diameter of an object in direction θ is the projection of the

object on the axis oriented in direction θ. It should be emphasized that Feret’s diameter is

based on the binary 2D image of the object. The main advantage of using Feret’s diameter

over other measures is due to its correspondence with the real physical diameter of the object.

In other words, it corresponds to the length that would be measured if we handle the object

between the teeth of a caliper.

As the skin lesion diameter in the real world is measured in millimeters (mm) and our

diameter results are returned in pixels, we need to represent our diameter results in terms of

the standard unit (mm); this can be made using spatial calibration (geometric correction)

which involves calibrating the image against a known value (i.e. mm) and then applying such

calibration to the uncalibrated image (i.e. in pixels). The idea is thus to represent the diameter

in units rather than pixels. An image produced in units is called a spatially calibrated image.

However, to conduct such calibration one needs to know the original measure in real world

and then map that to pixels. Since we do not have the original real world measures available,

we used an image in our dataset (i.e. ISIC dataset) that has a ruler displayed (Fig 6(a)) to get

an estimate on the skin lesion measure in millimeters and deduce from that how many pixels

would be in 1 mm. The image was also zoomed in to better reflect the sizes of the skin lesions

in our test images. Doing such calibration, we found that for our 256 × 256 images we had 29.7

pixels/mm. Fig 6(b) shows samples of skin lesion images, their segmentations and correspond-

ing Feret’s diameter values.

After applying the methods explained above, we use the extracted features to derive a deci-

sion on the asymmetry, color variegation (i.e. number of suspicious colors), and diameter on

the skin lesion images fed to our system.

Results and discussion

Applying Otsu-II (the improved Otsu thresholding version we propose in this paper) and the

original Otsu approach on the 204 images lead to a Dice similarity coefficient value of 87.7%

and 82.5%, respectively. Fig 7(a) shows some examples on segmentation results obtained by

Otsu and Otsu-II methods, along with the groundtruth of each corresponding image. As can

be noticed, Otsu-II is able to improve the area coverage of the skin lesion.

It should be emphasized that we tested another adaptation of Otsu’s method where we kept

PL(k) and PS(k) from Eqs 6 and 7 in Eqs 17 and 18 (i.e. Otsu-II), resulting in the new within

and between class variances shown in Eqs 30 and 31, respectively, which we refer to here as
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Otsu-II0:

s2
WðkÞ ¼ DLðkÞ � PLðkÞ � s2

LðkÞ þ DSðkÞ � PSðkÞ � s2
SðkÞ ð30Þ

s2
BðkÞ ¼ DLðkÞ � PLðkÞ � ðmLðkÞ � mTðkÞÞ

2
þ DSðkÞ � PSðkÞ � ðmSðkÞ � mTðkÞÞ

2 ð31Þ

Having three Otsu related methods, we expanded our evaluation on two more types of data-

sets. One dataset contained skin lesions that cover most of the image (i.e. large lesions) and

another set where the skin lesion comprises a small region of the image. The dataset used with

Otsu and Otsu-II methods above contained a mix of such lesions (i.e. mixed). The datasets

that contained images with large and small skin lesions were composed of 129 and 162 images,

respectively.

Fig 6. (a) Skin lesion image with a ruler used to spatially calibrate our test images and deduce the pixels/mm value (b)

Skin lesions’ Feret’s diameter (in pixels and millimeters).

https://doi.org/10.1371/journal.pone.0234352.g006
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The Dice similarity of the three Otsu related methods on the different datasets is summa-

rized in Table 5. The poor performance of Otsu-II0 on small images was due to the fact that it

was not robust to artifacts (i.e. hair, ruler) that were more apparent in images with small skin

lesions.

Fig 7. (a) Skin lesion images segmented using Otsu and Otsu-II methods, along with their corresponding

groundtruth (b) Skin lesion images segmented using our proposed segmentation approach and U-Net, along with

their corresponding groundtruth.

https://doi.org/10.1371/journal.pone.0234352.g007
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To evaluate the performance of our segmentation approach (Fig 1) against state-of-the-art

methods, we compare our approach with U-Net [48], an end-to-end encoder-decoder network

firstly used in medical image segmentation and has also been utilized in skin lesion segmenta-

tion in dermoscopic images [49, 50]. U-Net is trained on 1935 dermoscopy images along with

their corresponding groundtruth response masks. Images used to train U-Net were resized to

256 × 256 pixels, and the model was trained for 20 epochs on a Tesla P100 GPU. Training the

model took 27.1 minutes and testing it on the 204 images took 18.1 seconds. Fig 7(b) shows

some samples of test images, their corresponding groundtruth, and the results using our pro-

posed segmentation approach and U-Net. The average Dice similarity of the 204 test images

evaluates to 88% and 76.2% for our proposed segmentation approach and U-Net, respectively.

Visual results (Fig 7(b)) show that our approach is able to detect the fine structures of skin

lesion borders—a crucial factor when detecting skin lesion border irregularity (i.e. B feature in

the ABCD rule)—better than U-Net, a feature that U-Net seems to lack. The results of U-Net

as can be noticed are a bit blurry. Such blurriness can be removed by applying a thresholding

technique, but we kept the original results of U-Net as-is for comparison purposes.

204 skin lesion images were sent to a dermatologist (Dr.Sally O’Shea) to label as symmetric
or asymmetric based on shape (most of the skin lesions contained 1 suspicious color and a

diameter larger than 150 pixels—5.1 mm). Of the 204 images labeled by the dermatologist, 35

images were classified as being symmetric and 169 images as asymmetric. Fig 8 shows some

samples of symmetric and asymmetric images. The extracted asymmetry features/measure-

ments (SIFT based similarity, projection profiles, and skewness) have been used to train and

test a decision tree on an 80: 20 ratio. That is, 80% of the data was used for training the decision

tree and 20% of the data was used for testing the decision tree. 136 asymmetric and 28 symmet-

ric images were used for training the decision tree. 33 asymmetric and 7 symmetric images

were used for testing the decision tree. After training the decision tree, 30 and 2 asymmetric

Table 5. Dice similarity of Otsu related methods on three datasets.

Dataset Otsu Otsu-II Otsu-II0

Small 71.2% 74% 49.6%

Large 84.6% 88.7% 88.5%

Mixed 82.5% 87.7% 85.6%

https://doi.org/10.1371/journal.pone.0234352.t005

Fig 8. Samples of symmetric and asymmetric images labeled by the dermatologist.

https://doi.org/10.1371/journal.pone.0234352.g008
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and symmetric images were predicted correctly, respectively, meaning that an 80% accuracy

has been obtained. The decision tree as can be noticed performed better on asymmetric

images; this can be due to having more asymmetric images in the training data. But, in general,

we believe that more data samples which are also balanced (number of asymmetric and sym-

metric samples are the same) could improve the results significantly. This requires much labor

work (i.e. labeling by dermatologists) and is a topic of interest we would be willing to explore

in future studies.

To determine the asymmetry, color variegation, and diameter of an unknown (test) sample,

the asymmetry features (SIFT based similarity, projection profiles, and skewness) are extracted

and fed to a decision tree which is used to predict whether the skin lesion is symmetric or

asymmetric based on the extracted measures. The number of suspicious colors in the skin

lesion are then determined based on the values shown in Table 4, and the diameter is then

measured based on Feret’s diameter explained above. Fig 9 shows a skin lesion and its

extracted features using the proposed approach.

Conclusion

To overcome the subjectivity in measuring asymmetry and color variegation, and to avoid

missing melanoma in the early diagnosis due to possessing a diameter less than 6mm, an

objective approach has been proposed where the extracted asymmetry measurements were

used to train a decision tree which was then utilized for predicting the asymmetry of new skin

lesion images. The range of the CIELab color space colors that demonstrate the suspicious col-

ors of melanoma have been derived, and the diameter has been found using the Feret’s diame-

ter method. The approach is able to predict asymmetry with 80% accuracy and measure color

vriegation and diameter objectively. The proposed Otsu improvement (Otsu-II) outperforms

the original both Otsu and Otsu-II0 in skin lesion segmentation, and when combined with the

pre/post processing steps to represent our segmentation approach, this provides better seg-

mentation results than U-Net. In summary, the contribution of our work involves proposing a

segmentation approach that outperforms standard segmentation approaches, an asymmetry

measure composed of a vector of SIFT based similarity, projection profiles, and skewness

which can then be automatically determined using a trained decision tree, and objective

approaches to determine the number of suspicious colors in a skin lesion along with its

Fig 9. Skin lesion asymmetry, color variegation, and diameter features extracted using the proposed approach.

https://doi.org/10.1371/journal.pone.0234352.g009
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diameter. The measures can be incorporated in a desktop computer vision system where clini-

cians can feed the system with dermoscopic images and obtain an objective evaluation on

those measures. In future work we aim at using a more balanced dataset with more symmetric

and asymmetric samples (requires more laborious work), as this could improve the decision

tree prediction accuracy. Enhancing Otsu-II and making it more robust to different artifacts

will also be investigated. Moreover, different machine learning approaches will be analyzed.
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