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Abstract 

 

This paper examines the impact of imposing different separability assumptions in the 

specifications of the standard hierarchical KLEM production function in a computable 

general equilibrium (CGE) model. The appropriate means of introducing energy to sectoral 

production functions in CGE models has been a source of debate for a number of years. 

However, while modellers often subject their model results to sensitivy analysis with respect 

to the values associated with elasticities of substitution between inputs, it is rarely the case 

that the structure of the production function is subjected to testing. However, the chosen 

structure reflects the modeller’s view about elasticity between different inputs and will have 

implications for model results wherever there are changes in relative prices. We illustrate our 

argument by introducing  a simple demand shock to a CGE model of the Scottish economy 

(targetted at the energy supply sector) under different assumptions regarding the structure of 

the KLEM production function and separability assumptions therein. Specifically, we 

conduct both systematic and random parameter variation within alternative KLEM 

production structures, examining the impacts on a number of model outputs, though with 

primary focus on energy use in production. We find that if energy is introduced to the value-

added rather than intermediates nest there is greater variation in energy use in production in 

response to the demand disturbance.  

 

Keywords: general equilibrium, KLEM production function, separability assumptions. 
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An investigation of issues relating to where energy should enter the production function 

 

1 Introduction 

 

The appropriate specification of nested production functions in computable general 

equilibrium (CGE) models, and associated use of ‘separability assumptions’, has been the 

source of debate in the literature for a number of years (see, for example, Hertel and Mount, 

1985; Despotakis and Fisher, 1988; Li and Rose, 1995; Naqvi, 1998). In particular, this 

debate has focussed on the specification of KLEM functions, which incorporate and 

distinguish capital, labour, energy and material inputs. However, while parametric sensitivity 

analyses of CGE model results to model specification are common, these rarely (if ever) 

include consideration of alternative structures in the production function. This paper extends 

on previous sensitivity analyses of KLEM model results for the Scottish economy (e.g. see 

Anson and Turner, 2009, and Hanley et al, 2009), which focus on values attached to 

elasticities of substitution within the KLEM production function. However, the current paper 

focuses on the impact of varying the structure of the production function itself; that is the 

manner in which energy is introduced as an input to production.  

 

The empirical analysis in this paper focuses on introducing a very simple change in economic 

activity that would be expected to have a short-run impact on relative input, especially 

energy, prices in the KLEM production function. We then examine the sensitivity of key 

results to alternative nestings of the KLEM production function, with particular attention to 

the point at which energy enters. Moreover, the simulation is designed to produce changes in 

prices that are transitory so to allow us to confirm that the particular nesting of the production 

function only matters relative prices change.  
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The specific simulation involves introducing a disturbance to export demand for the outputs 

of the (relatively energy intensive) Scottish energy supply sectors. A simple demand 

disturbance is used because, in the absence of any lasting constraints on supply, the CGE 

simulations should produce input-output type results over the long-run, with prices returning 

to their pre-shock levels (McGregor et al., 1996). We further simplify by assuming the 

nominal price of labour is determined exogenously (e.g. a national bargaining scenario in the 

regional model). This makes the supply of labour completely elastic while capital supply is 

completely inelastic in the short run. This implies that the source of all price changes in 

Scottish production sectors is changes in the capital rental rate up to the point where capital 

stocks are fully adjusted in response to the shock.  

 

Thus, with no long-run run change in relative input prices, the impact on macroeconomic 

variables should be the same regardless of the nesting of the production function. The model 

confirms these results. However, the short-run impact is sensitive to the particular nesting of 

the production function. More generally, we would only expect differing price elasticities 

between inputs, either directly imposed or implied by the nesting of the production function, 

to matter where relative prices change. Thus, the sensitivity of results to the nesting of the 

production function, and elasticities imposed therein, observed here in the short-run would be 

expected over the longer run where there is a lasting impact on relative prices. This would 

occur, for example, in the presence of supply constraints and/or increased efficiency in the 

use of any input to production.  

 

The remainder of the paper is structured as follows. Section 2 reviews the relevant literature 

concerning the introduction of energy as an input to production through nested KLEM 
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production functions in a CGE context. Section 3 outlines the AMOSENVI CGE model of 

the Scottish economy. Section 4 then presents and discusses the results of simulating a simple 

(export) demand shock targeted at the domestic energy supply sector under different 

specifications of the KLEM production function. We offer a summary and conclusions in 

Section 5.  

 

2 The introduction of energy to KLEM nested production functions 

 

Berndt and Wood (1975) noted that industrial energy demand is a derived demand initiated in 

the production process. This implies that, as with other inputs, industrial energy demand from 

a particular sector is dependent on the level of output, relative prices and the degree of 

technical flexibility. For this reason many analysts have sought to identify the appropriate 

technology for combining energy with other production inputs (e.g. Griffin and Gregory, 

1976; Berndt and Wood, 1979; Morrison and Berndt, 1981; Pindych and Rotemberg, 1983; 

Solow, 1987). Flexible functional forms are sometimes used in CGE models in the form of 

cost functions, as the dual to the production function. For example, Despotakis and Fisher 

(1988) and Li and Rose (1995) use Generalised Leontief, and Hertel and Mount (1985) a 

Translog cost function in their energy/environmental CGE models. However, the use of 

nested CES production functions has become more common in studies that use capital, 

labour, energy and materials in the so-called KLEM production functions (e.g. Prywes, 1986; 

Chang, 1994; Kemfert, 1998; Kemfert and Welsch, 2000 and Kuper and Van Soest, 2002). 

Nested CES production functions (with Cobb-Douglas, CD, and Leontief technology used as 

special cases where elasticities of substitution are set at 1 or 0 respectively) are commonly 

used in CGE models in general (see Perroni and Rutherford, 1995), and specifically in 

energy/environmental CGE models (e.g. Allan et al, 2007; Beauséjour et al, 1994, 1995; 
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Beghin et al, 1995, Böhringer and Rutherford, 1997; Hanley et al, 2006, 2009; Kamat et al, 

1999; Naqvi, 1998; Stephan et al, 1992; Turner, 2008, 2009; Zhang, 1998).  

 

The key characteristic of nested CES production functions is that each nest consists of an 

individual production function where the elasticity of substitution is the same regardless of 

factor proportions and scale (i.e. a constant elasticity of substitution all along the slope of 

each and every isoquant). For any one CES relationship, the elasticity of substitution must be 

the same among all factors. Appropriate nesting of CES relationships within a hierarchical 

structure is used to enhance the flexibility of the CES function. For example, in the three-

input case of capital, labour and energy inputs, this can look like Figure 1. Using such a 

hierarchical production function means that the elasticity of substitution between inputs, 

usually pairs, combined in different nests (levels) potentially differ. For example, in Figure 1, 

the value of the elasticity of substitution between capital and energy (K and E) in the capital-

energy composite input (or nest) is KE. Similarly, the elasticity of substitution between this 

composite and labour is L(KE). Adopting this production structure allows these elasticities to 

differ. Moreover, the relationships specified in the various nests need not all be of CES form. 

As mentioned already, CD and/or Leontief relationships can be specified at different levels 

between different pairs of inputs, where appropriate. 

 

[Insert Fig 1 around here] 

 

However, this type of nested production structure still retains a degree of inflexibility in that 

it requires the imposition of separability among the inputs. This separability argument is 

concerned with the fact that CES/CD production functions usually only allow substitutions 
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between pairs of inputs at any level in the hierarchy.
1
 At least one of these inputs typically is 

a composite input resulting from substitution between another pair of inputs at a lower level. 

For example, in Figure 1 this is the case with the composite capital-energy, KE, input. This 

has the implication that both of the inputs incorporated in the composite must substitute 

equally well for the third input. In the Figure 1 example, where labour substitutes for the 

capital/energy aggregate, this means that capital and energy must both substitute equally well 

for labour.  

 

Such ‘separability’ assumptions could lead to important substitution effects being lost. 

Specifically, again using Figure 1 as an example, any response of the capital-energy input 

ratio in response to a change in the price of labour that is attributable to differences in the 

relative substitutability of capital or energy for labour will not be captured. For this reason 

Hertel & Mount (1985), Depotakis & Fisher (1988) and Li & Rose (1995) argue that it is 

more appropriate to adopt some type of flexible functional form (FFF) production function.
2
 

The idea is to make the production function as flexible as possible by minimising the number 

of prior assumptions about its form. Models that use a FFF tend to work with cost functions, 

as dual to the production function. For example, Depotakis & Fisher (1988) and Li & Rose 

(1995) both use Generalised Leontief (GL), and Hertel & Mount (1985) use a Translog cost 

function. These authors argue that adopting this approach means that the production function 

is derived via the cost function, rather than being directly imposed by the modeller.  

 

However, while the basic idea of making the production function as flexible possible by 

minimising the number of prior assumptions about its form is a valid one, the argument over 

                                                           
1
 See Uzawa (1962) for a more extended discussion.  

2
 Hertel (1988) demonstrates the separability argument analytically using a 2-sector model with 3 primary 

factors. 



8 
 

whether to use nested CES or FFF is likely to boil down to a trade off between flexibility and 

tractability. In a model with a highly detailed treatment of energy, Naqvi (1998) argues that, 

where there are multiple inputs and/or multiple sectoral outputs, separability assumptions are 

necessary from a practical point of view. Indeed, Hertel and Mount (1985), Depotakis and 

Fisher (1988) and Li and Rose (1995) all choose to employ two-level cost functions. They 

have substitution between the four (aggregate) KLEM inputs on the first level, then 

separately within the E and/or M aggregates on the second level (i.e. between different types 

of fuel and electricity in the case of energy, and between different non-energy commodities in 

the case of materials).  Thus, it would seem that even these authors in practice require some 

separability assumptions.  

 

Generally, it would seem appropriate to test for the impacts of adopting different separability 

assumptions. Sensitivity analysis for key parameter values is commonly carried out in CGE 

modelling applications, and this can be done quite systematically to provide interval 

estimates for the consequences of different types of disturbance – see, for example, Borges 

and Goulder, 1984; Conrad, 1999; Turner, 2008, 2009. However, the CGE modelling 

literature lacks any attempt to test the sensitivity of results to different specifications of 

hierarchical production functions. Indeed, there is an absence of any explicit discussion of 

why energy would enter at different levels of the production function. The aim of the current 

paper is to make a first step in redressing this gap in the literature by considering the 

sensitivity of the results of an illustrative demand shock to two alternative hierarchical 

specifications of the KLEM production function. These two specifications are first where 

energy is introduced to first the intermediates block and second as a direct substitute for 

capital in the value-added block. The simulations are performed using a CGE modelling 

framework parameterised on Scottish data.  
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3 General model description 

 

In this paper we develop the AMOSENVI CGE modelling frameworks of the Scottish 

economy that has been employed in our previous research (Anson and Turner, 2009; Hanley 

et al., 2006, 2009; and Turner, 2008). AMOSENVI is the energy-economy-environment 

version of the basic AMOS CGE framework developed by Harrigan et al (1991).
3
 However, 

this is a flexible modelling framework, incorporating a wide range of possible model 

configurations, which can be calibrated for any small open regional or national economy for 

which an appropriate social accounting matrix (SAM) database exists. For example, 

Learmonth et al. (2007) apply the AMOSENVI framework to the Jersey economy and Allan 

et al. (2007) and Turner (2009) apply it to the UK economy. Condensed descriptions/equation 

listings of the previous Scottish AMOSENVI model can be found in Hanley et al (2009). 

Here, we focus on the novel elements of model specification applied in this paper.  

 

We develop the Scottish model to allow a more flexible treatment of energy as an input to 

production. To this end, the AMOSENVI model is extended to allow simulation with two 

alternative nested KLEM production functions, as shown in Cases A and B in Figure 2 

below. Note that it is possible to specify further alternative production functions, for example, 

with energy entering at the same nest as labour instead of capital (in Case B), or at a higher 

nest, combining with the labour-capital value-added composite.  

 

                                                           
3
 AMOS is an acronym for A micro-macro Model Of Scotland, deriving its name from the fact the framework 

was initially calibrated on Scottish data. 
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One crucial point to note here is that in any of the KLEM production functions we specify in 

AMOSENVI Energy is treated as a produced input. That is, energy is the output of the 

Scottish Energy Production (ENE) sector and of the corresponding rest of UK (RUK) and rest 

of the world (ROW) sectors from which Scottish producers and final consumers import. As 

explained by Anson and Turner (2009) (in discussing the distinction between the world crude 

oil price and output prices in the supply of Scottish refined oil) this is an important point as it 

means that changes in local energy supply prices resulting from variations in capacity and 

transport costs can be identified. It may also explain why some authors would select the type 

of KLEM production structure shown in Case A (as is the case in previous applications of 

AMOSENVI – see Hanley et al., 2009), where Energy enters the intermediate rather than 

primary input block of the nested production function. This is our starting point in the 

empirical analysis below. 

 

We configure AMOSENVI as an example of a small open economy.
4
 The current model has 

six economic activities or sectors separately identified: Primary (PRI) sector, Manufacturing 

(MAN), Construction (CON), Services (SER), Public and Recreational Services (PSER) and 

Energy Production (ENE) (see Appendix 1 for sectoral classifications). Previous applications 

of the AMOSENVI modelling framework typically have a greater degree of sector 

disaggregation. The current model is limited to six production sectors to allow us to solve for 

the complex variation in the hierarchical production structure. However, we aim to 

reintroduce more sectoral disaggregation in future applications. Here, The Energy Production 

(ENE) sector is an aggregation of the ‘Coal – extraction’, ‘Oil – refining and distribution of 

oil and nuclear’, ‘Gas production and distribution’ and ‘Electricity production and 

                                                           
4
 SCOTENVI  is calibrated to a 1999 SAM for Scotland (see, e.g., Hanley et al, 2009). 
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distribution’ sectors identified in the Anson and Turner (2009), Hanley et al. (2006, 2009), 

and Turner (2008) applications using the Scottish AMOSENVI framework. 

 

Households, Firms and Government are the three domestic institutional sectors. Households’ 

and firms’ behaviour are the result of an optimization process with myopic expectations; 

Government real consumption is held constant in the current application (though this can be 

endogenised). The external institutions are divided into RUK and ROW. Since Scotland is 

too small for any price effects in international market to feed back to the target economy, we 

adopt assumptions typically used for a small open economy in ROW prices are taken to be 

exogenous. Within the UK, we assume that Scotland is a price taker in all markets so that 

RUK prices can also be taken as exogenous.  

 

Intermediate, capital and consumption goods produced locally and imported are considered as 

imperfect substitutes. Scottish regional goods combine with imported goods under the so 

called Armington assumption (Armington, 1969) through a CES function (see below).  

 

The outputs of Scottish production sectors are purchased by industries and by domestic and 

external final consumers. Each industry in the region produces commodities that can be 

exported or sold in the regional market. An export demand function closes the model where 

external demand is sensitive to changes in relative prices between domestic and external 

prices. 

 

Labour and capital stocks are fixed in the short-run, which (given the time period covered by 

the SAM) we take to be the first year after a disturbance is introduced. Thereafter, adjustment 

is made to long-run equilibrium, where both labour and capital stocks are fully adjusted.  
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Within each period, both the total capital stock and its sectoral composition are fixed. Each 

sector's capital stock is then updated between periods via a simple capital stock adjustment 

procedure, according to which investment equals depreciation plus some fraction of the gap 

between the desired and actual capital stock.  The desired capital stock is determined on cost-

minimisation criteria and the actual stock reflects last period's stock, adjusted for depreciation 

and gross investment. The economy is assumed initially to be in long-run equilibrium, where 

desired and actual capital stocks are equal.  

 

The AMOSENVI model is also configured in order to incorporate population updating 

through a migration function of the Harris and Todaro (1970) type, and parameterised on UK 

econometric work by Layard et al. (1991). We assume that there is no natural population 

change but, as in Anson and Turner (2009) and Hanley et al (2006, 2009), labour forces 

adjust through migration, where in any period the decisions of migrants are positively related 

to the gap between regional, Scottish, and national, UK, real wages, and negatively related to 

the gap between national and regional unemployment rates.  

 

4 Alternative nested production functions 

 

[Insert Figure 2 around here] 

 

The model adopts the general KLEM (Capital, Labour, Energy and Material) production 

structure allowing for substitution between KLEM inputs in different levels. Two options for 

the model’s hierarchical production structure are illustrated in Figure 2, where two possible 

hierarchical structures are distinguished as Case A and Case B. Both cases are examples of 

multilevel (nested) CES production functions. However, energy is introduced at different 
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levels of the hierarchy in the different variants. The typical nested production function 

combines at its top level a value-added and an intermediate composite. In separately 

identifying (or focussing on) energy, there are two choices: (a) which composite should it 

join?; (b) how should energy be incorporated in that composite?  

 

Note that in the empirical analysis below, where Case A or Case B is adopted, we assume 

that this production function applies to all six sectors. Within each case, it is possible to vary 

the elasticity at each nest across sectors. However, for simplicity we hold the structure 

constant across sectors in the analysis presented here. 

 

In Case A, illustrated in Figure 2, energy is positioned with the other intermediates input 

allowing for substitution between energy and non-energy (or materials) in the intermediate 

composite input. Capital and labour combine in the value-added composite. Output is then 

produced by the combination of these two composites (EM+KL). This specification 

corresponds with that employed in our previous analysis of the AMOSENVI model (see 

Anson and Turner, 2009, and Hanley et al, 2009). However, the current specification differs 

from the previous AMOSENVI applications in terms of where imported inputs (energy and 

materials) enter the production function.  

 

In Case B, also illustrated in Figure 2, energy enters the value-added nest. Specifically, 

energy combines with capital and the resulting composite is then combined with labour 

(EK+L). The KLE composite then combines with materials in the upper nest to produce 

sectoral output (in a CES relationship). As noted above, it would be possible to have energy 

enter attached to labour or to a labour-capital composite. Case B is chosen here because of 

the importance attached to energy-capital substitutability/complementarity in the literature.  
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In both cases, energy inputs are a combination of first locally produced energy and energy 

imported from the rest of the UK, RUK, and then between the UK composite and energy 

from the rest of the world, ROW. The Armington elasticity of import demand in all cases is 

set at the value of 2.0, as is the price elasticity of export demand for the outputs of all sectors 

(Gibson, 1990).
5
 This treatment of imports extends and improves on that in previous 

applications of the AMOSENVI framework, where a composite of locally produced 

intermediate inputs (Energy and Materials) combines with composite imports. Similarly, in  

both cases, the local materials composite is a Leontief composite of the outputs of local 

production sectors, combined with imported materials composites (from each of the external 

transactors, first RUK, then ROW) using the Armington CES function, again with a value of 

2.0. 

 

5 Simulating a demand-side shock under different specifications of the KLEM 

production function 

 

In this section we present results from simulations of an illustrative one-off 10% step increase 

of 10% in export demand from the rest of the UK (RUK) for the outputs of the Scottish 

Energy sector. That is, RUK export demand rises by 10% in year one of the simulation and is 

maintained at the higher rate throughout. While this particular export demand shock is used 

simply for illustrative purposes, such a demand shock is possible it is possible given that 

Scotland exports electricity to other UK regions through the interconnector system.  

 

                                                           
5
 See Turner (2008, 2009) for a comprehensive sensitivity analysis of the importance of both import and export 

elasticities in governing the impacts of an increase in efficiency in the use of energy in production in the 

Scottish and UK economies. 
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As explained in the previous section, the results reported in the paper focus on two cases: 

Case A, where energy enters the intermediates block, and Case B, and where it enters the 

value-added block combining first with capital. This is sufficient to demonstrate that the point 

of entry is important. In each case the impact of varying elasticities of substitution at three 

nests of the production function are tested (indicated with arrows in Figure 2), with summary 

results of each of these reported in Tables 1-3 for Case A and Tables 4-6 for Case B. For 

example, Table 1 gives the changes in key economic variables as the values of the elasticity 

of substitution between K and L is varied in Case A. In all cases the default/central value for 

all elasticities of substitution in production is taken to be 0.6. Elasticities of substitution 

between imported energy and materials are assumed to take the value of 2.0 throughout and 

are not subject to sensitivity analysis (see Turner, 2008, 2009). A key point to note is that the 

prices of import goods are exogenous and therefore fixed, so that any relative price change 

arises from changing prices of capital, labour and domestically produced energy and 

materials.  

 

In an initial base run of simulations (shown in the 0.6 column of Tables 1-3 for Case A and 

Tables 4-6 for Case B) we confirm that if all elasticities of substitution in the nests where 

capital, labour, energy and material combine are set at the same value the results are not 

sensitive to the choice of the KLEM production function between Cases A and B. This base 

case was run for a wider set of production function specifications, not reported here, but the 

simulations confirmed the same outcome. This is because the CES functions for these nests 

effectively collapse to a single nest with a single elasticity of substitution between all four 

inputs. Essentially, this result simply highlights the fact that the hierarchical structure of the 

nested production function allows for variation in the degree of substitution between inputs. 

However, where such variation is not imposed, the nested structure is irrelevant.  
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The next question, then, is what happens if different values are imposed at different levels of 

the nest? We begin by taking Case A, the KLEM specification assumed in previous 

applications of AMOSENVI, where energy enters the production function through the 

intermediates block (i.e. combining first with materials). This is the approach adopted in 

previous applications of AMOSENVI to the Scottish economy (Anson and Turner, 2009; 

Hanley et al., 2006, 2009), who argue that this is appropriate given that energy is a produced 

input and not an element of value-added.
6
 The lower and upper values for the elasticity of 

substitution at the different KLEM nests are taken to be 0.2 and 1.2. These are the E-M, EM-

LK and L-K nests in Figure 2.A. The default value is 0.6 in all three nests. The elasticity at 

each nest is then varied in turn across this range. Thereafter, the same procedure is repeated 

for Case B, where energy is introduced as a direct substitute for capital in the value-added 

nest.  

 

In these simulations, we relax all long-run supply constraints. That is, we allow both capital 

and labour stocks to fully adjust in the long run. Given linear homogenous production 

functions and our migration and investment assumptions, this implies that there is no long-

run impact on input prices from the exogenous demand shock. Here we report the short-run – 

the first period (year) after the demand shock is introduced, where labour and capital stocks 

are fixed, and the long-run, once labour and capital stocks are fully adjusted. It would be 

possible to report period-by-period results to track the adjustment process. However, for 

simplicity, we focus on the short- and the long-run. The economy is taken to be in long-run 

equilibrium prior to the demand disturbance, so that when the model is run in the absence of 

                                                           
6
 As explained above in Section 3, the treatment of imports in the earlier Scottish applications differs from that 

employed here. 
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any disturbance it simply replicates the initial equilibrium. The results reported in Tables 1-6 

and Figures 3-6 refer to percentage changes in the endogenous variables relative to this 

unchanging equilibrium. Thus, all of the reported effects are directly attributable to the 

exogenous export demand stimulus to the Energy sector.  

 

Long-run results (all cases) 

 

[Insert Tables 1-3 around here] 

 

It is useful to consider the long-run results first. Given that all supply constraints are relaxed 

in the long-run, there is no change in prices over this time interval. This implies that there is 

no long-run change in the cost minimising supply techniques reported in the simulation 

results given in the final column of Tables 1-6. The long-run results replicate extended 

demand-driven input-output results (McGregor et al, 1996) and are independent of elasticity 

values or the nature of the production structure. In all of the cases reported in Tables 1-6, the 

results show that the long-run impacts of the external demand shock are a boost in GDP 

(0.28%), investment (0.32%), employment (0.19%)  and household consumption (0.13%). 

Activity (and capacity) levels are boosted in all sectors, particularly the Energy sector as the 

direct recipient of the stimulus (where capital stocks and employment both rise by 3.8%). In 

the long-run, with no constraints on supply (so that the general equilibrium supply curve 

becomes horizontal in the long-run, though the demand curve remains downward sloping), 

there is no lasting impact on prices anywhere in the system, with the result that the simulated 

impact is not sensitive to the values assigned to elasticities of substitution imposed at each 

nest in the production function.  
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[Insert Tables 4-6 around here] 

 

Short-run results: Case A Energy as an intermediate input 

 

However, in the short run, where capital stocks are fixed in each sector and total labour 

supply is fixed (though workers can move between sectors and employment can change 

through changes in the unemployment rate), there is crowding out of activity and prices of all 

inputs are pushed up. The increase in the real wage rate is limited by the presence of a pool of 

unemployed labour, while the capital rental rate increases more significantly, particularly in 

the Energy sector where the demand stimulus is targeted and where production is capital 

intensive. The price of the local intermediates (EM) composite is pushed up depending on (a) 

how energy-intensive production is and (b) the ratio of locally supplied intermediates (where 

prices are rising) to imports (where prices are exogenous).  

 

However, the extent of short-run crowding out also depends on how easily production sectors 

can substitute between inputs, and the relative substitutability of different inputs. We focus 

our analysis on the sensitivity of GDP (Figures 3 and 5) and total energy use in production 

(Figures 4 and 6) to the variation in substitution possibilities.  

 

[Insert Figure 3 around here] 

 

First, Figure 3 shows the impact on the change in GDP when we vary the value imposed on 

the elasticity of substitution between E and M, EM and LK, and L and K in turn (where 0.6 is 

taken as the default value on parameters not being tested in each case). Three basic points can 

be made. First, all the curves go through the same point when all elasticities of substitution 
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are set at 0.6. Second, the variation in results as the elasticity of substitution varies at 

different points of the production function differs not just in magnitude but also in sign. 

Third, the biggest (and positive) variation in the change in GDP comes through changes in 

the elasticity of substitution between capital and labour. This is because capital is fixed in the 

short run (total labour stocks are also; however, there is a pool of unemployed labour that 

firms may draw on.  As this elasticity increases it is easier for producers to substitute labour 

for fixed capital. This limits the increase in the capital rental rate in the energy sector as more 

labour moves into the Energy sector, allowing greater expansion in response to the increase 

in export demand (the opposite is true in the non-energy sectors not directly impacted by the 

demand shock).  

 

On the other hand, the size of the GDP impact is negatively related to the value of the EM-

LK parameter. The percentage increase in the price of value added is considerably greater in 

all cases than the price of intermediates, with the implication that the more substitutable 

intermediates are for value-added, there is greater substitution away from the latter in the 

short-run (though, within the intermediates block there will also be substitution away from 

domestic production in favour of imports – see below). In terms of the point where energy 

enters the production function (the issue that is the cause of much debate in the literature), 

here where the energy composite combines with materials in the intermediates block, Figure 

3 highlights the fact that this parameter has little impact on the results for the aggregate 

indicator of GDP.  

 

Indeed examination of Table 3 shows that the value of the elasticity at the E-M nest has an 

almost imperceptible impact on the main economic indicators. The substitution of other, non-

energy intermediates has a small aggregate effect because this process is only off-setting a 
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small increase in total costs (given that energy is generally only accounts for a small share of 

total inputs.  

 

Varying the elasticity at the E-M nest has the most impact on the use of energy in production. 

However, given the increase in the price of locally produced energy has risen (driving up the 

composite price of energy) means that there is substitution in favour of (a) imported energy 

(note that in all cases in Tables 1-3, the biggest increase in energy use is imports from RUK), 

the supply of which is elastic, and (b) non-energy intermediates (M), the local supply of 

which, as with local energy, is affected by the short-run fixity of labour and capital. The latter 

has the implication that the increase in production use of composite energy and of local 

energy is negatively related to the size of the elasticity of substitution between E and M, 

while the former has the implication that use of RUK energy is positively related to the value 

of this parameter. The increase in imports of ROW energy decline as this parameter increases 

because of the smaller in the price of composite UK energy as there is more substitution away 

from local towards other UK energy. It is important to note that this result is a function of the 

way imported and domestic energy have been nested in the KLEM production function.  

 

[Insert Figure 4 around here] 

 

Nonetheless, Figure 4 highlights the fact that the energy use in production (as with total 

energy use) in response to the demand shock simulated here is not hugely sensitive to the 

value imposed on the E-M parameter. On the other hand, total energy use in production is 

more sensitive (and positively related) to the substitutability between intermediates and 

value-added (EM-KL), given that the price of the KL composite has risen by more (due to the 

increase in the capital rental rate). Similarly, energy use in production is also more sensitive 
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to the substitutability between labour and capital, where there is some excess capacity in the 

case of labour allowing greater adjustment in production activity the short-run the easier it is 

to substitute in favour of labour.   

 

Short-run results: Case B Energy in value-added (L+KE) 

 

Next, we examine same exogenous demand shock under an alternative specification of the 

nested production function. We take Case B, where energy is introduced to the production 

function as a direct substitute for/linked to capital. Again, the default elasticity of substation 

at the different nests where the KLEM inputs combine is 0.6.  These are E-K, EK-L and 

LEK-M nests in Figure 2. The elasticity at each nest is then varied in turn across the range 0.2 

to 1.2.  

 

[Insert Figure 5 around here] 

 

Generally, the important point to note is that introducing energy at the same nest as capital 

has quite different impacts in the short-run. Figure 5 examines the relative impacts of varying 

the elasticities at the different nests of both production functions A and B on the change in 

Scottish GDP as a result of the demand shock to the Energy sector. This figure shows that the 

value attached to the elasticity of substitution at the point where energy enters the production 

function (which, at the E-M nest was the least important parameter tested in case Case A) 

now becomes a much more important parameter (on the E-K parameter in Case B). Figure 5 

shows the GDP results remain most sensitive to the K-L substitutability in Case A. However, 

Table 4 and Figure 5 demonstrate that in Case B the elasticity with which energy combines 

directly with the fixed input capital (represented by the unmarked line in Figure 5 for GDP) is 
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very influential on the results for this and other macroeconomic indicators. The capital rental 

rate rises markedly, as does the price of locally produced Energy and the energy composite 

overall, but by less as the substitutability in favour of energy and away from (at this point) 

fixed capital grows (given the fixity of capital, this substitution away from capital allows 

output to rise by more).  

 

Moreover, Table 4 shows that as the substitutability in favour of energy as an input rises, the 

E-K parameter has the greatest positive impact on production use of energy (across both 

Cases A and B and least negative impact on final consumption use of locally produced 

energy. The case of production use of energy is highlighted in Figure 6. 

 

[Insert Figure 6 around here]  

 

Table 4 also shows that growth in all of the macroeconomic indicators, and all types of 

energy use are positively related to the value of the elasticity at the E-K nest. On the other 

hand, comparison with Table 5 shows that the greater the substitutability in favour of labour 

(which is not entirely constrained, given the presence of unemployed labour in the base year) 

and away from the EK composite (with its fixed component) there is greater GDP growth, but 

smaller increases in energy use. However, as highlighted in both Figures 5 and 6 below, 

generally the model results are less sensitive to the value of the elasticity of substitution 

between KE and L than between K and E. This is particularly the case with respect to 

production use of energy in Figure 6, where we see that the EK-L parameter has the least 

impact in Case B and only slightly more impact than the E-M parameter in Case A.  
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However, the key point to note in Figure 6 is that while total use of energy in production is 

least sensitive to the E-M parameter where energy enters the production function in Case A, 

the E-K parameter (where energy enters in Case B) is the most important determinant of 

energy use in production tested here.  

 

In Table 7, we offer an additional set of sensitivity analysis. In contrast to the systematic 

variation of elasticity values at each nest in Case A and Case B, in Table 7, we report the 

results of random variation across a subset of 1000 possible values at each nest (across the 

range 0.2-1.2 applied above). Here, we see that more slightly more variation (indicated by the 

standard deviation, SD) in results is observed for GDP in Case A, where energy enters as an 

intermediate, but this is very slight (standard deviation of 0.065 compared to 0.062 in Case 

B). However, it is clear that the nested production function in Case B, where energy enters to 

combine directly with capital, provides a great deal more variability in results for the change 

in energy use in production, with a standard deviation of 0.311 compared to 0.167 in Case A 

(while it is not reported here, we have found that the standard deviation is higher in other 

cases where energy enters to combine with value-added more generally – i.e. combining 

directly with labour or with a labour-capital composite). Now, it is important to note that the 

variability in results for energy use in production is significantly greater than that for GDP in 

both cases. This is not surprising given the focus of the shock stimulated, which is directly 

targeted at the energy-intensive energy supply sector itself. However, it is important given 

that CGE models which separately identify energy as an input within a KLEM production 

function are likely to have been developed to look at issues which focus on energy use.   

 

Thus, the random sensitivity analysis in Table 7 would seem to be consistent with the 

systematic analysis summarised in Figure 6 in so much as energy-use in production is most 
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sensitive to the K-E parameter in Case B, followed (but not so markedly) by the LKE-M 

parameter.  

 

6   Summary and conclusions 

 

In this paper we have examined the impact of imposing different separability assumptions in 

the specifications of the standard hierarchical KLEM production function in a computable 

general equilibrium (CGE) model, using the Scottish AMOSENVI CGE modelling 

framework as a case study. The appropriate specification of nested production functions in 

CGE models, and associated use of ‘separability assumptions’, has been the source of debate 

in the literature for a number of years. We note that while modellers often subject their model 

results to sensitivy analysis with respect to the values associated with elasticities of 

substitution between inputs, it is rarely the case that the structure of the production function is 

subjected to testing.  

 

In this paper we attempt to redress this gap in the literature. We specify two alternative nested 

KLEM production structures in a CGE model calibrated on Scottish data and test the impacts 

of doing so on the results  of a simple demand disturbance, where we have an increase in 

export demand for the outputs of the (relatively energy intensive) Scottish energy supply 

sectors. The rationale for introducing a demand disturbance is that it is a very basic shock and 

relatively easy to conceptually work through a general equilibrium model. Specifically, in the 

absence of any constraints on supply, the CGE simulations of a demand disturbance should 

produce input-output type results over the long-run, with prices returning to their pre-shock 

levels. With no long-run run change in relative input prices, the impact on macroeconomic 

variables should be the same regardless of the nesting of the production function. Our 
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preliminary results are consistent with this reasoning. While we do not report period-by-

period results here, the difference in short-run results suggests that adjustment path of the 

economy to the new long-run equilibrium will sensitive to the particular nesting of the 

production function. However, it is important to note that if a lasting supply constraint were 

imposed on either labour or capital, the long-run equilibrium of the economy would also be 

affected by the nesting structure.  

 

A key finding in our analysis is that, as well as the magnitudes of the substitution elasticities, 

the point at which energy enters the production function has a significant impact on model 

results. However, this is only where there are (a) differences in elasticities at different nests; 

(b) relative price changes. Therefore modeller judgement with respect to substitution 

possibilities between different inputs is key. The analysis in this paper demonstrates that 

introducing energy at different points in the KLEM nested production function does have 

implications for the stability of results.  

 

One conclusion that can be drawn is that it must be a priority for modellers employing KLEM 

production functions to econometrically estimate the appropriate structure and parameter 

values for nested production functions for different production activities/sectors in the 

economy of interest.  
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APPENDICES 

 

 

Sectoral breakdown of the 1999 Scottish AMOSENVI model 

 

  Sectors IOC 

1 Primary 1, 2.1, 2.2, 3.1, 3.2, 6.7, 5 

2 Manufacturing 8 to 84 

3 Water and Construction 87, 88 

4 Services 89 to 114 

5 Public Services 116 to 123 

6 Energy  4, 35, 85, 86 
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TABLES  

 

Table 1. Summary impacts of varying the value of the elasticity of substitution between  

capital (K) and labour (L) in nesting Case A (%  change from base year value)

LR

0.20 0.40 0.60 0.80 1.00 1.20 ALL

GRP Income measure 0.0154 0.0314 0.0471 0.0621 0.0761 0.0892 0.2832

Unemployment Rate -0.3388 -0.6921 -1.0389 -1.3688 -1.6780 -1.9665 0.0000

Total Employment 0.0598 0.1221 0.1833 0.2415 0.2961 0.3470 0.1871

Real Wage after Tax -0.0054 -0.0054 -0.0053 -0.0052 -0.0050 -0.0049 0.0000

Households Consumption 0.0624 0.0978 0.1322 0.1647 0.1951 0.2233 0.1297

Investment by Origin 0.3015 0.6068 0.9015 1.1795 1.4389 1.6801 0.3165

Rate of Return to Cap.

PRY 0.1067 0.1229 0.1345 0.1426 0.1481 0.1516 0.0000

MAN 0.0081 0.0198 0.0291 0.0362 0.0417 0.0458 0.0000

CON 1.3502 1.5179 1.5459 1.5250 1.4847 1.4368 0.0000

SER 0.2228 0.2542 0.2730 0.2832 0.2879 0.2889 0.0000

PSER 0.1470 0.1129 0.0983 0.0894 0.0830 0.0779 0.0000

ENE 5.8296 5.2733 4.8128 4.4256 4.0957 3.8111 0.0000

Total domestic use of energy -0.0607 0.0823 0.2048 0.3108 0.4032 0.4847 1.1978

Total production use of energy 0.9372 1.0041 1.0629 1.1150 1.1612 1.2025 1.4597

Production use of local energy 0.2694 0.4245 0.5566 0.6703 0.7691 0.8559 1.6880

Production use of RUK energy 2.8942 2.7644 2.6605 2.5756 2.5053 2.4461 1.3886

Production use of ROW energy 0.2755 0.2893 0.3035 0.3177 0.3316 0.3449 0.3558

Total final consumption use of energy 0.5529 1.0440 1.4777 1.8620 2.2043 2.5113 0.5200

SR

 

 

Table 2. Summary impacts of varying the value of the elasticity of substitution between  

intermediates (EM) and value-added (KL) in nesting Case A (%  change from base year value)

LR

0.20 0.40 0.60 0.80 1.00 1.20 ALL

GRP Income measure 0.0552 0.0507 0.0471 0.0441 0.0415 0.0393 0.2832

Unemployment Rate -1.2184 -1.1192 -1.0389 -0.9723 -0.9158 -0.8671 0.0000

Total Employment 0.2150 0.1975 0.1833 0.1716 0.1616 0.1530 0.1871

Real Wage after Tax -0.0062 -0.0057 -0.0053 -0.0050 -0.0047 -0.0044 0.0000

Households Consumption 0.1555 0.1426 0.1322 0.1236 0.1163 0.1100 0.1297

Investment by Origin 1.0682 0.9760 0.9015 0.8396 0.7872 0.7421 0.3165

Rate of Return to Cap.

PRY 0.1314 0.1338 0.1345 0.1342 0.1331 0.1316 0.0000

MAN 0.0270 0.0282 0.0291 0.0297 0.0302 0.0305 0.0000

CON 1.9689 1.7317 1.5459 1.3964 1.2735 1.1706 0.0000

SER 0.2970 0.2843 0.2730 0.2626 0.2531 0.2443 0.0000

PSER 0.1014 0.0998 0.0983 0.0969 0.0956 0.0943 0.0000

ENE 6.1041 5.3819 4.8128 4.3528 3.9734 3.6547 0.0000

Total domestic use of energy -0.2018 0.0246 0.2048 0.3518 0.4740 0.5774 1.1978

Total production use of energy 0.7656 0.9308 1.0629 1.1712 1.2615 1.3383 1.4597

Production use of local energy 0.0363 0.3258 0.5566 0.7451 0.9020 1.0349 1.6880

Production use of RUK energy 2.8094 2.7256 2.6605 2.6085 2.5663 2.5314 1.3886

Production use of ROW energy 0.2520 0.2804 0.3035 0.3229 0.3394 0.3537 0.3558

Total final consumption use of energy 1.8434 1.6391 1.4777 1.3470 1.2389 1.1478 0.5200

SR
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Table 3. Summary impacts of varying the value of the elasticity of substitution between  

energy (E) and materials (M) in nesting Case A (%  change from base year value)

LR

0.20 0.40 0.60 0.80 1.00 1.20 ALL

GRP Income measure 0.0471 0.0471 0.0471 0.0471 0.0471 0.0471 0.2832

Unemployment Rate -1.0388 -1.0388 -1.0389 -1.0390 -1.0391 -1.0392 0.0000

Total Employment 0.1833 0.1833 0.1833 0.1834 0.1834 0.1834 0.1871

Real Wage after Tax -0.0053 -0.0053 -0.0053 -0.0053 -0.0053 -0.0053 0.0000

Households Consumption 0.1322 0.1322 0.1322 0.1322 0.1322 0.1322 0.1297

Investment by Origin 0.9018 0.9016 0.9015 0.9013 0.9011 0.9009 0.3165

Rate of Return to Cap.

PRY 0.1343 0.1344 0.1345 0.1346 0.1347 0.1349 0.0000

MAN 0.0290 0.0291 0.0291 0.0292 0.0292 0.0293 0.0000

CON 1.5476 1.5468 1.5459 1.5450 1.5442 1.5433 0.0000

SER 0.2725 0.2727 0.2730 0.2732 0.2734 0.2736 0.0000

PSER 0.0980 0.0981 0.0983 0.0984 0.0986 0.0988 0.0000

ENE 4.8242 4.8185 4.8128 4.8072 4.8015 4.7959 0.0000

Total domestic use of energy 0.2153 0.2101 0.2048 0.1996 0.1944 0.1892 1.1978

Total production use of energy 1.0806 1.0718 1.0629 1.0541 1.0454 1.0366 1.4597

Production use of local energy 0.5726 0.5646 0.5566 0.5486 0.5407 0.5327 1.6880

Production use of RUK energy 2.6822 2.6713 2.6605 2.6497 2.6389 2.6281 1.3886

Production use of ROW energy 0.3212 0.3124 0.3035 0.2947 0.2859 0.2772 0.3558

Total final consumption use of energy 1.4803 1.4790 1.4777 1.4765 1.4752 1.4739 0.5200

SR

 

 

Table 4. Summary impacts of varying the value of the elasticity of substitution

between the energy-capital composite (EK) and labour (L) in nesting Case B 

(%  change from base year value)

LR

0.20 0.40 0.60 0.80 1.00 1.20 ALL

GRP K+L 0.0342 0.0418 0.0472 0.0514 0.0549 0.0578 0.2832

Unemployment Rate -0.7541 -0.9211 -1.0403 -1.1337 -1.2104 -1.2755 0.0000

Total Employment 0.1331 0.1625 0.1836 0.2001 0.2136 0.2251 0.1871

Real Wage after Tax -0.0066 -0.0058 -0.0053 -0.0049 -0.0046 -0.0043 0.0000

Households Consumption 0.1125 0.1237 0.1324 0.1395 0.1455 0.1506 0.1297

Investment by Origin 1.1976 1.0119 0.9027 0.8264 0.7684 0.7218 0.3165

Rate of Return to Cap.

PRY 0.1667 0.1479 0.1347 0.1242 0.1154 0.1078 0.0000

MAN 0.0353 0.0319 0.0292 0.0269 0.0249 0.0231 0.0000

CON 3.5384 2.1723 1.5479 1.1916 0.9621 0.8020 0.0000

SER 0.3835 0.3175 0.2733 0.2406 0.2151 0.1946 0.0000

PSER 0.1833 0.1287 0.0984 0.0790 0.0655 0.0556 0.0000

ENE 5.0568 4.9307 4.8185 4.7141 4.6154 4.5212 0.0000

Total domestic use of energy 0.2376 0.2188 0.2082 0.2010 0.1956 0.1912 1.1978

Total production use of energy 1.1503 1.1007 1.0643 1.0340 1.0073 0.9829 1.4597

Production use of local energy 0.6281 0.5872 0.5604 0.5398 0.5226 0.5076 1.6880

Production use of RUK energy 2.8141 2.7277 2.6563 2.5925 2.5337 2.4785 1.3886

Production use of ROW energy 0.3321 0.3156 0.3037 0.2939 0.2853 0.2776 0.3558

Total final consumption use of energy 1.8906 1.6204 1.4796 1.3875 1.3192 1.2647 0.5200

SR
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Table 5. Summary impacts of varying the value of the elasticity of substitution between  

energy (E) and capital (K) in nesting Case B (%  change from base year value)

Changing elast. Parameter in E+K LR

0.20 0.40 0.60 0.80 1.00 1.20 ALL

GRP K+L 0.0275 0.0378 0.0472 0.0562 0.0653 0.0750 0.2832

Unemployment Rate -0.6068 -0.8333 -1.0403 -1.2400 -1.4407 -1.6531 0.0000

Total Employment 0.1071 0.1470 0.1836 0.2188 0.2542 0.2917 0.1871

Real Wage after Tax -0.0051 -0.0052 -0.0053 -0.0055 -0.0057 -0.0060 0.0000

Households Consumption 0.0874 0.1108 0.1324 0.1536 0.1751 0.1981 0.1297

Investment by Origin 0.2780 0.5771 0.9027 1.2613 1.6592 2.1131 0.3165

Rate of Return to Cap.

PRY 0.0832 0.1111 0.1347 0.1560 0.1761 0.1964 0.0000

MAN 0.0039 0.0176 0.0292 0.0396 0.0494 0.0592 0.0000

CON 0.6822 1.1472 1.5479 1.9135 2.2625 2.6164 0.0000

SER 0.1671 0.2235 0.2733 0.3199 0.3655 0.4128 0.0000

PSER 0.0620 0.0839 0.0984 0.1090 0.1174 0.1249 0.0000

ENE 6.5131 5.5359 4.8185 4.2728 3.8480 3.5055 0.0000

Total domestic use of energy -0.5286 -0.1133 0.2082 0.4698 0.6914 0.8899 1.1978

Total production use of energy 0.4564 0.7958 1.0643 1.2885 1.4840 1.6650 1.4597

Production use of local energy -0.3816 0.1489 0.5604 0.8962 1.1813 1.4377 1.6880

Production use of RUK energy 2.6569 2.6467 2.6563 2.6813 2.7197 2.7719 1.3886

Production use of ROW energy 0.1978 0.2532 0.3037 0.3522 0.4007 0.4518 0.3558

Total final consumption use of energy 0.5545 1.0350 1.4796 1.9133 2.3526 2.8214 0.5200

SR

 

 

Table 6. Summary impacts of varying the value of the elasticity of substitution 

between value-added with energy (LKE) and materials (M) in nesting Case B 

(%  change from base year value)

Changing elast. Parameter in VA+INT LR

0.20 0.40 0.60 0.80 1.00 1.20 ALL

GRP K+L 0.0511 0.0490 0.0472 0.0455 0.0439 0.0424 0.2832

Unemployment Rate -1.1261 -1.0813 -1.0403 -1.0026 -0.9679 -0.9358 0.0000

Total Employment 0.1987 0.1908 0.1836 0.1769 0.1708 0.1651 0.1871

Real Wage after Tax -0.0057 -0.0055 -0.0053 -0.0051 -0.0050 -0.0048 0.0000

Households Consumption 0.1433 0.1376 0.1324 0.1276 0.1232 0.1192 0.1297

Investment by Origin 0.9735 0.9366 0.9027 0.8712 0.8420 0.8148 0.3165

Rate of Return to Cap.

PRY 0.1353 0.1352 0.1347 0.1339 0.1328 0.1315 0.0000

MAN 0.0279 0.0286 0.0292 0.0296 0.0300 0.0302 0.0000

CON 1.7649 1.6500 1.5479 1.4566 1.3746 1.3006 0.0000

SER 0.2880 0.2805 0.2733 0.2664 0.2598 0.2535 0.0000

PSER 0.0999 0.0992 0.0984 0.0976 0.0969 0.0961 0.0000

ENE 5.2777 5.0376 4.8185 4.6178 4.4333 4.2629 0.0000

Total domestic use of energy 0.2264 0.2169 0.2082 0.2003 0.1929 0.1861 1.1978

Total production use of energy 1.1625 1.1112 1.0643 1.0213 0.9817 0.9450 1.4597

Production use of local energy 0.6115 0.5848 0.5604 0.5380 0.5174 0.4983 1.6880

Production use of RUK energy 2.9049 2.7750 2.6563 2.5474 2.4473 2.3547 1.3886

Production use of ROW energy 0.3296 0.3161 0.3037 0.2922 0.2817 0.2719 0.3558

Total final consumption use of energy 1.6195 1.5463 1.4796 1.4188 1.3629 1.3115 0.5200

SR
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Table 7. Sensitivity analysis: random variation in values attached to elasticities at each nest within Case A and Case B

GDP SD GDP + SD GDP - SD

Use of 

energy in 

production SD Energy + SD Energy - SD

A. EM-LK 0.051 0.014 0.065 0.037 1.118 0.167 1.285 0.951

B. L-KE 0.051 0.011 0.062 0.040 1.117 0.311 1.428 0.806

SD: standard deviation  
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Figure 1: Example Of A CES Hierarchical/Nested Production Function 
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Figure 2. Alternative specifications of the KLEM production function in AMOSENVI 

for each production sector, i 

 

Case A. Energy as an intermediate – EM+KL 

 

 

Case B. Energy in value-added – L+KE 

 

 



39 
 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.20 0.40 0.60 0.80 1.00 1.20

%
 c

h
a

n
g

e 
fr

o
m

 b
a

se
 y

ea
r 

v
a

lu
e

Value of elasticity of substitution tested

Figure 3. Sensitivity of short-run change in GDP/GRP in response to a 10% increase in RUK export 

demand for Energy sector output to the value of elasticities of substitution at different nests, 

Nesting Case 2.A

K-L elasticity tested EM-KL elasticity tested E-M elasticity tested
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Figure 4. Sensitivity of short-run change in  total energy use  (in production)  in response to a 10% 

increase in RUK export demand for Energy sector output to the value of elasticities of substitution at 

different nests,  Nesting Case 2.D

K-L elasticity tested EM-KL elasticity tested E-M elasticity tested
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Figure 5. Sensitivity of short-run change in GDP/GRP in response to a 10% increase in RUK export 

demand for Energy sector output to the value of elasticities of substitution at different nests, 

Nesting Cases 2.B and 2.D

2.A K-L elasticity tested 2.A EM-KL elasticity tested 2.A E-M elasticity tested

2.B E-K elasticity tested 2.B L-KE elasticity tested 2.B LKE-M elasticity tested
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Figure 6. Sensitivity of short-run change in total energy use (in production ) in response to a 10% 

increase in RUK export demand for Energy sector output to the value of elasticities of substitution at 

different nests, Nesting Cases 2.B and 2.D

2.A K-L elasticity tested 2.A EM-KL elasticity tested 2.A E-M elasticity tested

2.B E-K elasticity tested 2.B L-KE elasticity tested 2.B LKE-M elasticity tested
 

 


