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Abstract

The Baraka's whipray (Maculabatis ambigua) is a major constituent of small-scale fish-

eries catch in the south-western Indian Ocean. Despite this, little is known of its life-

history or exploitation status. We provide the first estimates of crucial life-history

parameters and the maximum intrinsic population growth rate rmax, using specimens

collected from small-scale fisheries landings in Kenya, Zanzibar and Madagascar (with

northern Madagascar representing a range extension for this species). We assess the

relative risk of overexploitation by combining rmax with estimates of total Z, fishing F,

and natural M mortality, and an estimate of the exploitation ratio E. The data indicate

that Baraka's whipray is a medium-sized, fast-growing, early maturing species, with a

relatively long lifespan. This results in a high rmax relative to many other elasmo-

branchs, which when combined with estimates of F suggests that the species is not

at imminent risk of extinction. Yet, estimates of exploitation ratio E indicate likely

overfishing for the species, with full recruitment to the fishery being post-maturation

and exploitation occurring across a broad range of age and size classes. Thus, Bar-

aka's whipray is unlikely to be biologically sustainable in the face of current fisheries

pressures. This paper makes an important contribution to filling the gap in available

data and is a step towards developing evidence-based fisheries management for this

species. Further, it demonstrates a simple and widely applicable framework for

assessment of data-poor elasmobranch exploitation status and extinction risk.
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1 | INTRODUCTION

Elasmobranchs (sharks and rays) generally display slow growth, late

maturity and low fecundity (Compagno, 1990). These life-history traits

mean elasmobranchs are intrinsically sensitive to non-natural mortal-

ities and limits their recovery potential (Dulvy et al., 2014a). However,

there is considerable variation in the life-history traits both among

(Jacobsen & Bennett, 2011; Stevens & McLoughlin, 1991) and within

(Jacobsen & Bennett, 2010; Lombardi-Carlson et al., 2003; O'Shea

et al., 2013) species. Fisheries are the most prominent source of non-

natural mortalities for elasmobranchs at the global level (Dulvy

et al., 2014a; Worm et al., 2013). Understanding species and stock-
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specific life-history traits is important when assessing the sustainabil-

ity of fisheries exploitation, conducting stock assessment, producing

demographics models and predicting rebound potential (Cailliet &

Goldman, 2004; Frisk et al., 2001; Smith et al., 2008). Thus, species

and population-specific life-history traits are pivotal in the formulation

of evidence-based fisheries management (Barnett et al., 2019).

Without species-specific life-history and fisheries exploitation

data, the management of data-poor fisheries may be ineffective or

even detrimental to the long-term sustainability of elasmobranchs.

Efforts to manage shark resources have been initiated throughout the

southwestern Indian Ocean (SWIO) region (Kenya, Tanzania including

Zanzibar, Mozambique, Seychelles, Comoros, Mayotte, Madagascar,

La Réunion and Mauritius), e.g. development of National Plans of

Action (Temple et al., 2018). Yet, our understanding of the scale and

composition of elasmobranch exploitation in SWIO fisheries is

extremely poor. Recent vulnerability assessments based on small-scale

fisheries landings suggest that several coastal rays, primarily whiptail

stingrays (Family Dasyatidae), may be at risk across the SWIO (Temple

et al., 2019). Many of these species have either limited or no regional

life-history data available. Rays contribute nearly half of SWIO small-

scale fisheries landed elasmobranch catch (by weight and number) and

originate from many of the same fisheries as sharks (Temple

et al., 2019). Despite this, rays have received little consideration in

SWIO elasmobranch management formulation.

Although only recently described (Last et al., 2016b), Baraka's

whipray (Maculabatis ambigua) is the most common ray in Kenyan small-

scale fisheries catch and a common constituent of small-scale fisheries

catch in Zanzibar. Baraka's whipray are primarily caught in bottom-set gill-

nets (Barrowclift et al., 2017; Temple et al., 2019) and are regularly

bycatch in trawl fisheries elsewhere within their range (Last et al., 2016b).

Baraka's whipray was originally thought to be distributed from Zanzibar

to the Red Sea and possibly further into the northern Indian Ocean (Last

et al., 2016b). Little is known of the life history of this species.

Here, we investigate key life-history parameters of Baraka's

whipray through the production of disc width–weight relationships,

age-structured growth models, and maturation and longevity esti-

mates. Subsequently, we estimate maximum intrinsic population

growth rate, which is combined with estimates of female fisheries and

natural mortalities and female exploitation ratio to assess relative

extinction and overexploitation risk of this data-poor species.

2 | MATERIALS AND METHODS

2.1 | Sample collection

Baraka's whipray specimens (n = 48) from small-scale fisheries land-

ings were sampled with the consent of fishers and/or merchants at

the village of Mkokotoni and the Darajani Market, Stone Town in Zan-

zibar between 28 July 2015 and 19 August 2015 (Figure 1). Where

possible, we recorded the disc width (cm), weight (kg) and sex of each

specimen. Male maturity status (immature or mature) was recorded

based on calcification of claspers (Walker, 2005), with only those

specimens exhibiting complete calcification considered mature. Matu-

rity status could not be recorded for females because fishers and mer-

chants did not consent to examination of the reproductive tract.

Vertebrae were extracted from the mid-disc of 47 specimens to be

used for aging and stored at −20�C. Supplementary data for Baraka's

whipray (n = 155) were recorded by trained fisheries observers across

Kenya, Zanzibar and northern Madagascar during a 12-month landings

monitoring programme between June 2016 and June 2017 (Temple

et al., 2019) (Figure 1). Disc width, weight, sex and male maturity sta-

tus were recorded. Observers also opportunistically recorded female

maturity, with only those observed with fertilized eggs considered as

mature. Both sets of specimens were caught across a range of gear

types (bottom-set gillnets = 78, drift gillnets = 38, handlines = 8, long-

lines = 6, beach seine = 2, ringnet = 2, and unknown = 69).

Where relevant, samples were collected under a research permit

from the Office of Chief Government Statistician Zanzibar (No. 0697),

exported under the provision of the then Ministry of Livestock and

Fisheries Zanzibar and imported to the UK under IMP/GEN/2014/06.

We assume that all catches originate from the same population or

stock. Specimens where disc width was not recorded (n = 29) were

disregarded from all analyses. Data analyses and visualizations were

carried out and produced using R statistical software, version x64

3.6.0 (R Core Team, 2019).

2.2 | Disc width–weight relationship

Disc width and weight data of all specimens that had not been gutted

(n = 100) were natural log (ln) transformed and their relationship

described using linear models. Cook's distance (4/n) was used to iden-

tify data points exerting undue influence on linear models, likely

resulting from measurement and/or data entry errors; these points were

removed (n = 5) and the models subsequently re-run. The sex of speci-

mens was included as an interaction variable and compared to the null

model using ANOVA to determine whether the effect of sex was signif-

icant. The 95% confidence interval (95%CI) of the linear models was

derived using bootstrapping with replacement for 10,000 iterations.

2.3 | Age estimation

Two vertebrae from each sampled specimen were cleaned of excess

muscle and connective tissue, and both neural and haemal arches

were removed. Subsequently, vertebrae were immersed in a 5%

sodium hydrochloride solution for 10–30 min, dependent on the ver-

tebrae size and quantity of remaining tissues. Samples were washed,

then towel and air dried. Cleaned vertebrae were embedded in clear

epoxy resin (Buehler EpoxiCure; Lake Bluff, Illinois, United States). A

single sagittal-plane section was taken from each vertebra using a

slow-speed precision saw with a diamond wafering blade (Buehler

IsoMet Low Speed Precision Cutter). Several section widths were

trialled (600, 450, 300, 200 and 150 μm), with 200 μm producing the

highest readability. Sections were mounted permanently onto glass
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slides (Fisher Chemical DPX Phthalate Free Mounting Media; Hamp-

ton, New Hampshire, United States) and photographed using a digital

macro-lens camera (Nikon SLR D7200; Tokyo, Japan). Image enhance-

ment for growth band reading was carried out in Adobe Photoshop

CS3 (San Jose, California, United States) (Campana, 2014).

The age (to the nearest 0.5 years) for each individual specimen

was determined by examination of paired opaque and translucent

banding in the vertebral corpus calcareum. The birth band was distinct

but did not show a clear change in angle on the corpus calcareum

(Figure 2). Age was estimated from the independent examination of

both sagittal sections (images were randomized before reading) by

two independent readers. Mean age estimates for each specimen

were generated for each reader and compared. Where reader mean

estimates differed by <1 year the mean was taken as the best esti-

mate. This allowable difference was more conservative than in other

studies in light of the restricted sample size (Jacobsen & Ben-

nett, 2011; Smith et al., 2008). If differences in mean age estimates

between readers were >1 year, ages were re-estimated with both

readers present. If readers could not agree (n = 0) samples would have

been discarded (Goldman, 2005).

Commonly, measures of agreement, precision and bias in age

reads are given as percentage agreement (PA), PA ±1 year, the

coefficient of variation (CV) and the average percentage error (APE)

(Beamish & Fournier, 1981; Chang, 1982). These measures are pres-

ented but are commonly recognized as imperfect (Cailliet et al., 2006;
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F IGURE 1 Locations of
landing sites and markets in the
south-western Indian Ocean
where Baraka's whipray
Maculabatis ambigua were
sampled between July 2015 and
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F IGURE 2 Photograph of sectioned vertebrae, with birth line and
annuli marked, taken from a 63 cm disc-width male Baraka's whipray
Maculabatis ambigua captured in a bottom-set gillnet in August 2015.
This individual was aged 6 years
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Goldman, 2005). We suggest that the Bland–Altman approach,

designed for method comparison, provides improved quantification

and visualization of agreement, precision and bias among reads and

readers compared to the standard methods used in aging studies

(Bland & Altman, 1999, 2003). Bias in the relationship between reads

(within and among readers) is assessed through linear modelling of the

mean age read for each specimen against the difference between

reads for each specimen. Precision in age reads (within and among

readers) is described by the limits of agreement (LOA) defined by the

95% mean confidence interval of the difference between reads. We

display the results of the Bland–Altman method as the primary mea-

sure of agreement, precision and bias.

Validation of growth band periodicity was not possible within this

study. The short temporal period within which samples were collected

and the restricted sample size meant that both marginal incremental

analysis and edge analysis, which are the most common validation

methods for elasmobranchs (Cailliet et al., 2006), were not possible to

conduct. Furthermore, mark-recapture of chemically marked or cap-

tive reared individuals was not feasible within the constraints of this

study.

2.4 | Growth modelling

Age and disc width data were fit to three growth models using

nonlinear regression (package nls). Reasonable starting values for

growth model parameters were estimated using self-starter functions

(packages FSAtools and stats) before fitting. Models were run for

males and females both separately and combined. Model selection

was made through comparison of Akaike's information criterion

corrected for small sample size (AICc). Kimura's likelihood ratio test

was used to determine whether sex had a significant effect on the

growth model (Haddon, 2010). The 95%CI for growth curves and

growth curve coefficients were derived via bootstrapping with

replacement for 10,000 iterations. The growth models fit were:

the three-parameter von Bertalanffy growth function (Von

Bertalanffy 1938),

DWt =DW∞− DW∞−DW0ð Þe −ktð Þ
� �

ð1Þ

the three-parameter Gompertz growth function (Ricker 1975),

DWt =DW∞e
e−k t−αð Þ ð2Þ

and the logistic growth function (Ricker, 1979),

DWt =
DW∞

1+ e−k t−αð Þ ð3Þ

where DWt is the disc width at age t, DW∞ is the asymptotic disc

width, DW0 is disc width at age zero, k is a growth constant and α is

the inflection point.

2.5 | Estimation of the maximum intrinsic
population growth rate

The maximum intrinsic population growth rate rmax for female Bar-

aka's whipray, as it is females that constrain population growth, was

estimated using the simplified Euler–Loktka equation, accounting for

juvenile mortality (Cortés, 2016; Pardo et al., 2016b):

ltmatb= e
rmaxtmat −e−M ermaxð Þtmat−1 ð4Þ

where ltmat is survival to maturity, b is the annual reproductive output

of female offspring, tmat is age at maturity and Mis the instantaneous

rate of natural mortality. We calculate ltmat as:

ltmat = e−M
� �tmat ð5Þ

There are no data for the annual reproductive output of Baraka's

whipray, thus we provided a plausible estimate of b from related spe-

cies, as has been done for other data-poor species (D'Alberto et

al., 2019; Pardo et al., 2016a). Whitespotted whipray (Maculabatis

gerradi) and blackspotted whipray (Maculabatis astra) litters are

reported as 1–4 and 1–3 pups, respectively (Last et al., 2016a; White

et al., 2006). We assume reproduction is annual and that the sex ratio

is 1:1. Hence, 0.5–2 female pups per year was considered a plausible

range for b for the purpose of estimating rmax.

We cannot directly estimate tmat for female Baraka's whipray

because the infrequent observations of female maturity (n = 2) were

both opportunistic and reliant upon the presence of fertilized eggs.

However, other studies of whiptail stingrays suggest that males and

females mature at a similar size (Da Silva et al., 2018; Jacobsen & Ben-

nett, 2010, 2011; White, 2007). As such, we assume female size at

maturity matches that of males. Disc width at which 50% of males

reach maturity (White, 2007) was estimated from logistic regression

and bootstrapping with replacement for 10,000 iterations used to

define 95%CI. This male size at maturity range was then converted

into age using the disc width and age relationship from the relevant

selected growth model, providing a range estimate for female tmat.

Lastly, in order to estimate M we first need to estimate longevity

tmax. Estimates for tmax were bound by the theoretical age at which

female Baraka's whipray reached 95% DW∞ and 99% DW∞

(Fabens, 1965; Ricker, 1979). 95% DW∞ is calculated as 5ln(2)k−1 and

99% DW∞ calculated as 7ln(2)k−1. Subsequently, M was calculated as:

M=
tmax + tmat

2

� �−1

ð6Þ

The simplified Euler–Loktka equation, solving for rmax, was then

optimized using the nlminb function (package stats). We made

1,000,000 draws from the estimated ranges of b, tmat and M, assuming

a uniform probability distribution within these ranges in order to

explore the full range of potential estimates for rmax, particularly given

the uncertainty in these parameters (Dulvy et al., 2014b).
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2.6 | Estimating total mortality, fisheries mortality
and the exploitation ratio

To draw direct comparisons with rmax estimates, we estimate the fol-

lowing parameters for female Baraka's whipray only. To estimate

female instantaneous fisheries mortality F for Baraka's whipray, we

first estimated total female instantaneous mortality Z (±95%CI) using

an age-frequency approach, the Chapman–Robson catch curve

method (R package FSA). In using this approach, we treat all small-

scale fisheries monitored in this study as if they were one fishery,

assuming that age classes beyond that of full recruitment to the fish-

ery are equally vulnerable to the fishery, M is constant across age/size

classes, the fishery has reached equilibrium and exploitation occurs

from within a closed population. Equal vulnerability to the fishery
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F IGURE 3 (a) Linear
relationship with bootstrapped
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between the natural log
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and weight (kg) for combined
female and male Baraka's
whipray Maculabatis ambigua,
ln(weight) = 2.64 × ln(disc
width) – 8.92. ( ) F. ( ) M. (b)
Three-parameter von
Bertalanffy growth curve with
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(95%CI 0.119, 0.382),
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(c) Logistic regression with
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beyond age of full recruitment is reasonable given that the samples

are drawn from a range of gear types across a large area and are thus

unlikely to be strongly size selective. Similarly, the fishery is likely to

have reached equilibrium given that the coastal elasmobranch fisher-

ies of this region are well established (Temple et al., 2018). However,

predation pressures on this species are unknown. Species which con-

tinue to grow substantially after age at full recruitment may show

nonconstant M across ages as they outgrow some of their predators

(Lorenzen, 2000). Additionally, nothing is known of the population

structure of this species. Thus, it is possible that all assumptions of

the catch curve may not be fully met with potential resultant biases

on Z estimates. The Chapman–Robson method was selected as the

regression estimator because traditional catch curves may show nega-

tive bias in mortality estimation (Smith et al., 2012).

Age was estimated, using the best fitting growth model, for all

recorded catches with disc width data (n = 127) from the 12-month

landings monitoring programme. Age of full recruitment to the fishery

was assumed as the age class at peak abundance and Z was estimated

from 1 year after the age of peak abundance (Smith et al., 2012). We

made 1,000,000 draws from the estimated ranges of M and Z, assum-

ing uniform and normal probability distributions, respectively. Ranges

for M were subtracted from those of Z to estimate F, which was sub-

sequently compared to rmax and the female exploitation rate E. We

drew inference on the likely biological sustainability status of Baraka's

whipray by comparing F/Z to an optimum value of 0.5 (Gulland, 1971;

Pauly, 1983).

2.7 | Ethical statement

All samples in this study were derived from specimens originating

from fisheries catches. The study did not provide inducements (finan-

cial or otherwise) for the provision of specimens. As such, there were

no relevant animal welfare implications.

3 | RESULTS

3.1 | Disc width–weight relationship

There was no difference in the disc width–weight relationship

between males and females (ANOVA, F1,2 = 0.1673, P = 0.532). Thus,

the disc width–weight relationship was modelled with males and

females combined (R2 = 0.872, F = 600.9, P < 0.001) (Figure 3a).

3.2 | Age estimation

Age was successfully estimated for all 47 specimens. Bland–Altman

analyses showed no evidence of bias within reader 1 (R2 = 0.038,

F = 1.78, P = 0.189; Figure 4a,b) or reader 2 (R2 = 0.001, F = 0.049,

P = 0.825, Figure 4c,d). However, evidence of significant bias between

readers was found (R2 = 0.118, F = 6.04, P = 0.018, Figure 4e,f), with

reader 1 producing higher estimates than reader 2 for older speci-

mens. LOAs are presented alongside standard precision metrics

(Table 1). Variability in age band counts was not considered to be

unusually high when compared to other studies (Baje et al., 2018;

Gutteridge et al., 2013; Jacobsen & Bennett, 2010). Consensus was

reached between readers for all specimens with initial disparities

>1 year, suggesting that the significant bias identified by the Bland–

Altman approach was likely to have been overcome. Furthermore, the

Bland–Altman approach demonstrated no evidence for an increase or

decrease in discrepancies between age-reads with increasing age,

indicating consistency in the variability within and among readers, and

thus increasing confidence in the validity of band reads across age-

spectra. Agreement between readers was likely influenced, in part, by

the substantial subannuli banding prominent in young specimens. We

recommend that future aging studies consider the use of this method

when presenting the results of reader agreement, precision and bias

in banding counts.

3.3 | Growth modelling

Age estimates for specimens ranged from 0 to 12.5 years for males

and 0 to 17 years for females. Of the growth models tested, the

three-parameter von Bertalanffy yielded the best fit for females,

males and combined sex data. Kimura's likelihood ratio test indicated

no significant effect of sex on the von Bertalanffy growth model fit

(χ2 = 3.76, P = 0.288) and so the combined fit for both sexes was

selected and used for all subsequent analyses (Figure 3b). The von

Bertalanffy growth parameter estimates for combined sexes were

k = 0.241 (95%CI 0.119, 0.382), DW∞ = 93.4 cm (95%CI 82.9, 113.4)

and DW0 = 33.4 cm (95%CI 25.4, 42.6).

3.4 | Estimating maximum intrinsic population
growth rate

Disc width at which 50% of males reach maturity was estimated to be

57.9 cm (95%CI 47.5, 62.7) (Figure 3c). These estimates equate to half

of males reaching maturity at 2.18 years old (95%CI 1.12, 2.79). The

smallest of the female specimens classified as mature had a disc width

of 62 cm, equivalent to an age of 2.7 years. For the purpose of estimat-

ing rmax we assume female tmat to range uniformly from 1.12 to

2.79 years. Estimates for tmax were calculated based on age at 95%

DW∞ (Ricker, 1979) and at 99% DW∞ (Fabens, 1965), yielding

14.4 years and 20.2 years, respectively. However, the maximum age

directly observed during this study was 17 years. Thus, for the purpose

of estimating rmax we assume tmax to range uniformly from 17 to

20.2 years. Using the drawn-down estimates of tmax and tmat, we calcu-

late median M to be 0.097 (95th percentiles 0.089, 0.107). Using the

distributions of b, tmax, tmat andM, we calculate the median rmax for Bar-

aka's whipray to be 0.446 (95th percentiles 0.220, 0.781; Figure 5a).
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F IGURE 4 Bland–Altman assessments of agreement, precision and bias in age estimates (year ± 0.5) for Baraka's whipray Maculabatis
ambigua within and between readers. (a) Relationship between vertebrae age band counts for reader 1. (b) Bland–Altman plot displaying bias and
precision between vertebrae age band counts for reader 1. (c) Relationship between vertebrae age band counts for reader 2. (d) Bland–Altman
plot displaying bias and precision between vertebrae age band counts for reader 2. (e) Relationship between mean vertebrae age band counts
from reader 1 and reader 2. (f) Bland–Altman plot displaying bias and precision between mean vertebrae age band counts from reader 1 and
reader 2
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3.5 | Estimating total mortality, fisheries mortality
and the exploitation ratio

Age at full female recruitment to the fishery was estimated as 3 years

(Figure 6), yielding an estimate for Z of 0.237 (95%CI 0.175, 0.298),

equivalent to an annual mortality rate of 21.1% (95%CI 16.1, 25.8).

Given this and the estimate for M, we estimate median F to be 0.139

(95th percentiles −0.029, 0.307), considerably lower than estimates for

rmax. Median E is estimated from F and Z at 0.588 (95th percentiles

−0.349, 0.764). The proportion of the estimated distribution of E

greater than the optimal value of E = 0.5 is 68.7%, hence there is a rea-

sonably high likelihood of overfishing for Baraka's whipray (Figure 5b).

4 | DISCUSSION

We provide the first estimates for key life-history parameters, extinc-

tion risk and exploitation status of the recently described and widely

fished Baraka's whipray. Baraka's whipray is a medium-sized, relatively

fast-growing and early maturing species of whiptail stingray that

exhibits a moderately long lifespan. These life-history traits mean that

Baraka's whipray is potentially more resilient to fisheries pressure

than many other widely exploited elasmobranchs, reflected in our rel-

atively high estimate for rmax. The disparity between rmax and female F

estimates suggest that Baraka's whipray should not currently be con-

sidered at high extinction risk. Yet, the plausible distribution of the

TABLE 1 Precision values for
comparisons of age estimates for Baraka's
whipray (Maculabatis ambigua) within and
between readers; percentage agreement
(PA), percentage agreement ±1 year,
coefficient of variation (CV), average
percentage error (APE) and Bland–Altman
limits of agreement (LOA)

Comparison PA (%) PA ± 1 year (%) CV (%) APE (%) LOA (years)

Within reader 1 34.04 85.11 15.38 10.87 ±1.85

Within reader 2 46.81 93.61 12.87 9.10 ±2.01

Between reader 1 and reader 2 12.77 68.09 24.14 17.07 ±2.82
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F IGURE 5 (a) Estimated
distribution of the maximum
intrinsic population growth rate
(E) with median displayed for
Baraka's whipray Maculabatis

ambigua. (b) The estimated
distribution for the exploitation
ratio (rmax) with median displayed
for Baraka's whipray in south-
western Indian Ocean small-scale
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female exploitation ratio E suggests a reasonably high likelihood

(68.7%) of overfishing in this unmanaged species. However, given the

relatively robust life-history traits displayed by Baraka's whipray, if

managed effectively there is potential for this species to become one

of the biologically sustainable elasmobranch fisheries (Simpfendorfer

& Dulvy, 2017). Our study also reveals a larger maximum size

(recorded disc width of 112 cm) and wider geographic distribution

than previously known (Last et al., 2016b), as evidenced by catches of

Baraka's whipray in northern Madagascar. In the following sections

we consider (a) the life-history traits of Baraka's whipray relative to

other whiprays and (b) the priority data gaps for future research.

Growth models from this study indicate that Baraka's whipray is a

fast-growing species with early maturation relative to other similarly

sized whiptail stingrays. For example, blackspotted whipray (male: k

= 0.03, female: k = 0.03), blue stingray (Dasyatis chrysonota) (male: k

= 0.175, female: k = 0.07) and diamond stingray (Hypanus (formerly

Dasyatis) dipterura) (male: k = 0.1, female: k = 0.05) (Cowley, 1997;

Jacobsen & Bennett, 2011; Smith et al., 2007). However, it must be

considered that k may exhibit considerable variability, a product of

the constraints of both the study (e.g., sample size and representation

of size classes) and the growth-models used (Cailliet & Goldman, 2004;

Smith et al., 2007). This may result in wide variability of k even within

species, as demonstrated in Kuhl's maskray (Neotrygon kuhlii), where k

ranges between 0.08 and 0.38 (Jacobsen & Bennett, 2010; O'Shea et

al., 2013), which may reflect locally varying life histories or species

complexes. The rapid growth of Baraka's whipray is consistent with

the early maturation observed in males and females.

Whiptail stingrays, and Baraka's whipray in particular, display ear-

lier maturation relative to both longevity and size compared to other

elasmobranchs (Frisk et al., 2001). Our estimates indicate that male

Baraka's whipray mature faster (~11–13% tmax) and at a similar rela-

tive size (~62% DW∞) to other whiptail stingrays. For example, Kuhl's

maskray (3.95 years, ~19% tmax, ~65% DW∞), blackspotted whipray

(7.32 years, ~41% tmax, ~65% DW∞), speckled maskray N. picta (~64%

DW∞) and common stingray (Dasyatis pastinaca) (~52% DW∞)

(Jacobsen & Bennett, 2010, 2011; Pierce & Bennett, 2010; Yigin &

Ismen, 2012). Unfortunately, female maturation could not be assessed

directly in this study. Working on the assumption that males and

females mature at similar size classes (Da Silva et al., 2018; Jacobsen

& Bennett, 2010, 2011; White, 2007), estimates suggest they also

mature relatively early. Given the importance of female maturity in

understanding fish population dynamics, verification of the estimates

provided here is a clear priority.

Relatively fast growth rates (k > 0.1) and early maturation are

generally associated with higher potential rates of population increase

and thus higher rebound potentials (Branstetter, 1990; Frisk et

al., 2001; Musick, 1999). However, species with fewer than five

female offspring per year tend to have very low estimates of rmax

(Pardo et al., 2016b). The early maturation of Baraka's whipray, com-

bined with a moderately long lifespan relative to other whiptail sting-

rays, likely off-sets the apparently low number of female offspring per

year and results in a high rmax estimate relative to those of many

threatened elasmobranchs (Dulvy et al., 2014b). However, uncertainty

remains around the fecundity (litter size and inter-birth interval) of

this species. The smallest specimens measured in this study and DW0

values estimated from the joint male and female growth model (23.5

and 33.4 cm disc width, respectively) are large relative to DW∞ esti-

mates, suggesting high maternal investment in offspring and thus

likely few offspring per litter. Verifying our assumptions for sex ratio,

inter-birth interval and annual fecundity is a clear priority for future

exploitation assessments of Baraka's whipray and other exploited

elasmobranchs in both SWIO and global fisheries.

Despite the potentially robust life-history traits of Baraka's

whipray, our distributional estimates of E suggest likely overfishing of
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F IGURE 6 Chapman-Robson catch curve for female Baraka's whipray Maculabatis ambigua across south-western Indian Ocean small-scale
fisheries, displaying age class of full recruitment to the fishery (age class 3) and catch curve regression line from age class 4 to 16, total mortality Z
is estimated at 0.237 (95%CI 0.175, 0.298)

716 TEMPLE ET AL.FISH



the species. Thus, management interventions are required, particularly

given that the degree of overfishing is likely to increase with rising

regional fisheries pressure (Temple et al., 2018). In addition to proba-

ble overfishing, the age and size class selectivity of the fisheries is of

further concern. Restricting elasmobranch fisheries to catches of non-

adult age classes can be an effective management strategy for these

taxa (Prince, 2002; Simpfendorfer, 1999) but may result in

prohibativly low yields. Protection of subadults is likely optimal for

maximizing the future reproductive potential of the stock (Kindsvater

et al., 2016). Assuming the size-at-maturity estimates presented here

are approximately representative, our data suggest that full recruit-

ment to the fishery occurs primarily in young adults. Furthermore,

exploitation continues across a broad range of adult age and size clas-

ses, indicative of a nonselective fishery. Whilst the nonselective

nature of catches is not unexpected given the multigear, multispecies

nature of SWIO small-scale fisheries, patterns of pressure across

post-maturity life-stages is of great concern for the biological sustain-

ability of both Baraka's whipray and numerous other elasmobranch

species caught in these fisheries (Kiszka & van der Elst, 2015; Temple

et al., 2019).

Lastly, we must note that our analyses assume that vertebral

banding observed in Baraka's whipray are consistent, annual and con-

tinual. Such assumptions may lead to misclassification of age in elas-

mobranchs if violated (Harry, 2018; Kinney et al., 2016; Natanson &

Cailliet, 1990), if there is difficulty in counting increasingly small bands

in older animals, or if there is variability in band formation among ver-

tebrae within individuals (Natanson et al., 2018). Whilst violation of

annual banding assumptions have been seen in elasmobranchs, they

have thus far been most common in large and longer-lived species.

Furthermore, annual band deposition has been validated in several

other whiptail stingrays (Cowley, 1997; Jacobsen & Bennett, 2010;

Pierce & Bennett, 2010; Smith et al., 2007). Thus, we consider our

assumption to be reasonable but encourage continued vigilance for

and research focus on banding periodicity in this and other elasmo-

branch species.

The life-history, rmax, exploitation and mortality data information

presented here for the recently described Baraka's whipray represent

an important step towards improving evidence-based fisheries man-

agement in the region. However, the limitations of the study also out-

line the priority next steps required for the sustainable exploitation of

this species. Improving our understanding of female maturation and

fecundity is crucial in estimation of exploitation resilience. Further-

more, life-history traits may vary significantly between stocks, yet

nothing is known of the structure of Baraka's whipray stocks within

its range. Stock structure is key for defining management units for

fisheries (Pita et al., 2016) and meeting the assumptions of stock

assessment approaches, with differing life histories between stocks

having implications for their resilience to fisheries exploitation and

subsequent management needs. Given the prominence and likely eco-

nomic importance of elasmobranchs, including Baraka's whipray, in

SWIO small-scale fisheries (Temple et al., 2019), understanding stock

structure and population dynamics are important in supporting and

tailoring accurate and effective fisheries management actions at

regional, national and local levels.
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