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INTRODUCTION 
 

The combined loss of both skeletal muscle mass 

(sarcopenia: [1]) and strength (dynapenia: [2–4]) in 

ageing, not only impairs locomotory function, impacting 

independence and quality of life, but can also 

compromise metabolic health. Reflecting this, there are 

robust epidemiological relationships between both 

sarcopenia and dynapenia, risk of non-communicable 

diseases (e.g. diabetes, COPD, cancer) and subsequent 

morbidity  and   mortality  [5–10].  Identifying  biological  

 

signatures associated with muscle ageing status is a 

potential approach to triage those in need of early 

intervention, develop tools for stratification or reveal 

targets for therapeutic manipulation [11–13]. 

 

In recent years there has been increased use of OMICs-

technologies (e.g. transcriptomics, proteomics and 

metabolomics) to examine the underlying aetiology of 

disease states and develop biomarkers for diagnosis or 

prognosis [14–16]. Metabolomic approaches, for 

instance, have already yielded insight into changes in 
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ABSTRACT 
 

Ageing compromises skeletal muscle mass and function through poorly defined molecular aetiology. Here we 
have used untargeted metabolomics using UHPLC-MS to profile muscle tissue from young (n=10, 25±4y), middle 
aged (n=18, 50±4y) and older (n=18, 70±3y) men and women (50:50). Random Forest was used to prioritise 
metabolite features most informative in stratifying older age, with potential biological context examined using 
the prize-collecting Steiner forest algorithm embedded in the PIUMet software, to identify metabolic pathways 
likely perturbed in ageing. This approach was able to filter a large dataset of several thousand metabolites 
down to subnetworks of age important metabolites. Identified networks included the common age-associated 
metabolites such as androgens, (poly)amines/amino acids and lipid metabolites, in addition to some potentially 
novel ageing related markers such as dihydrothymine and imidazolone-5-proprionic acid. The present study 
reveals that this approach is a potentially useful tool to identify processes underlying human tissue ageing, and 
could therefore be utilised in future studies to investigate the links between age predictive metabolites and 
common biomarkers linked to health and disease across age. 
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the muscle metabolome with age. Fazelzadeh and 

colleagues recently used a targeted approach to 

investigate age-related changes in the muscle meta-

bolome and highlighted that metabolites associated with 

mitochondrial function, fibre type and tissue turnover 

all differed between age groups [17], in-keeping with 

established ageing physiology [18–20]. Johnson and 

colleagues examined the relationship between 

metabolites and indicators of health span, and 

demonstrated that blood concentrations of certain amino 

acids and lipids were associated with health-span 

indicators in ageing [21]. What is still not known, is 

whether changes in the skeletal muscle metabolome 

associated with ageing could be informative of an 

ageing tissue phenotype and link to other clinical 

health-related parameters. However one of the major 

issues in metabolomics is determining the most optimal 

approach for identification of these “biologically 

important” changes in the metabolome associated with 

ageing, so that these links to clinical/health outcomes 

can be determined and investigated further. 

 

Untargeted metabolomics datasets are notoriously 

difficult to analyse. Firstly, there is the ‘curse of 

dimensionality’ whereby the number of observed 

variables is much larger than the number of samples used 

to observe those variables. This leads to a large false 

positive rate using significance based statistical 

approaches. Secondly the ‘dark matter’ of untargeted 

metabolomics datasets means that physiologically 

principled approaches to variable importance are difficult 

because many metabolites cannot be identified [22]. 

Machine learning algorithms such as Random Forest 

(RF: [23]) can be used to identify potentially informative 

variables in such datasets [24]. RF is well suited to high 

dimensional datasets for several reasons; RF is non-

parametric, difficult to over-train, robust to outliers, 

provides information on variable importance and also 

provides built-in cross-validation [25]. These properties 

make RF a useful choice for metabolite prioritization in 

untargeted metabolomic studies. Another layer of support 

can be added by providing evidence of an ‘expected’ 

biological context. We believe this represents a pragmatic 

approach to analysis of a high-dimensional dataset where 

variable selection by physiological consideration would 

fail (because many metabolites cannot be identified), 

assumptions (e.g. independence of metabolites) for 

approaches like ANOVA are likely violated and 

traditional statistical power is difficult to achieve or even 

define due to high-dimensionality of the data. 

 

Here we use the approach outlined above. First we use 

the RF algorithm to screen an untargeted metabolomics 

dataset and identify metabolites potentially informing on 

chronological ageing in muscle tissue. Then we used the 

PIUMet software which implements the prize-collecting 

Steiner Forest algorithm to identify putative metabolic 

networks containing these metabolites which may be 

perturbed in older muscle and assess the biological 

context of the network members. 

 

RESULTS 
 

Random forest selection of metabolite features of 

predictive importance that stratify human muscle 

ageing 
 

The impact of metabolite selection using RF is seen in 

Figure 1. Prior to application of RF there is a similar 

level of variability in samples across the age groups, and 

no distinct clustering of the groups (Figure 1A). After 

application of RF we were able to identify metabolites 

that can separate the full cohort age class (Figure 1B, 

1C), and plotting principle components demonstrates a 

gradient effect across age groups in PC1 (old to young 

over PC1) (Figure 1D). This is the pattern we would 

expect to see if these metabolites are informative on age 

across the age-span of the study. The arrows in Figure 

1D show loadings which represent the weight of the 

labelled variables in the direction of older age. Thus RF 

was able to select potentially informative metabolites for 

further analysis. Figure 1E shows representative 

boxplots for potentially informative metabolite levels in 

the polar positive modality. The abundance of each 

metabolite across the classes reflects the direction of the 

arrows in the biplot (see Figure 1D) highlighting the 

potential differences between age groups for these 

metabolite features. Clear differences observed between 

metabolite abundance for each age group. Although not 

our primary objective we also examined the ability of 

RF to classify subjects according to age group. RF 

performed well when predicting older age (OOB error 

for old between 0% (RP neg) and 11% (HILIC Pos)) 

when using the young as a reference group, due to 

younger age being harder to classify using RF (OOB 

ranging from 50-100% for young) 
 

Annotation and identification of selected age 

predictive metabolite features 
 

Of the 42 metabolites selected via RF (10 per polarity 

and modality, except RP Pos which provided 12 due to 

equal importance scores), putative ID’s were found for 

31 using the PIUMet algorithm. Due to the difficulty 

associated with metabolite annotation in untargeted 

metabolomics [26], it was not possible to uniquely 

identify all metabolite features within a given mass 

tolerance (5ppm; see Supplementary Table 1 for full list 

of ID matches). 
 

A number of metabolite matches provide plausible, 

biologically informed support for our approach and 
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Figure 1. (A) Pre RF PCA plot showing overlap of age groups and no defined clusters of metabolites predictive of age group for polar positive 

data. (B) Example variable importance and (C) multi-way importance plots generated from RF for polar positive data and the use of the 
randomForestExplainer R package. The most important predictive metabolites are selected out via Gini index and the top 10 (although 
arbitrary, this is generally selected as to where the variable importance falls off, i.e. as shown in the plot of panel B) selected for each polarity 
and ion mode to go forward for further analyses. (D) Post RF PCA plot for polar positive data, reduction of data to those metabolites most 
predictive of age shows clustering of age groups with most variability between age groups contained in PC1, with the direction and degree of 
correlation between each metabolite driving this difference shown through the loadings. (E) Representative boxplots for RF selected 
metabolites showing differences in metabolite abundance across age groups for these variables. 
 

provide confidence for the use of RF in selecting 

metabolites important for informing on processes 

associated with aging. For example, metabolite 2423 (MS 

predicted mw: 370.18135) (Figure 2A) matched a 

number of metabolites including Androsterone Sulfate 

and 5a-Dihydrotestosterone Sulfate, while metabolite 

2104 (MS predicted mw: 368.16575) (Figure 2B) 

matched to metabolites including Epitestosterone Sulfate, 

Dehydroepiandrosterone Sulfate and Testosterone 

Sulfate, which all relate to androgen steroid metabolism. 

It is well established that androgens such as testosterone 

decline with age in both men and women, and that this is 

associated with both declines in muscle mass and 

function [27]. Therefore, it may be expected that 

alterations in testosterone metabolism would be 

indicative of muscle ageing, and through the close 

association of testosterone levels with muscle mass, 

androgen metabolites could be predictive of human 

muscle ageing. Metabolite abundance in skeletal muscle 

for these two androgen related metabolites show declines 

across the age groups, which is line with previous 

literature ([28]: Figure 2A, 2B) 

A number of other groups were identified by PIUMet 

from the metabolites predictive of age, including lipid-

based metabolites (Lysophospholipids, itaconic acid, 

capryloylglycine), amines (spermine, histamine), amino 

acid metabolites (histamine, imadazolone-5-propionic 

acid) and energy metabolites (Phosphocreatine). All of 

these increased in abundance with age. 

 

Ageing-muscle metabolome networks 

 

After metabolite identification (Supplementary Table 1), 

the PIUMet algorithm generates a metabolite network 

using the prize-collecting Steiner Forest algorithm, and 

identifies a subset of metabolites most likely to 

correspond to the matching metabolite feature, providing 

a robustness score for each in relation to the network 

parameters (see Pirhaji et al. [29] for more details). 

Using this method, we generated a metabolite network 

associated with human muscle ageing (Figure 3). This 

network highlights proposed links between identified 

metabolites including potential protein-metabolite and 

protein-protein interactions. Notably, subnetworks 
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Figure 2. Representative boxplots of metabolite abundance for metabolites A) 2423 and B) 2104 which were selected via RF 
to be predictive of muscle age and were matched to a number of steroid and androgen metabolites following annotation 
using the PIUMet algorithm. Relative abundance for both metabolite features shows decline with age, a well-established relationship 

observed in ageing muscle for steroid and androgen metabolites. 
 

 
 

Figure 3. Metabolite network built through PIUMet. Key metabolite subnetworks centered around histamine, androgen and 

phospholipid metabolism, and phosphocreatine are highlighted as hubs for this ageing network. 
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were generated around physiologically relevant hubs 

such as phosphocreatine, androgen metabolism, 

histamine and lysophospholipid metabolism (see  

Figure 3). These data indicate a potential role for these 

metabolites, or the subnetworks involved with these 

metabolites, in human muscle ageing. 

 

DISCUSSION 
 

In the present study we used the RF algorithm to 

prioritise metabolites informative for age group from a 

large dataset of several thousand metabolites. We then 

used the PIUMet algorithm to identify metabolites and 

generate a metabolite network structure that reflected the 

known biology of human ageing and effects on muscle. 

This network included age associated metabolites such 

as phosphocreatine, androgens, amines/amino acids 

(histamine, histidine) and lipid metabolites as well as 

novel ageing related markers such as dihydrothymine, a 

marker of DNA damage and imidazolone-5-proprionic 

acid. 

 

Changes in Androgen metabolism were apparent  

in the ageing muscle metabolite signature, with the 

metabolites dehydroepiandrosterone sulfate and 5-alpha-

dihydrotestosterone sulfate showing declines in 

abundance with increasing age (see Figure 2A, 2B). The 

association between testosterone and ageing is long 

established; both total and free testosterone decline with 

age in men and women [29]. Moreover, age-related 

declines in testosterone have been linked to reduced 

muscle mass and strength [30], immobility, physical 

performance [31], and frailty [27]. Further substantiating 

our findings, in a recent untargeted metabolomics study, 

it was demonstrated that chronological age was 

significantly correlated with the steroid/androgen 

metabolites 4-androsten-3beta, 17beta-dioldmonosulfate 

and 4-androsten-3beta, 17beta-diol disulfate 2 [32]. The 

present findings therefore provide good confidence that 

our RF based bioinformatics workflow is able to yield 

useful information about the metabolomic signature of 

ageing skeletal muscle. 

 

The lipid composition of the muscle cell influences 

membrane structure, function, permeability, molecular 

transport, intracellular signalling [33] and the 

synthesis of steroid hormones including the androgens 

[34]. This may explain the link between lipid-based 

metabolites and androgens in our PIUMet predicted 

network. With ageing, the composition of lipids shifts 

towards saturated intramyocellular lipids [35, 36] 

which when coupled to declines in mitochondrial 

content [37], can lead to insulin resistance [38]. In 

support of these changes to lipid composition with age, 

we report that a number of lipid compounds were 

identified in our bioinformatic analysis and changed 

with age; namely the Lysophospholipids (LysoPE(0:0/ 

22:6)/(22:6/0:0), LysoPE(0:0/20:5)/(20:5/0:0), LysoPE 

(0:0/24:6) and LysoPC(0:0/18:0), the branched fatty 

acid Itaconic Acid and the medium chain acylglycine 

Capryloylglycine. The lysophospholipids are produced 

via the breakdown of membrane phospholipids [39]. 

The apparent functional relationship between increases 

in lysophophospholipids in the present study and 

breakdown of cellular membranes may have links to 

musculoskeletal ageing e.g. with a decrease in muscle 

mitochondrial phosphatidylethanolamine being observed 

in ageing mice [40]. This decline in mitochondrial 

phosphatidylethanolamine may be implicit in the declines 

in mitochondrial function observed with ageing [41], and 

associated functional decline in muscle. Further, the 

lysophospholipids have important intracellular signalling 

roles regulating processes as diverse as blood pressure 

regulation, cell proliferation, cell survival and cell 

morphology [42, 43]; in particular lysophosphatidic  

acid (LysoPA) and lysophosphatidylcholine (LysoPC). 

Recent findings have also linked the levels of LysoPC in 

plasma to chronological ageing [44], which we now add 

support to, albeit in muscle, within the present study i.e. 

increased levels in both of the LysoPC and LysoPE 

species. Such changes in abundance of these compounds 

may contribute to age-associated muscle decline and 

require follow-up. 

 

Itaconic acid or Itaconate is a small branched-chain 

fatty acid, originally identified as compound produced 

by the fungus Aspergillus [45]. Recently this compound 

has been found to be produced by macrophages [46] 

linked to the M1 polarization phase of the macrophage 

response to pro-inflammatory signals in order to remove 

foreign and damaged cells [47]. This M1 polarization 

leads to impairments to the flux through the TCA cycle, 

with Itaconic acid being formed by the decarboxylation 

of the TCA intermediate cis-acotinate through the 

enzyme immune-responsive gene (Irg1; [48]). Itaconate 

can then act as an antimicrobial agent by disrupting the 

glyoxylate cycle used by pathogens [47, 49]. Ageing 

has long been associated with inflammation, and 

associated declines in skeletal muscle mass and function 

[50], as well as impaired immune responsiveness [51, 

52]. Therefore, increases in itaconate with age, may 

relate to an increased inflammatory immune response; 

indeed, there is evidence in rats that itaconate is capable 

of reducing levels of visceral fat through the inhibition 

of F6P2Kinase [45], potentially responding on two 

fronts to the ageing inflammatory response. 

 

Capryloylglycine or n-octanoylglycine is a medium 

chain fatty acid. It is produced as a result of acylCoA 

esters conjugating with glycine through the enzyme 

glycine N-acyltransferase [53], and is normally observed 

in urine as a marker of in-born errors of metabolism such 
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as medium chain acyl CoA dehydrogenase deficiency 

(MCADD; [54]). The process leading to the increase in 

capryloylglycine with age in the present study is unclear. 

Yet, with its role in regulation of acylCoA levels, it may 

relate to impaired mitochondrial function or content with 

age. With many of the lipid metabolites identified 

providing the potential for impairment to energetic 

pathways, particularly involving the mitochondria and 

oxidative phosphorylation, it may be expected that other 

aspects of energy metabolism are perturbed in ageing 

muscle. In support of this thesis Phosphocreatine was 

also identified as a key metabolite in ageing muscle  

in the present findings, with the PIUMet predictive 

network linking it to both Itaconic acid and LysoPE (see 

Figure 3) 

 

The polyamines; Spermine and Spermidine have been 

compounds of continued interest in ageing and health 

research in recent years [55]. At a systems level they are 

considered essential growth factors for cells, being 

involved in multiple processes from signal transduction 

to protein and DNA synthesis, and have key roles in the 

regulation of skeletal muscle mass [56]. Here we found 

spermine to be predictive of age, with increased 

abundance with age (not significant following FDR 

correction), which supports previous muscle metabolome 

data looking at differences between old and young 

cohorts [17]. Reduced expression of spermine oxidase 

(SMOX), leading to increased spermine levels, has been 

shown to be linked with muscle atrophy in mouse models 

[57]. Concomitantly overexpression of SMOX in C2C12 

murine myotubes increases overall fibre size [58]. 

Moreover, in a number of neuromuscular disorders, an 

increased concentration of the polyamines and associated 

metabolites is often observed [59, 60], highlighting their 

vital role in the skeletal muscle mass regulation, and 

indicating that they might be related to impaired 

regulation of muscle mass with ageing. 

 

The synthesis and degradation of polyamines is closely 

linked to the metabolism of another amine identified 

within our metabolite signature of muscle ageing - 

histamine. The interplay between the two amine 

pathways is still not fully understood, however  

histamine may impact expression of the enzyme ornithine 

decarboxylase (ODC), a key step in polyamine synthesis 

[61–63]. Histamine is a prominent vasoactive substance, 

helping regulate blood-flow and vascular tone [64, 65]. It 

is well established that the control of blood flow is 

impaired in ageing with significant decrease in flow and 

microvascular perfusion to the muscle in response to 

nutritive stimuli [66, 67]. Though speculative, increased 

levels of histamine observed in older muscle could 

represent a compensatory mechanism. Interestingly, links 

between amines, polyamines and androgens exist, hence 

the predicted links between these compounds in  

the PIUMet network analyses (Figure 3). For instance, 

treatment of orchidectomized male mice with 

testosterone led to increased expression of ODC, 

regulating polyamine synthesis and degradation [68, 69]. 

Furthermore androgen receptor knockout leads to the 

down regulation in expression of ODC and other 

enzymatic proteins, in muscle, involved in polyamine 

biosynthesis [56]. These interlinked pathways could be 

implicit in the regulation of skeletal muscle mass with 

ageing and could provide useful therapeutic targets for 

future investigation. 

 

In addition to those metabolites which formed the major 

hubs and subnetworks for the present ageing muscle 

signature, there were a small number of other minor 

metabolites which were also shown to be powerful in age 

prediction, namely imadozolone-5-proprionic acid, 

dihydrothymine, 1,7/3,7 dimethyluric acid, aniline and 

tagatose. Imadozolone-5-proprionic acid is a metabolite 

of histidine closely linked to histamine within the 

predicted network via histidine and the enzyme histidine 

decarboxylase, which catalyses the decarboxylation of 

histidine to histamine [70]. Dihydrothymine is a 

breakdown product of the nucleotide thymine, however it 

is also believed to represent the presence of potential 

DNA damage [71]. The idea that DNA damage may be a 

contributing factor towards cellular ageing has long been 

proposed [72, 73], and therefore could indicate the 

presence of DNA damage in ageing muscle. 1,7/3,7-

dimethylurate is another metabolite of nucleotide 

metabolism associated with the purine xanthine. It is also 

known as a breakdown product and marker of the 

pharmacokinetics of the COPD and asthma drug 

Theophylline or Dimethylxanthine [74], and in the 

metabolism of caffeine [75]. Interestingly the isomer 1,7 

dimethylurate in plasma has been shown to be related to 

chronological ageing in previous untargeted meta-

bolomics studies [32]. This provides support for this 

compound as a potentially novel marker, with more 

research needed into its potential biological actions and 

putative links to ageing. Both aniline and tagatose were 

putatively identified within these samples. Tagatose is 

common in sweeteners in food and dairy products and 

therefore may be reflective of dietary differences, 

whereas aniline is an industrial chemical not expected to 

be present endogenously and therefore may reflect a 

contaminant or an inaccurately identified compound. 

 

This work is primarily exploratory in nature and is not 

intended to define a definitive metabolic signature of 

ageing and health. It is more an attempt to generate leads 

and hypotheses to investigate in future, i.e. through 

identification of metabolites and/or metabolic pathways 

for manipulation via pharmaceutical and drug targets in 

models of ageing and disease using a more targeted 

approach, and to assist in confirming a potential ageing 
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metabolite signature and associated therapeutic 

intervention for health across the lifespan. Moreover, it 

is also important to consider the aspect of gender in the 

context of future work, whilst not possible in the current 

study, there is clear evidence of sexual dimorphism in 

the context of skeletal muscle aging [76]. It is therefore 

possible that metabolite signatures may show distinct 

gender specific differences particularly in those 

associated with androgen metabolism. In addition to this, 

the sample size could be considered somewhat limited in 

the current study when it comes to OMICs, and therefore 

statistical power could be compromised in this type of 

analyses. However, the use of RF is optimal for dealing 

with so called “small n large p” data sets [77] by 

minimising the potential for overfitting data. However, 

follow up work with a larger cohort is clearly needed to 

independently validate our findings. A current major 

problem in the field of metabolomics, are the issues 

involved with metabolite feature annotation and 

accuracy of ID in untargeted metabolomics [26]. Despite 

significant progress in recent years, annotation is still 

lagging far behind the other OMICs approaches such as 

proteomics and genomics/transcriptomics. 

 

The present study reveals that a novel bioinformatics-

based metabolomics approach involving the use of both 

Random Forest to detect metabolites important to predict 

age and PIUMet to fit these to predicted metabolic 

networks, is a potentially useful tool to classify human 

tissue ageing. This process provides a pragmatic 

approach to datasets such as those seen in untargeted 

metabolomics where many potentially biologically 

informative entities cannot be identified, and false 

positive rates are potentially very high. Based on the 

work presented here, future untargeted work through 

recruitment of a second independent cohort would be 

needed to validate this approach and the identification of 

the potential age important metabolites presented here, 

this could then be followed by a more robust targeted 

validation in a third independent cohort. Once fully 

validated this approach could be utilised in future studies 

to investigate the links between age predictive 

metabolites and common biomarkers linked to health and 

disease across our ageing population, and therefore could 

be used to assist towards the identification of novel 

preventative measures for age associated diseases. 

 

MATERIALS AND METHODS 
 

Subject recruitment, ethics and study data collection 
 

This work utilises samples collected as part of previously 

published work [78]. This study was reviewed and 

approved by the University of Nottingham Medical 

School Ethics Committee (D/2/2006) and was performed 

in accordance with the Declaration of Helsinki. All 

subjects gave written informed consent to participate in 

the study prior to inclusion after all procedures and risks 

were explained. 

 

Three groups of subjects consisting of young (n = 10, 25 

± 4 yr; BMI 24 ± 1 kg/m2), middle-aged (n = 18, 50 ± 4 

yr; BMI 27 ± 1 kg/m2), and older (n = 18, 70 ± 3 yr; 

BMI 27 ± 1 kg/m2) men and women (~50:50) who were 

well matched for baseline lean mass, were recruited (see 

Table 1 for summary of subject characteristics). All 

subjects were screened by means of a medical 

questionnaire, physical examination, and resting ECG, 

with exclusions for moderate muscle wasting (>1 SD 

below age norms); metabolic, respiratory, or cardio-

vascular disorders; or other signs and symptoms of ill 

health. Once enrolled in the study, volunteers were 

instructed to refrain from exercise for 72 hours and 

return to the laboratories for testing in an overnight 

fasted state. Upon arrival, body composition was 

measured using dual-energy X-ray absorptiometry. 

Volunteers then provided a venous blood sample for the 

measurement of fasting insulin, glucose, cholesterol and 

triglycerides, followed by measurements of resting heart 

rate (RHR) and mean arterial pressure (MAP). Muscle 

biopsies of the m. vastus lateralis were then taken under 

sterile conditions using the conchotome biopsy 

technique [79], with 1% lidocaine (B. Braun Melsungen) 

as local anaesthetic. Muscle was rapidly dissected free of 

fat and connective tissue, washed in ice-cold saline, and 

snap frozen in liquid N2 before storage at –80°C until 

further analysis. 

 

Untargeted metabolomic analysis 

 

Sample preparation 

Approximately 30 mg of muscle tissue was mixed with 

1000 µL of methanol:water:chloroform (2.5:1:1 [v/v/v]) 

and homogenised in a Qiagen TissueLyser II (Qiagen, 

Germany) at 30 Hz for 2 × 30 s cycle followed by 

shaking at room temperature for 10 min. Samples were 

centrifuged (10,000 g, 3 °C, 5 min) followed by transfer 

of ~1000 µL of the supernatant to a clean 2 mL 

microcentrifuge tube. 500 µL of HPLC grade water was 

added followed by vortex mixing and centrifugation 

(10,000 g, 3 °C, 5 min) to induce phase separation. The 

upper polar phase (methanol/water) and the lower non-

polar phase (chloroform) were transferred in to separate 

clean 2 mL autosampler vials and dried under nitrogen. 

Samples were stored at −80 °C until analysis. 

 

UHPLC-MS 

All samples were analysed as described previously [80] 

using an UltiMate U3000 RSLC UHPLC system coupled 

to an electrospray Q-Exactive mass spectrometer.  

The polar phase samples were analysed applying HILIC-

MS after being reconstituted in 100 μL of 95/5 
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Table 1. Summary of subject characteristics. All data as mean ± SEM. 

 Young Middle aged Old 

Leg (dominant) Lean Mass (g) 8510.1 ± 508.3 7975.4 ± 487.9 8160.5 ± 523.3 

Whole Body Strength (N) 4404.7 ± 308.4 4182.3 ± 357 3570.6 ± 188.7 

% Body Fat 28.1 ± 4.0 34.5 ± 1.6 32.8 ± 0.2 

Fasting Insulin (μU/ml) 4.5 ± 0.6 4 ± 0.4 4.9 ± 0.5 

Fasting Glucose (mM) 5.1 ± 0.1 5.5 ± 0.2 5.8 ± 0.1 

HDL Cholesterol (mM) 1.2 ± 0.1 1.4 ± 0.1 1.2 ± 0.1 

LDL Cholesterol (mM) 2.4 ± 0.5 3.1 ± 0.3 3.2 ± 0.2 

Triglycerides (mM) 0.9 ± 0.1 1.0 ± 0.1 1.1 ± 0.1 

 

acetonitrile/water, and the non-polar phase samples were 

analysed applying reversed phase C18-MS after being 

reconstituted in 100 μL of 50/50 water/methanol. After 

reconstitution, 20 µL of each sample was pooled in to a 

QC sample to quantify technical reproducibility. For 

HILIC MS, an Accucore 150-Amide HILIC UHPLC 

column (100 mm × 2.1 mm 2.6 µm, Thermo-Fisher Ltd., 

UK) was used with mobile phase A: 95% acetonitrile and 

5 mM Ammonium Formate (pH 3), and mobile phase B: 

5 mM Ammonium Formate in water at (pH 3). For 

reversed phase MS a Hypersil Gold UHPLC C18 column 

(100 mm × 2.1 mm 1.9 µm, Thermo-Fisher Ltd.) was 

used with mobile phase A: water with 0.1% formic acid, 

and mobile phase B: methanol with 0.1% formic acid. 

5µL of each sample was injected and analysed applying 

positive-negative ion mode switching with data collected 

in the m/z range 100–1000. Ten QC samples were 

analysed at the start of the analysis followed by a QC 

sample after every 6th biological sample and two QC 

samples at the end of the analytical run. Biological 

samples were randomised across the analytical batch. 

Gradient elution profiles and mass spectrometer 

conditions used for each mode are provided in Table 2. 

 

Sample pre-processing 

Raw data (.RAW) files were pre-processed using vendor 

software Compound Discoverer (Thermo Scientific, 

Bremen, Germany; mass tolerance: 5ppm, Signal/Noise: 

3, min number of isotopes: 1) to extract out metabolite 

features and corresponding accurate mass molecular 

weight. Data were exported as a data matrix of metabolite 

feature (molecular weight-retention time pair) vs. sample 

with associated chromatographic peak areas for a 

detected metabolite for each polarity (Polar/Non Polar) 

and ion mode (Positive and Negative). Each metabolite 

feature with a relative standard deviation calculated for 

QC samples greater than 20% and not detected in greater 

than 70% of QC samples were removed prior to further 

downstream data analysis. This is a commonly applied 

technique for untargeted metabolomics [81] that has been 

recommended in recent guidelines [82]. In total, 5655 

metabolite features were detected in the muscle samples; 

2819 polar positive, 1251 polar negative, 1239 non-polar 

positive and 346 non-polar negative. 

 

Statistics 

 

Data for each polarity and ion mode was analysed 

separately utilising in-house R (R Core Team 2013) 

scripts. Prior to analysis, and to account for any 

differences in the amount of muscle processed for each 

sample (exactly 30mg was not possible for some samples 

due to low sample amount), SUM normalisation of 

metabolite abundances was performed [83, 84]. 

 

Random forest selection of metabolite features of 

predictive importance 

The Random Forest (RF) algorithm was used to identify 

metabolites informative on age class [23]. Intuitively 

high correlation between predictor features (ill 

conditioning) means that many features provide the 

same/similar information. Consequently estimates of e.g. 

feature importance are diluted. Toloşi and Lengauer 

explored this issue in RF and other feature selection 

methods concluding that even very relevant features can 

be assigned small importance measures if they are highly 

correlated with many other features [85]. Due to the 

exploratory nature of our study we took a pragmatic 

approach and removed highly correlated features 

(Pearson correlation ≥ 0.9) before applying RF. Features 

were ranked by the Gini coefficient, a measure of 

terminal leaf purity for RF trees. With limited numbers 

of subjects in each group, RF variable selection was 

performed only on the extremes of age, i.e. old versus 

young with the expectation that middle aged would fall 

between these two. 

 

The top 10 most important metabolite features by Gini 

coefficient from each polarity and ion mode were 

selected and a reduced data set based on these 

metabolites was subjected to further analyses. Lists of 

polar and non-polar metabolites were generated alongside 

their respective molecular weights, m/z values and 

predicted chemical formulae following referencing back  
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Table 2A. UHPLC gradient elution profiles for each polarity. 

HILIC Phase 

Time (mins) 

% Buffer Composition 

Buffer A - 

Acetonitrile:Water (95:5) 

with 5mM Ammonium 

Formate (pH 3) 

Buffer B - 

Water:Acetonitrile (95:5) 

with 5mM Ammonium 

Formate (pH 3) 

0 95 5 

1 95 5 

12 55 45 

15 55 45 

16 95 5 

21 95 5 

Reversed Phase (C18) 

Time (mins) 

% Buffer Composition 

Buffer A - Water with 

0.1% Formic Acid 

Buffer B - Methanol with 

0.1% Formic Acid 

0 95 5 

2 95 5 

9 5 95 

12 5 95 

13 95 5 

16 95 5 

 

Table 2B. MS operating conditions for each ion mode. 

MS Conditions - Q-Exactive MS 

Spray Voltage (kV) 3.5 (ESI-)/4.5 (ESI+) 

Sheath Gas (AU) 40 

Aux Gas (AU) 15 

Sweep Gas (AU) 0 

S-Lens 100 

Resolution 35,000 (FWHM, m/z 200) 

Capillary Temp (°C) 300 

ESI Heater Temp (°C) 300 

 

to pre-processing through Compound Discoverer. For 

each metabolite feature univariate analyses was 

performed to detect differences in relative metabolite 

abundance between old and young using the univariate 

function (Mann-Whitney U Test) provided in the muma 

R package [86] and negative log10 of the Benjamini-

Hochberg corrected p-values were obtained. 

 

Metabolite annotation, identification and predicted 

integrated metabolite network analyses 

Lists of metabolite features (identified by their m/z 

value and polarity) and the results of the univariate test 

used to determine differences between samples were 

input into the PIUMet algorithm [87]. PIUMet uses  

this information and implements a machine learning 

approach to infer pathways and experimentally 

undetected components from the list of untargeted 

metabolite features provided, by utilising an integrative 

network of over one million protein and metabolite 

interactions, obtained from the iRefIndex, HMDB and 

Recon 2 databases (see [87] for more detailed 

information on PIUMet). Application of PIUMet allow-

ed us to obtain putative metabolite IDs and generate 

potential molecular/metabolite networks which may be 

important in the muscle ageing phenotype. The network 

data was extracted from the PIUMet edge frequency file 
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and the PIUMet network reconstituted in Cytoscape 3.7 

[88] for legibility. 

 

Abbreviations 
 

ANOVA: analysis of variance; BMI: Body Mass Index; 

COPD: Chronic Obstructive Pulmonary Disease; ECG: 

Electrocardiogram; HILIC-MS: Hydrophilic interaction 
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liquid chromatography; MAP: Mean arterial pressure; 
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Ultra high performance liquid chromatography. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

Supplementary Table 1. Putative metabolite IDs for age important metabolites identified by RF. 


