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A B S T R A C T

Water clarity is a well-established first-order indicator of water quality and has been used globally by water
regulators in their monitoring and management programs. Assessments of water clarity in lakes over large
temporal and spatial scales, however, are rare, limiting our understanding of its variability and the driven forces.
In this study, we developed and validated a robust Secchi disk depth (ZSD) algorithm for lakes across China based
on two water color parameters, namely Forel-Ule Index (FUI) and hue angle α, retrieved from MODIS data. The
MODIS ZSD model shows good results when compared with in-situ measurements from 17 lakes, with a 27.4%
mean relative difference (MRD) in the validation dataset. Compared with other empirical ZSD models, our FUI
and α-based model demonstrates improved performance and adaptability over a wide range of water clarity and
trophic states. This algorithm was subsequently applied to MODIS measurements to provide a comprehensive
assessment of water clarity in large lakes (N = 153) across China for the first time. The mean summer ZSD of the
studied lakes between 2000 and 2017 demonstrated marked spatial and temporal variations. Spatially, the ZSD of
large lakes presented a distinct spatial pattern of “high west and low east” over China. This spatial pattern was
found to be associated with the significant differences in lake depth and altitude between west and east China
while China's population, GDP, temperature, and precipitation distribution have also contributed to a certain
extent. Temporally, the ZSD of most lakes increased during this period, with an overall mean rate of 3.3 cm/yr for
all lakes. Here, 38.6% (N = 59) of the lakes experienced a significant increase in their ZSD value during the past
18 years while only 8.5% (N = 13) showed a significant decreasing trend. Significant increases in lake ZSD were
observed in west China, which were found to correlate with the increase of air temperature and lake surface
area. This is possibly a response of the lakes in west China to climate change. In the lake systems of east China,
which are predominately used as a drinking water source, the increase in lake ZSD was found to be strongly
correlated with changes in local GDP (gross domestic production), NDVI (normalized difference vegetation
index) and lake surface area, suggesting a combined effect of the implemented management practices and cli-
matic variability. The results of this study provide important information for water quality conservation and
management in China, and also highlight the value of satellite remote sensing in monitoring water quality over
lakes at a large scale and long-term.

https://doi.org/10.1016/j.rse.2020.111949
Received 13 August 2019; Received in revised form 4 June 2020; Accepted 8 June 2020

⁎ Corresponding author at: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, No. 9 Dengzhuang
South Road Haidian District, Beijing 100094, China.

E-mail address: zb@radi.ac.cn (B. Zhang).

Remote Sensing of Environment 247 (2020) 111949

Available online 27 June 2020
0034-4257/ © 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2020.111949
https://doi.org/10.1016/j.rse.2020.111949
mailto:zb@radi.ac.cn
https://doi.org/10.1016/j.rse.2020.111949
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2020.111949&domain=pdf


1. Introduction

Lakes and reservoirs are critical for our wellbeing since they are
core to water supply, food production, recreation activities, commerce,
and human health (Dörnhöfer and Oppelt, 2016; Williamson et al.,
2009; Tyler et al., 2016). However, these inland water bodies are faced
with multiple and compounding pressures from a number of users and
uses, as well as climate change (Adrian et al., 2009; de Eyto et al., 2016;
O'Reilly et al., 2003). Water clarity provides important and synthetic
information on water quality and lake's ecosystem status (Kirk, 1994;
McCullough et al., 2012; Pirhalla et al., 2017). It varies with the three
major optically active components (OAC) of water, i.e., suspended
particulate matter (SPM), phytoplankton (usually represented by
chlorophyll-a concentration, Chl-a), and colored dissolved organic
matter (CDOM). Water clarity has a direct link to the underwater light
field and therefore to lake photosynthetic production (Biber et al.,
2005; McPherson et al., 2011). Water clarity monitoring is essential to
understand long-term changes in lake ecosystems, as well as to support
environmental protection strategies (Olmanson et al., 2008; Suominen
and Tolvanen, 2016).

Water clarity has been historically measured in water bodies as the
Secchi disk depth (ZSD, m), which is determined by the depth at which a
white or black and white disk disappears from the observer's sight (Lee
et al., 2018a, 2018b; Wernand, 2010). Compared with other measures
of water clarity, e.g., the turbidity or downwelling irradiance diffuse
attenuation coefficient (Kd), the collection of Secchi disk depth is much
easier and more cost-effective. Therefore, the ZSD measurement has
been performed extensively with a tradition still ongoing and ex-
panding by numerous citizen science projects, such as the Secchi Disk
and Eye on Water (http://www.secchidisk.org/;https://www.
eyeonwater.org/).

Although the ZSD is one of the simplest measures of water proper-
ties, information on water clarity is still limited in terms of spatial
coverage, temporal frequency, and representativeness. Given the revisit
capacities and wide-swath observation (Doron et al., 2011; Mouw et al.,
2015) of sensors onboard satellite platforms, Earth observation (EO)
data can provide a feasible source to monitor long-term changes in
water clarity over large regions. Numerous empirical models have been
developed to estimate water clarity, including single-band and band-
ratio algorithms. For example, Olmanson et al. (2008) developed and
evaluated an empirical ZSD model using Landsat TM1 and TM3 bands to
monitor 20-year changes of ZSD over 10,500 lakes in the state of Min-
nesota. They demonstrated that satellite imagery can provide an ac-
curate method to obtain comprehensive spatial and temporal coverage
of water clarity. In another study, Binding et al. (2007, 2015) produced
monthly binned images of remote sensing radiance over the Great Lakes
by merging data from the Coastal Zone Color Scanner (CZCS), the Sea-
viewing Wide Field-of-view Sensor (SeaWiFS), and the Moderate Re-
solution Imaging Spectroradiometer (MODIS). They used the remote
sensing radiance at 555 nm to interpret changes in the ZSD across the
Great Lakes. Duan et al. (2009) evaluated the ZSD of three lakes in
northeast China from Landsat TM imagery based on four regression
equations, which indicated strong geographic patterns in lake water
clarity over this region.

The theoretical interpretation of ZSD has been recently revised by
considering a Secchi disk not a point source to human eyes (Lee et al.,
2015; Lee et al., 2018a, 2018b), which led to an innovative semi-ana-
lytical model for estimating ZSD from satellite imagery via deriving
water's inherent optical properties (IOPs) (Lee et al., 2016). Rodrigues
et al. (2017) evaluated this new model in a reservoir in Brazil with
Landsat-8 OLI and Sentinel-2 MSI data, and suggested that the deriva-
tion of IOPs was the limiting factor in retrieving accurate ZSD by this
model. Feng et al. (2019a) tested and applied this new model to explore
changes in lake clarity in the Middle and Lower Yangtze River basin in
China, and analyzed the environmental factors affecting the change
trends. Nevertheless, the complexity and dynamic variability of optical

properties found in inland waters (Spyrakos et al., 2018) remain as
obstacles for the systematic application of these empirical and analy-
tical models over a wider range of optical water types (Ren et al., 2018).
Moreover, challenges associated with atmospheric correction, ad-
jacency effects, low signal-to-noise and limited resolutions of existing
sensors over lakes can exacerbate these difficulties (Li et al., 2017;
Mouw et al., 2015; Palmer et al., 2015; Wang et al., 2011).

There are thousands of lakes and reservoirs (hereafter termed as
“lakes” for brevity) located broadly in China characterized by a variety
of diverse types and regional characteristics (Ma et al., 2011; Wang and
Dou, 1998). Based on the geological origin, topography, water resource
characteristics, and lake hydrological characteristics, Chinese lakes can
be divided into five distinct regions, i.e., the Qinghai-Tibet Plateau
Region (QTR), Mengxin Plateau Region (MXR), Yungui Plateau Region
(YGR), Northeast Mount-Plain Region (NER), and East Plain Region
(EPR) (Wang and Dou, 1998). In the recent half-century, China has
experienced rapid economic development and population expansion, as
well as the effects of climate change, which collectively has placed
pressure on lake ecosystems (Ma et al., 2010; Yang et al., 2010a, 2010b;
Zhang et al., 2019). Effective monitoring of lake clarity across large
areas and long-time spans is an important task for government man-
agement agencies. Given the difficulties in ZSD estimation over various
types of optically complex inland waters, a comprehensive and sys-
tematic assessment of water clarity in lakes across China has not yet
been completed.

In recent years, the FUI (Forel-Ule Index) and hue angle (α) have
been shown to be useful water color parameters in indicating the bulk
changes of water quality, and can be derived from multispectral sa-
tellite data with high accuracies (Van der Woerd and Wernand, 2018;
Wang et al., 2015). Recent studies have found that there are strong
correlations between ZSD and FUI for both oceanic and inland waters
(Garaba et al., 2015; Li et al., 2016; Pitarch et al., 2019; Wernand et al.,
2013). In this study, we developed an empirical ZSD model based on FUI
and α and evaluated it using a comprehensive match-up dataset col-
lected from geographically widespread lakes distributed across China.
Further, for the first time, maps of ZSD for nationwide large lakes in
China were generated based on MODIS observations and used to reveal
the long-term temporal and spatial trends in water clarity across China
from 2000 to 2017. Moreover, the relationship between the lake clarity
and economic developments and climate change over different regions
were explored and discussed.

2. Data acquisition

2.1. MODIS data

MODIS surface reflectance products (MOD09) provide an estimate
of the surface spectral reflectance for Bands 1–7 (i.e., 645, 859, 469,
555, 1240, 1640, and 2130 nm) at a spatial resolution of 500 m
(Vermote, 2015). As global products started from 2000, MOD09 pro-
ducts are considered an important data source for long-term and large
scale environmental monitoring (Feng et al., 2018a; Hou et al., 2017).
MOD09A1 is the 8-day composite surface reflectance data, which se-
lects one best reflectance observation during the 8-day period at the
pixel level with the criteria including cloud free and optimal solar ze-
nith (Vermote and Kotchenova, 2008). Hence, this MOD09A1 data were
used to estimate the long-term ZSD changes in large lakes across China
in this study. In order to narrow the match-up time window, the daily
MOD09 data (MOD09GA) were used to match the in-situ data and
develop the model after removing the pixels containing clouds and
other obvious noises. The daily MOD09GA data were not used in the
long-term monitoring in this study because it may contain large errors
and even negative reflectance over lakes that are probably caused by
bad observational conditions and non-optimal atmospheric corrections,
while the 8-day composite MOD09A1 data can avoid these un-
certainties in a certain degree by selecting the best observation for each
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pixel. The image archive between 2000 and 2017 was downloaded from
the Goddard Space Flight Center (GSFC) of the National Aeronautics
and Space Administration (NASA).

2.2. In-situ and simulated datasets

A large dataset of in-situ ZSD including 478 samplings was collected
from 27 lakes across China during 38 campaigns from 2006 to 2019 and
compiled to develop and test the ZSD estimation model in this study (see
Fig. 1). The ZSD values in our dataset ranged between 0.1 and 13.1 m. A
variety of conditions and characteristics were found in the dataset
ranging from the clear and oligotrophic lakes in the Qinghai-Tibet
Plateau in west China, such as Qinghai Lake and Namco Lake, to the
turbid and eutrophic lakes in the middle and lower reaches of the
Yangtze River in east China, such as Taihu Lake and Chaohu Lake, and
to eutrophic lake in southwest China, i.e., Dianchi Lake. Due to the
remoteness, altitude, and harsh conditions that characterize the Qin-
ghai-Tibet Plateau, fewer data were collected from lakes in this area
where ZSD values are typically higher. We note a majority of the in-situ
data in the QTR were acquired from Liu et al. (2017). For these mea-
surements, a typical black and white Secchi disk was used in the field
campaigns to determine ZSD. The disk was lowered into the water and
the ZSD was determined as the depth where the disk was no longer
visible by an observer from the water surface. To avoid the effects of
land-adjacency and low solar altitude, in situ samples were collected at
least 500 m away from the shoreline and around solar noon time.

The in-situ measured ZSD data were matched up with daily
MOD09GA data with the purpose of developing an empirical model to
estimate ZSD using the MOD09 images. The nearest pixel to the in-situ
sampling sites was obtained under the condition that the pixel was not
detected as clouds, ice, snow, and other potential noises. The spatial
variability of the match-up pixel was also checked at 555 nm with the
criteria that the coefficient of variation (CV) is less than 0.2 within a 3 *
3 pixel-box centered at the match-up pixel (Zibordi et al., 2009). In
total, there were 288 match-up pairs between ZSD and MOD09GA data
compiled from the totally 476 samplings in the 27 lakes (Table 1). With
the match-up pairs, 183 data pairs (64% of the total) from 20 cam-
paigns were used to develop the ZSD model, while an independent da-
taset, including 105 data pairs (36% of the total) from 18 independent
campaigns with a wide range of ZSD, was used to test the model (see
Table 1). Besides, following the protocol described in Mueller et al.

(2003), in-situ measured remote sensing reflectance (Rrs, sr−1) data
were also collected in 246 of the 476 samplings, mainly from Lake
Taihu, Lake Chaohu, Lake Poyang, Lake Dianchi and Lake Qinghai. This
in-situ Rrs and ZSD dataset was used to further evaluate the proposed ZSD

model through comparing with other ZSD estimation models.
In addition to the in-situ dataset, a Hydrolight simulated dataset

(IOCCG, 2006), consisting of 500 data points, was employed in the step
of ZSD model development. In this simulated dataset, apparent optical
properties (AOPs), including the hyperspectral Rrs(λ) were generated
by the Hydrolight code using the input inherent optical properties
(IOPs) in a wide range. More details about this dataset can be found in
IOCCG (2006). The FUI in this dataset was calculated from Rrs(λ) after
conversion to MODIS bands using the MODIS relative spectral response
(RSR). The ZSD of each simulation was derived following the method
described in Lee et al. (2018a, 2018b). The ZSD values ranged from 0.8
to 34.0 m, with an average of 9.1 m.

2.3. Environmental factors

To better understand the potential environmental factors that may
contribute to the spatial and long-term variability of lake clarity in
China, three different categories of environmental factors, which have
been identified as influencing factors of water quality in previous stu-
dies (Feng et al., 2019a; Meng et al., 2015; Srebotnjak et al., 2012; Zhou
et al., 2012), were considered and preliminarily examined: (1) lake
geographic factors (i.e., lake altitude (AL), surface area (SA), average
water depth (WD), and local normalized difference vegetation index
(NDVI)), (2) meteorological factors (i.e., near surface air temperature
(AT), precipitation (PR), and wind speed (WS)), and (3) human activity
factors (i.e., local population (PO) and gross domestic production
(GDP)).

AL data for the lakes were acquired from global digital elevation
model (DEM) data produced by the NASA Shuttle Radar Topography
Mission (Farr et al., 2007). WD data for 46 of the studied lakes across
the different lake regions were the average lake depths acquired from
Wang and Dou (1998). Annual SA data for the lakes were retrieved
from the water segmentation of MOD09A1 data used in this study.
Annual NDVI data were acquired as the monthly MODIS vegetation
product, e.g., MOD13A3, provided by LAADS DAAC at the NASA
Goddard Space Flight Center. Monthly AT, PR and WS data were the
surface temperature, precipitation and wind speed data with a

Fig. 1. Locations of the in-situ sampling sites for model development (N =183) and validation (N =105) and MODIS studied lakes (N =153) in the five lake regions
(shown in bold on the map) across China.
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resolution of 0.1 degree from China meteorological forcing dataset
(CMFD) which was made through fusion of remote sensing products,
reanalysis dataset and in-situ observation data, obtained from National
Tibetan Plateau Data Center (He et al., 2020; Yang et al., 2010a,

2010b). Annual PO and GDP data by province were downloaded from
the website of the China National Bureau of Statistics (http://www.
stats.gov.cn/tjsj/ndsj/).

We note that the AL and WD data for lakes in this study are constant
values during the time due to the lack of time-series data, while the
other parameters change throughout the time domain. The summer
(i.e., from June to September) mean values for the long-term SA, NDVI,
AT, PR, and WS data were produced for each year from 2000 to 2017 to
be consistent with the periods of derived water clarity data. Annual PO
and GDP data by province were used for the time series analysis.
Spatially, the local NDVI, AT, PR, and WS data for each lake were
computed as the average value of the NDVI, AT, PR, and WS data in the
watershed in which the lake is located. The watershed boundaries are
specified by China's Third-level Watershed, obtained from the Resource
and Environment Data Cloud Platform (http://www.resdc.cn/data.
aspx? DATAID = 278). The local GDP and PO data for each lake cor-
responded to the GDP and PO data for the province in which the lake is
located.

3. Estimation of ZSD from MODIS

3.1. MODIS preprocessing

Fig. 2 shows a flowchart of the MODIS preprocessing to estimate
ZSD. Prior to the chromaticity parameter calculation (i.e., the FUI and
α), two essential steps in the preprocessing were followed, i.e., the

Table 1
Lake name, location, the total number of samplings (N1), the number of in-situ Rrs samplings (N2), the number of match-ups(N3), sampling date (Date) and ZSD

ranges of the in-situ data collection campaigns (campaigns for model development are given in bold while the independent campaigns for model testing are given in
italics).

Campaign No. Lake name Lat. (N) Long. (E) Lake region N1 N2 N3 Date ZSD ranges (m)

1 Taihu 30.2 120.1 EPR 50 46 23 2006.01 0–1
2 Taihu 30.2 120.1 EPR 50 39 34 2006.07 0–1
3 Taihu 30.2 120.1 EPR 50 43 6 2006.10 0–1
4 Taihu 30.2 120.1 EPR 50 49 37 2007.01 0–1
5 Chaohu 31.5 117.5 EPR 33 24 5 2009.06 0–1
6 Hongze 33.3 118.8 EPR 27 – 20 2015.05 0–1
7 Poyang 29.1 116.1 EPR 28 22 10 2011.07 0–1
8 Shijiu 31.5 118.9 EPR 6 – 3 2018.07 0–1
9 Dianchi 24.8 102.7 YGR 8 8 4 2009.12 0–1
10 Erhai 25.8 100.2 YGR 10 – 7 2015.10 1–2
11 Fuxian 24.5 102.9 YGR 12 – 11 2015.10 > 2
12 Dongco1 32.2 84.8 QTR 1 – 1 2012.08 0–1
13 Dogai Coring1 34.6 89.0 QTR 1 – 1 2016.11 1–2
14 Qinghai 36.8 100.2 QTR 17 15 15 2014.08 2–5
15 Zhangnaico1 31.6 87.4 QTR 1 – 1 2012.08 2–5
16 Migriggyangzhamco1 33.4 90.2 QTR 1 – 1 2016.1 2–5
17 Lagkorco1 32.0 84.2 QTR 1 – 1 2012.08 2–5
18 Dazeco1 31.9 87.6 QTR 1 – 1 2012.8 > 5
19 Yunboco1 30.8 84.8 QTR 1 – 1 2012.08 > 5
20 Namco1 30.7 90.6 QTR 1 – 1 2016.11 > 5
21 Xingkai 45.2 132.5 NER 3 – 3 2014.06 0–1
22 Xingkai 45.2 132.5 NER 3 – 2 2014.07 0–1
23 Honghu 29.8 113.3 EPR 20 – 9 2019.03 0–1
24 Hongze 33.3 118.6 EPR 12 – 12 2014.04 0–1
25 Chaohu 31.5 117.5 EPR 13 – 12 2013.09 0–1
26 Dianchi 24.8 102.7 EPR 40 – 37 2017.11 0–1
27 Poyang 29.1 116.1 EPR 12 – 10 2009.10 0–1
28 Ngangzeco 31.0 87.1 QTR 1 – 1 2018.09 1–2
29 Pusaier 32.3 89.4 QTR 1 – 1 2017.07 1–2
30 Ulungur 47.2 87.3 MXR 5 – 3 2015.07 2–5
31 Dawaco 31.2 85.0 QTR 1 – 1 2018.09 2–5
32 Dongco 32.2 84.8 QTR 1 – 1 2018.09 2–5
33 Camco 32.1 83.5 QTR 1 – 1 2018.09 2–5
34 Namco 30.7 90.6 QTR 5 – 4 2017.08 > 5
35 Silingco 31.8 88.9 QTR 4 – 4 2017.07 > 5
36 Lagkorco 32.0 84.1 QTR 2 – 2 2018.09 > 5
37 Lumajangdongco 34.0 81.6 QTR 2 – 1 2018.09 > 5
38 Monco Bunnyi 30.7 86.2 QTR 1 – 1 2018.09 > 5

1 Note: these in-situ data in the QTR were acquired from Liu et al. (2017).

Fig. 2. A flowchart of the MODIS preprocessing steps and the calculation of FUI
and α.
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remote sensing reflectance correction to derive Rrs from MODIS and
water segmentation to extract water areas from MODIS.

For the remote sensing reflectance correction, a pixel-based cor-
rection method (Wang et al., 2016; Wang et al., 2018) was used. This
method subtracts the minimum value of the near infrared and short-
wave infrared bands from reflectance of each band. The pixel-based
correction method reduces residual noise in the MOD09A1 data, in-
cluding the residual aerosol effect, skylight reflection, and sun glint,
and converts the MOD09A1 surface reflectance to Rrs. It has also been
demonstrated that this method works well for the three visible bands
over a wide range of inland waters with Rrs retrieval uncertainties of
approximately 30% (Wang et al., 2016).

Water areas were first automatically segmented from MOD09A1
data using the MODIS 6th band (centered at 1640 nm) following the
water extraction scheme proposed in Wang et al., 2018. To avoid the
severe land adjacency effect, a 500 m buffer inward of the water
boundary was removed for each water body. Optically shallow waters
were removed to avoid the effect of the water bottom using the method
described in Wang et al., 2018. Image pixels covered by clouds, ice,
snow, and other noise were detected using the MOD09A1 QA data and
removed from the analysis. At the same time, obvious aquatic vegeta-
tion areas were identified and removed. Algae bloom areas, identified
using the Floating Algae Index (FAI) method, with a threshold of 0.004
(Duan et al., 2015; Hu, 2009), were removed from the water areas.

FUI and α are two closely related water chromaticity parameters
that can be derived from MODIS visible bands (Wang et al., 2015; Wang
et al., 2018). While α increases continuously from blue to yellowish-
brown color, FUI divides these colors into 21 classes. There are five
main steps in FUI and α calculation using the MODIS Rrs following the
method and scheme described in Wang et al. (2015) and Wang et al.
(2018):

• Computation of the CIE tristimulus values (i.e., X, Y, and Z) (C.I.E.,
1932) from the MOD09 Rrs in the visible bands using the RGB
conversion method,

• Calculation of the CIE chromaticity coordinates (x, y) by normal-
izing X, Y, and Z to between 0 and 1,

• Calculation of α from the chromaticity coordinates (x, y) where α
increases from 0° to 360° as water color changes from blue to yel-
lowish-brown color (Wang et al., 2018),

• A delta correction was made for α to eliminate the color difference
caused by the MODIS band setting following the method detailed in
Wang et al., 2018, and

(5) The FUI for each pixel in MOD09 was calculated from α based on
the 21-class FUI lookup table (Table 2). We note that α in this study
remains consistent with that reported in Wang et al. (2018), i.e.,
increasing with increases in FUI.

3.2. ZSD model development

Previous studies (Garaba et al., 2015; Li et al., 2016; Pitarch et al.,
2019) have shown that bluer and clearer waters are characterized by a
lower FUI index. In contrast, more turbid and yellow waters result in a
higher FUI index. In this study, we analyzed the relationship between
ZSD and FUI based on both the simulated and in-situ measured match-up
datasets. We then developed an empirical model for ZSD using the 183
measured match-up pairs. It indicated that ZSD and FUI are character-
ized by significant negative exponential correlations in both the simu-
lated and the measured match-up datasets (R2 = 0.95 and 0.93, re-
spectively, in Figs. 3 and 4), confirming the strong relationship between
ZSD and FUI (Li et al., 2016; Pitarch et al., 2019). We note that the
empirical parameters in the ZSD fitting model are different between the
simulated and measured datasets (as shown in Figs. 3, 4(a), and 4(b)).
This is because (1) the simulated dataset covers a larger FUI range from
1 to 21 while the measured data set only includes FUI from 3 to 17 due
to the fact that water color in large lakes is normally unable to cover
extreme blue or brown colors and (2) the simulated dataset was gen-
erated based on bio-optical models mainly for oceanic waters (IOCCG,
2006), which will not represent all the complex situations in inland
waters. However, the OACs and underwater light field in inland waters
over such a large area can vary in a wide range, such that the re-
lationship between ZSD and FUI is a little loose for the measured dataset.
The effect of one specific or more OACs in water on the relationship
between ZSD and FUI will be discussed in Section 5.1.

However, we found that when the FUI value is low (i.e., FUI < 8),
there is a scattering in the relationships for both datasets compared
with strong relationships when FUI≥ 8. In other words, one FUI value
may correspond to a ZSD range rather than one value for relatively clear
waters when FUI < 8. To manage the shortcomings of the dispersive
FUI in clear waters, we also analyzed the relationships between α and
ZSD. Both Figs. 3 and 4 show that the correlations between α and ZSD

were better than that between FUI and ZSD when FUI < 8. When
FUI ≥ 8, the separating ability between α and ZSD was compressed
compared with the separation between FUI and ZSD. Hence, by con-
sidering the actual situation in lakes, a hybrid ZSD estimation model was
developed using FUI and α based on the measured match-up dataset:

< =ZFUI 8: 3415.63SD
1.49

=ZFUI 8: 284.70 FUISD
2.67 (1)

Here, the empirical parameters in the model for FUI < 8 were
generated using measured data with α < 195° (i.e., FUI < 11) to
ensure a smooth transition between the two ranges. We note that in the
measured dataset, the sensitivity of alpha to ZSD is a little bit low when
α < 195° (Fig. 4 (c)) because the samplings in clear lakes with
α < 195° were limited due to the poor measurement conditions in
Tibetian Plateau. And we expect when the ZSD is very large, the un-
certainties in the measured ZSD data could be a little higher because the
measurement may be impacted by a tilted scale rope or the observer's
sight.

3.3. MODIS ZSD model validation

The performance of the FUI and α-based model was tested with the
independent in-situ measured ZSD dataset. The MAD and MRD, which
describe model errors, are defined as follows:

= X x
N

MAD | |i i
(2)

=
N

MRD
X x

x
| |i i

i
(3)

where Xi and xi are the model estimated value and in-situ measured
value, respectively, and N is the number of match-up pairs.

Table 2
Chromaticity coordinates (sourced from Novoa et al., 2013) and corresponding
hue angle α look-up table for FUI indices from 1 to 21.

FUI x y α FUI x y α

1 0.1914 0.1669 40.4670 12 0.4024 0.4811 205.0622
2 0.1990 0.1999 45.1963 13 0.4162 0.4737 210.5766
3 0.2100 0.2399 52.8527 14 0.4313 0.4655 216.5569
4 0.2265 0.2883 67.1695 15 0.4457 0.4576 222.1153
5 0.2459 0.3353 91.2980 16 0.4606 0.4494 227.6293
6 0.2662 0.3762 122.5852 17 0.4753 0.4410 232.8302
7 0.2908 0.4115 151.4792 18 0.4887 0.4328 237.3523
8 0.3154 0.4400 170.4629 19 0.5033 0.4246 241.7592
9 0.3367 0.4617 181.4983 20 0.5155 0.4161 245.5513
10 0.3633 0.4764 191.8352 21 0.5283 0.4083 248.9529
11 0.3862 0.4866 199.0383
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It showed that the MODIS model derived ZSD agreed well with the
in-situ measured ZSD for the 17 validation lakes with ZSD ranging from
0.2 to 13.1 m (Fig. 5). The MRD value was only 27.4% and the MAD
value was 0.37 m, which were generally consistent with the perfor-
mance when the model was developed. Fig. 6 showed the MRD of the
FUI and α-based model with different ZSD ranges based on the valida-
tion dataset. There was no significant difference in the MRD of this
model for different ZSD ranges, with median values of MRD mainly
below 40%. The results indicate that MODIS derived FUI and α can be
used with satisfactory performance to retrieve the ZSD for the validation

dataset from different types of inland waters, i.e., ranging from clear
oligotrophic lakes to extremely turbid and eutrophic waters. Thus, this
FUI and α-based model can be used to map the long-term ZSD dis-
tribution patterns for inland waters in China from MOD09A1 image
data collected from 2000 to 2017. This allows the study of the spatial
and temporal changes in ZSD for Chinese inland waters.

3.4. Calculation of spatial and temporal statistics

Water bodies larger than 25 km2 in surface area were selected as the

Fig. 3. Scatterplots of (a) ZSD and FUI and (b) ZSD and α based on the Hydrolight simulated dataset.

Fig. 4. Scatterplots of the (a) in-situ measured ZSD and MODIS derived FUI, (b) in-situ measured ZSD and α, (c) in-situ measured ZSD and MODIS α when α < 195°,
and (d) in-situ measured ZSD and the MODIS estimated value with FUI and α based on the match-up pairs. MRD and MAD are defined in Section 3.3.
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target water bodies in this study, where the ZSD model was applied to
the high-quality MODIS 8-day surface reflectance data to obtain the
water clarity in the summer months (i.e., from June to September). The
four summer months were selected to avoid the influence of ice/snow
cover on the lakes in north and west China. The mean summer ZSD for
each year during the 18 year period and the mean 18-year climatolo-
gical summer ZSD for every water body were estimated. When calcu-
lating the mean summer ZSD for each water body, if the water area in
one image was less than 30% of the normal water mask, this water area
was not used to calculate the average summer result due to lack of
spatial representation. The normal water mask for each water body was
obtained by overlaying the water masks segmented from MODIS images
during the 18 years. If there were less than 3 valid images for one water
body during the summer in one year, the average summer ZSD was not
calculated for this water body in this year. Moreover, broken waters
that were separated into parts by MODIS tiles, clouds, and image noise
were merged using the normal water mask to calculate the mean
summer value. In the long-term trend analysis, only water that had at
least 12 years of valid mean summer ZSD values from 2000 to 2017 were
included in the analysis for a reliable time-series analysis. With the
criteria stated above, 65 lakes were removed from 218 extracted

waters, and the remaining 153 waters were studied further. For the
studied water bodies, we conducted linear regression against time over
the mean summer ZSD values for each water body, where the associated
slope was obtained as the change in the annual ZSD rate from 2000 to
2017. To determine if the increase or decrease was significant, the p-
values associated with the linear regression were also calculated, where
statistically significant trends had p-values of less than 0.05.

4. Spatial and temporal patterns of water clarity across China

4.1. Spatial patterns of lake clarity across China

The climatological mean summer ZSD values between 2000 and
2017 for the 153 large lakes were produced following the procedures
described in Section 3 using MOD09A1 reflectance data as the input.
Mean summer ZSD values in these aquatic systems exhibited a wide
range (0.1 to 10 m), showing a large diversity in Chinese lakes. The ZSD

values of large lakes exhibited a distinct geographical pattern of “high
west and low east” in China (Figs. 7(a) and 7(c)). Most lakes with high
ZSD values (i.e., > 5.0 m) are located in the QTR while most lakes with
low ZSD values (i.e.,< 0.5 m) are located in the EPR and NER. The ZSD

values also depicted a general latitudinal pattern of “high south and low
north” (Fig. 7(b)). However, water clarity significantly varied across the
same latitude.

The study area was also divided into the east China and west China
using the Heihe-Tengchong Line (H-T Line) geo-democratic demarca-
tion line (Hu, 1990; Ge and Feng, 2008). Here the east China includes
EPR, YGR and NER, and the west China includes QTR and MXR. The ZSD

values at 69% of the lakes located in the west were greater than 2 m
while 61% of the lakes located in the east were lower than 0.5 m
(Fig. 7(d)). For the five geographic lake regions, lakes in the QTR
showed high levels of ZSD, with an average value of 3.9 m, whereas
lakes in the EPR exhibited low ZSD, with an average value of 0.6 m.
Only two reservoirs (i.e., the Danjiangkou and Xin'anjiang Reservoirs)
appeared to be clearer than 1 m of ZSD. All three studied lakes in the
NER had the lowest level of ZSD, with an average value of 0.2 m while
lakes in the MXR and YGR showed diverse ZSD values (Figs. 7(a) and
(e)).

Fig. 8 shows a map of climatological summer ZSD for several typical
large lakes. The water clarity spatial patterns in these lakes were
manifested in the climatological maps. For example, for the majority of
the lakes, the ZSD values were high in the central part of the lake and
low near the shoreline. Estuary regions in Qinghai Lake and Namco
Lake can be identified based on low values in the maps. In Taihu Lake,
it was found a clarity gradient with low values on the western side and
higher values on the eastern side. These results are consistent with
previous studies (Feng et al., 2019b; Shi et al., 2018).

4.2. Temporal patterns of lake clarity across China between 2000 and 2017

The mean summer ZSD of the 153 studied large lakes from 2000 to
2017 was derived using MODIS data following the procedures described
in Section 3 and shown in Fig. 9, where the lakes in each lake region
were arranged with annual change rate from low to high. The annual
change rate of the mean summer ZSD between 2000 and 2017 for the
studied lakes was mapped in Fig. 10, where lakes with statistically
significant increases or decreases were marked. The average annual
change rate of all studied lakes was 3.3 cm/yr, 4.1 cm/yr for lakes
located west of the H-T Line, and only 0.2 cm/yr for lakes located east
of the H-T Line. The results also revealed that 38.6% (59 in total) of all
the lakes experienced a significant increase in water clarity during the
last 18 years while only 8.5% (13 in total) of the lakes had a significant
decreasing pattern in water clarity. Nevertheless, only 7 of the 72 lakes
with significant annual changes in their ZSD were east of the H-T Line.
Water clarity in 12.9% of the lakes located east of the H-T line had a
significantly increasing trend while 9.7% showed a significantly

Fig. 5. A scatterplot of the in-situ measured ZSD and the synchronous
MOD09GA derived ZSD based on the independent validation dataset.

Fig. 6. A boxplot showing the MRD (mean relative difference) values of the ZSD

model in different ZSD ranges.
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decreasing trend (shown in Supplementary Material as Fig. S1). To the
west of H-T Line, the percentages of lakes that had significant in-
creasing or decreasing trends were 44.7% and 8.2%, respectively
(shown in Supplementary Material as Fig. S1). This indicated that there
was a weak changing trend in water clarity for large lakes east of the H-
T Line while large lakes west of the H-T Line experienced a dramatic
increase in water clarity from 2000 to 2017.

For the five geographic lake regions, the mean summer ZSD values of
the lakes increased drastically in the QTR during the analysis period
(shown in Supplementary Material as Fig. S2). In the QTR, a number of
large lakes, such as Namoco, Zhari Namco, and Geruco, experienced a
significant increase (> 10 cm/yr) in water clarity. However, Lake
Qinghai and Lake Silingco, two well-known large lakes in the QTR, had
significant decreases in their water clarity, with an annual decreasing
rate of approximately – 10 cm/yr. Increases in the mean summer ZSD

were relative minor in the EPR, NER, and MXR. In the EPR, Lake Shijiu
and Lake Nanhu exhibited significant decreases in water clarity, with an

annual decreasing rate of approximately – 2 cm/yr, while Danjiangkou
Reservoir, Suyahu Reservoir, and Lake Nvshanhu were characterized by
significant increases in water clarity, with annual increasing rates of
5.4, 1.2, and 0.6 cm/yr, respectively. In the NER, the Nanyin Reservoir
showed a significant increase in water clarity with an annual change
rate of 0.7 cm/yr. In the MXR, Lake Sayram was characterized by a
significant increase in water clarity with an annual change rate of
6.0 cm/yr while Lake Ebinur, Lake Daihai, and Lake Hulun exhibited
significant decreases with annual decreasing rates of – 1.4, − 0.6, and –
0.4 cm/yr, respectively. The YGR, however, was the only region where
the average lake ZSD experienced a decrease from 2000 to 2017 (shown
in Supplementary as Fig. S2), especially Lake Chenghai, which showed
a significant decrease in water clarity with an annual decrease rate of –
3.7 cm/yr. Previous studies have reported similar results for lake clarity
trends in the EPR and YGR (Feng et al., 2019a; Zhou et al., 2019).

Fig. 7. (a) The climatological mean summer ZSD from 2000 to 2017 for large lakes in China, (b) the climatological ZSD with 2° latitude averages of large lakes, and (c)
the climatological ZSD with 2° longitude averages of large lakes. (d) pie charts of the mean summer ZSD for large lakes in east and west China divided by the H-T Line
(Heihe-Tengchong Line), (e) the average ZSD and standard deviation of lakes' ZSD (shown as error bars) in the five lake regions.

S. Wang, et al. Remote Sensing of Environment 247 (2020) 111949

8



5. Discussion

5.1. Why use water color parameters to estimate lake clarity?

Good correlations between water color and water clarity have been
observed in extensive measurements by groups over a wide range of
inland and oceanic waters (Wang et al., 2015; Li et al., 2016; Garaba
et al., 2015; Pitarch et al., 2019). Like water clarity, water color is also
an indicator of the overall water quality, which will change with the
overall amount of dissolved and suspended matter in water column
(Wang et al., 2015; Pitarch et al., 2019). Based on the IOCCG simulated

dataset (IOCCG, 2006), the relationship between water color and the
OACs in water in terms of absorption coefficient of phytoplankton
pigment (aph), absorption coefficient of CDOM (ag), absorption coeffi-
cient of detritus and minerals (ad) was shown in Fig. 11. Although the
changing slope is a little bit different for aph, ag, ad, as a whole no matter
which component dominated, the water color will change with total
absorption coefficient of the water column (atotal) in a basically con-
sistent exponent way (Fig. 11 (d)). More importantly, the changes of a
specific component proportion in water would not significantly influ-
ence the relationship between ZSD and water color, as illustrated in
Fig. 12, as long as the water color is not driven by one constituent. The

Fig. 8. The climatological mean summer ZSD in several typical lakes in China between 2000 and 2017. (a) Bositeng Lake, (b) Namco Lake, (c) Qinghai Lake, (d)
Xingkai Lake, (e) Taihu Lake, and (f) Erhai Lake. The locations of these six lakes are shown in Fig. 1.

Fig. 9. A heat map showing the mean summer ZSD from 2000 to 2017 for large inland waters across the five lake regions in China. The lakes in each lake region were
arranged with annual change rate from small to large and lakes with statistically significant increases or decreases were marked.
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partial correlation between hue angle α and ZSD through controlling the
effect of aph, ag, ad, together with backscattering coefficients bbd

(backscattering coefficient of detritus and minerals) and bbch

(backscattering coefficient of Chl-a) further confirmed the robust and
internal relationship between α and ZSD, as the significant correlation
between α and ZSD was barely affected by the absorption or

Fig. 10. The annual change rate of mean summer ZSD for large inland waters from 2000 to 2017. Lakes with significant (p < .05) increase and decrease in summer
ZSD were marked.

Fig. 11. Scatterplots of hue angle α versus (a) absorption coefficient of phytoplankton aph(440), (b) absorption coefficient of CDOM ag(440), (c) absorption coefficient
of suspended matter ad(440), (d) total absorption coefficient of water column atotal(440). CDOM- and phytoplankton-dominated water points were marked with
different colors in Fig. 11 (d).
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backscattering of the OACs with the correlation coefficient decreased
from 0.90 to 0.85 (Table 3). As the relationship is still ‘empirical’ at this
stage, further analytical efforts and explanations are expected in future
research. In fact, the new ZSD analytical model indicates that ZSD is
determined by Kd at the transparent window (Kd

tr), and the transparent
window is actually determined by the perceived water color (Lee et al.,
2015), which implies the physical relation between ZSD and water
chromaticity color. But we note that, in Fig. 11, the fitting effect be-
tween α and the absorption coefficients is not very good when the
absorption coefficient is very high. It is probably due to the ‘end-point’
of natural water color which has been reported in Wang et al., 2015
that when one or more of the OACs are extremely high in water, the
water color hue angle will tend to be saturated around 235°. This would
potentially lead to an overestimation of ZSD in very turbid waters which
will be further discussed in Section 5.2.

To further answer the question of why use chromaticity parameters
to estimate lake clarity, we compared the ZSD model developed in this
paper with other published ZSD empirical models based on the in-situ
Rrs and ZSD dataset. The published ZSD empirical models included em-
pirical algorithms based on band-ratio (Duan et al., 2009; Kratzer et al.,
2008; Ren et al., 2018), single-band (Binding et al., 2015; Shi et al.,
2018) and band combinations (Olmanson et al., 2016; Olmanson et al.,
2008). The models were tuned and optimized to fit the in-situ dataset.
This in-situ Rrs and ZSD dataset was not used to develop the model in
this paper because it contains very few Rrs data from relative clear lakes
(only 15 samplings in Qinghai Lake), which seems to be lack of the
representativeness in clear lakes. It shows that the FUI and α-based
algorithm proposed in this study outperformed other empirical models
with MRD of 25.8% and MAD of 0.08 m (Fig. 13). Model based on FUI
itself also achieved good performance with the MRD of 26.5% and MAD

of 0.11 m, but slightly worse than the hybrid model, which confirmed
the respective suitable range of FUI and α for ZSD estimation. Although
the parameters in the ZSD model (as shown in Fig. 13 (a)) are a little
different with that developed in Section 3.2 after optimizing with the
in-situ Rrs and ZSD dataset, the model developed in Section 3.2 can also
produce better results for this dataset than other models with MRD of
26.1% and MAD of 0.09 m. In the rest models, the Red-to-Green band
ratio models optimized from Duan et al. (2009) and Ren et al. (2018)
generally had good performances with MRD of 28%–29% and MAD of
0.10–0.13 m. Besides, there were general over-estimations when
ZSD < 0.1 m, which means that when the water is extremely turbid,
the sensitivity of water color, single band, band ratio, etc. to ZSD will
decrease. The comparison results indicated that water chromaticity
parameters (FUI and α) can better estimate ZSD in a wide range than
other empirical models. Moreover, FUI and α have high tolerance to the
atmospheric perturbations and observation conditions (Wang et al.,
2018), which further promote the use of FUI and α for ZSD estimation
over various types of inland waters across large regions where accurate
atmospheric correction is still very difficult to tackle at present.

5.2. Algorithm uncertainties

Over recent decades, there have been a growing number of radio-
metric measurements for water quality variables via satellites. Remote
sensing of water quality variables is based on the concept that varia-
tions in water constituents can change the spectrum of water color
(IOCCG, 2018). Due to the special characteristics of inland waters, two
main issues must be addressed when deriving water quality at large
scales using remote sensing technology: adaptability of the algorithm to
various optical water types (OWTs) and atmospheric correction.

In this study, good relationships have been found between ZSD and
FUI and α over a wide range of ZSD based on three types of datasets:
simulated dataset, in-situ dataset, and MODIS match-up dataset. In
Section 5.1, the intrinsic relationship between ZSD and FUI and α have
been discussed and the advantages of FUI and α-based ZSD model have
been shown through comparing with other published models. These
together demonstrate the generalization capacities of this FUI and α-
based algorithm over lakes in a variety of conditions and optical types.
Like other OWT-based algorithms (Neil et al., 2019), it can achieve a
better overall accuracy compared with algorithms developed for spe-
cific waters.

The estimation model was merged by the FUI and α because the FUI
contains relatively coarse colors when it is smaller than 8 and α is a
good alternative in this range to describe variations in the water clarity,
which have been also observed in ocean waters (Pitarch et al., 2019).
Our results also showed that using FUI or α alone for ZSD estimation can
also achieve good performances, but not as robust as the hybrid model,

Fig. 12. Scatterplots of ZSD versus (a) hue angle α, (b) FUI based on the simulated dataset (IOCCG, 2006). CDOM- and phytoplankton-dominated water points were
marked with different colors.

Table 3
Correlation and partial correlation coefficient between hue angle α and ZSD

while controlling for one or more color components in water, in terms of ab-
sorption coefficient of phytoplankton pigment (aph), absorption coefficient of
CDOM (ag), absorption coefficient of detritus and minerals (ad), backscattering
coefficient of detritus and minerals (bbd) and backscattering coefficient of Chl-a
(bbch), based on the IOCCG simulated dataset.

Control variable ZSD

– α −0.90*
aph(440) α −0.82*
ag(440) α −0.85*
ad(440) α −0.86*
bbd(600) α −0.85*
bbch(600) α −0.85*
aph(440) & ag(440) & ad(440)& bbd(600) & bbch(600) α −0.82*

Note: * denotes significant correlation with p < .01.
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which confirmed the respective suitable range of FUI and α in esti-
mating ZSD. That is to say, when water color is green or yellow, a
change of FUI can better represent the change of water clarity, but
when water color is blue, a change of hue angle α is better. Never-
theless, we expect that there are some uncertainties when applying the
model to such a wide range of datasets from various types of lakes. We
observed that there is a slight overestimation of the estimated ZSD when
ZSD is very small (< 0.1 m) for both the in-situ dataset and validation
dataset (as shown in Fig. 4 (d), Fig. 5 and Fig. 13). This is likely due to
the “end-point” (~235°) of hue angle in natural waters where one or
more of the components reach extreme high values, which have been
reported in previous studies (Wang et al., 2015). Under these extreme
conditions, the ZSD will be less than 0.1 m and water color is unlikely to
further change with ZSD.

Besides, we note that the FUI and α can only describe the dominant
color wavelength but they lose information on color purity. A recent
study has shown that color purity is also sensitive to water quality
(Shen et al., 2019), which may further support water clarity retrieval in
future studies.

The MODIS surface reflectance product (MOD09) was selected as
the satellite data source in this study which have been proven to be
applicable to water quality mapping in many inland waters (Hou et al.,
2017; Li et al., 2016). A correction method for MOD09 proposed in
Wang et al. (2016) was used to reduce the remaining noises and derive
Rrs by subtracting a minimum value in near-infrared (NIR) and short-
wave infrared (SWIR) bands. The validity of the subtraction logic was
also demonstrated in other studies to derive Rrs from Rayleigh-cor-
rected MODIS reflectance (Feng et al., 2018b). In addition, we found

Fig. 13. Model performance comparison of FUI and α-based algorithm and other published ZSD estimation algorithms optimized and calibrated by the in-situ Rrs and
ZSD dataset. (a) Model performance of FUI and α-based algorithm; (b) Model performance of FUI-based algorithm; (c) Model performance of α-based algorithm; (d)
and (e) Model performances of Red-to-Green band-ratio algorithms optimized from Duan et al. (2009) and Ren et al. (2018) respectively; (f) Model performance of
Blue-to-Red band-ratio algorithm optimized from Kratzer et al. (2008); (g) and (h) Model performances of single-band algorithm optimized from Shi et al. (2018) and
Binding et al. (2015) respectively; (i) Model performance of band-combination algorithm optimized from Olmanson et al. (2008, 2016). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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that the data quality of daily MOD09 data (MOD09GA) was not as good
as that of the 8-day composite MOD09 data (MOD09A1), as more in-
valid negative values were occurred in MOD09GA, especially at pixels
near cloud covers and at clear lakes in west China. It is because the
MOD09A1 data is selected as the best possible reflectance observation
of MOD09GA data during the 8-day period at the pixel level with the
criteria including cloud and solar zenith (Vermote, 2015). That is why
we use the 8-day MOD09A1 data other than 1-day MOD09GA data for
the long-term water clarity observation and analysis in this study. But
in order to narrow the match-up window in the model development, we
still use the daily MOD09GA data to build the match-ups after removing
pixels containing clouds and other noises. The consistency between the
1-day MOD09GA and 8-day MOD09A1 data in the long-term ZSD esti-
mation was demonstrated and shown in Supplementary as Fig. S3.
Another reason for using the MOD09 data is that it is a long-term time
series from 2000 to the present, which is not the case for certain new
sensors. With the improved radiometric calibration of all MODIS Terra
products, which account for the sensor degradation, the long term
change analyses based on MODIS Terra have been demonstrated in a
number of studies (Hou et al., 2017; Wu et al., 2008). But we also note
that the 8-day composite MOD09A1 data would be not suitable for
studies which intend to explore the daily dynamics of lakes considering
its coarse temporal resolution. New satellite sensors with finer temporal
resolution and spatial resolution may bring more advantages to water
quality monitoring and enable more detailed monitoring over lakes
where the changes are more rapid and local compared to open oceans.
More importantly, it has been proven in many studies that the deriva-
tion of the FUI and α from MODIS or other sensors is very robust (an
accuracy of ~90%) (Lehmann et al., 2018; Van der Woerd and
Wernand, 2018; Wang et al., 2015; Wang et al., 2018), which can
eliminate errors in the remote sensing reflectance product, taking ad-
vantage of the normalization process in calculation (Wang et al., 2018).
The FUI and α retrieval algorithm has a high tolerance to the spectral
resolution of satellite images (Van der Woerd and Wernand, 2018).
Hence, the broad visible bands of MODIS can be used to estimate ZSD.
This advantage of the FUI and α can also bridge the gap between low
spectral sensors and the new high spectral sensors for ZSD estimation
(Van der Woerd and Wernand, 2018). Therefore, it may be possible to
extend ZSD mapping to archived satellite data, such as the Landsat series
data.

5.3. Key factors related to spatial patterns of lake clarity across China

Our results show that there is a distinct “high west and low east”
spatial pattern and overall ever-increasing water clarity in the past two
decades across China. Although several lakes experienced a significant

decrease in water clarity, such as Qinghai Lake and Hulun Lake, more
lakes tended to increase. Agreeing with our results, previous studies
have shown that lake water quality has increased in China during the
last twenty years (Feng et al., 2019a; Zhou et al., 2019), although no
studies have investigated nationwide changes in lake water clarity.

To explore the environmental factors that relate to the spatial pat-
terns of lake clarity across China, we examined the relationships be-
tween the mean climatological summer ZSD and local environmental
factors. The results showed that both lake AL and WD had a significant
positive correlation with the mean summer ZSD (R2 = 0.31 and 0.58,
respectively), as lakes in west China generally have higher altitude and
deeper water compared with those in east China. More importantly,
deep waters are unlikely affected by bottom sediment resuspension
events (Binding et al., 2015). Lake SA did not have a significant cor-
relation with water clarity. A small number of large lakes in east China
are eutrophic and turbid, such as Taihu Lake, Chaohu Lake, and Xingkai
Lake, while large lakes in west China, such as Namco Lake and Selingco
Lake, are quite clear (Li et al., 2016).

Local AT and PR showed significant negative correlations with the
mean climatological summer ZSD (R2 = 0.26 and 0.15, respectively),
suggesting that turbid lakes are common in areas of high temperature
and precipitation throughout China, such as the middle and lower
reaches of the Yangtze River in the EPR. This is in consistent with
previous studies which have illustrated that high air temperature may
promote algal growth and then decrease water clarity (Chen et al.,
2013; Zhou et al., 2019), while more precipitation may cause more
sediment and nutrient loadings into lakes (Rose et al., 2017). In con-
trast, no significant correlations were found among WS, NDVI, and the
mean summer ZSD, illustrating that these parameters are not the main
factors that affect the water clarity spatial patterns across China. For the
anthropogenic factors, the mean climatological summer ZSD had a ne-
gative correlation with local PO and GDP (R2 = 0.26 and 0.20, re-
spectively), suggesting that lakes in provinces with high population and
GDP tend to be turbid. This agrees well with previous studies (Cao
et al., 2017; Borkman and Smayda, 1998) as population and GDP are
indicators of anthropogenic interference. In general, the distinct high
west and low east pattern in water clarity was found to be associated
with the apparent differences in water depth, altitude, air temperature,
precipitation, GDP, and population in west versus east China, separated
by the H-T line, as shown in Fig. 14. Lake geographic factors, such as
water depth and lake altitude, are the likely leading factors for this
spatial pattern while meteorological and anthropogenic factors also
contribute to a certain degree.

5.4. Correlations between the long-term lake clarity change and regional
climate variables

Significant changes in global climate have been observed over the
past century and imposed direct and indirect impacts on lake ecosys-
tems through the hydrological cycle (Bates et al., 2008). Changes in
temperature, precipitation, wind, glaciers, and snow cover have been
documented as drivers of water quality dynamics and water pollution
via nutrients, sediments, dissolved organic carbon, pathogens, pesti-
cides, and salt (O'Reilly et al., 2003). However, our understanding of
the effects that climate variables have on both aquatic ecosystem
functions and water clarity across large regions remains limited.

To preliminarily explore the responses of lake clarity interannual
variability to climate change from 2000 to 2017, we conducted corre-
lation analyses between the long-term mean summer ZSD and local
meteorological factors (i.e. AT, PR, and WS), together with corre-
sponding lake geographic factor (i.e., lake SA). Lake depth was not
considered here due to the lack of long-term data for these two para-
meters. But studies have shown that changes in lake water depth or
water level have a direct link with changes in lake surface area (Wu
et al., 2019), such that changes in the lake SA can also represent, to a
certain extent, the changes in the water level. As shown in Fig. 15,

Fig. 14. A bar chart of the average ZSD and average value of local environ-
mental factors for lakes located in west and east China, separated by the H-T
Line.
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stronger correlations were observed between changes in the long-term
water clarity and AT and SA. Correlation coefficients were generally
weaker for WS, PR, and NDVI. The overall correlations between these
factors and changes in the interannual water clarity also varied across
the five lake regions. We note that Fig. 17 also showed the correlations
between lake clarity and anthropogenic factors (GDP and PO), but these
two factors were not considered for lakes in the QTR and MXR, where
human activity is generally weak.

In the 52 lakes with significant increasing ZSD in QTR, most of the
lakes had positive correlations with both AT and SA. Moreover, 30 of
the 52 lakes had significant positive correlations with AT, and 24 of
them had significant positive correlations with SA, suggesting the po-
sitive effect of the two factors on lake clarity change in QTR. Studies
have shown that climate warming have resulted in water level rise at
lakes in QTR due to increasing meltwater from glaciers and permafrost
in the cold regions (Wan et al., 2018; Zhang et al., 2011). Water level
rise then would lead to the increase in water clarity by diluting the
dissolved and suspended matter in lakes (Li et al., 2016). Fig. S4 in the
Supplementary Material showed the long-term changes in water clarity
in Lake Namco, along with the variations in the water level (acquired
from Wu et al., 2019), SA, and AT, which further confirmed that the rise
in the water level is associated with the increase of temperature. In
contrast, in the 7 lakes with significant decreasing trend in QTR, most
of them had negative correlations with AT and SA. This is probably due
to the sediments carried by meltwater that will decrease the lake
clarity, such as the case in Lake Silingco (Mi et al., 2019). Alternatively,
the lake clarity may be impacted by higher temperature which can
accelerate the growth of phytoplankton in relative warm area of QTR,
such as the case in Lake Qinghai (Feng et al., 2019b).

In MXR, SA had significant positive correlations with 4 lakes in-
cluding 1 with significant decreasing trend and 1 with significant in-
creasing trend, implying lake clarity is usually positively linked to
water level of the lake in this region.

In the east (including EPR, YGR and NER), AT generally had ne-
gative correlations with most lakes, among which 9 lakes were sig-
nificant negatively correlated, which is consistent with previous studies
that high temperature can accelerate the growth of phytoplankton and
result in decreases in the water clarity in many lakes in east China
(Chen et al., 2013; Zhou et al., 2019). But these significant correlated
lakes were not those had significant changing trend in water clarity,
illustrating other factors may have larger effect on lake clarity in the
east, such as GDP and PO which will be analyzed in Section 5.5. SA also
generally had positively correlations with lake clarity in the east,
among which significant 7 lakes were significant positively correlated.
Besides, NDVI showed significant positive correlations with water
clarity change in 9 lakes in EPR and NER, which was explained in re-
levant studies that the vegetation cover may reduce the suspended se-
diment discharged into lakes (Feng et al., 2019a).

5.5. Correlations between the long-term lake clarity change and regional
anthropogenic variables

After the 1970s, China has experienced rapid industrialization, ur-
banization, and population expansion during the last half-century,
especially in east China. On one hand, the socioeconomic development
has caused a series of water quality degradation and pollution issues,
which have been documented in many studies in China, such as the
frequent algal blooms in Chaohu Lake and Taihu Lake starting from the
late 1980s especially in 2007, and continuous algal blooms in Dianchi
Lake around 2000 (Chen et al., 2013; Gao and Yan, 2002; Hu et al.,
2010; Huang and Shu, 1997; Le et al., 2010; Zhang et al., 1999; Zhao
et al., 2018). On the other hand, to control the water pollution, a full
range of forceful regulation and water treatment projects have been
taken by local and national governments in China mainly after 2000s
with billions of money invested (Meng et al., 2015; Zhou, 2010). Hence,
the correlations between the human activity factors, i.e. GDP and PO,
and the lake clarity change between 2000 and 2017 were discussed
below to preliminarily reveal the general relationship between eco-
nomic development and lake quality change in the past two decades in
the east China.

As shown in Fig. 15, we found 63.3% of the lakes showed positive
correlations with local GDP growth in EPR, NER and YGR, and all the 4
lakes with significant increasing trend in water clarity had significant
positive correlations with local GDP growth. However, there
were ~ 25% lakes whose clarity had negative correlations with GDP
growth in east China, in which all the 3 lakes with significant de-
creasing trend in water clarity in the east had significant negative
correlations with the GDP growth, illustrating the negative effect of
local GDP growth on lake clarity change in some regions in the east.

Fig. 16 shows three examples of lake in the EPR with the long-term
changing curves of the mean summer ZSD and the major correlated fac-
tors. These three aquatic systems (including the Danjiangkou Reservoir,
Suyahu Reservoirs and Nanyin Reservoir) are reservoirs that operate as
drinking water resources for local municipalities. In Suyahu Reservoir, a
sudden increase of lake ZSD was found from 2009 to 2012, which ap-
peared to be related to the environmental management and forced
shutdown of heavily polluting industries by the local government
(http://henan.people.com.cn/n2/2017/0126/c351638-29648322.html).
In Danjiangkou Reservoir, Fig. 19(b) shows that SA followed the changes
of lake ZSD, with a sharp increase for both the ZSD and SA between 2014
and 2015, which further support that the SA is acting as a proxy for the
dilution process associated with water level rise. This is likely due to the
opening of the South–North Water Transfer Project central route in De-
cember 2014 (Lei et al., 2018). In Nanyin Reservoir, fluctuations in ZSD

between 2007 and 2010 appeared to be related to the reinforcement
project initiated in Nanyin Reservoir during this period (Jiang and
Zheng, 2011), and it can be seen that the water ZSD remained at a higher

Fig. 15. A heat map showing the Pearson correlation coefficients between long-term ZSD and potential environmental factors for the large lakes (N = 153) across
China in the five lake regions. Note that when the correlation coefficient is larger than o.468 or smaller than −0.468, the correlation is significant (p < .05). WS
denotes wind speed, PR denotes precipitation, NDVI denotes normalized difference vegetation index, SA denotes lake surface area, AT denotes air temperature, GDP
denotes gross domestic production, and PO denotes population. Lake ZSD with significant increases and decreases from 2000 to 2017 are marked.
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level after 2010.
In general, these implies the effectiveness of water quality regula-

tion for lakes in east China, and give evidence of GDP growth's positive
role on lake clarity increase in industrializing and urbanizing areas
through supporting effective water resource management and pollution
control measures, although this effect is indirect and relying on the
good governance and balance of industrialization and environmental
management. Agreeing with our results, recent studies have recognized
the signs of water quality recovery in several Chinese lakes as a result of
continuous treatment and management supported by local and national
governments (Guo et al., 2015; He et al., 2015; Feng et al., 2019a; Zhao
et al., 2018). But we found these lakes with significantly increasing
trend were generally small reservoirs, which means the regulation and
management deployed for reservoirs were stronger than that for natural
lakes. Besides, a small portion of lakes (~25%), including the 3 sig-
nificant decreasing lakes in the east, were still negatively impacted by
the local GDP growth, suggesting effective water managements are still
required in some area.

For the factor of PO, it was positively correlated with the lake clarity
change in most lakes, but the effect of local PO on lake clarity seems
vague and not obvious. We note that climate, lake water, biophysical,
and socio-economic systems are interconnected in complex ways
(Maberly and Elliott, 2012; Williamson et al., 2009). Our study just
provides preliminary analyses and discussions on the simple correla-
tions between climate change and human activity on regional lake
clarity. Systematic interactions and responses of water quality in re-
gional and global lakes to climatic and anthropogenic changes remain
to be studied in future studies by bridging the gap between water color
satellite remote sensing and biogeochemical/ecosystem modelling
(IOCCG, 2020).

6. Concluding remarks

In this study, we developed and validated an FUI and α-based model
to estimate ZSD for large lakes across China based on in-situ measure-
ments and synchronous MODIS imagery. Compared with other em-
pirical ZSD models, this FUI and α-based model demonstrates superior

performance (MRD = 27.4%) and adaptability for lakes over a wide
range of clarity and trophic states. This benefits from the stable and
satisfactory relationship between water color (i.e., FUI and α) and ZSD

over a wide range, supported by both in-situ and simulation datasets.
Subsequently, the spatial patterns and long-term variations in ZSD

for large lakes (N = 153) across China from 2000 to 2017 were in-
vestigated and recognized using MODIS with the proposed model.
Based on the MODIS retrieved results, a spatial pattern of “high west
and low east” was observed for the lakes across China, with an ever-
increasing pattern in water clarity from 2000 to 2017 for the majority
of the lakes, especially in west China. It was found that the average
annual change rate of all lakes was 3.3 cm/yr, where 38.6% (N = 59) of
the lakes experienced a significant increase in water clarity during the
past eighteen years, whereas only 8.5% (N = 13) of the lakes had a
significantly decreasing trend. Furthermore, the environmental factors
that may potentially affect this spatio-temporal pattern were pre-
liminarily analyzed and discussed in terms of the correlations between
ZSD and lake geographic, local climate, and anthropogenic factors.
Spatially, the variation patterns in lake clarity across China was found
to be associated with distinct differences in lake depth and altitude
between east and west China while air temperature, precipitation, po-
pulation, and GDP distribution also contributed to a certain extent.
Temporally, it showed that changes in the lake surface area and water
level are possibly the direct factors that drive changes in lake clarity. In
west China, the dramatic increase of lake clarity was observed to be
positively correlated to the increase of the water surface area which is
linked to climate warming. In east China, however, the small overall
increases of lake clarity might be influenced by the combined effects of
vegetation cover growth, climate warming and water resource man-
agement over recent decades. Specifically, we found that GDP growth
generally showed positive correlations with increases in water clarity in
most lakes in east China, which implied the effectiveness of water
management practices that had already been enacted. The results of this
study provide important information for water quality conservation and
management in China, and highlight the value of satellite remote sen-
sing in monitoring water quality over lakes at broad scales and over
long term.

Fig. 16. Long-term change curves and Pearson correlation coefficients (r) between lake ZSD and local influencing environmental factors for lakes with significantly
increasing ZSD: (a) Suyahu Reservoir in the EPR, (b) Danjiangkou Reservoir (Henan Province part) in the EPR, and (c) Nanyin Reservoir in the NER. The major water
management measures for these reservoirs are denoted with black arrows at their time of deployment. We note that the SA data here has subtracted the area of the
500 m-buffer inward of the water boundary in MODIS.
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