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Abbreviations 21 

ARA: arachidonic acid; BHT: butylated hydroxyl toluene; DHA: docosahexaenoic acid; 22 

dpm: desintegrations per minute; ef1α: elongation factor-1α; Elovl5: fatty acyl elongase 23 

5; EPA: eicosapentaenoic acid; FA: fatty acid; Fads2: fatty acyl desaturase 2; FAF-BSA: 24 

fatty acid free bovine serum albumin; FAME: fatty acid methyl esters; FID: flame 25 

ionization detector; FO: fish oil; HBSS: Hanks balanced salt solution; LC-PUFA: long 26 

chain polyunsaturated fatty acid; NTC: negative controls; ORF: open reading fragment; 27 

PCR: polymerase chain reaction; PUFA: polyunsaturated fatty acid; qPCR: quantification 28 

real-time PCR; RACE: rapid amplification of cDNA ends; TL: total lipid; VO: vegetable 29 

oils. 30 
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Abstract 31 

Reducing the dependency of fishfeed for marine ingredients and species diversification 32 

are both considered crucial factors for the sustainable development of aquaculture. The 33 

substitution of fish oil (FO) by vegetable oils (VO) in aquafeeds is an economically 34 

feasible solution. However, such substitution may compromise the fish flesh content of 35 

essential n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) and, therefore, its 36 

nutritional value for human consumption. Likewise, there is a wide range of strategies to 37 

select new target species for sector diversification, among which, the capacity to 38 

biosynthesize n-3 LC-PUFA from their C18 precursors abundant in VO might be 39 

considered as a fair preliminary strategy. Therefore, the aim of the present study was to 40 

analyze the metabolic fate of [1-14C] labeled 18:2n-6, 18:3n-3, 20:5n-3 and 22:6n-3 in 41 

isolated hepatocytes and enterocytes from wild individuals of three fish species with 42 

different trophic level: the marine herbivorous salema (Sarpa salpa), the strict 43 

carnivorous sand sole (Pegusa lascaris) and the omnivorous thicklip grey mullet (Chelon 44 

labrosus). These species were selected for their phylogenetic proximity to consolidated 45 

farmed species such as gilthead seabream (Sparus aurata), senegalese sole (Solea 46 

senegalensis), and golden grey mullet (Liza aurata), respectively. The study also assessed 47 

the molecular cloning, functional characterization and tissue distribution of the fatty acyl 48 

elongase (Elovl) gene, elovl5, involved in the biosynthetic metabolism of n-3 LC-PUFA. 49 

The three species were able to biosynthesize docosahexaenoic acid (22:6n-3). S. salpa 50 

seems to have similar biosynthetic capacity than S. aurata, with a fatty acyl desaturase 2 51 

(Fads2), with 6, 8 and 5 activities. P. lascaris showed a wider Fads2 activity 52 

repertory than S. senegalensis, including 4 and residual 6/5 activities. In C. labrosus, 53 

both 8 and 5 activities but not the 6 described for L. aurata were detected in the 54 

incubated cells. Elongation from C18 and C20 precursors to C20 and C22 products occurred 55 
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in hepatocytes and enterocytes as well as in the functional characterization of Elovl5 by 56 

heterologous expression in yeast. Elovl5 showed a species specific expression pattern, 57 

with the highest rates observed in the liver, gut and brain in S. salpa and P. lascaris, and 58 

in the brain for C. labrosus. In summary, the LC-PUFA biosynthesis capacity from S. 59 

salpa, P. lascaris and C. labrosus greatly resembled that of their phylogenetic closer 60 

species. The three studied species could be further explored as candidates for the 61 

aquaculture diversification from their potential ability to biosynthesize LC-PUFA. 62 

 63 

Keywords 64 

Chelon labrosus, Elovl5, LC-PUFA, Pegusa lascaris, Sarpa salpa.65 
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1. Introduction 66 

The annual per capita consumption of fish has risen up to 20.2 Kg in 2015, partly due 67 

to its contribution to the population needs for high-quality proteins, lipids and 68 

micronutrients (FAO, 2018). Lipids, and their main components, fatty acids (FA), are 69 

along with proteins, the largest organic components of fish. C18 polyunsaturated fatty 70 

acids (PUFA) such as 18:2n-6 and 18:3n-3, are considered essential nutrients for 71 

vertebrates because they cannot be synthesized de novo. Additionally, they are metabolic 72 

precursors of the physiologically important long-chain (C20-24) PUFA (LC-PUFA) 73 

including arachidonic (20:4n-6, ARA), eicosapentaenoic (20:5n-3, EPA), and 74 

docosahexaenoic (22:6n-3, DHA) acids (Tocher, 2015). LC-PUFA are involved in key 75 

roles including cell membrane structure, transcription, regulation and cellular signalling 76 

(Lee et al., 2016; Tocher, 2015; Zárate et al., 2017). Particularly, the n-3 LC-PUFA 20:5n-77 

3 and 22:6n-3 have been seen to prevent several human inflammatory and 78 

neurodegenerative illnesses (Lee et al., 2016; Zárate et al., 2017). 79 

Fish, including farmed species, are the primary source of n-3 LC-PUFA for humans 80 

(Bell and Tocher, 2009). However, the fluctuating availability of marine ingredients used 81 

in aquafeed formulation, namely fish oil (FO) and fishmeal, their sustained price increase, 82 

the increment of global aquaculture production and the necessity to search for more 83 

sustainable alternatives to feed carnivorous species have resulted in a pressing need for 84 

their partial replacement by ingredients of terrestrial origin such as vegetable oils (VO). 85 

This practice reduces the n-3 LC-PUFA content in fish muscle (Pérez et al., 2014; Tocher, 86 

2015) and therefore, its nutritional value to consumers. Recently, the use of oils from 87 

transgenic plants and the inclusion of micro and macroalgae-origin products rich in n-3 88 

LC-PUFA have been proposed as possible novel alternatives to marine sources (Ruyter 89 

et al., 2019; Sprague et al., 2016; Tocher et al., 2019). Moreover, farming of fish species 90 

https://www.linguee.es/ingles-espanol/traduccion/neurodegenerative+illnesses.html
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with high capacity to biosynthesize LC-PUFA from their C18 precursors abundant in VO 91 

may also be considered as a valuable sustainable strategy for the aquaculture industry 92 

(Garrido et al., 2019). Therefore, it is essential to understand the LC-PUFA metabolism 93 

of potential candidate species for the diversification of aquaculture in order to select fish 94 

with high capacity to utilize dietary VO while maintaining proper growth and 95 

development, as well as its nutritional quality in terms of n-3 LC-PUFA content.  96 

Liver is the main organ involved in lipid metabolism while gut have an important role 97 

in both uptake and LC-PUFA biosynthesis. In this sense, the incorporation and 98 

bioconversion of radiolabeled FA in enterocytes and hepatocytes from fish species have 99 

been demonstrated as an adequate tool to elucidate their LC-PUFA biosynthesis 100 

capabilities (Díaz-López et al., 2010; Garrido et al., 2020; Morais et al., 2015; Mourente 101 

and Tocher, 1993a, 1993b, 1994; Rodríguez et al., 2002; Tocher and Ghioni, 1999).  102 

LC-PUFA biosynthesis in vertebrates including fish, is mediated by two types of 103 

enzymes (Monroig et al., 2018). On the one hand, the fatty acyl elongase (Elovl) proteins 104 

catalyze the condensation reaction of the fatty acid elongation pathway resulting in the 105 

extension of the fatty acyl chain in two carbons. Thus, enzymes such as Elovl5, Elovl2 106 

and Elovl4 are being extensively studied in fish (Castro et al., 2016; Garlito et al., 2019; 107 

Monroig et al., 2018). On the other hand, fatty acyl desaturases (Fads) enzymes enter a 108 

double bond to PUFA substrates in between an existing one and the carbon of the 109 

carboxylic group. The Greek letter (Δ) is used to denote the position of the double bond 110 

created by Fads in the hydrocarbon chain. Unlike mammalian FADS2 that typically have 111 

6/8 activity (Castro et al., 2016), teleost Fads2 show high interspecific variability in 112 

their desaturase capacity. Thus, along with the 6/8 activity (Monroig et al., 2011a), 113 

Fads2 with 4 and 5, as well as bifunctional 6/5 desaturases have been reported 114 

(Castro et al., 2016; Garrido et al., 2020; Monroig et al., 2011a, 2018). The production of 115 
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20:4n-6 and 20:5n-3 from 18:2n-6 or 18:3n-3, respectively, may be obtained by a 6 116 

desaturation activity towards C18 substrates followed by an elongation step and a final 5 117 

desaturation (Fig. 1). Alternatively, a 8 desaturation over C20 intermediates may be also 118 

involved in the production of 20:4n-6 and 20:5n-3 from C18 precursors (Monroig et al., 119 

2011a). The biosynthesis of 22:6n-3 from 20:5n-3 can be mediated via the Sprecher 120 

pathway (Sprecher, 2000), which requires two consecutive elongation steps, a 6 121 

desaturation, and a final peroxisomal β-oxidation or through an alternative and more 122 

direct route with the action of a 4 desaturase (Li et al., 2010; Oboh et al., 2017) (Fig. 1).  123 

The biosynthetic ability of each species to biosynthesize LC-PUFA was believed until 124 

very recently to depend on the species’ habitat (freshwater vs marine), with marine 125 

species having limited capacity to convert C18 PUFA to LC-PUFA, and 126 

freshwater/diadromous fish having retained the ability to elongate and desaturate C18 127 

precursors (Garrido et al., 2019; Monroig et al., 2018). Such generalization was 128 

questioned when the marine herbivore, Siganus canaliculatus, was reported to have a 4 129 

Fads2 and a bifunctional 5/6 Fads2 (Li et al., 2010). Further studies demonstrated the 130 

presence of 4 Fads2 in teleost species from a variety of habitats and trophic levels 131 

(Fonseca-Madrigal et al., 2014; Garrido et al., 2019; Kuah et al., 2015; Morais et al., 132 

2012, 2015; Oboh et al., 2017). Thus, other factors such as phylogeny have been recently 133 

pointed out to influence the LC-PUFA biosynthetic capacity of teleosts (Castro et al., 134 

2016; Garrido et al., 2019; Monroig et al., 2018). In teleosts, Elovl5 and Elovl2 share a 135 

common evolutionary origin (Monroig et al., 2016), and consequently, both of them have 136 

preference for C18 and C20 PUFA substrates although Elovl5 has also been reported to 137 

present some affinity towards C22 PUFA (Monroig et al., 2012).  138 

In order to explore the potentiality of a wider range of species for the diversification 139 

of finfish aquaculture, based on their n-3 LC-PUFA biosynthesis capabilities, three fish 140 
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species with different trophic levels were selected in the present study: the salema Sarpa 141 

salpa (Linnaeus, 1758), a marine herbivorous of the Sparidae family with trophic affinity 142 

with S. canaliculatus; the sand sole Pegusa lascaris (Risso, 1810), a strict carnivorous 143 

member of the Soleidae family that is phylogenetically close to Solea senegalensis; and 144 

the thicklip grey mullet Chelon labrosus (Risso, 1827), a species from the Mugilidae 145 

family closely related to Liza aurata with high adaptability to different feeding habits. 146 

Molecular cloning, functional characterization and tissue distribution of 6 and 8 147 

desaturase have been already described by our group in S. salpa and C. labrosus, as well 148 

as 4 desaturase in P. lascaris (Garrido et al., 2019). However, their LC-PUFA 149 

metabolism capacities were not completely characterized. To this aim, isolated 150 

enterocytes and hepatocytes were incubated with different PUFA substrates, in order to 151 

compare their uptake affinities and the ability of Fads2 and Elovl to desaturate and 152 

elongate C18 and C20 radiolabeled FA precursors. Furthermore, the molecular cloning, 153 

functional characterization and tissue distribution of elovl5 elongases were also 154 

elucidated. The results of the present study are discussed within the context of fish 155 

nutrition and their applicability to the diversification of aquaculture with species able to 156 

efficiently utilize ingredients alternative to FO. 157 
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2. Material and methods 158 

2.1 Experimental animals and sampling 159 

All experimental procedures were approved by the Ethical Committee at the 160 

University of La Laguna and were in accordance with the EU Directive 2010/63/EU 161 

regarding the protection and humane use of animals for scientific purpose (European 162 

Parliament and Council of the European Union, 2010). 163 

Wild specimens of S. salpa (87.4 ± 14.4 g; n=5) and C. labrosus (12.5 ± 9.1 g; n=6) 164 

were captured by professional artisanal fishermen in Tenerife (Spain), while P. lascaris 165 

(111.2 ± 25.5 g; n=3) were captured off the coast of Huelva (Spain). Fish were 166 

subsequently transported to the laboratory for sacrifice and subsequent sampling. 167 

Samples of muscle, liver, heart, foregut, brain and gill were collected for molecular 168 

cloning, functional characterization and tissue distribution. Tissues were kept in 169 

RNAlater (Qiagen Iberia SL, Madrid, Spain) the first 24 h at 4oC and then stored at -20oC 170 

until analysis. In addition, the remaining foregut and liver were rapidly taken for the 171 

isolation of enterocytes and hepatocytes, respectively. The isolated cells were used for 172 

incubation and final extraction of the total lipid (TL) required to either assess the FA 173 

composition of control cells or to evaluate the incorporation of radioactivity into TL and 174 

the bioconversion rates of FA in the radiolabeled [1-14C] incubated cells. Furthermore, 175 

muscle samples were also used for lipid and FA composition determination. The whole 176 

process was developed under an ice-cold environment to prevent sample degradation. 177 

2.2 Isolation of enterocytes and hepatocytes and incubation with radiolabeled [1-178 

14C] fatty acids  179 

Enterocytes and hepatocytes were obtained as described by Rodrı́guez et al. (2002). 180 

Organs from two or more fish were pooled in the case of P. lascaris and C. labrosus due 181 

to the small size of the animals. Before the beginning of the experiments, the foregut was 182 
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cleaned of food and feces and the liver perfused through the hepatic portal vein with a 183 

solution of marine Ringer containing 116 mM NaCl, 6 mM KCl, 1 mM CaCl2, 1 mM 184 

MgSO4, 10 mM NaHCO3, 1 mM NaH2PO4, 10 mM K2SO4 and 10 mM HEPES (pH 7.4). 185 

Tissues were minced in Hanks balanced salt solution (HBSS) with NaCl 1.75% (w/v) 186 

(HBSS/NaCl), 9.69 mM HEPES, 1.73 mM NaHCO3, and collagenase (10 mg/mL) and 187 

incubated with HBSS/collagenase in agitation for 40 min at 20ºC. The resultant cell 188 

suspensions were filtered through a 100 µm nylon mesh with HBSS including 1% (w/v) 189 

fatty acid free bovine serum albumin (FAF-BSA). Cells were collected by centrifugation 190 

(Beckman Coulter Allegra 25R, Indianapolis, USA) at 716 g for 10 min, washed with 191 

HBSS and re-centrifuged for 7 min. The isolated cells were then re-suspended in cold 192 

M199 medium with NaCl and a sample was taken to assess the viability of cells (over 193 

90% in all cases) by using the trypan blue exclusion test. 194 

Immediately after isolation, 6 mL of each cell preparation were incubated in sterile 195 

plastic flasks for 3 h with 40 µL (0.20 µCi) of radiolabeled [1-14C] PUFA: 18:2n-6, 18:3n-196 

3, 20:5n-3 or 22:6n-3, with specific activities of 124.3, 114.8, 122.1 and 122.1 dpm pmol-197 

1, respectively. A control incubation of 2 mL of each cell type suspension without the 198 

addition of radiolabeled FA was also performed under the same experimental conditions 199 

for the determination of FA profiles. Samples were stored at -80°C until analysis. 200 

2.3 Lipid extraction and protein determination 201 

The TL content of isolated cells (enterocytes and hepatocytes) was extracted after 202 

incubation with small modifications of the Folch method (Folch et al., 1957) as described 203 

by Christie and Han (2010). Briefly, either incubated control or radioactive cell 204 

preparations, were transferred into test tubes, centrifuged at 716 g for 5 min and the 205 

resultant pellets re-suspended in 4 mL of HBSS and re-centrifuged. Pellets were dissolved 206 

in 2 mL of 0.88% KCl (w/v), and 8 mL of chloroform/methanol (2:1, v/v) containing 207 
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0.01% (w/v) butylated hydroxytoluene (BHT) as antioxidant. After vigorous shaking, 208 

samples were re-centrifuged at 716 g for 5 min, the organic solvent collected, filtered, 209 

and evaporated under a stream of nitrogen. The TL content was determined 210 

gravimetrically, re-suspended in chloroform/methanol (2:1, v/v) with 0.01% (w/v) BHT 211 

and stored at -20ºC under an atmosphere of nitrogen until further analysis. For the lipid 212 

extraction of muscle samples, the same procedure as described above was performed, but 213 

tissue was previously homogenized in chloroform/methanol (2:1, v/v) using a Virtis rotor 214 

homogenizer (Virtishear, Virtis, Gardiner, New York).  215 

Total protein content of incubated enterocytes and hepatocytes was determined in 100 216 

µL-aliquots of cell suspensions, according to Lowry et al. (1951) using FAF-BSA as 217 

standard. 218 

2.4 FA composition of non-radioactive samples 219 

In order to assess the baseline FA composition of liver and gut epithelial cells from the 220 

three species, a smaller fraction (2 mL) of isolated enterocytes and hepatocytes 221 

suspensions that had been also incubated without [1-14C] PUFA, were finally analyzed. 222 

Up to 1 mg of TL extracted from these control cell suspensions and from muscle samples 223 

were subjected to acid-catalyzed transmethylation to obtain fatty acid methyl esters 224 

(FAME). Resultant FAME were purified by thin-layer chromatography (Macherey-225 

Nagel, Düren, Germany), separated and quantified using a TRACE-GC Ultra gas 226 

chromatograph (Thermo Scientific, Milan, Italy) equipped with an on-column injection, 227 

a flame ionization detector (FID) and a fused silica capillary column Supelcowax® 10 228 

(30 m x 0.32 mm ID, df 0.25 μm) (Supelco Inc., Bellefonte, USA). Helium was used as 229 

the carrier gas at 1.5 mL/min constant flow, and temperature programming was from 50 230 

to 150ºC at a rate of 40ºC/min, then from 150oC to 200ºC at 2ºC/min, to 214ºC at 1ºC/min 231 

and, finally, to 230ºC at 40ºC/min, which was maintained for 3 min. Individual FAME 232 
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were identified by reference to authentic standards and further confirmation of FAME 233 

identity was carried out by GC-MS (DSQ II, Thermo Scientific) when necessary. The 234 

results are expressed as percentage of total FA.  235 

Muscle FA composition of the three studied species is shown in the supplementary 236 

data table. 237 

2.5 Metabolic fate of [1-14C] PUFA. Incorporation of radioactivity into TL and 238 

bioconversion of radiolabeled FA 239 

A 100 µg aliquot of TL from cells incubated with each radiolabeled FA (18:2n-6, 240 

18:3n-3, 20:5n-3 or 22:6n-3) was used to determine the radioactivity incorporated by 241 

means of a liquid scintillation β-counter (TRI-CARB 4810TR, Perkin Elmer, Singapore). 242 

Results obtained in dpm were related to the specific activity of each fatty acid and to the 243 

cells TL and protein contents, and expressed as pmol mg prot-1 h-1. 244 

Desaturation-elongation capacities of isolated enterocytes and hepatocytes from the 245 

three fish species incubated with [1-14C] PUFA (18:2n-6, 18:3n-3 and 20:5n-3) were 246 

determined using aliquots of up to 1 mg of the TL extract. Samples were subjected to 247 

acid-catalyzed transmethylation and the resultant FAME were then purified by 248 

argentation thin layer chromatography (AgNO3-TLC) using TLC plates previously 249 

impregnated with 2 g silver nitrate in 20 mL acetonitrile and activated at 110ºC for 30 250 

min. A known standard composed by a mixture of radiolabeled FA was also developed 251 

in the same plates for the identification of each band. TLC plates were fully developed in 252 

toluene/acetonitrile (95:5, v/v) to separate the bands of [1-14C] FA (Wilson and Sargent, 253 

1992). Then, they were placed in closed exposure cassettes in contact with a radioactive-254 

sensitive phosphorous screen (Exposure Cassette-K, BioRad, Madrid, Spain) for two 255 

weeks. Screens were scanned with an image acquisition system (Molecular Imager Fx, 256 
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BioRad), and bands were identified and quantified in percentage of area using Quantity 257 

One 4.5.2. (BioRad) image software.  258 

2.6 Molecular cloning of elovl5 cDNAs 259 

Total RNA was extracted from each tissue (muscle, heart, liver, gut, brain and gill) 260 

and species using TRI Reagent (Sigma-Aldrich, Dorset, UK) following the 261 

manufacturer’s instructions and using a bead tissue disruptor (Bio Spec, Bartlesville, 262 

Oklahoma, USA). Next, cDNA was synthesized from 2 μg of total RNA (mixture from 263 

brain and liver; 1:1) for each species using a High Capacity cDNA Reverse Transcription 264 

Kit (Applied Biosystems, California, USA) for molecular cloning. Subsequently, the first 265 

fragment of elovl5 genes for each species were obtained by polymerase chain reaction 266 

(PCR) using the cDNA as template together with degenerated primers (Table 1) and 267 

GoTaq® Green Master Mix (Promega, Southampton, UK). The degenerated primers for 268 

elovl5 were designed on conserved regions from sequences obtained from NCBI blastn 269 

tool (http://www.ncbi.nlm.nih.gov/) of several teleosts including S. canaliculatus 270 

(GU597350.1), Epinephelus coioides (KF006241.1), Rachycentron canadum 271 

(FJ440239.1), S. senegalensis (JN793448.1), Chirostoma estor (KJ417837.1), S. aurata 272 

(AY660879.1) and Salmo salar (NM_001123567.2). The alignment of elovl5 sequences 273 

was carried out with BioEdit v7.0.9 (Tom Hall, Department of Microbiology, North 274 

Carolina State University, North Carolina, USA). The amplification of the first fragments 275 

by PCR were performed by an initial denaturing step at 95°C for 2 min, followed by the 276 

PCR conditions shown in Table 2 for each primer set, followed by a final extension at 277 

72°C for 5 min. The amplified PCR fragments were purified on agarose gels using 278 

IllustraTM GFXTM PCR DNA and Gel Band Purification kit (GE Healthcare Life Sciences, 279 

Buckinghamshire, UK) and cloned into pGEM-T Easy vector (Promega) and sequenced 280 

(GATC Biotech, Konstanz, Germany). Then, the obtained sequences were used for 281 
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designing specific primers that allowed obtaining the 5’ and 3’ regions by Rapid 282 

Amplification of cDNA Ends (RACE). The cDNA for RACE was prepared by 283 

FirstChoice® RLM-RACE kit (Ambion, Applied Biosystems, Warrington, UK) 284 

following manufacturer’s recommendations. All RACE PCR conditions and primers used 285 

are also reported in Tables 1 and 2. After the nested PCR using the first PCR product as 286 

a template, we successfully amplified each cDNA ends fragment. All RACE fragments 287 

were sequenced as described above and assembled with the corresponding first-fragments 288 

to obtain putative full-length cDNA. 289 

2.7 Sequence and phylogenetic analyses 290 

The deduced amino acid (aa) sequences of putative Elovl5 proteins isolated from S. 291 

salpa, P. lascaris and C. labrosus with a variety of functionally characterized Elovl2, 292 

Elovl4 and Elovl5 from vertebrates (human and fish) retrieved from NCBI were aligned 293 

using MAFFT (https://mafft.cbrc.jp/alignment/software/) Ver. 7.388 with the E-INS-i 294 

strategy (Katoh et al., 2019). All columns containing gaps in the obtained alignment were 295 

removed by trimAl (Capella-Gutiérrez et al., 2009). The cleaned alignment was subjected 296 

to a maximum likelihood phylogenetic analysis using RAxML with 1000 rapid bootstrap 297 

replicates. The best-fit evolutionary model was selected to LG+G+I for both genes by 298 

ModelTest-NG (Darriba et al., 2020). The resultant RAxML tree was visualized using 299 

Interactive Tree of Life v3 (Letunic and Bork, 2016). 300 

2.8 Functional characterization 301 

The open reading frames (ORF) of elovl5 were amplified from S. salpa, P. lascaris 302 

and C. labrosus from liver cDNA by a nested PCR approach. All primers and PCR 303 

conditions are described in Tables 1 and 2. First-round of PCR used primer pairs designed 304 

for each species in the 5’ and 3’ untranslated regions (UTR) for forward and reverse 305 
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primers, respectively. Second round of PCR was run using the first-round PCR products 306 

as templates and primers containing restriction sites (underlined in Table 1) for 307 

subsequent ligation into the yeast expression vector pYES2 (Thermo Fisher Scientific, 308 

Hemel Hempstead, UK). In the case of P. lascaris, both first and second round PCR were 309 

performed with the high fidelity Pfu DNA polymerase (Promega), whereas for S. salpa 310 

and C. labrosus elovl5 the PfuUltra II Fusion HS DNA Polymerase (Agilent, Santa Clara, 311 

California, USA) was used. Subsequently, the PCR products were purified, digested with 312 

the corresponding restriction enzymes (New England BioLabs, Hitchin, UK) and ligated 313 

into a similarly restricted pYES2. The plasmids containing pYES2-elovl5 from each 314 

species were purified (GenElute™ Plasmid Miniprep Kit, Sigma) and sequenced before 315 

being transformed into yeast Saccharomyces cerevisiae competent cells InvSc1 (Thermo 316 

Fisher Scientific). Transformation and selection of yeast culture were performed as 317 

described by Garrido et al. (2019). One single yeast colony transformed with pYES2-318 

elovl5 for each species was used for functional assays. The transgenic yeasts were grown 319 

in the presence of one of the potential FA substrates for elongases, namely 18:2n-6, 18:3n-320 

3, 18:3n-6, 18:4n-3, 20:4n-6, 20:5n-3, 22:4n-6 and 22:5n-3. The FA substrates were 321 

added to the yeast cultures at final concentrations of 0.5 mM (C18), 0.75 mM (C20) and 322 

1.0 mM (C22) as uptake efficiency decreases with increasing chain length (Kabeya et al., 323 

2018). In addition, yeasts transformed with empty pYES2 were also grown in the presence 324 

of each substrate as control treatments. After 2 days of culture at 30°C, yeasts were 325 

harvested, washed, and TL extracted by homogenization in chloroform/methanol (2:1, 326 

v/v) containing 0.01% (w/v) BHT as antioxidant. 327 

2.9 Fatty acid analysis of yeast 328 

FAME were determined from the TL extracted from yeast according to Hastings et al. 329 

(2001). FAME were separated and quantified using a Fisons GC-8160 (Thermo Fisher 330 
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Scientific) gas chromatograph equipped with a 60 m x 0.32 mm i.d. x 0.25 μm ZB-wax 331 

column (Phenomenex, Macclesfield, UK) and flame ionization detector. The elongation 332 

conversion efficiencies from exogenously added PUFA substrates were calculated by the 333 

proportion of substrate FA converted to elongated products as [product area / (product 334 

area + substrate area)] × 100. 335 

2.10 Tissue expression of elovl5 336 

Expression of the elovl5 gene was determined by quantitative real-time PCR (qPCR) 337 

in muscle, heart, liver, gut, brain and gill, being the number of replicates n=4 in S. salpa 338 

and P. lascaris, and n=3 in C. labrosus. Elongation factor-1α (ef1α) and β-actin (actb) 339 

and 18S were tested as potential reference genes for normalization of elovl5 expression, 340 

with ef1α and actb being selected for that purpose since they were the most stable genes 341 

according to geNorm (M stability value = 0.165; Vandesompele et al., 2002). Total RNA 342 

was extracted and 2 μg of each sample were reverse transcribed into cDNA as described 343 

above. In the interest of assessing the efficiency of the primer pairs, serial dilutions of 344 

pooled cDNA were carried out for each species. All qPCR were performed by a Biometra 345 

TOptical Thermocycler (Analytik Jena, Jena, Germany) in 96-well plates in duplicates at 346 

total volume of 20 μL containing 10 μL of Luminaris Color HiGreen qPCR Master Mix 347 

(Thermo Fisher Scientific), 1 μL of each primer (10 μM), 2 μL or 5 μL of cDNA (1/20 348 

dilutions) for reference and target genes, respectively, as well as 6 or 3 μL of molecular 349 

biology grade water. Besides, negative controls (NTC, no template control), containing 350 

molecular biology grade water instead of cDNA, were also run in each plate. The primer 351 

sequences and qPCR conditions are detailed in Tables 1 and 2, respectively. The relative 352 

expression of elovl5 among tissues in each species was calculated as arbitrary units after 353 

normalization dividing by the geometric mean of the expression level of the reference 354 

genes elf1α and actb. One arbitrary unit is defined as the ratio between the expression 355 
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level of elovl5 and the lowest expression level for this gene. After each qPCR analysis, a 356 

melting curve with 1°C increments during 6 s from 60 to 95°C was performed, in order 357 

to check the presence of a single product in each reaction. 358 

2.11 Statistical analysis 359 

Results for TL, FA composition, incorporation of radioactivity into TL, and 360 

bioconversions of enterocytes and hepatocytes incubated with [1-14C] FA substrates are 361 

presented as mean ± SD (n=5 for S. salpa, except for [1-14C] 22:6n-3 where n=4; n=6 for 362 

C. labrosus and n=3 for P. lascaris). Tissue expression is presented as log 10 mean 363 

normalized ratios ± standard error (N). P values of less than 0.05 were considered 364 

significantly different for all statistical test applied. Normal distribution of the data and 365 

homogeneity of the variances were verified with the one-sample Shapiro-Wilk test and 366 

the Levene test, respectively (Zar, 1999).  367 

Statistical differences in the incorporation of radioactivity into TL in enterocytes and 368 

hepatocytes incubated with [1-14C]FA substrates (18:2n-6, 18:3n-3, 20:5n-3 and 22:6n-369 

3), the bioconversions of [1-14C]FA substrates in enterocytes and hepatocytes (18:2n-6, 370 

18:3n-3 and 20:5n-3) as well as tissue expression were tested by one-way ANOVA 371 

followed by a Tukey HSD multiple comparison test (Zar, 1999) for each cell type and 372 

species. When homocedasticity was not achieved, data were transformed using logarithm 373 

or arcsine square root. If transformations did not succeed, Welch test was performed, 374 

followed by T3 Dunnet. Kruskall-Wallis non-parametric test was applied in the case of 375 

no normal distribution followed by pair-wise comparisons Mann-Whitney test with 376 

Bonferroni correction. When one group was missing, the remaining two groups were 377 

analyzed by t-student or Mann-Whitney tests for no normal data. All statistical analyses 378 

were performed using the IBM SPSS statistics 25.0 for Windows (SPSS Inc., New York, 379 

USA). 380 
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3. Results  381 

3.1 Lipid content and fatty acid composition of control cells, and incorporation of 382 

radioactivity into total lipids of cells incubated with [1-14C] radiolabeled FA 383 

Table 3 shows the FA composition of enterocytes and hepatocytes from the three fish 384 

species studied. Saturates, mainly represented by 16:0, was the most abundant group of 385 

FA (29.3-50.4%) in both cell types in all the species. Monounsaturated FA ranged 386 

between 13.7 and 28.9% of total FA, with about two-thirds being 18:1n-9. In enterocytes, 387 

total monounsaturated was slightly higher in P. lascaris (24.6% vs 13.7-16.3%). N-3 388 

PUFA were an important group of FA in this cell type, remaining fairly stable among 389 

species (23.7-26.7%). 20:4n-6 and 20:5n-3 were more abundant in S. salpa (~15%) than 390 

in P. lascaris and C. labrosus (ranging between 2.5 and 5.9%) whereas 22:6n-3 was more 391 

relevant in P. lascaris (16.0 ± 5.0%) and C. labrosus (18.4 ± 4.9%) than in S. salpa (2.8 392 

± 0.3%). Finally, 18:2n-6 represented between 3.5 and 7.7% of total FA in enterocytes 393 

from the three species. The FA composition of hepatocytes from S. salpa showed higher 394 

proportions of total n-3 PUFA, 20:5n-3, 22:5n-3 and 20:4n-6 than P. lascaris and C. 395 

labrosus while 22:6n-3 content was higher in hepatocytes from C. labrosus (12.3%) in 396 

comparison to S. salpa and P. lascaris (5.1% and 5.2%, respectively) (Table 3).  397 

Table 4 shows the incorporation of radioactivity into TL of enterocytes and 398 

hepatocytes of the three species. Overall, both [1-14C] C18 PUFA were generally the most 399 

incorporated FA in both cell types. Regardless of cell type and fish species, [1-14C] 22:6n-400 

3 tended to be the least incorporated FA. P. lascaris presented the highest values of 401 

incorporation for all radiolabeled substrates in enterocytes, and for [1-14C] 18:3n-3 in 402 

hepatocytes. FA incorporation seems to be higher in hepatocytes than in enterocytes of S. 403 

salpa. By contrast, P. lascaris presented the opposite trend although [1-14C] 22:6n-3 did 404 

not differ between isolated cells (Table 4). 405 
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3.2 Bioconversion of radiolabeled FAs 406 

Bioconversion of [1-14C] 18:2n-6, 18:3n-3 and 20:5n-3 in enterocytes and hepatocytes 407 

of the three fish species studied is shown in Table 5. Regardless of cellular type and 408 

species, the majority of radioactivity was consistently recovered as the unmodified 409 

substrate (59.1-92.3%). Nonetheless, enterocytes tended to show higher bioconversion 410 

rates (estimated as the sum of the products derived from each radiolabeled substrate) in 411 

both S. salpa (ranging from 10.6 to 37.0%) and C. labrosus (ranging from 10.3 to 37.6%) 412 

than in P. lascaris (ranging from 7.7 to 29.3%), with [1-14C] 20:5n-3 being the most 413 

modified FA (29.3-37.6%) in the three species (Table 5). Elongation was the most 414 

prominent activity over all substrates assayed in enterocytes from both S. salpa and P. 415 

lascaris and only over 20:5n-3 in C. labrosus. In addition, desaturation was registered 416 

exclusively towards [1-14C] 18:3n-3 in S. salpa and [1-14C] 18:2n-6 in P. lascaris (<1%). 417 

On the other hand, products obtained from the action of both elongases and desaturases 418 

(E+D, elongation/desaturation) over the radiolabeled PUFA notably varied among 419 

substrates and species in this cellular type. Thus, E+D products from [1-14C] 20:5n-3 were 420 

significantly more abundant than those from [1-14C] 18:3n-3 in S. salpa, whereas [1-14C] 421 

18:2n-6 was the most modified substrate in C. labrosus (Table 5). 422 

[1-14C] 20:5n-3 was also the most modified PUFA (22.5-40.9%) in hepatocytes except 423 

in C. labrosus, where [1-14C] 18:2n-6 was bio-converted to a similar extent (Table 5). 424 

Similarly to enterocytes, elongation was the most common activity over all substrates in 425 

hepatocytes from P. lascaris and S. salpa (8.1-32.1% and 8.7-17.4%, respectively), and 426 

additionally, over [1-14C] 20:5n-3 in C. labrosus (21.9 ± 3.4%). Desaturation was 427 

exclusively observed towards both [1-14C] C18 PUFA in S. salpa and towards [1-14C] 428 

18:2n-6 in P. lascaris, being in all cases < 3%. Moreover, E+D activity varied from 1.9 429 

to 22.2% between substrates and species (Table 5). Thus, [1-14C] 18:2n-6 tended to be 430 
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the most elongated and desaturated FA in hepatocytes from all species although only at a 431 

significant rate in S. salpa. 432 

Desaturation over [1-14C] 18:3n-3 and [1-14C] 18:2n-6 in enterocytes from S. salpa 433 

and P. lascaris, respectively, led to the production of 18:4n-3 (0.3 ± 0.4%) and 18:3n-6 434 

(1.0 ± 0.7%), respectively (Table 6). Although transformation of [1-14C] 18:2n-6 to 20:4n-435 

6 was only present in C. labrosus (1.3 ± 0.4%), 22:5n-6 was detected in all species (Table 436 

6). With respect to the n-3 series, both 20:5n-3 and 22:6n-3 were obtained from [1-14C] 437 

18:3n-3 in P. lascaris (0.3 ± 0.2 and 0.5 ± 0.5%, respectively) and C. labrosus (0.8 ± 0.3 438 

and 1.2 ± 0.3%, respectively) but not in S. salpa. However, only P. lascaris was able to 439 

synthesize 22:6n-3 from [1-14C] 20:5n-3 (4.6 ± 5.9%) (Table 6).  440 

Furthermore, 20:4n-6 was produced from [1-14C] 18:2n-6 in hepatocytes from both S. 441 

salpa (0.4 ± 0.5%) and C. labrosus (9.9 ± 6.7%). In addition, [1-14C] 18:3n-3 was 442 

bioconverted in a similar pattern as described above for enterocytes. More specifically, 443 

both 20:5n-3 and 22:6n-3 were obtained from [1-14C] 18:3n-3 in P. lascaris (1.2 ± 0.4% 444 

and 0.4 ± 0.7%, respectively) and C. labrosus (0.8 ± 0.7 and 1.4 ± 1.2%, respectively), 445 

whereas only 22:6n-3 was detected in S. salpa (0.9 ± 0.3%). Besides, only P. lascaris 446 

synthesize 22:6n-3 from [1-14C] 20:5n-3 (Table 6). 447 

3.3 Elovl5 sequences, phylogenetics, functional characterization and tissue 448 

expression  449 

Elovl5 elongase from S. salpa, P. lascaris and C. labrosus consist of an ORF of 885, 450 

867 and 876 bp, encoding putative proteins of 295, 289 and 292 aa, respectively. The 451 

newly cloned elovl5 cDNA sequences were deposited in the GenBank database under the 452 

accession numbers MT019561, MT019562 and MT019563. Our phylogenetic analysis 453 

showed that the three elongases clustered together within a branch containing Elovl5 from 454 
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vertebrates, itself separated from other PUFA elongases, namely Elovl2 and Elovl4 (Fig. 455 

2). These results confirm that the sequences investigated herein are all Elovl5 elongases. 456 

The putative proteins encoded by the elovl5 cDNA sequences were functionally 457 

characterized in yeast. Our results show that the three Elovl5 had activity over all C18 and 458 

C20 PUFA substrates assayed (Table 7). With the exception of Elovl5 in P. lascaris which 459 

exhibited a remarkably low activity towards 22:5n-3, the herein functionally 460 

characterized Elovl5 did not have the capacity to elongate C22 PUFA substrates (Table 461 

7).  462 

The highest expression of elovl5 in both S. salpa and P. lascaris was observed in liver, 463 

gut and brain whereas in C. labrosus, brain presented the highest expression ratio, and 464 

liver and gill the lowest ones (Fig. 3).  465 

466 
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4. Discussion 467 

The ability of fish to biosynthesize LC-PUFA is one of the factors to be considered to 468 

determine the potential interest of a particular species as candidate for the diversification 469 

of aquaculture. Thus, it could allow for both the development of feedstuff formulations 470 

optimized for the target species as well as the selection of fish with high capacity to utilize 471 

C18 fatty acid precursors from dietary VO while maintaining proper growth and 472 

development, and its nutritional quality in terms of flesh n-3 LC-PUFA content. 473 

In the present work, the incorporation of radioactivity into total lipids of isolated cells 474 

from the three fish species studied (S. salpa, P. lascaris and C. labrosus) showed notable 475 

differences between [1-14C] C18 PUFA precursors (18:2n-6 and 18:3n-3) and [1-14C] LC-476 

PUFA (20:5n-3 and 22:6n-3). Overall, both enterocytes and hepatocytes seem to 477 

preferentially incorporate C18 precursors, followed by 20:5n-3 and finally 22:6n-3 (Table 478 

4), in spite of the reported physiological importance of these two LC-PUFA. A similar 479 

pattern was found in juvenile of S. aurata (Mourente and Tocher, 1993a). However, due 480 

to results obtained in a subsequent study in S. aurata, together with studies in L. aurata 481 

and Scophthalmus maximus (Linares and Henderson, 1991; Mourente and Tocher, 1993b, 482 

1994), a preferential retention of 20:5n-3 in marine fish was proposed (Mourente and 483 

Tocher, 1994). A lower affinity of proteins involved in FA membrane translocation 484 

processes for LC-PUFA and a poorer ability of ≥C20 PUFA to diffuse through cell 485 

membranes (Pérez et al., 1999) may be responsible for the observed incorporation 486 

differences. In addition, although β-oxidation measurement was not carried out in our 487 

study due to sample limitation, a preferential β-oxidation activity over C18 precursors 488 

could not be ruled out since C18 PUFA are readily oxidized substrates, in comparison with 489 

LC-PUFA, which are mostly preserved and stored in tissue membranes (Almaida-Pagán 490 

et al., 2007; Mourente et al., 2005). Thus, the apparent affinity for C18 PUFA in the 491 
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studied species may be due either, to the ability of cells to more easily incorporate FA 492 

with shorter chains (C18 vs. ≥C20-22) or to their preference to be β-oxidized. 493 

Regardless of the species, bioconversion rates in enterocytes and hepatocytes ranged 494 

between 7.7 and 40.9% (Table 5), showing higher bioconversion capacities than other 495 

teleosts previously studied such as S. aurata, S. maximus or S. senegalensis (Díaz-López 496 

et al., 2010; Morais et al., 2015; Rodrı́guez et al., 2002). Moreover, as it has been 497 

previously reported in S. maximus and S. senegalensis (Morais et al., 2015; Rodrı́guez et 498 

al., 2002), 20:5n-3 is the most modified FA, mainly elongated by Elovl5 action, in the 499 

enterocytes of the three species, and in the hepatocytes of S. salpa and P. lascaris. In spite 500 

of this, 22:6n-3 from [1-14C] 20:5n-3 was only detected in P. lascaris (Table 6), probably 501 

due to the 4 activity described before (Garrido et al., 2019), although the Sprecher route 502 

may not be completely ruled out in this species, as it will be further discussed in this work. 503 

Our recent previous results (Garrido et al., 2019) demonstrated the existence of a Fads2 504 

with 6 and 8 activities in S. salpa by heterologous expression in yeast. Therefore, the 505 

presence of 18:4n-3 and 24:6n-3 in both enterocytes and hepatocytes of S. salpa incubated 506 

with [1-14C] 18:3n-3 agrees well with the 6 activity above mentioned, although for 507 

incubations with [1-14C] 18:2n-6 this activity was found exclusively in hepatocytes (Table 508 

6). Also in agreement with our results on S. salpa, the Δ6 activity for Fads2 towards both 509 

18:3n-3 and 24:5n-3 has also been observed in S. aurata using radioactivity-based assays 510 

and yeast expression systems (Mourente and Tocher, 1993a; Oboh et al., 2017; Tocher 511 

and Ghioni, 1999). Moreover, as reported herein for S. salpa, 18:3n-6 but not 24:5n-6 512 

was detected in S. aurata in vivo assays or when fibroblasts were incubated with [1-14C] 513 

18:2n-6 (Mourente and Tocher, 1993a; Tocher and Ghioni, 1999). Our present results in 514 

S. salpa add more evidences to the possible conservation of the Δ6 desaturase capacity 515 

among members of the Sparidae family as previously reported in S. aurata. In addition, 516 
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the presence of 20:3n-6 and 20:4n-3 in hepatocytes (Table 6), confirms the 8 activity 517 

recently suggested by our results using molecular tools (Garrido et al., 2019). A 5 518 

desaturation activity was also detected in hepatocytes of S. salpa, obtaining 20:4n-6 from 519 

the incubation with [1-14C] 18:2n-6. Activities, which have been also reported in S. 520 

aurata, together with the presence of trace levels of 20:5n-3. Thus, it is possible that 521 

Fads2 had also some 6/5 activity in these sparids. Finally, 22:6n-3 was only detected 522 

in hepatocytes incubated with [1-14C] 18:3n-3 but not with [1-14C] 20:5n-3. The lower 523 

total incorporation of [1-14C] 20:5n-3 compared to [1-14C] 18:3n-3 in S. salpa, may 524 

explain these differences of bioconversion rates between substrates.  525 

S. salpa displayed elongation activity in both the radiolabeled assays and in the 526 

functional characterization of Elovl5 by heterologous expression in yeast, obtaining C20 527 

and C22 products from the C18 and C20 precursors, respectively (Table 6, 7). Elovl5 is 528 

known to mainly act over C18 and C20 substrates as indicated by heterologous expression 529 

in yeast (Monroig et al., 2012). Furthermore, elongation activity over C22 PUFA was also 530 

observed in our study when cells were incubated with [1-14C] 20:5n-3 according to what 531 

has been reported in S. aurata (Agaba et al., 2005). Collectively, our results indicate that 532 

both S. salpa and S. aurata have a rather similar capacity for LC-PUFA biosynthesis 533 

despite the remarkably different trophic level of these two sparid species. 534 

P. lascaris enterocytes and hepatocytes displayed similar lipid metabolic 535 

characteristics. C20, C22 and C24 FAs were detected as elongation products when both cell 536 

types were incubated in the presence of [1-14C] C18 and [1-14C] C20 substrates, in 537 

accordance to the Elovl5 activities detected in yeast (Table 6, 7), and as reported by 538 

Morais et al. (2012) in its phylogenetically close S. senegalensis. At the same time, 539 

multiple products of desaturation were identified with our experimental design. On one 540 

hand, the presence of 22:5n-6 from [1-14C] 18:2n-6 as well as that of 22:6n-3 when 541 
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incubating with [1-14C] 18:3n-3 and [1-14C] 20:5n-3 (Fig. 1) in both cell types could 542 

confirm the 4 activity previously reported by our group with a molecular approach 543 

(Garrido et al., 2019). Nevertheless, these results seem to indicate that this species could 544 

have another Fads2 with 6/5 activity still uncharacterized. On the other hand, our 545 

radioactive assays suggest the existence of 6 and 8 activities when incubating with [1-546 

14C] 18:2n-6, based on the detection of 18:3n-6 and 20:3n-6, as well as 24:5n-6 in 547 

enterocytes (Table 6). While similar bioconversions were not registered when using [1-548 

14C] 18:3n-3 as substrate, the transformations towards [1-14C] 18:2n-6 indicate that P. 549 

lascaris may possess, along with the 4 Fads2 previously alluded (Garrido et al., 2019), 550 

a second Fads2 with 6/8 activities, and a possible residual 6/5 activity as Morais et 551 

al. (2015) suggested in S. senegalensis. What is more, perhaps a n-6 preference/specificity 552 

could be the reason why Morais et al. (2015) did not find 6 activity in S. senegalensis, 553 

since only [1-14C] 18:3n-3 and [1-14C] 20:5n-3 were used as substrates. Importantly, these 554 

results suggest that P. lascaris seems to be able to biosynthesize 22:6n-3 via two different 555 

routes, namely the 4 pathway operated by the functionally characterized Fads2 (Garrido 556 

et al., 2019), and the Sprecher pathway operated by a yet uncharacterized Fads2.  557 

The enzymatic activity assays carried out on C. labrosus enterocytes and hepatocytes 558 

demonstrated that this species has 8 and 5 desaturase capacities, as well as the ability 559 

to biosynthesize 22:6n-3 from [1-14C] 18:3n-3 (Table 6). Although the 8 desaturase 560 

activity was demonstrated in the 6/8 Fads2 characterized in our earlier study on C. 561 

labrosus (Garrido et al., 2019), no activity as 5 desaturase was detected through 562 

molecular tools for that enzyme. Therefore, the present study performed in isolated cells 563 

suggest that C. labrosus has extra copies of Fads2, possibly containing 5 desaturation 564 

capacity. Consequently, the coexistence of 5, 6 and 8 activities within C. labrosus 565 

may account for all the desaturation reactions required for the bioconversion of 18:3n-3 566 
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to 22:6n-3 detected in our experiments. 22:6n-3 biosynthesis seemed to be performed by 567 

the Sprecher pathway as it has been previously described for L. aurata (Mourente and 568 

Tocher, 1993b). However, as C24 intermediaries of the Sprecher pathway were not 569 

detected in the enzymatic assays (Table 6), the Δ4 pathway cannot be completely ruled 570 

out. Fads2 with Δ4 activity has not been yet characterized in the Mugilidae family, but it 571 

has been demonstrated in other families from the same lineage Ovalentaria, such as 572 

Cichlidae or Atherinidae (Fonseca-Madrigal et al., 2014; Garrido et al., 2019; Oboh et 573 

al., 2017). 22:6n-3 is biosynthesized from [1-14C] 18:3n-3 but not from [1-14C] 20:5n-3 574 

in C. labrosus. In S. salar, the addition of 20:5n-3 inhibited LC-PUFA biosynthesis in 575 

cells lines (AS) (Zheng et al., 2009b), while increasing doses of 20:5n-3 decreased the Δ5 576 

and Δ6 gene expression in the same species Kjær et al. (2016). This, together with the 577 

lower incorporation into total lipid of [1-14C] 20:5n-3 vs. [1-14C] 18:3n-3, could account 578 

for the differences found between both substrates (Table 4). 579 

Both the functional characterization of Elovl5 in yeast and radiolabeled assays with 580 

isolated cells showed elongation from C18 and C20 precursors to C20 and C22 products 581 

(Table 6, 7), respectively, in C. labrosus. The detection of 24:5n-3 when both cell types 582 

were incubated with [1-14C] 20:5n-3 could indicate the action of other Elovl, such as 583 

Elovl4, which is able to elongate a range of PUFA substrates including 22:5n-3 (Monroig 584 

et al., 2011b, 2012). 585 

The gene expression pattern of elovl5 varied among species. S. salpa and P. lascaris 586 

had the highest number of transcripts in the liver, gut and brain, while this occurred in the 587 

brain of C. labrosus, where liver and gill showed the lowest expression (Fig. 3). Until 588 

now, the differences in tissue gene expression distribution have been hypothesized to be 589 

associated to the origin of the species (marine or freshwater) (Kabeya et al., 2017). 590 

Furthermore, it is known that different factors such as nutritional history, developmental 591 
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stage, etc., can affect the tissue distribution patterns of elovl5 (Monroig et al., 2018). 592 

Besides gut and liver, a few evidences suggest that other tissues can also biosynthesize 593 

LC-PUFA. In this sense, the brain is a conservative tissue rich in LC-PUFA and therefore, 594 

a higher number of transcripts could be necessary in order to satisfy an optimal level of 595 

LC-PUFA for proper function (Zheng et al., 2009a).   596 

It has been hypothesized that fish occupying low trophic levels, require only C18 PUFA 597 

in the diet, being capable of de novo biosynthesize LC-PUFA, while those with high 598 

trophic levels, are unable to form LC-PUFA from C18 precursors and therefore need a 599 

dietary supply of LC-PUFA. Nonetheless, fish occupying intermediate trophic level, 600 

which may require either C18 PUFA or LC-PUFA depending on their ecological niche 601 

and life history, called into question this generalization (Trushenski and Rombenso, 602 

2019). Our results obtained in three fish species with different trophic level, indicate that 603 

this factor might not be a good indicator for LC-PUFA biosynthesis. 604 

In conclusion, phylogeny of the fish species, instead of trophic level, might be a more 605 

relevant factor in the LC-PUFA biosynthetic capacity. S. salpa and P. lascaris showed 606 

lipid metabolism characteristics similar to two established commercial species such as S. 607 

aurata and S. senegalensis, respectively, and could be adequate candidates for 608 

aquaculture diversification. The LC-PUFA biosynthetic capacity of wild S. salpa, P. 609 

lascaris and C. labrosus resembled that of their phylogenetically close species S. aurata, 610 

S. senegalensis and L. aurata, respectively. The desaturase activities observed in this 611 

study include 5, 6 and 8 activities in S. salpa, 5 and 8 activity in C. labrosus, and 612 

6/5 residual activity and 4 in P. lascaris. Thus, confirming the ability of the three 613 

species studied to biosynthesize 22:6n-3 from 18:3n-3. 614 

615 

https://www.linguee.es/ingles-espanol/traduccion/hypothesized.html
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Table 1. Sequences of primer pairs used in the cloning of Sarpa salpa, Pegusa lascaris, and Chelon labrosus fatty acyl elongase (elovl5) open 797 

reading frame (ORF) and for quantitative real-time PCR (qPCR) analysis of gene expression in tissues. Restriction sites BamHI/XhoI for S. salpa 798 

(SSElovl5VF/SSElovl5VR), P. lascaris (PLElovl5VF/PLElovl5VR) and C. labrosus (CLElovl5VF/CLElovl5VR) are underlined in the 799 

corresponding primer sequences. 800 

Aim Species Transcript Primers Primers sequence 

First 

Fragment 

S. salpa elovl5 FFElovl5F1 5’- TACCCDCCAACCTTTGCACT -3’ 

  FFElovl5R1 5’- TCAATCCACCCTCAGCTTCTTG -3’ 

P. lascaris  FFElovl5F1 5’- TACCCDCCAACCTTTGCACT -3’ 

  FFElovl5R2 5’- TCAATCCACCCTYAGYTTCTTG -3’ 

C. labrosus  FFElovl5F1 5’- TACCCDCCAACCTTTGCACT -3’ 

  FFElovl5R2 5’- TCAATCCACCCTYAGYTTCTTG -3’ 

RACE PCR S. salpa elovl5 3’SSElovl5F1 5’- CCGTACCTTTGGTGGAAGAAGT -3’ 

   3’SSElovl5F2 5’- CAGTTCCAGCTGATCCAGTTCT -3’ 

   5’SSElovl5R1 5’- TTCATGTACTTGGGCCCCATC -3’ 

   5’SSElovl5R2 5’- GGTGGGTAGTTGTCGAGCAG -3’ 

 P. lascaris  3’PLElovl5F1 5’- CCCCATGCGATGGCTATACTT -3’ 

   3’PLElovl5F2 5’- ACGTACAAGAAGCGCAGTGT -3’ 

   5’PLElovl5R1 5’- GTAGAAGTTGTAGCCCCCGTG -3’ 

   5’PLElovl5R2 5’- TGTAGAGCACCAGAAGGCCT -3’ 

 C. labrosus  3’CLElovl5F1 5’- ACATGTTCACACTCACCATCCT -3’ 

   3’CLElovl5F2 5’- TCAGACTTACAAAAAGCGCAGC -3’ 

   5’CLElovl5R1 5’- CTTCCTCTGCGCTGTGAGTG -3’ 
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   5’CLElovl5R2 5’- TTGTAGCCACCATGCCACAC -3’ 

ORF cloning S. salpa elovl5 SSElovl5UF 5’-CTCTCCCCTCCTCGAAAAGGTG -3’ 

   SSElovl5UR 5’-GAGAATGGGGTGACGGTTTCTCAAATG-3’ 

   SSElovl5VF 5’-CCCGGATCCAAAATGGAGACCTTC-3’ 

   SSElovl5VR 5’-CCGCTCGAGTCAATCCACTCTCAG-3’ 

 P. lascaris elovl5 PLElovl5UF 5’-GTGTGTGTAATCGCTGATCTTCATGG-3’ 

   PLElovl5UR 5’-GATGTTGGGTGATACTTCCTCAAAGG-3’ 

   PLElovl5VF 5’-CCCGGATCCAAAATGGAGACCTTC-3’ 

   PLElovl5VR 5’-CCGCTCGAGTCAATCCACCCTTAG-3’ 

 C. labrosus elovl5 CLElovl5UF 5’-GGCTGGGCGACTTGATGGTG-3’ 

   CLElovl5UR 5’-CCTCCTAGCAGCATTAGCTAACAC-3’ 

   CLElovl5VF 5’-CCCGGATCCAAAATGGAGGCCTTC-3’ 

   CLElovl5VR 5’- CCGCTCGAGTCAATCCACCCTC-3’ 

qPCR S. salpa elovl5 SSElovl5qF1 5’-ACAAGCACAGTGCGTCTCTAA-3’ 

   SSElovl5qR1 5’-ACGCACTACAGTGAGAATGGG-3’ 

 P. lascaris  PLElovl5qF1 5’-GCTGACAAAACCTGGAGAGC-3’ 

   PLElovl5qR1 5’-CCTCCTGGATGTCTTTTGGA-3’ 

 C. labrosus  CLElovl5qF1 5’-AGAACGGCTCCTCCCTATCA-3’ 

   CLElovl5qR1 5’-CAGCATTAGCTAACACGCTACA-3’ 

 S. salpa β-actin β-actinqF1 5’-CAGGGAGAAGATGACCCAGA-3’ 

   β-actinqR1 5’-ACAGTGCCCATCTATGAGGG-3’ 

 P. lascaris  β-actinqF1 5’-CAGGGAGAAGATGACCCAGA-3’ 

   β-actinqR1 5’-ACAGTGCCCATCTATGAGGG-3’ 

 C. labrosus  β-actinqF1 5’-CAGGGAGAAGATGACCCAGA-3’ 

   β-actinqR2 5’-CCCTCGTAGATGGGCACTGT-3’ 

 S. salpa elf1α efl1αqF1 5’-ATGCACCACGAGTCTCTGAC-3’ 

   efl1αqR1 5’-GGGTGGTTCAGGATGATGAC-3’ 
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 P. lascaris  efl1αqF2 5’-GTGGAGATGCACCACGAGTC-3’ 

   efl1αqR1 5’-GGGTGGTTCAGGATGATGAC-3’ 

 C. labrosus  efl1αqF3 5’-GTCGAGATGCACCACGAGTC-3’ 

   efl1αqR1 5’-GGGTGGTTCAGGATGATGAC-3’ 
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Table 2. Reaction conditions for cloning, functional characterization and gene expression of elovl5 in Sarpa salpa, Pegusa lascaris and Chelon 801 

labrosus. 802 

Aim Species Transcript 
Forward 

primer 
Reverse primer 

Denaturing 

temperature 

(°C) (duration 

in s) 

Annealing 

temperature 

(°C) (duration 

in s) 

Extension 

temperature 

(°C) (duration 

in s) 

Number 

of cycles 

First Fragment S. salpa elovl5 FFElovl5F1 FFElovl5R1 95 (30) 56 (45) 72 (60) 35 

 P. lascaris  FFElovl5F1 FFElovl5R2 “ “ “ “ 

 C. labrosus  FFElovl5F1 FFElovl5R2 “  “  “ “ 

RACE PCR S. salpa elovl5 5' RACE Outer 5’SSElovl5R1 95 (30) 57 (30) 72 (90) 35 

   5' RACE Inner 5’SSElovl5R2 “ “ “ “ 

   3’SSElovl5F1 3' RACE Outer “ “ “ “ 

   3’SSElovl5F2 3' RACE Inner “ “ “ “ 

 P. lascaris  5' RACE Outer 5’PLElovl5R1 95 (30) 57 (30) 72 (90) 35 

   5' RACE Inner 5’PLElovl5R2 “ “ “ “ 

   3’PLElovl5F1 3' RACE Outer “ “ “ “ 

   3’PLElovl5F2 3' RACE Inner “ “ “ “ 

 C. labrosus  5' RACE Outer 5’CLElovl5R1 “ “ “ “ 

   5' RACE Inner  5’CLElovl5R2 “ “ “ “ 
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   3’CLElovl5F1 3' RACE Outer “ “ “ “ 

   3’CLElovl5F2 3' RACE Inner “ 59 (30) “ “ 

ORF cloning S. salpa elovl5 SSElovl5UF SSElovl5UR 95 (20) 55 (20) 72 (105) 40 

   SSElovl5VF SSElovl5VR “ “ “ “ 

 P. lascaris elovl5 PLElovl5UF PLElovl5UR 95 (20) 55 (20) 72 (105) 35 

   PLElovl5VF PLElovl5VR “ “ “ “ 

 C. labrosus elovl5 CLElovl5UF CLElovl5UR 95 (20) 55 (20) 72 (105) 40 

   CLElovl5VF CLElovl5VR “ “ “ “ 

qPCR S. salpa elovl5 SSElovl5qF1 SSElovl5qR1 95 (15) 58.5 (30) 72 (30) 35 

 P. lascaris  PLElovl5qF1 PLElovl5qR1 “ “ “ “ 

 C. labrosus  CLElovl5qF1 CLElovl5qR1 “ “ “ “ 

 S. salpa β-actin β-actinqF1 β-actinqR1 “ “ “ “ 

 P. lascaris  β-actinqF1 β-actinqR1 “ “ “ “ 

 C. labrosus  β-actinqF1 β-actinqR2 “ “ “ “ 

 S. salpa elf1α efl1αqF1 efl1αqR1 “ “ “ “ 

 P. lascaris  efl1αqF2 efl1αqR1 “ “ “ “ 

 C. labrosus  efl1αqF3 efl1αqR1 “ “ “ “ 
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Table 3. Total lipid (mg lipid/mg protein) and main fatty acid composition (% of total FA) of control enterocytes and hepatocytes from Sarpa 803 

salpa, Pegusa lascaris and Chelon labrosus. 804 

 Sarpa salpa  Pegusa lascaris  Chelon labrosus 

 Enterocytes Hepatocytes  Enterocytes Hepatocytes  Enterocytes Hepatocytes 

Total lipid 0.9 ± 0.2 3.0 ± 1.5  1.2 ± 0.0 1.8 ± 0.6  0.8 ± 0.2 2.2 ± 0.5 

Total saturated1 29.3 ± 1.8 35.5 ± 1.3  37.3 ± 1.6 50.4 ± 8.2  36.7 ± 6.0 44.2 ± 2.0 

14:0 0.8 ± 0.1 1.0 ± 0.1  1.4 ± 0.3 2.8 ± 1.1  1.4 ± 0.7 1.8 ± 0.3 

16:0 17.0 ± 0.8 22.5 ± 1.6  19.0 ± 0.5 31.3 ± 6.8  16.1 ± 8.5 23.0 ± 2.6 

18:0 11.4 ± 0.2 10.0 ± 1.0  13.9 ± 2.2 13.5 ± 2.8  14.3 ± 1.9 10.8 ± 0.9 

Total monoenes1 13.7 ± 0.5 19.6 ± 4.9  24.6 ± 5.6 28.9 ± 9.8  16.3 ± 2.8 23.4 ± 6.9 

16:12 1.9 ± 0.4 3.3 ± 2.5  2.6 ± 0.7 6.2 ± 2.0  2.0 ± 0.5 5.3 ± 3.8 

18:13 10.2 ± 0.9 15.3 ± 3.6  19.9 ± 4.3 19.1 ± 6.1  13.1 ± 1.9 16.5 ± 3.0 

20:13 0.7 ± 0.2 nd  0.2 ± 0.3 0.9 ± 0.4  0.7 ± 0.4 1.2 ± 0.9 

Total n-6 PUFA1 22.9 ± 0.6 15.1 ± 1.3  8.9 ± 0.4 6.6 ± 2.0  16.3 ± 3.3 10.0 ± 3.6 

18:2 3.5 ± 1.2 3.7 ± 0.7  4.0 ± 0.9 4.9 ± 3.0  7.7 ± 3.5 6.8 ± 2.1 

18:3 nd 0.1 ± 0.2  nd nd  nd nd 

20:3 1.4 ± 0.1 0.7 ± 0.1  nd nd  nd nd 

20:4 

 

 

14.9 ± 0.3 8.9 ± 1.6  2.5 ± 1.0 1.4 ± 0.6  5.9 ±1.9 2.7 ± 1.4 

22:5 0.7 ± 0.1 0.6 ± 0.1  1.2 ± 0.2 0.1 ± 0.2  1.2 ± 0.2 0.5 ± 0.1 

Total n-3 PUFA1 25.2 ± 2.5 23.0 ± 4.1  23.7 ± 6.3 9.7 ± 4.9  26.7 ± 5.7 16.8 ± 6.1 

18:3 0.9 ± 0.2 1.0 ± 0.2  0.6 ± 0.0 0.6 ± 0.0  1.2 ± 0.4 1.2 ± 0.2 

20:5 15.1 ± 1.6 10.3 ± 2.4  3.4 ± 0.2 2.1 ± 1.2  4.6 ± 1.1 2.5 ± 1.1 

22:5 5.8 ± 0.5 5.2 ± 1.4  3.5 ± 1.2 1.7 ± 1.1  1.9 ± 0.5 0.7 ± 0.3 

22:6 2.8 ± 0.3 5.1 ± 1.5  16.0 ± 5.0 5.2 ± 2.6  18.4 ± 4.9 12.3 ± 4.8 

n-3/n-6 1.1 ± 0.1 1.5 ± 0.2  2.7 ± 0.6 1.7 ± 1.2  1.7 ± 0.6 1.7 ± 0.2 

20:4n-6/20:5n-3 1.0 ± 0.1 0.9 ± 0.2  0.7 ± 0.3 0.7 ± 0.2  1.3 ± 0.3 1.0 ± 0.2 

22:6n-3/20:5n-3 0.2 ± 0.0 0.5 ± 0.2  4.7 ± 1.7 2.7 ± 0.4  4.1 ± 1.0 5.1 ± 1.2 

Total n-3 LC-PUFA1 24.3 ± 2.6 21.5 ± 4.4  23.0 ± 6.0 9.0 ± 4.8  26.7 ± 5.7 15.6 ± 6.1 
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Results are presented as mean ± SD (S. salpa, n=5; P. lascaris, n=3; C. labrosus, n= 6). LC-PUFA, long chain polyunsaturated fatty acids (≥ C20 805 

and ≥ 2 double bonds); nd, not detected.1 Includes some minor components not shown; 2 Mainly n-7 isomer; 3 Mainly n-9 isomer. 806 
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 Table 4. Incorporation of radioactivity into total lipids (pmol mg prot−1 h−1) of isolated enterocytes and hepatocytes of Sarpa salpa, Pegusa 807 

lascaris and Chelon labrosus incubated with [1-14C] 18:2n-6, [1-14C] 18:3n-3, [1-14C] 20:5n-3 and [1-14C] 22:6n-3. 808 

Values are presented as mean ± SD (S. salpa, n=5, except for [1-14C] 22:6n-3, where n=4; P. lascaris, n=3; C. labrosus, n= 6). Different letters in 809 

superscript denote significant differences between [1-14C] FA for each cell type (p<0.05).810 

 ENTEROCYTES  HEPATOCYTES  

[1-14C] FA 18:2n-6  18:3n-3  20:5n-3  22:6n-3  18:2n-6  18:3n-3  20:5n-3  22:6n-3  

Species                 

Sarpa salpa 90.5 ± 26.7 c 75.6 ± 26.0 bc 38.6 ± 19.7 ab 25.2 ± 10.7 a 154.7 ± 49.3  100.4 ± 37.9  71.2 ± 40.1  85.0 ± 49.5  

Pegusa lascaris 471.4 ± 50.9 c 211.9 ± 7.3 b 127.6 ± 45.6 b 59.7 ± 19.8 a 142.2 ± 18.4 b 173.0 ± 12.5 b 54.3 ± 31.5 a 58.2 ± 4.9 a 

Chelon labrosus 67.0 ± 16.3 b 67.5 ± 19.8 b 32.7 ± 13.8 a 12.3 ± 3.1 a 57.3 ± 35.3 b 88.5 ± 58.6 b 51.1 ± 25.4 b 10.7 ± 6.1 a 
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Table 5. Bioconversions (% of total radioactivity) registered in isolated enterocytes and 811 

hepatocytes from Sarpa salpa, Pegusa lascaris and Chelon labrosus incubated with [1-812 

14C] 18:2n-6, [1-14C] 18:3n-3 and [1-14C] 20:5n-3. 813 

Values are presented as mean ± SD (S. salpa, n=5; P. lascaris, n=3; C. labrosus, n= 6). 814 

E+D, elongation and desaturation; nd, not detected. De novo: shorter FAs produced by 815 

using the [1-14C] released after a first β-oxidation cycle of the radiolabeled substrate. 816 

Different letters in superscript denote significant differences between [1-14C] fatty acids 817 

for each cell type (p<0.05).  818 

 Sarpa salpa 

 ENTEROCYTES  HEPATOCYTES  

             
[1-14C] PUFA 18:2  18:3  20:5  18:2  18:3  20:5  

             
FA recovery 85.0 ± 5.0 b 89.4 ± 3.5 b 63.0 ± 2.8 a 80.8 ± 6.1 b 84.4 ± 2.0 b 68.0 ± 2.5 a 

Elongation 10.5 ± 5.3 a 8.1 ± 4.0 a 20.8 ± 3.3 b 8.7 ± 3.8 a 9.7 ± 3.5 a 17.4 ± 1.7 b 

Desaturation nd  0.3 ± 0.4  nd  1.7 ± 0.4  2.3 ± 1.0  nd  

E+D 2.4 ± 1.4 ab 0.5 ± 0.7 a 2.8 ± 1.2 b 7.0 ± 2.5 b 3.5 ± 1.8 a 1.9 ± 0.8 a 

De novo 1.9 ± 0.2 a 1.2 ± 0.6 a 12.8 ± 3.9 b 1.2 ± 0.2 a nd  10.0 ± 3.8 b 

Unknown 0.2 ± 0.2  0.5 ± 0.2  0.5 ± 1.1  0.6 ± 0.8  nd  2.6 ± 1.9  

             

 Pegusa lascaris 

 ENTEROCYTES  HEPATOCYES  

             
[1-14C] PUFA 18:2  18:3  20:5  18:2  18:3  20:5  

             
FA recovery 87.0 ± 1.8 b 92.3 ± 3.1 b 70.7 ± 5.1 a 80.6 ± 5.0 b 89.3 ± 3.2 b 59.1 ± 8.6 a 

Elongation 9.6 ± 0.9 a 6.8 ± 2.7 a 21.1 ± 1.0 b 13.3 ± 3.4 a 8.1 ± 4.2 a 32.1 ± 7.2 b 

Desaturation 1.0 ± 0.7  nd  nd  2.0 ± 0.7  nd  nd  

E+D 2.2 ± 0.6  0.8 ± 0.7  4.6 ± 5.9  3.5 ± 1.1 b 1.6 ± 0.5 a 2.7 ± 0.3 ab 

De novo nd  nd  3.6 ± 4.5  nd  1.0 ± 1.7  6.1 ± 3.7  

Unknown 0.2 ± 0.1  0.1 ± 0.2  nd  0.5 ± 1.0  nd  nd  

             

 Chelon labrosus 

 ENTEROCYTES  HEPATOCYTES  

             
[1-14C] PUFA 18:2  18:3  20:5  18:2  18:3  20:5  

             
FA recovery 83.9 ± 2.8 b 89.7 ± 0.6 c 62.4 ± 2.0 a 66.4 ±14.4 a 92.2 ± 1.6 b 77.5 ± 4.3 a 

Elongation 4.0 ± 1.0 a 4.5 ± 1.2 a 28.4 ± 1.2 b 9.5 ± 9.4 ab 2.0 ± 1.9 a 21.9 ± 3.4 b 

Desaturation nd  nd  nd  nd  nd  nd  

E+D 5.4 ± 0.9 b 3.5 ± 0.9 a nd  22.2 ±13.8  5.5 ± 1.6  nd  

De novo 5.6 ± 0.7 b nd  0.3 ± 0.4 a 1.8 ± 2.8  0.3 ± 0.6  nd  

Unknown 1.1 ± 1.2  2.3 ± 0.5  8.9 ± 2.2  nd  nd  0.6 ± 1.0  
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Table 6. Products obtained (% of total radioactivity) from the incubation of isolated 819 

enterocytes and hepatocytes with [1-14C] 18:2n-6, [1-14C] 18:3n-3 and [1-14C] 20:5n-3 820 

Values are presented as mean ± SD (S. salpa, n=5; P. lascaris, n=3; C. labrosus, n= 6). 821 

nd, not detected.  822 

 ENTEROCYTES  HEPATOCYTES 

 S. salpa P. lascaris C. labrosus  S. salpa P. lascaris C. labrosus 

        
[1-14C]18:2n-6       

18:3 nd 1.0 ± 0.7 nd  1.7 ± 0.4 2.0 ± 0.7 nd 

20:2 8.0 ± 5.2 8.3 ± 1.2 2.0 ± 0.5  7.2 ± 3.4 12.2 ± 0.8 4.4 ± 4.2 

20:3 nd 0.4 ± 0.3 nd  0.9 ± 0.9 0.3 ± 0.5 nd 

20:4 nd nd 1.3 ± 0.4  0.4 ± 0.5 nd 9.9 ± 6.7 

22:2 2.6 ± 0.8 1.3 ± 0.9 1.9 ± 0.6  1.5 ± 1.0 1.1 ± 1.9 5.1 ± 5.2 

22:4 1.2 ± 0.3 nd 0.8 ± 0.4  1.2 ± 1.2 nd nd 

22:5 1.3 ± 1.1 1.5 ± 1.0 3.3 ± 0.5  4.6 ±1.9 3.2 ± 1.1 12.3± 7.2 

24:5 nd 0.3 ± 0.6 nd  nd nd nd 

        
[1-14C]18:3n-3       

18:4 0.3 ± 0.4 nd nd  2.3 ± 1.0 nd nd 

20:3 7.2 ± 3.5 6.5 ± 2.9 1.5 ± 0.4  8.8 ± 4.0 8.1 ± 4.2 2.0 ± 1.9 

20:4 nd nd 1.5 ± 0.4  1.0 ± 0.3 nd 3.3 ± 3.2 

20:5 nd 0.3 ± 0.2 0.8 ± 0.3  nd 1.2 ± 0.4 0.8 ± 0.7 

22:3 1.0 ± 0.9 0.2 ± 0.4 0.9 ± 0.5  0.9 ± 0.9 nd nd 

22:5 nd nd 0.1 ± 0.2  0.4 ± 0.4 nd nd 

22:6 nd 0.5 ± 0.5 1.2 ± 0.3  0.9 ± 0.3 0.4 ± 0.7 1.4 ± 1.2 

24:3 nd nd 0.9 ± 0.5  nd nd nd 

24:6 0.5 ± 0.7 nd nd  1.2 ± 1.1 nd nd 

        
[1-14C]20:5n-3       

22:5 15.3 ± 2.6 12.7 ± 1.7 15.0 ± 0.3  14.6 ± 1.2 23.3 ± 4.4 12.4 ± 3.5 

22:6 nd 4.6 ± 5.9 nd  nd 2.7 ± 0.3 nd 

24:5 5.6 ± 2.1 8.4 ± 2.6 4.1 ± 0.7  2.8 ± 0.8 8.7 ± 4.3 4.9 ± 2.9 

24:6 2.8 ± 1.2 nd nd  1.9 ± 0.8 nd nd 
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Table 7. Percentage of conversion of fatty acid (FA) substrates exogenously added to 823 

transgenic yeast (Saccharomyces cerevisiae) transformed with the coding region of elovl5 824 

from Sarpa salpa, Pegusa lascaris and Chelon labrosus. 825 

  % conversion 

FA substrate FA product Sarpa salpa Pegusa lascaris Chelon labrosus 

18:2n-6 20:2n-6 5.1 29.6 15.2 

18:3n-3 20:3n-3 29.3 44.7 42.0 

18:3n-6 20:3n-6 38.3 81.6 58.4 

18:4n-3 20:4n-3 50.2 80.3 64.4 

20:4n-6 22:4n-6 30.2 36.1 27.0 

20:5n-3 22:5n-3 75.7 70.8 69.1 

22:4n-6 24:4n-6 nd nd nd 

22:5n-3 24:5n-3 nd 2.3 nd 

Results are expressed as a percentage of total fatty acid substrate converted to elongated 826 

product. nd, not detected.   827 
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Table SD (Supplementary data). Total lipid (% wet weight) and main fatty acid 828 

composition (% of total FA) of muscle from Sarpa salpa, Pegusa lascaris and Chelon 829 

labrosus. 830 

Results are presented as mean ± SD (S. salpa, n=5; P. lascaris, n=7; C. labrosus, n= 6). 831 

LC-PUFA, Long chain polyunsaturated fatty acids (≥ C20 and ≥ 2 double bonds); nd, not 832 

detected.1 Includes some minor components not shown; 2 Mainly n-7 isomer; 3 Mainly n-833 

9 isomer.  834 

 Sarpa salpa  Pegusa lascaris  Chelon labrosus 

Total lipid 0.5 ± 0.1  0.5 ± 0.1  0.9 ± 0.1 

Total saturated1 27.1 ± 0.7  28.8 ± 1.0  32.8 ± 2.2 

14:0 0.8 ± 0.1  1.0 ± 0.5  2.7 ± 0.6 

16:0 18.6 ± 0.5  18.2 ± 1.0  23.1 ± 1.7 

18:0 6.4 ± 0.3  7.4 ± 0.4  5.8 ± 1.0 

Total monoenes1 20.9 ± 2.4  17.9 ± 1.9  24.0 ± 3.2 

16:12 2.9 ± 0.5  2.7 ± 1.0  6.6 ± 1.1 

18:13 17.3 ± 2.1  13.6 ± 0.6  16.7 ± 2.5 

20:13 0.0 ± 0.1  0.6 ± 0.5  0.4 ± 0.1 

Total n-6 PUFA1 19.1 ± 0.6  8.2 ± 0.9  16.8 ± 1.1 

18:2 5.4 ± 1.7  1.4 ± 0.3  10.5 ± 1.9 

18:3 0.4 ± 0.0  nd  0.4 ± 0.1 

20:3 0.8 ± 0.0  nd  0.2 ± 0.2 

20:4 

 

 

10.7 ± 1.0  4.3 ± 0.7  3.9 ± 0.7 

22:5 0.5 ± 0.2  1.3 ± 0.2  1.0 ± 0.3 

Total n-3 PUFA1 28.4 ± 2.3  41.4 ± 2.4  23.0 ± 3.3 

18:3 1.1 ± 0.2  0.4 ± 0.1  1.8 ± 0.5 

20:5 16.9 ± 1.7  6.0 ± 0.3  7.0 ± 1.2 

22:5 5.5 ± 0.6  5.9 ± 0.6  2.1 ± 0.4 

22:6 3.6 ± 0.4  28.7 ± 2.9  10.4 ± 3.1 

n-3/n-6 1.5 ± 0.2  5.1 ± 0.6  1.4 ± 0.2 

20:4n-6/20:5n-3 0.6 ± 0.0  0.7 ± 0.2  0.6 ± 0.1 

22:6n-3/20:5n-3 0.2 ± 0.0  4.8 ± 0.7  1.5 ± 0.6 

Total n-3 LC-PUFA1 26.8 ± 2.3  40.6 ± 2.4  20.0 ± 3.0 
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Figure legend 835 

Figure 1. Long-chain (C20-24) polyunsaturated fatty acids biosynthetic route from 836 

linoleic (n-6) and α-linolenic acid (n-3). 837 

Figure 2. Phylogenetic tree of elovl5 using the deduced amino acid sequences from Sarpa 838 

salpa, Pegusa lascaris and Chelon labrosus. The number over horizontal branch length 839 

shows the branch lengths which is proportional to the amino acid substitution rate per 840 

site, whereas the percentage number under the horizontal branch length is the bootstrap 841 

replicates from 1000 iterations. 842 

Figure 3. Tissue distribution of elovl5 in Sarpa salpa, Pegusa lascaris and Chelon 843 

labrosus. Data are presented as geometric mean log normalized expression ratios ± 844 

standard errors (S. salpa and P. lascaris n=4; C. labrosus, n=3). Different letters denote 845 

significant differences among tissue for each specie (p<0.05). 846 

  847 
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