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ABSTRACT
This paper proposes Ir-Man (Information Retrieval for Marine An-
imal Necropsies), a framework for retrieving discrete information
from marine mammal post-mortem reports for statistical analysis.
When a marine mammal is reported dead after stranding in Scotland,
the carcass is examined by the Scottish Marine Animal Strandings
Scheme (SMASS) to establish the circumstances of the animal’s
death. This involves the creation of a ‘post-mortem’ (or necropsy) re-
port, which systematically describes the body. These semi-structured
reports record lesions (damage or abnormalities to anatomical re-
gions) as well as other observations. Observations embedded within
these texts are used to determine cause of death. While a cause of
death is recorded separately, many other descriptions may be of
pathological and epidemiological significance when aggregated and
analysed collectively. As manual extraction of these descriptions is
costly, time consuming and at times erroneous, there is a need for an
automated information retrieval mechanism which is a non-trivial
task given the wide variety of possible descriptions, pathologies
and species. The Ir-Man framework consists of a new ontology, a
lexicon of observations and anatomical terms and an entity rela-
tion engine for information retrieval and statistics generation from
a pool of necropsy reports. We demonstrate the effectiveness of
our framework by creating a rule-based binary classifier for identi-
fying bottlenose dolphin attacks (BDA) in harbour porpoise gross
pathology reports and achieved an accuracy of 83.4%.

*Also with Epidemiology Research Unit, Scotland’s Rural College (SRUC).
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1 INTRODUCTION
Monitoring and surveillance of wildlife is fundamental for the devel-
opment of understanding of the factors which impact the well-being
of populations, species and ecosystems. These activities are espe-
cially difficult when applied to the marine mammal domain, as direct
observation of living animals in their environments is often imprac-
tical. Observation of dead animals, when they become accessible,
provides a critical source of data for our knowledge of these popu-
lations, and information gathered from such events is particularly
important. When a cetacean or pinniped becomes stranded and dies,
and when its carcass is examined by trained investigators, the result-
ing post-mortem (PM) report provides a snapshot of the animal’s
condition. Collectively, such data provides a unique insight into
the general welfare of marine mammal populations and may reveal
problems facing the species’ environment as a whole.

Williams et al. [23, 24], for example have extensively monitored
the levels of toxic polychlorinated biphenyls (PCBs) in harbour
porpoises. PCB levels are directly affected by human pollution
due to the compound’s use in some manufactured goods. Similarly,
Nelms et al. [19] have analysed the presence of microplastics found
in stranded cetacea using PM examinations. These examples show
that PM examinations can be used to observe the human impact on
marine ecology.

https://doi.org/10.1145/3388440.3412417
https://doi.org/10.1145/3388440.3412417
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Figure 1: Overview of the Ir-Man framework along with its information retrieval flow diagram.

PM reports are generated in a semi-structured format, with infor-
mation embedded across multiple free text sections which makes the
retrieval of pathological findings a non-trivial problem. Furthermore,
there are many cases where multiple indicators are described which
relate to multiple distinct pathologies. The ability to effectively con-
firm or rule out the presence of a pathology based on descriptions
of abnormalities would allow for clearer understanding of the prob-
lems facing marine mammals. Information retrieval approaches have
been applied extensively in human pathology [3, 8, 11, 21, 25, 26],
and other animal pathologies [2, 7, 13], however, no work currently
exists for marine mammal pathology free text.

To address such gaps we propose Ir-Man (Information Retrieval
for Marine Animal Necropsies), a new framework for retrieving
discrete information from marine mammal post-mortem (necropsy)
reports for statistical analysis. We infer that the hierarchical nature
of descriptive terms used in marine mammal PM reports can be
represented within an ontology, in which a class of terms represent
a specific observation, and subclasses represent distinct varieties
of observations. Our approach involves the extraction of a number
of key pieces of information: the term used to describe particular
observations; whether the context indicates presence or absence;
and the anatomical region to which the observation relates. Once
extracted, these fields can be used to create a deterministic classifier
based on the presence or absence of either general pathological
indicators or indicators of pathologies in specific anatomical regions.
We also extract a reference that can be used to link and aggregate
information across different report types. The overview of Ir-Man
framework is depicted in Figure 1.

In building the framework, this paper considers the marine mam-
mal PM reports, particularly the gross pathology reports and de-
scribes various framework components for extraction of gross pathol-
ogy findings. In evaluating the effectiveness of Ir-Man, we experi-
mented with an exemplar use case of identifying bottlenose dolphin
attacks on harbour porpoises and reported our findings. Our main
contributions are:

• We propose a new framework for information retrieval for
marine mammal necropsy analysis using an ontology driven
entity relation approach.

• We design three ontologies which contain terms relevant to
cetacean gross pathology reports that are based on observa-
tions, anatomy, and pathology, respectively.

• We develop a lexicon based entity-relationship engine that
can record the presence or absence of observations which can
confirm or rule out pathologies.

• We measure the effectiveness of our retrieval approach by
creating and evaluating a deterministic classifier for cases of
bottlenose dolphin attacks (BDAs) on harbour porpoises.

2 RELATED WORK
Our framework encompasses several information retrieval methods
and fields. While current literature covers a relatively large number
of information retrieval approaches in the biomedical domain (partic-
ularly on human health), only a handful of attempts were made in the
veterinary domain. We critically analysed both domains separately
in order to position our proposed framework appropriately.

2.1 Information Retrieval in Biomedical Domain
Related approaches for information extraction in the biomedical
domain are numerous. Chapman et al. [3] proposed NegEx, a tool for
determining the presence or absence of clinical findings in discharge
summaries. Their approach was used to analyse 76, 049 screening
and 17, 656 diagnostic mammography reports. Even though this
approach extracts conclusions, rather than observations – which are
the focus of our work - the applications are similar. More recently
Gao et al. [8] extracted a number of features from mammographic
reports: mass, calcification, asymmetry and architectural distortion.

Friedlin et al. [6] developed Medical Exploratory Data Analysis
over Text (MEDAT), a text analytics system for medical domains and
demonstrated their system on radiology reports. Comelli et al. [4]
also applied text mining to radiology reports. They leveraged the
entity relationships represented in their radiology ontology, to extract
relevant medical terms from mammographic reports. While their
approach was exhaustive within the mammographic domain, the
texts were in Italian and the application domain is far more specific
than that of marine mammal gross pathology.

Gong et al. [11] developed a biomedical information retrieval
approach for terminologies related to breast cancer. Their approach
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involves entity extraction, entity relationship identification, and visu-
alisation. Entities are extracted based on conditional random fields
while entity relationships were extracted using co-occurrence statis-
tics. Sudeshna et al. [21] aimed to identify symptoms and treatments
of heart disease using a machine learning based approach. Based
on suggested identified symptoms, texts would be classified into
treatments. Zhao et al. [26] created CausalTriad, an approach toward
the discovery of pseudo causal relationships between entities. They
evaluated their approach on HealthBoards message board data and
Traditional Chinese Medicine data. Yang et al. [25] used an ontology-
based text mining approach for the extraction of data from Chinese
EMRs. This work focused on the mining of stroke cases. Gero
and Ho [9] proposed NamedKeys, a keyphrase extraction approach
which they evaluated on PubMed abstracts. They also describe a
benchmark dataset for biomedical keyphrase extraction.

While a variety of different clinical text types have been the sub-
ject of such research, there is also a wide body of research into
automated biomedical literature reviews. Navathe [18] used UMLS
(Unified Medical Language System) [1] and a gene ontology to rep-
resent biomedical concepts, and an SVM to classify literature from
the Centre of Disease Control (CDC) based on relevant keywords.
Mala et al. [15] researched the use of ontology in semantic medical
text mining with WordNet. Gong et al. [10] used a dictionary-based
approach to extract biomedical concepts from literature. This was
done using an algorithm called the Variable-step Window Identi-
fication Algorithm (VWIA), matched terms to biomedical entities
using POS tagging and organisation based on phrasing. Their tech-
nique was applied to 10 Medline abstracts and produced promising
results. Mate et al. [16] focused on creating a process of extraction,
transformation and loading (ETL) of electronic medical records.

Although not used in our approach, it should be noted that emerg-
ing deep learning has become popular in the biomedical domain with
neural network based methods being used to enhance text mining
techniques [12, 22].

2.2 Information Retrieval in Veterinary Domain
All of the reports listed above applied information retrieval tech-
niques to biomedical text pertaining to humans. In the veterinary
domain, Bollig et al. [2] used a machine learning based approaches
for extraction of different pathologies from free text. Furrer et al. [7]
built a text mining tool for veterinary surveillance by linking terms
identified in necropsies to existing ontologies. Küker et al. [13] later
used this tool to analyse pig and cattle necropsies and found that
free text necropsy reports are a valuable resource for animal health
surveillance.

At present no work exists on information retrieval from marine
mammal necropsy reports. Given the importance of PMs in further-
ing understanding of marine mammals and marine ecology more
generally, an information retrieval framework that can aggregate
observations for statistical and epidemiological analysis would be
especially useful.

3 THE FRAMEWORK
In developing the proposed Ir-Man framework, we consider a num-
ber of steps that are involved in the extraction of observations from
marine mammal necropsies. Firstly, free text is pulled from necropsy

Algorithm 1: Information retrieval pipeline. Output of the
entity-relationship extraction engine is used to identify ob-
servations, attributed anatomies and detect negation.

Result: relationships
sentences = sentenceTokenisation(text);
observations;
while not at end of sentences do

RELChunkedSentence = preprocess(sentence);
identifyNamedEntities(RELChunkedSentence);
while not at end of sentences do

if No Observational Entities then
break to next relationship;

end
if Observational Entity AND No Anatomical Entity

then
observations <- ‘unattributed’ observation;
break to next relationship

end
if Observational Entity and Anatomical Entity then

observations <- anatomy, observation;
end

end
end
while not at end of observations do

negatedObservation <- mark_negated(observation) ;
if observation == negatedObservation then

presence <- True;
else

presence <- False;
end

end

documents, and then individual reports sections (i.e., the gross pathol-
ogy report section and if applicable, the histopathology and bacte-
riology report sections) are extracted. Text is divided into sentence
tokens before individual words are tagged based on part-of-speech.
Entities and the relationships between them are then grouped using
a feature-based grammar. Each entity is then checked against our
lexicon of anatomical, pathological and observational terms which
is generated using our ontology. Presence or absence of a described
feature is then established by checking for negation. It is fundamen-
tal to record negative occurrences of identifiers (absences) as well
as positive occurrences, (presence) as both can be leveraged in a
deterministic classification system. The overall retrieval process is
outlined in Figure 1 and the pseudo-code in Algorithm 1 along with
the description of each framework components below.

3.1 Data Set: Marine Mammal Stranding Reports
The data used in this project was generated using PM reports of
cetacea produced by the Scottish Marine Animal Stranding Scheme
(SMASS) between 2012 and 2019. When generating these reports,
the pathologist records features of the carcass, including condition,
morphology, pathological lesions and observations. Information re-
lating to the body’s condition usually refers to the level of autolysis
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Body condition: Fat

External examination
Body orifices: NAD
Ectoparasites: NAD – None seen
Fins and flukes: NAD – Intact, no rake marks

Integument
Epidermis: Rake marks over left flank/tailstock. Severe
scavenger damage at right side of head
Blubber: NAD – Good layer, not jaundiced
Subcutaneous tissue: Bruising over lateral spinous pro-
cesses and right side head region
Mammary glands: NE

Figure 2: A gross pathology extract from a harbour porpoise
necropsy report.

or physical damage to the remains. Morphometric measurements,
such as blubber thickness and body length, are also taken. These
features all help inform the pathologist of a probable cause of death.
PM reports include gross pathology reports, which describe, in de-
tail, the characteristics of the body as a whole, and those of specific
anatomies. The final PM report then contains a number of sections:
basic information (sex, date, location etc.); morphometric data; a
gross pathology; bacteriology and histopathology reports, where
applicable; and a conclusion which includes comments, cause of
death, and an indicator of confidence in diagnosis.

The material analysed for this paper consists of 193 gross pathol-
ogy reports on harbour porpoises (Phocoena phocoena). This species
was chosen for a number of reasons: the relatively high number of
reports produced by SMASS on harbour porpoises; easy future inte-
gration of other cetacean species due to transferability of the harbour
porpoise anatomy; and the prevalence of BDAs listed as the cause of
death, which allows us to establish the suitability of our framework
for detecting exhibited pathologies. Bottlenose dolphins are known
to violently attack harbour porpoises, usually leaving parallel inci-
sions which are referred to as ‘rake marks’. It is these rake marks
which are used as a primary indicator of a BDA, and as such, the use
of the term is relatively consistent, making it a good candidate for
evaluating the effectiveness of our approach.

While the language used in these gross pathology reports is spe-
cialised, there is some structure to the reports which can be leveraged.
An anatomical region of interest will often be used as a heading
followed by a free text description. This can be seen in Figure 2.
Acronyms such as NAD (no abnormalities detected) and NE (not
examined) are also important and distinct. One can rule out some
pathological conditions when no abnormality is detected, but not
when a region has not been examined.

3.2 Gross Pathology Report Extraction
The SMASS post-mortem reports were stored in Microsoft Word
Open XML Format (DOCX) files. We parsed documents and stored

fields in a non-relational MongoDB1 database. Where applicable,
specific text fields were extracted by searching for field names which
where indicative of a field’s presence. An example would the species
field, where we used the string “SPECIES:” as the field indicator
and the string following it in the line as the field to be extracted
(e.g., “delphinus delphis”). When a field was left blank, no value was
stored in the database. We normalised fields by grouping synony-
mous terms. For example, the case of the species field this involved
pairing the scientifc names (e.g., “delphinus delphis”) with their cor-
responding common names (e.g., “short-beaked common dolphin”).
Free text sections such as the gross pathology reports were obtained
by identifying relevant section headers and extracting the text be-
tween them. When the space between section headers consisted only
of white-space or short strings such as “Not examined”, the section
was not extracted. All extracted fields and sections were stored in a
local MongoDB database.

3.3 Ontology Development
The framework uses our bespoke ontologies to organise terms, and
to provide context that would otherwise be unavailable. While multi-
species ontologies such as Uberon [17] do exist, it was decided that
a smaller more manageable ontology would be more appropriate for
this task. We identified three main branches of relevant terminologies
for our purposes. The first is a representation of anatomy, where
classes represent different anatomical regions. The second is the
pathology ontology which was used to record different conditions
which can be represented in PM reports. The third is the observation
ontology, which groups terms into classes and sub-classes where
children represent an extra degree of specification that may not apply
to all within the parent class. For all classes a representative label
is stored in the “rdfs:label” annotation, and manually generated
synonymous terms are stored in our own “synonym” annotation.
Ontologies were developed using Protégé [20] (shown in Figure 3)
and stored in RDF/XML format.

3.3.1 Observation Ontology. The observation branch of the on-
tology makes use of the semantic relationships between terms. When
terms are very similar semantically, but one gives a greater degree
of specification, the more specific term is considered a child of
the other. For example, reports may specify that “fluid” or “brown
fluid” is present. Not all fluid is brown fluid, so a parent-child rela-
tionship is created between the terms. This allows for distinctions
between different types of fluids and their descriptions such as mu-
coid, protein-rich or amniotic fluids. The ontology was populated
manually by producing lists of terms from the reports based fre-
quent unigrams, bigrams, and trigrams, as well as collocations using
pointwise mutual information (PMI). Previously established anatom-
ical and disease related terminologies were filtered to accelerate the
process. The structure of the observational ontology is shown in
Figure 4.

3.3.2 Pathology Ontology. The pathology ontology (shown in Fig-
ure 5) is used to represent different conditions and the semantic rela-
tionships between them. This was initially created using the diseases
or conditions listed as a cause of death within the SMASS database.
These were also mined from the reports using known target strings

1https://www.mongodb.com/

https://www.mongodb.com/
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Figure 3: Screenshot of Protégé IDE for ontology development. The OntoGraf plugin [5] was used for ontology visualisation.

Figure 4: Structure of the observation ontology demonstrated using the marks, haemorrhage and urine class examples.

that precede causes of death. They were then categorised based on
semantic similarity. For example, the “physical trauma” class repre-
sent cases where there is evidence of blunt force or penetration to the
skin which appear to have been detrimental to the animal’s health.
This category captures conditions such as boat strikes, bottlenose
dolphin attack trauma and entanglement (where rope, line or netting
has wrapped around the animal).

3.3.3 Anatomy Ontology. Finally, the anatomy ontology was
created based on the anatomical terms which were used to convey
observations within the reports. The highest level of the “anatomical
region” tree contains classes which relate to different organ systems
within the body, or anatomical regions which are semantically linked.
The latter situation applies, for example, to the “integument region”
(relating to the skin) and the “external region" which mostly refers
to external observations out with the main scope of those captured
in the integument class.

The next level of subclasses generally represents different types of
these regions. The decision was taken to make a distinction between
having a parent-child relationship and an “isPartOf” attribute: it is
not accurate, for example, to represent regions such as “the left valve
of the heart" as a subclass of “heart", but it is still desirable to capture
the relationship between these two regions. The “isPartOf” object
property is transitive and asymmetric. This allows for instances such
as the duodenum to be more accurately represented. The duodenum
“isPartOf” the small intestine, and the small intestine “isPartOf” the
intestines. Therefore, we can deduce that the duodenum “isPartOf”
the intestines also. The structure of this ontology is shown in Figure 6,
which shows some example anatomies in the ailmentary system. The
anatomy ontology was manually populated and structured based on
the headings used for sections of gross pathology reports (shown in
Figure 2).
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Figure 5: Structure of the pathology ontology demonstrated using the physical trauma and pneumonia class examples.

Figure 6: Hierarchical structure pf anatomy ontology demonstrated using example ailmentary region subclasses.

3.4 Information Retrieval
Information retrieval consists of several individual components
within the framework including, (a) lexicon, (b) entity-relationship
extraction engine, (c) anatomy, observation and presence recognition
and (d) formatting to extract anatomical features, observations and
pathologies. This pipeline is shown in the flowchart in Figure 1 as
well as Algorithm 1.

3.4.1 Lexicons. Our anatomy, pathology and observation ontolo-
gies (refer Section 3.3) are used to identify entities. Two lexicons
of key terms are generated by parsing the three ontology xml files
and extracting their “rdfs:label”, and “synonym” attributes. The ob-
servation lexicon was created using the observation and pathology
ontologies, while the anatomy lexicon was created using the anatomy
ontology. Pathological terms are incorporated in the observation lex-
icon because they can used to both represent the pathology of the
specimen as a whole, and the condition of anatomical region. An
example would be a case of physical trauma cause by entanglement
which is a subclass of physical trauma within the pathology ontology.

The inclusion of the term “entangled” could be treated as both an
observation and pathology based on the representation within our
ontology.

3.4.2 Entity-Relationship Extraction Engine. Reports are first
segmented at the sentence level. As shown in Figure 2, sections are
not always delimited by a full stop as one would expect. As such, we
assume that sentences could also be delimited by new line characters
(‘\n’). Word level tokenisation is also performed. Words and punc-
tuation are tagged using NLTK’s POS Tagger library [14]. Words
are then grouped together through “Noun Phrase Chunking” (NP-
chunking). Empirically, we developed a simple feature-based gram-
mar of tag patterns which represent entities and entity-relationships.
Our grammar is passed into NLTK’s Regexparser library to create
chunks of entities and entity-relationships. The regular expression
based grammar we defined for this task can be seen below.
NP: {<DT>?<JJ>*<VB.*>*<JJ>*<NN.*>+}
NP: {<NP><CC><NP>}
NP: {<VBD|VBN>}
NP: {<CD><RB>}
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NP: {<NP><NP>}
IN: {<IN>}
REL:{<NP><IN><NP>}
REL:{<NP><TO><NP>}
REL:{<NP><:><NP>}

Entity chunks are grouped together as noun phrases (NP). The
first rule captures any case where there is at least one noun preceded
by any adjectives (JJ) or verbs (VB) and may include a determiner
(“the”, “a” etc.) denoted by ‘DT’. If any past tense or past participle
verbs are used separately, they is also chunked as a noun phrase to
account for cases such as “right eye: scavenged”. Lastly, NPs can
be linked into a single NP where they are separated by coordinating
conjunction terms such as ‘and’.

NPs are then linked together into relationship (REL) chunks based
on several conditions. Simple adjacency of two NPs is the first rela-
tionship as proximal entities are likely to relate. Prepositions (e.g.,
‘in’) were also of particular interest as they represent a relationship
between that which precedes and follows them. The word ‘to’ is
another good link between NPs given that phrases such as “damage
to left flank” are very common. Lastly, we use the colon to capture
cases where the anatomical entity is stated, then observations follow.
An example of this is shown in Figure 2: “Blubber: NAD”. This
grammar is designed to capture relatively simple expressions, but
can be expanded to incorporate more complex entity-relationships
in future.

3.4.3 Anatomy, Observation and Presence Recognition. For
each sentence in a report, each REL chunk is parsed and compared
to the anatomical and observational lexicons. Where a NP chunk
contains a sub-string that occurs in either lexicon, it is identified as
anatomy or observation accordingly.

The implementation deliberately only incorporates NP - NP re-
lationships (as defined in our grammar) as when only the relation
subsection of the sentence is used for the marking of negated terms,
one reduces the number of falsely negated terms. This means a rela-
tively simple process for identifying negated words can be used, to a
high degree of accuracy.

We use the NLTK mark_negated package for this purpose. The
package adds ‘_NEG’ as a suffix to any word between a negation and
certain punctuation marks. For each REL chunk with an identified
observation, a negated version of the statement is generated. The
NP chunk containing the free text representation of the observation
is compared to the same chunk after negated terms are marked. In
the event an observational term is negated, it is considered to be an
absent case. An example would be "no obvious rake marks on flank",
where rake marks would be identified as an observational entity.
When compared to the negation marked version of the text (“there
are no obvious_NEG rake_NEG marks_NEG on_NEG flank_NEG”)
the negation of the observation would become apparent. In this event
“rake marks” would be identified as “absent”. The benefit of this
approach is that one only marks negated terms at the relationship
level. If one were to mark at the sentence level, unrelated negated
terms would incorrectly cause for a classification of absence rather
than presence.

When a recognised observational term is not attributed to an
anatomical entity, it is still recorded as either present or absent and is
not attributed to an anatomical region. There are a number of reasons

why an anatomical entity might not be identified: the term used is
not represented within the anatomical ontology; the observation is
not used in relation to an anatomical entity; or the grammar used for
chunking fails to capture relevant NP chunks within a relationship.

3.4.4 Formatting Findings. The information extracted is sum-
marised in a dictionary implemented in Python, which can then be
used for analysis or classification systems. The anatomy and observa-
tion terms are represented as strings, while the presence or absence
of an observation is stored as a Boolean value. Some examples are
shown below:

{
'anatomy': 'right pectoral fin',
'observation': 'scavenger damage',
'presence': True

}
{

'anatomy': 'epidermis',
'observation': 'rake marks',
'presence': False

}
{

'anatomy': 'skull',
'observation': 'nad',
'presence': True

}

4 USE CASE, RESULTS AND ANALYSIS
To analyse the effectiveness of our approach, we identified observa-
tions which could negate or confirm a chosen pathological finding,
and used the presence or absence of these observations as a means
of classification. Bottlenose Dolphin attacks (BDA) on harbour por-
poises are a very common cause of death within the dataset, with
50 of the 193 cases listing BDA as the key finding in the SMASS
database.

A deterministic classifier was created using extracted empirical
observations. The classes chosen were either explicit mentions of
BDA, or strong indicators such as “rake marks”. Where BDA is
mentioned, it’s absence or presence is sufficient to classify the case
as “Non-BDA” or “BDA”. The observation “rake marks”, however,
can also be used to describe some grey seal attacks (GSA). As such,
we then filter all observations relevant to seal attacks and claw marks
(an indicator of a GSA). We make the assumption that if there is
evidence of both a GSA and a BDA, an explicit mention of BDA
should be found. If the document has not been classified using these
rules, presence of “rake marks” results in “BDA” classification.
The deterministic classifier’s sequence of decisions is shown in
Algorithm 2. The cause of death stored in the SMASS database was
used as ground truth for classifier evaluation.

The results for the Bottlenose Dolphin attacks use case are shown
in Table 1. The approach achieved an overall accuracy of 83.4%
and an F1-score of 0.83. BDA classification achieved a precision of
0.70, a recall of 0.64, and F1-score of 0.67. Non-BDA classification
achieved a precision of 0.88, a recall of 0.90, and F1-score of 0.89. Of
the 193 reports used, 50 were cases of BDA and 143 were Non-BDA
cases based on the cause of death stored in the SMASS database.
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Algorithm 2: Deterministic BDA classification process
based on presence or absence of observations.

Result: prediction
if Any observation is a BDA term then

if observation present then
prediction <- “BDA”;

else
prediction <- “Non-BDA”;

end
return prediction;

else
if Any present observation is a GSA or claw mark term

then
prediction <- “Non-BDA”;
return prediction;

else
if Any present observation is a rake mark then

prediction <- “BDA”;
return prediction;

end
prediction <- “Non-BDA”;
return prediction;

end
end

Metrics Cumulative BDA Non-BDA

Accuracy 0.83 - -

ROC-AUC 0.77 - -

Recall - 0.64 0.90

Precision - 0.70 0.88

F1-score 0.83 0.67 0.89

Support 193 50 143

Table 1: BDA classifier performance evaluation metric scores.

A Receiver Operating Characteristic (ROC) curve (Figure 7) was
generated using the BDA precision and recall values listed above
which achieved the Area Under Curve (AUC) score of 0.77. The
disadvantage of labelling based on cause of death is that there are
many instances where a BDA has occurred but a separate finding has
been identified as the cause of death. This leads to some false positive
(FP) classifications as BDA terms and indicators are still described.
This can be seen in the confusion matrix in Figure 8. Given the
deterministic nature of our classifier, there are three possible causes
of incorrect classifications. The first is the presence of a separate
more significant finding which caused death, even though a BDA
occurred; the second is the use of an significant term outwith the
scope it was intended; and the third is that a significant finding is not
successfully identified by the entity-relationship engine.

When analysing cases of FPs, some statements such as “rake
marks, assumed bird” lead to an incorrect detection. This reflects

Figure 7: ROC-AUC curve of BDA classifier predictions. AUC
= 0.771

Figure 8: Confusion matrix of BDA classifier predictions.

the difficulty of varying terminology usage between pathologists.
Several FPs included instances where BDA rake marks were “healed”
or “healing”. Some false negatives (FNs) were caused by the lack of
explicit mentions of BDAs and there being “no obvious rake marks”.
This suggests that there were other indicators of BDA despite the
absence of rake marks.

The recall (0.64) and precision (0.70) scores of the BDA classifi-
cations are relatively low due to the simplicity of the feature-based
grammar, and the total number of true positives (TPs) being underes-
timated. This being said, analysis of FPs and FNs also showed some
cases where significant phrases were not captured by the feature-
based grammar in the entity-relationship engine.

The precision and recall scores associated with Non-BDAs (0.88
and 0.90 respectively) are considerably higher. When analysed, it
was found that several cases were correctly identified as Non-BDA
due to the exclusion of GSAs in the deterministic classifier. This
shows that the creation of an inclusion/exclusion based determiner
can be used to increase trust in positive classifications, meaning any
insight obtained is more robust to scrutiny. While the classifier had
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minor shortcomings due to the grammar used, the results are very
promising for future work. Using cause of death as a label leads to
lower performance metrics than anticipated. The use of a manually
labelled dataset would naturally produce more realistic results, but
in its absence, we can still get a good understanding of the classifier
characteristics.

Another thought to consider is that one necropsy report contains
many other fields pertaining to morphology, confidence in diagnosis
and other free text sections such as the histopathology report and
conclusion sections. By incorporating relevant fields and applying
a similar information retrieval process to other free text sections,
more accurate, complex, and inclusive determiners would be defined,
meaning a higher confidence in positive or negative results.

5 CONCLUSIONS
We proposed Ir-Man, an information retrieval framework for ma-
rine animal necropsy analysis. The framework applied and adapted
information retrieval techniques to reports in a previously unex-
plored domain. Necropsy reports of stranded marine mammals pro-
vide a unique insight into marine ecology; the ability to access
and aggregate this information will allow for more useful epidemi-
ological analysis. Despite the challenges associated with mining
semi-structured gross pathology reports, our information retrieval
framework achieved a baseline accuracy of 83.4% when classifying
BDAs on harbour porpoises. Future work will include the incor-
poration of more complex feature-based grammar representations
which would identify structure within text more effectively; expand-
ing the ontologies to incorporate other cetaceans; and defining and
detecting further nuance between different observation classes. Most
importantly, the framework will be used to further pathological and
epidemiological understanding within the marine mammal domain.
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