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Whilst osmoregulation in the adult teleost fish has been extensively studied and
significant advances have been made in recent years, much less information exists
regarding osmoregulation during the early stages of development of teleosts. Adult
fish maintain their blood osmolality in a narrow physiological range, i.e., ≈ 280–
360 mOsm kg−1, through the combined osmoregulatory capabilities of several sites i.e.,
branchial chambers, skin, digestive system and urinary organs. However, embryonic
and post-embryonic stages maintain their blood osmolality in a less narrow range of
≈ 240–540 mOsm kg−1 and osmoregulatory capacity is restricted to the cutaneous
ionocytes located on the tegument with a transference in osmoregulatory function
occurring during the early life stages to the developing digestive tract, the urinary organs
and the developing branchial tissues and the ionocytes which they support. This review
will discuss the development of osmoregulatory capacity that occurs throughout early
life stages of teleosts and its role in conserving physiological homeostasis, focusing on
the form and function of related mechanisms, i.e., the ionoregulatory cell or ionocyte,
outlining the different roles and functions of different ionocyte types relative to their
environment, i.e., freshwater or seawater, their plasticity and discuss spatio-temporal
changes in ionocyte distribution that occur during ontogeny.

Keywords: osmoregulation, adaptability, larvae, embryos, early life stages, salinity, chloride cell, mitochondria
rich cell

INTRODUCTION

Prunet and Bornancin (1989; p. 92) describe teleost fishes as “an open system in dynamic
equilibrium with aquatic surroundings.” As osmoregulators, teleosts are homeo-isosmotic, i.e.,
able to regulate the concentration of solutes and their total osmolarity of their internal fluids at
levels different to their external environment. Hence their body fluids remain relatively constant
in spite of alterations to their external medium. They are, therefore, able to maintain their blood
osmolality in a 280–360 mOsm kg−1 range, at the equivalent of 10–12 ppt (Evans et al., 2005).
Hyper-osmotic regulators (most freshwater teleosts), subject to passive osmotic influx of water
and diffusional loss of ions, mainly Na+ and Cl−, maintain body fluid concentration above
that of their external surroundings. Hypo-osmotic regulators (most marine teleosts), subject to
passive osmotic loss of water and diffusive gain of ions, maintain body fluid concentration below
that of their external medium (Figure 1). Therefore, when faced with variations in external
salinity, fishes must compensate for body fluid disturbances with a regulative capacity to adapt
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FIGURE 1 | Generalized schematic representation of mechanisms of osmoregulation in teleost fishes. Freshwater fishes are hyper-osmotic to their aquatic
environment; compensatory mechanisms include active uptake of NaCl across gill epithelium, intestinal absorption of NaCl and excretion of large volumes of dilute
urine. Marine teleosts are hypo-osmotic to their aquatic environment; compensatory mechanisms include active secretion of NaCl across gill epithelium, ingestion of
seawater, intestinal absorption of NaCl and water and excretion of small volumes of blood-isotonic urine.

their osmoregulatory and ion transport strategies dependant on
their surrounding environment (Ruiz-Jarabo et al., 2015).

Fishes are the most taxonomically diverse group of vertebrates
with >32,400 identified species (Froese and Pauly, 2012) and have
evolved to occupy almost all types of natural waters, ranging from
low-ionic strength fresh waters to those of salinities of 80–142 ppt
(Kinne, 1964; Parry, 1966; Griffith, 1974; Alderdice, 1988). The
question of whether fish evolved in seawater or freshwater is
still subject to debate. Nelson’s (2006) study argued that fishes
evolved in a marine environment, invaded freshwater habitats,
and subsequently reinvaded marine environments, based on
their level of phylogenetic advancement, i.e., the most primitive
orders consisting almost entirely of strictly marine species, the
next moderately advanced orders consisting mostly of freshwater
species and the remaining orders mostly composed of marine
species. Conversely, Evans and Claiborne (2009) argued that the
considerably lower osmolality of the internal fluids of teleosts
(equivalent to 9 ppt) when compared to that of the marine
environment, represented evidence for the origins of this clade
of fishes from a freshwater or brackish water environment. This
is supported by Vega and Wiens (2012) trait reconstructions
based on living and fossil taxa. These authors suggested that all
extant actinopterygians (ray-finned) fishes were derived from a
freshwater ancestor. Inconclusive fossil records of fishes shed no
further light (Halstead, 1985; Evans and Claiborne, 2009).

Some fishes are restricted to living in a narrow range of
salinity (stenohaline) while others can adapt to and tolerate broad
ranges of salinity (euryhaline). It is estimated that c. 40% (c.
15,000) of these inhabit freshwater during at least one phase of
their life cycle (Bond, 1996). This euryhalinity can range from
either compulsory, migratory events in the lifecycle of a fish, e.g.,
catadromous fishes which spend their pre-adult life in freshwater

and return to spawn in the sea or, conversely, anadromous fishes
which grow and mature in sea water but return to freshwater to
spawn, to less clearly defined movements of fishes that occupy
estuarine waters or coastal habitats and undergo regular and
frequent variations in the salinity of the medium in which they
inhabit. This ability to cope with salinity changes depends on
their capacity to osmoregulate and plays an important role in
defining species and developmental stage-specific distribution
(Schreiber, 2001).

It is well established that teleost embryos and larvae are able
to maintain osmotic and ionic gradients between their internal
and external environments (Guggino, 1980a,b; Alderdice, 1988;
Kaneko et al., 1995), although full adult osmoregulatory capacity
is not reached in these early developmental stages as organs are
under-developed or absent (Varsamos et al., 2005). Compared to
adult teleosts, larvae are able to maintain their blood osmolality in
a less narrow range of ≈ 240–540 mOsm kg−1, and this adaptive
ability is accomplished by an early acquisition of osmoregulatory
mechanisms that are different from those in adult fish. The
ontogenetic development of osmoregulatory capacity, moving
from a somewhat limited trans-membrane particle exchange at
a cellular level in the embryonic blastular stage, to the fully-
functioning regulatory tissues in juvenile and adult, such as
the renal complex, the gut and the branchial epithelium, is
described succinctly by Alderdice (1988; p.225) as a process
which displays “continuity, with increasing complexity.” As part
of this ontogenic process, teleost embryos and post-embryonic
larvae are able to maintain osmotic and ionic gradients between
their internal and external environments due to the presence
of numerous extrabranchial, cutaneous ionocytes commonly
observed on the abdominal epithelium of the yolk-sac and other
body surfaces of fish embryos and larvae.

Frontiers in Marine Science | www.frontiersin.org 2 August 2020 | Volume 7 | Article 709

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00709 August 20, 2020 Time: 20:4 # 3

Fridman Ontogeny of Teleost Osmoregulatory Capacity

While osmoregulation in the adult teleost fish has been
extensively studied and significant advances have been made
in recent years (Evans, 1999; McCormick et al., 2013), much
less information, however, exists regarding osmoregulation in
the early stages of development (Holliday, 1965; Alderdice,
1988; Tytler et al., 1993; Schreiber, 2001; Evans et al., 2005;
Varsamos et al., 2005; Bodinier et al., 2010). Recently, the
availability of precisely staged young fish, due to both the
improved rearing methods by aquaculture and less stressful
capture techniques for wild populations, has contributed to
developments in the field (Evans et al., 2005). In addition, the
development and application of new immunological techniques
allowing visualization of delicate early life stages, has allowed the
progression of ontogenetic studies.

THE IONOREGULATORY CELL OR
IONOCYTE

Introduction
As opposed to movement of gases, ion movements require
specific carriers and this “metabolic machinery” (Rombough,
2004) is found in a specific cell type, the ionocyte. Numerous
work, dedicated to the study of their form and function in the
adult teleost, has established that these cells are the primary extra-
renal site responsible for the trans-epithelial transport of ions in
adults and juvenile teleosts (Laurent and Dunel, 1980; Laurent,
1984; Perry et al., 1992; McCormick, 1995; Evans, 1999; Evans
et al., 2005; Hiroi and McCormick, 2012).

Large spherical cells with eosinophilic granules were first
described by Keys and Willmer (1932) of the Physiological
Laboratory, Cambridge (United Kingdom) as “chloride-secreting
cells,” based on observations of the chloride secretory activity
of gills of the adult eel (Anguilla anguilla) in seawater.
The abbreviated name “chloride cell” is probably attributable
to Copeland (1948) and was later clarified by Foskett and
Scheffey (1982), who confirmed active transport of chloride
ions by these cells using vibrating probe experiments on the
opercular epithelium of sea-water adapted tilapia Oreochromis
mossambicus. The term “mitochondria-rich cells” was first
introduced by Lee et al. (1996), in order to emphasize the
multifunctionality of the cells, i.e., they do more than just excrete
chloride ions in seawater adapted fish. The term “ionocytes”
was first introduced by Watrin and Mayer-Gostan (1996) in
their study of ionoregulatory sites in the turbot (Scophthalmus
maximus) and is currently accepted to be the most widely
applicable term. Therefore, throughout this review, the term
“ionocyte” will be used.

General Structure of Ionocytes
There are extensive reviews dealing with structure of ionocytes,
e.g., Pisam and Rambourg (1991), McCormick (1995), Evans
et al. (2005), Hwang and Lin (2013), Marshall (2011), and
Dymowska et al. (2012). They have a number of common
features that distinguish them from surrounding cells, sharing a
specific complement of transporter or channels on the apical and

basolateral membranes that allow directional movement of ions
(Dymowska et al., 2012).

Ionocytes are highly specialized, polarized cells of large,
columnar/ovoid shape displaying distinct ultra-structural
features characteristic of ion-transporting cells, i.e., large
numbers of mitochondria and a dense, tubular network that is
continuous with the basolateral membrane causing extensive
invagination (Doyle and Gorecki, 1961; Philpott, 1966). This
tubular-vesicular system extends throughout most of the
cytoplasm, and is closely associated with the mitochondria
(Philpott, 1980; Laurent, 1984; Wilson et al., 2000a,b). It results
in a large surface area for the placement of transport proteins,
most importantly the ion-translocating enzyme Na+/K+-ATPase
or “sodium pump” (García-Ayala et al., 1997) that has a role in
both ion uptake and salt secretion in ionocytes in the teleost
gill (Hiroi and McCormick, 2012). Early experiments confirmed
labeled Na+ and Cl− efflux activity in live eels with the use
of radioactive ouabain (a Na+/K+-ATPase inhibitor), thus
inferring a basolateral location for the transporter protein
Na+/K+-ATPase in mitochondria-rich cells (Silva et al., 1977).
Subsequent work established that fish gill epithelia expressed
large quantities of Na+/K+-ATPase (NKA) whose activity was
usually proportional to the external salinity (De Rengis and
Bornancin, 1984; McCormick, 1995). This has been attributed
to an increased α-subunit mRNA abundance (Madsen et al.,
1995; Singer et al., 2002) and protein amount (Lee et al., 2000;
Tipsmark et al., 2002; Lin et al., 2003) or both (D’Cotta et al.,
2000; Lin and Hwang, 2004).

Ion Transport in Seawater
Morphology
As a general rule, ionocytes in seawater or seawater-adapted
fishes have the following morphological characteristics: the apical
membrane is recessed below the surface of the surrounding
pavement cells to form a concave pore or “crypt” that can
be shared by accessory cells (ACs) (Karnaky, 1986), often
forming “multi-cellular complexes” with cytoplasmic processes
of accessory cells (ACs) extending into the apical cytoplasm
of ionocytes to form complex interdigitations (Laurent, 1984;
Wilson and Laurent, 2002) (see Section “Accessory Cells” below).
These two types of cells share a single-stranded, “shallow”
junction, suggesting a “leaky” pathway is present between the
cells (Laurent, 1984; Hwang, 1988), thus providing a paracellular
route for sodium extrusion (Sardet et al., 1979; Laurent, 1984).

Accessory Cells (ACs)
Hootman and Philpott (1980) first named the undifferentiated
ionocytes found beside mature ionocytes in seawater flounder
“accessory cells” or ACs. They appeared to be structurally
analogous to ionocytes, in that they possessed large amounts
of mitochondria and a labyrinthal tubular system, but were
smaller and less developed than ionocytes with a less developed
tubular system and lower expression of Na+/K+-ATPase relative
to mature ionocytes. It has been reported that either a single or
more than one accessory cell (AC), cluster around an ionocyte
forming a “multi-cellular complex” (MCC) with a shared apical
crypt (Hwang, 1988). ACs are small, semi lunar or pear-shaped
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cells with lateral cytoplasmic processes that extend from the ACs
to penetrate the apical portion of the adjacent ionocyte, sharing
the apical cavity. ACs share a single-stranded, shallow junction
with an ionocyte, suggestive of a “leaky” paracellular pathway
thus giving additional paracellular pathways for the secretion of
excess Na+ from body fluids (Evans, 1999).

Na-Cl Secretion
Studies on mechanisms of Na-Cl secretion in seawater type
ionocytes have been studied for several decades (Hsu et al.,
2014) and the current and well accepted model for active NaCl
transport by ionocytes in seawater adapted teleosts consists
of three major ion-transporting proteins, i.e., Na+/K+-ATPase
(NKA), Na+/K+/2Cl− co-transporter 1 (NKCC1) and a Cl-
channel homologous to the human cystic fibrosis transmembrane
receptor (CFTR) (Evans, 1999; Hirose et al., 2003; Evans et al.,
2005; Hwang and Lin, 2013).

Briefly; basolateral Na+/K+-ATPase driven extrusion of three
Na+ from the cell to the plasma and entry of two K+ into the
cell then generates an electrochemical gradient that drives Na+,
coupled with Cl− and K+, back from the plasma into the cell’s
cytoplasm, via the Na+/K+/2Cl− co-transporter or (NKCC).
NKCC therefore mediates the movements of Na+, K+ and Cl−
across the basolateral membrane of ionocytes and has a key
role in cell volume homeostasis, maintenance of the electrolyte
content and transepithelial ion and water movement in polarized
cells (Cutler and Cramb, 2002). K+ therefore enters the cell
basolaterally both via the Na+/K+-ATPase and the NKCC co-
transporter and is removed basolaterally from the cell via the
potassium or K+ channel. Cl− exits the cell via an apical Cl−
anion channel or CFTR (cystic fibrosis transmembrane receptor).

Na+ moves through the leaky paracellular pathway between
ionocytes and ACs via a cation-selective paracellular pathway
(Degnan and Zadunaisky, 1980), due to the negative potential
created by transcellular Cl− flux (Sardet et al., 1979). This
transepithelial electrical potential across the gill epithelium drives
Na+ across leaky junction between ionocytes and accessory cells
(Hsu et al., 2014) (see section “Accessory Cells (ACs)” above).

Ion Transport in Freshwater
Morphology
Ionocytes in freshwater usually lack an apical crypt and have
their apical surfaces forming microvilli above the adjacent PVCs,
which is consistent with their ion absorptive nature (Hwang,
1988; Perry et al., 1992; Marshall et al., 1997). However, an
invaginated, crypt-like structure has been reported in ionocytes
of the euryhaline Mangrove killifish (Rivulus marmoratus) in
1 ppt (King et al., 1989) and a slightly invaginated apical opening
in the β – ionocytes in the freshwater adapted guppy (Lebistes
reticulatus) (Pisam et al., 1987) and the loach (Cobitis taenia) and
the gudgeon (Gobio gobio) (Pisam et al., 1990). This has similarly,
been reported in freshwater adapted Tilapiine species e.g., the
Mozambique tilapia (Oreochromis mossambicus) (Lee et al., 1996;
van der Heijden et al., 1997; Uchida et al., 2000; Inokuchi et al.,
2009) and the Nile tilapia (Oreochromis niloticus) (Pisam et al.,
1993). The basolateral tubular system is less well developed in
freshwater than in seawater adapted ionocytes, and they form

extensive tight, multi-stranded junctions with adjacent PVC cells
(Hwang, 1988).

Uptake Mechanisms
The ion-uptake mechanisms in freshwater fishes are more
complicated, and both mechanism and ionocyte sub-types appear
to vary amongst species (Hwang and Lin, 2013), remaining
a source of contention (Dymowska et al., 2012; Hiroi and
McCormick, 2012; Hwang and Lin, 2013; Hsu et al., 2014;
Breves et al., 2020).

Several ion pumps, transporters and channels which are
selectively expressed, either apically or basolaterally in the cell,
are responsible for the ion-transport functions of the ionocytes
(Hiroi and McCormick, 2012). It would be true to say that, over
the last decades, a number of types and sub-types have been
proposed, many of them unique to the species in which they were
investigated, i.e., in various teleosts species (Doyle and Gorecki,
1961); guppy (Lebistes reticulatus) (Pisam et al., 1987); brown
bullhead (Ictalurus nebulosus) (Goss et al., 1992; Goss and Perry,
1994); Japanese eel (Anguilla japonica) (Wong and Chan, 1999);
Rainbow trout (O. mykiss) (Galvez et al., 2002; Reid et al., 2003);
Medaka (Oryzias latipes) (Kang et al., 2008, 2010; Wu et al., 2010;
Lin et al., 2012; Hsu et al., 2014); Zebrafish (Danio rerio) (Lin
et al., 2006; Wang et al., 2009; Chang and Hwang, 2011; Hwang
et al., 2011; Dymowska et al., 2012; Chang et al., 2013; Hwang
and Chou, 2013; Hwang and Lin, 2013); tilapia (Oreochromis
spp.) (Chang et al., 2001, 2003; Hiroi et al., 2005, 2008; Inokuchi
et al., 2008, 2009); Nile tilapia (O. niloticus) (Fridman et al.,
2013b); Mozambique tilapia (O. mossambicus) (Lee et al., 1996,
2000); killifish (Fundulus heteroclitus) (Copeland, 1948; Burns
and Copeland, 1950; Wood and Marshall, 1994; Marshall et al.,
1997; Katoh et al., 2001, 2003; Wood and Laurent, 2003; Hiroi
et al., 2005, 2008; Laurent et al., 2006; Breves et al., 2020); Japanese
seabass (Lateolabrax japonicus) (Inokuchi et al., 2017); seabass
(Dicentrarchus labrax) (Blondeau-Bidet et al., 2019).

These different models can be seen to reflect the evolution of
multiple ion uptake strategies from distinct species (Hwang and
Lin, 2013) from fluctuating and diverse freshwater environments
with varying ion compositions (Dymowska et al., 2012; Takei
et al., 2014; Yan and Hwang, 2019) as well as the criteria used
to identify and/or techniques used to visualize and functionally
analyze the ionocytes and their transporters (Hsu et al., 2014).
It is for this reason that the ability to define a definitive or
comprehensive model of ion uptake mechanism in teleost is
difficult (Hwang et al., 2011; Hwang and Lin, 2013).

Plasticity in Ion Transporting Function of
Ionocytes
It is well established that changes in environmental salinity causes
replacement of pre-existing ionocytes by newly differentiated
ionocytes with a different ion-transport function (Wilson et al.,
2000a; Tang et al., 2011; Christensen et al., 2012; Hiroi and
McCormick, 2012; Breves et al., 2020). Recent advances in
immunohistochemistry and complementary imaging techniques
has identified not only freshwater and seawater specific isoforms
of the Na+K+-ATPase alpha subunit but also the various ion-
transporting proteins in the apical and basolateral membranes
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TABLE 1 | Reports on the presence of extrabranchial ionocytes during embryonic and post-embryonic stages of commercially important teleosts.

Common name Species References

Plaice Pleuronectes platessa Shelbourne (1957); Roberts et al. (1973)

Pacific sardine Sardinops caerulea Lasker and Threadgold (1968)

Puffer Fugu niphobles Iwai (1969)

Guppy Poecilia reticulata Depeche (1973)

Killifish spp. Fundulus heteroclitus and
Fundulus bermudae

Guggino (1980a); Katoh et al. (2000); Breves et al. (2020)

Anchovy Engraulis mordax O’Connell (1981)

Ayu, flounder and carp Plecoglossus altivelis, Kareius
bicoloratus, Cyprinus carpio

Hwang (1989)

Mozambique tilapia Oreochromis mossambicus Ayson et al. (1994); Hwang et al. (1994); Shiraishi et al. (1997); Hiroi et al. (1999, 2005,
2008); Li et al. (1995); van der Heijden et al. (1997, 1999); Kaneko and Shiraishi (2001);
Lin and Hwang (2004); Yanagie et al. (2009)

Yurbot Scophthalmus maximus Tytler and Ireland (1995)

Herring Clupea harengus Wales and Tytler (1996); Wales (1997)

Japanese eel Anguilla japonicus Sasai et al. (1998)

Japanese flounder Paralichthys olivaceu Hiroi et al. (1998)

Seaweed pipefish Syngnathus schlegeli Watanabe et al. (1999)

Rainbow trout Oncorhynchus mykiss Rombough (1999)

Orange spotted grouper Epinephelus coioides Caberoy and Quinitio (2000)

Sea bass Dicentrarchus labrax Varsamos et al. (2001); Varsamos et al. (2002a,b); Sucre et al. (2011)

Tilapia spp. Tilapia zillii, Oreochromis
aureus, Oreochromis niloticus,
Tristramella sacra,
Sarotherodon galilaeus

Fishelson and Bresler (2002)

Gilthead sea bream Sparus auratus Bodinier et al. (2010)

Nile tilapia Oreochromis niloticus Fridman et al. (2011, 2013a,b); Fridman, 2011; Melo et al. (2019)

Medaka Oryzias latipes Hsu et al. (2014)

Lake Van fish Alburnus tarichi Oguz (2018)

Yellowfin tuna Thunnus albacares Kwan et al. (2019)

White seabass Atractoscion nobilis Finnerty (2019)

FIGURE 2 | Ultrastructure of ionocytes in freshwater adapted Oreochromis niloticus larvae. (A) A multicellular complex (MCC) formed by a mature ionocyte and an
accessory cell (AC) sharing a single apical crypt (A) lying beneath a pavement cell (PVC). Reduced osmium staining; x 11,900 and (B) Detail of mitochondria with
tubular system (m; mitochondria, ts; tubular system) (Bar = 500 nm) (Fridman, 2011).
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of ionocytes, leading to the understanding that ionocytes display
a plasticity of function in terms of ion transport which is
determined by the localization of the various ion-transporting
proteins in the apical and basolateral membranes (Inokuchi
et al., 2017). This has been correlated with studies showing
the plasticity of genes encoding sub-cellular effectors of ion
transport expressed during salinity acclimation (Scott et al., 2004;
Fiol and Kültz, 2007).

IONIC AND OSMOTIC BALANCE IN
EGGS AND DURING GASTRULATION

Leading up to ovulation, the transfer of nutrients and ions occur
through the contact between oocyte and follicular cell microvilli

and, therefore, their ionic and osmotic control are a function of
the parental regulatory system (Alderdice, 1988). At ovulation
or release from the follicular cells, the mature eggs become free
in the ovary of the adult and, surrounded by ovarian fluid, are
still under the control of the adult regulatory system. During
this period their plasma membrane appears to be relatively
permeable to water and responds to changes in the ovarian fluid
(Sower and Schreck, 1982); osmotically the ovarian fluid is very
similar to the blood plasma (Hirano et al., 1978) and the blood
plasma is in physiological balance with the external environment
(Sower and Schreck, 1982).

At spawning, the mature eggs are hypotonic to sea water
and hypertonic to fresh water. Independent regulatory capacity
is first evident with activation of the embryo occurring in
teleosts at metaphase II, the stage of meiosis following the

FIGURE 3 | Scanning electron micrographs of external morphology of ionocytes during early life stages. (A) Apical opening of an ionocytes on yolk-sac epithelia of
Nile tilapia in freshwater adapted larvae at hatch (Bar = 2 µm), (B) Apical opening of an ionocyte on yolk-sac epithelia of Nile tilapia in brackish water adapted larvae
at hatch (Bar = 2 µm) and (C) Lower magnification of apical openings of an ionocyte on gill filaments of freshwater larvae at 3 dph (Bar = 10 µm) [from Fridman et al.
(2011)].
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extrusion of the polar body. During activation, the cortical
alveoli, underlying the oocyte plasma membrane, discharge their
contents into the presumptive perivitelline space between the
chorion and the plasma membrane, by a process called cortical
alveolar exocytosis, causing an uptake of water from the external
environment across the chorion, lifting it away from the plasma
membrane by displacement and blocking the micropyle therefore
preventing polyspermy. Subsequent regulation and maintenance
of the integrity of the egg appears to be achieved by the resistive
maintenance of a tight plasma membrane and limited trans-
membrane water and ion fluxes (Bennett et al., 1981).

Following this is the transitory developmental blastula
stage, characterized by the formation and development of the
blastoderm or overgrowth of the yolk by a single layer of cells
called a blastomere, which spreads out as a flat plate over

the upper surface of the yolk mass. There is little evidence
to suggest that there is much control over water and ion
exchange between egg and external environment at this stage
and any regulatory capacity that does exist is presumed to arise
from low trans-membrane fluxes and appears to be “neither
modulated nor selective” (Alderdice, 1988; p. 241). Indeed,
Alderdice (1988) concludes that the establishment of osmotic
or systemic regulation, begins during gastrulation, and is in
place by yolk-plug closure; an increase in the permeability
of the plasma membrane during gastrulation coincides with
the appearance of integumental or cutaneous ionocytes on the
epithelium of the body surface and yolk-sac of the developing
embryo, marking the start of the selective restriction of ions
and water transfer or active ionoregulation (Guggino, 1980b).
A recent study by Dahlke et al. (2020) of homeostatic regulation

FIGURE 4 | Distribution of ionocytes as revealed by anti-Na+/K+-ATPase antibody during post-embryonic development of Nile tilapia (Oreochromis niloticus) using
light microscopy. (A) Detail of anal region of freshwater adapted larvae at 3 days post hatch (dph showing clustered immunoreactive ionocytes (Bar = 200 µm),
(B) Ionocytes on ventral region of brackish water adapted larvae at 3 dph. Arrows indicates presence of gills underlying opercula (Bar = 30 µm), (C) Caudal fin of
freshwater adapted larvae at 3 dph showing immunoreactive ionocytes (Bar = 200 µm) (LM), (D) Detail of immunoreactive ionocytes on caudal fin of brackish water
adapted larvae at 3 dph (Bar = 20 µm), (E) Inner opercular area of freshwater adapted larvae at 5 dph showing immunoreactive ionocytes (Bar = 50 µm) (LM) and
(F) Caudal extremity of brackish water adapted larvae at 7 dph. Arrows indicate location of clustered immunoreactive ionocytes (Bar = 300 µm) [from Fridman et al.
(2011)].
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FIGURE 5 | Scanning electron micrograph of developing gills in yolk-sac
larvae of Nile tilapia at hatch showing filaments with budding secondary
lamellae (Bar = 50 µm) (Fridman, 2011).

in embryo Atlantic cod (G. morhua) implies that the gastrulation
period represents a critical transition from maternal control to
active ionic regulation. Epiboly, or cellular overgrowth of the
yolk and pericardial regions of the embryo, occurs when the
developing ectodermal layer of the blastoderm, along with the
marginal ridge of the blastodisc and its inner layer or “germ ring”
grows to form an epiblast. This, combined with the periblast,
which is the initial covering of the yolk, forms the yolk sac.
The opening called the yolk-plug or blastopore overgrows when
gastrulation is complete.

Recent evidence suggests the aquaporins, small, hydrophobic
integral membrane channel proteins that aid the passive
movement of water across bilaminar membranes against an
osmotic gradient (Cerdà and Finn, 2010), have a vital adaptive
role in maintain homeostasis during oocyte development and
embryogenesis (see Cerdà et al., 2017).

IONOCYTES DURING EARLY LIFE
STAGES

The Cutaneous or Extrabranchial
Ionocyte
After hatch, post-embryonic larvae are able to live in media
whose osmolality differs from their own blood osmolality,
and this tolerance is based on ability to osmoregulate. This
is due to the presence of numerous cutaneous ionocytes
commonly observed in the yolk-sac membrane and other body
surfaces of fish embryos and larvae, i.e., head, trunk and fins.
These extrabranchial cells are considered to play a definitive
role in osmoregulation during early development by secreting
and absorbing ions in seawater and freshwater environments,
respectively, until the time when gills become fully developed and
branchial ionocytes become functional (Kaneko and Shiraishi,
2001). The flat surface that these sites offer has allowed repeated

morphological analyses or analysis of ion fluxes that branchial
surfaces, with their complex three-dimensional nature, have
precluded and offer a convenient experimental substitution for
branchial ionocytes thus shedding light on their morphology,
function and differentiation (Hiroi and McCormick, 2012).

The first report of localization of ionoregulation to the
integument of teleost larvae was that of Shelbourne (1957) who
investigated chloride regulation sites in marine plaice larvae
(P. platessa). Subsequent and similar reports are summarized
in Table 1.

In general, embryonic and larval integumental ionocytes
appear structurally and biochemically similar to adult branchial
ionocytes (Figure 2). Ayson et al. (1994) using transmission
electron microscope to examine ionocytes in the yolk-sac
membrane of freshwater and seawater-adapted O. mossambicus
tilapia embryos and larvae noted a similarity with ionocytes
in branchial and opercular epithelium of the adult fish; the
cytoplasm of the ionocytes was seen to contain numerous
mitochondria and Na+/K+- ATPase located on the extensive
and well-developed tubular system. In addition, SEM indicated
clear changes in the size and structure of apical openings in
integumental ionocytes as a response to changes in salinity,
as displayed in adults (Figure 3). Correspondingly, van der
Heijden et al. (1999), using immunostaining of cross sections
of whole tilapia larvae (O. mossambicus) with an antibody
against α -subunit of Na+/K+- ATPase, found extrabranchial
ionocytes (from 24 h post-hatch onward) in both freshwater
and seawater adapted larvae to be ultrastructurally similar to
that of ionocytes in the branchial epithelium of adult fish. In
addition, Shiraishi et al. (1997) reported the presence of MCCs
(see Section “Accessory Cells” below) in the yolk-sac membrane
of seawater–adapted tilapia larvae O. mossambicus.

Integumental Ionocytes During
Embryonic and Post-embryonic Stages
The first appearance of ionocytes in fish embryos was reported
on the yolk-sac epithelia of dechorionated Mozambique tilapia
(O. mossambicus) embryos as early as 26 h post-fertilization, but
no apical crypt to indicate functionality was apparent until 48 h
post-fertilization (Lin et al., 1999). Similarly, Ayson et al. (1994),
using SEM and TEM, observed ionocytes distributed underneath
the pavement cells on the yolk-sac epithelium of Mozambique
tilapia (O. mossambicus) embryos at 30 h post-fertilization in
both freshwater and seawater but were presumed to be not yet
functional as no apical openings were noted. Apical openings
of ionocytes were first observed, albeit at a low density, at 48 h
post-fertilization or half-way to hatching.

The site of active ionoregulation in the integument of post-
hatch or post-embryonic teleost larvae was first demonstrated
by Shelbourne (1957) who investigated the chloride regulation
sites in the European plaice larvae (P. platessa) and, since
then, integumental ionocytes have been reported in the post-
embryonic stages of many commercially important species
(see Table 1). There exists a distinct spatial shift in ionocyte
distribution in both freshwater and marine teleosts; it is
generally accepted that integumental ionocytes are initially
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responsible for osmoregulation prior to development of the adult
osmoregulatory organs in O. mossambicus (Ayson et al., 1994;
Shiraishi et al., 1997; Hiroi et al., 1999), O. niloticus (Fridman
et al., 2011; see Figure 4) killifish (F. heteroclitus) (Katoh et al.,
2000) and gilthead seabream (S. auratus) (Bodinier et al., 2010).
The extrabranchial integument that can potentially be occupied
by larval ionocytes comprises the yolk-sac, head, trunk and
fins (Varsamos et al., 2005). Distribution of ionocytes in the
integuments can also clearly be seen to be species dependant
(Varsamos et al., 2005) and vary ontogenetically (Wales and
Tytler, 1996; Fishelson and Bresler, 2002; Janicke et al., 2007;
Bodinier et al., 2010).

Gill Development of the Role of Branchial
Ionocytes During the Post-embryonic
Period
A general feature of early fish larvae is the absence of fully
developed gills (Segner et al., 1994), and the ontogeny of the
gills forms an important part of the developmental process of the

embryonic and larval fish. The sequence of gill development is
described by Hughes (1984) as “continuous” with the epithelium
that forms the surface of the gill arches becoming the surface of
the filament and afterward the surface of the lamellae (Figure 5).
Coinciding with this development is the maturation of other parts
of the respiratory and cardiovascular system and coordination
of the pumping systems for water and blood flow through
the gills immediately prior to metamorphosis (Rombough,
2004; Figure 6).

It is widely accepted that gills in fish larvae have an
ionoregulatory function before a respiratory function, however,
the exact timing of ionocyte functionality in the fish gill is
a matter of debate (Alderdice, 1988); less is known about
the ontogeny of branchial ionocytes in fish larvae, with the
majority of osmoregulatory studies in embryos and larvae
focusing on integumental ionocytes. However, a clearly defined
temporal staging of the appearance of ionocytes, conferring
ability to cope with varying environmental conditions during
early development, is evident throughout the yolk-sac period.
An ontogenic transfer of regulative, osmoregulatory function

FIGURE 6 | Development of branchial system and vasculature in Nile tilapia. (A) Freshwater adapted larvae at 1 dph showing gills (G), budding thymus (Th), heart
(H), yolk-sac (Y-s) and stomach (S) (Bar = 500 µm) (LM), (B) Detail of branchial arch of freshwater adapted larvae at 1 dph showing pairs of hemibranchs or branchial
filaments (Brf) with emergent lamellae (L) with clearly defined vasculature (V) (arrows) (Bar = 100 µm) (LM), (C) Developing caudal fin of larvae adapted to brackish
water at 3 dph showing vasculature (arrow) (Bar = 200 µm) (LM), (D) Freshwater adapted larvae 3 dph showing pectoral fin (Pf), prominent thymus (Th) and
branchiostegal membrane or operculum with visible branchiostegal rays (Br) partly covering gill arches and developing gills (Bar = 100 µm) (SEM) and (E) Underside
of brackish water adapted larvae at 7 dph showing gills completely covered by the fully-defined branchiostegal membrane (Bm) with branchiostegal rays (Br),
opercular spiracles (Os) and pectoral (Pcf) and pelvic fins (Pvf) developing on shrunken yolk-sac (Y-s) (Bar = 200 µm) (SEM) [from Fridman et al. (2011)].
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from the integumental system to the developing branchial
epithelial sites, culminating in the fully-functioning, branchial
ionocytes has been widely reported, i.e., the sea water
flounder (K. bicoloratus) (Hwang, 1989), the summer flounder
(P. dentatus) (Schreiber and Specker, 1998), the rainbow
trout O. mykiss (Gonzalez et al., 1996; Rombough, 1999),
the trout (S. trutta) (Rojo et al., 1997), the Japanese
flounder (P. olivaceus) (Hiroi et al., 1998), the guppy
(P. reticulata) (Shikano and Fujio, 1998a,b), the Nile tilapia
(O. niloticus) (Fridman et al., 2011, 2013a,b), Mozambique
tilapia (O. mossambicus) (Li et al., 1995; van der Heijden
et al., 1999) and the killifish (F. heteroclitus) (Katoh et al.,
2000), sea bream (D. labrax) (Varsamos et al., 2005;
Bodinier et al., 2009) and the gilthead seabream (S. auratus)
(Bodinier et al., 2010).

SUMMARY

This review has outlined the main physiological changes and
adaptations in osmoregulatory capacity that occur throughout
the early life stages of teleosts and the role of the ionoregulatory

cell or ionocyte in conserving physiological homeostasis.
It describes the different ionocyte types relative to their
environment, i.e., freshwater or seawater, their plasticity in
form and function and discusses spatio-temporal changes in
integumental ionocyte distribution that occur during gastrulation
and embryonic and post-embryonic stages, prior to transfer of
full regulative function to the osmoregulatory organs of the
adult teleost, i.e., branchial chambers, skin, digestive system
and urinary organs.
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