
Sæmundur Ó. Haraldsson, John R. Woodward, Markus Wagner

GECCO 2020

DE160100850

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the Owner/Author.

GECCO '20 Companion, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-7127-8/20/07.
https://doi.org/10.1145/3377929.3389885

● Introduction

● Fixing Bugs and other examples

● Noteworthy papers and issues

● Getting involved

● Summary and Q&A

Overview

2

b

801

What is Genetic Improvement

A wordy definition:
Genetic Improvement is the application of search-based
(typically evolutionary) techniques to modify software

with respect to some user-defined fitness measure.

It’s just GP - BUT starting
with a nearly complete

program
[Wolfgang Banzhaf]

What is Genetic Improvement

GI Improve
Functional
Properties

Improve
non-functional

properties

Automatic
Bug fixing

Feature
Transplantation

‘Grow
and

Graft’

Improve
energy

consumption

Improve
Execution

time
Auto-parallelisation

Improve
memory

consumption

Software
Slimming

Genetic Programming overview

7

mutation crossover

Aim – to discover new programs by telling the computer what we want it
to do, but not how we want it to do it – John Koza
How – we evolve computer programs using natural selection.
Starts from scratch (empty program)
Choose primitives (terminal set/FEATURES and function set)
Choose representation (tree based, graph based, linear e.g. CGP)
Choose fitness function, parameters, genetic operators.

802

● easy to digest articles for non-specialists.

803

programmers write programs that are almost perfect.

program faults are syntactically small (slip of finger, T/F)

corrected with a few keystrokes. (e.g. < for <=)

GI can find small patches.

Small changes are non-unique (7 lines code, or utter 7 words before
unique)

804

the content of new code can often be assembled
out of fragments of code that already exist.

Barr et al. [71] showed that changes are 43% graftable from the exact
version of the software being changed.

The Plastic Surgery Hypothesis: Changes to a codebase contain snippets
that already exist in the codebase at the time of the change, and these
snippets can be efficiently found and exploited.
THE CODE CONTAINS SOLUTIONS – CANDIDATE PATCHES

Natural Representation of CODE
Text files e.g. Program.java is a text file. Saemi.
Abstract syntax tree (AST) – Genprog, Genofix.
Java byte code (also C binaries) [102]

Errors, compile, halting (Langdon - discard)

● Functional (logical properties)
● Accuracy e.g. as in machine learning - FLOAT
● Number of bugs – as measured against a set of test cases. BOOLEAN
● New functionality – e.g.

● Non-functional (physical properties)
● Execution time
● Energy (power consumption – peak/average)
● Memory
● Bandwidth

● Multi-objective
● Trade-offs, convex, a set of programs = a single tuneable program

● Seems be convex
● – simple argument (see pic)
● Can provide a set of programs
● weighted sum of objectives?
● weight have meaning to user.
●Will there be elbow/knee points?

805

The GISMOE challenge:
to create an automated program
development environment in
which the Pareto program surface
is automatically constructed to
support dialog with and decision
making by the software designer
concerning the trade offs present in
the solution space of programs for
a specific programming problem.

● Line level
● Single Character level
● Function/module level.
● AST – GIN, Gen-0-fix, genprog,
● Java – machine code – java byte code.

● LIST OF EDITS IS A PATCH.

GI: An example of execution time
optimisation

Start

delay() if a + b < c

INVALID if a == b and b
==c

EQUALATERAL if a==b or b==c

ISOCELES SCALINE

806

GI: An example of automated bug
fixing

Start

if a + b < c

INVALID if a == b and b
==c

ISOCELES if a==b or b==c

EQUALATERAL SCALINE

John Woodward (Stirling)

Main features of framework are
1. Embedded adaptively.
2. Minimal end-user requirements.

Initial source code: location of Scala source code file
containing a function
Fitness function: providing a means of evaluating
the quality of system

3. Source to source transformations
4. Operates on ASTs (i.e. arbitrarily fine).

807

John Woodward (Stirling)

Hadoop provides a mapReduce
implementation in Java.
Equals method has to obey contract
(Reflective, Symmetric, Transitive, …)
x.equals(y) implies hashCode(x)==
hashCode(y).
hashCode method is an integer
function of a subset of an object's fields

808

Terminal set is
Field values
Random integers [0, 100]

Function set is
{+, *, XOR, AND}

Fitness function: close to uniform distribution
(uniform distribution is the ideal), over 10,000
instances.

Overview
● Introduction

● Fixing Bugs and other examples

● Noteworthy papers and issues

● Getting involved

● Summary and Q&A

35

Saemundur O. Haraldsson
● Fixing bugs
● Making software faster
● Making software more accurate

36

FIXIE

809

A real world example of GI in action

37

Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and Kristin
Siggeirsdottir. 2017. Fixing bugs in your sleep: how genetic improvement became an
overnight success. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion (GECCO '17). ACM, New York, NY, USA, 1513-1520. DOI:
https://doi.org/10.1145/3067695.3082517

S. O. Haraldsson, J. R. Woodward and A. I. E. Brownlee, "The Use of Automatic Test
Data Generation for Genetic Improvement in a Live System," 2017 IEEE/ACM 10th
International Workshop on Search-Based Software Testing (SBST), Buenos Aires,
2017, pp. 28-31. DOI: https://10.1109/SBST.2017.10

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program
Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of
Stirling, Stirling. http://hdl.handle.net/1893/26007

● Management system
for rehabilitation

● Web application
○ Python source code
○ >25K LOC

● ~200 users
○ ~40 specialists
○ 150-160 patients

● In use since March
2016

● 47 bugs automatically
fixed to date

38

When last user logs out

1. Procedure 2.0
● Sorts and filters the

day’s exceptions

39

When last user logs out

1. Procedure 2.0 started
● Sorts and filters the

day’s exceptions
2. Procedure 3.0

● Emulates input data,
type, size and
structure.

● Produces test cases

40

810

When last user logs out

1. Procedure 2.0 started
● Sorts and filters the

day’s exceptions
2. Procedure 3.0

● Emulates input data,
type, size and
structure.

● Produces test cases

41 42

Procedure 3.0

When last user logs out

1. Procedure 2.0 started
● Sorts and filters the

day’s exceptions
2. Procedure 3.0

● Emulates input data,
type, size and structure.

● Produces test cases
3. Procedure 4.0

● Genetic Improvement
● Parallel process on the

server
● Outputs report for

developer

43

● Procedure 4.0
● Genetic Improvement

● Pop.= 50 patches
● fit.= #passed tests
● select= ½ pop by fitness
● Output= report

44

811

45

● Procedure 4.0
● Genetic Improvement

● Pop.= 50 patches
● fit.= #passed tests
● select= ½ pop by fitness
● Output= report

Primitive types:
● Copy

● Equivalent to:
CTRL+C -> CTRL+V

● Delete
● Almost what you think

46

Composite types:
● Replace

● Copy + Delete
● Swap

● 2x Copy + 2x Delete

● CTRL+C => CTRL+V
● Applied to whole lines
● Some restrictions on what

lines can be copied
● Identified with regular

expressions

47

● Adds “#” to beginning of line
● “Comment”

● Applied to whole lines
● Some restrictions on what

lines can be commented out
● Identified with regular

expressions
● Can be reversed for

previously deleted lines
● “Uncomment”

48

812

● Copies both lines above each
other

● Then deletes the originals

● Applied to whole lines
● Like for like

49

● Copies one line above another
● Then deletes that line

50

● Deep parameter tuning

● Operator specific replacement
● and numbers too

● From a list of equivalent
operators.

51

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

52

813

53

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

54

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

55

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

56

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

814

57

● Real-world example

● Catches inputs that
produce crashes

● Line(-ish) based GI
● 4 types of edits

● Overnight repair

● Developers are the
gatekeepers

Another example of GI in action

58

Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, Albert V.
Smith, and Vilmundur Gudnason. 2017. Genetic improvement of runtime and its fitness
landscape in a bioinformatics application. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY,
USA, 1521-1528. DOI: https://doi.org/10.1145/3067695.3082526

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program
Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of
Stirling, Stirling. http://hdl.handle.net/1893/26007

59

ProbABEL
● A tool for Genome Wide

Association studies.

● Collection of functions for
regression models

● Written in C and C++

○ 8k LOC

○ 31 files

● Typical execution time
around 8-12 hours

http://www.genabel.org/packages/ProbABEL

30 Million SNPs
10 - 20k people

● Same as before

● Except for the
evaluation

● Mean CPU time from
20 executions

● None compiling and
failing variants are not
discarded

60

815

61

● 2 good variants found
early on

○ < a second faster

○ Generations 5 and 10

● Not statistically
significant on training
dataset

62

● 2 good variants found
early on

○ < a second faster

○ Generations 5 and 10

● Not statistically
significant on training
dataset

● Significant on a larger
dataset

○ Still, only about 1 sec
faster

Variant 1
Deletes a single line that
performs an expensive
matrix multiplication

Variant 2
Changes: i++ to ++i

63

Cost of running GI

Gained improvement per execution

And even more examples of GI in action

64

S. O. Haraldsson, R. D. Brynjolfsdottir, J. R. Woodward, K. Siggeirsdottir and V.
Gudnason, "The use of predictive models in dynamic treatment planning," 2017 IEEE
Symposium on Computers and Communications (ISCC), Heraklion, 2017, pp.
242-247. DOI: https://10.1109/ISCC.2017.8024536

S. O. Haraldsson, R. D. Brynjolfsdottir, V. Gudnason, K. Tomasson and K.
Siggeirsdottir, "Predicting changes in quality of life for patients in vocational
rehabilitation," 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems
(EAIS), Rhodes, 2018, pp. 1-8. DOI: https://10.1109/EAIS.2018.8397182

Siggeirsdottir, K., Brynjolfsdottir, R.D., Haraldsson, S.O., Vidar, S., Gudmundsson,
E.G., Brynjolfsson, J.H., Jonsson, H., Hjaltason, O. and Gudnason, V., 2016.
Determinants of outcome of vocational rehabilitation. Work, 55(3), pp.577-583. DOI:
https://10.3233/WOR-162436

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program
Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of
Stirling, Stirling. http://hdl.handle.net/1893/26007

816

● Used by Janus Rehabilitation
○ Since June 2016
○ Consulted in all team meetings

● Updated whenever there are new
information

○ No developer as gatekeeper

● Target software is the updating
script

○ Small python file

65

● Vocational rehabilitation outcome
○ Updated on every patient’s

discharge
○ Successful / Unsuccessful
○ Dropout
○ Length

● Next measurement of Icelandic
Health-related Quality of Life
(IQL)

○ Updated on every submission
of questionnaire

○ 12 categories
○ Measured every 3-6 months

66

67

Within 3 weeks

● Implemented in June 2016
○ Forgotten about for 10 months

● 72 updates over the 10 month
period

○ Reached maximum accuracy
early

● All predictions are for events that
had not occured.

○ Real people
○ Real events

● Simulation
○ Bootstrapped accuracy

distribution

● Never under 92% accuracy in any
IQL subcategory

● Mean accuracy over 99%

68

817

Overview
● Introduction

● Fixing Bugs and other examples

● Noteworthy papers and issues

● Getting involved

● Summary and Q&A

69

DNA sequencing
consisting of 8,000+ lines
of code.
improved version is up to
3x faster
downloaded 1,000 times.
Ported by IBM to one of
their super computers

A 50,000 line
system

•Bowtie2, a DNA sequence
alignment/sequence analysis tool

•Using Genetic Improvement, Harman
and Langdon were capable of
increasing performance 70x.

Automatic Bug fixing — GenProg

Source
code

Converted to AST

Test cases

Spectrum-based
fault localisation
(e.g. LOC visited in

only a buggy case →
high weight)

Mutation
Operators:

Deletion
Replace

Copy

Fitness = number of
passed test cases

• Where an adequate test
suite is provided, GenProg
has been shown to fix
real-world bugs

• It has inspired a variety of
alternative frameworks,
most of which claim to
outperform GenProg

(2012)
Cited ~400 times

Featured in:

Donor Host

English to Korean;
English to Portuguese

(2015)

(2014)

muScalpel

818

Face
Detec
tion

Face

Not A Face

Face
Detec
tion

Face

Not A Face

Integer
Literals

extracted

221 25To a genotype

Multi-objective
optimisation

Face
Detec
tion

Face

Not A Face

Integer
Literals

extracted

221 25To a genotype

Multi-objective
optimisation

Original: 191s, 1.04% inaccuracy
99s (48% decrease), 1.8% inaccuracy
68s (64% decrease), 5.4% inaccuracy
46s (76% decrease), 15.4% inaccuracy

●
●
●
●
●
●

Phd Theses

819

● Optimization/machine learning - OVERFITTING (or: specialisation?)
(“Is the cure worse than the disease?” Smith et al. FSE 2015)

● Genetic Programming and Metaheuristics
● the automatic design of algorithms
● Automatic parameter tuning/deep parameter tuning/GI

GP suffered a “midlife crisis”
Toy problem e.g. lawnmower
Genetic Programming Needs Better Benchmarks [White et al.]
Machine Learning that Matter [Wagstaff 2012] what is 1% meaning
Is Software Engineering the best benchmark for GP?
Do we have a stable set of benchmarks for GI?
(for program repair: http://program-repair.org/benchmarks.html)
Benchmarking is more complex (noise, hardware, prog lang, …)

● computational energy consumption
growing importance, particularly at the
extremes (i.e., mobile devices and
datacentres).

one line = one unit
simulate (runtime/system calls/) Tools
Opacitor, PowerGauge
read battery indicator
physically measure (e.g. see Bokhari et al.)

GI@GECCO’17

CEC 2019

820

January 2018

Growth of papers

How will it continue…???

the program being improved,

a different program written in the same
language (Petke: MiniSAT competition),

a piece of code generated from scratch (GP),

different programming language other than the
software to be improved.

• Hard!

• NFL not really valid for GP, and therefore GI.
• Why – because many programs share same functionality.

=> GI will remain empirical for years to come

Theory

821

Bobby R.
Bruce

BREAKDOWN
papers by application

● A grant about GP
(0%)

VS

● A grant about GI.
(100%)

● http://geneticimprovementofsoftware.com/
● https://en.wikipedia.org/wiki/Genetic_improvement_(com

puter_science)
● http://www.davidrwhite.co.uk/
● http://daase.cs.ucl.ac.uk/
● http://crest.cs.ucl.ac.uk/publications/
● https://clairelegoues.com/blog/
● https://cs.adelaide.edu.au/~optlog/research/software.php

GI@GECCO’19

(2017)

822

Overview

89

● Introduction

● Fixing Bugs and other examples

● Noteworthy papers and issues

● Getting involved

● Summary and Q&A

90

Available at
https://github.com/gintool/gin

v2.0 published in June 2020
“Gin: Genetic Improvement Research

Made Easy” (GECCO 2020)http://www.davidrwhite.co.uk/

(Inaugural paper at
GI@GECCO 2017)

GIN ECJ

https://cs.gmu.edu/~eclab/projects/ecj/

● Many success stories

● …however, these typically need at GI expert in the loop

● What’s needed is a more systematic approach

● A toolkit to enable experimentation

823

● Remove incidental difficulties of GI for research and teaching

● Enable focus on general questions

● Provide a central tool for the community

● Support more than bug-fixing: non-functional properties

● Work on open-source software projects out-of-the-box

Vanilla GIN: Neighbourhood search

Source-code AST AST Optimised
Source

Apply Patch

Better than before?

End?

Converted to Converted to

JUnit Test Cases

Run Revert

No

Yes

Yes

No

Vanilla GIN
Version 2.0:

gradle/maven support,
various types of edits,

profiler to find “hot” methods,
various samplers, ...

Vanilla GIN
Version 1.0

824

https://tinyurl.com/giassignment

825

● Edits are single changes to source code
● Building blocks of a repair
● Combined into Patches
● Question: actually, what scale might an edit be?

● Gin supports edits at:
● line level (Langdon) - delete/replace/copy/swap/move
● statement level (GenProg) - delete/replace/copy/swap/move
● constrained (matched) statement - replace/swap
● micro edits

● binary & unary operator replacement (OR ⬄AND) (++ ⬄ --)
● reorder Boolean expressions (X && Y ⬄ Y && X)

● We provide many wrappers to make your life easier, so that you can
focus on higher-level tasks:
● “Tell me which lines are eligible for deletion in this method”
● “Delete this line”
● “Give me all the for loop conditions in this method”
● And many more...

826

Gin invokes test
cases via Junit…

Tracks:
● compile success;
● run-time errors,

exception types
● actual &

expected
outcomes

● timing:
wall-clock and
CPU time

105

Note: If you prefer to use
the more “traditional”
way of writing the file to
disk first - e.g., due to
integration of Gin into
other pipelines - then you
can use a command-line
flag to do so.

● Included samplers:
● EmptyPatchTester
● RandomSampler
● DeleteEnumerator
● LocalSearch

● Possible Questions:
● What is the effectiveness of a

given edit type for fixing a
category of bug?

● How robust is the space of
single-line edits, modulo the
given test suite?

● ...

The following is one really wide output file:

827

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"
2020-04-10 04:36:41 gin.LocalSearch.search() INFO: Localsearch on file: examples/triangle/Triangle.java method: classifyTriangle(int, int, int)
2020-04-10 04:36:44 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Original execution time: 1646971219ns
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 1, Patch: | gin.edit.line.ReplaceLine examples/triangle/Triangle.java:5 -> examples/triangle/Triangle.java:23
|, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 2, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:36 |, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 3, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:19 |, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 4, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:28 |, Failed to pass all tests
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 5, Patch: | gin.edit.line.ReplaceLine examples/triangle/Triangle.java:38 -> examples/triangle/Triangle.java:35
|, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 6, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:17 |, Failed to compile
2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 7, Patch: | gin.edit.line.CopyLine examples/triangle/Triangle.java:34 -> examples/triangle/Triangle.java:13 |,
Failed to compile
2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 8, Patch: | gin.edit.line.SwapLine examples/triangle/Triangle.java:27 <-> examples/triangle/Triangle.java:10 |,
Failed to pass all tests

...

2020-04-10 04:36:26 gin.LocalSearch.search() INFO: Step: 96, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:8 <-> examples/triangle/Triangle.java:14 |, Failed to compile
2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 97, Patch: |, Time: 1647522167ns
2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 98, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.CopyLine
examples/triangle/Triangle.java:51 -> examples/triangle/Triangle.java:26 |, Failed to compile
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 99, Patch: |, Time: 1648831018ns
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 100, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:39 <-> examples/triangle/Triangle.java:29 |, New best time: 38744892(ns)
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Finished. Best time: 38744892 (ns), Speedup (%): 97.64, Patch: | gin.edit.line.DeleteLine
examples/triangle/Triangle.java:10 |

-bash-4.1$ cat examples/triangle/Triangle.java
public class Triangle {

static final int INVALID = 0;
static final int SCALENE = 1;
static final int EQUALATERAL = 2;
static final int ISOCELES = 3;

public static int classifyTriangle(int a, int b, int c) {

 delay();

 // Sort the sides so that a <= b <= c
 if (a > b) {
 int tmp = a;
 a = b;
 b = tmp;
 }

 if (a > c) {
 int tmp = a;
 a = c;
 c = tmp;
 }

 if (b > c) {
 int tmp = b;
 b = c;
 c = tmp;
 }

 if (a + b <= c) {
 return INVALID;
 } else if (a == b && b == c) {
 return EQUALATERAL;
 } else if (a == b || b == c) {
 return ISOCELES;
 } else {
 return SCALENE;
 }

}

private static void delay() {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {

 }
}

}

-bash-4.1$ cat examples/triangle/Triangle.java.optimised
public class Triangle {

static final int INVALID = 0;
static final int SCALENE = 1;
static final int EQUALATERAL = 2;
static final int ISOCELES = 3;

public static int classifyTriangle(int a, int b, int c) {

 // Sort the sides so that a <= b <= c
 if (a > b) {
 int tmp = a;
 a = b;
 b = tmp;
 }

 if (a > c) {
 int tmp = a;
 a = c;
 c = tmp;
 }

 if (b > c) {
 int tmp = b;
 b = c;
 c = tmp;
 }

 if (a + b <= c) {
 return INVALID;
 } else if (a == b && b == c) {
 return EQUALATERAL;
 } else if (a == b || b == c) {
 return ISOCELES;
 } else {
 return SCALENE;
 }

}

private static void delay() {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {

 }
}

}

The
problematic
line was
deleted.

828

● Maven and Gradle API documentation is sparse!
● And many projects seem to break conventions about paths, resources etc.

●Project class wraps most of what we have learned
● provide the classpath for a project
● find a particular source file within a project’s file hierarchy
● provide a standard method signature for a given method
● provide a list of project tests
● run a unit test given its name

● Gin can infer the necessary classpath and dependencies for running
unit tests from a Maven or Gradle project, or these can be specified
manually

● Maven projects can be updated automatically with new unit tests
from EvoSuite

● Profiler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-o $projectnameforgin.Profiler_output.csv -r 1

● Profiler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-o $projectnameforgin.Profiler_output.csv -r 1

● Profiler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-o $projectnameforgin.Profiler_output.csv -r 1
● EmptyPatchTester
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.EmptyPatchTester -h
~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-m $projectnameforgin.Profiler_output.csv
-o $projectnameforgin.EmptyPatchTester_output.csv

829

● Profiler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-o $projectnameforgin.Profiler_output.csv -r 1
● EmptyPatchTester
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.EmptyPatchTester -h
~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-m $projectnameforgin.Profiler_output.csv
-o $projectnameforgin.EmptyPatchTester_output.csv
● PatchSampler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.PatchSampler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-m $projectnameforgin.Profiler_output.csv
-o $projectnameforgin.PatchSampler_LINE_output.csv -editType LINE -patchNo 100
● Generate tests
java -cp build/gin.jar gin.util.TestCaseGenerator -projectDir ../casestudies/RxJava
-projectName RxJava -evosuiteCP libs/evosuite-1.0.6.jar -generateTests -classNumber 3
-projectTarget ../casestudies/RxJava/build/classes/java/main

● Available at https://github.com/gintool/gin

● The team actively uses Gin to push
the GI boundaries, and quite a few
papers are in the works.

● Open for contributions!
● Particularly new edits and tools
● https://github.com/gintool/gin
● we’d like this to become the MiniSAT of GI

Comments/questions: Sandy (Alexander E.I. Brownlee) sbr@cs.stir.ac.uk

Overview
● Introduction

● Fixing Bugs and other examples

● Noteworthy papers and issues

● Getting involved

● Summary and Q&A

119

Start from an existing program
BLOAT? – interpretation?
NO function / terminal set
Improvement of non-functional properties.
Easier to write grants
Different benchmarks.
Population of edits NOT programs.

830

● Let’s start with existing programs. Not like standard GP.
● Python vs C vs Java? Amenable to GI? Most popular
● Benchmarking ???
● Population of edits, not programs
● GP applied to real software

● Large, loops, side-effect, modules,…
● Non functional properties

122

S.O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and Kristin Siggeirsdottir. 2017. Fixing bugs in your sleep: how genetic improvement became an overnight success.
In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1513-1520. DOI:
https://doi.org/10.1145/3067695.3082517

S. O. Haraldsson, J. R. Woodward and A. I. E. Brownlee, "The Use of Automatic Test Data Generation for Genetic Improvement in a Live System," 2017 IEEE/ACM 10th
International Workshop on Search-Based Software Testing (SBST), Buenos Aires, 2017, pp. 28-31. DOI: https://10.1109/SBST.2017.10

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of Stirling, Stirling.
http://hdl.handle.net/1893/26007

S.O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, Albert V. Smith, and Vilmundur Gudnason. 2017. Genetic improvement of runtime and its fitness landscape in a
bioinformatics application. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1521-1528. DOI:
https://doi.org/10.1145/3067695.3082526

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of Stirling, Stirling.
http://hdl.handle.net/1893/26007

S. O. Haraldsson, R. D. Brynjolfsdottir, J. R. Woodward, K. Siggeirsdottir and V. Gudnason, "The use of predictive models in dynamic treatment planning," 2017 IEEE Symposium
on Computers and Communications (ISCC), Heraklion, 2017, pp. 242-247. DOI: https://10.1109/ISCC.2017.8024536

S. O. Haraldsson, R. D. Brynjolfsdottir, V. Gudnason, K. Tomasson and K. Siggeirsdottir, "Predicting changes in quality of life for patients in vocational rehabilitation," 2018 IEEE
Conference on Evolving and Adaptive Intelligent Systems (EAIS), Rhodes, 2018, pp. 1-8. DOI: https://10.1109/EAIS.2018.8397182

Siggeirsdottir, K., Brynjolfsdottir, R.D., Haraldsson, S.O., Vidar, S., Gudmundsson, E.G., Brynjolfsson, J.H., Jonsson, H., Hjaltason, O. and Gudnason, V., 2016. Determinants of
outcome of vocational rehabilitation. Work, 55(3), pp.577-583. DOI: https://10.3233/WOR-162436

123

J. Petke, B. Alexander, E.T. Barr, A.E.I. Brownlee, M. Wagner, and D.R. White, 2019. ‘A survey of genetic improvement search spaces’. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (GECCO '19). ACM, New York, NY, USA, 1715-1721. DOI: https://doi.org/10.1145/3319619.3326870

A.E.I. Brownlee, J. Petke, B. Alexander, E.T. Barr, M. Wagner, and D.R. White, 2019. ‘Gin: genetic improvement research made easy’. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO '19). ACM, New York, NY, USA, 985-993. DOI: https://doi.org/10.1145/3321707.3321841

M.A. Bokhari, B. Alexander, and M. Wagner, 2019. ‘In-vivo and offline optimisation of energy use in the presence of small energy signals: A case study on a popular Android library’.
In Proceedings of the EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous '18), ACM, New York, NY, USA,
207–215. DOI: https://doi.org/10.1145/3286978.3287014

M.A. Bokhari, B. Alexander, and M. Wagner, 2020. ‘Towards Rigorous Validation of Energy Optimisation Experiments’. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO '20). ACM, New York, NY, USA. URL: https://arxiv.org/abs/2004.04500v1

M.A. Bokhari, B.R. Bruce, B. Alexander, and M. Wagner, 2017. ‘Deep parameter optimisation on Android smartphones for energy minimisation: a tale of woe and a
proof-of-concept’. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1501-1508. URL:
https://doi.org/10.1145/3067695.3082519

M.A. Bokhari, L. Weng, M. Wagner, and B. Alexander, 2019. ‘Mind the gap – a distributed framework for enabling energy optimisation on modern smart-phones in the presence of
noise, drift, and statistical insignificance’. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC ‘19). IEEE, 1330-1337. DOI:
https://doi.org/10.1109/CEC.2019.8790246

A. Agrawal, T. Menzies, L. Minku, M. Wagner, and Z. Yu, 2020. ‘Better software analytics via “DUO”: Data mining algorithms using/used-by optimizers’. Empirical Software
Engineering, Springer. Published 22 April 2020. DOI: https://doi.org/10.1007/s10664-020-09808-9

V. Nair, A. Agrawal, J. Chen, W. Fu, G. Mathew, T. Menzies, L. Minku, M. Wagner, and Z. Yu, 2018. ‘Data-driven search-based software engineering’. In Proceedings of the
International Conference on Mining Software Repositories (MSR '18), ACM, New York, NY, USA, 341–352. DOI: https://doi.org/10.1145/3196398.3196442

124

831

