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Abstract 

Gill disease is an important challenge for Atlantic salmon (Salmo salar L.) 

aquaculture worldwide. Complex gill disorder (CGD) is a multifactorial and 

multiaetiological condition that tends to occur from late summer to early winter in 

salmon. The microsporidian Desmozoon lepeophtherii has been associated with 

CGD, but the interaction between the pathogen and its host remains to be understood. 

This thesis examines different aspects of D. lepeophtherii in an attempt to clarify the 

role and significance of D. lepeophtherii in CGD. Spores from D. lepeophtherii, 

derived from the sea lice (Lepeophtheirus salmonis) were used to infect different fish 

cell lines (rainbow trout gill cells and salmon head kindey cells) and primary 

macrophage cultures from Atlantic salmon head kidney in vitro. However, there was 

no evidence of D. lepeophtherii replication in any of the cultures. A one-year 

longitudinal study was carried out at two marine salmon farms to determine the 

correlation between gill pathology and the putative pathogens associated with CGD 

(D. lepeophtherii, Candidatus Branchiomonas cysticola and salmon gill pox virus 

(SGPV)), as well as Paramoeba perurans, the aetiological agent of amoebic gill 

disease (AGD). The two farms were positive for the four pathogens, with Ca. B. 

cysticola and D. lepeophtherii being the most frequently detected agents, and SGPV 

detected sporadically throughout the study. Paramoeba perurans was detected in the 

two farms but an outbreak of AGD only occurred in one of the farms. Statistical 

analysis of the data from the two farms showed that variations in SGPV and Ca. B. 

cysticola loads were not associated with an increase in the gill score (p>0.05), while 

D. lepeophtherii and P. perurans were (p< 0.001), although obvious pathology 

associated with D. lepeophtherii infection was not evident. An in situ hybridisation 

(ISH) method was developed to detect the developmental and spore stages of the 

parasite, the sensitivity (92%) of which was higher than other staining methods 

currently used to detect the microsporidian. There was a significant association 

between high loads of D. lepeophtherii by ISH and gill pathology (p< 0.001). In 

conclusion, it would seem that chronic infection with D. lepeophtherii is common in 

farmed salmon gills, but does not appear to cause any clinical manifestation in 

healthy fish. Gill pathology is present when parasite burdens are high, however. 
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Potential reactivation of latent microsporidiosis is a risk, but the factors to trigger this 

are still unknown.  

 



 vi 

Contents 

Declaration  ............................................................................................................... ii 

Acknowledgments ..................................................................................................... iii 

Abstract  ............................................................................................................... iv 

Contents  ............................................................................................................... vi 

List of abbreviations ............................................................................................... xiii 

List of Figures ........................................................................................................... xv 

List of Tables ........................................................................................................... xxv 

Chapter 1 Literature Review ................................................................................. 1 

1.1 Structure, function of fish gills and gill pathology  ....................................... 1 

1.1.1 Structure and function ............................................................................ 1 

1.1.2 Response of gills to damage ................................................................... 3 

1.1.3 Gill pathology ......................................................................................... 5 

1.1.3.1 Cell swelling .................................................................................... 5 

1.1.3.2 Cell death......................................................................................... 5 

1.1.3.3 Circulatory disturbances .................................................................. 6 

1.1.3.4 Lamellar oedema ............................................................................. 7 

1.1.3.5 Lamellar synechiae .......................................................................... 8 

1.1.3.6 Cell hypertrophy .............................................................................. 9 

1.1.3.7 Cell hyperplasia ............................................................................... 9 

1.1.3.8 Inflammatory infiltration ............................................................... 11 

1.1.3.9 Artefacts ........................................................................................ 12 

1.1.4 Clinical signs of respiratory disease ..................................................... 12 

1.2 Gill diseases in Atlantic salmon ................................................................... 15 

1.2.1 Relevance of gill disease to the Atlantic salmon aquaculture industry 15 

1.2.2 Atlantic salmon aquaculture in the UK and globally ........................... 15 

1.2.3 Impact of gill diseases to the salmon industry ...................................... 16 



vii 

 

1.2.4 Multifactorial gill diseases ................................................................... 17 

1.2.5 Putative pathogens associated with complex gill disorder .................. 19 

1.2.5.1 Atlantic salmon paramyxovirus .................................................... 19 

1.2.5.2 Salmon Gill Poxvirus ................................................................... 20 

1.2.5.3 Epitheliocyst-forming bacteria ..................................................... 23 

1.2.5.4 Desmozoon lepeophtherii ............................................................. 24 

1.2.5.5 Paramoeba perurans .................................................................... 24 

1.2.5.6 Other pathogens ............................................................................ 25 

1.2.5.7 Other factors involved in CGD ..................................................... 25 

1.2.6 Histopathology of CGD ....................................................................... 26 

1.3 Current knowledge of the microsporidian Desmozoon lepeophtherii ......... 28 

1.3.1 General characteristics of Microsporidia ............................................. 28 

1.3.2 The structure of microsporidians ......................................................... 31 

1.3.2.1 The spore ...................................................................................... 31 

1.3.2.2 Meront .......................................................................................... 33 

1.3.2.3 Sporont ......................................................................................... 33 

1.3.3 The importance of Microsporidia in fish and the aquaculture industry 34 

1.3.4 Desmozoon lepeophtherii as a fish pathogen ....................................... 35 

1.3.5 Transmission of D. lepeophtherii ........................................................ 37 

1.3.6 Life cycle of Desmozoon lepeophtherii ............................................... 39 

1.3.6.1 Life cycle in Atlantic salmon ....................................................... 39 

1.3.6.2 Life cycle in sea lice ..................................................................... 40 

1.3.7 Study of host-pathogen interactions for D. lepeophtherii .................... 44 

1.3.8 Epidemiology of D. lepeophtherii ....................................................... 45 

1.3.9 Desmozoon lepeophtherii and CGD .................................................... 46 

1.4 Conclusion................................................................................................... 47 



viii 

1.5 Aims and objectives ..................................................................................... 47 

Chapter 2 Culture of Desmozoon lepeophtherii in-vitro  ................................... 49 

2.1 Introduction .................................................................................................. 49 

2.1.1 Use of cell lines for the study of microsporidia ................................... 49 

2.1.2 Study of fish microsporidia in vitro ...................................................... 50 

2.1.3 Aims and objectives ............................................................................. 53 

2.1.3.1 Aims .............................................................................................. 53 

2.2 Material and methods ................................................................................... 53 

2.2.1 Collection of sea louse derived microsporidian spores ........................ 53 

2.2.2 Transmission electron microscopy to detect D. lepeophtherii ............. 55 

2.2.3 DNA extraction of spores ..................................................................... 56 

2.2.4 Polymerase chain reaction (PCR) ......................................................... 57 

2.2.5 Testing spore viability  ......................................................................... 57 

2.2.6 Fish and macrophage isolation ............................................................. 58 

2.2.7 Maintenance of fish cell lines ............................................................... 59 

2.2.8 Preliminary infections with D. lepeophtherii spores ............................ 59 

2.2.9 Control of bacteria in cell cultures ....................................................... 60 

2.2.10 Infecting cell lines with D. lepeophtherii spores .................................. 60 

2.2.11 Testing effect of pH shift on D. lepeophtherii germination ................. 61 

2.2.12 Infecting macrophages with D. lepeophtherii spores ........................... 61 

2.2.13 Monitoring cell cultures infected with D. lepeophtherii spores ........... 62 

2.3 Results .......................................................................................................... 62 

2.3.1 Lice collection and spore isolation ....................................................... 62 

2.3.2 TEM results .......................................................................................... 64 

2.3.3 DNA isolation and PCR ....................................................................... 66 

2.3.4 Viability of spores ................................................................................ 68 

2.3.5 Preliminary culture experiments in vitro .............................................. 70 



ix 

 

2.3.6 Optimal concentration of antibiotics .................................................... 70 

2.3.7 Cell line experiments with D. lepeophtherii ........................................ 70 

2.3.8 Experiments with macrophages ........................................................... 71 

2.4 Discussion ................................................................................................... 76 

2.4.1 Acknowledgments ............................................................................... 83 

Chapter 3 Prospective longitudinal study of putative agents involved in 

complex gill disorder in Scotland ........................................................................... 84 

3.1 Introduction  ................................................................................................ 84 

3.1.1 Infection dynamics of Desmozoon lepeophtherii  ............................... 84 

3.1.2 Semi-quantitative gill scoring .............................................................. 85 

3.1.3 Aims and objectives ............................................................................. 86 

3.2 Materials and methods ................................................................................ 86 

3.2.1 Study design ......................................................................................... 86 

3.2.2 Sample collection ................................................................................. 87 

3.2.3 Weeks, months and seasons  ................................................................ 88 

3.2.4 Data collection from farms .................................................................. 88 

3.2.5 Histopathology ..................................................................................... 89 

3.2.6 RNA extraction .................................................................................... 94 

3.2.7 cDNA synthesis ................................................................................... 95 

3.2.8 Reverse-transcription real-time polymerase chain reaction assay 

validation ........................................................................................................... 95 

3.2.8.1 In-silico evaluation of primers and probes ................................... 96 

3.2.8.2 Optimization of primer concentration and effects of multiplexing

 96 

3.2.8.3 Standard curve, efficiency, linearity and correlation coefficient . 97 

3.2.9 Statistical analysis ................................................................................ 99 

3.3 Results ....................................................................................................... 101 

3.3.1 Assay validation ................................................................................. 101 



x 

3.3.1.1 RNA extractions .......................................................................... 101 

3.3.1.2 In silico evaluation of the probes ................................................ 101 

3.3.1.3 Effect of primer concentration in assays ..................................... 101 

3.3.1.4 Effect of multiplexing ................................................................. 101 

3.3.1.5 Standard curves ........................................................................... 102 

3.3.1.6 Consistency of the house keeping gene values ........................... 102 

3.3.1.7 Detection of pathogens in farms.................................................. 103 

3.3.2 Environmental data ............................................................................. 106 

3.4 Descriptive epidemiology  ......................................................................... 106 

3.4.1 Histology ............................................................................................ 112 

3.4.2 Summary of the variation in pathogen Ct values, epidemiology in the 

farms, gill score and temperatures. ................................................................... 114 

3.4.3 Statistical analysis .............................................................................. 120 

3.4.3.1 Changes in the levels of the different pathogens across time ..... 120 

3.4.3.2 Linear regression models of the gill score .................................. 128 

3.4.3.3 Effect of temperature on pathogens loads ................................... 139 

3.5 Discussion .................................................................................................. 140 

Chapter 4 Development of a DNA-based in situ hybridization method to 

detect Desmozoon lepeophtherii in Atlantic salmon tissues ................................. 152 

4.1 Introduction ................................................................................................ 152 

4.1.1 Detection of D. lepeophtherii in tissue sections ................................. 152 

4.1.2 Desmozoon lepeophtherii-related pathology in the gills of Atlantic 

salmon 153 

4.1.3 In Situ Hybridisation (ISH) ................................................................ 154 

4.1.4 Aims and Objectives ........................................................................... 155 

4.2 Material and Methods ................................................................................ 155 

4.2.1 Development of the in situ hybridisation protocol for the detection of 

D. lepeophtherii in histological tissue sections ................................................ 155 



xi 

 

4.2.1.1 Design of specific oligoprobes ................................................... 156 

4.2.1.2 Preparation of tissue sections ..................................................... 157 

4.2.1.3 Permeabilisation of tissues ......................................................... 159 

4.2.1.4 Hybridisation Buffer ................................................................... 159 

4.2.1.5 Hybridisation Procedure ............................................................. 160 

4.2.1.6 Washing Steps ............................................................................ 160 

4.2.1.7 Immunological detection ............................................................ 160 

4.2.1.8 Specificity testing of the ISH method and analysis of other tissues

 161 

4.2.2 Comparison of the ISH method with other techniques ...................... 161 

4.2.2.1 Material ....................................................................................... 161 

4.2.2.2 Histology .................................................................................... 162 

4.2.2.3 Quantification of microsporidia in tissue sections by ISH ......... 162 

4.2.2.4 Assessment of D. lepeophtherii presumptive pathology ............ 162 

4.2.2.5 Statistical analyses ...................................................................... 163 

4.3 Results ....................................................................................................... 164 

4.3.1 Development and optimisation of the ISH technique ........................ 164 

4.3.2 Detection of D. lepeophtherii in Atlantic salmon gills using ISH ..... 167 

4.3.3 Detection of D. lepeophtherii in non-gill tissues and probe specificity

 171 

4.3.4 Comparison of ISH with other techniques used to identify D. 

lepeophtherii .................................................................................................... 173 

4.3.5 Gill D. lepeophtherii burden and the presence of microvesicles ....... 175 

4.4 Discussion ................................................................................................. 177 

Chapter 5 General Discussion ........................................................................... 183 

5.1 Complex gill disorder syndrome ............................................................... 183 

5.2 Status of CGD putative pathogens in Scotland ......................................... 185 

5.3 On-farm practices and CGD ...................................................................... 186 



xii 

5.4 Future studies on CGD .............................................................................. 187 

5.5 Insight into the biology of D. lepeophtherii .............................................. 188 

5.6 Desmozoon lepeophtherii: primary or opportunistic pathogen? ................ 189 

5.7 Final conclusion ......................................................................................... 192 

References   ............................................................................................................ 194 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

List of abbreviations 

μg microgram 

μl microlitre 

μm  micrometre 

μM  micromolar 

AGD amoebic gill disease 

ANOVA  analysis of variance 

BLAST  basic alignment search tool  

bp  base pairs  

cDNA  complementary DNA  

CGD complex gill disorder 

CI confidence interval 

Ct  threshold cycle  

CW Calcofluor White 

d.p.e  days post exposure  

DNA  deoxyribonucleic acid  

DPBS  Dulbecco’s phosphate buffered saline without Ca and 

Mg  

E  efficiency of PCR  

et al.  et alia (and others) 

FBS foetal bovine serum 

FCS  foetal calf serum 

g Gram 

GAM generalised additive model 

h Hours 

h.p.1 hours post infection 

H&E  haematoxylin and eosin 

H2O2  hydrogen peroxide 

ITS internal transcribed spacer 

L  Litre 

L-15 Leibovitz-15 



xiv 

M  Molar 

MEM minimum essential media 

mg  milligrams 

min  Minute 

ml  Millilitre 

mm millimetre 

nm nanometre 

MRI Moredun Research Institute 

PBS  phosphate buffered saline 

PCR polymerase chain reaction 

PGD proliferative gill disease 

PI propidium iodine 

Pk proteinase K 

R2  correlation co-efficiency 

RNA  ribonucleic acid 

RT  reverse transcription 

RTgill-W1 rainbow trout gill cell line 

RT-rtPCR reverse transcription polymerase chain reaction 

sd  standard deviation 

SE  standard error 

SHK-1  salmon head kidney -1 cells 

SGPV salmon gill poxvirus 

SSC  saline-sodium citrate buffer 

SSU small subunit  

TAE  tris acetate EDTA 

TBS tris buffered saline 

TEM  transmission electron microscopy 

U Units 

v Volt 

v/v  volume/volume percent 



 xv 

List of Figures 

Figure 1.1. Gills of Atlantic salmon macroscopically (left) and microscopically 

stained with haematoxylin and eosin (H&E) (right). The histological sagittal section 

of the gill shows (1) the filament, (2) mucus cells, (3) chloride cells, (4) the 

(pavement) lamellar epithelial cells, (5) pillar cells, and (6) erythrocytes within the 

capillaries. The photomicrograph was kindly provided by the Fish Vet Group. ......... 4 

Figure 1.2. Timeline of the changing taxonomic position of Microsporidia (modified 

from Keeling, 2009). .................................................................................................. 29 

Figure 1.3. Diagram of the general life cycle of microsporidia. (1) Spores are free in 

the environment in an “inactive” stage. (2) When a suitable host is present and 

conditions are optimal, the living spore ejects the polar tube and pierces the target 

host cell. (3) The sporoplasm passes through the polar tube to the host cell. (4) Inside 

the host cell the sporoplasm undergoes extensive multiplication either by merogony 

(binary fission) or schizogony (multiple fission). (5) After merogony, sporogony 

occurs and new spores are produced. (6) Once the spores mature, these leave the cell, 

mostly through the lysis of the host cell, and new spores are free to infect again.  ... 30 

Figure 1.4. Schematic representation of microsporidian spore. The spore wall is 

composed of an electron-dense exospore (Ex), a thick electron-lucent endospore 

(En), and a plasma membrane between the endospore and the cytoplasm. The 

infectious apparatus consists of the coiled polar tube (PF) (the number of coils 

depends on the particular species) terminating at the apical part of the spore in an 

anchoring disk (AD), the posterior vacuole (PV), the posterior polaroplast (PP) and 

anterior polaroplast (PA). Other contents of the sporoplasm include the ribosomes 

and the nucleus (N). ................................................................................................... 33 

Figure 1.5. Developmental cycles of Desmozoon lepeophtherii in Atlantic salmon 

and sea lice. Host cell nucleus stained blue. (A) Developmental cycle I in salmon 

cells. (1) Merogonial plasmodium after multiplication of the diplokaryotic nuclei. (2) 

Sporogonial plasmodium with three diplokarya and dense disks in the centre 

associated with the formation with the polar tube. (3) Late sporonts before 



xvi 

schizogony showing peripheral anchoring discs in polar caps. (4) Schizogonic 

division produces diplokaryotic sporoblasts, which will result in small spherical/oval 

spores. (B) Developmental cycle II in salmon nucleus of epithelial cells of gill, skin 

and gastrointestinal tract. (1) Meront containing a single diplokaryotic nucleus and 

surrounded by a unit membrane. (2) Sporogonic stages with rough endoplasmic 

reticulum and with the presence of dense barrel shaped elements (3) Sporobolast 

with two sets of extrusion apparatus before division. (4) The resultant ellipsoidal 

spores from the sporoblasts mostly appear in singles or pairs. (C) Developmental 

cycle in sea lice (1) Presence of diplokaryotic meronts in direct contact within the 

cell cytoplasm. (2) The merogonial stages divide through schizogony and form a 

multilobed merogonial plasmodia. Transition between merogony and sporogony is 

recognised by the presence of the dense material in the surface of the plasma 

membrane. There is fission of dyplokaria during the merogonial stage and early 

sporonts stages can contain diplokaryotic nuclei or two closely arranged monokarya. 

(3) Various developmental stages present together in a hypertrophied cell (formation 

of xenoma). Early monokaryotic sporonts and more advance stages containing polar 

tube primordium. (4) Various developmental stages including newly formed spores 

with a single nucleus. ................................................................................................. 43 

Figure 2.1. Flow diagram of spore extraction method based on Monaghan (2011) 

with modifications. ..................................................................................................... 55 

Figure 2.2. (a) Smear of Desmozoon lepeophtherii spores after isolation on Percoll 

gradients stain, blue in colour from Giemsa staining; (b) Note the birefringence of 

the spore wall and the darker belt-like stripe (arrow) previously described for other 

microsporidia (Garcia, 2002). ..................................................................................... 64 

Figure 2.3. TEM micrographs of mature spores of Desmozoon lepeophtherii obtained 

from sea lice after isolation on a Percoll gradient. Two type of spores were noted, 

smaller spores of 1.5-2µm in length (yellow arrows), and bigger spores of 3-4µm in 

diameter (white arrow) ............................................................................................... 65 

Figure 2.4. TEM micrographs of Desmozoon lepeophtherii spores: (a) Sagittal 

section of spore detailing an electron-dense exospore (Ex), and a thicker electron-



xvii 

 

lucent endospore (En). The polar tube has an electron dense core (PT) and terminates 

at the apical part of the spore in an anchoring disk (AD), near the lamellar 

polaroplast (PA). (b) Transverse section of mature spore with the single nucleus 

visible (N). The vesicular polaroplast is also present (VP) ....................................... 65 

Figure 2.5. TEM micrographs of isolated spores of D. lepeophtherii. Two different 

sizes of spores were noted. Smaller spores were 1.5-2µm in length (arrow), and 

larger spores were 3-4µm in diameter (yellow arrows). Larger spores (2.5-3 µm in 

length), were seen occasionally that contained non-regularly arranged coils of the 

polar tubule. ............................................................................................................... 66 

Figure 2.6. Agarose gels showing of PCR products from the various DNA extraction 

methods tried.  Lanes M (marker pointing the fragment size of 1000 in basepairs (bp) 

with an arrow); lanes 1 and 3 - negative control; lane 2 – kidney from infected fish; 

lane 4 - DNA extraction using Method 1; lane 5 - DNA extraction method 2; lane 6 - 

DNA extraction Method 3; and lane 7 results DNA from untreated spores. ............. 67 

Figure 2.7. Example PCR products from spores isolated at different sampling points. 

M (marker pointing the fragment size of 1000 in base pairs (bp) with an arrow), lanes 

1 and 6 (negative controls), lanes 2-4 (positive results of spores isolated at different 

sampling points: 22.01.2016; 12.02.2016; 13.04.2016). ........................................... 67 

Figure 2.8. Spores of D. lepeophtherii exposed to 30% of H2O2. (a) Note the 

presence of the polar tubule after being extruded (arrows) and the absence of it in 

those spores in which the ejection did not occur (small arrow). (b) a D. lepeophtherii 

spore with the polar tube extruded. ............................................................................ 69 

Figure 2.9. Spores stain with the viability kit. (a) Spores examined with light 

microscopy and (b) under the fluorescence microscope. Note that viable spores have 

a green fluorescence and non-viable are have a red fluorescence, which indicates that 

the spore plasma membrane is damage and the PI has been absorbed. (c) Negative 

control spores that were previously boiled examined with light microscopy (d) 

Negative spores all showed a red fluorescence and were therefore non-viable. ....... 69 



xviii 

Figure 2.10. RTgill-W1 cells. Exposed cells with D. lepeophtherii spores (a) and 

negative controls cells (b) after 24 h.p.e. Note the spores (arrow) present in the 

infected cultures as singles and in groups; (c) exposed cells and (d) negative control 

cells after 7 d.p.e. After removing the old media and cleaning the cultures with fresh 

media for 3 times, some spores remained in the cultures (arrow). (e) Exposed cells 

with D. lepeophtherii spores and (f) negative controls after 21 d.p.e before cells were 

split. Cultures had been cleaned twice since the beginning of the experiments and the 

number of spores decreased. Cells post-exposure did not show obvious changes 

compared with the cells uninfected. Scale bars 100 µm. ........................................... 72 

Figure 2.11. Images of the SHK-1 cells. (a) Exposed cells with D. lepeophtherii 

spores and (b) negative control cells after 24 h.p.e. Note the spores (arrow) present in 

the infected cultures as singles and in groups; (c) Exposed cells and (d) negative 

control cells after 7 d.p.e. After removing the old media and cleaning the cultures 

with fresh media for 3 times, some spores remained in the cultures (arrow). (e) 

Exposed cells and (f) negative control cells after 21 d.p.e before cells were split. 

Cultures had been cleaned twice since the beginning of the experiments and the 

number of spores decreased. Infected cells did not show obvious changes compared 

with the cells uninfected. Scale bars 100 µm. ............................................................ 73 

Figure 2.12. Micrographs of macrophages of Atlantic salmon (arrows). Macrophages 

(a & b) after 3 h. p. e. with D. lepeophtherii spores. Note the spores (short arrow) 

present in the media but not yet internalized by the macrophages; (c & d) after 24 

h.p.e. some macrophages contained large amounts of microsporidian spores in their 

cytoplasm (box); (e & f) after 4 d.p.e. macrophages were enlarged (arrow) and spores 

were visible associated with the cytoplasm of the macrophages or in the media (short 

arrow). ........................................................................................................................ 74 

Figure 2.13. Micrographs of macrophages (a) after 3 h.p.e with D. lepeophtherii 

stained with Calcofluor White. Note how most of the spores (short arrow) are not 

associated with the macrophages; (b) after 24 h.p.e spores were mostly seen within 

the macrophages (arrow) and not free in the medium (white arrows). ...................... 75 



xix 

 

Figure 3.1. Histologic sections of gills from farmed Atlantic salmon stained with 

haematoxylin and eosin (H&E). (a) Mild focal lamellar epithelial hyperplasia and 

fusion (box). (b) Two foci of moderate AGD lesions (box). (c) Mild focal lamellar 

epithelial lymphocytic branchitis (arrow). (d) Presence of a multinucleated cell 

among the proliferated lamellar tissue (box). (e) Lamellar sub-epithelial infiltration 

of macrophages (arrow). (f) Proliferation of the distal part of a single shortened 

filament, PGD-like lesion (box). (g) Cartilage dysplasia of the filament (arrow). .... 92 

Figure 3.2. Histologic sections of gills from farmed Atlantic salmon stained with 

haematoxylin and eosin (H&E). (a) Focal lamellar oedema (box). (b) Epithelial cell 

necrosis of the lamellar outer margins (arrows). (c) Mild focal lamellar haemorrhages 

(boxes). (d) Two foci of lamellar tissue disruption and haemorrhage (boxes). (e) 

Moderate multifocal lamellar telangiectasia (arrows). (f) Mild multifocal lamellar 

thrombi with variable hyperplasia of the surrounding epithelium and lamellar 

shortening (arrows). ................................................................................................... 93 

Figure 3.3. Standard curves for (a) D. lepeophtherii (b) P. perurans, (c) SGPV and 

(d) Ca. B. cysticola (d). Each figure shows the slope, correlation coefficient (R2) and 

amplification efficiency. .......................................................................................... 103 

Figure 3.4. (a) Presence of abundant Chaetoceros spp. from a water sample at Farm 

A (b) Gill with hyperaemic areas (arrows) along the filaments. ............................. 108 

Figure 3.5. Fish from Farm A. (a) Gill with PGD of score 2, note the frequent 

thickening of the filaments mostly affecting the tips (white arrows). (b) Multifocal 

petechiae in the tips of the filaments (white arrows). .............................................. 108 

Figure 3.6. Fish from Farm B. (a) Atlantic salmon with gill haemorrhage when 

placed in a bucket with anaesthetic. (b) Haemorrhage in the gills. ......................... 111 

Figure 3.7. Fish from Farm B. (a) Lesions consistent with amoebic gill disease 

(AGD) (circle). (b) Foci of filaments swollen at the base, indicative of chronic AGD. 

(c) Presentation of the gills at the end of sampling in Farm B; note the slight gill 

pallor, multifocal swelling along the gill filaments, shortened filaments and PGD 

score of 2. By March 2017 fish were negative for AGD. ........................................ 111 



xx 

Figure 3.8. Histologic sections of gills from farmed Atlantic salmon stained with 

H&E. (a) Epitheliocyst in the base of the lamellae suggestive of Ca. Clavochlamydia 

salmonicola infection (arrow) (b) Epitheliocysts in the distal part of the lamellae 

suggestive of Ca. B. cysticola (arrows). (c & d) Unidentified metazoan organisms 

resembling copepods (arrows) between lamellae causing mild focal sloughing of 

tissue, lamellar epithelial hyperplasia and circulatory disturbances......................... 115 

Figure 3.9. Pathogens Ct value variations, epidemiology, gill score and temperatures 

in each sampling week of Farm A. FW= Freshwater sampling point before transfer to 

Farm A. ..................................................................................................................... 118 

Figure 3.10. Pathogens Ct value variations, epidemiology, gill score and 

temperatures in each sampling week of Farm B. FW= Freshwater sampling point 

before transfer to Farm B.......................................................................................... 119 

Figure 3.11. Percentage of fish positive for D. lepeophtherii in Farm A (SWA) and 

Farm B (SWB). (a) Percentage of fish positive for D. lepeophtherii across weeks. (b) 

Percentage of fish positive for D. lepeophtherii across seasons. In Farm A, the 

percentage of fish positive for D. lepeophtherii was significantly higher (p< 0.001) 

than in Farm B, and significantly higher (p< 0.001) in summer compared with the 

first sampling points in winter. The translucent points show the raw data, with 

random ‘jitter’ added to make the points easier to visualise, and the points with error 

bars show the mean for each farm and 95% CI. ....................................................... 121 

Figure 3.12. Variations of Ct values of D. lepeophtherii in the gills of salmon across 

weeks. First detection of D. lepeophtherii in Farm A occurred in week 6 and in Farm 

B in week 28. In Farm A, parasite load increased from week 10 to week 43, and then 

decreased from week 45 until week 57. In Farm B, parasite load increase from week 

30 to week 40, and remained with high until week 57. Points show raw data and lines 

and shaded areas show estimates from GAM and 95% confidence interval. ........... 122 

Figure 3.13. Percentage of fish positive for Ca. B. cysticola in Farm A (SWA) and 

Farm B (SWB). (a) Percentage of fish positive for Ca. B. cysticola across weeks. 

Note the high level of detection in both farms. (b) Percentage of fish positive for Ca. 



xxi 

 

B. cysticola across seasons. Differences in percentage of fish positive for Ca. B. 

cysticola were not statistically significantly different between farms or seasons (p ≥ 

0.05). The translucent points show the raw data, with random ‘jitter’ added to make 

the points easier to visualise, and the points with error bars show the mean for each 

farm and 95% CI. ..................................................................................................... 123 

Figure 3.14. Variations of Ct values of Ca. B. cysticola across weeks. Note the 

presence of the bacterium throughout the sampling period. Levels peaked in week 

19, decreased after week 24, and decreased further after week 48. Points show raw 

data and lines and shaded areas show estimates from GAM and 95% confidence 

interval. .................................................................................................................... 124 

Figure 3.15. Percentage of fish positive for P. perurans in Farm A (SWA) and Farm 

B (SWB). (a) Percentage of fish positive for P. perurans across weeks. (b) 

Percentage of fish positive for P. perurans across seasons. There were no significant 

differences between the number of positive fish detected across seasons (both farms 

were used in the model) (p ≥ 0.05). The percentage of positive fish was significantly 

higher in Farm B compared to Farm A (p< 0.001). The translucent points show the 

raw data, with random ‘jitter’ added to make the points easier to visualise, and the 

points with error bars show the mean for each farm and 95% CI. .......................... 125 

Figure 3.16. Variations of Ct values of P. perurans in the gills of salmon across 

weeks. Note how detection of P. perurans occurred in week 23 in a single fish, 

increased until week 43 and then decreased. P. perurans was detected in Farm B 

until week 57. Farm A had six positive fish between the weeks 40-47 but the rest of 

the fish examined were negative. Points show raw data and lines and shaded areas 

show estimates from GAM and 95% confidence interval. ...................................... 126 

Figure 3.17. Percentage of fish positive for SGPV in Farm A (SWA) and Farm B 

(SWB). (a) Percentage of fish positive for SGPV across weeks. Presence of SGPV 

was first detected in Farm A in week 28 and then sporadically until week 52. In Farm 

B, SGPV was also first detected in week 28, and fish positive for the virus were 

found until week 49. Differences in the percentage of fish positive for SGPV were 

not statistically significantly different between farms or seasons (p ≥ 0.05). The 



xxii 

translucent points show the raw data, with random ‘jitter’ added to make the points 

easier to visualise, and the points with error bars show the mean for each farm and 

95% CI. ..................................................................................................................... 127 

Figure 3.18. Variations of Ct values of SGPV. Sporadic detections of SGPV were 

detected from week 28 in both Farm A and Farm B but these did not follow a 

seasonal pattern and were not statistically significantly different between farms or 

seasons (p < 0.01). Fish from Farm A and Farm B were positive for the virus when 

tested in the freshwater stage of the cycle (data not shown). Points show raw data and 

lines and shaded areas show estimates from GAM and 95% confidence interval. .. 128 

Figure 3.19. LM1 showed that both the presence of D. lepeophtherii and farm 

identity were significantly associated with gill scores (see Table 3.7 for details). 

Small points show the raw gill score data, while large points with error bars show 

predictions from LM1 and 95%CI............................................................................ 131 

Figure 3.20.Representation of LM2. (a) The increase in the loads of D. lepeophtherii 

was significantly associated with the gill scores in Farm B but not in Farm A. (b) The 

increase in the loads of P. perurans was significantly associated with the increase of 

the gill scores in both Farm A and Farm B............................................................... 133 

Figure 3.21. Representation of linear regression models with the gill score of Farm 

B. (a) Model LM3 & LM4, note the strong association between season and gill score 

in Farm B, the points show raw data; small points show the raw gill score data, while 

large points with error bars show predictions from models and 95%CI. (b) Model 

LM5, when temperature was used instead of season then temperature, the increase of 

temperature was significantly associated with the increase in the gill score line and 

shaded area show predicted gill score ± 95% confidence intervals ......................... 138 

Figure 3.22.Graphs representating of the influence of water temperature on the Ct 

values of each pathogen. A linear and non-linear effect of water temperature was 

significantly associated with the loads of (a) D. lepeophtherii, (b) P. perurans, and 

(d) Ca. B. cysticola. A quadratic effect of temperature was not significantly 

associated with the Ct values of SGPV, although there was a linear effect of 



xxiii 

 

temperature in SGPV Ct values. The points show raw data; line and shaded area 

show predicted gill score ± 95% confidence intervals. ........................................... 139 

Figure 4.1. Schematic figure used to standardise the counting of ISH positively 

labelled structures in tissue sections. Each square represents the field observable 

under the microscope using 20x objective lens. A total of 49 areas were analysed per 

slide. The green arrow (top left) indicates the starting field; counting continues 

following the black arrows until the orange arrow (bottom right square). .............. 162 

Figure 4.2. Examples of the different values ascribed by the scoring system used for 

Atlantic salmon gills (a) Epithelial cell granular necrosis (arrows) within areas of 

lamellar epithelial cell proliferation, this gill would receive a score of 1. (b) Multiple 

microvesicles within the epithelial cells of the lamellae (arrows). Depending on how 

extensive the lesions were, gills were ascribed a score of 2 for small to medium 

number of microvesicles and 3 when a large number of microvesicles was present.

 ................................................................................................................................. 163 

Figure 4.3. Semi-serial histological sections of gills of Salmo salar infected with D. 

lepeophtherii. (a) H&E stain and (b) ISH. Note the dark blue labelled structures 

present in the gill tissue subjected to ISH which are far more difficult to recognise in 

the corresponding H&E stained serial sections at identical magnifications. ........... 168 

Figure 4.4. Semi-serial histological sections of gills of Salmo salar infected with D. 

lepeophtherii. (a) H&E stain and (b) ISH showing labelling of D. lepeophtherii 

(arrows) within the proliferated and degenerated epithelium of the gill lamellae. .. 169 

Figure 4.5. Atlantic salmon gill tissue subjected to in situ hybridisation specific for 

Desmozoon lepeophtherii (dark blue/purple pigment). (a) Gill of salmon negative to 

D. lepeophtherii. (b) Note pre-sporogonic stages present along the epithelial cells of 

the gill lamellae. (c) Example of a meront-like structure (arrow) approximately 4 µm 

in diameter (bar, 20 µm). (d) Note presence of a sporont-like structure and punctate 

labelling within a vacuole that corresponds to forming spores. .............................. 170 

Figure 4.6. In situ hybridisation showing the presence of Desmozoon lepeophtherii in 

gills of Atlantic salmon (dark blue/purple pigment); (a) Note proliferative stages 



xxiv 

(arrow) and a cluster of spore-like structures within the proliferated epithelium of the 

gill lamella (circle) (bar, 5µm); (b) Two labelled environmental spores; (c) A group 

of poorly labelled environmental spores of D. lepeophtherii measuring 2.5µm in 

diameter (bar, 5µm). ................................................................................................. 170 

Figure 4.7. In situ hybridisation for Desmozoon lepeophtherii (dark blue/purple 

pigment) showing proliferative stages in (a) kidney interstitium (arrow) and (b) 

lamina propria (arrow) of the intestine of Salmo salar. .......................................... 171 

Figure 4.8. In situ hybridisation for Desmozoon lepeophtherii (dark blue/purple 

pigment) in sea lice (Lepeophtheirus salmonis) infected with the parasite and (b) gills 

collected from an Atlantic salmon from Canadian farms heavily infected with D. 

lepeophtherii. ............................................................................................................ 172 

Figure 4.9. In situ hybridisation for Desmozoon lepeophtherii (dark blue/purple 

pigment) to test cross-reactions with closely related microsporidian species. (a) 

hepatopancreas of black tiger shrimp (Penaeus monodon) infected with E. 

hepatopenaei; and (b) C. lumpus) infected with N. cyclopterii. Note complete 

absence of labelling showing no cross reactivity with the probes used to detect D. 

lepeophtherii. ............................................................................................................ 172 

Figure 4.10. Semi-serial histological sections of gills of Salmo salar infected with D. 

lepeophtherii. (a) CW showing bright structures corresponding to large (white 

arrows) and small (yellow arrows) microsporidian spores, (b) note how the same 

structures label with ISH (boxes). ............................................................................ 174 

Figure 4.11. In situ hybridisation showing the presence of Desmozoon lepeophtherii 

in the gills of Salmo salar associated with a focal area of epithelial granular cell 

necrosis. .................................................................................................................... 176 

Figure 4.12. Boxplot of the pathology score in salmon gill tissue with different 

burdens of D. lepeophtherii represented as (a) RT-rtPCR Ct values and (b) ISH total 

counts in 10 mm² of gill tissue (ISH load). Pathology score (x- axis): 0 absence of 

necrosis, 1; epithelial granular cell necrosis but absence of microvesicles, 2; presence 

of small to medium numbers of microvesicles, 3; large numbers of microvesicles. 176 



xxv 

 

List of Tables 

Table 1.1. Summary of the pathological changes in gill diseases and microscopic 

appearance with H&E stain. ...................................................................................... 14 

Table 1.2. Main causes of reduced survival in salmon farming 2018 (Modified from 

Mowi, 2019-Integrated Annual Report 2018). .......................................................... 17 

Table 1.3. Putative pathogens associated with CGD and other contributing causes 

(Rodger, 2016). .......................................................................................................... 19 

Table 2.1. Fish- associated microsporidia successfully cultured in vitro. ................. 52 

Table 2.2. Details of D. lepeophtherii isolation from sea lice. The number of spores 

and weight of the sea lice (g) from which the spores were collected are provided. The 

number of spores/g sea lice is also present. ............................................................... 63 

Table 2.3. Yields of DNA extracted from sores using different extraction protocols: 

Method 1 (enzymatic disruption and DNA extraction Kit); Method 2 (enzymatic and 

mechanical disruption and DNA extraction Kit) and Method 3 (DNA extraction Kit 

only) ........................................................................................................................... 68 

Table 3.1. Farms details. ............................................................................................ 87 

Table 3.2. Week numbers with their respective sampling dates and seasons. ........... 89 

Table 3.3. Proliferative gill disease (PGD) field score values (kindly provided by 

FVG). ......................................................................................................................... 90 

Table 3.4. Amoebic gill disease (AGD) field score values (kindly provided by FVG).

 ................................................................................................................................... 90 

Table 3.5. Criteria for the histological gill scoring system used in this study. 

Modified from Mitchell et al. (2012). ........................................................................ 91 

Table 3.6. Sequence of primers and probes used for quantitative RT-rtPCR in the 

present study. ............................................................................................................. 98 



xxvi 

Table 3.7. Example of effect on assay performance comparing the effect of 

singleplexing and duplexing for D. lepeophtherii. SD (Standard deviation). .......... 102 

Table 3.8. Farm A qRT-PCR results for the tested pathogens and % of positive fish at 

different sampling points. ND= Non-detected. ........................................................ 104 

Table 3.9. Farm B qRT-PCR results to the tested pathogens and % of fish positive at 

different sampling points. ND= Non-detected. ........................................................ 105 

Table 3.10. Average and standard deviation (sd) of the environmental parameters 

measured 14 days before the sampling point............................................................ 116 

Table 3.11. Average histology, macroscopic AGD and PGD scores in each sampling 

timepoint of Farm A. ................................................................................................ 117 

Table 3.12. Comparison of the GAMs for the prediction of Ct value for different 

pathogens (D. lepeophtherii, P. perurans, SGPV and Ca. B. cysticola) across weeks 

and between farms. Note that Model 3 always gave the lowest AIC results. .......... 120 

Table 3.13. Results of LM1. SE= standard error, FarmID:x pathogen = Interaction 

between FarmID and “x pathogen” presence, p = probability of no effect. Significant 

variables are in bold. ................................................................................................. 130 

Table 3.14. Results of LM2. SE= standard error, FarmID:x pathogen = Interaction 

between FarmID and “x pathogen” Ct value, p = probability of no effect. Significant 

variables are in bold. Note that non-bold terms were removed from the model, and 

that the bold terms are the only variables in used in the final model. ...................... 132 

Table 3.15. Results of LM3. SE= standard error, p = probability of no effect. Note 

that non-bold terms were removed from the model, and that the bold terms are the 

only variables in used in the final model. ................................................................. 134 

Table 3.16. Results of LM4. SE= standard error, p = probability of no effect. Note 

that non-bold terms were removed from the model, and that the bold terms are the 

only variables in used in the final model. ................................................................. 135 



xxvii 

 

Table 3.17. Results of LM5. SE= standard error, p = probability of no effect. Note 

that non-bold terms were removed from the model, and that the bold terms are the 

only variables in used in the final model ................................................................. 136 

Table 3.18. Results of LM6. SE= standard error, p = probability of no effect. Note 

that non-bold terms were removed from the model, and that the bold terms are the 

only variables in used in the final model. ................................................................ 137 

Table 4.1. Fish number with type of samples used in the RT-rtPCR study and Ct 

value result.  ............................................................................................................. 156 

Table 4.2. Oligoprobe sequences designed for in situ hybridization. Small subunit 

ribosomal ribonucleic acid (SSU), internal transcribed spacer (ITS), melting 

temperature of the probes (Tm). .............................................................................. 159 

Table 4.3. Formulae used to calculate the sensitivity and specificity of the various D. 

lepeophtherii detection techniques. ......................................................................... 164 

Table 4.4. Results obtained by the variation of reagent concentrations and incubation 

times in the ISH protocol. +/- weak signal, + strong signal, BS background labelling, 

SBS strong background labelling. C1 cocktail 1, C2 cocktail 2. ............................. 165 

Table 4.5. Summary of the ISH procedure optimised for D. lepeophtherii ............ 166 

Table 4.6. Results using oligoprobes individually with their respective optimised 

protocol. - no signal, +/- weak signal, + strong signal, BS background staining. ... 167 

Table 4.7 Results of Sensitivity, Specificity, Positive Predictive Value (PPV) and 

Negative predictive value (NPV) on the techniques used when compared with the 

RT-rtPCR results for predicting the presence of D. lepeophtherii in salmon gills.  175 





 

1 

 

Chapter 1 Literature Review 

1.1 Structure, function of fish gills and gill pathology  

1.1.1 Structure and function 

The fish gill is a structurally complex organ, vital for many physiological functions 

including respiration, ionoregulation, osmoregulation, acid–base balance, 

nitrogenous waste excretion (reviewed by Evans et al., 2005), immune function (Dos 

Santos et al., 2001; Haugarvoll et al., 2008) and hormone metabolism (Okabe & 

Graham, 2004; Olson, 1998). Gills are located bilaterally on either side of the 

pharynx and contain four bony (cartilaginous in early life) respiratory gill arches that 

bear a series of paired caudolaterally oriented filaments (also called primary 

lamellae) on each arch, which are free at their distal ends but supported by an 

interbranchial septum at their base (Wilson & Laurent, 2002). One row of filaments 

is termed a hemibranch, while both constitute the holobranch. These filaments 

project an array of lamellae (also called secondary lamellae) that are critical for 

gaseous exchange (Evans et al., 2005). The gills are protected by an operculum, a 

bony external cover that participates in the buccal pumping mechanism that provides 

a continuous flow of water across the gills. Briefly, water enters through the pharynx 

into the buccal pump when the opercular valves are closed, then it moves through the 

inter-lamellar spaces until the mouth closes and the opercular valves open caudally 

forcing the water out (Hughes, 1960). The pseudobranch, found anteriodorsally 

under the operculum, is a gill arch remnant present in many teleost fish and is 

thought to be involved in respiration, osmoregulation and sensory functions amongst 

others (reviewed by Bridges et al., 1998), although its exact physiological role still 

remains unclear (Mölich et al., 2009).  

To efficiently extract oxygen dissolved in water, which has low solubility and 

diffusion gradient compared with atmospheric oxygen fish use a counter-current flow 

system (blood flow in lamellae is opposite to water flow) that increases the diffusion 

gradients of gases and metabolites (reviewed by Randall, 2014). Other factors aiding 

respiration include the large surface area of the gill and the interlamellar distance 

https://www.sciencedirect.com/science/article/pii/S1095643307009166#bib13
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which is optimal for oxygen uptake (Park et al., 2014). Three circulation circuits 

have been described in the gills, the interlamellar, the nutrient and the arterio-arterial 

pathway (Olson, 2002). Exchange of gases between the blood and the environment 

occurs in the arterio-arterial vasculature, also known as the “respiratory pathway” 

(reviewed by Evans et al., 2005). From the heart and the ventral aorta, blood enters 

the gills via afferent branchial arteries (ABAs), which feed the two hemibranchs of 

each arch via afferent filament arteries (AFAs) and these feed the afferent lamellar 

arterioles (ALAs). Blood flow in the lamellae occurs through the lamellar sinusoids 

created by the pillar cells, which have contractile proteins and are thought to regulate 

perfusion. Oxygenated blood from ALAs are fed into efferent lamellar arterioles 

(ELAs), which direct the blood to the efferent filament arterioles (EFAs) that feeds 

the efferent branchial arterioles (EBA). EBA continue into the dorsal aorta that feeds 

the subsequent systemic circulation to other tissues. The interlamellar and nutrient 

circulation are part of the arteriovenous vasculature supplied by the post-lamellar 

blood and are thought to provide nutrients to the filaments (Olson, 2002). The most 

important part of the arteriovenous vasculature is the central venous sinus, which 

runs along the filaments, and has been suggested to be vital in the ionoregulation of 

the fish (Laurent & Dunel, 1980). 

The majority of the filament and lamellar surface is covered by squamous cell 

epithelium, while the basal and intermediate layers of the epithelium contain 

undifferentiated cells (Wilson & Laurent, 2002). Two thin layers of epithelial cells 

are present in the lamellae. The surface of the outer lamellar epithelium is composed 

of microridge-like structures, rich in glycocalyx, thought to increase the respiratory 

surface area and aid in the interaction between the secreted mucus and host cell 

surface (Speare & Ferguson, 2006). The inner layer of the epithelium surrounds the 

vasculature. Lamellar blood spaces are supported by modified endothelial cells 

termed pillar cells that hold the epithelial layers together and create pillar channels 

for blood flow (Wilson & Laurent, 2002). Mucus cells are present more frequently 

on the edges of the filament but occur also within the lamellae. These cells play a 

role in ionoregulation, and mechanical and immunological protection (Wilson & 

Laurent, 2002). Chloride cells are mainly located in the base of the lamellae regions 

and are mitochondria rich-cells essential for the intensive energy processes 
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associated with osmotic regulation mediating ion exchange (i.e. sodium chloride 

secretion in marine fish) (Claiborne et al., 2002). Eosinophilic granular cells, that 

appear to have similar functions to mast cells in mammals (Reite, 1997), are located 

along the length of the filament. Other cells present in filament interstitium include 

rodlet cells, thought to participate in host defence (Koppang et al., 2015), 

neuroepithelial cells, macrophages, neutrophils and lymphocytes (Speare & 

Ferguson, 2006).  

1.1.2 Response of gills to damage 

The gill is covered by a thin (10 μm) epithelium (Eddy & Handy, 2012) (Figure 1.1) 

and is estimated to have the largest organ-specific surface in direct contact with the 

environment (0.1–0.4 m2/kg body weight) (Koppang et al., 2015), which makes the 

gill vulnerable to waterborne irritants and infectious agents (Bell, 1961). Importantly, 

restrictions on elective behaviour imposed by intensive farming reduces the options 

for fish to avoid harmful organisms (i.e. phytoplankton blooms) and can favour the 

selection of infections agents with high virulence (Pulkkinen et al., 2009). In 

addition, under high demand situations like energetic swimming, when ventilation 

increases from 50 min -1 at rest to 1000 min-1 (Eddy & Handy, 2012), or hypoxia 

(Davis & Cameron, 1971; reviewed by Perry et al., 2009; Yang & Albright, 1992;), 

exposure to water borne irritants and pathogens increases greatly. Uptake of larger 

water volumes favours oxygen uptake but this will also increase the gills exposure to 

solids or organisms in the environment. For instance, infection trials of rainbow trout 

(Oncorhynchus mykiss) with the trematode Diplostomum pseudospathaceum 

demonstrated increased infestation of gills for those fish exposed to lower levels of 

oxygen and a consequent higher ventilation volume (Mikheev et al., 2014). 

https://www.sciencedirect.com/topics/medicine-and-dentistry/ion-exchange
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Figure 1.1. Gills of Atlantic salmon macroscopically (left) and microscopically 

stained with haematoxylin and eosin (H&E) (right). The histological sagittal section 

of the gill shows (1) the filament, (2) mucus cells, (3) chloride cells, (4) the 

(pavement) lamellar epithelial cells, (5) pillar cells, and (6) erythrocytes within the 

capillaries. The photomicrograph was kindly provided by the Fish Vet Group. 

The response of gills to damage is generally relatively limited (Roberts, 2012) 

and similarities can be seen in non-specific host responses resulting from different 

types of gill assaults (Mallat, 1985). The latter author, who reviewed studies on the 

main alterations induced mainly by toxic substances, divided the type of changes 

seen in gill pathology into (1) those caused by the direct and early exposure of the 

fish to a stressor, and (2) changes found under continuous exposure to a stressor at 

non-lethal levels that correspond to the defence mechanism of fishes, and which were 

sometimes found during acute exposure to some irritants (Rodrigues et al., 2019). 

These two categories are very similar to the current descriptions of acute and chronic 

responses for gill pathology (Speare & Ferguson, 2006). Histopathological changes 

in an acute response include cell degeneration, cell death, and vascular changes such 

as congestion, oedema and haemorrhages; while chronic responses include cell 

hyperplasia, lamellar fusion or formation of thrombi. The infiltration of 

inflammatory cells can be seen in both, acute and chronic responses. Pathological 

changes seen in gills are summarised below and in Table 1.1. 
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1.1.3 Gill pathology 

1.1.3.1 Cell swelling 

Cell swelling: This is sometimes referred as hypertrophy because it involves an 

enlargement of individual cells. However, contrary to the increase in the number of 

organelles seen within the cells as occurs during true hypertrophy, cell swelling 

results from alterations in membrane permeability (Kumar et al., 2017), due to 

damage of the sodium pump, resulting in an increase of intracellular fluid (Rodger & 

Roberts, 2012). It is an early occurrence associated with acute cell damage and, 

although reversible, can lead to necrosis if the initiating cause persists (Wallig & 

Janovitz, 2013). Cell swelling can be difficult to recognise under light microscopy, 

but cells appear pallid, due to lower protein concentration and therefore stain affinity 

when subjected to haematoxylin and eosin (H&E) (Matthew et al., 2013). Also, they 

are enlarged, and the cytoplasm appears vacuolated as a result of altered segments of 

endoplasmic reticulum (ER) (hydropic or vacuolar degeneration) (Kumar et al., 

2017). Cell swelling can occur due acute exposure to toxic substances (Roberts & 

Rodger, 2012). Under acute exposure to toxins from Karlodinium micrum, zebrafish 

(Danio rerio) suffered swelling of different cells, due to an increase in membrane 

permeability, followed by lysis and necrosis of the epithelial surfaces (Deeds et al., 

2006).  

1.1.3.2 Cell death 

There are two broad types of cell death, apoptosis and necrosis, although other 

classifications exist (Kroemer et al., 2009). Necrosis is an energy-independent, 

passive process of cell death caused by external agents. The event is characterised by 

the disruption of the plasma membrane, swelling of organelles, and lysis of the cell 

contents. Because of the leaking of the cell contents, necrosis often stimulates a 

potentially damaging inflammatory response (AnvariFar et al., 2017). 

Cytomorphological changes in the nucleus during cell necrosis include karyolysis, 

which is the dissolution of the chromatin and fading of basophilia (less affinity for 

the basophilic dye in the H&E stain) secondary to the degradation by endonucleases, 

pyknosis (condensation of chromatin and the nucleus) and karyorrhexis 

(fragmentation of the nucleus) (Kumar et al., 2017). Necrosis of the gill epithelium 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cell-membrane
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/lysis


6 

has previously been associated with heavy metal exposure (Mallat, 1985), high 

concentrations of silver nanoparticles (Farmen et al., 2012), insecticides (Cengiz & 

Unlu, 2006), irritant phytoplankton or zooplankton (Rodger 2007; Rodger et al., 

2011), and infectious agents (Granzow et al., 2014; Nylund et al., 2010; Powell et 

al., 2004). 

Apoptosis, also known as “programmed cell death”, is essential for metazoan 

organisms to eliminate altered or unwanted cells (Edinger & Thompson, 2004). The 

process is highly regulated by cellular signalling pathways and although reports on 

apoptosis in fish are limited (AnvariFar et al., 2017), equivalent pathways of 

apoptosis to those present in mammals are believed to be occur (Dos Santos et al., 

2008). Apoptosis is largely regulated by the Bcl2 family of proteins and is associated 

with  loss of mitochondrial function and caspase enzyme activation; cleavage of 

endonucleases and fragmentation of DNA; destruction of the cytoskeleton and 

shrinkage of structures including pyknotic (condensed with increased basophilia) and 

karyorrhectic (fragmented) nuclei; and plasma membrane changes such as blebbing; 

phagocytic removal of material induced by phospholipids in apoptotic bodies (a 

result of shrinkage, fragmentation and budding of the cells) (Miller & Zachary, 

2017). Unlike necrosis, apoptotic cells do not release their cellular contents into the 

surrounding interstitial tissue and therefore the inflammatory response, if present, is 

very mild (Elmore, 2007).  

Apoptosis can be initiated by toxins, radiation or infectious organisms. For 

example, structural damage and enzyme impairment causing necrosis or apoptosis of 

chloride cells was observed in gills of tilapia exposed to copper (Dang et al., 2000) 

and salmon gill poxvirus (SGPV) has also been associated with apoptosis in 

epithelial and chloride cells of Atlantic salmon (Gjessing et al., 2015).  

1.1.3.3 Circulatory disturbances 

Vascular disturbances in fish gills include congestion, oedema, haemorrhages, 

aneurysms and thrombosis. Oedema will be explained in detail in a separate section 

due to the frequency of this condition in many gill disease studies. In gill pathology, 

congestion is understood to be an excess of blood in the capillaries (Speare & 

Ferguson, 2006) without distinction or if it is an active (hyperaemia) or a passive 
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(congestion) process, as defined for mammal pathology (Kumar et al., 2017). 

Haemorrhage is defined as the extravasation of blood from vessels (Kumar et al., 

2017). Aneurysms (or telangiectasias) are the result of collapsed pillar cells and 

weakness of vascular integrity (Rodrigues et al., 2019) and can be identified as 

blood-filled ovoid expansions of individual lamellae (Wolf et al., 2015), that 

eventually fibrose and repair with the formation of thrombi (Poppe & Ferguson, 

2006) 

Circulatory disturbances are normally caused by toxins, chemical irritants or 

mechanical damage of the lamellar epithelium. Causes of haemorrhage include 

chemical irritants (Rosety-Rodrıguez, et al., 2002), heavy metals, parasitic infections 

(Dezfuli et al., 2007), and physical abrasion such as the mechanical irritation from 

setae-bearing diatom algae (Roberts & Rodger, 2012) or contact with cnidocysts of 

gelatinous zooplankton (Baxter et al., 2011). Aneurysms can be due to exposure to 

pollutants (Rodrigues et al., 2019) or mechanical damage (e.g. fish pumping during 

boat treatments), but this change is a common gill artefact associated with head 

concussion and some euthanasia-related procedures, whereas the formation of 

thrombi indicates that true aneurysms have occurred (Wolf et al., 2015).  

1.1.3.4 Lamellar oedema 

Oedema is the accumulation of fluid resulting from a net outward movement of water 

into extravascular spaces due to an alteration in the permeability of the vascular wall 

and by Starling forces – an upset in the balance of hydrostatic and osmotic pressures 

(Mosier, 2017). The oedematous fluid that accumulates owing to an imbalance of the 

Starling forces typically is a low-protein containing transudate, in contrast with the 

more eosinophilic, protein-rich oedema fluid due to increased vascular permeability 

(Kumar et al., 2017). In fish, lamellar oedema is associated with the presence of sub-

epithelial proteinaceous material (Mitchell et al., 2012; Wolf et al., 2015), and 

therefore most of the cases of oedema detected are likely due to increases in vascular 

permeability. Epithelial lifting is the detachment of the outer epithelial layer of the 

lamellae (pavement cells), very similar to oedema, but without any content in the 

sub-epithelial gap. It was suggested that lifting of the lamellar epithelium does not 

necessarily represent true oedema because the sub-epithelial fluid might come 
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primarily from the water passing over the gills rather than originating as a blood 

exudate (Mallat, 1985). Conversely, after assessment by electron microscopy it has 

been suggested that epithelial lifting is due to interstitial oedema present in the space 

between the two layers of lamellar epithelium (Speare & Ferguson, 2006). However, 

the direct effect of toxicants, both in terms of oedema and epithelial lifting, have 

been suggested to have a protective effect on the fish by increasing the distance that 

waterborne irritants must diffuse to reach the fish’s bloodstream (Mallat, 1985). 

Epithelial lifting and lamellar oedema often appear as an acute response to direct 

contact with pollutants such as heavy metals (Figueiredo-Fernandes et al., 2007), 

biocides (Bruno & Ellis, 1988), hydrogen peroxide over-exposure (Kiemer & Black, 

1997; Tort et al., 2002), algae toxins (Rodger et al., 1994) or physical irritation (i.e. 

contact with the siliceous setae of algae) (Kent et al., 1995). 

1.1.3.5 Lamellar synechiae 

Lamellar synechiae is the adhesion between adjacent lamellae (often the tips) and is a 

more specific indicator of pavement cell necrosis (Wolf et al., 2015). The exact 

mechanism by which lamellar synechiae develop is unknown but the most likely 

causes have been reviewed by Speare & Ferguson (2006). One proposed mechanism 

involves an alteration in the mucus glycoprotein covering epithelium which 

modulates the negative charge causing adhesion to neighbouring lamellae. Another 

hypothesis involves loss of the outer layer of the mature epithelium and resultant 

increase in less mature cells that form junctional complexes as they migrate to the 

damaged site. Therefore, if fish are “gasping” (opening the mouth in the water 

column), the lamellae collapse, and this promotes the fusion of adjacent lamellae 

through the immature cells.  

Lamellar adhesions are common after exposure to heavy metals, algal toxins 

(Roberts & Rodger, 2012) or infectious agents, such as SGPV infections (as a result 

of extensive apoptosis and detachment of the epithelial cells) (Gjessing et al., 2015), 

parasitic infections (e.g. sparicoltilosis or costiasis) (Sitjà-Bobadilla & Alvarez-

Pellitero, 2009; Speare & Ferguson, 2006) or sequestration of bacteria (Ostland et 

al., 1999).   
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1.1.3.6 Cell hypertrophy 

Cell hypertrophy is an increase in cell size resulting from an increase in the number 

and size of organelles (Miller & Zachary, 2017). It occurs due to either an increase of 

functional demand (i.e. chronic pressure or volume overload can cause the hearts of 

vertebrates to remodel) (Keen et al., 2016) or from growth factor or hormonal 

stimulation (Kumar et al., 2017) and is a more energy-efficient method of increasing 

the size of an organ than hyperplasia because it does not involve cell duplication 

(Ong et al., 2007). As mentioned previously, cell hypertrophy in the gill epithelium 

has been recorded repeatedly as a direct result of contact with toxins, although only 

as a term to indicate an increase in cell size rather than any inference as to the 

mechanism of the increase.  

Examples of increased cell size to compensate for reduction in function without 

signs of degeneration or intracellular infection are most frequently associated with 

mucus or chloride cells (Jagoe et al., 1997). Mucus cell hypertrophy was observed in 

rainbow trout (Oncorhynchus mykiss) exposed to low levels of erythromycin 

(Rodrigues et al., 2019). The authors suggested it was an adaptation to increase 

mucus secretion by the gills to help protect their surface and to stimulate the rate of 

operculum movements to increase ventilation. The enlargement of epithelial cells 

(not true hypertrophy) can be caused by the development of intracellular infectious 

agents such as epitheliocysts-associated bacteria (Guevara-Soto et al., 2016) or 

microsporidian parasites such as Loma salmonae (Kent & Speare, 2005). 

1.1.3.7 Cell hyperplasia 

Hyperplasia is an increase in the number of individual cells in a cell population 

capable of mitosis, such as the epithelial cells of the gills (Temmink et al., 1983). 

Many epithelial cells are able to undergo hyperplasia in response to hormonal 

stimulation, inflammation, or physical trauma (Miller & Zachary, 2017). In gills, 

epithelial cell division occurs normally from the progenitor compartment at the base 

of the lamellae (Speare & Ferguson, 2006). Hyperplasia of gill epithelial cells is a 

very common non-specific host response to sub-acute to chronic gill damage (Wolf 

et al., 2015) and is thought to be an attempt to reduce the respiratory surface 

available for pathogens (Roberts & Rodger, 2012). Progressive hyperplasia leads to 
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fusion of adjacent gill lamellae. However, an increase in lamellar thickness will 

reduce the functional area of the lamellae and also the efficiency of gaseous 

exchange (Speare & Ferguson, 2006). Despite gill epithelial cell hyperplasia being 

one of the most common host responses to gill disease, the molecular mechanisms 

underlying these pathological changes are not well understood (Marcos-López et al., 

2018).  

Marked gill epithelial proliferation can be seen after direct exposure to toxic 

chemicals and heavy metals (Mallat, 1985). Amoebic gill disease is characterised by 

a hyper-proliferation of the gill epithelial tissue and has been suggested to be 

mediated by the down-regulation of the p53 tumour suppressor protein mRNA 

(Morrison et al., 2006), although further studies failed to find consistent modulation 

of this gene (Marcos-López et al., 2018). Other infectious diseases in salmon 

associated with marked lamellar epithelial proliferation include microsporidiosis 

(Matthews et al., 2013) and SGPV infections (Gjessing et al., 2015). Non-infectious 

waterborne insults such as contact with harmful algal blooms (HABs), are also 

associated with epithelial hyperplasia (Rodger et al., 2011). Nutritional deficiencies 

can also cause a proliferative pattern, such as pantothenic acid deficiency, which has 

been a notable problem for salmonid aquaculture in the past (Wood & Yasutake, 

1957), and causes a characteristic hyperplasia that starts from the distal part of the 

filament and progresses in a proximal direction (Karges & Woodward, 1983).  

Mucus and chloride cell hyperplasia can be seen as a response to mild, chronic 

gill irritation (Speare & Ferguson, 2006). Mucus cells secrete mucin glycoproteins, 

which have a critical role, including limiting infectious diseases (Linden et al., 

2008). Both hyperplasia and increased mucin secretion can be stimulated by several 

conditions (e.g. AGD) (Marcos-López et al., 2018), although overproduction of 

mucus will increase the lamellar thickness and hinder the diffusion of gases (Laurent 

& Perry, 1991). Lamellar chloride cell proliferation results in the multiplication of 

these cells along the length of the lamellae (Wolf et al., 2015), which in turn 

enhances the ion transporting capacity of the gill under situations that disturb ionic 

homeostasis. During experimental transmission of Sparicotyle spp. to gilthead 

seabream (Sparus aurata), chloride cells were abundant in infected fish, and seemed 
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to be a response to the ionoregulatory disturbance induced by the epithelial injuries 

caused by the parasite (Sitjà-Bobadilla & Alvarez-Pellitero, 2009). 

1.1.3.8 Inflammatory infiltration 

Inflammation is a complex host response aimed at eliminating the cause of cell 

injury, necrotic cells, and to initiate the process of repair (Kumar et al., 2017), 

although it can also exacerbate the disease process (Roberts & Rodger, 2012). 

Initiation of an inflammatory response involves soluble mediators and recruitment of 

inflammatory cells to the area (Kumar et al., 2017). Acute inflammation and occurs 

in a short time (from hours to a few days). Chronic inflammation occurs when the 

origin of the pathology persists, and the immune and inflammatory response is 

sustained. It is characterised by the infiltration of mononuclear cells, tissue 

destruction and repair (Kumar et al., 2017).  

Different immune cell types are present in fish, although these can be difficult to 

recognise in gill tissue (Speare & Ferguson, 2006). In addition, salmonids possess a 

dense population of resident lymphocytes at the caudal rim of each of the 

interbranchial septa (Haugarvoll et al., 2008) that should not be confused with 

branchitis when present additionally in the distal two-third of the filaments (Wolf et 

al., 2015). Immune cells seen in gills include neutrophils, macrophages, 

melanomacrophages, multinucleated giant cells, lymphocytes and eosinophilic 

granular cells, among others (Koppang et al., 2015).  

Some of the gill injuries frequently seen in marine-net pen salmonids induce an 

acute inflammatory response, such as spine silica diatom-induced branchitis (foreign 

body response) (Ferguson, 2006) or when in contact with gelatinous zooplankton, 

such as Aurelia aurita (response to trauma and toxic component) (Baxter et al., 

2011). Sub-acute inflammation has been described in rainbow trout gills 3 days after 

showing clinical signs of bacterial gill disease (BGD) infections and were 

characterised by the influx of monocytes after an initial infiltration of neutrophils 

(Speare et al., 1991). Experimentally, chronic inflammation was seen after naïve 

salmon co-habited with fish infected with the betaproteobacteria Candidatus 

Branchiomonas cysticola and was characterised by mononuclear cell infiltration into 

the sub-epithelial tissues 30 days after the start of the trial (Wiik‐Nielsen et al., 



12 

2017). Events of gill tissue repair are not frequently reported. Evidence of 

neovascularization and vascular remodelling were present in the gills of chinook 

salmon Oncorhynchus tshawytsch following an acute inflammatory response and 

tissue damage caused by the rupture of the xenoma (cyst containing different 

developmental stages of a microsporidian) filled by the parasite Loma salmonae 

(Lovy et al., 2007). 

Examples of inflammation caused by common gill injury, explained briefly 

above, are based solely on the histological presentation using routine staining 

techniques such as H&E. More complex immune responses of the gills, usually 

based on transcription analysis of various immune genes, have been described for 

certain gill diseases (reviewed by Koppang et al., 2015). 

1.1.3.9 Artefacts 

Gill tissue is prone to artefacts and interpretation on histopathology, especially acute 

changes, can be hindered if care is not taken during tissue sampling and processing 

(Speare & Ferguson, 2006). Lifting of the lamellae and epithelial swelling can occur 

within five minutes after death if the tissue it is not immediately placed into fixative 

because of the absence of compensatory water pressure within the branchial cavity 

(Ferguson, 2006). In addition, the gills are a technically complicated organ to prepare 

for routine histology as the fixative used or the orientation of sectioning can interfere 

with the final morphology of the section (Wolf et al., 2015). The technique used to 

kill fish can also induce artefacts in the gill vasculature (Wolf et al., 2015). 

1.1.4 Clinical signs of respiratory disease  

The typical clinical signs of gill disease observed in fish result from the animal 

attempting to compensate for a reduction in the functional area of the organ to fulfil 

its required physiological functions. This has a high energy cost and routine 

activities, like swimming or feeding, will be affected as a consequence. Hvas et al. 

(2017) showed a reduced swimming capacity and limited maximum rate of oxygen 

uptake during exercise in fish suffering from AGD compared with a healthy group 

(203 mg O2 kg−1 h−1 compared to 406 mg O2 kg−1 h−1, respectively). Inappetence is 
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common in fish with gill disease and reduces productivity if the disease persists 

(Weli et al., 2017).  
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Table 1.1. Summary of the pathological changes in gill diseases and microscopic appearance with H&E stain. 

Change Description Microscopic appearance (H&E) 

Cell swelling Alteration in the membrane permeability. Enlarged and cloudy cells (lack of eosinophilia), with clear 

vacuoles within the cytoplasm. 

Cell necrosis Disruption of the plasma membrane, swelling of organelles, 

and lysis of the cell content. 

Karyolysis, pyknosis and karyorrhexis of the nucleus. Increased 

eosinophilia of the cytoplasm. Accompanied by influx of 

inflammatory cells. 

Cell apoptosis Regulated programmed cell death that does not elicit an 

inflammatory response. 

Pyknosis and karyorrhexis. Formation of apoptotic bodies. 

Absence or very mild inflammatory reaction. 

Circulatory 

disturbances 

- Congestion: due to increase in vascular permeability 

- Haemorrhage: caused by the rupture of the vascular wall. 

- Aneurysms: result of the collapse of pillar cells. It can be an 

artefact. 

- Thrombosis: resolved aneurysms. 

- Congestion: excess of blood in the capillaries. 

- Haemorrhage: extravasation of erythrocytes from vessels. 

- Aneurysms: blood-filled, ovoid expansions of vessels. 

- Thrombosis: fibrin-rich material within the blood vessel after 

disruption of blood vessel endothelial cells. 

Lamellar 

oedema 

/Epithelial 

lifting 

Alterations in the walls of blood vessels and impairment of 

hydrostatic and oncotic pressure gradients across the capillary 

resulting in accumulation of fluid within the extravascular 

spaces. Epithelial lifting can be an artefact of this. 

Epithelial lifting: detachment of the outer lamellar epithelial layer 

with a space between the vasculature and the pavement cells. 

Oedema: the same but with proteinaceous material in the space. 

Lamellar 

synechiae 

Suggested to be caused by an alteration in the glycoproteins 

of the mucus that covers the epithelium, and the loss and 

regeneration of the pavement cells. 

Adhesion between adjacent lamellae (typically the tips) not 

caused by epithelial proliferation. 

Cell 

hypertrophy 

Increase in the cell size resulting from increased number and 

size of organelles due to an increase of functional demand, a 

growth factor effect or hormonal stimulation. 

Enlargement of cell without obvious signs of cell degeneration. 

Cellular 

hyperplasia 

Suggested that this reduces the respiratory surface available 

for pathogens and/or enhances cell function. 

Increased number of cells leading to fusion of adjacent gill 

lamellae. 

Branchitis Inflammation is the host response to eliminate the cause of 

cell injury, necrotic cells, or initiate cellular repair. 

Extravasation of immune cells. 
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Signs of gill dysfunction include swimming close to the water surface or crowding 

together facing into the oncoming current at the side of the pen and an increased 

respiratory rate.  

Gross lesions are variable but include variable degrees of swollen and/or 

shortened gill filaments, pallor, mucus accumulation and petechial haemorrhages 

(Kvellestad et al., 2005). Lesions can be focal or diffuse and may be limited to a 

single gill arch or, more commonly, affect several or all gill arches in affected 

individuals. Haemorrhage can also be caused by waterborne irritants or trauma 

during events such as mechanical removal lice (e.g. hydrolyser) (Hjeltnes et al., 

2018). 

1.2  Gill diseases in Atlantic salmon 

1.2.1 Relevance of gill disease to the Atlantic salmon aquaculture 

industry 

1.2.2 Atlantic salmon aquaculture in the UK and globally 

According to the Food and Agriculture Organization of the United Nations (FAO), 

aquaculture is “the farming of aquatic organisms, including fish, molluscs, 

crustaceans and aquatic plants”. Aquaculture is an ancient practice, with details of 

carp aquaculture production as early as the fifth century B.C. in the writings of Fan 

Li in China, while the Romans documented coastal aquaculture practices before the 

end of the second century B.C. in Europe (Carter, 2002). In the last few decades, 

globally, aquaculture has expanded rapidly and has achieved annual growth rates of 

approximately 10% in the 1980s and 1990s. Although this growth has slowed to 

5.8% per year during 2000-2016, aquaculture remains the fastest growing food-

producing sector (FAO, 2018). 

Atlantic salmon (Salmo salar) production represents 4% of the total finfish 

production worldwide (FAO, 2018), with Scotland being the third largest producer of 

Atlantic salmon after Norway and Chile. In 2016, Scotland produced 162,817 tonnes 

of salmon, which was worth approximately £800 million by value (Kenyon & 

Davies, 2018). With the predicted rise in the world’s population to 8.5 billion by 
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2030, an increase in aquaculture production has been suggested as one of the main 

solutions to meet future demands for animal protein (Béné et al., 2015). The Scottish 

aquaculture industry has an ambition to produce up to 400,000 tonnes of salmon 

annually by 2030 (Gatward et al., 2017), but for this, constraints resulting from 

different challenges, including health issues, need to be addressed (Gatward et al., 

2017). 

1.2.3 Impact of gill diseases to the salmon industry 

The most widely recognised, and therefore the best studied gill pathogen in Atlantic 

salmon is Paramoeba perurans (syn Neoparamoeba perurans) (Murray et al., 2016), 

the causative agent of amoebic gill disease (AGD) (Munday et al., 2001). In 

Tasmania, AGD has been estimated to be responsible for 10-20% of the total 

production costs (Munday et al. 2001) and is still considered to be the most serious 

health problem during the marine stage of salmon farming (Oldham et al., 2016). 

The estimated cost of AGD-associated mortality outbreaks to the salmon industry 

globally has been reported to be over one million in certain production years (USD 

1-81 million) (Shinn et al., 2015). The term “gill disease” groups various conditions 

of different aetiologies. Overall, estimating the true cost of these to the industry is 

difficult because gill disease is wide-ranging and not notifiable. Gill disease has been 

recorded in Europe since the 1980s (Kvellestad et al., 2005; Rodger & McArdle, 

1996). In Norway, gill disease of a proliferative nature affected 18.8% of Atlantic 

salmon production during 1998/1999 and this increased to 35.3% by 2002/2003 

(Nygaard, 2004, cited in Nylund et al., 2008). However, according to the literature, it 

was not until 2003/2005 that gill conditions were considered an emerging problem 

(Kvellestad et al., 2005; Rodger, 2007). At the time of writing, gill diseases are one 

of the most important health problem in all major Atlantic salmon producing 

countries, including Australia (Oldham et al., 2016), Canada (Laurin et al., 2019; 

McPhee et al., 2017), Chile (Santana, 2018), Norway (Hjeltnes et al., 2018), Ireland 

(Downes et al. 2018; Marcos-López, 2018) and Scotland (Matthews et al., 2013). 

Data from Mowi’s report for 2018, the world's largest farmed salmon producer, 

highlighted gill infections as the second major cause of loss in 2018, just after 
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cardiomyopathy syndrome in term of biomass and the third in terms of total fish 

numbers (Mowi, 2019) (Table 1.2).  

Table 1.2. Main causes of reduced survival in salmon farming 2018 (Modified from 

Mowi, 2019-Integrated Annual Report 2018). 

 Infectious Non-infectious 

 Fish numbers Biomass Fish numbers Biomass 

1 Cardiomyopathy 

syndrome 

Cardiomyopathy 

syndrome 

Treatment Treatment 

2 Wounds (bacterial 

skin diseases) 

Gill infections Poor 

performers 

Physical damage 

3 Gill infections Wounds (bacterial 

skin diseases) 

Physical 

damage 

Poor performers 

4 Pancreas disease Pancreas disease Transport Handling 

 

1.2.4 Multifactorial gill diseases 

Infectious and non-infectious aetiologies have been associated with gill disease 

(Mitchell & Rodger 2011; reviewed by Rodger et al., 2011). Therefore, even though 

gill disease can be caused by a single agent, it is frequently multifactorial making it 

difficult to establish one definitive aetiology (Kvellestad et al., 2005). A peak in gill 

disease incidence occurs in Northern Europe from summer to early winter (Steinum 

et al., 2010). However, the difficulty in establishing the cause of this multi-pathogen 

and multifactorial disease has resulted in inconsistent classification and, as such, no 

specific case definition exists currently. 

The term “proliferative gill inflammation” (PGI) has been used to describe 

recurrent gill disease outbreaks occurring in autumn in salmon farms on the 

southwest coast of Norway. These primarily affect smolts that have been transferred 

to the sea the previous spring (S1) (Kvellestad et al., 2005), although outbreaks have 

also been reported at other times of the year (Steinum et al., 2009). Histological 

changes in the gills of affected fish included epithelial cell proliferation and necrosis, 
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inflammation and vascular changes, such as lamellar haemorrhage and/or lamellar 

thrombosis (Kvellestad et al., 2005). However, the changes seen are relatively non-

specific and can be found at a level insufficient to consistently cause disease. 

Moreover, gill disease pathology can vary depending on the agent or physical event 

responsible. In Scotland, the seasonality and pattern of gill disease appears similar to 

that described for PGI in Norway, but the vascular changes were inconsistent 

(Matthews et al., 2013) and this has limited the use of the term PGI. Proliferative gill 

disease (PGD) has been used as a non-specific term derived from examination and 

scoring of gross lesions in salmon gills. The term PGD could have been used by 

researchers in the past to refer to histological proliferation (lamellar epithelial cell 

hyperplasia and fusion of adjacent lamellas, e.g. Nylund et al., 2008) or by 

pathologists in Scotland to refer to gill diseases with histological proliferative 

element of uncertain aetiology (Matthews et al., 2013). However, PGD is also a non-

specific term that describes neither a syndrome or a specific disease aetiology in 

salmon. Additionally, there is already a gill disease termed proliferative gill disease 

or “Hamburger Disease” that affects channel catfish (Ictalurus punctatus) and creates 

confusions with the term PGD used in Europe for salmonids. Chance et al. (2018) 

discussed the occurrence of emergent gill diseases in Europe, such as AGD, 

waterborne irritants and PGD but the reference cited for PGD referred to the disease 

in catfish caused by the myxosporean Henneguya ictaluri (Pote et al., 2000). Other 

terms, such as “chronic gill disease” or “autumn gill disease” (Hjeltnes et al., 2017), 

have also been used but due to variability in the clinical presentation no case 

definition has been established. 

Complex gill disorder, also known as complex gill disease (CGD) is the 

preferred term being used by those working in the field of fish health to refer to this 

varied syndrome of probable multifactorial aetiology and variable histopathology and 

this encompasses the syndromes referred to as PGI or PGD in articles published 

previously. Although a complete case definition for CGD has not yet been 

established, efforts are focused on identifying knowledge gaps to address this 

(SRUC, 2017). The following section will focus in the latest knowledge available 

related to CGD and putative causes associated with the disease.  



 

19 

 

1.2.5 Putative pathogens associated with complex gill disorder 

The aetiological agents involved in CGD are uncertain due to the inability to culture 

and grow several of the suspected organisms in vitro (e.g. epitheliocyst-forming 

bacteria) (Kvellestad et al., 2003) and because some are present frequently in 

clinically normal animals (Steinum et al., 2010) The putative causes associated with 

the disease are summarised in Table 1.3. 

Table 1.3. Putative pathogens associated with CGD and other contributing causes 

(Rodger, 2016).  

Viruses Bacteria Parasites Non-

infectious 

Others 

Atlantic 

Salmon 

Paramyxovirus 

Salmon Gill 

Poxvirus 

 

Ca. B. cysticola 

Ca. 

Piscichlamydia 

salmonis 

Ca. 

Syngnamydia 

salmonis 

Tenacibaculum 

spp. 

Paramoeba 

perurans  

Desmozoon 

lepeophtherii  

Trichodina spp. 

Ichthyobodo spp. 

Parvicapsula 

pseudobanchiocola 

Harmful 

algae 

blooms 

Harmful 

zooplankton 

Hydrogen 

peroxide  

Mechanical 

damage 

(handling 

or 

treatments) 

Water 

quality 

 

1.2.5.1 Atlantic salmon paramyxovirus 

A total of nine paramyxoviruses have been described in fish, although not always 

associated with disease (reviewed by Meyers & Batts, 2016). The complete sequence 

of Atlantic salmon paramyxovirus has been determined and phylogenetic analysis 

suggests that the virus is a novel member of the sub-family Paramyxovirinae, most 

closely related to the respiroviruses (Falk et al., 2008). It was first isolated in 1995, 

from a population of Atlantic salmon post-smolts suffering from gill disease in 

Norway, using cultures of rainbow trout gill cells (RTgill-W1) and CHSE-214 cells 

infected with diseased gills (Kvellestad et al., 2003). The mortality in this population 

of fish reached 40% and the gills of infected salmon had epithelial necrosis, vascular 

changes, branchitis, lamellar epithelial proliferation (these four changes represent the 
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description of PGI) and presence of epitheliocyst organisms. While attempting to 

culture the epitheliocysts in vitro the authors observed the growth of ASPV as a 

cytopathic effect in the tissue cultures 9 weeks post-infection with a growth range 

between 6-21ºC (Kvellestad et al., 2003). Infection trials with the virus in salmon 

post-smolts successfully transmitted infection to naïve salmon, but did not produce 

pathology (Fridell 2003, cited in Meyers & Batts, 2016) or mortalities (Fridell 2003, 

cited in Fridell et al., 2004). The authors did not discard the possibility that the virus 

was somehow associated with the disease and in later studies immunohistochemistry 

(IHC) was used to detect ASPV and subsequently to screen the gills of post-smolts 

from three farms with gill disease problems and with a history of PGI (Kvellestad et 

al., 2005). Abundant positive labelling was seen in the epithelial and endothelial cells 

of the affected gills, although not all gills with PGI were positive. However, it was 

suggested that the agent was contributing to the pathology observed. Nylund et al., 

(2008) failed to detect ASPV in two marine farms examined despite mortalities close 

to 80% in salmon suffering from gill disease of a proliferative nature. Additionally, 

Steinum et al. (2010) detected ASPV in only one of six farms examined with fish 

suffering from PGI. This suggests that the presence of the virus is not always 

associated with the disease and it was not involved in the PGI that occurred on these 

farms (Steinum et al., 2010). The role of ASPV in gill disease is still controversial 

but it is highly unlikely to be a primary pathogen. 

1.2.5.2 Salmon Gill Poxvirus 

Poxviruses have been associated with gill disease in fish including koi and common 

carp (Cyprinus carpio) and ayu (Plecoglossus altivelis) (reviewed by Gjessing et al., 

2016). Proliferative gill diseases have been present in Norway during both the 

freshwater and seawater stages of Atlantic salmon production since the 1990s 

(Nylund et al., 2008) and it was suspected that a poxvirus was associated with this 

since the 1990s, especially in the freshwater stage. However, it was not until 2008 

that salmon gill poxvirus (SGPV) was first described using transmission electron 

microscopy (TEM) (Nylund et al., 2008). Later, next-generation sequencing 

provided the whole genome of SGPV placing the virus in the sub-family 

Chordopoxvirinae (Gjessing et al., 2018) and the presence of the virus was 

confirmed in samples of diseased salmon gills dating back to 1995. 
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SGPV has been reported recently in Ireland (Downes et al., 2018), the Faroe 

Islands and Scotland (Gjessing et al., 2018), and a recent variant has been detected in 

Atlantic salmon in North America which, unlike the Norwegian variant, is 

permissive to cell culture (LeBlanc et al., 2019). However, unlike the European 

variant, fish infected with the North American SGPV variant did not show any 

pathology (LeBlanc et al., 2019). Horizontal transmission from infected to naïve fish 

has been demonstrated including indirectly via water coming from infected fish pens 

(Wiik-Nielsen et al., 2017). SGPV is found in salmon hatcheries that do not receive 

any incoming seawater (Gjessing et al., 2017) and it is in the freshwater phase of 

salmon rearing where SGPV shows its most typical manifestation of clinical disease 

(Gjessing et al., 2016). However, studies suggest that the virus may have a marine 

origin because the prevalence of SGPV is relative high in wild Atlantic salmon in 

Norway returning from marine migration and it has not been found in (non-

anadromous) landlocked salmon that have never had contact with the marine 

environment (Garseth et al., 2018). 

In fry, the course of the disease occurs synchronously in all fish within the tank. 

Clinical signs associated with the disease have been described mainly for salmon fry, 

pre- and post-smolts and include loss of appetite, lethargy and crowding in the 

bottom of the tank. On gross examination the gills appear pale and the filaments 

swollen. In addition, redness of the abdomen has been described (Gjessing et al., 

2018). 

Using TEM, Nylund et al. (2008) observed that gills of fish suffering from 

SGPV presented a severe proliferative reaction with inflammation and the complete 

absence of interlamellar spaces in some gill arches. Cells infected with poxvirus 

particles protrude from the surface of the outer lamellae due to being enlarged and 

have condensed nuclear chromatin. An IHC method was used to study the course of 

the infection in pre-smolts infected with the virus in three different freshwater farms 

in Norway at different stages of the disease: before, during and after mortalities 

occurred (Gjessing et al., 2015). Before mortalities, histopathology of affected fish 

revealed the presence of apoptotic cells, denoted by TUNEL stain, in the lamellar 

epithelium and hypertrophy of the squamous epithelium, hyperplasia of the chloride 
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cells and fusion of the adjacent lamellae. During the peak mortality stage detachment 

of the apoptotic epithelial cells was present together with abundant SGPV, as 

denoted by IHC labelling, widespread adherence of neighbouring lamellae, severe 

epithelial cell proliferation and apoptosis of chloride cells. The changes to chloride 

cells suggest that SGPV could affect the smoltification process and predispose the 

fish to secondary infections by causing direct damage to the respiratory epithelium 

(Gjessing et al., 2017). Hemophagocytosis in the kidney and spleen by scavenger 

endothelial cells and macrophages in the absence of SGPV IHC positive labelling 

was also present (Gjessing et al., 2015; Gjessing et al., 2018), although the 

mechanisms for this is not well understood. One week after mortalities stopped, most 

fish had mild clinical signs of disease and less severe pathology.  

Similar pathology to that observed in freshwater fish has been described for fish 

infected with SGPV in the marine stage (Gjessing et al., 2017; Nylund et al., 2008). 

However, gill disease in the marine environment is often multifactorial and 

associated with proliferation of the epithelial cells and fusion of the lamellae, which 

can mask the presence of the protruding apoptotic cells suggestive of SGPV 

(Gjessing et al., 2017). Gjessing et al., (2017) showed widespread presence of SGPV 

in salmon in the marine environment using improved detection methods for the virus, 

including quantitative polymerase chain reaction (qPCR) and IHC. Archived samples 

from the first case of amoebic gill disease, which caused approximately 80% 

mortality in the affected site in Norway (Steinum et al., 2008), tested positive for 

SGPV (Gjessing et al., 2015). Conversely, detection of SGPV was variable in the 

longitudinal study carried out by Downes et al. (2018) in Ireland and no pathology 

was observed in infected fish. Although it appears infected fish can overcome the 

disease and eliminate the virus (Wiik-Nielsen et al., 2017), it might be that the virus 

becomes latent and can be re-activated at a later stage, for example during episodes 

of immunosuppression (Downes et al., 2018). While the pathogenesis of SGPV still 

needs to be fully elucidated, it has been suggested that it could evade the innate 

immunity of the host, allowing it to replicate (Gjessing et al., 2018), and the resulting 

apoptosis and shedding of infected cells may be caused by the virus itself to allow it 

to spread to other hosts (Garseth et al., 2017). 
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1.2.5.3 Epitheliocyst-forming bacteria 

The term epitheliocyst has been used widely to describes the presence of cysts in the 

epithelial cells (Blandford et al., 2018), and are found primarily in the epithelial cells 

of the gills and skin (Nowak & LaPatra, 2006). These inclusions were first detected 

in 1920 in common carp (Cyprinus carpio) and reported as “mucophilosis” (cited in 

Nowak & LaPatra, 2006) and later described by Hoffman et al., (1969) in the gills of 

bluegill (Lepomus macrochirus). The presence of epitheliocysts has been recorded in 

at least 90 species of fish (Blandford et al., 2018) and often in the presence of disease 

and mortalities (Katharios et al., 2008). However, the difficulty in culturing the 

causative agents and lack of experimental models hinders the study of these cyst-

forming organisms (Nowak & LaPatra, 2006). Initially, the origin of the 

epitheliocysts were thought to be Gram-negative, Chlamydia-like and rickettsial 

intracellular bacteria (Nowak & LaPatra, 2006) but recent understanding is that they 

are caused by a wide range of different bacteria (Blandford et al., 2018). Since the 

start of salmon farming in Norway, there have been reports of epitheliocysts 

associated with mortalities (Nylund et al. 1998). Epitheliocysts are a common 

finding in the gills of seawater farmed Atlantic salmon during gill disease outbreaks 

(Kvellestad et al., 2005; Steinum et al., 2009) and have been associated with various 

putative pathogens including the bacteria Ca. Branchiomonas cysticola (Toenshoff et 

al., 2012), Candidatus Piscichlamydia salmonis (Draghi et al., 2004), Candidatus 

Clavichlamydia salmonicola (Mitchell et al., 2010) and Candidatus Sygnamidia 

salmonis (Nylund et al., 2015). A moderate positive association has been found 

between the loads of Ca. P. salmonis, estimated by real-time PCR targeting 16S 

rRNA, and the severity of PGI in fish (Steinum et al., 2010). However, the presence 

of Ca. P. salmonis did not correlate with the prevalence of epitheliocysts in gill 

tissue, suggesting that another organism was responsible. It was later discovered that 

the betaproteobacteria Ca. B. cysticola (Toenshoff et al., 2012) was linked with the 

presence of epitheliocysts and with an increased severity of PGI, suggesting it may 

have a significant role in the disease (Mitchell et al., 2013). Ca. B. cysticola infection 

can also be detected in the fresh-water stage of salmon production (Wiik-Nielsen et 

al., 2017). During infection trials, in which the water of infected fish was used as a 

source of waterborne infection for a population of naïve juvenile Atlantic salmon, 
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Ca. B. cysticola infections were associated with gill epithelial cell proliferation and 

subepithelial inflammation (Wiik-Nielsen et al., 2017). These findings suggest that 

other histological lesions, not only the formation of cysts in the epithelial cells, can 

occur in gills infected by the bacteria. Unfortunately, the high prevalence of Ca. B. 

cysticola in healthy fish (Downes et al., 2018) has hindered our understanding of its 

role in gill diseases.  

1.2.5.4 Desmozoon lepeophtherii 

The microsporidian parasite Desmozoon lepeophtherii (syn. Paranucleospora 

theridion) is highly prevalent in both healthy fish and those affected by gill disease 

(Steinum et al., 2010, Nylund et al., 2011). However, parasite loads have been 

shown to be considerably greater in fish with PGI by real-time reverse transcriptase 

PCR (RT-rtPCR) (Steinum et al., 2010). Infections with D. lepeophtherii have been 

associated with fish with lower condition factor (Gunnarson et al., 2017) and stunted 

growth (Weli et al., 2017). Histologically, D. lepeophtherii spores have been 

observed in clusters within lesions which are typically comprised of widespread 

hypertrophied and necrotic inter-lamellar epithelial cells in the gills (Matthews et al., 

2013). More information about D. lepeophtherii-associated pathology can be found 

in Section 1.4.8. 

1.2.5.5 Paramoeba perurans 

The protozoan Paramoeba perurans (= Neoparamoeba perurans), which causes a 

specific proliferative gill pathology known as amoebic gill disease (AGD), represents 

an aetiologically important gill disease (Munday et al., 2001). Paramoeba perurans 

has also been reported in some multifactorial outbreaks of autumn gill disease and if 

PGI and AGD appear together, the mortality rate can reach 80% (Nylund et al., 

2011; Steinum et al., 2008). In recent years, a complex scenario, comprising several 

different types of gill pathology in association with AGD, has been frequently 

reported in Scotland (Rodger, 2014) and Norway (Gjessing et al., 2017). This 

increase in disease occurrence could be due to increased prevalence of concomitant 

pathogens. The role of P. perurans in gill disease is well-known and has been 

reviewed by various authors (e.g. Oldham et al., 2016; Rodger 2014). 
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1.2.5.6 Other pathogens 

Tenacibaculosis is caused by Tenacibaculum spp., a Gram-negative, filamentous, 

marine bacterium, and is an important disease in aquaculture worldwide (Avendaño-

Herrera et al., 2006; Toranzo et al., 2005). Three different species have been 

recovered from Atlantic salmon populations: Tenacibaculum maritimum, 

Tenacibaculum finnmarkense (Småge et al., 2016) and Tenacibaculum dicentrarchi 

(Avendano-Herrera et al., 2015). These different bacterial species include a variety 

of strains that are associated with different levels of pathogenicity (Småge et al., 

2018). The bacterium can be detected in healthy gills, but the bacterial load increases 

in presence of clinical disease (Fringuelli et al., 2012).  

Other parasites reported during CGD, but not consistently present, include 

Parvicapsula pseudobranchiola, Ichthyobodo spp., and Trichodina spp. (Kvellestad 

et al., 2005; Nylund et al., 2011) and the presence of opportunistic gill pathogens can 

aggravate gill disease.  

1.2.5.7 Other factors involved in CGD 

The factors associated with CGD have yet to be determined. Some environmental 

conditions and handling procedures have been proposed to play a key role in the 

disease. Harmful algal blooms can precede CGD outbreaks, presumably by causing 

physical damage or irritation to the gill epithelium and facilitating the ingress of 

infectious agents (Rodger et al., 2011). HABs can induce excess mucus production, 

multiple small foci of thickening along the gill filaments and haemorrhages (Rodger 

et al., 2011). Histologically, the gill pathology associated with HABs can include 

oedema causing severe separation of the lamellar epithelium and congestion of 

branchial vessels, epithelial cell necrosis and epithelial cell sloughing (Speare 

& Ferguson, 2006). Some gelatinous zooplankton represent important environmental 

challenges to gills, such as relatively large jellyfish, and are carried onto outer 

surfaces of fish cages by tides and currents causing them to break up and pass 

through the mesh (Delannoy et al., 2011). After being inhaled by the fish during 

respiration, the jellyfish can pass directly over the gills causing mechanical/toxin-

related damage via the release of stinging cells (Mariottini & Pane 2010). 
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Phytoplankton blooms may increase stress in affected fish populations resulting in 

secondary bacterial infection due to damaged gill epithelium (Rodger et al., 2011).  

Net cleaning is a necessary procedure in salmon farming to avoid the overgrowth 

of biofouling and waste accumulation and facilitate oxygenation of the pen. 

However, certain routine handling procedures contribute to gill disease, for example 

in situ net-pen cleaning with high-pressure jets can cause gill lesions similar to those 

that occur in a jellyfish bloom. This is due to the physical disruption of fouling 

organisms, such as hydroids and anemones which also possess nematocysts (Baxter 

et al., 2012), and may also facilitate the exposure to infectious organisms 

accumulated in the waste trapped in the nets (Floerl et al., 2016). 

A rapid change in delousing methodologies has occurred in recent years in 

salmon farming. In Norway, there has been a considerable increase in the use of 

mechanical (based on flushing the lice from the skin of salmon) and thermal 

(exposure of the infected fish to warm water temperatures) de-lousing systems and a 

reduction in the use of chemical treatments from 2017 to 2018 (Hjeltnes et al., 2019). 

According to the Fish Health Norwegian Veterinary Institute, in surveys undertaken 

during 2017, fish farmers reported that gill haemorrhage was detected especially 

during the developmental phase of the mechanical treatments (Hjeltnes et al. 2018), 

and it was commonly observed after the thermal treatment during the surveys of 

2018 (Hjeltnes et al., 2019). However, the effect that these types of treatment have 

on gill health is poorly documented and more studies are necessary to elucidate their 

role in gill disease (Overton et al., 2018). Exposure to hydrogen peroxide (H2O2) in 

bath treatments has been associated with gill pathology, especially when the water 

temperature is above 13˚C (Rodger et al., 2011). The roles that these and various 

other factors (treatments, host genetics, concurrent disease, salmon year class, etc.) 

play in CGD pathogenesis have only been hypothesized and further epidemiological 

and experimental studies are required to determine the actual risk factors.  

1.2.6 Histopathology of CGD 

Recently, a workshop at the Scottish Aquaculture Innovation Centre (SAIC) was 

held for experienced fish pathologists to agree on the histological diagnostic criteria 
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for CGD to enable its use in future diagnostic and research projects (Noguera et al., 

2019). The hallmark to diagnose CGD, recently described by (Nogeura et al., in 

press), consists in ssignificant, non-specific, proliferative branchitis which cannot be 

attributed to a known single aetiology and is characterised by: 

• Moderate to severe hyperplasia and fusion of the lamellar epithelium, with 

variable amounts of mucus cell hyperplasia and occasional lacunae 

(pseudocysts).   

• Acute, subacute and/or chronic lamellar inflammation (may include either or 

both granulocytic to lymphohistiocytic cellular infiltration)  

• Variable amounts of cellular degeneration and necrosis   

• Variable amounts of haemorrhage, hyperaemia and thrombosis 

• Variable amounts of filament infiltration by inflammatory cells 

• Variable amounts of hypertrophy and hyperplasia of highly eosinophilic cells  

• Rarely, proliferation/dysplasia of gill cartilage 

• Variable numbers of the following agents or evidence of their presence may 

be associated with the above changes: Amoebae, epitheliocysts 

(Branchiomonas-type, less than 10 µm in diameter and densely basophilic), 

Gram-positive microsporidian spores within degenerate cells or 

microvesicles, salmon gill pox virus (apoptotic cells with clearing of central 

nuclear chromatin), other pathogens (e.g. Ichthyobodo sp., Tenacibaculum 

spp) or damaged by harmful planktonic organisms (e.g. jellyfish).   
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1.3 Current knowledge of the microsporidian Desmozoon 

lepeophtherii  

1.3.1 General characteristics of Microsporidia 

Microsporidia are single cell, eukaryotic, obligate intracellular organisms related to 

fungi (James et al., 2006; Vávra & Lukeš, 2013). The earliest report of these 

organisms was given by Gulge in 1838, who observed the presence of a 

microsporidian (later known as Glugea anomala) in skin tumours present in three-

spined stickleback fish (Gasterosteus aculeatus). However, the first identification of 

microsporidiosis is considered to be in 1857 with the detection of Nosema bombycis 

as the causative agent of an important disease in the European silkworm (Bombyx 

mori) (Nägeli, 1857), later referred as “pebrine disease”, which almost destroyed the 

production of silk in France and Italy in the 19th century (Franzen, 2008). The study 

of Microsporidia gained momentum during the AIDS pandemic after Enterocytozoon 

bieneusi was detected in the enterocytes of an affected person as it was causing life-

threating diarrhoea (Desportes et al., 1985). Currently, there are over 1400 species of 

microsporidian described, and new species are discovered regularly (Szumowski & 

Troemel, 2015). Most species infect arthropods and fish but all five classes of 

vertebrates and nearly all invertebrates, including protists such as ciliates and 

gregarines, have been reported to be infected by microsporidians (Wittner, 1999). 

The classification of Microsporidia has been controversial due to some of their 

unique features, leading to repeated changes in phylogenetic position over the years 

(Figure 1.2) (reviewed by Keeling, 2014). The first microsporidian to be named, N. 

bombycis, was thought to be a yeast-like organism and was placed in the 

Schizomycete clade (Nageli 1857). Based on their intracellular parasitic nature, the 

Microsporidia were later reclassified as Sporozoa, where it remained for many years 

with other unrelated groups. Their position within Sporozoa was narrowed to the 

Cnidosporidia, together with the Helicosporidia and Myxosporidia, because of their 

similar mechanisms of infection (Balbiani 1882, cited in Keeling 2014). Due to the 

absence of mitochondria in microscopy studies, microsporidians were suggested to 

be of an ancient lineage that had evolved before the origin of mitochondria, and their 
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cellular simplicity was interpreted as an ancestral primitive state (Cavalier-Smith 

1983, cited in Keeling 2014). Microsporidia were then classified with other 

“amitochondriate” eukaryotes as Archezoa, and further analysis of their SSUr RNA 

supported their position as the deepest branch of eukaryotes (Vossbrink et al., 1987). 

Analysis of protein coding genes suggested that microsporidians are, in fact, related 

to fungi (Edlind et al., 1996) and phylogenomic analyses place them as the earliest 

diverging fungi (Capella-Gutiérrez et al., 2012). Studies of their HSP70 and other 

mitochondrial-like genes demonstrated that microsporidia were not ancestrally 

amitochondriate, but instead they have reduced mitochondrial remnants known as 

mitosomes (Williams et al., 2002). However, not all mitochondrial-derived proteins 

are functional, and microsporidians use nucleotide transport proteins to acquire ATP 

from their hosts (Dean et al., 2018).   

 

Figure 1.2. Timeline of the changing taxonomic position of Microsporidia (modified 

from Keeling, 2009).  

Microsporidia possess two distinct life stages, a vegetative or multiplicative 

stage and a productive or infective stage (Vávra & Larsson, 2014) (Figure 1.3). 

Germination occurs when the contents of the microsporidian spore (sporoplasm) are 

injected on to or into the host cell, through a specialised extension called the polar 

tube (Keohane & Weiss, 1999). . After piercing the target, the sporoplasm passes 

through the tube and is either delivered on to the surface of the host cell or into the 

host cytoplasm, the latter avoids the extracellular defences of the host (Keeling, 

2009). Two developmental stages are recognised within the host cell cytoplasm: the 

merogonic, or proliferative, and the sporogonic, or spore developing, phases (Cali & 

Takvorian, 2014). During merogony the sporoplasm develops into a meront which 

can be transported to other sites within the body of the host and starts multiplying 
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within the infected cell creating a primary infection. Sporogony involves the 

conversion of meronts into sporonts, cells that produce the sporoblasts and 

subsequently mature spores. Microsporidia lyse cells to exit their host, but another 

mechanism has been proposed for certain species that does not cause the cells to 

burst. Instead, they exit through a non-damaging mechanism that involves 

restructuring the host-cell’s cytoskeleton with the mobilization of actin and 

reorganization of the terminal web, a structure that may be a barrier to the parasite’s 

exit (Estes et al., 2011). Mature spores are released from the host into the 

environment or to other hosts but can survive outside a host for several years (Vávra 

& Larsson, 2014). 

 

Figure 1.3. Diagram of the general life cycle of microsporidia. (1) Spores are free in 

the environment in an “inactive” stage. (2) When a suitable host is present and 

conditions are optimal, the living spore ejects the polar tube and pierces the target 

host cell. (3) The sporoplasm passes through the polar tube to the host cell. (4) Inside 

the host cell the sporoplasm undergoes extensive multiplication either by merogony 

(binary fission) or schizogony (multiple fission). (5) After merogony, sporogony 

occurs and new spores are produced. (6) Once the spores mature, these leave the cell, 

mostly through the lysis of the host cell, and new spores are free to infect again.  
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1.3.2 The structure of microsporidians 

1.3.2.1 The spore 

The microsporida life cycle starts and ends with the spore (Vàvra & Larsson, 2014) 

(Figure 1.3). These are highly compact structures that range in size from 1 to 40 µm 

in length (Williams, 2009). Typically, spores from the same microsporidian species 

have a similar size range but there are some genera (e.g. Pleistophora or 

Heterosporis) that produce macro- and microspores which differ in size and the 

numbers of polar tubule turns in the spore wall (Lom & Nielsen, 2003). In addition, a 

single species can produce more than one spore type that are distinct physiologically 

and structurally and can be the result different developmental cycles occurring in a 

single host or various host species (Vávra & Lukeš, 2013). For instance, some 

species produce auto-infective spores that germinate immediately to infect the same 

host to spread the infection within an individual. Alternatively, other spores created 

in the same host are released into the environment where they can infect other 

individuals and other species. 

The spore consists of a spore wall, cytoplasm, nucleus and an extrusion 

apparatus (Vávra & Lukeš, 2013; Williams, 2009) (Figure 1.4). An important feature 

of the spore for the resistance to the environment is the wall, which is composed of a 

protein-rich exospore and an inner endospore layer rich in α-chitin (Vàvra & 

Larsson, 2014). At the apex of the spore the endospore layer is thinner, and ejection 

of the polar tubule during germination occurs through rupture of this area (Bigliardi 

& Sacchi, 2001). Beneath the endospore the plasma membrane surrounds the 

sporoplasm (Bigliardi & Sacchi, 2001). The sporoplasm contains the nucleus, which 

can be single or binucleate (diplokaryon) (Vàvra & Larsson, 2014), and the cell 

cytoplasm (Williams, 2009). Within the cytoplasm is the ER and analogues of the 

Golgi apparatus (Williams, 2009). The secretory products, that ultimately will be part 

of the injection apparatus, and the spore case are processed through the classical 

endoplasmic reticulum-Golgi synthesis pathway (Vávra & Lukeš, 2013). However, 

mature microsporidia spores do not have the typical Golgi complex but instead have 

tubular networks of varicose appearance that display histochemical features 

equivalent to the Golgi apparatus (Beznoussenko et al., 2007). More recently, 
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Takvorian et al. (2013) demonstrated evidence of Golgi-like activity in the 

sporoplasm in an organelle called the multi-layered interlaced network (MIN) and 

this is likely to maintain its integrity. Furthermore, the MIN is pulled through the 

everting polar tube and appears to deposit its dense contents on the surface of the 

sporoplasm within minutes of spore discharge thickening the parasite’s plasma 

membrane. The ER is seen as strands of polyribosomes that are especially prominent 

around the nucleus in young spores (Vàvra & Larsson, 2014).  

The infectious apparatus is the defining characteristic of all microsporidia and 

comprises the polar tube or polar filament, polar sac-anchoring disk complex, the 

polaroplast and posterior vacuole (Vávra & Larsson, 2014). The polar filament is a 

hollow, multi-layered structure, with a very narrow diameter (0.1 to 0.2 µm) 

(Franzen, 2004; Yang et al., 2018). It is tightly coiled around the periphery of the 

sporoplasm and is attached to the inside of the anchoring dish at the anterior pole of 

the spores (Weiss, 2001). The polaroplast is a system of membrane-limited cavities 

divided into an anterior (lamellar) and posterior (vesicular) part (Bigliardi & Sacchi, 

2001). The posterior vacuole is a membrane-bound organelle that occupies the 

posterior pole of the spore and takes up more than one half of its volume (Vávra & 

Larsson, 2014). It is included in the infectious apparatus components because it 

swells before germination and creates the necessary pressure for the polar tubule to 

be extruded (Xu & Weiss, 2005). Triggers of spore germination vary widely as a 

result of the organisms’ adaptations to their host but regardless of the stimulus that 

promotes germination, all respond to an increase in intrasporal osmotic pressure. By 

increasing the osmotic pressure there is an influx of water together with the swelling 

of the polaroplast and posterior vacuole that results in polar tube ejection (Xu & 

Weiss, 2005).   
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Figure 1.4. Schematic representation of microsporidian spore. The spore wall is 

composed of an electron-dense exospore (Ex), a thick electron-lucent endospore 

(En), and a plasma membrane between the endospore and the cytoplasm. The 

infectious apparatus consists of the coiled polar tube (PF) (the number of coils 

depends on the particular species) terminating at the apical part of the spore in an 

anchoring disk (AD), the posterior vacuole (PV), the posterior polaroplast (PP) and 

anterior polaroplast (PA). Other contents of the sporoplasm include the ribosomes 

and the nucleus (N). 

1.3.2.2 Meront 

In permissive host cells the sporoplasms become meronts and a stage of growth and 

division begins that varies between microsporidian species. Most microsporidian 

develop in direct contact with the host cell cytoplasm, not within a host phagocytic 

vacuole as many other intracellular parasites do, but some species induce the 

formation of a surrounding membrane at an early stage of infection known as the 

parasitophorous vacuole (Franzen, 2004). At this stage microsporidia often induce 

significant changes to the host, although they may be not obviously detrimental 

(Keeling & Fast, 2002). Meronts proliferate by repeated binary or multiple fission or 

by plasmotomy. They may contain one or more nuclei, and when more nuclei are 

present, they may be separate or in a diplokaryotic arrangement.  

1.3.2.3 Sporont 

Transition between merogony and sporogony is characterised by the spore wall 

material deposits in the plasma membrane, which are only detectable by TEM (Vàvra 

& Larsson, 2014). The onset of sporogony is marked in some species by the 

separation of diplokaryotic nuclei and in others by meiosis, although synaptonemal 



34 

complexes have been observed in all life stages of some microsporidian. 

Morphological features are more consistent indicators of sporogony and include a 

thickening of the plasma membrane (due to the accumulation of electron-dense 

material) and increased amounts of ER and ribosomes. Both the ER and ribosomes 

change morphology throughout sporogony; the ER becomes highly ordered and the 

ribosomes increasingly form arrays attached to the ER, known as polyribosomes. 

Although sporogony can occur in direct contact with the host cytoplasm, some 

species produce a sporophorous vesicle in which the sporonts develop. In most 

species, this stage of the life cycle is also accompanied by some degree of division, 

although the number of sporoblasts (presporal cells) produced varies among species 

from two (bisporous) to many (polysporous). Following division, the extrusion 

apparatus (including the polar filament, polaroplast, and posterior vacuole) begins to 

develop. As the extrusion apparatus nears complete formation and the sporoblasts 

approach maturity, the cells decrease in size and the chitinous endospore layer 

develops. Once complete, the mature spores are released (Vàvra & Larsson, 2014). 

1.3.3 The importance of Microsporidia in fish and the 

aquaculture industry 

Currently, there are over 200 known genera of Microsporidia (Becnel et al., 2014) 

and they are one of the most frequently observed parasites of both invertebrates and 

vertebrates, with about 1300 to 1500 species described. (Vávra & Lukeš, 2013). Over 

80 genera of microsporidian are known to infect aquatic organisms (Stentiford et al., 

2013) and the second most common host, after arthropods, are fish (Lom, 2002).  

In fish, about 120 species of microsporidian have been described and several of 

these are known to have a negative impact on fish health (Kent et al., 2014). 

Microsporidia are considered to be secondary opportunistic agents. However, this is 

not always true for microsporidian infecting aquatic species as there are various 

examples of them acting as primary pathogens. For instance, the decline in wild 

populations of the American smelt (Osmerus mordax) (Haley, 1954) was attributed 

to microsporidia. In commercial aquaculture, microsporidia have been reported as 

serious, economically important pathogens. Marine shrimp (Penaeus monodon) 

farms in Southeast Asia are affected by Enterocytozoon hepatopenaei and associated 
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with considerable reduction in growth and increased mortality (Tang et al., 2015). 

Enterospora nucleophila has been associated with significant mortalities and 

decreased growth in gilthead sea bream (Sparus aurata) (Palenzuela et al., 2014). 

Nucleospora cyclopteri has been linked with severe systemic infections and high 

mortalities (65%) in affected farmed lumpsucker (Cyclopterus lumpus) (Alarcón et 

al., 2016). In cultured salmonids, four microsporidian species have been associated 

with mortalities and disease: Loma salmonae causing severe gill damage in coho 

salmon (Oncorhynchus kisutch) (Kent et al., 1989) and chinook salmon 

(Oncorhynchus tshawytscha) (Kent et al., 1995); Nucleospora salmonis infecting 

hematopoietic cells leading to a leukaemia-like condition (Hedrick et al., 1990) in  

multiple salmonid species (El Alaoui et al., 2006); Desmozoon lepeophtherii (syn. 

Paranucleospora theridion) (Nylund et al., 2010) and one unnamed microsporidian 

associated with encephalitis in Atlantic salmon (Brocklebank et al., 1999) and the 

other forming xenomas (hypertrophic host cells with the accumulation of different 

microsporidian developmental stages) within the cytoplasm of cells in the internal 

organs (Drinan et al., 1992). Among the species mentioned above, L. salmonae has 

been the most studied and problematic pathogen with associated mortalities in 

farmed chinook salmon between 3-13% to more than 30% in some farm sites 

(Beaman et al., 1999; Becker & Speare, 2007), and infections being more severe in 

fish close to market size (Beaman et al., 1999). Even though microsporidian 

infections are known to cause important losses for the aquaculture industry, there are 

considerable knowledge gaps relating to the host’s immune response to the parasite, 

the parasite’s biology, the pathogenesis and how to control it (Rodriguez-Tovar et 

al., 2011). 

1.3.4 Desmozoon lepeophtherii as a fish pathogen 

The microsporidian D. lepeophtherii was first discovered and described in the 

salmon louse (Lepeophtheirus salmonis) while looking for potential biological 

controls (Freeman, 2002). Sea lice are ectoparasitic copepod crustaceans (Caligidae, 

Siphonostomatoida) that are one of the key disease challenges for Atlantic salmon 

aquaculture worldwide. The microsporidian’s gene sequence was closely related to 

other fish microsporidian and it was presumed that this microsporidian could 
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possibly infect Atlantic salmon. Sea lice, infected with D. lepeophtherii ,were 

collected from six salmon originating from salmon farms in Scotland anddifferent 

salmon organs, including the kidney, liver, heart, gill and peripheral blood, were 

subject to a nested PCR for D. lepeophtherii and five out of six fish were found to be 

positive for the microsporidian. The PCR product sequences had a 99.4% similarity 

to that of the microsporidian within the sea lice. The molecular identity of the partial 

ribosomal DNA sequence obtained from microsporidia within the sea lice was later 

published (Freeman et al., 2003) (GenBank AJ431366) and molecular phylogeny 

placed it within the clade containing the family Enterocytozoonidae.  

A description of the parasite’s ultrastructure, together with the name Desmozoon 

lepeophtherii, was later given by Freeman and Sommerville in 2009. Differences in 

the original sequences between the salmon and louse microsporidian (Freeman, 

2002) made the authors re-sequence the microsporidian from the sea louse (Freeman 

& Sommerville, 2011). The new sequence differed in 9 of the 1411 bases stated for 

the original sea louse microsporidian sequence (Freeman & Sommerville, 2009). 

Conversely, sequences obtained for the microsporidian infecting Atlantic salmon 

aligned 100% with the new sequence from the sea lice derived microsporidian. Again 

in 2009, but prior to the first naming of D. lepeophtherii in a scientific journal, there 

was a non-peer reviewed publication referring to a microsporidian parasite infecting 

both sea lice and Atlantic salmon named Paranucleospora theridion (Nylund et al., 

2009). However, this name was published with no associated description of the 

parasite or intention to name a novel species (Freeman & Sommerville, 2011). Later, 

Nylund et al. (2010) published a detailed description of the microsporidian found in 

Atlantic salmon and sea louse. In addition, the authors stated in their publication that 

P. theridion was the correct name for the parasite.  

Controversy concerning the parasite’s name remains. According to the Code of 

Zoology “Criteria of Publication”, the rules of priority would consider P. theridion as 

the appropriate term for the microsporidian (Kent et al, 2014). However, the paper 

published by Nylund et al. (2009) was not peer-reviewed (Freeman & Sommerville, 

2011) and provided no formal description of the microsporidian (absence of 

diagnosis or indication of type of material used) (Kent et al, 2014). Therefore, 
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Desmozoon lepeophtherii is the generic name that met the criteria defined by the 

Code of Zoological Nomenclature (Becnel et al., 2014) and is registered as the senior 

name on the World Register of Marine Species (WoRMS) with Paranucleospora 

theridion referred as a junior synonymised taxon (Freeman & Sommerville, 2011). 

1.3.5 Transmission of D. lepeophtherii 

How sea lice become infected with D. lepeophtherii is not known. Økland (2012) 

studied the intensity and prevalence of D. lepeophtherii in different life stages of the 

sea louse using samples collected from salmon farms in Norway with real-time RT-

PCR and light and electron microscopy. The microsporidian was detected in salmon-

feeding stages (chalimus 1 onwards) only and not in the planktonic stages (nauplii 

and copepodid) stages, suggesting that sea lice only become infected when feeding 

on infected salmon. Sveen et al. (2012) studied the infection dynamics of D. 

lepeophtherii using real-time RT-PCR to screen two populations of salmon 

transferred to sea water during different seasons and found the microsporidian in the 

gills and kidney of the salmon and also the sea lice infecting the salmon. The gills of 

the population transferred to sea in spring became infected with D. lepeophtherii 

early after transfer, and this infection was also detected in kidney several weeks later. 

When sea lice started to settle on the salmon population, they became infected with 

the parasite. The population transferred to sea in the autumn only had detectable 

levels of the parasite in the gills, but not in the kidneys. The sea lice on these fish had 

no detectable D. lepeophtherii. The authors suggested that cold temperatures in 

autumn and winter (≤ 10C°) would arrest the parasite’s development and therefore 

auto-infective spores did not infect other tissues. Furthermore, the lack of the auto-

infective spores would impede the development of the environmental spores, which 

infect the nucleus of the epithelial cells of the skin, and therefore the fish were not 

infectious to feeding sea lice.  

Vertical transmission of D. lepeophtherii on sea lice was considered by Nylund 

et al. (2010) after finding the egg strings of L. salmonis to be highly positive for P. 

theridion by real time PCR. However, it was not possible to detect the parasite in the 

sea louse by TEM or light microscopy. Although vertical transmission of 
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Microsporidia is the main route of infection in various aquatic arthropods hosts, it is 

often the case that the targeted cell type may actually be connective tissue cells 

supporting the ovary rather than the cytoplasm of the oocytes (Stentiford & Dunn, 

2014). Later studies have found D. lepeophtherii in the gonadal segment of lice, but 

infections occurred in the connective tissue of gonad whilst the oocytes were free of 

infection (Økland, 2012).  

The route of infection in salmon is similarly still unknown. Desmozoon 

lepeophtherii is the first microsporidian that has been demonstrated to occur in a 

vertebrate and invertebrate host from the family Enterocytozoonidae (Nylund et al., 

2010). It is not known if the parasite can be transmitted directly fish to fish, fish to 

louse, louse to louse or louse to fish. Presence of lice in the salmon population does 

not seem to be a requisite for the parasite to infect fish (Sveen et al., 2012), but this 

does not exclude the possibility that waterborne spores previously released by the 

lice could infect salmon. Sveen et al. (2012) demonstrated that D. lepeophtherii 

infects the gills first and then infections spread to the kidney (Sveen et al., 2012). 

The presence of D. lepeophtherii spores within polymorphonuclear leucocytes and 

macrophages has been confirmed (Nylund et al., 2010; Nylund et al., 2011; Weli et 

al., 2017) and these phagocytic cells might be a mechanism for transporting auto-

infective spores of the microsporidian to different tissues (Sveen et al., 2012). In 

addition, developmental stages within polymorphonuclear leucocytes have been 

observed by Nylund et al. (2011) using TEM, and within macrophages using ISH 

(Weli et al., 2017). Therefore, these immune cells could have an essential role in 

spore development, rather than just acting as a transport system. Release of 

microsporidian spores into the environment seems to occur mainly through gills but 

other tissues such as skin and gut epithelium can also be heavily infected with D. 

lepeophtherii spores and are potential locations for microsporidian release (Nylund et 

al., 2010; Weli et al., 2017). 
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1.3.6 Life cycle of Desmozoon lepeophtherii 

1.3.6.1 Life cycle in Atlantic salmon 

In Atlantic salmon, Nylund et al. (2010) described the presence of two 

developmental cycles that lead to two different types of spores: (1) autoinfective and 

(2) environmental (Figure 1.5a & b).  

Developmental cycle I occurs in direct contact with the cytoplasm of 

polymorphonuclear leucocytes, macrophages, epithelial cells of the gills and skin, 

and endothelial cells of blood vessels within most tissues. The first merogonial stages 

are surrounded by a unit membrane and are small (0.8-1.8 μm in diameter). These 

contain a diplokaryotic nucleus, abundant ribosomes and a single prominent ER. 

Multiplication of dyplokaria results in plasmodia (1.9-4.6 μm in length) with up to 12 

dyplokaria observed and up to three different plasmodia in each infected cell. The 

development of the plasmodia is surrounded by host mitochondria and occurs 

juxtanuclear, sometimes in an invagination. Transition from merogony to sporogony 

is not accompanied by the deposition of dense material on its surface, as commonly 

seen in other microsporidian (Cali & Takvorian, 2014). Instead, sporonts can be 

distinguished by the presence of dense disks associated with the formation of the 

polar tube (Nylund et al., 2010). Sporonts are 1.7-5.5 μm in length and the 

diplokaryotic nuclei can be surrounded by short zones of nuclear apposition. The 

precursors of the polar tubule mainly develop in the centre of the sporonts. Up to 14 

sporoblasts can be observed within a sporogonial plasmodium. Schizogonic division 

produces diplokaryotic sporoblasts, which will develop into small (0.9–1.2 μm in 

diameter) spherical/oval shaped spores. Up to 30 spores and sporoblasts are present 

in a single cell. These have a thin-wall and short polar tube and are thought to spread 

the infection through host and are therefore termed auto-infective spores (Nylund et 

al., 2010). 

Developmental cycle II takes place in the nucleus of epithelial cells of the gills 

and skin, although spores have been seen in the chloride cells of the gills (Nylund et 

al., 2010) and within the nuclei of gut epithelial cells (Weli et al., 2017). Similar to 

the previous developmental cycle, the first observed structure is a meront in direct 

contact with the cell nucleoplasm that contains a single diplokaryotic nucleus and is 
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surrounded by a unit membrane. The meront contains abundant ribosomes and a 

single ER. A maximum of two dyplokaria are present in a single meront. Sporogonic 

stages are characterised by the presence of dense barrel shaped elements measuring 

about 80 nm in diameter and a polar sac primordium. Again, no deposition in the 

surface of the plasmalemma is observed in the transition from meronts. Sporogonic 

stages with polar tube precursors develop two sets of extrusion apparatus before 

division, giving rise to two sporoblasts. The resultant ellipsoidal spores from the 

sporoblasts mostly appear in singles or pairs. These products are thought to be 

environmental spores because they are larger (2.4-2.7μm long x 2.0-2.17 μm wide), 

possess a thicker wall (exospore of 28 nm and endospore of 130 nm) and contain a 

longer polar tube.  

1.3.6.2 Life cycle in sea lice  

Desmozoon lepeophtherii was first discovered forming xenomas in the basal lamina 

of the epidermal layer of the sea louse copepod L. salmonis (Freeman, 2002). This 

basal portion of the epidermal layer is composed of a glycocalyx that contains 

various epidermal cells including epithelial cells and desmocytes. Due to the extreme 

hypertrophy of the cells containing xenomas the authors were unable to discern the 

exact type of cells infected but based on TEM they hypothesized that desmocytes 

were the primary cell type infected. Therefore, the genus name Desmozoon refers to 

the type of cell infected, the desmocytes, which encompasses any elongated 

interstitial cell (i.e. fibrocyte), whilst the specific name lepeophtherii refers to the 

parasite’s host, L. salmonis. Further studies have demonstrated the presence of the 

parasite in desmocytes (fibroblasts/fibrocytes), epithelial cells, gonadal cells, satellite 

cells, haemocytes and tegmental gland cells of the sea louse (Nylund et al., 2010; 

Økland, 2012). Xenomas seem to be more pronounced in the cephalothorax of the 

louse but can also be seen in the gonadal segment (near the gut), mouth tubule, 

lumen of the gut and other extremities (Økland, 2012), and these contain abundant 

spores at different stages of developmental (Freeman & Sommerville, 2009).  

The development of D. lepeophtherii in sea lice has been described by Freeman 

et al. (2003), Nylund et al. (2010) and Økland (2012) (Figure 1.5c). The earliest 

stage detected in the louse are diplokaryotic meronts within the cytoplasm of 
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haemocytes. Although meronts can be observed alone in infected cells, they are 

normally associated with the presence of all other developmental stages within the 

xenoma. Merogonial stages are spherical and have one or two dyplokaria. The 

diplokaryotic nuclei are rounded and contain a small amount of ER and a moderate 

number of ribosomes. The merogonial stages divide through schizogony and form a 

multilobed merogonial plasmodium (9 μm in diameter) with several dyplokaria. 

There is fission of dyplokaria during the merogonial stage and early sporonts stages 

can contain diplokaryotic nuclei or two closely arranged monokarya. Transition 

between merogony and sporogony is recognised by the presence of electron dense 

material in the surface of the plasma membrane. Sporonts are round or multi-lobed 

(2.7-5.7 μm in length) and are actively dividing during the first stage of their 

development. In later stages sporonts are unicellular cells with a single monokaryon, 

appearing smaller in size (2.0-2.7 μm length) and with prominent ER, together with 

early elements of developing extrusion apparatus. Sporonts stop dividing in advanced 

stages with the formation of the polar tubule, anchoring disk and polar cap, which are 

considered sporoblasts.  

The spores that develop in sea lice are round to ovoid with a single nucleus 

(Freeman & Sommerville, 2009). In fresh smears the spores are 2.4 μm in diameter 

but can appear slightly smaller in ultrathin sections (1.6-2 μm) (Nylund et al., 2010). 

The endospore is relatively thick, 150-250 nm, and surrounded by a thinner, electron 

dense exospore measuring 35-40 nm (Freeman & Sommerville, 2009). The polar 

tube has 5-8 turns, normally in a double coil, and a diameter of 65-85 nm. An 

anomalous, different type of spores of 5 μm in diameter, containing several 

disorganized extrusion apparatuses, are seen occasionally and are thought to be the 

result of anomalous development (Nylund et al., 2010).   

In salmon all developmental stages of D. lepeophtherii are diplokaryotic, 

whereas in the sea lice they vary between mono- and diplokaryotic suggesting that 

sexual processes such as meiosis and karyogamy may occur (Økland, 2012). For this 

reason, Nylund et al. (2010) considered sea lice to be the definitive host of D. 

lepeophtherii and salmon an alternate host but the true identity of the sea louse or 

salmon as definitive or intermediate hosts still needs to be elucidated. Økland, (2012) 
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suggested that several spores would infect the sea lice cells concurrently, transferring 

their diploid monokaryon sporpoplasm to the host-cell cytoplasm. During merogony, 

fusion of sporoplasm would occur with the formation of meronts with two haploid 

diplokarya. The diplokarya proliferate through mitotic division. In early sporonts, 

when the diplokarya dissociate and the nuclear membrane disappears, diploid 

monokarya are produced during the formation of a new nuclear membrane. 

Schizogony will then result in late sporonts containing diploid monokarya and then 

the development of diploid monokaryotic sporoblasts and spores completes the cycle. 

However, sexual reproduction in the sea louse still needs to be demonstrated.  
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Figure 1.5. Developmental cycles of Desmozoon lepeophtherii in Atlantic salmon 

and sea lice. Host cell nucleus stained blue. (A) Developmental cycle I in salmon 

cells. (1) Merogonial plasmodium after multiplication of the diplokaryotic nuclei. (2) 

Sporogonial plasmodium with three diplokarya and dense disks in the centre 

associated with the formation with the polar tube. (3) Late sporonts before 

schizogony showing peripheral anchoring discs in polar caps. (4) Schizogonic 

division produces diplokaryotic sporoblasts, which will result in small spherical/oval 

spores. (B) Developmental cycle II in salmon nucleus of epithelial cells of gill, skin 

and gastrointestinal tract. (1) Meront containing a single diplokaryotic nucleus and 

surrounded by a unit membrane. (2) Sporogonic stages with rough endoplasmic 

reticulum and with the presence of dense barrel shaped elements (3) Sporobolast 

with two sets of extrusion apparatus before division. (4) The resultant ellipsoidal 

spores from the sporoblasts mostly appear in singles or pairs. (C) Developmental 

cycle in sea lice (1) Presence of diplokaryotic meronts in direct contact within the 

cell cytoplasm. (2) The merogonial stages divide through schizogony and form a 

multilobed merogonial plasmodia. Transition between merogony and sporogony is 

recognised by the presence of the dense material in the surface of the plasma 

membrane. There is fission of dyplokaria during the merogonial stage and early 

sporonts stages can contain diplokaryotic nuclei or two closely arranged monokarya. 

(3) Various developmental stages present together in a hypertrophied cell (formation 

of xenoma). Early monokaryotic sporonts and more advance stages containing polar 

tube primordium. (4) Various developmental stages including newly formed spores 

with a single nucleus. 



44 

1.3.7 Study of host-pathogen interactions of D. lepeophtherii 

Knowledge of the interaction between a pathogen and its host is key to understanding 

the disease process and to develop treatment strategies to control the infectious agent 

(Welch, 2015). Studies in vivo, using animal-based infection models are frequently 

used to study host-pathogen interactions in more detail, such as routes of infection by 

the pathogen and pathogenesis of the disease. An in vivo experimental infection with 

D. lepeophtherii and its hosts (sea lice and Atlantic salmon) was documented by 

Freeman in 2002. The author found that D. lepeophtherii spores injected into the 

midgut of naïve L. salmonis did not result in infection of the lice. Similarly, Atlantic 

salmon challenged with D. lepeophtherii spores isolated from lice, placed into the 

water tank with the fish did not cause infection or disease in the fish. An unsuitable 

route of infection, the use of potentially non-viable spores, or the fact that the louse 

needed an alternate host to become infected were the reasons given by the author 

why the experimental infections were unsuccessful. Conversely, Sveen et al. (2012) 

claimed that a few Atlantic salmon that received infected sea lice in an experiment 

were infected by D. lepeophtherii. However, no further information relating to this is 

available in the literature. 

Another approach to studying host-pathogen interactions involves the use of cell 

cultures derived from animal and insect tissues. Even though the use of in vivo 

experiments is still essential for understanding certain aspects of the host-pathogen 

interaction of microsporidia, in vitro studies are preferred over the use of live fish 

wherever possible (Schaeck et al., 2013). There are two types of cell cultures: 

primary and secondary. Primary cell cultures consist in short-lived cell types whilst 

secondary cultures are long-term cell lines. The use of tissue and cell cultures has 

been key in the study of intracellular parasites such as microsporidia (Gisder et al., 

2011). Different applications of in-vitro cell systems in the research of microsporidia 

include the study of the life cycle, infectivity, evaluation of possible treatments or 

propagation of the spores in cell cultures for diagnostic purposes or further 

pathogenesis studies (Lallo et al., 2016; Monaghan et al., 2009). No reports of 

experimental infections with D. lepeophtherii within cell culture systems have been 

published. 
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1.3.8 Epidemiology of D. lepeophtherii 

Desmozoon lepeophtherii is one of the most prevalent putative disease-associated 

agents detected by molecular methods in the gills of farmed populations of Atlantic 

salmon in Europe (Downes et al., 2018; Steinum et al., 2010). In addition, the 

parasite has been detected in sea lice (Lepeophtheirus salmonis and Caligus 

elongatus) (Nylund et al., 2010), various species of wrasse (Steigen et al., 2018) and 

in brown trout and rainbow trout (Salmo trutta and Oncorhynchus mykiss) (Nylund et 

al., 2010).  

A different genotype of D. lepeophtherii has been detected from lice (L. 

salmonis) infecting farmed Atlantic salmon in the Pacific Ocean with a partial 

ribosomal DNA sequence differing by 0.4% (Jones et al., 2012) from the genotype 

obtained in Europe. Even though the latter studies did not detect the presence of D. 

lepeophtherii in the farmed salmon, more recent studies have demonstrated that the 

microsporidian is also highly prevalent in gills of Atlantic salmon and Pacific salmon 

farmed in the northeast Pacific (Laurin et al., 2019) and different species of wild 

Pacific salmon (ICES Working Group, 2018; Thakur et al., 2019).  

Desmozoon lepeophtherii has been mostly associated with salmon in the marine 

stage of the cycle, whereas detection of the parasite in freshwater has been anecdotal. 

In Norway, Nylund et al. (2011) detected the parasite in the tissues of salmon in a 

smolt hatchery to which sea water was added but no pathology was associated. 

Results of a questionnaire produced by Hjeltnes et al. (2017) stated that Desmozoon 

lepeophtherii was ranked “the most important cause of health problems” in 

recirculation and flow-through hatcheries. However, no further studies regarding the 

potential importance of D. lepeophtherii in freshwater stages are available in the 

literature.  

In Norway, D. lepeophtherii is present in all areas of salmon production but 

higher prevalence and densities of the parasite are seen in southern Norway (Nylund 

et al., 2011). Sea temperatures above 10°C have been suggested to be necessary for 

the parasite to develop (Sveen et al., 2012), and higher temperatures are normally 
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achieved in south and western Norway. This, and other risk factors for the 

development of D. lepeophtherii still need to be elucidated. 

1.3.9 Desmozoon lepeophtherii and CGD    

Desmozoon lepeophtherii was first detected in salmon tissue by conventional PCR in 

the kidney, liver, heart, gills and circulating blood cells from (clinically normal) 

farmed Atlantic salmon in Scotland (Freeman, 2002). On histological examination of 

the kidney there was moderate hyperplasia of the renal interstitium and numerous 

mitotic figures in immature leucocytes. The heart showed hyperplasia of 

myocardiocytes with occasional hypertrophy of myocardial nuclei. However, special 

stains failed to reveal any structure suggestive of microsporidian infection in the 

tissues examined under light microscopy. Furthermore, TEM of the PCR positive 

tissue did not reveal the presence of the microsporidian.  

Nylund et al. (2010) were the first authors to implicate D. lepeophtherii as a gill 

pathogen. The authors detected the microsporidian using TEM in farmed Atlantic 

salmon suffering from gill disease. On gross examination, some of the fish used for 

the study had skin haemorrhages, loss of scales and slightly pale gills. According to 

the authors, the gill epithelium was hypertrophic, hyperplastic, necrotic and 

inflammatory cells were present. In other organs (kidney, heart, spleen, gut, and 

exocrine pancreas), inflammatory cells were also observed, and the presence of the 

microsporidian was confirmed by TEM, light microscopy and molecular methods. 

These authors also suggested that the parasite was associated with disease causing up 

to 80% mortality in certain marine salmon farms, but no further information was 

given about this. Later studies considered the possibile role of D. lepeophtherii in 

various diseases with a marked inflammatory cell response in salmon such as PGI, 

pancreas disease, heart and skeletal muscle inflammation and cardiomyopathy 

syndrome (Nylund et al., 2011). However, high loads of the microsporidian were 

only associated with an increase in severity in PGI but no other diseases. Fish 

showed similar gross and histological changes to those described by Nylund et al. 

(2010). Darkening of the somatic muscle was noted for fish displaying high levels of 

D. lepeophtherii in other organs, but the presence of the microsporidian in muscle 
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was not reported. Developmental stages of the parasite were detected in blood vessel 

endothelial cells and the cytoplasm of leukocytes by TEM and the latter suggests the 

possibility of immunosuppression. Steinum at al. (2010) showed similar findings 

when studying the role of several organisms in PGI. Desmozoon lepeophtherii was 

highly prevalent in salmon farms in Norway but a considerable increase in the 

parasite load was noted when fish were suffering from clinical PGI. A significant 

correlation was also found between high loads of D. lepeophtherii and gill pathology 

(Pflaum, 2012). 

In Scotland, Desmozoon lepeophtherii was associated with an outbreak of gill 

disease in farmed salmon with necrotic and proliferative pathology in the basal 

lamellar epithelial cells (referred as Malpighian cells in the study) (Matthews et al., 

2013). Similar pathology has been found in Ireland (Rodger et al., 2011). However, 

the high prevalence of the microsporidian in healthy individuals and the, often, 

complex presentation of gill disease (Mitchell & Rodger, 2011) hinders the 

determination of the exact role of D. lepeophtherii with respect to a primary or 

secondary pathogen and further studies are necessary to elucidate this.   

1.4 Conclusion 

Gill disease is one of the most important causes of morbidity and mortality in the 

marine stage of Atlantic salmon. Complex gill disorder (CGD) is still being 

characterised but is a multifactorial and multi-aetiological disease that occurs mainly 

from late summer to early winter in Scotland. Desmozoon lepeophtherii is a 

microsporidian parasite that has been associated with CGD, however, the 

significance of D. lepeophtherii in CGD is still uncertain. Further studies are 

therefore required to elucidate the exact role and significance of D. lepeophtherii in 

gill disorders of farmed Atlantic salmon. 

1.5 Aims and objectives 

The central hypothesis underlying the research conducted for this PhD is that D. 

lepeophtherii contributes to the pathology associated with CGD. 
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The aim of this study was to gain a better understanding of the parasite D. 

lepeophtherii and its role in gill disease in farmed Atlantic salmon (Salmo salar) in 

Scotland. To achieve this, the following objectives were proposed: 

• Culture the parasite in vitro using different cell lines to provide a tool for 

research and to allow study of different aspects of the parasite infection, such 

as its biology and the nature of host cell immune responses targeting the 

parasite. 

• Perform a longitudinal study to 1) gain a better understanding of the 

prevalence status of D. lepeophtherii in Scotland, and that of other key agents 

thought to be involved in complex gill disorder such as Ca. B. cysticola and 

SGPV in Scottish salmon farms 2) elucidate the dynamics of D. lepeophtherii 

infection and its relationship with the presence gill pathology. 

• Develop a sensitive and specific technique to detect the parasite in tissue 

sections under light microscopy. 
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Chapter 2 Culture of Desmozoon lepeophtherii in-

vitro  

2.1 Introduction 

2.1.1 Use of cell lines for the study of microsporidia 

The culture of microsporidia in vitro is an ideal method for the isolation, large-scale 

production and study of different aspects of these intracellular parasites, such as their 

life cycle (Couzinet et al., 2000; Franzen et al., 2005), kinetics of infection (Panek et 

al., 2018), host cell immune response to the infection (Fischer et al., 2008) or drug 

screening (Santiana et al., 2016).  

The first microsporidian to be cultured in vitro was Nosema bombycis in ovarian 

tube lining cells of silkworm (Trager, 1937). Subsequent work tended to focus on 

microsporidian species that infected economically important insects, such as Nosema 

apis, a microsporidium of the honeybee (Visvesvara, 2002). Interest in animal cell 

cultures started once microsporidia were found to be clinically important to humans 

(Desportes et al., 1985). Until the 1990s, Encephalocytozoon cuniculi was the only 

microsporidium of mammalian origin that was culturable (Visvesvara, 2002), 

however various microsporidian species have since been successfully cultured in 

different laboratories (Lallo et al., 2016; Visvesvara, 2002). Continuous cultures of 

microsporidian species are now available from research laboratories and the 

American Type Culture Collection (ATCC) repository, facilitating the obtention and 

study of these parasites (Molestina et al., 2014).  

The host specificity of microsporidia varies, and some species have been 

demonstrated to infect a wide range of hosts (reviewed by Monaghan et al., 2009), 

including zoological groups different to that of their natural host. The lack of host 

specificity of some microsporidia seems to be more obvious using in vitro infection 

challenges (Monaghan et al., 2011), as demonstrated from work on the well-studied 

microsporidium Ancaliia algerae, a microsporidian of mosquitoes (e.g. Anopheles 

stephensi) that has been successfully gown in mammal, insect and fish cell lines 

(Belkorchia et al., 2008; Monaghan et al., 2011).  
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2.1.2 Study of fish microsporidia in vitro 

Research on fish microsporidia is less extensive than that existing for mammals or 

insect microsporidia, and this is reflected in the number of reports available relating 

to the culture of fish microsporidia in vitro (Monaghan et al., 2009) (Table 2.1). 

Short-term primary cultures have been used to study the interaction of microsporidia 

spores with cells associated with the innate immune system of their host. These 

cultures tend to have been used within 48 h of isolation, with the aim of studying 

phagocytic and respiratory burst activities of isolated phagocytes (Leiro et al., 1996). 

For example, Shaw et al. (2001) demonstrated that the phagocytic index of 

macrophages ingesting spores of Loma salmonae, an important microsporidian of 

pacific salmon, was higher in the macrophages of chinook salmon than those from 

Atlantic salmon, and suggested that the higher clearance of the parasite in Atlantic 

salmon was one reason why this species is less susceptible to infections with this 

microsporidia than chinook salmon. 

Complete replication of the life cycle of certain economically important 

microsporidian species has been achieved in culture. For instance, when chinook 

salmon leucocytes infected with Nucleospora salmonis were incubated with 

uninfected leucocytes, the naïve cells became infected and continual passage of these 

onto new cultures of naïve leukocytes supported the growth of the microsporidium 

for almost a year in vitro (Wongtavatchai et al., 1994; Wongtavatchai et al., 1995). 

Loma salmonae has been shown to replicate in vitro in rainbow trout gill cells (RTG-

1), with spores being produced after one week of infection through the formation of 

xenomas (McConnachie et al., 2015). The microsporidian Loma morhua has also 

been grown in vitro in larval cod cells (GML-5), when culture conditions of the 

medium were modified using a pH shift from neutral to alkaline during the infection 

process (MacLeod et al., 2018) Developmental stages of Heterospora anguillarum 

were observed using immunohistochemistry in the eel kidney epithelial cell (EK-1), 

but the formation of spores were not observed (Kou et al., 1995 For most of the fish 

microsporidians successfully cultured in vitro, germination of the spores have 

occurred during the experimental process while in contact with the cell cultures, and 

without the previous artificial stimulation of the polar tube extrusion. However, a pH 
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shift from neutral to alkaline was necessary for the microsporidian Loma morhua to 

cause infection in larval cod cells (GML-5). Conditions to activate spores seem to be 

related to the adaptation of the microsporidian species with its host and environment, 

(reviewed by Weiss et al., 2014). According to MacLeod et al. (2018), the pH change 

represented a means of detecting passage acidic stomach to the alkaline small 

intestine for the microsporidian.  
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Table 2.1. Fish- associated microsporidia successfully cultured in vitro. 

Microsporidia  Infected host Cell type used  Authors 

Heterosporis 

anguillarum  

Japanese eel 

(Anguilla 

japonica) 

EP-I (epithelial cell line persistently infected with H. 

anguillarum of elves of Japanese eel) 

Kou et al. (1995) 

Nucleospora 

salmonis 

Chinook salmon  Primary culture of leukocytes from peripheral blood of chinook 

salmon and primary culture of epithelial-like cell from kidney of 

rainbow trout 

Desportes-Livage et al. 

(1996); Wongtavatchai et 

al. (1994); 

Wongtavatchai et al. 

(1995) 

Glugea sp. Greater sand eel 

(Hyperoplus 

lanceolatus) 

Derived cells from pooled newly hatched Aedes albopictus 

larvae and CHSE-214 (chinook salmon embryo) 

Lores et al. (2003) 

Pseudoloma 

neurophilia 

Zebrafish  CCO (channel Catfish Ovary); SJD.1 (zebrafish caudal fin 

fibroblast); EPC (carp epithelioma); FHM (fathead minnow) 

Watral et al. (2006) cited 

in Monaghan et al. 

(2009) 

Heterosporis 

saurida 

Lizardfish 

(Saurida 

undosquamis) 

EK-1 (eel kidney epithelial cell); RK-13 (Rabbit kidney 

epithelial cell) 

Kumar et al. (2014); 

Saleh et al. (2014) 

Loma 

salmonae  

Chinook salmon RTgill-W1 (rainbow trout epithelial cells) McConnachie et al. 

(2015) 

Loma morhua Atlantic cod 

(Gadus morhua) 

GML-5 (larval cod cell lines) MacLeod et al. (2018) 
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2.1.3 Aims and objectives 

2.1.3.1 Aims 

The life cycle of D. lepeophtherii has previously been described by Nylund et al. 

(2010). However, the routes and processes of infection have not been detailed either 

in vitro or in vivo, and all proposed pathways of infection are hypothetical. It has not 

been established whether the parasite is transmitted from the water column to fish, 

from the sea louse to fish, fish to fish, sea louse to sea louse, or sea louse to fish, as 

hypothesised.  

An important step in understanding the biology of this parasite is the 

development of models for its propagation. Currently, no in vitro or in vivo model 

supporting D. lepeophtherii development is available. Desmozoon lepeophtherii has 

been detected in the gills of rainbow trout by PCR. Considering this, and the 

apparent lack of host-specificity exhibited by other microsporidian parasites 

(Monaghan et al., 2011), the purpose of this study was to infect a rainbow trout gill 

epithelial cell line (RTgill-W1), a salmon head kidney 1 cell line (SHK-1), and a 

primary culture of salmon-isolated macrophages, with D. lepeophtherii spores 

isolated from sea lice collected from salmon farms.  

Successful culture of the parasite in vitro, would enable crucial experiments to be 

performed to study different aspects of D. lepeophtherii biology and reproduction 

(e.g. temperature dependence, cell response studies, possible treatment effect, etc.) 

important for understanding the role of this parasite in gill disease.  

2.2 Material and methods 

2.2.1 Collection of sea louse derived microsporidian spores 

Sea lice were isolated from infected Atlantic salmon collected from different salmon 

farms on the west coast of Scotland. Initial batches of sea lice were kindly provided 

by the health staff at a salmon production site and transported in sea water to 

Moredun Research Institute. Samples subsequent to 2017 were either sent by health 

staff by post or collected directly from the farm sites, but sea lice were placed in 

0.85% sterile saline containing antibiotics (100 mg of penicillin/streptomycin and 2 
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μg gentamicin per mL−1) (Sigma-Aldrich, Dorset, UK) as recommended by 

MacConechie et al. (2015) for transporting gills infected with L. salmonae. In 

addition, 5 µg mL−1 of Amphotericin B were added to the saline (Gibco, Invitrogen, 

Paisley, UK). The sea lice obtained prior to 2017 were rinsed twice with sterile 

saline, while batches of sea lice received after 2017 were also dipped into 0.5% 

Virkon® for 1 sec and then rinsed with sterile saline. Individual sea lice were then 

homogenised using a mortar and pestle, and spores were isolated following the 

technique described by McConnachie et al. (2015) (Figure 2.1). The homogenate 

was passed through a cell sieve with a 20 μM mesh (Pluriselect, Cambridge 

Bioscience, Cambridge, UK), the material was centrifuged at 350 x g for 10 min at 

4°C and the pellet resuspended in 10 ml ultrapure water mixed with 10 ml of 

Percoll® (GE Healthcare, Little Chalfont, UK). The mixture was vortexed and then 

centrifuged at 1000 x g for 10 min at 4°C and the microsporidian spores in the 

homogenate formed a pellet at the bottom of the tube, while the cellular debris 

remaining in the supernatant was discarded. The pellet was resuspended in 2 ml of 

saline and centrifuged at 1000 x g for 10 min at 4°C. This step was repeated three 

times. The efficacy of the spore purification procedure was assessed by making 

smears on glass microscope slides, which were then stained with Giemsa. This was 

performed on the spore smears using a freshly prepared Giemsa solution (Sigma-

Aldrich), by diluting 1:10 (v/v) in double distilled water and staining for 10 min. 

Smears were air-dried and slides were evaluated under the microscope. 

An estimation of the spore obtained was made by counting the spores in a 

haemocytometer, making duplicate counts for each batch of spores prepared. Spore 

were kept at 4°C in sterile saline. Spores collected after 2017, were kept in sterile 

saline containing 100 mg of penicillin/streptomycin, 2 μg gentamicin, and 5 µg of 

Amphotericin B per mL−1. Spores were used within 4 weeks of isolation to infect the 

cell cultures. 
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Figure 2.1. Flow diagram of spore extraction method based on Monaghan (2011) 

with modifications. 

2.2.2 Transmission electron microscopy to detect D. lepeophtherii 

Spores from the first two batches prepared were fixed in 3% glutaraldehyde in 0.1M 

sodium cacodylate buffer, pH 7.3, for 2 h, then washed 3 times in 0.1M sodium 

cacodylate buffer for 10 min. Preparations were post-fixed in 1% osmium tetroxide 

in 0.1M sodium cacodylate for 45 min, then washed as before. Samples were 

dehydrated sequentially in 50%, 70%, 90% and 100% ethanol (x3) for 15 min each, 

then twice in propylene oxide for 10-min each. Samples were subsequently 

embedded in TAAB 812 resin. Sections, 1 μm thick, were cut on a Leica Ultracut 

ultramicrotome (Leica Microsystems Ltd, Milton Keynes, UK), stained with 

toluidine blue, and viewed with a light microscope to select suitable areas for 

investigation. Ultrathin sections, 60 nm thick, were prepared from selected areas, 
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stained with uranyl acetate and lead citrate and viewed in a Jeol JEM-

1400 transmission electron microscopy (Jeol Ltd., Welwyn, UK). Images were taken 

on a Gatan Orius CCD (Gatan Inc, Pleasanton, CA). 

2.2.3 DNA extraction of spores 

Extraction of DNA from the microsporidian spores was necessary to perform 

subsequent experiments in other chapters, such as molecular-based techniques for 

diagnosis and species differentiation. However, the presence of some of the 

components in the spore wall (e.g. chitin) increases the difficulty of successfully 

extracting parasite DNA. In this study, different methodologies to extract the 

microsporidian DNA using enzymatic and mechanical disruption of the spores were 

tested based on previous studies by Reabel (2012) with modifications. For Method 1 

(enzymatic disruption), approximately 106 D. lepeophtherii spores, previously frozen 

at -20°C for 24h, were used and incubated with 80 μl filter-sterilized PBS, 100 µl of 

lysis buffer Qiagen tissue extraction kit (Qiagen, Hilden, Germany), 20 µl of 

Proteinase K (20 mg/ml) (Qiagen) and 0.4 U chitinase (Sigma-Aldrich, C6137) at 

56°C for 5 h. Method 2 (enzymatic and mechanical disruption) involved the addition 

of glass beads (200 mg; 0.4 mm diameter, 40 mesh) to the mixture, which was then 

vortexed every 15 min for 1 min during the 2 first h.  After performing Methods 1 or 

2, the DNA was extracted following the manufacturer’s instructions for the DNA 

Blood and tissue Kit (Qiagen). Method 3 involved DNA extraction from 

106 Desmozoon lepeophtherii frozen spores, following manufacturer’s instructions 

for the DNA Blood and tissue Kit (Qiagen).  

The DNA concentration in each sample was determined using a Nanodrop 1000 

Spectrophotometer (Thermo Scientific, Loughborough, UK). Spore identity was then 

verified by conventional PCR with the primers and conditions described below 

(Section 2.3.4). The quality of DNA was determined by calculating the A260/A280 

ratio. A PCR was performed with all DNA extractions, plus the use of 

106 Desmozoon lepeophtherii spores in order to corroborate if the boiling step in the 

PCR process was sufficient to extract genetic material from the spores as described 

by Nylund et al. (2011).  
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2.2.4 Polymerase chain reaction (PCR) 

DNA from purified spores was used for the amplification of the 16S ribosomal small 

subunit rRNA gene (16S rRNA), partial sequence of D. lepeophtherii using primers 

Nuc-F1 (5’-GCG ATG ATC TGC TCT AGT TGT G-3’) and Nuc-R2 (5’-GCT AAT 

CCT ACT CAT CCG TAA GC-3’) (Sigma-Aldrich, Dorset, UK), which yielded a 

969 base pair fragment from position 100 to 1091 (GenBank accession no. 

FJ594981) as described previously (Nylund et al., 2010; Nylund et al., 2011). Each 

PCR mixture consisted in 25 µl of GoTaq G2 Green Master Mix (Promega, 

Southampton, UK), (contains 400 µmol l-1 of each dATP, dGTP, dCTP and dTTP 3 

mM MgCl2), 5 µl of each primer (concentration 1 µmol l-1), 5 µl of template and 10 

µl of nuclease-free water. An additional negative control was used in each run. 

Amplification was performed at 95°C for 5 min; 35 cycles of 94°C for 30 s, 50°C for 

45 s, 72°C for 2 min; followed by extension at 72°C for 10 min and a short storage at 

4°C.  

The PCR product obtained was visualized in a 1% agarose (Bioline, London, 

UK) gel stained with GelRed (Biotium, Fremont, CA) using 5 µl of PCR product per 

lane and a 100–1000 bp ladder (Promega) to determine the product size. The gel was 

run at 80 v for 70 min in 1 x TAE buffer (Sigma-Aldrich) and the obtained products 

were visualised with ultraviolet irradiation using a UV Transilluminator (Alpha 

imager 2200; Alpha Innotech, Exeter, UK). 

2.2.5 Testing spore viability  

The spores used for the various experiments performed in this chapter, were always 

used within 4 weeks of isolation. The viability of the spores was confirmed prior to 

performing each experiment by measuring the artificial extrusion of the polar tubule 

and testing the membrane integrity of the spore. To stimulate the extrusion of the 

polar tube, spores were incubated for 45 min at 21°C with 30% H2O2 (Sigma-

Aldrich). A total of 100 spores were randomly counted under the microscope at 600x 

magnification and were categorized as extruded (visible polar filaments) or not 

extruded. To determine the membrane integrity, the uptake of dyes across the cell 

membrane was tested using the LIVE/DEAD BacLight Bacterial Viability Kit 
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(Invitrogen), which combines the SYTO® 9 green-fluorescent nucleic acid stain with 

the red-fluorescent nucleic acid stain, propidium iodide (PI). PI cannot cross plasma 

membranes and only damaged (non-viable) cells take up the dye and fluorescence 

red (Amigó et al., 1995). An equal volume of SYTO® 9 and PI was combined in a 

microcentrifuge tube. Then, 3 µl of this mixture was added to 1 ml of the spore 

suspension (maximum 106 spores per mL-1) and incubated for 15 min in the dark. A 

total of 5 µl of the stained spores were added to a slide and samples were 

immediately examined at 40× objective lens using an Olympus BX51 Fluorescence 

Microscope (KeyMed, Southend-on-Sea, UK) with a fluorescein isothiocyanate 

(FITC) filter (excitation range 480 to 490 nm) and a PI red filter (excitation range 493 

to 636 nm), photomicrographs taken with an Olympus DP70 Digital Camera System 

(KeyMed) and analysed using analySiS® software (Soft Imaging System GmbH, 

Munster, Germany). Viability of two batches of spores was measured 4 weeks after 

isolation and subsequently after 12 weeks.  

To compare the success of the techniques, a negative control of heat inactivated 

spores (95˚C in a water bath for 30 min) (Green et al., 2000) or 2-year old frozen 

spores were used.  

2.2.6 Fish and macrophage isolation 

Atlantic salmon (50 g), obtained from Institute of Aquaculture, University of Stirling 

of were euthanized with an overdose of tricaine methanesulfonate (MS 222) 

(Pharmaq, Hampshire, UK). Head kidney macrophages was isolated according to 

Secombes (1990) with modifications. The head kidney of salmon was dissected 

aseptically and teased through a 100 µm nylon mesh into Leibovitz’s medium (L-15) 

supplemented with 2% foetal bovine serum (FBS) and heparin (10 u/mL) and the 

suspension layered slowly onto a 34% 51% v/v Percoll gradient using a sterile 

Pasteur pipette. The gradient was then centrifuged at 400g for 25 min at 4˚C, the 

supernatant carefully removed and the band of cells at the 34-51% interface (~1 cm 

of space with the interface) collected with a sterile pipette. The cells were 

centrifuged for 7 min at 400g. The supernatant was removed, and the cell pellet 

gently resuspended in 50 mL of L-15 medium and centrifuged again 7 min at 400 g. 
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The supernatant was removed, and the pellet resuspended in L-15 (5 ml). An aliquot 

of the suspension was taken for macrophages enumeration, using 0.1% trypan blue 

(Gibco) to assess the viability of the macrophages.  

2.2.7 Maintenance of fish cell lines 

Rainbow trout epithelial cell (RTgill-W1) was obtained from the American Type 

Culture Collection (ATCC) and, the Atlantic salmon head kidney (SHK-1), was 

obtained from the European Collection of Authenticated Cell Cultures (ECACC).  

RTgill-W1 were grown in Leibovitz (L-15) medium with GlutaMax, supplemented 

with 10% FBS and SHK-1 cells were grown in L-15 medium with GlutaMax, 

supplemented with 2 μM L-glutamine and 40 μM mercaptoethanol and with 10% 

FBS. Cells were incubated in a 4% CO2 incubator at 18°C. 

All the cells lines were cultured at 18°C in 75-cm2 cell culture in non-vented 

flasks (Corning, Tewksburym, MA, USA). Cells were checked daily to assure they 

were healthy and not contaminated. All the chemicals and media were obtained from 

Gibco (UK).  Propagation of cells was carried out as follows. Briefly, ~8-day old 

cells (when 80% of confluence was achieved) were washed x2 with Dulbecco’s 

phosphate buffered saline (DPBS) and trypsinised for 2 min using x1 Trypsin / 

ethylenediaminetetraacetic acid (EDTA). The flasks were then tapped to remove the 

cells from the flask and mixed with aliquots of RTgill-W1 to split cells into a 1:3 

ratio for RTgill-W1 and 1:2 for SHK-1. 

2.2.8 Preliminary infections with D. lepeophtherii spores 

Preliminary experiments were performed using the initial batches of spores isolated 

from sea lice obtained from fish farms between 2015 and 2016. In these experiments, 

spores were used within a week of isolation. The RTgill-W1 and SHK-1 cells were 

split 1:3 into 25-cm2 non-vented flasks and maintained until a confluence of 70% 

was achieved. The spores were re-counted with a haemocytometer prior to use and 

an aliquot of spores at the desired concentration collected. The aliquot was 

centrifuged at 200 x g for 10 min, the supernatant removed, and the spores re-

suspended in L-15/FBS. One flask of each cell line was used for infections and one 
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was used as a control.  A ratio of at least 10:1 spore to cells was used in this 

experiment (Monaghan et al., 2011). The cells grew until a confluence of 70% was 

achieved, then approximately 2.5 x 107 spore were seeded into each of the flasks. In 

addition, 100 mg of penicillin/streptomycin, 2 μg gentamicin, and 2.5 µg of 

Amphotericin B per mL−1 were added to the L-15/FBS media of the infected flasks 

and controls. Flask were maintained for 2 weeks. 

2.2.9 Control of bacteria in cell cultures 

Due to the contamination of yeast and bacteria experienced during the preliminary 

trials in the flasks exposed to the microsporidia, more aseptic techniques were used 

in subsequent trials to transport lice, and for spore isolation (see Section 2.2.1). 

Experiments in which different concentrations of antibiotics were used, were 

performed to ensure that contamination could be controlled in future experiments. 

For this, RTgill-W1 and SHK-1 cells were grown in flasks until 80% cell confluence 

was obtained, after which the cells were harvested, counted using a haemocytometer 

and seeded onto 24-well plates (Corning). Three different concentration of antibiotics 

were tested in triplicates: 1x concentration (100 mg of penicillin/streptomycin, 2 μg 

gentamicin, and 2.5 µg of Amphotericin B per mL−1 of L15/FBS medium), 3x 

concentration and 5x concentration. The microsporidian spores (105) were then 

added into each well. Control wells contained the same quantity of antibiotics but no 

spores. Plates were maintained for 2 weeks at 12°C and without CO2. 

2.2.10   Infecting cell lines with D. lepeophtherii spores 

RTgill-W1 and SHK-1 cell lines were grown in flasks until 80% cell confluence was 

obtained, after which the cells were harvested, counted using a haemocytometer to 

achieve an ideal concentration of cells and split onto 6-well plates. Cells were then 

left to acclimate for 2-3 days, until the cells reached the required degree of 

confluence (60-70%) before inoculating them with spores. A desired concentration of 

spores was prepared as in descried in Section 2.3.8, and spores were added at 

different cell:spore ratios (1:1, 1:10, and 1:20) to each well. Infections were carried 

out in duplicates and a mock control without spores was also included. Two different 

incubation temperatures were also tested (12°C and 16°C).  
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After 7 days post exposure (p.e.), the medium was removed from each plate, and 

wells were rinsed three times and re-fed with fresh medium and antibiotics.  The 

medium was then replaced weekly. Cells were kept for 21 days and then split into 

new 6-well plates and maintained for another week. 

2.2.11   Testing effect of pH shift on D. lepeophtherii germination 

Experiments were performed following the same procedure as described in Section 

2.3.8, but in order to stimulate germination of spores, a shift in pH was induced by 

following the protocol of MacLeod et al. (2018). Briefly, 107 spores were suspended 

in 0.5 ml of Minimal Essential Medium (MEM) containing 10% FBS and then 

inoculated onto 6-well plates of RTgill-W1 and SHK-1 while incubated at 12°C. The 

pH of the MEM was raised to 7.8 in the presence of RTgill-W1 and SHK-1 cells for 

120 min and the spores were therefore in contact with the cells while the pH shift 

from neutral to alkaline occurred. After 120 min, each well was made up to 2 ml of 

L-15/FBS and cells were maintained as described above.   

2.2.12   Infecting macrophages with D. lepeophtherii spores 

A total of 106 viable macrophages were added to each well of 8-well chambers-slides 

(Thermo-Fisher Scientific, Leicestershire, UK) and these were filled with 200 µl of 

L-15 media and 5% FBS. Macrophages were left to adhere for 2 h at 18˚C and then 

cultures were washed twice with L-15 medium, removing unattached cells. The 

monolayer of adherent cells was then supplemented with 200 µl of fresh L-15 

medium containing 5% FBS and 100 mg of penicillin/streptomycin, 2 μg gentamicin, 

and 2.5 µg of Amphotericin B per mL−1. Cells were maintained at 18˚C. Spores at 

different concentrations were seeded in the wells of the chambers-slides in duplicate 

wells at different concentrations (1:5 and 1:10 cell to spore ratio). Cultures were 

maintained for 5 days. A control well, without spores, was also included. Cultures 

were examined after 24 h.p.e, 3 d.p.e and 5d.p.e.  Cells in the chambers-slides were 

fixed with 100% absolute methanol at 1 d.p.e, 2 d.p.e and 4 d.p.e. For fixation, 0.2 

ml of methanol were added to each well and left for 1 min. The chambers-slides were 

then rinsed with phosphate-buffered saline (PBS), left air dried, and stained with 

10% Giemsa and subsequently with Calcofluor White (CW) (Fluka, Buchs, 



62 

Switzerland).  Calcofluor White staining was performed according to the 

manufacturer’s instructions. Briefly, one drop of KOH (15% w/v) and one drop of 

CW reagent was added to the slides. After 1 min, the slides were mounted and 

examined under ultraviolet light (excitation range 300 to 440 nm). 

2.2.13  Monitoring cell cultures infected with D. lepeophtherii 

spores 

Cells exposed to microsporidia and control cells were monitored daily using an 

Olympus CK40 phase-contrast inverted microscope (KeyMed) for signs of spore 

germination, infected cells, and the appearance of developmental stages comparable 

to other microsporidian cultures (e.g. MacLeod, 2012; Monaghan et al., 2011). 

Micrographs were taken using a Canon EOS 60D (Canon, Saitama, Japan). 

2.3 Results 

2.3.1 Lice collection and spore isolation   

2.3.1 Lice collection and spore isolation   

Sea lice were collected from a number of salmon farms in Scotland at different times 

of the year. Some of the sites where these were collected are unknown, since the sea 

lice were sent by the health staff at the salmon production sites, who provided no 

details of the farm sites where lice were collected. The use of Percoll gradients, as 

described in Section 2.2.1, proved suitable for the isolation of D. lepeophtherii 

spores. A high number of spores were isolated from sea lice collected on 26.10.2017 

and 28.11.2018. The final concentration of spores isolated from each sampling point 

is summarised in Table 2.2.  
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Table 2.2. Details of D. lepeophtherii isolation from sea lice. The number of spores 

and weight of the sea lice (g) from which the spores were collected are provided. The 

number of spores/g sea lice is also shown. 

Date of 

collection 

Spores 

no. 

Weight of sea 

lice (g) 

Number of 

spores/g 

sea lice 

Collection point 

10.11.2015 7 x 107 1.34 5.22 x 107 Ardnish 

22.01.2016 1.5 x 108 1.8 8.33 x 107 Invasion Bay 

12.02.2016 4.6 x 107 1 4.6 x 107 Camas Glas 

21.04.2016 1.3 x 107 10.33 1.2 x 106 Loch Alsh and Poll 

na Gille 

26.10.2017 4.9 x 108 10.55 4.6 x 107 Unknown 

12.12.2017 4 x 106 4 106 Unknown 

13.01.2018 3 x 107 0.74 4 x 107 Unknown 

26.01.2018 0 1.78 0 Poll Na Gille 

05.02.2018 2.3 x 107 1.1 2.1 x 107  Unknown 

04.05.2018 0 1.5 0 Skye 

21.05.2018 0 0.6 0 Shetland 

12.09.2018 0 1.8 0 Loch Kishorn 

15.11.2018 0 2 0 Loch Kishorn 

27.11.2018 6 x 107 7.58 8.0 x 106 Appin 

28.11.2018 1.5 x 109 14.7 1.0 x 108 Loch Fyne 

06.12.2018 4 x 108 11 3.6 x 107 Quorry Point 

05.03.2019 0 9 0 Loch Creran 

 

When smears of spores were stained with Giemsa, spherical structures 

approximate 2.5 µm in diameter consistent with microsporidian spores were 

observed (Figure 2.2). Very low levels of bacterial rods could be seen in some of the 

spore suspensions.  
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Figure 2.2. (a) Smear of Desmozoon lepeophtherii spores after isolation on Percoll 

gradients stain, blue in colour from Giemsa staining; (b) Note the birefringence of 

the spore wall and the darker belt-like stripe (arrow) previously described for other 

microsporidia (Garcia, 2002). 

2.3.2 TEM results 

The appearance of spores isolated from sea lice collected on 10.11.2015, were typical 

of microsporidian spores (Figure 2.3) and the description previously give for D. 

lepeophtherii (Figure 2.4) (Freeman & Sommerville, 2009; Nylund et al., 2010) 

when viewed by TEM. They had a single nucleus and were 1.5-2 µm in length. The 

spore wall had a thickness of approximately 50 nm. The polar tubule had 4-8 coils 

and was of an isofilar type, with a diameter of 60-90 nm (Freeman & Sommerville, 

2009). Occasional larger spores of 2.5-3 µm in diameter were seen. These possessed 

a thicker polar wall (~130 nm) and 13-22 coils in the polar tubule (Figure 2.5).  
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Figure 2.3. TEM micrographs of mature spores of Desmozoon lepeophtherii obtained 

from sea lice after isolation on a Percoll gradient. Two type of spores were noted, 

smaller spores of 1.5-2µm in length (yellow arrows), and bigger spores of 3-4µm in 

diameter (white arrow) 

 

 

Figure 2.4. TEM micrographs of Desmozoon lepeophtherii spores: (a) Sagittal 

section of spore detailing an electron-dense exospore (Ex), and a thicker electron-

lucent endospore (En). The polar tube has an electron dense core (PT) and terminates 

at the apical part of the spore in an anchoring disk (AD), near the lamellar 

polaroplast (PA). (b) Transverse section of mature spore with the single nucleus 

visible (N). The vesicular polaroplast is also present (VP) 
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Figure 2.5. TEM micrographs of isolated spores of D. lepeophtherii. Two different 

sizes of spores were noted. Smaller spores were 1.5-2µm in length (arrow), and 

larger spores were 3-4µm in diameter (yellow arrows). Larger spores (2.5-3 µm in 

length), were seen occasionally that contained non-regularly arranged coils of the 

polar tubule.  

2.3.3 DNA isolation and PCR  

Overall, the extraction methods used yielded low concentrations of parasite DNA 

(Table 2.3). Chitinase (Method 1), chitinase and glass beads (Method 2) or DNA 

extraction Kit alone (Method 3) were all used to disrupt the spores, however Method 

1 was slightly more effective than treating with either chitinase or Proteinase K 

alone. DNA from all three methods gave positive results in the PCR (Figure 2.6). 

The DNA from spores without treatment was sufficient to yield a positive result in a 

conventional PCR (Figure 2.6). Examples of positive results from spores collected at 

different sampling points (22.01.2016, 12.02.2016, 13.04.2016) are given in Figure 

2.7. 
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Figure 2.6. Agarose gels showing of PCR products from the various DNA extraction 

methods tried.  Lanes M (marker pointing the fragment size of 1000 in basepairs (bp) 

with an arrow); lanes 1 and 3 - negative control; lane 2 – kidney from infected fish; 

lane 4 - DNA extraction using Method 1; lane 5 - DNA extraction method 2; lane 6 - 

DNA extraction Method 3; and lane 7 results DNA from untreated spores. 

 

Figure 2.7. Example PCR products from spores isolated at different sampling points. 

M (marker pointing the fragment size of 1000 in base pairs (bp) with an arrow), lanes 

1 and 6 (negative controls), lanes 2-4 (positive results of spores isolated at different 

sampling points: 22.01.2016; 12.02.2016; 13.04.2016). 
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Table 2.3. Yields of DNA extracted from spores using different extraction protocols: 

Method 1 (enzymatic disruption and DNA extraction Kit); Method 2 (enzymatic and 

mechanical disruption and DNA extraction Kit) and Method 3 (DNA extraction Kit 

only) 

Method DNA concentration 

(ng/µl) 

A260/280 A260/230 

Method 1 6.12 1.93 0.33 

Method 2 4.13 2.27 0.18 

Method 3 3.64 1.83 0.14 

 

2.3.4 Viability of spores 

Spores that were collected on 22.11.2018 and 06.12.2019, and stored at 4°C for 4 

weeks in sterile saline, had a polar tubule extrusion rate of 14% and 9% respectively, 

when exposed to 30% of H2O2 (Figure 2.8). The polar tubule length was 

approximately 8 µm, but this appeared coiled in some spores. Discharge was 

observed using a 60x objective lens. Negative controls did not show extrusion of the 

polar tube (boiled spores and 2-years old frozen spores). Using a LIVE/DEAD Kit, 

the same spores preparations were shown to contain 18.5% and 18.5% of dead spores 

respectively after 4 weeks of isolation, and 17.3% and 42.6% after 12 weeks of being 

kept at 4oC. Under the FITC filter, dead spores presented with a slight red 

fluorescence and the viable cells a green florescence. Under the red PI filter, dead 

spores had a strong red fluorescence and viable spores could not be seen (Figure 2.9a 

& b), while 100% of the control spores had red fluorescence, indicating that they 

were not viable (Figure 2.9c & d).  
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Figure 2.8. Spores of D. lepeophtherii exposed to 30% of H2O2. (a) Note the 

presence of the polar tubule after being extruded (arrows) and the absence of it in 

those spores in which the ejection did not occur (small arrow). (b) a D. lepeophtherii 

spore with the polar tube extruded.  

   

 

Figure 2.9. Spores stain with the viability kit. (a) Spores examined with light 

microscopy and (b) under the fluorescence microscope. Note that viable spores have 

a green fluorescence and non-viable are have a red fluorescence, which indicates that 

the spore plasma membrane is damage and the PI has been absorbed. (c) Negative 
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control spores that were previously boiled examined with light microscopy (d) 

Negative spores all showed a red fluorescence and were therefore non-viable. 

2.3.5 Preliminary culture experiments in vitro 

In the preliminary trials culturing D. lepeophtherii in the fish cell lines, spores were 

used within a week of isolation without any previous treatment with antibiotics or 

antimycotics. In these experiments, extensive contamination with both yeast and 

bacteria were obvious 4 d.p.e. in both flasks of RTgill-W1 and SHK-1 cells infected 

with the spores. Despite continuous cleaning of the flasks by washing and medium 

changes, it was not possible to control the contamination that resulted, and it was 

decided to discard the cultures 21d.p.e. Negative control preparations (mock 

cultures) were not contaminated, indicating that the source of the contamination had 

come from the spores.  

2.3.6 Optimal concentration of antibiotics 

To control contamination, the sea lice was transported in a solution of antibiotics and 

antimycotics from the farm site, and spores were cleaned for two weeks after 

isolation before being used in the cell culture experiments. Subsequent experiments 

with different concentrations of antibiotics, revealed that 1x concentration of 

antibiotics and antimycotics was sufficient to control secondary contamination in the 

cultures. Very low levels of bacteria were seen throughout the 14 day period of the 

study, but yeast was not present.  

2.3.7 Cell line experiments with D. lepeophtherii 

Fish cell cultures were examined daily by phase contrast microscopy throughout the 

experiment after the addition of D. lepeophtherii spores to the cells. Immediately 

after infecting the cells with the spores all the spores appeared bright under phase 

microscopy, but this changed 24 h.p.e. with some of the spores becoming less bright, 

suggesting that possible germination of the spores had occurred. Fourty eight h.p.e., 

spores appeared to form clusters between the cells. Early life cycle stages, 

developmental stages or spores of D. lepeophtherii were not definitively detected in 

either the RTgill-WI (Figure 2.10) or the SHK-1 cells (Figure 2.11). Similar results 
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were obtained when these cell lines were incubated with spores at different 

temperatures (12°C and 16°C) and after the incubating the spores in MEM for 120 

min with a pH shift (from 7 to 7.8) to stimulate the germination of the spores through 

a change in pH. When the medium was removed from the wells and the cells rinsed 7 

d.p.e., not all of the spores were removed from the cultures and a large quantity of 

spores remained in the plates. Spores were not completely removed from the cultures 

until 21 d.p.e., after the infected cells were washed for a third time, and the cells split 

(1:2) into new plates. After the infected cells were split, very low number of spores 

remained and could be seen in the new plates.  

When different cell to spore ratios were used, spores at a 1:1 cell spore ratio 

were considered too low to observe. Only a few spores were present and changes in 

their birefringence could not be detected. Concentrations of 1:20 completely covered 

the cell monolayer and did not allow any early events of infection that may have 

occurred to be visualised. A concentration of 1:10 was considered optimal to see 

possible changes in the cells and appropriate to allow a sufficient number of spores 

to potentially infect the cultures.  

2.3.8 Experiments with macrophages 

Macrophage cultures were examined by phase contrast microscopy daily. 

Phagocytosis of spores was noted 24 h.p.e. (Figure 2.12). The number of spores 

within the macrophages increased over time and decreased in the medium. 

Macrophages were notably enlarged 4 d.p.e. However, developmental stages within 

the macrophages were not detected. Spores could be clearly seen in the cytoplasm of 

macrophages with Giemsa staining, but infectious or developmental stages were not 

observed. Calcofluor White stain confirmed the presence of the spores within the 

macrophages (Figure 2.13). 
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Figure 2.10. RTgill-W1 cells. Exposed cells with D. lepeophtherii spores (a) and 

negative controls cells (b) 24 h.p.e. Note the spores (arrow) present in the infected 

cultures as singles and in groups; (c) exposed cells and (d) negative control cells 7 

d.p.e. After removing the old media and cleaning the cultures with fresh media for 3 

times, some spores remained in the cultures (arrow). (e) Exposed cells with D. 

lepeophtherii spores and (f) negative controls 21 d.p.e before cells were split. 

Cultures had been cleaned twice since the beginning of the experiments and the 

number of spores decreased. Cells post-exposure did not show obvious changes 

compared with the cells uninfected. Scale bars 100 µm. 



  

73 

 

 

Figure 2.11. Images of the SHK-1 cells. (a) Exposed cells with D. lepeophtherii 

spores and (b) negative control cells after 24 h.p.e. Note the spores (arrow) present in 

the infected cultures as singles and in groups; (c) Exposed cells and (d) negative 

control cells after 7 d.p.e. After removing the old media and cleaning the cultures 

with fresh media for 3 times, some spores remained in the cultures (arrow). (e) 

Exposed cells and (f) negative control cells after 21 d.p.e before cells were split. 

Cultures had been cleaned twice since the beginning of the experiments and the 

number of spores decreased. Infected cells did not show obvious changes compared 

with the cells uninfected. Scale bars 100 µm. 
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Figure 2.12. Micrographs of macrophages of Atlantic salmon (arrows). Macrophages 

(a & b) after 3 h. p. e. with D. lepeophtherii spores. Note the spores (short arrow) 

present in the media but not yet internalized by the macrophages; (c & d) after 24 

h.p.e. some macrophages contained large amounts of microsporidian spores in their 

cytoplasm (box); (e & f) after 4 d.p.e. macrophages were enlarged (arrow) and spores 

were visible associated with the cytoplasm of the macrophages or in the media (short 

arrow).  



  

75 

 

 

Figure 2.13. Micrographs of macrophages (a) 3 h.p.e with D. lepeophtherii stained 

with Calcofluor White. Note how most of the spores (short arrow) are not associated 

with the macrophages; (b) 24 h.p.e spores were mostly seen within the macrophages 

(arrow) and not free in the medium (white arrows).  
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2.4 Discussion 

This study represents the first report of attempts to grow the microsporidian D. 

lepeophtherii in vitro. The results obtained in this study suggest that spores derived 

from sea lice cannot be propagated in RTgill-W1 cells, SHK-1 cells or short-term 

primary cultures of macrophages under the conditions used. It was not determined if 

low grade infections with D. lepeophtherii were present in the cells however, and 

further studies should address the use of more specific methods to identify early 

stages of the microsporidian in the cell cultures.  

Spores of D. lepeophtherii were successfully isolated from the sea lice at 

different sampling points and from different Atlantic salmon farms. Infections of D. 

lepeophtherii in the sea lice has previously been reported in Scotland. Freeman 

(2002) studied the prevalence of D. lepeophtherii infections in sea lice in one salmon 

farm in Scotland over the course of approximately two years. The study examined 

the gross appearance of the sea lice and did not focus on the salmon host.  Individual 

sea lice were recorded as infected when presenting obvious opaque areas on their 

body. These opaque areas had previously been associated with the presence of 

xenomas caused by the microsporidian. The highest prevalence of infection was 

noted during the months of October to January. In more sophisticated studies, Sveen 

et al. (2012) measured the levels of D. lepeophtherii in two salmon farms in Norway 

by RT-rtPCR. In one of the farms, the prevalence and loads of D. lepeophtherii 

increased significantly from the months of November to January, whilst in the other 

farm levels of D. lepeophtherii were very low throughout the year. This was possibly 

related to the low loads of D. lepeophtherii that were present in the salmon at that 

farm and therefore the lice were unable to become infected by feeding on the blood 

and skin of these salmon. The availability of sea lice from which the spores had been 

collected, depended on the salmon farming companies to provide these. As a result, 

the location of where the sea lice had been obtained varied, and this meant it was 

impossible to carry out a detailed study examining the prevalence and burdens of D. 

lepeophtherii in the sea lice. However, the greatest number of spores were collected 

during the months of October to February, whilst low numbers or even no spores 

were isolated from sea lice in February, April, May and September. These findings 
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are in agreement with the observations of Freeman (2002) and Sveen et al. (2012), in 

which the levels of D. lepeophtherii seem to increase during the winter months. 

However, no spores could be isolated from sea lice collected in November from a 

salmon farm in the north of Scotland (sampling point 15.11.2018), showing inter-

farm variability for infections with the microsporidian. 

TEM and PCR results showed that the spores collected belonged to D. 

lepeophtherii. Until now, the only another microsporidian apart from D. 

lepeophtherii that has been isolated from L. salmonis is Facilospora margolisi. This 

was isolated from sea lice collected from Atlantic salmon in Canada (Jones et al., 

2012), but has not been detected in sea lice from Europe. The ovoid spores of F. 

margolisi are larger under TEM (2.6 µm in length) and have between 3-4 coils in 

their polar tube, compared with the smaller and rounded spores of D. lepeophtherii 

(1.5-2 µm in diameter in length), which has 4-8 coils in their polar tube. Larger and 

rounded spores were seen in the TEM studies in this study (2.5-3 µm in diameter) 

that had a bizarre arrangement of the polar tube, but these have been described 

previously in the development of D. lepeophtherii (Freeman, 2002; Nylund et al., 

2010). The formation of two populations of spores, autoinfective and environmental, 

has been described for some microsporidians, including D. lepeophtherii during its 

development in salmon (Nylund et al., 2010). Additionally, another type of spores 

termed macrospores (spores about two times the size of the typical spores and with a 

higher number of polar tubule coils), have been described for some Pleistophora spp. 

(Canning & Hazard, 1982). According to Freeman (2002), the larger spores found in 

D. lepeophtherii could be similar to the macrospores found in Pleistophora spp. 

However, due to the abnormal arrangement of the internal spore structures (not seen 

in macrospores), Nylund et al. (2010) suggested that these are thought to be the result 

of anomalous development but its role in the development of D. lepeophtherii 

remains unknown.  

Only spores collected from the first two batches of sea lice were processed for 

TEM analysis, while Giemsa staining was performed on all other batches of spores to 

confirm that the morphology of the spores isolated was consistent with those for D. 

lepeophtherii. Additionally, conventional PCR was used to confirm the presence of 
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D. lepeophtherii in all batches of spores used for the cell culture experiments. 

Attempts made to extract DNA from the spores resulted in very low yields of genetic 

material. Similar results were obtained with spores from other microsporidia. Reabel 

(2012) extracted the DNA from spores of the microsporidian Encephalitozoon 

cuniculi using different combinations of enzymatic and mechanical disruption, and 

also testing different commercial DNA extraction kits, including the one used here 

(DNAeasy kit). The results from these extractions gave very low yields of DNA (1.9-

3.2 ng/µl) overall and were similar to the yields obtained in the present study, when 

different methods were used together with the DNAeasy kit to extract DNA from the 

spores. In contrast, other commercial kits, in particular PrepGEM™ (Zygem, 

Hamilton, NZ) provided much higher concentrations of DNA. The author suggested 

that the simplicity of the extraction process with this kit reduced the loss of DNA that 

results in kits based on multiple step extractions. In the present study, spores used 

directly in the PCR gave positive results and this method was therefore chosen over 

other extraction methods due to its simplicity. Freezing and thawing the spores prior 

to the PCR and the denaturation step at 95 ˚C for 5 min during PCR amplification, 

was thought to disrupt the spore wall and allow the DNA to be released.  

Spores kept under laboratory conditions for long periods of time may be 

detrimental to the integrity of the spore and affect the outcome of future experiments 

(Shaw et al., 2000). The most effective method to assess spore viability is to use the 

spores to perform infection trials in vivo or in vitro (Shaw et al., 2000). When these 

kinds of experimental models are not available, as is the case for D. lepeophtherii, 

other methods can be used to confirm spore viability. Two experiments were used to 

confirm the viability of the spores: the artificial germination of the polar tube and the 

capacity of the spore to permit the entrance of dyes. Extrusion of the polar tube 

occurs when optimal environmental stimulation is present. The necessary stimuli 

vary between different microsporidian species and the use of various mechanical and 

chemical stimuli have been investigated. Several hypotheses for germination are 

presented in the review by Williams et al. (2014). One recurrent theory is that 

activation starts with an influx of ions that results in the displacement of calcium 

from the intracellular compartments. This may be associated with the loss of spore 

structure, but also to the activation of the enzyme trehelase, as suggested by Undeen 
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(1990). Terhalase breaks down trehalose into glucose and smaller molecules 

metabolites that could increase osmotic pressure within the spore and stimulate the 

entrance of water. Subsequently, an increase of intrasporal pressure and swelling of 

organelles may result, causing the polar tube to extrude. Hydrogen peroxide might 

disturb the inter-membranous compartments in a similar manner, creating an influx 

of monovalent ions and stimulating the changes previously described. In the present 

study, the extrusion rate of the polar tube through exposure to a high concentration of 

H2O2 resulted in a very low percentage of germination (9-12%) of D. lepeophtherii 

spores which had been kept at 4°C in 0.85% sterile saline for 4 weeks. It is possible 

that H2O2 concentration used was not strong enough to stimulate the germination of 

the D. lepeophtherii or it could be that after 4 weeks in the laboratory, the capacity of 

the microsporidian to germinate artificially was reduced. An experiment carried out 

using L. salmonae spores found that the capacity to extrude the polar tube under the 

exposure to H2O2 decreased over time (Shaw et al., 2000). After 100 days, the 

extrusion rate of spores kept in freshwater and seawater at 4°C was 0%. However, 

even when spore extrusion was only ~ 10% after 95 d, these spores were still able to 

cause gill xenomas when used to challenge coho salmon.  

The membrane integrity of the D. lepeophtherii spores used in the present study 

was also assessed based on membrane’s ability to take up dyes, for which a 

LIVE/DEAD kit that combined SYTO 9® and propidium iodine was used. The use 

of vitality dyes to confirm the viability of microsporidia has been used previously 

prior to performing infection trials in vivo (Collado et al., 2014). The viability of 

microsporidia varies with species and the conditions in which the spores are kept. 

The results in this study showed that 18.5% of spores had lost viability after 4 weeks 

kept at 4°C in saline, and that up to 42.6% of the spores were no longer viable after 

12 weeks. Despite the results of the H2O2 challenges to assess the polar tube 

extrusion rate, 80% of spores were viable with the LIVE/DEAD kit when used to 

perform the infection experiments in the cell lines, with spores always used within 4 

weeks of isolation. 

Control of contamination in microsporidia spores obtained directly from their host 

has posed a challenge for other cell cultures studies and has proved to be a limiting 
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factor for the culture of some microsporidia in vitro (e.g. Monaghan et al., 2011). 

The transport of lice and then maintenance of the D. lepeophtherii spores in a 

solution of antibiotics and antimycotics for two weeks prior to use was performed as 

described by McConnachie et al. (2015), and this drastically reduced the levels of 

yeast and bacteria in the cultures. This should be regarded as a necessary step in 

future experiments using spores obtained from the sea lice for in vitro or in vivo 

experiments.  

During this experiment, a few spores with less birefringence were noted in the 

cultures 24 h.p.e. This has been associated with the germination of microsporidia and 

subsequent emptiness of spores (Monaghan et al., 2011), and it was also noticed after 

the experimental trials with H2O2 after the extrusion of the polar tube. However, it is 

not clear if these changes were due to germination or to the dead spores (up to 20%) 

in the suspension used to infect the cultures. No subsequent changes, suggestive that 

the cells were infections with D. lepeophtherii were observed. Culture of Loma 

salmonae in vitro in RTgill-1 cells had the presence of hypertrophic cells that 

contained intracellular spores that developed 5 d.p.e, and some of the newly 

produced spores were free in the media 7 d.p.e. Exposure of RTgill-W1 cell with 

spores from the microsporidian Loma morhua did not cause any signs of infections 

during the 30 days of the trial (MacLeod, 2012), but when cells derived from cod 

larvae were infected with spores and incubated at 8°C, developmental stages of the 

spores could be seen by 15 d.p.e (MacLeod et al., 2012). A shift in the pH from 

neutral to alkaline seem to be necessary for some microsporidia to sporulate. Dall 

(1983) proposed that an alkaline environment establishes a proton gradient and 

activation of cation/proton exchange in the sporoplasm and other organelles of the 

spore creates an osmotic imbalance, leading to swelling of the organelles and an 

increase in intraspore water pressure that leads to the extrusion of the polar tube. 

However, an increase in alkalinity it is not a requirement for microsporidians to 

germinate (Williams et al., 2014), and conditions required for this seems to depend 

on individual microsporidian species. A shift in medium pH from neutral to alkaline 

did not cause any appreciable changes in the D. lepeophtherii’s ability to germinate, 

as seen to occur with other microsporidian species. 
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The sea louse was chosen as the host to isolate spores of D. lepeophtherii 

because of its readily available and easy to isolates spores compared to isolation from 

Atlantic salmon gills, and because according to the hypothesised life cycle of D. 

lepeophtherii, spores of lice are able to infect the gills of salmon (Sveen et al., 2012). 

Additionally, the microsporidian has been reported in the gills of rainbow trout by 

sequencing of the RT-rtPCR product (GenBank accession number FJ594989) and 

other salmonids (Nylund et al., 2010; Thakur et al., 2019) and fish species (Steigen 

et al., 2018), which suggested that the specificity of the parasite was low, and it 

could potentially infect a wide range of cells in cell culture. Specificity of the 

microsporidia in vitro varies widely among species, as demonstrated from A. 

algerae, which is able to successfully gown in mammal, insect and fish cell lines 

(Belkorchia et al., 2008; Monaghan et al., 2011). From the seven fish microsporidia 

cultured in cell lines, three have been reported to infect non-host derived cell lines 

(see Table 2.1). Lores et al. (2003) showed how the Glugea spp. microsporidian, 

obtained from the greater sand eel, was able to infect and grow in the larval cells of 

the mosquitoe A. albopictus and to infect cells of the chinook salmon embryo 

(CHSE-214), although development in the latter cell line ceased after 48 h in culture. 

Pseudoloma neurophila isolated from zebrafish, was able to infect a range of cell 

lines derived from the zebrafish and fish other species (Watral et al. (2006) cited in 

Monaghan et al. (2009)). Finally, the microsporidian H. saurida grew in kidney cells 

of rabbit, and spores were obvious in the cytoplasm of the cells 1 week after 

exposure. However, trials with other fish and mammalian cell lines did not support 

the development of this species of microsporidian. Despite the range of species from 

which D. lepeophtherii has been detected, the parasite is seems unable to cause 

obvious infections in cell cultures used derived from trout or salmon.  

The life cycle of D. lepeophtherii is complex: one type of sporogony occurs in 

the sea lice and two different stages occur in salmon. This leads to a total of three 

different spore stages for the microsporidian. Infection of salmon kidney with 

autoinfective spores of D. lepeophtherii have been confirmed by TEM and light 

microscopy (Nylund et al., 2010; Matthews et al., 2013), although these seem to 

occur subsequently to the initial infection seen in the Atlantic salmon gills, and 

formation of the characteristic autoinfective spores, different to the ones obtained 
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from the sea lice, probably spread from the gills to other organs of the fish. 

Developmental stages of D. lepeophtherii and autoinfective spores have been also 

observed in polymorphonuclear leucocytes and macrophages of salmon by TEM and 

ISH (Nylund et al., 2011; Weli et al., 2017), but again, this has been suggested to 

occur secondary to the initial infection of salmon gills and development of 

autoinfective spores, not by infections by the primary spores of sea lice. Future 

studies should include the use of a recently developed gill cell line of Atlantic 

salmon (Gjessing et al., 2018) in order to elucidate if spores of sea lice can infect 

these cells and if the transmission of the microsporidian from sea lice to salmon 

occurs as hypothesised for its life cycle. Additionally, the inclusion of insect cell 

lines in vitro studies could provide a better environment for the growth of the spores 

derived from the sea lice. Other approach would be to collect spores from the 

infected Atlantic salmon. Due to the lack of in vivo infection models with D. 

lepeophtherii, collection of gills from farmed salmon infected with D. lepeophtherii 

carries some difficulties. Even though the presence of the microsporidia in salmon 

farms is common (Steinum et al., 2010), intense production of spores seems to occur 

asynchronously in the farm and in a short time window (Matthews et al., 2013). For 

this, a close monitoring of the health status of one or various populations of farmed 

salmon and knowledge of the continuous status of the level of infection with D. 

lepeophtherii in the farm is necessary. Furthermore, various isolation attempts could 

be necessary before collecting a considerable number of spores to perform in vitro 

experiments, as carried out with spores from sea lice. 

In conclusion, isolation of D. lepeophtherii from sea lice is relatively easy and 

can be used to gather relatively high loads of spores for future culture experiments. 

However, in vitro culture of the parasite could not be accomplished in this 

experiment. Desmozoon lepeophtherii has a complex life cycle and how its 

transmission to fish occurs is unknown. The use of cell lines is an excellent way to 

study the basic biology and other aspects of the organism and the culture of D. 

lepeophtherii in vitro deserves further research. Future cell culture experiments 

should include insect cell lines and Atlantic salmon epithelial gill and gut cell 

lines, as well as the trial of different methods to favour the germination of the 

microsporidian. In vivo trials using different routes of infection in the fish such as 
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pipetting on gills and skin or gavage would also help to study the biology and 

development of the parasite at different time points. Importantly, more sophisticated 

methods to detect D. lepeophtherii such as TEM or in situ hybridization (ISH) will 

help to distinguish if infections occur at low level in the cell cultures.  
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Chapter 3 Prospective longitudinal study of 

putative agents involved in complex gill 

disorder in Scotland 

3.1 Introduction  

3.1.1 Infection dynamics of Desmozoon lepeophtherii  

A peak in gill disease has been observed in marine farmed salmon in Scotland during 

autumn months (Matthews et al., 2013). Gill disease can be caused by a single or 

multiple pathogen, environmental challenges and in association with various 

husbandry practices (Mitchell & Rodger, 2011). Complex gill disorder in farmed 

Atlantic salmon has not yet been fully characterised but it encompasses the 

previously described gill conditions of PGI and PGD. The main agents that have 

been associated with CGD include D. lepeophtherii (Steinum et al., 2010), Ca. B. 

cysticola (Mitchell et al., 2013) and SGPV (Gjessien et al., 2017). However, the 

exact role of each of these pathogens in gill disease remains unknown. 

No data is publicly available in Scotland relating to the patterns of infection with 

these CGD-associated pathogens, including D. lepeophtherii. Freeman (2002) 

recorded that D. lepeophtherii was present in sea lice (L. salmonis) on farmed salmon 

in Scottish coastal waters over the course of a year. However, the detection of the 

microsporidian in the sea lice relied solely on macroscopic observation of the lice, 

whereby opaque lice were presumed to be infected, but the author did not screen the 

lice for D. lepeophtherii by any definitive method in the study. The microsporidian 

appears to be very prevalent in salmon farms around Scotland (pers. communications 

FVG) and has been reported as associated with gill disease (Matthews et al., 2013) 

but the prevalence and infection dynamics of D. lepeophtherii in Scottish salmon 

aquaculture remains unknown.  

The prevalence of D. lepeophtherii appears to be temperature-dependant and 

temperatures above 10ºC are associated with increased prevalence of the parasite in 

salmon. Sveen et al. (2012) demonstrated how two groups of salmon smolts 

transferred to sea at different times of the year (April and November) showed 
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different patterns of infection dynamics when assessed using RT-rtPCR. Salmon 

transferred to the sea in April had a higher prevalence and incidence of D. 

lepeophtherii infection during April to September in both the gills and the head 

kidney. Smolts transferred to sea in November showed D. lepeophtherii infection in 

the gills after 3 weeks (first sampling point) but samples from head kidney showed a 

low prevalence and incidence of the parasite and no significant variation from 

November to March. The authors suggested that water temperature might be a 

limiting factor for the microsporidian to complete its development and that this might 

explain why salmon transferred to the sea in November failed to develop a systemic 

infection (low or absent parasite load in kidney tissue) and dissemination of auto-

infective spores was not observed. However, the gill pathology associated with the 

increase or decrease of the parasite loads in the salmon gills was not recorded in this 

study. To better understand and model co-occurrence of D. lepeophtherii with other 

putative agents involved in CGD (Chapter 1), SGPV, Ca. B. cysticola and P. 

perurans were included in the screening during the longitudinal study. 

3.1.2 Semi-quantitative gill scoring 

Semi-quantitative scoring systems are a useful tool to assess the severity of one 

or more lesions in the tissues and are widely used in biomedical research 

(Klopfleisch, 2013). Multiple parameters are usually assessed and quantified 

separately and then combined to give a total score (Klopfleisch, 2013). Results can 

then be analysed statistically comparing the presence/absence of a stressor or other 

variable (Rašković et al., 2013). In fish, various scoring systems have been used for 

different organs, including the gills (Bloecher et al., 2018; Knudsen et al., 2008). A 

reliable gill score system was developed by Mitchell et al. (2012) to assess gill 

health. In the latter study, the variability between observers was tested using a 

weighted kappa coefficient with a result of 0.68 (1 is considered to be a perfect 

agreement). The score system includes the most relevant histo-morphological 

changes that can be observed in gill sections, but also maintains enough simplicity 

and reproducibility to allow other researchers to apply it easily to their studies (e.g. 

Baxter et al., 2012; Bosch-Belmar et al., 2016; Downes et al., 2018). Briefly, the 

index criteria included lamellar hyperplasia, lamellar fusion, cellular necrosis, and 
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lamellar oedema, which were scored from 0 to 3, depending of the severity of the gill 

lesion (0 was the absence of the lesion, 1 was a small area of the lesion, 2 was a 

medium amount of the lesion, and 3 was a large amount of the lesion). Other 

ancillary criteria such as cell hypertrophy, vascular disturbances (haemorrhages, 

thrombi, congestion), and the presence of pathogens were scored as 0 (absent) or 1 

(present).  

3.1.3 Aims and objectives 

At the time this experiment was designed, the data available on the putative 

pathogens associated with CGD pathogens was scarce. The aim of this study was to 

gain a better understanding of the dynamics of D. lepeophtherii infection in Scottish 

salmon farms using prospective longitudinal sampling starting from the freshwater 

stage of the production cycle and continuing through the marine stage for a whole 

year. The relative quantities of the parasite, estimated using specific RT-rtPCR Ct 

values, were correlated with the semi-quantitative histological gill scoring system 

derived from the samples. The presence or absence of other agents thought to be 

involved in CGD, such as Ca. B. cysticola and SGPV, were also assessed using 

specific RT-rtPCR methodologies. The presence or absence of P. perurans, the cause 

of amoebic gill disease (Adams et al., 2004), was also determined by RT-rtPCR 

because of its impact and prevalence in Atlantic salmon gill disorders. 

3.2 Materials and methods 

3.2.1 Study design 

A prospective longitudinal study was designed to investigate the infectious dynamics 

of the putative pathogens of CDG and the disease severity in two production units. A 

productive unit was defined as a population of Atlantic salmon stocked in the same 

cage at a specific point in time. The timeframe was February 2016 to March 2017. 

Farm A was located in the west of Scotland and had regularly experienced 

outbreaks of gill pathology of unknown aetiology in previous years but had not 

experienced significant gill problems in the last two years. Fish were transferred 
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from a freshwater loch on the Scottish west coast to this marine site during February 

and March 2016. Samples described in Section 3.3.2 were collected from the 

freshwater fish in February 2016 before being transferred to sea cages.  

Farm B was located in the north west of Scotland. This farm had experienced 

regular outbreaks of gill disease due to multiple pathogens in previous production 

cycles. The studied population consisted of S1s that were transferred, from a 

different Scottish freshwater loch to that of Farm A, to this marine site during March 

of the same year.  

Farm A and Farm B salmon populations were both positive for D. lepeophtherii 

in random samples taken in the previous production cycle.  

Both farm sites agreed to participate in the study based on confidential handling 

of the data collected and farm identity. One pen from each farm was selected as the 

sentinel unit and studied through the year. The pen sampled at Farm A was stocked 

in February 2016 and the pen at Farm B in March 2016. The pens were sampled 

monthly until July, then every two weeks until the end of the study. The timeframe 

and sampling frequencies were selected to reflect the time of year when gill disease 

outbreaks occur (summer-early winter). A minimum of 6 fish were collected 

randomly per sampling after attracting the fish to the surface with feed. 

Table 3.1. Farms details. 

Farm Location 
Transfer to sea and 

first sampling point 
Background details 

A West February 2016 

Farm had regular occurances of gill 

pathology of unknown aetiology in 

previous years, but no significant gill 

problems had occurred in the 

preceeding two years. 

B North- west March 2016 
Outbreaks of gill disease reported in 

previous production cycles. 

3.2.2 Sample collection 

Sampling commenced on 5 February 2016 and continued until 1 March 2017. All 

fish were euthanized with an overdose of tricaine methanesulfonate and tissue 
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sampling conducted on-site using aseptic techniques. At each sample point the 

second arch of the left side of the gill was collected from each fish and placed in 10% 

neutral buffered formalin for subsequent histological examination. A piece of the 

second left gill arch was also placed in RNAlater (Ambion, Paisley, UK), stored at 

4˚C overnight and then at -80˚C until homogenization, nucleic acid extraction and 

RT-rtPCR. Storage time for all gill samples used in this study for RT-rtPCR was less 

than seven months.  

3.2.3 Weeks, months and seasons  

Time in the graphs is represented in weeks and seasons. Week 1 represents the first 

sampling point in the freshwater stage of Farm A (05.02.2016) and week 57 is the 

last sampling point of the study (01.03.2017). All weeks, sampling dates and season 

are displayed in Table 3.2. 

3.2.4 Data collection from farms 

Mortality, growth rates, feeding rate, sea lice counts, macroscopic gill lesion scores 

(AGD and PGD, see below) and environmental parameters, such as temperature, 

oxygen levels and salinity, were monitored daily and the data was made available for 

this study. Averages of the environmental parameter’s values from the 14 days prior 

the sampling points were calculated for each site. Details of pen type and frequency 

and method of net cleaning were collected. At each sampling time point macroscopic 

gill lesion scoring was performed, including PGD (proliferative gill disease) (Table 

3.3) and amoebic gill disease (AGD) (Table 3.4) scores according to the scoring 

cards kindly provided by the FVG. From July 2016, fish weight and length were 

recorded, and condition factor calculated (weight (g) × 100/[body length (cm)]3). 
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Table 3.2. Week numbers with their respective sampling dates and seasons. 

Week Number Sampling Dates Season 

Farm A Farm B 

1 05/02/2016 - Winter-1 

6 10/03/2016 - Winter-1 

10 05/04/2016 06/04/2016 Spring 

14 03/05/2016 04/05/2016 Spring 

19 06/06/2016 07/06/2016 Spring 

23 07/07/2016 08/07/2016 Summer 

28 10/08/2016 11/08/2016 Summer 

30 25/08/2016 26/08/2016 Summer 

32 06/09/2016 07/09/2016 Summer 

34 20/09/2016 21/09/2016 Autumn 

36 04/10/2016 05/10/2016 Autumn 

38 18/10/2016 19/10/2016 Autumn 

40 01/11/2016 02/11/2016 Autumn 

43 22/11/2016 23/11/2016 Autumn 

45 07/12/2016 06/12/2016 Autumn 

47 20/12/2016 19/12/2016 Autumn 

49 06/01/2017 05/01/2017 Winter-2 

52 25/01/2017 24/01/2017 Winter-2 

54 08/02/2017 09/02/2017 Winter-2 

57 28/02/2017 01/03/2017 Winter-2 

 

3.2.5 Histopathology 

Gill tissue samples fixed in formalin were processed routinely through graded 

alcohols prior to being embedded in paraffin-wax. Sections (5µm) were mounted on 

glass microscope slides and stained with H&E (Bancroft & Stevens, 1977). All 

sections were examined with an Olympus BX51 microscope, photomicrographs 

taken with an Olympus DP70 Digital Camera System and analysed using analySiS® 

software. A scoring system proposed by Mitchell et al. (2012) for the assessment of 

pathological changes resulting from gill disease was applied, with slight 

modifications. Once the collection and production of stained histological sections of 

tissue was complete, the coding of each slide was covered so that pathology scoring 

could be performed blinded. The scoring system used has an index criterion which 
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includes the primary parameters scored in the gill with each given a score from 0 to3 

based on the severity and extent of the lesions. Additional ancillary criteria, based on 

the absence or presence of a parameter, was scored either 0 or 1. Further details 

about this gill scoring criteria can be found in Table 3.5. The maximum histological 

gill lesion score was 24. Total gill scores between 0-3 were considered non-

significant or indicative of minimal gill changes, scores between 4-6 were considered 

to be indicative of mild changes, scores of 7-9 reflected moderate pathology and 

scores over 9 indicated severe pathology. Examples of common lesions present in 

gill disease are illustrated in Figures 3.1 and 3.2. 

Table 3.3. Proliferative gill disease (PGD) field score values (kindly provided by 

FVG). 

Score Description 

0 No sign of proliferative changes, red and healthy colour 

1 Very slight thickening or very few filaments affected 

2 Frequent thickening but only affecting filament tips 

3 
Most filaments have thickened tips, with some affected to more than 50% of 

filament length 

4 Most filaments thickened progressing to more than 50% of filament length 

5 Almost all filaments affected along the entire length 

Table 3.4. Amoebic gill disease (AGD) field score values (kindly provided by FVG). 

Score Description 

0 No sign of infection and healthy red colour 

1 1 white spot, light, scarring or undefined necrotic streaking 

2 2-3 spots/small mucus patch 

3 Established thickened mucus patch or spot grouping up to 20% of gill area 

4 Established lesions covering up to 50% of gill area 

5 Extensive lesions covering most of the gill surface (≥50%) 
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Table 3.5. Criteria for the histological gill scoring system used in this study. Modified from Mitchell et al. (2012). 

  Histo-morphological change  

Score Lamellar Hyperplasia Lamellar Fusion Cellular Death 
Circulatory 

Disturbances 
Inflammation 

In
d

ex
 c

r
it

er
ia

 

None (0) None or very minor None or very minor None or very minor None or very minor None or very minor 

Mild (1) 

Mild increase in lamellar 

epithelial cell (<10% of 

gill tissue affected) 

Occasional focal fusion 

of filaments (<10% of 

gill tissue affected) 

Scattered, occasional, 

degenerating necrotic or 

apoptotic cells and/or 

cell sloughing (<10% of 

gill tissue affected) 

Scattered, 

occasional vascular 

changes (<10% of 

gill tissue affected) 

Scattered, 

occasional 

inflammatory cells 

(<10% of gill tissue 

affected) 

Moderate (2) 

Moderate multifocal or 

widespread increase in 

lamellar epithelial cells, 

affecting 10–50% of the 

tissue 

Multifocal areas of 

fusion, affecting 10–

50% of gill tissue 

interspersed with normal 

gill tissue 

Multifocal, 

degenerating necrotic or 

apoptotic cells and/or 

cell sloughing affecting 

10–50% of the tissue 

Vascular changes in 

multifocal areas, 

affecting 10–50% of 

the tissue 

Inflammatory cells 

in multifocal areas, 

affecting 10–50% 

of the tissue 

Severe (3) 

Extensive multifocal or 

widespread increase in 

lamellar epithelial cells, 

affecting >50% of the 

tissue 

Extensive fusion and 

loss of normal 

architecture, affecting 

>50% of the tissue 

Extensive, degenerating 

necrotic or apoptotic 

cells and/or cell 

sloughing affecting 

>50% of the tissue 

Multifocal to 

widespread vascular 

changes, affecting 

>50% of the tissue 

Multifocal to 

widespread 

inflammatory cells, 

affecting >50% of 

the tissue 

A
n

ci
ll

a
ry

 c
ri

te
ri

a
 

 

Absence (0) 

or presence 

(1) 

- Lamellar tissue disruption (disruption of a group of lamellae, associated with haemorrhages and cell death) 

- Lamellar oedema (≥10% of gill tissue affected) 

- Eosinophilic Granular Cells (increase of EGCs numbers within the filaments) 

- Bacteria- Epitheliocysts (variable sized basophilic inclusion bodies found mainly in the branchial epithelium) 

- Bacteria- Tenacibaculum spp. 

- Protists parasites- Neoparamoeba spp. 

- Protists parasites- Costia 

- Protists parasites- Trichodina 

- Unidentified metazoan organisms (i.e. filamental metacercaria) 
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Figure 3.1. Histologic sections of gills from farmed Atlantic salmon stained with 

haematoxylin and eosin (H&E). (a) Mild focal lamellar epithelial hyperplasia and 

fusion (box). (b) Two foci of moderate AGD lesions (box). (c) Mild focal lamellar 

epithelial lymphocytic branchitis (arrow). (d) Presence of a multinucleated cell 

among the proliferated lamellar tissue (box). (e) Lamellar sub-epithelial infiltration 

of macrophages (arrow). (f) Proliferation of the distal part of a single shortened 

filament, PGD-like lesion (box). (g) Cartilage dysplasia of the filament (arrow).   
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Figure 3.2. Histologic sections of gills from farmed Atlantic salmon stained with 

haematoxylin and eosin (H&E). (a) Focal lamellar oedema (box). (b) Epithelial cell 

necrosis of the lamellar outer margins (arrows). (c) Mild focal lamellar haemorrhages 

(boxes). (d) Two foci of lamellar tissue disruption and haemorrhage (boxes). (e) 

Moderate multifocal lamellar telangiectasia (arrows). (f) Mild multifocal lamellar 

thrombi with variable hyperplasia of the surrounding epithelium and lamellar 

shortening (arrows). 
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3.2.6 RNA extraction 

RNA was extracted from gill and head kidney tissue samples stored frozen in 

RNAlater using an RNeasy Mini Kit (Qiagen, Hilden, Germany) with slight 

modification from the manufacturer’s instructions. Briefly, tissues stabilized in 

RNAlater were removed from the reagent and placed in a sterile Eppendorf tube to 

determine the weight of tissue present. Approximately 30 mg of tissue were used for 

each extraction. Tissues were placed in separate 2 ml Lysing Matrix B tubes 

(Thermo Fisher Scientific, Leicestershire, UK) containing specialized beads to which 

600 µl of RLT buffer with 1% beta-mercaptoethanol (Sigma-Aldrich, UK) was added. 

Tubes were vortexed for 15s and placed into a tissue homogeniser (Percellys24, 

Bertin Instruments, France) for 3 × 23 second cycles at 5,800 revolutions per minute 

(rpm). Tubes were placed on ice for 2 min between cycles. Samples were then 

centrifuged for 5 min at 9,000 x g. The resulting supernatant was removed carefully 

by pipetting, transferred to a new DNase-free microtube (Thermo Fisher Scientific) 

and 70% ethanol was added in the same volume as the contents of the tube. A total of 

700 µl of the previous mixture was collected and transferred to an RNeasy spin 

column in a 1 ml collection tube and centrifuged for 15 s at 9,000 x g. The resultant 

flow-through was discarded and any residual DNA was digested on the RNeasy Plus 

mini kit column with DNase I (Qiagen) by adding 350 µl Buffer RW1 to the RNeasy 

spin column and the tube centrifuged for 15 s at 9,000 x g to wash the spin column 

before adding 10 µl DNase I stock solution to 70 µl Buffer RDD. The DNase mix 

(80 µl made up of 10 µl DNase I stock solution and 70 µl Buffer RDD) was applied 

directly to the RNeasy spin column membrane and incubated for 15 min at 20-30⁰C 

before adding 350 µl of Buffer RW1 to the RNase spin column and centrifugation for 

15 sec at 9,000 x g. The flow-through was discarded, 500 µl of Buffer RPE was 

added to the RNeasy spin column and the tube centrifuged for 2 min at 9,000 x g. 

This step was repeated twice more. Finally, the RNeasy spin column was placed in a 

new 1.5 ml Eppendorf tube, 35 µl of RNase-free water was added directly to the spin 

column and tubes were centrifuged for 1 min at 9,000 x g. A total of 5 µl was 

collected in a micro-centrifuge tube and the RNA content quantified 

spectrophotometrically (see below). The rest of the RNA was stored at -80°C or used 

in RT-rtPCR assays. 
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RNA yield was determined using a Nanodrop ND1000 spectrophotometer (Thermo 

Scientific, Waltham, USA). The ratio of absorbance at 260 nm: 280 nm and the 260 

nm:230 nm absorbance was used to assess the purity of RNA; RNA was only used if 

both ratios were > 2. A few samples with a lower ratio were cleaned by a second 

RNeasy Plus mini column (Qiagen) as per manufacturer’s instructions. Assessment 

of the RNA integrity was analysed in one in every twenty samples using an RNA 

6000 Nano total RNA kit and 2100 Bioanalyzer (Agilent Technologies, Wokingham, 

UK) which provides quantitative information about the general state of the RNA 

sample. An RNA integrity number (RIN) above 7.0 was considered optimal.  

3.2.7 cDNA synthesis 

Synthesis of cDNA was performed using the Maxima First Strand cDNA Synthesis 

Kit (Thermo Fisher Scientific). Each reverse transcription (RT) master mix used to 

synthesise cDNA contained a total of 2µg of DNase-treated isolated RNA, 4 µl of 5X 

Reaction Mix and 2µl of Maxima Enzyme Mix. Nuclease-free water was added to a 

total volume of 20 µl per reaction. The sample was then mixed gently and 

centrifuged at 9,000 x g for 2 min. For cDNA synthesis, the reaction was incubated 

for 10 min at 25°C followed by 30 min at 50°C, followed by heating at 85°C for 5 

min. The cDNA was aliquoted and used immediately. For longer storage, RNA samples 

were kept at -80°C. A negative control lacking reverse transcriptase (RT- control) was 

prepared by excluding Maxima Enzyme in the RT master mix in order to check for 

contamination of genomic DNA in the RNA samples. No template control (NTC), 

which contained all reagents for the RT reaction except for the RNA template, was 

used to check for contamination of the reagents. 

3.2.8 Reverse-transcription real-time polymerase chain reaction 

assay validation 

Two step RT-rtPCR was conducted in duplicate in 96 well PCR plates (Thermo 

Fisher Scientific, UK) using Path-ID™ qPCR Master Mix (Thermo Fisher Scientific, 

UK) as per manufacturer’s instructions. The reaction volume was 25 µl. The RT-

rtPCR reaction was run in a 7500 Fast Real-Time PCR System Cycler (Applied 

Biosystems, Paisley, UK) using the following conditions: 95°C initial denaturing for 
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10 min followed by 40 cycles of 15s denaturing at 95°C, and 60s annealing/extension 

at 60°C.  Positive and negative control samples for each run consisted of a known 

positive cDNA and water only samples, respectively, subjected to the same RNA 

extraction process as the rest of the tissues. Results were accepted when the Ct value 

of the positive control fell within a defined range (Ct ≤ 40) and all negative controls 

failed to amplify.  

For the RT-rtPCR, published primers and probes were purchased from Eurofins 

genomics (Acton, UK; see Table 3.6 for primer and probe sequences) for Ca. B. 

cysticola (Mitchell et al., 2013), D. lepeophtherii (Nylund et al., 2010), SGPV 

(Gjessing et al., 2015) and P. perurans (Fringuelli et al., 2012). A house-keeping 

gene, elongation factor 1 α (ELF) was used as an endogenous control (Bruno et al., 

2007) and detection was carried out duplexing (targeting both the housekeeping and 

target genes). Probes for target genes were labelled with 5′ 6FAM, fluorescent dye 6-

carboxyfluorescein, and 3′BH1, black hole quencher; and probes for the 

housekeeping and probes were labelled with 5′ 6VIC, fluorescent dye 2'-chloro-7'-

phenyl-1, 4-dichloro-6-carboxyfluorescein.  

3.2.8.1 In-silico evaluation of primers and probes 

The validation of primers and probes included theoretical evaluation using the basic 

local alignment search tool BLAST to search for sequences similarities.  

3.2.8.2 Optimization of primer concentration and effects of multiplexing 

Field samples previously tested and shown to be RT-rtPCR positive in other 

laboratories (FVG Norway, Oslo) were used to optimise the primer concentration for 

the RT-rtPCR for all the target agents. Concentrations of primers tested were 100, 

300 and 600 nM, with a probe concentration of 200 nM, and differences in Ct-values 

were compared. When ideal concentrations of primers were chosen for the target 

pathogens, results were compared between singleplexing and multiplexing the assays 

with 20 nM and 40 nM of ELF primers and probe respectively. Each reaction was 

run in duplicate. 
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3.2.8.3 Standard curve, efficiency, linearity and correlation coefficient 

Five-fold serial dilutions of cDNA in which the genes of interest were known to be 

present were analysed by RT-rtPCR. Standard curves were obtained by plotting the 

threshold cycle (Ct) values of the dilutions of the target nucleic acid and efficiency 

(E) was calculated using the formula E = 10(-1/slope)-1. The correlation coefficient of 

regression (R2) indicated the linearity of the standard curve. Each reaction was tested 

in duplicate. 
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Table 3.6. Sequence of primers and probes used for quantitative RT-rtPCR in the present study. 

Primers and 

probes 
Sequence Tm GC 

Accession 

Number 

Target 

Gene 

Position 

(base) 

Amplicon 

Size (bp) 
Reference 

Fwd_Desmo CGGACAGGGAGCATGGTATAG 58ºC 57% 
FJ59481 

 

16S rRNA 

 

522-542 
59 

 

Nylund et 

al. (2010) 

 

Rev_Desmo GGTCCAGGTTGGGTCTTGAG 60ºC 60% 580-561 

Probe_Desmo TTGGCGAAGAATGAAA 60ºC 38% 544-559 

Fwd_SGPV ATCCAAAATACGGAACATAAGCAAT 56ºC 32% 

KT159937 

 

D13L ORF 

 

99130- 

99154 
101 

 

Gjessing 

et al. 

(2015) 

 

Rev_SGPV CAACGACAAGGAGATCAACGC 59ºC 52% 
99230- 

99210 

Probe_SGPV CTCAGAAACTTCAAAGGA 46ºC 39% 99173-99190 

Fwd_Branch AATACATCGGAACGTGTCTAGTG 56ºC 43% 
JQ723599 

 

16S rRNA 

 

98-120 
122 

 

Mitchell et 

al. (2013) 
Rev_Branch GCCATCAGCCGCTCATGTG 60ºC 63% 201-219 

Probe_Branch CTCGGTCCCAGGCTTTCCTCTCCCA 67ºC 64% 165-189 

Fwd_Neop GTTCTTTCGGGAGCTGGGAG 59ºC 60% 
EF216905 

 

18S rRNA 

 

191-210 
139 

 

Fringuelli 

et al. 

(2012) 

Rev_Neop GAACTATCGCCGGCACAAAAG 60ºC 54% 307-327 

Probe_Neop CAATGCCATTCTTTTCGGA 52ºC 42% 236-254 

Fwd_ELF GGCCAGATCTCCCAGGGCTAT 63 ºC 62% 

AF321836 

 

ELF 

 

1106-1126 

66 

 

Bruno et 

al. (2007) 
Rev_ELF TGAACTTGCAGGCGATGTGA 58 ºC 50% 1153-1172 

Probe_ELF CCTGTGCTGGATTGCCATACTG 60 ºC 55% 1130-1151 

Note: 16S ribosomal small subunit rRNA gene (16S rRNA), 18S ribosomal small subunit rRNA gene (18S rRNA), vaccinia virus D13L open reading frame (D13L 

ORF), elongation factor a 1 gene of Atlantic salmon and rainbow trout (ELF) and melting temperature of the probes (Tm)
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3.2.9 Statistical analysis 

Statistical analyses were performed using R (R software, v. 3.5.3; https://www.r-

project.org/). Different seasons were divided as follows: Winter was considered to 

occur from the 21stDecember, January, February and until 19th March (Winter-1 and 

Winter-2 occurred in 2016 and 2017 respectively); Spring was considered to be from 

20th March, April, May and until 19th June; Summer included 20th June, July, August 

and until 21st; Autumn included 22nd September, October, November and  until 20th 

December. 

Generalised additive models (GAMs) were used to represent changes over time 

of the RNA loads (expressed as Ct values) of the different infectious agents in the 

gills of salmon at the various sampling points in the two farms, and to represent the 

variation of the gill score across time and farms. GAMs fit non-parametric “smooth” 

functions to the data. Four different GAMs, which each seek to explain the data, 

were tested to predict the changes over time for each pathogen, and the changes of 

the histological gill score over time. Model 0 used only Farm ID as a predictor, 

without smoothing functions. For model 1, Farm ID plus the non-parametric smooth 

of week was used. In model 2, the interaction between smoothed week and Farm ID 

was used, but the two farms had the same intercept. Finally, model 3 used the 

interaction between smoothed week and Farm ID, and  also fitted different intercepts 

in the two farms. The best-fitting model was determined by selecting the model with 

the lowest Akaike information criterion (AIC) value  . 

Linear regression models were used to study the possible associations between 

gill score and different explanatory parameters. The data fitted the assumption of a 

general model. In general, analyses started with an initial ‘full’ model and were then 

simplified by a stepwise fashion to remove non-significant predictors. The deletion 

stopped when all the present predictors in the model were significant. Statistical 

significance was inferred when p ≤ 0.05. Initial models were simplified by removing 

nonsignificant terms in the order of least significance as determined by p-values 

calculated from Wald F-tests. Linear model 1 (LM1) of gill score included the 

following explanatory variables: the presence or absence each pathogen (with the 

exception of Ca. B. cysticola), together with the effect of oxygen, salinity, season 
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and farm identity (FarmID). Candidatus B. cysticola was excluded from the analysis 

because of the high percentage of positive samples found in the gills analysed, and 

therefore, effect of presence or absence of the pathogen in the score could not be 

calculated.    

In model 2 (LM2), we used the same structure as LM1, except that the analysis 

included the Ct value results from the different pathogens, including Ct values for 

Ca. B. cysticola, instead of its presence/absence. Negative results were transformed 

to 40s (established limit of detection for all the pathogens). All the other predictors 

remained the same as in LM1. Some of the predictors, such as the type of net 

cleaning or use of treatments, differed vastly between farms and therefore it was not 

possible to account for these factors in models in which scores from both farms were 

used. Normalization of the obtained Ct values for the target genes with the 

housekeeping gene (ELF) in form of ∆Ct (∆Ct = Ct (gene of interest) – Ct 

(housekeeping gene)) was not considered necessary due to the consistency of the 

ELF gene throughout the study (further information in section 3.3.1.6). The word 

“load” of pathogen is always used to refer to the relative RNA loads detected by RT-

rtPCR and expressed as Ct values.  

Models 3, 4, 5 & 6 (LM3, LM4, LM5, LM6, respectively) studied the potential 

effects of the days since the last peroxide treatments, non-medicinal mechanical de-

lousing treatments, and net cleaning with high pressure methods on the gill score of 

fish at Farm B only, which suffered an outbreak of gill disease during the study. In 

addition, LM3 studied the potential effect of the presence of the pathogens in the gill 

score, whilst LM4 included the Ct values of the pathogens in the model.  For LM5 

and LM6 the same parameters as in LM3 and LM4 were used but the potential effect 

of season was substituted by temperature.  

Binomial generalised linear models were used to study the relationship between 

farms and season with the percentage of fish positive for the pathogens, and also to 

test the association between the variation of the Ct values of Ca. B. cysticola and the 

presence of epitheliocysts in the gill score. A quadratic effect of temperature was 

fitted for associations with the variation of the Ct values of each pathogen. If the 
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quadratic term was not supported, then linear terms were tested for associations 

between temperature and variations in the Ct variations.  

3.3 Results 

3.3.1 Assay validation 

3.3.1.1 RNA extractions 

All RNA extracted from chosen samples had a RIN (RNA integrity number) value 

above 7.0. 

3.3.1.2 In silico evaluation of the probes  

Desmozoon lepeophtherii primers and probe showed a 100% alignment with the fish 

parasites N. cyclopteri and N. salmonis, which are microsporidian parasites of the 

lumpsucker (Cyclopterus lumpus) and different salmon species, including Atlantic 

salmon, respectively. The parasite N. cyclopteri has not been reported in Atlantic 

salmon and no cross reactivity was expected. Whilst potential cross reaction could 

occur with N. salmonis, the parasite has not been reported in Scotland or Norway and 

therefore the risk of false positives due to this cross-reaction was considered to be 

very low. 

Separate BLAST searches for the forward primer, reverse primer or probe sequences 

of SGPV, P. perurans and Ca. B. cysticola showed similarities with other sequences 

unrelated to fish. However, none of the three sequences matched the sequence of any 

organism known to be associated with fish.  

3.3.1.3 Effect of primer concentration in assays 

Differences between 300 and 500 nM of primers resulted in a variation of <1 Ct 

value when compared in all the assays. This variation was considered acceptable, and 

therefore a primer concentration of 300 nM was used in all the RT-rtPCR assays.  

       

3.3.1.4 Effect of multiplexing  

The RT-rtPCR results from runs on field cDNA dilution series showed mostly less 

than one Ct difference between singleplexing and duplexing when run in all assays 

(see table 3.7. for example). 
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Table 3.7. Example of effect on assay performance comparing the effect of 

singleplexing and duplexing for D. lepeophtherii. SD (Standard deviation).  

Positive sample Singleplexing SD Duplexing SD 

Sample 21.54 0.02 21.52 0.19 

Sample 5-1 24.65 0.28 25.02 1.57 

Sample 5-2 27.47 0.09 28.26 0.18 

Sample 5-3 29.65 0.38 30.13 1.30 

Sample 5-4 31.62 0.22 31.81 0.45 

 

3.3.1.5 Standard curves  

The slope of the standard curve for D. lepeophtherii was -3.60, indicating an 

amplification efficiency of 89.57%, with a correlation coefficient of 0.99. The slope 

for P. perurans was -3.23, which represented an amplification efficiency of 103.98% 

and a correlation coefficient of 0.99. For SGPV, the slope was -3.17, with an 

amplification efficiency of 106.76% and a correlation coefficient of 0.98. Finally, for 

B. cysticola the slope was -2.66, the amplification efficiency 137.65% and the 

correlation coefficient was 0.97. Details of the standard curves are in Figure 3.3.  

3.3.1.6 Consistency of the house keeping gene values 

A total of 237 gills were analysed by RT-rtPCR for the detection of the four 

pathogens investigated in this study. Each RT-rtPCR reaction was carried out in 

duplicate and by duplexing with the primers and probes of the house keeping gene 

ELFα. Therefore, a total of 1896 RT-rtPCR reactions were run in this study, from 

which the consistency of the ELFα could be tested. From the total 1896 reactions, the 

mean and standard deviation of the ELFα Ct values were 14.83 and 0.39, 

respectively. For the 472 reactions run targeting D. lepeophtherii, the mean and 

standard deviation of the ELFα Ct values were 14.91 and 0.44, respectively. For the 

472 reactions run targeting Ca. B. cysticola, the mean and standard deviation of the 

ELFα Ct values were 14.83 and 0.36, respectively. For the 472 reactions run 

targeting SGPV, the mean and standard deviation of the ELFα Ct values were 14.82 
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and 0.37, respectively, and for the 472 reactions run targeting P. perurans, the mean 

and standard deviation of the ELFα Ct values were 14.90 and 0.38, respectively. 

 

Figure 3.3. Standard curves for (a) D. lepeophtherii (b) P. perurans, (c) SGPV and 

(d) Ca. B. cysticola (d). Each figure shows the slope, correlation coefficient (R2) and 

amplification efficiency.  

3.3.1.7 Detection of pathogens in farms 

All the putative pathogens were detected in Farm A and B. These findings are further 

explained in Section 3.3.5. The RT-rtPCR results are summarised in Tables 3.8 and 

3.9.  
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Table 3.8. Farm A qRT-PCR results for the tested pathogens and % of positive fish at different sampling points. ND= Non-detected. 

 D. lepeophtherii Ca. B. cysticola P. perurans SGPV 

Week % positive  Ct average (range)  % positive  Ct average (range) % positive  Ct average (range) % positive Ct average (range) 

1 0% - 100% 31 (28-34) 0% - 100% 24 (21-29) 

6 17% 32 (32-ND) 100% 25 (23-29) 0% - 0% - 

10 67% 31 (28-ND) 100% 24 (20-26) 0% - 0% - 

14 100% 31 (26-39) 100% 24 (22-25) 0% - 0% - 

19 100% 29 (26-32) 100% 19 (17-23) 0% - 0% - 

23 100% 29 (24-35) 100% 20 (18-23) 0% - 0% - 

28 100% 25 (22-31) 100% 24 (23-25) 0% - 100% 33 (32-34) 

30 100% 25 (23-26) 100% 25 (23-29) 0% - 100% 33 (28-39) 

32 100% 24 (20-33) 100% 25 (22-29) 0% - 0% - 

34 100% 26 (21-31) 100% 26 (21-34) 0% - 0% - 

36 100% 24 (20-27) 100% 25 (21-31) 0% - 17% 34 (34-ND) 

38 100% 24 (21-27) 100% 25 (22-28) 0% - 33% 36 (35-ND) 

40 100% 25 (22-28) 100% 26 (22-29) 17% 31 (31-ND) 0% - 

43 100% 23 (20-25) 100% 24 (23-25) 42% 31 (25-ND) 0% - 

45 100% 25 (23-26) 100% 25 (22-26) 17% 36 (36-ND) 0% - 

47 100% 26 (23-28) 100% 27 (24-30) 17% 23 (23-ND) 0% - 

49 100% 26 (24-29) 100% 28 (23-32) 0% - 17% 36 (36-ND) 

52 100% 27 (22-31) 100% 30 (25-35) 0% - 17% 32 (32-ND) 

54 100% 28 (25-31) 100% 27 (24-32) 0% - 0% - 

57 100% 24 (21-27) 100% 28 (23-32) 0% - 0% - 
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Table 3.9. Farm B qRT-PCR results to the tested pathogens and % of fish positive at different sampling points. ND= Non-detected. 

 D. lepeophtherii Ca. B. cysticola P. perurans SGPV 

Week % positive  Ct average (range)  % positive  Ct average (range) % positive  Ct average (range) % positive Ct average (range) 

6 0% - 83% 29 (24-ND) 0% - 67% 34 (32-ND) 

10 0% - 83% 26 (25-ND) 0% - 0% - 

14 0% - 100% 25 (22-26) 0% - 0% - 

19 0% - 100% 20 (18-23) 0% - 0% - 

23 0% - 100% 19 (16-24) 33% 32 (30-ND) 0% - 

28 17% 34 (34-ND) 100% 24 (22-27) 100% 30 (24-36) 17% 26 (26-ND) 

30 17% 32 (32-ND) 100% 25 (24-27) 100% 25 (17-29) 0% - 

32 86% 29 (24-ND) 100% 23 (22-25) 100% 21 (19-26) 86% 33 (31-ND) 

34 100% 27 (22-31) 100% 24 (21-26) 100% 21 (18-24) 100% 34 (28-31) 

36 100% 25 (21-31) 100% 25 (22-28) 100% 24 (21-27) 17% 36 (36-ND) 

38 100% 26 (24-29) 100% 23 (22-25) 100% 20 (13-24) 0% - 

40 100% 25 (24-26) 100% 23 (19-27) 100% 19 (15-24) 0% - 

43 100% 23 (20-25) 100% 23 (22-24) 100% 25 (13-35) 83% 35 (33-ND) 

45 100% 23 (21-27) 100% 23 (20-25) 100% 25 (21-32) 67% 34 (31-ND) 

47 100% 24 (20-28) 100% 24 (22-26) 100% 22 (16-34) 17% 28 (28-ND) 

49 100% 24 (21-24) 100% 28 (25-30) 100% 26 (19-37) 33% 37 (37-ND) 

52 100% 23 (20-25) 100% 24 (21-26) 100% 27 (23-33) 0% - 

54 100% 23 (21-26) 100% 25 (20-34) 100% 31 (22-36) 0% - 

57 100% 24 (21-27) 100% 28 (23-32) 0% - 0% - 
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3.3.2 Environmental data 

No extreme environmental fluctuations were observed during the study in terms of 

oxygen levels or temperature. In both farms, similar temperatures were recorded at 

the different sampling points, although these were slightly higher in Farm A during 

the summer months and the beginning of autumn. In Farm A, sea temperatures were 

between 7.6 °C and 8.3 °C between March until the beginning of May 2016. From 

June, temperatures were over 10 °C, with a maximum of 13.7 °C recorded in 

September. Temperatures decreased to below 10 °C after January 2017. Farm B 

experienced temperatures between 7.4-7.9 °C in the months of April and May 2016, 

but these increased to over 10 °C after June. A peak in water temperatures was 

recorded by the end of September at 12.9 °C, and then decreased to below 10 °C in 

January 2017. Average monthly oxygen saturation levels varied but were within 

optimal ranges in both farms (range of 80-110%), with slightly lower levels always 

recorded in Farm A. Salinity of farm A was from 27.2-33.4 ppt, whilst in farm B 

average salinity was recorded as 34 ppt throughout the study. Nets were cleaned in-

situ by water high pressure in farm B every two weeks from June and May and every 

three weeks in Farm A using an “environmental net cleaning” method (removal of 

the used net and replacing with a clean one while drying the dirty one in the sun).  

Environmental parameters collected in Farm A and Farm B are summarised in Table 

3.10. 

3.4 Descriptive epidemiology  

Farm A 

The pen chosen as a sentinel unit from Farm A was fully stocked by February 2016. 

There were no major health issues encountered through the cycle in the freshwater 

stage and most of the mortalities were attributed to Saprolegnia spp. infections. 

Sampled fish at this stage appeared healthy and had good body condition. No major 

problems were reported during or immediately after transfer to sea. In February and 

March, a total of 0.5% cumulative mortalities were attributed to Saprolegnia spp. 

infections. From mid-May until the beginning of June, sporadic increases in numbers 

of Chaetoceros socialis and Chaetoceros debilis were recorded at the farm, with a 
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peak in the levels of algae recorded during the last week of May (180,000 cells L−1) 

(Figure 3.4a). Fish were swimming deeper at this point and staff at the site stopped 

feeding the fish when the levels of algae were at the highest. No significant 

mortalities were reported despite the high algae densities in the water. In June, some 

the gills of some of the fish examined (3/6) had occasional hyperaemia of the 

filaments and most had an increase in mucus (Figure 3.4b). During the beginning of 

July, a slight reduction in feed intake was noticed and fish were only eating very 

deep in the water column but the cause of this was unknown and nearby farms 

reported similar problems. One fish at that point had haemorrhagic gills after being 

placed into a bucket of anaesthetic. For August and September, no major concerns 

were raised by the staff at the farm. Gill PGD scores were between 1-2 (Figure 3.5a) 

in a few fish, as assessed by the staff at the farm, with a few fish having petechial 

haemorrhages (Figure 3.5b) and/or shortening and occasional necrotic filaments. In 

September, fish from the observational cage were split and only half of the 

population remained within the pen. During for the rest of the cycle, fish gills 

remained in good condition with PGD scores between 1-2 (occasionally 3). 

However, shortening of filaments or areas of petechiae were still seen occasionally. 

In November a single fish was noticed to have a focal lesion suggestive of AGD 

(raised patch of mucus). Average AGD and PGD scores in each sampling point are 

summarised in Table 3.11. 

PGD scores in January and February 2017 were 2-3 and fish were harvested after 

February when they reached a desirable weight of 5-6kg. Cumulative mortality of the 

total cycle in the observational unit was 5%, with monthly mortality rates always 

below 1% and most of these were without a diagnosis. No H2O2 bath or non-

medicinal de-lousing treatments were used in this observation unit.   

 

 

 

 



 

108 

 

 

Figure 3.4. (a) Presence of abundant Chaetoceros spp. from a water sample at Farm 

A (b) Gill with hyperaemic areas (arrows) along the filaments.  

 

Figure 3.5. Fish from Farm A. (a) Gill with PGD of score 2, note the frequent 

thickening of the filaments mostly affecting the tips (white arrows). (b) Multifocal 

petechiae in the tips of the filaments (white arrows). 

Farm B 

The pen chosen as a sentinel unit from Farm B was fully stocked by March 2016. 

There were no major health issues encountered through the cycle in the freshwater 

stage and most of the mortalities were attributed to Saprolegnia spp. infections. No 

major findings were noticed during the first visits to the farm after transfer to sea 
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water. By the end of May an algae bloom of C. socialis (approximately 100,000 cells 

L−1) that lasted approximately 5 days was recorded and staff at the site stopped 

feeding the fish when the levels of algae were at the highest. Gross examination of 

the gills at the end of May did not show any significant changes. By June, gills of 

most fish had very mild, focal areas of swelling along the filaments and one fish had 

petechial haemorrhages in the gills. In July, all fish had PGD scores of 1 and small 

multifocal spots of swelling along the filaments also. At the end of July, a single fish 

had haemorrhaging gills when placed in the bucket with anaesthetic.  Gill health 

deteriorated by the end of August and lesions typical of AGD were present in the fish 

sampled. At this point gill haemorrhage was present in two of the six fish sampled 

when placed in a bucket with the anaesthetic (Figure 3.6a) and one fish showed frank 

haemorrhages (3.6b). Fish sampled also had raised patches, comprised of mucus, in 

the gills suggestive of amoebic gill disease (AGD scores 2-4) (Figure 3.7a) and 

amoebae were identified in gill scrapes. At the beginning of September AGD scores 

of examined fish remained high (2-3) and PGD levels were between 1-2. One of the 

fish had haemorrhagic gills and shortening of filaments. Similar findings were seen 

in the second half of September. At the beginning of October high AGD (2-3) and 

low PGD scores (1-2) were still present in all fish, one fish showed filament 

petechiae and necrotic and shortened filaments. By late October one fish had 

petechiae along the filaments and PGD scores were between 1-3. Small active AGD 

mucus patches were still observed and flat lesions, suggestive of chronic AGD, were 

observed also (Figure 3.7b). At the beginning of November PGD scores were 

between 1-3 and petechiae were seen in the tip of the filaments of two fish. Scores 

for AGD were 1 for all fish examined. By late November two of the fish examined 

had slightly pale gills and petechiae were seen within the tips of the filaments. Scores 

for PGD were 2-3. Lesions suggestive of AGD were still present but milder in 

severity appearing as flattened patches. From December until February PGD scores 

were between 2-4 and AGD severity had decreased (scores between 0 and 1) but it 

was still present, and amoebae were still observed in fresh gill smear preparations. In 

March no AGD patches were seen but PGD scores remained between 2-4 with 

multiple foci of swelling along the filaments (Figure 3.7c). At the last sampling, the 

average weight of the sampled fish was 3.6 kg.  
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The cumulative mortality of the total cycle had reached 10%, with the highest 

mortality occurring between September 2016 and January 2017 (monthly cumulative 

mortalities were between 1-1.8%). Most of the causes of deaths were referred as 

unknown and gill disease was never recorded as a cause in the spreadsheets. A total 

of three boat non-medicinal de-lousing treatments and three H2O2 bath treatments 

(normal dosage levels range from 1000 to 1400mg/l in Scotland), were performed in 

the sentinel net-pen. Average AGD and PGD scores in each sampling point are 

summarised in Table 3.11. 
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Figure 3.6. Fish from Farm B. (a) Atlantic salmon with gill haemorrhage when 

placed in a bucket with anaesthetic. (b) Haemorrhage in the gills.  

 

Figure 3.7. Fish from Farm B. (a) Lesions consistent with amoebic gill disease 

(AGD) (circle). (b) Foci of filaments swollen at the base, indicative of chronic AGD. 

(c) Presentation of the gills at the end of sampling in Farm B; note the slight gill 

pallor, multifocal swelling along the gill filaments, shortened filaments and PGD 

score of 2. By March 2017 fish were negative for AGD.    
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3.4.1 Histology 

Farm A 

Fish from Farm A were sampled initially in their freshwater stage before being 

transferred to the sea pen in February 2016. Most of the fish sampled had mild, 

occasionally moderate, multifocal lamellar epithelial hyperplasia and fusion, and 

mild to moderate multifocal changes suggestive of SGPV infection (pyknosis and 

karyorrhexis of the nuclei, cell blebbing and chromatin margination; Gjessing et al. 

(2015). Mild hyperplasia of the chloride cells was present also. After the fish were 

transferred to the sea pen in February no significant pathology was seen in the gills 

during the first few months. In March, low numbers of epitheliocyst structures were 

seen in the base of the lamellae in all of the fish sampled, consistent with 

descriptions of Ca. Clavochlamydia salmonicola infection (Karlsen et al., 2008) 

(Figure 3.8a). Minimal gill proliferative and low levels of epitheliocysts consistent 

with Ca. B. cysticola (Toenshoff et al., 2012) (Figure 3.8b) were seen in all fish 

sampled in April. In May, the presence of cysts suggestive of Ca. B. cysticola were 

still seen in all of the fish sampled, and in medium numbers in some fish (2/6) but 

severity of the pathology in the gills remained minimal. Most of the fish sampled 

(4/6) at the beginning of June had foci of necrosis in the lamellar epithelial cells, 

tissue sloughing and occasionally congestion, but overall the pathology remained 

minimal and was not considered clinically significant. In July, mild multifocal 

lamellar epithelial hyperplasia, mild lamellar branchitis, lamellar thrombi and 

epitheliocysts, consistent with descriptions of Ca. B. cysticola, were present in most 

of the fish (4/6). Fish examined in the subsequent sampling points to the end of the 

period of study showed minimal to mild gill pathology with non-specific lamellar 

epithelium proliferation and/or inflammation and occasional circulatory disturbances 

such as thrombi and haemorrhages probably caused by environmental or mechanical 

damage. A total of 7 fish, which represented 6% of the fish sampled in Farm A, had 

unidentified metazoan organisms 0.1-0.2 mm in length and resembling copepods 

(present in single to low numbers) between lamellae and were associated with mild 

foci of sloughed tissue (Figure 3.8c & 3.8d). Low numbers of cysts suggestive of Ca. 

B. cysticola were seen sporadically. Throughout the sampling period only two fish 
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had moderate gill pathology, both showed moderate thickening of the lamellar 

epithelium present in the distal part of some filaments (Figure 3.1f). A summary of 

the histology scores in each of the sampling points is shown in Table 3.11. 

Farm B 

The first sampling was on a freshwater site on 3 March 2016. Low numbers of 

Trichodina spp. parasites were seen in most of the fish sampled in this period (5/6) 

but, overall, changes seen in the gill were not considered of clinical significance. The 

first sampling of fish in the sea water stage was on 4 April; no significant gill lesions 

were noted. By the beginning of May (, some fish showed minimal gill lesions, with 

two out of six fish showing foci of sloughing of lamellar tissue, epithelial cell 

necrosis and oedema. Pathology in the gills remained minimal at the end of June, 

with only the presence of scattered non-specific lamellar epithelial hyperplasia, 

occasional lamellar branchitis and lamellar thrombi. A single epitheliocyst organism, 

suggestive of Ca. B. cysticola, was identified in one fish. During July, most of the 

fish sampled had mild, non-specific, lamellar proliferation and/or branchitis, 

indicative of low-grade irritation. Fish also had minimal to mild vascular and 

necrotic/disruptive lamellar lesions, most likely caused by exposure to a water-borne 

irritant. Similar mild changes were found in gill samples taken in August but, in 

addition, lesions suggestive of AGD were detected in three of the twelve fish 

examined, with low to moderate numbers of amoeba present in two fish. Moderate, 

acute pathology of multifocal areas of lamellar tissue sloughing, epithelial cell 

necrosis and multifocal telangiectasia and haemorrhages, was present in one fish 

sampled in early August. Overall, pathology found in samples collected during 

September was mild in most fish examined (9/13) and characterised by mild 

multifocal AGD lesions in association with low numbers of amoebae and mild 

multifocal lamellar circulatory disturbances with occasional lamellar tissue 

sloughing. Three fish (3/13) had mild to moderate AGD lesions. Metazoan parasites 

resembling copepods, as described in Farm A, were identified for the first time in 

4/13 fish in September and were then present sporadically throughout the rest of the 

year in the gills sampled. These were usually associated with foci of tissue sloughing 

and occasional hyperplasia of the surrounding epithelium (Figure 3.8c & 3.9d). From 
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October to December lesions in the gills were mostly moderate (22/37 fish) with a 

few fish (3/37 fish) having severe lesions. Pathology in this period was characterised 

by a combination of AGD lesions (mild to moderate), presence of amoebae and 

multifocal lamellar thrombi, with variable hyperplasia of the surrounding epithelium, 

occasional sloughing of lamellar tissue, lamellar haemorrhages and necrosis. Some 

of the gills in this period had shortened filaments and lesions resembling PGD 

(proliferation of the distal part of the filaments). AGD lesions were still visible until 

the beginning of January 2017 but not present in the following months (late January 

and February 2017). Mostly minimal to mild, chronic gill pathology consisting of 

lamellar epithelial hyperplasia with occasional fusion and adhesions, and multiple 

thrombi were present at the end of January (20/24 fish) with a few fish (4/24) still 

showing moderate gill lesions. Overall, no clinically significant gill pathology was 

present at the end of February. A summary of the histology scores in each of the 

sampling points is shown in Table 3.11.  

Unidentified metazoan organisms resembling copepods (present singly or in low 

numbers), similar to the ones found in farm A, were present in 24 gill samples over 

the investigation representing 18% of the gills examined from the marine phase. Low 

numbers of epitheliocysts, suggestive of Ca. B. cysticola infection, were identified 

sporadically from June but these were more common in gills examined from 

September onwards.  

3.4.2 Summary of the variation in pathogen Ct values, 

epidemiology in the farms, gill score and temperatures. 

A summary of the Ct values of the difference pathogens detected in the farms across 

the sampling points, together with the most relevant epidemiology data mentioned  in 

Section 3.3.3, water temperature, and the gill scores for each of the fish analysed is 

presented in Figures 3.9 (Farm A) and 3.10 (Farm B).  
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Figure 3.8. Histologic sections of gills from farmed Atlantic salmon stained with 

H&E. (a) Epitheliocyst in the base of the lamellae suggestive of Ca. Clavochlamydia 

salmonicola infection (arrow) (b) Epitheliocysts in the distal part of the lamellae 

suggestive of Ca. B. cysticola (arrows). (c & d) Unidentified metazoan organisms 

resembling copepods (arrows) between lamellae causing mild focal sloughing of 

tissue, lamellar epithelial hyperplasia and circulatory disturbances. 
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Table 3.10. Average and standard deviation (sd) of the environmental parameters measured 14 days before the sampling point.  

 Oxygen Saturation (%) Salinity (ppt) Water Temperature (°C) 

 Farm A Farm B Farm A Farm B Farm A Farm B 

Week Average sd Average sd Average sd Average sd Average sd Average sd 

6 95.3 2.3 - - 30.6 1.9 - - 8.3 0.4 - - 

10 103.4 6.4 97.4 4.4 30.9 3.1 34.0 0.0 7.6 0.4 7.4 0.2 

14 103.8 3.6 98.2 4.9 32.9 1.4 34.0 0.0 8.2 0.3 7.9 0.3 

19 104.1 1.3 113.4 6.9 32.3 2.2 34.0 0.0 10.7 0.5 12.1 0.9 

23 97.1 7.6 114.1 4.1 34.6 0.9 34.0 0.0 11.3 0.3 10.8 0.5 

28 90.4 6.0 107.1 5.7 32.4 1.2 34.0 0.0 13.0 0.4 12.8 0.4 

30 93.5 5.0 96.9 6.3 28.3 3.5 34.0 0.0 13.3 0.2 12.8 0.8 

32 88.1 8.0 96.4 6.2 30.1 3.0 34.0 0.0 13.6 0.2 12.8 0.4 

34 89.3 4.5 94.0 5.2 30.9 3.0 34.0 0.0 13.7 0.2 12.9 0.3 

36 83.0 3.3 96.7 5.3 31.6 3.4 34.0 0.0 13.2 0.4 12.4 0.2 

38 80.2 2.6 89.0 3.7 27.2 2.0 34.0 0.0 12.3 0.4 12.3 0.3 

40 85.0 3.7 88.5 3.6 29.1 2.6 34.0 0.0 12.0 0.5 11.8 0.2 

43 81.9 2.5 91.3 3.2 31.1 1.9 34.0 0.0 11.0 1.0 10.9 0.5 

45 83.1 2.1 89.8 5.4 32.0 1.2 34.0 0.0 10.9 0.4 10.3 0.3 

47 86.9 3.5 88.7 4.4 31.3 1.3 34.0 0.0 10.7 0.6 10.5 0.6 

49 88.5 1.8 93.1 4.2 30.6 2.6 34.0 0.0 9.3 0.6 9.7 0.4 

52 86.2 1.5 90.4 1.9 31.2 1.1 34.0 0.0 9.0 0.4 9.0 0.2 

54 82.4 12.5 90.3 2.8 32.4 1.7 34.0 0.0 9.0 0.4 9.0 0.1 

57 90.1 0.7 92.3 3.3 33.4 14.6 34.0 0.0 8.2 0.3 7.9 0.3 
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Table 3.11. Average histology, macroscopic AGD and PGD scores in each sampling timepoint of Farm A. 

 Histology score AGD score PGD score 

 Farm A Farm B Farm A Farm B Farm A Farm B 

Week Average sd Average sd Average sd Average sd Average sd Average sd 

1 4.2 1.1 - - 0.0 0.0 - - 0.0 0.0 - - 

6 1.3 0.5 1.8 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10 2.3 0.9 1.2 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

14 2.5 0.5 3.2 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

19 1.3 0.5 1.7 1.1 0.0 0.0 0.0 0.0 0.2 0.4 0.0 0.0 

23 4.8 1.1 4.0 0.8 0.0 0.0 0.2 0.4 1.0 0.0 0.7 0.5 

28 3.5 1.0 4.0 2.0 0.0 0.0 1.0 0.0 0.2 0.4 0.0 0.0 

30 3.8 0.7 4.5 1.1 0.0 0.0 1.7 0.5 0.7 0.7 0.8 0.7 

32 2.5 0.5 5.7 0.9 0.0 0.0 1.9 0.6 0.8 0.4 0.3 0.5 

34 3.5 1.3 6.0 1.0 0.0 0.0 2.0 0.6 0.5 0.5 1.0 0.0 

36 1.7 1.1 7.5 1.4 0.0 0.0 2.2 0.4 0.5 0.5 0.8 0.4 

38 5.2 2.0 7.0 2.9 0.0 0.0 2.0 0.6 0.8 0.7 1.1 1.0 

40 2.2 1.3 7.8 1.3 0.0 0.0 1.0 0.6 1.0 0.0 1.7 0.9 

43 4.1 2.1 7.3 1.5 0.3 0.5 1.0 1.2 0.7 0.7 2.2 0.4 

45 2.3 0.9 5.2 1.8 0.0 0.0 0.5 0.5 1.2 1.1 2.5 0.8 

47 3.5 2.1 8.2 0.7 0.2 0.4 0.2 0.4 0.7 0.9 3.3 0.7 

49 2.7 1.5 4.2 2.3 0.0 0.0 0.0 0.0 1.5 0.5 2.8 0.7 

52 1.7 0.5 4.5 1.3 0.0 0.0 0.2 0.4 1.0 0.6 2.5 0.5 

54 3.3 1.5 5.5 1.4 0.0 0.0 0.2 0.4 2.2 0.4 2.8 0.9 

57 3.3 0.9 4.5 1.5 0.0 0.0 0.0 0.0 2.2 0.7 3.2 0.7 



 

118 

 

Figure 3.9. Pathogens Ct value variations, epidemiology, gill score and temperatures in each sampling week of Farm A. FW= Freshwater 

sampling point before transfer to Farm A.  
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Figure 3.10. Pathogens Ct value variations, epidemiology, gill score and temperatures in each sampling week of Farm B. FW= Freshwater 

sampling point before transfer to Farm B. 
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3.4.3 Statistical analysis 

3.4.3.1 Changes in the levels of the different pathogens across time 

 

3.4.3.1.1 Comparison of GAMs for changes in levels of pathogens across time 

Comparison of all GAMs for the prediction of the infectious dynamics in the gill 

infections by the four gill pathogens is shown in Table 3.12. Model 3, which used 

different smoothed data and intercepts in the two farms, always gave the lowest AIC 

results, which means that it provided the best fit to the data for each of the pathogens. 

The difference between model 2 and model 3 was <4 for SGPV and Ca. B. cysticola, 

and ˃10 for D. lepeophtherii and P. perurans. A lower AIC in a model indicates a 

better fit to the data for the future values (Ct of pathogens).  

Table 3.12. Comparison of the GAMs for the prediction of Ct value for different 

pathogens (D. lepeophtherii, P. perurans, SGPV and Ca. B. cysticola) across weeks 

and between farms. Note that Model 3 always gave the lowest AIC results. 

 AIC value of the model 

Pathogen  Model 0 Model 1 Model 2 Model 3 

D. lepeophtherii  1470.037 1286.769 1166.898 1120.162 

P. perurans 1463.528 1369.372 1464.715 1221.686 

SGPV 1113.753 1067.951 1039.969 1038.828 

Ca. B. cysticola 1189.390 1109.727 1103.921 1101.267 

 

3.4.3.1.2 Variations of Ct values of Desmozoon lepeophtherii  

Desmozoon lepeophtherii was first detected in the gills of one fish sampled in week 6 

(10.03.2016) in Farm A (total 17% of the fish sampled). After week 14 (03.05.2020), 

D. lepeophtherii was detected in 100% of fish gills sampled throughout the rest of 

the year (Figure 3.11a). On Farm B, the first detection of D. lepeophtherii in the gills 

of salmon occurred in week 28 in 17% of the fish (11.08.2016). However, an 

increase in the percentage of positive fish to D. lepeophtherii was seen in week 32 

(21.09.2020), with 100% of fish sampled positive. The presence of D. lepeophtherii 

was significantly associated with the seasons, and model estimates that higher 

percentage of positive fish were detected in summer compared with the first 
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sampling points in winter (estimate 2.240, SE 1.136, Z value, 1.97, p= 0.048). 

Presence of D. lepeophtherii was also sigfnificantly associated with the Farm ID, and 

estimates suggests that percentage of positive fish were significantly higher in Farm 

A compared with Farm B (estimate 1.974, SE 0.441, Z value -4.48, p < 0.001) 

(Figure 3.11b).  

 

Figure 3.11. Percentage of fish positive for D. lepeophtherii in Farm A (SWA) and 

Farm B (SWB). (a) Percentage of fish positive for D. lepeophtherii across weeks. (b) 

Percentage of fish positive for D. lepeophtherii across seasons. In Farm A, the 

percentage of fish positive for D. lepeophtherii was significantly higher (p< 0.001) 

than in Farm B, and significantly higher (p< 0.001) in summer compared with the 

first sampling points in winter. The translucent points show the raw data, with 

random ‘jitter’ added to make the points easier to visualise, and the points with error 

bars show the mean for each farm and 95% CI.  

The lowest Ct values, corresponding to the largest parasite load, were found 

between weeks 34-40 (06.09.2016- 01.11.2016) in Farm A and then the levels 

decreased after week 45 (07.12.2016) (Figure 3.12). In Farm B, the highest parasite 

load was detected in weeks 43 and 45 (sampling points in November). Contrary to 

Farm A, the levels of the parasite in Farm B remained high up to the last sampling 

points in weeks 54 and 57 (08.02.2017 and 28.02.2017) (Figure 3.12). 
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Figure 3.12. Variations of Ct values of D. lepeophtherii in the gills of salmon across 

weeks. First detection of D. lepeophtherii in Farm A occurred in week 6 and in Farm 

B in week 28. In Farm A, parasite load increased from week 10 to week 43, and then 

decreased from week 45 until week 57. In Farm B, parasite load increase from week 

30 to week 40, and remained with high until week 57. Points show raw data and lines 

and shaded areas show estimates from GAM and 95% confidence interval. 

3.4.3.1.3 Variations of Ct values of Ca. Branchiomonas cysticola  

Candidatus B. cysticola was detected by RT-rtPCR in 99% of all gills examined 

(Figure 3.13a). Fish from both farms were positive for Ca. B. cysticola from the 

freshwater stage and remained positive throughout the marine stage. There were no 

statistically significant differences between the percentages of positive fish to Ca. B. 

cysticola between farms (p ≥ 0.05) or seasons (p ≥ 0.05) (Figure 3.13b). 
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Figure 3.13. Percentage of fish positive for Ca. B. cysticola in Farm A (SWA) and 

Farm B (SWB). (a) Percentage of fish positive for Ca. B. cysticola across weeks. 

Note the high level of detection in both farms. (b) Percentage of fish positive for Ca. 

B. cysticola across seasons. Differences in percentage of fish positive for Ca. B. 

cysticola were not statistically significantly different between farms or seasons (p ≥ 

0.05). The translucent points show the raw data, with random ‘jitter’ added to make 

the points easier to visualise, and the points with error bars show the mean for each 

farm and 95% CI. 

Levels of this bacterium increased after fish were transferred to the sea in both 

farms A and B, peaking in Weeks 19 and 23 in both farms (06 & 07.06.2016 and 07 

& 08.07.2016) with Ct values between 16-29, and then maintaining relatively high 

levels during autumn (weeks 34 to 47, Ct values19-28) but decreasing after week 47 

in Farm A (20.12.2016) and 49 in Farm B (05.01.2017) (Figure 3.14). 
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Figure 3.14. Variations of Ct values of Ca. B. cysticola across weeks. Note the 

presence of the bacterium throughout the sampling period. Levels peaked in week 

19, decreased after week 24, and decreased further after week 48. Points show raw 

data and lines and shaded areas show estimates from GAM and 95% confidence 

interval. 

3.4.3.1.4 Variations of Ct values of Paramoeba perurans 

In Farm A, fish positive for P. perurans were detected in 17-42% of the fish sampled 

from week 40 to week 47 (01.11.2016-19.12.2020), respectively. In Farm B, P. 

perurans was first detected in week 23 (08.07.2016) in 33% of the fish sampled, and 

100% were positive in the sampling point in week 28 (11.08.2016). All fish remained 

positive for P. perurans throughout the rest of the study until week 57 (01.03.2017),  

when it was no longer detected in the fish sampled (Figure 3.15a). The percentage of 

fish positive for P. perurans was significantly associated with the Farm ID, and 

estimates of the model suggest that numbers of positive fish were higher in Farm B 

compared to Farm A (estimate 3.974, SE 0.4730, Z value 8.40, p < 0.001) (Figure 

3.15b). There were no significant differences in the percentage fish positive for P. 

perurans detected across seasons (p ≥ 0.05).  
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Figure 3.15. Percentage of fish positive for P. perurans in Farm A (SWA) and Farm 

B (SWB). (a) Percentage of fish positive for P. perurans across weeks. (b) 

Percentage of fish positive for P. perurans across seasons. There were no significant 

differences between the number of positive fish detected across seasons (both farms 

were used in the model) (p ≥ 0.05). The percentage of positive fish was significantly 

higher in Farm B compared to Farm A (p< 0.001). The translucent points show the 

raw data, with random ‘jitter’ added to make the points easier to visualise, and the 

points with error bars show the mean for each farm and 95% CI. 

The number of positive fish detected in Farm A was very low (6 out of 120 fish 

sampled). Mean Ct value levels ranged from 31-36, with the lowest level (Ct 23) 

recorded on week 45 (07.12.2016). Amoeba levels in Farm B increased after week 

28 (11.08.2016) then lower loads of the parasite (higher Ct values) were detected 

after week 43 (22.11.2016) (Figure 3.16).  
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Figure 3.16. Variations of Ct values of P. perurans in the gills of salmon across 

weeks. Note how detection of P. perurans occurred in week 23 in a single fish, 

increased until week 43 and then decreased. P. perurans was detected in Farm B 

until week 57. Farm A had six positive fish between the weeks 40-47 but the rest of 

the fish examined were negative. Points show raw data and lines and shaded areas 

show estimates from GAM and 95% confidence interval. 

3.4.3.1.5 Variations in Ct values for salmon gill poxvirus  

All fish sampled at the freshwater stage of Farm A, before being transferred to sea, 

were positive for SGPV, and 67% of the fish sampled in the freshwater stage of Farm 

B were positive also. After transferred, the virus was detected sporadically in both 

farms throughout the year (Figure 3.17a). There were no statistically significant 

differences between the percentage of fish positive for SGPV across seasons or 

between farms (p ≥ 0.05) (Figure 3.17b).  
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Figure 3.17. Percentage of fish positive for SGPV in Farm A (SWA) and Farm B 

(SWB). (a) Percentage of fish positive for SGPV across weeks. Presence of SGPV 

was first detected in Farm A in week 28 and then sporadically until week 52. In Farm 

B, SGPV was also first detected in week 28, and fish positive for the virus were 

found until week 49. Differences in the percentage of fish positive for SGPV were 

not statistically significantly different between farms or seasons (p ≥ 0.05). The 

translucent points show the raw data, with random ‘jitter’ added to make the points 

easier to visualise, and the points with error bars show the mean for each farm and 

95% CI. 

Fish gill samples from Farm A had Ct values between 21-29 in samples taken 

during the freshwater stage (sampling week 1; 05.02.2016), whereas the gills of fish 

from the freshwater site of Farm B had higher Ct values (approximately 34) 

(sampling week 6; 10.03.2016). The pathogen was then sporadically detected 

throughout the year in both sea water farms, with the lowest Ct value being recorded 

in week 28 (10.08.2016) in Farm B (Ct 26), but Ct values of SGPV remained 

relatively high, between Ct values 28-39 in Farm A and in Farm B (Figure 3.18).  
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Figure 3.18. Variations of Ct values of SGPV. Sporadic detections of SGPV were 

detected from week 28 in both Farm A and Farm B but these did not follow a 

seasonal pattern and were not statistically significantly different between farms or 

seasons (p < 0.01). Fish from Farm A and Farm B were positive for the virus when 

tested in the freshwater stage of the cycle (data not shown). Points show raw data and 

lines and shaded areas show estimates from GAM and 95% confidence interval. 

3.4.3.2 Linear regression models of the gill score 

In LM1, the presence or absence of pathogens together with other parameters were 

studied as possible predictors for the increase in gill scores (Table 3.13). For this 

model, Farm B had a significantly higher gill score than Farm A (p < 0.001), the 

presence of D. lepeophtherii was significantly associated with an increase in the gill 

score (p < 0.001) and season was significantly associated with an increase in the gill 

score (p < 0.001) (Figure 3.19). Model estimates suggest that, in particular, gill score 

was significantly lower (p < 0.001) all seasons compared to autumn. For LM2 (Ct 

values were used instead of presence/absence of pathogens) the Farm ID was 

significantly associated with gill score, Farm B had a significantly greater score 

compared to Farm A (p < 0.001) (Table 3.14). Season was significantly associated 

with an increase in the gill score. Model estimates suggest that gill score was 

significantly lower (p < 0.001) in all seasons compared to autumn. An increase in D. 

lepeophtherii was associated with an increase in the gill score but only in Farm B, 

whilst in Farm A, the increase or decrease of D. lepeophtherii was not correlated 
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with any change in the gill scores (Figure 3.20a). Higher loads of P. perurans (lower 

Ct values) correlated with an increase in the gill score in both farms (Figure 3.20a).  

Study of the potential predictors for changes in the gill score in Farm B (LM3 

and LM4) showed only season as a significant predictor, and model estimates that 

gill score was significantly higher in autumn compared to other seasons (Tables 3.15 

and 3.16) (Figure 3.21a). However, if season was substituted by temperature in LM5 

(Table 3.17), then higher temperatures were significantly associated with the increase 

in gill score (Figure 3.21b). There was also a significant relationship between the 

increase of the score and fewer days since the last H2O2 treatment. LM 6 showed 

association between the detection of higher loads (lower Ct values) of P. perurans 

and Ca. B. cysticola, fewer days since net cleaning with high pressure, and fewer 

days since the last H2O2 treatment (Table 3.18).  

General linear models revealed a significant positive association between the 

increase of Ca. B. cysticola loads and presence of epitheliocysts (estimate -0.138, SE 

0.050, z value, -2.747, p 0.006). There was a significant association between 

increased gill scores in Farm A and Farm B and a reduced body condition (estimate -

0.020, SE 0.007, t value -2.92, p = 0.003). However, there was no associated between 

the variations in the Ct values for D. lepeophtherii with the body condition of the fish 

(estimate -0.002, SE 0.003, t value -0.84, p = 0.401). 
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Table 3.13. Results of LM1. SE= standard error, FarmID:x pathogen = Interaction 

between FarmID and “x pathogen” presence, p = probability of no effect, (0) absence 

of the pathogen, (1) presence of the pathogen.  

Variable Estimate SE t value Pr(>|t|) F value df Pr(>F) 

Rejected variables 

FarmID:D. lepeophtherii (0) 0.000 0.000 0.00 - 
0.76 1 0.384 

FarmID:D. lepeophtherii (1) 0.831 1.047 0.79 0.429 

FarmID:P. perurans (0) 0.000 0.000 0.00 - 
3.29 1 0.071 

FarmID:P. perurans (1) 1.571 0.865 1.82 0.071 

FarmID:SGPV (0) 0.000 0.000 0.00 - 
1.94 1 0.166 

FarmID:SGPV (1) 0.507 0.476 -1.39 0.166 

P. perurans (0) 0.000 0.000 0.00 - 
1.49 1 0.224 

P. perurans (1) 0.510 0.423 1.22 0.224 

SGPV (0) 0.000 0.000 0.00 - 0.01 1 0.935 

SGPV (1) 0.027 0.328 0.08 0.935       

Oxygen -0.012 0.028 -0.41 0.679 0.17 1 0.679 

Salinity 0.116 0.106 1.09 0.277 1.19 1 0.277 

Variables in final model 

Intercept  1.623 0.538 3.02 0.003       

Farm A 0.000 0.000 0.00 - 
107.15 1 <0.001 

Farm B 2.734 0.264 10.35 <0.001 

D. lepeophtherii (0) 0.000 0.000 0.00 - 
24.66 1 <0.001 

D. lepeophtherii (1) 2.126 0.428 4.97 <0.001 

Season (Autumn) 0.000 0.000 0.00 - 

10.09 4 <0.001 

Season (Spring) -1.907 0.415 -4.60 <0.001 

Season (Summer) -0.264 0.340 -0.78 0.439 

Season (Winter-1) -0.644 0.844 -0.76 0.446 

Season (Winter-2) -1.408 0.308 -4.57 <0.001 
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Figure 3.19. LM1 showed that both the presence of D. lepeophtherii and farm 

identity were significantly associated with gill scores (see Table 3.7 for details). 

Small points show the raw gill score data, while large points with error bars show 

predictions from LM1 and 95%CI.  
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Table 3.14. Results of LM2. SE= standard error, FarmID:x pathogen = Interaction 

between FarmID and “x pathogen” Ct value, p = probability of no effect.  

Variable Estimate SE t value Pr(>|t|) F value df Pr(>F) 

Rejected variables 

FarmID:Ca.  B. cysticola Ct -0.059 0.074 -0.52 -0.793 0.43 1 0.429 

FarmID:P. perurans Ct -0.065 0.073 -0.88 0.380 0.77 1 0.380 

FarmID:SGPV Ct 0.114 0.086 1.32 0.187 1.75 1 0.187 

Ca. B. cysticola Ct -0.071 0.037 -1.90 0.058 3.62 1 0.058 

SGPV Ct -0.005 0.045 -0.11 0.910 0.01 1 0.910 

Oxygen -0.017 0.028 -0.61 0.541 0.40 1 0.541 

Salinity 0.083 0.112 0.75 0.456 0.56 1 0.456 

Variables in final model 

Intercept 4.529 1.563 2.90 0.004 0.40 1 0.530 

Farm A 0.000 0.000 0.00 - 
- 1 <0.001 

Farm B 5.931 1.545 3.84 <0.001 

Farm A:D. lepeophtherii Ct 0.040 0.046 0.86 0.390 
8.67 1 0.004 

Farm B: D. lepeophtherii Ct -0.152 0.051 -2.95 0.004 

D. lepeophtherii Ct 0.040 0.046 0.86 0.390 - 1 - 

P. perurans Ct -0.049 0.024 -2.02 0.044 4.09 1 0.044 

Season (Autumn) 0.000 0.000 0.00 - 

7.11 4 <0.001 

Season (Spring) -1.913 0.473 -4.04 <0.001 

Season (Summer) -0.162 0.354 -0.46 0.647 

Season (Winter-1) -2.790 0.962 -2.90 0.004 

Season (Winter-2) -1.307 0.339 -3.85 <0.001 

 

 



  

133 

 

 

Figure 3.20.Representation of LM2. (a) The increase in the loads of D. lepeophtherii 

was significantly associated with the gill scores in Farm B but not in Farm A. (b) The 

increase in the loads of P. perurans was significantly associated with the increase of 

the gill scores in both Farm A and Farm B.  
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Table 3.15. Results of LM3. SE= standard error, p = probability of no effect, (0) 

absence of the pathogen, (1)= presence of the pathogen. 

Variable Estimate SE t value Pr(>|t|) F value df Pr(>F) 

Rejected variables 

Ca. B. cysticola (0) 0.000 0.000 0.00 - 
0.50 1 0.480 

Ca. B. cysticola (1) 1.400 1.972 0.71 0.480 

D. lepeophtherii (0) 0.000 0.000 0.00 - 
0.43 1 0.513 

D. lepeophtherii (1) 0.538 0.820 0.66 0.513 

P. perurans (0) 0.000 0.000 0.00 - 
0.10 1 0.748 

P. perurans (1) 0.243 0.756 0.32 0.748 

SGPV (0) 0.000 0.000 0.00 - 
0.11 1 0.748 

SGPV (1) -0.180 0.532 -0.34 0.736 

Days since H2O2 

treatment 
-0.009 0.012 -0.70 0.483 0.50 1 0.483 

Days since 

mechanical treatment 
-0.003 0.002 -1.45 0.764 2.12 1 0.149 

Days since net 

cleaning 
-0.002 0.002 -1.07 0.289 1.14 1 0.289 

Variables in final model 

Season (Autumn) 7.000 0.268 26.12 <0.001 

36.58 3 <0.001 
Season (Spring) -5.000 0.493 -10.14 <0.001 

Season (Summer) -2.400 0.442 -5.43 <0.001 

Season (Winter-2) -2.333 0.448 -5.21 <0.001 

 

 

 

 

 

. 
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Table 3.16. Results of LM4. SE= standard error, p = probability of no effect. Note 

that non-bold terms were removed from the model, and that the bold terms are the 

only variables in used in the final model. 

Variable Estimate SE t value Pr(>|t|) F value df Pr(>F) 

Rejected variables 

D. lepeophtherii Ct -0.015 0.060 -0.25 0.800 0.06 1 0.804 

Ca. B. cysticola Ct -0.068 0.053 -1.27 0.205 1.62 1 0.205 

P. perurans Ct -0.038 0.028 -1.35 0.180 1.82 1 0.180 

SGPV Ct 0.010 0.071 0.14 0.888 0.02 1 0.888 

Days since H2O2 

treatment 
-0.015 0.013 -1.17 0.246 1.36 1 0.246 

Days since mechanical 

treatment 
-0.003 0.002 -1.45 0.149 2.12 1 0.149 

Days since net cleaning -0.002 0.002 -0.91 0.363 0.83 1 0.363 

Variables in final model 

Season (Autumn) 7.000 0.268 26.12 <0.001 

36.58 3 <0.001 
Season (Spring) -5.000 0.493 -10.14 <0.001 

Season (Summer) -2.400 0.442 -5.43 <0.001 

Season (Winter-2) -2.333 0.448 -5.21 <0.001 
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Table 3.17. Results of LM5. SE= standard error, p = probability of no effect, (0) 

absence of the pathogen, (1) presence of the pathogen.  

Variable Estimate SE t value Pr(>|t|) F value df Pr(>F) 

Rejected variables 

D. lepeophtherii (0) 0.000 0.000 0.00 0.000 
0.06 1 0.813 

D. lepeophtherii (1) 0.205 0.863 0.24 0.813 

P. perurans (0) 0.000 0.000 0.00 0.000 
1.81 1 0.181 

P. perurans (1) 0.846 0.628 1.35 0.181 

SGPV (0) 0.000 0.000 0.00 0.000 
0.57 1 0.451 

SGPV (1) 0.382 0.505 0.76 0.451 

Days since 

mechanical 

treatment 

-0.004 0.002 -1.80 0.074 3.25 1 0.074 

Days since net 

cleaning 
-0.001 0.002 -0.33 0.743 0.11 1 0.743 

Variables in final model 

Water temperature 0.482 0.099 4.88 <0.001 23.78 1 <0.001 

Days since H2O2   

treatment 
-0.008 0.001 -7.72 <0.001 59.62 1 <0.001 
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Table 3.18. Results of LM6. SE= standard error, p = probability of no effect.  

Variable Estimate SE t value Pr(>|t|) F value df Pr(>F) 

Rejected variables 

D. lepeophtherii Ct 0.037 0.061 0.61 0.544 0.37 1 0.544 

SGPV Ct -0.050 0.071 -0.70 0.489 0.48 1 0.489 

Days since mechanical treatment   -0.002 -0.002 0.00 -0.983 0.97 1 0.328 

Water temperature 0.150 0.139 1.08 0.283 1.16 1 0.283 

Variables in final model 

Ca. B. cysticola Ct -0.154 0.056 -2.74 0.007 7.53 1 0.007 

P. perurans Ct -0.069 0.030 -2.33 0.022 5.42 1 0.022 

Days since H2O2 treatment -0.004 0.001 -3.27 0.001 10.71 1 0.001 

Days since net cleaning -0.004 0.002 -2.07 0.041 4.28 1 0.041 
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Figure 3.21. Representation of linear regression models with the gill score of Farm 

B. (a) Model LM3 & LM4, note the strong association between season and gill score 

in Farm B, the points show raw data; small points show the raw gill score data, while 

large points with error bars show predictions from models and 95%CI. (b) Model 

LM5, when temperature was used instead of season then temperature, the increase of 

temperature was significantly associated with the increase in the gill score line and 

shaded area show predicted gill score ± 95% confidence intervals 
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3.4.3.3 Effect of temperature on pathogens loads 

A quadratic effect of temperature was significantly associated with the increase in 

loads of D. lepeophtherii (p<0.001) (Figure 3.22a), P. perurans (p<0.001) (Figure 3. 

22b) and Ca. B. cysticola (p<0.001) (Figure 3.22c). No significant association was 

found between a non-linear (quadratic) effect of temperature with SGPV Ct values 

(p>0.05), but water temperature was significantly associated in linear terms 

(p<0.001) (Figure 3.22d). 

 

Figure 3.22.Graphs representating of the influence of water temperature on the Ct 

values of each pathogen. A linear and non-linear effect of water temperature was 

significantly associated with the loads of (a) D. lepeophtherii, (b) P. perurans, and 

(d) Ca. B. cysticola. A quadratic effect of temperature was not significantly 

associated with the Ct values of SGPV, although there was a linear effect of 

temperature in SGPV Ct values. The points show raw data; line and shaded area 

show predicted gill score ± 95% confidence intervals. 
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3.5 Discussion 

Gill disease is an important challenge for salmonid aquaculture worldwide, due to the 

extent of the disease and the losses that result. The problem is compounded by the 

complex interactions between the multiple pathogens that can be present in the fish, 

environmental factors and the management practises used. The individual role and 

the possible interactions of the three principal putative pathogens associated with 

CGD (D. lepeophtherii, salmon gill poxvirus and Ca. B. cysticola) have not yet been 

fully elucidated. In the absence of in vivo or in vitro experimental models, 

prospective longitudinal studies help to clarify the associations that exist between 

exposure to a potential cause and the development of disease. When this project was 

initiated only a small number of prospective longitudinal studies assessing gill health 

had been published (Downes et al., 2015; Mitchell et al., 2012; Steinum et al., 2010). 

This is the first prospective longitudinal study examining the dynamics of the 

putative pathogens associated with CGD in Scotland and their relationship with gill 

disease. The study focused on the production cycle (the latter part of the freshwater 

stage and most of the marine phase) of two salmon pens, at two farm sites located on 

the West coast of Scotland.   

Cumulative mortalities by the end of the study in the observational units of 

Farms A and B were 5% and 10%, respectively, and mostly of “unknown aetiology”. 

Apart from the presence of salmon lice, no other diseases were reported as 

significant. Although the causes of mortalities in Farm A could not be determined, 

gill pathology was minimal in the fish examined throughout the study and was not 

considered to have had a major impact on the losses that occurred. Mortalities due to 

gill disease usually range between 5% and 20% (Downes et al., 2018; Nylund et al., 

2008; Rodger 2007), although up to 80% has been reported (Stenium et al., 2009). In 

Farm B, gill disease occurred from the period of September to December (Week 30-

47), which coincided with the period when the majority of mortalities were recorded. 

It is possible that gill disease was, at least in part, responsible for the deaths that 

occurred in Farm B, and gill damage due to “unknown” deaths was overlooked due 

to the rapid decomposition of gills post mortem (Wolf et al., 2015). There was a 

significant association between increased gill score and the reduced condition factor. 
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Gill disease is frequently associated with lethargy and anorexia (e.g. Steinum et al., 

2008). However, this varies, and some dead fish can have food in their stomachs and 

appear to be in good condition (Munday et al., 1990). It has been shown that Atlantic 

salmon with AGD, exposed to high intensity exercise, had a significant reduction in 

oxygen uptake assessed using a swim tunnel respirometer, and their aerobic scope 

suggested that they had a compromised respiratory system as a result of AGD and 

this ultimately could affect the appetite of the fish, especially at high temperatures 

(Hvas et al., 2017). At temperatures of 15°C or above Atlantic salmon have reduced 

growth compared to fish at 13°C (Olsvik et al., 2013). Due to their ectothermic 

nature, fish have a higher metabolic rate at warmer environmental temperatures. This 

also increases when the respiratory surface area of the gill is reduced in events of gill 

disease, resulting in an increased ventilation rate and in turn reduced growth.  

The load of P. perurans on gills had a significant association with a quadratic 

effect of water temperature, with higher P. perurans loads after 10 °C. Different 

environmental conditions have been reported during AGD outbreaks worldwide, 

with outbreaks recorded at water temperatures as low as 7°C and as high as 20°C 

(reviewed by Oldham et al. 2016).  In Scotland, a threshold of 12°C is considered to 

be an important risk factor for the disease to develop by some salmon production 

companies (Benedicenti et al., 2019). Benedicenti et al., (2019) showed variations in 

severity of AGD when fish were infected in vivo at different water temperatures. 

Groups exposed to amoebae at 15°C developed severe lesions more rapidly than fish 

exposed to amoeba at 10°C. In the present study, the gills of fish from Farm B 

showed signs of P. perurans infection and AGD lesions over a range of water 

temperatures, from 9°C to 15°C. The increase in P. perurans load in the gills was 

significantly associated with increased gill scores. Amoebic gill disease is considered 

one of the biggest challenges occurring in salmon farming and is an important 

primary pathogen of gill disease (Oldham et al., 2016). The presence of P. perurans 

was initially detected at low levels (Ct values of 30 & 34) in two out of six fish 

sampled from farm B at week 23 (07.07.19), but gross and microscopic lesions 

consistent with AGD were only detected in the gills at sampling point Week 28 

(11.08.19). Establishment of macroscopic and microscopic AGD lesions may be 

approximately one week to develop in gills after being experimentally challenged 
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with P. perurans (Marcos-López et al., 2018). Sporadic detection of P. perurans 

occurred in fish from Farm A in weeks 40 to 47 (01.11.2016-20.12.2016), but 

percentages of positive fish at the farm was very low. Low salinities is a known risk 

factor for the development of P. perurans infections (Clark & Nowak, 1999), and 

freshwater is the treatment of choice to reduce amoebae infections in salmon farming 

(Powell et al., 2015).  In this study, the lower salinities reported in Farm A compared 

to Farm B (28-32 ppt and 34, respectively) may have been a limiting factor for the 

establishment of P. perurans infections. However, salinity levels reported in Farm A 

were still considered suitable for AGD to develop (Bustos et al., 2011), and therefore 

it could be that the incidence of infection by the amoeba was low and AGD did not 

cause an impact on the health of the fish population.  

The two farms screened in this study were positive for the three main pathogens 

associated with CGD by RT-rtPCR, which suggests that the detection of D. 

lepeophtherii, Ca. B. cysticola, and SGPV is relatively common in marine Scottish 

salmon farms. Even though the presence of these pathogens is known to exist in the 

Scottish aquaculture industry (pers. comm. C. Matthews), public data about the 

prevalence and infection dynamics of these organisms is lacking. 

Desmozoon lepeophtherii load was significantly associated with a quadratic 

effect of temperature (between 10-12 °C) (p value < 0.001) and this temperatures 

were commonly recorded during the autumn months. Gunnarson et al., (2017), 

showed that the microsporidian loads were significantly higher during the autumn 

months in the farms examined in Norway. Other studies have suggested that a higher 

prevalence of the parasite has been observed in marine farms in the Western part of 

Norway (Nylund et al., 2011), where temperatures are higher than northern Norway, 

and is the main region associated with PGI cases (Kvellestad et al., 2005; Nylund et 

al., 2011; Steinum et al., 2010). Sveen et al. (2012) compared the distribution of the 

parasite in the tissues of salmon transferred to sea at different times of the year using 

RT-rtPCR. The fish transferred in April, showed infection in the gills after transfer 

and, some weeks after, in the kidney. However, fish transferred to sea in November 

only showed infections in their gills, but not in kidneys. The authors hypothesised 

that the systemic development of the parasite was inhibited when water temperatures 
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were below 10°C in salmon farm site. Water temperature has been shown to affect 

the development of other microsporidians, for example in vivo experiments with the 

microsporidian N. salmonis showed an increase in mortalities of the chinook salmon 

when temperatures were shifted from 9ºC (10%) to 15ºC (60%) (Antonio & Hedrick, 

1995). In this study, higher loads of D. lepeophtherii loads was associated with 

temperatures between 10 and 12 °C when both farms were used in the statistical 

model.  

The percentage of fish positive for D. lepeophtherii was 93% and 68% in Farm 

A and B, respectively. The presence of D. lepeophtherii was initially detected in the 

gills of one fish in Farm A by RT-rtPCR in the first sampling point of the marine 

cycle, just one month after the fish were transferred to sea, and five months after the 

fish were transferred to Farm B.  In Farm A, sea lice were not observed on the skin 

when D. lepeophtherii was first detected in the gills of fish, suggesting that infection 

occurred through the waterborne microsporidian spores present at the farm, in 

agreement with other studies (Sveen et al., 2012). There was a significant 

relationship between the presence of D. lepeophtherii and the increase in gill score in 

Farms A and B, but the increase in the parasite load (lower Ct value) was associated 

with the increase in the gill score in Farm B only. The pathology suggestive of D. 

lepeophtherii infections was minimal and not significant in the gills of fish examined 

from both farms, which suggests the significant associations are the result of the 

parasite developing in more affected gills (with higher gill score) rather than D. 

lepeophtherii being a causative agent of the gill pathology observed. It could also be 

that parasite development was favoured by the increase in water temperature, a factor 

that also influenced the gill score. However, the loads of D. lepeophtherii decreased 

in the gills of fish in Farm A after week 40 (02.11.2016), with the decline of 

temperature, but loads of D. lepeophtherii in Farm B increased despite the lower 

temperatures by the end of the sampling period (week 40-57), which suggests that 

fish with gill disease in Farm B provided a more suitable environment for the 

parasite to grow. Gunnarson et al. (2017) found similar associations between the 

increase in loads of D. lepeophtherii RNA and the presence of gill disease, 

unfortunately the authors did not describe the clinical signs or pathology related with 

these gill disease event and it is therefore unknown if the parasite was associated 
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with any of the lesions observed. Steinum et al. (2010) described higher loads of D. 

lepeophtherii in fish with PGI (statistical analysis was not performed) than fish 

without PGI. The authors did not mention if D. lepeophtherii was detected in tissue 

sections by histology, but most of the changes associated with PGI (epithelial cell 

necrosis, hyperplasia and gill inflammation) (Kvellestad et al., 2005), have been 

associated with the presence of D. lepeophtherii by light microscopy (Matthews et 

al., 2013; Weli et al., 2017) and therefore it is possible that the microsporidian was 

involved in the pathology observed. Contrary to this, Downes et al., (2018) did not 

find any association between the increase of D. lepeophtherii and the increase of 

severity of the gill disease during an outbreak of AGD in Ireland. Desmozoon 

lepeophtherii is very prevalent in salmon farms irrespective of the health status of the 

fish (Steinum et al., 2010). Farm A, which showed overall mild gill pathology, had a 

significantly higher percentage of fish positive for D. lepeophtherii compared to 

Farm B. There were no significant associations between the increase in parasite load 

in the fish with low condition factor, as shown in other studies (Gunnarson et al., 

2017). However, in this study, fish were attracted to the surface with feed for 

sampling, which meant that the most active part of the population was caught, whilst 

the smaller fish (runts) were overlooked. Whether infestations with D. lepeophtherii 

can reduce the condition factor of salmon, or fish with low condition are more 

susceptible to D. lepeophtherii, remains to be elucidated. It may be that the 

conditions for the parasite to cause significant gill pathology were not present in this 

study and further studies are necessary to understand the conditions required for the 

parasite to cause disease. 

Candidatus Branchiomonas cysticola was the most prevalent agent detected 

throughout this study (100% and 99% percentages of positive fish in Farm A and 

Farm B, respectively), in accordance with other observational studies (Gunnarson et 

al., 2017; Downes et al., 2018), and was first detected in the freshwater stage of 

Farm A and Farm B. It would appear that the fish carried the pathogen from their 

freshwater site to their seawater location. No significant differences were found in 

the percentages of fish positive for the bacterium across seasons or farms, but the 

increase in the bacterium load was associated with a quadratic effect of temperature. 

Candidatus B. cysticola was not associated with an increase in the gill score in the 
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most statistically powerful models used in this study (LM1 and LM2), in which both 

farms were assessed at the same time. However, an increase in the loads of Ca. B. 

cysticola were significantly associated with an increase in the gill score when only 

Farm B was assessed (LM6). Ca. B. cysticola is the most common epitheliocyst 

forming agent in Atlantic salmon (Mitchell et al., 2013). The presence of 

epitheliocysts have been recorded in at least 90 species of fish (Blandford et al., 

2018) and often in the presence of disease and mortalities (Katharios et al., 2008). 

The loads of Ca. B. cysticola significantly increased with the presence of PGI 

(Mitchell et al., 2013). Further studies showed mild branchitis and lamellar 

epithelium proliferation when fish were infected with the bacterium in freshwater 

(Wiik-Nielsen et al., 2017). However, it seems that this agent is also highly prevalent 

and can be present in healthy fish without causing significant pathology (Downes et 

al., 2018). In this study, a few epitheliocysts consistent with Ca. B. cysticola  

detected in 30% of the fish gills. These appeared as basophilic cysts causing 

hypertrophy of the epithelial cells that were mostly located in the apical part of the 

lamellae, as described by Mitchell et al. (2013) when the cysts are found in low 

numbers. Presence of epitheliocysts suggestive of Ca. B. cysticola were significantly 

correlated with lower Ct values, which agrees with Mitchell et al. (2013) in Ca. B. 

cysticola being the most likely aetiology agent of the cysts observed. High numbers 

of Ca. B. cysticola and epitheliocysts have been observed in events of PGI, and its 

pathological effect may be load-dependant (Mitchell et al., 2013), but epitheliocysts 

numbers were low in this study. The inflammatory cell reaction in the gills was not 

marked in this study (one of the changes associated with Ca. B. cysticola (Wiik-

Nielsen et al., 2017)) and the low level of epitheliocysts detected in the 

histopathology suggests the bacterium was not a major causative of the gill disease 

present in Farm B. Instead, the higher level of the bacterium seems to have increased 

when the gill score increased but only in Farm B. The various results obtained for 

this pathogen at Farms A and B, indicate that conditions required by the bacterium to 

cause disease were not suitable in these farms and the circumstances under which 

epitheliocysts replicate and are able to cause disease have yet to be understood. 

Another type of epitheliocyst was detected in Farm A during the first sampling point 

at sea (week 6). These were small basophilic cysts, with bacterial inclusions, present 
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at the base of the lamellae and were consistent with description for Ca. C. 

salmonicola. According to Mitchell et al. (2010), these agents are carried by salmon 

from the freshwater phase to the marine phase and disappear after 4-6 weeks post-

transfer to sea. The agents were observed at only one sampling point and were 

assumed to have subsequently disappeared from fish after being moved to the 

seawater environment.  

Salmon gill poxvirus was detected in both sets of fish in the freshwater stage of 

their production cycle prior to being moved onto both farms. The virus was only 

sporadically detected during the marine production phase during the study. 

Therefore, it appears that salmon carried the virus from the freshwater site to their 

sea location. Half of the fish in Farm A (3/6) sampled during the freshwater stage 

showed changes in their gills, suggestive of SGPV infection with the presence of 

moderate lamellar epithelium hyperplasia (although this pathology is not exclusive to 

viral infections of the gills), chromatin margination, apoptosis of epithelial cells, and 

cell budding.  They also had the highest level of virus detected at any point 

throughout the study (Ct range 21-29). It is during the freshwater phase of farming 

when the most typical manifestation of clinical disease associated with the virus is 

observed (Gjessing et al., 2016). In this study, mortalities in the freshwater stage 

were mainly attributed to Saprolegnia spp. infections, an oomycete that causes 

important economic losses to the salmon industry during freshwater rearing (Van 

West, 2006). Gjessing et al. (2017) speculated that SGPV infections could 

immunosuppress the fish and facilitate infections with Saprolegnia spp. Fish from 

Farm A (freshwater stage) had high loads of virus and presented pathology typical of 

SGPV infections, which have been reported to be associated with mortality events in 

other studies (Gjessing et al., 2015). Therefore, it is possible that mortalities due to 

SGPV were masked by mortalities associated with the Saprolegnia spp infections 

(Gjessing et al., 2017). In the case of fish from Farm B, SGPV was detected in most 

fish (4/6) during the freshwater rearing, but the loads of virus were lower compared 

to those measured in fish from Farm A (Ct range 32-36), and pathology in the gills 

was minimal and not suggestive of the disease associated with the virus. Similar to 

Farm A, mortalities of fish in the freshwater phase at Farm B were mostly attributed 

to Saprolegnia spp. infections, but it is unknown if the virus contributed to these 
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mortalities to some extent or if the virus load was too low and did not cause clinical 

disease. This has been reported in other studies in which infected fish transmitted the 

SGPV infection to naïve fish through the water but without physical contact, and 

where no pathology was associated to the infection (Wiik-Nielsen et al., 2017).  

In the marine phase, the percentage of fish positive for SGPV was not 

significantly different across seasons or between farms, but there was a positive 

association between the increase of water temperature and the increase in the virus 

load. In this study, there was not a significant association between SGPV and gill 

disease. The virus was detected by IHC and qPCR in the first case of AGD described 

in Norway, which was associated to 80% of mortalities (Gunnarson et al., 2017) and 

the authors proposed SPGV to be a primary pathogen, capable of destroying the 

epithelial barrier and facilitating the entry of other pathogens. However, our findings 

are in agreement with the studies of Downes et al. (2018), in which SGPV was 

detected sporadically, and it was not significantly associated with the gill scores.  

Potential factors that could affect the gill scores of fish sampled at Farms A and 

B were analysed using linear models (LM1 & LM2) and significant associations 

were found between different factors. There were significant differences in the 

severity of the gill score between farms. Farm A experienced mostly minimal to mild 

gill changes throughout the study, but Farm B suffered an outbreak of gill disease 

from late summer until early winter with the total gill scores reaching a moderate 

level during this period. Season was significantly associated with the gill score, and 

the model LM2 and LM1 estiamtes that autumn correlated with higher gill scores, in 

agreement with previous reports of gill disease in marine salmonids, which tend to be 

reported between the end of summer to early winter. Proliferative gill inflammation 

seems to be highly correlated with the autumn months in Norway (Kvellestad et al., 

2005) and a similar pattern has been observed in Scotland (Matthews et al., 2013). 

Furthermore, the first outbreak in AGD in Norway occurred in autumn (Steinum et 

al., 2008), and Scotland was affected by AGD infections in several farms during late 

summer in 2017 (Roed, 2017). In addition, problems with algae blooms were 

recorded in late summer/autumn in Norway in 2018 (Hvas et al., 2017). The strong 

link with seasonality may indicate that water temperature is an important risk factor 
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in the development of gill disease, and in the present study when water temperature 

was used instead of season as a potential predictor of increased gill score in Farm B 

(LM3) there was a strong association between these. This is in agreement with the 

observation that, in Scotland, water temperatures reach their maximum in late August 

(~14°C) (The Scottish Government, 2011) and this is when the incidence of gill 

disease starts to peak. Pathogen infection rates are also influenced by the water 

temperature (Callaway et al., 2012), as is the abundance of non-infectious harmful 

organisms, such as gelatinous zooplankton (Kintner, 2016).  

Blooms of Chaetoceros spp. were recorded in both farms by the end of May. In 

Farm A, C. debilis and C. socialis were detected, with maximum abundance of 1.8 x 

105 algal cells L-1, and in Farm B C. socialis was the predominant species with 

maximums of densities of 105 algal cells L-1. Chaetoceros spp. is one of the most 

abundant diatoms in the ocean (Malviya et al., 2016) and blooms have been 

associated with fish kill events (reviewed by Rodger et al., 2011). Chaetocerus 

debilis was one of the predominant species found in an algae bloom together 

Chaetoceros wighami, associated with mortalities over 50% in a salmon farm in the 

Shetland Isles (Bruno, 1989). Unfortunately, the latter study was not accompanied 

with the exact densities of algal cells detected and it is unknown at which 

concentrations C. debilis can be deleterious to fish. During challenges of Atlantic 

salmon with C. socialis in vivo using concentrations of 4 x 106 algal cells L-1 (higher 

concentrations than those detected in this study) no mortalities resulted and no 

obvious effect were observed in the gills of fish after 24 h of exposure (Burridge et 

al., 2010). The authors of that study concluded that this species of algae is unlikely to 

be responsible for fish deaths at the concentrations tested. In this study, minimal to 

mild acute gill pathology was observed, consistent with that previously described 

resulting from exposure to harmful algae blooms (Bruno, 1989). Necrosis of the 

lamellar epithelium cells and tissue sloughing, was detected in fish from Farm A by 

the end of May in a mild extent but not in Farm B, when the C. socialis bloom 

occurred in the same period. The pathology observed in fish from Farm A was likely 

caused by direct contact with the algae or with the silicified setae, typical of 

Chaetaceros spp. (Malviya et al., 2016), resulting in small focal abrasions in the gill 
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epithelium. However, the impact of these changes on the gill health of the fish 

overall were low. 

The hallmark of complex gill disorder, as recently defined by the presence of 

significant, non-specific, proliferative branchitis (Noguera et al., 2019), was not 

detected in any of the fish examined in the present study. The pathology observed in 

fish from Farm B was consistent with AGD but other non-AGD lesions were also 

seen, such as mild, occasionally moderate, multifocal lamellar vascular disturbances, 

including thrombi and haemorrhages, mild multifocal lamellar non-specific 

epithelium proliferation, and occasional lamellar tissue sloughing. These changes 

were mostly attributed to waterborne insults such as zooplankton or mechanical 

damage. Gelatinous zooplankton represents an important environmental challenge to 

gills, such as relatively large jellyfish, which are carried onto the outer surfaces of 

the fish cages by tides and currents, causing them to break up and pass through the 

mesh (Delannoy et al., 2011). Pathology in the gills associated with the exposure to 

jellyfish include the presence of multifocal necrosis, haemorrhage and loss of tissue 

in the filaments and lamellae (Baxter et al., 2011; Marcos-López et al., 2016). 

Although similar lesions were seen in this study, zooplankton sampling was not 

carried out at the farm and the exact cause of the additional gill lesions remains 

unknown.  

When using only Farm B in the linear model,  the gill score significantly 

increased with the increase in days since the last net cleaning and the last H2O2 

treatemnt. Although, as discussed previously, the statistical power of the models in 

which only Farm B was considered was low, it is still interesting that these two 

factors were shown to have a significant effect on the severity of the gill score. In 

situ net-pen pressure washing is a common strategy to clean the biofouling present 

on the fish cage nets (reviewed by Bannister et al., 2019) and was the strategy used 

in Farm B.  Due to the release of fouling organisms such as hydroids and anemones, 

high pressure cleaning can cause lesions similar to those that occur in a jellyfish 

bloom, which also possess nematocysts (Baxter et al., 2012). For instance, Atlantic 

salmon exposed to the hydroid Ectopleura larynx, a frequent fouling organism on 

cage nets, can cause epithelial sloughing, necrosis lamellar haemorrhages (Baxter et 
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al., 2012) and foci of lamellar thrombi. Farm A used a different type of net cleaning 

system termed the “environet”. The environet consists of a double net that can be 

rotated, maintaining the fish within the pen, and allowing half of the net to be hung 

up and air-dried to remove the waste accumulated (Fletcher, 2018). This system 

prevents the fouling and infectious organisms removed from entering the inside of 

the net pen. The overall gill health of Farm A was significantly better than in Farm 

B. Differences in net cleaning could have an impact on gill health and should be 

investigated further.  

Regarding the use of H2O2 treatments, excessive exposure of fish to this 

chemical has been shown to have a negative impact on gill health, and the pathology 

is characterised by the lifting of the lamellar epithelium and epithelial cell necrosis 

(Rodger et al., 2011). However, lamellar epithelial lifting was not detected in the 

gills of fish from Farm B, and the occasional epithelial cell necrosis noted could have 

been caused by different reasons such as mechanical damage or contact with 

nematocysts. Therefore, excessive exposure to H2O2 is an unlikely explanation for 

the poorer gill health in Farm B. Handling of the fish during the administration of 

these treatments could have played a role in the increased gill score (i.e. mechanical 

damage to the fish gills during crowding) but, overall, this result should be 

interpreted with care. The significance of H2O2 treatments was measured in the 

model as "days since the last treatment". Only three H2O2 treatments were all 

performed in Farm B over the course of the study and these occurred between weeks 

32-43 when the gill scores were increasing, mostly due to AGD. Therefore, it is not 

surprising there was a significant association between the increase in gill score and 

the lower number of days since H2O2 treatment. This result shows the importance 

of knowledge of all the parameters influencing the experimental system 

when interpreting the outputs from the statistical analyses, particularly in 

uncontrolled experiments undertaken in a commercial fish farm. 

There were no statistically significant associations between the use of 

mechanical de-lousing treatments in this study and gill score. However, gill damage 

has been reported in Norway after thermal and mechanical de-loucing treatments, 

especially after testing during the developmental phase of the equipment (Grøntvedt 
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et al., 2015; Overton et al., 2018) but these procedures have now been widely 

adopted in the salmon farming industry (Overton et al., 2018).  More studies are 

necessary to understand the potential damage that these methods can have on the 

fish.  

In conclusion, statistical analysis of the data from the two farms showed that 

variations in SGPV and Ca. B. cysticola loads were not associated with an increase in 

the gill score in the marine stage, but D. lepeophtherii and P. perurans were. The 

absence of D. lepeophtherii associated pathology throughout the study suggests that 

the microsporidium does not play a significant role in the development of gill 

disease, but it was able to replicate more readily in compromised fish gills (i.e. those 

with a higher gill score). The presence of AGD in farm B during the months of July 

2016 to January 2017, confirms P. perurans as one of the main causes of the gill 

disease observed. 
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Chapter 4 Development of a DNA-based in situ 

hybridization method to detect 

Desmozoon lepeophtherii in Atlantic 

salmon tissues 

4.1 Introduction 

4.1.1 Detection of D. lepeophtherii in tissue sections 

Species diagnosis for Microsporidia has traditionally been carried out using 

transmission electron microscopy (TEM). Although it remains the gold standard for 

determining the species of these parasites, TEM is time-consuming and is not used 

for routine diagnostic investigations (Didier, 2005). At present, the most robust and 

widely practicable technique for the diagnosis of microsporidiosis in tissue sections 

is the detection of the spores using light microscopy (Garcia, 2002). However, 

microsporidia are not detected frequently in host tissue using the H&E, especially in 

cases where spores are small, widely distributed and occur either singly or in small 

aggregates rather than being present in large clusters or xenomas (Peterson et al., 

2011). Hence, several other histological stains, such as Luna or Warthin-Starry, have 

been used to visualize the microsporidian spores (Peterson et al., 2011). 

The small size of D. lepeophtherii spores, ranging from 1µm (auto-infective) to 

2.5µm (environmental), and their presence singly or in small aggregates (Matthews 

et al., 2013; Nylund et al., 2010; Weli et al., 2017), makes detection of the parasite in 

histological tissue sections difficult (Herrero et al., 2020). Matthews et al. (2013) 

used Gram Twort staining to identify D. lepeophtherii auto-infective spores and, 

although this method is possibly sufficient for routine complex gill disorder 

diagnosis when the number of D. lepeophtherii spores is very high, it severely 

underestimates the number of spores present when compared to other, more 

sophisticated, techniques such as CW staining or immunohistochemistry (Herrero et 

al., 2020). 
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4.1.2 Desmozoon lepeophtherii-related pathology in the gills of 

Atlantic salmon 

Due to the difficulty in detecting D. lepeophtherii in tissue sections, infections are 

normally diagnosed by molecular methods, routine H & E stained gill tissue sections 

and the use of other histochemical stains and labels to confirm the presence of spores 

(Herrero et al., 2020; Matthews et al., 2013). No successful in vivo or in vitro 

infection studies have been performed with D. lepeophtherii and its pathogenesis in 

salmon remains to be fully elucidated. However, several studies have associated high 

burdens of microsporidian spores with necrosis, hypertrophy and hyperplasia of the 

lamellar epithelial cells, and infiltration by inflammatory cells (Matthews et al., 

2013; Nylund et al., 2010; Nylund et al., 2011; Weli et al., 2017). Matthews et al. 

(2013) described a case of D. lepeophtherii in a Scottish marine salmon farm in 

which, at the first sampling point, marked lamellar epithelial cell proliferation, spores 

and infiltration by large numbers of inflammatory cells into the necrotic and 

hypertrophied epithelial cells were present, although overall lamellar branchitis was 

mild. One week later, inflammation had decreased, the number of necrotic epithelial 

cells had reduced, and spores were rarely found such that only lamellar epithelial cell 

proliferation and hypertrophied cells were obvious. Sequential time-course 

observations on the disease were also made by Weli et al. (2017) on a Norwegian 

salmon farm in which D. lepeophtherii appeared to be the main pathogen causing the 

clinical signs. Necrotic lesions were more severe during the acute stage of the disease 

(during early sampling time points), while chronic pathology (present during later 

sampling time points) was characterised by a marked host response, including severe 

inflammatory cell infiltration and proliferation of the gill epithelium. 

In outbreaks of gill disease caused by multiple aetiologies, lesions caused by 

individual agents can be difficult to discern, including those caused by D. 

lepeophtherii. Additionally, the high percentage of positive fish to  the 

microsporidian in salmon populations, rapid change in the progression of the 

pathology (spores might be detected only for a short period of the infection), and the 

difficulty in detecting the parasite, makes the study of gill disease associated with 

this organism challenging. Other stains (e.g., CW) for microsporidians significantly 
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improve the detection of D. lepeophtherii but only detect the spore stage (Herrero et 

al., 2020). A more sensitive and specific method, capable of detecting all stages of 

the parasite’s life cycle, would allow accurate detection of D. lepeophtherii and help 

gain insights into the development of the parasite infection and pathogenesis in CGD. 

4.1.3 In Situ Hybridisation (ISH) 

The underlying principle of ISH is to detect target DNA or RNA by application of 

the complementary strand of nucleic acid to which a reporter molecule has been 

attached (together referred to as the probe) (Jensen, 2014). Although conceptually 

simple, ISH procedures are usually lengthy and involve several steps (Palenzuela & 

Bartholomew, 2002). Sensitivity and specificity of ISH tends to be slightly lower 

when compared to quantitative polymerase chain reaction (RT-rtPCR) (Weli et al. 

2017). However, in contrast to RT-rtPCR, the procedure has the ability to locate the 

parasite in counterstained tissue sections thereby showing its biological context and 

general morphological and spatial information (Holzer et al., 2003). 

ISH studies on microsporidians have proven that the method is a powerful tool to 

visualise both the pre-sporogonic and sporogonic stages. The technique has been 

used previously with probes against the small subunit ribosomal RNA (SSU rRNA) 

or intergenic regions of fish microsporidian rRNA to detect Enterospora nucleophila 

and N. salmonis (Ahmed et al., 2019; Grésoviac et al., 2007). These methods were 

applied successfully to formalin fixed, paraffin-wax embedded (FFPE) tissue 

samples and detected more microsporidians and more infected cells when compared 

with histochemical stains. 

Recently, an ISH method for the detection of D. lepeophtherii was developed 

based on a large, plasmid-encoded RNA probe (Weli et al., 2017). However, this 

procedure has notable practical difficulties with respect to the reproducibility of 

generating the probe and difficulties preserving tissue morphology versus adequate 

probe permeability. Additionally, the extremely labile nature of RNA probes 

demands the use of a scrupulously sterile technique and careful preparation of the 

tissue sections (Corthell, 2014). A more practical and robust ISH method based on 
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DNA oligonucleotide probes would be ideal for further research studies of D. 

lepeophtherii and would be suitable for diagnostic purposes. 

4.1.4 Aims and Objectives 

The aim of this work was to develop and optimise an in situ hybridisation protocol 

using oligonucleotide probes specifically designed for D. lepeophtherii. The 

sensitivity and specificity of the ISH technique were compared with other techniques 

currently used to detect the microsporidian in tissue sections. The distribution of the 

parasite, detected by ISH, was correlated with the histological lesions observed in 

tissue sections, and also compared with the results of reverse transcription PCR (RT-

rtPCR). 

4.2 Material and Methods 

4.2.1 Development of the in situ hybridisation protocol for the 

detection of D. lepeophtherii in histological tissue sections 

The developed protocol was based on the method described by Palenzuela & 

Bartholomew (2002), with modifications, and optimized for the probes and tissues 

used in the present study. Oligoprobes were synthesised and labelled with 

digoxigenin deoxyuridine triphosphate (DIG-dUTP) at the 5’ and 3’ end of the 

probes (Sigma-Aldrich, Dorset, UK). 

The characteristic hypertrophied and necrotic epithelial cells associated with the 

presence of D. lepeophtherii spores in salmon gill tissues have been termed 

“microvesicles” (Weli et al., 2017). For the development and optimisation of the ISH 

technique, archived FFPE gills tissue from Atlantic salmon were used. These 

samples had large numbers of microvesicles, multifocal and widespread, in epithelial 

cells in the gill lamellae and were positive for D. lepeophtherii by specific RT-rtPCR 

previously performed by the Fish Vet Group (Oslo, Norway). Relative quantification 

of parasite specific RNA present in gill tissues (RT-rtPCR) was obtained from gill 

biopsies (20 fish) and gill swabs (8 fish) and expressed as Ct values. The negative 

control preparations were gills processed identically to the positive cases but 

negative for D. lepeophtherii by RT-rtPCR. 
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Table 4.1. Fish number with type of samples used in the RT-rtPCR study and Ct 

value result.  

Fish no. Type of sample Ct value 

1 Gill biopsy Negative 

2 Gill biopsy Negative 

3 Gill biopsy Negative 

4 Gill biopsy 13 

5 Gill biopsy 15 

6 Gill biopsy 15 

7 Gill biopsy 16 

8 Gill biopsy 17 

9 Gill biopsy 17 

10 Gill biopsy 17 

11 Gill biopsy 17 

12 Gill biopsy 18 

13 Gill biopsy 18 

14 Gill biopsy 20 

15 Gill biopsy 20 

16 Gill biopsy 20 

17 Gill biopsy 21 

18 Gill biopsy 22 

19 Gill biopsy 28 

20 Gill biopsy 32 

21 Gill swab 17 

22 Gill swab 17 

23 Gill swab 19 

24 Gill swab 20 

25 Gill swab 20 

26 Gill swab 23 

27 Gill swab 24 

28 Gill swab 29 

 

4.2.1.1 Design of specific oligoprobes  

Probe design was achieved by aligning all the sequences of D. lepeophtherii 

available within the SILVA database (Pruesse et al., 2007, www.arb-silva.de), 

excluding variable regions. Most of the sequences analysed targeted the SSU rRNA 

region but some fragments from the internal transcribed spacer (ITS) and partial 

large subunit (LSU) region were also analysed. No RNA/DNA sequence divergences 
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were detected in the D. lepeophtherii sequences obtained from Atlantic salmon 

farmed in Scotland or Norway, or from different species of sea lice (Caligus 

elongatus and Lepeophtheirus salmonis), Ballan wrasse (Labrus bergylta) or rainbow 

trout (Oncorhynchus mykiss) (Table 4.1). Some variation was observed between the 

Canadian genotype of D. lepeophtherii and the sequence of European D. 

lepeophtherii, as reported previously by Jones et al. (2012). 

To design the oligoprobes, sequences from closely related microsporidians 

belonging to the family Enterocytozoonidae were aligned (e.g. English Sole 

Parophrys vetulus unidentified microsporidian_AF201911.1; Obruspora 

papernae_H6005137; N.a salmonis_ NSU78176; N. cyclopteri_KC203457.1) with 

the longest sequences obtained for D. lepeophtherii (FJ594990; AJ431366.2; 

HM800847.2). In silico sequence analyses were performed using an NCBI BLAST 

search (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to confirm their specificity and the 

software package OLIGO 7 (Rychlik, 2007). A total of five resultant antisense 

oligonucleotide probes targeting the regions SSU rRNA and ITS were designed for 

this study (Table 4.2).  

4.2.1.2 Preparation of tissue sections 

Formalin fixed, paraffin-wax embedded gill tissue samples were sectioned (4 µm) 

and mounted on Superfrost plus coated slides (Menzel-Gläser, Braunschweig, 

Germany) and incubated at 60°C for one hour. Sections were dewaxed in xylene, 

rehydrated through a descending ethanol series (100%, 95% and 70%), and 

equilibrated in Tris-CaCl2 buffer (200mM Tris, 2mM CaCl2 pH 7.2) for 10 min. 
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Table 4.2. Sequences of D. lepeophtherii recovered from different host species and 

countries of origin, aligned to exclude variable regions in the oligonucleotide probe 

design. 16S small subunit (SSU) and internal transcribed spacer (ITS), 23S large 

subunit (LSU). 

 

 

 

 

 

Accession 

Number 

Number of 

bp 

Authors Target Gene Host species/ 

Country 

FJ594990 1885 Nylund et al. 

(2008) 

SSU (partial) Female sea lice 

L. salmonis / 

Norway 

FJ389667 1656 Nylund et al. 

(2008) 

SSU and LSU 

(partial); 

ITS;(complete)  

Farmed Atlantic 

salmon / 

Norway 

HM800847.2 1826 Jones et al. 

(2012) 

SSU (partial) Farmed Atlantic 

salmon / 

Canada 

AJ431366.2 1787 Freeman & 

Sommerville 

(2010) 

SSU; ITS; 

LSU 

(partial) 

L. salmonis / 

Scotland 

 

KR187183 1584 Nylund & 

Plarre (2015) 

SSU (partial) Wild rock cook 

wrasse 

(Centrolabrus 

exoletus)/ 

Norway 

FJ594979 1559 Nylund et al. 

(2010) 

SSU 

(partial) 

Caligus 

elongatus/ 

Norway 

FJ594989 953 Nylund et al. 

(2008) 

SSU 

(partial) 

Farmed rainbow 

trout/ 

Norway 

HM367691 685 Staveland & 

Nylund 

(2010) 

SSU 

(partial) 

Wild Atlantic 

salmon/ Norway 
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Table 4.2. Oligoprobe sequences designed for in situ hybridization. Small subunit 

ribosomal ribonucleic acid (SSU), internal transcribed spacer (ITS), melting 

temperature of the probes (Tm). 

Name  Sequence 5’-3’ Region Tm 

1284L21 CAAATCTGAACGTGATGCTAT ITS 62.5°C 

16L21 CGTTCCCCATTCGGTTCACAG SSU  69.8°C 

819L25 TTGCCCCTCTCATGTCGCCAATCTA SSU  74.4°C 

1002L25 ATATTTATGTCGCTCAAACGGATA SSU  64.5°C 

1339L25 ACACACTCACTAAGCAGTCCTACTA ITS 69.1°C 

 

4.2.1.3 Permeabilisation of tissues 

Desmozoon lepeophtherii is an intracellular pathogen and permeabilisation of the 

tissue was performed to allow intracellular penetration of the probe to improve 

binding to its target sequence. To optimise this procedure, serial sections were 

permeabilised with proteinase K (PK) (Roche, Welwyn, UK) at a concentration of 15 

µg mL-1 in Tris-CaCl2, for either 10 or 30 min at 37°C. Tissues which were not 

exposed to PK were also examined. Proteolysis was halted with two washes in 2x 

saline-sodium citrate buffer (SSC) for 10 min each. 

4.2.1.4 Hybridisation Buffer 

The slides were covered with 400 µL of freshly made hybridization mixture 

consisting of 112 µL nuclease-free water, 40 µL of 20x SSC buffer, 100 µL of 

deionized formamide (Sigma-Aldrich), 8 µl Denhardt’s solution, 80 µl dextran 

sulphate (50%, w/v) (Sigma-Aldrich), 40 µL of 10x PBS, and 20 µL of DNA from 

fish sperm (MB-grade, Sigma-Aldrich). 

Oligoprobes were adjusted to a concentration of 100mM with Tris-EDTA buffer 

(TE). Equal concentration of different probes were mixed together to make two 

cocktails. Cocktail 1 (C1) was made from probe 16L21, 819L25 & 1339L25. 

Cocktail 2 (C2) had 1284L21, 1002L25 & 1339L25. The different cocktails were 

prepared at different dilutions (1/1000, 1/500 and 1/200) in hybridization buffer. 
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Each oligonucleotide probe was tested individually on serial sections also at the 

1/1000 dilution. 

4.2.1.5 Hybridisation Procedure 

Slides with the probes applied were placed on a heating block at 95ºC for 10 min. 

After two min at this temperature, slides were covered with Hybri-slips (Sigma-

Aldrich) and incubated at 37˚C overnight to hybridize to complementary sequences. 

4.2.1.6 Washing Steps  

After overnight incubation slides were rinsed with 2x SSC buffer to remove the 

Hybri-slip. Stringency washes were then performed, to remove unbound probes, 

using 2x10 min washes in 2x SSC buffer at 37°C and 45°C, 2x10 min in 1x SSC 

buffer at 37°C, and finally in 0.25x SSC buffer at 37°C for C1. The same wash 

procedure was used for slides incubated with C2 except the last stringency wash, 

which was performed with 0.5x SSC buffer at 37°C and 45°C. During each wash 

step the slides were shaken slowly. Following the stringency washes, the tissue 

sections were transferred to wash buffer A (1M Tris base, 1.5M NaCl, pH 7.5) for 10 

min at 24˚C. 

4.2.1.7 Immunological detection 

Subsequent to sections being washed in Buffer A they were incubated for 1h at 21°C 

with blocking solution (2% sheep serum, 0.1% Triton X-100 in wash buffer A) to 

prevent non-specific antibody binding. Bound probes were detected by covering the 

slides with anti-DIG Fab fragment antibody conjugated to alkaline phosphatase (AP) 

(Roche) at a dilution of 1:200 in blocking solution for 2h at 21°C. Unbound antibody 

was removed using wash buffer A for 2 x 10 min and then incubating in wash Buffer 

B (100 mM Tris, 100 mM, NaCl, 50 mM, MgCl2 pH 9.5) for 10 min in a staining jar 

with agitation at 21°C. The signal was visualized by 3h or overnight incubation with 

AP enzyme substrate NBT/ BCIP (5-bromo-4-chloro-3-indolyl phosphate and 4-

nitro-blue tetrazolium chloride) (Roche), diluted at 1:500 dilution with wash Buffer 

B, without MgCl2. Incubation was undertaken at 21°C in darkness. The staining 

reaction was terminated by placing the slides in wash buffer A for 10 min. 
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Slides were counterstained with light green (1%) (AtomScientific, Manchester, 

UK) for 4 min, and transfered to an acetone solution with 0.05% of acetic acid for 1 

min. Tissues were dipped 10 times in distilled water and then dehydrated through a 

series of rising concentrations of ethanol (96% and 100%), cleared in xylene and a 

coverslip applied using VectaMount (Vector Laboratories, Burlingame, CA, USA). 

4.2.1.8 Specificity testing of the ISH method and analysis of other tissues 

To test the specificity of the oligoprobes in the ISH protocol, sections from two 

closely related microsporidia from the Enterocytozonidae family, Enterocytozoon 

hepatopenaei in the hepatopancreas of the black tiger shrimp (Penaeus monodon) 

and N. cyclopterii in the kidney of the lumpfish (Cyclopterus lumpus), were 

subjected to the method to assess cross-reactivity. 

Other tissue sections used to optimise the ISH protocol included tissues (heart, 

skin, muscle, intestine, pyloric caecae, stomach, liver, spleen, kidney and pancreas) 

from D. lepeophtherii positive Atlantic salmon, a sea louse (L. salmonis) (from a 

salmon farm in Scotland) that had xenomas under its cuticle suggestive of D. 

lepeophtherii infection, gills from a lumpfish (Cyclopterus lumpus) that had 

hypertrophic and necrotic gill epithelial cells typical of the lesions caused by D. 

lepeophtherii in salmon gills, and gill tissue from farmed Atlantic salmon in Canada 

suspected of being infected with D. lepeophtherii (which were positive for D. 

lepeophtherii by RT-rtPCR, kindly provided by Prof Simon Jones, Pacific Biological 

Station, Nanaimo, Canada). 

4.2.2 Comparison of the ISH method with other techniques 

4.2.2.1 Material 

Archived FFPE gill samples (n=28) obtained from marine salmon farms located on 

the west coast of Scotland and collected between 2016 and 2017 were used. These 

tissues, previously subjected to RT-rtPCR for quantification of D. lepeophtherii 

using either gill biopsy or swabs, were provided by Fish Vet Group (Inverness, 

Scotland). Tissue sections from fish with different burdens of microsporidia, as 

represented by Ct value, were selected for this study. 
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4.2.2.2 Histology 

Archived paraffin wax histology blocks were sectioned (4 μm) sequentially. All 

samples were stained with H&E according to Stevens & Wilson (1996). Calcofluor 

White (Fluka, Buchs, Switzerland) staining was performed as explained in Section 

2.2.12). All sections were examined with an Olympus BX51 microscope and 

photomicrographs taken with an Olympus DP70 Digital Camera System using 

analySiS® software.  

4.2.2.3 Quantification of microsporidia in tissue sections by ISH 

Each gill section subjected to ISH was examined using 20x objective lens. A 10 mm2 

tissue area (Figure 4.1) was analysed to determine the number of D. lepeophtherii 

positive structures which labelled as an intense blue-purple signal (Ahmed et al., 

2019). 

 

Figure 4.1. Schematic figure used to standardise the counting of ISH positively 

labelled structures in tissue sections. Each square represents the field observable 

under the microscope using 20x objective lens. A total of 49 areas were analysed per 

slide. The green arrow (top left) indicates the starting field; counting continues 

following the black arrows until the orange arrow (bottom right square).  

4.2.2.4 Assessment of D. lepeophtherii presumptive pathology 

The severity of pathology in gill tissue sections stained with H&E was scored from 0 

to 3. A score of 0 was given in the absence of pathology suggestive of D. 

lepeophtherii; 1 for epithelial cell granular necrosis (Figure 4.2a) but no obvious D. 

lepeophtherii -related microvesicles; 2 for a small to medium number of D. 

lepeophtherii-related microvesicles; 3 when a large number of D. lepeophtherii-

related microvesicles was present in the gill epithelial cells (Figure 4.2b). 
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Figure 4.2. Examples of the different values ascribed by the scoring system used for 

Atlantic salmon gills (a) Epithelial cell granular necrosis (arrows) within areas of 

lamellar epithelial cell proliferation, this gill would receive a score of 1. (b) Multiple 

microvesicles within the epithelial cells of the lamellae (arrows). Depending on how 

extensive the lesions were, gills were ascribed a score of 2 for small to medium 

number of microvesicles and 3 when a large number of microvesicles was present. 

4.2.2.5 Statistical analyses 

Sensitivity, specificity, positive predictive value and negative predictive value were 

calculated as per the standard formula (Martin, 1977) (Table 4.3). 

The data were not normally distributed (Shapiro-Wilk’s test). Spearman rank 

correlation coefficient was calculated to determine the correlations between the level 

of severity of pathology in gill tissue stained with H&E (score) and the Ct values 

obtained by RT-rtPCR, and between the gill score and the total ISH counts observed 

in the gill tissue. Pearson's correlation coefficient test was used to examine 

correlations between the total ISH counts observed in the gill tissue with the Ct 

values obtained. p ≤ 0.05 was considered to be statistically significant. All statistical 

analyses were performed using R software. 
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Table 4.3. Formulae used to calculate the sensitivity and specificity of the various D. 

lepeophtherii detection techniques.  

Calculation Formula 

Sensitivity ∑true positive results/∑true positive samples *100 

Specificity ∑true negative results/∑true negative samples*100 

Positive 

predictive value 

∑true positive results /∑ true and false positive results*100 

Negative 

predictive value 

∑true positive results /∑ true and false negative results*100 

 

4.3 Results 

4.3.1 Development and optimisation of the ISH technique  

The influence of different concentrations of the reagents and the variation of 

incubation times on the success of the ISH protocol is summarised in Table 4.4. 

Permeabilization of the tissue with PK for 10 min compared to 30 min gave the same 

level of labelling of D. lepeophtherii but the tissue morphology was better with the 

10 min PK incubation, so this was used. Furthermore, omission of the pre-

hybridisation step did not affect the results. Cocktail 1 gave slightly more 

background signal compared to Cocktail 2, although this difference decreased upon 

increasing the stringency of the washing, i.e. using SSC buffer at 0.25x to remove 

unbound probes after using Cocktail 1. A 3h incubation time with the substrate was 

sufficient to produce an optimal signal, whereas the reaction with both probe 

cocktails was over developed when the substrate was applied overnight. The best 

dilution of the probes tested was 1/1000 for both Cocktail 1 and Cocktail 2, with 

higher concentrations giving no increased signal in the tissues. Optimisation of the 

protocol is summarised in Table 4.5. The probes were tested separately, using the 

final ISH protocol (Table 4.6), and the probes targeting the SSU rRNA (16L21, 

819L25, and 1002L25) produced the best signal, with some background present 

when using probe 819L25. The probes targeting the ITS region gave a very weak 

signal with probe 1339L25 or no signal with probe1284L21. 
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Table 4.4. Results obtained by the variation of reagent concentrations and incubation 

times in the ISH protocol. +/- weak signal, + strong signal, BS background labelling, 

SBS strong background labelling. C1 cocktail 1, C2 cocktail 2. 

 

 

 

 

 

 

 

 

 

Treatment Concentration // Duration Results  

Proteinase K 

 

15 µg mL-1 10 min 

 

C1: +, BS 

C2: + 

15 µg mL-1 30 min 

 

C1: +, BS 

C2: + 

No Proteinase K 

 

C1: +/-, BS 

C2: +/- 

Pre-hybridization 

 

30 min 

 

C1: +, BS 

C2: + 

None 

 

C1: +, BS 

C2: + 

Stringency washes 

 

2x SSC, 10min 1x SSC, 10min 

0.5x SSC 

C1: +, SBS 

C2: +  

10min 2x SSC, 10min 1x SSC, 

10min 0.25x SSC 

C1: +, BS 

C2: +  

Substrate incubation 

 

3h 

 

C1: +, BS 

C2: +  

Overnight 

 

C1: SBS 

C2: SBS 
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Table 4.5. Summary of the ISH procedure optimised for D. lepeophtherii 

 

 

 

Treatment Duration 

Dehydration through graded alcohols and equilibration in 

Tris-CaCl2 

50 min 

Tissue permeabilization, PK 15 µg ml-1 in Tris-CaCl2 at 

37°C 

10 min 

2x SSC wash 10 min 

Tissue denaturisation at 96°C 10 min 

Incubation in hybridisation buffer at 37°C Overnight 

Stringency washes 60 min 

Washing Buffer A (1M Tris Base, 1.5M NaCl, pH 7.5) 10 min 

Incubation with blocking solution (2% sheep serum, 0.1% 

Triton X-100 in Washing Buffer A). 

60 min 

Immunological detection solution (AP-conjugated anti-

DIG Fab fragments antibody in blocking solution) 

120 min 

Wash in Washing Buffer A 20 min 

Wash in Washing Buffer B (100 mM Tris, 100 mM, 

NaCl, 50 mM, MgCl2 pH 9.5). 

10 min 

Substrate reaction (with NBT/ BCIP in Washing Buffer B, 

without MgCl2) 

180 min 

Wash slides in Washing Buffer A 10 min 

Counterstaining (Light Green) 10 min 

Xylene and mounting in VectaMount 15 min 

Total time 23.6h (14h 

incubation 

overnight) 
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Table 4.6. Results using oligoprobes individually with their respective optimised 

protocol. - no signal, +/- weak signal, + strong signal, BS background staining. 

Name  Sequence 5’-3’ Results 

1284L21 CAAATCTGAACGTGATGCTAT - 

16L21 CGTTCCCCATTCGGTTCACAG + 

819L25 TTGCCCCTCTCATGTCGCCAATCTA +, BS 

1002L25 ATATTTATGTCGCTCAAACGGATA + 

1339L25 ACACACTCACTAAGCAGTCCTACTA + 

 

4.3.2 Detection of D. lepeophtherii in Atlantic salmon gills using 

ISH 

Successful binding of the probes to the D. lepeophtherii target sequences, indicating 

the presence of the parasite, was denoted by a dark blue-purple signal against a light 

green counterstain (Figure 4.3 & 4.4). All negative control preparations were devoid 

of blue-purple signal (Figure 4.5a). Proliferative stages of D. lepeophtherii, i.e. pre-

sporogonic structures and probably meronts, appeared as intensely blue-purple 

labelled round structures 4-6 µm in length (Figure 4.5b & c). They were present most 

frequently in the cytoplasm of gill epithelial and blood vessel endothelial cells. 

Sporont-like structures appeared as a vacuole containing multiple punctate blue-

purple inclusions, which were considered to be immature spores (Figure 4.5d). Both 

types of spores, auto-infective and environmental, were less consistently labelled 

than the pre-sporogonic structures, but were still visible in the gills. Auto-infective 

spores were smaller, approximately 0.8-1 µm in diameter, and usually appeared in 

clusters in the cytoplasm of the gill epithelial cells. These spores did not always 

appear as a complete structure, but as small punctate labelling in degenerate tissue 

(Figure 4.6a). Environmental spores were larger (2-2.5µm) and present in the nucleus 

of gill epithelial cells or associated with degenerate epithelial cells (Figure 4.6b). 
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Spores were generally less intensely labelled than pre-sporogonic stages and 

variation in the intensity was noted (Figure 4.6c). 

 

 

Figure 4.3. Semi-serial histological sections of gills of Salmo salar infected with D. 

lepeophtherii. (a) H&E stain and (b) ISH. Note the dark blue labelled structures 

present in the gill tissue subjected to ISH which are far more difficult to recognise in 

the corresponding H&E stained serial sections at identical magnifications.  
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Figure 4.4. Semi-serial histological sections of gills of Salmo salar infected with D. 

lepeophtherii. (a) H&E stain and (b) ISH showing labelling of D. lepeophtherii 

(arrows) within the proliferated and degenerated epithelium of the gill lamellae. 
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Figure 4.5. Atlantic salmon gill tissue subjected to in situ hybridisation specific for 

Desmozoon lepeophtherii (dark blue/purple pigment). (a) Gill of salmon negative to 

D. lepeophtherii. (b) Note pre-sporogonic stages present along the epithelial cells of 

the gill lamellae. (c) Example of a meront-like structure (arrow) approximately 4 µm 

in diameter (bar, 20 µm). (d) Note presence of a sporont-like structure and punctate 

labelling within a vacuole that corresponds to forming spores. 

 

Figure 4.6. In situ hybridisation showing the presence of Desmozoon lepeophtherii in 

gills of Atlantic salmon (dark blue/purple pigment); (a) Note proliferative stages 

(arrow) and a cluster of spore-like structures within the proliferated epithelium of the 

gill lamella (circle) (bar, 5µm); (b) Two labelled environmental spores; (c) A group 

of poorly labelled environmental spores of D. lepeophtherii measuring 2.5µm in 

diameter (bar, 5µm). 
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4.3.3 Detection of D. lepeophtherii in non-gill tissues and probe 

specificity 

Tissues from the positive control fish also showed positive labelling for D. 

lepeophtherii by ISH in the interstitium of kidney (Figure 4.7a), spleen and liver 

parenchyma, bulbus arteriosus of the heart and lamina propria of the intestine 

(Figure 4.7b). Sections of sea lice (Lepeophtheirus salmonis) containing typical 

xenomas-like structures caused by D. lepeophtherii were ISH positive, with different 

foci of microsporidia labelled (Figure 4.8a). The gills from Atlantic salmon from 

Canadian farms showed similar labelling to salmon from Scottish farms using the 

probes targeting the SSU rRNA (Figure 4.8b) but were devoid of labelling when 

using the probes complementary to the ITS region. Examination by ISH of lumpfish 

gills with microvesicles, suggestive of D. lepeophtherii infection, did not label. 

Finally, the oligoprobes used in this study did not cross-react with any of closely 

related microsporidia species examined (N. cyclopterii and E. hepatopenaei) (Figure 

4.9a & b). 

 

Figure 4.7. In situ hybridisation for Desmozoon lepeophtherii (dark blue/purple 

pigment) showing proliferative stages in (a) kidney interstitium (arrow) and (b) 

lamina propria (arrow) of the intestine of Salmo salar. 
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Figure 4.8. In situ hybridisation for Desmozoon lepeophtherii (dark blue/purple 

pigment) in sea lice (Lepeophtheirus salmonis) infected with the parasite and (b) gills 

collected from an Atlantic salmon from Canadian farms heavily infected with D. 

lepeophtherii. 

 

Figure 4.9. In situ hybridisation for Desmozoon lepeophtherii (dark blue/purple 

pigment) to test cross-reactions with closely related microsporidian species. (a) 

hepatopancreas of black tiger shrimp (Penaeus monodon) infected with E. 

hepatopenaei; and (b) C. lumpus) infected with N. cyclopterii. Note complete 

absence of labelling showing no cross reactivity with the probes used to detect D. 

lepeophtherii. 
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4.3.4 Comparison of ISH with other techniques used to identify 

D. lepeophtherii 

Calcofluor White stained two different sizes of spores. One was smaller (1.1 μm 

length), ellipsoidal and present in the cytoplasm of cells along the lamellae but the 

specific cell types were difficult to identify due to the lack of preservation of tissue 

morphology. These smaller spores were present in aggregates of 3 to 20 and, when 

not in aggregates, 60x objective lens was required to identify them due to low levels 

of fluorescence (Figure 4.10). Larger, oval, spores were clearly visible under a 20x 

objective due to their stronger fluorescence signal and larger size (2.5 μm length).  

These were present singularly or in pairs, typically within cells but it was unclear 

if they were located within the nucleus or the cytoplasm of the cells, again, due to the 

lack of preservation of tissue morphology with this technique. Spores were present in 

gills from all fish examined when stained with CW, including four of the fish which 

were devoid of staining by any other histological method, but only the larger spores 

were detected. Calcofluor White showed the presence of the large (environmental) 

spores in gill tissue even when parasite loads were low but the smaller autoinfective 

spores were only visible when total number of microsporidia labelled with ISH was 

high (≥150). 

Results for the 28 gills sections analysed in this study using ISH, CW and H&E 

(based on the presence of micro-microvesicles), were compared with the results of 

the RT-rtPCR (Table 4.7). All methods appeared highly specific (100%) in their 

ability to detect D. lepeophtherii, but sensitivity was markedly higher using the ISH 

technique (92%), followed by CW (64%) and then H&E (52%). Positive and 

negative predictive values are shown in Table 4.7. Spearman rank correlation 

coefficient between the level of microvesicles in the gills stained with H&E and the 

total ISH counts observed in the gill tissue was significant (rs= 0.89; 95% confidence 

interval; p < 0.001). There was significant correlation between the pathology score 

and Ct values obtained from gills biopsies (rs= -0.92; 95% confidence interval; p < 

0.001), but correlation between the score and the Ct results obtained from swabs was 

not significant (rs= 0.69; 95% confidence interval; p= 0.056). When the total number 

of microsporidia labelled with ISH was compared with all RT-rtPCR results (from 

b 
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gill biopsies and swabs), there was a significant correlation (p ≤0.03), and also 

between the ISH and the gill biopsies Ct value results (p ≤0.03). However, there was 

no correlation between the ISH results score and the gill swabs Ct results (p = 0.22). 

 

 

Figure 4.10. Semi-serial histological sections of gills of Salmo salar infected with D. 

lepeophtherii. (a) CW showing bright structures corresponding to large (white 

arrows) and small (yellow arrows) microsporidian spores, (b) note how the same 

structures label with ISH (boxes).  
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Table 4.7 Results of Sensitivity, Specificity, Positive Predictive Value (PPV) and 

Negative predictive value (NPV) on the techniques used when compared with the 

RT-rtPCR results for predicting the presence of D. lepeophtherii in salmon gills.   

Method Analysis Result Analysis Result 

In situ hybridization Sensitivity 92.0% PPV 100.0% 

 Specificity 100.0% NPV 60.0% 

Calcofluor White Sensitivity 64.0% PPV 100.0% 

 Specificity 100.0% NPV 25.0% 

Microvesicles (H&E) Sensitivity 56.0% PPV 100.0% 

 Specificity 100.0% NPV 21.4% 

 

4.3.5 Gill D. lepeophtherii burden and the presence of 

microvesicles 

Of the 28 fish examined, 9 did not show any pathology suggestive of D. 

lepeophtherii. Presence of mild to moderate, multifocal, lamellar epithelial cell 

granular necrosis (Figure 4.11) was present in 5 fish. Low numbers of microvesicles, 

suggestive of D. lepeophtherii, were present in 11 of the examined gills, and a large 

number were present in 3 fish. The presence of microvesicles was more obvious 

when the total number of D. lepeophtherii labelled with ISH was between 120-850 

(in 10mm2 area) in fish gills, although one fish had small numbers of microvesicles, 

and only 30 positive D. lepeophtherii structures labelled by ISH (Figure 4.12a). For 

the RT-rtPCR results obtained from gill biopsies, the presence of microvesicles was 

only observed when the D. lepeophtherii load was very high in the gill tissue, as 

determined by RT-rtPCR (Ct ≤19) (Figure 4.12b). However, gills that had been 

swabbed showed less consistent results with respect to the presence of necrosis. The 

swab from fish 23 showed a Ct of 19 but on HE, necrosis was not present in the 

tissue section from the gills. Conversely, fish 24 had a Ct value of 20 and had large 

numbers of microvesicles suggestive of D. lepeophtherii.                                              
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Figure 4.11. In situ hybridisation showing the presence of Desmozoon lepeophtherii 

in the gills of Salmo salar associated with a focal area of epithelial granular cell 

necrosis. 

 

 

Figure 4.12. Boxplot of the pathology score in salmon gill tissue with different 

burdens of D. lepeophtherii represented as (a) RT-rtPCR Ct values and (b) ISH total 

counts in 10 mm² of gill tissue (ISH load). Pathology score (x- axis): 0 absence of 

necrosis, 1; epithelial granular cell necrosis but absence of microvesicles, 2; presence 

of small to medium numbers of microvesicles, 3; large numbers of microvesicles. 
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4.4 Discussion  

Desmozoon lepeophtherii is one of the most prevalent putative disease-associated 

agents detected by molecular methods in the gills of farmed populations of Atlantic 

(Downes et al., 2018; Gunnarsson et al., 2017) and Pacific salmon (Laurin et al., 

2019). In addition, the parasite has been detected in sea lice (Lepeophtheirus 

salmonis and Caligus elongatus) (Freeman & Sommerville, 2009; Nylund et al., 

2010), which are themselves a parasite of salmon, various species of wrasse (Steigen 

et al., 2018) and trout (Salmo trutta and Oncorhynchus mykiss) (Nylund et al., 2010), 

and different species of wild Pacific salmon (ICES Working Group, 2018; Thakur et 

al., 2019). Although the microsporidian has been associated with gill disease 

(Matthews et al., 2013; Nylund et al., 2011; Weli et al., 2017) in farmed Atlantic 

salmon, the interaction between pathogen and hosts remains to be understood due to 

D. lepeophtherii’s ubiquitous nature, difficulty of detection in tissue sections, and 

lack of in vivo and in vitro studies. Histopathological examination is critical to 

gaining an understanding of the association between the microsporidian and the 

pathology present in salmon affected by gill disease, but most of the techniques focus 

on the detection of the spores and do not clearly detect developmental stages 

(Herrero et al., 2020). 

A total of five antisense oligonucleotides probes complementary to the positive 

strand were designed and subjected to the ISH method, three were complementary to 

the positive strand of the small subunit region (SSU) and two to the internal 

transcribed spacer (ITS) region of D. lepeophtherii. Four out of five probes (three 

complementary to the SSU and one to the ITS region) gave a strong positive signal 

but one, 819L25, gave a level of non-specific labelling that hindered the localisation 

of the parasite. Reduction of the excess non-specific labelling was achieved by 

increasing the stringency of washing steps (Wilcox, 1993) thereby removing 

unbound probe effectively. The four successful probes also detected D. lepeophtherii 

in the gill tissue of farmed salmon in Canada despite a presumably different D. 

lepeophtherii genotype (Jones et al., 2012) and despite two of the probes having one 

mismatch with the sequence described in Canada. Surprisingly, the only probe that 

did not work in any of the samples examined was probe 1284L21 which was the 
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oligonucleotide designed specifically to recognise the European D. lepeophtherii 

genotype (ITS region). Although oligonucleotide design or inadequate parameters in 

the ISH method need to be investigated first, there is a possibility that variations in 

the ITS region and also more diversity in the genotypes of D. lepeophtherii exist. In 

the fungal kingdom, the ITS region has been shown to be generally superior for inter- 

and intraspecific discrimination compared to the LSU or SSU (Schoch et al., 2012). 

For instance, more than 100 genotypes have been described for the microsporidian 

Enterocytozoon bieneusi, a microsporidian closely related to D. lepeophtherii, by 

sequence analysis of the ITS, and these have been associated with different host 

affinities and different levels of pathogenicity (Galván-Díaz et al., 2014). Further 

molecular characterization of intraspecies genetic diversity of D. lepeophtherii from 

different geographical areas and host species may help better understanding of the 

role of this microsporidian in gill disease. 

The probes for the ISH appear to be specific for Desmozoon spp. in that they did 

not cross react with the two close related microsporidians examined (E. hepatopenaei 

and N. cyclopterii). In the sea louse with xenoma-like structures below the cuticle, 

which is highly suggestive of D. lepeophtherii infection (Freeman & Sommerville, 

2009), an intense positive signal was present after application of the ISH method. 

This confirmation of the presence of D. lepeophtherii in the lice examined makes 

ISH a valuable tool for studying the various stages of D. lepeophtherii in this species 

(i.e. Økland, 2012). Although a description of the parasite’s systemic distribution and 

associated pathology was not the aim of this study, fish with high burdens of D. 

lepepophtherii in the gills (by ISH signal or RT-PCR values) showed a positive ISH 

signal in other organs. The systemic distribution of the microsporidian has been 

commonly reported by other authors (Di Cicco et al., 2017; Matthews et al., 2013; 

Nylund et al., 2010) but typically has not been associated with major tissue damage 

with the exception of a case report by Weli et al. (2017) in which the presence of D. 

lepeophtherii was associated with severe pathology in the gills, peritoneal cavity and 

in the gastrointestinal tract. In our study, large numbers of D. lepeophtherii DNA 

were not detected in the gastrointestinal epithelium or pancreatic tissue. However, 

only single fish or small groups of fish from different clinical cases were selected for 

this study that may not necessarily have had the same clinical signs as the one 
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reported previously. Little is known about the effects of D. lepeophtherii in the other 

organs of fish and its systemic distribution is usually overlooked. 

In the gill tissue, positive labelling, by ISH, of the parasite’s developmental 

stages was present in the cytoplasm and nuclei of the gill lamellar epithelial cells and 

in the cytoplasm of endothelial cells of the blood vessels in the gills, which agrees 

with the described life cycle (Nylund et al., 2010) and previous studies (Weli et al., 

2017). Auto-infective spores were labelled as small punctate foci, 0.6-1µm in size, 

present singly or in small aggregates and in direct contact with degenerate lamellar 

epithelial cells. Additionally, they were sometimes present within the cytoplasm of 

apparently normal gill lamellar epithelial cells. Larger environmental spores were 

observed occasionally by ISH, appearing as round to oval structures, 2.5µm in 

length, either singly, in pairs or, more rarely, in small aggregates of 5-6. These spores 

were present within the nucleus of the gill lamellar epithelial cells, or associated with 

degenerate epithelial cells, and had variable and less intense signal compared to the 

pre-sporogony stages. Limitations on ISH, due to low signal intensity, is reported 

frequently and is mainly associated with small numbers of the target or insufficient 

accessibility of the target sequence (Amann et al., 1995). The detection of 

microsporidia with ISH using antisense DNA oligonucleotides that target the SSU 

region may result in a poor spore signal due to reduced or absent protein synthesis 

during the spore stage and the highly condensed genome of some microsporidian 

species, which would reduce the availability of the regions of the parasite’s genomic 

rDNA with which the probes could hybridize (Ahmed et al., 2019). This reduced 

intensity of the labelling in the spores by ISH has been reported for other 

microsporidian species including a recent RNA-based ISH method for detecting D. 

lepeophtherii (Weli et al., 2017). In our procedure, spores were identified mainly as 

punctate labelling and rarely as fully labelled oval structures. The increased intensity 

of ISH spore signal compared to other studies could be due to the use of the 5′-, 3′-

doubly labelled probes instead of the more typical singly labelled probes, and this 

approach has proven successful in other studies (Stoecker et al., 2010). 

An analysis of the sensitivity and specificity of the ISH method was undertaken 

to determine the usefulness of the technique compared to other detection methods. 
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However, complete validation of this ISH requires the analysis of samples from a 

large population of D. lepeophtherii-infected vs. non-infected fish (see Georgiadis et 

al., 1998). A sampling of this magnitude was outwith the scope of the present study. 

Additionally, the peak in incidence of clinical disease is usually seasonal and short 

(Matthews et al., 2013) and a large number of fish tissue samples with gross 

pathology would be difficult to collect. The ISH method was applied to gill samples 

from 28 fish to allow initial comparison with other histological methods (CW and 

HE) used commonly to detect D. lepeophtherii in gill tissue sections. To do this, 

tissue sections containing various parasite loads were selected based on RT-rtPCR 

results as a ‘gold standard positive control’, because of the specificity and sensitivity 

of the PCR technique to detect the parasite (Nylund et al., 2011). The sensitivity of 

the ISH was high (92%) and similar to that of the RT-rtPCR. As both techniques 

target the genome of the microsporidian, PCR and ISH are capable of detecting 

clinical and subclinical infections that can be missed by other, less sensitive, 

histological methods. Although quantitative PCR is more sensitive than ISH, because 

of the amplification of the original signal, RT-rtPCR is susceptible to false positive 

results due to contamination, and also there is no association with specific 

histological lesions. For a higher level of resolution, the ISH combines the high 

sensitivity and specificity of molecular detection with direct observation of the 

presence, subjective load and distribution of the parasite in the gill tissue. In addition, 

when gill biopsies where subjected to RT-rtPCR, the Ct values obtained correlated 

significantly with the total number of parasites observed in the gill tissue using ISH. 

However, no correlation was found between gill swab PCR Ct values and the ISH of 

the corresponding gill tissue. These results highlight the usefulness of ISH for 

quantifying both the level and associated pathology of the microsporidian in the gills. 

The ISH method can be used as a standalone procedure in the absence of RT-rtPCR 

results. Although using gill swabs to perform RT-rtPCR is a non-lethal option of 

assessing the presence of the microsporidian in fish gills, the results will be less 

reliable compared to those from RT-rtPCR of gill tissue biopsies or ISH because of 

the intracellular nature of the parasite. 

Calcofluor White allowed the visualization of the two types of spores described 

for D. lepeophtherii (Nylund et al., 2010) in agreement with previous studies (Herero 
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et al., in press; Weli et al., 2017). This fluorochrome has been widely used to detect 

microsporidia (Didier et al., 1995; Khanaliha et al., 2014; Luna et al., 1995), due to 

its ability to bind to chitin, which is present on the inner layer of the spore wall 

(Franzen et al., 1995). Calcofluor White has been previously demonstrated to detect 

higher numbers of D. lepeophtherii spores in gill tissue compared with other routine 

histological techniques (Herrero et al., 2020). However, the sensitivity of CW was 

only 64% when compared to RT-PCR probably because the pre-sporogonic stages 

develop prior to the spores are not detected by the fluorochrome. Assessment of D. 

lepeophtherii based on the presence of microvesicles in gill tissue sections stained 

with H&E gave a sensitivity of 52%. Pathology caused by the microsporidian is 

probably the consequence of intense parasite proliferation and spore formation and 

only obvious in the advanced stages of the disease. Microvesicles were detected in 

14 out of the 28 fish examined. Absence of necrosis suggestive of D. lepeophtherii 

was recorded in 8 fish. High burdens of D. lepeophtherii in tissue sections were 

significantly associated with the development of the microvesicles such that Ct 

values below 19 and/or ISH total counts of over 100 microsporidia seem to be 

necessary. The presence of necrosis of epithelial cells but absence of microvesicles, 

in this study denoted as epithelial granular cell necrosis, has been suspected to be an 

early stage of D. lepeophtherii infection. Nevertheless, this change is very non-

specific and was not consistently associated with the presence of positive ISH signal. 

Although the presence of medium to high numbers of microvesicles are highly 

suggestive of D. lepeophtherii infections in Atlantic salmon gills, a positive result 

with RT-rtPCR or ISH is necessary to confirm the presence of the parasite in clinical 

cases. Gills of lumpfish that had microvesicles present were negative for D. 

lepeophtherii by ISH demonstrating that the presence of microvesicles is a non-

specific change that can be associated with other disease processes. 

In conclusion, the DNA based ISH method developed during this study 

effectively detects D. lepeophtherii in Atlantic salmon in FFPE tissue sections. The 

method enables assessment of the burden of D. lepeophtherii in tissues, and 

significantly correlates with the RT-rtPCR results. Although the presence of 

microvesicles was observed in histological sections only when the burdens of D. 

lepeophtherii in the gill tissue, as determined by PCR, were very high (Ct values ≤ 
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19), the pathology associated with the presence of the parasite (necrosis, epithelial 

cell proliferation and inflammation in the gills) seems to change during the course of 

the disease (Matthews et al., 2013; Weli et al., 2017) and, unless severe, pathology 

caused by D. lepeophtherii is difficult to discern in a complex gill disease scenario. 

Under these circumstances the capacity of the developed ISH to detect the agent of 

interest, and the wider information provided when doing so is far superior compared 

to all other techniques. Routes of infection or spatio-temporal migration in different 

host tissues are mostly unknown for this species, mainly due to the lack of in vitro 

culture models of the parasite and, therefore, lack of in vivo experimental infection 

studies. A further use of this novel ISH method would be to study the progressive 

development and spread of the parasite after exposure via feeding of infected tissue 

or cohabitation studies of infected and naïve fish. 
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Chapter 5 General Discussion 

5.1 Complex gill disorder syndrome 

Gill disease is an important cause of morbidity and mortality in the marine stage of 

Atlantic salmon farming, and a challenge for fish welfare (Gjessing et al., 2017; 

Rodger, 2014). The real cost of gill disease for the salmonid industry is not known, 

but it is one of the main causes of losses in production experienced by salmon 

producers worldwide (Mowi, 2019). In Scotland, salmon industry stakeholders have 

agreed to report their mortality events to the competent authority (Marine Scotland 

Fish Health Inspectorate) as detailed in the Industry Code of Good Practices (The 

Scottish Government, 2019). Analysis of mortality events recorded from 2015 until 

June 2019, including “reason of death” and “total mortalities”, show gill diseases, 

such as AGD, proliferative gill disease (PGD) and complex gill disorder (alone or 

together with other non-gill diseases), as the “explained reason” for more than 60% 

of the total mortalities recorded. Although these mortality numbers have not been 

obtained from a comprehensive study of the disease situation, they still suggest gill 

disorders are one of the most important issues currently facing the industry. 

Additional economic costs of gill disease can be difficult to calculate, but include the 

cost of reduced productivity, treatments (Mitchell & Rodger, 2011; Shinn et al., 

2015) and increased susceptibility to other pathogens (Rodger, 2014). 

In some gill diseases the relationship between the infectious agent and its host is 

clear (e.g. AGD). However, gill disease can often be the result of a combination of 

factors including infectious agents, environmental conditions and various husbandry 

practices (Mitchell & Rodger, 2011). In recent years, a recurrent pattern of gill 

disease of unknown aetiology has occurred in Norway, Scotland and Ireland 

(Kvellestad et al., 2005; Matthews et al., 2013; Mitchell & Rodger, 2011). Complex 

gill disorder (CGD, also known as complex gill disease) is a term being used by 

those working in fish health that encompasses previously defined gill diseases such 

as PGI and PGD. Complex gill disorder incorporates a range of clinical and 

pathological presentations of gill disease found in Atlantic salmon 

in seawater farms due to the resultant interactions between the environment, 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/seawater
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/farm-enterprise
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management practices, pathogenic microorganisms and host factors. The 

histopathological criteria of CGD has recently been defined as a moderate to severe 

gill lamellar branchitis of unknown aetiology together with other histo-

morphological changes (Noguera et al., 2019). The use of “disorder” instead of 

“disease” results from the lack of knowledge of the true aetiology of this syndrome. 

The term “disorder” refers to the disruption of the normal function of, in this case an 

organ, whilst a strict definition of “disease” involves a disorder attributable to a 

specific cause (Mosby, 2016).  

Respiratory diseases of multifactorial aetiopathogeneses have also been 

described in farmed mammalian species. For instance, bovine respiratory disease 

complex is one of the main causes of loss in bovine production in North America and 

includes the interaction between stress, management practices and several viral and 

bacterial pathogens (Griffin et al., 2010). However, despite the obvious infectious 

nature of bovine respiratory disease, it has been difficult to reproduce the clinical 

signs of the disease in vivo when cattle have only been exposed to individual bacteria 

or viruses due to the disease’s multicomponent aetiology (Lillie, 1974; Taylor et al., 

2010). A similar situation appears to occur in CGD as when cohabitation challenges 

were performed with ASPV, a virus detected during PGI outbreaks, the virus was 

transmitted successfully to naïve fish from infected fish, but the former failed to 

develop clinical signs of the disease (Kvellestad et al., 2003). Wiik-Nielsen et al. 

(2017) exposed naïve fish to the same water (freshwater) in which fish infected with 

SGPV, Ca. B. cysticola, Ca. P. salmonis were held. Even though naïve fish became 

infected with all three agents, only mild lamellar epithelial hyperplasia and branchitis 

was observed in association with Ca. B. cysticola infections. It is possible that for 

experimental reproduction of the pathology and clinical signs associated with CGD, 

it may be necessary to expose fish to other stressors rather than just a single 

pathogen. 

Studies on infectious gill disease agents in Scottish aquaculture, other than P. 

perurans, are scarce. Since PGI was defined in 2005 in Norway (Kvellestad et al., 

2005) the only published article focusing on any CGD- related pathogen in Scotland 

was performed by Matthews et al. (2013) who reported a case of gill disease in 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/microorganisms
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which D. lepeophtherii was involved. Additionally, Pflaum (2012) found a 

significant relationship between RT-rtPCR loads of D. lepeophtherii and gill 

pathology in cases of gill disease. Work investigating SGPV in Scotland has 

published recently (Gjessing et al., 2018) in which fish from a flow-through hatchery 

were positive for the virus by PCR and had lesions suggestive of SGPV. Candidatus 

B. cysticola is found in the gills of farmed salmon in Scotland (pers. comm. H. 

Rodger) but surprisingly, no public reports existed until now and only for 

epitheliocysts suggestive of Ca. B. cysticola (Herrero et al., 2020; Rodger & 

Mitchell, 2013). However, projects focusing on gills disease are currently underway 

(SRUC, 2019) which will help to address many of the knowledge gaps of this 

condition.  

5.2 Status of CGD putative pathogens in Scotland 

The dynamics of the putative pathogens associated with CGD in Scotland (D. 

lepeophtherii, Ca. B. cysticola and SGPV) as well as P. perurans, the aetiological 

agent of amoebic gill disease (AGD), was examined in Chapter 3. A longitudinal 

study was performed in two salmon farms in different locations in Scotland 

commencing with the sampling of fish from the later stage of the freshwater rearing 

and terminating after the fish had spent one year in their marine site. In the 

freshwater stage both farms were positive to Ca. B. cysticola and SGPV and their 

detection continued in the marine phase which suggests that the fish had carried the 

pathogens with them from their freshwater location to their marine site. The results 

showed that the two farms were RT-rtPCR positive for the four pathogens examined 

in the marine farm. Ca. B. cysticola and D. lepeophtherii were the most prevalent of 

the agents, in agreement with other studies in Ireland, Norway, and more recently, 

Canada (Downes et al., 2018; Gunnarson et al., 2017; Laurin et al., 2019), whilst 

SGPV was detected sporadically throughout the study, as also described in a salmon 

farm in Ireland (Downes et al., 2018). The loads of the screened pathogens were 

significantly associated with the water temperature, with higher loads when 

temepratures were above 10 °C. In addition, the increase in severity of gill disease 

was significantly associated with the season (autumn), and when season was 

removed from the statistical model for the farm showing gill disease, there was also a 
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significant association between gill disease and increasing water temperature. These 

findings suggest that temperature is not only a significant contributor for the 

increased pathogens load, but also for the development of gill disease. Further 

studies are necessary to determine the role of Ca. B. cysticola and SGPV as potential 

gill pathogens in the marine environment.  

5.3 On-farm practices and CGD 

The role that on-farm practices have in gill health deserves further investigation. In 

Chapter 3, the farms studied used different types of net cleaning and treatment 

methodologies, therefore it was not possible to account for these factors in models in 

which scores from both farms were used. However, the models in which only Farm 

B was analysed, net cleaning with high pressure water jet methods had a significant 

effect on the gill score. The effects of the high-pressure net cleaning in gill health 

(used in Farm B) have been discussed in previous sections. In this study, other 

factors, such as AGD infections, were considered to be more important causes of the 

higher gill disease scores seen in Farm B compared to Farm A. However, the 

difference in the net cleaning practices between farms could have contributed to the 

development of more severe overall gill disease in Farm B. It is therefore essential 

that future studies in CGD include the type and frequency in net cleaning as a factor 

affecting gill health.  

   The days since the last treatment with hydrogen peroxide was also significant in 

the model in which only Farm B was assessed. In Chapter 3, it was discussed why 

this result should be interpreted with care and how there was not enough evidence in 

the gill histopathology results to suggest that this factour would have been key in the 

development of gill disease. However, the excessive exposure to this chemical has 

shown to be detrimental to gill health (Rodger et al., 2011) and it should be 

considered when studying the effect development of gill disease in field studies. This 

result shows the importance of knowledge of all the parameters influencing the 

experimental system when interpreting the outputs from the statistical analyses, 

particularly in uncontrolled experiments undertaken in a commercial fish farm. The 

use mechanical methods to remove the sea lice from the fish was not associated with 
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the development of gill disease in this study. The use of non-medicinal de-lousing 

systems has increased in the recent years as a response to the increased resistance 

lice have developed to chemical treatments (Overton et al., 2018) and adverse effects, 

such as gill haemorrhages, have been reported in Norway when using these methods 

(Hjeltnes et al., 2018; Hjeltnes et al., 2019). The mechanical and thermal treatments 

need fish to be crowded in the net-pen and then transferred to the treatment boat. 

These handling events are stressful for the fish and increase the risk of physical 

damage to the skin, eyes and gills (Hjeltnes et al. 2018). Also, panic reactions due to 

exposure of warm water could cause collisions in the treatment chambers during the 

thermal treatment (Hjeltnes et al. 2018). Independent experimental studies 

investigating the effect of these two methods of treatment on gill health are very 

limited (Overton et al., 2018) which is surprising considering the increasing use of 

these technologies. The potential effect thermal and mechanical de-lousing methods 

could have on gill health and their impact on fish welfare requires urgent 

investigation. 

5.4 Future studies on CGD 

The presence of the most important pathogens associated with CGD was investigated 

in Chapter 3. The use of next-generation sequencing technologies should be 

considered for future studies to characterize the organisms present in the gills of 

salmon with CGD. Instead of targeting a single agent, metagenomic sequencing 

allows the analysis of any organism present, whose genomic sequence is available, 

within a single sequencing analysis (Van Dijk et al., 2014) 

An important area for future research would be the role of the microbiome in 

CGD. The microbiome has been defined as “the ecological community of 

commensal, symbiotic, and pathogenic microorganisms” (Lederberg, 2001) that 

share a body space. In a similar way to mammals, teleost fish show varied microbial 

communities associated with different biogeographic locations such as gut, gills or 

skin (Merrifield & Rodilles, 2015). The microbial population is considered to be 

dynamic and is affected by several factors such as the life stage of the fish 

(Llewellyn et al., 2016), environment (Lokesh & Kiron, 2016), diet (Green et al., 
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2013), diseases (Llewellyn et al., 2017) or the application of treatments (Navarrete et 

al., 2008). The microbiome has an intrinsic relationship with the host’s immune 

system and certain changes can alter the microbiota-host immune system interaction 

affecting susceptibility to diseases (Pérez et al., 2010). Furthermore, alteration of the 

homeostasis of the microbial communities can lead to dysbiosis (imbalance in the 

microbial community) facilitating the proliferation of opportunistic pathogens 

present naturally in the microbiome of the fish. For instance, an increase in 

opportunistic pathogenic bacteria in the skin microbiome of farmed Atlantic salmon 

has been associated with elevated sea lice burdens (Llewellyn et al., 2017) and high-

infection levels of salmon alphavirus (Reid et al., 2017).  

The gills of fish are in direct contact with their aquatic environment and it is 

therefore a primary barrier of defence against pathogens. Although there are some 

studies on the gill microbiome in teleosts (e.g. Legrand et al., 2018), investigation of 

the resident microbiota present in the gills of farmed Atlantic salmon is at its early 

stage. Considering the various factors involved in the development of CGD, future 

studies should focus on characterising the composition of the gill microbiome and 

how it changes over time in the production cycle and during the pathogenesis of the 

disease.  

5.5 Insight into the biology of D. lepeophtherii 

Desmozoon lepeophtherii is a microsporidian parasite associated with CGD in 

salmon, but it is also known to infect the sea lice (Freeman 2002, Nylund et al., 

2010). It is the first described microsporidian that alternates its development and 

sporogony between invertebrate and fish hosts (Kent et al., 2014) but the mode of 

transmission of the parasite is unknown. The sea louse has been suggested to be the 

definitive host of D. lepeophtherii due to the variation between mono- and 

diplokaryotic nuclei in the development of the microsporidian indicating the 

presence of sexual processes such as meiosis and karyogamy, which do not occur in 

salmon (Nylund et al., 2010; Økland, 2012). Salmon is thought be an alternate host, 

which becomes infected by spores released from the sea lice after their death (Sveen 

et al., 2012). In view of this theory, attempts were made in Chapter 2 to reproduce 
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the life cycle of the microsporidian in vitro using RTgill-W1 and SHK-1 cell lines. 

Chapter 2 represents the first documented experiment in which fish cell lines were 

exposed to D. lepeophtherii and the results obtained may provide valuable 

information for subsequent trials focusing on the culture of this microsporidian. 

These studies should include the use of insect cell lines and the Atlantic salmon gill 

cell line recently developed by Gjessing et al., (2018). Trials with spores isolated 

from salmon gills are recommended also, together with the use of more sophisticated 

techniques to assess the parasite development such as the ISH developed in Chapter 

4. In addition, the results raise interesting questions. The conditions required for a 

parasite with a complex life cycle, such as D. lepeophtherii, to grow in vitro could be 

difficult to achieve. It is also possible that transmission from louse to salmon does 

not occur, or even that another intermediate host is necessary for the infection to 

occur in salmon. Future experimental models to investigate the transmission and 

infection routes of D. lepeophtherii in the lice and salmon and to better understand 

the parasite’s biology, should include in vivo infections. Different routes of infection 

can be utilised to achieve the infections under experimental conditions such as bath 

exposure of Atlantic salmon and sea lice to spores of D. lepeophtherii derived from 

lice or salmon gills, feeding with infected tissue or isolated spores, direct gavage into 

the stomach of anaesthetized salmon, or through co-habitation studies between 

infected and naïve lice or between infected and naïve salmon. Using ISH method 

developed in this work would enable study of the sequential development and spread 

of the parasite in salmon after exposure to the microsporidian. 

5.6 Desmozoon lepeophtherii: primary or opportunistic 

pathogen? 

Microsporidia are generally considered to be opportunistic parasites but their ability 

to negatively affect the health of fish as primary pathogens has been demonstrated 

(Kent et al., 2014). For instance, L. salmonae is a well-studied microsporidian, the 

causative agent of microsporidial gill disease that affects different species of Pacific 

salmon and rainbow trout (Becker and Speare, 2007). Pathology associated with L. 

salmonae starts with the formation of xenomas in the pillar cells of the gills, 

followed by the rupture of this structure and formation of a marked granulomatous 
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inflammatory response (Sánchez et al., 2001). However, the role of D. lepeophtherii 

is controversial despite various studies linking the microsporidian with PGI (Stenium 

et al., 2010; Nylund et al., 2011; Weli et al., 2017) or similar necrotic and 

proliferative pathologies (Matthews et al., 2013). Proliferative gill inflammation is 

based on a criterion of four concurrent histomorphological changes in the gills which 

include epithelial cell necrosis, epithelial lamellar hyperplasia, infiltration by 

inflammatory cells and circulatory disturbances (Kvellestad et al., 2005). 

Interestingly, the pathology related with D. lepeophtherii is very similar to the 

changes described for PGI (with exception of circulatory disturbances). In acute 

stages of the infection, D.  lepeophtherii has been associated with necrosis of the 

epithelial cells and formation of microvesicles, whilst in sub-acute and chronic stages 

a host response involving lamellar epithelial hyperplasia and infiltration of 

inflammatory cells has been described (Weli et al., 2017). Furthermore, D. 

lepeophtherii has been hypothesised to be a primary fish gill pathogen by some 

authors (Gunnarson et al., 2017; Nylund et al., 2010; Nylund et al., 2011;).  

Conversely, others suggest D. lepeophtherii is an opportunistic pathogen requiring an 

immunosuppressed host, similarly to microsporidiosis in humans (Freeman and 

Sommerville, 2009; Steinum et al., 2010). In Chapter, 3 the relationship between 

changes in the load of the four pathological agents associated with gill disease and 

their relationship with gill disease was examined over time. Statistical analysis of the 

data from the two farms showed that variations in in the RNA loads of SGPV 

and Ca. B. cysticola loads were not associated with the gill score (p>0.05), while 

increasing loads of D. lepeophtherii and P. perurans significantly correlated with an 

increased gill score in fish from the farm suffering from gill disease (p< 0.001). 

However, obvious pathology suggestive of D. lepeophtherii (microvesicles) was not 

observed, which suggests the significant associations are the result of the parasite 

developing in more disease affected gills (with higher gill score) rather than D. 

lepeophtherii being a causative agent of the gill pathology. In Chapter 4, a highly 

specific and sensitive ISH method was developed to detect D. lepeophtherii in tissue 

sections. In addition to this, the relationship between the loads of D. lepeophtherii 

(assessed by ISH counts and by RT-rtPCR Ct values) and the severity of D. 

lepeophtherii presumptive pathology was examined. The results showed a significant 



  

191 

 

association between gill pathology and high loads of D. lepeophtherii, but high 

burdens of D. lepeophtherii in tissue sections (i.e. Ct values below 19) were 

significantly associated with the development of D. lepeophtherii microvesicles. 

Therefore, pathology caused by the microsporidian was probably a consequence of 

intense parasite proliferation and spore formation and only obvious in the advanced 

stages of the disease.  

It would seem that detection of D. lepeophtherii is common in farmed salmon 

gills and the microsporidian is rather an opportunistic pathogen that a contributor to 

the pathology present in CGD. Furthermore, chronic infections with D. lepeophtherii 

in farmed salmon present a risk for potential reactivation of latent microsporidiosis, 

although the factors for triggering this are unknown. Another possibility to consider 

is the existence of different genotypes of D. lepeophtherii with different levels of 

pathogenicity. The only different genotype described for D. lepeophtherii to the one 

reported in Europe was detected in Canada (Jones et al., 2012), but other species of 

Microsporidia show a high interspecies variability by sequence analysis of the ITS 

(Galván-Díaz et al. 2014). The ITS is the noncoding stretch of the ribosomal DNA 

located between the small and the large subunit genes, largely used to study 

differences in the genotypes within microsporidian species (Henriques-Gil et al., 

2010). Approximately 470 different genotypes have been described for E. bieneusi 

by sequencing the ITS (Li et al., 2019). Enterocytozoon bieneusi is one of the most 

frequent microsporidian found in humans with AIDS, and is able to infect a wide 

range of different animal species (Galván-Díaz et al. 2014). Studies of the E. 

bieneusi ITS have shown that some genotypes have only been isolated from a 

specific animal host, while others have zoonotic potential (Santin & Fayer, 2009). 

Variations in the pathogenicity of different E. cuniculi genotypes, another important 

microsporidian for humans, were demonstrated by infecting immunodeficient mice 

(Kotková et al., 2018). Immunodeficient mice infected with E. cuniculi genotype III 

survived longer than mice infected with E. cuniculi genotype II, despite having a 

higher parasitic burden. The experiment concluded that spore burden did not reliably 

reflect the pathogenicity and mortality associated with the microsporidian, but 

instead were related to differences in the genotype of E. cunuculi. Differences in the 

effect of Albendazole, a common drug used in humans to treat Encephalitozoon sp. 
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infection, were also detected between different genotypes of E. cuniculi (Kotková et 

al., 2017). While the therapy successfully inactivated genotype II, the effect was 

minimal in genotype III.  

For the ISH method developed in Chapter 4, five different oligoprobes were 

designed. Four of these worked well, but one oligoprobe, specifically targeting the 

ITS of the available sequence of the European genotype, did not work in the salmon 

gill Scottish samples nor the Canadian samples infected with D. lepeophtherii. It is 

possible that the probe was complementary to an ITS nucleotide sequence not 

present in the range of samples used, and that a much higher variability of 

interspecies exist for D. lepeophtherii. Further molecular characterization of 

intraspecies genetic diversity of D. lepeophtherii from different geographical areas, 

host species and fish with different health status (fish presenting pathology 

associated with D. lepeophtherii vs. healthy fish) are necessary to better understand 

the pathogenicity and epidemiology of D. lepeophtherii and its role in CGD.   

5.7 Final conclusion 

Different aspects of D. lepeophtherii were studied in this thesis, with a particular 

focus on its role in CGD in Scotland. Desmozoon lepeophtherii is highly prevalent in 

healthy salmon farms as well as in fish with gill disease. An increase in parasite load 

was associated with gill disease in Chapter 3, but the presence of pathology was not 

noted. However, in Chapter 4 it was shown that very high loads of D. lepeophtherii 

were significantly associated with gill pathology. Desmozoon lepeophtherii is 

therefore considered to contribute to the pathology of CGD syndrome, but the results 

of this thesis, together with other research suggests that D. lepeophtherii is an 

opportunistic pathogen rather than a primary aetiological agent. The parasite seems 

to be endemic in farmed salmon worldwide. This also exposes the potential risk for 

reactivation of the parasite when conditions for its development are optimal. Another 

consideration is the possible existence of genotypes with differences in 

pathogenicity. Proposed experiments for future research should include feeding 

salmon infected sea lice or salmon tissue and further molecular characterization of 

intraspecies genetic diversity of D. lepeophtherii. The management of multifactorial 
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gill disease such as CGD is influenced by our knowledge in the risk factors and role 

of the pathogens involve. Insight into the role of D. lepeophtherii in CGD has been 

gained in this thesis, leading to a better understanding of how to prevent and control 

CGD.  
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