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The consequences for wildlife of living in radiologically contaminated environments are 7 

uncertain. Previous laboratory studies suggest insects are relatively radiation-resistant; 8 

however, some field studies from the Chernobyl Exclusion Zone report severe adverse effects 9 

at substantially lower radiation dose rates than expected. Here we present the first laboratory 10 

investigation to study how environmentally-relevant radiation exposure affects bumblebee life-11 

history, assessing the shape of the relationship between radiation exposure and fitness-loss. 12 

Dose rates comparable to the Chernobyl Exclusion Zone (50-400 µGy h-1) impaired 13 

bumblebee reproduction and delayed colony growth but did not affect colony weight or 14 

longevity. Our best-fitting model for the effect of radiation dose rate on colony queen 15 

production had a strongly non-linear concave relationship: exposure to only 100 µGy h-1 16 

impaired reproduction by 30-45%, while further dose rate increases caused more modest 17 

additional reproductive impairment. Our data indicate that the practice of estimating effects of 18 

environmentally-relevant low dose rate exposure by extrapolating from high dose rates may 19 

have considerably underestimated the effects of radiation. If our data can be generalised, they 20 

suggest insects suffer significant negative consequences at dose rates previously thought 21 

safe; we therefore advocate relevant revisions to the international framework for radiological 22 

protection of the environment.  23 
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1. Introduction 27 

Ionising radiation damages biological molecules and cells [1,2], and at high dose rates can 28 

cause death or significant fitness loss to organisms [3,4]. Most ionising radiation in the 29 

environment comes from natural sources. However, some geographic regions have elevated 30 

radionuclide levels due to anthropogenic activities, resulting in considerable radiation 31 

exposure to wildlife [5,6]. There remains no consensus whether chronic low-dose exposure is 32 

detrimental to wildlife because field studies are frequently contradictory [7–10]. Some 33 

evidence suggests these levels of radiation do not affect wildlife [11,12]. Whereas several 34 

studies in the Chernobyl Exclusion Zone report significant adverse effects on wildlife at 35 

exceptionally low radiation levels, equivalent to background dose rates in uncontaminated 36 

environments (e.g. 0.1 µGy h-1) [13–16]. However, these findings have been challenged as 37 

unreliable by some authors; therefore considerable uncertainty remains as to the effects of 38 

chronic low-dose radiation on wildlife [10,17–20] 39 

Laboratory-based experiments investigating radiation effects on insects typically use 40 

acute radiation exposure (high dose rates delivered over a short time) and assess crude 41 

metrics such as death or sterility [21,22]. Such laboratory studies are often used to extrapolate 42 

to the likely effects of chronic low-dose rates in contaminated natural environments such as 43 

the Chernobyl Exclusion Zone, yet they may have limited ecological relevance [23,24]. 44 

Unambiguous determination of the effects of chronic low-dose radiation exposure for wildlife 45 

is imperative to predict radiation impacts on ecosystem function in contaminated environments 46 

[25], advise in the case of future radiation accidents [26], adhere to ethical obligations 47 

associated with environmental protection [27], and to test whether current regulations are fit 48 

for purpose [28]. 49 

The immediate effects of substantial exposure to high dose rate radiation are relatively 50 

well known, both for humans [2] and animals [29]. The impacts of sporadic or continuous 51 

exposure to low dose rates are harder to estimate with certainty, in part due to the stochastic 52 

nature of some radiation damage, but also due to incomplete understanding of the links 53 



 
 

 

between molecular damage and subsequent morbidity [30] and of the effectiveness of repair 54 

processes [31]. Radiation biologists have attempted to estimate the effects of low dose 55 

exposure using data from higher dose scenarios, often using linear relationships such as the 56 

controversial Linear No Threshold Model [32,33]. In other contexts non-linear relationships 57 

between dose and damage have been proposed; these usually assume that damage 58 

escalates with increasing dose, resulting in a low dose region with relatively little biological 59 

effect that is perceived as ‘low risk’. Nevertheless, empirical tests of the shape of the 60 

relationship between radiation dose and subsequent fitness remain relatively rare for animals 61 

[34,35]. Knowledge of this relationship is, however, crucial for estimating the ecological 62 

impacts of environmental radiological contamination and for radioprotection policy.  63 

 64 

Figure 1.  65 

Predicted radio-sensitivity of each Reference Animal and Plant (RAP) based on the Derived 66 

Consideration Reference Levels (DCRLs) established by the International Commission on 67 

Radiological Protection (ICRP) [23]. DCRLs predict the dose rate range within which radiation 68 

is likely to start having deleterious effects (mortality, morbidity or reproduction) on an individual 69 

organism [23]. Estimated dose rates for the present-day Chernobyl Exclusion Zone are 70 
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demonstrated for context (Chernobyl dose rates are now chronic and low, approximately 1% 71 

of those at the time of the accident in 1986) [26]. 72 

 73 

The International Commission on Radiological Protection (ICRP) provides global 74 

recommendations for the protection of both humans and wildlife. For wildlife, Reference 75 

Animals and Plants (RAPs) are used; each RAP has a designated dose rate band (a DCRL: 76 

Derived Consideration Reference Level) within which deleterious effects are predicted to start 77 

occurring (figure 1: [23]). The insect RAP is a “eusocial bee”. The framework suggests insects 78 

are less radiosensitive than other taxa (figure 1), predicting negative effects on bees only at 79 

the highest radiation levels considered (400 – 4000 µGy h-1). However, no experimental 80 

studies exist on bees within or below this dose rate band and there are relatively limited data 81 

for other invertebrates to justify this conclusion [23]. Our work provides the first experimental 82 

test to examine whether current assumptions about bee radiosensitivity are correct. We 83 

studied bumblebees, not only because of there is a key knowledge gap associated with 84 

radiological protection but also because bumblebees provide essential pollination services 85 

that underpin ecosystem function [36]. 86 

  To our knowledge, we have conducted the first experiment to bridge the gap between 87 

laboratory and field radiosensitivity studies in insects. We used an experimental radiation 88 

exposure facility to address three questions: (i) does chronic exposure to radiation dose rates 89 

found in the Chernobyl Exclusion Zone affect bumblebees; (ii) what is the shape of the 90 

relationship between dose rate and fitness effects; and (iii) is there a clear lower threshold 91 

below which bees are not affected? Under controlled conditions bumblebee colonies were 92 

exposed to a radiation gradient for a substantial proportion of colony lifespan, then after this 93 

laboratory exposure period bumblebees foraged naturally outside. We assessed bumblebee 94 

colony fitness by measuring key life-history traits: reproductive success, colony growth, as 95 

well as the longevity of colonies, workers and queens. The production of new queens by 96 

bumblebee colonies is the most important metric of reproductive success because queens are 97 

the only individuals to overwinter and form new colonies the following year [37]. Our results 98 



 
 

 

demonstrate that radiation exposure causes reproductive impairment and that dose rates in 99 

the range currently found within the Chernobyl Exclusion Zone contribute disproportionately 100 

to this damage.  101 

2. Materials and Methods 102 

(a) Experimental Design 103 

Fifty-nine commercial Bombus terrestris audax colonies (comprising a queen, workers and 104 

brood) were purchased from Biobest®. For four weeks colonies were positioned in a climate-105 

controlled (25°C and a 12 hr, L:D light cycle (07h – 19h)) radiation facility containing a gamma-106 

emitting caesium-137 source and a control area shielded from radiation. We chose a gamma 107 

emitting source because estimates have shown that 95% of the dose rate for wild bumblebees 108 

in the Chernobyl Exclusion Zone is due to external gamma radiation [38]. Bumblebee colonies 109 

were housed in a standard box (25cm (l) x 30cm (w) 20cm (h)) for the duration of the 110 

experiment and rotated 180° every two days to reduce within-colony radiation exposure 111 

heterogeneity. Each colony in the radiation treatment group received a unique dose rate (20 - 112 

3000 µGy h-1) to encompass both the dose rate range measurable in the Chernobyl Exclusion 113 

Zone and the range of the bee DCRL (figure 1). We achieved the radiation gradient by varying 114 

colony distance from the caesium-137 source within the radiation facility and verified dose 115 

rates post-experiment using dosimeters at each colony’s position. Monitoring, maintenance 116 

and bee-marking were conducted in a neighbouring unirradiated area under red light.  117 

Colonies were weighed before the experiment and were distributed across the 118 

radiation exposure gradient randomly, except for colony start weight, which we systematically 119 

ensured was not associated with radiation dose rate (F1, 57 = 0.07, p = 0.791). Anti-wax moth 120 

concentrate (Certan/B401® from Dragonfli, 1 in 20 in water) was applied to colony containers 121 

at weeks two and five of the experiment to protect against wax moth infestation (which was 122 

subsequently not observed). Colonies received ad libitum dried pollen and artificial nectar 123 

(Biogluc®); Biogluc reservoir weight was measured weekly during the laboratory exposure 124 



 
 

 

phase to assess food intake. In exposure week three, before colonies were moved outdoors, 125 

a subset of 30 workers from 29 of the colonies were marked with individual coloured number 126 

tags attached to the thorax to enable estimation of worker longevity [37].  127 

After four weeks, radiation exposure stopped; colonies were moved from the radiation 128 

facility and randomly assigned outdoor locations in the University of Stirling campus gardens 129 

(56.1454° N, 3.9206° W) which has background radiation levels (0.11  0.01 µGy h-1). 130 

Colonies were sheltered from the weather in plastic boxes and were situated close to 131 

ornamental gardens, deciduous woodland and mixed farmland. Natural foraging was 132 

encouraged by reducing the pollen supply two days before outdoor placement and preventing 133 

access to Biogluc® from the day colonies were placed outdoors. Total colony weight was 134 

measured weekly throughout both radiation exposure and field phases until colony death.  135 

Once outside, colonies were checked post-sunset every 1-2 days to determine colony and 136 

queen death dates. Tagged workers were recorded as alive, dead or missing. Worker 137 

longevity was expressed as the number of days between the tagging date and the day of death 138 

or absence. No absent bumblebees subsequently returned to the colony. Queen longevity was 139 

defined as the time in days from the start of the experiment to the date at which the queen 140 

was observed dead. Colonies were considered dead once the queen had died and fewer than 141 

five workers remained; colonies were then euthanised at -80°C for 45 minutes. Bumblebees 142 

construct wax cells in which pupae develop; males and workers develop in similar-sized cells, 143 

whereas queen cells are much larger [36]. Posthumous colony dissection allowed colony 144 

counts of the combined worker and male population, as well as queen production [39]. Pupal 145 

cell counts included emerged and non-emerged cells: 100% of the queen cells and 93% ( 146 

3% SE) of worker/male cells had emerged.  147 

 148 

(b) Statistical Analysis  149 

Analyses were conducted in R (version 3.5.1 [40]). Maximal models were established and 150 

each predictor’s inclusion was evaluated using an F or chi-squared test to compare the 151 



 
 

 

goodness of fit between models; non-significant predictor variables were removed (in addition 152 

we calculated Akaike Information Criterion (AICc) for model terms on removal). For most 153 

analyses the unit of replication was the colony; however for cases involving repeated 154 

measures or where parameters were assessed for individual bees, we used mixed effects 155 

models with colony as a random effect to account for non-independence. Model diagnostics 156 

were checked to validate fit to assumptions. Means are stated in the text ± standard error. 157 

We constructed negative binomial generalised linear models to investigate 158 

associations between colony queen production and dose rate using “glm.nb” from the MASS 159 

package [41]. The maximal model’s predictor variables were: dose rate, colony start weight, 160 

whether workers from the colony were tagged, and a colony start weight by dose rate 161 

interaction. We tested for a non-linear relationship between queen production and dose rate: 162 

first in separate negative binomial generalised linear models using either a square-root or a 163 

natural log transformation of dose rate (ln(dose rate + 1)), then using a saturating exponential 164 

function in Nonlinear least squares (nls) (f(dose rate)=k1*(1-exp[-k2*dose rate]). We 165 

compared these models using AICc and the plotted residuals to evaluate model fit. Factors 166 

influencing the combined count of worker and male pupal cells were assessed using the same 167 

model structure and dose rate transformations.  168 

Peak colony weight occurred only at either week four or five; therefore, to assess 169 

factors influencing this timing we used binomial generalised linear models with predictors for 170 

dose rate, colony start weight, and a colony start weight by dose rate interaction. We tested 171 

for non-linear effects of radiation using the same transformations as we did for queen 172 

production.  173 

Separate Cox’s proportional hazards models (“coxph” from the package survival) [42] 174 

were used to analyse factors influencing colony and queen longevity: dose rate, colony start 175 

weight and tagged status were predictor variables. Drivers of worker longevity variation were 176 

assessed using mixed-effects Cox models (“coxme” [42]): models included dose rate, colony 177 

start weight and worker status (observed dead or absent from colony) as fixed effects, and 178 

colony identity as a random effect. 179 



 
 

 

  The magnitude of colony weight change was assesed in two time periods: the 180 

exposure phase (weeks 1 – 4: increasing weight) and the field release phase (week five 181 

onwards: declining weight). Linear mixed-effects models were fitted using “lmer” from the lme4 182 

package [43] with colony identity as a random effect to account for repeated measures. Fixed 183 

covariates were dose rate, colony start weight, experiment week and all two-way interactions. 184 

We included interaction terms to test whether the effect of dose rate on colony weight was 185 

influenced by either colony start weight or week number. The same model structure was used 186 

to investigate variation in Biogluc® consumption. 187 

3. Results 188 

(a) Effect of radiation exposure on queen production  189 

Queen production per colony ranged from zero to 58 (mean = 16.1 ± 1.67 SE). Bumblebee 190 

colonies exposed to radiation produced fewer queens (mean = 12.0 ± 3.50 SE, n = 39) than 191 

unexposed colonies (mean = 21.1 ± 3.37 SE, n = 20). Initially, we fitted a linear relationship 192 

between dose rate and queen production, demonstrating a strongly significant negative effect 193 

of radiation on reproduction (F1, 57 = 7.31, p = 0.007, figure S1, table S1). We tested for effects 194 

of colony start weight, tagging status of workers and a start weight by dose rate interaction, 195 

which were not significant (table S1). 196 



 
 

 

 197 

Figure 2.  198 

The impact of radiation on bumblebee colony queen production (n = 59). Plotted points are 199 

partial residuals from a negative binomial model with a log-transformed dose rate predictor. 200 

The fitted line with 95% confidence intervals is derived from the model. The vertical dotted line 201 

indicates the upper limit of dose rates know to occur in the Chernobyl Exclusion Zone [26]. Y-202 

axis is offset from zero to show control colony data effectively. 203 

 204 

Next, we tested whether the effect of radiation dose rate was non-linear using the same 205 

model structure and compared the fit of models with different curvilinear transformations of 206 

dose rate. A log-transformed dose rate predictor produced the best fitting model (AICc = 437.4, 207 

table S2), compared to a square-root transformation (AICc = 437.9, table S2), the original 208 

linear fit (AICc = 438.2, table S2) and the saturating expotential function (AICc = 469.5, table 209 

S2). While the log, square root and linear models all fell within 2 AICc points of each other, 210 

the best-fitting log-transformed model suggested substantial nonlinearity in the effect of 211 

elevating radiation dose rate (F1, 57 = 8.85, p = 0.004, figure 2, table S3). The log-transformed 212 



 
 

 

model predicted a 46% reduction in colony queen production at only 100 µGy h-1; at 400 µGy 213 

h-1 reproduction decreased by 51% and then decreased only modestly further (by 59%) in 214 

colonies exposed to 3000 µGy h-1. In contrast, the linear model (figure S1) predicted that 215 

colony queen production declined by 6% at 100 µGy h -1, 28% at 400 µGy h-1 and 82% in 216 

colonies exposed to 3000 µGy h-1. The results from the square-root transformed model were 217 

intermediate between these two. Within our dataset, two colonies from the control area 218 

produced very high numbers of queens and might be considered outliers (30% more queens 219 

than other colonies). The relationship between dose rate and queen production remained 220 

significant when these two data points were removed from all the above models (log dose 221 

rate: (F1, 55 = 4.54, p = 0.033, table S3); square root dose rate: (F1, 55 = 5.28, p = 0.022); and 222 

the linear dose rate model (F1, 55 = 5.76, p = 0.016, table S1). 223 

Our data provide compelling evidence for substantial fitness consequences to 224 

bumblebees across the dose rate range we assessed (figure 2). Next, we investigated the 225 

strength of support for negative effects on queen production at lower dose rates relevant to 226 

the Chernobyl Exclusion Zone. We progressively truncated the dataset to exclude dose rates 227 

above 2000, 1000, 500, 100 and 50 µGy h-1 and fitted the same models as the original 228 

analysis. This process inevitably reduced our sample size and statistical power.  229 

The negative effect of radiation remained significant in all these analyses as low as 50 230 

µGy h-1 when using a log-transformation of dose rate to generate a non-linear fit (table S3). 231 

Whereas the linear-effect model using the untransformed dose rate predictor was significant 232 

for some but not all these truncated data sets (table S1). The linear model provided 233 

additional evidence that the effect of radiation on queen production was curved. If the effect 234 

had been linear with no threshold over the dose rate range we studied, we would have 235 

expected the parameter estimate for the impact of radiation per unit exposure to be broadly 236 

similar over the full range. Instead, the parameter estimate dramatically increased as we 237 

restricted our analysis to progressively lower dose rates (table S1), supporting the non-linear 238 

curve that our logarithmic transform model previously revealed. 239 

 240 



 
 

 

(b) Effect of radiation exposure on male and worker output  241 

As a second metric of reproduction, the combined number of worker and male cells produced 242 

by each colony was counted (worker and male cells are indistinguishable). We tested for a 243 

correlation between queen production and worker-male production and detected a weak 244 

negative relaitonship (Pearson r = -0.29, n = 59, P = 0.021) suggesting that, whilst these two 245 

reproduction metrics are not fully independent of one another, they may trade-off. Mean 246 

worker-male cells per colony was 263.1 (± 8.00 SE). Worker-male production reduced 247 

significantly in response to increasing radiation (linear dose rate predictor: F1, 55 = 4.37, p = 248 

0.041, table S4).  249 

 250 

Figure 3.  251 

The effect of radiation on bumblebee colony ability to produce males and workers, for colonies 252 

of different starting weight. Colonies were put into three start weight groups (low, mid and 253 

high) of approximately equal sample size (n = 20, 20, 19 respectively) to maintain equivalent 254 

statistical power for each. The points and fitted lines are derived from a negative binomial 255 

model containing a log-transformed dose rate predictor and its interaction with colony starting 256 



 
 

 

weight (specified as a three-level factor). Whilst the negative effect of radiation was individually 257 

significant for the lighter colonies, the positive slopes for mid-weight and the heaviest colonies 258 

were not significant (see text). The shaded area around the fitted lines represents the 95% 259 

confidence interval. Y-axis is offset from zero to show control colony data effectively. 260 

 261 

We compared the fit of models containing non-linear transformations of the dose rate 262 

predictor (log transformation AICc = 651.4; square-root transformation AICc = 652.5) with the 263 

untransformed linear variable (AICc = 653.0). The strongest support was for a curvilinear log-264 

transformation of dose rate (F1, 55 = 6.99, p = 0.010, table S5), although AICc separation 265 

between models was only 1.6 points.  266 

The negative effect of radiation on colony worker-male production varied according to 267 

colony start weight (log-transformed dose by start weight interaction: F1, 55 = 7.10, p = 0.010, 268 

figure 3, table S5). We investigated this interaction by dividing the dataset into three colony 269 

weight classes (table S5): the negative effect of log-transformed dose rate on worker-male 270 

production in the smaller colonies was marginally significant (F1, 18 = 3.31, p = 0.088) but the 271 

positive effect was not significant in mid-weight (F1, 18 = 0.26, p = 0.611) or heavier colonies 272 

(F1, 17 = 2.18, p = 0.157). We repeated these analyses for the linear model: whilst the interaction 273 

between dose rate and colony start weight was significant, the individual tests of the effect of 274 

dose rate in each of the three weight subgroups were not (table S4). Effect of radiation on 275 

colony growth timing. 276 

 277 

(c) Effect of radiation on colony growth timing 278 

Bumblebee colonies typically undergo a growth phase as workers are produced, then peak in 279 

weight as colonies generate reproductives towards the end of the colony cycle [36,44]. All 280 

colonies reached peak weight either in week four or five of the experiment (colonies were 281 

placed outside to forage at the beginning of week five, which curtailed further growth). 282 

Increasing radiation dose rate was significantly associated with an increased probability of 283 

delay in reaching peak weight (χ2
1, 57 = 11.08, p = 0.0008, figure 4, table S6). Our model 284 



 
 

 

predicted that 50% of control colonies reached peak weight at the later date, whereas for those 285 

exposed to 400 µGy h-1 this percentage increased to 81%. The binomial response in this 286 

analysis and the logit transformation underlying the model make it difficult to assess the extent 287 

of non-linearity in the effect of radiation on peak weight timing. Nevertheless, we tested for 288 

curvature in this relationship using log-transformed (AICc = 75.1) and square-root transformed 289 

(AICc = 71.5) dose rate, but a linear fit using the untransformed dose rate predictor was 290 

superior (AICc = 69.9). 291 

 292 

Figure 4.  293 

The effect of radiation on the number of experimental weeks it took bumblebee colonies to 294 

reach peak weight (week four or five). The fitted line is the predicted relationship from a 295 

binomial generalised linear model; the shaded area shows the 95% confidence intervals. The 296 

dotted line indicates the upper limit of dose rates measured in the Chernobyl Exclusion Zone. 297 

Tick marks at the top and bottom of the figure show raw data points. 298 

  299 



 
 

 

(d) Effect of radiation on longevity and colony weight change 300 

At week three, a subset of 30 workers from half the colonies (n = 29 colonies, 870 bees) were 301 

marked with number tags to assess individual worker longevity after field release. Of these 302 

workers, 76% disappeared from the colony within 48 hours of release and were not sighted 303 

again. The remaining marked workers either died in the nest (n = 47) or were subsequently 304 

recorded absent (n = 166). Cox survival analysis on these remaining workers detected a 305 

negative but non-significant effect of radiation dose rate on worker longevity (χ2
1 = 1.12, p = 306 

0.261, table S7). There was no significant longevity difference between bumblebees that died 307 

in the nest or were recorded absent (χ2
1= 2.47, p = 0.115, table S7). Colony longevity was not 308 

significantly affected by dose rate (table S8), nor was queen longevity (queen death date was 309 

successfully recorded in 20 (33%) of the colonies) (table S9). Colonies from which workers 310 

were tagged lived longer than untagged colonies (table S8); these tagged colonies were 311 

distributed evenly across the radiation gradient (F1, 57 = 0.07, p = 0.791). Tagging workers did 312 

not affect colony queen production (F1, 56 = 1.87, p = 0.171), nor influence production of 313 

workers and males (F1, 54 = 0.08, p = 0.767).  314 

All colonies gained weight throughout the four-week laboratory radiation exposure phase 315 

and lost weight during the outdoor period (due to loss of individuals and resources) until colony 316 

death. However, there was no relationship between radiation dose rate and colony weight 317 

change during either of these phases (tables S10 and S11). Similarly, artificial nectar 318 

(Biogluc®) consumption increased over time during the radiation exposure phase but was not 319 

influenced by dose rate (table S12). 320 

4. Discussion 321 

Here we experimentally demonstrate that bumblebees are negatively affected by exposure to 322 

ionising radiation at dose rates significantly lower than previously thought likely to impact 323 

insects. We assessed the impact of radiation exposure on eight fitness-related traits: colony 324 

queen production, male-worker production, colony growth timing, colony weight, colony nectar 325 



 
 

 

consumption, worker lifespan, queen lifespan and colony lifespan. We found negative effects 326 

of radiation exposure on the first three of these; radiation dose rates equivalent to the more 327 

contaminated areas of the Chernobyl Exclusion Zone impaired both reproduction metrics and 328 

delayed colony growth.  329 

Several of our analyses suggested that the effect of increasing radiation dose rate on 330 

bumblebee reproductive fitness was non-linear. Contrary to established hypotheses that lower 331 

dose rates of radiation have little effect on insects, our best-fitting models indicated that a rapid 332 

decline in bumblebee reproduction occurred over the range 0-100 µGy h-1 and that further 333 

increases in radiation dose rate had relatively smaller additional effects. Our evidence for non-334 

linear effects is from two sources. Firstly, for our analyses of colony queen production, the 335 

best fitting model contained a log transformation of dose rate, although AICc improvement 336 

relative to a linear predictor was only modest. Secondly, when using an untransformed dose 337 

rate predictor in models that assumed a linear effect of radiation, as we progressively restricted 338 

our analysis to lower and lower dose rates the relationship between dose rate and reproductive 339 

impairment became considerably steeper. We also tried analyses using other non-linear 340 

modelling techniques, but for these the fit was generally poor. Radiation protection for wildlife 341 

frequently relies on knowledge of the shape of the relationship between radiation exposure 342 

and damage caused; this is particularly important to enable extrapolations to low dose 343 

exposures where biological effects may be challenging to detect. Our study suggests that 344 

linear extrapolations to low dose rates may substantially underestimate radiation effects, at 345 

least for bumblebees. 346 

Our data unambiguously demonstrate a negative effect of radiation on bumblebee 347 

colony queen production when considering the full dose rate range in our experiment (0-3000 348 

µGy h-1). Determining a conclusive lower threshold at which these effects start occurring is 349 

difficult because as we restricted our analysis to progressively lower dose rates our sample 350 

size declined (for example, we only had seven radiation-exposed colonies below 50 µGy h-1). 351 

However, our analyses certainly provide no evidence that this deleterious effect of radiation 352 



 
 

 

exposure disappeared in the 50-100 µGy h-1 range: tests in this range assuming a non-linear 353 

dose rate effect were significant. 354 

Our study makes a major step forwards to resolve the ongoing controversy of whether 355 

radiation dose rates at contaminated sites such as the Chernobyl Exclusion Zone are 356 

damaging to invertebrates. Our best-fitting model, with log-transformation of the dose rate 357 

predictor, indicated that exposure to 100 µGy h-1 decreased bumblebee colony queen 358 

production by 46%. Queens are demographically limiting, so this decrease in queen 359 

production has the potential to substantially impact bumblebee populations [45]. 360 

Approximately comparable to our findings, pesticide exposure has been reported to reduce 361 

bumblebee colony founding success by 26% and was predicted to dramatically increase the 362 

likelihood of local population extinction [46]. Impaired pollination services due to radiation-363 

induced reductions in bumblebee population size could drive negative consequences for the 364 

whole ecosystem [47]. Furthermore, we suggest that our laboratory estimates of the negative 365 

consequences of radiation exposure may be conservative compared with radiation effects on 366 

wild populations that are exposed to multiple other stressors. 367 

Radiation exposure also reduced the combined total of males and workers that 368 

colonies produced. As for queen production, our analyses suggested that this effect of 369 

radiation was non-linear and that the negative effects started to plateau above approximately 370 

100 µGy h-1. However, this reduction in worker-male production occurred only in smaller 371 

colonies; heavier colonies appeared to be protected from adverse radiation effects. We 372 

speculate that either larger colonies could buffer against radiation stress, or that in colonies 373 

which started the experiment smaller, a greater proportion of the future worker-male 374 

population might have been at a particularly radiosensitive pre-adult stage. Reduced male 375 

output directly impairs colony reproductive success [48] and a smaller worker cohort reduces 376 

the colony’s capacity to support new queens [49]. 377 

Radiation also delayed the time that colonies took to attain their peak weight. Control 378 

colonies had a 50% probability of experiencing a one-week delay in reaching their peak 379 

weight; whereas exposure to 400 µGy h-1 increased this probability of reproductive delay to 380 



 
 

 

81%. The timing of peak weight can be used as a proxy to indicate the time reproductives are 381 

produced [50]. Reproductive delay is a common stress-response in bumblebees [51,52]. 382 

Colonies which generate reproductives earlier have greater reproductive success as they can 383 

produce more queens and maximise mating opportunities for males [53,54]. Our colonies were 384 

released to forage in the field after one month of irradiation; many workers disappeared from 385 

the colonies at this point and colony weight gain stopped. Therefore, our experimental design 386 

artificially curtailed colony growth, which may mean that our estimate of the growth delay 387 

caused by radiation is an underestimate.  388 

Previous laboratory studies, typically using acute exposures, have suggested that 389 

invertebrates are relatively resistant to ionising radiation [55]. The consequences of acute 390 

high-dose radiation exposure to animals have been well-studied [22,56,57]; acute dose rates 391 

are thought to overwhelm repair mechanisms and result in significant damage [58]. In 392 

comparison, we have limited knowledge as to the effects of chronic low-dose radiation 393 

exposure on wildlife [59]. Our colonies chronically-exposed to 100 µGy h-1 for four weeks 394 

received an accumulated dose of 0.07 Gy, while the most highly exposed colonies received 2 395 

Gy over this time period. Our effects are comparable to previous studies that delivered similar 396 

total doses acutely: exposure to 1-2 Gy is reported to cause 50% mortality in sub-adult 397 

Hymenoptera [60], and exposure to 60 Gy reduced the number of eggs laid by queen ants by 398 

90% [61]. However, we acknowledge that there is minor uncertainty as to the dose each 399 

individual bee received because bees were free to move around inside their colony box, 400 

furthermore bees developed and eclosed at different times during the experiment.  401 

Our data show chronic low-dose exposure is more harmful than previously thought. 402 

We propose two hypotheses which could explain these effects at chronic low dose rates. (I) 403 

Radiation-induced oxidative damage might directly harm cells with negative consequences for 404 

reproductive capacity. However, we note that dose rates of 400 µGy h-1 and below are 405 

predicted to create too few reactive oxygen species to cause significant damage from oxidative 406 

stress [19]. Alternatively, (II) radiation effects might activate bumblebee stress responses, 407 



 
 

 

which could drive costly tradeoffs with reproduction. Defence and repair mechanisms, such 408 

as mounting an immune response, can indeed impair fitness in bumblebees [62,63].  409 

Our findings have significant implications for the international environmental protection 410 

framework used by the ICRP in which radiation dose rate bands (DCRLs) for different taxa 411 

predict the exposure at which negative effects are likely to occur [23]. We provide the first data 412 

to evaluate the DCRL for bees, which ICRP use as a reference to represent all insects. We 413 

demonstrate a substantial reduction in bumblebee queen production (approximately -50%) at 414 

the lowest end of the current dose rate band (400 µGy h-1). We recommend to the ICRP that 415 

the dose rate band should be lowered to 40-400 µGy h-1, placing insects in the same 416 

radiosensitivity category as some vertebrates (Figure 1). However, we have very few data for 417 

dose rates below 40 µGy h-1 (only 3 exposed colonies), preventing us from making any strong 418 

conclusions below this, which would require us to extrapolate our findings to unstudied dose 419 

rates.  420 

Our findings demonstrate that the most contaminated areas of the Chernobyl Exclusion 421 

Zone could cause substantial damage to bumblebees. Nevertheless, our analyses suggest it 422 

would be unlikely that bumblebees would experience severe adverse effects at the very low, 423 

near-background Chernobyl dose rates (eg 0.01 µGy h-1) reported by some authors [15,16]. 424 

5. Conclusion 425 

Our findings help resolve an ongoing controversy in radioecology and call for changes in 426 

radiological protection practice. We provide the first experimental evidence of significant 427 

detrimental effects on insect reproductive success at environmentally-relevant dose rates 428 

previously not predicted to affect insects. Furthermore, our results suggest that the impact of 429 

radiation is non-linear, such that bumblebee fitness-loss increases rapidly at lower dose rate 430 

ranges. We suggest that radiation exposure could have significant implications for wild insect 431 

populations in the more highly contaminated areas of post-disaster sites such as the 432 

Chernobyl Exclusion Zone. 433 

434 
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Supplementary Materials 

Table S1.  

Parameter estimates from a negative binomial generalised linear model testing the effect of radiation dose rate on 

colony queen production in which the dose rate predictor was untransformed. The estimated reduction in queen 

production at 100 µGy h-1 was calculated using the predict function. The slope estimates and intercepts have not been 

back-transformed from the log-link underlying the model. At the top of the table are the parameters from the full 

model, including the values for non-significant terms (indicated in italics) in reverse order of the removal sequence 

during model simplification. In the second section of the table we progressively restrict the analysis to data from 

smaller and smaller dose rates to investigate whether there is a lower dose rate threshold below which the negative 

effect of dose rate on queen production becomes undetectable. The final section of the table repeats these analyses 

after removal of data from two colonies which produced especially large numbers of queens and which might be 

considered outliers. The AICc for the best model was 438.2 

Data set N 

Estimated % 

reduction at 

100 µGy h-1 

Interce

pt 
Estimate 

Standard 

error 
F 

P 

value 
AICc 

Full data set  

Dose rate (µGy h-1) 59 6 2.86 -0.0006 0.0002 7.31 0.0068  

Tagging status of workers    -4.5632 3.3191 1.94 0.1695 +0.8 

Colony start weight (g)    0.0091 0.0801 0.02 0.8651 +1.3 

Colony start weight by 

dose rate interaction 
   -0.0011 0.0001 0.02 0.8653 +1.2 

Testing for a threshold dose rate for the effect of radiation  

Dose rate < 2000 µGy h-1 57 5 2.84 -0.0005 0.0003 2.36 0.1243  

Dose rate < 1000 µGy h-1 53 11 2.88 -0.0009 0.0005 3.30 0.0690  

Dose rate < 400 µGy h-1 46 26 2.96 -0.0030 0.0010 6.55 0.0104  

Dose rate < 100 µGy h-1 39 48 3.01 -0.0064 0.0040 2.74 0.0974  

Dose rate < 50 µGy h-1 30 99 3.16 -0.0283 0.0077 9.95 0.0020  

Testing for a theshold dose rate for the effect of radiation with the two highest queen producing 

colonies removed (<50 queens)  
 

All dose rates 57 3 2.75 -0.0005 0.0002 5.76 0.0163  

Dose rate < 2000 µGy h-1 55 5 2.72 -0.0003 0.0003 1.23 0.2668  

Dose rate < 1000 µGy h-1 51 8 2.87 -0.0005 0.0005 1.96 0.1607  

Dose rate < 400 µGy h-1 44 22 2.82 -0.0025 0.0010 4.78 0.0286  

Dose rate < 100 µGy h-1 37 33 2.82 -0.0379 0.0038 1.03 0.3078  

Dose rate < 50 µGy h-1 28 89 2.97 -0.0225 0.0073 7.08 0.0077  

 

 

 

 



 
 

 

 

 

  

Table S2.  
 
The fit for the three alternative negative binomial models exploring curvature in the effect of dose rate on colony queen 

production. Models were negative binomial generalised linear models with different non-linear transformations of dose 

rate except for the saturating exponential function which was fitted using non-linear least squares (nls). For the 

negative binomial models (log, square root and no transformation) the parameter estimates are on a transformed log 

scale. For the nls model (saturating exponential function) the parameter estimates are on the original scale.  

Dose rate predictor AICc  Intercept  Estimate  SE P value 

Log-transformed 437.4 2.98  -0.0991 0.0328 0.0023 

Square root transformed  437.9 2.97 -0.0255 0.0083 0.0022 

No transformation 438.2 2.86  -0.0006 0.0002 0.0021 

Parameters from nls  AICc K1 K2 SE P value 

Saturating exponential function 469.5 17.71 -0.0006 0.0004 0.1241 



 
 

 

 

Figure S1.  

The impact of radiation on bumblebee colony queen production (n = 59) assuming a linear effect of 

dose rate. Plotted points are partial residuals from a negative binomial model with an untransformed 

dose rate predictor. The fitted line with 95% confidence intervals is derived from the model. The vertical 

dotted line indicates the upper limit of dose rates know to occur in the Chernobyl Exclusion Zone [26]. 

Y-axis is offset from zero to effectively show control colony data. 

 

 

 

 

  



 
 

 

Table S3. 

Parameter estimates from a negative binomial generalised linear model testing the effect of radiation dose rate on 

colony queen production in which the dose rate predictor was log transformed. The estimated reduction in queen 

production at 100 µGy h-1 was calculated using the predict function. The slope estimates and intercepts have not been 

back-transformed from the log-link underlying the model. At the top of the table are the parameters from the full model, 

including the values for non-significant terms (indicated in italics) in reverse order of the removal sequence during 

model simplification. In the second section of the table we progressively restrict the analysis to data from smaller and 

smaller dose rates to investigate whether there is a lower dose rate threshold below which the negative effect of dose 

rate on queen production becomes undetectable. The final section of the table repeats these analyses after removal of 

data from two colonies which produced especially large numbers of queens and which might be considered outliers. 

The AICc for the best model was 437.4 

Data set N 

Estimated % 

reduction at 

100 µGy h-1 

Interce

pt 
Estimate SE F 

P 

value 
AICc 

Full data set  

Dose rate (µGy h-1) 59 46 2.98 -0.0991 0.0328 8.85 0.0035  

Tagging status of workers    -0.3061 0.2130 1.87 0.1711 +2.1 

Colony start weight (g)    0.0008 0.0002 0.03 0.8472 +2.5 

Colony start weight by 
dose rate interaction 

   
-1.61 x 
10-6 

1.08 x 10-

5 
0.02 0.8723 +1.5 

Testing for a threshold dose rate for the effect of radiation  

Dose rate < 2000 µGy h-1 57 40 3.08 -0.1066 0.0416 6.48 0.0108  

Dose rate < 1000 µGy h-1 53 43 3.10 -0.1201 0.0461 6.53 0.0105  

Dose rate < 400 µGy h-1 46 48 3.14 -0.1493 0.5458 6.76 0.0092  

Dose rate < 100 µGy h-1 39 45 3.12 -0.1413 0.0662 4.31 0.0377  

Dose rate < 50 µGy h-1 30 60 3.18 -0.2357 0.0859 6.05 0.0130  

Testing for a theshold dose rate for the effect of radiation with the two highest queen producing 

colonies removed (<50 queens) 
 

All dose rates 57 34 2.93 -0.0905 0.0411 4.54 0.0330  

< 2000 µGy h-1 55 29 2.89 -0.0717 0.0416 2.96 0.0852  

< 1000 µGy h-1 51 32 2.91 -0.0821 0.0461 3.09 0.0786  

< 400 µGy h-1 44 36 2.94 -0.1044 0.0544 3.40 0.0651  

< 100 µGy h-1 37 31 2.90 -0.0872 0.0649 1.77 0.1826  

< 50 µGy h-1 28 48 2.96 -0.0814 0.0814 3.76 0.0523  

  



 
 

 

 

 

 

  

Table S4.  

Parameter estimates from models which investigated how the combined number of workers and males produced by 

bumblebee colonies was influenced by radiation dose rate (untransformed) and colony start weight. All predictors 

from the global model are presented at the top of the table, including values for a non-significant term (indicated in 

italics) at the point of removal during model simplification. The lower section of the table presents tests of the effect of 

the dose rate predictor in colonies of three different starting weight categories (small, medium and large) to examine 

the nature of the start weight by dose rate interaction. The AICc for the best model was 653.0 

Predictors Estimate  SE F P value AICc 

Full dataset (n= 59)      

Colony start weight (g) 0.3241 0.3726 0.75 0.3884  

Dose rate (µGy h-1) -0.8642 0.4132 4.37 0.0410  

Colony start weight by dose  
rate interaction 

-0.0021 0.0007 4.50 0.0383 
  

Tagged status of workers 6.4632 15.5514 0.17 0.6794 +2.3 

Colonies with a start weight less than 527g (n = 20)  

Dose rate (µGy h-1) -0.0581 0.0331 3.11 0.9770  

Colonies with a start weight between 527 and 548g (n = 20)  

Dose rate (µGy h -1) 0.0162 0.0153 1.16 0.2924  

Colonies with a start weight more than 548g (n = 19)  

Dose rate (µGy h -1) 0.0670  0.0445 2.28 0.1477  



 
 

 

Table S5.  

Parameter estimates from models which investigated how the combined number of workers and males produced 
by bumblebee colonies was influenced by radiation dose rate (log-transformed) and colony start weight. All 
predictors from the global model are presented at the top of the table, including values for a non-significant term 
at the point of removal during model simplification (indicated in italics). The lower section of the table presents 
tests of the effect of the dose rate predictor in colonies of three different starting weight categories (small, 
medium and large) to examine the nature of the start weight by dose rate interaction. The AICc for the best 
model was 651.4 

Predictors Estimate  SE F P value AICc 

Full dataset (n= 59)      

Colony start weight (g)  0.0271 0.4131 0.06 0.8061  

Dose rate (µGy h-1) -132.50 50.3210 6.99 0.0100  

Colony start weight by dose  
rate interaction 

 0.2473 0.0933 7.10 0.0102 
    

Tagged status of workers  4.5984 15.4142 0.08 0.7667 +5.8 

Colonies with a start weight less than 527g (n = 20)  

Dose rate (µGy h-1) -6.992 3.782 3.31 0.0881  

Colonies with a start weight between 527 and 548g (n = 20)  

Dose rate (µGy h-1)   2.044 3.960 0.26 0.6114  

Colonies with a start weight more than 548g (n = 19)  

Dose rate (µGy h-1)   7.113 4.812 2.18 0.1566  

 

Table S6. 

Parameter estimates from binomial models which investigated if radiation dose rate influenced whether colonies 
reached peak mass in week four or week five of the experiment. All predictors from the global model are 
presented; values for non-significant terms (indicated in italics) are given at the point they were removed during 
model simplification in reverse order of the removal sequence. The binary response variable (peaking in either 
week four and five) was fitted with a logit link. n = 59 colonies. The AICc for the best model was 69.9. 

Predictors Estimate  SE χ2 P value AICc 

Dose rate (µGy h-1) 0.0038 0.0018 11.08 0.0008  

Colony start weight (g)  0.0079 0.0013  0.23 0.6306 +2.0 

Colony start weight by dose rate interaction -0.00002 0.00005 -0.14 0.7045 +5.2 

 

 

 

 

 



 
 

 

Table S7.  

Parameter estimates from Cox proportional hazards mixed effects models which investigated if worker longevity 
was influenced either by radiation dose rate or the manner of a worker’s death (worker confirmed dead by 
identification of a body in the colony, or recorded missing from the colony); a random effect for colony was 
included. All predictors from the global model are presented (which were all not significant). Predictors are listed in 
reverse order of the model simplification sequence; parameters were calculated at the point of removal from the 
model. n = 213 bees. The AICc for the ‘intercept only’ best model was 366.2. 

Predictors Estimate  SE χ2 P value AICc 

Worker confirmed dead or recorded absent from the colony 0.2962 0.1855 2.47 0.1154 -1.4                

Dose rate (µGy h-1) -0.0007 0.0006 1.12 0.2612 -1.5 

Colony start weight (g)  0.0097 0.0054 1.11 0.2921 -1.7 

 

Table S8. 

Parameter estimates from Cox proportional hazards models which investigated if colony longevity was influenced 
by radiation dose rate. All predictors from the global model are presented including the values for non-significant 
terms (indicated in italics). Non-significant predictors are listed in reverse order of the model simplification 
sequence; parameters were calculated at the point of removal from the model. n = 59 colonies. The AICc for the 
best model was 369.4. 

Predictors Estimate  SE  χ2 P value AICc 

Tagged status of workers  0.6210 0.2700 6.37 0.0201  

Colony start weight (g) -0.0049 0.0055 0.78 0.3774 -1.2 

Dose rate (µGy h-1) 0.0002 0.0003 0.41 0.5182 -1.4 

 

 

 

Table S9. 

Parameter estimates from Cox proportional hazards models which investigated if queen longevity was influenced 
by radiation dose rate. All predictors from the global model are presented (which were all not significant). 
Predictors are listed in reverse order of the model simplification sequence; parameters were calculated at the 
point of removal from the model. n = 20 queens. The AICc score for the best model was 84.7. 

Predictors Estimate  SE  χ2 P value AICc 

Colony start weight (g) 0.0180 0.0100 2.92 0.0876 +0.7 

Dose rate (µGy h-1) 0.0009 0.0006 1.80 0.1797 +2.1 

Tagged status of workers 0.0547 0.4808 0.01 0.9092 +2.5 



 
 

 

 

 

 

 

 

 

Table S10. 

Parameter estimates from linear mixed effects models which investigated whether radiation dose rate influenced 
colony weight during weeks 1-4 during the laboratory exposure stage of the experiment. All predictors from the 
global model are presented; values for non-significant terms (indicated in italics) are given at the point they were 
removed during model simplification in reverse order of the removal sequence. n = 59 colonies. The AICc score 
for the best model was 1707.2. 

Predictors Estimate  SE  χ2 P value AICc 

Colony start weight (g) 1.1510 0.2350 43.7 <0.0001  

Experiment week number 65.8532 2.0001 278.0 <0.0001  

Dose rate (µGy h-1) 0.0023 0.0072 0.14 0.7031 +9.9 

Dose rate by experiment week interaction 0.0004 0.0003 2.05 0.1521 +19.4             

Start weight by experiment week interaction 0.0097 0.0082 1.49 0.2211 +13.5          

Colony start weight by dose rate interaction - 0.0023 0.0044 0.30 0.5818 +25.2 

Table S11. 

Parameter estimates from linear mixed effects models which investigated whether radiation dose rate influenced 
colony weight during weeks 5-8 during the field natural foraging stage of the experiment.  All predictors from the 
global model presented; values for non-significant terms (indicated in italics) are given at the point they were 
removed during model simplification in reverse order of the removal sequence. n = 59 colonies. The AICc for the 
best model was 1298.4. 

Predictors Estimate  SE  χ2 P value AICc 

Colony start weight (g) 0.6110 0.2891 37.6 <0.0001  

Experiment week number -27.4411 3.4640 4.50 0.0338  

Dose rate (µGy h-1) -0.0075 0.0121 0.42 0.5187 +3.4 

Colony start weight by experiment week interaction 0.0124 0.0151 0.68 0.4073 +3.3 

Colony start weight by dose rate interaction 0.0001 0.0007 0.48 0.8260 +18.2 

Dose rate by experiment week interaction 0.0037 0.0073 0.16 0.6883 +12.4 



 
 

 

 

 

 

 

 

Table S12. 

Parameter estimates from linear mixed effects models which investigated whether radiation dose rate influenced 
colony food consumption (artificial nectar) during the laboratory exposure stage of the experiment. All predictors 
from the global model presented; values for non-significant terms (indicated in italics) are given at the point they 
were removed during model simplification in reverse order of the removal sequence. n = 59 colonies. The AICc for 
the best model was 3299.7. 

Predictors Estimate  SE  χ2 P value AICc 

Colony start weight (g) 0.4811 0.4020 1.46 0.2260  

Experiment week number 209.2021 48.385 18.20 <0.0001  

Colony start weight by experiment week interaction -0.8025 0.0890 68.62 <0.0001               

Dose rate (µGy h-1) -0.0045 0.0204 0.12 0.7342 +8.7 

Dose rate by experiment week interaction -1.5625 2.2478 0.54 0.4596 +19.5 

Colony start weight by dose rate interaction -0.1175 0.4517 0.07 0.7857 +34.0 
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