Development of diagnostic assays for differentiation of atypical Aeromonas salmonicida vapA type V and type VI in ballan wrasse (Labrus bergylta, Ascanius)

Athina Papadopoulou | Andrew Davie | Sean J. Monaghan | Herve Migaud | Alexandra Adams

Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK

Correspondence
Andrew Davie, Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
Email: andrew.davie@stir.ac.uk

Present address
Athina Papadopoulou, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK

Funding information
This study was funded by the Scottish Aquaculture Innovation Centre (SAIC) under project number SL-2015-01 "Sustainable production of wrasse for sea lice control."

Abstract
Aeromonas salmonicida (As) is a highly heterogeneous bacterial species, and strains' host specificity has been reported. Ballan wrasse (Labrus bergylta Ascanius, 1767) is susceptible to atypical As (aAs) vapA type V and type VI in Scotland and Norway. Identification of the bacterium is achieved by culture and molecular techniques; however, the available methods used to distinguish the As types are costly and time-consuming. This paper describes the development of a PCR and a restriction enzyme assay for the detection of aAs vapA type V and type VI in ballan wrasse, respectively. Type V-specific primers were designed on conserved regions of the vapA gene, and the restriction enzyme assay was performed on the PCR products of the hypervariable region of vapA gene for the detection of type VI isolates. Amplification product was produced for type V (254 bp) and restriction bands (368 and 254 bp) for type VI isolates only. In addition, the assays detected type V and type VI isolates in spiked water samples and type V in diagnostic tissue samples. The assays are fast, specific and cost-effective and can be used as specific diagnostic tools for cleaner fish, to detect infectious divergence strains, and to manage and mitigate aAs disease outbreaks through vaccine development.

KEYWORDS
atypical Aeromonas salmonicida, ballan wrasse, cleaner fish, diagnosis, polymerase chain reaction

1 | INTRODUCTION

Ballan wrasse (Labrus bergylta, Ascanius) is one of the main cleaner fish species used as a biological control in the salmon industry, to control sea lice (Lepeophtheirus salmonis Krøyer) infections of Atlantic salmon (Salmo salar Linnaeus). Atypical Aeromonas salmonicida (aAs) is a highly heterogeneous bacterial species, and different strains infect fish in a host-specific manner (Gulla et al., 2019). The vapA type V and type VI strains are major bacterial pathogens of wild-caught and farmed ballan wrasse, and early detection of these strains could assist vaccine development for disease mitigation. The significance of the bacterium in wrasse disease outbreaks has been reported in Scotland and Ireland since the 1990s, where members of the family (e.g., Ctenolabrus rupestris and C. exoletus, L.) were used as cleaner fish for the first time (Frerchs et al., 1992; Treasurer & Cox, 1991; Treasurer & Laidler, 1994). In Norway, 32 cases of...
atyypical furunculosis were related to aAs infection in ballan wrasse in 2015, although reports of outbreaks have declined by nearly half between 2016 and 2018 (Hjeltnes et al., 2019). However, a previous study reported aAs as the most prevalent bacterial species isolated from ballan wrasse (farmed and wild) in Scotland (Hewson, 2019). The transmission of aAs from ballan wrasse to farmed Atlantic salmon (S. salar) has not been reported, presumably resulting from immunization of Atlantic salmon prior to transfer to the sea or that the species is not susceptible to the two cleaner fish-associated aAs types (V and VI) (Brooker et al., 2018; Evensen, 2016; Sommerset et al., 2005). Authorized antimicrobial treatments are being used to treat clinical outbreaks in cleaner fish when necessary (Brooker et al., 2018); however, concerns regarding welfare (e.g., stress related to handling) and antibiotic resistance (Watts et al., 2017) mean that the development of a vaccine for cleaner fish is of particular importance (Brooker et al., 2018).

Aeromonas salmonicida was first reported as Bacillus salmonicida in Germany (Emmerich & Weibel, 1894) as the causative agent of a disease affecting brown trout (Salmo trutta, L.), prior to reclassification into the genus Aeromonas (Griffin et al., 1953). Five subspecies have been described for aAs including salmonicida (Lehmann & Neumann, 1896; Schubert, 1967), achromogenes (Schubert, 1967; Smith, 1963), masoucida (Kimura, 1969a, 1969b), smithia (Austin et al., 1989) and pectinolytica (Austin & Austin, 2016; Holt et al., 1994; Pavan et al., 2000). In early years, the misconception that salmonids are predominantly susceptible to the bacterium led to the establishment of the term “typical” for a homogenous group of isolates (A. salmonicida subsp. salmonicida) causing furunculosis disease to salmonids and atypical for heterogeneous isolates, which infected predominantly nonsalmonid species and/or were phenotypically or biochemically different from subsp. salmonicida (McCarthy & Roberts, 1980). Although the classification of the atypical isolates was achieved, to some extent, with partial sequencing techniques in the past years (Beaz-Hidalgo et al., 2008; Kwon et al., 1997; Livesley et al., 1999; Lund et al., 2002; O’Hicl et al., 2000), contrasting results were often found, and therefore, a more reliable diagnostic method was needed.

A virulence factor, the paracrystatelline surface array protein (known as A-layer protein), has successfully been used for the differentiation of typical and atypical A strains (Gulla, Lund, et al., 2016; Gulla et al., 2019). This additional outer membrane protein plays an important role in host infection and providing protection for the bacterium by resisting host immune responses (Daly et al., 1996; Kay & Trust, 1991; Munn et al., 1982; Udey & Fryer, 1978). Lund and Mikkelsen (2004) reported defined groups for atypical isolates by sequencing the vapA gene, which encodes the A-layer protein. Subsequently, sequencing of the hypervariable region of the vapA gene enabled the allocation of 23 vapA types and most of them were host-specific (Gulla et al., 2019; Gulla, Lund, et al., 2016). Ballan wrasse is susceptible to A as type V, predominant in Scotland, and type VI mainly in Norway (Gulla, Duodu, et al., 2016; Papadopoulos et al., 2020).

Several techniques have been developed for the identification of the bacterium during a disease outbreak including culture (Austin & Austin, 2016; Cipriano & Austin, 2011), serological (e.g., ELISA, IFAT) and molecular assays (e.g. Balcazar et al., 2007; Beaz-Hidalgo et al., 2008; Byers, Cipriano, et al., 2002; Byers, Gudkovs, et al., 2000; Hiney et al., 1992; Keeling et al., 2013; Miyata et al., 1996; O’Brien et al., 2010). Currently, a rapid and reliable method to detect A as in ballan wrasse is a test based on the duplex PCR which allows simultaneous detection of type V and type VI (Brooker et al., 2018; Evensen, 2016; Sommerset et al., 2005). Authorized antimicrobial treatments are being used to treat clinical outbreaks in cleaner fish when necessary (Brooker et al., 2018); however, concerns regarding welfare (e.g., stress related to handling) and antibiotic resistance (Watts et al., 2017) mean that the development of a vaccine for cleaner fish is of particular importance (Brooker et al., 2018).

Table 1: List of bacterial species used for specificity testing on newly designed A vapA type V primers and restriction enzyme assay for the detection of type VI in ballan wrasse samples

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeromonas salmonicida subsp. salmonicida</td>
<td>NCIMB 1102<sup>b</sup></td>
</tr>
<tr>
<td>atypical Aeromonas salmonicida<sup>a</sup></td>
<td>ORN6</td>
</tr>
<tr>
<td>atypical Aeromonas salmonicida (type VI)<sup>a</sup></td>
<td>SAIC-CF-026</td>
</tr>
<tr>
<td>atypical Aeromonas salmonicida (type V)<sup>b</sup></td>
<td>SAIC-CF-019</td>
</tr>
<tr>
<td>atypical Aeromonas salmonicida (type VI)<sup>a</sup></td>
<td>SAIC-CF-035</td>
</tr>
<tr>
<td>Aeromonas salmonicida subsp. achromogenes</td>
<td>NCIMB 1110<sup>b</sup></td>
</tr>
<tr>
<td>Vibrio (Listonella) anguillarum</td>
<td>NCIMB 6<sup>b</sup></td>
</tr>
<tr>
<td>Vibrio ordalii</td>
<td>NCIMB 2167<sup>b</sup></td>
</tr>
<tr>
<td>Vibrio splendidus</td>
<td>ATCC<sup>a</sup> 33125<sup>b</sup></td>
</tr>
<tr>
<td>Pasteurella skyensis<sup>a</sup></td>
<td>LN-45 XG</td>
</tr>
<tr>
<td>Pseudomonas anguilliseptica</td>
<td>NCIMB 2185</td>
</tr>
</tbody>
</table>

Abbreviations: ATCC, American Type Culture Collection; NCIMB, National Collection of Industrial Food and Marine Bacteria; SAIC-CF, Cleaner fish bacterial culture collection in Aquatic Vaccine Unit.
^aInstitute of Aquaculture bacterial culture collection.
^bType strain.

2 | MATERIALS AND METHODS

2.1 | Bacterial cultivation

Representative AAs strains, unrelated bacteria and commonly isolated bacteria from ballan wrasse were used for the assessment of the
newly developed assays. A list of the bacteria used in the study is provided in Table 1. Aeromonas salmonicida and Pseudomonas anguilliseptica isolates were plated on tryptone soya agar TSA (Oxoid), while Vibrionaceae isolates were cultured on seawater agar (SWA; Oxoid) and incubated at 22°C for 48 and 24 hr, respectively. Pasteurella skyensis was cultured on BA (TSA + 5% sheep blood, Thermo Fisher) at 22°C for 48 hr. The bacteria were then inoculated onto tryptone soya broth (TSB; Oxoid, UK; As isolates) and TSB + 2% NaCl (Oxoid, Vibrionaceae isolates) and incubated at 22°C for 48 hr and 24 hr, respectively, with continuous shaking at 150 rpm. All bacteria were centrifuged at 2,000 g for 10 min, and bacterial pellets were then washed with phosphate-buffered saline (PBS) and resuspended in PBS to an optical density (OD) of OD$_{600}$ ~ 1.0. The bacterial colony-forming units (CFUs) per ml were counted by the 10-fold dilution method.

2.2 | DNA extraction

Bacterial DNA was extracted using a modified salt precipitation protocol (Aljanabi & Martinez, 1997) as described in Taslima et al. (2016). The samples were resuspended in 5 mM Tris, and sample concentration was measured and standardized at 50 ng/μl using NanoDrop 1000 (NanoDrop Technologies). The samples were stored at -20°C until use.

2.3 | aAs vapA type V assay design

An atypical As type V PCR was developed and used in order to determine the presence or absence of type V isolates in ballan wrasse samples. Gulla, Lund, et al. (2016) sequenced the hyper-variable region of the additional outer membrane of As—the paracrystalline surface protein (A-layer protein) gene (vapA)—and identified 14 different types. In total, 71 vapA gene sequences were downloaded representing the 14 different types identified from the GenBank database (Table S1). The sequences were aligned using ClustalW in BioEdit (Hall, 1999), and conserved regions for As type V within the vapA gene were identified as potential primer sites with Aeromonas salmonicida type V primers specific to these locations being designed using Primer-BLAST suit (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). The primers were screened for primer specificity (species-specific), in an in silico analysis using local nucleotide alignment tool “BLAST” (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Ye et al., 2012). The primers selected, Vspec—F: 5’-CCAACGGTTTCTGGAGTAATAACTTT-3’ and Vspec—R: 5’-TGCATCAGCAACAGCGGTAGT-3’, were tested using routine PCRs consisting of 25 ng bacterial DNA (0.5 μl) from type strain As (ATCC 1102), 10 μM (0.25 μl) of each primer, 1 x Q5® Hot Start High-Fidelity Master Mix (2x) (NEB Biolabs), 10 mM dNTPs (2.5 μl), 1 x Q5 High GC Enhancer (1 μl) and Milli-Q water to reach 5 μl total volume. Following optimization, the following thermal cycling conditions were used: 1 cycle at 98°C for 1 min, 30 cycles at 95°C for 15 s, 57°C for 15 s and 72°C for 15 s, followed by 1 cycle at 72°C for 2 min and cooling at 4°C. PCR assay products were visualized using gel electrophoresis to confirm the presence of aAs type V in the sample; single product at 254 base pairs (bp) indicates the presence of aAs type V.

2.4 | Design of restriction enzyme assay for aAs vapA type VI

Initially, the vapA gene was amplified using a previous protocol (Gulla, Lund, et al., 2016) and the obtained products (1 μl out of 5 μl) were digested with the restriction enzyme Scal (cut site 5’-AGTACT-3’, New England Biolabs®) at a final volume of 5 μl for 1 hr at 37°C according to conditions specified by the manufacturer. Restriction products (5 μl of enzyme digest) were visualized by gel electrophoresis to determine whether no product was present (no aAs present in sample), a single band of 625 bp was present (aAs other than type VI present in sample) or two bands of 368 bp and 254 bp were present (aAs type VI present in sample).

2.5 | Assay analytical specificity and relative sensitivity

The specificity of aAs vapA type V PCR and restriction enzyme assay (type VI) was tested against DNA of target and non-target bacterial species at 50 ng/μl (from active cultures of approx. 10⁷ and 10⁸ CFU/ml, for As and Vibrionaceae or Pasteurella skyensis) (Table 1). Initially, all bacterial DNAs were screened with a broad-range 16S rRNA PCR for the detection of bacterial DNA as described previously (Herlemann et al., 2011), and with vapA PCR (Gulla, Lund, et al., 2016) during which only As samples were expected to be amplified. Finally, all samples were screened with the newly developed aAs type V and type VI assays described above. PCR and restriction enzyme products were sequenced (GATC Eurofins) following enzymatic cleanup where 5 μl of PCR product was mixed with 1 μl of exonuclease (New England Biolabs®) and 1 μl of shrimp alkaline phosphatase (New England Biolabs®) and digested in accordance with manufacturer’s guidelines (Exo-CIP Rapid PCR Cleanup Kit, New England Biolabs®).

The relative sensitivity of the assays was assessed on water (sterile and tap water; 25 and 15 ml) spiked with aAs vapA type V and type VI at an OD$_{600}$ 1.0 (10⁴ CFU/ml) and two liver samples from naturally infected individuals that had previously been confirmed to be positive for aAs vapA type V by sequencing. The water samples were centrifuged at 5,100 g for 10 min, and the supernatant was removed prior to DNA extraction. The DNA was extracted from water and tissues samples with the method described earlier. The total aAs concentration in the undiluted extracted DNA (600 ng/μl) from liver samples was approximately 10⁴ CFU/ml (crossing point: Cp 28.58) and 10⁷ CFU/ml (Cp 22.53) using a previously published qPCR to quantify (Gulla, Duodu, et al., 2016). Various concentrations were prepared for the two liver DNA samples (10, 25, 50, 100 and 600 ng/μl) in order to determine the appropriate screening concentration.
2.6 | Diagnostic validation of assays

Whole ballan wrasse larvae and tissue samples (liver-L and head kidney-HK) were collected randomly from healthy-looking individuals from a commercial ballan wrasse hatchery in Scotland between February and September in the same production year. The hatchery had a history of aS outbreaks in the previous years. A total of 140 whole larvae samples (various sizes from 2 to approx. 120 days post-hatch; dph, 20 samples/month; 10 newly hatch/live prey feeding larvae and 10 weaned larvae) and 120 tissue samples (60 liver and 60 head kidney various sizes ≥ 120 dph to 15 months old/pre-deployment) were gathered and fixed in 100% ethanol and stored at 4°C for later use. DNA was extracted from samples of 1–2 mm long and 1 mm thick using the protocol described previously. From those, 70 whole fish and 120 liver and head kidney (60 each) were screened with the assays developed above using 50 ng of total extracted DNA. The above samples were also screened with a qPCR protocol for As bacterial loads designed on vapA gene (Gulla, Duodu, et al., 2016) for cross-validation.

3 | RESULTS

All bacterial strains used for the validation of the newly design assays were screened with a generic 16S PCR (Figure 1). Samples were then screened with vapA PCR (Gulla, Lund, et al., 2016), and only As samples were amplified (Figure 2). The newly designed primers for aAs vapA type V PCR and restriction enzyme assay (type VI) yielded the expected products of 254 bp, and 368 and 254 bp, respectively (Figures 3 and 4). The amplification products were sequenced and the sequences confirmed to have 100% identity to As vapA gene by BLAST and type V and type VI following sequence alignment using ClustalW. PCR products were reported only for aAs vapA type V and type VI isolates, as is shown in Figures 3 and 4, resulting in 100% specificity for the bacteria tested herein. The assays were able to detect aAs vapA type V and type VI in water samples (sterile and tap water) spiked with aAs vapA type V and type VI isolates (Figures 5 and 6).

Liver tissues naturally infected with aAs vapA type V tested positive with the newly developed PCR assay for the majority of the concentrations tested (25, 50, 100 and 600 ng/μl) apart from the 10 ng/μl (Figures 7 and 8). However, based on the electrophoresis results, a concentration of 100 ng/μl would be appropriate for the screening of diagnostic samples to avoid false-positive results.

A total of 16 diagnostic samples (4/70 larvae, 8/60 L and 4/60 HK) randomly collected from apparently healthy individuals from commercial ballan wrasse tested positive with type V-specific PCR. Matching positive results were observed for the liver and kidney samples for two individuals. None of the diagnostic samples were positive for aAs vapA type VI, apart from the positive control aAs vapA type VI sample, which was amplified successfully. In addition, the same samples screened with a previously developed qPCR for As and 17 positive samples were identified (4/70 larvae, 8/60 L and 5/60 HK) 16 of which were in corroboration with the diagnostic PCR assay for aAs vapA type V. These samples had medium (8/17)-to-low (9/17) bacterial loads corresponding to Cp value ≥25–30 and ≥31–35, respectively.

4 | DISCUSSION

Atypical Aeromonas salmonicida are commonly isolated bacteria from morbid ballan wrasse during bacterial disease outbreaks in the Northern Hemisphere (Hewson, 2019; Hjeltnes et al., 2019; Laidler et al., 1999). This fish species is susceptible to two aAs vapA types (V and VI) (Gulla, Lund, et al., 2016). Type-specific diagnosis of aAs can help in controlling the disease spread in ballan wrasse hatcheries and Atlantic salmon cage sites following deployment as cleaner fish. In this paper, we describe the development of two rapid, specific and low-cost assays for the detection of aAs vapA type V and type VI in ballan wrasse.

A number of molecular assays (PCR and qPCR) are available for the detection of As. In particular, qPCR assays are highly sensitive and specific (Beaz-Hidalgo et al., 2008; Byers, Cipriano, et al., 2002; Gulla, Duodu, et al., 2016; Gustafson et al., 1992; Rattanachaikunsopon & Phumkhachorn, 2012). However, they require custom-designed probes, that is self-quenched primers and molecular beacons, which are costly (e.g., $200/500 samples). Furthermore, existing molecular assays are only able to detect As DNA at the broader species
level but cannot differentiate type strains. Such information previously depended on isolate sequencing techniques (Gulla, Lund, et al., 2016), which are time-consuming, expensive and require specialized technical understanding, in contrast with the conventional PCR and restriction enzyme assay described in this paper (e.g., $60/500$ samples).
Several genes have been targeted for the diagnosis of *Aeromonas* over the years including the *vapA* gene (Austin & Austin, 2016). This gene is one of the most preferable genes for molecular assay development as it encodes the outer membrane A-layer protein of the bacterium and has a significant role in its virulence (Daly et al., 1996; Udey & Fryer, 1978). In this study, both type-specific (V and VI) assays were designed based on the *vapA* gene. The assays have 100% specificity and did not cross-react with other *Aeromonas* subspecies, for example *achromogens* or atypical isolates and other bacteria that were tested (e.g., *Vibrio anguillarum*, *Vibrio splendidus*, *Pasteurella salmonis*), which are commonly isolated in cleaner fish (Hewson, 2019; Hjeltnes et al., 2019). Two closely related bacteria *As* subsp. *pectinolytica* and *A. hydrophila* were not included in the specificity test because the former has not been recovered in fish (Merino et al., 2015; Pavan et al., 2000), while the latter is mainly isolated in freshwater species (Austin & Austin, 2016). Nevertheless, the amplification products for the type V and type VI assays developed herein were sequenced and screened in silico (BLAST) against *A. hydrophila* and all the other four *As* subspecies (*achromogenes*, *masoucida*, *smithia* and *pectinolytica*).
The positive results on type V and type VI spiked water samples provide information on bacterial load at the type level in cleaner fish. The assays are fast, reliable, cost-effective and easy to perform. They can be applied as screening tools in disease outbreaks and health certification (e.g., transportation from hatchery to cage sites) for cleaner fish. They can also be used to facilitate autogenous vaccine development and vaccine trials for isolate confirmation at the type level (Papadopoulou et al., 2020). Future studies are required to optimize the assays for environmental samples (i.e., water samples) and screening of other cleaner fish species (i.e., lump sucker samples). Furthermore, modification of the newly developed assays described in this paper for the development of qPCR assays could provide information on bacterial load at the type level in cleaner fish samples.

ACKNOWLEDGEMENTS

The authors would like to thank MOWI Scotland and Scottish Sea Farms for providing the diagnostic samples. Also, we would like to thank Dr. Snorre Gulla (Fish Health Research Group, Norwegian Veterinary Institute, Oslo, Norway) for giving the permission to use isolate information listed in Table S1 and had previously published (https://doi.org/10.1111/jfd.12367).

CONFLICT OF INTEREST

The authors have no conflicts of interest to disclose.
Supplementary data file data are derived from public domain resources and upon approval of Dr. Snorre Gulla—https://doi.org/10.1111/jfd.12367 supplementary file Table S1.

DATA AVAILABILITY STATEMENT

REFERENCES

