


ABSTRACT

The delayed coincidence technique was applied to investigate 

angular and polarization correlations betveen electrons scattered 

inelastically from helium atoms and photons emitted in the decay of 
n^P states.

Electron photon angular correlations were studied for the excita* 

tion of the 2^P and 3^P states of helium at an incident electron 

energy of 50 eV and for electron scattering angles in the range of 

20° - 102° and 35° - 55® respectively. From the analysis of these 

measurements the excitation parameters X ~ ^  I *21Ï1 * ♦ i«ol* " ® and
the magnitude |x|  of the phase difference between the excitation 

amplitudes â ^̂  for the - 1 and - 0 states are obtained

Using the 3^P “ 2^S decay light the electron^photon polarisa* 

tion correlation were measured for the 3^P state of helium at electron 

impact energies 50, 80, 120 and 160 eV and for electron scattering 

angles between 27.5° and 108°. The Stokes parameters m ,  H2 *nd ns 

were derived and the sign change of the angular momentum transfer 

< Ly > to the atom was investigated using the circular polarization 

results (ri2)* A sign change was confirmed for all energies studied and 

the scattering angle of the sign change was found to increase with 

decreasing electron energy. The excitation parameters X and x have 

been derived and the present results are compared with theoretical 

calculations and with previous experimental values obtained from 

angular and polarization correlation measurements.
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CHAPTER I 
INTRODUCTION

Electron-atom collisions have been the subject of a great deal 

of experimental and theoretical effort since the early days of atomic 

physics. Collision phenomena such as elastic scattering, electron 

impact excitation and ionization have been investigated for a vide 

range of atomic systems and incident projectile energies.

The experimental determination of total and differential cross 

sections as well as measurements of optical excitation functions and 

of the polarization of atomic line radiation produced by electron 

impact have provided important tests for theoretical models of 

electron-atom scattering processes.

The traditional experimental investigations of the electron 
inq)act excitation of atoms were of two types.

1. The first type of experiment detects the scattered electrons 

only. Such experiments yield values for total excitation cross- 

sections, as a function of incident electron energy. Such cross- 

sections represent sums of partial cross-sections for the excita­

tion of each degenerate or imresolved atomic state. If electrons 

are detected as a function of the scattering angle, differential 
cross-sections are obtained.

2. In the second type of experiment, the radiation resulting from 

the spontaneous decay of an atom which has been excited by electron 

impact is observed without regard to the scattered electrons. Such 

experiments can yield values for the total excitation cross section 

or, if the polarization of the emitted radiation is measured, 

information on the total cross-sections for excitation of individual 

magnetic sublevels (Hamilton (1940)).

The polarisation of helium line radiation excited by electron 

intact has been the subject of both theoretical and experimental
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investigations since the first measurements were made by Steiner

(1928). These measurements have been of interest since the polari*

zation of the emitted light depends upon the population distribution

between the sublevels. Percival and Seaton (1958) predicted for

a singlet P state, that at threshold only the M^"0 sublevels is

excited and the light is 1CX)Z polarized parallel to the incident

electron beam. In the high*energy limit, only the ±1 sublevels

are excited and the light is lOOZ polarized perpendicular to the 
0

incident electron beam.

The traditional work in electron-atom collisions as described 

so far has usually involved averaging over fundamental collision 

parameters with the result that important detail is lost. For 

example, measurements of the line polarization involve an average 

over all electron scattering angles since the analysis of the radia­

tion takes place without regard to the electrons. More detailed 

information of the collision process can be obtained by an experiment 

which only analyzes the radiation emitted from atoms %ihich are 

excited to a given state by electrons scattered in a particular 

direction. The method of detecting inelastically scattered electrons 

in delayed coincidence %rith photons emitted in a given direction 

provides a technique for precisely this kind of measurement.

The method to detect two particles in delayed coincidence has 

been in use for many years in the field of nuclear physics. It was 

used by Brady and Deutsch (1949) to investigate the non-isotropic 

emission of gaimia rays, which had been predicted by Dunsworth (1940). 

The theory developed for nuclear studies is not directly applicable 

to atomic studies but many features of the theory have closely 

followed earlier developments in the field of nuclear physics.

The first full theoretical treatment of photon-particle 

coincidence measurements applied to atosdc studies was given
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by Macek and Jaecks (1971). The field has been further developed 

by Fano and Hacek (1973)» Blum and Kleinpoppen (1979) and Blum 
(1981).

For the study of electron-atom collision processes, the 

electron-photon coincidence technique was first used by Eminyan ct al.

(1973) for the excitation of the 2^P state of helium. The inportance 

of the technique lies in its capability of measuring the complete 

excitation amplitudes |a^| of the sub-states including their relative 

phases. These may be represented by the dimensionless parameters

l*ol' ♦ 2 and Xt the phase difference betveen a and ax4^1« - . o
The amplitudes are related directly to the way in which angular 

momentum is transferred to the atom during the collision process^nd 

the results of electron-photon coincidence experiments thus give 

direct information on the dynamics of the collision process.

The coincidence method has been used in many areas of atomic 

physics. Imhof and Read (1969) have used the electron-photon 

coincidence technique to eliminate cascade effects from higher states 

in the measurement of the excited state lifetime of the 4^S state 

of helium. This technique has since been used widely, e.g. Imhof and 

Read (1971a,b,c) and (1977). Pochât et al. (1973) measured differential 

cross-sections for electron impact excitation of the n*4 and 5 states 

of helium using the decay photons of appropriate wavelengths to 

uniquely specify the coincident scattered electrons. The coincidence 

technique has been used by other groups, e.g. Smith et al.(1973 and 

1975), Shaw et al. (1975), King and Adama974),and King et al.(1975), to 

measure lifetimes in atoms and molecules.

Besides the electron-photon coincidence methods which have been 

used in the present experisMnt, two other commonly used delayed 

coincidence techniques are the photon-photon coincidence and the 

•lectron-eleetron coincidence method. The photon-photon coincidence
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method was first used by Brannen et al. (1955) to measure the life­

time of the 7’S state of mercury. Photon-photon coincidences, have 

further been used by Kaul (1966), Poppet et al. (1970), Holt and 

Pipkin (1974), and King and Read (1975> 1976)

The electron-electron coincidence method was first reported 

by Ehrhardt et al. (1969) where the correlations between the out­

going electrons from the ionization of helium were measured. This 

technique of detecting the scattered and ejected electrons in 

coincidence has been used by various groups for the measurement of 

the ionization of atoms by electron impact, e.g. Weigold et al. (1973), 

Ehrhardt et al. (1974), Back et al. (1975), Jung et al. (1975), and 

Crowe (1982).

In order to determine the excitation amplitudes, an electron- 

photon coincidence experiment can be performed in two equivalent ways. 

Firstly, electron-photon angular correlations can be measured between the 

inelastically scattered electrons and the photons emitted during the 

collision from which X and |x| parameters can be obtained. Alternat­

ively, the same information can be obtained by measuring the polari­

zation of the emitted radiation. However, the sign of x» the phase 

difference between the excitation amplitudes cannot be determined 

from the angular correlation measurements. For this one has to 

measure the circular polarization of the «aitted radiation.

The first electron-photon angular correlation measurements 

in coincidence were carried out by Eminyan et al. (1973) for the 

2^P state of helium and lead to valuee for X and |x| as 

mentioned above.

This first experiment was followed by a series of measurements 

on helium by Eminyan et al. (1974, 1975), Tan et al. (1977),

Sutcliffe et al. (1978), Fon et al. (1979), Hollywood et al. (1979),
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Sl«vin «C al. (I960) and Staph and Goldan (1979). Neill at al. 

(1984) studied the behaviour of the excitation parameters as the 

incident electron energy approached the threshold energy where their 

values are expected to be governed by simple threshold arguments. 

They measured the angular correlation between scattered electrons 

and emitted photons for the 2^P state of helium at an incident 

electron energy of 22.0 eV (0.8 eV above threshold) and for scatter­
ing angles up to 120^.

Measurements of the 3^P state of helium %iere carried out by 

Eminyan et al. (1975), Standage and Rleinpoppen (1976), Crowe et al. 

(1981) and MacAdams and Williams (1982). The same technique has 

been applied to the 2P state of atomic hydrogen by Williams (1975), 

Dixon et al. (1978) and Slevin at al. (1985).

The electron-photon angular correlation method has also been 

used on neon by Ugbabe et al. (1977), and on argon by Arriola et al. 

(1975). Further measurements on Ar were reported by Malcolm and 

McConkey (1979) who determined X and |x| well as the threshold 

polarization for the resolved Ar lines at 104.8 and 106.7 nm.

Malik and Rleinpoppen (1980) studied the electron-photon angular 

correlations for the 4p*(*Ps^2)5S >Pi and 4p*(*P^)5S‘Pi «tates of 

krypton and the 5p’(^P3^2)6S*Pi state of xenon to determine the 

collision parameters X, |x| and cos c, where cos e is a new parameter 

suggested by Blum and Paixao (1980); this parameter takes into 

conaideration the spin-orbit interaction experienced in heavy atoms.

A value of cos c equal to 1 indicates the absence of spin-orbit 

interactions. The deviation of the value of cos e from 1 is a 

measure of the strength of the spin-orbit interaction experienced 

by the target atom.

The same information as for angular correlation measurements 

can be obtained from linear polarisation measurements where the
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emitted light ie observed in a direction perpendicular to the 

scattering plane. A circular polarization measurement further 

determines the sign of the relative phase x*

Non-coincidence polarization measurements vere carried out by 

McFarland (1964), who investigated the polarization of the 

4^D - 2^P(492 nm) line of helium. Heddle and Kissing (1967) and 

Heideman et al. (1969) found a rapid change of the polarization close 

to threshold for a mud>er of lines. Similarly, the work of Federov 

and Mezentev (1965), on the polarization of the 7^D2-6^Px (434.7 nm),

7^Si - 6^Pi(435.8 nm) and 6^D2 - 6^Pi(577.0 nm) lines of mercury 

revealed a sharp change near threshold. Hafner, Kleinpoppen and 

Krtfger (1967), measured the threshold polarization of the resonance 

lines of ^Li , ^Li and ^^Na and their results-were in good agreement 

with the theoretical calculations of Flower and Seaton (1967) for the 

same lines, using the theory of Percival and Seaton (1958). Ottley 

and Kleinpoppen (1975) carried out polarization studies of the 

6^Pi - 6 ^Sq (253.7 nm) lines of mercury close to threshold.

Polarization values of the light as above can be derived from 

angular correlation measurements and this was done by Steph and 

Golden (1982) who studied the polarization fraction of the 2^P and 

3^P states in helium for electron impact energies from 30 to 500 eV. 

Standage (1977) used the previous angular correlation data of Eminyan 

et al. (1973, 1974, 1975), and the polarization data of Standage and 

Kleinpoppen (1976) to study the polarisation of the helium line 

radiation at incident electron energies from 60 to 100 eV, for the 

transitions 2^P - l^S (58.5), 3^P - 1^S(53.7 nm) and 3^P - 2^S 

(501.6 nm).

The electron-photon coincidence technique was used by King et 

al. (1972) to measure the threshold polarization of the impact line radia* 

tion in the 3^P state of helium at an incident electron energy of 80 eV.
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Standag« and Klainpoppan (1976) reported the flret complete polari* 

zation analycis for the 3^Pi - 2^8^ (501.6 nm) line of helium at an 

impact energy of 80 eV and acattering angles between 15^ and 27.5^. 

The circular polarization measurements determine the sign of the 

relative phase x which can not be obtained from the angular correla­
tion measurements.

Zehnle et al. (1978) measured the linear and circular polariza­

tion of the K(4^P ■+• 4^S) photons detected in delayed coincidence with 

inelastically scattered potassium atoias for K-He, K-Ne and K-Ar 

collisions as a function of the projectile scattering angle.

Anderson et al. (1979) performed similar measurements of the Stokes 

parameters for Hg(3^P - 3^S) photons in a coincidence experiment 

involving Mg'** - He, Ne and Ar collisions and Zaidi et al. (1980) 

measured the linear and the circular polarization of the (6^Pi-6^Sg) 
line in mercury.

Recently, the change in the sign of the orientation has been 

discussed by Herman and Hertel (1980). Kohmoto and Fano (1981), 

Hadison and Winters (1981), Blum (1981), Fon et al. (1980) and later 

by Beyer et al. (1982) along the line of the classical grazing model.

Hermann and Hertel (1980), Madison and Winters (1981) and 

Fon et al. (1980) predicted theoretically that, since the electrons

scattered at 0^ and 180^ can not transfer angular momentum, < Ly >
coX(and thus Oi. ) is constrained to be zero at these angles. Based on 

the classical grazing model the orientation between these two extremes 

should be positive at small scattering angles and negative at large 

scattering angles, passing throu^ zero at some intermediate angle. 

Kohmoto and Fano (1981) have attempted to justify a sisals classical 

grazing model which can be used to relate the attractive or repulsive 

nature of the interaction to the sign of the orientation produced.
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They conclude CtuiC a change in sign of the interaction (e.g. from 

attractive to repulsive) results in a change of sign of the orienta­

tion: a result consistent with a classical grazing model. Blum 

(1981) suggested that the negative orientation is due to a repulsive 

force and the positive orientation due to an attractive force.

Hollywood et al. (1978) calculated the absolute value of the 

orientation from the parameters X and |x| measured in an angular 

correlation experiment on the 2^P state up to scattering angle of 

130^. Their data strongly suggest the presence of a sign reversal in 

the orientation at 9^ ■ 70^ but since they measured only |x| they 

could not positively prove it.

HacAdams and Williams (1981) determined the excitation parameters 

X and lx I from angular correlation measurements for He(3^P) at an 

incident energy of 81.2 eV for electron scattering angles between 60^ 

and 120^. Beijers et al. (1984) studied the orbital angular momentum 

transfer from the angular correlation measurement of the 2^P state of 

helium, at incident energies of 50, 60 and 80 eV. They found that, 

at an energy of 80 eV, the orbital angular momentum transferred by the 

electrons to the atom during the collision appears to change sign at a 

scattering angle of about 65®. However, at energies of 50 and 60 eV 

no indication of a sign change was found.

To clarify the situation, circular polarization measurements are 

essential and such measurements on the 3^P state on helium are reported 

in this thesis. A similar measurement on the 2^P state is being carried 

by Khakoo et al. (1986) and their first results for 50, 60 and 80 eV 

confirm the sign change of the angular momentum transfer found in the 

present work for the 3^P state.

The Aim of this Work

The aim of the present work was to establish idiether the angular
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momentum < > transferred to the atom during the excitation of the

3^P state, changes sign at some intermediate scattering angle. 

Furthermore, the energy dependence of the angle at which the sign 

changes should be investigated. At the same time the complete linear 

and circular polarization analysis of the 3^P - 2^S (501.6 nm) line 

of helium should be extended to large scattering angles and a %ride 

range of electron impact energies.

In Chapter II of this thesis, the relevant theory of the electron 

impact excitation and the subsequent decay of the n^P state of helium 

is outlined. Chapter III describes the apparatus used. Chapter IV 

describes the measurements and the analysis. Chapter V presents the 

results and discussion. Chapter VI the Conclusions.
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CHAPTER II

THEORETICAL CONSIDERATIONS

2.1 Th«ory of colncid«nce experiment!

In el«ctron-atom collision«, some excited atoms are produced which 

subsequently decay by photon emission. Macek and Jaecks (1971) derived 

an expression relating the coincidence rate dN^ to the amplitudes which 

describe the excitation process. They considered that the atom which 

is initially in the ground state, is excited to a set of degenerate or 

nearly degenerate upper states by electron impact. The atom in turn 

decays from the upper levels to a set of closely spaced lower levels.

In all practical cases the collision takes place in a time short 

compared with the radiative lifetime. Thus at time t"0 the collision 

occurs producing a set of excited states (SMg,U^), where S and L are, 

respectively, the total spin and orbital momenta and and their 

projections along the incoming electron beam axis z. The wave function 

of the excited atom is then

(♦(t-o» - ^  s CSLHsMl ) 1 SLMgML>
Ms“l

1.2

where a(SLM$^) is the probability amplitude for exciting this atomic 

state from the ground state. It is a function of the incident electron 

energy and scattering angles (8^ and . |SU^M^> is the state vector

describing a particular atomic state. After the collision the upper 

states evolve with time under the influence of fine and hyperfine 

interactions and of the radiation field. The probability of photon 

emission for a given transition has been calculated by Percival and 

Seaton (1938), and expressions ware obtained relating the partial cross
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sections to the polarization of the atomic line radiation. Their 

results, however, are averaged over all directions of the scattered 

electrons and integrated over time. Wykes (1972) has extended the 

Percival and Seaton theory and expressed the probability of observing 

polarized photons as a function of the direction of emission for a given 

electron scattering angle. An equivalent way to calculate the 

probability of light emission for excitation by short light pulses was 

taken by Macek and Jaecks (1971.

At time t after the collision the wave function can be described 

by (assuming that there are no external fields)

k(t)> - /  . a(JFMp)|JIF5%> e 
JPMp

2.2

where J is the electronic angular momentum, F is the total angular

momentum. I is the nuclear spin, Ejp is the energy of a particular
—tv/2atomic state and the factor e is included to account for the decay 

of the upper level population. Here ^  is the mean lifetime of the 

excited atom.

Assuming that the atomic levels are adequately described by LS 

coupling, the smplitudes can be written by usual coupling rules in 

the following way

a(J7Mp) -  ^  (a(UI^SM'IMj)) ((Lt^SM 'lLSj!^)(JM jIM j|jIF>ly))

In the electric dipole approximation, the probability of observing a
A

photon with momenttim K and polarisation e in a time interval At 

after the collision, while the electrons are scattered in a direction 

Oet^e^* proportional to the square of the electric dipole matrix 

element.
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2.2 Excitation Proceis

The total wave function of the excited singlet P states for 

electrons scattered in a particular direction (6 ) with respect

to the incident electron beam, can be described as a coherent super* 

position of degenerate magnetic sublevels, Hacek and Jaecks (1971) 
as follows

|i|/> - a(1)|ll> ♦ a(o)|lO> ♦ a(-l) |1-1> 2.7

%rtiere a(1), a(0) and a(-1) are the scattering amplitudes. It is 

assumed that spin-spin and spin-orbit interaction in the collision can 
be neglected.

The excitation amplitudes a(M) are functions of the electron

scattering angles (6^,^^) and of the incident electron energy E. They

describe the excitation to particular magnetic sublevels |JM> of the

3^P state (L ■ 1). The dependence on  ̂ can be factored out so thate
in the following we use amplitudes that depend only on E and 0^

2.8

The mirror symmetry of the scattering process in the scattering plane 

implies ai ■ a.^•

|\|;> can be normalised, (<i|>|i(»> * so that the amplitudes are 

related to differential cross sections as follows

l.il* - Ox

laol* • Co

2 lai|* ♦ |ao|* - 0
P vìi 'A 'O
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H«re a is Che differencial cross seccion for excicing Che n^P scace 

and o^ is Che differencial cross seccion for exciclng che magnecic 

sublevel. The amplicudes a(M) are in general complex nund>ers. 

However, since |i|>> is defined only up Co an overall phase facCor, a^ 

may be assumed Co be real and posicive. The relacive phase x beCveen 

ai and a^ is defined by

ai - |ai|e i-X (-iT<x<ir) 2.12
Therefore |tj/> is described complecely for given E, 0^ and by

Oo
paramecers o,X - [ao | ̂ /(2|ai | ̂  ♦ |ao|^) ,(o<X<l) and x which

could be in any region of 2ir .

X and X funccions of che energy and che scaCCering ai^le. 

They are dimensionless paramecers describing Che exciced sCaCe of an 

acorn afcer che collision and cogecher vich che cocal differencial 

cross seccion a ■ |a2 |̂  2|ai|^ provide a compleCe decerminacion

of che scaCCering amplicudes.
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2.3 Electron-photon angular correlation

The theory of angular correlation has been discussed in detail 

previously by Hacek and Jaecks (1971). They described the angular 

correlations between photons and scattered electrons in terms of 

scattering amplitudes.

Substituting the spherical components of the polarization vectors 

into equation (2.6), integrating over the resolution time of the 

coincidence circuit Lt, and summing over the photon polari­

zation, Eminyan et al. (1974) obtained

d*N

d n“y
2.13

where

dN

dn.

3 ,
—  i X»in*6^ ♦ H W ] ( c o » * e ^  ♦ 1) - J[l-X]
8w '

Ìsin^eYCOs2(^Y*^«> ♦ (X(l-X)l
3
8ir

cosx sin28YCOs(̂ Y"̂ *)) ■ —  N

Here d«Ne

2.14

dQ^dQ is the joint probability density for the electron to be

scattered in the direction (6^»^«) in any n^P excitation, with 

subsequent emission of the photon in the direction is the

differential cross section. £ is the total (integrated) cross section 

for excitation of the n^P state at energy E, and is the probability 

density for photon emission after electron scattering in a particular 

direction on which X and x depend.
Figure (2-1) shows a schematic diagram of the coordinate systoi. 

The electron beam is incident in s-direction on the target located at 

the origin of the coordinate system. Scattered electrons are collected
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Figure (2-1): Geometry of the electron photon coincidence
experiment using the crossed-beam technique.

Figure (2-2)t Geoaetricel representation of the angular correlation
function (equation 2.15).
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by a 127^ electron analyser vihose position defines the scattering 

plane, which is taken to be the xz plane. Therefore, the azimuthal 

angle is zero for all detected scattering events. Photons are 

detected without regard to polarization by a detector placed in the 

xz plane on the opposite side of the electron beam from the analyser,

i.e. ^ case the angular correlation function in
equation (2-14) takes the form

N ■ Xsin^OY ♦ (l"l)cos*0Y“2[X(l-X))^sin0YCOs0^cosx 2.15

The angular correlation function N can be represented by the 

geometrical construction in figure (2-2) where X ■ |a |^/(|s q |̂  * 2|si|^ 

and X the phase difference between the scattering amplitudes ai and Sq .

The information obtained from a measurement of the linear 

polarization is identical to that given by a photon angular distribu­

tion. Consider a linear polarizer set at an angle a in front of the 

photon detector. The probability density for scattering an electron 

in a given direction with subsequent emission and observation of the 
photon is

d*N
(o)

0 , dN^ dN ^
2.16

dN (1,2)
where ( ^ ^ )  e is the probability density for photon eisission

dOy
(a)polarized along e (which is the polarization unit tensor) as 

obtained from equation (2.6).
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2.4 El<ctron-photon polarization correlation

In order to obtein information about the coherence properties 

of the emitted light, it it necessary to introduce quantities which 

completely characterize the quantum mechanical state of the emitted 

light. Such quantities are the elements of the polarization density 

matrix of photons, Blum and Kleinpoppen (1979), or, equivalently 

the Stokes parameters. These quantities have been discussed 

extensively by B o m  and VIblf (1976), Blum and Kleinpoppen (1979) 
and de Paixao et al.. (1984).

These Stokes parameters are defined as follows in connection 

with the photon radiation observed perpendicular to the scattering 

plane.

I(e,*) - 1(0) ♦ 1(90) - 2.19

Ini - 1(0) - 1(90) -

Ini - 1(45) - 1(135 - Jsx xz

Ini - I(RHC) - I(LHC) - - J ^ )

where I represents the total intensity of the emitted li^t, 9 and  ̂

are the polar coordinates of the photon detector (9 ■ ^ ■ 90), 1(0), 

1(90^), 1(45^) and 1(135^) are the linearly polarised light intensities 

polarized under the angle a as shown in figure (2-3). I(RHC) and 

I (LHC) are the right and left hand circular polarised components of 

the photon radiation.
Blum and Kleinpoppen (1979), produced an expression of the general 

coincidence rate in terms of the Stokes parameters as follows

1(e) * y  (1 ^ cos2a * n^sin2a cos26 ♦ sin 29) 2.23
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Figure 2-3: Schematic diagram of experiment. The x-z plane 
ia the scattering plane; the photons are 
detected along the y axis. Scattering angle 8^ 
and linear polarizer angle a are measured in the 
x-z plane. Positive scattering angle is shown.
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wher« 6 is the phase difference of the quarter wavelength plate.

Blum and Kleinpoppen (1979) found it convenient to describe 

the atomic ensemble by a set of state multipoles <T(L)^.> where K 

takes all values 0, 1, 2 .... 2L and -R < Q < K. These can be 

expressed in terms of excitation amplitudes and for the cases of 

and states the relations take the following form:

< - 7oo 3

< T(L)|^> - -io/Xd-X) sinx

< T(L)+ >20 —  (1-3X)
/ T

< T(L)j^> ■ - 0 /X(X-l) C08X

< T(L)^ > - f (X-1)
2 2 ^

The polarization state of the emitted photons is completely character­

ized by the four Stokes parameters* Blum and Rleinpoppen (1979) give 

general formulae for these parameters in terms of the state multipoles 

as follows

K(-l)

sin’Oeoŝ  ♦ <T(L)”*’ > sin2Bcoŝ  ♦ -i- <T(L)'*’ >21 ^  20

(3cos* 9«

In, ■ i Lpj ( ^^^^22  ̂ cos*e)cos2̂  ♦ <T(L)̂ >̂ 

sin2̂  ♦ <T(L)̂ >̂ sin29coŝ  ^̂ ^̂ 2̂0  ̂sin*0̂

2.29

2.30

Ini <T(L)*^ > 2 cos6sin2^ ♦ <T(L)*^ > 22 21
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Iri2 - -K ^ 2i<T(D* ̂ >8in08in(|>

where K ■ —  u(L,Lp). For n*̂ P 8tate L-1 and Lf«0

2.32

where Ins, Ini and In2 are ae defined before.

From equationa (2.24 to 28 and 2.29 to 31) one obtaina ns, Hi and 

H2, in terms of X and x :

. - 1(0) - 1(90) .1(0) ♦ 1(90) ^

n . 1(^3) -1(135) _ _ 2 / r m r r  coav 
V iTiTs) ^

„ KRHC) - I(LHC) . . .invKRHC) Hh l(LHC) 2 (1 ) 8 X

2.33

2.34

2.35

In the present analysis of the circularly polarized light the spectro­

scopic definition of circular polarized light is used, %ihich is the 
opposite to the helicity definition used by Blum and Kleinpoppen (1979)

and for equation 2.35.
Thus in our case H2 v i H  take the following form. Standage and 

Kleinpoppen (1976)

T\z • * 2/X(l-X) sinx 2.36

From the Stokes parameters some quantities can be derived which 

characterise the degree of "coherence” of the emitted li^t. B o m  

and Wolf determined the coherence-correlated factor n and the degree 

of polarization P as follows
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^colorientation vector 0 first introduced into atomic physics for 

optical pumping experiments. Their application to collision experi­

ments has been described by Fano and Macek (1973). Madison and 

Winters (1981) confirmed that the orientation of the atoms should 

change sign when the scattering angle la changed from small to 

large values goes from small to large scattering angles. This was 

thou^t to be due to the change from attractive forces (dominant at 

small scattering angles) to repulsive forces (dominant at large 

scattering angles). Kohmoto and Fano (1981) used a simple classical 

grazing model to relate the attractive or repulsive nature of the 

interaction to the sign of the orientation produced.

Blum and Kleinpoppen (1979) have fonmilated the equivalent 

expressions for Fano and Macek (1973) to calculate the alignment 

parameters and and the orientation vector 0$°^ in

terms of the excitation parameters X and x follows:

, <3L^ - L^>^col ^ z
® L(L+1)

- ■ H1-3X) 2.39

<L L. ♦ L L > X z Z X
(L(L^l)

—  <T(1)^ > - /X(l-X) cosx 2.40
o/2

<L^ -
» y

L(L+1)
—  >T(1)Î2> - é(X-l) 
o/2

2.41

L(L>1)
i<T(i)ri>

- /xU-X) sinx 2.42

colIn order to relate thè behaviour of Oi. to thè collision process 

vithin thè semiclassical model two prineiple paths of thè scattered 

electron are considered as shoim in figure (2-4). In figure (2-4a),

T *

m
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Figur« (2-A) Th« tvo princip«! p«ch« £or s«inicl«««ic«l «catttring 
of «I«ctron« for h«Iium. («) Th« «l«ctron 1« Lncid«nt 
with « Mgaelv« Impact paramatait and scattar« fron 
th« attractiv« potantial to th« poaltlv« angl« 6«,
(b) Th« «lactron 1« incidant %rith positiv« iapact 
paranatar and scattars fron th« rapulsiv« potantial 
of th« halium «lactrons to th« sam« positiv« angl«
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the electron approaches the helium atom %rith a negative impact

parameter and is scattered by an attractive potential to a positive

scattering angle. According to the semiclassical model the atom nuat

obtain positive angular momentum perpendicular to the scattering plane,

i.e. <Ly> must lie along the positive direction of the y-axis. The

equation <Ly> ■ implies that the orientation is positive for

this collision. In Figure (2-Ab) the electron is incident with a

positive impact parameter and is scattered by a repulsive potential .

into a positive scattering angle. In this case, the atom must obtain
col.negative angular momentum which implies that 0^^ is negative.

colThus the behaviour of 0^^ can be explained by using the semi­

classical model as follows. When the electron is scattered to

6 *0^, there is no change in the angular momentum of the atom c
coXperpendicular to the scattering plane. Therefore vanishes at

6 "0°. As the scattering angle increases from 0^, the amount of c
angular momentum transferred to the atom perpendicular to the scatter­

ing plane, <L^>, increases. Since the dominant scattering potential

for small angles is the long-range attractive potential due to atomic
colpolarizability, <Ly> is positive. Thus, is positive and 

increases towards its extreme value of 0.5. However, as the scatter­

ing angle continues to increase, the impact parameter decreases and 

scattering from the repulsive potential of the helium electrons begins 

to become significant. Since the sign of the angulsr momentum

transfer due to repulsive scattering is opposite to that for attrac-
coltive scattering, these processes compete and the value of 0^^ may

or may not reach the value of 0.5 before it decreases with 8^. Then

at some values of 0^ where the contributions from the two types of
colscattering are equal in magnitude, 0^^ vanishes. As 0^ increases

colfrom this angle the repulsive scattering becomes dominant and 0^_

becomes negative and decreases to another extn As 8g increases



-27-

furthcr, the transfer of angular momentum perpendicular to the 

scattering plane again decreases until at e.-180^, 0?°^ vanishes.

The change in the sign of the orientation has been discussed 

along the line of the classical grazing model by Beyer et al. (1982) 

who assumed four classical paths for the scattered electron as shown 

in the figure (2-5). Electrons scattered through 6 to the left (C and 

B by either a repulsive or an attractive force are detected by the 

electron detector at '*>6̂ . Similarly, those electrons scattered to 

the right (Dand E) are incident on a detector at -6^. According to 

this model, all electrons passing on the left side will produce a 
negative orientation of the excited atom, <LyX0, and all electrons 

passing on the right side a positive orientation <Ly»0. The 

sign of the orientation can be experimentally determined by observing 

the scattered electrons in coincidence with either left-handed or 

right-handed circularly polarized light (Stokes parameter nz) emitted 

in the y-direction. The probabilities of electrons to be scattered through 

'*'9̂ , and -9^ with the emission of left-hand circularly polarized light 

can be represented by paths C and E respectively. The corresponding paths 

B and D represent the probabilities for electrons to be scattered through ••>6 

and -9, respectively, with the emission of right-hand circularly 

polarized light. In both eases the emitted light is in y-direction.

According to these definitions the results of four possible 

experiments involving coincidence detection of electrons and circular­

ly polarized photons can be written, using the Stokes parasmters

 ̂ ^^RHC * ^LHC^ " *

The measuresient of the circular polarisation Stokes pan 

v\2 i* given by

2.43

Iter

^  «wi H2 (-e) - ^ 2.44
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EUctron deteĉ or
QÌ ♦O

Eltctron detector 
et -0

Figur«2-5 : CIa s s ì c aI «l«ctroii traj«ccori«t for teattaring 
angl«t ±6 tot attractlva and rapulslva forcai, 
(Bayar at al. (1982)).
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Measurements of the right-left electron scattering asynmetry in 

coincidence with right or left hand circularly polarized light, can 
be written as follows

A . A • E-CD+B ’ \ h C E+C 2.45

The parity invariance with respect to reflection in the scattering 

plane, requires that B ■ E and C • D. Using this symmetry, we find 

that

n2(^®) -n2(-6) 2.46

-Tl2(‘̂9) 2.47

2.48

The change in sign of the circular polarization when going from 

small to large scattering angles means that, at small scattering 

angles C > B whereas at large scattering angles B > C.

According to this model the scattering process can be described 

by a repulsive aiq>litude related to B and an attractive amplitude 

related to C.
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CHAPTER III

THE APPARATUS

3.1 Introduction

Th« apparatus consists of a vacuiim chambar (650 nm long with 

350 nn intamal radius) as shown in figura (3-1), pumped by an oil 

diffusion pump. The axparimantal sat-up and the associated feed­

throughs are all mounted on one of the 5(X) mm ^ end flanges. The 

turntable assembly shown in figures (3-2 and 3-3) has a diameter of 

310 mm ^ and %«s made of non-magnetic stainless steel. It is fixed 

to the end flange inside the excitation chamber and aligned to the 

centre of the flange. A 127^ electron energy analyser(figures 

(3-A, 3-5 and 3-6), a photon detector (figure (3-7)) and a Faraday cup 

(figure (3-8))are fixed on the three turntable layers.

An electron gun is fixed on the base plate of the turntable.
All these components are connected to the associated electrical 

systems outside the excitation chamber through a variety of feed­

throughs. TWO new distribution panels with voltage dividers were 

built, one to adjust the voltages of the electron gun and the other 

to adjust the electron analyser.

To extend the measurements beyond the angular correlation 

studies for which the system had originally been built, a new optical 

system (figure (3-13))had to be added for the polariution correlation 

measurements where the light is observed in a direction perpendicular 

to the scattering plane. Therefore a photomultiplier together with 

an interference filter, a linear polarizer and a quarter wave 

plate were mounted outside the vacuum on the end flange, while an 

optical lens (50 mm #, f * 75 mn) to collect the emitted light from 

the interaction region, was fixed to the base of the turntable 

ñM— wbly, A quarts window was mounted on the 500 ssi # flange
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oppotlte Co Che CurnCeble flange.
The vacuum tyaCem, Che 127^ eleccron analyser, che eleccron g\m, 

che opCical syscem. Che phocon dececcors, and che pocencial discribu- 

Cion panels vili be described below in more derail, while che excica- 

Cion chasòer. Che Faraday cup and che CumCable assembly vere described 

in deCaU elsewhere (Malik, 1980).

3.2. Vacuum SysCem
The vacuum sysCem consisCs of a cylindrical seamless sceel 

changer, 650 mm long vich an incemal diamecer of 350 mm, a 

diffusion pump and a rocary pump. Figure (3-1)shows a schemacic 

diagram of Che vacuum sysCem.|
The chamber was pumped by a four scage oil diffusion pump 

(Leybold Haraeus Model D1 3000) vich a nominal pumping speed of 

3000 l.s“*“ for air, and a large roCary (Piscon vacuum) pump (Edwards 

model ES2000) wich a pumping speed of 126 m*h“*̂. Since we deCecCed 

nonconduccive brown deposics on che surface of Che elecCrodes of 

Che eleccron gun, and since Chere were also signs of some minor 

oil condensacion, ic was decided Co svicch Co a pump which was 

considered Co be "cleaner”.
In mosc of che preaenC work Che vacuum chamber was pumped firsc 

of all by a single sCage rocary pump (Edwards Model ES200) and an oil 

diffscak pump (Edvards Model 160/700) wich an incegraced wacer baffle. 

In addicion che pump is baffled vich a freon cooled baffle. The 

pumping speed of the diffstsk pusg> is 700 i/sec for air, according

CO Che fflsnufacCurer.
vucuum chamber could be isolated from che diffusion pump by 

an electro-pneummtically operated gate valve (VAT). This could be 

closed SO Chet che diffusion pump could remain switched on and che
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time of cooling and reheating of the pump be saved. The base pressure 

of the system was approximately 1 x 10~^ Torr.

The effective pumping speed has been calculated, according to 

equation (3.1),for the old diffusion pump and the one used in the 

present work

S
eff 3.1

 ̂*2

where S is given in I sec”  ̂ and represent the total baffles 

conductance of the baffles. The results for the two oil pumps are 

compared in table (3-1)

Table 3-1

No Oil Pump Model S -- for Air eff

1 Oil diffusion pump Teybold Haraeus 
D13000

860

2 Oil diffusion pump 
(Used in present

Edwards 160/700 540

experiments)

3.3. The I27Q Electron Analyser
TWO main types of monochromators have been used in electron-

atom scattering experiments• The ’hemispherical * type with a 

deflection angle of 180® was introduced by Simpson and Kuyatt 

(Simpson 1964; Kuyatt and Simpson» 1967). The cylindrical type 

with « d.fl.ceiQO .ngl. of 127« wm. £ir.t u..d by CUrk (1954) 

and later improved by Marmat and Kerwin (1960). Hany improvements 

have since been made for the cylindrical type» by Andrick and Ehrhardt 

(1966) and Gibson and Dolder (1969). In this experiment, the

% .
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cylindrical type vith a deflection angle of 127^ was used as the 

electron analyser.
The theory of the 127^ cylindrical analyser was first developed 

by Hughes and Rojansky (1929) who showed that a beam of electrons 

entering the cylindrical field through a slit and having a small beam 

divergence a vith respect to the slit normal, is focussed at an angle 

of / |  - 1270 1 7 -,

Figure (3-4) shows the electron trajectories between a pair of 

127° concentric cylinders of radii ri and r2 (ri<r2) with mean 

potential (and electron energy) Eq , where Eq ■ eV^.

The electric field inside the analyser due to potentials Vi 

and V2 at radius r is given by

•ht

:

E(r) -
Vi - V2

3.2
ri

where n  and r2 are the radii of the inner and outer cylinders

respectively and r ■ —^
r. ♦ r. is the mean radius.

The potential at the central orbit is given by

Vi - V 2
3.3

It can be shown that the potential at the inner grid is:

Vi - Vo (1 ♦ 2tn —  ) 3.4

and at the outer grid is:

V2 - Vfl (1 ♦ 2tn ) 3.S
T2

The general transmission function of an analyser is given by 

Delege and Cavette (1971)
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^  - A ^  + Ba^ + C8^r En
3.6

r is th® r®dius of the central path of the electrons through
r -► r^

the analyser (r “ --- ), Ar is the slit width, is the mean

energy, AE is the energy spread measured in terms of the full width 

at half maximum intensity, a is the angular divergence of the beam 

in the horizontal plane (figure 3-4) and 6 is the corresponding 

angle perpendicular to this plane. A, B and C are constants which 

have different values for various analysers.

For a 127® cylindrical analyser

A - 1 B - and C 3.7

Thus the energy resolution for such an analyser is

*1

'll

» r ■ • -

Ar 8‘ 3.8

Í !
On. of th. .xp.riMnt«l probl««. which had to b. .olv.d b.for. 

the eu.rgy re.olution of the 127® monochrooetot could be fully 

exploited ws. the eliminetion of thoee electron, hitting the »urf.ee 

of the cylinder., where some could be reflected .o that they would 

be tranamitted by the exit »lit. Even if the.e electron, did 

not leave the analyaer through the .lit. their .pace charge could 
dUtort the path of th. other electron.. Harnet «>d Karwin (1960) 

»olvad thi. probl«. by u.ing high tr«i.p«r.ncy grid, inatead of 

»olid natal for th. cylinder., «> that th. uniwnted electron, would 

be tranenitted and could ba renovad by a collector electrode 

placed behind the grids.
The 127® electron analyser used in the present work (shown in 

figure(3-5)) was built along the lines outlined by Marmet and Kerwin 

(1960). The total height of the cylinders is 62.5nD. The other

'.f'
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I

/ •

O.^

? !

A  :

• . •

\ V#

Figure (3-5):
127° Electron energy analyser 
1 and 2 Inner and outer grid frame 
3 and 4 Inner and outer plates 
5 and 6 Assembly sections 
0 Ruby balls.
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dimensions of the analyaer are as follows. (For some details see 

Malik, 1980):

Radius of the inoer grid 

'* '* ” outer grid

Mean Radius r

Radius of the inner collector 

" " " outer collector

Slit width [Entrance]

Slit length [Entrance]

Slit width [Exit]

Slit length [Exit]

• ■

The insulation between grids was achieved by four 1.6 mm^ ruby 

balls placed on each grid structure and holding the plates by stain­

less steel screws passing through ceramic tubes. The analyser was 

isolated from the input and output slits which formed part of the 

analyser input and output optics by means of 2.4 mm« ruby balls 
placed between the input (and output) slits and the top and bottom sides 

of the analyser. The field section was 118® and not 127® to 

minimize the effect of fringing field at the input planes of the

analyser.
Figure (3-6) shows a schematic diagram of the whole analyser 

asseof>ly with associated input and output optics.

3,4, The Electron Gun Assembly
The elctron gun used was designed according to the principle 

described by Simpson and Kuyatt (1963), and Harting and Read (1976).

When the mutual repulsion of electrons in a beam is tsken into 

account, it is found that there is a msximum amount of current 

which is proportional to the three-halves power of the electron 

energy. When the volume is defined by two apertures of diameter d

».

*■ «

9.725 mm  ̂sC ••' r-•
14.750 nm •

■ \  ' * • 1« s
12.2375 am

t, '
’ if
vu •

6.125 am \*< *

20.80 am : •

1 am
. •

«
9

10.0 mm
i . ,« m' .
•

0.4 am * .. . i,.

10.0 mm
....

•• .•
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Channel 
Electron 

Multiplier

V  4

Figure (3-7): Channel electron multiplier with biasing
grids used as a photon detector 
(angular correlation measurements).

Vjf, •
<1 .

Figure (3-8):

Schematic diagram of the 
Faraday cup
(a) Section view,
(b) Front view.

1. Cylindrical holder
45 mm length and lOnm^.

2. Cylinder 30 mm length 
and 10

3. Slit 14 mm length 
and 2 mm width

4. Collector 1 mmî

5. Insulator

6. Collector connection.
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separated by a distance I as shown in figure (3-9) the maximum 

current which can be transmitted is given by (Simpson and Kuyatt

1963),

max 38.5e ' ( ||-) 3.9

where, 1^ ^  is in m A and E is in eV, (and d and I in mm). To 

obtain this maximum current, the electron beam must enter the volume 

so that in the absence of space charge the beam would focus to a 

point at the centre of the volume. In the presence of space charge, 

the profile has a shape as shown in figure (3-9) with a minimum 

diameter.
"Hie electron gun assembly consisted of four stages. The first 

stage (extraction stage) was formed by the cathode, a grid and the 

anode, and the other three stages lens systems to control the inten­

sity and direction of the electron beam. They consisted of three 

electrostatic einzel lenses L—1» L—2 and L—3 and three pairs of

deflection plates D-l,D-2 and D-3.
This arrangement of the electron gun was found when the system 

was taken over. It was working well for the electron energy of 

80 eV, but for lower energies the electron beam tended to be 

unstable and to split into double beams even shortly after the whole gun 

had been cleaned. It was therefore decided to reduce the number of 

smell apertures, which are particularly likely to be contaminated,

by removing the final stage of the gun.
The new three-stage arrangement of the electron gun which has 

been used in the present work is shown in figure (3-10 and 3-11). The 

first stage (extraction stage) is formed by cathode, grid and anode, 

the second stage is the acceleration and beam forming stage, whereas 

the third one is a deceleration stage.

1 Ml .

■ « •

< .
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i*

.yt.

Figure (3-9): Dashed lines show ideal space charge
limited beam profile required to 
saturate a given space.

%■ ■
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The focussing systsms consist of two einzel lenses L-1 and L-2 

fnA two pairs of deflection plates D-1 and D-2. An extra pair of 

deflection plates D-3 was used to correct any misalignment of the 

electron beam. All elements of the electron gun and of the analyser 

optics were made rectangular (25 x 50 mm*) and slits of widths 

between 0.4 mm and 5 nm and heights between 5 nm and 10 mm were used 

as apertures throughout • This should match the interaction region

to the height of the analyser and thus increase the sensitivity of 

the system. The elements of the electron gun were held in position 

by three 3 mm ceramic tubes which pass through all elements. They 

are clamped and mounted to the base plate by three stainless steel 

rods, threaded M2, which are inserted inside the ceramic tubes. The 

complete layout with dimensions is shown in figures (3-10) and (3-11).

Due to the use of very thin PTFE insulators (0.1 mm thick) for 

the isolation of the electrodes fig.(3—10) in the electron gun, 

there were electrical shorts and current leakage problems. These 

problems were solved by using mxca (0.2 mm thick) insulators instead

of PTFE.
The electrostatic lens elements were made from 0.1 mm thick 

molybdenum sheet, while the spacers and the deflection plates were 

made from duraluminium. The thickness of the spacers varies between 

1.25 and 12 mm. The apertures of the electrostatic lens elements are 

between 0.4 mm and 5 mm wide and between 0.4 and 10 mm long, the 

size of the exit slit is 8 x 2 mm*. Mica and PTFE layers were used

as insulation between the electrodes•
The filament was made from 0.1 mm0 tungsten wire and heated by 

. eon*e«at curr.nt po«r ropply (5A, 2OT). During th. pt...nt uork, 
1.25A %«. u*.d to h.«t th. fllMi.nt. Th. fUmiiont could b. r.pUc.d 
M « U y  without ««.cting th. r.ot of th. .Uctron gun .•■«ably by 
unscrewing the plate on the back of the gun.

I .

# •

\ ’ ••

• -V '
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All connection« of the electron-gun elements except those of 

the filament were made with PTTE-insulated, stainless steel wire of 

0.2 amp. The wire« were bunched together and carefully shielded with 

copper braid. The electron gun assembly was housed in an aluminium 

shield and any metal surfaces near the interaction region were sooted

to reduce reflectioM of electron».
The potentUl distribution panel ha. twelve 10-tum helipots 

(lOOkO.SW) connected in parallel to provide appropriate potentials 

to the elements in the electron gun. The power to this distribution 

panel was provided by a 0-425 volts power supply (Kepco, ABC 425M).

The voltage, required for the deflection pletea were derived 

from three separate power supplies using pair, of resistors to 

balance the plat, voltages with respect to the electron potential.

Fig. (3-12) shows the connections of the distribution panel and of

the deflection plate» in the electron gun.
If there i» a »hört circuit between the electrode» of the

electron gun or the 127® electron analy»er the increa«ed current 

might damage the potentiometer, especially when it is set near its 

«ctreme values. To avoid this, guard resistors of 42 ka each have 

been used U  series with the electrode connection..

3.5. Atomic Bean Source
The atomic beam emerging from the source should ideally be 

strongly peaked in the forward direction. A simple aperture source 

ha. the di.adv«itag. of a broad co.in. intensity distribution. The 

nu.*.r of particle, per s«:ond effusing into a solid «igl. dw at 

angle 6, with respect to the normal of the aperture is (R»».y. W63)

«»

II

I ,

N(6)du 2 2 - A  C 0 »  (0)d(d 3.10

where

•* • r -



> •

R R
r W V W - i ^ M V — 1 

R R

Figure (3-12): Schemetic diegrem of the voltage power
supplies for the elements of the electron 
gun, 127® electron analyser assembly and the 
deflection plates.
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N(9) du) is the number of particles per second 

effusing into solid angle du) from the 

source slit.

4

is the number of particles per 

volume in the enclosure.

is the average velocity of the 

particles.

and is the area of the source slit.

The total number of particles escaping through the aperture in all 

directions can be found by integrating equation (3-10) over the solid 

angle (dw - 2wsin0de where the integration goes from 9 * 0 to j ), 
resulting in N ■ ^  nv A.

The collimation properties of long channels have been studied 

theoretically by Clousing (1930) and experimentally by Becker (1961). 

Giordmaine and Wang (1960) showed that the beam properties are strongly 

dependent on the presssure conditions within the channel.

According to the relationship between the mean free path X 

inside the tube, the tube radius a and its length 1, different 

results for the beam Intensity and angular distribution are obtained.

It is assumed throughout that a»£, i.e. that the tube is long.

1. The limiting case at low gas pressure is that of molecular 

flow ( \ » 0 .  In this case, collisions between atoms can be 

neglected and the tube is called ’’transparent”. This case is 

the simplest from the theoretical point of view and gives the 

highest colllmtlon, but the throughput is limited by the 

condition X»l. The beam collimation is determined by the H •' • V '
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N(6) du it the number of particles per second 

effusing into solid angle dta from the 

source slit.

4

is the number of particles per 

volume in the enclosure.

is the average velocity of the 

particles.

and is the area of the source slit.

The total number of particles escaping through the aperture in all 

directions can be found by integrating equation (3-10) over the solid 

angle (dw - 2irsined0 %ihere the integration goes from 9 ■ 0 to j  ), 

resulting in N ■ ^  nv A.
The collimation properties of long channels have been studied 

theoretically by Clousing (1930) and experimentally by Becker (1961). 

Giordmaine and Uang (1960) showed that the beam properties are strongly 

dependent on the presssure conditions within the channel.

According to the relationship between the mean free path X 

inside the tube, the tube radius a and its length i, different 

results for the beam intensity and angular distribution are obtained.

It is assumed throughout that a»t, i.e. that the tube is long.

1. The limiting case at low gas pressure is that of molecular 

flow (X»4)• lo this case, collisions between atoms can be 

neglected and the tube is called "transparenf. This case is 

the simplest from the theoretical point of view and gives the 

highest collinmtion, but the throughput is limited by the 

condition X»l. The beam collimation is determined by the

I. *
ir

if
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geometry of the tube.

2. At higher pressure, collisions between the atoms occur and play 

a major role in determining the beam characteristics. In the 

case X«£, but with X>a at the low pressure end of the tube, 

the beam intensity can still be calculated. This is called 

intermediate flow, which is the most important for practical 

applications.
Giordmaine and Wang (1960) calculated the beam intensity on 

the axis I(0«O), under the assumption of intermediate flow for a 

long tube and found

1 ^
1(0-0) - --- ( ^ ^ -) molec sterad"^ sec“  ̂ 3.12

4 /—  ^
V 2  86

where N is the total flow rate, 6 is the atomic diameter and v is 

the average velocity of the particle in the beam. The beam density 

1(d) in the interaction region at a distance d from the source, is

proportional to ^  .d*
The average velocity of the particles in the beam is given by 

Ramsey (1956)
 ̂9irk T

y - C — -----  /
8A

cm sec-1 3.13

where
k is the Boltzman constant

T is the absolute temperature

is the Avogadro number, and 

A is the atomic weight.
In an equilibrium state the total effusion rate N is related to 

pressure in Torr and the overall effective pumping speed in

litres sec*^

-a

• '

I ■
• 4 ' 4
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N « 3.5 X 10^* . • Pq atom* aec*^ 3.14

The numerical factor converts the flow rate in Torr I sec“  ̂ into 

molecules sec*^.
In the present experiment the tube diameter was 0.5 cm and the 

length was 50 nm. The base pressure 1.0 x 10"^ Torr and the load 

pressure with gas injected up to 1.4.10"* Torr. Using an overall 

pumping speed of 540 £s*^ for air, the flow rate is according to 

equation (3.14).

N - 3.5 . 10^* . 540 1.4 X 10

■ 2.7 . 10^* atoms sec”  ̂ .

To calculate the beam density p in the interaction region at 

a distance equal of 0.5 cm from the end of the tube substitute the 

following values of the various parameters in equation (3.12)

I ■ .•

I. . .

6 - 2.82.10"* cm

V - 2.28 . 10“ cm sec"^

a m 0.025 cm

N m 2.7 . 10^* atoms sec"^

I - 1.42 . 10^* atonsem"^ sec"

P - 1 - 2.61 
V

. 10^* atonsem*

6.2 . 10^^ atone cm* for N,

In the present experiment helium is used instead of air. Taking 

into account the correction of the ion-gauge reading for helium, the 

increased pumping speed (estimated to be two times that of air), and 

the difference in the atom radius and the mean velocity compared with N,, 

the helium flux I and the density p in the interaction region at a 

distance of 0.5 cm from the end of the tube are estimated to be.
• « •' V '
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1.0 . 10^* Atoms cm“  ̂ sec“^

1.5 . 10^’ atoms cm“'.. 3

3.6. Tha Optical System for the Polarisation Heasurements 
3.6.1. Introduction

A new optical system has been built to measure the polarization 

correlation in this experiment. This system is drawn schematically 

in fig. (3-13). It consists of a lens of 50 mm^ and a focal length 

of 75 urn, which was fixed inside the excitation chamber above (and 

parallel to) the scattering plane, a mica quarter wave plate of 

20 v m  for X-501.6 nm (Halles Griot type 02 WRN003), a linear 

polarizer of 30.2 mm^ (Malles Griot type 03 FPG003), an interference 

filter with a peak transparency of 56Z (type MDTE DDOl), and a

photomultiplier tube (EMI 9883QB).
All the components apart from the lens are fixed to the end 

flange opposite to the main turntable flange. The quarter wave plate 

was fixed outside the vacuum chamber next to the quartz window and 

was removed for linear polarization measurements. The linear 

polarizer and the interference filter were mounted inside the brass

housing in front of the photomultiplier.
All the components of the photon detector assembly (except the 

i  plate), were mounted together and rotated about their axis to set 

the transmission axis of the linear polarizer to angles between 0 and 

180®. The angle a. of the linear polarizer axis is measured with 

respect to the incident electron beam direction in the same sense as 

the scattered electron angle 0,. In case of circular polarization
th. i  p u t .  <». in..rt.d U  front of th. U n M t  poUrlt.r 

{.low ucl. of th. X/4 p u t .  p«r«U.l to th. .Uetton b.«i dlr.etlon) out.id.

1 ™  

{ ¡ ^

J' >

0% . V





-55-

the brass housing of the photomultiplier tube. Figure (3-14) shows 

a schematic diagram of the brass housing and the mounting.

The coordinate system has been chosen so that the direction of 

observation of the light is along the y-axis, which is perpendicular 

to the scattering plane (zra plane). The Stokes parameters ni*

H2 ns associated with the linear and circular polarization 

measurements are defined with respect to this detector system.

I • '« *
3.6.2. Alignment

To measure the light, an accurate alignment of all optical 

components is necessary.
As shown in fig. (3-13), a plane-concave lens of 50 and 

75 tan focal length has been fixed inside the vacuum chamber in a 

position parallel to the scattering plane. The other components of 

the optical system %iere fixed to the flange facing the scattering

plane.
To set the alignment of the light beam, a light source was fixed 

in the centre of the interaction region (on the top of the helium 

nozzle); the lens position was then adjusted such that the image 

of the source was 2: 3 cm beyond the quartz window. This position of 

the optical lens (98 ™i from the source point) gives an image 
magnification of 3. A photon detector has been mounted out­

side the vacuum chamber, the interaction region being viewed through

a quartz window.
3.6.3. The Photomultiplier

For the polarization correlation measurement, a photonmltipUer 

tube EMI 9883 QB.cathode # 46 mm) was used to detect the radUtion 

emitted from the excited atoms. The EMI 9883 tube has a bialkali 

cathode and fourteen dynode stages. The first dynode is specUlly

•• '
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prepared to give a high secondary emission for the photo-electrons 

inH to give improved single electron resolution.
The quantum efficiency of a photocathode to light of wavelength 

X is defined as the number of photoelectrons emitted from the photo- 

cathode per incident photon. This ratio is usually expressed as a 

percentage. According to the manufacturer’s catalogue the quantum 

efficiency of the photocathode used in the EMI 9883 tube is approxi­

mately 15Z for light of the wavelength 501.6 nm.
The typical pulse height measured at the operating voltage of 

2100 volts was 0.25 volt. The pulse height distribution is shown 

in figure (3-15) and the pulse shape in figure (3-16).
The rise time (lOZ to 90Z) of the output pulses is approximately 2 ns.

3.6.4. The Voltage Divider
The photomultiplier must be correctly biased. This can be 

achieved by using an independent voltage supply for each stage, but 

it is more convenient to use a voltage divider network, consisting 

of a series of resistors between earth and high potential. The 

current flow in this divider network establishes a series of potentials 

which are applied to the dynodes and focussing elements of the photo­

multiplier. These potentials create the electrostatic fields required 

to focus the photo electrons on the first dynode and to accelerate the 

electron cascade between successive dynodes thereby providing current

amplification.
U s U g  «n op.r«ting volt«g. of 2200 V, th. gain of tb. photo- 

mltiplUr i. of th. ord.r of lo’. Th. charg. indued on th. anod. 

by a singla al.ctron .mittad from th. ethod. la givan by

I , *

, t

Q • e • gain
- 1.6 . 10-‘* . lO’ - l.i • 10-“  C. 3.15

Th. avarag. anod. currant I, for an aaaumad naxinm count rata of 1 *' ■ ;•
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\

t
T I ME  0 1 0 2 0 0  CUR 0 5 1 2 * 0 1 0 2 0 0

Figure (3-15): The pulse height spectrum of the photo­
multiplier (EMI 9883 BQ) showing a clear 
single electron peak. Discriminator 
level was set at the low point of the 
distribution as indicated by the arrow.

Figure (3-16): Photomultiplier signal shape, measured by
oscilloscope (454A), rise time ^ 2 ns.
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1MHZ is 1.6 X 10“* A, and the maxinum anode current during a 

pulse lasting approximately 5 . 10“*sec is 0.32 . 10“*A. A voltage 

divider current of 0.026 • 10 *A has been chosen which is compatible 

with the average anode current and causes little heating of the 

resistor chain (total power I>R - 0.03 watt).

In order to cope with the large transient current during the 

pulses without voltage breakdown»InF capacitors have been inserted 

in parallel to the chain over the last 4 dynode stages.

The multiplier EMI 9883 has been specially designed to provide 

good pulse height resolution for single electrons ejected from 

the cathode by photons. Such single electron resolution requires 

large magnification in the first stage of the multiplier, and a 

maximum V(K-D^) of 600V is specified. In the present set up V(K-D^) 

was chosen to be 300V.

The transit time spread is inversely proportional to the inter- 

dynode voltage (Poultney 1972). Hence this should be as large as 

possible, consistent %rith the prevention of breakthrough, to achieve 

minimum possible rise time. This also gives maximum possible gain.

It should be noted that besides the pulse rise time, there is 

another factor which will affect time resolution. This is the 

"jitter" in the transit times of successive photoelectrons due to 

their different possible trajectories. These differences arise 

predominantly from the variation in position and velocity of the 

photoelectron as it is emitted from the photocathode. This is 

another reason to use a large R-D^ voltage.

Figure (3-17) shows a schematic diagram of the voltage divider 

used in the present experiment.

•* . *•
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3 • 7. P<t<ct^on_of__vuy_photon8_and Scattered Electrons
3.7.1. Introduction

Two channel electron nultipliers [CEM] were used in the angular 

correlation oeasurenients, one to detect the scattered electrons 

having passed the 127® analyser assembly and the other to detect the 

radiation emitted by the excited atoms.

Fis* (3*18 and 19) show schematic diagrams of the channeltron 

multiplier for photons and for electrons respectively. All earth 

connections are joined inside the detector housing and one connection 
is lead outside.

3.7.2. VUV Photon Detection

In the angular correlation measurements the radiation emitted 

following the collision process was detected by a channeltron 

multiplier used as a photon detector. Three grids, each made up of 

four tungsten wires 0.1 mm^ (transparency 90Z per grid), were 

mounted at the entrance of the detector housing to prevent charged 

particles from entering the CEM. Grid 1 was connected to earth, 

grid 2 to <*>10 volts and grid 3 to -135 volts. The channeltron 

multiplier and decoupling circuit were housed inside an aluminium 

cylinder which was fixed to one layer of the turntable assoobly.

The HV to the detector was provided by 6KV power supply (Fluke model 

408B) through a filter network as sho%m in fig. (3-18).

The detector was normally operated at 3200 volts. Because of 

its low efficiency at wavelengths above 100 nm it was used for 

the detection of uv photons emitted in the decay of the 2^P and 

3^P states of helium radiating at 58.45 nm and 53.7 nm respectively.

3.7.3. Scattered Electron Detection
The channel electron multiplier used to detect the scattered 

electrons is held in a PTFE block and placed 1 nn from the last 

slit of the output optics of the analyser. Keeping the channeltron 

®^®** ^® ^ke slit ensured that most of the electrons were
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collected by the detector end at the same time prevented stray 

electrons from entering the channel electron multiplier. The front 

of the electron detector is biased to accelerate the electrons to 

energies giving best detection efficiency.

The high voltage for the channel electron multiplier was 

provided by a 6 kV power supply [Fluke Hodel 408B] through a 

filter network C2C3R2R3connected to the high voltage electrical 

feedthrough. A capacitance Ci was used to block the H.V. from 

the signal line and the resistance B is the working resistance 

of the circuit.
Figure (3-19) shows a schematic diagram of the filter net%K>rk 

and the channel electron multiplier connections.

3.8. Coincidence Circuit
A block diagram of the timing electronics is shown in fig.(3-20) 

together with the general layout of the system for angular correlation 

measurements.
The signal from each detector (electron and photon) is amplified 

by fast amplifiers (dual bipolar linear amplifier Le Croy Model 333) 

and fed into a constant fraction timing discriminator "CFD” (ORTEC, 

Model 473). The electron timing pulse from the CFD starts the ramp 

of a time-to-amplitude converter **TAC” (ORTEC Model 467), and the 

photon timing pulse* suitably delayed, is used to stop the ramp.

The amplitude of the TAC output signal is proportional to the time 

difference between the stop and start pulses. A multichannel 

analyzer (NORLAND INO TECH 5300) is used to record the resulting 

pulse height spectrum from the TAC. All the timing electronics was 

placed at a short distance from the vacuum chamber to avoid pick-up

noise.

»
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3.9. Interlock System

To ensure safe operation the apparatus is controlled by an inter­

lock system which acts when either the pressure inside the vacuum 

chamber rises or the temperature in the diffstack pump increases due 

to water failure. Any such failure causes a complete shutdown of the 

system. This shutdown involves the isolation of the vacuum system 

from the pumps and the disconnection of all electrical supplies to the 
system.

The system remains switched off until the interlock system is 

reset. The interlock system has responded successfully on several 

occasions.



-67-

CHAPTER IV
MEASUREMENTS AND DATA ANALYSES 

4.1. Electron Signal

The Alignment of the Electron Beam and the Analyser

The alignment of the electron gun, Faraday cup, 127° electron 

analyser and the helium nozzle is carried out visibly as follows:

A. Insert a piece of wire of 0.2 mm^ into the gas nozzle 

to mark the centre of the interaction region.

B. Remove the cathode plate from the electron gun and look 

through the apertures of the gun to the target from the 

filament side. Adjust the gun so that the target can be 

seen exactly in the centre of the rectangular slits.

C» Place the 127® electron analyser in straight-through 

position opposite the electron gun (i.e. e«-0) and look 

through the hole in the back plate of the analyser. Adjust 

the analyser mount in such a way that the centre of the 

interaction region and at the same time all gun apertures 

Are aligned in the centre of the rectangular apertures of 
the analyser input optics.

D. Rotate the analyser over the full angular range and ensure 

that the wire is always seen in the centre of the analyser 

apertures•

E. Place the Faraday cup at 0® and look to its collector from 

the cathode side. Adjust the Faraday cup in a straight 

line with the slits of the electron gun intercepting the 
target.

4.1.2. Performance of the Electron Gun

The cathode of the electron gun (tungsten wire of O.I mm4) was 

heated by a current of 1.2A. The voltages applied to the electrodes 

ware then optimised by monitoring the electron beam at the focussing 

•tages of the electron gun and finally at the Faraday cup. The

1 ,i

«I . *' *■
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I

electron beam current measured at the Faraday cup which was biased 

♦15V with respect to earth was typically 0.6 uA and the beam 

diameter mm in the interaction region, with an angular spread of 
2° as shown in the figure (4-1)

4.1.3. The 1270 Electron Analyser

The voltages applied to the elements of the analyser input and 

output were optimized to focus the energy-analysed scattered electrons 

on to the entrance of the channel electron multiplier which was biased 
at ^ lOOV with respect to earth.

An angular scan of the primary beam current transmitted through 

the analyser was made as shown in figure (4-2).

4.1.4. Energy Loss Spectrum

The scattered electrons transmitted through the analyser opera­

ting at an energy of 9.6 eV were detected by the channel electron 

multiplier and an elastic spectrum was obtained on the MCA in its 

multichannel scaling mode, by scanning the reference potential of 

the analyser with the ramp voltage supplied by MCA.

To obtain the inelastic spectrum, e.g. at an energy of 50 eV, 

the analyser was tuned to transmit the scattered electrons which 

had excited the helium atoms and suffered an energy loss of 22.8 eV 

from the 3^Px excitation. The reference potential of the analyser, 

and with it the potentials of all analyser elements»were varied 

around this value by the rasip voltage supplied by the MCA, so that 

the energy loss spectrum was obtained. A check was made with the 

ratemeter that the count rate varied with the energy of the detected 

electrons.
The elastic peak and the energy loss spectra are shown in 

figure (4-3) for electron impact energies of 50 and 160 eV at 

electron scattering angles 40^ and 71^, respectively. The combined
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Figure (4-1): Angular dietribution of the electron beam measured
by the Faraday cup at an incident energy of 80 eV. 
The FC resolution is ^ T .
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Figure (4-3): Typicel elastic and energy loss spectra o£ helium.
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resolution of the electron analyser and the electron gun is obtained 

by measuring the FWHM of the energy loss peak. This was found to be 

approximately 0.8 eV Fig.(4-3 ). The larger part of this width is 

caused by the tungsten filament used as the cathode of the electron 

gun.

The energy loss spectra shows three peaks corresponding, n*2, 3 

and 4 respectively. In the present work the 2^P and 3^P states were 

studied.

The energy levels of He are shown in figure (4-4).

4.2. Photon Signal

4.2.1. Alignment of the Photon Detector

The alignment of the photon detector for the angular correlation 

measurements was carried out as follows: The photon detector was 

placed at 0° (in front of the electron gun) and the entrance 

aperture of the photon detector was observed from the cathode side. 

The alignment is correct %ihen the centre of the entrance aperture 

coincides with the centre of the apertures of the electron gun 

intercepting the helium nozzle.
The alignment of the optical system for the polarization 

correlation oieasurements is described in chapter (3.6.2.)•

4.2.2. Photon Detection
Stray photons cause a serious problem in all light intensity 

measurements. Such photons either come from light sources inside the 

vacuum chamber or fron outside.
The outside effect can be excluded through careful design of 

the photomultiplier housing. Great care has been taken in the design 

of the brass housing its attachment to the system, to keep the 

photomultiplier tube in complete darkness.

; I

! . •
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The two light sources inside the vacuum system are the cathode 

of the electron gun and the ion gauge filament* To minimise the 

reflected cathode light, the helium nozzle and the interaction 

region were carefully sooted, and the gun was adjusted in such a way 

that any direct light from the cathode would pass just above the top 

of the helium nozzle. The ion gauge filament was thoroughly shielded. 

The total dark current was ICX) Hz, 52Z from the cathode light of the 

electron gun filament, 27Z from the ion gauge filament and 21Z from 
the tube.

4.2.3. Single Photon Polarization

The transmitted light observed in y-direction is expected to 

be partially polarized either parallel or perpendicular to the 

direction of the electron beam (z-axis). For 80 eV the polarization 

should be • 23Z (Moustafa (1968)), so that the minimum single photon 

count rate is expected for a transmission angle of the polarizer 

of a > 90^, and this was checked by measuring the single photon rate 

for a between 0^ and 180^. The general cosine function (eq. 4.6) 

has been used to fit our data and the result is shown in Figure (4-5)• 

The minimum single photon count rate is obtained at a > 91^.

This means the setting of the linear polarizer axis with respect to 

the electron beam direction is correct.

4.2.4. Resonance Radiation

Resonance trapping or ioqprisonment of radiation occurs when the 

radiation emitted from the excited atoms is absorbed by ground state 

atoms before reaching the detector (Hoiseiwitsch and Smith 1968).

Such an effect may significantly alter the nature of the radiation 

emitted since a state populated by this process(instead of by direct 

collision) will re-emit the light with an apparent depolarization of 

the primary impact radiation and with time delay. To avoid this

•' .
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process, the gas pressure inside the excitation chamber should be 

kept in the linear region of the relation between the photon intensity 
and the gas pressure.

The coincidence signal for the 3^Pi state of helium has been studied 

as a function of the gas pressure for a constant incident electron energy of 

80 eV and a constant electron scattering angle of 6^ • 40^. The measure­

ment covered the pressure range of 0.3 . 10”® Torr to 2.0 . 10"® Torr 

as shown in fig. (4-6). No reduction of the normalized coincidence 

rate to the total number of the electrons was found in this range 

of pressure.

In the polarization correlation measurements the pressure has 

been kept below 2.0 . 10”® Torr, to avoid any effect on the data 

collected due to resonance trapping. Any resonance trapping should 

increase the apparent width of the peak; in our measurements we did 

not find any change of the %ridth.

i;.

■•t

4.3. Coincidence Time Spectra and Analysis

4.3.1. Coincidence Signal
The geometry of the electron-photon coincidence experiment has 

been shown in Figure (2-1).

The electron signal was fed into the start terminal of the TAG, 

while the photon signal was fed into the stop terminal of the TAC 

through an appropriate delay.
Electrons and photons from the same event have a definite time 

correlation resulting in a coincidence peak on a background of un­

correlated chance coincidences.
Typical time correlation spectra obtained from angular correla­

tion measurements for the 2^P - l^S^src

shown in figure (4-7) taken at different electron scattering and
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Figure (4-7): Coincidence line correlación ipeccra £or che He
2^Pi - (58.4 mn) cransicion (angular correla­
ción meaturemenCf) for an eleccron incidenc energy 
o£ SO eV.
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photon angles.
Coincidence time spectra obtained from electron-photon polari­

zation correlation measurements for the 3^P - 2^S transition are 

shown in figure (4-8) taken at different scattering and linear

polarization angles.
The true coincidence peak is spread over several channels by 

the finite decay time of the excited atoms of a few nsec and the 

resolution time of the electronic system ( ^ 5  nsec).

4.3.2. Coincidence Analysis
The following method was used to calculate the number of true

coincidence counts and the error in the number of true coincidences.
Figure (4-9) shows a schematic diagram of the coincidence spectrum

in the MCA. It is divided into three regions X 2 - xi, xa - X2 and 
xi* - X 3, with corresponding coincidence counts Ni, N2 and N3 where,

Ni and N3 are related to the chance coincidence events.

I-

% P

} •

The number of random coincidences B under the coincidence peak is

given by

B
(Ni ♦Ns) (x3 - xa) 

( X 2  “  X l )  ♦ (Xl» -  X3>

4.1 '• * *.•

The number of true coincidences, is

- N, - B 4.2

The error (standard deviation) of the number of real coincidences It

given by

- \ / n, ♦
(x s -  X 2)

(X2 -  Xl) ♦ (xi» -  xa)

 ̂a
(Ni+Na) 4.3 ^ •

h  ̂ 'ifc'
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- 80 cV
-  20«

- 65®
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• 0.66 ± 0.07 
» 1.9 KHz
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R

- 160 eV
- 60°
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» 111.1 ± 32.9 
• 0.55 ± 0.16
- 140 H*
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- 180377

- 120 eV 
• 40®
- -45*
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Figure (4-8): Correlation spectra of the Ha 3^P - 2^S (501.6 am)
transition (polarization correlation maasuremants).
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The numbers and 6N^ were normalised Co Che Cocal number

of scaccered elecCrons, coIlecCed during each run so chac Che

effeccs of flucCuaCions of Che elecCron beam currenC, Che CargeC

densicy and of changes of Che elecCron deCeccor efficiency are largely
N 6Neliminaced. The resulcing values of ^  and have been used Co^  Ne

derive Che values of X and |x| in Che angular correlación measure- 

mencs and of Che SCokes paramecers in Che polarización correlación 

measuremencs. Where appropriate, compuCer ficcing roucines have 

been employed. • *

4.4. Analysis of Che Angular CorrelaCion DaCa
A series of nine coincidence specCra measured ac differenC 

phocon angles was used Co decermine Che angular correlacion curve 
for one scaCCering angle. Approximacely 24 hours of daCa accumu- 
lacion yielded one coincidence cime speccrum ac large scaCCering 
angles. The cocal number of coincidences corresponding Co Che 
measured coincidence peak is decermined from Che area under Che peak 
in a cime speccrum as described in (Chapcer 4.3).

From Che normalised coincidence races as a funccion of Che 
phocon deCeccor angle Che excitacion paramecers X and |xl fo r  

each angular correlacion curve (see 5.1) are decermined by ficcing 
equacion (2.15) Co Che experimencal daca.

The resulcs reporced in figure (4-lOa and b) are veighced 
averages of several measured values according Co Che following
equacion

'̂ i 1 4.4

In Che calculaCion of Che error in Che averaged values we cake inco 

accounc Che errors of Che separace values. The uncerCainCy in che
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• •

Figur« (4-10): Typical electron photon anculer correlation reeulte
in helium shoving the normalised coincidence count 
rate aa a function of electrons scattering angle« 
(a) all oMasured values« (b) average values. fc.v '
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mean y (equation 4.4) is estimated as follows

4.5

As an example of the present angular correlation measurements 

the weighted average values for 0 ■ 20® are shown in figure (4-lOb).

^ »5• Polarization Correlation Analysis

For each scattering angle the light intensity 1(a), as a function 

of the angle a between the transmission axis of the linear polarizer 

and the electron beam direction, is derived from the area under the 

coincidence peak (evaluated according to chapter 4.3.1. and normalised 

to the total number of scattered electrons). The number of true 

coincidences represents the light intensity polarised under the 

angle a (eqiiation 2.23).

The general function for linear and circular polarization measure­

ments is

I

* 4
■;S
•• • * •

< »

F • A(I B cos2a C sin2a) 4.6

m i

where B and C represent the values of the Stokes parameters na and ni 

respectively in the linear polarization measurements and of na and ri2 

respectively in the circular polarization measurements.

Each Stokes parameter is obtained from two linearly independent 

measurements (a differing by 90®) in the same conditions. The measurements 
for each polarizer setting, i.e. 1(a), at large electron scattering angles

took approximately 24h. and are obtained from similar measure­

ments at a • ± 45^ after a —  had been inserted with its marked axis4
(slow axis) parallel to the electron beam axis in front of the linear 

polarizer.

4 :
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4.5.1. Linear Polarization Measur^^mpnts

The linear polarization measurements are obtained without the 

^  plate in the optical system. The angle a of the linear analyser is 

measured from the positive Z-axis (the electron beam direction) in the 

same sense as the scattered electron angle. In most cases the Stokes 

parameters m  and ns (chapter 5.2) were derived directly from the 

measured coincidence rates 1(45), 1(135), 1(0) and (90) using 
equations (2-20 and 2-21), but in some cases measurements were taken for

approximately eight values of a and the results were fitted to the 

general function equation (4-6). The excitation parameters X and i x 1 
were derived from the measured Stokes parameters m  and na as follows

. m S). - 1(135) . ,, 
1(45) ♦ 1(135)

4.7

1

na 1(0) - 1(90) 
1(0) 1(90)

2X - 1 4.8

Figure (4-1 la and b) show typical electron-photon polarization corre* 

lation curves for the 3^Pi state of helium for the electron scatter­

ing angle 50^ at incident electron energies of 80 and 120 eV 

respectively.

The background was the most difficult problem in the present 

measurements, especially at low energies and small scattering angles.

At an incident electron energy of 50 eV the electron-photon polari­

zation measurements could only be carried out for 6^> 45^ which ise
just outside the background electron range.

4.5.2. Circular Polarization Analysis
Figure (2-3) showed a schematic diagram of the photon observa­

tion in the y direction which is perpendicular to the scattering plane 

(s-x plane), and of the arrangement of the optical system used In this 

experiment.
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■>

Figure (4-11) : Typical «lectron-photon polarisation correlation
results in helium have the normalized coincidence 
count rate as a function of the linear polarizer 
angle a for different incident energies for the 
electron scattering angle 6g«50^.
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In order to create right hand circularly polarized light, the 

direction of the E vector of linearly polarized light has to have an 

angle of -*̂ 5° with the slow axis (z-directioiO of the ^  plate. The 

light can be split into two components with equal amplitude along the 

z and X directions (figure 4—12a). The z— and x—components will be 

in phase then they enter the ^  plate and the x-component is ahead of 

the z-components by 90® (one quarter wave) on exit from the ^  plate. 

Thus the superposition of the two components leads to a clockwise 

rotation of the E vector with constant asq>litude (right hand circularly 

polarized light). Conversely, if the E vector makes an angle of 135^ 

with the slow axis of the ^  plate (figure 4-12b), it will split into 

two components along the z- and x-directions which now are 180^ out of 

phase when they enter the ^  plate. The ^  plate adds 6 - 90® to the 

x-component and hence the x-component will be ahead of the z-component 

by 270®. Thus the superposition of the two cocq)onents leads to anti­

clockwise rotation of the E vector with constant amplitude (left hand 

circularly polarized light).

For the analysis of right hand circularly polarized light, suppose 

the circular polarized light to be coming out of the plane of the paper 

(y-direction). The direction of revolution of the Î vector is clock­

wise. It be decomposed into two orthogonal consonants along x and 

z, the x-component being a quarter of a period in front of the z- 

component. Suppose now the components transmitted through the ^  plate 

(figure 4-12c). After retardation the x-component is 6 ■ 180® ahead 

of the z-component and the superposition of the two components will 

give linearly polarized li^t with the vector at <•’135® with respect 

to the z-axis.
Thus, light passing through the linear polarizer with its 

transmission axis at a ■ 135® was right hand circularly polarised 

light when it entered the ^  plate and ll^t passing through the
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(a)

RHC

(b)

t'-.

LHC

Z (Slow axis)

(c)

Figure (4-12): Creetion and analytia of circularly polarized
light.

(a) and (b) tho«ring the ^ vector incident on the r  plate and
the resultant circular polarization,

(c) shoving the circular polarization incident on the 4  plate
and the resultant 1 vector on exit from the 
X/4 plate.
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CHAPTER V

RESULTS AND DISCUSSION

5.1. Angular__CorrelAt^on tteasur^Tn^nts

The angular correlation measurements in the present work have 

been carried out on the 2^P and 3^P states of helium for the electron 
impact energy of 50 eV.

Figures (5-1 to 5-5) show the angular correlation curves for the 

2^P state, measured at different electron scattering angles. Figures 

(5-6 to 5-8) show angular correlation curves for the 3 ^  state. The 

full curves represent least squares fits to the experimental points 

using equation 2.15 as fitting function. The computer fits provide 

values for X and |xl end these are tabulated in Table (5.1) as a 

function of the electron scattering angle for the 2^P and 3^P states. 

Also included are the values of the moduli of the orientation

vector where 0^®^ ■ -(X(l-X)Jsinx and the values of the compon-
coXents of the alignment tensor A which are given as follows

xol

and

(l-3X)/2

(X(l-X))^cos

(X-D/2

I •

• S

The measured values of X for the 2^P state are sho%m in figure 

(5-9) together with previous experimental results of Eminyan et al. 

(1974), Tan et al. (1977) and MacAdams et al. (1980) and with 

theoretical calculations of Thomas et al. (1974) at 55.5 eV. Apart 

from the value at 8^ - 20^ our points agree well with the experixnental 

results of MacAdams etal. (I960).
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Figure (5-1) !Ul

4 •

■ .<«
Figures (5-1 to 5-5):

Electron-photon angular correlation results for the 2^P state 
in helium showing the normalized coincidence count rate as a 
function of photon scattering angle for electron scattering 
angles of 37^, 50°, 60^, 82° and 102°, at an incident 
electron energy 50 eV. The solid line curves are chi- 
squared optimization of equation (2.15) to the experimental 
data. Error bars indicate ±1 standard deviation.

..I
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Figure (5-2)
-I - "' • I
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Figure (5-4) >■
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Figure (5-6)

11

i1

Figures (5-6 to 5-8):

Electron photon enguler correletions for the 3^P state in helium 
shoving the normalised coincidence count rate as a function of 
photon scattering angle for electron scattering angles of 
35^, 45^ and 55^• at an incident electron energy 50 eV. The 
solid line curves are chi-squared optimization of equation (2.15) 
to the experimental data.
Error bars indicate ±1 standard deviation.



Figure (5-7)
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Figure (5-8)

Photon Angle (Deg.)
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Figure (5-10) shows the experimental values of X for the 3^P 

state at an incident electron energy of 50 eV. For comparison X 

values derived from present linear polarization measurements (see 

4 .5 .1 ) are shown for the electron scattering angles 35°, 45° and 55°. 

The present results are compared with experimental results of 

Eminyan et al. (1975) and with theoretical calculations of Meneses 

et a U  (1980) and Scott et al. (1976). Apart from the scattering 

angle 35°, there is good agreement between the values of X obtained

in the present work and our results link well to the other experi­
mental points.

Figure (5-11) shows the variation of |x| for the 2^P state as a 

function of the scattering angle. Again our results are compared 

with those of Eminyan et al. (1974) at energy 50 eV and of MacAdams 

et al. (1980) at energy 51.2 eV. The results agree over the vhole 

range of electron scattering angles, considering that the error bars 
represent one standard deviation.

Figure (5-12)shows the variation of |x| for the 3^P state as a 

function of the electron scattering angle along with some of the 

values derived from the linear polarization measurements. The present 

results arc compared with experimental values of Eminyan (1975) and 

with the theoretical calculations of Menescs et al. (1980) and Scott 

et al. (1976). Within the range of scattering angles there is good 

agreement between the present results and the theoretical curves.

»•

5.2. Electron-Photon Polarization Correlations 

5.2.1. Linear Polarization Ileasurements

The measurement of the linear polarization correlations in the 
present work has been described la chapter (4.5.2).

The Stokes parameters m  and m  for the linear polarization 

correlation are derived using the aquations (2.34 and 2.33) and the
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Figure (5-12): Variation of |x| for che 3^P tcace at a function of the
electron scattering angle for 50 eV. #  present values 
(Angular correlation measurements). ▲  present data 
(linear polarization measurements, O Eminyan et al.
(1975),^---------  Meneses et al. U980);

— Scott et al. (1976).
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oeAsured values arc listed in tables (5-2 to 5-5),

Figures (5—13 and 5—14) show the results of the linear polari­

zation measurements at incident electron energies 50, 80, 120 
160 eV.

The only other measurements are carried out for 80 eV at small 

electron scattering angles (Standage and Klcinpoppen» 1976 and 

Beyer et al. 1984) . These results are shown in figures (5-13 and 
5-14) along with the present values.

5,2.2. Circular Polarization Results

The circular polarization measurements were carried out by 

inserting the quarter wave plate in the optical system with its slow 

axis parallel to the electron beam direction. The corresponding 

values of the Stokes parameter ri2 are determined by using equation (5.35) 

and the values for all measured energies are listed in tables (5-2 
to 5-5) and shown in figure (5-15).

The results of ni at 80 eV are cooq>ared with experimental results 

at small scattering angles by Standage and Kleinpoppen (1976) and 
Beyer et al. (1984).

The curves in figure (5-15) show that the circular polarization 

approaches the maxinmn value for all measured energies at the electron 

scattering angle of 45® ± 5®. The figure also confirms that there is 

a sign change of the circular polarization for all measured energies 

and thus clarifies this point which had been much disputed over the

last few years (Madison et al. (1983), and Andersen et al. (1984 and 
1985)).

The circular polarization is linked to the orientation paramter 

and the orbital angular momentum < Ly > by nz ■ "2 0 ^ ^  ■ < Ly > , 

where < > is the only non-zero component of orbital angular oiomentum

transferred to the atom during the collision. The values of the
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Table (5-4), E - 120 eV

ni ri3 1(0) - 1(90) 
l(0) ♦ 1(90) r\2 R̂HC “ IlHC

35 -0.325 ± 0.168 0.090 ± 0.112 -0.381 ± 0.251
40 -0.259 ± 0.112 0.189 ± 0.096 -0.496 ± 0.106
50 0.005 ± 0.192 0.717 ± 0.108 -0.374 ± 0.182
60 0.741 ± 0.397 0.780 ± 0.220 0.242 ± 0.216
70 0.538 ± 0.467 0.891 ± 0.216 0.308 ± 0.248
80 0.684 ± 0.514 0.501 ± 0.286 0.714 ± 0.514
90 0.230 ± 0.367 -0.274 ± 0.443 0.882 ± 0.485

Measured Stokes parameters for the 3^P state in helium, for the
electron incident energy 120 eV.

Table (5-5), E - 160 eV

e. _ _ 1(45) - 1(135) 
1(45) ♦ 1(135)

_ _ 1(0) - 1(0) ^ _ ^RHC " ^LHC
l(0) + 1(90) IrHC * ^LHC

28 0.441 ± 0.217 0.293 ± 0.143 -0.451 ± 0.163
35 0.290 ± 0.223 0.320 ± 0.210 -0.464 ± 0.342
40 0.156 ± 0.147 0.597 ± 0.203 -0.746 ± 0.486
45 0.138 ± 0.288 0.696 ± 0.422 0.287 ± 0.629
50 0.219 ± 0.348 0.576 ± 0.361 0.292 ± 0.244
55 0.598 ± 0.406 0.581 ± 0.418 0.643 ± 0.307
60 0.739 ± 0.212 0.582 ± 0.274 0.807 ± 0.438
70 • 0.598 ± 0.230
80 0.444 t 0.294
90 0.715 ± 0.365
100 0.537 ± 0.365
108 0.311 ± 0.251

Maasured Stokes persmeters for the 3^P state in helitim, for 
tlectron incident energy 160 eV.

•  «'.*'>41^^'' '  IK.':*

Ktr > ■■
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Figure (5-U): The linear polarization Stokes parameter m  
a function of the electron scattering angle for the 

measured impact energies. The present values •  are 
c h a r e d  with previous linear polarization measurements 
at 80 eV by Standage and Kleinpoppen (1976) D  
»nd Beyer (1984) ^  .
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impact energies. The present values •  ,
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Standage and Kleinpoppen (1976) □  » and
Beyer (1984) A  •
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Figure (5-15): The circuler polerizetion Stokes pereiaecer
n, es e function of the electron scettering 
engle for the meesured inq)ect energies.
The present velues #  ere coopered with 
previous circuler polerizetion results n« 
et 80 eV by Stendege end Kleinpoppen (1976) 
end Beyer (1984) ^  .
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•CAttcring angl« at which th« present results show the sign change 

of < Ly > are listed in table (5-6) and drawn in figure (5-16) as a 

functi.on of the incident electron energy. The neasurenients show 

that the scattering angle at which the sign changes decreases with 

increasing energy in line %rith the expectation from theoretical 

calculations (Madison, 1983). Furthermore, within the measured 

energy range there appears to be a linear relation between the angle 

of the sign change of < Ly > and the incident energy.

The question of the possible sign change of the angular momentum 

< Ly > had been discussed for several years and a nusd>er of related 

measurements were carried out by other groups concurrently with this 

work. Williams (1983) confirmed a sign change of the Stokes parameter 

Ti2 somewhere between the two electron scattering angles 10^ and 90^ 

for the 2^P state of helium at an energy of 81.2 eV. Again on the 2^P 

state of helium Beijers et al. (1984) concluded from angular correlation 

measurements at 80 eV that the sign of the angular momentum changes 

at d^«65°. They speculated that there mi^t be no sign change for the 

3^P state ( and did not find any). Recently Khakoo et al. (1985) 

using the polarization correlation method on the 2^P state of helium, 

confirmed the sign change for incident electron energies of 50, 60 and 

80 eV.

The behaviour of the angular momentum < Ly > has been linked to 

the following model. At the Stokes parameter is restricted

to zero by angular momentum conservation rules and only the 

magnetic sublevel is excited. At 8^ around 45^ h2 nearly equals -1 

and this there is a predominance of • <*>1 excitation. At this 

angle, the projection of the charge cloud of the excited £  state 

onto the scattering plane is almost circular and rotates counter­

clockwise (Anderson et al., 1984).
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T*ble (5-6); ^gle of the sign change of < > as a function of
incident energy. ^

Incident
Energy

Range of Scattering 
Angles

Angle of 
<L> - Change

50 eV 35 105 97 ± 5

80 eV 27.5 90 75 ± 5

120 eV 45 -- 90 65 ± 5

160 eV 28 —  60 47 ± 5

Figure (5-16): Variation of angle of the sign change of < L > as a function
of the incident energy. ^
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As ^2 become« zero at intermediate «cattering angles, the charge 

cloud forms a dumb-bell shape, becoming close to circular again at 

larger scattering angles, but now rotating clockwise. Madison (1985) 

has pointed out that this change in the dynamic rotation of the n^P 

state is due to a manifestation of the change in the relative strength 

of the attractive scattering potential seen by the electron and not 

due to a competition between attractive and repulsive interactions as 

had been suggested earlier by Steph and Golden (1980).

Furthermore, the complete analysis of the electron photon polari­

zation measurements in figure (5—17) shows the magnitude of the vector 

polarization (equation 2-28) for all measured energies as a function 
of the electron scattering angle.

Since the excitation of the n^p states is coherent we expect the 

light to be completely polarized with P ■ [n̂  *** nj nf ]̂  « 1.

Blum (1981) points out that this is not in general true,

even if the excitation is completely coherent. In general |p| » 1

only for a transition between two pure states such as n^P - l^S.

Apart from the values for the incident energy 50 eV, the results 

in figure (5-17) show that the degree of polarization is equal to 1.

At 50 eV the values of |p| appear to be consistently low but still 

overlap with the value of 1 within the error bar (one standard 
deviation).

• I j

5.2.3. The Excitation Parameters

The excitation parameters X and x derived from the measured 

Stokes parameters using equations (2.33 - 2.35).

The measured variation of X with the scattering angle for the 

state of helium is presented in figure (5-18) and listed in 

table (5-7a-d) for all measured energies. The curves for
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0  20  4 0  60  80  100

Electron Scattering Angle (Deg)

Figure (5-18): Feraaeter i for Che excitation
0

of Che 3^P e te te  of helium  as a fu n c tio n  o f the 
e le c tr o n  s c a t t e r in g  angle fo r  the d if f e r e n t  v a lu e s  
in c id e n t  en erg y.
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Table (5-7a) Table (5-7b)

1 \
X(E - 50 eV)

38 0.714 ± 0.18

45 0.726 1 0.061

55 0.804 ± 0.080

65 0.866 ± 0.181

75 0.777 ± 0.108

85 0.737 ± 0.340

105 0.698 ± 0.080

1

1

X(E - 80 eV)
i

27.5 0.269 ± 0.039

35 0.328 1 0.056

40 0.477 ± 0.070

50 0.766 ± 0.078

60 0.994 ± 0.182

70 0.958 ± 0.209

80 0.858 ± 0.123

90 0.749 ± 0.143

Table (5-7c) Table (5-7d)

6e X(E « 120 eV)

35 0.545 ± 0.056

40 0.594 ± 0.040

50 0.858 ± 0.054

60 0.896 ± 0.110

70 0.945 ± 0.108

80 0.750 ± 0.145

90 0.431 ± 0.221

».
1

X(E - 160 eV)

28 0.646 ± 0.071

35 0.660 ± 0.105

40 0.798 ± 0.101

45 0.848 ± 0.211

50 0.788 ± 0.180

0.790 ± 0.209

60 0.791 ± 0.137

Table (7a, b, c and d): Valuee of the excitation parameter X - —  
derived from the polarization correlation experiment aa a 
function of electron scattering angle for the measured 
energies.
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the energies 50 and 160 eV show a slow variation of X with scatter­

ing angles, whereas those for 80 and 120 eV exhibit a comparatively 

sharp maximum at scattering angles of about 60^ and 70° respectively.

Figure (5-19) shows X as a function of the scattering angle at 

an incident electron energy of 50 eV together with results of previous 

angular correlation measurements by Crowe et al. (1981) at an incident 

electron energy of 45.6 eV and by Eminyan et al. (1975) at 50 eV.

The measured values are also cooqpared with calculations where values of 

X have been reported over the coselete angular range from 0^ up to 

180^ (Meneses et al., 1980 and Flannery et al., 1975).

Figure (5-20) shows the variation of X with 6^ at 80 eV together 

with the experimental values derived from polarization correlation 

measurements at small scattering angles by Standage and Kleinpoppen 

(1976), and the angular correlation measurements by Crowe et al. (1981) 

at 75.6 eV and by MacAdams et al. (1982) at 81.2 eV for large scatter­

ing angles along with the theoretical calculation of Meneses et al. 

(1980) and Flannery et al. (1975). The present values agree quite well 

with the theoretical calculation and the previous experimental points.

No other experimental or theoretical work has been reported for 

incident energies of 120 and 160 eV to our knowledge.

Once X has been determined the excitation parameter x derived 

from the linear and circular polarization measurements ( m  and H2 

respectively) using equations (2.34 and 2.35). within the symmetry of 

the cosine and sine functions each equation gives two possible values 

of X within any range of 2z. All four values are listed in tables 
(5-8 to 5-11) but only two form a consistent pair as shown in 

figures (5-21 to 5-24). . Equation (4.4) and the two consistent

values obtained from the linear and circular measurements of x (narked 

values in the above tables) have been used to calculate the average
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Figure (5-21): Possible vslues of x ^ function of Che electron 
scettering engle for the incident energy of 50 eV, 
C  end •  derived from the circuler polerizetion 
Stokes peremeters hi » A  end A  from the linear 
polarisation Stokes parameter ni» The consistent 
pAirs of X values adopted to calculate the final 
average are marked by full sumbols ( #  and A  ).
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oc E=80eV

-1

- 2

- 4

- 5

I

20  40  6 0  80 100

Electron Scattering Angle (Deg)

Figure (5~25): Possible values of x ** * function of the
electron scattering angle for the incident 
energy of 80 eV, o  •  derived from the 
circular polarization Stokes parameter n, »
A  and ▲  from the linear polarization 

Stokes parameter ni* The consistent pairs 
of X values adopted to calculate the final 
average are mailed by full symbols (# and A  )
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OC E=120eV

-1

-2

- 4

- 5

20 4 0  60 80 100

□ectron  Scattering Angle (Deg)

Figure (5-23): Possible values of x ss e function of the
electron scattering angle for the incident energy of 
120 eV, O and # derived from the circular polari­
zation Stokes parameter na* A  and A  from the 
linear polarization Stokes parameter ni. The 
consistent pairs of x values adopted to-calculate 
final average are marked by full symbols ( #  and A  ). 
for the pairs (1,2) and (2,3) are equally
"consistent”. However, in line with the general 
trend of the x values the pair (2,3) has been 
chosen for the final value.
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Flgur« (5-24): Possible values of x as a function of the electron
scattering angle for the incident energy of 160 eV, 
O  and •  derived from the circular polarization 
Stokes parameter n, • A  and ▲  from the linear 
polarization Stokes parameter ni* The consistent 
pairs of X values adopted to calculate the final 
average are marked by full symbols ( •  and ▲  ).
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values of x a* shown in column five of the tables (5-8 to 5-11) 

and in figure (5-28). The curves in figure 5-25 show the behaviour 

of X fot different measured energies, and they show a sharp drop in 

the value of x between small and large scattering angles for all 
measured energies.

In figure (5-26) the measured values of x at 50 eV incident 

electron energy are compared with the previous angular correlation 

measurements at small scattering angles by Eminyan et al. (1975) at 

50 eV and Crowe et al. (1981) at 45.6 eV, as well as with the first- 

order many body calculations by Meneses et al. (1980) and multichannel 

eikonal theory results by Flannery et al. (1975). There is very good 

agreement between our results and the theoretical calculations over 
the %ride range.

In figure (5.27) the parameter x is plotted at 80 eV incident 

energy, along with the values obtained at small scattering angles 

from the polarization correlation measurements of Standage and 

Kleinpoppen (1976). The present values are also compared with the 

angular correlation results of |xl measured by Crowe et al. (1981) 

at small scattering angles, and MacAdams et al. (1982) at large 

scattering angles, and with the theoretical calculations of Meneses 

et al. (1980) and Flannery et al. (1975). There is good agreement 

between the present results and the theoretical calculations.

i r i f  iiiliaiii'iiiiiiaiiit liaifa
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Figure (5-26): The phese difference x bec%reen the He 3^P 
excitecion eoplitudee ei(M[^ - ±1) end e^CM, • 0) et e 
function of the electron scettering engle for the 
incident electron energy of SO eV. The preeent results 
•  ere coopered with previous enguler correletion 

results where the sign of x hes been chosen in* line 
with the present velues; Crowe et el. (1981) x et en 
energy of 45.6 eV end Eminyen et el. (1975) Q  • As 
veil es with theoreticel celculetion of Flennery et el. 
(1975) end Henses et el. (1980) ' ' -



Figur« (5-27)t Th« ph««« di££«r«nc« x b«tw««n ch« H« 3^Px «xcit«tion 
«npUcud«« «i(m |̂ «±1) «nd «^(M^^) a« a £unction o£ th« «laccron 
scactaring angl« at th« incldant «lactron «nergy o£ 80 «V. Th« 
prasant valúas •  ar« comparad with pravious angular córrala- 
tion rasults whar« th« sign o£ x bas baan chosan in lin« with 
th« prasant valúas; Grow« at al. (1981) x 
(1975) O  and HacAdam «t al. (1982) ®  
thaoratical calculations o£ Flannary «t al. (1975) 
and Mañosas «t al. (1980) ' •

, Erainyan «t al. 
, as wall as with



-129-

CHAPTER VI 

CONCLUSIONS

The polarization correlation measurements reported in this thesis 

have extended the complete analysis of the electron impact excitation 

of the 3^P state of helium to a vide range of scattering angles and 

energies. As part of this work the measurement of the circular 

polarization data can determine the sign of the angular momentum 

transfer to the atom during the excitation process. It had been a 

matter of much dispute whether the angular momentum changes sign of 

some angle other than 0^ and 180^ and the present data clearly show 

such a sign change for all energies investigated.

As a result of the low branching ratio of the 3^P - 2^S transition 

the coincidence signals in the present work are very weak, especially 

at 50 eV and 160 eV where the cross sections and (for 50 eV) the back­

ground signal add further to the problem. The effect of the low 

branching ratio could be overcome by using the 3^P - l^S or 2^P - l^S 

transitions, but there the difficulties of producing suitable ^plates 

and linear polarizers for the VUV region are only slowly being solved.

With respect to the present study it would be desirable to have 

some theoretical data for comparison of the 120 eV and 160 eV results. 

It might also be worthwhile to extend the present linear polarization 

measurements to the full range of scattering angles used for the 

circular polarization data as 6^»^ would be expected to change 

rapidly at large angles. For 50 eV the magnitude of the overall 

polarization vector | P | was found to be less than the expected 

value for 1 for a number of scattering angles and it would appear 

worthwhile to check the origin of this effect if the measurements 

are rescued.
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