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Abstract—In this paper, we propose a determinant ratio test
(DRT) statistic to measure the similarity of two covariance
matrices for unsupervised change detection in polarimetric radar
images. The multilook complex covariance matrix is assumed to
follow a scaled complex Wishart distribution. In doing so, we pro-
vide the distribution of the DRT statistic which is exactly Wilks’s
lambda of the second kind distribution, with density expressed
in terms of Meijer G-functions. Thanks to this distribution, the
constant false alarm rate (CFAR) algorithm is derived in order to
achieve a required performance. More specifically, a threshold is
provided by the CFAR to apply to the DRT statistic producing a
binary change map. Finally, simulated and real multilook PolSAR
data are employed to assess the performance of the method and
is compared to the Hotelling-Lawley trace (HLT) statistic and
the likelihood-ratio test (LRT) statistic.

Index Terms—Change detection, multilook polarimetric SAR
data, complex Wishart distribution, determinant ratio test (DRT),
Wilks’s lambda of the second kind distribution, Hotelling-Lawley
trace (HLT), likelihood-ratio test (LRT).

I. INTRODUCTION

The synthetic aperture radar (SAR) image change detection
has become very important in remote sensing for monitoring
dynamic processes on the Earth, for instance, damage assess-
ment in urban areas, deforestation and clear-cut detection,
flooding, and monitoring of glaciers. Change detection is a
process that analyses multitemporal remote sensing images
acquired on the same geographical area for identifying changes
that occurred at distinct observation dates. The result is a
generation of a change detection map in which changed areas
are explicitly identified.

Several unsupervised change detection methods have been
proposed in the literature. Two families of methods handle
the change detection process: the statistical information theory
and the hypothesis test theory. The first family is based on
information-theoretic measures in order to design a distance
between images. In doing so, surrounding pixels are modelled
by a given distribution and distance measures are applied to
obtain a comparative statistic. With this family, the change
detection is less sensitive to acquisition conditions since the
used methodology takes into account information from the
neighbourhood. This information is relevant when dealing with
data corrupted by speckle or/and the number of looks is low.
To name a few of statistical information distances: mutual
information [1], [2], variational and mixed information [1], [3]
and stochastic distances such as the Kullback-Leibler, Rényi,
Bhattacharyya and Hellinger distances [4].

The second family aims to compute a covariance equality
test and to test the hypotheses of change versus no-change
where an asymptotic distribution is usually employed by the

test statistic. The simplest one is to compute the ratio of
SAR amplitudes or intensities observed at different times.
This kind of ratios is a well-known test statistic in single-
channel SAR-based change detection [5]. A large number
of test statistics have been developed and described in the
literature for automatic and unsupervised change detection
such as mean ratio/log-ratio measures [6], [7], Gauss log-
ratios [8], multitemporal coherence analysis [6] and maximum-
likelihood ratios [9].

Polarimetric SAR (PolSAR) gives more scattering informa-
tion than single polarization channel SAR data, which can
be used to detect change and increase the quality of the
change detection map. The first work on test statistics for
change detection in multilook PolSAR data was proposed by
Conradsen et al. [10]. The authors proposed a likelihood ratio
test (LRT) for the equality of two complex covariance matrices
Σ1 and Σ2 and gave the approximated distribution of the
LRT statistic. The LRT algorithm worked by comparing two
hypotheses: the null hypothesis (H0) corresponding to ’no-
change’, and an alternative hypothesis (H1) corresponding
to ’change’. The LRT approach was extended to the multi-
temporal case [11], [12] and multi-frequency data [13]. Ker-
sten et al. [14] compared three test statistics: the LRT statistic
called also Bartlett test, the contrast ratio test and the ellipticity
test. The second one was based on the largest and the smallest
eigenvalues of Σ1Σ

−1
2 , and then the change was represented

by these eigenvalues. The third test statistic was based on the
combination of the determinant and the trace of Σ1Σ

−1
2 by

using the eigenvalues.
Later, Akbari et al. [5] proposed a simpler test statistic

to detect changes in many scenarios. The test assumed the
scaled complex Wishart distribution for the covariance matrix
data. It was based on the complex-kind Hotelling-Lawley
trace (HLT) which was used to measure the similarity of two
covariance matrices. They applied a decision threshold to the
test statistic to detect changes. The threshold was determined
using the constant false alarm rate (CFAR) algorithm [15].
Akbari et al. proposed the Fisher-Snedecor (FS) distribution as
the approximation of the sampling distribution of the HLT test
statistic. The parameters of the FS distribution depended only
on the dimension of the polarimetric data and the equivalent
number of looks (ENL) estimated for images. They used the
method of the matrix log-cumulants [16] to estimate the ENL.

In this paper, the ratio of the determinant of two matrices
is proposed as a new test statistic to measure the similarity
of two covariance matrices which are assumed to follow
scaled complex Wishart distributions. The new test is called
the determinant ratio test (DRT) statistic and it is able to
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produce a scalar value, to which a threshold is applied. The
distribution of the test statistic under the null hypothesis
is exactly Wilks’s lambda of the second kind distribution
with density expressed in terms of Meijer G-functions [17].
Wilks’s lambda distribution corresponds to the product of
d independent Beta distributed of the second kind random
variables, where d is the number of polarimetric channels. The
latter distribution depends on the dimension of the polarimetric
data and the ENL.

For the production of a binary change detection map, a
threshold is applied to the test statistic. Several thresholding
methods have been suggested in the literature to determine
the threshold in a completely unsupervised manner. To name
a few of them: CFAR algorithm [15], Otsu’s method [18],
Kittler and Illingworth (K&I) algorithm [19], [20]. In this
paper, we limit ourselves to the CFAR algorithm since we are
more interested in the test statistic rather than the thresholding
method. Consequently, the final binary change map is made
at a predefined false alarm rate (FAR). To further illustrate
the potential of our method in change detection for multilook
PolSAR data, the well-known HLT and LRT test statistics for
measuring the equality of two multilook covariance matrices
are compared with our approach. Simulated and real multilook
PolSAR data are used for this comparison.

The paper is organized as follows. Section II introduces
the statistical model for the covariance matrix data. Section
III describes some properties related to the scaled complex
Wishart distribution, the determinant ratio test for equality of
two complex scaled Wishart distributions, and its sampling
distribution. In Section IV, the proposed polarimetric change
detection algorithm based on the DRT is presented, followed
by the CFAR principle to determine the threshold. The HLT
and LRT methods are briefly shown for a later comparison
with our method. Section V demonstrates the performance of
the method with a simulated and real PolSAR dataset and
discusses the results. Section VI is dedicated to a summary
and a conclusion.

II. MULTILOOK POLSAR IMAGE MODEL

The polarimetric scattering vector is defined as

s = [shh, shv, svh, svv]
T ∈ Cd (1)

with sxy representing the complex scattering coefficients,
where x is the transmit and y is the receive polarization.
Moreover, h denotes horizontal, v denotes vertical [21], [.]T

means transposition, and d = dim(s) is the vector dimension.
The vector s is a single-look polarimetric complex format
representation of PolSAR data. It is assumed that s is a d-
dimensional speckle vector, which follows a circular complex
Gaussian distribution (s ∼ NC

d (0,Σ)), with a zero-mean
vector and a covariance matrix Σ. The multilooking of Pol-
SAR data reduces the speckle effect characteristic of coherent
imaging systems. The polarimetric multilooking operation is
given by

X =
1

L

L∑
`=1

s`sH` , L ≥ d (2)

where L is the number of looks, (.)H denotes the Hermitian
operator and X ∈ Ω+ ⊂ Cd×d is the multilook polarimetric
covariance matrix considered as a random matrix defined
on the cone, denoted Ω+, of the positive definite complex
Hermitian matrices. When L ≥ d, the unnormalized sample
covariance matrix defined as Z = LX follows the non-singular
complex Wishart distribution [22] denoted as Z ∼ WC

d (L,Σ)
and X follows a scaled complex Wishart distribution, denoted
X ∼ sWC

d (L,Σ), with a probability density function (pdf)
given by fX(X) = fZ(LX)|JZ→X|, where |JZ→X| = Ld

2

is
the Jacobian determinant of the transformation Z = LX [23].
The pdf of X is

fX(X) =
LLd|X|L−d

Γd(L)|Σ|L
etr(−LΣ−1X) (3)

where etr(.) = exp(tr(.)) is the exponential trace operator,
|.| is the determinant operator, and Γd(L) is the multivariate
gamma function of the complex kind defined as

Γd(L) = πd(d−1)/2
d−1∏
i=0

Γ(L− i) (4)

where Γ(L) is the standard Euler gamma function.

III. THEORY

This section describes some properties related to the scaled
complex Wishart distribution and the DRT for equality of two
complex scaled Wishart distributions.

Theorem 1 (Goodman [24]). Let X be a complex Hermitian
positive definite random d × d matrix that follows a scaled
complex Wishart distribution, X ∼ sWC

d (L,Σ). The random
variable (2L)d|X|/|Σ| is distributed as the product of d
independent chi-square (χ2) distributed random variables with
2L, 2(L−1), ..., 2(L−d+1) degrees of freedom, respectively,
i.e.,

(2L)d
|X|
|Σ|
∼
d−1∏
i=0

χ2(2(L− i)). (5)

Proof. The characteristic functions of the random variable
ln
(
(2L)d|X|/|Σ|

)
and ln

(∏d−1
i=0 χ

2(2(L− i))
)

are com-
puted and seen to be equal. For more details see Appendix
A.

Corollary 1.1. Let X and Y be two complex Hermitian positive
definite random d × d matrices that follow scaled complex
Wishart distributions defined as

X ∼ sWC
d (Lx,Σ) and Y ∼ sWC

d (Ly,Σ). (6)

The random variable defined by the determinant ratio of LxX
and LyY is distributed as the product of d independent Beta
distributed of the second kind (also called Beta prime) random
variables with parameters (Lx − i) and (Ly − i)

|LxX|
|LyY|

∼
d−1∏
i=0

BetaII(Lx − i, Ly − i) (7)
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where the pdf for BetaII(Lx − i, Ly − i) is given by

fi(x) =
Γ(Lx + Ly − 2i)

Γ(Lx − i)Γ(Ly − i)
xLx−i−1

(1 + x)Lx+Ly−2i
(8)

=
1

Γ(Lx − i)Γ(Ly − i)
G 1,1

1,1

(
−Ly+i
Lx−i−1

∣∣∣x) (9)

where G 1,1
1,1 (

.

. | .) is the Meijer G-function defined in the next
section.

Proof. Corollary 1.1 is the consequence of (5) and the relation
between the ratio of two independent χ2 random variables
and the Fisher (F) distribution with two parameters given as
follows
• If X ∼ χ2(d1) and Y ∼ χ2(d2) are two independent

random variables, then X/d1
Y/d2

∼ F(d1, d2).
• If X ∼ F(2α, 2β) has an F-distribution, then α

βX ∼
BetaII(α, β).

A. Meijer G-function

The Meijer G-function is a generalization of the generalized
hypergeometric function which is defined using the contour
integral representation [25]

Gm,n
p,q

( a1,...,ap
b1,...,bq

∣∣x) =
1

2πi

×
∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=1+m Γ(1− bj + s)
∏p
j=1+n Γ(aj − s)

xsds (10)

where {aj}pj=1 and {bj}qj=1 are, in general, complex-valued.
Contour L is a suitable integration contour that separates the
poles of function Γ(bj−s) from the poles of Γ(1−aj+s). The
Meijer G-function has been implemented in some commercial
software packages such as Matlab R©, MAPLE, etc.

B. Wilks’ lambda distribution of determinant ratio statistic

Definition 1. For non-integer values of n, q and integer values
of p with n ≥ q ≥ p, the pdf of Wilks’s lambda distribution of
the second kind, denoted as Λ′(n, p, q), is given as [17]

f(x) = A′ ×G p,p
p,p

(
−q,−(q−1),...,−(q−(p−1))
n−q−1,n−q−2,...,n−q−p

∣∣∣x) (11)

where A′ =

p−1∏
j=0

1

Γ (n− q − j) Γ (q − j)
.

Theorem 2. The pdf g(z) of the product Z =
∏d−1
i=0 Xi of d

independent Xi variables Beta distributed of the second kind,
Xi ∼ BetaII(Lx−i, Ly−i), is a Meijer G-function multiplied
by a normalizing constant A; i.e.,

g(z) = A×G d,d
d,d

(
−Ly,−(Ly−1),...,−(Ly−(d−1))

Lx−1,Lx−2,...,Lx−d

∣∣∣ z) (12)

where A =

d−1∏
i=0

1

Γ(Lx − i)Γ(Ly − i)
.

The cumulative distribution function is given by

G(z) = Az ×G d ,d+1
d+1,d+1

(
−Ly,−(Ly−1),...,−(Ly−(d−1)),0

Lx−1,Lx−2,...,Lx−d,−1

∣∣∣ z)
(13)
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Fig. 1. Probability density function of Wilks’s lambda distribution of second
kind, Λ′(2L, d, L) with several values of L and different cases: (a) d = 2,
and (b) d = 4.

The k-th moment E{Zk} is given by

E{Zk} =

d−1∏
i=0

Γ(Ly − i− k)

Γ(Ly − i)
Γ(Lx − i+ k)

Γ(Lx − i)
. (14)

Proof. See Appendix B.

With reference to definition 1, the distribution of |LxX|
|LyY| is

given as follows

|LxX|
|LyY|

∼ Λ′(Lx + Ly, d, Ly). (15)

It is worth to notice that the determinant ratio depends on
the parameters Lx and Ly . In the case Lx = Ly = L,
the Wilks’s lambda distribution of the second kind is given
by Λ′(2L, d, L). Fig. 1 shows the pdf of Λ′(2L, d, L), with
multiple values of L, and different cases: (a) d = 2, and (b)
d = 4.

IV. POLARIMETRIC CHANGE DETECTOR

We consider X and Y two statistically independent Hermi-
tian positive definite random d×d matrices that follow scaled
complex Wishart distributions with different distribution pa-
rameters defined as

X ∼ sWC
d (Lx,Σx) and Y ∼ sWC

d (Ly,Σy). (16)

Multilook PolSAR images acquired over a same geograph-
ical area before event (at time tx) and after event (at time
ty) are used to detect any change by comparing at each
position (i, j) the full polarimetric information before change
and after change given respectively by X(i, j) and Y(i, j).
Here, we suppose that at each (i, j) we have two matrices
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X(i, j) and Y(i, j). As a consequence, we resort to compute
the determinant ratio of LxX and LyY described in the next
subsection.

A. Determinant ratio statistic

The determinant ratio statistic is defined by

τDRT =
|LxX|
|LyY|

. (17)

DRT is used to measure the similarity between the two
polarimetric covariance matrices X and Y, and perform change
detection by choosing between hypotheses [5]{

H0 : Σx = Σy

H1 : Σx 6= Σy.
(18)

Null hypothesis (H0) corresponds to no-change, and hypoth-
esis (H1) corresponds to change. To quantify the difference
between H0 and H1, a threshold selection procedure is applied
to the test statistic τDRT. It is worth to mention that the hy-
pothesis tests are developed with distinct ENLs, i.e., Lx 6= Ly .
Nevertheless, in the first experiment with simulations, we
assume that the ENL is the same for both images.

The exact distribution of the DRT statistic under null
hypothesis (H0) is Wilks’s lambda distribution of the second
kind given by

τDRT ∼ Λ′(Lx + Ly, d, Ly). (19)

For particular case where Lx = Ly = L, the DRT statistic
becomes τDRT ∼ Λ′(2L, d, L).

B. CFAR thresholding method

In our study, change detection is realized by applying a
decision threshold to the test statistics [5]. We choose the
CFAR algorithm [15] as a thresholding method in order to
perform a fair comparison between our proposed approach and
the HLT method since we are interested in the test statistic
rather than the thresholding method. Let fτDRT

(τ) be the
distribution of the ratio τDRT under the hypothesis H0. The
significance level of the test αc, expressed in percent, is given
as a function of the desired false alarm probability Pfa and
then given by αc = 100Pfa. The threshold is determined from
the distribution of the determinant ratio statistic.

We adopt the same approach presented in the paper of
Akbari et al. [5] where changes from X to Y and reversely
from Y to X were taken into account in the CFAR change
detector. This results in using the following two ratios

τDRT =
|LxX|
|LyY|

, and τ ′DRT =
|LyY|
|LxX|

. (20)

The combined test is given by

max{τDRT, τ
′
DRT}

H1

≷
H0

T. (21)

The combined threshold T is derived from

Pfa = 2

∫ +∞

T

fτDRT(τ |H0)dτ. (22)

When Pfa is specified, the threshold is obtained by solving
(22), and then the CFAR change detector is obtained. The pro-
posed unsupervised change detection based on DRT between
two multilook PolSAR data acquired before and after change
is summarized in the following steps
• Find a global estimation of L̂x and L̂y
• Generate the DRT statistics image using

max{τDRT, τ
′
DRT} computed from two multilook

PolSAR data.
• Compute the CFAR threshold for a specific Pfa
• Apply the threshold and obtain the binary change detec-

tion map.
It is important to mention that the quality of the change
detection map depends on the estimation accuracy of Lx and
Ly . For an efficient estimation of the ENL, many methods
have been put forward in the literature for automatic estimate.
To name a few of them, we mention: first, the method of
Anfinsen et al. [16] was based on the maximum likelihood es-
timator for the ENL under the assumption that data follow the
complex Wishart distribution. Second, the method proposed
by Tao et al. [26] was based on the development of trace
moments (DTMs). This ENL estimator cancels the textural
variation using trace moments. Finally, the method developed
by Bouhlel [27] was based on the fractional moments of the
determinant of the multilook polarimetric covariance (FMDC)
matrix. The FMDC estimator of the ENL had the particularity
of being independent of the distribution of the texture model.
All these methods consisted in performing a local estimate of
the ENL by using a sliding window covering the whole image.
Then, the distribution of estimates was drawn and the mode
value of the density corresponds to the desired global estimate
of the ENL. It is worth to notice that the presence of texture
and correlation between samples can affect the estimation of
the ENL.

In the next subsection we briefly describe the HLT and the
LRT statistics in order to compare them with our proposed
statistic.

C. HLT statistic

The complex-kind HLT statistic is defined as

τHLT = tr(Y−1X). (23)

The exact distribution of the HLT statistic is difficult to derive
and an approximation was put forward by Akbari et al. [5]. It
is the Fisher-Snedecor (FS)1 distribution with three parameters
used as an approximation to τHLT and is given as follows

τHLT ∼ FS(ξ, ζ, µ). (24)

The expression of the FS distribution is given by

fτHLT
(τ) =

Γ(ζ + ξ)

Γ(ξ)Γ(ζ)

ξ

µ(ζ − 1)

(
ξτ

µ(ζ−1)

)ξ−1
(

1 + ξτ
µ(ζ−1)

)ξ+ζ (25)

1This notation is used for Fisher-Snedecor distribution with three parame-
ters. But, with two parameters, we use the notation (F).
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where µ = E{τHLT} > 0 is a scale parameter and ξ, ζ > 0 are
two shape parameters. The parameters of the FS distribution
are computed in terms of distribution parameters of scaled
Wishart matrices X and Y. The solution for µ, ξ and ζ are
defined by the following equation system [5]

m(FS)
ν (µ, ξ, ζ) = m(HLT)

ν (Lx, Ly, d), ν = 1, 2, 3 (26)

where m(FS)
ν and m

(HLT)
ν are the νth order moments of the

FS distribution and the HLT statistic. For more details about
the expressions of the moments reader can refer to Akbari et
al. [5], [28]. Technically, to estimate the shape parameters ξ
and ζ, a minimum distance optimization is used to solve the
following

(ξ̂, ζ̂) = arg min
(ξ,ζ)

3∑
ν=2

(m(FS)
ν −m(HLT)

ν )2. (27)

Finally, a good fitting of the FS distribution depends on the
estimation accuracy of (µ, ξ, ζ) which in turn depend on the
estimates of the Lx and Ly [5]. It is worth noticing that the
FS distribution of the HLT detector for a low number of looks
does not provide a good approximation and fitting as it will
be seen in the experiments.

The combined test is derived as follows

max{τHLT, τ
′
HLT}

H1

≷
H0

T. (28)

The threshold is determined from the resolution of the follow-
ing equation

Pfa = 2

∫ +∞

T

fτHLT
(τ |H0)dτ. (29)

D. LRT statistic

The Wishart LRT statistic was derived as [10]

Q =
(Lx + Ly)d(Lx+Ly)

LdLx
x L

dLy
y

|LxX|Lx |LyY|Ly

|LxX + LyY|Lx+Ly
. (30)

The test statistic for change detection based on the LRT is
given by

τLRT = −2ρ lnQ (31)

where

ρ = 1− 2d2 − 1

6d

(
1

Lx
+

1

Ly
− 1

Lx + Ly

)
. (32)

The distribution of τLRT under the null hypothesis (H0) is
approximated by using the associated asymptotic distribution
of the test statistic [10]

τLRT ∼ χ2(d2) + w2

[
χ2(d2 + 4)− χ2(d2)

]
(33)

where χ2(d2) denotes a central χ2 distribution with d2 degrees
of freedom and

w2 = −d
2

4

(
1− 1

ρ

)2

+
d2(d2 − 1)

24

×
(

1

L2
x

+
1

L2
y

− 1

(Lx + Ly)2

)
1

ρ2
. (34)
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Fig. 2. Pauli decomposition of simulated 5-look quad-pol PolSAR data: (a)
before change (b) after change, and (c) binary truth change map.

TABLE I
COVARIANCE MATRIX FOR EACH REGION OF SIMULATED DATA.

Area {Σ11,Σ22,Σ33,Σ44, Σ12,Σ13,Σ14,Σ23,Σ24,Σ34} × 10−3

1 2.6, 0.6, 0.6, 2.9, 0, 0, 0.9-1.2i, 0, 0, 0
2 11.9, 1, 1, 7.7, 0, 0, -2.1-3.6i, 1, 0, 0, 0
3 0.28, 0.007, 0.007, 0.073, 0, 0, 0.13-0.004i, 0, 0, 0
4 6.7, 6, 6, 11.2, 0, 0, 2.2+0.8i, 0, 0, 0
5 27.3, 0.6, 0.6, 12, 0, 0, 14.2-6.4i, 0, 0, 0
6 1, 0.2, 0.2, 0.8, 0, 0, 0.5-i, 0, 0, 0
7 8.9, 5.5, 5.5, 26.1, 0, 0, -1.1+0.2i, 0, 0, 0

The test with a desired Pfa is given by

τLRT
H1

≷
H0

T. (35)

where the threshold T is determined through the equation

Pfa =

∫ +∞

T

fτLRT(τ |H0)dτ. (36)

It is worth to mention that the LRT is a one sided-test, however
the DRT and HLT are two sided-test.

V. EXPERIMENTAL RESULTS

The performance of the proposed DRT statistic is evaluated
on both simulated and real PolSAR images. The HLT and the
LRT tests are implemented for comparison with our test.

A. Simulated data

We simulate two quad-pol data containing two L-look Pol-
SAR images of 250×250 pixels and having four polarimetric
channels (d = 4). The generated data follow a scaled Wishart
distribution with a covariance matrix of the speckle Σj defined
in Table I where j = {1, · · · , 7}. Then, the polarimetric data
contain seven different classes (areas). Area 7 corresponds
to the polarimetric properties of a heterogeneous urban area.
Area 3 is simulated with the polarimetric properties of a
homogeneous water region. The rest of the areas correspond to
the properties of agricultural crops and vegetation regions. Dif-
ferent values of the number of looks L are used in this study,
L ∈ {5, 6, 7, 8}. Fig. 2 shows the Pauli decomposition of the
two simulated 5-look quad-pol PolSAR data corresponding to
images before and after change, and the binary truth change
map where the change is marked by the color white and the
no-change by the color black. By computing the DRT, HLT
and LRT statistics, Fig. 3 shows the results of change detection



6

5

10

15

20

25

0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

2

4

6

8

10

12

0 20 40 60 80
0

0.02

0.04

0.06

0.08

20

40

60

80

100

120

140

10 20 30 40 50
0

0.02

0.04

0.06

0.08

(a1) (b1) (c1) (a1’) (b1’) (c1’) (a1”) (b1”) (c1”)

5

10

15

20

25

0 2 4 6
0

0.2

0.4

0.6

0.8

1

2

4

6

8

10

12

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

50

100

150

10 20 30 40 50
0

0.02

0.04

0.06

0.08

(a2) (b2) (c2) (a2’) (b2’) (c2’) (a2”) (b2”) (c2”)

5

10

15

20

25

0 2 4 6
0

0.2

0.4

0.6

0.8

2

4

6

8

10

0 10 20 30 40
0

0.05

0.1

0.15

50

100

150

200

10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

(a3) (b3) (c3) (a3’) (b3’) (c3’) (a3”) (b3”) (c3”)

5

10

15

20

25

0 2 4 6
0

0.2

0.4

0.6

0.8

2

3

4

5

6

7

8

9

10

0 10 20 30 40
0

0.05

0.1

0.15

0.2

50

100

150

200

250

10 20 30 40 50
0

0.02

0.04

0.06

0.08

(a4) (b4) (c4) (a4’) (b4’) (c4’) (a4”) (b4”) (c4”)

Fig. 3. Comparison between DRT, HLT and LRT statistics for simulated data with different levels of multilooking. The number of looks is L ∈ {5, 6, 7, 8},
where the first raw L = 5 and the last raw L = 8. (ai) Logarithm of max{τDRT, τ

′
DRT}. (bi) Plots of τDRT normalized histograms and estimated Wilk’s

lambda of second kind pdfs under (H0) hypothesis. (ai’) Logarithm of max{τHLT, τ
′
HLT}. (bi’) Plots of τHLT normalized histograms and estimated FS

pdfs under (H0) hypothesis. (ai”) τLRT. (bi”) Plots of τLRT normalized histograms and estimated distribution given by (33) under (H0) hypothesis. Change
detection map obtained by rejection of hypothesis test at 1% significance level for: (ci) DRT, (ci’) HLT and (ci”) LRT detector.
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TABLE II
VALUES OF KS AND p-VALUES (%) OBTAINED BY USING WILK’S OF

SECOND KIND DISTRIBUTION FOR SIMULATED DATA WITH DIFFERENT
LEVEL OF MULTILOOKING.

L=5 L=6 L=7 L=8
KS 0.0039 0.0033 0.0028 0.0022

p-value 0.61 0.75 0.89 0.98

relative to these methods and for different cases of L. As it
can be seen, each row corresponds to a particular value of L
starting from 5 for the first row to 8 for the last row. Fig.
3(ai), (ai’) and (ai”) where i∈ {1, 2, 3, 4} show, respectively,
the logarithm of DRT, the logarithm of HLT and the LRT
statistics for different values of L. In addition, Fig. 3(bi)
depicts the comparison between the normalized histograms of
τDRT and the estimated Wilks’s lambda of the second kind
pdfs computed over the non-change area. It is clear that the
estimated pdf curves fit well the normalized histograms. The
same comparison is made in Fig. 3(bi’) between τHLT and the
estimated FS pdfs used as approximations. It is shown that
for a low number of looks smaller than 7 the FS distribution
of the HLT detector is not providing a good fitting. However,
the DRT detector works better for the small number of looks.
Another comparison is made in Fig. 3(bi”) between τLRT and
the estimated pdf given by the equation (33). Furthermore, Fig.
3(ci), (ci’) and (ci”) illustrate the corresponding binary change
maps obtained by the thresholding CFAR algorithm. Indeed,
binary change detection map is obtained by the rejection of
the hypothesis test at 1% significance level for the DRT, HLT
and LRT detectors. It is noted that changes can be seen on
these statistics and for each case of L-values. Moreover, the
proposed method detects more efficiently the changed area
even for highly speckled cases with a law number of looks. It is
also worth to notice that at the central part of the binary images
(region 2), where heterogeneous change detection is present,
the DRT is better than the others but all three detectors seem
not to work properly. This leads us to extend this work under
non-Wishart case [29], [30] or relaxed Wishart distribution
where the ENL is a local parameter [31].

The fit ability between the estimated Wilks’s of the second
kind pdfs and the normalized histograms of τDRT is evaluated
qualitatively by using the Kolmogorov-Smirnov (KS) hypoth-
esis test. The smaller value of KS indicates better the hypothe-
sized model fits with the empirical distribution. A small value
of p-value of the test indicates strong incompatibilities of the
data with the employed distribution hypothesis. Table II lists
the values of KS and the p-values of the test (in percentage)
obtained for the four cases of L under null hypothesis (H0). It
is evident from the p-value that the fitted Wilk’s of the second
kind distribution can perfectly model the no-change area.

A quantitative evaluation of the change detection perfor-
mance is provided also at four different significance levels or
specified FARs. Table III illustrates the measured FAR (False
Positive Rate) and the detection rate (True Positive Rate) for
DRT, HLT and LRT statistics for various levels of multilooking
and for different specified FARs. As indicated in this table, the
DRT statistic realizes higher detection rates and lower overall

TABLE III
CHANGE DETECTION PERFORMANCE FOR SIMULATED DATA. THE BEST

VALUES ARE MARKED BY RED COLOR.

Looks Specified Method Measured Detection Overall error
FAR(%) FAR (%) rate (%) rate (%)

5

0.5 DRT 0.44 82.20 4.30
HLT 0.76 58.27 9.86
LRT 0.69 62.26 8.92

1 DRT 0.92 85.08 4.03
HLT 1.40 65.66 8.71
LRT 1.23 66.51 8.39

5 DRT 5.05 90.99 5.93
HLT 5.15 80.11 8.43
LRT 5.58 77.58 9.31

10 DRT 10.00 93.78 9.16
HLT 9.56 85.74 10.61
LRT 10.89 82.97 12.25

6

0.5 DRT 0.54 87.40 3.21
HLT 0.68 75.36 6.00
LRT 0.52 72.47 6.51

1 DRT 1.01 89.17 3.19
HLT 1.16 79.28 5.50
LRT 1.07 75.97 6.17

5 DRT 4.87 94.13 5.09
HLT 4.74 88.09 6.34
LRT 5.35 85.04 7.48

10 DRT 9.72 96.23 8.40
HLT 9.04 91.42 8.93
LRT 10.33 88.64 10.56

7

0.5 DRT 0.54 90.25 2.59
HLT 0.57 82.82 4.26
LRT 0.53 79.65 4.93

1 DRT 1.11 92.14 2.61
HLT 1.04 85.15 4.11
LRT 1.05 82.15 4.78

5 DRT 5.16 96.44 4.80
HLT 4.70 92.05 5.42
LRT 5.29 88.24 6.72

10 DRT 10.23 97.82 8.44
HLT 9.09 95.06 8.17
LRT 10.37 91.81 9.89

8

0.5 DRT 0.46 92.86 1.94
HLT 0.58 87.97 3.12
LRT 0.44 83.23 4.07

1 DRT 1.00 94.60 1.98
HLT 1.13 90.33 3.02
LRT 0.95 85.25 4.02

5 DRT 5.22 97.88 4.53
HLT 5.07 95.79 4.88
LRT 5.02 90.97 5.91

10 DRT 10.23 98.85 8.21
HLT 9.77 97.65 8.12
LRT 10.18 93.89 9.27

error rates than the HLT and LRT statistics at specified FARs
especially when the speckle is strong and the number of looks
L is low. As L increases to reach 8 and at specified FARs,
the detection rates for these statistical tests increase and the
overall error rates decrease. Likewise, when L passes to 8, the
detection rate of both the DRT and HLT becomes close. It is
also worth to notice that the measured FAR is close to the
specified FAR regardless of the detector used.

Another quantitative evaluation of the performance of the
method is provided by the receiver operating characteristic
(ROC) curves that are plotted for these statistics using the
ground truth. The ROC curve is the evolution of the true
positive rate (TPR) as a function of the false positive rate
(FPR) [32]. Fig. 4 presents the ROC curves for DRT, HLT
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TABLE IV
AREA UNDER CURVE (AUC) FOR SIMULATED DATA COMPUTED WITH

VARIOUS METHODS (DRT, HLT, AND LRT) AND VARIOUS NUMBER OF
LOOKS. THE BEST VALUES ARE MARKED BY RED COLOR.

Looks Method AUC(%)

5 DRT 97.30
HLT 94.95
LRT 93.46

6 DRT 98.52
HLT 97.31
LRT 95.74

7 DRT 99.16
HLT 98.51
LRT 97.11

8 DRT 99.54
HLT 99.20
LRT 98.00

and LRT statistics and for different values of L. It is shown
that the DRT statistics give the best performance for this
example followed by the HLT statistics in all cases and then
by the LRT statistics. The area under ROC curve (AUC) is
also taken into account in this study. The larger the AUC,
the better the performance. Accordingly, the AUC values are
provided in Table IV for these statistics and for multiple values
of L, and we can easily conclude that the proposed DRT
statistic outperforms both the HLT and the LRT statistics for
low values of L. When the ENL increases, the AUC of the
HLT reaches the AUC of the DRT statistic. Consequently, the
two statistics give us similar results. The performance of the
proposed change detection algorithm is further evaluated with
different real multilook PolSAR datasets in the next section.

B. Real PolSAR data

1) Dataset 1: For real data, we use a set of two
RADARSAT-2 fully PolSAR images over an urban area in
Suzhou city, East China, acquired on April 9, 2009 and June
15, 2010. The two images corresponding to before and after
changes are multilooked with 24-looks (six looks in range and
four looks in azimuth directions). Fig. 5(a) and (b) show the
Pauli decomposition images of these two PolSAR images. The
ground truth map is represented in Fig. 5(c) and contains no-
change test pixels with white color and change test pixels with
gray color. In contrast, the black color designates urban areas
that do not satisfy the Wishart assumption. The ENL for both
images before and after changes is estimated to be 7.2 and
6.9, respectively. Fig. 6(a), (a’) and (a”) respectively depict
the logarithm of the DRT, the logarithm of the HLT and the
LRT statistic. The plots of the normalized histograms and the
estimated distributions for DRT, HLT and LRT detectors are
given respectively in Fig. 6(b), (b’) and (b”). Fig. 6(c), (c’) and
(c”) show their corresponding binary change map obtained by
the thresholding CFAR algorithm. The binary change detection
map is obtained by the rejection of the hypothesis test at a 1%
significance level for the DRT, HLT and LRT detectors.

Regarding the quantitative assessment, the ROC curves for
the DRT, HLT and LRT statistics used in the experiments are
given in Fig. 7. In this example, the obtained results show that
the ROC curves of the HLT and LRT are above the ROC curve

TABLE V
CHANGE DETECTION PERFORMANCE FOR REAL POLSAR DATASET 1.

Specified Method Measured Detection Overall error
FAR(%) FAR (%) rate (%) rate (%)

0.5 DRT 0.91 95.53 1.98
HLT 0.61 90.90 3.16
LRT 1.11 92.50 3.03

1 DRT 1.40 96.36 2.07
HLT 1.10 93.56 2.71
LRT 1.73 94.17 2.96

5 DRT 5.24 98.63 4.07
HLT 4.03 97.42 3.59
LRT 5.70 97.50 4.74

10 DRT 9.60 99.24 6.94
HLT 7.03 98.56 5.35
LRT 9.77 98.41 7.31

of the DRT. The measured AUC for these methods based on
the DTR, HLT and LRT statistics are 99.68%, 99.45% and
99.13%, respectively. Different significance levels of the test
are chosen where αc ∈ {0.5%, 1%, 5%, 10%} for evaluation.
The detection rate, the measured FAR and the overall error
rate for the three methods are provided in Table V. At each
specified FAR level, the best values are highlighted in red. We
can clearly see that the DRT always gives the best detection
rate for any specified FAR level. Also for the overall error
rate, the DRT gives good results in comparison with the other
statistics for the case of a low value of significance levels of
the test αc ∈ {0.5%, 1%}. For large values of αc, the HLT
wins. The measured FAR are close to the specified FAR for
the DRT and LRT statistics when αc ∈ {5%, 10%}. But, for
low values of αc, the HLT gives similar values for measured
and specified FAR.

2) Dataset 2: Two co-registered pair of L-band polarimetric
images (d = 3) corresponding to scene 1 and scene 2 were ac-
quired by the Jet Propulsion Laboratory/National Aeronautics
and Space Administration UAVSAR (1.26 GHz) over the city
of Los Angeles, California, on April 23, 2009 and May 11,
2015. The images are 2×3 multilooked. Fig. 8 show the Pauli
decomposition of these two scenes with two images each are
obtained by the JPL’s UAVSAR sensor at two different times.
Fig. 8(c) and (c’) depicts the ground truths used to compute
the ROC curves. We recall that the color white corresponds
to change and the color black to no-change. As we can see,
the interesting area of this dataset is an urban area where the
changes occurred due to the effects of urbanization.

Fig. 9 compares the change detection results relative to DRT,
HLT and LRT statistics. As it can be noted, the logarithm
of max{τDRT, τ

′
DRT} and max{τHLT, τ

′
HLT}, and τLRT are

first computed and shown, respectively, in Fig 9(ai), (ai’) and
(ai”), where i∈ {1, 2} representing scene 1 and scene 2. The
areas with change are marked in green (small change) and
red (strong change). The areas without change are marked
in blue. Fig. 9(b1) and (b2) show a good fitting between
the normalized histograms of τDRT and the estimated Wilks’s
lambda of the second kind pdf computed over the non-change
area. As shown in section II, the Wilks’s lambda of the second
kind distribution depends on the ENL and dimension (d) of the
covariance matrix. The comparison between the normalized
histograms of τHLT and the estimated FS pdf computed over
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(a) (b) (c)
Fig. 5. Pauli RGB (R = HH-VV, G = HV, B = HH+VV) of quadpol RADARSAT-2 images captured over Suzhou city, East China on (a) April 9, 2009 and
on (b) June 15, 2010, multilooked with 24-looks. (c) Truth change map; The white color means no-change, the color gray means change and the color black
means unlabeled pixels.
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Fig. 6. Comparison between DRT, HLT and LRT statistics for real experimental dataset over Suzhou city. (a) Logarithm of max{τDRT, τ
′
DRT}. (a’) Logarithm

of max{τHLT, τ
′
HLT}. (a”) τLRT. Plots of normalized histograms and estimated distribution for: (b) DRT, (b’) HLT and (b”) LRT detectors. Change detection

map at 1% significance level obtained from: (c) DRT, (c’) HLT and (c”) LRT statistic.
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Fig. 7. ROC curves comparison between DRT, HLT and LRT statistics for
real PolSAR dataset 1. The DRT detector performs better than the HLT and
LRT detectors.

the non-change area is illustrated in Fig. 9(b1’) and (b’2).
We can see here a good fitting of the FS distribution with
the normalized histograms. The same comparison is realized
in Fig. 9(b”1) and (b”2) with the LRT statistic and the
approximated pdf given by (33) and computed over the non-
change area. As we can see the estimated pdf curves based
on χ2 distributions don’t fit well the normalized histograms.
As consequence, the CFAR algorithm fails to provide a best
threshold for the LRT statistic. Fig. 9(ci), (ci’) and (ci”) depict
the binary change map obtained by the thresholding CFAR
algorithm applied to the DRT, HLT and LRT statistics, where
the significance level of the test αc is chosen equal to 1%. It
is worth to notice that with the DRT statistics more regions
are detected than that using the HLT statistics.

For a final comparison between these change detectors, we
draw the Table VI. It reports the detection rate, the measured
FAR and the overall error rate computed for the three detectors
for scene 1 and scene 2, at four different significance levels
of the test αc. The DRT statistic obtains the highest detection
rate in this example, followed by the HLT statistic. The LRT
statistic gives the worst performance. The DRT also achieves
a lower overall error rate compared to the HLT and LRT
statistics except for scene 1 when αc ≥ 5%. Regarding the
measured FAR, the DRT gives values close to the specified
FAR in most cases (cases of scene 2), but in other cases
the values are far apart (cases of scene 1). The performance
of the DRT statistic is evaluated as well through the ROC
curve and compared with that of the HLT and LRT statistic.
Fig. 10 represents the corresponding ROC curves of the three
detectors, indicating a better performance for the DRT statistic
for low FPR values followed by the HLT and then by the LRT.
The AUC is also provided for this example. For scene 1, it is
81.60 % for the DRT, 80.42 % for the HLT and 78.96 % for
the LRT. For scene 2, it is 78.31 % for the DRT, 77.77 % for
the HLT and 74.41 % for the LRT. Indeed, the AUC given by
the DRT statistic is larger than the others.

VI. CONCLUSION

The DRT statistic has been proposed for change detec-
tion in multilook PolSAR images. Under the null hypothesis
corresponding to no change, the statistic follows exactly the

TABLE VI
CHANGE DETECTION PERFORMANCE FOR REAL POLSAR DATASET 2:

SCENE 1 AND SCENE 2.

Specified Methods Measured Detection Overall error
FAR(%) FAR (%) rate (%) rate (%)

Scene 1

0.5 DRT 1.71 40.77 10.65
HLT 0.40 18.57 12.99
LRT 0.41 20.26 12.74

1 DRT 2.43 45.16 10.58
HLT 0.74 24.64 12.34
LRT 0.64 24.40 12.29

5 DRT 6.78 57.06 12.41
HLT 3.39 42.96 11.72
LRT 2.74 37.95 11.96

10 DRT 11.37 63.38 15.30
HLT 7.16 52.83 13.38
LRT 6.04 46.65 13.39

Scene 2

0.5 DRT 0.66 22.74 8.39
HLT 0.51 16.37 8.90
LRT 0.49 13.67 9.15

1 DRT 1.00 27.43 8.23
HLT 0.97 21.20 8.82
LRT 0.99 17.75 9.19

5 DRT 3.75 43.05 9.03
HLT 4.92 38.21 10.66
LRT 6.22 34.71 12.18

10 DRT 7.76 51.49 11.51
HLT 10.11 49.11 14.22
LRT 13.56 47.52 17.49

Wilks’s lambda distribution of the second kind depending on
the ENL and the covariance matrix dimension. The fit ability is
evaluated quantitatively using the KS goodness-of-fit test. With
this statistic test distribution, the decision threshold can be
efficiently determined at a specified probability of false alarm
by using the CFAR-threshold method. The performance of the
method has been evaluated on simulated and real multilook
PolSAR data where ground truth data were available and has
been compared to the performance of the known HLT and LRT
detectors. The results in terms of measured FAR, detection
rate, ROC curve and AUC have shown that the proposed DRT
statistic outperforms the HLT and LRT performances specially
for low ENL values and can perform a binary change detection
map very close to the ground truth data. The method can be
extended to a heterogeneous model by taking into account
the texture in the change detection process. The presence of
texture can be useful to improve the detection but additional
texture parameters need to be estimated.

APPENDIX A

The characteristic function of the random variable V =
ln
(

(2L)d |X||Σ|

)
is given as follows

ψV (t) = E{eitV } = E{eit ln
(
(2L)d

|X|
|Σ|

)
} (37)

= E

{(
(2L)d

|X|
|Σ|

)it}
(38)

= E

{(
2d
|LX|
|Σ|

)it}
. (39)
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(a) (b) (c)

(a’) (b’) (c’)

Fig. 8. UAVSAR images (in Pauli decomposition) over the city of Los Angeles, California. (a) and (a’): April 23, 2009. (b) and (b’): May 11, 2015. (c) and
(c’): ground truths, where color white is change and black is no-change. Top: Scene 1. Bottom: Scene 2.

Let’s consider the Hermitian matrix Z = LX which follows the non-
singular complex Wishart distribution. The pdf of Z is as follows

fZ(Z) =
|Z|L−d

Γd(L)|Σ|L etr(−Σ−1Z). (40)

Then, the integral over all the positive definite complex Hermitian
matrices verify∫

Ω+

|Z|L−detr(−Σ−1Z) = Γd(L)|Σ|L. (41)

We can write that∫
Ω+

|Z|L+it−detr(−Σ−1Z)dZ = Γd(L+ it)|Σ|L+it. (42)

As a consequence, (39) can be written as

ψV (t) =

∫
Ω+

(
2d
|Z|
|Σ|

)it
fZ(Z)dZ (43)

=
2itd

Γd(L)|Σ|L+it

∫
Ω+

|Z|L+it−detr(−Σ−1Z)dZ (44)

=
2itd

Γd(L)|Σ|L+it
Γd(L+ it)|Σ|L+it (45)

= 2itd
Γd(L+ it)

Γd(L)
(46)

= 2itd
Γ(L+ it)Γ(L+ it− 1)...Γ(L+ it− d+ 1)

Γ(L)Γ(L− 1)...Γ(L− d+ 1)
. (47)

The pdf of the chi-squared distribution with 2L degrees of freedom
χ2(2L) is given by

fχ2(2L)(x) =
1

2LΓ(L)
xL−1e−

x
2 . (48)

Using the previous pdf, we can write∫ +∞

0

xL−1e−
x
2 dx = 2LΓ(L). (49)

The characteristic function of a lnχ2(2L) random variable is given
by

ψlnχ2(2L)(t) = E
{
eit lnX

}
= E

{
Xit
}

(50)

=

∫ +∞

0

xitfχ2(2L)(x)dx (51)

=
1

2LΓ(L)

∫ +∞

0

xL+it−1e−
x
2 dx (52)

= 2it
Γ(L+ it)

Γ(L)
. (53)

The characteristic function of the sum of independent lnχ2(2L),
lnχ2(2(L− 1)),..., lnχ2(2(L− d+ 1)) random variables is

ψlnχ2(2L)+lnχ2(2(L−1))+...+lnχ2(2(L−d+1))(t) (54)
= ψlnχ2(2L)(t)× ψlnχ2(2(L−1))(t)× ...× ψlnχ2(2(L−d+1))(t)

(55)

= 2itd
Γ(L+ it)Γ(L+ it− 1)...Γ(L+ it− d+ 1)

Γ(L)Γ(L− 1)...Γ(L− d+ 1)
. (56)

We can conclude that

ψV (t) = ψlnχ2(2L)+lnχ2(2(L−1))+...+lnχ2(2(L−d+1))(t). (57)

APPENDIX B
The Mellin integral transform of the density function g(z) of the

product
∏d−1
i=0 Xi of d independent random variables Xi with density

functions fi(xi) is given by [33]

M{g(z)}(s) =

d−1∏
i=0

M{fi(xi)}(s). (58)

Under suitable restrictions [34], [35] satisfied by all density functions,
the density function g(z) is given by the following inverse formula

g(z) =
1

2πi

∫
L
z−s

d−1∏
i=0

M{fi(xi)}(s)ds. (59)
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Fig. 9. Comparison between DRT, HLT and LRT statistics for real experimental dataset over Los Angeles. (ai) Logarithm of max{τDRT, τ
′
DRT} for scene

i, i∈ {1, 2}. (ai’) Logarithm of max{τHLT, τ
′
HLT}. (ai”) τLRT. Plots of normalized histograms and estimated distribution for: (bi) DRT, (bi’) HLT and (bi”)

LRT detector. Change detection map at 1% significance level obtained from: (ci) DRT, (ci’) HLT and (ci”) LRT statistic.
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Fig. 10. ROC curves comparison between DRT, HLT and LRT statistics
for real PolSAR dataset 2. Top: Scene1. Bottom: Scene2. The DRT detector
performs better than the HLT and LRT detectors especially for a low FPR.

Since the Mellin integral transform of 1/(1 +x)Lx−i+Ly−i is given
by

M
{

1

(1 + x)Lx−i+Ly−i

}
(s) =

Γ(Lx − i+ Ly − i− s)Γ(s)

Γ(Lx − i+ Ly − i)
(60)

and for any function f(x)

M{xLx−i−1f(x)}(s) =M{f(x)}(s+ Lx − i− 1) (61)

it follows that the density function of the Beta distribution of the
second kind has the following Mellin transform

M{fi(xi)}(s) =
Γ(1 + Ly − i− s)

Γ(Ly − i)
Γ(Lx − i− 1 + s)

Γ(Lx − i)
. (62)

Then the Mellin integral transform of the pdf g(z) of the product of
d independent random Beta type II variables is

M{g(z)}(s) =

d−1∏
i=0

Γ(1 + Ly − i− s)
Γ(Ly − i)

Γ(Lx − i− 1 + s)

Γ(Lx − i)
. (63)

Accordingly, the g(z) pdf is written otherwise as a function of the
inverse Mellin transform and is given as follows

g(z) =
1

2πi

∫
L
z−s

d−1∏
i=0

Γ(1 + Ly − i− s)
Γ(Ly − i)

Γ(Lx − i− 1 + s)

Γ(Lx − i)
ds

(64)

=
A

2πi

∫
L
zs

d−1∏
i=0

Γ(1 + Ly − i+ s)Γ(Lx − i− 1− s)ds (65)

which is the Meijer G-function multiplied by constant A with bj =
Lx − i− 1 and aj = −(Ly − i)

g(z) = A×G d,d
d,d

(
−Ly,−(Ly−1),...,−(Ly−(d−1))

Lx−1,Lx−2,...,Lx−d

∣∣∣ z) (66)

where A =
∏d−1
i=0

1
Γ(Lx−i)Γ(Ly−i) .

The cumulative distribution function G(t) =
∫ t

0
g(z)dz is ob-

tained by integrating (65) with respect to the inside contour integral
by using ∫ t

0

zsdz = (1 + s)−1t1+s = t
Γ(1 + s)

Γ(2 + s)
ts. (67)

Again using the definition of the Meijer G-function (10), this results
in

G(t) =
At

2πi

∫
L
ts
d−1∏
i=0

Γ(1 + Ly − i+ s)Γ(Lx − i− 1− s)Γ(1 + s)

Γ(2 + s)
ds

(68)

= At×G d,d+1
d+1,d+1

(
−Ly,−(Ly−1),...,−(Ly−(d−1)),0

Lx−1,Lx−2,...,Lx−d,−1

∣∣∣ t). (69)

The Meijer G-function is viewed as an inverse Mellin transform

Gm,n
p,q

(
a1,...,ap
b1,...,bq

∣∣∣ z) =
1

2πi

∫
L
z−sΦZ(s)ds (70)

where ΦZ(s) = M{g(z)}(s) is the Mellin transform of the g(z)
pdf. The k-th moment E{Zk} is given by

E{Zk} = ΦZ(s)|s=k+1 =

d−1∏
i=0

Γ(Ly − i− k)

Γ(Ly − i)
Γ(Lx − i+ k)

Γ(Lx − i)
.

(71)
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