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Exploring the role 
of non‑pharmaceutical 
interventions (NPIs) in flattening 
the Greek COVID‑19 epidemic curve
Amaryllis Mavragani1* & Konstantinos Gkillas2

Due to the COVID‑19 pandemic originating in China in December 2019, apart from the grave concerns 
on the exponentially increasing casualties, the affected countries are called to deal with severe 
repercussions in all aspects of everyday life, from economic recession to national and international 
movement restrictions. Several regions managed to handle the pandemic more successfully than 
others in terms of life loss, while ongoing heated debates as to the right course of action for battling 
COVID‑19 have divided the academic community as well as public opinion. To this direction, in this 
paper, an autoregressive COVID‑19 prediction model with heterogeneous explanatory variables for 
Greece is proposed, taking past COVID‑19 data, non‑pharmaceutical interventions (NPIs), and Google 
query data as independent variables, from the day of the first confirmed case—February 26th—to 
the day before the announcement for the quarantine measures’ softening—April 24th. The analysis 
indicates that the early measures taken by the Greek officials positively affected the flattening 
of the epidemic curve, with Greece having recorded significantly decreased COVID‑19 casualties 
per million population and managing to stay on the low side of the deaths over cases spectrum. In 
specific, the prediction model identifies the 7‑day lag that is needed in order for the measures’ results 
to actually show, i.e., the optimal time‑intervention framework for managing the disease’s spread, 
while our analysis also indicates an appropriate point during the disease spread where restrictive 
measures should be applied. Present results have significant implications for effective policy making 
and in the designing of the NPIs, as the second wave of COVID‑19 is expected in fall 2020, and such 
multidisciplinary analyses are crucial in order to understand the evolution of the Daily Deaths to Daily 
Cases ratio along with its determinants as soon as possible, for the assessment of the respective 
domestic health authorities’ policy interventions as well as for the timely health resources allocation.

In December 2019, a novel coronavirus that causes severe acute respiratory syndrome (SARS) was detected in 
Wuhan,  China1,2. The coronavirus is of unknown origin, though there are suggestions pointing to a wet market in 
said region as per the virus’  emergence3. With WHO declaring the new coronavirus disease—officially COVID-
19 as of February  11th4—a pandemic on March 11th,  20205, and after most countries having been affected, the 
importance of taking immediate action becomes evident.

To this direction, flattening the epidemic curve and exploring novel approaches in dealing with COVID-
19 spreading is what has been the first priority over the past months. Italy, being the first negative example of 
the impact of said disease in Europe, alarmed the rest of the countries to adopt certain non-pharmaceutical 
interventions (NPIs), including a chain of preventive and movement restrictive measures in order to avoid the 
spreading of the virus. However, certain regions decided on alternative routes (e.g.,  Sweden6), possibly aiming 
at herd immunity and in minimizing the COVID-19’s social and economic impact.

Heated ongoing discussions and debates are dividing the scientific community and the public, as to which 
approach should be followed in order to combat COVID-197,8. Following the case of Italy that was heavily 
affected—with daily deaths surpassing 300 from mid-March to the end of April and with a record of 919 on 
March 27th 9—, it is evident that COVID-19 is not that easy to handle as seemed at first.
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Several approaches are identified, mainly those of mass population testing, like South  Korea10 and  Germany11, 
early closing of borders and movement restrictions like in  Slovakia12,13, and few light measures, like  Sweden6. 
Figure 1 depicts the cumulative cases and deaths, and Fig. 2 depicts the total cases and total deaths per million 
population in Europe up to May 3rd, 2020.

As countries have different populations and different approaches to testing in order to identify cases, the best 
available measure for comparison is deaths per million population. This redaction is done only for the purposes of 
the comparison in this case, as several other factors can affect the number of deaths, as, for example, population 
density, weather, population age, geographical location, open borders, flights per day, or socioeconomic diversity.

A very important question that should be addressed in order for the world to be ready for the second COVID-
19 wave next  fall14,15, is that of identifying the appropriate course of action in battling COVID-19. To this end, 
we investigate one of the most internationally discussed EU cases, that of  Greece16–19; a country that managed 
to successfully deal with the first COVID-19 wave, as shown in Fig. 2.

To that end, the first question that needs to be addressed is whether or not NPI adoption can flatten the 
epidemic curve. If yes, the second question—and as we expect that the measures will show their effect in the 
decrease of cases and deaths in an unknown number of days after adoption since there is a time delay from 
infection to symptoms onset, to hospital admission, to recovery (or death)—, is the time frame that should be 
considered in order to determine if the adopted measures have started exhibiting results, i.e., the optimal time 
intervention framework for the NPIs.

In this paper, we suggest an autoregressive model with exogenous/explanatory variables over different interval 
sizes for assessing the effectives of the NPIs in Greece during the first wave of the pandemic (March–April 2020), 
aiming at investigating the optimal time intervention framework for the effectiveness of the adopted NPIs. What 
made the Greek case successful in dealing with the pandemic in terms of casualties and in maintaining the state 
of its national health care system, was that the Greek officials adopted NPIs at a very early stage; schools were 
announced to be closing just 1 day after WHO declared COVID-19 a pandemic on March 11th, and while the 
country had recorded less than 100 confirmed cases and no casualty—the first death was recorded the next day.

Figure 1.  Cumulative worldwide COVID-19 (a) cases and (b) deaths  (Chartsbin22).

Figure 2.  Total COVID-19 (a) cases and (b) deaths per million population in Europe  (Chartsbin22).
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Furthermore, we extend this approach and develop two additional prediction models in order to also explore 
the number of days needed for the NPIs to come into effect for the Daily Cases and Daily Deaths variables 
independently. From a methodology perspective, the novelty of this approach lies in its multidisciplinarity. We 
focus not only on past COVID-19 data on cases and deaths, but we also take into account the active cases, the 
recovered cases, Google query data, and, most importantly, the role of NPIs in minimizing the spread of the 
virus. Such multidisciplinary analyses are essential in order to elaborate on the significance of combining various 
disease surveillance variables and methods, and take full advantage of the available tools, real-time worldwide 
data, and resources that we have at our disposal, contrary to past experiences with epidemics and pandemics.

The rest of the paper is structured as follows: “Methods” section consists of the detailed description of the 
data collection procedure and predictability analysis for the COVID-19 prediction models, while in “Results”, 
“Discussion” sections, the results are presented and discussed, respectively.

Methods
COVID‑19. Worldwide and Europe data on COVID-19 cases and deaths were retrieved from the Worldom-
eters  platform20. Greek cases, deaths, and active data were retrieved from the same platform, while data for the 
geographical distribution of cases and deaths in Greece were retrieved from COVID-19’s page on the official 
Greek government  platform21. Maps were created with Chartsbin and  Mapcharts22,23. The selected timeframe is 
from February 26th to April 24th, as these two dates mark important milestones: first confirmed case and end-
of-quarantine announcement, respectively. All data were collected collectively and on the same day after the 
ending of the examined period, in order to also account for any potential corrections during this time.

Non‑pharmaceutical interventions (NPIs). Since no official COVID-19 cure exists, and as the vaccine 
is not yet available and could be more than a year before it is ready for public distribution, NPIs, as, for example, 
house quarantine or international flights restrictions are required in order to monitor and minimize disease 
spreading. The timely adoption of such measures is what made the Greek case that successful, and the statistical 
significance of the days of adoption are explored order to elaborate on the importance of NPIs.

Greek officials immediately acted on adopting preventive measures for the spread of the disease, with the 
first NPI being announced along with WHO declaring COVID-19 a pandemic on March 11th, and, effective as 
of March 12th, ordered the closing of all schools and  universities24. Retail shops, gyms, cafes, restaurants, etc., 
followed over the next  days25,26, while less than 2 weeks later, on March 23rd, strict movement measures took 
place, including house quarantine and special forms and SMS, meaning that sending an SMS or filling in a certain 
form was required in order to exit the household for all kinds of commuting/movement27. Regionally, two villages 
in the Kozani and one in the Xanthi Prefectures were put under complete lockdown,  respectively28,29, while the 
two major cities close by were also put under special quarantine measures on March  31st30,31. Table 1 consists of 
the measures that were considered for the NPIs variable of the prediction model.

The complete-lockdown measures are of importance despite being in selected municipalities and villages, 
as they refer to the most affected regions of the country. In these cases, outdoor exercise was not allowed, while 
even caregivers were not allowed to provide assistance to the elderly or people in need (when living in different 
households); the latter was handled centrally. In addition, citizens were not allowed to physically attend any Easter 
celebrations, or Mass and Divine Services in churches during Holy Week and the week after Easter.

Google Trends. Several approaches in the monitoring and analysis of several epidemiological characteris-
tics of the virus have been recorded up to this point using Google Trends  data32–35. Google Trends is an open 
online tool that provides information on the behavior towards selected topics and keywords. Such infodemiol-
ogy variables are suggested to accurately measuring the users’ online search patterns, and, in this case, assist with 
exploring the public’s perception and interest towards COVID-19.

In this paper and in line with the Google Trends infodemiology methodology  framework36, normalized 
Google Trends data were retrieved on a sequence of Google queries from February 26th, which is the date that 
the first confirmed COVID-19 case in the country was recorded, up to April 24th, which is the day before the 
announcement of the softening of the quarantine measures. Google describes the normalization procedure 
as follows: “Search results are normalized to the time and location of a query by the following process: Each data 
point is divided by the total searches of the geography and time range it represents to compare relative popularity. 
Otherwise, places with the most search volume would always be ranked highest. The resulting numbers are then 
scaled on a range of 0 to 100 based on a topic’s proportion to all searches on all topics. Different regions that show 
the same search interest for a term don’t always have the same total search volumes.”37.

Google Trends is not case sensitive, but it does take into account accents, special characters, and misspellings. 
Greek is a rather complicated language in terms of accents and spelling, and the spelling of the translation of the 
word ‘coronavirus’ had not been definite. To that end, and to ensure that the majority of coronavirus searches 
were included in the analysis, the following procedure for the selection of the examined keywords was followed.

At first, there existed four differently spelled terms to express coronavirus, i.e., “Κορωνοιός”, “Κορωναιός”, 
“Κορονοιός”, and “Κοροναιός”, with all terms including accents. Each term was compared to itself without the 
accent in Google, and all cases exhibited non-significant results for the terms with the accents. As the popularity 
of the terms “Κορωναιός” and Κοροναιός”, though used during the first days of the epidemic, quickly decreased 
and was not widely adopted by the experts, media, and public, they exhibit significantly less interest, and thus 
not included in further analysis. Therefore, the Greek terms “Κορωνοιος” and “Κορονοιος” were selected at this 
stage and, in order to also include searches conducted in English, “Coronavirus (search term)” was also added 
in the analysis, i.e., data for the “κορωνοιος + κορονοιος + coronavirus” sequence of search terms were retrieved 
for the Google query data variable.
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Predictability analysis. A predictability analysis for COVID-19 Daily Deaths and Daily Cases ratio in 
Greece is performed; the prediction model is based on an autoregressive model with heterogeneous explana-
tory variables ( AR −HX ). This proposed model is constructed in order to incorporate and study short-term 
and long-term effects of predictors that are crucial for the assessment of the duration and the effectiveness of 
an intervention policy. In spite of the simplicity of the model, we find that it successfully achieves to predict the 
COVID-19 Daily Deaths to Daily Cases ratio.

Despite that the number of reported cases alone is not the best proxy of the actual number of cases in the 
community, it could be indicative of the spread of the virus, provided the consistency of the testing system in 
a certain region (e.g., mass testing or targeted testing, etc.). However, it is merely impossible to account for all 
COVID-19 cases, even in countries that adopted a mass testing strategy, like South Korea and Germany.

In order to estimate the effect of COVID-19 in terms of life loss, WHO proposes two measures: The Infection 
Fatality Rate (IFR)—estimating the proportion of deaths amongst all infected cases, and the Case Fatality Rate 
(CFR)—estimating the proportion of deaths amongst reported  cases38. Both of these indicators can be considered 
accurate, if (a) the testing strategy is the same over the selected period, and (b) all active patients have either died 
or recovered. WHO describes CFR as “a measure of disease severity and is often used for prognosis (predicting 
disease course or outcome), where comparatively high rates are indicative of relatively poor outcomes”38. However, 
WHO proposes that, in an ongoing pandemic, CFR should be estimated as the ratio of deaths over the sum of 
deaths plus the recovered. In addition, the John Hopkin’s University uses the observed case-fatality ratio, defined 
as “the number of deaths divided by the number of confirmed cases”39.

Since Greece has not adopted the mass testing strategy and it is not possible to have knowledge of the exact 
number of real infections, in this paper, based on the CFR concept of using ratios, we try to find the optimal way 
to use the very limited data in order to perform an analysis using the resources available. We propose a multiple 
regression model that is independent of restrictions, and that also takes into account the active to recovered ratio, 
in order to provide a more complete assessment/overview of the daily spread of the regional COVID-19 epidemic.

In particular, let y(d)t  be the dependent variable constructed as the ratio of Daily Deaths to Daily Cases, xi,t , 
with i = 1, 2, 3 denoting the explanatory variables and t = 1, . . . ,T  , with T  being the respective number of 
observations. The dependent variable exhibits a series of statistical properties that pose serious challenges to 
standard statistical models (e.g., autoregressive fractionally integrated moving average models). For example, 
the autocorrelations of the square and absolute values of Daily Deaths to Daily Cases ratio display long-memory 
that last for long periods of time (e.g., weeks), while it is expected that its determinants will influence it after a 
long period of a random time.

Despite that the widely used models in the existing literature use infinite-dimension restrictions to infinite 
variable lags in order to be able to obtain long memory, many observations are lost because of the not time-
effective build-up period for the fractional difference  operator40. However, for cases like the one presented in 
our study, there is a limited number of observations as the statistical understanding is crucial to be developed 
over a restricted short-term period. In a sense, delays could be measured in number of casualties. What is more, 
such models capture the so-called unifractal scaling behavior and not the multiscaling behavior (i.e., when the 
data exhibits patterns that are repeated at different time scales or scaling laws). Such scaling-type regularities 
can provide useful information for modeling and forecasting a phenomenon.

The model developed during the implementation of this study has a simple autoregressive structure; however, 
highlighting the feature of considering explanatory variables over different interval sizes. The AR(k)−HX model 
heterogeneous is given by:

where c is the constant term, (d) denotes the data frequency (i.e., daily data frequency) and D is the dummy vari-
able that is equal to one (1) for the day that an event occurs (i.e., a restriction is imposed), and zero otherwise, 
while (w) denotes longer aggregation periods and (k) is the number of lags considered in the autoregressive term. 
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Table 1.  Adopted measures considered in developing the NPIs variable.

Description Date

Closing of schools and universities March 11

Complete regional lockdown in two villages in Kozani March 12

Closing of cafes, bars, and restaurants March 14

Closing of retail and gyms March 18

Special forms and SMS for commuting March 23

Flight restrictions to and from certain countries March 24

Strict regional lockdown in two municipalities March 31

Strict lockdowns in certain regions April 21
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The selection of (w) is data driven. In this predictability analysis, we make use of longer aggregation periods than 
1 day, as we allow (w) to vary over a fixed number of lags.

This data driven method allows us to find the optimal number of days passed for assessing past events that 
may influence the dependent variable in the future. It allows us to examine not only the effectiveness of the 
imposed measures via a strict statistical analysis, but also the optimal intervention framework so that such situ-
ations are predicted.

Explanatory variables viewed over different time horizons are considered, which, in turn, permit for direct 
comparison among quantities defined over various time horizons. This is of high significance, as it indicates how 
much time-in which case, days- policy makers have at their disposal in order to determine the last time-point 
which will allow them to act, how long such imposed measures should be in place, how the latter will be evalu-
ated, etc. In fact, the explanatory variables are multiperiod quantities that are normalized sums of the one-period 
quantities (i.e., a simple average of the daily quantities).

In order to explore the relationship between the dependent and the independent variables and to avoid spu-
rious regression results with non-stationary times series, the Augmented Dickey-Fuller (ADF)  test41,42 and the 
Phillips–Perron (PP)  test43 were used. In the case where the null hypothesis of non-stationarity (i.e., the series 
has a unit root) cannot be rejected, the first differences of the series are constructed. All computational analysis 
was performed with E-views, version 8.0.

Table 2 consists of the description of the dependent and explanatory (independent) variables used in this 
study.

Studying the interrelations of the dependent variables measured over different time horizons, the dynamics of 
the different components of a system can be revealed. It is expected that interventions or infections over longer 
time intervals have a stronger influence on the Daily Deaths to Daily Cases ratio over shorter time intervals. 
Furthermore, the interpretation of the proposed model is must simpler than an autoregressive model with non-
heterogenous explanatory variables taking a very high number of lags. As already mentioned, standard models 
employed in the literature, while possibly effective in modelling the evolution of a phenomenon that develops 
in an endogenous system, are not able to capture exogenous effects that have took place a long time ago (e.g., 
weeks or months).

Extensions. In this section, two interesting extensions of the predictability analysis, as described above, are 
presented. We explore how our prediction approach behaves, if we individually consider the (a) Daily Cases and 
(b) Daily Deaths as the model’s dependent variables.

The AR(k)−HX model heterogeneous for Daily Cases is given by:

while, for Daily Deaths, the AR(k)−HX model heterogeneous is given by:

In both models, c is the constant term, (d) denotes the data frequency (i.e., daily data frequency), and D is the 
dummy variable that is equal to one (1) for the day that an event occurs (e.g., a restriction imposed), and zero 
otherwise. Furthermore, (w) and 
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Table 2.  Descriptions of the dependent and independent variables for the daily deaths/daily cases model. 
a Refers to total deaths and total cases. b Refers to total active cases and total recovered cases.

Variable Description

y Daily deaths to daily cases ratio

x1 Deaths to cases  ratioa

x2 Active cases to recovered cases  ratiob

x3 Google trends

D Dummy for restrictive measures
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Tables 3 and 4 consist of the descriptions of the dependent and the independent variables for the Daily Cases 
and Daily Deaths models, respectively.

Results
Greece recorded its first confirmed case on February 26th, its first death on March 12th, and imposed very strict 
quarantine as of March 23rd. On April 25th, the Prime Minister, Kyriakos Mitsotakis, in a public address to the 
Greek citizens, announced the softening of the quarantine measures as of May 4th, with some retail shops resum-
ing operation and schools opening within the week. Special commuting forms and SMS are no longer required, 
and citizens are allowed to move freely but only within their Prefecture.

The geographical distribution of the COVID-19 (a) cases and (b) deaths is depicted in Fig. 3. Up to May 3rd 
(4 p.m.) the country had recorded 2620 cases and 143 deaths, while 1374 COVID-19 patients had recovered. 
Note that some COVID-19 cases may not be included in Fig. 3a, as they do not have a geographical location (e.g., 
ship personnel or passengers). As is evident, Greece, with a population of 10.7 million (approx. 3.8 of which in 
Attica), managed to well contain the disease spread.

Figure 3b shows that most of the Greek Prefectures have recorded no deaths, while even the most affected 
regions (apart from Attica) only have very few casualties. This is also evident by several mainland Prefectures hav-
ing recorded no COVID-19 cases, while most have recorded fewer than a total of ten confirmed COVID-19 cases.

Table 3.  Descriptions of the variables for the daily cases model.

Variable Description

y Daily cases

x1 Active cases

x2 Recovered cases

D Dummy for restrictive measures

Table 4.  Descriptions of variables for the daily deaths model.

Variable Description

y Daily deaths

x1 Active cases

x2 Recovered cases

x3 Daily cases

D Dummy for restrictive measures

Figure 3.  Cumulative COVID-19 (a) cases and (b) deaths in Greece as of May 3rd (Mapcharts 23).
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Figure 4.  (a) Daily cases; (b) daily deaths; (c) deaths to cases ratio; (d) active to recovered ratio, (e) cumulative 
cases and deaths; (f) cumulative active cases and recovered; (g) Google Trends time series.
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Figure 4 depicts the cumulative and daily COVID-19 cases, deaths, active, and recovered in Greece from 
February 26th to April 24th, 2020, the change in the (Deaths)/(Cases) and (Active/Recovered) ratios, and the 
Google Trends time series i.e., the times series used for the independent variables x1 , x2 , and x3 respectively.

Note that on April 21st, a spike of 156 is observed in the daily cases (Fig. 4a); this is an outlier to the sample, 
as 150 of those cases were identified in a closed refugee and immigrant structure (hotel), located in a non-urban 
environment. As this spike was observed in a structure, it is not indicative of the spread in the community. 
Another spike in daily cases is observed on April 23rd, referring to a private health structure in the Attica 
Prefecture.

Figure 5 depicts the forecasts derived by the application of the AR(2)−HX model. The proposed model 
exhibits remarkably good forecasting performance for the Daily Deaths to Daily Cases ratio, with the latter 
being well predicted by the selected explanatory variables. In a sense, what our prediction model shows is the 
optimal time intervention framework for the flattening of the epidemic curve, in which case it is measured by 
the COVID-19 Daily Deaths to Daily Cases ratio.

Table 5 consists of the bootstrapped coefficient estimates and standard errors of the model with the Daily 
Deaths to Daily Cases ratio as the dependent variable. The application of bootstrap methods to regression models 
helps approximate the distribution of the coefficients and the distribution of the prediction errors.

In this paper, we apply a bootstrap technique resampling by residuals in order to take into account the pres-
ence of influential observations (some xt very far away from the others); with the bootstrap we use an empirical 
distribution derived by resampling to approximate an unknown  one44. The final optimal number of days (w) and 
lags (k) are selected according to the Akaike information criterion. Finally, it should be noted that, as is evident 
by Tables 5, 6, 7, the values of the adjusted R-squared do not have a large difference with the respective predicted 
R-squared, which further indicates that there is no overfitting in the models considered.

Furthermore, we explore how the model performs if we independently take (a) Daily Cases and (b) Daily 
Deaths as the dependent variable. Tables 6 and 7 present the bootstrapped coefficient estimates and standard 
errors of the model for Daily Cases and Daily Deaths, respectively, while Fig. 6 depicts the forecasts for the Daily 
Cases and Daily Deaths variables of the respective models over the examined period.

For the Daily Cases and Daily Deaths models and based on the selection criteria, we did not include the 
Google Trends variable, which could be explained due to the -previously identified- decreasing trend in the online 
interest after some point into the  pandemic32,33, as also evident by the negative coefficient in the Daily Deaths to 
Daily Cases model. Future research should explore the relationship dynamics in order to better understand and 
quantify the online behavioral aspects towards COVID-19.

Based on the results, for Daily Cases as the dependent variable, the optimal time intervention framework is 
identified at 6 days. This is supportive of the estimated incubation period as identified by the ECDC, stating that 
“median incubation period from 5 to 6 days for COVID-19, with a range from two to up to 14 days”45.

For Daily Deaths as the dependent variable, we need to wait 15 days in order for the NPIs to show their 
results. This is also supportive of previous findings, that suggest that “the median time from illness onset to death 
is 18.5 days (15.0–22.0)”46.

Figure 5.  Official COVID-19 data vs. forecasts.
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Table 5.  Heterogeneous autoregressive model with explanatory variables AR(2)−HX for the daily deaths to 
daily cases ratio. ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively. Bootstrapped 
coefficient estimates and standard errors via 2000 repetitions. The final optimal number of days (w) are 
selected according to the Akaike information criterion. The variance inflation factor (VIF) is used in order 
to deal with multicollinearity issues among the regressors. Regressors with values of VIF higher than 5 are 
excluded from the estimation analysis.

Variable Coefficient Std. error t-statistic Prob

Panel A. Regression estimates

c 0.030732*** (0.009801) 3.135473 [0.0033]

x
(d)
2,t

− 0.711290*** (0.198599) − 3.581536 [0.0009]

7−1
∑7

h=0 x
(d)
1,(t−h)−7

3.829134*** (0.536053) 7.143197 [0.0000]

7−1
∑7

h=0 x
(d)
2,(t−h)−7

2.509127*** (0.736212) 3.408159 [0.0015]

7−1
∑7

h=0 x
(d)
3,(t−h)−7

− 0.003312* (0.001755) − 1.887019 [0.0666]

D
(d)
t−7

− 0.035046** (0.017100) − 2.049438 [0.0472]

y
(d)
(t+1)−1

0.320404*** (0.101509) 3.156401 [0.0031]

y
(d)
(t+1)−2

0.056718 (0.098270) 0.577167 [0.5671]

Panel B. Model specification

Adjusted R-squared 0.597701

Akaike information criterion − 3.329188

Predicted R-squared 0.429347

Table 6.  Heterogeneous autoregressive model with explanatory variables AR(1)−HX for daily cases. ***, 
**, and * denote statistical significance at 1%, 5%, and 10%, respectively. Bootstrapped coefficient estimates 
and standard errors via 2000 repetitions. The final optimal number of days (w) are selected according to the 
Akaike information criterion. The variance inflation factor (VIF) is used in order to deal with multicollinearity 
issues among the regressors. Regressors with values of VIF higher than 5 are excluded from the estimation 
analysis. The variable is divided by its full-sample standard deviation, estimated based on the basic formula of 
the variable’s standard deviation. Therefore, the inherent variability of each variable is moved, and all variables 
have a standard deviation of 1.

Variable Coefficient Std. error t-statistic Prob

Panel A. Regression estimates

c − 1.267733*** 0.242387 − 5.230209 [0.0000]

6−1
∑6

h=0 x
(d)
1,(t−h)−6

0.419785*** 0.128818 3.258743 [0.0021]

6−1
∑6

h=0 x
(d)
2,(t−h)−6

0.441888*** 0.134237 3.291861 [0.0019]

6−1
∑6

h=0 y
(d)
(t−h)−6

− 0.368988*** 0.121696 − 3.032048 [0.0040]

D
(d)
t−6

− 0.557040* 0.293529 − 1.897736 [0.0640]

y
(d)
(t+1)−1

− 0.212671 0.131631 − 1.615656 [0.1130]

Panel B. Model specification

Adjusted R-squared 0.456847

Akaike information criterion 2.275832

Predicted R-squared 0.426791

Discussion
Battling COVID-19 is the first priority in policy planning at the moment. To that end, modeling the predict-
ability of COVID-19 in order to minimize the spread is of great importance, at least until an effective treatment 
is found or a vaccine is publicly administrated and herd immunity is achieved.

In this paper, by using past COVID-19 data, an NPIs variable, and Google query data on the coronavirus, the 
predictability of the Daily Deaths to Daily Cases ratio in Greece is explored. On investigating the course of action 
in terms of NPIs of Greek officials in the COVID-19 spreading, a 7-day lag after a set of restrictive measures take 
place is identified. This study, apart from introducing a novel approach in the prediction of COVID-19, is a sig-
nificant addition to the literature in terms of providing the direction to the appropriate course of action to mini-
mize COVID-19 impact in terms of casualties and flattening the epidemic curve, as well as identifying that point 
of the regional outbreak that such NPIs should take place, in order to ensure and maximize their effectiveness.
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How did the Greek government successfully handle this epidemic? What were the key milestones that they 
took into account in designing the operation? How were they distributed in time? Figure 7 consists of a timeline 
with some of the most important COVID-19 points.

The Greek officials announced the closing down of all schools and universities with the country having 
recorded just short of 100 cases, and only a day before the first official death was recorded on March 12th; the 
first COVID-19 recovery was on March 13th. The next day all cafes bars and restaurants were not allowed to 
seat customers, while 4 days later, all retail and gyms were prohibited from allowing customers to enter their 
premises; retail switched to online orders and distribution via express mail services.

Ten days after the first death, the Prime Minister in his public address, informed the Greek citizens that any 
outside activity is not permitted without certain special forms (or SMS), while cities and villages where regional 
outbreaks were identified, were put under lockdown (partial or complete). The success of the Greek case lies on 
the early application of any restrictive measures, which were constantly re-evaluated in order to be adjusted to 
any condition changes.

Greece is one of the very few examples that can be studied in order to show and validate what the real gain 
from applying such measures is, as it managed to do so at a very early stage. Countries that did not manage to 
apply NPIs at their respective appropriate time-point rather than later during the epidemic, did not minimize 
the spread to the point of not having grave results. Given the easy and quick spread of this virus, it should be 
noted that even a 48-h delay in applying NPIs could be very crucial. Slovakia is identified as another successful 
example during the first COVID-19 wave, adopting NPIs at a very early stage of the pandemic and while the 
country had not been heavily affected by COVID-19. However, Greece is an interesting case, as it is a very popular 
destination with many international airports that are busy throughout the year, and it also had daily connections 
by sea with neighboring Italy during the first weeks of the epidemic.

This is the first such approach, not only in terms of region selection, but can also assist with the assessment 
in policy interventions of the domestic health authorities for regionally containing the disease and minimizing 
the spread. The prediction model identified the optimal time-intervention framework in order to achieve the 
latter, with the NPIs variable being statistically significant for a 7-day lag. Therefore, countries that choose this 
course of action, i.e., containing the virus, should approach the subject from a multidisciplinary point of view, 
in order to manage (a) the softening of the measures during summer, as well as (b) the second COVID-19 wave 
next fall. It is understandable that an entire country cannot shut down when recording its first confirmed case, 
but what needs to be identified is this optimal strategy between minimizing deaths and economic and social 
effects at the same time.

This study has limitations. At first, a 2-month period was examined with a limited number of (daily) obser-
vations, which was, however, the case with all COVID-19 studies at that point. In addition, the NPIs vari-
able was based on observations and recording of the events based on the authors’ experience in the examined 
country during the first wave of the pandemic. Moreover, an important factor that is not taken into account in 
this approach due to the small study period, is the number of intubated patients. This variable could provide 
insight in measuring the effect of the adopted NPIs, as well as in exploring the course of the pandemic during 
the second and third waves, where the study periods as well as the number of patients would allow for such an 
approach to add significant value to the modeled approaches. Finally, this prediction model takes into account 

Table 7.  Heterogeneous autoregressive model with explanatory variables AR(2)−HX for daily deaths. 
***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively. Bootstrapped coefficient 
estimates and standard errors via 2000 repetitions. The final optimal number of days (w) and ( ́w ) are selected 
according to the Akaike information criterion. The variance inflation factor (VIF) is used in order to deal with 
multicollinearity issues among the regressors. Regressors with values of VIF higher than 5 are excluded from 
the estimation analysis. The variable is divided by its full-sample standard deviation, estimated based on the 
basic formula of the variable’s standard deviation. Therefore, the inherent variability of each variable is moved, 
and all variables have a standard deviation of 1.

Variable Coefficient Std. error t-statistic Prob

Panel A. Regression estimates

C − 1.452676*** 0.348555 − 4.167708 [0.0002]

6−1
∑6

h=0 x
(d)
1,(t−h)−6

− 0.706318*** 0.151053 − 4.675970 [0.0000]

6−1
∑6

h=0 x
(d)
2,(t−h)−6

− 0.713220*** 0.155345 − 4.591198 [0.0000]

6−1
∑6

h=0 x
(d)
3,(t−h)−6

0.710464*** 0.147018 4.832483 [0.0000]

D
(d)
t−15

− 0.678648*** 0.309613 − 2.191926 [0.0348]

y
(d)
(t+1)−1

− 0.273855* 0.137364 − 1.993650 [0.0536]

y
(d)
(t+1)−2

− 0.392670*** 0.143116 − 2.743717 [0.0093]

Panel B. Model specification

Adjusted R-squared 0.424141

Akaike information criterion 2.332387

Predicted R-squared 0.502857



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11741  | https://doi.org/10.1038/s41598-021-90293-5

www.nature.com/scientificreports/

four explanatory variables, while future approaches should expand this approach and aim at including more-
exogenous-independent variables.

In conclusion, in this paper a 7-day lag is identified as the optimal intervention framework for the NPIs 
to come into effect, and this is what should be followed for successful results towards minimizing COVID-19 
spreading. In particular, policy makers should take into account that NPIs that do not seem to have a positive 
effect on battling COVID-19 within a week, should be revised. Predicting COVID-19 is not a one-factor variable 
model and calls for multidisciplinary action. The present predictability analysis takes into account traditional 

Figure 6.  Official COVID-19 data on (a) daily cases vs. forecasts and (b) daily deaths vs. forecasts.
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health data (i.e., COVID-19 reported cases and deaths), specific NPIs (e.g., lockdowns), as well as infodemiology 
metrics (Google query data).

Our main target is to more effectively gain insight on the nature of NPIs and how the latter can assist in halting 
the spread. This is expected to have various consequences in the COVID-19 prediction modelling. Considering 
the fact that policy makers are required to make important decisions during periods with chaotic conditions, it 
is vital to progress with a statistical understanding of the COVID-19 time series behavior in accordance with its 
real determinats. In a sense, the approach should not be strictly medical in order to estimate robust COVID-19 
prediction models, rather than a combination of medical and non-medical parameters from several research 
fields, that also take into account the citizens’ response to the measures and the way that the latter are commu-
nicated and received by the public.

Data availability
All data used in the analysis are open and publicly available in the cited sources.
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