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ABSTRACT 

A rationale is presented for a primary nursing strategy and an on-growing 

strategy for Clarias gariepinus (Burchell) culture in Africa, thus providing a 

potential model for the development of culture technology for the species. 

Existing information pertaining to the production strategies identified is 

reviewed, highlighting the attributes of African catfish for aquaculture. Some 

of the current deficiencies and inconsistencies in available information 

pertaining to controlled hatchery production are addressed. 

The early developmental stages of Clarias gariepinus are defined, in order to 

promote consistent use of terminology and help farmers better address the 

changing needs of their developing stock. The pattern of growth and survival 

of larvae and fry is investigated at higher stocking densities than those used 

experimentally to provide a database for planning full-scale commercial 

operations. Tank design and water flow rates appropriate for Clarias 

gariepinus in hatcheries are investigated and recommendations made. 

Finally, in order to promote maximal growth rates of hatchery stocks the 

maximum daily feed intake of larvae in relation to different feeding regimes 

is estimated based on rates of gastric evacuation and return of appetite. 

An overview of the controlled hatchery production of Clarias gariepinus is 

presented. 
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Chapter 1: Introduction 

It is important, if we aim to study and 
manipulate the 'food system', to do so as 
advocates for those who are disadvantaged 
within it. 

Arnold Pacey and Philip Payne 1985 

1.1 AFRICA'S1 DEVELOPMENTAL DISADVANTAGE 

Few parts of the developing world have had such a sad agricultural history 

as the countries of tropical Africa in the last forty years. In 1950 available 

supplies of food were low, often below estimated requirements, malnutrition 

and under nutrition was widespread (Grigg, 1985). Since 1950 the population 

of tropical Africa has increased far more rapidly than of any other region 

(Eicher 1984). Initially food production kept up with population growth (FAO, 

1958) but since the 1960's output per capita has fallen dramatically (FAO, 1979; 

USDA, 1981; Shapouri et al., 1987). In many parts of Africa needs would not 

be met, even if food were distributed according to requirements rather than 

income or by possession of land (Grigg, 1985). 

Within the development context Africa starts at a disadvantage for a variety 

of reasons. Only half of Africa has sufficient rainfall for rainfed agriculture 

(Higgins, 1981) and in much of this zone rainfall and yields fluctuate 

considerably from year to year (Gregory, 1969; Higgins, 1981; Harrison 

'Africa is defined here as to include all states in sub- saharan Africa except the 
Republic of South Africa (after Eicher, 1984) 
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1987). Soils on the continent are poor (Lele, 1981). Much of Africa has been 

without earth movements for huge geological periods and as a result there are 

few recent deposits to form the parent material of soils. Furthermore the long 

periods of stability mean that the upper layers of deposits have been subject 

to chemical decomposition and leaching for long periods (Grigg, 1985) ; only 

19% of the soils on the continent have no inherent fertility limitations 

(Harrison, 1987). In addition, diverse ecological conditions within individual 

countries make overall efforts to raise productivity through research and 

development relatively more complex than in uniform terrain (Lele, 1984). 

A variety of socio-cultural and historic factors also contribute to Africa's 

developmental disadvantage. Limited growth of settled cultivation has 

resulted in more limited evolution of indigenous technology and skills (Lele, 

1984). Many farm implements and animal driven modes of transport used 

extensively in other parts of the developing world are not prevalent in much 

of rural Africa today (Grigg, 1985). Instead with colonialism came a 

technological 'leap' forwards in the form of tractors and mechanical 

technologies without the supporting industrial infrastructure to be sustainable 

post independence. In 1945 all but Ethiopia and Liberia were European 

colonies (Harrison, 1984; Grigg, 1985). Though European colonial power, which 

began with the Berlin congress of 1884, and finally ended when Mozambique 

became independent in 1974, a terrible legacy remained. Many African 

countries have not yet fully achieved national unity or gained domestic 

political stability, often as a result of the arbitrary boundaries set by colonial 

powers without regard to traditional land rights and tribal cohesion (Lele, 

1984). 
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In addition a protracted development of administrative capability has resulted 

from the virtual absence of strong national, regional and local government 

administration at independence (Lele, op. cit. ). Yet without a condusive 

political environment and strong administrative framework little development 

is possible. 

1.2 ADDRESSING THE FOOD DEFICIT 

Colonial agricultural policies were geared almost exclusively to the expansion 

of export crop production (Evenson, 1981; Eicher, 1984). This unfortunate 

legacy was compounded by changes in population growth. Whereas in every 

other region the rate of increase in the 1970s was lower than in the 1960s, 

Africa's population size has risen continuously since 1945. As a result food 

output per head has declined in most of tropical Africa (Grigg, 1985). 

Clearly food importation is not sustainable from an economic stand point. In 

1962-64 Africa's food self-sufficiency ratio was 98%, by 1972-74 it had fallen 

to 90% (Grigg, 1985). The volume of food imports trebled between 1962-64 

and 1972-74 and doubled in the 1970s (FAQ, 1979; Hartmans, 1983). Indeed the 

financial burden of imports has been greater than these figures suggest: from 

1960 to 1970 the price of cereals, the major part of food imports, rose by 50%, 

but between 1970 and 1980 increased sixfold (Grigg, 1985). By 1980 the cost 

of food imports was almost equal to Africa's agricultural export earning 

(USDA, 1981; Grigg, 1985). 
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Many would advocate the developement of national food strategies as part of 

the process of addressing the food deficit (Timmers, 1984; Eicher, 1984). In 1987 

only Mali, Kenya, Rwanda and Zambia had operational National Food 

Strategies (NFS) (Lipton, 1987). However, each of the NFS's state explicitly 

and most sub-Saharan African (SSA) countries food policies imply a very 

specific agenda. The four most important goals are (Lipton, 1987): 

1. Reduced net Food imports 

2. Higher Small Farm Productivity 

3. Greater Food Security* 

4. Improved nutrition for persons at risk from inadequacy** 

* ie lower risk of fluctation in food availability at a national and 

household level. 

** mainly children under 5, in big households among the poorest rural 

quintile. 

In addition, less explicit though pertinent political goals include 

5. to finance the state 

6. to increase political stability by food-cheapening for organised urban 

groups. 

as well as the environmental goal 

7. sustainability 

There is a growing understanding in Africa today that a single minded 

commitment to one goal is not compatible with the resource allocation 
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required to optimise all goals. A popular approach is a comprehensive rural 

development programme and in particular one that addresses the needs of the 

small farmer. 

1.3 AQUACULTURE DEVELOPMENT IN AFRICA 

Fresh fish is both a popular and important component of the African diet 

(Msiska, 1991; Ayode, 1991; Bangura and Cole, 1991). Despite the lowly 

position of sub-Saharan African countries in the world economy, five of the 

top fifty principle importers of fisheries commodities in the world, are from 

sub-Saharan Africa (Table 1.1). The value of fishery product imports by these 

five countries alone totals 434 million US $, of which almost 87% is spent on 

imports of fresh fish (FAO, 1991a). 

It can be argued that as the yields of capture fisheries either become stabilized 

or depleted as a consequence of over fishing, with the concomitant rise in the 

price of imported goods, commercial aquaculture could develop to top up the 

eroded supply of fish (ICLARM and GTZ, 1991). Any workable program for 

the development of aquaculture would have to conform to the overall food 

policy goals outlined in 1.2. The possible advantages of developing 

aquaculture, particularly integrated agriculture-aquaculture farming systems, 

are manifold (Edwards, Pullin and Gartner, 1988). The small scale farmer 

would probably be the mainstay of the industry in Africa (FAQ, 1975) where 

most external assistance projects have been aimed (FAO 1985). 
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Recent statistics on aquaculture in Africa are both incomplete and 

contradictory so that no accurate assessment of its present status in the 

continent is considered possible (Coche, 1983). Aquaculture production from 

sub Saharan African countries is probably rather low. Unlike Asia, the history 

of aquaculture in Africa dates back only to about 1930 when around 300,000 

fish ponds were in operation principally for tilapia culture. The development 

did not result in much successful fish production and interest dwindled. The 

principle species cultured in Africa today are still tilapias (Kutty, 1986; FAO, 

1991b) including Oreochromis niloticus, Oreochromis mossambicus, Oreochromis 

shiranus, Sarotherodon andersonii and Tilapia rendali. Various species have been 

introduced such as Chinese carps, particularly Cyprinus carpio as well as trout, 

Oncorhynchus mykiss, and salmon, Salmo spp. Their culture however is 

constrained by the environmental concerns of African governments (e. g. 

Malawi) regarding the introduction of exotics and in the case of salmonids by 

temperature (i. e. altitude); as well as by the limited African market for such 

species in view of their unfamiliarity and high price. 

Other species cultured include catfish such as Chrystichthys spp and Heterotis 

spp. and mullet (Mugil spp). 

In particular over the last quarter of a century considerable interest has been 

generated in the potential of an indigenous catfish, Clarias gariepinus (Burchell, 

1822) for aquaculture in Africa. Pure and applied research, field trials and 

commercial culture have been variously undertaken across the length and 

breadth of Africa as well as in Asia, The Netherlands, Israel, China and 



8 

Scotland. The African catfish is now widely accepted as a most distinguished 

candidate for African aquaculture (El Bolock and Koura, 1959; Micha, 1971; 

1976; De Kimpe and Micha, 1974; Richter, 1976; Hogendoorn 1979; Hecht, 1984; 

Huisman, 1985; Huisman and Richter, 1987; Hecht, Uys and Britz, 1988 and 

Haylor, 1989). 

1.4 OBJECTIVES OF THE PRESENT WORK 

In view of the developmental disadvantage and the associated food deficit 

which faces parts of sub Saharan Africa, the importance of fish on the 

continent and the potential for aquaculture and in particular the culture of the 

African catfish, the objectives of this piece of work are: 

- First, to identify an appropriate strategy for the development of culture 

technology for the species in Africa; thus providing a potential model 

for the development of African catfish farming in developing Africa 

countries. 

- Second, to provide a synoptic review of the biology and culture of the 

African catfish with particular reference to developing African 

countries. In order to provide available information and references for 

current and would-be researchers and extensionists thereby maximizing 

the utilization of current knowledge. 

- Third, to attempt to address some of the current deficiencies or 

inconsistencies in available information pertaining to the culture 

strategy identified. 
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Chapter 2: 

2.1 INTRODUCTION 

A Strategy for the Development of Culture 
Technology for Clarias gariepinus in Africa 

2.1.1 Guiding Principals 

Any workable program to develop the aquaculture of a species will need to 

conform to the overall development goals and policies of a country as well as 

the socio-cultural norms of the recipient society (ICLARM and GTZ, 1991). 

In addition, such a programme should be appropriate to the local biological 

and physical environment and be complementary to (Jamu, 1991; Costa-Pierce, 

1991; Noble and Chimatiro, 1991; ICLARM and GTZ, 1991) and where possible 

become integrated with other production systems (Little and Muir, 1987; 

Lightfoot, 1991b; Gopalakrishnan, 1991; Pullin, 1991). 

The principal goals of an operational or implicit national food strategy as well 

as a defined role for aquaculture in national development will be two of the 

most important 'external' variables acting on the development of a culture 

system. Whereas an ability to become integrated within the comprehensive 

framework of socio-cultural and socio-economic factors will also be critical to 

the success of the strategy (Ruddle, 1991; Likongwe, 1991; Kishinode, 1991; 

Mills, 1991, Ng'ong'ola, 1991). In particular constraints to the introduction of 

innovations at the household level (Mills, 1991) such as: allocation of time and 

labour (Ruddle, 1991) as well as the elements of decision making and risk 

taking processes (Banda, 1991). At the community level, factors such as 

organisational structure (Banda, 1991; Ng'ong'ola, 1991), the distribution of 
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power and prestige (Mills, 1991), beliefs and attitudes (Ng'ong'ola, 1991), 

" access to resources (Ng'ong'ola, 1991; Ayode, 1991) and consumption 

preferences (Ayoade, 1991) will be relevant. 

Finally, the culture system adopted will need to operate in tandem with and 

not in opposition to the prevailing environment, both in terms of the climate 

and conditions and the level of physical and institutional development. 

2.1.2 Objectives and target groups 

Aquaculture (FAO, 1988) constitutes the farming of aquatic organisms 

throughout their rearing period under individual or corporate ownership of 

the stock being reared, ie. where production is enhanced by the activities of 

farmers, or small corporate groups like families, villages (or others) of a stock 

to which they have a right of ownership. The principal objectives of 

aquaculture as a food production system in Africa will mirror those of the 

national food strategies outlined in 1.2 

By implication the principal target group will be small scale farm families. 

The principal objective of aquaculture development in Africa, as elsewhere, 

will be to enhance the production of fish as a human food and to raise the 

livelihood of farm families by improving household nutritional status or 

income or both (ICLARM and GTZ, 1991). 

2.1.3 Assessing the comparative feasibility of different systems 

When assessing the comparative feasibility of different systems of aquaculture, 
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a consideration of the intensity of inputs to the system is often found to be of 

most practical value (Pullin, 1989). For simplicity three categories of systems 

will be defined; 'extensive systems' characterised by little investment in 

farmers' time, energy or resources; 'semi-intensive systems' with greater 

investment in farmer effort and inputs, often through integration with other 

resource systems; and 'intensive systems' which often depend principally on 

external inputs with high investment in time and energy. 

In addition to the above categories the culture of many fish species in practice 

can be divided into two rearing periods: 'primary nursing' - which involves 

the production of eggs from broodstock and the hatching and rearing of the 

early life stages; and 'on-growing' - to produce market sized fish from young 

seed stock. 

The factors affecting the choice of an appropriate system for the culture of a 

species, when a particular group are defined as the principal target recipients, 

are summarised in Figure 2.1. 

The 'system component' of Figure 2.1 presents nine potential pathways; in 

order to examine the most promising path(s) to develop for Clarias gariepinus 

culture, the primary nursing phase and on-growing phase will be considered 

separately. 
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biological 
& physical 
factors e. g. climate 

geology 
species 
availability 

site: 

Resource allocation system 
(political/economic) e. g. national development goals 

infrastructure 
industrial development 

aquaculture development 

target group: species: 

small scale farm families African catfish 

system: 

primary nursing: 

S/I 
extension 
training 

sociocultural ES 
factors 

on-growing: 

processing 
marketing 
distribution 

supplementary inputs 
socioeconomic factors: 

e. g. 

purchasing power other existing systems: 
capital availability 
training/labour 

ODNS JMF11ON 

outputs 

S: semi-intensive production methods 
E- extensive production methods 
I: Intensive production methods 
( The shaded area represents intrinsic system factors, these are modified 
by extrinsic contextural forces) 

Figure 2.1 : The factcrs affecting the choice of an appropriate 
system for the culture of a species when a particular 
group are the principal target recipients 
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2.2 AN ASSESSMENT OF FARMING STRATEGIES FOR THE 

PRIMARY NURSING PHASE OF CLARIAS GARIEPINUS CULTURE 

IN AFRICA 

2.2.1 Introduction 

A range of different methods have been attempted for rearing Clarias gariepinus 

larvae. These are summarized within the context of the three primary nursery 

system types outlined in Table 2.1. 

2.2.2 , Semi-intensive' methods of fry production 

Semi-intensive systems commonly involve the rearing of larvae in static, 

enriched, usually drainable nursery ponds. However, many factors interfere 

with larval rearing in fertilized ponds. These factors have been summarised 

by Hogendoorn (1980b) as predation by various aquatic organisms, shortage 

of adequate food and poor water quality. 

Predators include insects and insect larvae, amphibians as well as wild 

piscivorous fish as are listed in Table 2.2. Under natural conditions 

planktonic crustaceans are the most important food items of Clarias gariepinus 

larvae (less than 20mm total length) (Greenwood, 1956; Holl, 1968; Bruton, 

1979b). Their growth and production is stimulated by adding fertilizers (De 

Kimpe and Micha, 1974; Hogendoorn and Wieme, 1976; Kelleher and Vincke, 

1976; Hogendoorn, 1979; Christensen, 1981a). These are listed in Table 2.3. 

Associated with the production of food items in nursery ponds, however, is 

the rapid development of zooplankton and insect larvae, ie. populations of 

predators and/or organisms which compete for prey items. 

I 
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11 

Few records of water quality parameters appear to have been reported during 

primary nursing trials in ponds. Kelleher and Vincke (1976) did not monitor 

water quality but suggest that dissolved oxygen may have been limiting. 

Heavily fertilized static water bodies under tropical conditions would be 

expected to experience marked fluctuations in temperature and particularly 

dissolved oxygen (Boyd, Romaire and Johnston, 1978). Indeed this was 

documented by Christensen (1981b) who reported that dissolved oxygen at 

dawn dropped to 2.3mgl' and was 5.7mg1'' at 2.00pm. A diurnal temperature 

range of 18-32°C was also recorded by Christensen (1981b) in nursery ponds. 

During the initial period of larval rearing, prior to the development of 

functional accessory breathing organs, severe oxygen stress would almost 

certainly result from such low levels of dissolved oxygen. In this regard the 

85% survival from one week old Clarias macrocephalus larvae to marketable 

fingerling size reported by Carreon et al. (1976) may be partially attributable 

to daily flushing for 6-8h with 3.8 1 per minute of fresh water. However 

Carreon et a!. (op. cit. ) consequently report a scarcity of zooplankton. Some 

other authors have also considered the provision of adequate food a problem 

(Hogendoorn, 1980b; Christensen, 1981b). Serious, too, is the stressing of 

larvae when setting them out in ponds. Towards the end of yolksac 

absorption, this may represent an interruption of the weaning process. Micha 

(1973) reported heavy mortality after 5 days, whilst Kelleher and Vincke (1976) 

who transferred larvae to ponds at 5-6 days old reported poor survival 

following long handling and counting periods. In contrast to carp larvae 
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which usually begin exogeneous feeding after 2-4 days (Vankaecke and 

Sorgeloos, 1983; Michaels, 1988), catfish larvae are nourished by their yolksac 

for 3-6 days (De Kimpe and Micha, 1974; Carreon et al., 1976; Hecht, 1981; Zaki 

and Abdula, 1984). 

Although controlled propagation of Clarias gariepinus fry in ponds has been 

considered satisfactory by some authors (Hogendoorn, 1979; Hogendoorn and 

Vismans, 1980; Christensen, 1981b), pond rearing practices generally have not 

provided the required numbers of fingerlings (Micha, 1975; Nugent, 1975; 

Kelleher and Vincke, 1976). Therefore in view of the difficulties of providing 

an abundant natural food supply whilst limiting competitive and predacious 

organisms and maintaining water quality it may prove desirable to have an 

additional growth phase indoors where better control of the environment is 

possible (Hogendoorn, 1980b; Hecht, 1981). 

2.2.3 Semi-intensive/intensive methods of fry production 

Methods which combine intensive and semi-intensive larval culture generally 

involved an initial period of intensive larval rearing in a hatchery 

(Hogendoorn, 1980b; Hecht, 1981,1982; Uys, 1984; Verreth and Den Bieman, 

1987; Uys and Hecht, 1988). After about 10 days, first feeding larvae are 

introduced into nursery ponds (Hecht, Uys and Britz, 1988). 

From two to four days after hatching, larvae in the hatchery are offered 

exogenous feed, which may be live, such as algae, artemia, rotifers or other 

zooplankton (Hogendoorn, 1980b; Hecht 1981,1982; Meske, 1984; Huisman 
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and Richter, 1987) or a dry prepared diet (often based on yeast and/or fish 

meal) (Uys, 1984; Hecht and Appelbaum, 1987; Uys and Hecht, 1988; 

Appelbaum and Van Damme, 1988). 

However the increased investment cost associated with hatchery construction, 

operation and management is not rewarded by a commensurate increase in 

overall survival for on-growing, because larval survival during the semi- 

intensive nursery pond phase is poor (Hecht, Uys and Britz, 1988). 

Mortalities in nursery ponds at this stage are principally due to predation 

(particularly by amphibians eg. Xenopus toads) uncontrolled cannibalism, 

asphyxiation or infection (Hecht, Uys and Britz, op. cit. ). 

2.2.4 Intensive methods of fry production 

Intensive rearing throughout the larval stage up to the point where 

airbreathing fry may be liberated into on-growing facilities remains largely 

undocumented. 

2.2.5 A primary nursing strategy for African catfish in Africa 

A reliable supply of stocking material is a basic condition for successful 

planning in fish culture (Allain and Morrison, 1978; Huisman, 1979). It is - 

commonly, however, a constraint. The supply of fry has been cited as a major 

constraint to the commercial production of tilapia (Mires, 1983; Balarin and 

Haller, 1982; Loushin, 1982), milkfish (Bardach, Ryther and McLarney, 1972) 

and mullet (Nash and Konigsberger, 1981). Also in the case of the African 

catfish the need to produce considerable numbers of larvae to stock on- 
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growing ponds is widely believed to constrain the expansion of Clarias 

gariepinus culture (De Kempe and Micha, 1974; Van der Waal, 1978; 

Hogendoorn, 1980ab; Hecht, 1982; Janssen, 1984; Uys and Hecht, 1985 and 

Appelbaum and Van Damme, 1988). 

The semi-intensive nursery pond system outlined by Viveen et al. (1985) where 

larvae are introduced into ponds after 3 days (at 7-10mm) is characterised by 

low and variable survival, 10-90% (Huisman, 1985). Also, the combination of 

intensive and semi-intensive production where first feeding larvae are 

introduced into ponds (at 16-30mm) after 10 days in a hatchery is similarly 

characterised by low and variable survival, 10-50% (Hecht, Uys and Britz, 

1988). 

A general trend in overcoming the problem of inadequate fry production in 

the aquaculture of most finfish species has been to move to more intensive 

production of larvae and fry in hatcheries (Nash and Kno, 1975). Where fry 

production is based wholly on intensive hatchery production as opposed to 

semi-intensive pond rearing (or wild fry collection) the cost tends to be lower 

and less variable because production is more consistent and reliable (Shang, 

1981). 

The development of culture technology for intensive hatchery production may 

therefore prove to be the most appropriate strategy for primary nursing of 

Clarias gariepinus in terms of reliable fry production in Africa. 
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A recommendation which involves a financial risk or a risk of an extended 

period of lost opportunity (ie. instead of carrying out other work) such as 

hatchery construction and operation is probably inappropriate for small scale 

or resource-poor farmers. 

For this reason fry production in aquaculture is typically initiated by regional 

hatcheries, often government run, which may later be taken over by the 

private sector once the techniques are established and a market developed 

(M. C. M. Beveridge per. comm. ). The enthusiasm with which this section of the 

industry is taken up by entrepreneurs eg. in southeast Asia, is a testament to 

potential returns on investments (N. Irenes Taylor per. comm. ). 

Given the short history of modern aquaculture in Africa and its little 

developed present status (ICLARM and GTZ, 1991), it is likely that fry 

provision together with extension of appropriate on-growing technologies will 

form the basis of aquaculture development in the near future. 

The necessary quantity of good quality seed to sustain the growth of the 

industry may most appropriately be supplied by hatchery production. It 

would be particularly effective if hatcheries could also act as extension and fry 

distribution centres. 
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2.3 AS ASSESSMENT OF THE FARMING STRATEGIES FOR THE ON- 

GROWING OF AFRICAN CATFISH IN AFRICA 

2.3.1 Introduction 

Clarias gariepinus have been grown on to market size by a range of different 

methods. The different methods and their relative merits are discussed in 

section 2.3.2,2.3.3 and 2.3.4 and summarized in table 2.4. 

2.3.2 Extensive and semi-intensive on-growing 

This type of aquaculture is commonly undertaken in ponds built by individual 

small scale farm families and are often grouped around a village or close to 

sources of irrigation (ICLARM and GTZ, 1991) or near to a water course. 

Pond design and layout can vary widely though construction costs are often 

low. A survey of 559 small scale farms in Malawi revealed that pond 

construction cost rarely exceeds 10OMK (_ £17,1991) (Kandoole and 

Mkwezalamba, 1991). Lower still was the mean level of working capital 

identified (for seed stock, inputs, labour and equipment), which was usually 

25MK (= £4.25,1991) or less (Kandoole and Mkwezalamba, op. cit. ). The 

power to purchase off-farm resources as pond inputs for semi-intensive culture 

is often limited amongst this group. 

Small holder on-farm resources on the other hand are often fully utilized by 

other components of the farming system, eg. maize stover and rice straw are 

commonly returned to the fields whilst chicken manure is applied to 

vegetables (Lightfoot, 1991a). Also, in many cases the recommended level of 

pond inputs identified for semi-intensive culture exceeds the total production 
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of the small-holding (Lightfoot, op. cit.. ); whilst in addition some inputs are 

required seasonally for human consumption eg. Madeya (maize bran) in the 

late dry season W. Dixon, CNRFFP, pers. corn. ). In a farm survey by Mills 

(1991) 31% of fish farmers reported disagreements over the allocation of 

Madeya, between household subsistence needs and pond inputs. 

To a large extent therefore the level of 'intensification' and hence the degree 

to which supplements are added to fish ponds will depend upon availability 

of household or farm residues as well as information about requirements and 

an ability to identify other inexpensive potential pond inputs (Lightfoot, 

1991b). Extensive and semi-intensive culture systems therefore may be more 

properly regarded as a continuum rather than separate culture strategies. 

2.3.3 Intensive on-growing 

Intensive aquaculture systems develop through either private sector 

investment or government corporate activity. They commonly involve high 

capital outlay, centralized management and a degree of vertical integration 

(ICLARM and GTZ, 1991). Such systems are characterised by the dominantly 

commercial objective of maximising a return on investment, they are most 

usually conducted on a large scale and depend heavily on off-farm inputs 

(ICLARM and GTZ, op. cit. ). Intensive pond systems are densely stocked, 

inputs include formulated feeds, aeration and waste removal. Farm 

infrastructure and equipment are expensive. 
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In Europe, African catfish are reared in tanks in controlled conditions 

(Stickney, 1991). Tanks and raceways have been used in Kenya for tilapia 

(Balarin and Haller, 1982) as well as in Egypt, Zambia and Zimbabwe. Tank 

culture requires abundant fresh or recycled water and/or aeration. In 

addition balanced compound feeds which supply all the fishes' nutritional 

requirements are needed. These often account for 50-60% of operation cost 

(Greenfield, 1970; Giachelli, Coats and Waldrup, 1982; ICLARM and GTZ, 

1991). 

2.3.4 An on-growing strategy 

Intensive aquaculture systems represent an important sector of the worldwide 

aquaculture industry. They must however be supported by a sufficiently 

large potential market and are constricted by the purchasing power of 

consumers. The overriding constraint to be addressed by development policy 

in Africa is the alleviation of the all-pervasive poverty. Most households lack 

the money to buy their preferred types of food, often fish, to supplement their 

subsistence production (ICLARM and GTZ, 1991). This low to non-existent 

purchasing power, combined with the tradition of bartering for necessities, is 

a strong disincentive to private sector aquaculture development (ICLARM and 

GTZ, 1991). Additionally, before large-scale intensive systems of aquaculture 

can address the commodity deficit of the rural populous, appropriate systems 

must be planned and implemented to establish good linkages between 

producers and consumers. Distribution requires infrastructure for handling, 

processing, storing, transportation and selling of commodities as well as a 

paralleled management and monitoring structure (ICLARM and GTZ, 1991). 
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The paucity of commercial intensive aquaculture operations reflect the 

difficulties involved. At present there are only 15 to 20 viable public or 

private commercial aquaculture enterprises in operation in the whole of Africa, 

a similar number in operation which have yet to demonstrate commercial 

viability and another 10 projects in planning (FAO, 1985). A total of 23 

countries record intensive, large-scale aquaculture activities though few 

amongst these are profitable (ICLARM and GTZ, 1991). 

Extensive and semi-intensive aquaculture on the other hand has been 

described for 37 African countries, though 85.6% of the recorded ponds are 

found in 7 countries: Cameroon, Central African Republic, Congo, Egypt, 

Kenya, Madagascar and Zaire (ICLARM and GTZ, 1991). Semi-intensive 

practices are widespread and large integrated agriculture-aquaculture projects 

are underway in Central African Republic, Cote d'Ivoire, Kenya, Madagascar, 

Nigeria and Zambia (ICLARM and GTZ, op. cit. ). 

Most fish ponds in tropical Africa have limited water exchange, they are 

however subjected to consistently high light intensities and water 

temperatures. Therefore a potentially high rate of productivity may be 

expected from fertilized ponds throughout the year. The period may be 

limited to 200 days or less in subtropical regions (Hecht, et. al., 1988). The 

practice of 'semi-intensive' integrated aquaculture has met with considerable 

success in many other parts of the world. Traditional Chinese and European 

aquaculture has relied almost exclusively on the resources shared and recycled 
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locally with animal and crop production (Little and Muir, 1987). China, for 

example, has not only been culturing fish for longer than most other nations 

but it has evolved a highly productive form of semi-intensive aquaculture 

capable of meeting a large demand with a limited resource base (Little and 

Muir, op. cit. ). In Eastern Europe (Hungary) an integrated approach to 

Cyprinid culture (ducks/carp) has been extraordinarily successful (K. Jauncey, 

pers. com. ). 

In many parts of the world the integration of aquaculture with other systems 

is expanding (Little and Muir, 1987). In Taiwan for instance, it has been 

estimated that over one third of all fish ponds are integrated in some way 

(Crocker, 1983). 

Since most small-scale aquaculture in Africa is of the extensive type and most 

farmers are unable to purchase pond inputs it is probably of most value to 

investigate and promote integrated systems of agriculture-aquaculture, 

combining catfish culture with agro-industrial processes, crop cultivation and 

animal husbandry. 

2.4 CONCLUSIONS -A MODEL FOR THE DEVELOPMENT OF 

CULTURE TECHNOLOGY FOR AFRICAN CATFISH 

As the history of past failures in Africa demonstrates, the development of 

sustainable aquaculture requires sound policy, well conceived planning and 

proper implementation via biotechnical and socio-economic research which 

works in tandem with a dedicated extension service (ICLARM and GTZ, 1991). 
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Where contextual factors support the development of a catfish culture industry 

(see figure 2.1) the first overriding constraint to be addressed is a shortage of 

seed stock. 

Investment in intensive fry production may represent the best way forward; 

in order that sufficient quantity of robust (air-breathing) fry can be produced 

for on-growing. The hatchery recently established at the research and 

extension centre of the Central and Northern Regions Fish Farming Project, 

Mzuzu (Haylor, 1992a) is an example. 

The availability of fry opens the way for research into optimal on-growing 

strategies for small scale integrated catfish farming. This type of farming is 

most likely to succeed if, when presented within the right contextual 

framework it can be shown to synergistically integrate with the small scale 

farm family economy. A model for the development of culture technology 

for Clarias gariepinus is summarized in Figure 2.2. 
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CONTFUURAL CONSTRAINTS 

physical biological environmental sociocultural socioeconomic 

research II intensive larval rearing 

air breathing fry 

semi-intensive 
extension on-growing 

African catfish culture 

other resource systems 

Figure 2.2 :A model for the development of culture technology 
for Clarias gariepinus 
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Chapter 3: Some Aspects of the Biology and Culture of the 
African Catfish Clarias gariepinus (Burchell, 1822). 

One may not doubt that somehow good shall come of 
water and of mud; 
And, sure, the reverent eye must see 
A purpose in liquidity. 

Rupert Brooke 1887-1915 

The information contained in Chapter 3 has been 
accepted for publication in 'Recent Advances in 
Aquaculture' Volume IV Edited by Roberts, R. J. 
and Muir, J. F. published by Blackwells. 

3.1 INTRODUCTION 

This synoptic review outlines some of the techniques available for the culture 

of Clarias gariepinus (Burchell, 1822) and is supplemented by relevant aspects 

of the biology of the species. Culture methods are reviewed within the 

framework of the model for the development of culture technology for Clarias 

gariepinus outlined in Figure 2.2. Highlighted are those advances in 

propagation techniques and intensive primary nursing procedures which fall 

within the scope of trained fisheries personnel. Descriptions of on-growing 

procedures are limited to those requiring little capital investment and 

restricted input costs. 

3.2 SOME ASPECTS OF THE BIOLOGY OF CLARIAS GARIEPINUS OF 

RELEVANCE TO ITS CULTURE 

3.2.1 Introduction 

A good understanding of the natural history of a cultured species is an 

important prerequisite to planning and designing effective aquaculture 

systems. It also presents a framework for efficient management practices in 

order to reduce stress and disease loss, and to optimize growth performance. 
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Fundamental aspects of the biology of Clarias gariepinus relevant to its culture 

include: taxonomy, distribution, breeding biology, natural diet, feeding and 

airbreathing habit. These are discussed in the following sections. 

3.2.2 Classification 

Until recently only the keys of the Boulenger (1911) and David (1935) were 

available for identification of the genus Clarias in Africa. Both keys, according 

to Teugels (1982a), are based on doubtful criteria and employ many 

overlapping characteristics. 

A systematic revision of the genus has been undertaken by Teugels (1982a, b; 

1983 ab; 1984). Morphological and anatomical studies as well as 

biogeographical studies of museum specimens and field work conducted in 

West Africa form the basis of the research. Of 120 nominal Clarias species only 

32 are recognised as valid. 

The classification recognises six subgenera, Clarias (Dinotopteroides) Fowler, 

1930; (Brevicephaloides) Teugels 1982; Clarias (Plalycephaloides) Teugels 1982; 

Clarias (Clariodes) David and Poll, 1937; (Anguilloclarias) Teugels, 1982; and 

Clarias (Clarias) Gronovius, 1781. 

The species that are most often referred to in fish culture in Africa all belong 

to the subgenus Clarias (Clarias) Gronovius, 1781; in the new classification this 

contains two species. 
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Clarias (clarias) 

Clarias anguillaris (Linnaeus, 1758) synonym: Clarias senegalensis 

(Cuvier and Valenciennes, 1840). Distribution for Senegal to the 

Nile. 

Clarias gariepinus (Burchell, 1822) synonyms: Clarias lazera (Cuvier 

and Valenciennes, 1840) Clarias mossambicus (Peters, 1852). 

Distribution from Asia-Minor to South Africa (Teugels, 1982b). 

3.2.3 Distribution and Translocation 

3.2.3.1 Distribution 

Clarias gariepinus is distributed throughout Africa from the Nile delta to the 

Orange river (Clay, 1977a; Bruton, 1988). It is the freshwater species with the 

widest latitudinal range (about 700) in the world (Hecht, Uys and Britz, 1988). 

Clarias lazera and Clarias mossambicus previously described through west, 

central and east Africa are now considered junior synonyms of Clarias 

gariepinus (Teugels, 1986). Although the distribution of Clarias gariepinus 

overlaps with that of Clarias anguillaris in west Africa (also known under one 

of its junior synonyms Clarias senegalensis (Cuvier and Valenciennes) it is 

widely accepted to be specifically distinct from the latter (Teugels, 1982a, b; 

1983a, b; 1984,1986). This is however, at variance with Viveen et al (1985), 

who describe Clarias senegalensis as specifically indistinct from Clarias lazera, 

Clarias mossambicus and Clarias gariepinus and of east African origin. 
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3.2.3.2 Translocation and its risks 

Moving a species outside of its native range is associated with many risks. 

This is a particularly important consideration with Clarias gariepinus. The 

species has all the qualities of an aggressive and successful invader which 

readily adapts to new habitats, i. e. high fecundity, flexible phenotype, wide 

habitat preferences and environmental tolerances, an ability to feed on a wide 

range of prey, rapid early development and fast growth (Bruton, 1986). 

Introducing Clarias gariepinus outside catchments in which it naturally occurs 

can devastate indigenous populations of fish and aquatic invertebrates. 

Bruton, in Hecht, Uys and Britz (1988), for example, reports that catfish in the 

eastern Cape are threatening populations of indigenous Sandelia bainsii and 

Barbus pallidus as well as the indigenous crab Potamonautes perlatus. Weir 

(1972) has reported studies in east Africa where introduced Clarias gariepinus 

have decimated aquatic invertebrate populations. 

At least 20 species of parasites are carried by Clarias gariepinus (Van As and 

Basson, 1984) and therefore translocation of disease may also be important. 

Clarias gariepinus was introduced in 1981 into China (Zheng et al, 1988) where 

it is now cultured (Zheng et al, ibid) and has more recently been introduced 

into the Philippines (N. Nochefranca, pers. comm. ) and Thailand (A. 

Yakaputyagi, pers. comm. ) and Bangladesh Q. F. Muir, pers. comm. ). The 

Philippine freshwater catfish, Clarias macrocephalus has already become 

completely dominated by Clarias batrachus, imported from Thailand during the 
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craze for catfish farming following its rapid commercial success there (Juliano, 

Guerrero and Ranquillo, 1989). 

If international translocations of Clarias gariepinus continue without proper 

consideration of the possible ecological impacts there could be serious and 

deleterious results. Many countries have little existing legislature to control 

the introduction of aquatic species [e. g. India, Indonesia, Japan, Philippines, Sri 

Lanka and Taiwan (De Silva, 1989)]. In these circumstances, to prevent 

adverse consequences the dangers associated with introduction should be 

appreciated and acted upon by the aquaculturists themselves. 

3.2.4 The Breeding Biology 

3.2.4.1 Size at first maturity 

The size of fish at first maturation in various Clarias populations shows a 

remarkable variation (Bruton 1979a). Investigations in Lake Sibaya (32°40'E, 

27°25'S) in southern Africa revealed that after less than one year a minority of 

Clarias gariepinus reached maturity at lengths of 200-300 mm (Bruton, 1979a). 

Most populations throughout Africa, however, appear to reach maturity after 

the second year. Table 3.1, below, indicates the median size at first maturity 

(i. e. the length at which 50% of the catch is sexually mature) for different 

populations around the continent. 

The data in Table 3.1 can not accurately be related to growth rates of these 

populations as the latter are not always available, but it can be noted that 

populations which exhibit the largest median size at first maturity tend to be 
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found in 'large' lakes, e. g. Lake Victoria and Lake Turkana. 

3.2.1.2 Fecundity (i. e. absolute fecundity of Bagenal 1973) 

Fecundity is defined as the number of developing eggs in the ovary just prior 

to spawning. The fecundity of Clarias gariepinus is related exponentially to 

total length and linearly to weight. A range of expressions describe lines of 

best fit for these relationships, (Groenewald, 1957; Pott, 1969; Mulder, 1971; 

Van der Waal, 1972; Gaigher, 1977; Hogendoorn, 1977; Bruton, 1979a). 

Hogendorn (1977) suggests that an estimate of fecundity is given by the 

equation: 

Total no. of eggs = 66.6 x female body weight (g) 

Table 3.2 describes estimates of absolute fecundity from various authors. 

3.2.4.3 The breeding season 

The breeding season of Clarias gariepinus varies with location but correlates 

with periods of maximum rainfall locally (Greenwood, 1957; Holl, 1968; 

Bowmaker, 1973; Clay 1977b; Bruton 1979a). This is illustrated by Table 3.3, 

which describes periods of maximum rainfall in relation to the breeding season 

of Clarias gariepinus populations in various African countries. 

This reproductive cycle was investigated in more physiological detail by Van 

Oordt et al (1987). It was demonstrated that Clarias gariepinus exhibits a 

discontinuous reproductive cycle regulated by annual changes in the activity 

of the gonadotropic cells in the pituitary. The critical points in these annual 
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changes are a pre-spawning gonadotrophic hormone surge and a post- 

spawning regression of the gonadotropes. 

3.2.4.4. Spawning behaviour 

Descriptions of spawning runs observed in the wild are commonplace within 

the literature (Greenwood, 1955; Holl, 1968; Bowmaker, 1973; Micha, 1973; Van 

der Waal, 1974; Bruton, 1979a). 

Bruton described the event in Lake Sibaya as follows. Spawning takes place 

at night, usually after heavy rain in recently inundated marginal areas. There 

is massive aggregation of catfish before spawning and courtship is preceded 

by aggressive encounters between males. Mating takes place between isolated 

pairs in shallow water amongst inundated terrestrial or semi-aquatic grasses 

and sedges. There is no parental protection of the young except by careful 

choice of a suitable spawning site. This contrasts markedly with the parental 

care exhibited by other American, Asiatic and European catfish. The spawning 

behaviour of various catfish species is compared in Table 3.4. 
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3.2.5 The Natural diet and feeding habit 

3.2.5.1 Introduction 

Early work on the feeding habit and natural diet of Clarias gariepinus 

concentrated largely on the anatomical features of the digestive system. The 

species was considered to be a carnivore because of a small gut: body length 

ratio in comparison with other species (Angeloupulo, 1947; Al Hussaini, 1947; 

El-Bolock and Koura, 1959) and because it lacked pyloric caecae (Thomas, 

1966). 

More recently many authors have reported that plant materials represented 

various proportions of the stomach content (Groenwald, 1964; Poll, 1964; 

Munro, 1967; Cockson and Bourne, 1972). This was interpreted by Groenwald 

(1964) as a consequence of an indiscriminate carnivorous mode and he 

suggested that mouth size and the presence of bands of cardiform teeth were 

adaptations for manipulating prey. 

Munro (1965) found that the Clarias gariepinus population in Lake McIlwaine 

fed on large amounts of plant material and two years later Jubb (1967) 

redefined the species as an omnivorous scavenger. 

Since then the feeding ecology of Clarias gariepinus has been studied 

throughout Africa; in Malawi (Bourne, 1974), Uganda (Corbet, 1959; 1961), 

Egypt (El-Bolock and Koura, 1959), Zimbabwe (Weir, 1972; Bell - Cross, 1974 

& 1976; Clay, 1977a), Ghana (Thomas, 1966), Swaziland (Clay, 1977a), 
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Botswana (Donnelly, 1966) and South Africa, (Bruton, 1978; Clay 1979). A 

wide range of habitats have been investigated including lakes (Corbet, 1959, 

1961; Bourne, 1974; Bruton, 1978), a reservoir (Clay, 1979), ponds (El-Bolock 

and Koura, 1959; Weir, 1972), rivers (Donnelly, 1966; Clay, 1977a; Bell - Cross, 

1974,1976) and streams (Corbet, 1961). The following feeding patterns have 

emerged. 

3.2.5.2 Feeding physiology and behaviour 

After yolksac absorption and up to a length of 3 an Clarias gariepinus larvae 

filter feed (Greenwood, 1955; Corbet, 1961; Holl, 1966; Munro, 1967; Clay, 

1979). They consume neuston, plankton, (Bruton, 1979b) aquatic insects 

(particularly larvae) and ostracoda (Corbet, 1961). 

A strong current of water is drawn into the mouth from the water surface and 

expelled through gill openings. The body is positioned perpendicularly, with 

the barbels spread across the water surface, supported by positive buoyancy 

and the surface tension of the water on the outspread barbels (Bruton, 1979b). 

Gill raker spacing increases with fish length (Murray, 1975). The mean width 

between developed gill rakers varies between 0.1 and 0.6 mm thus allowing 

retention of particles of greater minimum width than the above. 

Catfish from 3 cm to 30 cm successfully filter feed on high densities of 

zooplankton (Clay, 1979), adopting the same perpendicular position as the 

larvae, maintained at this stage by gentle undulating movements of the tail. 
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Larger Clarias gariepinus (> 20 cm TL) surface feed at an angle of bout 60°: 

sucking food into the mouth accompanied by loud smacking noises. 

In addition to filter feeding, after about 3 cm the fish begin other modes of 

feeding. Most commonly, individual foraging; the catfish swims slowly 

forwards, swaying the head slightly from side to side with the barbels 

extended forwards in a cone. When prey is detected the fish responds rapidly 

and accurately. In Clarias gariepinus this feeding mode contains elements of 

non-randomness, for example; 

- places not recently traversed are favoured 

- localities where prey has recently been caught are searched with special 

attention 

- there is a tendency in some environments to move inshore to feed, and 

- if new food sources are located the destination of future explorations is 

altered 

(Bruton, 1979b). 

Where deposits of detritus cover the substrate Clarias gariepinus feeds by 

shovelling. The sloping anterior part of the head is used to lift up detritus. 

Any organisms that are disturbed are then captured. 

Finally, a social feeding strategy has been reported, particularly in larger 

Clarias gariepinus (40-80 cm TL) (Donnelly, 1966; Pooley, 1972; Bell-Cross, 1974, 

1976; Bruton, 1979b). Groups of catfish swimming closely together in a rough 

sickle-shaped formation 'herd' shoals of small (8 cm TL) fish, usually cichlids, 

driving them inshore on gently sloping beaches or in sparsely vegetated 

marginal pools. The dense, panic-stricken mass of prey are eventually 
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encircled and readily captured by the catfish. Social hunting increases the 

predatory efficiency of the individual predator and allow it to capture prey 

which is normally too elusive or dispersed (Bruton, 1979b). 

3.2.5.3 Feeding Strategy 

African Clarias species are commonly exposed to environmental features which 

favour an expansion of the food niche, these include: 

(1) Weak predation pressure, (this is reduced by the catfishes large size, 

well protected head and pectoral spines). 

(2) Varying but unrestrictive physiochemical conditions, (tolerance to 

changing conditions encountered during seasonal migrations and 

seasonal or diurnal changes in water level and oxygen concentration 

necessitate physiological versatility in the species). 

(3) Strong intraspecific but weak interspecific competition for food; a 

changing food supply which also varies spatially and temporally. 

Such factors have led to euryphagy in Clarias gariepinus (Thomas, 1966; 

Bruton, 1979b). After 3 cm in length they tend to feed on almost any 

food available, with a preference for animal material (Clay, 1979). 

Feeding is largely dependent on a combination of prey density and prey 

availability. When conditions are unsuitable for capturing a particular 

prey catfish switch their feeding to another. For example, Clarias 

gariepinus in Lake Victoria fed mostly on Simulium spp. (90% of the diet) 

until these insects were removed by DDT, when the fish changed to a 

diet of plants, molluscs etc. (Corbet, 1959). They can also switch from 

prey-specific methods to situation-specific methods and can optimize 
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predation by both social hunting and by temporal synchrony with 

temporarily vulnerable prey. Thus Clarias gariepinus have been 

observed to feed exclusively on chironomid larvae during their lunar 

emergence (Munro, 1965). Similar exclusive feeding has also been 

observed at Lake Kyle with termite flights following heavy rains and in 

Sand River Lake during a seasonal bivalve "spawning run" when the 

latter were concentrated in shallow water (Clay, 1977a, 1979). 

When not engaging in exclusive feeding catfish have been found to feed on 

over 55 different items, with individual stomachs containing up to ten, rarely 

13, different food species (Bruton, 1979b). The variety of dominant dietary 

components include: zooplankton (Bourne, 1974 - Lake Chilwa; Bruton, 1979b - 

Lake Sibaya); insects (Weir, 1972 - Wankie pools) and cichlids (Corbet, 1961 

Lake Victoria). 

3.2.6 Airbreathing 

3.2.6.1 Introduction 

As in other species of Clariidae the gill cavity of Clarias gariepinus is adapted 

for breathing air. It is enlarged and contains two highly vascular arborescent 

organs, the respiratory trees or dendritic organs. Several detailed descriptions 

have been published, e. g. Greenwood, 1956,1961; Moussa, 1956 and Cockson, 

1972. Morphological, histological and histochemical evidence suggest that 

these organs are derived from primary and secondary gill lamellae (Cockson, 

1972). 
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According to Greenwood (1956) the arborescent organs develop late in post- 

larval ontogeny; a single knob associated with the fourth arch appears in fishes 

of c. 3 cm length. The anterior tree (second arch) develops later at c. 5 cm 

length. Branching then continues until the much branched definitive condition 

is reached in fish of about 30 cm long. Under experimental culture conditions, 

however, the onset of airbreathing in larval catfish has been observed in fish 

13 mm long 14 days after first feeding (G. S. Haylor, unpublished observation). 

The onset of aerial respiration as well as the relative dependence on branchial 

and pulmonary organs has implications particularly for larval rearing where 

branchial respiration and hence the dissolved oxygen level of the water are 

important. Aerial respiration has been shown to develop gradually with age, 

constituting 50-60% of the total oxygen consumption of mature fish (over 400 

g) (Babiker, 1979). The same author, however, concedes that this is dependent 

upon the oxygen content of the water. 

3.2.6.2. Oxygen Consumption 

The total consumption of both aerial and dissolved oxygen by Clarias gariepinus 

receiving an optimal diet (resulting in minimal FCR) at 25° was found by 

Hogendoorn (1983b) to be related to fish weight by the equation: 

02 consumption = 0.449W "75 m102/fish/h 

where W= body weight in g 

From an aquaculhual view point this is more usefully described in'terms of 

mg oxygen per kg fish per hour, i. e. from Gay-Lussac's Law 
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02 consumption = 649,767 W-0"25 
1013 + 3.718 (T) mgO2/kg/h 

W= body weight in g 

T= Temperature °C 

Fertilized ponds form the basis for many fish culture operations in the tropics. 

These enriched static water bodies however are commonly associated with 

extremely low oxygen concentrations, (in all but the top few millimetres 

during the day). In these circumstances (considering that air can contain 30 

times more oxygen per unit volume than water) the potential for culturing 

Clarias gariepinus (or possibly other air breathing species) is therefore clear. 

3.3 CULTURE 

3.3.1 Spawning 

3.3.1.1 Introduction 

Fry and fingerlings of the African catfish are difficult to obtain in natural 

waters for stocking available ponds (Huisman and Richter, 1987). A reliable 

supply of good quality fry is however, an essential prerequisite to aquaculture 
development, and thus much attention and research has focused on the 

induction of spawning. Clarias gariepinus may be induced to spawn by altering 

environmental conditions or by manipulation of the hypothalamic-pituitary- 

ovarian axis of the fish. 

3.3.1.2 Induced Spawning 

The three most important stages to be considered when inducing spawning 

are: 
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(1) The development of postvitellogenic oocytes in the ovary. 

(2) Oocyte maturation. 

(3) Ovulation. 
e 

An inherent endogenous rhythm determines the cyclical changes in ovarian 

activity in Clarias gariepinus (Richter et al 1987a), resulting in a discontinuous 

cycle of egg production. These authors showed that the internal rhythm in 

adult female broodfish was already determined at an early stage of 

development by environmental factors. In feral catfish the presence of 

posvitellogenic oocytes corresponds to the local period of maximum rainfall, 

(as indicated in Table 3.3). 

Thus, for individual spawning to be successful, promotion of oocyte 

maturation and ovulation will be restricted to this period. However, 

broodstock transferred from outside tanks to the hatchery maintain their 

annual reproductive cycle for about one year, after which time spawning can 

be induced monthly, (Tanssen, 1984). Whereas broodstock raised entirely in 

captivity mature precociously at the age of 6-9 months, at which time 

postvitellogenic oocytes are present, there is no discontinuity of egg 

production (Richter et al., 1987a). 

Where postvitellogenic oocytes are present Clarias gariepinus can be induced 

to spawn by manipulating environmental conditions or by intervention at 

several levels of the hypothalamic-pituitary-ovarian axis (Donaldson & Hunter, 

1983), which controls reproduction in female teleosts (Donaldson, 1973). 

Figure 3.1 describes the pathway for control of maturation and ovulation and 
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Gonanotropin release-inhibltoty Factor(GRIF) 

HYPOTHALAMUS 
Anti-estrog 

I NeuroamInes 
dopamine antagonist 
-Pimozlde 

2 Deopeptides 
Gonadotropln 

-LHRH 
releasing -LHRHa 
hormone(GnRH) GnRH(salmon) 

PITUITARY GLAND 

Gonadotropin 
(GtH) 

3 Hormonal Glycoproteins 
Piscene origin: 
-aqueous extract of whole 
pituitary(homopiastic or 
heteroplastlc) 
-acetone dried pituitary 
powder 
-precipitated ethanol extracts 
of pituitaries 
-partially purified gonadotropes 
Mammalian origin: 
Pituitary 
-LH 
-FSH 
placental 
-HCG 
-PMSG 

4 Steroids 
Progestins 
-I7xhydroxy-20b 
dihydroprogesterone 
-I7x hydoxyprogesterone 
-progesterone 
Corticosterolds 
-II -deoxycorticosterone 
-II -deoxycortfsol 
-cortisol 
-cortisone 
Estogens & Androgens 
17 b estradlol 

Figure 3.1 : The pathway for control of maturation and 
ovulation and opportunities for inducing spawning. 
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the opportunities for inducing spawning in Clarias gariepinus. 

3.3.1.3 Induced spawning by manipulating environmental 

conditions 

Rainfall and an increase in water level, resulting in inundation of grasslands 

bordering the shallow lakes in which the catfish live, appear to trigger 

spawning (Van der Waal, 1974; Bruton, 1979a). Bruton (1979a) hypothesized 

that a number of factors induce breeding, among them cold water, 

petirchor(geosmins) from newly-wetted soils and a change in pH. This was 

substantiated further by a practical method successfully employed by 

Christensen (1981a) in Kenya, in which 5-11 fingerlings per m2 were produced 

by the following method: 

(1) The pond was left empty over at least a7 day period of strong sunlight. 

(2) Gravid females, and males of the same or smaller size were stocked at 

0700 h (following one week of feeding with waste fish) 

(3) The ponds were filled completely in the evening with an application of 

50 1 dry cattle manure 25 1 sun-baked red laterite soil and 25 ml of 

phosphoric acid per 100 m2. 

The same treatment was repeated every day for 3 days when the pond was 

topped up. The first filling was always done one week before new moon. 

Unfortunately pond size and method of application were not specified by the 

author. 

Further environmental parameters identified as influential in induced 

spawning by Richter et al. (1987a) were feeding level, temperature, and the 
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presence of male conspecifics. 

Feeding level has also been shown to affect ultimate absolute fecundity by 

Huisman & Richter (1987) who recommended a feeding level equivalent to 

that giving the most efficient food conversion namely 1% wet body weigh per 

day with 30% crude protein channel catfish pellets. However, this level will 

also be affected by the feeding frequency (Hogendoorn, 1981; Uys and Hecht, 

1985). 

High and constant water temperature (25°C) appears to enhance ovarian 

activity (Richter et al., 1987b, Huisman & Richter, 1987), whereas temperatures 

of 30°C were shown to disturb reproduction (Huisman & Richter, 1987). 

The presence of male conspecifics may indicate a role by male sex pheromones 

in follicle development and maintenance in the ovary. The steroid 

glucoronides produced by the testis and seminal vesicle (Lambert et al, 1986; 

Schoonen & Lambert, 1987b; Schoonenet al., 1987a, b; Resink et al., 1987) could 

have such a pheromonal action (Richter et al., 1987a). Seasonal changes in day 

length, however, do not influence the development and maintenance of ovaries 

filled with postvilelogenic oocytes (Richter et al., 1987a). 

3.3.1.4. Induced spawning in Clarias gariepinus by manipulation of the 

hypothalamic-pituitary-ovarian axis 

3.3.1.4.1. The hypothalamic level: Gonadotropin release-inhibitory factor (GRIF) 

antagonists 
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A gonadotropin release-inhibitory factor (GRIF) has been shown to play a role 

in the regulation of gonadotropin release from the pituitary gland of some 

teleosts (Peter et al., 1978; Peter and Paulencu, 1980; Chang and Peter, 1982). 

In goldfish this factor is believed to be dopamine (Chang and Peter, 1982,1983; 

Chang et al., 1983). Furthermore, injection of the dopamine antagonist, 

pimozide, has been shown to increase plasma gonadotropin concentration in 

goldfish, (Chang and Peter, 1982,1983) carp (Billard et al., 1983) and catfish 

(De Leeuw, et al., 1985a, b). 

The gonadotropin release-inhibiting activity of dopamine is restricted to the 

LHRH-induced GTH release (De Leeuw et al., 1987). Therefore treatment of 

Clarias gariepinus with GRIF antagonists greatly enhances the effect of the 

releasing hormone or its analogue (see deca-neuropeptide section below). 

However, injection with a dopamine antagonist alone is not effective, (Van 

Oordt and Goos, 1987). 

In many teleosts LHRH or its analogues alone can induce release of GTH but 

high doses or multiple injections are sometimes needed for the induction of 

oocyte maturation and ovulation (Donaldson and Hunter, 1983). However, a 

combination of pimozide-LHRHa requires no priming agent and one single 

intraperitoneal injection is sufficient to achieve ovulation (De Leeuw et al., 

1985a). 

The minimal effective dosage for reliable induction of ovulation is 5 mg 

pimozide + 0.05 mg LHRHa per kg body weight (De Leeuw et al., 1985a, b). 
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However, pimozide can not be used in fish farming because it is not 

commercially available for this purpose, (Goos et al., 1987). 

Other LHRHa potentiating drugs with a potent anti-dopaminergic character 

may therefore prove useful in conjunction with LHRHa. For example, 5 mg 

Org 30067 + 0.05 mg LHRHa and 5 mg Org 5222 + 0.05 mg LHRHa may be 

administered to induce oocyte maturation and ovulation with ease in Clarias 

gariepinus, (Goos et al., 1987). Org 30067 has the chemical composition 6,7,8,9- 

tetrahydro -3,7-dimethyl -5H -dibenx [b, i] [1,6] oxazecine (Z) -z-butene-dioate 

(1: ). Org 5222 has the chemical composition trans-5-chloro -2,3,3a, 12b- 

tetrahydro-2-methyl-lH-dibenz [2,3: 6,7] oxepino [4,5-c] pyrrole (Z)-2- 

butenedioate (1: 1). 

3.3.1.4.2 The Hypothalamic level Deca-neuropeptide stimulation of pituitary gonadotropin 

release 

Gonadotropin release in teleosts is stimulated by a deca-neuropeptide (this is 

reviewed by Peter, 1982). The neurohormone referred to as gonadotropic 

hormone-releasing hormone (GnRH) in fish was purified and identified by 

Sherwood et al. (1983) and by Wu et al. (1986) in chub salmon and cod, 

respectively. It differs from mammalian luteinizing hormone release hormone 

(LHRH) in the amino acids at positions seven and eight. A superactive analog 

LHRHa Des Gly1° [D-Alab] ethylamine-LHRH is also available. 

Clarias gariepinus do not release a large amount of gonadotropin under 

favourable husbandry conditions (Van Oordt and Goos, 1987). Therefore 
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oocyte maturation and ovulation must be induced and to this end deca- 

neuropeptide stimulation has been investigated (De Leew et al., 1985a; 1986, 

1987; Goos et al., 1987; Richter et al., 1987b). 

The absence of a pre-spawning gonadotropin surge in Clarias gariepinus is not 

caused by insufficient storage of the hormone in gonadotropin cells (De Leeuw 

et at., 1985a), nor is it due to a lack of gonadotropin release-inducing peptide 

in GnRH neurones (Goos et al., 1985). It is more likely that GnRH is not 

released or is prevented from eliciting its effect (Van Oordt & Goos, 1987). 

LHRH or its analogue can induce release of GTH, however high doses or 

multiple injection may be required to induce oocyte maturation and ovulation 

in teleosts (Donaldson and Hunter, 1983). This appears to be the case with 

Clarias gariepinus. Intraperitoneal injections with the peptide (0.05 mg per kg 

body weight) have been shown to cause gonadotropin levels in the plasma to 

increase within 30 min to a maximum at 4-8h post injection. Rarely, however, 

were ovulatory levels reached (De Leeuw et al., 1985a, b, 1987). 

Therefore, at present, deca-neuropetide stimulation of spawning at the 

practical level can be considered effective only when the release hormone is 

administered together with a potentiating drug of potent anti-dopaminergic 

character. (This is described in the section on GRIF antagonists. ). 
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3.3.1.4.3 The pituitary level Hormonal glycoprotein induction of spawning 

Hormonal glycoproteins for inducing spawning may be of piscine or 

mammalian origin. Typical materials and their origins are shown in Table 3.5. 

3.3.1.4.4 The ovarian level: Steroid hormone induction of spawning 

The action of gonadotropin at the ovarian level is regarded as being largely 

mediated by the steroid hormones (jalabert, 1976). These include: 

(1) Progestins 

17 a hydroxy -20 ß dihydroprogesterone 

17 a hydroxy progesterone 

progesterone 

(2) Corticosteroids 

11 - deoxycorticosterone 

11 - deoxycortisol 

cortisol 

cortisone 

(3) Estrogens and Androgens 

17 0 estradiol 

In several teleosts oocyte maturation and ovulation are accompanied by 

changes in ovarian steroidogenesis and steroid blood plasma levels 

(Scott & Baynes, 1982; Zoher et al., 1982; Theofan & Goetz, 1983; Young 

et al., 1983). In African catfish, 17 a hydroxy - 20 ß 

dihydroprogesterone is produced in response to gonadotropin 

stimulations in addition to substantial amounts of 17 a 

hydroxyprogesterone (Lambert & Van der Hurk, 1982). 
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The latter steroid is probably a precursor of 17 a hydroxy ß -20 

dihydroprogesterone and has been shown to induce oocyte maturation and 

ovulation in vitro (Jalabert, 1976). Injection with 17 a hydroxy progesterone 

has been shown to cause a dramatic increase in 17 a hydroxy - 20 -ß 

hydroprogesterone (Richter et al., 1987a). 

The spawning induction action of 11 - deoxycorticosterone and 11 - 

deoxycortisol may be the result of these steroids displacing 17 a hydroxy 20 

P dihydroprogesterone bound to plasma protein (Jalabert, 1976). 

A summary of the steroid hormones used to induce spawning in Clarias 

gariepinus is given in Table 3.7. 

3.3.2 Egg Incubation 

3.3.2.1 Growth and Development 

Following oviposition of mature eggs, fertilisation initiates the first steps in a 

chain of embryonic development. Like those of other catfish the eggs of 

Clarias gariepinus are fairly large (c. 1.5 mm diameter). They develop into 

larvae with a large yolk sac which provides nourishment for 3-6 days (De 

Kimpe and Micha, 1974; Carreon et al., 1976; Hecht, 1981; Zaki and Abdula, 

1984). A period of embryonic and larval development follows hatching. 

The early life history had been studied (Bruton, 1979a; Stroband and Kroon, 

1981; Zaki an Abdula, 1984) and is represented in Table 3.8. 
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3.3.2.2 Egg incubation systems 

3.3.2.2.1 Incubation Funnels 

The eggs of Clarias gariepinus become adhesive when they come into contact 

with water. As with other species such as common carp this is a serious 

obstacle to the large scale incubation of eggs in breeding funnels or zuger jars. 

This problem has been addressed in other species by washing the eggs prior 

to incubation in solution containing enzymes such as hyalurodinase or 

chemical such as urea or tannic acid or by coating the eggs with an inert 

powder (Woynarovich, 1962; Klotzsch et al., 1977; Soin, 1977; Rothbard et at., 

1978). 

By adapting the above methods, Schoonbee et al. (1980) found that 

adhesiveness in Clarias gariepinus eggs can be removed by any of the 

following: 

(1) Washing for 45 minutes with a urea solution (3 g urea +4g sodium 

chloride dissolved in 11 of water). 

(2) Washing for 30 minutes in urea solution followed by 5-10 seconds 

rinsing in a full cream milk powder mixture (15-25 g/1). 

(3) Continuous stirring for 35 to 40 minutes in a (15-25 g/1) full cream milk 

powder mixture at a volume ratio of 1: 20, eggs to milk. 

Following any of treatments 1-3 the eggs can subsequently be incubated in 

funnels. This method however requires additional expense in time, labour and 

chemicals and is not without risk of mechanical or chemical damage to the 

eggs. Reduction or cessation of water flow during incubation in funnels will 
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result in a potentially deleterious aggregation of the negatively buoyant eggs. 

3.3.2.2.2 Incubation trays 

A more efficient method is to distribute the fertilised eggs in a single layer on 

a horizontal 1 mm mesh. This is done between amphimixis and the time of 

development of adhesiveness, (Hogendoorn, 1977; also see Viveen et at., 1985). 

The onset of stickiness is reported to occur within a few minutes of 

fertilisation. This has, however, often been observed by the author to occur 

within one minute, at temperatures between 27 and 31°C, (G. S. Haylor, 

unpublished observations). 

Dead eggs and egg cases can rapidly become infected by fungus, principally 

the ubiquitous aseptate fungus Saprolegnia. The removal of unfertilized eggs 

and egg membranes from hatched larvae is facilitated when a monolayer of 

eggs can be spread out on a nylon mesh, (Chen, 1976; Britz and Hecht, 1988; 

Haylor, 1991). A1 mm mesh restrains the eggs, which adhere to it, but allows 

the yolk sac larvae to pass through. (If suspended in water a few centimetres 

above the base of the tray or trough, then following hatching the larvae seek 

shelter beneath the mesh, which at the end of the hatching period can be 

removed). 

This simplified approach is particularly relevant in Clarias gariepinus which are 

reported to be much more sensitive to disinfection and prophylactic treatment 

than for example carp, (Schoonbee et al., 1980). 
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3.3.2.2.3 Induced natural spawning 

This technique has resulted in more variable production of fry and is therefore 

less commonly undertaken. Broodstock are selected so that females are 

slightly larger than or of equal size to males. Females with a distended 

abdomen and red genital pore (Carreon et al., 1976; Hogendoorn, 1979) are 

preferred, whilst males are chosen on the basis of aggressiveness (De Kimpe 

& Micha, 1974) or prominence and white colouration of papillae (Carreon et 

al., 1976), or its slight vascularisation (Hogendoorn, 1979). 

Females and sometimes males are often primed by injection of DOCA 

(Hogendoorn and Wieme, 1976; De Kimpe and Micha, 1974; Hogendoorn, 

19798; Carreon et al., 1976; Kelleher and Vincke, 1976), after which they are 

introduced into spawning ponds (Hogendoorn and Wieme, 1976; Hogendoorn, 

1979; Christensen, 1981b) or tanks (De Kimpe and Micha, 1974; Carreon et al., 

1976; Kelleher and Vincke, 1976). 

Spawning occurs 'naturally' and eggs adhere to vegetation (Hogendoorn and 

Wieme, 1976), gravel or pebbles (De Kimpe and Micha, 1974; Kelleher and 

Vincke, 1976) or spawning mats (G. S. Haylor, unpublished data). 

In ponds, frogs, tadpoles, water-scorpions and the larvae of dragonflies and 

water beetles predate on small Clarias gariepinus (Hogendoorn, 1979). Fry 

production from this method is both low and variable (Table 3.9). 
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Table 3.9 Example of Fry Production in spawning ponds after c. 6 weeks 

Country Fry per m2 Reference 

Central Africa 1-2 De Kimpe and Micha, 
1974 

Kenya 5-11 Christensen, 1981a 
Cameroon 17.4±14.4 (SD) Hogendoorn, 1979 

3.3.3 Hatching 

In the wild, hatching often takes place during the night that follows spawning, 

although some Clarias eggs hatch on their second night, i. e. after 36-48 hours 

(Bruton, 1979a). The time which elapses between spawning of broodstock and 

hatching under experimental or culture conditions is variable typically 18-57 

hours (see Table 3.10). 

Table 3.10 Incubation period (ie. time between fertilization and hatching) for Clarias 
gariepinus eggs at various temperatures 

Incubation Period (H) Temperature Reference 

40-48 20-24 Holl, 1968 
23-25 26-27 Van der Waal, 1972 
28 26-29 Carreon et a1,1973 
24 26 Micha, 1976 
24-28 20-30 Carreon et a1,1976 
48 19-20 Hogendoorn, 1977 
21.5-24 28 H. Hogendoorn, (pers. 

com. in Bruton, 
1979a), 1978 

24-25 19-24 Bruton, 1979a 
39-40 20.5-23 Schoonbee, 1980 
33 (for 5h) 27 Zaki & Abdula, 1984 
20-57 20-30 Viveen et al, 1985 
36 28±0.5 Hecht & Appelbaum, 

1987 
18 31 G. S. Haylor 

(unpublished) 
range 
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Teleost eggs, are poikilothermic, and a strong inverse relationship has been 

widely reported between development time within the egg envelope and 

ambient water temperature (Dannevig, 1895; Blaxter, 1969; Herzig and 

Winkler, 1985; Rana, 1986; Pauly and Pullin, 1988). This relationship has been 

described as exponential (Blaxter, 1969; Herzig and Winkler, 1985) or linear 

(Rana, 1986) depending on species. 

Other factors are also believed to affect hatching time, e. g. oxygen levels, 

salinity, pH and egg size (Blaxter, 1969; Braum, 1978; Pauly and Pullin, 1988). 

The interpretation of available information for Clarias gariepinus (Table 3.10) is 

unfortunately made difficult by the absence of such data. In Figure 3.2 the 

incubation time over the temperature range 20-30°C indicated by Viveen et al. 

(1985) is amalgamated with data from other authors. 

In the wild, Clarias gariepinus spawn at night (Aboul-Ela et al., 1973; Bruton, 

1979a) when they are less vulnerable to visually-orienting predators (Bruton, 

1979a). There is no parental protection of the egg or fry and predation 

pressure is probably responsible for high rates of mortality. Bruton (1979a), 

for example, reported that one fifth of the fish population (at high lake level) 

in terrace and marginal pool habitats adjacent to spawning areas consisted of 

Pseudocrenilabrus philander (M. Weber), Glossogobius giurus (Hamilton- 

Buchanan), Ctenopoma multispinis Peters and Clarias theodorae M. Weber, all of 

which readily eat Clarias gariepinus fry in aquaria and would be capable of 

consuming large numbers of the fry if they could be located and captured. It 

could, therefore, be argued that fry survival at the vulnerable stage before the 
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onset of swimming would be favoured by the cover of darkness. 

Although ontogenic development in teleosts' is influenced by temperature, 

hatching is rarely a development threshold (Yamagami, 1981). It occurs earlier 

at low oxygen tensions (Dziekonska, 1956; Alderdice et al., 1958; Hamdorf, 

1961), or is dependent on other environmental cues (Muntyan, 1975; Balon, 

1972; Yamamoto et al., 1979; Gulidov and Popova, 1982). 

It is interesting to note, therefore, that the incubation period for Clarias 

gariepinus appears to deviate most from the inverse curvilinear relationship 

with ambient temperature (suggested by Viveen et al., 1985) at periods which 

would approximate to the first or second night following spawning. Should 

this prove to be the case, it would imply that the concept of degree-days can 

be less rigidly applied in the management of Clarias gariepinus culture than in 

other cultured species. 

3.3.4 Larval rearing 

3.3.4.1 Introduction 

The need to produce considerable numbers of larvae of the African catfish to 

stock on-growing ponds is widely believed to constrain the expansion of its 

culture in Africa. An assessment of the farming strategies for the primary 

nursing phase is given in 2.2. For most fin fish a general trend in overcoming 

the problem of inadequate fry production has been to move to the more 

intensive production of larvae and fry in hatcheries (Nash and Kuo, 1975). 
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3.3.4.2 Larval feeds 

Research into Clarias gariepinus culture has focused on different aspects of 

controlled hatchery production, with much attention given to larval feeding, 

(Jocque, 1975; Pham, 1975,1980; Hognedoorn, 1980b, 1981; Hecht, 1981,1982; 

Meske, 1984; Uys, 1984,1989; Uys and Hecht, 1985; Hecht and Appelbaum, 

1987; Verreth and Den Bieman, 1987; Verreth et al., 1987; Appelbaum and Van 

Damme, 1988). 

The larval feeds used for primary nursing of Clarias gariepinus under controlled 

conditions are listed in Table 3.11. As might be expected, natural food 

organisms have proved successful. Additional time, space and energy, 

however, are required for their culture, whilst their addition to rearing tanks 

does not aid the maintenance of semi-sterile conditions, which are an 

important consideration in high-density culture of sensitive stages of the life 

history. 

Processed or inert food organisms such as dried and decysted Artemia may 

also be used (Verreth and Den Bieman, 1987). However, their nutritional 

quality may vary considerably according to the geographical strain, processing 

batch and development stage (Leger et al., 1986). The use of artificial dry feeds 

has proved more problematic, (Hogendoorn, 1980a; Msiska, 1981a) though 

satisfactory growth and survival has been demonstrated (Hecht, 1982; Uys 

and Hecht, 1985; Appelbaum and Van Damme, 1988). 
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One of the fastest larval growth rates to date has been recorded by Meske 

(1984) where an initial period of feeding with Artemia (10-15 days) was 

followed by a seven day weaning period before rearing exclusively with a dry 

feed. 

One of the problems, however, with the present empirical approach of testing 

various diet formulations for Clarias gariepinus is that no theoretical basis exists 

for diet formulation, and that the available growth and survival data can 

therefore have little general applicability. This is particularly so as growth rate 

is dependent on a multiplicity of factors, significantly feed quality, feeding 

level and temperature, (Verreth and Den Bieman, 1987). 

In order to create a more rational approach to the formulation of low-cost high 

quality feeds from cheap, locally available resources the specific nutritional 

requirements of larval catfish would have to be established. This is 

complicated by the fact that the qualitative and quantitative nutritional 

requirements of the larval stages of Clarias gariepinus would be expected to 

change rapidly during the early life history. Following the onset of exogenous 

feeding (at about day 4) many morphological, histological and functional 

developments take place (Stoband and Kroon, 1981). These will result in 

changes in the digestion, absorption, transport and assimilation of chemical 

compounds, and therefore the qualitative nutritional requirements will also 

change. 
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In a few days the larval weight increases 20 to 25 fold, its dry matter content 

changes considerably and the specific growth rate decreases continuously 

(Verreth and Den Bieman, 1987), thus altering the nutritional requirements. 

A requirement for protein (40-42%), lipid (10-12%) and the protein to energy 

ratio of 26-29 mg protein per kg of digestible energy has been identified by 

Uys (1989) for Clarias gariepinus juveniles and adults. 

3.3.4.3 Feeding and Growth 

Rapid rate of growth is one of the favourable aspects of the biology of Clarias 

gariepinus in terms of its aquaculture potential. As a consequence however, the 

conventional approach to the assessment of growth performance and the 

calculation of feed requirements can not be easily adapted. 

In many species, for short culture intervals the specific growth rate (SGR) 

remains rather constant and feeding level (expressed as % of BWd-') can 

therefore be kept constant over these intervals. The resulting growth 

performances may be compared by the SGR (% BWd7'). In fast growing 

species, particularly at the larval stages, this is no longer reasonable. 

Thus Hogendoorn (1980b) reported a reduction in the SGR of Clarias gariepinus 

larvae from 85% d'' to less than 20% d' of the body weight in the first 28 days 

of feeding. For Clarias gariepinus, therefore, fixing the feeding level as a 

percentage of body weight and adjusting this periodically, following re- 
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weighing, would clearly give a very poor approximation of feed requirements, 

unless the changes in SGR over short successive periods was known. 

An alternative method fixes the feeding level in terms of predicted growth 

performance, (Verreth and Den Bieman, 1987). This is based on the 

assumption that growth of larval fishes can be linearized over the entire larval 

culture period, i. e. the linear relationship described by Hogendoorn (1980b) 

between a cube root transformation of body weight and the length of the 

culture period. 

Whereby: 

yt% = Yo + g. t 

where Yt = weight at time t 

Yo = weight at start 

g= regression co-efficient 

t= length of culture period (days) 

The feeding levels of Verreth and Den Bieman (1987) can be chosen according 

to predicted growth rates (g): 

i. e. Food requirements fish' on day t (mg wet weight) 

= change in Y, DMf . FCR 
DM, 

change in Y, = Y, +, -Y, (mg wet weight) 

DMf = dry matter content of fish larvae 

DM, = dry matter content of fed Artemia 

FCR = Food Conversion Ratio 
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With this approach food conversion ratio (FCR) is assumed to be a constant 

derived from preliminary experiments. However, as the authors point out 

FCR is significantly affected by feeding level and temperature. It, can not 

therefore, logically be accredited with a constant value in order to determine 

feeding level. Also it is not known whether the growth index (g) used by 

Verreth and Den Bieman (1987) like SGR can vary significantly when 

measured over short successive intervals from first feeding. The formula may, 

however, serve as a guideline under specific conditions. 

The temperature preference of larval and post-larval Clarias gariepinus and the 

optimum temperature for their growth was investigated by Britz and Hecht 

(1987) and found to be 30°C. At this temperature, growth rate increases with 

feeding level but food conversion is most efficient at a feeding level, FL = 0.2, 

when the average FCR = 2.57 (dry weight basis) (Verreth and Den Bieman, 

1987). Therefore substituting g=0.2 into Hogendoorn's (1980b) equation, the 

predicted increase in body weight each day can be calculated. Multiplying 

then by the average FCR for this temperature and feeding level a guide to the 

daily feed requirements can be determined Table 3.12. 

3.3.4.4 Feeding Frequency 

Hogendoorn (1981) investigated the effect of the frequency of feeding on 

growth, survival and feed conversion of Clarias lazera fingerlings (0.5 to 10 g). 

The highest average final weights were realised by groups of fish fed 24h per 

day. Fish which received feed 12h per night grew almost as rapidly but food 
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Table 3.12 Calculated feed requirements of Clarias gariepinus 

(a) weight on day t YY = (Y0 + gt)3 
(from Hogendoorn 1980b) 

(b) Feed requirement on day t= change in Yt DMA . DMa 
FCR (from Verreth and Den Biemann, 1987) 

(c) Feed = decysted Artemia (dried) 

(d) Temperature = 30°C 

(e) Feeding level = 0.2 

(f) g=0.2 

(g) FCR = 2.57 (for this feed at this temperature and 
feeding level) 

Day DMf Y, (mg) Change in Feed ration per fish 
Yt (mg) (%bw) 

0 - 2.500 - - - 1 10 3.77 1.27 3.26 (130) 
2 10 5.42 1.65 4.24 (112) 
3 10 7.50 2.08 5.35 (99) 
4 10 10.04 2.54 6.53 (87) 
5 11 13.09 3.05 7.84 (78) 
6 11 16.72 3.63 9.33 (71) 
7 11 20.96 4.24 10.90 (65) 
8 12 25.86 4.90 12.59 (60) 
9 13 31.46 5.60 14.39 (56) 
10 14 37.83 6.37 16.37 (52) 
11 14 45.00 7.17 18.42 (49) 
12 15 53.03 8.03 20.36 (46) 
13 15 61.96 8.93 22.95 (43) 
14 15 71.84 9.88 25.93 (41) 
15 15 82.71 10.87 27.94 (39) 
16 15 94.63 11.92 30.63 (37) 
17 16 107.65 13.02 33.46 (35) 
18 16 121.80 14.15 36.37 (34) 
19 16 137.15 15.35 39.45 (32) 
20 16 153.73 16.58 42.60 (31) 
21 16 171.60 17.87 45.93 (30) 
28 16 336.72 
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conversion ratio was improved. The remaining fish received feed 2,4 or 12h 

per day and grew more slowly with less efficient conversion of feed. All fish 

in the trial received 10% of their body weight daily. 

Uys and Hecht (1985), who fed 25% of body weight daily, recommended 

feeding every 4h which resulted in faster growth than feeding every 2h for 12h 

per day or every 6h for 18h per day. The results indicate that the feed 

conversion and growth rate are significantly affected by feeding frequency as 

has been demonstrated with carp (Huisman 1974). They also suggest that 

vision is not essential for successful feeding in Clarias gariepinus. This has also 

been reported in the European catfish Silurus glanis by Hochman (1967). 

The subject of maximizing daily feed intake of Clarias gariepinus in order to 

approximate a maximum growth rate clearly still remains to be addressed. 

According to Brett (1979) the most important factors which bear on the 

maximum daily food intake of fishes include: the duration of feeding (satiation 

time), individual meal size (stomach capacity), the time between meals 

(feeding interval) and interactions of these. When the above have been 

quantified for different life stages of the African catfish the size of ration and 

timing of its presentation can be favourably manipulated to maximize daily 

intake. 

3.3.4.5 Stocking Density 

Most experimental work with first feeding larvae has been carried out at 

densities between 1.25 and 10 larvae per 1, (Carreon et al., 1976; Hogendoorn, 
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1980b; Hecht, 1981; Meske, 1984;. Uys and Hecht, 1985; Britiz and Hecht, 1987). 

The effect of different stocking densities on growth has been investigated by 

Hecht and Appelbaum (1987) and Appelbaum and Van Damme (1988). The 

results are summarized in Table 3.13. 

Table 3.13 The effect of stocking density on growth of Clarias gariepinus (after Hecht 
and Appelbaum 1987, Appelbaum and Van Damme, 1988) 

Stocking density of 
first feeding larvae 
(Fish Yl) 

Weight after 11 days 
(mg) 

Author 

5 156 Hecht & Appelbaum, 
1987 

10 120 

20 60 

20 59.5 

40 50.8 Appelbaum & Van 
Damme 1988 

83 49.0 

300 12.5 Hecht 1982 

In each of the trials the larvae were fed with a dry feed, the principal 

components of which were yeast and fishmeal. Hecht (1982) fed between 14% 

BW and 9% BW for 18h daily at 23°C, whilst the other authors fed every 2h 

to satiation at 28°C. 

The results appear to illustrate the density dependence of larval growth. 

Commercial primary nursing, however, has been carried out at 250 fish larvae 
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per 1 (EWOS Fish Feed Programme 1980, S. Appelbaum, - pers. comm. 

reported by Hecht 1982) and at 300 fish larvae per 1 (Hecht, 1982). Mortality 

was reported by Hecht (1982) to be negligible and the flow rate and stocking 

density recommended by the author were 200 Lli 1 and 250-300 larvae per 1 

respectively. 

The growth and survival of larvae and fry clearly needs to be investigated in 

more detail at higher stocking densities in order to provide a data base for 

commercial larval rearing. 

3.3.4.6 Behavioural Problems 

3.3.4.6.1 Introduction 

The rate of mortality and its causes is difficult to determine in larval 

populations, however, losses of healthy fry in good quality water in tanks are 

due to two main causes both of which are behavioural. Young African catfish 

are both cannibalistic and territorial (Hecht and Appelbaum, 1988). 

3.3.4.6.2 Cannibalism 

Larval and juvenile cannibalism occurs in important culture species such as 

yellowtail (Seriola quinqueradiata), turbot (Scopthalamus maximus), eels (Anguilla 

anguilla), Koi carp (Cyprinus carpio), sea bass (Dicentrarchus labrax) and gilthead 

sea bream (Sparus aurata) (various authors reported in Hecht and Appelbaum, 

1988). The same phenomenon has also been reported in wild populations of 

Clarias gariepinus (Corbet, 1961; Groenewald, 1964; Bruton, 1979b). 
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Under intensive culture conditions heavy losses have been attributed to 

cannibalism (Aboul-Ela, Amer and El Bolock, 1973; De Kimpe and Micha, 1974; 

Van der Waal, 1978; Britz, 1986) and the phenomenon has recently been the 

subject of detailed study (Hecht, 1986; Hecht and Appelbaum, 1988). 

According to Hecht and Appelbaum (1988) the circum-oral barbels are more 

important for the capture than the eyes. Cannibalism begins on the fourth day 

of feeding and ceases to be significant 47 days after the start of feeding, (i. e. 

between 8-80 mm). Two types of predator-prey relationships are 

distinguishable: prey being caught tail first and swallowed up to the head, 

which is subsequently bitten off, (cannibalism type I), changing to swallowing 

of prey head first and whole (cannibalism type II). Type I is prevalent in fish 

of between 8-45 mm before the mouth width of the largest individuals in a 

population exceeds the head width of the smallest. 

3.3.4.6.3 Territoriality 

Both larvae and fry exhibit territoriality, or the defence of a piece of territory. 

This behaviour unlike cannibalism is initiated by the intruder making contact 

with the ultimate aggressor (defending a territory) Hecht and Appelbaum 

(1988). Usually territorial exchanges take the form of head to head contact 

between two siblings within the territory of one. 

The relative importance of cannibalism and territorial aggression, their 

significance as causes of mortality particularly under high density culture 
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conditions and strategies to. suppress their incidence require fuller 

investigation. 

3.3.5 Disease 

3.3.5.1 Introduction 

Wedemeyer (1970) pointed out that disease in fish tends to be the end result 

of an interactions between host susceptibility, pathogen virulence and 

environmental factors. Clarias gariepinus are known to survive adverse 

environmental conditions (Bruton, 1979c; Clay, 1977a, b). Under 

environmentally controlled hatchery conditions only minor health problems 

have been encountered (Huisman and Richter, 1987). 

However, as Bragg (1988) explained, the paucity of information about diseases 

of Clarias gariepinus may not be because all factors necessary for a disease are 

not present. Parasites and diseases of farmed fishes in developing countries 

have not been well studied (Zaman and Leong, 1987). The industry is also in 

the early stages of development; initial investigation of African catfish culture 

began in 1960 in Egypt (El Bolock and Koura, 1959) whilst in 1986 the 

estimated total production (from 30 producers) was only 1000 tonnes (Boon et 

al., 1987). However, the development of intensive culture in South Africa will 

doubtless increase this total greatly (T. Hecht pers. comm. ) 

Information concerning diseases of wild as well as cultured Clarias gariepinus 

is outlined below. 

t 
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3.3.5.2 Protozoan Parasitic Infections 

Mild infestation of larvae by protozoans can result in heavy losses under 

culture conditions. High organic loading of the culture water has been 

associated with subsequent Scyphidia infections in Clarias gariepinus larvae (G. 

S. Haylor, unpublished observations). Other common protozoan infestations 

like Costia and Chilodonella are reported to occur quite often in tropical Clarias 

gariepinus ponds (Huisman and Richter, 1987). 

Protozoan infestations of larger catfish, have been found only rarely in 

Southern Africa (Van As and Basson, 1988). However, Ichthyophtherius 

multifilis infections are reported to have occurred in C. macrocephalus adults 

imported into Malaysia from Thailand (Leong et al., 1987). 

3.3.5.3 Metazoan Parasite Infections 

3.3.5.3.1 Platyhelminthes 

Dactylogyrus infections are said to be common in Clarias gariepinus raised in 

tropical ponds (Huisman and Richter, 1987) whilst another monogenean 

Gyrodactylus transvaalensis (found particularly around the lower lip of Clarias 

gariepinus) had been reported from Southern Africa (Van As and Basson, 1984). 

Digenean trematodes identified by Fischtal (1973) from the intestine of Clarias 

mossambicus in Ethiopia include Orientocreadium indicum and Eumasenia 

ghanensis (small intestine) and Glossidium pedatum (large intestine). The latter 

has also been observed in Clarias gariepinus from Southern Africa, as well as 

Phyllodistomum vanderwaali (urinary bladder), Euclinostomum sp. (body cavity), 
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Diplostomum, mashoneuse and other Diplostomum spp. (in the brain cavity) (Van 

As and Basson, 1984). 

Of particular interest to the consumer are the worms or encysted metacercaria 

present in the muscles. These include Euclinostomum dollfusi (around the 

dorsal fin) and Clinostomum sp. from Clarias gariepinus in Southern Africa (Van 

As and Basson, 1984) as well as Strigeida metacercaria from Nile Clarias lazera 

(Elmossalami and Sherif, 1964). The last named parasite, although transferable 

to aquatic birds, is not believed to be harmful to man. However, trematode 

metacercaria have been known to cause pharyngitis in man (Witenberg, 1944) 

and may be of significance where fish are consumed raw or after minimal 

drying or smoking. For example, incomplete processing of Clarias gariepinus 

is now commonplace around Lake Chad as a result of deforestation locally 

which has depleted wood reserves for fish smoking, (A. Neilland, pers. 

comm. ). 

Cestodes have been found to be the most prevalent parasites in Asiatic 

Clariids, particularly Lytocestus lativitellarium in Clarias macrocephalus (Zamon 

and Leong, 1987) and Lytocestus lativitellarium as well as Lytocestus parvulus in 

Clarias batrachus (Furtado, 1963). 

In Clarias gariepinus, Polyonchobothrium clarias is known to infest the intestine 

and gall bladder and Proteocephalus glanduliger the small intestine (Van As and 
Basson, 1984). 
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3.3.5.3.2 Aschelminthes 

Nematode infections are very common in Clarias gariepinus (Prudhoe and 

Hussey, 1977; Mashego and Saayman, 1980; Van As and Basson, 1984). 

Skryabinocara sp., as well as other unidentified nematodes and Procamallanus 

laeviconchus, infest the stomach and Paracamallanus cyathopharymx the posterior 

third of the intestine (Van As & Basson, 1984). The most common nematodes, 

often found in very large numbers around the viscera of large catfish belong 

to Contracaecum spp. (Van As and Basson, 1984). 

3.3.5.3.3 Arthropods 

Argulus spp. particularly Argulus japonicus have been found on the body and 

fins and occasionally the gills of Clarias gariepinus; whilst another crustacean 

Dolops ranarum is also known to infest African catfish. 

3.3.5.4 Virus and Bacterial Infections 

There is very little information on bacterial and viral diseases in Clarias 

gariepinus, (Bragg, 1988). When raised under controlled hatchery conditions 

the fish are rather sensitive to myxobacterial infections. The infection is 

mainly associated with environmental changes (temperature, water quality, 

handling of fish etc) and can cause great losses in high density fingerling 

culture (Huisman & Richter, 1987). 

3.3.5.5. Fungal Infections 

The ubiquitous and opportunistic secondary invader Saprolegnia, is known to 

cause infection in the ova and larvae of Clarias gariepinus as well as in larger 
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fish (Schoonbee et al., 1980; Viveen et al., 1985; Boon et al., 1987; Van As and 

Basson, 1988). This does not represent a serious problem in well managed egg 

incubation systems since the period between fertilization and hatching is short 

(24h at 30°C). However, therapeutic treatment of fungi and protozoa in larvae 

with formalin and malachite green is not possible since the concentration 

required to control the pathogens exceeds the apparent tolerance of the catfish 

larvae (Schoonbee et al., 1980; Van As et al., 1984). 

3.3.5.6 Diseases of Unknown Etiology and Culture Dependent Diseases 

As larval culture becomes more intensified, ubiquitous pathogens such as 

Saprolegnia and Myxobacteria could become significant factors in the success of 

hatchery operations, particularly since ova and fry of Clarias gariepinus appear 

to be very sensitive to therapeutic or prophylactic treatment (Schoonbee et al., 

1980; Van As et al., 1984; Van As and Basson, 1988). 

Although the effects of nitrogen supersaturation or gas-bubble disease are little 

known in Clarias gariepinus, it can cause 75% mortalities in Heterobranchus 

fossilis even if the water is changed 48h after discovery of the disease 

(Kulshrestha and Mandal, 1982). Under the same conditions however, C. 

batrachus recover after 96h (Kulshrestha and Mandal, ibid. 

A disease associated with management of feeding level, is 'ruptured intestine 

syndrome of unknown etiology' (R. I. S. u. e. ) (Viveen et al., 1985; Boon and 

Oorschot, 1986; Boon et al., 1987; Huisman and Richter, 1987; Bragg, 1988). 

The syndrome sometimes called open belly disease can develop in fish aged 
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5-8 weeks (weighing 3-5 g) and is associated with high levels of feeding (Boon 

et al., 1987). In the hatchery at Wageningen '10-70% mortalities have been 

attributed to R. I. S. u. e. (Boon and Oorschot, 1986). 

Another syndrome of unknown etiology causes destruction of the arborescent 

-organs and leads to inflammation of the skull resulting in a lateral skull 

fracture parallel to the skull plate joints. The so called broken head disease is 

particularly prevalent in catfish larger than 10 cm (Huisman and Richter, 1987). 

It has been observed in broodstock ponds, without vegetation in Israel (Viveen 

et al., 1985) and in broodfish kept at high density in Central African Republic 

where it was associated with poor appetite and consequent high organic 

loading (Huisman and Richter, 1987). A similar condition known as 'crack 

head syndrome' is found in Asiatic catfish species (Clarias batrachus and Clarias 

macrocephalus) and has been attributed to vitamin C deficiency (Huisman and 

Richter, 1987). 

3.3.6 On-growing and Production 

3.3.6.1 Introduction 

Many different systems and levels of intensification are conceivable when 

growing Clarias gariepinus fry to market size. Data already exist for low input 

pond production (Hogendoorn and Wieme, 1976; Bok and Jongbloed, 1984) 

and semi-intensive systems with various supplementary feeds (Hastings, 1973; 

El Bolock, 1975; Hogendoorn and Wieme, 1976; Clay, 1979; Egwai, 1986; Hecht 

and Lublinkof in Hecht, et al., 1988), as well as intensified production based 

on more complete feeds (Hogendoorn, 1983a, b; Hogendoorn et al., 1983; Hecht 
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et al., 1988 Balogun and Ologhobo, 1989; Degani et al., 1988). An assessment 

of the farming strategies for on-growing African catfish in Africa is given in 

2.3. 

Semi-intensive culture operations appropriate to developing African countries 

are considered below. Socio-economic as well as ecological parameters would 

appear to indicate that such semi-intensive systems are most appropriate for 

C. gariepinus culture in these circumstances. Low consumer purchasing power 

severely limits the market for a higher priced product from the greater input 

costs of more intensive systems. 

Difficulties in obtaining credit and more complex management practices can 

put intensive production outside the scope of the rural farmer, whilst 

competition for feed ingredients, their availability, difficulties of storage, poor 

infrastructure and the cost and servicing of processing equipment can also 

detract from the viability of intensive production systems. Conversely, 

organically manured ponds in which fish receive cheaply available local 

resources as supplementary feeds are both simple and flexible. They are not 

outside the scope of the local farmer, nor are they capital intensive and they 

can draw on resources which may be under utilized locally. In addition the 

climatic conditions in the tropical and sub-tropical regions of Africa are 

conducive to potentially high pond productivity. 

Clarias gariepinus are particularly well suited to culture in intensely manured 

ponds because they are tolerant of a wide range of physio-chemical conditions, 
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and are able to utilize a broad. spectrum of natural food items and unlike 

many other potential species they are not adversely affected by marked 

diurnal fluctuations in oxygen concentration. 

3.3.6.2 Introduction of Clarias gariepinus to ponds 

The introduction of Clarias gariepinus to ponds is a critical period, associated 

at present with very variable survival, typically 10%-90% (Huisman, 1985). 

Recommendations as to the age at which fish should be introduced into ponds 

range from 3 to 40 days after hatching. 

e. g. El Bolock, 1975; 40 mm (c. 1g) 

Viveen et al., 1985; 7-10 mm (after 3 days) 

Hecht et al., 1988; 25-30 mm (10 days) 

Zheng et al., 1988; 50-100 mm (30-40 days) 

Three different strategies are possible: 

(1) Direct introduction into fertilized nursery ponds 

before the onset of first feeding; (Viveen et al., 1985). 

(2) Weaning onto exogenous feed followed by primary nursing in a 

hatchery system before liberation into nursery ponds (Hecht et al., 1988), 

or 

(3) Nursing in a hatchery system up to the fry stage 

(until the development of accessary breathing organs) followed by 

direct introduction to on-growing ponds, (fig 3.3). 
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Hatchery 
Operation 

Nursery 
Ponds 

Viveen et al. 1985 

3 days 

no feeding 

Hecht et al. 19 88 

10 days 
feeding on dry 

or live feed 

Proposed stock model 

14-35 days 
hatchery proceedures 
to be developed 

7-10 mm 
after yolk sac 
absorption 

0.011/min 
30 days 
65000/ha 
30% survival 
1-3g 

100000/ha 

On-growing feeding 30-40% 

Ponds crude protein 
300-400kcal/kg 
24 weeks to 200g 
50% survival 

16-25 mm 
larvae 

0.51/min 
28 days 

10 x 10A6/ha 
40% survival 
1-3g 

100000/ha 

sorted every 2 mo 
supplementary feed 
e. g. brewery waste 
32 weeks to 1 kg 
40% survival 

20-100 mm 
>50 mg 
air breathing fry 

no 
nursery 
ponds 

500000/ha 
sorted after 30 days 

supplementary feed 
16 weeks to 330g 
40% survival 

Figure 3.3 On-growing strategies for African catfish 
culture 
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Procedures for hatchery nursing need to be developed, particularly in the field 

of nutrition, because of the low or variable survival rates of fry in ponds, e. g. 

(10-50% (Hecht et al., 1988), 10-90% (Huisman, 1985)). Mortalities in ponds are 

usually due to predation by insects, as well as their larvae and nymph stages, 

predation by Xenopus toads, cannibalism, asphyxiation or infection (e. g. 

monogenean trematodes, Trichodina etc. ). 

Poor fry survival represents a significant hindrance to the development and 

extension of Clarias gariepinus culture. More research would therefore be 

justified in ensuring reliable and controlled hatchery production of air 

breathing catfish fry for distribution and on-growing. 

3.3.6.3 Fertilization 

Most fish ponds in Africa have a limited water exchange. They may be fed 

annually or bi-annually by rain or have a restricted supply of water sufficient 

only to replace losses due to evaporation and seepage. If water supply is not 

limiting, the constant high light intensities and warm temperatures of tropical 

regions can permit high rates of productivity to be maintained throughout the 

year. In sub-tropical regions this high productivity period may be limited to 

200 days. 

In ponds with little water exchange, nutrients can build up and support quite 

high densities of natural feeds. As these are removed by the fish, nutrients 

must be supplied to maintain the pond productivity. This is usually done by 

adding organic or inorganic fertilizers. Inorganic fertilizers contain 
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concentrated amounts of nitrogen, phosphorus and potassium. They are less 

bulky than organic fertilizers and are easier to dose. However, they are 

expensive and can be absorbed into the mud at the bottom of a pond. 

Inorganic fertilizers act principally on the autotrophic pathway promoting 

primary production (Pruder 1985). 

By contrast suitable organic fertilizers (Table 3.14) are often under-utilized by- 

products of other systems and may be conveniently and cheaply integrated 

with fish rearing. Production is promoted by stimulation of both the 

autotrophic and heterotrophic feeding pathways within a pond. Many organic 

fertilizers may also represent direct feed for the catfish. 

The B. O. D. (Biochemical Oxygen Demand) generated by aerobic decomposers 

will, however, tend to reduce the pond's dissolved oxygen levels. The B. O. D. 

of wastes can be reduced by composting (Biddlestone and Gray, 1985). Also, 

if wastes are applied in mesh containers suspended in the euphotic zone of the 

pond early in the day, efficient decomposition will be facilitated by the high 

concentration of dissolved oxygen (often super-saturated) resulting from 

photosynthesis (Bok and Jongbloed, 1984). Use of a fine mesh ensures that 

small organic particles are dispersed throughout the water column. 

Bok and Jongbloed (1984) suggest that catfish can utilize protein available in 

the form of bacteria and protozoa, which as pointed out by Schroeder (1978), 

flourish on small organic particles originating from added manure. This is 
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further supported by the high lysozyme levels recorded in Clarias gariepinus 

by Uys (1989), which were considered sufficiently high to suggest that they 

play a significant role in its nutrition in addition to their defence role. 

Although Clarias gariepinus after the fry stage can survive low D. O. 

concentrations, manure should be added at rates which avoid anoxic 

conditions, since aerobic digestion can yield ten times the amount of bacteria 

compared with anaerobic digestion (McCarty, 1972, in Bok and Jongbloed, 

1984). 

Fig. 3.4. displays the material flows in a semi-intensive, organically fertilized 

catfish pond. 

Manure should be applied frequently since large occasional doses tend to 

stimulate a massive and unstable growth of bacteria and phytoplankton, with 

a consequent risk of night time oxygen depletion. Frequent application on the 

other hand allows the establishment of a more balanced food chain which 

absorbs nutrients more effectively. 

Maximum loading estimates range from 100 to 200 kgha'd71 dry matter, (7-140 

kg organic matter ha'd7') (Little and Muir, 1987). These will be affected by the 

quality of manure, which is related to the quality of feed provided for the 

manure producing animals. Dose rates must also be adjusted in relation to 

temperature, which affects the rate of breakdown of manure and the rate of 

growth of the components of the food web. Thus, undesirable conditions can 
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Light 

Organic fertilizer 
Atmospheric Oxygen 

Fry 

Autotrophic pathway 

o po 
2 no 3 

pp 
0 

2 

Co algae 

0 2 
market 

Clarias gariepinus sized 
catfish 

fungi 
bac 

Heterotrophic pathway 
fish waste 

pp = primary production 

Figure 3.4: Material and gas flow in a semi-intensive 
organically fertilized African catfish pond. 
(adapted from Pruder, 1985) 
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result when higher temperatures resume after a cooler period, owing to a 

build up of nutrients. Reduced light intensities due to cloud or dust will 

similarly reduce the rate of the light limited autotrophic activity in the food 

web and hence the rate of waste breakdown (Little and Muir, 1987). 

3.3.6.4 Supplementary feeding 

As the natural food in organically manured ponds is high in protein 

(Schroeder, 1978), catfish production in intensively fertilized ponds may be 

greatly increased by adding locally available, possibly under-utilized resources 

in the form of high-energy supplementary feeds which would enable more of 

the natural protein to be used for growth (Bok and Jongbloed, 1984). 

Supplementary feeds include: brewery wastes, rice bran, cotton seed cake, 

blood meal, groundnut cakes, wheat bran, palm cake and wheat flour (El 

Bolock, 1975; Hogendoorn and Wienre 1976; Clay, 1979; Huisman, 1985; Hecht 

and Lublinkof (unpublished) in Hecht, et al., 1988). 

3.3.7. A stock model for semi-intensive Clarias gariepinus culture 

A stock model is a useful aid to the planning and management of a catfish 

farm. An example is presented below: 
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Annual Production Target = 100 t 

(assuming that farming operations are suspended for 95 days owing to 

seasonal rain, i. e. 270 days operation) 

Pond Reguir= 15 x 0.1 ha ponds 

Fry Requirement 750000 x2g 

Fry stocking rate 500000 ha 

Harvest 300000 x 330 g 

Survival rate from Viveen et al. (1985) (50%) 

Growth rate 

at 28°C from Hogendoorn (1983b) 

System Three groups of 5x0.1 ha static earthen ponds organically 

fertilized receiving supplementary feeding. 

Fifty thousand fry of uniform size (about 2 g) are stocked for 30 days in a 0.1 

ha pond. These are then sorted and the stock split into two 0.1 ha ponds 

before ongrowing -to c. 0.33 kg per fish. The faster growing individuals are 

stocked together and harvested after a total of 120 days. Those with a slightly 

slower rate of growth are harvested a week later. The stock model for one 

group of five ponds is detailed in Fig 3.5. Stocking of pond groups can be 

staggered to spread out harvesting. 

3.4 PRODUCTION OF CLARIAS GARIEPINUS IN AFRICA 

Table 3.15 summarizes data available in the literature for African catfish 

production over a range of intensity levels. Annual yields increase with 

increasing stocking density and level of intensification (i. e. promotion of 
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Days 

30 

60 

90 

120 

150 

180 

210 

240 

270 

Key , tcc< ,Q 

5tOCK:, 7 
Stock 

Q 

A-, L 

Pond Number (0.1 ha Ponds) 

1 2 3 4 5 

stock A 
50k x 2g 
(100kg) 

stock B 

35k x 24g 50k x 2g 
(840kg) -7 5k x2 la 7 5K k 2-lc (100kg) 

120k 2411K--" 

16.25k x 1008 16.25k x 1008 - 35k x 24g 

17.5k x 24 g 
(1.625 t) (1.625 tl 17.5 x 24g 

(840kg) 

(420kg) (420kg) 

13.75k x 218g 13.75k x 218g 

16.25k x 1008 
(3 0 (3 0 

16.25k x 100g 

11.62511 (1.6251) 

13.75k x 2161; 12.5k x 330g 12.5k x 330g 13.75k x 216g 

(3 t) (4.125 t) (4.1251) (3 t) 
clock C 

$ 
t kD 

$ 50kx2g 
s oc 
50k x 2g 12.5k x 330g (100kg) 

12.5k x 330º 
(100kg) (4.1251) 

(4.125 U I 35k x 24g 

(840kg) 

17.5k x 24g 17.5k x 24g 
(420kg) 

335k x 24g 
(420kg, ) 

(84okg) 

17.5k x 24g 17.5k x 24g 

16.25k x 100g 16.25k x 100g (420kg) (420kg) 
11.625 tº (1.6251) 

13.75k x 218g 13.75k x 218g 16.25k x 100g 16.25k x 100g 

(31) (3 l) (1.625 t) (1.625 t) 

12.5k x 330g 12.5k x 330g 
(4.125t) (3 l) . 13.75k x 218g 

(3 U 

12.5k x 330g 12.5k x 330g 
(4.125 t) (4.125 t) 

Figure 3.5: Example stock model for Clarias gariepinus 
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productivity - fertilization - supplementary feeding). Loge Production = 0.612 

+ 4.05 x 10'5 Stocking density, R=0.875, n= 13. 

Although the modal stocking density, to date, is between 10,000 and 20,000 

fish ha 1, high yields have been achieved in Southern Africa by stocking 

100,000 fish ha'. There is no evidence that production declines relative to 

stocking density up to at least 100,000 fish per ha, provided that manure is 

properly applied together with a supplementary feed, particularly brewery 

waste. (Hecht, et al., 1988; Hecht and Lublinkof, (unpublished data) in Hecht 

et al. (1988)). This compares favourably with semi-intensive production of 

commonly cultured Tilapiine fishes in Africa (Haylor, 1989) and demonstrates 

the potential benefit of using air-breathing fishes for this form of aquaculture. 

3.5 CONCLUSIONS 

Modern aquaculture in developing African countries is still in its infancy. 

Initiatives since the 1940's, mainly in tilapia culture, have created little 

momentum and the impact of fish farming to date is insignificant, both in 

terms of overall production and local fish consumption. 

The African catfish has been the focus of active research in many countries 

across the world and its suitability for aquaculture is no longer in doubt. The 

attributes of Clarias gariepinus of relevance to its culture are: 

Its wide native distribution (Clay, 1977b; Teugels, 1984; Bruton, 1988) 

Its ability to utilize atmospheric oxygen as well as dissolved oxygen 

(Moussa, 1956; Greenwood, 1956; Cockson, 1972) 
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Its high consumer preference ranking (Mann, 1964; Balon, 1972; Richter, 

1976; Huisman, 1985; Huisman and Richter, 1987) 

Its suitable reproductive strategy and behaviour, i. e. high fecundity, 

cessation of natural spawning in captivity, potential for year round 

induction of final maturation (Bruton, 1979a; Janssen, 1984). 

Its favourable nutritional efficiency and feeding habit, i. e. acceptance of 

a wide range of natural feed organisms, adoption of a variety of feeding 

modes in an expanded food niche (Bruton. 1979b), ability to accept and 

thrive on cheap feeds (Bok and Jongbloed, 1984) and efficient food 

conversion (Machiels, 1987). 

. Its fast growth rate (Hogendoorn, 1981) 

Its tolerance of environmental extremes (Hecht, Uys and Britz, 1988) 

Its resistance to disease (Richter, 1976) 

Its tolerance to high density culture (Zheng, Pan and Liu, 1988; Hecht, 

Uys and Britz, 1988) 

Some of the deficiencies and inconsistencies in the reviewed information 

pertaining to intensive rearing of the early life stages of the African catfish 

include: 

The inconsistent use of terminology for the early life stages amongst 

various authors and farmers. 

An investigation of the most important factors which bear on maximum 

daily food intake of young life stages 

A more detailed investigation of the growth and survival of larvae and 

fry at higher stocking densities than those used experimentally in order 
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to provide a database for commercial larval rearing. 

An investigation of the relative importance of cannibalism and 

territorial aggression as causes of mortality under high density culture 

conditions and strategies to suppress their incidence. 

The definition of an appropriate growth index for the comparison of 

growth performance in the early life stages of a species with fast and 

rapidly changing growth rate. 

Research into semi-intensive on-growing of African Catfish will probably be 

most appropriately conducted in the form of applied, farmer centred research, 

in conjunction with interactive extension and training programmes. Account 

will need to be taken of the changing availability of inputs and the possibilities 

for integration with other resource systems in particular those accessible to 

resource-poor farm families. 

African aquaculture may fulfil its potential when a broader range of 

indigenous candidate species have been evaluated and their culture 

developed. Twenty five years of research has identified the potential of the 

African Catfish. It is now appropriate to invest in applied research as well as 

interactive extension and training programmes to develop its culture. 

p 
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Chapter 4: Terminology for the early developmental stages 
of Ciarias gariepinus - Working Definitions for 
Aquaculture. 

Words have users, but as well, users have words. And 
it is the users that establish the worlds realities. 

Le Roi Jones 1966 

The information contained in Chapter 4 has been 
accepted for publication in 'Aquaculture and 
Fisheries Management' Edited by DH Mills, RJ 
Roberts and SJ de Groot, published by Blackwells. 

4.1 INTRODUCTION 

There is a difficult path to tread between strictly accurate scientific 

nomenclature, which definitively and clearly characterises exact developmental 

stages, and the vernacular names popularly used in the fish culture industry. 

On the one hand, the recognition of early life stages by the culturist is 

important because the requirements of young fish change rapidly with age 

(e. g. Hogendoorn, 1980b; Verreth and Van Tongeren, 1989). On the other, 

recognition of microscopic changes can be more subjective than definitive and 

maybe of no actual benefit in fish culture. Working definitions of 

developmental stages for aquaculture are therefore most usefully practical 

ones. In response to calls for a clear definition regarding the length of the 

larval period, in order to enhance the comparability of different studies 

(Verreth and Van Tongeren, 1989), and to end the inconsistent use of terms 

amongst various authors the following definitions for African catfish are 

suggested. 

4.2 LARVAE -A DEFINITION 

The term larva accurately identifies a stage in the so called indirect 
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development (Lagler, Bardach,. Miller and Passino, 1977; Kamler, 1992) of 

African catfish and differentiates them from commonly cultured catfish of the 

genus Ictalurus which exhibit direct development from "sac-fry" (or 

eleutheroembryonic phase) to the alevin stage. 

4.2.1 The Onset of the Larval Period 

The larval period in fish defined by Balon (1975,1984) commences with the 

transition from yolk dependent nutrition to exogenous feeding. This transition 

is associated with elevated mortality rates and it is appropriate to identify the 

beginning of the larval phase as the successful introduction of first feeding. 

In order to ensure comparability between studies or farm records, age should 

be counted from first feeding and not, as is common, from hatching for two 

reasons: 

(1) The transition to exogenous feeding, rather than hatching, is the 

decisive threshold of ultimate survival value (Balon, 1984). Hatching is 

merely the point at which embryos leave the egg membrane and timing 

of this is not constant. In common with most life processes it is affected 

by temperature, but can also be affected by other environmental 

changes e. g. oxygen concentration (Dziekonska, 1956; Alderdice, Wickett 

and Brett, 1958; Hamdorf, 1961; Alderdice and Forrester, 1974) as well 

as a range of environmental cues (Muntyan, 1975; Balon, 1972; 

Yamamoto, Iuchi and Yamagami, 1979; Gulidov and Popova, 1982). 



109 

(2) With respect to stock modelling for aquaculture planning, it would be 

illogical to quote initial larval stocking densities immediately prior to 

a period often associated with elevated levels of mortality (i. e. the onset 

of exogenous feeding). 

4.2.2 The End of the Larval Period 

Developments that take place during the larval period include: morphological 

and physiological changes to the digestive tract, changes in body composition, 

changes in external morphology, the establishment of definitive body 

proportions and the development of functional arborescent organs 

(Greenwood, 1961; Bruton, 1979; Stroband and Kroon, 1981; Zaki and Abdula, 

1984; Hecht and Appelbaum, 1987; Verreth and Den Bieman, 1987; Uys, 1989; 

Haylor, see Chapters 5 and 8). 

According to Balon (1975) the larval period ends with the complete 

differentiation of the median fin-fold. The timing of this varies with different 

conditions and is further complicated by the descriptive definitions of various 

authors. Bruton (1979a) considered external morphology to resemble that of 

adults after 14 days whereas Hecht and Appelbaum (1987) reported the 

disappearance of the last rudiments of the caudal fin fold 15 days after first 

feeding. Differentiation of the fins broadly correlates with the onset of air 
breathing in African catfish reared intensively (See Chapter 5) and is 

characterised by increased mortality and a short period of depressed growth 

rate. The onset of airbreathing is a useful character with which to delineate 

the end of the larval period for four reasons: 
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(1) It is easily distinguished macroscopically e. g. on the farm. (Air 

breathing is easily distinguished from other activities which break the 

water surface by the release of two bubbles of gas just prior to air 

gulping. ) 

(2) It correlates with the timing of the differentiation of fins and is 

therefore consistent with Balon's (1975) standard definition of the end 

of the larval period. 

(3) It represents the point at which the African catfish becomes 

independent of the common constraint of low dissolved oxygen levels 

in ponds. 

(4) With respect to stock modelling for aquaculture planning it would be 

illogical to quote initial fry (for definition see under Juvenile) stocking 

densities immediately prior to a period often associated with an 

increased mortality (i. e. the onset of air breathing). 

4.3 JUVENILE -A DEFINITION 

The term juvenile is part of the standardised terminology of intervals in fish 

development of Balon (1975). It should begin with the onset of airbreathing 

and span the period up to the beginning of the first maturation of gametes. 

Early juveniles, by virtue of their airbreathing habit and completed external 

morphological development and pigmentation, represent hardy "seed" stock 

for on-growing. 

For logistical and economic reasons it is usual for seed production and 

ongrowing to represent different sectors of a" mature aquaculture industry. It 
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is juveniles, therefore, that will be purchased for on-growing. 

Juveniles may be acquired at one of two stages - either directly following 

larval rearing or after a nursery period. It is therefore important to retain the 

vernacular terms fry and fingerling, to identify the desired size of seed stock. 

In southern Africa the necessity to standardise terminology has already been 

realised (W. Uys, pers. comm. ). A minimum size for fingerlings has been set 

at 50mm by the Catfish Growers Association of southern Africa (T. Hecht, 

pers. comm. ). 

Fingerling farmers in the Netherlands sell their fish for on-growing at a 

maximum size of about 5g U. Verreth, pers. comm. ). At which point they are 

less susceptible to bacterial infection particularly from Flexibacter columnaris as 

well as the so-called "Ruptured Intestine System" of Boon, Oorschot, Henken 

and Doesam (1987). Thus airbreathing catfish <50mm (often 600 - 1000mg) 

might be termed fry whereas catfish up to 5g might be termed fingerlings. 

Larger juveniles are often referred to as growers. 

As final maturation of oocytes must be induced in captive African catfish, by 

definition, the end of the juvenile period will be determined by the farmer's 

choice of brood stock size. 
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4.4 A SUMMARY OF THE TERMINOLOGY OF EARLY LIFE STAGES 

(1) In order to ensure comparability between studies or farm records age 

should be counted from first feeding. 

(2) The larval period may be defined as the period between the 

introduction of first feeding and the onset of airbreathing 

(3) The juvenile period may be defined as the period between the onset of 

air breathing and sexual maturation (induced spawning) 

Table 4.1 The early life stages of Clarias gariepinus 

Life Stage Definition 

Larva: A young fish which has successfully begun exogenous 
feeding but still lacks functional accessory breathing 
organs 

Airbreathing fish up to 50mm or ig 

Immature airbreathing fish between lg and 5g 

Immature airbreathing fish more than 5g 
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Chapter 5: The Growth and Survival of Clarias gariepinus 
larvae at high stocking density. 

The information contained in Chapter 5 has been 
published in 'Aquaculture and Fisheries 
Management' 1992,23,303-314, Edited by Mills, D. 
H., Roberts, R. J. and Groot, S. J. de published by 
Blackwells. 

5.1 INTRODUCTION 

If the necessary quantity of good quality seed to sustain the growth of an 

African catfish industry is to be supplied by intensive hatchery production 

then detailed information will be required for planning and operation of 

hatcheries. Hatchery design and management as well as production and 

economic criteria will depend upon the biomass of the stock. Biomass in turn, 

is a function of growth rate and survival and its relation to stocking density. 

The effect of stocking density has been investigated at 5,10 and 20 larvae/1 

(Hecht and Appelbaum, 1987) and at 20,40 amd 83 larvae/1(Appelbaum and 

Van Damme, 1988). 'Commercial' primary nursing however, has been 

attempted at densities as high as 250 larvae/i (Hecht, 1982). 

In order therefore to provide a data base for commercial larval rearing, a more 

detailed investigation of the growth and survival of larvae at higher stocking 

densities is required. 

The growth rate of Clarias gariepinus larvae is both rapid and rapidly changing 

(Hogendoorn, 1980b). As a result it has been suggested that the growth 

index, specific growth rate (% body weight per day) can not reasonably be 
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applied (Verreth and Den Bieman, 1987) when comparing growth performance. 

Presently growth studies with Clarias gariepinus larvae and fry can be split into 

those which use specific growth rate (eg. Hecht and Appelbaum, 1987; 

Appelbaum and Van Damme, 1988, Cleaver, 1991) and those which use, the 

regression coefficient of a cube root transformation of weight data (eg. Verreth 

and Den Bieman, 1987; Verreth and Van Tongeren, 1989, Verreth, et al. 1991). 

The objectives of the present study are, to select an appropriate growth index 

to compare growth in young African catfish; to study the effect of stocking 

density on growth and survival of larvae and to use the selected growth index 

to delineate the relationship between growth rate and larval age as well as 

growth rate and stocking density. 

5.2 METHODS AND MATERIALS 

5.2.1 Production of First Feeding Larvae 

Sexually mature broodstock maintained at the Institute of Aquaculture, 

University of Stirling, were induced to spawn by the method of Deleeuw, 

Goos, Richter and Eding (1985a). 

To reduce genetic variability the ova of one female were fertilized by the milt 

of one male. Final induction of oocyte maturation and spermiation was 

begun at midnight, and running ripe ova were stripped 13h later. The male 

and female were maintained overnight in separate 1-m diameter tanks (with 

secured lids) supplied with recirculated water (30± 1°C). 
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Milt squeezed from the excised testes of the sacrificed male was mixed with 

ova, collected in a shallow uPVC plastic tray, by gentle swirling. A small 

amount of water at 30°C was added to the swirling eggs to facilitate gentle 

movement and to activate amphimixis. After 30 s more water was poured 

into the side of the tray, resuspending the excess milt and washing it away. 

Two uPVC plastic frames were suspended horizontally in 500 x 300 x 100 mm 

egg rearing troughs through which water was recirculated. The fertilized 

eggs were spread in a mono-layer on 0.5mm nylon mesh stretched over the 

frames. A 200-W thermostatically controlled aquarium heater maintained the 

water temperature at 30°C (±1°C). Hatching occurred after 24h. 

Four hours after the onset of hatching the horizontal meshes were removed 

together with adhering egg cases and dead or unhatched eggs. The hatched 

embryos were left undisturbed in their darkened environment for a further 

48h. Air bubbles from circular difusers fitted around the outflows were used 

to keep the 0.5mm mesh screens free of debris. Two days after hatching 

exogenous feed was offered. A small quantity of decysted, hydrated but 

unhatched Artemia salina eggs (Artemia systems N. V. Ghent, Belgium) was 

evenly distributed by hand. Feeding behaviour, the presence of cysts in the 

gastro-intenstinal tract (observed through the unpigmented ventrum) and the 

appearance of faeces were used to identify the successful onset of exogenous 

feeding. 

Once feeding was established the larvae were siphoned from the incubation 

troughs through 5mm clear plastic tubing into a bucket (placed 200 mm below 
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the trough). Counting was done at the point at which individual larvae 

entered the siphon tube. From the bucket larvae were gently poured into 

randomly allocated treatment tanks. 

5.2.2 Feeding 

Feed was offered three times daily at 4h intervals at 0800,1200 and 1600. 

After reducing the water flow into a tank, small quantities of feed were evenly 

distributed over the water surface. When most feed particles had been 

ingested the process was repeated. Feed was administered until fish no 

longer responded but remained still on the tank bottom. 

Following four days of feeding with decysted Artemia eggs the larvae were 

weaned over a period of five days onto a commercial trout ration (B. P. 

Nutrition No. 2,54% crude protein), crushed and sieved to give a particle 

fraction between 250 and 500 pm. Feed administration during weaning is 

shown in Table 5.1. 

Table 5.1 The administration of feed during weaning 

NB Powdered feed was always introduced a few minutes before the 
introduction of Artemia 

* approximate % of total daily ration 
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5.2.3 Larval rearing system 

A warm water recirculating system was built in the tropical aquarium facility 

of the Institute of Aquaculture, Stirling. Air temperature in the building is 

maintained above 20°C and photoperiod is regulated, providing a 12: 12 h light 

to dark regime (0800-2000, light period). 

The system comprised 10 1 cylindrical plastic tanks with lids. Each tank had 

a 3/4 inch outlet screened with a 0.5mm mesh and a double 4mm horizontal 

injection inflow. The tanks drained into two 230 1 preconditioned biofilter 

tanks (with a total biofilter medium surface area of 75m2) from which water 

flowed by gravity to a 500 1 sump tank. 

An electric pump (PV 100, Beresford, England) raised water to two 2301 header 

tanks. More than 50% of the water from the header tanks overflowed 

through a solids filter (Filter mat 3.8.1, Dryden, Scotland) before returning to 

the sump. A ball valve controlled the water flow to the fish tanks via a 3/4 

inch ring main. 

A 3kw thermostatically controlled immersion heater maintained the water 

temperature at 30±1°C. Freshwater was added to the sump tank continuously 

at the rate of 7x 1011 per minute to replace losses. The system design 

maintained almost 100% saturation of oxygen constantly and nitrogenous 

metabolite levels remained negligible (below 0.1mg/1 unionised ammonia) 

throughout. 
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5.2.4 A study of the effect of initial larval stocking density on 

growth and survival 

First feeding larvae were stocked at 50,100,150,200 and 250 larval per 1 in 

duplicate tanks of the recirculation system described. Half these tanks were 

provided with cylindrical shelters made from 4mm inert plastic mesh in-order 

to assess their effect on survival. 

Debris was siphoned from all tanks prior to the first feed in the morning and 

any mortalities removed and recorded. A distinction was drawn between 

deaths resulting from tail-first attacks during foraging behaviour (type I 

cannibalism of Hecht and Appelbaum, 1987), detected by the presence of 

discarded heads in the tank and non-cannibalistic deaths. 

The larvae were weighed five times over the experimental period (on day 0, 

3,6,10 and 14) on a Mettler top pan balance (PC 4400) to the nearest 0.1mg, 

after drying in a handnet on absorbant paper for 5 seconds. On each weigh 

day whilst the fish were removed, the tanks and shelters were scrubbed clean. 

Larvae were always siphoned from tanks and gently poured back. 

5.2.5 An investigation of changes in growth rate over the early 

rearing period 

To investigate in more detail apparent changes in larval growth rate indicated 

by the first trial, larval growth data were collected over longer periods of 

rearing under the same conditions. 
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The growth of these populations of fish, two stocked at 25 larvae/1 (over 20 

and 30 days respectively), one at 50 larvae/1 (over 16 days) and one at 30 

larvae/1 (over 14 days) was measured following the onset of exogenous 

feeding. Weighing schedules varied over the four trials which were not 

conducted concurrently. 

5.2.6 Data Analysis 

The following analyses were carried out: 

1. A paired-sample test of mean difference in survival between larvae 

grown in the presence and absence of shelter 

2. A paired-sample test of mean difference between initial measured 

weight and initial weight predicted by 

a. an exponential growth model and 

b. a cubic growth model. 

3. Growth rate was measured as: 

i. specific growth rate (k) = 

LogeYt - Loge Yo 

t 

ii. the regression coefficient of a cube root transformation of weight 

data (b)= 

Yu 
t 
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where 

Yt = weight at time t 

YO = initial weight 

t= time interval 

e= the base of natural logarithms 

4.95% confidence limits were calculated as: 

C. L. =Ytt 
SY 

o. ostR-1] 
n 

5. A two way analysis of variance with equal replication within time 

periods and proportional replication within densities was carried out to 

investigate the effect of time period after first feeding, initial stocking 

density and interactions between these factors on (i) the specific growth 

rate (k) and (ii) the growth index (b) of the larvae. Equality of 

variances was confirmed using a Bartlett-test and normality could be 

demonstrated graphically. 

6. The effect of initial stocking density on survival over the larval period 

was investigated with a non-paramentric analysis of variance (Kruskal- 

Wallis test) after a Bartlett test inferred heteroscedasticity of the arcsine 

transformed percentage survival data. 
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5.3 RESULTS 

The increase in mean weight of larval catfish (ie. from first feeding to day 14) 

could be fitted to both exponential and cubic growth equations. The growth 

equations are presented in Table 5.2. 

At most stocking densities, coefficients of determination were slightly higher 

for the cube root curve. The regression constants derived by the cubic model, 

however, differed significantly (t = 2.88, P<0.05) from the measured mean 

initial weights. There was no significant mean difference at the 5% level 

between the regression constants of the exponential model and the mean initial 

weights measured. 

Larval growth was negatively density dependent. The weight attained after 

14 days could be related to stocking density by the equation 

Log, (Weight, mg) = 5.61 - 0.524 Log, (Density, larvae la), r2 = 0.91, P < 0.05. 

Values of b (the regression coefficient of a cube root transformation of the 

weight data) and k (specific growth rate) were calculated for successive short 

intervals over the larval period (Table 5.3) 

Both parameters were significantly affected by larval age (k: F13,32,0.051 =87, 

b: F[3,32,0.051 = 28.46), initial larval stocking density (k: F[5, a2,0.051 = 16. b: F[5,32,0.051 _ 

11.82) and interactions between age and density (k: F[15,32,0.051 = 7, b: F[15,32A. 051 _ 

3.55. The same temporal pattern existed at each stocking density. About 6 

to 7 days after first feeding specific growth rate reached a maximum value 
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after which it decreased rapidly to a low value between day 10 and day 14. 

Growth rate decreased more rapidly following its initial peak in the fish 

populations grown at the highest densities. The pattern of change of b was 

similar though the relative change in magnitude over successive short intervals 

differed between the two measures of growth rate. 

The increase in weight as well as the changes in specific growth rate for the 

three subsequent trials conducted at 25 and 50 fish L'' over periods longer than 

14 days is shown in Figure 5.1. The corresponding cube root and exponential 

growth equations are given in Table 5.4. 

Figure 5.2 compares the temporal changes in the growth indices "k" and "b" 

with the % increase in body weight. In each case "k" and "b" peaked within 

the first 11 days of exogenous feeding, followed by a rapid depression of 

growth rate between day 10 and 15. In two of the trials, one at 25 larvae 1; 1 

and one at 50 larvae L'', where changes in weight were recorded within the 

period between day 10 and day 15, "k" and "b" were demonstrated to decrease 

significantly to a minimum point before rising again. In the third of the trials, 

at 25 larvae L'', mean "k" values were measured over 5 day periods and no 

minimum point was identified. Instead, the rate of decrease of specific growth 

rate between days 10-15 was much more marked than over the subsequent 15 

days. The mean b values over successive 5 day intervals between 0-10 days 

and 15-25 increased with increasing time and decreased between days 10-15 
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and 25-30. It is clear from figure 5.2 that the growth index (k) more closely 

approximates the changes in % increase in body weight of young African 

catfish than the growth index (b). 

Table 5.5 shows the survival of larvae between day 4 and day 14, after first 

feeding, cultured at different stocking densities in the presence and absence of 

shelter. Following an arcsine transformation of the binomially distributed 

percentage survival data, a Bartlett test revealed heteroscedasticity. The non- 

parametric analysis of variance (Kruskal-Wallis test) was therefore employed 

in order to assess the effect of stocking density on survival. Increasing initial 

larvae density between 50 and 250 larvae L'' had no demonstrable effect on 

survival (H = 3.97, P<0.01) and there was no significant difference in the 

survival of larvae cultured with or without shelter (t = 1.65, P<0.01). In the 

absence of any detected treatment effect the mortality data was pooled and 

plotted against time (Figure 5.3). Only 5 deaths were attributable to type 1 

cannibalism out of a total of 136 over the period from all . treatments. 

Larval production (g larvae L'') was highly variable (Figure 5.4). Although 

a significant linear relationship existed between mean larval production and 

initial stocking density over the range investigated, the increases in production 

were not significantly different at the 5% level. 
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5.4 DISCUSSION 

From a biological perspective, describing fish growth by mathematical 

expressions is a complex problem (Moreau, 1987). The two most important 

criteria for choosing a growth curve are the quality of fit and the possibilities 

for appropriate biological interpretation. The ascending curvilinear 

relationship which exists between C. gariepinus larval weight and increasing 

time from first feeding can be approximated by an exponential or a cubic 

growth model, (P < 0.01). 

The biological basis for an exponential growth model is that it represents 

organismic growth in terms of an initial size and takes into account that the 

amount of growing tissue is increasing and that new tissue begins to grow as 

soon as it is formed, ie. Y, = Y,. eý` (Brown, 1946). 

The biological basis for the cubic growth model, suggested by Hogendoorn 

(1981) is that the cube root transformation of the body weight represents a 

length characteristic and that total length increases linearly with time. 

The relationship between body weight (W) and the total length (L) defined by 

Elliot (1975c) can be represented by the equation, W=a Ib(or logW =loggia It 

+ ßlog, L). For a cube root transformation of weight data to represent total 

length implies that the length exponent (ß) should approximate to 3. 

Unpublished observations by Haylor (see Appendices), however, of 375 larval 

and juvenile C. gariepinus cultured intensively and fed ad libitum over 24 days 
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(from first feeding) produced the relationship W=2.28 x 10-3L3-5' r2 = 0.99 ie. 

where the length exponent is 3.56 suggesting that the length of catfish cultured 

in this way is poorly estimated by the cube root of their weight. 

Earlier work on larval and juvenile specific growth rate in species such as carp, 

Cyprinus carpio (L. ) (Bryant and Matty, 1980) and catfish, C. gariepinus 

(Hogendoorn, 1980b, Uys and Hecht, 1985) demonstrates that k can vary 

significantly over short periods. The assertion of Verreth and Den Bieman 

(1987) that a constant growth index over the entire larval period is given by 

a cube root transformation of the weight data (ie. that b does not vary) though 

not from a log transformation (because k does vary) is however 

unsubstantiated by the present investigation; since b (the regression coefficient 

of a cube root transformation) like k (the specific growth rate) varies 

significantly over successive short intervals throughout the larval period (Table 

5.3 and Figures 5.1 and 5.2). As growth rate varies widely and rapidly in fast 

growing fish larvae, any constant value representing larval growth rate can 

only be considered accurate over very short intervals or can represent a mean 

value for a longer period. However, in order to accurately predict growth 

over the whole of the larval period (enabling determination, for example, of 

feeding level on a daily basis) a model would need to be developed 

incorporating a variable, not a constant growth rate; though ad libitum feeding 

or a model based on gastric evacuation rate would probably better address the 

larval requirements. Over short intervals where a constant growth rate model 

is valid, specific growth rate is probably a more useful parameter than the 

regression coefficient of the cube root transformation of weight data; since over 
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successive short intervals specific growth rate more closely approximates 

changes in the percentage increase in mean body weight day' (Figure 5.2). 

Growth rate according to Stauffer in Brett (1979) is principally influenced by 

three variables, ie. size, ration and temperature. The main factors contributing 

to the variability in development rate during early exogenous feeding are 

temperature and food (Kamler, 1992). On this basis since temperature 

remained constant during the present study, the variation in growth rate of 

larvae over time will have been influenced most strongly by ration. Uys 

(1989) demonstrated that the mean activity of protease, amylase, pepsin and 

cellulase in C. gariepinus all increased significantly between the onset of 

exogenous feeding and day 6 (post first feeding with dry feed). In addition 

Uys (ibid. ) showed that the most rapid rate of increase in activity of pepsin and 

trypsin was between first feeding and day 3. Therefore one explanation for 

the gradual increase in growth rate over the first few days of exogenous 

feeding is that growth initially is limited by the relatively reduced proportion 

of the maximum voluntary intake of nutrients (particularly proteins) which are 

available to the larvae. In which case, the rate of larval growth will increase 

as the proportion of nutrients available increases, ie. as the fishes catabolic 

pathways become functionally established. The ontogeny of a functional 

digestive system is believed to be complete on day 5 after the start of 

exogenous feeding (Verreth et. al. 1991). The other explanation is that the 

maximum voluntary intake itself is proportionally smaller in early exogenous 

feeding because acquisition is less efficient. 
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Since growth rate in terms of proportion of body weight declines in response 

to increasing body size (Brett, 1979; Hogendoon, 1980b; Dabrowski, 1986; 

Kamler, 1992) the larval growth rate will eventually peak before decreasing 

with time. 

Under intensive conditions at 30°C C. gariepinus larval growth rate peaks 

between 3 and 10 days (after first feeding). The subsequent pattern of steady 

decline in growth rate with fish size is interrupted when the young catfish 

begin air breathing after about 12-14 days under these conditions (Figures 5.1 

and 5.2), during which time growth rate is temporarily depressed to less than 

one third of its peak. 

C. gariepinus larval growth is negatively density dependent over the range of 

high stocking densities used in the present trial; the weight attained at the 

end of the larval period declining curvilinearly with increasing stocking 

density. Combining the present data with other larval growth data (of 

different biotic origin but grown in similar conditions over the same period) 

at lower density by Hecht and Appelbaum (1987) indicates curviliniarity over 

a wider density range (Figure 5.5). Loge (Weight, mg) = 6.64 - 0.74 Loge 

(Density, larvae 1'') r2 = 0.92 P<0.01. 

Survival rates of larvae (of 80% or more) at all densities indicates an 

amenability of C. gariepinus to intensive rearing practices. The present results 

provide no evidence that survival of larvae is affected by stocking density, in 

the range 50-250 larvae L'' or by the provision of 4mm mesh shelters. 

I 
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Most deaths were recorded during the onset of air breathing. At this time the 

catfish, which tend to show negative phototaxis struggled against the increase 

in buoyancy associated with initial air gulping. The usual activity patterns of 

the fish including feeding were interrupted and excess powdered feed was 

observed adhered to the air water meniscus in the gill cavity. The increase 

in numbers of deaths at this time was possibly due to these factors. The few 

incidents of type 1 cannibalism observed occurred (a) during the onset of 

airbreathing, a time when the escape response of some siblings would be 

inhibited by their sudden increase in buoyancy and (b) at the beginning and 

end of a period of weaning larvae from Artemia onto a powdered diet ie. when 

a readily identifiable food source was either reduced or removed. On the 

days following weighing of the fish, higher levels of larval deaths were 

recorded indicating a sensitivity to handling stress. 

The apparent linear increase in production per unit volume with increasing 

stocking density identified by the present trial agreed very closely with the 

finding of Britz (1988). However the production values calculated did not 

vary significantly (P < 0.05) with density though the small sample size 

involved increases the probability of making a type II error. It is likely, 

therefore, that the production capacity of a hatchery increases with stocking 

density apparently up to 450 larvae L'' (Britz, 1988) and potentially above, 

however the individual larval size decreases curvilinearly with density. 
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5.5 SUMMARY 

The mean increase in African catfish Clarias gariepinus (Burchell) weight with 

time over the entire larval period can be approximated by a cubic or 

exponential growth model. However the growth rate indices: specific growth 

rate (k) and the regression coefficient of a cube root transformation of the 

weight data (b), both vary significantly when measured over successive short 

intervals from first feeding. In particular the onset of airbreathing is 

associated with a significant depression in growth rate. The variation in 

specific growth rate (k) with larval age closely approximates the relationship 

between mean % increase in body weight per day and larval age; however the 

cube root regression coefficient does not share this property. In addition to 

the affect of larval age, the growth rate of African catfish larvae is significantly 

affected by the initial density at which they are stocked (between 25-250 larvae 

1-') and interactions between age and stocking density. Survival over the 

larval period, of 80% or more, is apparently unaffected by initial stocking 

density (between 50-250 larvae 1'') however the onset of airbreathing in 

particular is associated with an increase in fish deaths. 
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Chapter 6: The Growth and Survival of Clarias gariepinus 
Fry at high stocking density. 

The information contained in Chapter 6 has been 
published in Aquaculture and Fisheries 
Management 1991,22,405-422. Edited by Mills, D. 
H., Roberts, R. J. and Groot, S. J. de published by 
Blackwells. 

6.1 INTRODUCTION 

The stocking densities which are commercially most appropriate for fry rearing 

will depend upon a multiplicity of factors, both biological and economic. The 

latter criteria will vary with such elements as capital and running costs as well 

as the frequency and timing of fry requirement for on-growing. The 

economic factors involved are often site specific and most accurately assessed 

for a given situation at the time of undertaking a feasibility study. The 

biological factors affecting the appropriateness of commercial stocking 

densities can be investigated by considering a range of densities and then 

measuring the resultant growth and survival of fry. This provides a data base 

for economic evaluation of particular stocking densities, and' allows 

identification of trends or relationships between density, growth rate and 

survival. 

In common with many other fish species of economic important Clarias 

gariepinus exhibits both territorial intraspecific aggression and sibling 

cannibalism (Hecht and Appelbaum 1987,1988). The relative importance of 

both behaviour patterns as causes of mortality is largely unknown, though it 

has important implications in terms of optimal aquaculture provision. 

I 



141 

Young Clarias gariepinus have been reared experimentally at a range of 

stocking densities, though mainly below 50 fish per 1(Hogendoorn, 1980b; Uys 

and Hecht, 1985; Hecht and Appelbaum, 1987; Verreth and Den Bieman, 1987; 

Appelbaum and Van Damme, 1988; Verreth and Van Tongeren, 1989 and 

Cleaver 1991). However fry growth and survival at high density has not been 

the subject of detailed investigation, but may be commercially most 

productive. 

The present study was therefore undertaken to investigate and quantify the 

pattern of growth and survival of Clarias gariepinus fry at high stocking 

densities. 

6.2 METHODS AND MATERIALS 

6.2.1 An investigation of cannibalistic mortality, non-cannibalistic 

mortality and growth rate in relation to stocking density 

during fry rearing 

First feeding larvae were produced by the method described in 5.2.1. On day 

2 larvae were transferred in the egg rearing troughs to two 1m diameter 

circular, mass larval rearing tanks. Water fed the two tanks from a 2301 

capacity header tank by gravity through a' inch single orifice horizontal inlet 

pipe. Each tank had a 3/4 inch outlet, screened with a 0.5mm mesh. The 

tanks drained into two 2301 preconditional biofilter tanks (with a total biofilter 

medium surface area of 75m2) from which water flower by gravity to a 2301 

sump tank. An electric pump (PV 100, Beresford, England) raised water to 

the header tank, from which water overflowed through a solids filter 
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(Filtermat 3.8.1, Dryden, Scotland) before returning to the sump tank. 

Larvae were fed as described in 5.2.2 except feed was offered four times daily 

at 0800,1100,1400 and 1700. 

On day 13 fish were assigned to one of nine replicates of three stocking 

densities (50,100 and 150 fry/1). The treatments were randomly allocated to 

27 self-cleaning circular tanks of the recirculating system described in 5.2.3. 

Any deaths were recorded and removed twice daily during cleaning. A 

distinction was drawn between cannibalism and non-cannibalistic causes of 

death. The former was detected by the presence of discarded heads in the 

tank resulting from tail first cannibalistic attacks (type I cannibalism of Hecht 

and Appelbaum 1988). The latter was identified by the presence of complete 

fry lying at the bottom of the tank. (If left overnight corpses were sometimes 

found with the abdomen removed but always remained uneaten). There were 

no fry losses attributable to type II cannibalism (Hecht and Appelbaum 1988), 

which is characterised by the consumption of whole siblings. 

The mean fry weight in each tank was determined on five occasions during 

the 23-day trial every 5 days from day 15. In each case the fry were poured 

gently into a 0.5mm mesh hand net. Following drying for 5s on absorbent 

paper, the fry wet weight was recorded on a Mettler top pan balance (± 

0.1mg). 
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At the end of the trial a random sample (the population of three tanks) from 

each treatment was killed using an overdose of benzocaine and preserved in 

Bouins Solution. Fish length was subsequently measured (to lmm). 

A separate experiment was carried out to estimate the relative metabolic rate 

of fry kept at different densities. Two hours after feeding, fry were 

acclimatised for 15 min. to tanks of the recirculation system described. Over 

five consecutive periods of 1 min the rate of surfacing to gulp air was scored 

for each tank. Surfacing to breathe air is distinguishable from other activities 

which break the water surface by the release of two air bubbles just prior to 

air gulping. Mean surfacing rate per fish per minute was then calculated for 

five stocking densities between 1 and 5 fry/i. (Scoring mean surfacing rate 

at densities higher than 5 fry/1 proved methodologically too complicated. ) 

6.2.2 Data Analyses 

The following analyses were carried out: 

1. Growth rate was measured as 

specific Growth rate (k) = 

Logg Yt - Loge Y0 
t 

2.95% Confidence limits were calculated as: 

CL. =Y±t 
SY 

Q. QS[n'1l 

Y 
-n 
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3. The mean number of deaths from both cannibalistic and non- 

cannibalistic interactions, on each day, as a% of those surviving at the 

beginning of that day was calculated in order to demonstrate any 

variations in mortality from either source over time, ie. 

C%= 

where: 

C`'' 
. 100 

Nt 

a 

Ni . 100 

M 96 = 
a 

C% = mean % per capita cannibalism 
M% = mean % per capita non-cannibalistic 

interactions 
a= replicates 
Nt = number of fish alive on day t 
C, +, = number of fish cannibalised in one day 
Mt+1 = number of fish dying as a result of non 

-cannibalistic interations 

Cumulative mortality, in each case, was calculated from the expressions: 

Cumulative M%= 

`t1.100 rM 
N, 

a 

C` 
'1.100 

Nt 
Cumulative %= 

a 
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4. In order to compare the total mortality for the period (day 12-day 35) 

from each cause, a single value representing mean % per capita 

mortality per day was calculated as follows: 

33 100 
= 13 N 

M%day-1 - 
22 

a 

C 96 day -1 = 

35 
Ct 

'1 

N 
100 

Lý = is 

22 
a 

The effect of stocking density on the rate of cannibalistic and non- 

cannibalistic mortalities was investigated by the non-paramentic 

analysis of variance (Kruskal-Wallis test) after a Bartlett test revealed 

that in both cases the data were heteroscedastic. 

5. In order to assess any size hierarchy effect (Brown 1946) sometimes 

known as growth depensation (GD) (Brett 1979; Koebele 1985), the 

standard deviation was calculated as follows: 

GD = 
(n1 - 1) Si + (n2 - 1) SZ +....... + (na - 1) Sa 2 

nl + n2........ na -a 

(Dixon & Massey 1969) 
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where 
n= number of fish per replicate 
S2 = the variance of growth within replicate a 

6. Coefficient of variation was calculated as follows: 

CV= 5.1oo 

x 

(Sokal & Rohlf 1969) 

S= standard deviation 
x= mean 

The effect of stocking density on the coefficient of variation in length of 35 day 

old fry was investigated by the non-paramentic analysis of variance (Kruskal- 

Wallis test). 

6.3 RESULTS 

Figure 6.1 displays the change in weight over 35 days of C. gariepinus fry kept 

at three stocking densities between 50 and 150 fry/1. In all treatments fish 

increased rapidly in weight, with significant (P < 0.05) increases in weight for 

each successive 5-day period measured between day 15 and day 35. The 

greatest weight gains corresponded to the lowest stocking densities. At 50 

fry/l fish gained significantly (P < 0.05) more weight over each 5-day period 

than at the higher stocking densities. All differences in weight gain between 

fish at 100 fry/l and 150 fry/l were not significant at the 5% level, except 

weight measured on day 30. 
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The specific growth rate (k) decreased rapidly over the fry period in all 

treatments and is displayed in Fig 6.2. Significant decreases (P < 0.05) in 

specific growth rate were measured for each successive 5-day period, between 

day 15 and day 35, in all treatments. 

Specific growth rate (k) at 50 fry/1 was significantly greater than specific 

growth rate at the higher stocking densities over the whole fry rearing period. 

The mean (k) values over 35 days at 100 fry/1 and 150 fry/1 were not 

significantly different at the 5% level. On day 20 and day 30 significant 

differences (P < 0.05) in specific growth rate were, however, apparent between 

each of the treatments. 

The change in mean specific growth rate of C. gariepinus fry in relation to 

stocking density is shown in Figure 6.3. 

The % survival of fry was not significantly affected by stocking density (P < 

0.05). Mean survival was in excess of 90% in all treatments over the 23-day 

trial (Figure 6.4). The % survival, % cannibalism and % non-cannibalistic 

death is documented in Table 6.1. 

Weighing the fry did not increase the death rate and there were no large 

physiochemical fluctuations in conditions. No type II cannibalism took place. 

Mechanical damage to one of the tanks resulted in the death of 40% of the fry 

in one replicate tank (with 50/fry/1) on day 3 of the trial. All parameters were 
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Table 6.1 A summary of the survival, cannibalism and non-cannibalistic 
mortality resulting from territorial aggression at different stocking 
densities 

Stocking density 
(fry/1) 

% survival % cannibalism % mortality 

50 90.50' 2.00' 7.50' 

100 91.67' 3.57' 4.661.2 

150 93.65' 3.59' 2.762 

Figures in columns bearing different superscripts are significantly different at 
the 5% level. 

subsequently calculated from eight replicates for that treatment. Mean % per 

capita cannibalism varied with time (Fig 6.5). In all treatments there was an 

initial peak in cannibalism between days 13 and 17, followed by a lower level, 

and then a second peak between days 28 and 34. 

The pattern of cumulative mean % per capita cannibalism (Figure 6.6) varied 

with stocking density. However, the rate of cannibalism (mean % per capita 

cannibalism per day) (Figure 6.7) was not significantly increased by the 

stocking density of fry (H = 0.9375, P>0.05). 

The mean % per capita non-cannibalistic deaths (Figure 6.8) decreased with 

time in all treatments. Cumulative mean % per capita non-cannibalistic 

deaths (Figure 6.9) were greater at the lower stocking densities. The rate of 

deaths (mean % per capita non-cannibalistic death per day) (Figure 6.10) 

decreased linearly with increasing stocking density (A = 0.427, b=2.29 x 10-3, 

r' = 1.00). Clarias gariepinus maintained at 150 fry/1 suffered significantly 
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fewer non-cannibalistic deaths, than those maintained at 50 fry/1 (H = 6.353, 

D=0.9985, P<0.025). 

The size range of the population is presented as treatment growth depensation 

(Figure 6.11) for comparison with other studies. In addition, the mean 

coefficient of variation in length is presented for each treatment (Figure 6.12). 

Since the final treatment populations differed significantly in their means. 

The size range of the fish, as measured by both parameters, decreased with 

increasing stocking density; however, these differences were not significant at 

the 5% level. 

The mean surfacing rates of fry kept at different stocking densities are 

displayed in Table 6.2. 

The fry production rates at high stocking density were calculated from the 

growth and survival data obtained, and are summarized in Table 6.3. 

6.4 DISCUSSION 

The very good survival rate of fry at high stocking density indicates an 

amenability to intensive culture practices. Fry deaths over the period were 

due to type I cannibalism or non-cannibalistic deaths. The principal component 

of the non-cannibalistic deaths was probably fatal aggressive territorial 

encounters between two or more individuals, which are common with 
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young Clarias gariepinus (Hecht and Appelbaum, 1988); since there were no 

large or sudden physiochemical fluctuations, no disease problems, no type II 

cannibalism (consumption of whole siblings) and no evidence of handling 

stress (eg post weighing). This is in contrast to the effect of handling on larvae 

(discussed in 5.4) which are apparently less robust. 

The relative importance of the two principal causes of death varied with 

stocking density, as is apparent from Figure 6.4 and Table 6.1. At above 100 

fry/1 cannibalism was the principle cause of fry death. At lower stocking 

densities aggressive encounters were more commonly observed and non- 

cannibalistic deaths accounted for nearly 79% of fry mortality at 50 fry/l. This 

may have implications for the type of culture environment which should be 

provided. At densities above 100 fry/l shelter (which suppresses cannibalism) 

(Hecht & Appelbaum 1988) could be provided. At lower densities, however, 
r 

shelter, which has been shown to increase territoriality (Hecht & Appelbaum 

1988) should not be provided. Survival rates in the present trial, without 

shelter, testify to the success of such culture conditions when sufficient feed 

is provided. 

A similar pattern of aggressive behaviour in relation to density is discernable 

from the data of Hecht & Appelbaum (1988). The mean number of aggressive 

territorial acts was demonstrated to decrease with increasing stocking density, 

whereas the mean number of cannibalistic acts was demonstrated to increase. 
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High stocking density has been shown to reduce the rate of aggression in a 

range of other fish species, eg. trout, Salmo trutta L. (Kalleberg 1958), Atlantic 

salmon, Salmo salar L. (Kalleberg 1958; Keenleyside & Yamamoto 1962), 

medaka, Oryzias latipes (Temminck et Schlegel )Pisces, Cyprinodontidae 

(Magnusson 1962), rainbow trout, Onchorynchus mykiss (Walbaum) (Yamagishi 

1962), and Siamese fighting fish, Betta splendens Regan (Goldstein 1975). The 

most probable reason for this is that benefits conferred by the dominance of 

a piece of territory at low density are outweighed by the inability or greater 

energy cost of territorial defence at high density (Li & Brocksen 1977). From 

non-cannibalistic death rates observed in the present study (Figure 6.9), it 

would appear that territoriality in C. gariepinus fry is significantly depressed by 
., 

increasing stocking density, and a significant linear relationship exists between 

non-cannibalistic death (most probably due to territorial aggression) and 

stocking density over the density range studied. 

No significant difference in the rate of cannibalism was demonstrable over the 

range 50-150 fish/l. The highest rates of cannibalism, however, relate to the 

most densely stocked fish (Figure 6.6); probably as a result of the greater 

likelihood of sibling encounters during foraging at higher stocking densities. 

This is is agreement with findings of Hecht and Appelbaum (1988), and in 

common with other cannibalistic species eg. koi carp, Cyprinus carpio L (Van 

Damme, Appelbaum and Hecht 1989), and walleye, Stizostedion vitreum vitreum 

(Mitchill) (Li and Mathias 1982; Krise and Meade 1986). 
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Although the rate of death from both causes varied with stocking density, 

there were marked similarities in the temporal pattern of deaths at the three 

densities. Within all newly established populations, individuals predisposed 

to cannibalism by virtue of their size or behaviour rapidly succumbed to those 

individuals best equipped to cannibalise. During the same initial period, the 

frequency of lethal aggressive territorial encounters tended to peak. 

Following the establishment of status quo, deaths from this source decreased 

at all densities. 

Both cannibalistic and non-cannibalistic deaths at this time may be associated 

with the onset of airbreathing (as discussed in 5.4). At 150 fish/l the initial 

peak in non-cannibalistic deaths was small, and of much shorter duration than 

that at the lower densities. 

Around day 30 there was a second peak in cannibalism at all densities which 

was more marked at higher density and corresponded to the time of weaning 

fry onto 1300 }lm crumbs from 790 um particles. 

Weaning represents a short period of time during which readily recognisable 

feed particles are substituted for different or larger feed particles, previously 

unassociated with feeding. It is likely that a decrease in the quantity of 

recognisable feed particles increases foraging for other sources of nutrients. 

In species exhibiting cohort cannibalism this will include siblings. Similar 

observations were made with larvae (as discussed in 5.4). 
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Food availability was considered by Hecht and Appelbaum (1988) to be the 

most important experimental variable determining the rate of cannibalism in 

C. gariepinus fry. It has also been suggested to increase the rate of 

cannibalism of other species. eg. koi carp (Van Damme et al. 1989), pike, Esox 

lucius L. (Hunt and Carbine 1951; Kipling and Frost 1970; Mann 1982), walleye 

(Li and Mathias 1982; Krise and Meade 1986; Loadman, Moodie and Mathias 

1986), common carp (Von Luckowicz 1979), sea bass, Dicentracus labrax (L. ) 

(Katavic, Jug-Dujakovic and Glamuzina, 1989) and sea bream, Archosargus 

rhomboidalis (L. ) (Houde 1975). 

From the culturist's point of view, this underlies the importance of adequate 

provision of fry feed to cannibalistic species, and indicates a possible role for 

the provision of shelter during weaning periods. 

C. gariepinus fry growth is clearly negatively density dependent (Figure 6.3). 

At the high stocking densities used in the present trial, growth rate decreased 

curvilinearly in relation to increasing stocking density. 

A comparison of the growth of C. gariepinus, over 35 days from first feeding, 

from a range of similar studies by various authors (Figure 6.13), reveals a 

curvilinear relationship over a wide range of stocking densities (5 fish/l to 150 

fish/1; Loge weight (Mg) = 9.25 - 0.803 Loge density (Fish L4), n=7, r2= 0.968). 

A similar relationship has been demonstrated between weight gain over 14 

days from first feeding and initial larval stocking density (5.3). 
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An increased metabolic rate amongst densely stocked fish has been suggested 

to account for reduced growth at high fish density in other species (Yamagishi 

1962: Li and Brocksen 1977). 

Metabolic rate may be inferred from the rate of oxygen uptake, which is 

linearly related to surfacing to gulp air in air breathing fish (Vivekanandian 

and Pandian, 1977). In the present study this was demonstrated to increase 

significantly (P < 0.05) with stocking density (Table 6.2) in C. gariepinus fry 

whereby Loge surfacing rate (Min '') = 0.83 Loge density (fish 11) - 0.058 (r2 = 

0.86). For technical reasons, this effect was not quantified directly at high 

stocking density. Of interest, however, is the close agreement between the 

rate of decrease of weight with density (b = -0.803) and the rate of increase in 

surfacing rate with density (b = 0.83). The basis for density dependent growth 

in C. gariepinus, however, remains unclear. 

The weight of fry produced per unit volume is clearly increased with 

increasing stocking density over the range studied, although individual fry 

weight is decreased. 

6.5 SUMMARY 

The growth and survival of Clarias gariepinus (Burchell) fry was investigated 

at high stocking density. Significant increases in mean fry weight, and 

concomitant significant decreases in specific growth rate, were recorded over 

successive 5-day periods. Fry growth was negatively density dependent. Fry 
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survival was in excess of 90% in all treatments. Increasing stocking density 

between 50 and 150 fish/1 altered the pattern of mortality; non-cannibalistic 

deaths decreased significantly with increasing stocking density though 

cannibalism did not significantly increase. Periods of weaning fish onto larger 

feed particles were associated with temporarily increased rates of cannibalism. 
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Chapter 7: An investigation of tank design and water flow rates 
appropriate for Clarias gariepinus in hatcheries. 

Our houses are such unwieldy property that we are often 
imprisoned rather than housed in them. 

Thoreau "Economy", Walden (1854) 

The information contained in Chapter 7 has been accepted 
for publication in Aquaculture and Fisheries Management 
edited by DH Mills, RJ Roberts and SJ De Groot, 
published by Blackwells. 

7.1 INTRODUCTION 

Optimal conditions, procedures and equipment for hatchery rearing of Clarias 

gariepittus need to be identified and the tank in which fish are housed in 

particular is a vital and often underestimated piece of aquaculture technology 

(Cripps, 1990). Its design should be the product of both biological and 

engineering considerations, including hydrodynamics, economics and 

ergonomics. In particular the specific requirements of the species to be 

cultured should be taken into account. 

African catfish are essentially benthic, though they use much of the water 

column during foraging and from an early age surface regularly to breath 

atmospheric oxygen. As a result, tank design characteristics such as water 

depth and tank volume may affect their growth and/or survival. 

In addition African catfish are essentially sedentary, a characteristic which may 

contribute to the species efficient feed conversion (Hogendoorn, Janssen, 

Kroops, Michiels, Ewijk and Hees; 1983). Current velocities which cause 

swimming in culture tanks may negate this energetic advantage and should 

be avoided where possible. An appropriate flow rate for fry will likely be a 

compromise between tank hygiene (flushing) and fish energy expenditure 

(current velocity). Optimal flow rates for larvae will additionally need to 
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supply sufficient dissolved oxygen. The current velocities which different 

flow rates generate will in turn depend upon tank design. 

7.1.1 Tank design choice 

Common tank designs may be characterised as: square, rectangular (raceways), 

D-ended (or Foster-Lucas raceways) and circular. 

Square tanks allow a more efficient use of floor space than other designs 

(Klapis and Burley, 1984) but significant modifications are required of inflows 

and outflows in order to prevent poor water circulation. Rectangular 

raceways on the other hand are prone to uneven flows and fish distribution 

(Heskell, Davis and Reckahn, 1960) and require large flow rates to alleviate the 

problem (Murai, 1979). In addition, baffles may be required to generate a 

bottom cleaning action (Burrow and Chenoworth, 1970; Christensen and 

Chenoworth, 1974; Westers and Pratt, 1977 and Schlieder, 1984). In spite of 

this they have been recommended for African catfish fry rearing (Janssen, 

1989). Foster-Lucas (D-ended) raceways are subject to turbulence in their D- 

ends, resulting in low velocity areas, short circuiting and poor water 

circulation (Burrows and Chenoworth, 1955). This can to some extent 

however be improved by jets, guide vanes to reduce turbulence and bottom 

drains in suspended solids settlement areas (Burrows and Chenoworth, 1970). 

Circular tanks with a central drain in which the water inlet produces a 

tangential velocity component are commonly favoured for fish culture because 

of the even flow distribution patterns which pertain within them (Burrows and 
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Coombes, 1968; Brown and Gratzek, 1980) as well as the maintenance of self 

cleaning properties under conditions of restricted flow (Pyefinch, 1970). 

From a biological and an engineering viewpoint smooth flow dynamic 

characteristics that produce rapid mixing of influent and tank water are 

important design criteria (Westers and Pratt, 1977). Potential benefits to the 

culturist include even distribution of inputs, of water quality and of culture 

organisms. In addition, flow characteristics which facilitate the clearing of 

solid wastes even at low flow rates are beneficial to tank hygiene. 

7.1.2 The Present Study 

Circular tanks were selected for further investigation with respect to their 

suitability for rearing the early stages of Clarias gariepinus. 

The present study involves a series of experiments, conducted to investigate 

the effect of changes in circular tank dimensions and flow rates on the growth 

and survival of African catfish fry. 

Many interconnected variables related to tank design, may affect the growth 

and survival of fish. These include water depth, tank volume, stocking 

density in terms of unit volume and unit area, depth to diameter ratio (and its 

effect on tank hydrodynamics), flow rate and current velocity. Separate 

experiments were conducted to investigate these and are described under the 

following headings: 

7.2.1 The effect of a small increase in water depth 
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7.2.2 The effect of an increase in tank volume 

7.2.3 The effect of an increase in diameter to depth ratio 

7.2.4 The effect of flow rate on current velocity and its relation to tank 

dimensions and fish size 

7.2 METHODS AND MATERIALS 

For each experiment Clarias gariepinus fry were produced according to the 

procedure detailed in 6.2.1. On the day following the onset of airbreathing, 

fry were introduced into the treatment tanks. All tanks were attached to the 

recirculation system described in 5.2.3. 

In each case feeding was ad libitum, three times daily between 0800 and 1800 

at 4 hourly intervals, with a commercial trout starter diet (BP Nutrition No 2, 

54% crude protein, 790 pm crumb). 

Trials 7.2.1,7.2.2 and 7.2.3 were conducted over 20 days from day 15 

(following first feeding) to day 35. Weight and numbers surviving were 

measured on five occasions (on days 15,20,25,30 and 35) as described in 

6.2.1. Details of the tank dimensions and stocking densities are given in table 

7.1. 

7.2.1 The effect of a small increase in water depth 

African catfish first rise to the surface to gulp air, after 12-14 days, when 

cultured at 30°C (see 5.4). The travel cost associated with aerial respiration 

will be related to the depth of water in which they are reared. This cost has 
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been demonstrated to be significant in another air-breather Colisa chuna 

Hamilton in 2.2m deep aquaria (Bevan and Kramer, 1986). Tanks used to rear 

African catfish would typically be much shallower (Viveen et al 1985, Janssen, 

1989). In order to see if travel cost would be significant for fry a 400% 

increase in travelling distance was investigated in shallow tanks. Two tanks 

were constructed such that the flat tank bottom area and the total water 

volume were constant but the distance between the tank bottom and the water 

surface varied (Figure 7.1). Both tanks were stocked with 25 fry at a density 

of 6.25 fry L'1 (or 1101 fry M"2), growth and survival are measured. 

(Preliminary observations had identified a reluctance of catfish to perch on 

smooth sloping surfaces and a preference for deeper flat surfaces). 

7.2.2 The effect of an increase in tank volume 

Container volume has been suggested to affect the growth rate of fish 

(rainbow trout fry, Onchorhyncus mykiss Richardson) (Kincaid, Bridges, Thomas 

and Donahoo, 1976). In their experiment with rainbow trout however, 

container volume (12.5L and 8.8L) was not the only variable and stocking 

density per unit volume also varied by 42%. Since stocking density is known 

to affect African catfish fry growth (see 6.5), the present experiment 

investigated the affect of tank volume per se on growth and survival. 

Three replicates of two different sizes of tank were used to rear fry. In each 

case stocking density per unit volume (25L 1) remained constant and per unit 

area remained within 0.73% (2857 and 2878 M"2 respectively). The 

diameter: depth ratio remained below 3.7 (1.85 and 3.67 respectively) such that 
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plan view 

side view 

Tank A: 
Volume : 4L 
Depth: . 029m 

Tank B: 
Volume : 4L 
Depth: .1 14m 

Figure 7.1 : The design of tanks A and B used to investigate 
the effect of water depth 
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hydrodynamic conditions within the tanks were essentially the same and 

depth was unaltered (0.114m). Volume (4L and 16L respectively) varied 

between the two treatments by 400%. 

7.2.3 The effect of an increase in diameter to depth ratio 

The hydraulic similarity rule (Larmoyeux et a1,1973) states that circular tanks 

having the same diameter to depth ratio are geometrically similar. If the 

inlets and outlets are also geometrically similar, the flow patterns should be 

identical within the range of usual peripheral current velocities (Larmoyeux, 

et al, 1973). Changing the diameter to depth ratio changes the geometric 

similarity of the tanks and may therefore change the flow patterns (Larmoyeux 

et al, Op. Cit. ). 

In order to see if diameter to depth ratio changes, affected fry growth and 

survival, three replicates of four treatment tanks of constant volume (4L) and 

with constant stocking density per unit volume (25 L'') were set up. The 

diameter to depth ratio of the treatment tanks were 1.85,4.32,14.51 and 150. 

The first two tanks with diameters less than five times their depth can- be 

classified as deep tanks, whereas the two tanks with diameters more than ten 

times their depth can be said to be shallow (Larmoyeux et al, Op. Cit). 'Deep' 

and 'shallow' tanks would be expected to have different flow patterns (Cripps, 

1990). 

Varying diameter to depth ratio at constant volume and constant stocking 

density per unit volume results in a consequent variation in stocking density 
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per unit area. 

7.2.4 The effect of flow rate on current velocity and its relation to 
tank dimensions and fish size 

The effect of flow rate on current velocity may be considered independent of 

fry tank size per se, since changes in viscosity effects with tanks and flow rates 

suitable for fry culture are unimportant (Larmoyeux et al 1973). 

However the velocity which a particular flow rate generates will depend upon 

the size and orientation of the inflow, the diameter to depth ratio of the tank 

and the location of interest within the tank, (Larmoyeux et al, Op. Cit). 

In addition the maximum velocity which allows a fish to maintain station 

without swimming will depend on fish size. 

In order therefore to provide a guide to appropriate flow rates for developing 

African catfish, the current velocity in different parts of deep fry tanks 

(diameter: depth < 2) and shallow fry tanks (diameter: depth > 14) generated by 

a horizontal single orifice inflow pipe set at flow rates between (0.6-4.61/min) 

were recorded. The current velocity which caused sedentary catfish of 

varying sizes (13-100mm) to swim (in order to maintain station) was also 

quantified. 

In addition the current velocities in different parts of a much larger (2161) 

shallow tank (diameter to depth = 10) were measured. 
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Current velocity was measured. using a 2cm diameter spherical drogue with 

adjustable buoyancy. A stop watch was used to record the time taken for the 

drogue to pass between two points, marked on the tank bottom. Current 

velocity was measured just above the tank bottom, as shown in Figure 7.2. 

7.2.5 Data Analyses 

1. Because the magnitude of the variance of fry weight increases with age 

(as body weight increases) heteroscedasticity precludes the use of 2 way 

parametric analysis of variance for investigating the effects of changes 

in tank dimensions on fry weight over time. Therefore paired 

comparisons F tests were used (to examine the effect of both tank depth 

and of tank size) whereby each observation for one treatment is paired 

with one at the corresponding age for the other treatment. 

Homogeneity of treatment variances were confirmed using a Bartlett 

test. 

2. A single classification analysis of variance with unequal sample size 

was used to investigate the effect of tank diameter to depth ratio on fry 

weight after 35 days. Equality of variances was confirmed using a 

Bartlett test and normality could be demonstrated graphically. 

3. A single classification analysis of variance of two groups with equal 

sample sizes was used to investigate the effect of tank volume on both 

cannibalism and non-cannibalistic mortality following an arcsine 

transformation of the % mortality data. A Bartlett test was used to 

f 
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Figure 7.2 : Diagram of the method used to investigate the 
effect of inflow rate on current velocity 
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confirm homoscedasticity in each case. 

4. The non-parametric Kruskal-Wallis analysis of variance was used to 

investigate the effect of fry tank diameter to depth ratio on both 

cannibalism and non-cannibalistic mortality after a Bartlett test revealed 

heterogeneity of variances in each case. 

7.3 RESULTS 

Increasing water depth from 0.029m to 0.114m had no discernable effect on fry 

growth (F(,, 4) = 1.78, P<0.05). A comparison of growth in tanks of these 

different depths is shown in Figure 7.3a. Increasing tank volume from 41 to 

161, whilst keeping stocking density per unit volume and per unit area (of tank 

floor) constant also had no discernable effect on fry growth (F(,, 4) = 5.44, P< 

0.05).. A comparison of growth in 'large' and 'small' tanks is shown in Figure 

7.3b. However, changing fry tank diameter to depth ratio (at constant volume 

and constant stocking density per unit volume) significantly affected final fry 

weight (F(3,7) = 24.85, P<0.01); whereby fish grew faster in shallow tanks than 

in deep tanks of the same volume. A comparison of growth in 'deep' and 

'shallow' tanks is shown in Figure 7.3c. 

Cannibalism (F(,, 4) = 2.41, P<0.05) and non-cannibalistic mortality (F(1,4) = 0.09, 

P<0.05) were apparently unaffected by tank volume. The tank diameter to 

depth ratio similarly had no discernable effect on cannibalism (H/D = 5.32, P 

< 0.05) or non-cannibalistic mortality (H/D = 4.7, P<0.05). 
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There were no mortalities from either source in the tanks in which depth was 

varied. The relevant % data for all tanks are given in table 7.2. 

The relationship between current velocity and flow rate, centrally and 

peripherally in shallow and deep tanks was in all cases linear (table 7.3). 

Every flow rate generated faster current velocities in deep tanks than in 

shallow tanks of the same volume. Peripheral current velocities were always 

faster than central current velocity. 

In deep tanks both peripheral and central current velocity increased with 

increasing flow rate. In small shallow tanks the peripheral current velocity 

increased with flow rate but the central current velocity which was always less 

than 2cms', was relatively independent of changes in flow rate (b = 0.173). 

This was less so in the large shallow tank where both central and peripheral 

current velocities increased with flow rate. 

The maximum current velocity in which sedentary African catfish fry can 

maintain station without swimming is shown in Figure 7.4. The relationship 

between the current velocity eliciting swimming (cros') and fish length (mm), 

between 13 and 100mm, was found to be linear (r2 = 1.00). 

7.4 DISCUSSION 

The growth of African catfish fry is clearly sensitive to the diameter to depth 

ratio of the tanks in which it is grown. Wide/shallow tanks are more suitable 

then narrower/deeper tanks of the same volume. The reasons for this are 
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probably manifold. Since the fish are resistant to water quality problems and 

independent of dissolved oxygen, the velocity of flow will have most effect on 

their growth rate (Cripps, 1990). Wide/shallow tanks are associated with 

slower current speeds (for a given flow rate) compared to narrower/deeper 

tanks of the same volume. They may therefore be preferable with respect to 

a diminished activity cost for fry. In addition, as flow rates increase, the slow 

moving central region of wide/shallow tanks may provide a refuge from 

current speeds which induce swimming. 

Wide/shallow tanks also have a greater bottom surface area for settlement 

than narrower/deeper tanks. This maybe important in an essentially 

sedentary and benthic species in which increased stocking density per unit 

area may reduce growth. 

A further potential benefit of shallow tanks is a reduction in the travelling 

distance required for aerial respiration, which for most air-breathing organisms 

has both energetic and temporal costs (Vivekanandan and Pandian, 1977; 

Kramer and McClure, 1981; Kramer, 1983). 

Decreasing the depth of fry tanks by 400% (as in the present trial) will 

decrease the distance that fish must travel to gulp air by the same percentage. 

For example, between day 15 and day 35 (based on an example surfacing rate 

of 3 times per minute - from section 6.3) fry in 2.9cm deep tanks would travel 

2.6km whereas fry in 11.4cm deep tanks would travel 9.8km. However the 

energetic cost of this additional activity in shallow fry tanks is either not large 
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enough to be measurable by the present study or the fry decrease their use of 

atmospheric oxygen in response to increased travel costs when dissolved 

oxygen content permits. Such a change in respiratory behaviour has been 

observed in another air-breather Colisa chuna (Bevan and Kramer, 1986) but 

was not quantified in the present study. 

Increasing tank size apparently has little effect on African catfish fry growth 

and survival as long as important variables such as the diameter to depth ratio 

as well as stocking density per unit volume and per unit area remain relatively 

unchanged. 

A guide to appropriate flow rates for rearing young African catfish is absent 

from the literature which possibly reflects the difficulties in dealing with so 

many inter-related variables. Hecht (1982) recommended a flow rate of 

2001/h (3.331/min) for larvae and a stocking density of 250-300 fish/1 and 

Janssen (1989) proposed 3-51/min for larvae stocked at 375-700 fish per 1. 

However, neither describe an experimental or theoretical basis for their 

recommendations which would appear to be anecdotal. 

An appropriate flow rate for larvae would need to supply sufficient dissolved 

oxygen without causing the fish to swim against the resultant current; a 

concomitant maximum tank biomass could therefore be defined in relation to 

mean larval weight. 
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ie. Maximum Tank = Maximum Oxygen Supply 
Biomass Oxygen consumption per unit biomass 

where maximum oxygen supply = maximum flow rate x dissolved 
oxygen concentration 

The maximum flow rate for fry would be constrained only by the current 

velocity which it generates and the relationship between current velocity 

causing swimming and fish length. Since both of these relationships are 

linear and Loge Fish weight is linearly related to Loge Fish length (see 5.4) it 

follows that maximum flow rate (for larvae or fry) will be estimated by the 

equation: 

Maximum flow rate =A+B (w/a)l"b -a R 

where A= regression constant 

B= regression coefficient 

a= regression constant ) 

b= regression coefficient 

a= regression constant 

ß= regression coefficient 

w= fish weight (mg) 

From equations 2 and 7 

current velocity (cm/s) 
inducing 
swimming Vs. fish 
length (mm) 

) Loge fish weight 
) (mg) 

Vs. Loge fish 
length (mm) 

current velocity 
(cm/s) 
Vs. Flow rate 
(L/min) 

Maximum Flow rate (L/min) = 3.25 W'-I(mg) - 7.41 ... 8 
in 'shallow' tanks 

From equations 4 and 7 

Maximum Flow rate (L/min) = 0.48 W-28(mg) - 1.12 
... 9 

in 'deep' tanks 
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From equations 6 and 7 

Maximum Flow rate (L/min) = 0.756 W "28(mg) - 0.549 .. 10 
in a 1.4m diameter 
(0.14m depth) tank 

In order to calculate maximum larval biomass the maximum oxygen supply 

will be given by multiplying equations 8,9 or 10 by the available dissolved 

oxygen concentration of the influent water (in mg/L). According to Janssen 

(1989) dissolved oxygen level should remain above 3mg/1 or more safely 

5mg/l in larval African catfish tanks. Therefore available dissolved oxygen 

will be equivalent to the concentration dissolved in the water in mg/1 minus 

5mg/1. 

Oxygen consumption has not been quantified specifically for larvae, however 

from 3.2.6.2 an approximation of oxygen consumption in mg/kg/h is given by: 

Oxygen consumption = 649767WI"I 
1013 + 3.718(T) 

where W= Fish weight g 
T= temperature °C 

Thus by dividing maximum oxygen supply by oxygen consumption per unit 

biomass the predicted flow rates and maximum biomass for different types of 

circular tanks can be calculated. These are shown for selected larval weights 

in table 7.4. 

Clearly the relationship between flow rate and current velocity is influenced 

more by diameter to depth ratio than tank size. 'Shallow' tanks which are 
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associated with slower current velocities for a given glow rate can sustain a 

higher biomass per unit volume than 'deep' tanks. Scaling up however may 

increase the rate of change of current velocity with flow rate (see equations 1, 

2,5 and 6). Thus equation 8 would tend to over-estimate tank capacity just 

prior to air breathing and under-estimate the tank capacity for smaller fish. 

The relationship between current velocity and flow rate should therefore be 

determined empirically for any given tank, as has been done for a 1.4m 

diameter tank (equation 5 and 6). 

It is implied from table 7.4 that approximately 6,000 larvae (ie. c. 50mg) can be 

accommodated in a 'shallow' tank just prior to air breathing. If stocked at 30 

larvae/1 a c. 201 tank would be required, if diameter to depth ratio were 10 a 

0.63m diameter (0.063m deep) tank would be appropriate. If stocked at 300 

larvae/1 a c. 2001 tank would be required. If diameter to depth ratio were 10 

a 1.4m diameter (0.14m deep) tank would be appropriate. However, from the 

empirically derived flow rate/current velocity relationship its maximum 

capacity would be about 4,500 larvae (c. 22.5 larvae/1). The relationship 

between maximum flow rate and fish weight would most accurately be 

described by equation 10. 

7.5 SUMMARY 

Circular tanks are appropriate for Clarias gariepinus culture. Wide/shallow 

tanks (with a diameter to depth ratio of about 10) are preferable to 

narrower/deeper tanks. The optimal flow rate for larvae will be one which 

provides sufficient oxygen yet does not generate a current velocity fast enough 
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to cause them to swim against it. However current velocity, for a given type 

and orientation of inflow, will depend particularly upon tank diameter to 

depth ratio and flow rate and will be related to position within the tank. 

Therefore for a given circular tank design a theoretical maximum flow rate and 

concomitant biomass can be estimated for a given mean fish size. 

Once airbreathing begins the optimal flow rate for, fry is simply that which 

does not elicit swimming. 



191 

Chapter 8: An estimate of Maximum daily Feed Intake of 
Clarias gariepinus larvae. 

That all softening, overpowering knell, 
The tocsin of the soul - the dinner-bell 

Byron, Don Juan (1819-1824) 

8.1 INTRODUCTION 

Within the genetic potential of a species, biotic and abiotic factors limit 

maximum growth (Brown, 1957; Ivlev, 1961). The three most important 

factors are ration, body size and temperature (Stauffer, 1973; Elliot, 1975a, b). 

According to Stauffer (1973) ration can be viewed as the driving force, 

temperature the major rate controlling force and weight, a scaling factor that 

adjusts these rates to the size of the growing individual. 

Since temperature affects the rate of consumption as well as the rate of 

metabolism, a change in temperature may increase or decrease growth rate 

depending on the nature of the food x metabolism x temperature relation for 

a species (Brett, 1979). In the case of African catfish a maximum feeding level 

is reached at 30°C, for the size range 0.3-70g (Hogendoorn, 1983). The 

temperature for fastest growth rate and the temperature preferendum of both 

larval and post-larval African catfish is corresponding 30°C (Hogendoorn, 

op. cit.; Britz and Hecht, 1987). Maximum larval growth rate may therefore be 

obtainable by maximising feed intake at this optimal temperature. 

According to Brett (1979) the most important factors which bear directly on the 

maximum daily food intake of fishes include the duration of feeding (satiation 

time), individual meal size (stomach capacity), the time between meals 
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(feeding interval) and interactions of these. If stomach evacuation is closely 

related to return of appetite (Ware, 1972) the daily feed intake can be 

favourably adjusted by manipulating the size of ration and timing of its 

presentation. 

The present experiment therefore attempted to quantify: satiation time, 

stomach capacity and return of appetite, in African catfish larvae fed decysted 

Artemia at 30°C and to estimate feed intake in relation to feeding schedule. 

8.2 MATERIALS AND METHODS 

8.2.1 An investigation of satiation time, stomach capacity, gastric 

evacuation and return of appetite 

First feeding larvae were produced according to the procedure detailed in 5.2.1 

and randomly allocated to fourteen 101 round tanks. Each tank received 

water via a single horizontal pipe and the flow was adjusted such that the 

larvae were not required to swim against the resulting current. The diameter 

depth ratio of the tanks was approximately 10. 

The larval rearing, recirculation system is described in 5.2.3. 

The larvae were fed, ad libitum three times daily at 0800,1200 and 1600 with 

decysted but unhatched Artemia (Argentemia, 8702 152nd Ave, N. E. Redmond, 

WA, USA) as described in 5.2.2. 

Following the first feed in the morning debris was siphoned from each tank 
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and on days 1,2,3,4,5,7,10 and 14, the following were recorded: 

1. Satiation time - the time from the onset of the first morning feed, until 

all fish in the tank ceased to respond to continued addition of feed. 

2. Stomach capacity - the mean number of cysts in the stomach of ten 

randomly selected larvae immediately after feeding to satiation; 

identified by post-mortem gastrectomy. 

3. The weight of ten randomly selected larvae (as described in 5.2.4) 

On day 6 or 7 of the trial (see Table 8.1a), following 24h without feed, the 

larvae in ten tanks (A-J) were fed to satiation with Artemia. 

After various interfeed periods of between 0 and 24h (see Table 8.1b) the 

larvae were again fed to satiation. The second meal consisted of decysted 

unhatched Artemia, dyed with a vital lipid stain, Sudan black (by overnight 

immersion in a saturated solution followed by thorough washing in water). 

Following each deprivation period the satiation time and stomach capacity 

were recorded as before. The change in the mean number of undyed Artemia 

present in the stomach with increasing time (without subsequent feeding) was 

used to estimate gastric evacuation rate (G. E. R. ). The change in the mean 

number of dyed Artemia consumed with increasing deprivation time was used 

to quantify return of appetite (R. A. ). 
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Table 8.1 The time of larval feeding and deprivation time (interfeed period) for 
each tank of larvae 

(a) Feeding schedule for larval tanks A -j with dyed and undyed 
Artemia 

Time Tanks fed to 
satiation with 
Artemia 

Tanks fed to 
satiation with 
dyed Artemia 

Day 6: 1600 H. I. J. - 
Day 7: 0800 A, B, C, D, E, F, G A, H 

1000 - B 
1200 - C, I 
1400 - D 
1600 - E, J 
1800 - F 
2000 - G 

(b) Deprivation time in tanks A-j 

Tank Deprivation time (interfeed period) 
A 0 
B 2 
C 4 
D 6 
E 8 
F 10 
G 12 
H 16 
I 20 
1 - 24 
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In a preliminary experiment to. identify any larval preference for dyed or 

undyed Artemia, three tanks of larvae were offered either dyed Artemia or 

undyed Artemia or a 50: 50 mixture of dyed and undyed. There was no 

significant difference in Artemia consumption amongst the three treatments (P 

< 0.05). In addition, no significant difference was observed between the ratio 

of dyed to undyed Artemia offered and those consumed by the group fed a 

mixture (P < 0.05) (see Appendix II). 

8.2.2 Data Analyses 

The following statistical analyses were carried out: ' 

1.95% confidence limits were calculated. 

C. L. =Y±t 
SY 

n 

2. A single classification analysis of variance with unequal sample size 

was carried out to investigate differences in stomach capacity at various 

deprivation times between 0-24h. The % body weight data was arcsine 

transformed and a Bartlett test established that the variances were 

homogeneous. 

3. A Bartlett test on the satiation time data revealed heteroscedasticity; the 

non-parametric (Kruskal-Wallis) analysis of variance was therefore 

employed to investigate difference in satiation time with age. 
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8.3 RESULTS 

The evacuation of Artemia from the stomach of Clarias gariepinus larvae over 

time at 30°C is shown in Figure 8.1. The empirical data can be described by 

the exponential relationship St = So. O 'R' (r2 = -0.93, P<0.05) whereby stomach 

content (following feeding to satiation) So = 21.3% body weight, and gastric 

evacuation rate, R=0.107. The return of appetite of the larvae is shown in 

Figure 8.2. The curve represents the level of consumption estimated from the 

gastric evacuation parameters calculated from the data in Figure 8.1 whereby 

consumption at time t, Ct = Sa (1-e Rt) 

Figure 8.3 shows the time taken for larvae to reach satiation in relation to 

larval age. From the fourth day of exogenous feeding to the end of the larval 

period, satiation time remained constant (mean = 29 mins 54 secs, C195 =2 

mins 24 secs) (H = 8.246, P<0.05). Satiation times recorded in relation to 

deprivation time (on day seven) fell close to the mean satiation time for the 

period regardless of deprivation time between 4h and 24h. 

The mean increase in larval weight with time is shown in Figure 8.4. The 

data can be described by the exponential relationship Wt = WO e' (r2 = 0.92, n 

= 8, P<0.01) where initial weight, Wo = 3.4 mg and specific growth rate for the 

larval period, k=0.24. 

Figure 8.5 shows the increase in weight of feed ingested at a satiation meal 

with larval weight (which is a measure of stomach capacity). The relationship 

between stomach capacity (So) and larval weight (W) can be described by the 
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linear equation S0,,, g = 0.21 Wmg - 0.3 (R2 = 0.99, P<0.01). 

Stomach capacity measured in this way and expressed as a% of body weight, 

So = (0.21 - 0.3/W). 100, where W= larval weight (mg) increases rapidly during 

the first few days of exogenous feeding, as feeding becomes established, after 

which it represents a fairly constant proportion of body weight throughout the 

larval period (close to 21% bw). 

During the determination of gastric evacuation rate and return of appetite, the 

maximum stomach capacity was measured as the weight of feed remaining in 

the stomach from the previous satiation meal plus the weight of feed ingested 

in the subsequent satiation meal at deprivation times ranging between 0 and 

24h. The mean stomach capacity measured in this was 21.38% b. w. 

(± 1.08 C195) and was unaffected by deprivation times between 0 and 24h 

(F(9, 
M). 05 = 1.87, P<0.05); implying, therefore that regardless of time since the 

last meal the larvae were feeding until the space available in their stomach 

was filled (ie. consumption and gastric evacuation were inversely 

proportional). 

It is interesting to note that a similar value for maximum stomach capacity of 

the larvae was estimated from feed intake over time, from feed intake in 

relation to deprivation time and from the sum of the remains of the previous 

satiation meal and the subsequent satiation amount. 
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8.4 DISCUSSION 

Clearly no consensus exists with regard to the quantity to feed African catfish 

larvae or the frequency with which feed should be offered. Feeding to 

satiation has been practiced (Hogendoorn, 1980b; Hecht and Appelbaum, 1987; 

Appelbaum and Van Damme, 1988) as well as the provision of measured 

rations as a percentage of body weight (Uys and Hecht, 1985; Appelbaum and 

Van Damme, 1988) or of rations estimated on the basis of predicted growth 

rates (Verreth and Den Bieman, 1987; Verreth and Van Tongeren, 1989). 

Feeding frequencies used include continuous feeding over 24h (Hogendoorn, 

1980b), feeding 8 times daily (Hecht and Appelbaum, 1987), 5 times daily 

(Hogendoorn, 1980b; Verreth and Van Tongeren, 1989), 4 times daily (Verreth 

and Den Bieman, 1987) and 3 times daily (Appelbaum and Van Damme, 1988). 

No clear picture has so far emerged from experiments specifically designed to 

investigate the effect of feeding frequency. Hogendoorn (1980b) could 

demonstrate no significant effect on growth of doubling a 'satiation' ration or 

of altering feeding frequencies between 4 times daily and continuous feeding. 

Although Uys and Hecht (1985) found that feeding 25% bw day (on a dry 

weight basis) every 4h for 24h was significantly superior to feeding that ration 

every 2h for 12h or every 6h for 18h. Making comparisons amongst 

experiments with Clarias gariepinus larvae, not specifically designed to 

investigate feeding is complex since most vary in ways likely to affect return 

of appetite. Comparison with other species is also limited since the frequency 

of feed presentation required to maximise intake is likely to vary with species 

(Kono and Nose, 1971). 
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It has long been considered, however, that feeding frequency can be scheduled 

according to the rate of gastric digestion (Brett 'and Higgs, 1970; Grove, 

Loizides and Nott, 1978). Indeed return of appetite is closely related to the 

degree of stomach emptiness in many fish species (Kariya, 1969; Kariya and 

Takahashi, 1969; Brett, 1971; Ware, 1972; Elliot, 1972,1975b; Pandian, 1975; 

Grove, Loizides and Nott, 1978; Gwyther and Grove, 1981; Charles et al, 1984; 

Grove et al, 1985). This appears also to be the case with Clarias gariepinus 

larvae (Figures 8.1 and 8.2). 

Although the modeling of gastric evacuation is still a contentious issue 

(Persson, 1986; Jobling, 1986,1987; Macpherson et al, 1989) there is wide 

agreement (jobling, 1986,1987; Persson, 1986; Macpherson et al, 1989) that the 

exponential model of Elliot and Persson (1978) can be used to approximate the 

evacuation of small easily digestible feed organisms from the stomach (such 

as decysted Artemia used in the present trial). Where no subsequent feeding 

is taking place, ie. between feeds, the quantity remaining in the stomach at 

time t is given by: 

St= So eR`........ (1) 

(Elliot and Persson, 1978) 

where So = stomach content at satiation 

St = stomach content at time t 

R= gastric evacuation rate 

Since the rate of return of appetite is inversely proportional to gastric 

evacuation, the maximum consumption (C) at any time after satiation (t) will 
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be given by 

Ct=So - St 

which can also be written 

Ct = So - So. e Rt 

ie. 

Ct=So (1-eR`)....... (2) 

By expressing the maximum stomach capacity (So) as a% of body weight and 

the gastric evacuation rate (R) in terms of % body weight over time, then daily 

consumption (C 24h/day) as a% of body weight is given by: 

C(24h 
day) = 24/t. Sp (1 

- et) .... 
(3) 

where so = maximum stomach capacity 

1- e-R` = the proportion of maximum stomach 

capacity that can be consumed at time t 

24/t =. the number of meals per day at a feeding 

interval t. 

Where it is agreeable to feed over 12h daily, the first time of feeding to 

satiation each day will be approximated by: 

C, = So (1 -e 2R) 
..... (4) 

(ie. where deprivation time = 12h) 
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and hence daily consumption (C 12h day) will be given by 

C(12h 
day) = So (1 - e1) + 12/t. So (1 -e Rt) 

... (5) 

The exponential model of Elliot and Persson (1978) fitted to the evacuation 

data for Clarias gariepinus larvae (Figure 8.1) predicts a gastric evacuation rate, 

R of 0.107. Where the range of fish size is small, such as over the larval 

period, fish size would not be expected to exert an important influence on 

gastric evacuation rate (Tyler, 1970; Elliot, 1972; Persson, 1981; Brodeur, 1984 

and Lambert, 1985). Therefore R can be considered a constant over the larval 

period for the purpose of estimating daily consumption. 

Maximum Stomach Capacity (So) for the whole of the larval period is 

approximately 21% of larval body weight. To correct for the reduced feed 

intake in young larvae, stomach capacity from Figure 8.5 can be approximated 

by S° = (0.21 - °*3/W). 100 where W= larval weight (mg). 

Equations 3 and 5 can therefore be simplied for Clarias gariepinus larvae as 

C(2sh/day) = 24/t . 21 (1 - e-0JO7t) 

C(12h/day) =15 + 12/t . 21 (1 - e-0. lo't) 

(since from equation 4 Cl = 15%bw) 
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A summary of maximum daily feed (corrected for reduced feed intake in 

young larvae) in relation to feeding schedule is given in Table 8.2. The 

percentage of the daily feed intake which should be offered as the first ration 

each day and as subsequent rations for selected feeding intervals on a 12h/day 

schedule is summarised in Table 8.3. In all cases about 30 minutes is required 

to feed to satiation. 

Feed intake is maximised by frequent feeding over 24h each day. However 

it is estimated that feeding every hour for 12h daily instead of every hour for 

24h daily would reduce the maximum possible daily intake by only 20%; 

which may bring into question the economic advantage of feeding over 24h. 

Also of interest is the limited benefit of feeding hourly compared to every 2 

h or even every 4h on a 12h daily schedule. 

8.5 SUMMARY 

The satiation time, stomach capacity, gastric evacuation rate and return of 

appetite was investigated in Clarias gariepinus larvae. The evacuation of food 

from the stomach was described by the exponential model. Gastric 

evacuation was found to be inversely related to return of appetite. 

Both satiation time and feed intake as a% of body weight were found to 

increase rapidly over the first few days of larval feeding after which they 

remained constant. 
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A simple model is proposed for the estimation of maximum feed intake in 

relation to feeding scheduled and feeding frequency for Clarias gariepinus 

larvae. 
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Chapter 9: Controlled Hatchery Production of Clarias 
gariepinus Summary Conclusions 

9.1 INTRODUCTION 

The many disciplines which a heterogeneous activity like fish production 

draws upon are reflected in the varied facets covered in the preceeding 

chapters. As with every applied science the results of aquaculture research 

must be applicable to practical situations. The objective of this final chapter 

is to discuss the requirements, protocols and definitions identified for intensive 

primary nursing of Clarias gariepinus and thus to address some of the basic 

questions that concern farmers. 

9.2 INTENSIVE PRIMARY NURSING - REQUIREMENTS, PROTOCOLS 

AND DEFINITIONS 

9.2.1 Spawning 

The wide variety of opportunities that exist for inducing spawning in African 

catfish are reviewed in 3.1. The administered substances which act high up 

the hypothalamic-pituitary-ovarian axis, such as LHRHa, are required in much 

smaller quantities than those, such as hormonal glycoproteins or steroids 

which act directly on the ovary. In situations where mature fish are available 

in large quantities such as on a table farm, induction of spawning by 

homoplastic hypophysation (Hecht et a1,1982) will likely be appropriate. In 

experimental situations where maintenance costs and space for larger fish is 

limiting, injection of a decapeptide, such as LHRHa, in conjunction with a 

4 

dopamine inhibitor, such as pimozide, (Deleeu et al, 1985a) is particularly effective. 
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9.2.2 Incubation of Eggs 

African catfish eggs are incubated successfully in a variety of ways (see 

3.2.2.2), though horizontal 1mm meshes are particularly suitable. Their use 

avoids the need to remove the adhesive quality of the eggs (Schoonbee et al 

1980) prior to incubation, eg. in Zoug jars. Also because African catfish eggs 

are negatively buoyant, a reduction in flow rate in any kind of upwelling 

system would predispose the eggs to deleterious clumping. Horizontal 

meshes can be used in incubators or set up in larval rearing tanks (see 

Appendix I). The dead eggs and egg cases adhering to the meshes can then 

be removed from the culture environment following hatching of the 

developed eggs. Such proteinaceous debris act as a nutrient source for 

ubiquitous Saprolegnia which once established can infect live material such as 

larvae (Roberts, 1989). Its separation from developing African catfish is 

particularly important since the concentration of therapeutic treatments such 

as formalin and malachite green required to control the fungi exceed the 

apparent tolerance of the larvae (Schoonbee et al, 1980; Van As et al 1984). 

9.2.3 Hatching 

The time taken for eggs to hatch is very variable, it is affected particularly by 

temperature (Yamagami, 1981; Pauly and Pullin, 1988) as well as other 

environmental conditions such as pH, oxygen level and egg size (Blaxter, 1969; 

Braum, 1978; Pauly and Pullin, 1988). Hatching commonly takes place 

between 18 and 57 hours after fertilization at between 20-30°C (see Table 3.10). 

It appears that the smooth inverse relationship between hatching time and 



210 

ambient temperature implied by Viveen et al (1985) may be oversimplistic, 

when viewed in relation to the empirical data of other authors (Figure 3.2), 

suggesting that the concept of degree-days, successfully employed with cold 

water species, can be less rigidly applied to the management of Clarias 

gariepinus culture. 

9.2.4 Larval rearing 

Following hatching, young African catfish pass through a number of 

developmental stages (see 4.4). The requirements of the fish change rapidly 

with age (Hogendoorn, 1980b; Verreth and Van Tongeren, 1989; Chapters 5, 

6 and 8) so it is important that the different early life stages are recognised by 

the culturist and that consistent use is made of developmental terms in the 

literature. 

The onset of the larval period commences with the transition from yolk 

dependent nutrition to exogenous feeding and ends with the onset of air- 

breathing (4.2). The first appearance of accessory breathing organs was 

previously believed to occur much later in fishes of about 30mm (Greenwood, 

1956). However, the optimum temperature for larval rearing is 30°C 

(Hogendoorn, 1983b; Britz and Hecht, 1987) and at this temperature the larval 

period lasts approximately 10 to 12 days (5.4). 

Under intensive experimental hatchery conditions larval survival is very high 

(eg. over 80%) (5.3) and this method of primary nursing may well prove 

superior to semi-intensive pond rearing (Viveen et al 1985) or a combination 
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of intensive hatchery and semi-intensive nursery pond systems (Hecht et al 

1988) which have generally failed to provide the required numbers of fry for 

on-growing (Micha, 1975; Nugent, 1975; Kelleher and Vincke, 1976; Huisman, 

1985; Hecht et al 1988). In particular intensive hatchery conditions offer the 

opportunity to exclude predators and competitors, to manipulate 

environmental conditions and to provide sufficient feed easily. 

Losses of healthy larvae in good hatchery conditions will be principally due 

to cannibalism and handling stress (5.4). The onset of airbreathing in 

particular may be associated with an increase in fish deaths and a decrease in 

growth rate (5.4). 

The appropriate provision of maximum rations is one of the most important 

factors limiting maximum growth (Stauffer, 1973; Elliot, 1975a, b, Brett, 1979) 

and has also been shown to be important in reducing the rate of cannibalism 

(Hecht and Appelbaum, 1988). However no consensus exists as to how much 

or at what frequency feed should be offered to larvae. To date no clear 

picture has emerged from experiments designed to investigate feeding 

frequency (Hogendoorn, 1980b; Uys and Hecht, 1985). In addition since 

growth rate in Clarias gariepinus larvae is both rapid and rapidly changing (5.3) 

daily feeding rate is difficult to quantify. 

Fixing ration as a% of body weight based on periodic weighing will only 

poorly approximate feed requirements (Verreth and Den Biemen, 1987) and is 

inappropriate for such a delicate life stage. 
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This handling problem can be overcome by predicting daily growth increment 

and calculating corresponding feed requirements from the expected food 

conversion ratio (FCR) (Verreth and Den Bieman, 1987; Verreth and Van 

Tongeren, 1989, Verreth et al,, 1991). However this method is dependent upon 

two erroneous assumptions: that the growth index (b) remains constant over 

the entire larvael period (see 5.3) and that FCR is independent of feeding rate 

(see Verreth and Den Bieman, 1987). 

Since gastric evacuation and return of appetite are inversely proportional in 

Clarias gariepinus larvae (8.3) a simple model is proposed regarding the 

quantities to feed larvae and the frequency with which feed can be offered, in 

order to maximise intake (see Table 8.2 and 8.3). Based upon estimates of 

maximum stomach capacity as well as gastric evacuation rate it is predicted 

that feed intake (as a% of body weight per day) increases to a plateau, such 

that maximum intake is about 50% body weight per day. Feed intake is 

maximised by frequent feeding over 24h each day. However it is estimated 

that feeding every hour for 12h daily instead of 24h daily would only reduce 

maximum possible intake by 20%. This may bring into question the economic 

advantage of feeding over 24h. There is also only limited apparent benefit of 

feeding hourly over 12h compared to feeding every 2h or even every 4h over 

the same period (8.4). In all cases about 30 minutes is required to satiate 

larvae (8.3). 

In addition to ration, larval growth rate will also be affected by this initial 

density at which they are stocked (5.4) whereby individual growth rate is 
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decreased curvilinearly by increasing initial stocking density. 

For the purposes of comparing growth of African catfish, the mean increase 

in larval weight can be approximated by a cubic (Hogendoorn, 1981) or an 

exponential growth model (Brown, 1946) (5.3). However, contrary to the 

assertion of Verreth and Den Bieman (1987) both the specific growth rate and 

the cubic growth index vary rapidly and significantly as the larvae grow. 

Specific growth rate which is a measure of the % increase in body weight per 

day is probably a more useful indicator of growth rate than the regression co- 

efficient of a cube root transformation of weight data which only poorly 

approximates an increase in body length (see 5.4 and Appendix II). 

The transition from experimental primary nursing, often carried out in aquaria, 

to larval rearing on a commercial scale necessitates investigation of appropriate 

holding facilities. Similarly with increasing stocking density attention must 

be paid to water flow requirements. 

Circular tanks possess many potential benefits for fish culture in general (see 

7.1.1) and are appropriate for hatchery rearing of Clarias gariepinus. 

Wide/shallow tanks (with a diameter: depth ration of about ten) are preferable 

to narrower/deeper tanks. Appropriate tank design and flow rates are 

inextricably linked. The optimal flow rate for larvae is one which provides 

sufficient dissolved oxygen yet does not generate a current velocity fast 

enough to cause the larvae to swin against it. Current velocity for a given 

type and orientation of inflow depends particularly on diameter to depth ratio 
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and flow rate and is related to, position within the tank (Larmoyeux et al, 

1973). Therefore for a given circular tank design a theoretical maximum flow 

rate and concomitant biomass can be estimated for a given mean fish size (See 

Table 7.4). The appropriate size of tank will depend upon the desired 

stocking density (7.4) which in turn will affected larval growth rate (5.3). 

9.2.5 Fry rearing 

Fry, which are air-breathing juveniles up to 50mm or c. lg are no longer 

constrained by dissolved oxygen levels so that optimal flow rates for fry will 

be those not eliciting swimming (7.4). The density at which fry are stocked 

will affect their growth rate and may alter their pattern of behaviour and also 

the most prevalent cause of mortality (6.3). Fry are much more robust than 

larvae and losses of healthy fry will be principally due to two main causes 

both of which are behavioural (6.3). Young catfish are both cannibalistic and 

territorial (Hecht and Appelbaum, 1988), if uncontrolled, losses from these two 

sources can devastate a population. If fry are well fed, increasing stocking 

density (eg. from 50 fry/1 to 150 fry/1) may help to decrease territorial 

aggressive exchanges without significantly increasing cannibalism (6.3). 

9.2.6 End Piece 

It has been an objective of this thesis to address some of the deficiences and 

inconsistencies in available information pertaining to intensive primary nursing 

of Clarias gariepinus, to attempt to answer basic questions about requirements, 

protocols and definitions. There is much art involved in larval and fry 

rearing, the science of which will go on developing. It is hoped that some of 
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the information herein may one, day be considered to have helped with that 

development. 
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Plate 1: Experimental larval rearing recirculation system 
(as described in 5.2.3) (tank d: D<2) 

Plate 2: Wider/shallower larval rearing tanks (tanks d: D>10) 
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Plate 3a: Experimental egg incubation system 

Plate 3b: Horizontal egg meshes 
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Plate 4: In-tank horizontal egg meshes 

Plate 5: Intraperitonal injection of homoplastic hypophysis 
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Plate 6: Stripping eggs 

Plate 7: Adding milt 
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APPENDIX II 



253 

APPENDIX II 

Morphometric data 

Fish were raised in a1m diameter circular tank c. 12cm deep. They were 

removed for sampling with a dip net at a rate of 25 per day (from a 

population of c. 10,000). A total of 375 over 24 days. Feeding was ad libitum 

with Artemia (decysted, unhatched) and crushed trout fry feed. 

Weights were measured, after drying for 5s on absorbent paper, with an 

Oertling R series balance R51 (readable to 0.01mg). Lengths were measured 

under a binocular microscope with a graduated eye piece to 0.01mm. 
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Anova Tables 

Effect of time period after first feeding and stocking density on specific growth rate 
(k) or larvae. 

Source of variation df ss ms F 
A. Time after first feeding 3 0.2603 0.087 87 
B. Density 5 0.0797 0.016 16 
AxB interactions 15 0.0998 0.007 7 
within groups (error) 32 0.0453 0.001 
Total 55 0.4851 

FAO, 32w. os = 2.9 
Fß(5.32)0.05 = 2.5 
FA 

x B(15,32)0.05 = 1.9 

Effect of time period after first feeding and stocking density on the cubic growth 
index (b) 

Source of variation df ss ms F 
A. Time after first feeding 3 0.0939 0.0313 28.46 
B. Density 5 0.0645 0.013 11.82 
AxB. interactions 15 0.0579 0.004 3.55 
within groups 32 0.03506 
Total 55 0.25136 

FAO, 32w. 05 = 2.9 
FB(5 o. o5 = 2.5 
FA 

x B(1 5,32)0.05 = 1.9 
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Tank design data (Chapter 7) 

The effect of tank size on cannibalism 

Replicate % cannibalism (arcsine) 
Small tank Large tank 

1 8.13 13.18 
2 9.97 13.56 
3 14.18 13.94 

Single classification ANOVA (two groups with equal sample size) 

Source of variation df ss ms F 
between large/small tanks 1 11.75 11.75 2.41 
within treatments (error) 4 19.5 4.875 
Total 5 31.25 

Fa, aw. o5 = 7.71 

The effect of tank size on non-cannibalistic mortality 

Replicate % non-cannibalistic mortality (arcsine) 
Small tanks Large tanks 

1 9.97 14.18 
2 20.27 19.14 
3 11.54 11.90 

Single classification ANOVA (two groups with equal sample sizes) 

Source of variation df ss ms F 
between large/small tanks 1 1.97 1.97 0.09 
within treatments (error) 4 88.997 22.25 
Total 5 90.967 

F(, A)o. os = 7.71 
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The effect of tank size and fish age on Fry weight 

Because the magnitude of the variance increases with increasing age as body 

weight increases heteroscadesticity precludes the use of 2 way ANOVA with 

replication in order to test the significance of differences in tank size. 

Therefore paired comparisons were used whereby each observation for large 

tanks is paired with the observation at the corresponding age for the small 

tanks. 

Paired Fry weight comparisons 

Age Large-tanks Small tanks Difference 
15 71.1 71.9 143 0.8 
20 130.5 147.1 277.6 16.6 
25 259.2 283.1 542.3 23.9 
30 379.3 419.2 798.5 39.9 
35 595.9 684.3 1280.2 88.4 

1436 1605.6 3041.6 

Source of error df ss ms Fs 
Tank size 1 2876.414 2876.414 5.44 
Age 4 408924.114 102231.03 193.46 
error 4 2113.726 528.43 
Total 9 413914.254 

F(IA)0. o5 = 7.71 

The effect of diameter to depth ration on fry weight after 35 days 

Fry weight after 35 days (mg) 

Replicate Tanks E F G H* 
1 621 674.5 898 832 
2 576 724 819.5 926 
3 602 658.5 804 

*See table 7.1 for tank dimensions 
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Single classification ANOVA with unequal sample size 

Source of variation d. f ss ms 
Tank diameter: depth 3 1336877.58 45625.86 
within treatments (error) 7 12850.33 1835.76 
Total 10 149727.91 

F0,05 = 8.45 

The effect of tank depth on Fry weight 

An ANOVA of pair comparisons 

Paired Fry weig ht comparisons 
Day Shallow Tank Deep Tank I_ Difference 
15 70 82.6 162.6 2.6 
20 165.2 149.5 314.7 15.7 
25 385.8 382.07 767.87 3.73 
30 553.3 623.08 1176.38 69.78 
35 981.3 1067.3 2048.6 86 

2165.6 2304.55 4470.15 

Source of error 
Tank depth 
Age 
error 
Total 

df ss 
1 1930.712 
4 1149641.426 
4 4335.492 
9 1155907.63 

F 
24.85 

ms Fs 
1930.712 1.78 

287410.356 256.17 
1083.87 

F(1,4)0. o5 = 7.71 
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Gastric evacuation, return of appetite and satiation time (Chapter 8) 

Gastric Evacuation 

Time Post Satiation (h) Stomach Content (% bw) 

Mean SD SE CL 
0 16.9 2.64 0.84 1.89 
2 14.8 3.5 1.11 2.5 
4 12.3 3.3 1.04 2.36 
6 13.4 3.8 1.27 2.91 
8 9.36 2.19 0.69 1.57 
10 10.16 1.8 0.57 1.29 
12 7.62 2.45 0.77 1.75 
16 4.84 1.0 0.45 1.24 
20 1.47 0.57 0.18 0.41 

Stomach content at time t= number of orange cysts x 0.0189 x 100 
Body weight 

where : one hydrated (decysted) Artemia cyst weighs 0.0189 mg. 

Return of Appetite 

Time Post Satiation Consumption (% bw) 
(h) 

Mean SD SE CL 
0 0.105 0.167 0.053 0.119 
2 7.48 2.71 0.86 1.94 
4 12.98 4.09 1.29 2.93 
6 11.4 2.21 0.74 1.7 
8 10.4 2.17 0.69 1.55 
10 18.81 3.58 1.13 2.56 
12 11.0 2.4 0.76 1.72 
16 17.1 4.7 2.15 5.8 
20 20.6 2.97 0.94 2.12 
24 19.14 5.9 1.87 4.2 

consumption at time t= number of black cyst x 0.0189 x 100 
Body weight 
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A single classification ANOVA with unequal sample sizes 

Source of Variation df ss ms F 
amongst deprivation times 9 493.47 54.84 1.87 
within groups (error) 84 2457.66 29.26 
Total 93 2951.13 

1.96 < Fo. os (9, sa) < 1.99 

The effect of dying of Artemia with Sudan black on cyst consumption by larval 
African catfish, figures are % body weight (Arcsine transformed) 

Treatments 

Replicate Dyed Undyed 50: 50 mixture 

Dyed Undyed Total 
1 22.0 28.3 20.1 18.9 28.2 
2 24.4 23.7 17.6 16.7 24.7 
3 27.3 27.4 17.4 18.1 25.4 
4 24.2 25.3 13.9 18.0 23.0 
5 26.1 28.2 17.6 12.3 25.0 
6 23.8 23.0 21.6 23.0 32.5 
7 23.4 26.4 19.6 19.1 27.9 
8 25.3 27.2 19.6 20.4 28.9 
9 26.9 22.4 18.0 19.7 27.2 

10 32.4 26.6 19.0 19.9 28.0 

(Variance homogeneity confirmed by Bartlett tests) 

Source of Variation df [ss MS FS 

Among groups 1 2.24 2.24 0.59 
Within groups 18 68.197 3.79 
Total 19 70.437 

F0 05(1,18) = 4.41 
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The difference in the consumed quantity of dyed, undyed or a 50: 50 mixture 

of Artemia cysts when offered as a single satiation meal. 

Source of Variation df SS MS I_FS 

Among groups 2 12.786 6.393 0.948 
Within groups 27 182.094 6.744 
Total 29 194.88 

11 

F0.05(2x) = 3.35 

(Therefore in nutritional trials sequential meals can be identified by staining 

Artemia cysts with the vital lipid stain, Sudan black, without any apparent 

effect on Artemia cyst consumption by African catfish larvae). 


