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Abstract

Artificial Intelligence is at the heart of modern society with computers now capable of

making process decisions in many spheres of human activity. In education, there has

been intensive growth in systems that make formal and informal learning an anytime,

anywhere activity for billions of people through online open educational resources and

massive online open courses. Moreover, new developments in Artificial Intelligence-

related educational assessment are attracting increasing interest as means of improving

assessment efficacy and validity, with much attention focusing on the analysis of the

large volumes of process data being captured from digital assessment contexts. In eval-

uating the state of play of Artificial Intelligence in formative and summative educa-

tional assessment, this paper offers a critical perspective on the two core applications:

automated essay scoring systems and computerized adaptive tests, along with the Big

Data analysis approaches to machine learning that underpin them.
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1 | ARTIFICIAL INTELLIGENCE AND
EDUCATIONAL ASSESSMENT

The second part of this paper's title might seem strange to some but

others might recognize the words used by the editor of Phi Delta

Kappan to describe a horizon-scanning piece by Ellis Page in 1966.

Somewhat incredulous, the editor's preamble was trying, but failing, to

keep an open mind on Page's proposition that sometime, in the then

near future, computers would relieve English teachers of the burden of

essay marking. Page proclaimed that the time was coming when com-

puters would give teachers ‘a stylistic and subject-matter analysis …

and extensive comment and suggestion’ on their students' work ‘by
the first bell the next day’ (Page, 1966, p. 239). Page was in effect pro-

posing that automated essay scoring (AES) of writing would soon be on

a par with that of human assessors. As time has passed, AES has indeed

become established as a very sophisticated tool for technical aspects of

essay writing in large-scale summative testing programmes and there

are rapidly developing formative feedback applications for using the

AES process to assist learners in improving their writing. However,

some controversy surrounds AES use whenever it is suggested that it

assesses the quality of writing; as it is somewhat less amenable to

assessing the creative and higher-order dimensions of writing. In paral-

lel with AESs, and often combined with them, is another powerful

genre of AI-related assessment, namely computerised adaptive testing

(CAT). This is primarily a summative tool but also has potential for fram-

ing its outcomes as purposeful formative feedback to learners.

There is intense interest in AI applications for education (e.g., see

Tuomi et al., 2018; UNESCO, 2019) and as this grows, increasing

interest is being shown in applications for educational assessment.

The essence of artificial intelligence (AI) in both summative and
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formative contexts is the concept of machine ‘learning’ – where the

computer is ‘taught’ how to interpret patterns in data and ‘trained’ to
undertake predetermined actions according to those interpretations.

This machine intelligence has arguably facilitated many of the huge

step-changes underpinning the transformation to the 21st century's

information society – in all areas including commerce, manufacturing,

health and the relatively new phenomenon of social media. In fact, it

continues to impact upon almost every aspect of life in countries and

communities where economic affluence enables people to exploit its

many applications – with major economic blocs investing heavily in AI

applications and talent development (see Castro et al., 2019). Using

today's massive computational power, large data sets –Big Data – are

captured from online processes involved in every aspect of modern

living (e.g., technology, medicine, environment, commerce) and are

subjected to a variety of essentially correlational and probabilistic ana-

lyses to identify patterns of prior behaviour and to predict or propose

next actions. The computer learns the strength of the associations in

these Big Data sets and, whether its next action is to propose an aero-

dynamic refinement for an aircraft wing, remand a crime suspect in

custody to protect the public (see Partnership on AI, n.d.), link two

‘lonely hearts’ together or predict the likelihood of a typhoon event in

the Philippines, it continues to learn from new data.

Paraphrasing McKinsey and Co (2011) and Gartner Glossary (2019),

Big Data is broadly conceived as any very large-scale and dynamically

growing collection of ‘information assets’, which require a level of intel-

ligent computer-based analysis that is beyond the capacity of ordinary

data-processing hardware and software. Gartner's definition character-

izes the features of this dynamic growth of information assets as the

three Vs: huge Volumes of Variable types of data being processed at

varying speeds (Velocity). Big Data is a concept that has its origins in

the massive computing contexts of science. Billions of readings from

experiments are subjected to large-scale algorithmic analysis in pursuit

of patterns, causation and predictions in fields as diverse as engineer-

ing, quantum physics and astronomy. Big Data analysis has also become

a staple aspect of such major dimensions of modern society as medical

diagnosis, consumer trend analysis and weather forecasting.

Arguably, the ‘intelligent’ characteristics of these applications are

developed at two levels: unsupervised and supervised. In the case of

the former, that is the untrained or unsupervised machine, the com-

puter simply identifies patterns in massive data sets for subsequent

interpretation by human experts. In the latter, the machine is trained

(i.e., supervised) by human experts both to identify and learn specific

patterns in the massive data sets and to effect automated actions in

relation to them. Clearly, the former can often be a preceding step

in setting up the processes of the latter.

In educational assessment, the same underlying concepts of

machine learning apply. If the computer can be ‘taught’ the content

that students are required to know and can ask questions to which it

has ‘learned’ the answers, it can assess those students on their knowl-

edge. In a more sophisticated step, if the computer can learn what qual-

ity criteria apply to a student's understanding and application of that

knowledge in relation to an assessment task, whether written or verbal

(e.g., see Somasundaran et al., 2015), and can learn how to identify

these criteria in the student's responses, it has the potential to assess

the quality of the work. The distinction between having knowledge and

being able to understand and apply it will not be lost on educators, as it

is along this continuum that the capabilities of human judges and

machine assessments ultimately part company. This is particularly evi-

dent in the computer-based assessment of student essays.

2 | AUTOMATED ESSAY SCORING

Page (1966) alluded to two types of elements in student essays: the trin

(an intrinsic property of the student work such as fluency) and a prox

(such as the length of the essay as a proxy variable related to fluency,

or the number of commas as a proxy ‘measure’ of good punctuation).

He foresaw a time in the future when natural language processing

(NLP) would achieve the technical maturity to enable machines to learn

and understand how to assess the existence of the many complex trins

in human writing. However, back in 1966, when he and his team were

manually setting up students' essays on punch cards, he was quite rea-

sonably settling for small steps and was targeting a relatively small set

of 31 ‘proxes’ or proxies as the mainstay of his Project Essay Grading

system. Fast-forward forty years and Ben-Simon and Bennett (2007)

were identifying the four leading, commercial AES systems as: Project

Essay Grading (from the original Page work), Intellimetric (developed by

Vantage Technologies), Intelligent Essay Assessor (initially University of

Colorado and more recently Pearson Education) and e-Rater (ETS). It

could be argued that remarkably little has changed in the fundamentals

of automated essay assessment since Page's work, for example in the

types of data used. However, the AI engines that drive AESs today

have changed greatly in the sophistication of their algorithms, data

capacity and processing efficiency; and as a result their details are kept

secret for commercial reasons. Nevertheless, research activities and

reports over time have highlighted the main elements of writing, which

these engines commonly seek to detect.

Among the organizations promoting their AESs, the US assess-

ment giant, ETS, has a long history of making public their research on

the e-Rater system, through engagement with the academic and user

communities. For example, Deane (2013) confirmed that ETS's e-

Rater (v. 11.1) uses four main elements of writing, with relatively eas-

ily detected proxies:

• Grammar (e.g., incorrect subject-verb agreement, incorrect pro-

nouns, possessive errors)

• Usage (e.g., article and preposition errors, incorrect word forms)

• Mechanics (e.g., errors in capitalization, punctuation, spellings)

• Style (e.g., repetitious word use)

and a selection of elements with more complex proxies such as:

• Discourse structure (e.g., presence of a thesis statement, main

points, length of discourse elements)

• Lexical complexity (e.g., use of unusual/sophisticated words)

• Sentence variety
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• Source use

• Discourse coherence quality (e.g., extent of off-topic writing)

One example of a freely available system, TAALES (Kyle et al., 2018), is

a specialized tool for identifying levels of lexical sophistication (derived

originally from Graesser et al.'s, 2004 Coh-Metrix) that tracks over

400 different indices including word frequency, word range, academic

language, word recognition norms and contextual distinctiveness. A

feature of these non-commercial systems is the openness of related

publications and Crossley and Kyle (2018), for example, offer candid

and interesting insights into the workings of TAALES and, by extension,

AESs more generally. Most AESs use varieties of the types of proxies

above though how they use them tends to be a closed secret.

To arrive at a score, AES systems must first learn how these prox-

ies relate to quality in the learners' responses, and in order to do this

the computer must be trained on human raters' assessments of a

range of student work. In simple terms, the instances of proxy vari-

ables occurring are identified in a large sample of candidates' scripts

and compared with the scores given by a panel of judges. The more

judges and scripts there are, the more acceptable is the final average

rating and, most importantly, the weighting of each proxy's contribu-

tion to that rating across the scripts. Using appropriate weightings,

seemingly remarkable agreement levels of up to 80% have been

reported between essay rating systems and the assessments that

human judges give the same scripts. Although not always the case,

many of the claims for high correlation can be attributed to how the

comparisons are made, for example summative scores for the essays

being on an ordinal scale of 1–6, or sometimes 1–4. In these simple

correlational contexts, it might be reasonable to expect a high level of

agreement at the extremes of the rating range; for example, very bad

and very good essays may reasonably be expected to exhibit corre-

spondingly more or less of the indicator proxies. In contrast, variance

is most likely to occur in the essays that are tricky to assess; for exam-

ple, where higher order aspects of the writing (creativity, analysis,

argument, synthesis etc., which the computer fails to detect) are

privileged and rewarded by human judges over the perhaps weaker –

but machine detectable – mechanics, grammar or usage features.

In the beginning (e.g., with Page and his contemporaries) the

driving motivation was to make the large-scale assessment of essays,

efficient, consistent and low-cost through the use of AESs. The well-

known variation in human raters' scores for even the same essay (for

reasons that the computer may not easily learn, e.g., differences of

opinion on what constitutes ‘originality’), require moderation processes

for mitigation in the non-AES world. A significant number of judges is

always needed to try to even out the anomalies that will inevitably arise

between human judges – and at national scale, this can be a huge cost.

Therefore, for several decades, commercial AES systems have sought

to establish credible parity of performance with human judges.

However, for the community of teachers of English in the Anglo-

phone and second language worlds, the technical elements of writing

enjoy an arguably secondary role to a much more complex and com-

prehensive conception of writing as a construct. The US Framework

for Success in Postsecondary Writing (CWPA, NCTE, & NWP, 2011)

signals the complexity of this construct in which teachers of writing

seek to prepare their students' readiness for higher education by

developing such skills as the use of:

• Rhetorical knowledge – the ability to analyse and act on under-

standings of audiences, purposes, and contexts in creating and

comprehending texts;

• Critical thinking – the ability to analyse a situation or text and make

thoughtful decisions based on that analysis, through writing, read-

ing and research;

• Writing processes – multiple strategies to approach and undertake

writing and research;

• Knowledge of conventions – the formal and informal guidelines

that define what is considered to be correct and appropriate, or

incorrect and inappropriate, in a piece of writing;

• Ability to compose in multiple environments – from traditional pen

and paper to electronic technologies.

The Framework further describes eight ‘habits of mind’, considered
essential for success in college writing:

• Curiosity – the desire to know more about the world.

• Openness – the willingness to consider new ways of being and

thinking in the world.

• Engagement – a sense of investment and involvement in learning.

• Creativity – the ability to use novel approaches for generating,

investigating, and representing ideas.

• Persistence – the ability to sustain interest in and attention to

short- and long-term projects.

• Responsibility – the ability to take ownership of one's actions and

understand the consequences of those actions for oneself

and others.

• Flexibility – the ability to adapt to situations, expectations or

demands.

• Metacognition – the ability to reflect on one's own thinking as well

as on the individual and cultural processes used to structure

knowledge

The challenges for AES developers have therefore added to the origi-

nal triad of goals, namely efficient, consistent and low-cost assess-

ment of writing tasks, especially in large-scale testing contexts such as

MOOCs, to a much more specific pursuit of sophisticated proxies that

might advance the cause of the valid assessment of writing as a com-

prehensive, complex construct. NLP is the primary development tool

in these endeavours and is considerably bolstered by second-language

learning research. For example, ETS's resource pages offer a number

of papers on its innovative uses in tracking students' usage of meta-

phor (Beigman Klebanov et al., 2015), opinion (Farra et al., 2015) and

sources (Beigman Klebanov et al., 2014), and on other complex fea-

tures such as grammaticality (Heilman et al., 2014). Whilst this latter

paper on grammaticality may be excellent in its context, it highlights

one of the key features of AES systems that attract the criticism of

writing experts, criticisms that have persisted down through the
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decades since Page's visionary piece in 1966. The feature in question

is essentially the reductionism that is a fundamental part of all AI sys-

tems – vast collections of individual, countable units of data – Big

Data – are subjected to massive analytic processes that enable the

training of the computer to model and learn how different patterns in

the data correlate with targeted properties of the data-set. In the

grammaticality paper, quality assessments were predicted on a com-

parable basis to human ratings (on a simple ranked scale of 1–4, with

1 = incomprehensible and 4 = perfect) for samples taken from a large

data-set of over 3000 sentences in essays written by non-native

speakers of English. Clearly, there is potential in such tools to be part

of a more sophisticated AI-NLP approach to essay assessment but the

very fact that the assessment of an important aspect of writing could

be reduced to a single sentence-level analysis and short ordinal scale

is something akin to a red rag to a bull for many writing experts. Nev-

ertheless, with the crock of commercial testing gold awaiting the

designer of the more-human–than-human AES, development efforts

have been in full swing in the last decade or so (e.g., Hewlett

Packard, 2012).

Opposition to AES approaches to assessment of writing quality

comes in a number of forms. For example, the US National Council of

Teachers of English has delivered a withering critique of machine scor-

ing, informed by a sizeable list of automated assessment-related publi-

cations (NCTE, 2013). One of the most well-known academic critics is

Perelman whose writings claim that automated scoring of essays is sim-

ply a nonsense (though he often uses more colourful language to make

his point, e.g., Perelman, 2012a). He has analysed and even ‘gamed’
(Perelman, 2018) a number of systems to provide evidence for his case

against AESs. For example, he derides e-Rater as rewarding ‘the use of

jargon and obscure and pretentious language’ (Perelman, 2012b, p 126)

and scathingly dismisses all AESs on the charge ‘that they do not

understand meaning and they are not sentient’ (ibid, p 125). He also

accuses them of consistently over-privileging essay length in their

assessments (Perelman, 2014). Some AES providers do little to endear

themselves to the legion of critics who take the same position as Perel-

man. For example, Pearson's promotional literature on the Intelligent

Essay Assessor claims that it can ‘… “understand” the meaning of text

much the same as a human reader’ (Pearson, n.d.).
Other writing specialists, for example Condon (2013), see the

main problem as being the types of test that in his view under-

represent the construct of writing whilst purporting to ‘measure’ it
(e.g., the prevailing definition of an essay is between 300 and

600 words in most AES evaluations). Condon accepts the importance

of these general criticisms, and to some extent the use of gaming to

highlight AES weaknesses. However, he argues that they are essen-

tially ‘red herrings’ as they distract from what he feels is the central

issue: ‘The focus on whether scores rendered by AES systems agree

with human raters’ scores fails to answer the question of whether

these two measurements that are supposed to be related are in fact

unrelated’ (p. 101). However, he concedes that the AES community

does understand and accept the general criticisms, for example citing

Deane's (2013, p. 12) acknowledgement that AES systems focus on

‘text quality measured in the end product’ whilst human raters focus

on the student's writing skill. He argues that human assessors read

students' texts with the intention of understanding whilst AES sys-

tems are designed only to recognize patterns in the texts. Even when

the human and computer outcome scores are similar, their inherent

meaning is not: ‘No AES system can achieve the kind of understand-

ing necessary to evaluate writing on the semantic level – on the level

of meaning, let alone the level of awareness of occasion, purpose and

audience demanded by any form of real-world writing’ (p. 102). He

therefore argues strongly against the use of AESs for assessing writing

in such summative assessment, high stakes contexts as admissions,

placement or achievement testing. Despite this, developments such as

those offered by Grammarly.com and Proofreader.com are finding a

niche in using AES-type analysis of drafts to help students improve

their work before final submission.

Research and development continues to refine automated assess-

ment of writing and has begun to examine how it can support forma-

tive assessment feedback to help learners improve their writing. Less

useful feedback is the single digit score (0–6 for example) in relation

to technical aspects of the writing but when it is augmented with

reports on errors and related writing features, which teachers may

address and students may reflect upon, it may prove to be a very

important formative assessment tool in promoting improved learning.

One recent example is the multi-lingual ReaderBench (Botarleanu

et al., 2018), which is claimed to track proxies originally identified in a

number of systems such as e-Rater and Coh-Metrix. This system is

specifically designed to offer formative feedback to learners and

teachers using a combination of tools for assessing textual complexity,

cohesion, semantics and dialogue features (the latter contributing to

feedback on aspects of collaborative and group learning). Neverthe-

less, the time when AES systems will be able to operate on a par with

human judges, with similar levels of connoisseurship for such features

as meaning, emotion, originality, creativity, fluency, sense of audience

and so on, arguably remains a long way off. Until then the charges will

continue to be levelled against AESs: that they do not understand

writing and they privilege the reductive technicalities of text. The

human assessment of the quality of writing, rendered as overall

scores, may therefore continue to be found to correlate with the com-

puter assessments based on these technical features, but the feed-

back that arises from each type will almost always demonstrate that

the AES and human assessments are not assessing the same thing.

3 | COMPUTERIZED ADAPTIVE TESTS

Computerized adaptive tests, CATs, are another core form of machine

learned assessment, usually in summative assessment contexts such

as high-stakes selection processes (for university entry, employment

etc.). By their nature, and as outlined below, this summative orienta-

tion predominates and it is only in recent times that applications have

begun to be developed for CAT-based processes to be used for for-

mative feedback purposes.

The two best known and arguably most successful CAT-based

tests in educational assessment are the Graduate Management
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Admissions Council's GMAT (www.mba.com/exams/gmat) and ETS's

GRE General examinations (https://www.ets.org/gre). Their formats

below give an indication of the role that CAT applications play along-

side non-CAT elements (e.g., AESs) in these composite assessment

regimes. GMAT results are used by business schools around the globe,

for example to select applicants for MBA programmes. The four-part

examination comprises two human and/or computer-assessed tests:

Integrated Reasoning (12 multiple-response items) and Analytical

Writing Assessment (human and AES assessed ‘essay’), and two

CATs: Verbal Reasoning (36) single answer multiple choice questions

(MCQs)) and Quantitative Reasoning (31 MCQs). ‘Review and revise’
options for completed items or sections are not facilitated.

The GRE General test has six sections: Analytical Writing, Verbal

Reasoning (VR) � 2, Quantitative Reasoning (QR) � 2) and an

unscored section for calibration or research. The VR and QR sections

are ‘section-level adaptive’ meaning that the underlying CAT for

these sections determines the difficulty level of the second of each

type of section. The Analytical Writing section comprises two

30-minute tasks on ‘Analyze an Issue’ and ‘Analyze an Argument’
respectively, both assessed on a human and an AES basis. Both types

of section allow examinees to mark items for review within the

section time limits.

These two systems follow similar design criteria and have a rela-

tively simple modus operandi (e.g., see Davey, 2011). However, they

also have technically complex, algorithmic engines that carry out the

item selection and assessment processes. The first distinction of note

between CATs and the AESs above is that whilst machine learning in

AESs seeks to mimic the judgements of a human rater, a CAT uses a

set of test items to position an examinee on a scale that is pre-

calibrated for two associated measures: examinees' abilities and item

characteristics. CATs use a process in which the response an examinee

makes to a test item enables the computer to purposefully select the

next item to assess whether the examinee has yet reached the limit of

their ability in the trait under examination.

The underlying psychometry in CATs is based on Item Response

Theory, IRT, which first came to the fore when Lord and Novick

(1968) and Lord (1970) described a form of its application to ‘tai-
lored’ tests (aka ‘adaptive’ tests). Up until this time, Classical Test

Theory (CTT) was the most common testing approach offering a test-

level assessment of an examinee's ability by using fixed forms of test

instruments (the typical pre-defined and static multiple choice

‘paper’, for example). CTT still has a major role to play in today's

world of educational assessment but since Lord and Novick, IRT has

underpinned the momentous rise of CAT systems that exploit

aspects of machine learning. In contrast to test-level CTT, CATs are

item-level tests that dynamically adjust to the examinee's responses

to individual items. The adjustments are based on the examinee's

demonstrated level of ability in the trait under examination and the

characteristics of the items used. With a sufficient item bank size,

CAT proponents claim that they are much less vulnerable to the

security issues encountered in using fixed tests. They also have lower

invigilation demands, may take less time/items to arrive at an accept-

able assessment of the examinee's ability and should accurately place

the examinee on an ability level that is reproducible in repeat

administrations of the test.

The item bank is one of the central features governing success of

an IRT based assessment system, and once a suitable set of items has

been created and calibrated against a range of pilot examinees, the

computer can offer tests, such as non-adaptive linear-on-the-fly-tests

(LOFTs) or CATs, that comprise different statistically selected items

for each examinee. Each item for a CAT is calibrated on the basis of

its item characteristics and on the same scale as examinees' ability

levels. For most CATS these characteristics include the item's power

to discriminate between examinees of different ability, its level of

difficulty (based on the proportion of examinees who answer it cor-

rectly in the calibration process) and a third parameter offering an

estimate of the probability that its correct answer could be guessed -

its ‘guessability’. Note that some CATs may use IRT systems that

calibrate on only one parameter e.g. difficulty, or two parameters

e.g. difficulty and discrimination.

One of the most enduring and best exemplifications of an

operational CAT was first published as an online simulation by

Rudner (1998). The simple step-by-step description accompanying

the simulation explains that:

‘Computer adaptive testing can begin when an item

bank exists with IRT item statistics available on all

items, when a procedure has been selected for

obtaining ability estimates based upon candidate item

performance, and when there is an algorithm chosen

for sequencing the set of test items to be administered

to candidates.

‘The CAT algorithm is usually an iterative process with

the following steps

All the items that have not yet been administered are evaluated to

determine which will be the best one to administer next given the cur-

rently estimated ability level

1. The ‘best’ next item is administered and the examinee responds

2. A new ability estimate is computed based on the responses to all

of the administered items

3. Steps 1 through 3 are repeated until a stopping criterion is met’

Step 0, so to speak, is the selection of the first item, which pru-

dence suggests should be one that the examinee can be expected to

answer correctly. To identify the appropriate difficulty level, the pre-

amble to the test may ask the examinee questions that elicit indicators

of their ability (national examination grades etc.) and then a rough

estimate of ability can be used to select the first item. In the absence

of any ‘intelligence’ on the examinee's ability, CATs often offer items

that the calibration process identifies as being in the lower levels of

difficulty (e.g., answered correctly by, say, 70% of test takers). This

facility is being increasingly exploited to enable learners to decide, or

be guided, on at what point in an online course they should begin
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their work. At the other end of the process, the most common

stopping criterion is the point when the CAT has decided that the

examinee has reached a level of difficulty in the item selections that

can reasonably be concluded to be their ceiling. In simpler pass-fail

outcome designs, the stopping criterion would be when the examinee

surpasses the cut-score or has no prospect of reaching it.

Very few of the fundamentals of CAT design have changed since

the time of Lord's specification for ‘tailored’ tests but technological

developments have brought improvements to both previously per-

ceived limitations and to some of the less than ideal features of their

application and administration. For example, though the same rules of

thumb obtain for item bank size, for example, minimally around 1000

IRT items calibrated against 300+ examinees (Ju & Bork, 2005) to

cover the trait under examination, time has allowed some established

CATs to develop very substantial item banks (with associated Big Data

sets). These banks can be constantly reviewed as each new test

administration refines the item characteristics, resulting in more

detailed examinee cohort profiles. Related to their importance in ser-

vicing CATs, tools for developing item banks and even tools to assess

their adaptivity (Reckase et al., 2019) are now forming a significant

part of the established infrastructure for CAT development. von

Davier (2019) also argues the potential for using deep neural network

approaches (DNN) to harvest and transform major static resources

(in this case the corpus of medical education texts hosted by PubMed)

to offer item writers high quality MCQ item stems and case study

material for medical examinations.

For most CATs, item bank development arguably has to be

sustained by the fee income from very large candidate volumes. ETS's

GRE test, for example, enjoys a huge candidature (416,631 candidates

in 2018 in the US and perhaps 200,000 more in over 180 other coun-

tries) and at a $205 entry fee the business is on a huge scale

(ETS, 2018). The overall cost of running a major examination programme

comprises more than just item bank development, of course, but signifi-

cant sums would be required to keep it refreshed and comprehensive.

CATs work best when dealing with unidimensional content, that

is, a relatively well-defined knowledge domain that can be assessed

using MCQs with dichotomous outcomes for example, simple correct/

incorrect or a correct combination of responses. Some progress is

being made on polytomous outcomes, including partially correct

responses, but the complexity involved is substantial (e.g., see Aybek &

Demirtasli, 2017). When the content domain is less bounded, with

several or many subfields each with their own share of the overall

knowledge domain, CATs begin to struggle. For example, the notion

that numeracy, or specifically arithmetic, is a unidimensional construct

or ability would not be readily accepted in educational circles and any

CAT will require coverage of items on addition, subtraction, multipli-

cation and division to argue that a measure of ability on arithmetic

processes has been achieved. Examinees will differ in their abilities to

perform successfully in the sub-domains and at different item charac-

teristic levels (e.g., difficulty levels). It can be difficult to create items

to address these types of issues in a balanced manner across the

examinee population and Stocking et al. (2000) concluded that even

for two sub-domains, large item banks (larger than were available in

2000) would be required for adequate content balancing. One rela-

tively recent solution, therefore, is to use multi-stage test (MST)

designs that offer particular sub-domain sections in sequence with

appropriate selection algorithms to ensure both item balance and rele-

vant calibration characteristics across the sections. Such staging also

presents opportunities for feedback to tutors and learners on content

sub-domains in which the learners may struggle or excel. As with all

such formative feedback, this can enable tuition to be modified or

learners to engage in self-regulated learning (SRL) for improvement.

One feature of effective SRL, the facility that enables an exam-

inee to look over earlier answers and revise them if necessary, is now

appearing in certain types of CAT application (for example, in ETS's

GRE there is a limited review facility). In the straightforward dichoto-

mous versions, where responses to single correct answer (MCQs are

expected to be completed in a timed sequence, such a facility cannot

easily be offered because revised answers would obviously disrupt

the item selection process if a revision changes the ability level.

Today's CATs hold the promise of being able to use ever more sophis-

ticated item selection processes to counter this disruption and allow

examinees the facility to review and revise without confounding the

process of establishing the ability level.

Very little has changed in the last decade or so in terms of the

validity of outcomes from the main CAT applications. Moneta-Koehler

et al. (2017), for example, report their poorly performing predictive

capacity in relation to candidate's later success in university courses

(see also Hall et al., 2017). There are also concerns that their design

may contribute to restricting the entry of women and minority groups

into key areas such as the sciences. Miller and Stassun (2014), for

example, cite ETS in pointing to female candidates scoring on average

80 points less than males on GRE scores, and African Americans scor-

ing 200 points less than white people. Another example is provided

by Hauser and Kingsbury (2004) with differential item functioning

(DIF) analysis showing up to 25% of the 2003 Idaho grade 10 mathe-

matics test items showing a gender DIF. Interesting examples of CAT

developments also show formative potential to address socially con-

textualized challenges. Wise (2014), for example, has reported on how

the problem of item calibration disruption by unmotivated learners

may be detected and worked around. This type of research is begin-

ning to push the established summative boundaries of CAT usage with

formative processes that that can motivate reluctant examinees.

4 | PROCESS DATA ANALYSIS FOR
FORMATIVE ASSESSMENT FEEDBACK

The analysis of large-scale assessment-related datasets is a corner-

stone element of AI approaches; for example, for training an AES sys-

tem or for adaptively deciding the next question presented to a test-

taker in a computerized adaptive test. The former is invariably based

on many assessors' judgements on aspects of many students' essays;

and the latter is based on details of many students' performances on

many multiple-choice questions. The unifying feature of the Big Data

in these assessment contexts, and the various machine learning
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applications in science, medicine and technology, is the concept of

Process Data: data that can be purposefully or incidentally captured

online as the applications are being used. Techniques for analysing

these large volumes of learning and assessment data generally come

under the umbrella term, Learning Analytics (sometimes termed Edu-

cational Data Mining). The most widely used definition of learning

analytics is the one that headlined the first International Conference

on Learning Analytics and Knowledge (LAK, 2011; Long &

Siemens, 2011): ‘… the measurement, collection, analysis and

reporting of data about learners and their contexts, for the purposes

of understanding and optimising learning and the environments in

which it occurs’. These are laudable goals but some such as Ellis

(2013) argue that a significant proportion of learning analytics activ-

ity is pre-occupied with mundane predictions, e.g. identifying pat-

terns in big data sets that are associated with specific outcomes

such as improved levels of student achievement.

In relation to assessment, meaningful analysis of the relevant

data sets is necessary if the derived information is to be made avail-

able to users in an accessible fashion. Users in this context might be

those at institutional management level who wish to review

institutional-level performance of students, tutors who wish to

know whether their teaching has been successful or, indeed, stu-

dents who wish to know how they have fared within their peer

group. Institutional-level analysis of this evaluative nature is more

or less de rigueur in today's education settings as institutions seek

to analyse ‘what works’ (or, more to the point, what is not ‘work-

ing’) in their provision. The need to do this will likely be prompted

by a combination of formative factors, for example: desiring to facil-

itate continuous improvements in provision, identifying efficiencies

in curriculum delivery, improving the course offerings to prospective

students or servicing external accountability requirements. This

type of ‘academic analytics’ is arguably at the low end of intelligent

machine analysis and feedback as it is often restricted simply to

offering visualization of summative outcomes and trends, for moni-

toring, marketing or planning purposes.

Cope and Kalantzis (2016) categorize the variety of data to be

gathered during a learning process as being machine assessments

(e.g. CATs, AESs etc.), structured data that is specifically anticipated

and captured by the computer, and unstructured, incidental data, for

example DiCerbo and Behrens's ‘data exhaust’ (DiCerbo &

Behrens, 2014). The latter includes the record or ‘trace’ of time stamps,

key strokes and edit histories that clickstream log files can provide.

With appropriate analysis, these may point to how a student tackles a

problem, the errors and revisions they might make, their misconcep-

tions and even their resilience in the face of making slow or no pro-

gress. Furthermore, they argue that dedicated devices such as video

cameras, audio recorders, smart watches and bracelets can capture data

on eye movements and gaze, facial expressions, body posture, gesture

and in-class speech. They can also offer indicators of a wide variety of

processes including drafting, peer interaction and even affective states

such as confusion, frustration, boredom and level of engagement.

Sophisticated analysis of the data captured from intelligent tutor sys-

tems (ITSs) can offer tutors insights into how to improve the systems.

Molenaar et al. (2019), for example use CAT-type performance assess-

ment data in adaptive learning technologies for selecting appropriate

learning resources (instructional materials) or problems for the partici-

pating learners to solve. In a similar vein, Lerche and Kiel (2018) have

used log data to predict learners' levels of achievement. If the analysis

of these various types of data, showing how the learners approach

tasks and in what areas they are proficient or are struggling, can be

achieved in a timely manner it also has the potential to be mediated to

the students as formative feedback. For example, the Embrace system

uses trace data dynamically to give young learners immediate formative

feedback on their performance in visualized online reading comprehen-

sion tasks (Walker et al., 2017).

In another example, Aljohani and Davis (2013) report on how

their students are able to use mobile device dashboards to review

their quiz results. This gives them immediate feedback on their overall

class results, item difficulty-level information on their performance

and even a Bloom's taxonomy level of their assessed cognitive under-

standing. In the manner of the institutional ‘academic analytics’
above, this is more a descriptive visualization analysis than a machine

intelligence (AI) approach but has some merits in providing summative

feedback that, in its timeliness, has formative potential.

Thille et al. (2014) argue that the analysis of large-scale assess-

ment data sets can enrich assessment in three main ways: it can be

continuous (automatically gathered at all times), feedback-oriented

(can be analysed, interpreted and reported for tutors and students)

and multi-faceted (can cover the multiplicity of data available through

clickstream log files and automated observation). Analysis of large-

scale assessment data sets, which continue to grow with each new

assessment session and group of test-takers, may also provide a plat-

form for high-level trajectory modelling, which in turn enables individ-

ual learners' progress to be compared with typical patterns of

progress in the overall student cohort. Importantly, using experts to

evaluate student strategies, and to teach the system to give auto-

mated ‘hints’, is a form of scaffolding or formative assessment inter-

vention that such systems can potentially provide at appropriate

points in each student's problem solving trajectory. Interestingly,

Thille et al also noted that in some instances the strategies proposed

by experts, for transitioning from a partial solution to the next stage in

solving a problem, ran counter to actual student trajectories and deci-

sions, and the consequent training of the system benefited from a

better understanding of how students' approaches varied from

experts' expectations. Clearly, this type of learning analytics needs to

be very rapid if anything meaningful is to be fed back to students in

the live process – raising the potential, according to Cope and

Kalantzis (2016) of ending ‘the historical separation of instruction

and assessment’ and for ‘feedback that is always available on the fly’
(p. 7). Arguably, however, there is limited prospect of these formative

assessment techniques migrating any time soon from Thille et al's

small-scale on-line environments (ITS, coding practice and MOOC

usage) to more diverse learning settings in which data capture is likely

to be much more challenging.

Not surprisingly, the growing recognition of the importance of

formative assessment in education generally has led to a parallel
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interest in using the intelligent analysis of large datasets to assist

learners formatively in self-regulating their online learning. Learners'

SRL is a complex phenomenon, arguably influenced by a variety of

personal traits and circumstantial factors. Cicchinelli et al. (2018), for

example, have identified indicators relating to learners' planning and

monitoring that associate with higher outcome scores. Others

(e.g., Jarvela et al., 2020) argue that the new wave of learning analyt-

ics is enabling previously opaque SRL processes to be made visible,

even in collaborative learning contexts, through tracing multifaceted

affective, social and cognitive indicators. In one such development,

the ACT testing group is reporting field-tests on a mobile platform

app, Companion, to give students immediate analysis and feedback

(ACTNext, 2020). This system uses ‘dynamic cognitive diagnostic

models and machine learning algorithms’ to analyse test results and

usage data from a wide selection of learning resources with the prom-

ise of full integration into students' daily lives through such vehicles

as Amazon's Alexa and Apple's Siri.

Learning analytics feedback for students in any learning con-

text is going to be of maximum usefulness when it takes the form

of personalized formative assessment especially in the world of

MOOCs or other large-scale e-learning settings, which often have

many thousands of contemporaneous learners. In these settings,

SRL assumes greater importance because the timeliness or indeed

availability of external formative assessment and feedback is seri-

ously constrained by the costs of labour-intensive hot-seating or

even asynchronous interaction with tutors. Peer assessment, if

accurate (García-Martínez et al., 2019) can help to address this

formative deficit but Jansen et al. (2019) have shown that using

learning analytics and in-built interventions, that is, in-course video

resources on SRL per se, can improve course completion rates

in MOOC settings. There seems to be no shortage of proof and

near proof of concept in the research literature (see for example,

Gutierrez & Crespo Garcia, 2012; Jarvela et al., 2020; Martin &

Ndoye, 2016; Tempelaar et al., 2013) but as yet, the holy grail of an

off-the-shelf automated and cost effective personalized approach

to formative assessment and feedback in MOOCs is top of the wish

list for on-line learning developers.

Spector et al. (2016) take the argument for a greater emphasis on

personalized formative assessment further and claim that to some

extent even ITSs can be one-size-fits-all inasmuch as they identify a

learner's specific weakness and provide a remedial response that is the

same for all students with the same deficiency. They argue that feed-

back from learning analytics systems can be dynamically adaptive to

the learner through deeper profiling of the learners in combination with

the various techniques of performance analysis. Such profiling ranges

from the capture of ‘stealth’ assessments as the student works,

described as continuous, embedded and unobtrusive measures of per-

formance designed to identify learner habits, to ‘robust’ learner profil-
ing including additional data on their preferences, interests and biases.

This smacks a little of the on-line profiling of individuals for marketing

and other campaigns and may well raise some ethical issues as time

goes on – however, as Spector et al concede, such feedback mecha-

nisms ‘are yet to be deployed on a large and sustainable scale’ (p. 62).

5 | CONCLUDING REMARKS

Our overarching conclusion is that AI in educational assessment

has changed little in its basic precepts and functions – that is

machine learning and actions based on the results of intelligent

analysis of large-scale data – over the last 10 years or so but its

technological efficiency, speed and sophistication has advanced on

all counts, especially in the analysis of large-scale assessment pro-

cess data being channelled for formative purposes. Some of the

advancement is due to dogged research in universities and

research centres but credit must also be given to the large not-

for-profit assessment organizations who plough test income into

areas of research that simply could not command sufficient

funding in the academic world. The core aspects of AI application

in this paper, AESs and CATs, have benefited and continue to ben-

efit enormously from technical advances in machine learning.

However, the prospect of unilaterally substituting AI judges for

human judges in most aspects of student assessment any time

soon may still reside in the Phi Delta Kappan editor's realms of

‘buncombe and ballyhoo’. That said, perhaps there is more hope

of an intriguing ‘breakthrough’ in the integration of fast-moving

developments in ability and assessment characteristic matching

(CATs), in mimicking aspects of human judgement (AESs) and in

sophisticated process data-related machine training for formative

assessment. The power of such systems to provide appropriate

and purposeful formative assessment support for learners in

MOOCs and other ITSs, through personal mobile devices for

example, is perhaps a little nearer with every advance in the physi-

cal technology and the underlying AI systems.
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