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Abstract

Multi-host pathogens are particularly difficult to control, especially when at least one of the

hosts acts as a hidden reservoir. Deep sequencing of densely sampled pathogens has the

potential to transform this understanding, but requires analytical approaches that jointly con-

sider epidemiological and genetic data to best address this problem. While there has been

considerable success in analyses of single species systems, the hidden reservoir problem

is relatively under-studied. A well-known exemplar of this problem is bovine Tuberculosis, a

disease found in British and Irish cattle caused by Mycobacterium bovis, where the Eurasian

badger has long been believed to act as a reservoir but remains of poorly quantified impor-

tance except in very specific locations. As a result, the effort that should be directed at con-

trolling disease in badgers is unclear. Here, we analyse densely collected epidemiological

and genetic data from a cattle population but do not explicitly consider any data from bad-

gers. We use a simulation modelling approach to show that, in our system, a model that

exploits available cattle demographic and herd-to-herd movement data, but only considers

the ability of a hidden reservoir to generate pathogen diversity, can be used to choose

between different epidemiological scenarios. In our analysis, a model where the reservoir

does not generate any diversity but contributes to new infections at a local farm scale are

significantly preferred over models which generate diversity and/or spread disease at

broader spatial scales. While we cannot directly attribute the role of the reservoir to badgers

based on this analysis alone, the result supports the hypothesis that under current cattle

control regimes, infected cattle alone cannot sustain M. bovis circulation. Given the

observed close phylogenetic relationship for the bacteria taken from cattle and badgers

sampled near to each other, the most parsimonious hypothesis is that the reservoir is the

infected badger population. More broadly, our approach demonstrates that carefully con-

structed bespoke models can exploit the combination of genetic and epidemiological data to

overcome issues of extreme data bias, and uncover important general characteristics of

transmission in multi-host pathogen systems.
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Author summary

For single host pathogens, pathogen genetic data have been transformative for under-

standing the transmission and control of many diseases, particuarly rapidly evolving RNA

viruses. However garnering similar insights where pathogens are multi-host is more chal-

lenging, particularly when the evolution of the pathogen is slower and pathogen sampling

often heavily biased. This is the case for Mycobacterium bovis, the causative agent of

bovine Tuberculosis (bTB) and for which the Eurasian badger plays an as yet poorly

understood role in transmission and spread. Here we have developed a computational

model that incorporates M. bovis genetic data from cattle only with a highly abstracted

model of an unobserved reservoir. Our research shows that a model in which the reservoir

does not contribute to pathogen diversity, but is a source of infection in spatially localised

areas around each farm, better describes the patterns of outbreaks observed in a popula-

tion-level sample of a single M. bovis genotype in Northern Ireland over a period of 15

years, compared to models in which either the reservoir has no role, disease spread is spa-

tially extensive, or where they generate considerable diversity on their own. While this res-

ervoir model is not explicitly a model of badgers, its characteristics are consistent with

other data that would suggest a reservoir consisting of infected badgers that contribute

substantially to cattle infection, but could not maintain disease on their own.

Introduction

The analysis of high throughput genome sequence data for Mycobacterium bovis has already

generated important insights into the relative roles of direct transmission and other mecha-

nisms in the maintenance of bTB in cattle [1]. Central to this problem is the well-documented

involvement of the Eurasian badger (Meles meles) in the persistence and spread of bTB. While

it is known that badgers contribute to infection in cattle, the relatively poor and biased data

available regarding their contribution mean that their importance to the problem remains

poorly understood, a problem shared with many other multi-host pathogen systems. Previous

analyses have built on small datasets, or used analytical tools based on evolutionary models

(e.g. [2]) which, while providing useful insight [3–6], have only limited ability to exploit the

much richer data available on the contact patterns recorded for the cattle population involved.

Here, we exploit these data in a agent-based simulation, using a partial-likelihood fitting

approach based on a measure previously developed to fit animal-level transmission patterns to

summary measures of herd outbreaks [7]. We compare models where the diversity patterns

are generated (i) by cattle only, (ii) by cattle with a passive reservoir that produces minimal

additional phylogenetic diversity and (iii) cattle plus an active reservoir, generating diversity

consistent with the observed bacterial mutation rates. Considering also the spatial extent of

reservoirs (locally around each farm or across all farms), we fit the models to a previously

described M. bovis dataset [3]. Our analyses show a substantial preference for a model that

includes a reservoir with only short range interactions, and consistent with (ii) above, trans-

mits the most recently available genetic type back to the cattle population.

Data

Northern Ireland has a well-developed test and slaughter program in which all cattle herds are

tested for bTB on an annual basis. Since the 1990s, M. bovis isolates from infected cattle have

been stored and typed using spoligotyping and more recently, combined with Variable
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1016/j.epidem.2015.08.003). The data on the

demographics of cattle farms, including the

movements of livestock between them, is subject

to EU laws regarding personal disclosure and is

subject to a data sharing agreement with the data

holders, the Northern Ireland Dept. of Agriculture,

Environment and Rural Affairs. Since the original

agreement for these data was signed, the Northern

Ireland Food Animal Information System (NIFAIS)

has replaced Animal and Public Health Information

System (APHIS). https://www.daera-ni.gov.uk/

contacts/nifais-programme and is now the point of

contact for further data requests. Requests for

APHIS/NIFAIS data to be directed to: DAERA

Veterinary Service Animal Health Group

Information & Communication Branch, Ballykelly

House, 111Ballykelly Road, Ballykelly, Limavady,

BT49 9HP Email: vsinfo&commsbranch@daera-ni.

gov.uk As used in this project, and according to

our DSA it is recorded that: The dataset may be

enriched with data on land use (using the CORINE

land classification data set, which are available for

use), and climate data (the Meteorological Office

UK weather data, for which the AFBI veterinary

epidemiology PI (A. Byrne) has a DSA. In this case,

AFBI generated data from M. bovis culture and

MLVA typing at animal-level from SICCT reactors

and cattle found lesioned at routine slaughter

(LRS) at animal-level under the DAERA AFBI-

assigned Work Programme. APHIS records were

‘enriched’ by linking to these data and in order to

replicate our results would require permission to

link in the same fashion. The code implementing

this model and requisite anonymised data required

to reproduce our results in this paper can be found

at https://github.com/anthonyohare/

NIBtbClusterModel.
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Number Tandem Repeat (VNTR) typing, to differentiate molecular types [8, 9]. Isolates are

stored frozen and are available for re-culture to extract further DNA for sequencing. As

described previously [3], a total of 145 VNTR-10 M. bovis isolates were included in this study,

from 66 herd breakdowns (i.e. where at least one confirmed positive test occurred for a bovid

in a herd previously considered bTB-free) in 52 herds between June 1995 and December 2010.

In Northern Ireland, detailed information on the cattle population, movements between

herds and bTB test results is recorded by the Department of Agriculture, Environment and

Rural Affairs [10] on the Animal and Public Health Information System (APHIS). All direct

cattle movements between herds with VNTR-10 samples represented in our dataset (66

sequenced breakdowns and 12793 individual cattle movements) were made available, and

were combined with the anonymised location and date of each sequenced sample. The loca-

tions (main farm building) of 52 herds that had a breakdown with VNTR-10 between 1995

and 2010 were made available from the APHIS database.

The data describing the location of the herds consist of the (anonymised via rotation, scal-

ing and translation so that relative distances remained intact) x-y locations of 52 farms from

which cultured samples were taken. The movement of cattle into or out of this network

extended the number of farms in our dataset to 21,012.

Because herd population data were not available for the entire period over which bacterial

samples were taken, we develop a parameterisation of the herd population relevant to our study

and use this to populate our simulations. The size of each herd was recorded on the 1st of Janu-

ary and 1st of July of each year from 2003 to 2012 and we draw the initial herd size for our simu-

lations from this distribution of herd sizes. The herd sizes in our available data were not found

to change substantially over time so this simplifying assumption is not thought to substantially

affect the results. Each herd is subjected to an annual whole herd test, and failing herds are sub-

jected to both movement restrictions and follow-up whole herd tests until two successive clear

tests are observed. From the record of herd tests on each farm, 403 herds had a whole herd test

scheduled within 60 days of the start of the (recorded test) dataset. Assuming that each of these

herds with tests scheduled within 2 months of the simulation start date were subject to follow-

up tests, this represents� 2% of farms under movement restriction. At the start of each simula-

tion we set a similar number of herds under movement restrictions and to each herd we ran-

domly assign the number of clear tests achieved at the simulation start time (either 0 or 1) to

mimic the observed conditions. All other herds have routine tests scheduled every year (with

the first test in the simulation scheduled at a random time within the first year of the start of the

simulation), with each animal in the herd subjected to a test with sensitivity O.

The phylogenetic dataset has previously been described in [3]. In brief, high-density whole

genome sequencing (WGS) was performed on 145 (139 cattle and 6 badger) VNTR-10 isolates.

Some badger isolates were available from a survey of badgers killed on the roads in Northern

Ireland [11, 12]. However as these few isolates are likely to be only a small proportion of the

total infected badgers in the area, are unlikely to be representative, and the locations of where

the badger carcasses were found could not be verified, they were deemed unsuitable for inclu-

sion in any further population-wide analysis (though we note the close phylogenetic relation-

ship between the badger-derived samples and nearby ones from cattle [3]). Pairwise single

nucleotide polymorphism (SNP) differences between sequenced samples were recorded and a

histogram of these SNP differences generated as the basis of our further analysis, Fig 1.

Methods

As in our previous study [7], we consider a simple four state model for the transmission of

bTB where cattle are either susceptible (SC), exposed (EC), test-sensitive (TC), or infectious
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Fig 1. Phylogeny of VNTR-1 and -10 isolates (from [3]) showing the distribution of SNPs in sampled cattle. In this paper we have ignored the

samples from badgers but show them here to indicate the close phylogenetic relatonship to the cattle isolates.

https://doi.org/10.1371/journal.pcbi.1009005.g001
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(IC). The tuberculin test, used in the UK, is based on a cow’s response to the invading M. bovis
and it is assumed that animals in the exposed stage have not yet mounted a sufficient response

to be detected. Thus for the purposes of this model, any test on animals in this stage will return

a negative result. Infections in both the test-sensitive and infectious stages are detectable. Once

an animal becomes infectious, it remains so until it is detected, at which point the animal

would be culled. In addition we create an infectious ‘reservoir’ population which generates an

infection pressure and (potentially) generates additional genetic diversity in the bacterial pop-

ulation. Further we extend this to also consider susceptible (Sr) and infected (Ir) reservoir

locations.

Once infected, animals progress from the exposed to test-sensitive stage at a rate σ and

from the test-sensitive state to infectious at a rate γ. Cattle-to-cattle transmission is at a rate

βSC IC (where SC, IC, are the numbers of cattle in these states) and we separate the cattle-reser-

voir and reservoir-cattle transmission rates as βCr and βrC respectively.

We can write the model excluding cattle movements between farms as a set of Ordinary

Differential Equations (ODEs) in the form

_SC ¼ � bSCIC �
X

r

brCSCIr

_EC ¼ bSCIC þ
X

r

brCSCIr � sEC

_TC ¼ sEC � gTC

_IC ¼ gTC

_I r ¼
X

F

bCrSrIC

ð1Þ

where the sums are over all reservoirs connected to each farm or all the farms connected to

each reservoir. We assume that reservoir populations cannot infect each other. Also, once

infected, reservoirs remain infected for the duration of the simulation. This could be inter-

preted, for example, as at least one individual within the reservoir remaining infected at any

time once the reservoir has become infected. Animals in the TC and IC states are routinely

tested and if detected, are removed. A schematic of this model can be found in the S1 Fig.

We solve the model using Gillespie’s τ-leap method [13] with a fixed τ of 14 days. In each

14 day step we calculate the numbers of animals whose disease status will have changed and

update them accordingly, perform any whole herd tests (WHT), maintain a record of sched-

uled WHTs (including any follow-up tests from failed WHTs in the current period), move ani-

mals between farms, and update the transition kernel for the Gillespie algorithm in the next

time step.

Movements

To reduce computational costs, we only create agents for infected cows, as the number of cattle

moved between farms is typically few compared to the herd size, and the susceptible fraction

in a herd is high. We assume that animals born into the herd, replacing animals moved out of

the herd and thus keeping the herd size constant, are susceptible and thus not tracked so we do

not explicitly simulate birth and death processes. This simplifying assumption did not give

results that differed significantly from less computationally efficient simulations where the size

of each herd, births and deaths were explicitly tracked (not shown). As we do not know the

force of infection associated with each reservoir we apply the assumption that it is constant

PLOS COMPUTATIONAL BIOLOGY Phylodynamic model of Mycobacterium bovis in a multi-host system
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once the reservoir begins to harbour infection. We keep a record of each farm (herd) and its

associated reservoirs in memory.

Every movement of cattle that passes through the VNTR-10 herds was recorded and used

to create a distribution of farm-to-farm movements as well as a distribution of the number of

animals moved for each farm. The number of animals moved in any 14 day period is uni-

formly distributed over the VNTR 10 outbreak (as consistent with what is observed in the

dataset of animal movements in Northern Ireland over the period investigated) creating a total

of 7749685 movements. In each time step we move a constant number of cattle (19108) so that

the total moved in the simulation is 7749685 using the following algorithm:

1. pick a farm-farm movement from the distribution of farm-farm movements, ignoring

farms that are under movement restriction (see the paragraph on testing for details on these

restrictions).

2. pick the number of cattle to be moved from the distribution of the number of animals

moved off the departure farm.

3. perform pre-movement testing of all animals. If the departure farm contained infected ani-

mals we sample a number of these animals at random from a hypergeometric distribution

and test them. If an animal fails the pre-movement test their SNPs are recorded as being

sampled, they are removed from the simulation and the farm is put under movement

restrictions with a follow-up test scheduled for 60 days. If none of the infected animals are

detected they are moved to the new herd.

4. repeat until we have moved the required number of animals for the period.

Here we assume that the patterns do not change over timescales relevant to transmission

and evolution or in a way that substantially influences the metrics used (i.e. the actual individ-

ual moves will be different, but not the overall pattern characteristics).

Testing

Every head of cattle undergoes a pre-movement test with a sensitivity O and any that fail this is

considered to be a ‘reactor’ (i.e. is in either the test-sensitive or infectious stage). Reactors are

removed from the simulation and the herd they resided in is put under movement restriction;

cattle are not allowed into or out of the herd until it passes two consecutive tests (scheduled at

two monthly intervals starting from one month after the time of the breakdown). Each herd

undergoes annual whole herd testing; herds that contain a reactor(s) are put under movement

restriction and are required to pass two successive whole herd tests before being allowed to

resume trading. Each herd is given a random test date at the start of the simulation which is

repeated annually unless an infected animal is detected on the farm. Cattle that are found to

be infected (in either the test sensitive or infectious states) are culled, i.e. removed from the

simulation.

A record of all the transmission events that occur in our simulation is kept; thus we track all

cattle!cattle, cattle!reservoir and reservoir!cattle transmission events. We allow for substi-

tutions within the M. bovis genome at a rate of μ substitutions (single nucleotide polymor-

phisms, SNPs) per day. We don’t track the actual loci that have evolved but rather label each

strain of pathogen. Each transmission event is accompanied by a transfer of all the genetic

information (i.e. the virtual pathogen containing all the SNPs) allowing us, over time, to calcu-

late the distribution of single nucleotide polymorphisms (SNP) within the population. The

same substitution rate is used for both cattle and within the reservoir.
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Seeding the model

We use the test histories of all herds observed to be part of the VNTR-10 outbreak and deter-

mine those animals that had a probability of being in an infected state at the start of the out-

break using the methods outlined in [1]. This identified 6 animals, all from the same farm, that

harboured infection at the start of our simulation (June 1995) each of whom had the same

probability of being in each infection state (S = 0.73, E = 0.0, T = 0.0, I = 0.27). We seed each

simulation by setting the infection state of each of these animals according to these probabili-

ties and assigning a unique set of SNPs to each infected cow. For each infected cow we seed the

simulation with an infected reservoir animal with the same SNPs in one of the reservoirs con-

nected to the farm (selected at random).

Culling infected animals

Cattle are removed from our simulation according to the observed distribution of animal

deaths; cattle are chosen at random, tested and if found to be positive the herd is placed under

movement restriction and follow up tests are scheduled for 60 days (mimicking short interval

testing used to “clear”a herd of infection. The herd remains under movement restriction until

2 successive clear tests are observed 60 days apart. We ignore animal births as we assume that

calves are born free of the disease and enter the susceptible population that is not (explicitly)

tracked.

Hidden reservoir

We incorporated three different models for the hidden reservoir; none (there was no reservoir

and the epidemic was driven by cattle to cattle transmission and movements only), considering

both a single reservoir that is connected to every farm in the network, and reservoirs that had a

radius of 2km (similar to the expected home ranges of badgers) so farms that were less than

4km apart could share one or more reservoirs (S2 Fig). Our dataset did not contain location

data for those uninfected farms that were connected by movements so we assigned a reservoir

to each of these but did not include overlaps with other reservoirs in the simulations. This

resulted in a network with a subset of farms that were connected via a reservoir. For compari-

son, we also created a second network where the distribution of connected farms mimicked

the distribution of connections that include farms for which we did not have locations. We

refer to this as our “synthetic”network.

Several models of a hidden reservoir are compared in our simulations:

1. A single reservoir connecting every farm (giant reservoir model): infections into the reser-

voir are modelled as individuals without transmission within the reservoir. Since the reser-

voir connects all the farms this individual is free to re-infect any farm thus allowing for fast

spatial transmission of M. bovis genotypes throughout Northern Ireland.

2. No shared reservoir: each farm has a reservoir that is not shared with any other. Infections

into the reservoir are also modelled as individuals but without transmission within the res-

ervoir. In this model, long range transmission of genotype information is only possible

through movement of undiagnosed cattle.

3. Farms within 4km share a reservoir: to allow for a home range of wildlife we connect farms

within a 4km range by a reservoir (S2 Fig). In this scenario we model the reservoir in three

different ways:

a. Individuals within the reservoir are not modelled (the maximum diversity model). In

this case, whenever infection is passed from the reservoir into a herd, a new sequence
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type is created with a number of accrued single nucleotide polymorphisms (SNPs or sub-

stitutions), counted from the point at which infection first entered the reservoir.

b. Individuals in the reservoir are modelled but without explicit transmission within the

reservoir (the intermediate diversity model). When infection is transmitted from the res-

ervoir into a herd an individual infection source is selected and their SNPs are transmit-

ted along with any substitutions that might have occurred since they were infected.

c. Individuals in the reservoir are modelled but, without explicit transmission within the

reservoir, and so diversity is only generated by the simulated cattle (the minimum diver-

sity model). When infection is transmitted from the reservoir into a herd an individual

is selected but no new SNPs are generated. This models the influence of a reservoir pop-

ulation which holds infection even when the local cattle population is clear but only

maintains diversity via regular interaction with the cattle population.

4. The minimum diversity and maximum diversity models run on the synthetic network.

SNPs

The number of samples taken from reactors shows a small but positive correlation with the

time since the start of the outbreak (S3 Fig) so we sample from our transmission trees accord-

ingly, sampling preferentially from the end of the outbreak to build a phylogeny from the

underlying (simulated) epidemics. We use these trees to create the distribution of SNP differ-

ences between the tips of the tree (defined as |(A\B) [ (B\A)|) where A, B represent the sets of

SNPs from the pair of samples.

The frequency distribution of the number of SNP differences is interpreted as a multino-

mial trial with p1, p2, . . ., pn, the probability of observing 1, 2, . . ., n, SNP differences and x1, x2,

. . ., xn, the number of times we observed this number in our simulations. The distribution p1,

p2, . . ., pn is shown in Fig 2a. We can write our [partial] likelihood function as

L ¼
n!

Pxi!
pxii ð2Þ

where n is to the total number of observed SNP differences.

Fig 2. Comparison of the pairwise distribution of SNP differences for observed cases in Northern Ireland and in our simulations. The yellow

boxes on the right hand plot indicate the number of SNP differences associated with each point.

https://doi.org/10.1371/journal.pcbi.1009005.g002
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Simulating the model

2000 simulations are run from 15th June 1995 until 31st December 2010 (the period covered by

our dataset) for each set of model parameters on a local Condor network. We record the trans-

mission tree for each of the simulations. We calculate the expected value of the model as

E½y� ¼ hLðDjyÞi ð3Þ

where the calculated likelihood is the mean of 2000 simulations of the model as described

above. We perform a Markovian-random walk, where each parameter in the parameter set θ is

perturbed using a zero mean Gaussian random variable with a small variance, using the

Metropolis-Hastings rejection algorithm to accept those parameter vectors, θ, that maximise

the likelihood in Eq 2 to find the posterior values of θ that corresponds to the maximum of the

likelihood.

Results

We compared our 5 different models that incorporated the pattern of recorded animal move-

ments, births and removals. In each model investigated, we used the same priors (Table 1)

which were chosen on the basis of existing field and experimental estimates [14–17] where

they existed. The substitution or SNP creation rate is informed by our previous estimate [3].

For the transmission rates, rate of the pathogen and test sensitivity, we used non-informative

priors, i.e. uniform priors with a large range.

We calculated the AIC score of each of our 5 models to determine which model best

describes the observed diversity (for our final set of models presented here, each model con-

tains the same number of parameters so in comparing the AIC scores of each model we are

indirectly comparing their log-likelihoods). According to the AIC scores the preferred model

that best described the observed data was one that generated no additional diversity within the

reservoir population (the minimal diversity model)(Table 2).

Considering the univariate parameter distributions in the posterior (Table 3), the length of

the exposed stage (i.e. 1/σ) was estimated to be 14.3 days (with lower and upper quartiles 5.5–

16.1 days) in line with previous estimates (60 hours-100 days) [1, 7]. This is towards the longer

duration of the prior for this value. The length of the test-sensitive stage (i.e. 1/γ) was estimated

to be 155.7 days (with lower and upper quartiles 147.1 and 169.5 days, respectively) also similar

to previously published estimates of 180 ± 20 [1, 7, 14, 18]. Estimates for the sensitivities of the

Table 1. Summary of the priors used in the model. In the cases of β, αRC, αCR, μ we used non-informative priors

whereas in the case of σ, γ, O the priors were chosen on the basis of existing field and experimental estimates [3, 15,

16].

Description Sampling Distribution

Cattle-cattle transmission rate, β Uniform[1 × 10−6, 1 × 10−1]

(individuals × time)−1

Rate exposed cattle become test sensitive, σ Uniform[6hours−100days]

time−1

Rate test sensitive cattle become infectious, γ Uniform[4months−11months] time−1

Probability that a detectable animal is detected, O Uniform[0.4 − 0.8]

Reservoir-cattle transmission rate, βRC Uniform[1 × 10−3, 0.4]

(individuals × time)−1

Cattle-reservoir transmission rate, βCR Uniform[1 × 10−3, 0.4]

(individuals × time)−1

SNP generation rate per day, μ Uniform[0.00001, 0.005]

time−1

https://doi.org/10.1371/journal.pcbi.1009005.t001
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whole herd test test, 59% (with a 95% credible interval of 52–63%), are also consistent with pre-

vious observations (50%-100%) [15–17] and simulations (36%-55%) [7, 18]. Neither the mini-

mum or maximum diversity model on our synthetic network generated a stable posterior

estimate (not shown).

The best fit model is compared to the SNP distance histogram in illustrated in Fig 2a and

2b, showing considerable fidelity of the model to these data; the simulated distribution displays

both the bi-modal nature of the differences and matches the observed distribution. Though

there is evidence of a small amount of overdispersion for large SNP differences while underes-

timating lower numbers of SNP differences, results lie within the 95% CI’s for most SNP differ-

ences compared. By comparison, a visual inspection for the other models shows that, despite

very similar univariate parameter estimates (S4 Fig), SNP distributions were clearly inferior

when comparing to the data (Fig 3a–3d)).

In order to determine whether removal of the reservoir alone could result in eradication of

bTB in this system, we sample from the posterior distributions of our parameters and use this

to calculate the cattle-only R0 using a next generation matrix approach [19, 20]. R0 was found

to have a mean value of 1.89 with a standard deviation of 1.04, as in S5 Fig. Thus the most likely

result across the posterior is that, in the absence of testing, cattle-to-cattle transmission can

maintain bTB on its own (i.e. Rcattle
0

> 1).

Discussion

The development of model inference with dense data from one mammalian host, but only

sparse, or in this case no, data from another is a challenging one. We discuss here a

Table 2. AIC scores for the various models investigated. The best model is one in which we have a reservoir popula-

tion that does not actively contribute to pathogen diversity the minimal diversity model).

AIC Score

No Connecting Reservoirs 4370.8

Intermediate Diversity model 2km radius Reservoir 3816.2

Maximum Diversity model 2km radius Reservoir 3232.2

Giant Connecting Reservoir 3056.8

Minimal diversity model 2km radius Reservoir 2192.7

https://doi.org/10.1371/journal.pcbi.1009005.t002

Table 3. Summary of the posterior estimates for the minimal diversity model which best fits the data from our cal-

culations, (see Table 2 for the AIC scores for each model). 95% credible intervals are given in square braces.

Description Posterior Estimates

Cattle-cattle transmission rate, β 6.3 × 10−6 (individuals × time)−1

[4.4 × 10−6, 7.0 × 10−6]

Rate exposed cattle become test sensitive, σ 0.042 time−1� 23.8 days

[0.041, 0.062]� [16.1, 24.4] days

Rate test sensitive cattle become infectious, γ 0.0062 time−1� 161.3 days

[0.0052, 0.0064]� [156.3, 192.3] days

Probability that a detectable animal is detected, O 0.506 [0.410, 0.626]

Reservoir-cattle transmission rate, βRC 4.39 × 10−6 (individuals × time)−1

[4.01 × 10−6, 6.73 × 10−6]

Cattle-reservoir transmission rate, βCR 2.45 × 10−6 (individuals × time)−1

[1.28 × 10−6, 5.06 × 10−6]

SNP generation rate per day, μ 0.0041 time−1

[0.0033, 0.0044]

https://doi.org/10.1371/journal.pcbi.1009005.t003
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generalisable approach to doing so, exploiting the existence of spatio-temporal signatures in

the phylogeny that are inconsistent with the pattern of known recorded movements and con-

tacts amongst the densely observed host (in this case, the cattle). An important question is

whether or not our reservoirs are in fact infected badger populations. In our view this is the

most parsimonious explanation. First, the poor fit of the cattle-only model suggests that the

transmission mechanisms involved are driven by wholly local, unrecorded interactions that

have a stronger impact than the direct movement of cattle between farms. Thus any hidden

agent infecting the cattle would have to be spatially constrained in a way that the infected cattle

that are allowed to move between farms are not—i.e. behave very much like badgers. Second,

our analysis supports the need for a reservoir that is a source of infection but does not generate

substantial new genetic diversity, providing further hints of the nature of this reservoir. This is

consistent with recent results from an analysis of cattle and badger derived M. bovis samples

also from Northern Ireland where preliminary results indicate that, while badgers do contrib-

ute to cattle transmission for that study site they did so rarely and also rarely infect each other

[21]. Biologically, this could be interpreted as implying regular exchanges between the cattle

and badger populations with infected badgers “returning” very similar genetic types (in the

Fig 3. Comparison of the pairwise distribution of SNP differences for the four rejected models. (a) A single reservoir connecting every farm (top

left), (b) Maximum diversity model (top right), (c) Intermediate diversity model (bottom left), (d) No Connecting Reservoirs (bottom right).

https://doi.org/10.1371/journal.pcbi.1009005.g003
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model, the same type) to those it has recently been infected with by the cattle—like our mini-

mum diversity model. In contrast, the maximum or intermediate diversity models would

imply a badger population that is able to maintain diversity independently. While this has

been observed elsewhere [6], the results here highlight the differences that arise from local geo-

graphic and management considerations [22], even though the scenarios are superficially very

similar. Despite this consistency we must allow for other plausible mechanisms that may also

contribute, including e.g. unrecorded or illegal movements of cattle, shared pastures, unre-

corded movement of bulls etc.—this could be investigated via field investigations.

A priori, it might be expected that our synthetic network, which provides estimated geo-

graphical locations for all available herds, would be a better representation of the true epidemi-

ological situation. Thus our inability to fit this model to the data is somewhat surprising.

However, previous analyses of annual testing areas in England identified having a past history

of outbreaks of bTB as being the most important risk factor predicting future outbreaks [23,

24], implying the existence of important farm-level risk factors not captured in our data, and

thus more consistent with a model where only herds that have been infected at some points in

our records have this localised risk.

Our metric is based solely on observations of genetic diversity and do not incorporate epi-

demiological observations. While our results show that this alone is sufficient to distinguish

between importantly different models of transmission, our estimate of transmission parame-

ters depends on the ability to generate diversity. Because in our preferred (minimum diversity)

model the reservoir generates no independent diversity, the ability of the model to infer trans-

mission rates from the reservoir is limited (S5 Fig). Ongoing work involves extending the par-

tial likelihood approach to include these epidemiological observations, better exploiting the

detailed contact information in the movement data.

Despite its limitations, the ability of our approach to identify key factors with heavily biased

data is promising. As this will often be the case where different species are involved in trans-

mission and pathogen replication, our method points a way to generate important insights

about hidden reservoir populations.

Supporting information

S1 Fig. Schematic representation of the model used. The code implementing this model can

be found at https://github.com/anthonyohare/NIBtbClusterModel.

(EPS)

S2 Fig. Relative locations of the herds from which VNTR-10 samples were taken (km

scale). All herd locations are translated to anonymise them. Herds within a 2km radius are

assumed to be connected by a wildlife reservoir (left) while the other herds are joined, indi-

rectly, through animal movements (uniformly distributed throughout the length of the simula-

tion and between farms) or genetically (right). The determination of those herds that had a

seperation of 4km was made before the location data was transformed.

(EPS)

S3 Fig. Number of reactors discovered with the number of samples that were successfully

grown and analysed.

(EPS)

S4 Fig. Posterior kernel density estimates for the parameter distributions for the model.

Here β, σ, γ are the transition rates in our model, O is the sensitivity of the routine and abattoir

tests, βCR, βRC are the transmission rates from cattle to reservoir and reservoir to cattle respec-

tively and μ is the number of new SNPs generated in the model per day. The horizontal scale
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on each figure corresponds to the priors used and were taken from existing field and experi-

mental estimates [15, 16]. In the case of the σ parameter our modelling suggests that the length

of time an animal is in this stage is towards the longer prior estimate.

(EPS)

S5 Fig. Variation of cattle-only R0 with external force of infection where each dot repre-

sents a simulation. The dashed line is the R0 = 1 line, indicating the proportion of the poste-

rior where removal of the external force of infection entirely would result in eradication of the

disease (i.e. the proportion below R0 = 1), our simulations suggests this proportion is*0.068.

The dotted line is the mean value of the distribution of R0 in our simulations and decreases

slowly with increasing external force of infection (the slope of this line is small but negative,

-0.083) indicating that R0 decreases slowly with increasing external force of infection.

(EPS)

S1 Table. Comparison of the mean posterior values for the parameters in each of the 5

models. Minimum diversity model (Min), Intermediate diversity model (Int), Maximum

diversity model (Max), A single reservoir connecting every farm (Giant), No Connecting Res-

ervoirs (None).

(PDF)
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