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Abstract: Urban forests contribute to maintaining livability and increase the resilience of cities in
the face of population growth and climate change. Information about the geographical distribution
of individual trees is essential for the proper management of these systems. RGB high-resolution
aerial images have emerged as a cheap and efficient source of data, although detecting and mapping
single trees in an urban environment is a challenging task. Thus, we propose the evaluation of novel
methods for single tree crown detection, as most of these methods have not been investigated in
remote sensing applications. A total of 21 methods were investigated, including anchor-based (one
and two-stage) and anchor-free state-of-the-art deep-learning methods. We used two orthoimages
divided into 220 non-overlapping patches of 512 × 512 pixels with a ground sample distance (GSD)
of 10 cm. The orthoimages were manually annotated, and 3382 single tree crowns were identified
as the ground-truth. Our findings show that the anchor-free detectors achieved the best average
performance with an AP50 of 0.686. We observed that the two-stage anchor-based and anchor-free
methods showed better performance for this task, emphasizing the FSAF, Double Heads, CARAFE,
ATSS, and FoveaBox models. RetinaNet, which is currently commonly applied in remote sensing,
did not show satisfactory performance, and Faster R-CNN had lower results than the best methods
but with no statistically significant difference. Our findings contribute to a better understanding of
the performance of novel deep-learning methods in remote sensing applications and could be used
as an indicator of the most suitable methods in such applications.

Keywords: object detection; convolutional neural network; remote sensing

1. Introduction

The urban population is expected to grow at the highest rates in human history in
the next decades, with an increase of 1.2 billion urban residents worldwide by 2030 [1].
Densely populated areas are hotspots of numerous environmental problems, including
air pollution [2,3] and hydrological disturbance [4,5], and are also linked to mental ill-
ness and health. [6,7]. Global climate change affects climate patterns, and the increase
of surface temperature has led to more frequent, longer, and more severe heatwaves [8]
and, likewise, increased the occurrence of floods [9]. In this scenario, urban forests could
play an important role in mitigating some of these threats [10] and filling the gap between
sustainable and livable cities. These systems are important assets to achieve urban sustain-
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ability, which was established as one of the Sustainable Development Goals (SDG 11) by
the United Nations [11].

Urban forests are composed of trees in urban areas, from individuals to clusters
of trees, and publicly accessible green spaces [12]. These systems provide an array of
ecosystem services and help to mitigate the ills caused by the concentrated poverty and
sickness that often occur in cities [13]. However, the proper management of these systems
requires accurate data on the quantity and distribution of individual trees throughout cities.
Individual tree detection is key information for multiple applications, including resource
inventory and the management of hazards and stress [14].

The urban tree inventory is increasing due to rapid urbanization, climate change,
and global trade [15]. Nonetheless, there is a lack of information in urban tree inventories
due to the costs associated with tree mapping and monitoring [16]. Individual tree detec-
tion is still an open challenge that is especially difficult since there are different vegetation
canopies, crown sizes, and density as well as the overlapping of crowns, among other
situations [17]. Further, due to the proximity and overlapping of tree crowns, it is not
always possible to conduct segmentation as a strategy to detect each tree individually.

In this sense, methods that can do this task on RGB images could unlock data at
larger scales [18] and provide insights for policymakers and the community. Developing
approaches to detect trees automatically is decisive to building more sustainable cities,
by helping with the planning and management of urban forests and trees. Most urban
tree inventory is done manually, which is slow, costly, and difficult to map large areas and
follow the temporal evolution of these assets.

To that end, remote sensing has been seen as a less time-consuming alternative to
tree field surveys [19]. The recent development of these platforms has allowed researchers
to collect data with higher spatial, temporal, and spectral resolutions, unlocking new
scales of Earth observation. High-resolution images are recommended for individual tree
detection [20], especially in urban areas where images are heterogeneous and complex.
Nonetheless, this increase in data has made it difficult to process it manually. As an
alternative, object detection methods based on deep learning have been applied successfully
in remote sensing applications, mainly using convolutional neural networks [21–26].

Object detection methods can be divided into anchor-based and anchor-free detectors.
Anchor-based methods first build an extensive number of anchors on the image, predict
the category, refine each anchor’s coordinates, and then output the refined anchor as the
prediction. These types of techniques can be categorized into two groups: one and two-
stage detectors. One-stage detectors commonly use a direct fully convolution architecture,
while two-stage detectors first filter the region that may contain the object and feed a
convolution network with this region [27].

Usually, one-stage methods (e.g., Yolo and SSD) provide high inference speed while
two-stage methods (e.g., Faster R-CNN) present high localization and accuracy [28]. In con-
trast to the anchor-based detectors, anchor-free methods directly find objects beyond the
anchor using a key or center point or region of the object and have similar performance to
anchor-based methods [29]. The design of object detection methods using deep learning of-
ten uses natural images and, with the constant development of new methods, it is essential
to evaluate the latest methods in remote sensing.

Within remote sensing and deep learning, many data sources have been investigated
for individual tree detection. Multi and hyperspectral images, LiDAR (Light Detection
And Ranging) data, and their combinations have all been investigated [30–36]. However,
these data sources are costly and could be problematic to process due to their high dimen-
sionality. Alternatively, studies were conducted that combined RGB images with other data
sources [18,37,38]. Compared to other data sources, RGB sensors are cheaper, and RGB
imagery is easier to process with absence of three-dimensional information about the
tree crown shape [18]. However, few studies tackled this task using only remote sensing
RGB data [19,39–42].



Remote Sens. 2021, 13, 2482 3 of 25

Santos at al. [19] applied three deep-learning methods (Faster R-CNN, YOLOv3,
and RetinaNet) to detect one tree species, Dipteryx alata Vogel (Fabaceae), in Unmanned
Aerial Vehicle (UAV) high-resolution RGB images. The authors found that RetinaNet
achieved the best results. Culman et al. [39] implemented RetinaNet to detect palm trees in
aerial high-resolution RGB images achieving a mean average precision of 0.861. Further,
Oh et al. [40]used YOLOv3 to count cotton plants. Roslan et al. [41] applied RetinaNet for
this task in super-resolution RGB images in a tropical forest. For a tropical forest again, [42]
evaluated RetinaNet. However, most of the research on this field has been done using
methods, such Faster R-CNN and RetinaNet, both being dated before 2018. With the
constant development of new methods, there is a need to assess the performance of these
methods in remote sensing applications.

Despite these initial efforts, there is a lack of studies assessing the performance of the
novel deep-learning methods for individual tree crown detection, regarding tree species or
size, in urban areas. This task is challenging in the urban context due to the heterogeneity of
these scenes [20], with different tree types and sizes combined with overlap between objects,
shades, and other situations. Our objective is to benchmark anchor-based and anchor-free
detectors for tree crown detection in high-resolution RGB images in urban areas.

To the best of our knowledge, our study is the first to present a large assessment of
novel deep learning detection methods for individual tree crown detection in urban areas.
Further, we also provide an analysis covering the main lines of research in computer vision
for anchor-based methods (one and two-stages) and anchor-free methods. Different from
previous studies, our focus is to detect all trees, regarding tree species or size in an urban
environment. Thus, our study intends to fill the gap and demonstrate the performance of
the most advanced object detection methods in remote sensing applications.

Two high-resolution RGB orthoimages were manually annotated and split into non-
overlapping patches. We evaluate 21 novel deep-learning methods for the proposed
task, covering the main directions in object detection research. We present a quantitative
and qualitative analysis of the performance for each method and for each main types of
detectors. The dataset is publicly provided for further investigation in: https://github.
com/pedrozamboni/individual_urban_tree_crown_detection (accessed on 21 June 2021).

2. Material and Methods
2.1. Image Dataset

We used two RGB high-resolution orthoimages with 5619 × 5946 pixels with a ground
sample distance (GSD) equal to 10 cm of Campo Grande urban area, Mato Grosso do Sul
state, Brazil (Figure 1). These are airborne images collected in 2013 by the city hall of
Campo Grande. Campo Grande has 96.3% of urban households on public roads with the
afforestation being recognized [43], in 2019, as a Tree City of the World by the Food and
Agriculture Organization of the United Nations and the Arbor Day Foundation (Figure 1).
A total of 161 plant species were identified on the streets of the municipality totaling more
than 150 thousand trees [44]. Licania tomentosa is the most abundant species, representing
18.35%, followed by Ficus benjamina with 18.18%, and 66 species presented only one
individual [44].

We manually annotated the orthoimages with rectangles (bounding boxes) in QGIS
software. Since the object detection inputs are patches of images; the orthoimages were split
into 220 non-overlapping patches of 512 × 512 pixels (51.20 × 51.20 m), which represents
an area of 2621.44 m2 per patch. The manually annotated polygons were converted into
bounding boxes (Figure 2) where 3382 trees were identified as ground-truth. The object
detection methods were trained to learn and predict the bounding box coordinates in the
images given the ground-truth data. For our experiments, we divided the patches into
training (60%), validation (20%), and test (20%) sets (Table 1). The validation set was used
during an intermediate phase in training to select the model hyperparameters.

https://github.com/pedrozamboni/individual_urban_tree_crown_detection
https://github.com/pedrozamboni/individual_urban_tree_crown_detection
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Figure 1. Study area in (a) South America and Brazil, (b) Mato Grosso do Sul, (c) Campo Grande,
and (d) an example of an orthoimage used in this study.

Figure 2. Example of an annotated patch. The bounding boxes for each tree considered as
ground−truth are represented in white.

Table 1. The number of image patches and trees annotated as ground-truth in each set. The training,
validation, and test sets comprised 60%, 20%, and 20% of the image patches, respectively.

Set nº of Patches nº of Instances

Train 132 2124
Validation 44 582

Test 44 676
Total 220 3382
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2.2. Individual Tree Crown Detection Approach

Our experiment was divided into two parts (Figure 3). First, 21 state-of-the-art
algorithms were evaluated in this task. These methods cover the most diverse approaches
currently used to detect objects, including anchor-based (one and two-stage) and anchor-
free (Table 2). Second, we selected the best five methods in terms of AP50. Faster R-CNN
and RetinaNet were also included (among the best ones) since these methods are present
as a standard baseline in the remote sensing literature.

We evaluated seven (top five + Faster R-CNN + RetinaNet) methods using hold out
repeated four times to obtain a more robust evaluation due to bias-variance tradeoffs. In the
holdout procedure with four repetitions, we randomly shuffled and split the data into three
disjoint sets: training, validation, and test sets. Then, the average and standard deviation
values for the AP50 considered the five repetitions for each method. We also performed One-
Way ANOVA with the Holm–Bonferroni post hoc test to assess if these AP50 averages were
statistically different. We used the methods implemented in the MMDetecion project source
code proposed by Multimedia Laboratory [45]. MMDetecion is an open-source project available
online on: https://github.com/open-mmlab/mmdetection (accessed on 21 June 2021).

Figure 3. The workflow for individual tree crown detection. Initially, the images were annotated with
bounding boxes. In the first step, 21 deep-learning methods were trained, and the best methods were
selected based on the value of the third quartile plus Faster R-CNN and RetinaNet. In the second
step, the selected methods were trained four more times with randomly shuffled datasets.

For the training, the backbone of all methods was initialized with pre-trained weights
from the well-known ImageNet dataset. A stochastic gradient descent optimizer with
a momentum of 0.9 and weight decay of 0.0001 was applied. The initial learning rate
was empirically set to 0.00125. All the models were trained over 24 epochs. Figure 4
illustrates the training and validation loss curves. The training loss decreased rapidly
after a few epochs and stabilized at the end. This indicates that the number of epochs was
sufficient and that the learning rate was adequate. The training and testing procedures
were conducted in Google Colaboratory with GPU.

https://github.com/open-mmlab/mmdetection
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Table 2. The object detection methods used in this study, including backbone, year of publication, reference, and type
of method.

Method Backbone Year Reference Type

Faster R-CNN X-101-64x4d-FPN-2x 2017 [46] AB-TS
RetinaNet X-101-64x4d-FPN-2x 2017 [47] AB-OS

Mixed precision training Faster R-CNN-R50-FPN-FP16-1 2017 [48] AB-TS
Deformable ConvNets v2 Faster R-CNN X101-32x4d-FPN-dconv-c3-c5-1x 2018 [49] AB-TS

YoloV3 DarkNet-53 2018 [50] AB-OS
ATSS R-101-FPN-1x 2019 [29] AF

Weight Standardization Faster R-CNN-X101-32x4d-FPN-gn-ws-all-1x 2019 [51] AB-TS
CARAFE Faster R-CNN-R50-FPN-_carafe-1x 2019 [52] AB-TS

FSAF X101-64x4d-FPN-1x 2019 [53] AF
NAS-FPN RetinaNet-R-50-NASFPN-crop640_50e 2019 [54] AB-OS
FoveaBox R-101-FPN-gn-head-mstrain-640-800-4x4-2x 2019 [55] AF

Double Heads dh-Faster R-CNN-R-50-FPN-1x 2019 [56] AB-TS
Gradient Harmonized Single-stage Detector X-101-64x4d-FPN-1x 2019 [57] AB-OS

Empirical Attention Faster R-CNN-R-50-FPN-attention-1111-dcn-1x 2019 [58] AB-TS
DetectoRS rcnn-R-50-1x 2020 [59] AB-MS

VarifocalNet (1) R-101-FPN-1x 2020 [60] AF
VarifocalNet (2) X-101-64x4d-FPN-mdconv-c3-c5-mstrain-2x 2020 [60] AF

SABL cascade rcnn-r101-FPN-1x 2020 [61] AB-OS
Generalized Focal Loss X-101-32x4d-FPN-dconv-c4-c5-mstrain-2x 2020 [62] AB-OS

Probabilistic Anchor Assignment R-101-FPN-2x 2020 [63] AB-OS
Dynamic R-CNN R-50-FPN-1x 2020 [64] AB-TS

AF: anchor-free; AB-OS: anchor-based one-stage; AB-TS: anchor-based two-stage; and AB-MS: anchor-based multi-stage.

(a) Faster R-CNN (b) RetinaNet

(c) Mixed precision trainin (d) Deformable ConvNets v2

Figure 4. Cont.
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(e) ATSS (f) Weight Standardization

(g) CARAFE (h) FSAF

(i) NAS-FPN (j) FoveaBox

(k) Double Head (l) Gradient Harmonized Single-stage Detector

Figure 4. Cont.
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(m) Empirical Attention (n) DetectoRS

(o) VarifocalNet (1) (p) VarifocalNet (2)

(q) SABL (r) Generalized Focal Loss

(s) Probabilistic Anchor Assignment (t) Dynamic R-CNN
Figure 4. Cont.
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(u) YoloV3
Figure 4. Loss curves for training (blue) and validation (orange) for each object detection method. For YoloV3, NAS-FPN, and FoveaBox,
we only show the validation curves since the log for these two methods did not return the training loss.

2.3. Performance Evaluation

We assessed the overall performance of the methods using the Average Precision (AP).
The AP is the area under the precision–recall curve. The precision and recall were estimated
using Equations (1) and (2). To obtain the precision and recall values, we defined the
Intersection Over Union (IoU). The IoU is the relation between the overlapping area and
the union area between the predicted and ground-truth bounding box. When a predicted
bounding box reaches a greater IoU value than the threshold, the prediction is classified as
true positive (TP). On the other hand, if the IoU value is below the threshold, the prediction
is a false positive (FP). Further, if a ground-truth bounding box is not detected by any
prediction, it is considered a false negative (FN). We used IoU thresholds of 0.5 (AP50),
the most common IoU thresholds used in computer vision.

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

2.4. Statistical Analysis

We performed the Shapiro–Wilk test to check the normality of the data. All samples
reported P-values greater than 0.05; therefore, we cannot reject the null hypothesis that the
samples were normally distributed. We also conducted Bartlett’s test for equal variances.
The p-values were greater than 0.05, failing to reject the null hypothesis, and we can, thus,
assume that the samples had equal variance. As for data independence, the samples were
randomly obtained from the set.

An ANOVA test with the Holm–Bonferroni post hoc test was performed in order to
assess if the means of best methods (top five + Faster R-CNN + RetinaNet) were statistically
different. For the ANOVA, the P-value was compared to the significance level (α = 0.05) to
assess the null hypothesis. If the p-value was equal to or less than the significance level,
there were statistically significant differences between the means. However, the ANOVA
test did not identify differences between pairs but indicated that not all AP50 means
were equal. Therefore, after rejecting the null hypothesis using ANOVA, the evaluation
proceeded using the post hoc test to identify the differences between pairs of algorithms.
We used the Holm–Bonferroni as a Post hoc to run the assessment of the experiment.

3. Results

Here, we present the results of our experiments. First, we performed a quantitative
and qualitative analysis for all 20 methods. Therefore, the results were separated by the
type of method, i.e., anchor-based (AB-OS: one-stage; AB-TS: two-stage; and AB-MS: multi-
stage) and anchor-free (AF). In the quantitative analysis, we evaluated the methods using
the IoU threshold of 0.5 (AP50). The qualitative analysis was conducted to identify in which
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situations the models had good and bad performance over different conditions, such as
shadow and overlap by other objects.

Later, we present the results for the second part of the experiments with the top five
models, Faster R-CNN, and RetinaNet. The images presented in this section were from the
test set; therefore, the images provide a better indication of the performance of the models.
Even though different areas (with different tree species, tree crown sizes, and distributions)
were used to train and test the model, the two images are from the same city. Thus, it is
not possible to comment on the capacity for generalizability of these models on different
datasets.

3.1. Anchor-Based (AB) Detectors

In this section, we discuss the performance of the one, two, and multi-stage anchor-
based detectors. For one-stage methods, the average AP50 was 0.657 ± 0.032. Table 3
shows the test set results for the one-stage methods. We observed that the Gradient
Harmonized Single-stage Detector outperformed all the others in AP50. The increase in
performance ranged from 1.4% to 10%. RetinaNet, NAS-FPN, and SABL provided similar
results. Probabilistic Anchor Assignment and Generalized Focal Loss presented similar
performances, and YoloV3 was the worst method.

Table 4 shows the performance for the two-stage and multi-stage (DetectoRS) methods.
During the test, on average, the two-stage and multi-stage methods reached 0.669 ± 0.023
for AP50. The Double Heads method achieved the best performance for these methods
when analyzing the AP50, outperforming the others from 0.2% to 6.8%. The CARAFE and
Empirical Attention methods obtained performances similar to Double Heads in terms
of the AP50. Faster R-CNN, DetectoRS, Deformable ConvNets v2, and Dynamic R-CNN
reached similar performances, and Weight Standardization provided the worst results.

Figures 5 and 6 show the tree detection achieved using the one-stage methods. As we
can see in Figure 5, for smaller tree crowns and even medium-sized ones, the one-stage
methods had good assertiveness. However, for larger crowns (Figure 6), we observed
a decrease in the performance, with Probabilistic Anchor Assignment being the unique
method with good performance. For more irregular trees, where the crown did not
have a circular shape, the methods usually detected more than one bounding box for a
given ground-truth annotation. In areas where there were large agglomeration of trees,
the methods did not detect the trees or detected only a part.

Table 3. Performance of the one-stage methods for the test set using AP50.

Model Test Set AP50

SABL 0.661
Generalized Focal Loss 0.677

Probabilistic Anchor Assignment 0.677
RetinaNet 0.650
NAS-FPN 0.658

YoloV3 0.591
Gradient Harmonized Single-stage Detector 0.691
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Table 4. Performance of the two-stage and multi-stage (DetectoRS) methods for the test set
using AP50.

Model Test Set AP50

Faster R-CNN 0.660
DetecoRS 0.651

Weight Standardization 0.631
Deformable ConvNets v2 0.657

CARAFE 0.697
Dynamic R-CNN 0.655

Double Heads 0.699
Mixed precision training 0.679

Empirical Attention 0.690

(a) Ground-Truth (b) SABL (c) Generalized Focal Loss

(d) Probabilistic Anchor
Assignment

(e) RetinaNet (f) NAS-FPN

(g) Gradient Harmonized
Single-stage Detector

(h) YoloV3

Figure 5. Examples of tree detection by the one-stage methods.
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(a) Ground-Truth (b) SABL (c) Generalized Focal Loss

(d) Probabilistic Anchor
Assignment

(e) RetinaNet (f) NAS-FPN

(g) Gradient Harmonized
Single-stage Detector

(h) Gradient Harmonized
Single-stage Detector

Figure 6. Examples of tree detection in areas with high density using the one-stage methods.

Figures 7 and 8 present the detection for two-stage methods. Similar to the one-stage
methods, the two-stage methods presented good performance in detecting smaller and
medium-sized tree crowns. For larger ones and in areas with a greater agglomeration of
objects (Figure 8), the two-stage methods performed substantially better than the one-stage
methods. Thus, these methods appeared to generalize the problem better with better
assertiveness in detecting the tree crowns in more complex scenes. Further, we observed
that the presence of shadow did not cause a great decrease in the detection. We observed
that the main challenge was to detect single trees with larger crowns and areas where the
limits of each object were not clear. In such cases (Figures 6 and 9), even for the human eye,
it is difficult to separate the trees from each other.
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(a) Ground-Truth (b) Faster R-CNN (c) DetectoRS

(d) Weight Standardization (e) Deformable ConvNets v2 (f) CARAFE

(g) Dynamic R-CNN (h) Double Heads (i) Mixed precision training

(j) Empirical Attention

Figure 7. Examples of tree detection using the two-stage methods.
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(a) Ground-Truth (b) Faster R-CNN (c) DetectoRS

(d) Weight Standardization (e) Deformable ConvNets v2 (f) CARAFE

(g) Dynamic R-CNN (h) Double Heads (i) Mixed precision training

(j) Empirical Attention

Figure 8. Examples of tree detection in areas with high density using the two-stage methods.



Remote Sens. 2021, 13, 2482 15 of 25

(a) Ground-Truth (b) ATSS (c) VarifocalNet (1)

(d) VarifocalNet (2) (e) FSAF (f) FoveaBox

Figure 9. Examples of tree detection in areas with high density using the anchor-free methods.

3.2. Anchor-Free (AF) Detectors

The results obtained for anchor-free (AF) methods are described in Table 5. In the test,
the anchor-free methods achieved an average performance of 0.686 ± 0.014. FSAF reached
the best performance in terms of the AP50 with 0.701. This demonstrated a superior perfor-
mance over the others, ranging from 0.9% to 3.7%. FoveaBox, ATSS, and VarifocalNet (2)
had similar results in terms of the AP50, and VarifocalNet (1) had the worst in performance.

Anchor-free methods demonstrated similar behavior when compared with the one-
stage methods. These models performed well for small trees (Figure 10). For occluded ob-
jects and more irregular tree crowns, we observed a decrease in the performance, with mul-
tiple detections and the detection of only part of the object. For areas with larger tree crowns
and more agglomerations, the performance also decreased. VarifocalNet (2) was the only
method that managed to produce relatively good detection in the most complex images
(Figure 9). This highlights that these areas with larger canopies and more agglomerations
are the main challenges for the methods.

Table 5. Performance of the anchor-free (AF) methods on the test set using AP50.

Model Test Set AP50

ATSS 0.692
VarifocalNet (1) 0.664
VarifocalNet (2) 0.683

FSAF 0.701
FoveaBox 0.692
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(a) Ground-Truth (b) ATSS (c) VarifocalNet (1)

(d) VarifocalNet (2) (e) FSAF (f) FoveaBox

Figure 10. Example of tree detection using anchor-free methods.

3.3. Analysis of the Best Methods

Here, we present the best five methods considering AP50, which were FSAF, Double
Heads, CARAFE, ATSS, and FoveaBox. We also included Faster R-CNN and RetinaNet,
since these two are commonly used in remote sensing. We noticed that none of the five
best were a one-stage method. As seen in the previous sections, the anchor-free methods
showed better average performance compared with the one and two-stage methods in
terms of the AP50. Figure 11 shows the box plot for the methods. Figures 12–15 show some
results for the best methods.

Figure 11. Boxplot for the best five methods plus Faster R-CNN and RetinaNet.

We observed that Double Heads, a two-stage method, achieved the best average AP50
(0.732), with differences ranging from 0.4%, when compared to ATSS, and 4.6%, when
compared to RetinaNet. ATSS and CARAFE achieved similar values with averages AP50
of 0.728 and 0.724, respectively, which were close to Double Heads. FSAF and FoveaBox
had slightly worse performances with average AP50 values of 0.720 and 0.719. Faster
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R-CNN (average AP50 of 0.700) and RetinaNet (average AP50 of 0.686) obtained the worst
average results.

Despite the performance analysis conducted using the AP50, we performed One-Way
ANOVA to assess if the averages of the AP50 values of the best methods were significantly
different. One-Way ANOVA for the top five, Faster R-CNN, and RetinaNet indicated a
P-value of 0.019, which is less than the significance level (α = 0.05). Therefore, we can reject
the null hypothesis that the results were similar. We continued the evaluation using a post
hoc test to identify differences between pairs of algorithms.

A simple strategy in multiple comparisons is to use α
m to evaluate the P-value, which

is the Bonferroni correction. However, this value is rigorous and can lead to the rejection
of a true null hypothesis (Type I error). Holm–Bonferroni adjusts the rejection criteria for
each comparison reducing the chance of a Type I error. The Holm–Bonferroni sorts the p-
values in increasing order creating a rank of P1, ..., Pk, ..., Pm and compares them with α

m+1−k
where k is the ranking order in the comparison. When Pk <

α
m+1−k is false, the procedure

stops, and we cannot reject the null hypothesis of the subsequent Pk. Table 6 shows the
results of the Holm–Bonferroni test. For simplicity, the column P-value corr represents this
comparison, and, when its value is lower than 0.05, we can reject the null hypothesis.

The results indicate that the results of RetinaNet were significantly different from
ATSS, CARAFE, and Double Heads. Further, a comparison between the other methods
showed no statistically significant differences. The test indicates that RetinaNet, among the
tested models, was not indicated for the proposed task.

Table 6. Multiple comparison Holm–Bonferroni test (FWER = 0.05, alphacSidak = 0.00, and
alphacBonf = 0.002).

Method 1 Method 2 Stat. p-Value p-Value Corr Reject

ATSS CARAFE 1.2172 0.2904 1.0 False
ATSS Double Heads −0.9589 0.3919 1.0 False
ATSS FSAF 1.2161 0.2908 1.0 False
ATSS Faster R-CNN 5.0387 0.0073 0.1166 False
ATSS FoveaBox 1.2631 0.2752 1.0 False
ATSS RetinaNet 37.9511 0.0 0.0001 True

CARAFE Double Heads −2.2274 0.0899 0.8987 False
CARAFE FSAF 0.6059 0.5773 1.0 False
CARAFE Faster R-CNN 3.8948 0.0176 0.2643 False
CARAFE FoveaBox 0.6554 0.548 1.0 False
CARAFE RetinaNet 9.7542 0.0006 0.0124 True

Double Heads FSAF 1.2605 0.276 1.0 False
Double Heads Faster R-CNN 3.7234 0.0204 0.2654 False
Double Heads FoveaBox 1.2241 0.2881 1.0 False
Double Heads RetinaNet 8.9582 0.0009 0.0163 True

FSAF Faster R-CNN 3.2573 0.0312 0.3739 False
FSAF FoveaBox 0.2654 0.8038 1.0 False
FSAF RetinaNet 6.0 0.0039 0.0699 False

Faster R-CNN FoveaBox −3.8623 0.0181 0.2643 False
Faster R-CNN RetinaNet 2.737 0.0521 0.5727 False

FoveaBox RetinaNet 5.4165 0.0056 0.0957 False
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(a) Ground-Truth (b) FSAF (c) Double Heads

(d) CARAFE (e) ATSS (f) FoveaBox

(g) Faster R-CNN (h) RetinaNet

Figure 12. Tree detection with the top five methods, RetinaNet, and Faster R-CNN: performance
with small and medium trees from several species.

(a) Ground-Truth (b) FSAF (c) Double Heads

Figure 13. Cont.
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(d) CARAFE (e) ATSS (f) FoveaBox

(g) Faster R-CNN (h) RetinaNet

Figure 13. Tree detection with the top five methods, RetinaNet, and Faster R-CNN: performance in a
high density scenario.

(a) Ground-Truth (b) FSAF (c) Double Heads

(d) CARAFE (e) ATSS (f) FoveaBox

Figure 14. Cont.
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(g) Faster R-CNN (h) RetinaNet

Figure 14. Tree detection with the top five methods, RetinaNet, and Faster R-CNN: performance
considering big trees.

(a) Ground-Truth (b) FSAF (c) Double Heads

(d) CARAFE (e) ATSS (f) FoveaBox

(g) Faster R-CNN (h) RetinaNet

Figure 15. Tree detection with the top five methods, RetinaNet, and Faster R-CNN: performance in a
challenging illumination scenario with shadows.



Remote Sens. 2021, 13, 2482 21 of 25

4. Discussion

Anchor-based one-stage methods achieved the worst average precision (0.657). Gradi-
ent Harmonized Single-Stage Detector was the best with an AP50 of 0.691, and YoloV3 was
the worst with 0.591 precision. The commonly used RetinaNet had an AP50 of 0.650, being
the second worst one-stage method.

A previous study [39] implemented RetinaNet to detect Phoenix palms with the best
AP value of 0.861; however, the authors split the dataset only into training and validation
sets and used a score threshold of 0.2 and an IoU of 0.4. This may be lead to better
performance. They also considered only one tree species as the target. Roslan et al. [41]
used RetinaNet to detect individual trees and achieved superior results with a precision of
0.796, and similar results were found by [42]. Refs. [41,42] utilized images of non-urban
areas (tropical forests). In our experiments, RetinaNet provided less accurate results among
the one-stage methods.

Anchor-based two-stage methods had the second best highest average AP50 of 0.669.
Double Heads had the best performance among these methods, and DetecoRS had the
worst. Faster R-CNN and RetinaNet (baseline) had similar results. Santos et al. [19]
investigated both methods and concluded that RetinaNet outperformed Faster R-CNN
and YOLOv3 in the detection of a single tree species, achieving an AP50 higher than 0.9.
Wu et al. [65] proposed a model that used Faster R-CNN as a detector in a hybrid model to
detect and segment apple tree crowns in UAV imagery.

In the detection section, the authors achieved high-precision for the task. However,
these authors considered only one tree species and used images with higher resolution
with small variation in scale. These factors may lead to better performance for the methods.
In the other hand, the anchor-free methods had the best average precision with 0.686. FSAF,
ATSS, and FoveaBox stood out among others. The results for the anchor-free methods
corroborate with the study of Gomes et al. [23], where ATSS also outperformed Faster
R-CNN and RetinaNet by about 4%.

Previous studies [28,29] also reported that two-stage methods had higher performance
over the one-stage methods, which corroborates our findings. We found that anchor-free
methods performed similarly to anchor-based two-stage methods. This behavior has
already been reported in the literature. The advantage of anchor-free detectors is the
removal of the hyper-parameters associated with the anchors, implying potentially better
generalization [29]. RetinaNet (one-stage) and Faster R-CNN (two-stage) showed relatively
poor results when compared with the top five methods selected. It is important to note that
these two methods have been reported in the literature as having superior performance in
other remote sensing applications [19,24].

As previously presented, our experiment aimed to detect all the trees in urban scenes.
Compared to the previous work that only targeted a single tree species, our objective was
considerably more challenging. First, urban scenes are more complex and heterogeneous.
Second, our dataset presented various tree species and tree crown sizes with overlap
between objects, shadows, and other situations. In the Campo Grande city urban area,
there are 161 tree species and more than 150 thousand trees. Thus, this complexity in
the task led to better performance of the two-stage anchor-based methods, especially
in more challenging images as can be seen in Figure 15. These methods first filter the
region that may contain an object and then they eliminate most negative regions [27].
Comparatively, [66] proposed the identification of trees in urban areas using street-level
imagery and Mask-RCNN [67]. They found an AP50 between 0.620 and 0.682.

5. Conclusions

Here, we presented a large assessment of the performance of novel deep-learning meth-
ods to detect single tree crowns in urban high-resolution aerial RGB images. We evaluated
a total of 21 object detection methods, including anchor-based (one, two, and multi-stage)
and anchor-free detectors in a remote sensing relevant application. We provided a quantita-
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tive and qualitative analysis of each type of method. We also provided a statistical analysis
of the best methods as well as RetinaNet and Faster R-CNN.

Our results indicate that the anchor-free methods showed the highest average AP50,
followed by anchor-based two-stage and anchor-based one-stage. Our findings suggest
that the best methods for the current task were the two-stage anchor-based and anchor-
free detectors. For the one-stage anchor-based detectors, only the Gradient Harmonized
Single-stage Detector performed slightly worse than the best methods. This may be an
indication that one-stage methods are not recommended for the proposed task. Meanwhile,
the two-stage (Double Heads and CARAFE) and anchor-free (FSAF, ATSS, and FoveaBox)
detectors achieved superior performance, which is the study’s suggestion for urban single
tree crown detection.

Our experimental results demonstrated that RetinaNet, one of the most used methods
in remote sensing, did not have satisfactory performance for the proposed task and unper-
formed several of the best methods (ATSS, CARAFE, and Double Heads). This may indicate
that this method is not suitable for the proposed task. Faster R-CNN had slightly inferior
results compared with the best methods; however, no statistically significant difference
was found. However, it is worth mentioning that research aimed at detecting single trees
in an urban environment is still incipient, and further investigation regarding the most
appropriate techniques is needed. In our work, we set out to detect all tree crowns in an
urban environment. This task is considerably more complex than detecting specific species
or types of trees since there will be a greater variety of trees. Likewise, images from the
urban environment are more complex and challenging than rural environments as they
present a more heterogeneous environment.

Our work demonstrates the potential of the existing techniques based on deep learning
by leveraging the application of different methods for remote sensing data. This study may
contribute to innovations in remote sensing based on deep-learning object detection. The
majority of the research applying deep learning in remote sensing was done using methods
dated before 2018 (e.g., Faster R-CNN and RetinaNet), and, with the development of new
methods, it is essential to evaluate their performance in these tasks. The development of
techniques capable of accurately detecting trees using RGB images is essential in preserving
and maintaining forest systems. These tools are essential for cities, where accelerated
population growth and climate change are becoming significant threats. Future works
will focus on developing a method capable of working with high density objects. We also
intend to increase the size of the dataset with images from different cities in order to obtain
models with better generalization capabilities.
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