FDUEF SFECTFAI AMALYSIS GF

To my little daughter Sofie
who had to be silent while her dad was studying 1 anguage.

SUMMARY.

The present study aims at evaluating structures and information transfer in text strings. 42 text strings written by children (younger and older) and 22 text strings written by adults (scientists, newspapers and childrens books) were analvsed in three wavs. Firstly by simple statistical means, secondly by a timeseries analysis based on Fourier analysis and thirdly by a pattern evaluation analysis based on the Fast fourier Transform, all three methods having been developed for this analysis.

The analysis involving simple statistical means was based on my discovery that the distribution of 'new' words along any natural text string is one of exponential 'decay'. In a doublelogarithmic coordinate system each text string can be represented by a straight line determined by the two parameters: intercept A and gradient E, both a function of how fast the vocabulary becomes exhausted as the string is extended. The numerical values of A and E were established for all the text strings, before and after permutation of the words in each text string, and it was shown that the permutation of the strings caused intercept A to increase and gradient E to decrease significantly thus indicating that A is invertedly, B directly related to sequential structure. The analyses established that adult text strings have a higher level of sequential structure than do childrens strings and that amongst adults. fopular newspapers have the highest level of structure as well as the highest vocabulary.

A computer model (the 'model of best fit') of language perception was created in which the sememe evaluation and information transfer of the human 'linguistic device' - two features which are not easily simulated by a computer - is instead represented by one procedure which lends itself to computer processing and numerical analysis. In this model each incoming word is checked against a "reference field" and sememe evaluation and information transfer are seen in terms of length of text string between reappearances of words. Fefore the text strings of this study were subjected to power spectral analysis, they were processed by this "model of best fit’.

The two different methods of Fourier analysis gave virtually identical power spectra when applied to the same text strings. The Mean Fower Density (MFD) and the Variance (CHI2) were measured from the power spectra of 25 of the childrens text strings and all 22 adult text strings. Although only by a small amount, MFD's were consistently higher for adults than for children, confirming earlier findings that adult strings have a higher seqential structure than childrens strings, although the significance level did not quite make it to the 5% level. CHI2 of the spectra turned out to be much more significantly correlated with age and language development than was vocabulary and gradient B earlier. The 'reference field', defined in the study, was the parameter with the highest correlation with language development. The popular press had the highest MFD, CHIZ and 'reference field of all text strings. Both MPD and CHI2 decreased with permutation although only the difference with regard to CHI2 was significant. Eoth emission and absorbtion features were present in all the power spectra. It was suggested that these features represent generative and filter (lexical) functions of the 'linguistic device'. The position of two of the peaks in the power spectra were shown to be common to most of the spectra. These were ' $F=0.484$ in the childrens spectra and $F=0.375$ in the adults' spectra. Finally it was shown that when a grammatical category (eg. nouns) were weighted in different text strings, the same peak(s) appeared at about the same frequency in the different spectra, suggesting that identical, grammar specific, generator and filter functions were involved in the generation of the different text strings.

CONTENTS.

Inde: of adult text samples used in the studv..........................

\qquadFREFACE1
Chapter 1. INFORMATION THEORY 2
Fieflections on Information Theorv 8
Chadter 2. INFORMATION THEDRY IN LINGUISTICS 10
Applving Information Theory to the surface level 12
Feflections on language science ve lanouade behaviour 16
Chapter 3. LINGUISTIC MODELS RELEVANT TO THIS COURSE 19
Ear-Hillel and Rudolf Carnap's model 20
Constituent structure 22
Immediate Constituents analvsis 24
Transformational orammar 26
Minstiv's Frame Theorv. 33
Chapter 4. TEXT SAMFLES USED IN THIS RESEAFiCH 37
Introduction to strinos written bu children 38
Inde: of strinos written bu children 40
Introduction to strings written by adults. 89
Index of strinos written by adults 90
Chapter 5. EVALUATION OF STRUCTURE IN TEXT STRINGS 129
USING SIMFLE STATISTICAL ANALYSES
141
141
Intercept A measured over 100 words 142
Gradient E measured over 100 words
143
143
Vocabularv measured over 100 words.
Vocabularv measured over 100 words. 144
Discussion of analvses.................................
144
144
Distributive, sequenti 155
Chapter 6. IMFLEMENTING METHODS OF CHAFTER 5. 157
Description of prooram vocout 157

- - - PERMUTATE 15 B
TESTRUNS 158
Program code vocout 161
- PERMUTATE 165 168
Chapter 7. BASIS AND METHOD OF FOURIER ANALYSIS 172
Two applications of Fourier analveisto 'black box' svstems183
187
Chapter 8. MEANING AND THE FROCESSING OF TEXT STRINGS 187
Theories of meaning
188
188
- - - according to John Lyons.... 189
The semantic implication of the thearv of frames 191
Meaning and context 194
Selectional restriction 195
Practical implementation of model of 'best fit". 197
Chapter 9. FFOGFiAMS IMFLEMENTING METHODS DF CHAPTER 8 203 204
Description of prooram FINDRF
Description of prooram FINDRF Description of program INFORTS (TIMESEFIES) 205
- $\quad-\quad$ - INFOR25 (FFT). 211 214
- - - - INFOFNORMALISED. 217
FLOTNOFMALISED. 218
Frooram code FINDFiF. 220
- - INFORZS (TIMESERIES) 224
- - INFQRZS (FFT) 231
- - FLOT25. 237
- - INFOFNDRMALISED 245
_ _ FILOTNOFMALISED 251
Intermediate results from INFOFinsTIMESERIES 254
Chanter 10. THE OFTIMAL SIZE OF REFERENCE FIELD. NUMEER OF FFEQUENCY FOINTS IN POWER SFECTRUM. AND WINDOW 256WIDTH.
Optimal size of reference field 256
Number of frequency points in power spectrum 259
Optimal size of measuring window. 261
Statistical sionificance 267
Overall power. 267
Fower in low-frequency bands 268
Stationaritv 268 268
Summarv of optimal parameters. 271
Chapter 11. FOWER SFECTRAL ANALYSIS DF TEXT STRINGS 272
Labeling of averaged power spectra. 274
Statistics of averaged power spectra 275
Power spectra of window-oroup 64, averages 277
Statistical evaluations of window-group 64 285
Fower spectra of window-group 128, averages..... 288
Statistical evaluations of window-group 12日 296
Fower spectra of window-oroup 256, averages 300
Statistical evaluations of window-group 256 306
MFD before and after permutation of text strings. 309 309
CHI2 before and after permutation of text strings 310
Distribution of runs before and after permutation. 312
Reference fields 314
Distribution of power in power spectra 315
Discussion of analvees in this chapter 320
Chapter 12. GRAMMATICAL CODING, A FILOT STUDY 322
Alionment of spectra from timeseries and FFT 322
Smoothing of spectrum...................."Mical coding 323
Analvsis of text strings with grammatical coding 324 324
Noun weighting 325 325 327
Verb weighting
Weighting of sentence subject 328 328
Discussion of above analvsis 329
Chapter 13. CONCLUSION 331
Aim of the studv 33
Methods 333
Data base. sampling and classification 334
Results of analvses........................ 338
AFFENDIX TO CHAFTER 5 341
AFFENDIX TO CHAFTER 10 452
AFFENDIX TO CHAFTER 11 456
AFFENDIX TO CHAFTER 12. 660

ADULT TEXT SAMPLES USED IN ANALYSES:
(All samples are printed in chapter 4; index on page 91)

SCIENTISTS.

RUSS1:
B.Russell: "History of Western Fhilosophy", Allen \& Unwin Ltd., London, 1961, pp 13-14.

RUSS2:
B.Russell: "History of Western Philosophy", Allen \& Unwin Ltd., London, 1961, pp 14-15.

RUSS3:

B. Russell: "Frinciples of Mathematics", Allen \& Unwin Ltd., London, 1956, pp 66-68.

RUSS4:
B.Russell: "Collected Stories of Bertrand Russell",
'History as it was never tald'
Barry Feinberg (ed).
Allen \& Unwin Ltd. , London, 1972.
RUSS5:
B.Russell: "Collected Stories of Bertrand Russell",
'Childrens Stories'
Barry Feinberg (ed).
Allen \& Unwin Ltd., London, 1972.
LABOV:
W. Labov: "The Logic of Nonstandard English",
in
'Language and social context',
F.F. Giglioli (ed)

Penguin, 1972,
pp 182-184.
BRUNER:
J.S. Eruner, J.J. Goodnow, G.A. Austin: "a study of Thinking", J. Wiley \& Sons, New York, 1956,
pp 76-78.
FRANKENA:
W.K. Frankena: "Ethics",

Prentice-Hall, New Jersey, 1963,
pp 39-40.
CHOM:
N. Chomsky: "Apects of the theory of syntax", M.I.T. Press, 1965, pp 139-141.

NEWSPAPERS.

DREC2:
Daily Record, 21 Sept. 1981, pp 16-17.
John Miller: "A Fenny for your thoughts now Miss Keith".
HERALD:
Glasgow Herald, 12 Sept. 1981, page 1.
George Macdonald: "Jobs blow as gas pipeline plan is axed".
GUARD:
The Guardian, 18 June 1983, page 13.
'Feter Mullen': "The Church is a hypocritical ass".

MAIL:
Daily Mail, 8 sept. 1981, page 7.
Andrew McEwen: "The masters who mystified the Moonies".

CHILDRENS BOOKS:
FAD1:
M. Bond: "A Eear called Faddington".

Fuffin Books, 1965,
pp 7-12.
FAD2:
M. Eond: "More about Paddington".

Fuffin Books, 1965,
pp 39-42.
FADS:
M. Fond: "Faddington helps out".

Puffin Books, 1965,
pp 40-43.
PAD4:
M. Rond: "Faddington at Large".

Fuffin Books, 1965,
pp 76-79.
POOH:
A.A Milne: "Winnie the Fooh".

Methuen \& Co Ltd, 1976,
pp 30-34.
ALICEB:
L. Carroll: "Alice's Adventures in Wonderland".

Macmillan, 1865,
pp 126-131.
ALICEL:
L. Carroll: "The Nursery Alice".

Macmillan, 1890,
pp 37-41.
GULL:
R. Bach: "Jonathan Livingston Seagull". Pan Books Ltd, 1973, pp 13-15.

LITERATURE REFERENCES:

```
AUSTIN. J.L.:
"Ifs and cans"
in
Austin. J.L.
"Fhilosoohical Fapers"
Clarendon Fress. 0%ford. 1961.
RRACEWELL: F.:
"The Fourier Tansform and Its Applications".
McGraw-Hi.11, New York, 1965.
CAMFEELL. R.N.:
"Coonitive development and child lanolage".
in
Fletcher. F. and M. Garman (eds):
'Language Acquisition'.
Cambridoe U.F. 1979.
CAFNAF. R:M
"Looical Foundation of Frobabilitv".
Univ. of Chicago Fress. 195S.
CARNAF, Fi., and Y. EAR-HILLEL:
"An Outline of a Theory of Semantic Information",
M.I.T. Technol. Research Lab. Electronics
Technical Feport No 247. 1950.
CHOMSKY. N:
"Three models for the description of lanouage".
Transactions on Information Theorv
Vol. IT-2. pp 113-124. 1956.
CHOMSKY. N:
"Aspects of the Theorv of Svntax"
M.I.T. Fress: 1965.
CHOMSKY. N:
"Language and Mind".
Harcourt: Erace and Wold, 1968.
CHOMSKY. N:
    "Reflections on Lanouage".
Fontana/Collins: Glasgow, 1975.
    CODLEY: J.M., and J.W. TUKEY:
    "An algorithm for the machine calculation
    of complex Fourier series".
    MATH. Comp., vol 19: 1965.
    HAMMING: R.:
    "Numerical Methods for Scientists and Engineers":
    McGraw-Hil1, 1973,
    JENSEN. K.. and N. WIRTH:
    "Fascal, User Manual and Report".
    Springer Verlag. New York, 1975.
    JOHNSON-LAIRD, F.N.s
    "Mental Models"
    Cambridoe Univ. Fress. 1983
```

LABOV. W:
"The looic of nonstandard English". in
Georgetown Monoor aphs on
Language and Linguistics. vol.22. 1969. PP 1-ふ1.

LAROV: W:
"The studv of language in its social context". Studi um Generale. vol.23: 1970. fp 66-84.

LASKY,F.: A.SYRDAL-LASKY: and Fi.KLEIN:
"VOT discrimination bv four-to-six-monthe-
old infants from Spanish environments"
J. Exp. Child Psych. Val. 20. 1975. pp $215-225$.

LENNEFEF:G: E.H.:
"Eiolooical Foundations of Lanouage".
Wiley. New Yorti. 1967 cit. p. 365.
LIEEFMAN.A.M. I.G.MATTINGLEY, and M.T. TUFVEY:
"Language Codes and Memorv Codes".
in
"Coding Frocesses in Human Memorv"
A.W.Melton and E.Martin (eds).

Washington DC. 1972.

LYONS. J.:
"Lanouage. Meaning and Contest".
Fontana. 1983.
MILLEF: G.A.:
"The macical number seven. flus or minus two:
some limits on our capacity for processing information".
Fsvch. Fiev. vol.b3. 1956. pp 81-97.

MINSFY. M.L.:
"A framework for Representing Kinowledoe"
in
"The Fisvchology of Computer Vision"
Winston. P.H. (ed).
MacGraw-Hill N.Y. 1975

MINSKY. M.L. and PAFERT: S.
"Perceptrons".
MIT Press. 1972.
MONTAGUE. R.:
"The Proper Treatment of Quantification in Ordinary English" in
'Approaches to Natural Language: Froceedings of the 1970 Stanford Workshop on Grammar and Semantice." Dordrecht and Reidel Publ.Ca. 1973.

MULDER, L.J.M.:
"An Algol computer program for the spectral analysis of heart interval rate signals",
Hevmans Bulletins, Fsveh.Instit.
R.U. Groningen. 1979. No. 79-HE-439 RF.

PUTNAM, H .8
"Minds and Machines"
in
"Dimensions of Mind"
Hook. S. (ed)
N. V. Univ. Fress. 1960.

FANDALL, Fi.E.:
"Ceostrum Analvsis and Gearbar Fault Diagnosis". Bruel and kijaer appl. note no 2ふふ-80. 1980.

FEZA. F.M.:
"An introduction to Information Theorv". McGraw-Hil1. New Yort: 1961.

SAUSSURE, F.de:
"Cours de linguistique oenerale"
Faris. 1916.
SHANON. C.E.:
"A Mathematical Theorv of Communication".
Eell Svet.Techn. Journ. no 27. 1948.
reprinted as bool: (with an article of W. Weaver): Univ. of Illinois Fress. 1949.

SLQEIN. D.I.
"Coonitive prerequisites for the acquisition of grammar". in
C.A. Ferouson and D.I. Slobin (eds):

Studies of Child Lanouage Development" Holt. Finehart \& Winston. 1973.

WEINREICH. U.:
"Explorations in Semantic Theorv"
in
"Current Trends in Linouistics". vol $\overline{3}^{\prime}$
Sebeal: T.A. (ed)
Monton. The Hague.

All in the golden afternoon Full leisurely we glide: For both our oars, with little skill. Br little ares are plied. While little hands sake vain pretence our manderings to quide.
C.L. Dadgsan.

MIEFAES.

This present work is an atteapt to evaluate structure in text strings. 'Structure' is here taken to nean structure in the inforation theoretical sense as opposed to the concept of structure in the grasear-based structuralise usuallv associated with structural analysis of text strings. For this reason, this thesis begins with an exanination of Inforation Theory with particular eaphasis on the concept of structure within this theory.

The seaning of 'textstring' is the one usually accepted in linguistics i.e. not restricted to written conaunication. The text strings written by adults and used in this stuiy have been picked from a nuaber of books, while the text strings written by children have been written specifically for this study. However, even if the database of this study has been written text strings, it could in principle have been transcripts of spoken text strings. The eain reason for oy not using spoken strings has been the great number of repetitive and irrelevant? features such strings exhibit.
Hy prelisinary research into structures in text strings mas based on the established concept of vocabulary coabined with sone relatively simple statistical methods. This research is presented in chapters 5 and 6.

The severe linitations of the established concepts of words and vocabulary - and therefore of the outcose of this analysis based on siaple statistical sethods - however, coapelled ae to develop a more dynasic model of cognitive processing of text strings. This dynamic eodel is presented in chapter 8 as the sodel of 'best fit'.

The ultiaate ain of ay research has been to gain access to the so called 'linguistic device' i.e. to find particular features, acongst the general structures in text strings, which are telltales of the sub-controls in this 'device' rather than just the output fron the 'device'. In this study, the 'linguistic device' is seen very euch as a 'black box' with the text strings foraing the output fron the box. Because of the successful application of Fourier analysis to 'black box' probleas in other fields, this particular kind of analysis was chosen to evaluate the structures in the text strings used in this study.
The explanation, eodification and application of Fourier analysis to our particular signal base - the text strings is presented in chapters 7, 8,9 and 10, while the analyses theaselves are presented in chapters 11 and 12.

Due to the vast nuaber of mords analysed in this research and the coaplexity of the aathenatical analysis involved, the reading of the text strings and the analysis have had to be done autonatically with a coaputer and consequently with no 'husan toush'. This in turn has ceant that even if some of ay considerations regarding the way in which the 'linquistic device' functions aay have sone relevance, ay analysis can at best be seen as a very crude afteapt to sioulate cognitive language processing. However, it is a beginning, and even if this sieulation of cognitive language processing has obvious lisitations, the results presented in this thesis do indeed suggest that the Fourier analyses have picked up some of the underlying structures of the text strings.

In spite of the present research not being based on any particular linguistic school of thought, sone of the results of this study can be seen as graphic representations of the 'generative' and 'lexical' capacities of sone of the sore recent transformational grasaars. However, it is worth keeping in aind, that the eethod of analysis, presented in this paper, has not to ay knowledge been atteapted before and the results should therefore be treated with caution.
This thesis can be read on reveral levels. The theory and the aethods behind the analyses in this thesis are complex at lines - so far fros the 'Full leisurely me glide' of the poes by Lemis carroil (top of page). If you feel this to be the case, you are taking it too seriously. The understanding of the intricacies of Fourier analysis and the statistics involved in the evaluation of the results is not a condition to the understanding of this study.

The spirit of eost of the research in this study was that of solving an exciting puzzle; a succession of 'what if....'s alternating with 'mat then....'s. Indeed, this research was mever intended to be core than an exploratory trip along the banks of substance and fors on that 'golden afternoon'.

CHAPTER 1.

INFORMATION THEORY.

The mathematical discipline, which is now called information theory. was founded by the American engineer C.E. Shannon in 1948 in 2 articles "A mathematical theorv of communication" in Bell Svstem Technical Journal. The term "information theory", which was not coined by Shannon himself: is an unfortunate choice, since it tends - due to the common sense meaning of "information" - to qive raise to expectations, which the theory cannot satisfy.

The theory deals with the transmission and reception of signals and the statistical considerations of error and success in this process. Information in this sense has nothing to do with meaning and savs nothing about the value of the information in itself. Information in these terms is an absolute quantity which has the same numerical value for any observer. The human value of information, which the theory takes no account of, would necessarily be a relative quantity and would have different values for different observers.

The theory is based on statistics and applies to the following problem: After an experiment with a given number of possible outcomes has been fullv explored, we will have gained some information. Can we measure this information?
As this information can not arise from nothing we will regard it as having been present in some form in the system before our influence transformed this form into information.

What is this substance then that information is made from. What do I mean when I sav that it is transformed into information. Let us try and compare the situation before an experiment is carried out with a well known situation. You are setting up the new TVset and everybody is gathered around you in admiration of your anticipated skills. You switch the set on and try to find the proper channels. The screen is but a big grey frame of black and white dots jumping about in the milliors: a picturesque example of what a mathematician would call randomness and an electronic engineer would call noise. As you turn the channel selector, the random pattern here and there along the line of search changes into lumpy conglomerations of black and white. The whole thing looks like a jigsaw puzzle put together by a monkey. By this time the grateful audience will boost your ego by telling you that the picture is there and some anicable discussion will arise as to what the picture is a picture of. One and each of vour little herd will analvee this near-random pattern and suggest a solution and eventually one suggestion will change everybody's perception of the screen as being a puzzle and everybody will aggree and say "oh" and "of course", and so meference has been found by which the whole random pattern suddenly reveals itself as a picture of
somethino.
What hadpened in this example - if we strip it of its homelv atmosphere - was. that we decreased the level of randomness in a svstem bv applvina a structure to it. therebv transformina some of the randomness into information.

The potential for information or the form which can be transformed into information is called entropy with a term borrowed from the field of thermodvnamics. Entropv is a measure of the lack of structure and if we take a common thing like water as an enample and look at what happens on a molecular level when we chanoe the temperature of the water, we can oet an idea of what entropv is a measure of. Let us imadine, that we could magnify a lump of ice so much that we could see the verv molecules: we would then see them quite stationarv. Although the molecules would themselves writher about a little. thev would still stav within a confined space and fixed distance to other molecules all qiving the impression of a structure. which is of course the crvstalline structure of ice. As we heat the ice - as we increase the entropy of the "subsvstem" ice-water - the increasing entropv will eventuallv - when this subsvstem has reached a level of entropv which we in our human "svstem" call zero centigrade - break the bindinas between the water molecules giving them freedom to move about in a less structured - more random wav. We say in the svstem which represents the human realitv and which is overlaving the subsvstem ice-water. that the ice has melted. As we increase the temperature of the water. or: increase the entropv of the subsvstem water. the water molecules move about more and more at random until the entropy has reached a level. where anv additional input of entropy will aive the water molecules enough energy to escape the subsvstem and move into our "svstem". In the human "svstem" the temperature of the water is now hundred centiorade: and the escaped molecules are called "steam". We sav that the water boils. The boiling point of water represents this subsvstems hiohest dearee of randomness. temperature. entropy or lack of structure. It is clear enough now. that there is a link between temperature. entropy and randomness on one side and information and structure on the other side. Thev are merelv different wavs of expressina the same concepts in different svstems. It is equally clear now. that as we increased the temperature in our svstem. we increased the entropv and the randomness in the subsvstem.

As a simple experiment let us take the throw of a dice. If the dice is unbiased we know that each of the six faces has an equal chance of $1 / 6$ th of comina up.

Before we throw the dice we are UNCERTAIN about which face will come up. Instead of the concept of 'uncertainty' we shall use the concept from the theorv of thermodynamics of "ENTROPY" and we shall define the entropy H of the experiment before the throwing of the dice as

$H(T)=100(6)$

We now know. that before the dice had come to rest we had an uncertainty. or entropy as we have chosen to call it, of $100(6)$. After the dice has come to rest the uncertaintv no longer exists - the entropy has become zero - and we have oained some information. The entropv. which was loo(6), has become zero and it seems
reasonable to equal the amount of information gained with the amount of entropr lost. If we look at what has taken place during the experiment. we could clarify the transfer of entropy into information like this:

ENTROFY	INFORMATION
$\log (6)$	0
0	$10 g(6)$

As we can see, entropv and information are reciprocal. and for this reason information is sometimes termed "negentropv". This is not a verv helpful concept however, and is mentioned here only as a curiositv.

More generallv we have that the information gained from the experiment with N equally possible outcomes is

$$
\begin{equation*}
I(E)=100(N) \tag{2,1}
\end{equation*}
$$

Looking at equation (2.1) we can see. that the higher the number of possible outcomes of the experiment: the higher is the transfer of entropy into information taking place during the experiment. and there is theoretically no limit to the positive size of I. It is easy to see too, that if there is only one possible outcome then the entropy is zero (log $1=0$) and as there in this case can not be any transfer of entropy into information, we get the perfectlv reasonable result that there is no information oained from an experiment with only one outcome.

In the field of thermodvnamics. from where the concept of entropy comes, the logarithm used is the so called natural logarithm, the base of which ise $=2.71828$. . We could choose what ever base we wanted. but dealing with signals and electronic communication hardware the obvious choice would be a logarithm with the base 2. since so many situations in communication can be described in terms of 2 states: "low level - high level" or "o - 1 ". When we write log in the future we will therefore understand the logarithm with base 2.

For all loqarithmic functions - whatever the base of the logarithm - we have that

$$
\log (N)=0 \quad \text { for } N=1
$$

so, recalling the experiment with onlv one outcome, it does not depend on which base we have chogen - the information gained from an experiment with onlv one possible outcome is alwavezero.

Let us consider a pack of $32 \mathrm{different} c a r d s$ of which we will select one at a time - and put it back - until we are shure that we have been through them all. As 32 equals 2 in power 5 the logarithm of 32 is 5 and the information gained $i s$ s. It has become customary in information theorv to say that the unit of information is "bit" (short for "binary digit"), so we would say that the information gained $1 s 5$ bit.

Let us now consider two separate pack of cards each containing 32 different cards and 1 et us keep picking 2 cards, one from each pack. until we find no new combinations of the two cards we pick each time. The number of possible wavs in which this can be done
is 32432 and the information derived from this experiment would therefore be $1 \mathrm{gq}(32 * 32)=10 \mathrm{~g} 1024=10 \mathrm{bit}$. This seems perfectly reasonable since we would have expected to gain twice as much information from this experiment as we had from the above mentioned experiment. It is easy to see now, that the reason for using a logarithmic function in (2.1) is the additive propertv of such functicins.

We have - in our imaginary experiments - so far dealt with number of outcomes. As it is often more practical to use probabilities we will change (2.1) to accommodate probabilities rather than number of outcomes. To return to the throw of a dice, we know. that each of the 6 faces has an equal chance of coming up and we sav that the probability of any single face coming up is 1/6th. More qenerally we have that the probability p that one particular outcome out of N possible outcomes will occur is equal to $1 / \mathrm{N}$ where N is the number of possible outcomes, and if we want to substitute number of outcomes with probability in (2.1) we get

$$
\begin{equation*}
1(E)=-1 \circ g(p) \tag{2.2}
\end{equation*}
$$

Since the logaritim to a number between 0 and 1 is itself negative, the information derived from (2.2) is of course still positive.

Similar to our considerations regarding (2.1) we realise: by looking at (2.2). that the smaller the probability is, the higher is the information gained when the experiment is fullv explored.

It is important at this stage to emphasize, that the amount of entropy retained in such an experiment is not released by any single action, e.g. a single throw of a dice. As mentioned above, information theorv is a statistical theory and vou do not make judgements on single cases in statistics. statistical assessments are retrospective by nature, and when we make statistical judgements likes the probability that one particular face of a dice comes up is 1/b. we are reallv not saying anything about the single outcome of a throw of a dice. What is hidden in the statement is the assumption that if we were to throw a dice many times - and that means: more times than there are different outcomes - then this particular face in question would come up (ideallv) 1/6 of the times.

It is important to understand that if it was not for reasons of simplification we should not betalking about single action experiments at all. Many introductions to information theory fail to emphasize this and often state that the information gained from the throw of a dice would be $I=-1 \circ g(1 / 6)$, and that the higher the number of different possible outcomes of an experiment, the higher is the information gained when one outcome is picked or confirmed. This is not the case. I shall later explain this more thoroughly. At this point I will just stress that the information $I=-10 g(1 / N) \quad i s$ the amount of information wich can (ideally) be gained from the FULL exploration of the experiment with N equally possible outcomes: NOT the pick of a single outcome. If we do want to look at single actions like the eingle throw of a dice, we will then have to talk about the average information per outcome, which in the case of a dice would be
$I(e a c h f a c e)=1 / 6 * I(d i c e)$ bit

$$
=-1 / 6(10 \mathrm{~g} 1 / 6) \text { bit }
$$

which mare generally, for the experiment with N equally possible outcomes can be written

$$
\begin{align*}
I(\text { average }) & =-1 / N * \log (1 / N) \text { bit } \\
& =-p l o g(p) b i t \tag{2,3}
\end{align*}
$$

Now let us consider what would happen if the dice was biased. The probability of each face coming up would no more be exactly $1 / 6$. When we counted the number of times each face had come up after a oreat number of throws we would find that some faces had turned up more than $1 / 6$ of the total number of throws and some had turned up less than 1/6, but the sum of the fractions would of course still be 1.

If we were to sum up these different amounts of information we could of course write that

$$
\begin{aligned}
I(\text { dice })=\quad & I(f a c e ~ 1)=-p_{1} \log \left(p_{1}\right) \text { bit } \\
& +I(f \text { ace } 2)=-p_{2} 10 g\left(p_{2}\right) \text { bit } \\
& +I(f a c e ~ 3)=-p_{3} \log \left(p_{3}\right) \text { bit } \\
& +I(f a c e ~ 6)=-p_{6} 10 g\left(p_{6}\right) \text { bit }
\end{aligned}
$$

(where $p+p+p . . .+p$ aqain equals 1), but the established way of expressing this summation would be

$$
I(d i c e)=-\sum_{n=1}^{n=6} p_{n} \log \left(p_{n}\right) b i t
$$

or more qenerally where the case is not a dice but an experiment with i outcomes

$$
\begin{equation*}
I(\exp)=-\sum_{n=1}^{n=j} p_{n} \log \left(p_{n}\right) \text { bit } \tag{2.4}
\end{equation*}
$$

This is in fact the main theorem - sometimes called the first equation - of the information theorv. Again the sum of all the different probabilities equale 1 or put another way

$$
\sum_{n=1}^{n=1} p_{n}=1
$$

and we can see now, that (2.2) is just that special case of (2.4) where all outcomes are equally probable and we therefore immediately can set $p=1$ without special concideration to differing probabilities of single outcomes.

A couple of practical examples:
If we substitute in (2.4) with the relevant values for an unbiased coin we get that the information gained after several throws 18

$$
\begin{aligned}
I(\operatorname{coi} n) & =-\sum_{1}^{2} 0.5(\log (0.5) \text { bit } \\
& =1 \text { (0.5 }
\end{aligned}
$$

and likewise. the substitution in (2.4) with the values for an unbiased dice would give

$$
\begin{aligned}
I(d i c e) & =-\sum_{4}^{6} 0.167+10 g(0.167) \text { bit } \\
& =2.6 \text { bit }
\end{aligned}
$$

which again is the information gained after experiment "dice" is fullv exhausted.

REFLECTIONS ON INFORMATION THEORY.
The relevance of information theorv to the research presented in this thesis arises from the idea that a natural text string in some respects can be compared to a successions of dice throwings. At everv encounter with a word in the string our linguistic device selects one meaning of a word from a number of possible meaninas.

As explained much more thoroughly in chapter 8 , most of the words we use have a number of uses, each with smaller or greater variation in meaning. The particular meaning of a word in a text string depends on the context in which the word is embedded. When one particular use of a word, out of a number of possible uses, has been established, we have established the meaning of the word in its particular context. From the introduction to information theory above, we know that when we, out of a number of possible outcomes, establish one single outcome, there is a transfer of information. The greater the number of possible outcomes, the areater is the transfer of information. once the single outcome has been established. Roughly speaking. the number of possible outcomes is given by the number of possible uses of a word. When we have established which use of the word makes most sense in the given context. we have the result of the "experiment" - the meaning of the word in this particular comtext - and the information transfer has taken place as a result. This is obviouslva very crude attempt to apply the principles of Information Theory to lanquage perception, but I think that the similarities shall become more striking in later chapters.

More generally, one of the problems arising from trying to explain a statistical model like information theory, let alone attempting to apply it to human reasoning, is that as soon as we move into human perception and language, we are dealing with manv-valued, often concealed quantities, all highly non-mathematical ground.

Take for example the word "dice" used in the beginning of this chapter in a deseribtion of a simplistic experiment. Ideally, to start the experiment 'throw of a dice' without any information at all. We should not have used the word dice since in the concept of 'dice' is already the knowledge of six faces numbered consequtively with the numbers one to six: three important features of information. We should have used a word like 'polyhedron' instead of 'dice'. However, in most of real-life experiments we do not start out with zero information. We start out with both knowledge about initial conditions and expectations about outcome.

This leads us to a very important point. Contrary to the impression one gets from most introductions to information theory, information is NOT hanging around in big balloons waiting to be pierced by inquisitory minds. To gain information mbout a system you have to put as much IN to the system as you want to get out in theory. In practice however, you will always have to put MORE into the system than you want out because of inevitable losses.

Let us oo back to the dice. Because of the information inherent in our idea of what a dice is, we have, already before we start tossing the dice, an expectation as to how the output will be structured and we use this structure to retrieve the rest of the information - which of the six number of eves came up. This is verv typical of the way we retrieve information in real life. We use structures - or information - from some systems to retrieve information from other svstems, alwavs moving forwards and backwards between randomness and structure, sometimes increasing randomness in one svstem to retrieve information from another svstem. Because of this duality, this balance between input and output, the equations for the measure of information arrived at earlier in this paper are not only measures of the information we can get out of a system, they are as well measures of the minimum amount of information needed to put into a svstem to "map" or understand this svstem.
To illustrate this point let us return to the tossing of a coin. As vou remember, we calculated the information gained from this "experiment" (several tosses of the coin) as being 1 bit, but this is at the same time the (minimum) information needed to "map" the system "coin".

The fact, that we bv inputting only one bit into a system can map this system is used in the very efficient way of information retrieval called binary search. This is basically done by dividing the masses of information, that have to be searched, into two subgroups and establishing which of the two contains the wanted information. When this subgroup has been found, this group is itself divided into two groups and so on by dichotomy until in the end one of the two groups is the wanted element of information.

It is often difficult, if not impossible, to assess the bidirectional flow of entropv and information in a svstem or between a svstem and any number of subsvstems. This is because the dearee of structure in one system depends on which other svstem we compare it to, and although we are able to give an exact measure of the entropy of one system, it still depends on the entropy of another system whether the flow of information would go one way or another. It is entirely like two jars of warm water. If I hold them in my hands, they may both seem warm to me, that is, the entropy is decreasing in both jars and increasing in my hands, but interconnected by a hose and otherwise isolated from the environment the entropy will flow from the relatively warmer jar to the other jar until the entropy has reached an equilibrium in the two jars. This demonstrates how degree of structure and flow of information or entropy depend entirely upon which system we decide to use as our frame of reference.

It is our fate as humans that we are the creatures most able to direct and increase the flow of entropy and information at will. We are like little creatures hungering for structure. From the first genetically inherited structures make it possible for us to structure an otherwise random flow of information, it is a tragic and incomprehensible fact that we move, during our life, through ever increasing structures always using formerly acquired structures to create new more complex ones until ultimately our structures - vou and 1 - dissolve.

From the second law of thermodynamice we know that the overall
amount of entropy of all the systems involved in an exchange of entropv or information can never decrease. It can remain constant or increase. Because of this fact. all our harnessing of the entropv around us, all our wrenching structures from randomness is in some respects futile. We are merely redistributing structures. We mav have been creating structures in one system where there were randomness before, but this has only been possible at the expence of structures in one or more other system/s.

I shall not dwell with the extent of this chinese box of subsvstems-systems-supersystems: only state that the intrinsic losses in all heat transfer from any system to its surrounding svstems alwavs entails that the total amount of entropy - ali svstems taken into consideration - will increase, and consequentiv the total amount of entropy/heat/randomness is ever increasing and leading us slowly, but surely, to the orand structureless finale. Whether vour temperament considers our chinese box monitored or not, the fact is that its surface is getting notter all the time.

2. INFORMATION THEORY IN LINGUISTICE.

There is some scope for applying information theory to linguistics. Shannon was the first one to point this out. It is a common feature of all attempts so far though, that they reveal very little from a linguistic point of view. They can however be quite entertaining.
To understand the limitations of information theory from the linguistic point of view we will have to dwell for a while at what can be termed different depths of 1 anguage.

The building blocks of our language are the words which in turn are made up of sounds or graphic representations of these like the alphabet. This is termed the surface sructure of the language. It is on the surface that a language shows its greatest variation, and it is on the surface that we find the greatest differences between 1 anguages of different speech communities.

Exactly how you consider words to transfer the kind of mental action which we term "meaning" depends on which school of thought you chose to venture. The development of linguistics over the past couple of generations - or in some aspects over the past century - has not been unlike a childs own development of language. Initially total pre-occupation with single words, then a sgell of absorbtion into syntactics and grammar later followed by the exploration of the meaning of "meaning". At present, structural linguistics is exploring the very generating of meaningstructures.

It is obvious, that words in some sense evoke meaning. We can not say however, that the words themselves mean anything. Words are only lumpy conglomer ations on a background of randomness which we may be able to structure if we have the proper frame of reference as the case was with the TV-screen. We can put together words to form utterances and sentences, but the words, utterances or sentences are only what they are because we recognize them as such. Although the problem, of how our communication elements evoke meaning, is itself a fascinating one, we must not get lost in the mist of the intellectually no man's land of epistomology. It is sufficient for our present purpose to point out, that there are at least four disciplines in our study of language which we need to consider: two - phonology and morphology - dealing with the surface structures of 1 anguage and another two - syntax and semantice dealing with the "deeper" levels like tio grammatical analysis or synthesis of sentences and, for semantics, dealing with meaning and connotation.
There is some confusion as to the terminology within the linguistic disciplines mentioned above. We have stated four "levels": phonology, morphology, syntax and semantics. Some linguists do not see morphology as a special subject, but consi-
der the matter dealt with partly by phonology, partly by syntax. Another course for confusion is the use of the term "grammar". Some linguists tend to see the two middle levels, morphology and syntax, as the one termed "grammar" and leave phonology and semantics out. Others put the three upper levels, phonology, morphology and syntax, under the one heading "grammar", but leave semantics out. Most recently "grammar" has been taken to mean semantics as well. This is mainly due to Chomsky considering his transformational grammar dealing with semantics as well as syntar.

The reason that we need at least two dicliplines to cover the research into the surface level of language is of course, that we perceive language in at least two different ways: through the eyes and through the ears. We say, that we perceive language through a visual and through an auditory channel.

PHONOLOGY is the discipline which deals with the reception of the sounds through the auditory channel; the single sounds which we join together and perceive as words. These sounds, which are the smallest units we are able to distinguish from each other, are called phonemes and most languages operate with 30 - 40 of these. Examples of these are the different sound qualities which consonants and wovels acquire in their different combinations. Although we are able to distinguish these different phonemes, this is not due to the acoustic stream of sounds actually consisting of discrete units. It is easy to show electronically that on the acoustic signal level there exist no such discrete units or segments and that at any given instant of time, information about several phonemes coexists in the sound wave. This means, that on the acoustic level the signal is not segmented. However, since we perceive it as being segmented, somewhere along the auditory channel our perceptual system must impose segmentation upon the signal. Recent research (1) indicates that this ability is not acquired after birth, but that we are indeed born with the ability to segment the incomming signal continuity.

The MORPHOLOGY - the classification and conjugation of the words is the more readily accessible entrance into the human language behaviour and the more objective. There is little room for discussion in matters concerning the speliing or conjugation of words and a wide scope for attempts to create formal systems which simulate the grammatical constructions of our language function on the surface level.

In morphology we classify words primarily according to their function, but as the function of a word is intrinsically connected to its meaning, the meaning too comes into the classification. The smallest measuring unit in morhology is the "morphem" which is the mallest carrier of meaning. If we take a word like "dogs" we have a word wich is made up of two morphems. The first, "dog" signalling a well known creature and the second,"s" signalling: plural. In European liguistics it has been customary to distinguish between semantic morphems like "dog" and grammatical morphems like "E", but the move is towards the American practice where morphem is used in the wider sense.
Whereas morphology deals with the analysis of single words,
SYNTAX is the discipline dealing with the analysis and
theoretical synthesis of whole sentences from the basic units, morphemes and sememes. It is in the attempt to find out what constitutes the transformation, from the basic units of the language function to meaningful sentence in either its phonetical or graphic representation, that the generative grammar has seen its most recent development into the so called transformational grammar, which in spite of being a major step towards a model of
 than explanatory model in the sense that it details the routes between the different levels of our language function, but not the vehicles of the transformations.

In SEMANTICS we move into a far more difficult and subjective area of language behaviour in as much as we are concerned with the meaning of the words we use and try to classify words according to common areas of meaning e.g. Child, colt and calf are all classified as "offspring" thereby attributing child, colt and calf the same "semem" 8 offspring.

In semantics the issues become very complex because the connatations created in human minds, even for the same word, to a high degree depends on the background and experiences of each human mind concerned. But even so, it is in the varied field of semems that the human mind picks its information. It is by pinpointing thee connotation from a number of possible connotations that the receiving mind extracts the information from atatement.

APPLYING INFORMATION THEORY TO THE SURFACE LEVEL.
Let us imagine that $x_{1} x_{2} x_{3} \ldots . x_{n}$ is a text string n letters long. For this purpose we wili regard space as a letter. Since there are 26 letters in the English alphabet and we add the space we operate with a total of 27 symbols. If these symbols were equally probable we would have from (2.1) that the information contained in this textstring would be

$$
\begin{aligned}
& 1=n \$ 1 \log (27) \text { bit } \\
&=n \geqslant 4.76 \text { bit } \\
& \text { or } \\
& i=4.76 \text { bit pr letter }
\end{aligned}
$$

This is of course not the real value since each letter does not occur with the same frequency in the 1 anguage.

letter	probability	letter	probability
space	0.1859	N	0.0574
A	0.0642	0	0.0632
B	0.0127	P	0.0152
C	0.0218	Q	0.0008
D	0.0317	R	0.0484
E	0.1031	S	0.0514
F	0.0208	T	0.0796
G	0.0152	U	0.0228
H	0.0467	W	0.0083
I	0.0575	W	0.0175
J	0.0008	0.0013	
K	0.0049	Y	0.0164
L	0.0321	Z	0.0005
M	0.0198		

TABLE 1. The probability of occurence of different letters.

There are several different accounts of the frequencies of the different letters in English litterature, the problem being of course that the results depend on which kind of litterature you choose to base your statistics on. Table 1 gives the different probabilitige of letters and space according to Reza (1).

Given the different probabilities from table 1. and the equation (2.4) which we arrived at earlier, we are now able to give a more realistic value for the average information per letter.

Let p be the probability of the j "th letter in table 1 , ($j=1,2,3 . \ldots, 27$). According to (2.4) the average information can now be written

$$
\begin{aligned}
I & =-\sum_{j=1}^{j=27} p \text { blog }(p) \text { bit } \\
& =4.03 \text { bit per letter }
\end{aligned}
$$

More refined considerations regarding the structure of English (e.g. how great is the probability that the letter efollows the letters $t h \sim \sim p(e i t h))$ further reduced the information pr letter O J. 1 bit. Other considerations regarding the bindings within the English language allowed Shannon to calculate that

$$
I\left(x_{8} i x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \sim \sim 2.0 \text { bit }
$$

Involving more than 7 letters in his calculations over the bindings and structures in English, Shannon found, did not decrease the average information per letter significantly and so set the average information per letter $=2 \mathrm{bit}$. If we compare this value to the theoretically possible of around 4.7 bit per 1 etter arrived at above, we realise, that because of the structures already present in the language we can only transfer about half of the theoretically possible information per letter.

This leads us to another important concept: REDUNDANCY. This is a measure of the degree of certainty in the transfer of the information and was introduced by ghannon in 1948.

The relative redundancy is defined as 1 minus the ratio between the actual information gained and the information it would have been theoretically poseible to transfer

$$
\text { relative redundancy }=1-\frac{\text { actual information }}{\text { maximum information }}
$$

According to what we have stated above, the relative redundancy of English is

2 bit
relative redundancy $=1--\infty-\infty=57 \%$
4.7 bit

Studies of other European languages show, that the relative redundancy in these languages too is $50-60 \%$, but like the case is in English - depends on a variety of factors, degree of difficulty of the text being the most obvious one.

1) F.M. Rezaillobli.

It is a mistake to judge redundancy on its name. Redundancy is very far from being redundant in language. It is because of the redundancy that we are able to understand a message even vien some of the information is miseing. If you have tried to wrench meaning from the loudspeakers on a railway platform, you wil know what I am talking about. Not to mention some peoples handwriting which depends entirely on the redundancy in language for decoding of the message. But apart from these extremes, we rely - to a lesser degree - on redundancy even in everyday convereation to check that we understand what is being communicated to us.

We can see from (3.1) that the relative redundancy and the information are reciprocal. If we try to increase the certainty that the information is transferred correctly, we can only do this on the expense of the information itself. If we try on the other hand to increase the transfer of information to the theoretically possible, we will be left with no redundancy and no chance of knowing whether the received message was correct. A popular way of putting this iss If we get 100% certainty that the information is transferred correctly there will be no information left, and if we want 100% information transferred, we will not be able to understand it!

As I have explained, the redundancy in the language is mainly due to the structures and bindings within the language. It is not the other way round. The bindings or the structures of a language are NOT a result of the redundancy of a language and we can NOT judge the internal structures of a language by assessing the redundancy of the language. I am emphasising this because quite a few attempts have been made in the past to evaluate structural qualities of a text by measuring the redundancy. The futility of this will be evident from the following approximations to English, all constructed by Shannon.

Here is a first order approximationz
AI NGAE ITF NNR ASAEV OIE BAINTHA HYR OD POER SETRYGAIETRWCO EHDUARU EU C F T NSREM DIY EESE F O SRIS R UNNASHOR

The letters and space appear with the right frequencies, but are otherwise independent of each other.

Here is second order approximation to Englishis
URTESHETHING AD E AT FOULE ITHALIORT W ACT D STE MINTSAN OLINS TWID GULY TE T HIGHE CO VE TH HR UPAVIDE PAL CTAVED

In this approximation the letters and space appear with the right frequencies AND each letter appear with the right probability to the letter preceding it.

And finally a third order approximation by Ehannons
tanks can ou ang recin thatted of to 8 HOR OF TO HAVEMEM A I MAND AND BUT WHISSITABLY THERVEREER EIEHTS TAKILLIS TA

In this approximation the conditions are like above, but each
letter appears with the right probability to the Two letters preceding it.
Approximations of still higher orders can be constructed, but the complexity of the mathematics involved soon outweighs the usefullness of the exercise. I think you will agree, that it is a feature of the third order approximation that it is possible to recognize it as an attempt to reconstruct English. I will shortly show you some third order appraximations of French and German and you will see, that these too are recognizable as being approximations of a particular language. It is obvious though, that nothing like real language can be constructed in this way.
Apart from the entertainment of getting eloser and closer to something that looks like language, there is the important point I mentioned before, that we can not judge the structures of the language by measuring the redundancy. Just try and measure the redundancy of the textsamples above! Your ability of predicting a letter - let alone a "word" - will not exceed chance, and yet the text is highly structured.
Here are some third order approximations of German and French:

bet freiner sommeit sinach gan turhatt ER AUM WIE BEST ALLIENDER TAUSSICHELLE LAUFURCHT ER BLEINDESEIT UBER KONN

JOU MOUPLAS DE MONNERNAISSAINS DEME U S VREH BRE TU DE TOUCHEUR DIMMERE LL es mar elame re a ver il douvents so

I think you will agree, that there is little doubt which is which!

Although I do not want to enlarge further on the attempts to sunthesize language, I have to mention that attempts similar in nature to the above approximations have been made on a WORD level. Words have been labelled according to their grammatical function (e.g. adverb, noun) and possible order in a sentence. The game in this case consists of letting a computer program pick members of different word categories and try to construct a sentence. Neediess to say the value of this has so far not exceeded the entertainment value.

Parallel to the attempts to eynthesize language on a morphological level has of course gone the attempts to analyse it. The first and most obvious have been within the "diachronic"(1) field of research (diachronic = through time)s The history of language, the origin of words, the change of words over generations etc. This field of research goes back literally hundreds of years (e.g. Plato's Kratylos) and is still a very important part of modern 1 anguage science.
The area which we shall deal with is termed the "eynchronic" field of research (synchronic = same time) and is as the name implies the area where those elements of language behaviour,

1) The teres 'spacranic' and "disercmic' are beth me to ame of the fanders of eodern structurel limpuistic, Fertinemd to Sonserve.
which are more or less independent of time, are the object of the research. Most of the present language science lies within this field.

REFLECTIONS ON LANGUAGE SCIENCE VS. LANGUAGE BEHAVIOUR

Before we venture into the realms of language science, it is important that we do not loose the permpective. When we talk about a text, analyse a piece of literature or enjoy a poem, we tend to regard it as if we are dealing with the language "substance" itself, to such an extent, that while am making this very statement, I am painfully aware, that you probably do not understand what I am trying to put over to you. What I mean is, that while we enjoy one of the above activities we do not consider ourselves in any way attending a kind of shadow performance. We do not even wonder whether we are dealing with the "real" thing! I will try and make myself a little clearer.

We take reading and writing for granted. Although we have to learn to read and write and although we take it for equally granted that some unfortunate people will remain illiterate, we still consider literacy the necessary path to an inter-human language universe.

To keep your perspective, I must remind you, that the space of time in wich humans have tried to communicate in writing is but a minute fraction of hundreds of thousands of years saturated with spoken human language. There is nothing in our present knowledge about language which indicates, that the quality of a language, its beauty or its ability to express the human condition is in any way depending on it having a graphic representation. We know many societies which do not communicate in writing, but we do not know of any primitive human 1 anguages.

A man mumbles a words scratches a little with his knife in a stick and sends the stick with his messenger miles away to another man who looks at it and says exactly the same word without fail. This is magic. But it is a magic that we can not see anymore. This is QUR problem. A problem of literacy. We are so used to reading and writing, that we do not pay it a thought, that reading and writing are only symbolic representations for the genuine language behaviour, and whereas language behaviour is an intrinsic part of human behaviour, literacy is not.

Quite a portion of research in linguistics still seems to be based on the assumption that language behaviour and written language is one and the same, or indeed, that humans did not really have a language till they developed writing.

If we look at the morphological level again, it is obvious, that meaning is extracted not only from the words used, but - among many other things - from the strict succession of these words. A blind Venetian is not the same as a Venetian blind. There is no need to give further evidence of how a change in the succession of words can change the meaning of a sentence, and indeed the meaning of the words themselves - the connotations. And yet, under the assumption that mords are words whatever way you look at them, an obsession with word statistics grow up in the thirties. An obsession with the number of different words the individual could produce, and a lot of work went into counting words in
the litterature and labelling authors - the great and the not so great - according to their vocabulary.
The rapid changes of the social structures in the thirties created a real or an imagined need to isolate the sheep from the goats and so the age of the word counting began. A tedious task indeed as it all had to be done "by hand" until the development of the electronic computer had reached a etage in the fifties, where it was almost crying out for the kind of crude sorting and counting involved in measuring vocabulary and so the whole thing took off in an unchallenged pandemonium. Words and computers are powerful magic indeed. More powerful than just words.

To concentrate on single words, rather than sentences, for whatever reason, was, 1 think, the greatest pitfall of linguistics so far. The importance of dealing with the continuum of speech, rather than the single units, whether it be in its phonological or its graphic representation can not be emphasized enough. But the obsession with wordcounting is still with us. Not only does it thrive well in the so called "type token ratio" (1), but the concept of a vocabulary still occupy peoples mind as if it was something real, something aggreed upon in linguistics. The concept of a vocabulary - whether internal in a human brain - or external in a text, is a fallacy. The concept of a vocabulary is intrinsically linked to words detached from their context. But words detached from their context are no longer part of a language behaviour. They are just lumpy conglomerations on a background of randomness.

I shall in a later chapter show how little the concept of vocabulary has to do with language quality. This has indeed been pointed out several times in the past, most strikingly by the American linguist Labov in his anlysis of the language behaviour of different social strata in New York (2). It still remains to be picked up by the media though, who in this respect are devantgarde beyond belief: probably pre-occupied from being in the trade of wordselling as they are, with the attempts of conforming to the other gigantic fallacys the language norm.

We must not forget, that the reality of being a human is not very different from individual to individual, nor has it changed very much through the hundreds of thousands of years we have detached ourselves as the ultimate in refined language behaviour. The difference between being a Shakespeare and not being able to spell properly is microscopic compared to the dramatic difference between human language behaviour and the epontaneous language behaviour of other primates.

Although the commonly held view untill very recentlys"The ability to acquire and use human language does not depend on being intel-

1) Type token ratie: The ratio betwom the mater of different worls ant the total nucber of merts in a tentatring. A eethod still uidely used, enpecially in ua, to jwige the rocchulary mat difficulty of a text. The metion becoes perticularly fercical, when the text saples ore of different lempth, sime the meber of differment mords in a textstrimy can be shom to fall expenemtially with the lempth of the tentstrim.
lident or having a larqe brain. It depends on being human.. " (1) still holds regarding spontaneous language behaviour, research into the lanouage acquisition of chimpanzees and gorillas suggests that the difference between the language behaviour of humans and that of other primates is one of degree rather than of nature.

1Henneberg(1967).

3. LINGUISTIC MODELS RELEVANT TO THIS COURSE.

We have seen, that information theory evaluates information according to probability of occurrence, e.g. the information carried by a sentence depends alone on how rare this sentence is within a chosen sample of sentences. As stated in chapter 1, information theory does not deal with the problems of meaning or the human value of information.

In this chapter I shall begin by introducing you to the first attempts to simulate human language by means of formal logic. The approach comprised some simplistic aspects of grammar and meaning. The model was developed by Y. Bar-Hillel and Rudolf Carnap in the early fifties - a few years after Shannon had published his information theory and bears the hallmark of that last great period of confidences Logical Positivism.

The next decade, the late fifties and the beginning of the sixties, saw the move within linguistics away from the "clear-andcut" rather unrealistic optimism of the above theories and towards a more embracing common-sense approach searching for structures which were reaching INTO the language rather than moulding the surface of it. The clearest eximple of one such theory was the IMMEDIATE CONSTITUENTS analysig.

Again the demands for computability influenced the trend in linguistics. The lagistic models of the positivisticera on one hand and the downward structuring models of the following decade on the other were eventually united in one form of generative grammar, TRANSFORMATIONAL GRAMMAR which has been most influenced by the American linguist Noam Chomsky. I shall later in this chapter introduce you to both "immediate constituents analysis" and "transformational grammar", but before I enlarge upon any of the recent trends within the inguistic field, I would like to correct a misapprehension about generative grammar.

Generative grammar is not, as the sudden attention paid to it in recent years might suggest, a new theory. Any grammar consigting of a set of rules which makes it possible to describe the structure of an infinitely large number of sentences may be called "generative". Traditional grammar was generative in that sense. What is a recent development within generative grammar though, is the attempt to formalize explicitly the rules of the grammar, in an attempt to make it possible to specify which rules and which basic elements (phonemes, morphemes and sememes) have gone into the generating of any correct meaningful sentence. This move within he generative grammar was mainly due to Y.Bar-Hillel and Rudolf Carnap' s attempts to formalize human language (1).
i) Y. Ber-Hillel and R.Carace (1950). R.Carnep (1983).

BAR-HILLEL AND RUDOLF CARNAP's MODEL.

The work of Bar-Hillel and Rudolf Carnap is based on the axioms and signs of the propositional logic. Rudolf Carnap was himself a member of the so called "Vienna Circle", known for its influence - "Logical Positivism" - during the twenties and thirties on science and a remarkable exponent for that confidence in empirical scientific methodology which has now become the "accepted" scientific method. As scientific methodology is intrinsically linked to the problems concerning the capacity of human language for describing scientific observations, the vienna circle put great emphasis on the study of language and the possibility of expressing factual knowledge in a logistic-symbolic language.

In their work Bar-Hillel and Carnap restrict their considerations to sentences of a very simple grammatical construction. They exclude considerations of whether the receiver interprets the sentence in the way it was intended, but give room for some aspects of "meaning".
The model is based on the methods and symbolism of symbolic logic. Roth receiver and transmitter are visualised as in possession of all the possible logical deductions from the structure of the given language system, so that a sentence like "17 19 = 323." is redundant, because this would already be implied by the known structures. Only sentences, whose content is not implied by the structure of the 1 anguage, carry information.

The language consists of a number "n" of nouns (called "individuals" in their papers) and a number "p" of adjectives (called "predicates" in the papers) and the single verb "has" or "is". So, if "a" is a noun (or individual) and "P" is an adjective (or predicate), then (Pa) is read as "a has the property P" or, more simply: "a is P". To build up longer sentences, the language has the following connectives well known to anybody with some knowledge of propositional logic:
~nots negations (~Pa) means "a is not P".
disjunctions (Pa \vee Qb) means "a is P or b is Q".
\wedge andz conjunctiong ($P a \wedge Q b$) means "a $i s P$ and $b i s Q^{\prime}$.
\rightarrow if..then implicationg ($P \rightarrow Q$) means "if P then Q ".
\Rightarrow if and only if: equivalence; ($P=>Q$) means" Q if, and only if P "
The choice of the p adjectives is restricted in as much as they are not to overlap in meaning in any way, nor may any adjective imply the use or non-use of any other adjective. The vocabulary can now be extended by adding to it the opposite - or negation of each of the already existing adjectives P either by denotion (~P) or by adding a now adjective which is equal to (~P). (i)

There are three classes of sentences in this languages

1) A false sentence (selfcontradictory): (Pa ~~Pa) meaning "a is P and a is not $P^{\prime \prime}$.
2) Oivicusly the enthors asemes, that their melel, as indeot natural lamyage, are 'mpen' spstems (in the legical sense), and so (Pa) toes not eucluct the use of (P_{a}), wem theme a conjmetion of the two natwally produces a false statment.
3) A factual Eentence (logically indeterminate): is $\mathrm{F}^{\prime \prime}$.
4) A true sentence (tautological): (Pa \vee ~Pa) meaning "a is P or a is not $\mathrm{Pl}^{\prime \prime}$.

Carnap and Bar-Hillel maintain Shannon's evaluation of information according to probability of occurrence. The way they see this applied to their language model is as follows Given the number of adjectives and nouns in our "vocabulary", there is a finite number of sentences which could be constructed using these adjectives and nouns. However, some of these sentences would be logically, related. If we want to measure the information of a sentence S, we would first have to evaluate how many sentences we could construct using the nouns and adjectives in our vocabulary. Let us say that this number of possible sentences is N. However, a number M of the possible sentences would be logically related to our sentence 5 . These related sentences would have to be deducted from N. So, the number of sentences not related to s would be N - M. The probability of our sentence occurring from the N - M sentences logically unrelated to our sentence would be a measure of the information contained in this sentence.

I shall enlarge further on this. Let us imagine, that we want to describe the observation of an experiment to a fellow researcher. A number of very basic factual statements could be made and a number of these would be needed to make up the full description of the experiment. Carnap and Bar-Hillel introduce such a kind of description, the STATE DESCRIPTION denoted by Z. A mete description is a sentence consisting of a number of simple (in the papers called "atomic") factual statements made up of the nouns and adjectives or their negation (but not both) relevant to the description. If there are p adjectives and n nouns relevant to the description of our observation, then the number of possible combinations of the p adjectives and n nouns in the state description 2 is pin, and since each combination of a noun and an adjective can occur in two ways - either with the adjective itself or with its negation - there are altogether 2 in power p*n possible atomic statements in the state description 2.

Let us say that we have a vocabulary consisting of 3 nouns: a,b,c and 3 adjectivess P, Q, R. These can be combined in 3 a 3 different ways, but because we are allowed to use the negation of each adjective as well as the adjective itself lbut not at the same time) in our statements, the number of possible atomic statements increase to 2 in power (3*3) $=512$. Let us further imagine, that we want to make a state description consistiong of two atomic statements i.e. $2=\left(P a \wedge Q_{b}\right)$. By the same combinatoric rules we arrive at a possible 512 in power 2 (well over 260.000) state descriptions consisting of just 6 variables in their different combinations. Now, some of these state descriptions will be inherently true (tautological statements) and some will be logically related to Z. Bince we want to measure the probability of z with regard to the number of FACTUAL eentences NOT related to it, we must subtract a): the number of tautologically true statements and b) z the number of state descriptions related to Z from the total number of state descriptions. Let us say, that after this we are left with 8192 factual state descriptions unrelated to 2. The model then follows information theory and states, that the numerical information value of $Z=(P a \sim Q b)$ is

$I(Z)=\log (8192)=13$ bit

Already at this point Carnap and Bar-Hillel's language model has become so complex, that it is imposeible to assign any realistic probability of occurrence to any, but the most basic state descriptions. This does not matter for our purpose, since what is relevant to us - and the genuine development - is that at this point Carnap and Bar-Hillel introduce "get theory" to accommodate some rudimentary form of meaning. Let us imagine, for instance, that we discuss temperatures and designate those above 20 centigrades by "high" and those below 20 centigrades by "low". Now, a number of atomic statements can be made associating the noun "temperature" with the adjective "high" or its opposite "low", and it is obvious, that the probability of an atomic statement like "temperature is high" occurring in the gahara Desert is higher than the same statement occurring on the North Pole and the numerical information value of the statement in the Sahara Desert therefore less than the value of the same statement on the North Pole. The model now states, that the RANGE of such an atomic statement is the SET of those state descriptions in which the statement holds, or to put it another way: whereas the atomic statement can occur meaningfully in some state descriptions and not meaningfully in other state descriptions; the number of state descriptions, for which "temperature is high" holds. is bigger in the Sahara Desert than on the North Pole. thereby giving "temperature is high" a greater range of meaningful state descriptions in the desert than on the pole. From this it follows, that whereas the numerical value of the information has decreased, the set of meaningful state descriptions has increased in size. Although this is an interesting parallel to the redundancy function mentioned in chapter $\overline{2}$, the important contribution of this model is without doubt the introduction of set theory into linguistics. A part of a sentence or a statement is here seen as a SET of meaningful functions or applications, and it was along this path that subsequent structural theories in linguistice ventured.

CONSTITUENT STRUCTURE.

The complexity of deterministic models like the one by Carnap and Ear-Hillel forced the logical positivists to rethink the function of language. Wittgenstein, one of the most influential of the positivists, regarded in his firet major work "Tractatue LogicoPhilosophicus" (1922) language as a pieture of facts. In his later work "Philosophishe Untersuchungen" published after his death in 1951 he had completely given up this idea. Rudalf Carnap too expressed this new attitude in his "Meaning and necessity" (1956) where he, as the title implies, gave further considerations to the probleme of "meaning". In this work, which i s based on the ideas and the formal logic from his and BarHillel" earlier papers (see page 20), he formally introduced the term "meaning postulate". The meaning postulates or semantic rules, were a further development of the application of propositional logic to the probleme of semantics and became part of the inventory of generative grammar right up to the present. A couple of examples will illustrate meaning postulatess

1) boy \rightarrow male a ardult
2) girl \rightarrow female \sim radult
```
3) human }->\mathrm{ man v boy v woman v girl
4) adult }->\mathrm{ man }v\mathrm{ woman
```

Applying the rules explained on page 20, 1) reads "boy implies male and not adult" 2) reads "girl implies female and not adult"; 3) reads "human implies man or boy or woman or girile 4) reads "adult implies man or woman".

We shall return to meaning postulates later, when we deal with generative grammar and semantics. At this point I just want to emphasize the importance of Bar-Hillel and Rudolf Carnap"s contribution to those developments which followed in inguistics. It was out of the ashes of Bar-Hillel and Rudolf Carnap" attempt to apply information theory to language that modern structuralistic linguistics rose as the bird Phoenix. Their model is now largely forgotten, partly because it was written in a language, formal logic, which then (this was 7 years before Chomsky"s "Syntactic Structures") was still strange to most linguists, and partly because the common interest for liguistics did not "take off" for another ten years when a reaction against the phenomenological and psychoanalytical linguistic theories of Western Europe (Predominantly those of French linguists like Merlau-Ponty and Paul Riceur) demanded stringency in thought and expression and so made the linguistic theories of English and American positivistic descent (Predominantly those of Chomsky) with their mathematical notation meem more palatable.

Two clear lines of development have lead to present structuralistic theories like that of Richard Montague. One is a naturalistic - as opposed to positivistic - one which began with the theories developed by Ferdinand de Saussure and Louis Hjelmslev. The other line of development - the positivistic - began with the theories of the Vienna Circle, was taken up by Wittgenstein and Russell, was further developed by Carnap and Bar-Hillel with their information theoretical approach and dideventually with Chomsky" s version of generative grammar become a challenging conglomerate of naturalistic and positivistic ideas. It is worth noting, that some of Chomsky's earliest ideas were published in "Transactions on Information Theory" (1) and both here and in "Aspects of the Theory of Syntax" he makes several references to the works of Bar-Hillel.

Stuart Hampshire wrote in his influential "Thought and Action" (1960): "After the early experiments of Russell and Wittgenstein, most contemporary philosophers are probably eonvineed that the idea of "the facts". which are already individuated in reality independently of our forms of reference to them, is an illusion that cannot be given a sense. We divide and redivide reality into its segments and subsegments along the lines of our practical interests, which are reflected in our conventions of reference" (p.216).

This "division and redivision into segments and subsegments" was a reference to the CONSTITUENT BTRUCTURE model and the influence which Carnap's meaning postulates had on it. The theory behind the constituent structure model is, that the mords in a eentence are not (always) just individual parts linearly adding up to a whole. Bome of the worde in the sentence are more ciosely related
than others and form blocks or segments within the sentence. A sentence is then seen as made up of a number of segments each consisting of one or more words. But as well as being part of segments within the sentence, the words are themselves part of subsegments implied by the structure and the meaning of the sentence. This language model was a major step forward from the initial rather crude logistic-deterministic models of the positivist school and an attempt to look at the ways the mind might synthesise a sentence. It was an attempt too, to follow, backwards, the path which the mind presumably had used in its synthesis of the ementence. To explain this I shall give you an example of the way an analysis of a sentence would be carried out according to this model.

If we take a simple sentence like "The old man eats the green apple", we recognise intuitively that "The old man" constitutes a group of words wich are somehow bound together. The same can be said about the last three words "the green apple". We could symbolize this relationship by putting brackets around the groups like this: (The old man) eats (the green apple). There is room for some discussion as to where "eats" belongs. Does it go with "The old man" since this segment is the agent or does it belong to "the green apple" since this is the goal of the action the patient)? The most common way of analysing this sentence according to constituent structure would be like thisz

We notice, that the verb is considered more closely related to the patient than to the agent, but this is by no means the only way the analysis could have been carried out. Some linguiste would divide the sentence into three segments rather than two and so leave the verb on a par with the two noun phrases. However, whether we consider the binary or the ternary division as the one which most closely mirror the syntactic function of our linguistic device is not a matter of great importance. May be the mechanism which this linguistic device uses sonetimes works binary, sometimes ternary, sometimes linearly. Or something entirely different. We are in search of patterns, not of another deterministic model, but as the case often is in the speculative areas of science - and linguistics is no exception - we tend to develop mental tunnel vision. The research presented later in this paper - once we get through the preliminary fencings - makes it plausible, that the faculty, which generates grammatically correct sentences, does not make use of any single, through life, static mechanism, but develops during the acqueition of language from a function, which initially is linear or serial, later, whith increasing acqisition of grammar, becomes predominantly binary and eventualily, when the "grammar function" is fully developed, can combine anything up to $20-30$ units in parallel.

The IMMEDIATE CONSTITUENTS (IC) analyeie is a strictly binary way
of analysing sentence. Let us choose the same sentence as above and look at how IC analysis would proceed. At each step of the procedure we divide the whole - or part of the whole - into Two segments, each of which is again divided into two subsegments and so on, until each word has been isolated. Before the analysis our sentence is envisaged, like before, as having a natural weak binding after "man", and the first step of the analysis would therefore be a division of the sentence into its two IMMEDIATE CONSTITUENTS: "The old man" and "eats the green apple". These constituents would again be divided into each their two immediate constituents and so on like the diagram shows in figure 1.
The old man eats the green apple
The old man eats the oreen apple
The old man eats the green apple
old man apple
tareen apple

Figure 1. Diagram of binary IC analysis.
This is the analysis by immediate constituents. But we can go the opposite way. Instead of dissection of the sentence into its smallest units, we can by TRANSFORMATION or substitution show, how it is possible to reduce a sentence to a few comprehensive concepts in backward moves. To demonstrate this we will take a rather more complex sentence like

The old man who lives here has gone to his son's house
By substituting "old man" with "man" and "lives here" with "survives", "has gone" with "went", "his son's house" with "the house", (4.1) has been reduced to "The man who survives went to the house". By taking the substitution further we gets "who survives" \rightarrow "surviving", "the house" \rightarrow "town", reducing (4.1) to "The man surviving went to town". Next stepi "man surviving" \rightarrow, "survivor" and "to town" \rightarrow "there". The final step, "The "survivor" -) "he" and "went there" - > "went" has thus reduced (4.1) to "he went", which is said to be the BASIC PATTERN of (4.1).

Figure 2 is a diagram of this transformation, and we recognise the use of meaning postulates; each level is a meaning postulate/substitute/transformation of the former level. Admittedly, the direction of the implications is ambiquous. "he" $->$ "survivor" and "survivor" \rightarrow "he" is equally feasable depending on how one wants to define what constitutes a transformation, but the idea is, that each word is substituted with a word which in its concept contains the first words Remember how Carnap's meaning postulates above had it that "boy \rightarrow male a adult" meaning "boy \rightarrow male and not adult". The set of qualities constituting "man" could ber human $\wedge \sim$ female \wedge young v old, meaning human and not femals and young or old. In this way "man" can be said to contain the special case of "old man" in (4.1) and thus be regarded as "higher" concept than "old man". The same goes for "house" in (4.1) versus the substitution "town", since "hoyse". (alboit with some. optimism) can be regarded as a special case of "town" (assuning that the house is situated in a tom).

Figure 2. Transformation of a sentence.

It is important to understand, that whercas the analysis depicted in figure 1 is an analysis of the EYNTAX of a sentence, the diagram in figure 2 is based on the SEMANTICAL aspect. These two aspects - the syntactical and the semantical - co-existing in IC grammar were eventually combined and further developed in the so called TRANSFORMATIONAL GRAMMAR, which we are going to have a closer look at in the following.

TRANSFORMATIONAL GRAMMAR.
Transformational grammar and the name of the American linguist Noam Chomsky have almost become synonymous, but without refuting the impact which Noam Chomsky has had on linguistics in general and on transformational grammar in particular, I would like to make it clear, that there are a number of grammars, which ali merit the prefix "transformational" in the sense that they envisage the human language function as a device, which, by imposing transformations on several levels, is able to transform our speech-intention into the actual phonological output. The difference between the various transformational grammars is mainly one of nomenclature, clarity and deterministic approach. What I refer to by tying together "clarity" and "deterministic approach" almost synonymously in this last statement is the well known phenomenon in science that a theary, which is well developed in the sense that its theoremes are put in very ciear terms, not only is an easy target for general critisism, but often also suffers the fate of being labeled "deterministic". because its clarity leaves little room for ambiguity. I think it is important to keep this in mind when we in the following deal with one particular model of the transformational grammars.

The greatest influence on modern linguistic theory has undoubtedly been the American linguist Noam Chamsky, whose theories have aroused a common interest not normally shared by seientific thinking of any kind. The popularity of Chomsky's theory in wider circles is without doubt due to the fact, that a superficial interpretation of its deep structure $\langle\rightarrow$ surface structure distinction in some ways echoes the isolation and lack of understanding which we - the captives of technical societies - seem likely to experience. We shall later see however, that Chomsky's concept of "deep etructure" is rather lese motional than many of his followers would like to believe.

There are two parallel lines of thought, which I would like to pursue in this present exploration of Noan Chomsky's work. The first one is Chomsky's emphasis on the syntectical aspect of our language function. The second is his emphasis on the semanticai substance of our epeech intention and the uniquenese which this
substance attributes to most of our linguistic output.
Chomst:y's wort: is an attempt to establish common rules for the formal description of all meaningful sentences. Although he in this continues the positivistic tradition instituted by the "Vienna Circle" and applied to lanquaqe by Wittoenstein. Shannon. Carnap and Ear-Hillel. Chomstiy differs fundamentally in many asperts, the most important being, that whereas the positivistic linauistic theories evaluated a sentence according to the probability of its occurrence. Chomst:y sees each utterance or sentence as in some sense unique.

Chomstiy returns to this idea again and again in his writings. From his "Language and Mind" I quate: "....the normal use of language is innovative. in the sense that much of what we say in the course of normal language is entirelv new, not a repetition of anything that we have heard before"(1). This is achieved because language "mat:es infinite use of finite means" as chomstyy writes in the preface of his very influential "Aspects of the Theory of Syntair" in a quatation from the writings of the 19th Century German philosopher Wilhelm von Humboldt (2).

Earlier in the present paper (p.10) I mentioned, that sentences or utterances are only what they are, because we perceive them as such. It is one of the hallmarks of transformational grammars. that the graphic or phonological representation - the sians or the sounds - of our intention to inform are only the superficial forms which evol:e meaning through the receiver"s ability to interpret them according to inter-human rules. The forms themselves do not contain any primary information however: they are: according to their specific construction. the triggers of specific trains of processes in the receivers mind: e.g. a statement atout the "real world" does not in itself link it to the "real world". It is the number of processes which the statement triggers in our mind. our UNDEFSTANDING of the statement: which links it to any particular matter. It is the ability of our "linguistic device" to anticipate, which processes will be triggered in the receivers mind. that puts this "device" and our lanquage behaviour way ahead of that of other primates.

Obviously the present state of linguistic research does not makie t possible to describe exactly what happens in this "linguistic device". and Chomsky stresses emphatically that his theory is NOT a perceptual model or a model of speech, a so called theory of performance. Comsky's theory is a theory of competence, the speat:er-hearers knowledge of his language. The attempt to describe how a hearer or a speaker proceeds to construct or perceive a sentence is a matter for the theory of language use, the theory of performance. So. for what it is worth. we have to work with suggestions of certain transformations without any real knowledge about what such a transformation represents. Clearly, the linguistic field of research suffers the same uncertainty regarding interpretation as do other fields of research except for the additional problem, that linguistic research has its own method as its research object, or to put it another way, is trying to describe the subject of its research by means of the subject itself. The problems, which this impose, are adain not a matter for generative grammar, but belong to epistomology and I shall

1) Chansky (1968). 21 Choasky (1965).
not enlarge further on this. Let us just for the sake of the continuation of this introduction assume that we have agreed, that a speakers speech-intention has to go through a number of transformations in his "linguistic device" before it materialises in the form of an utterance, and that the very same utterance has to go through a number of transformations in the listeners "linguistic device" before it evokes the intended meaning in his mind.
With Chomsky the distance between the form and the substance of language becomes wider than ever and the complexity of our 1 anguage function greater. Although Saussure - the founder of modern structuralism - implied these differences decades before with his distinction between "langue", "langage" and "parole" (1), his view of our linguistic ability or our competence to transform the substance into the superficial form is very much that of a linear translation word for word, or concept for concept, whereas Chomsky sees the transformation from the semantical to the phonological level, as a much more context sensitive process. Chomsky writes: "The distinction I am noting here is related to the langue-parole distinction of Saussures but it is necessary to reject his concept of langue as merely a systematic inventory of items and to return rather to the Humboldtian conception of underlying competence as a system of generative processes". (2).

The more traditional view of grammar, "a systematic inventory of items" as Chomsky calls it above, sees the morphological level as a direct representation of the semantical level. According to this view, the creation of language on the semantical level takes place by means of morphemes. We think in words according to this view, and 1 inguistic development, the acquisition of language, is the acquisition of the vocabulary and the application of the accepted grammatical rules on the semantical level. From the semantical level to the phonological level it is more or less a question of employing motor skill verbally or graphically.

It caused quite some commotion, when Chomsky in 1957 in his "Syntactic Structures" rejected this view and stated, that the morphological level of language is of an entirely different nature from that of the semantical level. The sentences in a language do not represent or refer to the semantical level in the traditional way. According to Chomsky a sentence (called a phrase marker) is only a surface structure. But this structure represents a code (a deep structure) which is able to evoke meaning. The meaning is not present in the sentence as such, or even in the deep structure. The meaning arises in the listener's mind, because the deep structure, the code, present in the sentence, is inter-human and therefore able to evoke the same semantical processes in the receivers mind, as the processes which encoded the surface structure according to the speech-intention of the speaker. The ability to encode the speech-intention onto the surface structure according to rules accepted within a language community is seen by Chomsky as not only singularly human, but also innate.

In science we often achieve knowledge about normal processes by examining the cases where the normal processes have gone wrong. If we want insight into how our linguistic device works we can do

1) F.de sesseure (1916). 21 M. Cheskiy (1955).
the same by deliberately constructing sentences which are on the borderline of the acceptable, and then try to find out what created the anomaly.

Take a perfectly normal sentence like:"Teachers may admire the boy" and substitute "teachers" with "sincerity". We have now got a sentence
sincerity may admire the boy
which grammatically is perfectly acepetable, yet it is meaningless. Let us take another examples "Mother opened the door", and substitute "mather" with "sincerity"

> sincerity opened the door
which again is grammatically correct, but meaningful only on a very abstract level. Problems of this kind led Chomsky to reconsider the labelling of the constituents of sentence as it had been carried out in traditional grammatical analysis. Chomsky emphasised the importance of analysing a sentence in functional terms i.e. how the constituents functioned in a sentence "subject", "object", etc.) rather than which category they belonged to (verb, noun, adjective, etc.). To explain this let us look at a sentence like
which is another "borderline" sentence, less abstract than (4.3), but still demanding special attention to make it comprehensible. Traditional grammar would analyse it thusz
(4.4) is a sentence (S): "frighten the boy" is a verb phrase (UP) consisting of the verb (V) "frighten" and the noun phrase (NP) "the boy"g "sincerity" is also a NP; the NP "the boy" consists of the determiner (Det) "the", followed by a noun (N) the NP "sincerity" consists of just one N : "the" iss furthermore, an article (Art) "may" is a verbal auxiliary (Aux) and, furthermore, a modal (M).

The "functional" way of analysing (4.4) would according to Chomsky bes

The NP "Eincerity" functions as the subject of the sentence (4.4), whereas the VP "frighten the boy" functions as the predicate of this sentencep the NP "the boy" functions as the object of the VP, and the V "frighten" as its main verb; the grammatical relation subject-verb holds of the pair ("sincerity". "frighten"), and the grammatical relation verb-object holds of the pair ("frighten". "the boy"). (1)

There are two ways of describing these differences more cleariy. One is by using a stem diagram and the other i s by expressing the transformations in "rewrite rules". The traditional analysis of (4.4) expressed in rewrite rules would look like the diagram in figure 3 (next page).

This may look like a way of confusing the iseue, rather than clarifying it, but if we make atem diagram like the one in
figure 4 of the same analysis, and compare the transformations of the rewrite rules in figure three whith those of the stem diagram in figure 4 step by step, it becomes rather straight forward what Chomsky is trying to expressi
$S \rightarrow N P+A u x+V P$
$V P \rightarrow V+N P$
$N P \rightarrow D e t+N$
$N P \rightarrow N$
$D e t \rightarrow$ "the"
Aus: $\rightarrow M$

Figure 3. Rewrite rules for (4.4)

Figure 4. Stem diagram of traditional analymis of (4.4).
We can see, that the first rule of the rewrite rules in figure 3 represents the first branching of the stem diagram in figure 4. The second rewrite rule goes on to describe that the verb phrase (VF) rewrites as a verb (V) and a noun phrase (NP) as deseribed on the stem digram in figure 4, and so on.

If we compare the stem diagram in figure 4 with the one in figure 5, the differences between the traditional and the functional analysis become much clearer: What has happened in the functional analysis is obviously, that we have pushed an extra level of functional description in between the sentence and the traditional categorial description. This is very important since it allows us to analyse the mentence structure according to the semantical-grammatical function of the constituents rather than

Figure 5. 8tem diagram of functional analysis of (4.4).
only the grammatical function. Or, to put it another way, it gives room for the idea that the grammatical construction of a sentence reflects an underlying semantical theme.

In mathematical proof theory we talk about "necessary" and "sufficient" demands, where "necessary" means "necessary as part of a whole in the description of a certain condition", whereas "sufficient" means the total sum of necessary demands which goes in to the description of a certain condition.

Are the rewrite rules in figure 3 sufficient to create a sentence like (4.4)? No, they are not. They may be the NECESSARY rules, but they are not SUFFICIENT, since they could also create deviant sentences like "boy may frighten the sincerity". So, apart from the rules of labelling, whether categorial or functional, we need rules which prevent the creation of meaningless sentences. If we analyse "boy may frighten the sincerity" or the sentence (4.2) above, we realise that the reason for the lack of meaning in these sentences are of a semantic nature: in (4.2) "admire" must take a human agent, "frighten" in the last sentence must take an animate patient. So we must build into our rewrite rules the semantic content of the smaller units (morphemes) as well as the semantic content of the context called the environment by Chomsky). In this way our transformations would become context sensitive and we would rule out incompatibility between the segments and between the segments and the environment of the segments. The semantic content is according to Chomsky covered by each morpheme having a lexical unit attached to it, governing what is allowed or not allowed in the use of this morpheme. These lexical attributes are, as 1 see them, part of the positivistic heritage (Carnap's meaning postulates). The problem of accepting the idea of predetermined lexical units attached to each morpheme clashes though with Chomsky's own - and I think appropriate - principle of the uniqueness of most language use, and he falls into the trap - albeit on a "higher" level - of "a systematic inventory of items".

Figure 6. Graphic illustration of Chomsky's model
Figure 6 is an illustration of linguistic performance according to Chomsky. Although Chomsky has mphasised, that his model is not one of performance, but one of competence, it is not possible, not even for Chomsky, to keep the two issues apart. The most fascinating problem remains, namely that of how we in actual fact in psycho-biological terms process language. Recent research has. meroly emphasized, that little, if anything, is known about this.

REFLECTIONS ON LINGUISTIC MODELS.

We have here touched only briefly on Chomsky's theory and importance to linguistics and those fields of research which are connected to linguisticse.g. psychology. The problems, which Chomsky's transformational grammar (nowadays called TRADITIONAL transformational grammar) ran into, arose, as I have expressed it earlier, as much from its clarity and lack of ambiguity as from its positivistic heritage. When a theory is expressed clearly, it becomes vulnerable. It can be amended. And the amendment can be proved insufficient and it can be re-amended and so on. This is exactly what happened to the traditional transformational grammar. A continuous spiral of development, defeat and amendments made most rewrite rules and transformations so cumbersome that this alone could cast doubt on the validity of the basic principles.

This is a well known phenomenon in science. One of the best examples of this state of affairs is that of astronomy at the time, when the geocentric system was the only system of celestial bodies imaginable: To explain the apparently spiral movements of the planets as seen from the earth, these were envisaged as moving along epicycles. As the accuracy of observation improved, it became clear, that there was a difference between the observed and the predicted data. So it was assumed that the planets were moving along epicycles, which themselves moved along epicycles and so on; with improving accuracy of observation it became necessary to adopt higher and higher orders of epieycles, until eventually as we know, the heliocentric system was accepted, and it became a simple matter to explain the planets apparent movement.

As mentioned before, Chomsky has emphasised that his model is not one of performance, but one of competence. In doing so I think he defeats one of the major achievements of his theories, namely that language should be regarded as functional. But functional in analysis as well as in usage. In syntax as well as in semantics. A valid formal syntactical description of any language - if this is at all possible - would be a fascinating academic conversation piece, BUT it would only account for part of - may be even a minor part of - what language behaviour is about. Language behaviour is inherently social. Language is the vehicle for our emotions and convictions. It is used for social purposes such as posturing, demanding, questioning, blaming, denying and the like and must always be seen in a wider context. Referring to Chomsky's own emphasis on context sensitivity we must widen this context and sensitivity to the full socialpragmatic aspect of language. Chomsky's graatest service to linguistics, as I see it, is his emphasis on the importance of the linguistic environment of the segment of a sentence. The research in linguistics began by focusing on words totally detached from their environment. With Chomsky the words or morphemes were allowed to remain in the miero environment of a sentence, while being analysed. But we must try to take the full environment into account when we analyse the segments. The syntactical analysis, which it is possible to carry out in a miero environment, can easily distract our attention from the fact, that a sentence is normally a severed part of a conceptual "univers", whether that of a continuum of textstrings in a book or the kaleidoscopic patterns of human interaction.

The research during the past decade has indeed followed this trend with the emphasis less on svntak and more on semantics and lanquade in a social context.

In the beainning of the Seventies Richard Montague put forward his general theory of language (R. Montague, 1970) which has become to recent linguistic research, what Chomsky's "Syntactic Structures" was to the linguistic research of the Sixties. In his philosophy Montague puts a much greater emphasis on the semantic aspects of the generative transformational grammar than chomsky did. while still adhering to the use of formal (propositional) logic as the vehicle for his argumentation. The present trend in the theoretical field is the attempt - on the basis of Montaque's 1 anguage philosophy - to dissolve th difference between the formal truth concept introduced in semantics by the positivist school of thought, and the pragmatic truth concept "meaning" held by manv workers in cognitive research like Artificial Intelligence.

MINSKY'S FRAME THEORY.
Some research into artificial intelliqence centers around computer simulations of cognitive processes. All theorems must of necessitv be expressed explicitlv and unambiquouslv in software or firmware form. This demand for exactness and elaritv makes the artificial intelligence approach appear laborious when compared to the more traditional and accommodating approaches to linguistics based on the use of natural or semi-natural lanauage.

Marvin Minsky has over the past three decades approached the description of (human) perception with the conceptual framework of the research into artificial intelligence. One of the valuable concents in the simulation of perception was that of 'perceptrons': imaginarv - but well defined - functions of basic visual perception (Minskv et Papert. 1972). All theorems in this theory are based on computer simulations and representation in software form. On the basis of the possibilities and impossibilitien encountered during the formulation of these theoremes in software form he has assembled and defined a considerable armamentorium with which to approach the problems relating to perception in general and to the meaning of 'meaning' in particular. Ferceptrons - in their software form - are procedures or algorithms which define a mathematical, probability weighted, strategr for the sorting of, or switching between, incoming (visual) data. The feature of probabilitv weighting is important because it opens up the possibility of changing by 'learning', thus making perceptrons heuristic rather than determined procedures. Minsky and Fapert envisage perceptrons working together in parallel in circuits wich would - by way of a decision making or strategy - reduce the number of incoming channels to single channels. Perceptrons may be programmable or preprogrammed. "Programmable" means that there is some scope for learning; "preprogrammed' means that the strategy of the perceptron is genetically based with little scope for learning.

Minsky and Papert, in their 1972 work, are mainly concerned with perceptrons in visual channels. An example of a visual perceptron is the functioning of the retina of the cat. It has been shown that in the retina of the cat there are rods which "fire" onlv in response to horizontal movements while other rods "fire" only in response to vertical movements. In Minsky and Papert's terminolo-
qv such direction specific perceptors are one example of perceptrons. The many rods in the cat"s retina constitute as manv initial perception channels processing in parallel. A (pre)programmed decision making process picks up the data from similar channels i.e. channels which have processed data from movements in one direction onlv. Each perceptron selects. from a great number of data appearing in great number of channels, those data that are most sionificant laccording to the programmed strategy of that particular perceptron and directs those data into a sinale channel. If we use familiar termefrom the field of neuro-dynamics we would say that a number of action potentials in a number of nerve fibres wil be subjected to (basic) decision making process before being passed on as a single action potential along a single nerve fibre.

However, we have to be careful not to get too stuck: in the similarity between neural cells and perceptrons. The concept of perceptrons cover a much wider field. A perceptron is above all a strategy determined or determining structure with a degree of proarammability.

Two features of the concept of perceptrons are important for the course of this thesis. The first has to do with the properties of the particular signal wich a perceptron is programmed to process. Even a relatively simple signal like that triggering the direction sensitive rods in the cat's retina would be made up of a number of components with simple properties. Because of the probabilistic-heuristic nature of the perceptron. each of these simple properties are seen as probability weighted in an ndimensional probabilitv field $\{n$ may be 1. in which case we are not talking about vector calculatin, but about simple summing up of probabilities), and the probabilitv of the perceptron reaching its reaction threshold is the sum of the probabilities of the individual properties present in the signal. The sum of the probability vectors is always less than or equal to 1 . The idea. that the component's place in a probability field determines the threshold of the perceptron. I have exploited later in this thesis when a program will simulate information transfer from a text string to the human linguistic device.

Minskv and Fapert use the term "word' instead of 'signal'. The computational term "word" is wider than, but not vastly different from, that of normal language use. A "word" in computational terms is a string of ones and/or zeros (as a special case it might be empty). The length of the "word" depends on the hardware used. A word. in the common sense of the term. can easily be translated to "word" in computational terms (but not necessariIv the other way).

The second feature of Minsky and Papert's work, important to the research of this thesis, is their reflections on how much identity is necessary between a "word" A and a "word" B before a perceptron will respond to "word" E as if it was "word" A. They demonstrate that we do not need total identity between "words", and even if we did, we would not be able to achieveit. "Words" are compared and eelected on a best mateh' basis.

The theory about perceptrons ds limited to the processing of sensorv inputs on the perception level. To account for the processing on a cognitive level, Minsky suggested. A Framework for Representing Knowledge, (M. Minsky, 1975). In this theorv
"frames" are seen as the cognitive representation of the subiects of the real world. I shall briefly define the most important terms used in this theorv of frames.

A FFAME is a data-structure for representing a stereotyped situation likie being in a certain kind of living room or going to a child's birthday party. Attached to each frame are several linds of information. Some of this information is about how to use the frame. Some is about what one can ecpect to happen next. Some is about what to do if these expectations are not confirmed. We can think: of a frame as a network of nodes and relations. The top levels of a frame are fixed, and represent things that are always true about the supposed situation. The lower levels have manv TEFMINALS or SLOTS that must be filled by specific instances or data. Each slot can specify conditions its assignments must meet. (The assianments themselves are usually smaller subframes). Simple conditions are specified bV MARKERS that might require an assiqnment to be a person, an obiect of a specified character. or a FOINTEF to a subframe of a certain tvpe. Collections of related frames are linked together in FRAME-SYSTEMS. As the mind assimilates a situation in accordance with a relevant frame-system the action is mirrored bv TRANSFORMATIONS betwen the individual frames of the svstem. Different frames of the same frame-svstem share the same slots.

Orioinallv the theorv of frames was a model of the cognitive processing of the visual 'real world'. Later Minskiv expanded the theorv to the wider field of cognitive processing. including semantics. The application of the theory of frames to semantics I shall leave until chapter 8 where we deal more thoroughly with the concept of "meaning'. Here I shall explain the theory of frames and introduce the terminology in the simplest way, namely as it started: as a theory of the cognitive processing of the visual world.

Let us imagine that we enter a room. We see in front of us all those objects which make us recognise the image as being that of a 'room'. What is it that makes it possible for us to deduct that what we see is a room. First of all we have in our cognitive make-up a number of framess wall frames. ceiling frames. window frames and door frames. These frames tooether constitute a framesvstem assiqned to the association 'room'. Each of the frames: door. window. wall etc. in the frame-svstem 'room' consist of subframes. Let us take a frame like "window'. The top level of the frame "window" is fised and represent things that are normally true about the frame. Here we could assign 'placed in wall' as a necessarv condition while "qlass" would not be a necessarv qualitv of the frame "window" since a number of translucent materials could be used. So "qlass" would be assigned to a slot on a lower level of the frame. Since most of the windows we experience are indeed made of glass it would not be a slot on the lowest level. On the lowest level of the frame "window" such qualities as colour or size would be slotted in. If the slot 'glass" is filled. a marker will point to a subframe common to all frame-systems with 'glass' slots, namely the special qualities of "glass" like the ability to shatter on impact. When we move about in the room, the framess wall, ceiling, window etc will change shape and size due to the change in the perspective. The slots. however, the different conditions which make up each frame, will not change. Nor will those slots that are common to different frames in the frame-gvetem like left-wall-meets-middle-
wall or walls-meet-ceiling. For this reason we are still able to recoonise the frame "room" even if we change our viewpoint of the room.

A frame's slots are normallv filled with "default" assionments or conditions. Thus: a frame may contain a great many details whose supposition is not specifically warranted by the situation. They mav represent general knowledge, most likely cases, wavs to make useful new generalisations. even expectations. The default assionments are attached loosely to their slots so that they can be easilv displaced by new items that better fit the current. situation.

The frame-svstems are linked. in turne by an INFOFMATIONRETFIEVAL NETWOFK. When a proposed frame cannot be made to fit realitv - when we cannot find conditions that suitablv mateh the slots or markers of that frame, the information-retrieval network provides replacement frames until a "best match' is achieved.

Eecause "frame" is applied in a relativesense - a slot in a frame mav itself be a (sub)frame. and a marker of a frame mav refer to another frame - it aives rise to some contusion as to on which level the information-retrieval network works. Minsky talks about retrievina frames ad libitum until a 'best match' is found.

Let us imadine that we find ourselves in front of an obiect which mav or mav not be a tree. It mav be a real live trees on the other hand the grev dusty surface and the lack of green leaves make us wonder whether it is the real thing or: sav. a look: alike made of concrete. Dur information-retrieval network will. based on the clues of the situation. "pull in' a number of frames and compare them with the clues of the object in front of us to find a "best match" i.e. a frame which match the greatest number of clues (weighted accoding to perceived importance of each clue). The comparator which assesses how well a frame compares to reality may have established that the frame 'real tree') qives the best match to the object in front of us.

However, the function of the information-retrieval network is not to passivelv present a multitude of static frames. As each frame is retrieved and presented by the information-retrieval network, slots and markers on the lower levels of each frame are being assessed and. where necessary, emptied and refilled by other subframes. Thus, on the slot and marker level in the frame "real tree' another number of choices are being made between slots to find a "best match" to match the more subtle clues like colour or age, shape or number of leaves. Whether we want to imaoine that this is done bv the same information-retrieval network or bv a perceptron-like function is not important. What is important and in line with the overall theme of this thesis - is that whenever we have established a best match' choice has been made, and. accordina to information theorv, some entropy has been transformed into information. Whether the choice is made by a perceptron-like structure selecting data according to a strategy on a local level. or whether the choice is made by a more complex comparator between a number of frames presented by the informa-tion-retrieval network. does not make any difference to the basic fact that when the choice has been made. some entropy has been transformed into information.

JOHNSON-LAIFD'S MENTAL MODELS.

A number of criticisms could be raised aqainst Minsky's theorv of frames. The most obvious is that it is over-simplistic. JohnsonLaird (F.N. Johnson-Laird. 1983) points out that it is inconceivable that the mental representation of the real world should take onlv one form. First of all. Johnson-Laird points out. even if there is no precise line between perception and conception. it is necessarv to distinguish between 'physical" (perceptual) and 'conceptual" mental models. Fhysical models represent the physical world: conceptual models represent more abstract matters. Within the group of phisical models Johnson-Laird distinguishes between at least si\% maior types:

Relational models are static 'frames' consisting of a finite set of tokens representing a finite set of physical entities.

Spatial models consist of a relational model in which the onlv relations between the entities are spatial, and the models represent these relations bv locating tokens within a dimensional space (tvpicallv of two or three dimensions).

Temporal models consist of sequences of spatial 'frames" that occur in a temporal order corresponding to the temporal order of events.

Kinematic models consist of a temporal model that is psveholoqicallv continuous. The models represent changes and movements of depicted entities with no temporal discontinuities.

Dvnamic models are kinematic models in which there are relations between certain frames representing the causal relations between the events depicted.

Images which consist of viewer-centred representations of the visible characteristics of underlving three-dimensional spatial or kinematic models.

Johnson-Laird's 'phvsical' models are basicallv static or algorithmic of nature. They can be made to chanoe i.e. thev are reproor ammable, but without a 'control' or 'supervisorv" function to change the program, they won't. A phvsical model will thus give identical responses to the same specific input. This is clearlv a feature which the phvsical models have in common with Minskv's perceptrons. Both concepts - the physical models and the perceptrons - are lexicon functions in the sense that a "higher" function, Minsky's information-retrieval network or JohnsonLaird's conceptual models. has access to these functions and can modify them when the need arises. Even on the conceptual level there is some similarity between Minskv's and Johnson-Laird's models. Eoth have access to a number of frames and in both theories the conceptual model lin Minsky's theorvi the informationretrieval network) is able to select a frame by recursive inference or modify an existing frame by recurstve revision if no suitable frame can be found. However. whereas Minsky sees his information-retrieval network as a single function. Johnson-Laird distinauishes between at least four different tvpes of conceptual models with the 'machinerv' (sic) for their own recursive revision and the revision of the physical modelsi

Monadic models, which represent assertions about individuals, their properties, and identities between them. Such models consist of three components: 1) A number of tokens representino individual entities and properties. 2) A binarv function which is able to establish whether two tokens are identical or not. 3) A device which is able to indicate that the existence of a particular entitv is unlikelv.

Eelational models, which introduce a number of relations, possiblv abstract, between the tokens in a monadic model.

Meta-linguistic models. which contain tokens correspondino to linouistic expressions. and certain abstract relations between them and elements in a mental model of anv type. The abstract relations include kev semantic ones such as "refers to" and 'means'.

Set-theoretic models. which contain a number of tokens directlv representina sets. Thev mav also contain a set of associated tokens designating the abstract properties of a set. and a set of relations (including identitv and non-identitv) between the tokens designating sets.

As stated above, Johnson-Lairds conceptual models are able to revise themselves and the physical models bv recursion. Thev are thus heuristic in contrast to the physical (perceptual) models which are alogorithmic. In response to an incoming signal the conceptual models search through a number of physical models: compare, identify or discard and revise as the case mav be, and select the phisical model which gives the highest level of identitv - or as Minsky would sav: gives the 'best match'.

Minskiv's theorv of frames is simple (mav be even seductivelv so) and "rich" in the epistomological sense in which he and Papert use the word (page 34) in their strive towards a 'rich enough theorv'. Johnson-Laird's theory of mental models is more sophisticated. However. in practical research one has to strike a balance between the ideal and the possible. and for the research presented later in this thesis Minskivs theorv of frames has provided a workable model. Johnson-Laird's "Mental Models'. in mv view by far the most thorough and sophisticated examination of mental representations of the real world presented so far, has served as a reassuring frame of reference: In spite of their differences. Minsky's theorv of frames and Johnson-Laird's mental models have in common the procedure which. when presented with a phvsical representation of the real world, mobilises a finite number of 'frames" (Johnson-Laird too uses this term) and selects the frame which best matches the representation of the real world. This is the kev feature of both theories if we want to applv information theorv to the conceptual level, because. when a choice is made from a number of possibilities, as when one particular frame is selected, entropy is transformed into information.

Consequently, in this thesis 1 shall concentrate on the information transfer which takes place when a choige is made on what Minsky would call the slot and marker level, and Johnson-Laird would see as the level of conceptual models. In chapter 8 of this thesis. When we shall deal more thoroughly with the interaction between frames and context, we shall take heart in the fact that. for the research presented in this thesis, it is not essential to establish at which cognitive level the selection between frames

CHAPTER 4.

TEXT SAMPLES USED IN THIS RESEARCH.

The research presented in this paper concerns itself with structures in text strings. As the title of the paper suggests, we will try to uncover these structures by applying power spectral analysis to the text strings. This is not immediately possible. A text string - or any other medium used by our linguistic device does not easily lend itself to this kind of analysis. The full explanation for this I shall leave till a later chapter: suffice to state here, that the particular power spectrum analysis which we shall use - the Fourier analysis - is very sensitive to variations in the medium - in our case: text strings - that carry the structures.

It would have been ideal to base an analysis of this kind on a huge variety of text samples ranging from the bold unreflected phraseology of younger children to the seductive pandering by some gentlemen of the press. However, for reasons of manageability, In between these extremes I have had to pick a relatively small number of samples.

In my choise of text samples I have focused on the complexity of the information which the author wants to convey to the reader. Some authors are able to convey very complex information in a smooth and readable manner. Other authors are so caught up in linguistic mannerism, that the information becomes secondary or lost all together. Finally l thought it could be interesting to see how text strings written for children by adults compare with those written by the children themselves.

The text strings as a data base serve different purposes. In Chapter 5 the samples are used to find those structures in the text strings which are SPECIFIC to each string. In Chapters 11 and 12, the samples are used to find GENERAL structures: struetures which are common to all the strings.

The text strings are analysed, as they are printed on the following pages i.e. without punctuation. There are at least two reasons for this.

The firgt one is my wish to analyse a wide range of text-material. Many people, particularly children, do not use punctuation. As a matter of fact, you often see, that children persistently use "and" instead of full stop, and the presence of full stops in some text strings and not in others, would make it impossible to compare the results.

The second reason has been the difficulty in deciding how to handle this punctuation, particularly the full stops. Two func-
tions of punctuation become obvious from the reading aloud of text strings.

One is to allow time for a deep intake of air. This is not to say, that we only breathe in at punctuation marks, but to some extent this seems to be the cases especially for professionally trained readers or actors.

Another function of full stops is that of delaying the arrival of the following word to add importance i.e. to add information. The first problem along this line of reasoning is the difficulty of assessing just how long such a delay is meant to be since the pause after a full stop can be lengthened or shortened with different effect. The second problem is that of the information value of each full stop i.e. should each full stop be counted as a new word or as a repeat?

I have therefore chosen to omit punctuation all together. This is a safety precaution which may or may not add to the crudeness of my analysis. However, somewhere we will have to strike a balance between the amount of speculation which is necessary for the development of an idea, and further speculation which may turn the whole idea into mere ornaments.

TEXT STRINGS WRITTEN EY CHILDREN.

The 42 text samples on the following pages (pp. 41 to B8) have been produced by kind co-operation of children in two schools in Central Region in Scotland. The stories were written by the children with no assistance from adults as to the making up of the story. However, as is elearly evident, somebody has on occasions helped with the spelling of 'difficult' words (in spite of instructions to the contrary) whereas the more common words have been left for the children to spell in their own way. This does not matter. The spelling of a word - or any word - is irrelevant for our purpose, as long as the speliing is consistent throughout the same text string. For this reason, I have had to change spelling in cases where the same word was spelled in different ways in the same text string. In these cases, I have always chosen a spelling suggested by the child, instead of adhering to "correct" speliing. As stated, the correctness of the spelling is irrelevant, the computer wili compare words in the strings, and as long as the same words are spelled the same way, they will be recognised. In one case, 64C (p. 44), I have felt it necessary to "translate" the story, merely so that the reader does not miss the very charming contents. The "translation" is printed after the original version.

The children were in all cases told that they could write whatever they liked, but that fiction was preferable to facts. Some stories were useless, because they merely enumerated geographical facts or - in two cases of apparently deprived children - massess and masses of different dishes and recipes, which, albeit very charming and mouth watering, were not representative of the kind of natural 1 anguage I wanted to analyse.

The authors range in age from 6 years to 14 years. The text etrings are indexed according to the age of the author and the serial number of the text sample. All labele consist of a capital
'C' and a two or three figure number. In the case of the index being a two figure number like 'b1C', the number to the left indicates the age of the author and the number to the right indicates the serial number of the sample within this age category, ie age: 6, serial number within this age category: 1 . In the case of the index being a three figure number like '134C'; the two numbers to the left indicate the age of the author and the number to the right is still the serial number within the age category, ie age: 13, serial number: 4. There is really no need to try to memorise this method of indexing; it does not give rise to mis-interpretation. If you read the index '114C' as the serial number 14 in the category of text strings written by one year olds, you will probably realise, that you have separated the inder: in the wrong place. Although the ' C ' stands for 'child' it is not a necessary part of the indexing, only a reminder, and it will indeed appear sometimes first in the index, sometimes last. On the graphs resulting from the analysis of a particular text string, the label of the graph will be made up of the inder of the text sample followed by a number of parameters, eg., the label on a graph resulting from an analysis of text sample 65C may look: like this: '65C4BR91RF4750F1'. In this case, the 'c' serves as a separator between the index and the parameters. Sometimes, when the text sample is referred to as a text file (for memory disk use) and is not followed by a string of parameters, the file may be referred to as C65 instead of 65C, simply because my computer does not accept file names which begin with numbers. The ' C ' could for that matter have been any other character, like an asterix, but l have tried through out this research to make the labels meaningful, and whether the "C" appears first or last in an index, it serves as a clear reminder that the text string is written by a child.

Generally, the younger children have been brief. In the group of 6 year olds; the tent strings are typically around 60 words $10 n g$. At the other end of the age spectrum, the 14 year olds, the text strings can be up to 700 words long. The story 95C is untypically long ($n=867$) for a child of this age. It was written by my daughter, who was, on that occasion, paid per word and thus heavily motivated to exceed normal 'production targets'.

As a data base, the brevity of the young age group did not cause any problem for the analysis carried out in the preliminary research (chapter 5), and all the strings could indeed be analysed in this part of the research. With regard to the later research (chapters 10 to 12), which is based on Fourier Analygis of the text strings, 12 of the strings had to be abandoned because they were too short to be analysed by means of this kind of analysis.

I shall assume that in normal children, the level of linguistic competence depends on the children's general development. I shall further assume, that this development is significantly correlated to the children's age. The contribution of this category of children's text strings is therefore, that it represents a number of strings which presumably are arranged according to a gradually increased level of linguistic competence. As the age of the children is thus the most important parameter, and as this parameter is part of the index of each text string, I shall not go into further detail regarding each text string, but refer the reader to the strings themselves on the following pages.
TEXT STRINGS WRITTEN EY CHILDREN
INDEX:
Text string: Fage:
$61 C$ 41
62 C 42
63 C 43
64 C 44
65 C 45
66 C 46
67 C 47
70 C 48
710 49
720 50
73 C 51
740 52
$75 C$ 53
76 C 54
$77 C$ 55
78 C 56
$79 C$ 57
BOC 58
B1C 59
$82 C$ 60
$83 C$ 61
$84 C$ 62
$85 C$ 63
90 C 65
910 66
$92 C$ 67
93 C 68
$94 C$ 69
95 C 70
$96 C$. 72
100C 73
101 C 74
102 C 75
103C 76
104 C 77
110 C 78
111 C 79
112 C 80
$113 C$ 81
114 C 82
1300 83
140 C 85
141C. 87

TEXT STRINGS WFITTEN EY CHILDREN

INDEX:

Text string: Fage:
61 C 41
$62 C$ 42
$63 C$ 43
64C 44
65 C 45
$66 C$ 46
67 C 47
700 48
710 49
72 C 50
730 51
$74 C$ 52
75 C 53
$76 C$ 54
77 C 55
78 C 56
79 C 57
800 58
B1C 59
82C 60
83C 61
84C 62
85C 63
90 C 65
91 C 66
92 C 67
93 C 68
94 C 69
$95 C$ 70
$96 C$ 72
100 C 73
101 C 74
102C 75
$103 C$ 76
104 C 77
110 C 78
111 C 79
112 C 80
$113 C$ 81
114 C 82
$130 C$ 83
140 C 85
141 C 87
6.1 C

ONE MOFNING I WOFE UF IN EED I HEAFD A NOISE OUT SIDE AND I LOCIEE I SAU A SFACESHIF OUT CAME A FAEEIT ANI SAID COULD I STAY FOF THE NIGHT YES I SAID IN THE MORNING THE RAEEIT GHVE ME DINE WISH I WISHED FGR SOME SILVER AND I GOT THE SILVEF: AND I WENT TO MLIFRAYS AND EOIGHT TWENTY SWEETS AND 1 STILL HAD SILVEF: LEFT

E2c
OHE DAY I FELL OFF MY EIKE AND KNOCKED A
TOOTH OUT AND IT WAS ONE OF MY LITTLE TEETH MLIMMY SENT ME EACI: TO THE FOAL TO LOOF: FOF: 17 AND I SOON FOLNII IT IT WAS LONG AND WHITE AND SHINY HINI I FUT IT LINDER MY FILLOW SLINLIAY NIGHT EECALISE I FOF:GOT TO FUT IT UNDEF MY FILLUW ON SATUFIDAY NIGHT THEN ON SUNLAY I FUT IT UNDEF: MY FILLOW ANLI ON MONDAY MOFNING I FOUND A TEN FENEE AND I SFENT IT ALL ON A FACKET IF SHLT A!NI VINEGAF: CFIISFE ANI I ATE THEM ALL

$6=0$

1 Wニミ A HEGLI FEATHEF FF:IM A FHEASANT ANI THERE WEFE SOME CHILIFEN FLAYING AND DNE OF THEM FICKED ME LIF. GNI, STUC: ME ON A STLIFFED DLIMMY EIF:D THE NAME OF THE FERSON WAS STUAFTT WILSON AND HE HAD made ouite a lot dif them he hai set lif
A FOURI OF WILD LIFE LIIE WOGD AND FOREST AND LAIES ANE FUNDS WITH STUFFED ANIMALS HE INVITED ALL HIS FFIENEE TO COME AND sEE US

```
64C
ON FFIDAY FIONA IN FE 1 EF:OT HUF: LAME TO
SCHOLL IT FLETED AND ELETED AND THE CULIF OF ITS
MAFY:INGS IS FLUE ITS DADDAY IS FFENSH AN DITS MLIMMY
HAI HOF:INS AND YESTDAY YAET EROT HEFES WE SAY EOE
A ELACH SHEF II WAS CYOOT LAST YEAF THE LAME
CEFT DOWING THE TOLET ON THE FLOF:
ON FFIDAY FIONA IN F ONE GFOUGHT HEF LAME TO
SHCUM IT FLEETEI ANL ELEETED AND THE COLIULF:CIF ITS
MAF,INGS IS KLLIE ITS DADLY IS FFEENCH ANL ITS MLIMMI
HMD HOFWE GNL, YESTERDAY VATE BFINLGHT HEFS WE SANG EAH
EOH HLACH. SHEEF IT WAS CUTE LAST YEAF: THE LAME
EFT [IIjNG THE TGILET ON: THE FLOOF:
```

650
CINCE THERE WAS A RABEIT WHO WAS CHASING MY FFIEND sQuIf:FEL ATND ONE DAY I MADE A NUT LINE FOF: THE EIFDS ANI ESFECIALLY FOF: THE ELLIETITS AND MY EROTHER made one taci gine when he flit it lif the SOUIFF:EL F:LLLEE 17 LOWN OFF THE EIF:I TAHLE AND TOOK THEM ANI HID THEM AND THEN I THOUGHT THAT I WOULD FUIT MY NUIT LINE ON THE WASHING LINE EUTT THE FABEIT ETILL CHASES THE SOUIFFEL RAEFITS ARE VEFiY ANNOYING YOU FNOW ANII THAT EVEN EAT QUF CAFFROTS LETTUCE AND CMLIJFICDEF

[^0]THE HE TELLS ME TO
TO SING SONGG IN THE EATH HE TELLS ME TO
I AM ALL FIGHT IN THE EATH HE WOFKS IN
GLASGCIW AT GOFDCIN MOTUF:S AT A GAFAGE I SUMETIMES GCI TO SEE HIM IN HIS OFFICE WHEN HE IS VERY
ELISY DADIIY IS FAT HIS HOEEY IS LYING ON THE COLICH WATCHING THE FOUTEALL ON SATURDAYS

70 C

1 Lite music mecalise it gives me a haffy feeling
1 LIFE MUSIC THAT IS FAST EECAUSE MY MUM CAN
flay the fiang fast fegfle have instruments to mal:e music FOF MLISIC IS MY FAVOLFITE MY MLIM SAID SHE DANCES
WJTH THE MUEIC WHEN SHE IS IN THE MOOL FOF:
DGiNEING I LIt:E THE SQUND OF DANCING GECAUSE I DANCE
WITH THE MLISIC ANE MY MUIY COMES TO DANCE WITH ME TOO TOMLFFFOU: I AM GOING TO A FAF:TY AND
1 am gaing ta get the radio and i will
LIETEH TO IT LINTIL I AM AT THE FAFTY I
LIIE THE FQF MUSIC THE EIF:LS LIHE TO SING ALL
hat the raifia is the eest to get music tai
[MHE WITH THE SOLMLD OF MUSIC 15 GOOD I CAN
Fing: the fiardg when I flay the figano my mlin
cames in my room hini liances to it some feofle
LILE FOF MUSIC MY MUN SAID TO ME MUSIC IS
IWTEFESTING MY GFiAN LJYES TO HEAF MLISIC ON TELEVISIGN KEVIN
HGTES MUISIC

715
OUF: 'Illlage is a fretty little village i have lived IN KILLEAEN ALL MY LIFE I WAS EORN IN KILLEARN WHEN I LEFT NLIRSEFY SCHOOL I CAME TO KILLEAFN SCHOOL AT KILLEAFN SCHOOL WE GET FLENTY OF WOFEK WE HAVE A rILLEAFIN CHLFCH THAT WE SING IN WE HAVE SOME SHOFS IN OLIF UILLAGE LIHE THE COOF AND MURFiAYS WE have a hotel calied the black eull my village killeafin IS NEAT ANE TIDY WE HAVE A SWING FARK IN OUF UJLLAGE WE HAVE A SHOOT AT THE SWING FARK: AND SUNE SWINGS WE HAVE LOTS OF MOUNTINS IN KILLEAFN We Han'e gat a mardument in memar:y of geofge ruchainan

720

OIE diAY at half fasit thfiee we went home from SCHGOL AND THE TEACHERS TOU IN MF:S FLEMINGS DESK HEF DFiniwing fing were banging on tof of the gox they
WEFE MAYING SUCH A NOISE AT LAST THEY GGIT OUT OF THE GOX THEY JUMFED GIN TO THE FLOOF: AND GOT OUIT OF THE DOOF OFF THEY WENT DOWN THE STEF'S AHII THEY WENT IN TO THE GYM HALL BECAUSE THEY HEAFD MUSIC THEFE WAE A MAN TEACHING LADIES TO bHNEE THE FIUS STAFTEI TO DANCE AFTER THAT THEY WENT EACY TO THE CLAES FOOM TO EXFLGIFE EUT SOON THEY HEGET THE CLEANEFS COMMING AND THEY IIVEN EACI: ON THEJF: FOINTEI TIFE EAACI. IN TO THE EGIX
73 C
Yuck A VISIT TO THE DENTIST WHEN THE NURSE SAID COME GIRLS I THOUGHT IT WAS THE DENTIST AND IT WAS I WAS SCARED BECAUSE I DO NOT LIKE FILLINGS AND EECAUSE I DID NOT WANT ANY TREATMENT WHEN THE DENTIST SAJD THAT MY TEETH WERE FINE I WAS GLAD glad that i did nat have any treatment then when mafgafet came out I told her that i did not HAVE ANY TREATMENT AND SHE SAID THAT SHE DID NOT HAVE ANY FFOM THE DENTIST ONCE WHEN I WAS AT MY OWH DENTIST I EIT HIS FINGEF: BECALISE I DID NOT LITE $1 T$

740
WhEN I SHLIT MY EYES it MAIES ME THINH: OF MFE SMITH AT SINGING I HAJE A RAIIO AT HOME 1 flay it a lot i lave music eecause $1 T$ MA'tEs. ME FEEL UEF'\} HAFFFY MF:S YOLINGE CLASS WENT TD sinfoing to day some music tells a stofiy you can MÁrE MLIEIC WITH INSTRLIMENTS IT MAIES A LOVELY TUNE I LIHE FOF MLISIC HEST I LIHE LISTENING TO RECORDS ON THE FEECOFD FLAYEF SOMETIMES I DANCE AND DANCE TO MUSIC TIll I AR: OUT OF EREATH WHEN YOU ARE AT A FGFITY WE HEAF MLISIE A LOIT I LIKE MLEIC A] FGRTIES WHEN YOU FLAT MLISICAL EUMFS 1 LOVE IT

75 C
an of:ange is a fruit its colouf is orange they GF:CIV: IN COUNTFIES LIKE FRANCE AND SFAIN AND SOME FAFITS OF AMEFIICA AN ORANGE IS A FFUIT CALLED CITRUS IT IS A VEFY JUJCY FRLIIT I LIFE THEM ALOT I have one cut in ouariters i suck everiy drilif of JUICE OUIT WHEN YOU HAVE EATEN AN OFANGE YOUF: HAND get vefir sticky indeed i have lots of oringes in MY FFIUIT EOUL IF YOU SOUIFT THE JUICE IN SOMEONES eyeg they sting alat the shin of an ofange is THICP ANU SEIFT

750
an oramge is a fruit its colour is orange they GF:CH: In COUNTE:IES LIKE FFANLE AND SFAIN AND SOME FAFITS OF AMEFICA AN OF:ANGE IS A FRUIT CALLED CITFUS IT IS A VEFY JUJCY FRLIIT I LIFE THEM ALOT I HAVE ONE CUT IN OUARTEFSS I SUCK EVERY DF:CIF OF JUICE OLIT WHEN YOU HAVE EATEN AN ORANGE YOUF: HAND get veriy sticry indeed i have lots of oranges in MY FFilit t enill if You souift the Juice in someones eyes they sting alat the stiln of an orange is THICR AND SGIF

750
DAFINESS IS FUN YOU CAN FLAY HIDE AND SEEK: AND RUN LIF TO THE DEN EEFGRE ANYONE CAN SEE YOU DAF: IS NECESSAFY OUF TEACHER READ US A STORY AEOUT AN OWL WHO WAE AFRGID OF THE DARK IT WAS UNUIELIAL EECAUSE OWLS ARE NIGHT EIRDS HIS NAME WAS FLOF HE FOUNL OUT THAT DARK IS FASCINATING THERE IS A GAme called murider in the dafk. and you turin off THE LIGHTS GHOSTS FLCAT IN THE DAFK AND YOU CAN SEE THEM GECAUSE THEY ARE WHITE
$77 C$
I Live in a pretty little village called killeafin there IS A WOOI IN WHICH I LOVE TO FLAY I
MOVED TO KILLEAFiN LAST SUMMEF I LIKE KILLEAFN EETTEF THAN My other village kecause i have mafe ffiends thefe afie LOTS OF HIRDS IN KILLEAFN SUCH AS ELUE TITS STAFLINGS ELACIEIFDG I AM GLAI THAT 1 dO NOT LIVE IN GLASGGIU EECALISE IT IS SUCH A FIG FLACE THAT I MIGHT GET LOST THERE 15 A SCHOOL IN KILLEAFIN I SIT IA: IT EVEFY' DAY THERE IS ONE HOTEL IN YHLEEAFI JT 35 CAILEL THE ELACI ELLL MY DAD GOES THEFE E'UEEY FFIDAY THEFE IS ONLY ONE THING I DO W:T LIEE AEOUT FILLEGFiN ANG THGT IS NEAFiLY ALL MY FELGTIUESLIVE IN NIRYADY

78 C
gOD MaIIE THE EAFTH FOR US TO LIVE ON IT
the fifist fekisons he made was adam the seciond ferison HE MADE WAS EVE WHEN GOD IS NOT HAFFY HE CFIES HIS TEAFE WE CALL RAIN I THINK HE WEAFE A White cloar. Eut I have na idea what shafe HE IS I DCI NOT LIAE WARS I HOFE THERE afie no more waf: 1 wCulld not like to hear THE CANONS AND THE GUNS AND THE CRIES OF FEEOFLE FALLINE I HFTE TG THINI: OF IT

[^1]BOL
one day the eig heown eafin owl that lived in THE EIG EROWN EAFN WAS SAYING TO THE EIG WHITE SNOWY OWL THAT LIVED IN A TREE NEAF: EY THAT THEF:E WAS HGF:DLY ANY ACTIUITY FDF: THE ANIMALS AFTEF: A WHILE MFES SNOWY OWL SAID WHY NOT HAVE A SFORTS dir for: all the woomlang creatures me: earin owl thought that thls was a vefiy goon inea as saon as THE ANIMALS HEARD AEQUT IT THEY HURFIED OFF TO GET FEEADY MF'S SILK WOFM MALE A SILK FINISH LINE AFTER EVEFYTHING WAS OFGGIHISED MF EAFN OWL STAFTED THE FIFST RACE Whileh was hetween six hedgehogs a mouse and a toritoise FISF:T FFIIZE WAS FRESENTEI TU THE MOLSE SECOND TO A HEDGEHCG AND THIF: TO THE TORTOISE THEN CAME THE SLOW FiACE THE TCIF:OISE WON THAT OF COUF:SE HE WOLLD SAID THE HAFE THE THIEE ANI FIHAL GAME WAS THE LONG ILIMF. IN WHICH THE TGAI CAME FIFST THE FRG: CAME seccing ardi the hare came thikid

815
ONE DAY A FASSENGEF: FLANE WENT OVER THE EERMUDA TFIANGLE SUDDENLY $1 T$ STAF:TED TO DF:OF AND CRASHED ON THE WATEF: IT WAS AFOUT HALF A MILE TO THE SHORE OF EEFMLLDA IT HAFFENEN THAT ONE OF THE SUFVIVOF:S WAS A FCLICE DETECTJUE HE SWAM ASHORE AND STAFTED TO WALK ABOUT aftef he hai walleg far a while he sal a TREE AS HE WAS FASSING IT HE TRIFFFED OVER A Stane a dolif: ofened and he went in in the TFEE THEFEL WAS LOTS OF COMFUTORE AND AT THE TOF THEFE WAE A TFANEMITTEF: HE KNEW ALL THE ANSWEFE HE NEEDE D HF F:A: 70 THE BEACH EUT AN ALIEN SHEIT HIM THE HEFMLIG SECRET IS STILL KEFT

820
IN THE SIXTEEN ACFE WOON A LITTLE EASTER EUNNY SKIF'S ALOHG WITH HIS EASYET OF EASTER EGGS AT THE END OF THE SIXTEEN ACFE WOOI IS A LITTLE HLIT WERE A ERV LIVES WITH HIS MUTHEFi AND FATHER EVEFiY EASTEF: the little flinisy sijfes along to the hut the gors FAFENTS CAN NGIT AFFOF:D TO FUY ANY EASTEF: EGGS THE EUNNY LIVES IN A HCLLLOW OF A TREE TRLINK IN THE MIDDLE OF THE WOOU HE HAS THFEE ACFES OF LAMI WHERE HE GF:OUS HIS EASTEF EGGS ONE DAY A MAY: HEAFD GHOUT THIS ELMNIY AND WANTED TO KILL THE hillay aldi tatte his eastefi eggs he killed the easter EUNNA ANE TGOF: OVEF: HIS LAND EUT HE COLLD NOT GRiTW THEM HE IIID NGI RINOW HOW TO GROW THEM SO HE SADLY WENT EACK TO HOLLAND WELL HOWEVER THE EASTEF: FLINNYS COUSIN TOCI. OVEF HIS JOE AHI EVERYEGIY WAS HAFFY THIE ELINNY WAS VEFY CLEVEF AND HE RNEW HOW. TO GFOU EASTEF EGES

830
CHLGGALUG WAS A TRAIN HE WAS BFIGHT RED WITH A ELUE EOILEF ONE DAY CHUGLIS TRAVELLED UG WAS SAD WHY EECAUSE CAFFYING LOTS OF FASSENGERS GOING TO THE SHUNTING YARD EECAUSE THE TRAIN DEIVER THOUGHT HE WAS TOO OLI SO WHEN THEY CAME BACK FFOM EDINBURGH CHUGALUG FAN AWAY HE FAN OVEF FLIRFLE MOUNTAINS AND GFEEN VALLEYS UNTIL HE CAME TO A SUDDEN STOF IT WAS HILLMADA DLIEEN OF THE SUN HILLMADA SAID WHY DO YOU RUIN AWAY FRON THE SHUNTING YAFI EEEAUSE I DG NOT WANT MY NICE RED FAINT ANI MY ELUE HOILEE DIRTY FUSSINESS WILL GET YOU NOWHEFE SO GO EACl. AHI, YOU WILL EE HAFFY SO CHUGALUG WEIT EACR ANI, TKUE ENOUGH HE WAS HAFFY AND TILL that day of chligallig was never fussy again

84C
ONE DAY A LITtLE GIRL CALLED LOUISE DECIDED TO FUT OH: HEF NEW SHCIES NO ONE EXCEFT THE LITTLE ELF IN THE SHOF KNEW THEY WERE MAGIC SHE FUT THEM ON: frid surdeniy she felt a striong wind she laoked AFOUHD TO FIHI, SHE WAS FLYING THFOUGH THE AIF SHE MLIFMLIFED I AM HUNGFiY I SHOULD GO TO THE LAND
of EATAELESS IF THEFE IS ONE TO HEF SURFFRISE SHE FOUND SHE WAS FLYING OUT OF THE DOOR AND THEN NGITICEI SHE WAS GROUE THE CLOUDS THEN LOUISE LANDED THERE WEFE HCULSES MADE OF FRUIT CAKE WITH CHIMNEYS OF MARZIFAMI Ir. THE GAFIDEHE THEFE WEFE CHOCOLATE RJSCUIT AND DUMFLING TFEES THE GF:ASS WAS GFEEN SUGAF AND ON THE GFASS THERE WEFE LEMON CURD AND STRAMEEEFFY JAM TAFTS THE ROAD THE FAVEMENT AND THE CAFS WERE LIOUGRICE SHE WALKED ALONG THE FAUEMEWT ANL CAHE TO A HUMELG FGEEST SHE WALKED INTG 17 AN: DECIDEE TCI TARE A LCING WALK AFTEF A WHILE SHE EECAME TIFED HOT HUNGGY AND THIFSSTY SHE CAME Ta \& LEMCHNDE EFOCI AND LAY DOWN UNDEF A NEAFEE TFEE SHE FLILLED SOME HLIMEUGS AND DFANK LEMONADE SHE SAID GO HIME NEXT ILY LOUIEE SAIL TAKE ME TO FAIFIYLAND I. OUISE FLEU TG FAJFYLANI LATEF: SHE WALI ED TO THE FALACE WHEFE SHE WKS TUFHED INTD A FAIFiY EY THE VING THEN SHE THEEW AWGY THE SHOES hecalise she had wings SHE WGS DRESSED IN EUTTEFECUF FETALS AND SHE WAS NAMED H!TTEFCUF GHE NEVER WENT HCME AGAIN AND LIVED HAFFILY EVER AFTEF: IN a cCittage in the toun of erendolla next noef tu tulif

850

I WANT TO TELL YOU AEOUT MY HAFFFY LIFE WELL
YOU SEE MY DADDY WORKS AT A SCHOOL FOF BCIAFDING SCHOOL EQVS HE IS A HOLSEMASTER THERE THEFE AFE FIFTY EOYS IN THE SCHOOL THE EOYS CALL ME THEIF HOUSESISTER
1 GO ON DUTY WITH Mr DADDY EECAUSE IT WOULD eE EOF:ING FY MYSELF IN THE HOUSE I FLAY WITH the eays they afe very nice to me my daddy SENDS ME DOWN AT NINE OCLOCK THEN I FUT MY fyidmas of nightdfess on then i can lay in the SETTEE TILL HE COMES DOWN FFOM WORK. THEFE AFE TWO EIG UNITS ONE FOF THE YOUNG LITTLE ONES AND THE GITHEF ONE FOF: THE OLDEF ONES MY DADDY USED TO ene in the eottom unit thats fof the little ones BUIT NOW HE WOF:KS IN THE TOF LINIT THERE WHERE THE OLIEF FOYS ARE EVEF:Y MORNING MY DADDIY WARES ME IF. FOF SCHOOL HE GOES TO WOFK AT THE SAME TIME AS I DO I have mfealfant with the fors WHEN MY DADDY IS ON DUTY IN THE MOFNING THEN THEFE 15 A FFIEND TO FICK ME UF TO SCHOOL EVEF:Y tllesiday the eays ga swimming 1 AM Allowed to gn wITH THEM 1 LOVE IT THEN WHEN WE COME HOME SOME OF THE OTHER EOYS MAIE THE SUFFER FOF: THEM THAT 15 THE TIME I AM SENI DOWN MY DADDY HAS THEN ECUGHT ME MY OUIN SUFFEE THEN AS 1 SGijl 1 WOULD FUT MY FYJAMAS OF: NIGHTIRESS ON THEN I WILL SWITCH THE TELEVISION ON AND LAY IN the settee then if I feel sleefy I would switch OFF ANO FALL ASLEEF OF I WOULD JUST FALL ASLEEF WHEN THE TELEVISION WAS ON THEN WHEN MY DADDY COMES DOWN HE WILL CAFF:Y ME TO MY EED I WANT to tell you afout my schiol well in the morining AT 730 MY DADIVY WAKES ME UF OF COLIRSE I DO NOT WARIT TO EE WAKEN LIF EUT I GET UF AND GET DRESSED AND THEN I GET MY EREAKFAST AND THEN I GO TO SCHOOL THE SCHOOL 15 NOFMALLY EMFTY THEN AT NINE OCLOCK THE SCHOOL IS FULL THEN WHEN THE RELL RINGS SCHOOL EEGINS WE ALL PUSH TO GET IN THE DOOF I AND GILLIAN SIT AT THE TOF. THE FIRST THING WE DO IS DIAFY THEN SUMS THEN ENGLISH AND THEN WE DO SOMETHING FUN ON MONDAY WE HAVE CHOIF: FRACTICE ON TUESDAY WE HAVE A TELEVISION FROGFiAM ON WEDNESDAY WE HAVE SERVICE PRACTICE THURSDAY GYM AND THEN ON SATUF:DAY AND SUNDAY WE HAVE WEEKEND AND ON monday we staft all over again i like school a LOT NO 1 DO NOT LIKE SCHOOL I LOVE SCHOOL I HAVE GOT A VEFiY VEFir NICE TEACHER SHE IS CALLED MISS YOUNG SHE IS ALWAYS NICE TO US WE GET THREE RFEARS THE LUNCH TIME EELL RINGS AT 12 GCLOCK. TO 1 OCLOCK WE GET 4 CHOICES SNACKS PACKS GUING HOME AND SCHIOL DINNEF:S WE ALSO GET A BREAK AFTEF DININEF THE CHIILDREN THAT I FLAY WITH ARE MY FRIENDS THEY ARE VERY NICE TO ME WE ALSO GET A EOTTLE OF MILK A DAY IF WE ARE LUCKY WE GET EXTRA SOME TIMES THE DENTIST COMES LF THE

EOSS THAT WE HAVE GOT IS HORFIELE SHE IS CALLED MISS WOIIELL EUT I CALL HER MISS WOMELE THE SECRETAFY MISS YOUNG IS VEFY NICE MOST OF THE CHILDFEN HATE SCHOCL THEFE AFE ALSO FULES THESE AFE THE RLILES NOT TO THFOW STONES NOT TO KICK EE NICE TO EVEFYEODY TREAT THE SCHOQL LIKE YOUF HOME AND NOT

90 C

MFS WYLLIE WAS telling us a stofy it was the
LITTLE DON EY SHE HAD FEAD A FEW FAGES WHEN I LOOHED QUT OF THE WINDOW I THOUGHT I SAW A MOVEMENT EEHIND \& TFEE I TLIRNED EACK TO THE STOF:Y YES I WAS F:IGHT THEFE WAS A GIANT DINOSALF FLODING LIF. THE FIELD I SUDDENLY RUSHED OUT TO MFS WYLLIES DESI SHCIUTING AAA IIINOSAUK IS CCCOMING THE FFFIELD SHE SUDUENLY JUMFED OUT OF HEF CHAIF THEN SHE SHOUTED LINE UF CHILDFEN HATE HAL FAINTED I SUDDENLY FIAN TO HEF: AND LIFT HEF: LIF 1 TOUI HEF: OUT OF THE CLASSFROM 1 SCIINDEI THE ALAFM THE DINOSAUR: WAS NEAFLY ONE METRE GWG: FRGM ME I THFEW KATE DCIWN AND FICKED SOME SICNES AND TWIGS $1 T$ WAS NO GCIOD THEN 1 FICKED HEF LH AGAIM THE GIANT HEAD OFENED ITS MOUTH AND
 CAME DCIWN EVEFYGINE OUICKLY HOFED EXCEFT KATE ANI I THE HELICOETEF FCIEE UF INTO THE AIF AND SUDDENLY THEY SAW ME IT CAME EACK: DOWN THE DFIVEF SGID ONLY ROOM FGF: cine we af: chamfed as it is l guickly FUIT IGTE IN THEN I CLIMEED UF ONTO THE ROOF THE HELICOFTEF: WENT UF IN THE GIF: IT WAS WATCHING me i duichly got a branch of a triee the IINOSALIE: HEINT DOWN I FOKED HIM IN THE EYE HE WAS dYing the dead eair of the dinosauf was going TO LAHII ON THE ROOF I SUTIDENLY CI-IMEED DOWIN THE SIDE E:IMF IT WAS DEAD THE HELOCCIFTEF: CAME DOWN TO LGUL Alll E EEFONE THROUGH ME UF IN THE AJF: THEN NGTE AWENE AMI I TOLD HEF AFOUT WHGT HAD HAFFFENED

915
ONE NIGHT I HAD A DREAM I WOKE UF I TOLD MYSELF THAT I HAD TO GO TO THE OLD COTTAGE EI THE DISUSED EFEWEFY SO 1 GOT DFEESSED ANI I WENT OLIT I TOOF. A TORCH JUST IN CASE IT WAS YERY DGFIK. WHEN I GOT THERE IT WAS VEF:Y DAFK 50 I WENT IN I SAW AN OLD DUSTY CHEST 1 OFENED IT ANI FOLIND SOME EITS OF FAFEF THEN SUDDENLY I HEAFD A BANG I TURNED ROUND ANI THE DOOF HAI SHLIT I SHONE MY TOFCH ANI thefe was a ghost i was going to charge at IT THEN I REMEMGERED GHOSTS ARE TRANSFARENT FUT IT MIGHT EE DFESSED LIF SU I FUT MY TOFCH DOWN AND fiald I fulled off the sheet and there was mfi FiADLEY I SAID WHAT AFE YOU DOING HERE NOTHING NCIW GO HaME HE SAID SO I FICHED UF MY TOFCH Grio went hame in the morining i went to the fol ice and they came with me. thefe we found mf: FADLEY ANI SLIME GF HIS FFIENDS WHEN THEY SAW THE FOLICE THEY JUMFED GUT OF THE WINNOW EUIT THEY DID NGit finaw that the folice had gane folind to the WIHIOW AND THEY WERE ALL CALIGHT NEXT DAY I WENT EACI AND I FCUUND GOG FOUNDS SO I TOOK: IT to the folice anio the feofle wefe triying to smuggle the miney inta america so they were fut into frisison FOF SEVEN YEAFS AND 1 feturined the maney the end

93 c

1 WAS COLLECTING DFIFTWOOD FOR THE FIRE WHEN I SAW SOME SHIFS THEY WERE VIKING SHIFS I WAS FFROIEN WITH FEAF: I SHOIII. THE FEAF: OFF AND COLLECTED THE WOOD I FAN DFF HGME THEY WEFE LANDING I DROFPED THE WCIG: ANJ: FAN UF THE HILL THE DFIFTWOOD WONT MATTER I TOLD MY FATHEF THEFE IS NOT MLICH TIME GATHEF: the weafoine while 1 give the alafim so 1 GOT ALL THE WEAFONE THEN 1 SAW THE VIKINGS COMING UF THE FGTH 1 TCOKK A FIKE 1 RIAN OUT THE FIFST 1 RAMHED INTG WITH MY FIKE THE SECOND FUT IF A FJGHT THE OTHERS STAFITEI UF IT WAS ONE Hisfillst NINE I WAS SAVED FY THE CRIES OF THE OTHEFS NOW IT WAS TWENTY AGAINST NINE INCLUDING ME I GIT A GOOD FUUN $A T$ ONE OF THEM I RAMMED My FIIIE AT HIM HE FELL DOWN IT WAS NOW TWEUTY AGGINST EIGHT THEY HAD NO CHANCE SOON THEY SURFENDERED WE TOOI THEM FFFISONER I THINK I DID JOLLY WELL
FGF: A EIFLL I GOT A REWAF:L $\}$ DID NCIT HAVE TG COLLECT DRIFTWOOD ANYMORE

92 C
HELLO I AM SULTANA THE FIFST KING OF THE RAISINS YOU SEE ALL THE KINGS AND QUEENS AFE CALLED SULTANAS AIJD ALL THE REST AFE RAISINS I AM ALL EXITED bec.alise I am going ta ee on this is youk LIFE AT THE STUDIIG SULTANA THE FIRST 1 FRESUME IN 1973 YOU SAILED ON A GIANT SHIF OVEF TO ENGLAND AND ON THAT SHIF WAS FAMOUS CAFTAIN RAISIN COOK: AND HERE HE IS HI LIKE TO GO EACK: AGAIN I geally fieally wauld rathef than meing murnt in a chfistmas CAIE IS IT NEIT OF COURSE SAID CAFTAIN FAISIN COOF: NOT NOW TOMORFIOW WE WILL SET SAIL NEXT IAAY OH HELLCIW SULTANA I CAN RESCUE EVEFY RAISIN AND SULTANA IN THAT TIN WELL GET ON WITH IT SAID SULTANA SOON they were all aeciafi they sailed for nine days and LAJIEED IN THE WFOING FLACE EUIT THEFE WERE NO HLMANS ON 11 SO FOF: ALL I KNOW IF YOU FIND
THE ISLANI YOU WILL FJNI MILLIONS OF SULTANAS ANS RAISINS
945
I AM, a AFFLE hanging on a tree one day 1 DFOFFED AND FOLLED DOWH: A HILL AND A EOY KICKEL ME ON SO I FOLLED ON ANL ON SOON A WIND CAUGHT UF AND ELEW ME ON I WENT OUEF: A STOINE OW I HAL A EF:UISE OH ME NOW SOON I SAM WATEF IN SIGHT OH YES IT WAE: THE FIVEF: ENDF:ICK OH NO I AM HADING FOF: IT SOIN I WAS FIGHT EESIDE THE FIVER ENDFICK: SUDDENLY 1 EOLINCED FIGHT INTO THE KIVEF: I FLOATED ON SOON 1 SAW ANOTHEF AFFLE THE WATEF WAS GETTING DEEFEF: ANI DEEFEF AIII \& WHOLE LGAE OF STONES WERE COMING INTO the water we afe neafily in lach lomand just a wire Eit mone ghe we af:e in it oh gosh I AM SIN IWE GiH that was clase we afe coming LIF FQF: FIUER LEVEN LONH I CAN SEE A LITTLE ETICIE JCIMED TCIGETHEF IT IS A MINITUFE FAFT I THIH: I WILL THY TG GET ON IT NO IT HAS sunt hefe cames the filver clyde I thint i am DEidithing oh ng hefe is the sea gool bye

95

MY NAME IS ANNE SOFIE GFAFF AND I WAS EFROLIGHT LIF WITH MY LADDY MY DADDY IS A HOLSEMASTEF AT A EGAFIIING SCHCICIL FOF: EOYS CALLED EALLIKINFAIN SCHOOL AND WITH THESE ECIYS 1 HAVE EEEN EFOUUGHT UF ALL MY LIFE SINCE I WAS THFEE I GU TO FILLEAFIN FFIMAFYY THIS COMMING YEAF: I WILL EE GOING IN TU FRIMAFIY SIX MY SCHIICIL IS NOT THAT HAD EUT WE HAVE GOT
A HOFFIIEILE HEALMISTRESS WHD IS VEFYY STFIICT TO THE CHILDFIEN
IH FFIIMAFIY OHE THEFE IS MISS NOFIDON SHE IS TEFFFIELE
IN FFIIMAFY TWI MISE GAF:Y SHE IS DKAY AND IN
THE CTHEF FFIMAFY TWU THEFE IS MISS LEONAFD SHE IS HOFFIELE IN FFIMAFIY THFEE THERE IS TWO TEACHEFS MISS YOUNG AIJI MISE FLEMMJTVE MISS VOLING 15 LOVELY AND KIND AND GEHEFROLIS ELIT MISS FLEMMING 15 OLIITE THE OFFOSITE IN FFIIMAFIY FQUF THEFE IS MISS DAVIES HEF HUSEANI IS MY DADDYS EIES ANL SHE WAE HOFFIIELE I HATED HEF: AND I STILL DCI ANI LAST YEAF: I HAD MRS WYLLIE WHOM I LQMED VEFY' DEAFiLY I HAD A LQVELY YEAF WITH HEF HEF: HLISEAND WOFISS WITH MY DADDY SHE WAS HONEST SWEET INTELLIGENT AND GQUL WITH CHILDFEN AND NEXT YEAF I FEEAF, I GET MISS LINDSAY LUCMELY SHE IS NOT STFICT ELIT SHE IS SO EDFIING IN FF:IMAFY SEVEN THEFE 15 AHOTHEF: MISS YOLING FF:OM WHAT 1 HEAF SHE IS ALLFIGHT WELL THAT IS IT AHCUIT MY SCHOIOL DADDY AND I HHVE MUUED TO A NEW HOUEE DCIWN NTHE FOAD IT IS A EEALITIFLIL LITTLE OLDFASHIONED ENGLISH COTTAGE WITH SFIFAL STAIFCAE

AUII STF:ANGE SCUINT WALLS FQF: MY EIFTHDAY 1 AM GETTING A RITTEN LADDY IS GIVING ME THE KITTEN AND CAT
TFAAY ANI, A LQUELY TIME AND NANNA IS GIVING ME
A CAT HASKET I AM GOING TO EY IT LOTS
OF THJNGS WCI NCIT ASK ME WHEFE J GET THE
MOMEY FFOMM EECAUSE I DO NOT KNOW MYSELF EVERY YEAF:
DGIDDY ANJ: 1 ECI TU DENMAFIV: FOF OUF SUMMEF HOLIDAY TO SEE NANNA THIS IS QUF HOME COUNTFY WHERE EDTH DAIMY AND 1 WEFE EDFN WE ALWAYS HAVE A LOVELY TIME WE HAVE JLIST COME EACK A FEW WEEKS AGO WE HAD A LQVELY TIME IT ALL STAFTED EARLY ON SLINDAY MOFNING AT SEVENTHIFTY WHEN WE EOTH HAD TO WAKE UF ANL GET FEADY TO LEAVE WE HAD FACKED OUF SUITCASES THE NIGHT EEFQFE SO WHEN WE WERE READY WE LEFT TO CATCH THE BOAT AT NEWCASTLE TO ESEJERG WE SAILEI ON THE WINSTON CHUFCHILL AND HAD THE COLD TAELE WHEN WE WEFE IN DEINMAFK: THE NEXT DAY WE HAD TO DFIVE TO ANOTHEF SHIF THAT WAS ONLY FOF AN HOUIF ON IT I HAD A EOTTLE OF FIZZY DFINF: IN DANISH CALLED SODAVAND THEN WHEN WE CAME DFF THAT EGAT IIAD HAII TO DFIVE TO NANNA IN THE COUNTRYSIDE FOF: SHE HAS ALSO ONE IN TOWN IT WAS GOOD
TO SEE NAINNA AGAIN AND MY OLD ROOM NOTHING HAD CHANGED ON WEDNESDAY WE WENT TO COFENHAGEN TO THE CINEMA
TO SEE FRIVATE EENJAMIN AND LIFE OF EFIIAN WE SFEND MIIST OF OUR TIME WITH OUF GREAT FRIEND DITTE WE ALSO WENT TO A FAMOUS FAFE GFOUND CALLED TIVOLI WE WENT ON THE HELTER SKELTER AND THE CART IN FRONT
of us erforl d down eut luckely it was low down AIJI NGIHCIIY WAS HURT I GOT A LOVELY FED EALLOON CALLED TEDIY WHICH I AM VEFY FOND OF IN TIVOLI thene is lats of waterffalls which change aedut every five MINLITES AIND OH: THE SAME NIGHT WE SAW THE FIFEWORKS THE EGYS FFiOM GALLIKINFiAIN AFE AGES FFIOM SEVEN TO SIXTEEN SOME ARE THIEVES STIME GLUESNIFFEFS AND SOME DONGE SCHOOL AND SOME AFE JLIST THEFE EECAUSE THEIF FARENTS DO NOT WANT them magt or the eays have geen erought uf ey OTHER FEGIFLE SECAUSE THEJF: FAFENTS DID NOT CAFE OF SOME HAOE NOT EEEN EROUSHT UF ATT ALL THEY HAVE JUST
 FGF FGOD THE OHES THAT DODGE SCHOOL AFE NGFMALLY THE RINDEST FOF. THEY HAVE NOT EEEN INVOLVED IN VIOLENCE BUT SOME GF THEM DU ALL IN THE SCOOL NOW THEFE AFE TWO FCIS WHO MLIFIERED AN OLD LADY EY EFEAKING IN TO HEF HOUSE TYING HEF TO HEF EED AND gagring hif then setting fire to hef hause eut on GNE af THE EGYE NO GINE WDULD THINK THAT HE WAS A MLIFIDEF:EF: HE IS KIND FUNNY AND CLEVEF: ELIT ON THE GTHEF: ECIY HE IS SELFISH GREEDY A SLAGGEF: ANI STfifte fighte I DO NOT REALLY LIKE HIM MY FAVGRITE EOYS AFE SIMON JAMES AND FOEERT RALLIKINF:AIN ITSELF IS AN ILD CAETLE EUILD EY A MAN CALLED ARCHIEALD OFif EWJ?H WHILH HE USED AS HIS HOUSE IT WAS THEN USED AE A HOTEL THEN IT WAS A GIFiLS SChOOL CALLED SAINT HILDAS AND NOW IT IS A EOAFDING SCHODL
 fiekutll agail: a few manthe acio thefe was a robeefiy AT EALLIKINFAIN THEY STOLE GOODS WOFTH 1000 FDUNDS ONE OF THE HOYS DII IT AND WAS FOUND OUT EY THE STAFF LISTENING IN ON HIS FHONECALLS THEY STOLE A VIDEDRECORDER cassette caf: tV and foys focket money

9t.
GGOL: fiND I HAVE GOT SOME VEFY GOOD FFIENDS CALLED TIM AND F:OSEMARY THEY HAVE GOT TWO CHILIREN MICHAEL IS the cildest and frederick who is the youngest we know THEM THF:CUGH TOM WHO WAS A HOUSEMASTER AT EALLIKINRAIN WCIFKING WITH MY DADDY $]$ LQVE EOTH FFEDEFICK AND MJCHAEL AS MY LITTLE EFGTHERS MICHAEL IS THREE AND FFEEDEFICK IS JUST COMMING UF FOF ONE SO OF COUFSE I FEEL CLDSEF: TO MICHAEL THAN I DO TO FFEDEFICK EUT FFEDERICK IS ETILL SUEET FEFGFE DEEFI] WAS HGRN WE CALL HIM DEFFI IT 15 GHIFITEF ANIWAY A FEW YEAFS EEFGRE DEFRI WAS EOF:N: TOM FGEEMAF:Y ANL MICHAEL WENT TO DENMAFIK: WITH US LGDTM ME ARTS NATANA STAVED IN THE COUNTFIYSIDE WHILE TOM FCIEEMAFY A:N: MJC:HAEL HAD THE FLAT IN COFENHAGEN WE ALL WFI:T TG TIURLJ EUT MICHAEL WES ONLY COMING LFF FGF: Gint SiI af course he could nat undefistang muleh I WGHD LOVE IT IF MICHAEL AND HIS FAMILY COULD COME TG Lewnafit bilit lis this coming suminer becalise micky would fer dif endugh ta come on all the games with ME IT WOULI EF SUCH FUN I WOULD EUY HIM GUE OF TJVOLIS SFECIAL ICECFEAMS WITH A CHOCOLATE MAFSHMALLOW ON TIF \& SEGMMFLUI. OF WHIFFEE CFEAM AFOLINI IT AND UNDEF THAT STRGUEERFY JAM AND LINDEF: THAT FIVE DIFFERENT NINDE DF ICECREAT? FEE YEI LOW GFEEN AIUD WHITE THEN I COULD TAYE HIM OM THE UIVING EGATS THAT GO LIF AND DOWM
 HE: TEF SIELTEF: I THINK HE WOULD EE TOU FRIGHTENED I Wu'di Ther HiM IN THE GOST HOUSE EUT I WOLLD ThLL HIM MUT TG EE SCARED EECALISE IT WAS NCT REGL ANL that it was cuite fretty eecause it was WITH A RED LISHT SHINING AND LEAVES AND FLANTS DROOFING DCWH EVEFY WHERE THERE WAS A LOCH NESS MONSTEF EUT THAT WAS NOT FEIGHTENING IT WAE JUST FUNNY

[^2]1015
IT WAS A MONDAY MORNING AND I WOKE UF IN A TEFFIELE MOOD I WAS JUST AEOUT TO GET OUT OF EED WHEN THE SFFFINGS WENT AND I FELL THFOUGG THE SFFINGS ONTO EMMA AND WOI:E HER UF WITH A SCFEAM THEN WHEN: I WAS JUST AEQUT TO GET OFF EMMA WHEN I ELMFED MY HEAD I THOUGHT I HAD better get dressen but could not find my clothes in A TERFIELE FAGE I WENT DOWN STAIFS INTO THE KITCHEN ANI TFIJFFED OUER A HOT WATEF EOTTLE THAT WAS ON THE KITCHEN FLGOF: I LOOKED AT THE TOAST IT WAS EUFINT THEN I SAW SOME FFIED FUREER EGGS YUG SUDDENLY the dookeell went it was my friend I managed to FIND SOME CLOTHES I FUT THEM ON EVENTUALLY AT ONE MIN:ITE TO NINE MLIM GAVE A LIFT TO SCHOOL I SLAIMED THE CAF: DOOF: AND IT FELL OFF I GOT TO SCHCIOL AT NINETHIFTY THE DAY ACTUALLY WENT QUITE SMOOTHLY LINTIL J WAS WALKING HOME WHEN I TRIFFED ANL FELL HEAD FIFST INTO A COWS FANCAKE I WENT HOME EUT mum was not thefe so 1 gFiAkHED the neafiest thing WHICH I FOUNI OUT WAS A 100 YEAR OLD CLOTH IT WhS mums ani.y gain gine i turinel on the TELEUISION AND IT EXFLODED I THOUGHT I HAD EETTEF: LISTEN TO THE WIRELESS ELIT THE EATTERIES HAD GONE I WENT tO DO MY HOMEWOFK WITH THE CALCLLLATOF ELIT IT HAD gONF WF:CHE AT LAET 1 WENT TG EED ANI HAD OUITE A GOOD NIGHTS SLEEF

102 C

HAFFINESS TO ME 15 A GOOD HOME NICE FAFENTS AND GOFGEQUS FETS AND ALSO FFIENDS HAFFINESS IS IN YOUF SURFOUNDINGS HAFFINESS IS IN THE GIF FEING HAFFY COMES NATURAL TO MOET FEOFLE LIFE IS HAFFINESS CHILDFEN AND EAEIES THAT CFY ARE HAFFINESS TO THEIF MLITHERS JESLIS IS HAFFINESS TO EVEFiYEODY JESUS IS LIFE LITTLE THINGS LIKE DOLLS ARE HAFFINESS TO THE CHILDREN HAFFINESS IS WOFKK AT WORK YOU EAFN MONEY TO GIVE VOUF: FAMILY HAFFFINESS HAFFINESS IS REST AT REST YOU DFINH JUIEE AND SIT DOWH THAT GIVES HAFFINESS TO YOURSELF FLAYING JE HAFFINESS WHEN YOU FLAY YOU GIVE YOUREELF HAFFINESS AND YOUR FFIENDE YGUR FRIENDS ENJOY YOUF: COMFANT AND YOLIE FFIENIS HAME FUN AS WELL AS HAFFINESS WHEN YOU WOFI: REST AND FLAY YOU EFING HAFFINESS TO EVEFYONE HAFFINESS WILL LAST 1 HOFE FGF ETEFNIITY $1 T$ WILL NEVEF: DIE LQVE is haffinnese ta evefir single hliman an eafith when THE SUR: SHINES I GM VEFiY HAFF'Y I AM SOMETIMES SAI ELIT THEN I REGFEET IT AND SMILE

1035

the kest fresent i have ever received was my fony I GOT HIM A EIT EAFLIEF THAN MY EIRTHIIAY EECAUSE I Wantel to see what he was like actually i WENT TO SEE HIM IN NOVEMEEF: AND MY EIRTHDAY IS IN JANLAFIY GUT I COUID NGT FIDE HIM THEN EECAUSE IT IS TOO ICY AND SNOWY ANYWAY WHEN WE GOT thefe he was in the field he looked lovely he WAE QUITE EIG THOUGH AND HE WAS VERY VERY WHITE the lady came out and we tried to catch him YOU SEE HE IS HAF:D TU CATCH WE HAD TO
TAIE SOME OTHEF FONIES OUT OF THE FIELD THEN WE CALIGHT HIM AFTEF THAT WE GAVE HIM A WEE ERUSH AND FUIT HIS SADDLE AND HFIDLE ON THEN I JUMFED ON ANI I FGDE HIM DOWN TO A FIELD WHICH HAD: HAFILEY GFOWING IN IT I STAF:TED TO TROT THEN I Just needed to squeeze him and he took gif Into a canlef it was lovely then the lady fut LIF. A JUMF AND HE JLIMFED IT ONCE OF: TWICE THEN WE WENT GACK ANI WE FUT HIM EACK IN THE FIELD WHEN WE GOT HOME I DECIDED THAT I WAHTED HIM AND THAT 1 WOULD LOOK. AFTER HIM FROFEFILY SO 1 GOT HIM ON MY EIRTHDAY MY EEST FRESENT YET

104 C
ALAN FOUGH STEFFEN OLIT ONTO THE FOOTEALL FITCH FEADY TO FLAY HIS FIFST GAME FUF SCOTLAND I WAS IN THE CRIIWI WATCHING HIM THE FEFEFEE CALLED THE TWO CAFTAINS LIF IT WAS SCUTLAND VEFSUS A WOFLD TEAM AT WEMELEY STADIUM THE TWO CAFTAINS WEFE KENNY DALGLISH FQF: SCOTLAND ANI FELE FOF THE WOFLD TEAM DALGLISH WON THE TOSS AND ELECTED TO KICF OFF DALGLISH KICFED THE BALL EACK TO SOUNESS WHO LOST IT TO KFOL A GFEAT EALL EY KFOL
SENT REEGAN FIACINE THFOLIGH HE EEAT MCGFAIN ANI HIT THE EALL TOWARDS THE GUAL EUT SOMEHOW FOUGH MANAGED TO FUSH THE GALL AWAY FQF: A COFNEF THE COFNEF WAS TAKEN EY EONHOF WHO FLIGHTED THE EALL INTI THE AREA EUT MCOUEEN HEADED THE GALL AWAY THEN ZICO VOLLEYEI THE EALL STHAIGHT TCIWAFIDS THE GOALS ELIT FOUGH SOMEHOW NOT ONLY STOFFED 1? HE CALIGHT IT HE HIT A LONG EALL FIGHT
INTO THE DTHEF TEAMS FENALTY AFEA DALGLISH AND KEEGAN WEFE HAVING A TUSSLE FOF THE EALL WHEN KEEGGN EFOUGHT DOWIN DALGLISH IT WAE: A FENALTY THE SCOTTISH TEAM DID NOT KNOW WHU SHOULI TAKE IT THEY FINALLY MADE LIF THEIF MINDE THAT IT WAS TO EE F:CILGH HE STEFFED LIF AIJI: SENT SHILTON THE. WFONG WAY ALAN ROUGH REALLY LIVED LIF TO HIS NAME

1100
KIF:STY AND I WERE WALKING THFOUGH THE WOCDS WHEN WE SAW A SFACESHIF THERE WAS NG SIGN OF MOVEMENT INSIDE SO WE WENT INSIDE TO HAVE A LOOV KIFSTY TRIFFED OVEF A STONE THAT WAS CARELESSLY DROFFED ON THE FLOOR: SHE HIT A EUTTON THAT SAID VEEEF ON IT THERE WAS A SUDDEN JEFi: THE DOOF CLOSED I LOOKED OUT THE WINDOW AND FOUND WE WERE FLYING THROUGH SFACE I CALLED KIFSTY TO HGVE A LOOF: IT WAS WONDERFUL TO SEE STARS SG CLOSE UF GUMF EUMF WE HAD HIT SOMETHING HAFD IT WAS A FLANET WE FFRESUMED IT WAS UEEEF KIRSTY FRESSED A RUITTON IT OFENED THE DOOR ALL We could see was elack and elue stones they were FUNNY NIFSTY STEFFED GUT AS SOON AS HEF: FOOT TOUCHED THE GFOLIND SIHE TUF:NED INTO STONE I WAS AFFAID TO TOUCH HEF IN CASE I TURNED TO STONE AS WELL I WENT TO HAVE A DFIINE EECAUSE A DRINK: ALWAYS MAIES ME FEEL RETTEF WHEN I WAS DRINI ING A DFOOF OF WHTEF FELL FFCIM MY CUF AND FELL ON TO \&JFisty subderly she came alive again she jumfed into the SFACESHIF AND TOLD ME THAT WE HAD TO GO HOME I FFFESSED THE EUTTION WHICH SAID EAFTH ON IT IN five secands there was a thud we had reached eafith AS SOLN AS WE WEFE OUT THE SFACESHIF IT DISAFFFEARED AND KIFSTY AND I FOUND OURSELVES EACK IN THE WOODS THIS IS THE FIFET TJME I HAVE EVER TOLI THIS stafy to scimearse mecalise for a while kifisty and i CCLILI N NIT HELIEVE IT HAD HAFFENED

111 C
I AM ON OLD FINE TREE I LIVE IN THE
SURUFFES OF LONDON IN A SMALL WDOD IN MY TIME
I HAVE SEEN MANY GOINGS ON AND MANY STRANGE BIRDS ONE SUMMEF: TWO STFANGE YELLOW EIFDS CAME TO ME AND NESTED IN MY EFANCHES A FEW MONTHS LATEF SOME CHICKS HATCHED OUT THEN A EIFDD WATCHER CAME AND STUDIED THEM HE DISCOVERED THAT THEY WERE A VEFYY RARE EREED AND I WAS HONOUFED TO HAVE THEM AS GUESTS ANOTHER TIME TWO YOUNG LQVEFS WERE FASSING WHEN THE BOY TOOK OUT A FENINIFE AND CAFVVED HIS AND HIS GIRLFFIENDS NAME IN ME $1 T$ WAS VEFY SOFE EUIT NOT VEFYY DEEF SO IT SIION HEALED ONE STOFMY NIGHT IT STARTED THUNDEFING ANI LIGHTNING I WAS VEFY SCARED THEN SUDDENLY IT HIT ME AS SOON AS IT STFILICK I WENT ON FIFE EUT SOME KIND FEOFLE SAW ME AND PUT OUT THE FIRE IMMEDIATELY ONE DAY SIMME MEN CAME AND CLIT ALL MY NEIGHEILIRS DOWIN I THOUGHT THEY WERE GOING TO CUT ME DOWN WHEN I HAD SOMETHING SHQVED ON TOF OF ME
AND THEN IT WAS NAILED ON IT HUF:T DREADFULLY IT STILL DOES WHEN THE WIND ELOWS ME SOME F'ASSERS EY SAY TO ME MY MY THEN YOUI AFE THE OLDEST TFEE IN THE CITY AFE YOU SO I GUESS THAT 15 WHAT IT SAYG

112 C

I have just got a new joe at st andrews
GOLF COURSE AS A GREEN KEEPER I WANTED TO TAKE UF THIS SFOF:T SO THAT I COULD SEE THE DIFFERENT COURSES AND THE DIFFERENT PLAYERS ON MY FIRST DAY I WENT TO THE PROFESSIONALS SHOF TO SEE IF I COULD GET A MINI CAR TO GO ROUND THE HOLES TO get used to them 1 Went to the shof everr WEEK TO LEAFN TO PLAY GOLF AND AFTER FIVE WEEKS I WAS FLAYING GOLF WELL SO NOW I GO ROUND FLAYING GOLF AND SORTING THE GREENS AS WELL WHEN I had meen at the jok fof four yeafs the manager FLIT ME TO THE TEST OF EEING A FRIOFESSIONAL I did well so he gave me the joe one week:
LATEF I got a frine call and the man said WOULD YOU LIME TO FLAY IN AMEFICA OFEN I SAID YEE SO I WENT AND WON A EIG TROFHY

1135
SOME FEOFLE THINH: THAT ALL THE ANIMALS IN THE WORLD have eeen discovered well this stofiy shows just how wrong they are there 15 AN ANIMAL THAT LIVES IN EGYFT
Called the elefherion it has a truni: the same lengit AS AN ELEFHANTS IT HAS THE EODY AND THE HEAD
OF A KANEARICI AND THE LEGS OF AN ELEFHANT IT 15 GREEN WITH FINK: AND YELLOW SFOTS AND EATS SAND AN ANIMAL CALLED A RAEGADOG IS FOUND IN DESOLATE FAF:TS CF SCUITH AFFICA IT HAS A RABFITS TAIL RAEEIT EAFSS ANI A RAEEITS HEAD IT HAS A DOGS EOIIY AND G DGIG: LEGS JT 15 A VEFY SMALL ANIMAL EUT ALSO VEFYY VICIOLIS AND STRONG IT EATS GKASS AND IS GLLIE WITH YELLOW STfilfes the zerfingo has the head of A ZEFFif ANI THE EODY AND LEGS OF A FLAMINGO IT CAN FLY ANL EATS MICE AND GFASS IT CAN Fills UEFY FAST AND HAS EEEN KNOWN TO RUN AT 35 MFII IT 15 FINI: AND WHITE WITH ELACKK STFIFES

$114 C$

the dew hal not yet settled on the ground when
THE SQUADFION WAS TO EMEARK ON A MISSION ALREADY TWO
FLAINES HAD TAKEN OFF INTO THE FROSTY MORNING HEADING EITHER:
TO DEATH OF GLORY TEN OF SO MINUTES LATER ELOCKEUSTER
SOUGDRION AS WE WERE KNOWH WAS OVER ND MANS LAND
AND INTO THE FOREIDDING ENEMYS TERFITIORY OUF TAFGET THE POISONOUS
gAS factoriy at cologne in germany by the time we
WERE HALFWAY THEFE WE CAME UNDEF HEAUY ENEMY FLAK ONE
FLANE WAE HIT IN THE FUEL TANK AND ELEW UF'
ANOTHER THE FILOT WAS HIT IN THE STOMACH AND WAS
SENT TO HEAVEN OR HEILL WE FRESSED ON ERAVELY THE
COLD EITING AIF NIFFIING OUR FACES RELUCTANTLY I SOUNDED THE
fall each. AND ey the time we had reached the
GASE I HAD LOST HALF THE SQUADRON 12 MEN IN
ALL I WOULD HAVE A LOT OF LETTERS TO WFitte
IN THE NEXT DAY OF 50 A WEEK. PASSED UNTIL
ONE DAY A GERMAN FLANE FLEW LOW OVER OUF BASE AND DFIFFFED A NOTE AND THEN FLEW OFF INTO THE Clounr sky i ficked uf the note and it read
I EFNS T YON SHONVAST CHALLENGES THE ELOCKELISTER SQUADFION TO A DUEL A 0600 HF:S TOMOFFOW 1 DECIDED TO ACCEFT SINCE VON SHONVAST WAS A THOFN IN THE SIDE AND NEEDED to me taught a lesson the mofining was surfiilingly bfight ANE WE HAD THE ADVANTAGE OF THE SUN AT OUR bace ey the thme we hai taren off it was Gogi hFs And time for the dog fight ten minutes FGST ANI, WE MET VON SHONVASTS SOUADRON ALMOST IMMEDIATELY VON SHONVAST A GFEAT ACE SHOT DOWN ONE FLANE I DECIDED to try and end his flight I CAME SChreeching in FOR THE KILL AND SQUEEZED ON THE TRIGGER 100 OR SO FULLETS CAME SChREECHING THROUGH THE SKYY AND HIT THE GEFMMAN ACES TAIL ALMOST IMMEDIATELY THE FLANE EXFLODED INTO FLAMES KILLING VOIN SHONVAST EY NOW WE HAD LOST 3 PLANES OUT OF 14 AND DESTROYED B OUT OF THEIR 14 FLANES SOON WE WERE ELASTING THE DEMOROLIZED GERMANS OUT OF the skiy the remaining three geriries had enough and retreated THE EATTLE WAS WON

114 C

THE DEW HAD NOT YET SETTLED ON THE GROUND WHEN
THE SQUADFION WAS TO EMEARK ON A MISSION ALREADY TWO
FLAINES HAD TAKEN OFF INTO THE FFOSTY MOFNING HEADING EITHER TO DEATH OF GLORY TEN DF SO MINUTES LATER ELOCKEUSTER
SOUAIFION AS WE WERE KNOWIN WAS OVER NO MANS LAND
AND INTO THE FOREIDDING ENEMYS TERFITORY OUF TAFGET THE POISONOUS
GAS FACTOFiY AT COLOGNE IN GERMANY EY THE TIME WE
WEFE HALFWAY THEFE WE CAME UNDEF HEAUY ENEMY FLAK ONE
FLLANE WAE HIT IN THE FLIEL TANK AND ELEW UF.
ANOTHEF THE FILOT WAS HIT IN THE STOMACH AND WAS
SENT TO HEAVEN OF HEIL WE FRESSED ON ERAVELY THE
COLD EITING AIF NIFFING OUF FACES RELUCTANTLY I SOUNDED THE
fall gach. and ey the time we had reached the GASE I HAD LOST HALF THE SQUADRON 12 MEN IN ALL I WOULD HAVE A LOT OF LETTERS TO WFitte IN THE NEXT DAY DF SO A WEEK PASSED UNTIL ONE DAY A GERMAN FLANE FLEW LOW OVEF OUR BASE AND DFIIFFED A NOTE AND THEN FLEW OFF INTO THE clouny sky I ficked uf. The note and it read 1 ERNST YON SHONVAST CHALLENGES THE RLOCKELISTER SQUADRON TO A DLIEL A OGOO HF:S TOMOFFOW I DECIDED TO ACCEFT SINCE VON SHONVAST WAS A THOFN IN THE SIDE AND NEEDED TO EE TAUGHT A LESSON THE MOFNING WAS SURFFISINGLY RFIGHT and we had the advantage of the sun at our EACK EY THE TIME WE HAI TAKEN OFF IT WAS OGOO HRS AND TIME FOR THE DOG FIGHT TEN MINUTES FGST ANI WE MET VON SHONVASTS SOUADRON ALMOST IMMEDIATELY VON SHONVAST A GREAT ACE SHOT DOWN ONE FLANE I DECIDED TO TRY AND END HIS PLIGHT I CAME SCHREECHING IN FOF THE KILL AND SQUEEZED ON THE TRIGGER 100 OR SO FllLLETS CAME SCHREECHING THROUGH THE SKYY AND HIT THE GEFMMAN ACES TAIL ALMOST IMMEDIATELY THE FLANE EXFLODED INTO FLAMES !ILLING VOIN SHONVAST EY NOW WE HAD LOST 3 PLANES OUT OF 14 AND DESTROYED 8 OUT OF THEIR 14 FLANES SOON WE WERE ELASTING THE DEMOROLIZED GERMANS OUT OF THE SHIY THE REMAINING THREE GERFIES HAD ENOUGH AND RETREATED THE EATTLE WAS WON

1300
OINE DAY OLD COCHEF WENT TO FOOF A EANI AND he got all the money out it and two of HIS MATES WERE WAITING IN THE CAF: ANI OLD COCKER SHOT THEM EOTH AND KICKED THEM OUT OF THE CAF ANI HE DFIVES OFF TO AN OLD EAFN AND ONE OF HIS mates was still alive and he told the FOLICE AND THEY GOT TOGETHEF AND WENT TO THE BAFN EUIT HE WAS Nat there eut some five found notes W⿵E RIN THE FLGICR AND THEY TRIEI TO FICK UF: HJS TFAIL EUT FAILED MF COCKEF WAS HIDING IN A hatel in londan eut thefe was a sfy watching him Aldi mf cocter saw this man sfying on him and HE SNEAKED UF ON HIM AND STAERED HIM AND WENT back. to the hoitel the folice was thefe in the marning and found him at the edge of the wall then mp: cociser came to the window and saw the FCILICE AND ONE OF THE FOLICE LOOKED UF AT THE HOTEL AND SAW THE EANE FIGEEER MF COCKER MF COCKEF GOT OUT THE EACH: WAY EEFOHE THE FOLICE GOT UF' TO HIS FOOM HE HAII GOT AWAY MF COCNEF WENT TO TEXAE HE WAS FLYING ON THE FLANE FOF AEOUT FIVE HOLIRS THE FILOT SAID THEY WERE LANDING IN TEN minules he gat off the flane and two men took HIM TO THE FOLICE STATION AND HE GOT TOOK TO COUFT AND HE HAL A FLAN TO ESC:AFE WHEN HE WAE IH THE COUF:T WHEN THE JUDGE SAID HE WAS SENTENEED TG LIfE IN JAIL HE WAS LISTENING FOF: A TRUC: ANI HEAF:L THE TRUCN: COMING HE DIVEI OUT OF THE WINDOW AND LANDED ON A HAYSTACK: AND GOT AWAY ANL HE WAS DOING MUFDERS AND ROFEING BANKS MF COCKER WAS IN A LITTLE HOUSE IN THE COUNTRY AND THE HOUSE WAS SURFROUNDED AND THEY SAID COME OUT WITH YOUR HANDS UF ANI DROF YOUR GUNS IF YOU DO NOT WE WJlL COME AND MF COCKEF SAID COME AND GET US YOU FATS ANL STAFTED TO FIRE AT THE FOLICE MF COCKEF AND EOHO HIS MATE HE SAID TO THE REST OF HIS MATES ME AND EOEO ARE GOING TO GET AWAY IF YOU COME OUT OF THIS ALIVE WE WILL MEET YOU AT KONG HOTEL ROEO AND COCKER WENT ANI GOT AWAY RUT THERE WAS A ROAD ELOCK. AT THE END AND SMASHED RIGHT THROUGH THEM AND GOT AWAY AND FOUIND THE CORNEF WAS THE HOTEL THEY WERE THERE FOR A FEW LAYS ONE OF HIS MATES RURST THFOUGH THE DOOF AND SAID I WANT MY MONEY YOU RAT IF YOU DO NOT GIVE IT TO ME I WILL ELOW YGUR HEAD OFF THE MATE SAID WHERE 15 EOBO HE IS FIGHT EEHIND YOU PUNK KILL HIM ROBO AND EREO SHOT HIM SIX TIMES IN THE HEAD THE POLICE GUT THERE AND RURST THROUGH THE DODR AND SHOT OLD CGCkEf in the head twice in the leg and eoko SHOT THE FOLICEMAN IN THE EACK. AND THE REST OF THE FOFICE CAME IN AND SHOT EOER AND MR COCKER AND IT WAS ALL OVER THEY GOT MOST OF THE MONEY GACK RUT MF COCKER HE GOT TOOK TO HOSFITAL

AND THE FOLICE ASKED HIM WHEFE THE MONEY WAS HE TOLD IT WAS IN AN OLD EAFIN IN THE TOWN ANI THE FOLICE GOT MOST OF THE MONEY EACK.

AND THE FGLICE ASIEI HIM WHERE THE MONEY WAS HE TOID IT WAS IN AN OLD EAFNN IN THE TOWN ANI the folice got most of the maney eack

140 C

IT ALL STARTED ON A STOFMM AFTERNOON WHEN I WAS IN TOWN TD GET MY WEEKEND SHDFPING WHEN I PAST A MAIV WHO LOOH.ED VEFY SUFFFised SO I STOFFED HIM AND SAID WHAT IS YOUF NAME HE DID NOT ANSWER ME SO I SAID YOU LOOK. AS IF YOU HAVE DONE WFONG SD HE STARTED TO STRUGGLE SO 1 GRAEEED HIM EY HIS ARM AND SAID YOU ARE STAYING HERE and he said you can not keef me here so LET ME GO EEFORE I CALL THE FOLICE YOU DO NOT HAVE TO CALL THE POLICE because I AM A FOLICE SO YOU JUST SHUT YOUR MOUTH EEFOKE I RANG IT YOU CAN NOT DO THIS YOU ARE NOT ON DLITY 1 DO NOT HAVE TO EE ON DUTY TO AFFEST SOMEONE YOU DO NOT THINK: YOU ARE GOING TO AF:FEST ME DO YOU THAT IS FIGHT I AM SO COME ALONG QUIETLY OR I WILL DRAG YOU ALONG YOU WILL TFY AND dF:AG ME ALONG DO YOU WANT TO SEE ME DO IT NOW DO YOU BECAUSE 1 DO NOT CAFE IF I GET FIRED EECAUSE I AM JUST AFCIUT TO LEAVE THE FOF:CE ANYWAY 50 dO NOT GIVE ME ANY OF YOUF LIF. 1 AM NOT GIVING VOU any lif eecause you are heading for a doing so JUST SHUT YOUR MOUTH WE WERE WALKING DOWN THE STREET WHEN HE STAF:TED TO STRUGGLE I SWOFE TO HIM THAT IF HE DID NOT EUCRLE UF HIS IDEAS I WILL EUFEST HIM SO WE STAFTED WALKING AGAIN AND HE STARTED SHCUTING AT THE FUELIC AND SWEAFING AT THEM SO I Gháked him into a close and eattered hell out of HIM AS 1 WAS DOING SO A MAN WALKED FAST AND LOOKED AT ME AND SAID WHAT DO YOU THINK YOU ARE DOING TO TAHT YOUNG MAN I TOLD HIM tu get lost rut he just stayed there he said I WILL GO AND FHONE THE FOLICE IF YOU DO NOT LET THAT MAN GO 1 SAID YOU GO AND FHONE THE COFS RUT YOU ARE GOING TO REGFET IT 1 AM TELLING YOU because I AM A COP SO YOU GO AND GET SOME HELF THE MAN WENT AND PHONED THE POLICE STATION THEY CAME THE MAN SAID I AM GOING TO TAKE YOU TO COURT AND GET YOU JAILED FOF LIFE 1 dO NOT KNOW WHAT CAME OVER ME RUT 1 FICKED UF A EOLDER AND THREW IT AT HIM HE JUST FELL TO THE GROUND AND AS HE FELL TO THE GROUND MY SERGEANT CAME AND GRAERED ME AND SAID WHAT DO YOU THINK YOU ARE DOING THAT WAS ASSAULT I DO NOT CARE EECAUSE HE WAS ASk: ING FOR THAT AND I GAVE HIM IT RUT THAT IS NOT THE POINT THIS YOUNG MAN WAS GOING TO take you to court and save you because you have JUST ASSAULTED THAT GUY YOU ELOODY IDIOT YOU DO NOT CAFE AROUT OTHER FEDPLE DD YOU ALL YOU THINK. YOU CAN DO is attacking peofle in the streets well that IS NOT ON THE TRIAL 15 NEXT• WEEK. I HOFE
YOU HAVE GOT A GOOD EXCUSE BECAUSE WE CAN NOT DO ANYTHING FOR YOU NOW THE TRIAL CAME AND I

WENT UF TO COLIFT THE COURT CASE LASTED A VERY LONG TIME MLIFE THAN 1 WOULD HAVE EXFECTED IT TO ElUt as the case went on the judge was meginning TI LOOK. AT ME AS IF I WAS A MLIRDERER
THEN THE FINAL VEFDICT CAME THE JUDGE SAID VERDICT FLLEASE THE VEFILICT WAS GUJLTY OF MANSLAUGHTER I COULD NOT EELIEVE IT AND I GOT JAILED FOF LIFE

141 C
IT ALL STAFTED ON A SATUFDAY MORNING WHEN 1 GOT A LETTEF FROM MY DAD SAYING YOU ARE TO GD TO AFRICA FOF: AN ASSIGNMENT SO THAT AFTERNOON I GOT A Flane to affica and then got a jeef to THE CAMF WHERE I WAS TO STAY FOF: THE TWO WEEKS 1 WAS THERE I UNFACKED MY KIT AND HAD sOmething to eat and then 1 MADE MY RED AND WENT TO EED AS I WAS SLEEFY NEXT MORNING I WIIE UF GND HAD A CUF OF TEA THEN I WENT DOUNN TO THE STREAM AND HAD A SWIM THEN 1 CAME bACK uF AND FUT MY CLOTHES ON THEN 1 WENT DOWII TO THE NEAREST VILLAGE AND BOUGHT SOME FOGI FOF: MYSELF 1 CAME EACK UF AND READ THE FAFEE THEN I HEAFD A RANG IT SEEMED TO COME FF:OM THE EACK OF MY hQUSE I GRAE MY GUN AND RAN TO WHERE I HEAF:D IT FROM I MANAGED TO FIND WHET WAS UF IT WAS A HUNTER HE haI IUST SHOT A MOTHER KANGOROD EY THE LOOKS OF IT THE MOTHEF IS FREGNANT SO 1 CAFFiED IT TO MY HCILISE ANSD FLIT IT IN MY KITLCHEN I CLEANED THE WOUHI AND GOT THE EULLET OUT THE KANGOROO SEEMED TO EE ALLFIGHT SO I GOT A ELANKET AND WFAFFFED IT TO KEEF IT WAFM I DO NOT KNOW WHEN SHE 15 DUEE ELIT I HOFE IT IS SOON EECAUSE I CAN NOT LEAVE HEF AIND THE EAEY EEHIND SO THFEE LAYS LATER I WOIE UF TO FIND THE KANGOFOO HAl: HAI THE HAEY SUI I WENT TO SEE IF
THE MOTHEF: WAS ALLRIGHT I EENT DCIWN TO CLAF HER EUT SHE WAS COLD 1 RECKONED SHE WAS DEAD 80 1 EUF.IED HEF AND 1 DID NOT KNOW WHAT TO DO WITH THE GAEY SO I GOILED SOME MILK. UF and gave it that my two weeks afe nearly ur AIID I DO NOT KNOW WERE TO FUT THE EAEY
KANGDFiOO SO I DECIDED THAT I WOULD TAKE IT BACK. TO ENGLAND 1 DONATED IT TO CHESTEF 200 FOR PEOFLE to come and see it and mayee the kangoroo might have kasies and then we will have our own kangorodes EORN IN CAFTIVITY AND THAT WOULD MAKE FRONT PAGE IN the daily fecofd and mayee peofle would donate money to HELF THE KANGORDOES SO 1 GOT THE KANGOROD AND PUT IT IN A EOX AND WENT TO LONDON 200 I TOLD THE MANAGER THAT I BROUGHT IT FROM AFRICA I TOLD HIM ALL THE STOFY AND WHAT WAS GOING TO HAF'FEN TO THE BARY KANGOROO 80 WE FOUND A CAGE FOR IT TO STAY IN FOF THE MEANTIME SO I LEFT IT THERE FOR A FEW WEEKS WHEN I CAME TO VISIT IT THE MAN SAIS IT WAS VERY ILL AND HE SAIS IT MIGHT DIE WITHIN TWO OR TREE DAYS AT THE MOST I WAS VERY UPSET BECAUSE I LOVED THAT LITTLE THING IT WAS VERY CUTE AND IF IT DIES I WILL NEVER FORGIVE MYSELF BECAUSE IT WAS ME WHD BFOUGHT IT OVER HERE I STARTED TO WALK TOWAFDS MY CAF WHEN I HEARD THE VOICE OF THE DOCTOR SAYING COME EACK. THE KANSORDO IS GOING TO LIVE

1 RAN IN TO THE VET ROOM AND SAID IS HE ALLF:IGHT THEY SAII HE WILL LIVE I WAS SO GLAD THAT I HUGGED THE LITTLE THING AND KISSED IT AND SAID 1 AM GOINE TO TAIE YOU HOME WITH ME AND YOU CAN LIVE WITH ME AND I WILL LOO1. AFTEF: YOU FOF EVEF ANI EVER AND I WILL NEVEF: GIVE YOU AWAY FOF ANYTHING IN THE WHOLE WORLD SO I TOOK HIM HOME AND MADE A EOX FOR HIM ANI FUT IT NEXT TO THE FIRE TO KEEF HIM WムFIM 1 EAAㄷ HIM SOME WAFM MILK AND SOME AFFLES ANL SUME DF:GIJGES AFTEF THAT I GAVE HIM A HLANIE T THEN 1 FUT HIM IN HIS EOX FUT THE ELAIHET ON HIM AND THEN I FUIT THE LIGHTS OUT AND LIENT UFSTAIFS AND GOT INTO MY EED AND I FEAF FGF A WH:ILE THEN 1 FUT THE LIGHT OUT ANI WENT TO SLEEF.

TEXT STRINGS WRITTEN EY ADULTS.

As a compromise between, on the one hand, the demand for a variety of styles, and on the other hand the limited scope of miero computing in terms of spere and time, the following 22 text samoles have been chosen from the three categories 'NEWSF'AF'ERS'. 'BODKS FOF CHILDREN' and 'SCIENTISTS' as the data base of tesit strings written by adults. All text samples can be found in full on the following pages (pp. 92 to 12B) and comprise at least boc words from the sources 1 isted belowi

SOURCE:

LAEEL:
FILENAME:

SCIENTISTS:

NEWSF'AFERS:

Table 4.1 List of text samples written by adults

As the case was with the indexing of the children's text strings, the limitations of my computer system has necessitated slight variations in the labeling of each "adult" string. On graphs and outputs of numerical data where the reference to the string appears with many other parameters, the text strings will always be referred to by their (shorter) iabel. As before, I have kept labels as informative as possible, even if it meant expanding the short three to four letter labels at the beginning of each text sample, eq. BRU has become RRLNER, and HRLD has become HERALD whenever possible in text and tables. It may sound confusing, but 1 believe it to helpful.

In the following all text samples are printed in full, and each category is introduced with a few comments.

TEXT STRINGS WRITTEN EY ADULTS

INDEX:
Introduction to 'Scientists' 91 1
W.Frankena: Ethics (FRANK) 92
N.Chomsky: Aspects of Syntax (CHOM) 94
W. Labov: Logic of Non stand.Engl. (LAEOV) 96 98
J.S.Eruner: Study of Thinking. (BRUNER)
J.S.Eruner: Study of Thinking. (BRUNER) E. Fussell: History of W. Fhilosophy, 1 (RUS1 100 101

E. Russell: History of W. Fhilosophy, 2 (RUS2)

E. Russell: History of W. Fhilosophy, 2 (RUS2)
E. Fussell:Frinciples of Mathematics (RUS3) 103 105
E.Russell: Hist.as it was never told (RUS4)
E.Russell: Hist.as it was never told (RUS4) E.Russell:Childrens Stories (RUSS) 106
Introduction to 'Newspapers' 108
109Glasoow Herald (HERALD)
The Guardian (GUARD) 11
113
113
Daily Mail (MAIL) 115
Daily Record, 1 (DREC1) 117
Daily Record, 2 (DREC2)
119
Introduction to 'Childrens Eooks"
120
A.A.Milne: Winnie the Pooh (POOH) 121
L. Carroll: Alice in Wonderland (ALICEB)
122
122
. Carroll: The Nursery Alice (ALICEL) 123
M. Eond: Paddington, 1 (PAD1) 125
M. Fond: Faddington, 2 (PAD2)
126
126
M. Bond: Paddington,3 (PAD3) 127
M. Rond: Paddington, 4 (PAD4).......i. (Gi̛i) 128
R.Bach: Jonathan Livingston Seagull (GULL)FAGE:PAGE

SCIENTISTS:

In my selection of the first 7 of the following 9 text samples, the emphasis has been on complexity of information, a complexity which is sometimes, but not always mirrored in complexity of style. The last two samples, "History as it was never told' and 'Children's stories' both by E.Russell, have been included in this category to facilitate comparison with the three preceding text samples by Russell.
M.Frankena's 'Ethics' (W.K. Frankena, 1963) is an introduction to ethics, which, in spite of the ethereal complexity of its subject, is down to earth, often almost Socratic in its approach.

The nert two samples are written by language scientists. Chomsky's 'Aspects of the theory of syntax. is well known to most and does not need further introduction. Labov is one of the foremost American socio-linguists, well known for his analysis of the use of language as a means of social 'ranking'. The text sample used here is taken from W.Labov 'The logic of nonstandard English' (Labov, 1969). I consider Labov's style to be very relased and uncomplex, quite different from that of Chomsky which tends to be 'super charged', one might even say: heavy.

Somewhere in between the styles of these two gentlemen 1 would place that of Jerome S. Bruner. The present sample is taken from 'A study of thinking' (J.S.Bruner,1967).
Eertrand Russell was a sublimely competent writer. One is bound to be impressed by the ease with which he brings over any subject matter, be it philosophy, mathematical theory or fiction, and the multitude of samples from his writings used in the present research, reflects basically the enjoyment I have experienced reading through his works. Farticularly his " History as it was never told' can be recommended.

The first two text samples of Russell is from his 'History of Western Philosophy" (B. Fussell, 1969) and is really one string of 1200 words cut in to two strings of 600 each.

The nerit sample, in which he sets out his class theory, is from his 'The Principles of Mathematics' (R.Russell, 1956).

The last two text samples by B.Russell are from his 'Anecdotes' (R.Russell, 1972). "History as it was never told" puts the spice back into history, and in Children's Stories' Russell recalls the stories he used to make up for his children when they were young. These, as well as the aforementioned samples are printed on the following pages.

1FFit

 FISTEJHUTION CIF EGOD ANI EUIL THEEE IE ALSO FETRIHUTIVE JUSTICE
 DISTEIEGTIME DUSTICE IS A MLTIEF OF THE COMFAFAGTIVE TREATMERIT OF
 THAT IN WHIEH THEFE AFE TWI STMILAE: INLIVIDIALLE IN SIMIIAF C.IFCUMETAWCE AND OUE OF THEM 15 IREATEI HETTEF OF WOR:SE THAN THE OTHER IN THIS CASE THE CFYY OF INGTUSTICE FIIGHTLY GGES LFF AGAINST
 EETAELJEH THA THEEE IS SOME FEIEVANT I:SEIMILGFITY AFTEF GLL
 THEY WETLI. FE GUTITY AE CHAFGED THIS: IS WHY EIDEHICI: EIGGEETEN
 IHIUCTIEE THE D?SEIMILAF TREATMEM OF SIMILAFE THIS FOFWHA DNES
 TFERTEH EIMIMAGIY SG FAE AS THE REEGIREMENTS OF JUETICE AFE

 WE HGUE ALEEAD SEEN THAT FLLES THEMFELVES MAY EE UNGUET IF THIS

 EIMBGFITY LF DIESIMILAFITY OF TREATMENT THE QUFSTJON WHICH
 GIETHELITION GF COMFAEGTIVE TREATMENT WE AFE TO ACT OM WE HAJE E! EM THAT THEEE GULIEE CANNOT RE DETERMINED ON THE RASIS GIF FETEFITENCE QR: EENEVOLENCE ALONE AS THE FLLLES OF NOT INJLFING ERNGUE ANI OF DEEFING COVENANTS CAN HE J THINK: A NUMEEF C.FITEFIA HEOR FIEEN FFGFOSEG ONE THGT JUSTICE IS DEALING WITH FEOFLE
 FEjnifs AS EDUAIS IN THE SENEE OF DISTFISUTINE GOON ANE EVIL EQUALLY AMONG THEM EYCEFTITHE FEFHAFS JN THE CAEE OF FUHISHMENT THEE THAT 11 IE TFEATING FEGFLE ACCOFDI:NG TC THEIF NEEDS THEIF:
 OF JLLETILE FELMN: IN GFISTOTLE THIS CFITEE:IN IS ALSO ACCEFTED EY

 GECGDDARE W:TH VIF:TLE ONE MIGHT OF COLIFEE GUDOFI SOME OTHEF:

 JiV DIETKJEITIHIO GUCID GNII EVII. IN ACCOFDANCE WITH THIS CFITEFION THE SECOMID CRITEFION IS THE ECIGLITGRIAN ONE WHICH IS CHIFAGETEFISTIC OF MODEFN DEMCLLAATIC THEGFIY THE THIRD IE ALSO A MODEF: UIEW AMI ME:Y TANE VAFIIOUE FORMS ITS MOST FROMINENT FOFM
 EACH: ACCOFDINS TO HIS NEEDS SOME OF THE CRITERIA OF MERIT
 THE USE OF EHOOI, COLOUK INTELLIGENCE SOCIAL FANK OF WEALTH AS A HAEIS FGF INES HLLIES GF DISTF: FUITJON USE OF AFILITY AS A EASIS WHILD GIVE LE A FOFM OF THE THIF:D WIEV: THIE LEAVES MORAL VIRTUE AIH? CLINTE:IELTIJIN TG SOCJETY AS FOSSIELE CKJTEFIA OF MEFIIT EUT WE

MUST THEN HAVE A CFITEFION UF CONTFIEUTION AND MURAL VIFTUE RY WHAT MEASUFE IS A FFFSSONS MOFAL VIFTUE OF CONTRIEUTION TO EOCIETY TO EE DETERM) NEI

arim

DIETEIFUTIOUGL FESTEJCTIORE OF LEXICAL ITEME EE UETEFMINE: EN

 EUHG IEGF:FION DE THE FOM OF THE EOMTAETIC COMEOENT MS

以F: A :

 EJN'A AT THE ENE OE THE FROEESE SEIECTING THE WORDS OF: SYMEOLS

 IGIALAY MIECRWEEIOTNG ITS NATLIFE DNE CAN STUDY MODELS OF
 HME WEEM HHTEVET, IN EUKH STLIIJES ELIT A GENEFATIVE GRAMMAR AS IT Siande is Nu: mLire a MCIDEL. OF THE SFEAKEF THAN IT 15 a MODEL OF THE HEGAFE FGTHEF: AS HAS EEEN REFEGTELY EMFHAEIZED IT CAN EE R-GUFDEI riNI Y AS A CHAKACTEFIZAIION OF THE INTFINSIC. TACIT - NGUUEVGF OH COMFETENEF THAT UNDERLIES ACTLIAL FERFORMANCE THE FAEF FIMFE GHD THF TKANGFUKMATICINAL FLLLES SET CERTAIN: CONDITIORLS THAT MLST EE MEI FOS: A STFillCthe: TO QUALIFY AS THE DEEF ETRLLCTUFE
 A GEAMMAF CCMTAINING A EASE CCIMEGNENT ANL A TRANSFGRMATIONAL
 CHESTRUCTINE DEE STRUCTURES THESE WILL VAFY IN EXHAUSTIVENESS AN! FEEILIFNE ANO J!: TAF EXTENT 101 W4ICH THEY CAN EE AEAFTED 70 :HFFOLEME TH FWQDUCIME DE: UNTIEESTANIINE SFEECH ONE SUCH
 UHOF: CD AE TGI FOKM A GENEFALIZED FHHASEMASKEF: M ANI, THEN THFOUGH
 Siff ert STFUMTUFE MM FFOM M IF MM $1 E$ WELL FORMED THEN M WAS A DFEH ETHHETUF:L OTHERWUSE 17 WAS NCIT ALI. DEEF STRUTUREE CAN BE ENMEFGGEI: IN THIS WAY JUST AS THEY CAN ALL EE ENLMERATEI IN MANY

GH-F WAYE GJVEN THE GFAMMAF: AE NOTED EAFLIEF THE GFAMMAF: IEFINES

LAE
 FFr.". LFEGM EHETTO AFEEAE FATHEK THAN LOWEFICLAEE CHILDFIEN THE FOFUGTIUN WE LFE COHEEFINED WJTH AFE THOSE WHO FACTICIFATE FU:IV

 THE EFFELTS OF THE CAEIE SYETEM OF AMEFICAN SOCTETY ESSENTIALLY A

 HIS FAMILY TAFES HIM ON TFIEE TU MLEEUME AND OTHEF [LILTEIFGH.

 FIEST DFAGH, FHCIM EASIL. EEFNETEINS WFIITINES THAT MLICH OF
 GOTHPFH:!MEN! TL ACTIUN HEFE ANL NOU EEFNETEINE VIEUS AFE

 EULH VIEWS IHJTIL TINE RCIMES 10 THE FFIACT?CAL FF:OGFAM GF CAFIL HFLTTEF SIGFFIEL ENGELMANN AND THEIF: AESNCIATES, HEFEITEF:S FRLGGFAM FOF AH AC:ALFMIC:AI IY OFIENTEL FREECHCIOL 1 S EASEL LHOCN THFIF: FFFMISE THA NEGFO CHILDEEN MIET HAUE A LANGUAGE WITH WHIEH THEY C.AN LEAFR: AHO 7 HEIF: EMFIFICAI FINIUNG 7 HAT 7 HESE CHIl.LFEW CUME 70 EGHUOL. WITHOUT SLITH A: LANGUAGE IN HIS WOFY WITH FOUF:YEAFULI NEGFO
 WAS FY GFETUFES EINGLE WDFIDE AFID A SEFIES OF FADLYCOHNEETED WCFDS OH FHFAASES SIICH AE THEV MINE AND ME FOOT , IUI]CE HE FEFOF:TE THAT NEGFG CHILLIFEN COLLD NLI ASI: OUESTIONE THGT WITHOLIT EXAGEEFIATINE: THEEE FGLI YEAFCILIS COULI D MAYF NU ETATEMENTS OF ARY VIND FUF:TMEFMIEFE WHEN THEEE CHILDFEN WERE ASHED WHERE IE THE ROOK THEY WIn NIT VNCIW ENCIIGH TO LOCV AT THE TAELE WHERE THE FOOI WAS LYING IN IFWEF TO ANSWEF THLG EEFEITEF CONCLUDES THAT THE CHILDFESNS
 4 H1 HE DECIDES TG TREAT THEM AS IF THE CHILDEEN HAU NG LANGUAGE

 THE EAEIC: FF:DGR:Ni G HIS FHFEGHOR! $3 \leq 10$ TEACM THEM A NEW

 EE AL LOWES TG UEL IT IN THE CCHEICLFOTM

EFHL
WE HAWE CHOSEN SI FAF TWU SIMFLE CASES OF CATEGOF:IZING IUECISIOU: OHE WHEFE THE EXFECTED OUTCOME VALLIES AFE EAL ANCED ANI WHERE THE DIFFEFENCFS IN EXFECTED EVENT FRQEAEILITIES SWAY DECISICIW THE OTHEF WHEFIE EXFECTEL EVENT FFREAEIILJTIES AFE EALANCEL ANL WHEFE DIFFEFENCES IN OLITCOME VALLIES FIAS DECJSICNN ONF NEEI) NOT FE LIMITEL TCI SUCH SIMFLLE EGEES IN GEFEA!. THE AFGUMENT CAN EE MANE THAT WHEN CIITCOME VA: LIES AFF EQUAL FGF: FLACEMENT IN ONE CATEGGF GF: ANCITHEF C:ATEGOFIZING DEEISICINE WIL! COFFFESFOND TCI THE EXFECTED EVFNI FFDFAMILITJES ANL WAEN OUITCDME VAL IES AF:E NOIT EULAL. [LTEGTSIZINE DEEIEJONE WILL EE FIASEEI J! THE DISEETICN OF THE
 AFGLMENT WILL EE FCUNLI TW CHAFTEF 7 IT MLIST ES NOTED HOWEVEF THFAT
 WIII TAKE AS LCM:F AS WE FEMGIN ON THE DESTEIFTJUE LEUEI WE CAN
 ECFFCTET, EUENT FH TEAFI:ITIES THAT WIL OCCLF FREUICTIDHE OF AMDUNT
 MHEFICGL ETATEMEMTE GNCF SLICH NLIMEFIICAL VALLIES HOVE EEEN

 GEMEFGI FINEJF:E EUCH AS MAXIMIIING UTILITY TO DETEFMINE WHIEH A TEFHGTHE SHOUS D KE (HOLSEM THEFE AFE HOWEVEF: A NUMEEF: CF EGOELEME IN: DFTEFMIHTNG HOU THE EXFECTED UGLLIES OF AN OUTCOME FOF:
 DUEETICINE AFE MLFE FULY HISCUESEL IN CHAFTEF 7 FGF THE MOMENT WE

 IHEVEGF GH: TG LITILJZE AE YET GWY FQFMA: OF MATHEMATICAL MODE: TO FFEHICT THE EFFECT OF ANITICIFATED CONSEQUENCES ON CATEGQRIZING MIGGENTE WF HAUK CHCGFN 7 G HE SATISFIED WITH LESS FRECISE
 OUE S'JIUSE WHJCH MIST EUEHIURLLY UIUEFL.JE ANY MODEL THE MOST IMFLIETANT OF THESE OUESTIONS CONCEFN THE OEJECTIVES DETEFMINING GUTGOME VA'-lIE AND THE COHIITICINE AFFECTING AN INLIVIDUALS ESTIMITE OF EUENT FROULMEILITY FOF ALL ITC FFESENT LIMITATION THE CCINCEFY OF A FAVOFF MATKIX IS A USEFLIL GND A SUGGESTIUE ONE IN THE FIFEST FLACE IT SLIGEEESTS FKGIHLEMS THAT HAVE FAF TOO LONG EEEN
 CATEGLIKIZATION OF MGGNITLIDES COULD WELL EE REEXAMINED FOF THE MANIJFF: IN WHICH OUITCOME VALLUES ANO LIKELI IHOOL ESTJMATES AFFECT CATEGOFIIING REHAYIGFi IT COULD WE GELIEVE THEREEY EE BROUGHT MUCH CI.OSEF: TO THE ILIDGMENTAI. FEHAVIGF: OF FEOFLE IN EVERYDAY EITUATIONS ANALYSIS OF THE EFFECTS CIF ANTICIPATED CONSEQUENCES IN TEFIME GF FAYOFF MATF:JCES MGYY ALSG SEFVE AS A LINK EETWEEIM MUTIUATIUNAL. ETATES AND IUDGMENTAL EEHAVIOF: SFECIFICALLY ONES SET IM JLIIGJNG 15 FALITJALIY THESC:FIBAEIE IN SUCH TERMS AGAIN WE MAY EENHFIT FY EXAMIHING THE JULUGNG ACTS THAT FREVAIL IN EVEFIYLIAY LJFE [IHE EXAMFLLE IS THE FEFSGONNEL OFFICEF WHO MUST CATEGOFIZE AFFIL ICANTS INTO ACCEFTAELE ANN UNACCEFTAELE GROUFS AND WHO IS
 CLASEING AE ACCEFTAEI.E A MAN WHO LATER FAILE THE PRACTICES OF THE FFAGGESSIVE SCHUCM FFOUIDE ANOTHEH EXAMFLE THEFE THE CHILD IS FEWAFIED FOF HIS COFIFECT CATEGUFIIZATIONS ONLY THE OTHERS EEING

OUEFLOOKED THE SITLATION IN THE EASIC TFAAINING CAMF IS YET AUTHEF EXAMEYE（HHY EF：OF：E AFE MOTEN AMI，FUIIJSHEL COFFECT AC：TS AFE CNEFLOOIED EACH TIME A SUHJECT WALHS INTG AN EXFEFINENTAI． FMEM HE IMF OSEE A FAYOFF MLTFIX OIJ THE SITLLATION THE EXFEFIMENTEF FH：LSENTS TC HIN：AWI［FTEN THE EXFEFIIMENTER：NEEDS TCI SET HIM ElFinltit HE EHI WITH WHAT MAY SEEM LIKE A TFIVIAL FFOELEM IN COMFAFISII：WITH THE ONE JLET IISCLISSE：THE FESTFIICTIOUS IMFCISEL UFしい。

SHE
THE COUEESTJOHS OF LIFE AMI THE WOFLD WHJCH WE CALL FHILOEOEHICAI
 CUNGFFTJODE THE OTHEF: THE SUH? OF INVESTIGATION WHICH MA: PE

 FFAEOTIGME IN WHOCH THESE TWU FACTOFE ENTEFED INTO THETF EYETEHS

 CH: $\quad 11$ OHE GF MEST INTEREST TO SEECLLATIVE MINDE AFE SUCH AS
 LOHEF SEEF 50 CGOUNEINE AS THE UIT IN FOFIEF CENTLFIES IS THE

 DI: IS HE WHAT HE GFFEARS TO HAMLET 15 HE FEFHAFSS EGITH GT OHCE 15
 dife Al buys of livirig merely flitile if thefe is a whi of living
 Mist THF GUNL FE ETEFNA! IN OFDEF: TC: DESEREVE TO BE VALUEL OF: is 17 WIHTH SEEEING EVEN IF THE UNIVEFSE IS INEXGFAELY MOVING TOWFEDS DEATH IS THEFE SIJCM A THING AS WIEDOM OF: IS WHAT SEEMS Sujht merbly the llitimate fief inement of fully to such ouestians nci hiSWEF CAN EE FOUND IN THE LABDGATOFIY THEDLOGIES HAUE FFRGEESED TO GJUE ANEWEFE ALL TUO DEFINITE ELIT THEIF: VEFY DEFINITENESS CALISES MODESW MINIS TO VIEW THEM WITH SLISFICION THE STUDYING OF THESE DUESTIOWE IF NOT THE AVSWEFING DF THEM IS THE RUSINESS OF FHILREOFHY W'Y THEN' YOU MAY AEK WASTE TIME ON SUCH INSOLLELE
 IWIIVIDUAL FACING THE TEFRIIR OF COSMIC LONELINESS THE ANSWEF: OF THE HJSTUFIBIN JN SO FAF: AS 1 AIT CAFAFLE OF GIUING IT WILL AFFFEAR IN THE COUFSE OF THIS WOF: EVEF SINCE MEN EECAME CAFAELE OF FHEE
 IEFENSEG LIFON THEIF THEGEIES AS TO THE WORLD AND HLMAN: LIFE 6S TO WHAT 15 Grol hing Whal 15 EVIL THIS IS AE TRUE $1 N$ THE FRESENT DAY FE A! GMM FGFMEF TIME TG UMDERETAND AN AGE OF: A NATIOR WE MLIET IHSEEETHI! JTE FHILOEAFHV GND TG UNDEFSTAND JTE FHILOEGHHY WE Hob: OLF:SELYES EE IN SOME DEGREE FHILOSOFHEF:S THEFE IS HERE A HEEIFFGICAL C:AlSEMTION THE CIF:CLIMSTANCES

2FUE
GA:EE: IOM THE CIFCUMETANCEE OF MERE LIVES DO MUCH TO DETEEMINE THEIF FHJLOEEFHY FLD CGN JEFEELY THEIF FHILQEJFHY DOEE MEHEH TO DETEFWINE THETR CJFCUMSTANEE THIE INTEFACTION THFOUGHCMT THE

 IMEGFAHPE THEOLGFY GU: THE GITHEF: HANL INDLICES A DOGMATIC EELIEF

 FEVIOH AFE OETHEDOX FROM A CATHOLIC STAHDFCIINT AND THE SECLIAR

 WHOE FEFTGU IN GGEECE SOCIAL COHESION WAS SECLIFEN EY LOYALTY TO THE CiTY STAIE EVEH AFIGTOILE THOUGH IN HIS TIME ALEXANIDEF WAS ME IHE THE CITY SIGTE OESALETE COULD SEE NG MERIT IN ANY GTHEF:
 rulethiled ey his duity io the city vafied midelay in sfafta he had Ai LITTLE LJREETV AS IN MODEFN GERIAMY UF FUESIA IN ATHENS IN SEITE GF DCLAEIONA: PEREECUITIONE CITIZENS HAD IN THE REST FERIIOD
 EIATE GEEE: THOLGHI DOUH TO ARISTOTLE JS DDMINATEL FY RELIGIGLE GNO FHTLIGTIC DEUOTIOM TH THE CITY ITS ETHICAL SYSTEMS AF:E AUGETES TO THE LJVES GF CITIZENE AND HAVE A LARGE FOLITICAL EIEMENI WHEN THE GF:EENS GECAME SUEJECT FIRET TO THE MACEIONIANS ANI, THEM TO THE F:CMAT: CI INDEFENHIENGE WERE NOI IONGEF AFFLICARLE THIS FRODUCED ON THE MIE HAND i LOEE DE WJGOUF THFOUGH THE EFEACH WITH TRADITION AND OIV IHE OTHFF HAND A MOKE INIIUIDUAL AND LESS SOCIAL ETHJC THE sruics thought of the vifituus life as a felation of the soll ta GO: RATHEF THLiN AS A FELATICHV OF THE CITIZEN TO THE STATE THEY THEIE FKEFARED THE WAY FOF CHFISTIANITY WHICH LIKE STOICISM WAS
 ALAFEENTTS WERE DEVGID OF INFLUENCE ON GOVERNMENT SOCIAL COHESION

WILING THE E: ANY A HALF CENTLFIES FHTM ALEXANDEF TG COUETGNTIUE WAE SECUFETI NOT EY FHII OSOFHY AND NOT FY ANCIENT LOYALTIEE FUT EY FQFEE FIEST THAT OF AFMZES GND THEN THGT OL GIVIL ADMINISTFGTIOH.

25
to efing cleafly egeare the miny what is meant ey class and to [HETIMEUIEH TH!E NETION FREM ALL THE NOTIONS TO WHICH IT IE A! IEL 18 CINE GF THE MOET DJFFICULT ANE IMFORTANT FROHLEME OF

 FETKADTEY THE AFFARATUS OF SOMEWHAT SUETLE DISCFIMINATIONS TO EE

 Fr to ThE simy THESE TWG FOUNTE OF UIEU HIS STATEMENT WQULD EE JUSTIFIEE EUT AE

 GHOT WH FL FFEDICATES OF EONCEFTS FDE A CLASE MUST FE DEFINETE

 THE CLAES OF FFELICATES GTIACHING TG THE TERMS IN GUESTION: ANI TG

 COHEFD: AHE TG ?HJE EXTENT THE FOINT OF YIEWS OF INTENEION $3 S$ EEEENTGA IT IS OWIIGG TG THIS COHEIDENATION THAT THE THEOFY OF

 IWEJUJTL GS WEIL AS FIHITE CLASSES WHEN AM OF:JECT IS
 GE A COHPEF'T OF SQMETIIES I COEELY AS THE CONCEFT OF THE OBIELT IN OUEETIIN THUE IT WILL EE NECESSAFF TO IISTINGUISH THE CONCEFT OF
 EIIt MGUN DOES NUT IN ITS LISUAL EMFLDGMENT DENOTE ANYTHING ON THE
 DENHTE ANI I SHAI-L COHTEND THAT WHAT THEY DENOTE IS THE CLASE
 IE THE CCINCEFT OF THE CLAES IT IS NO DOLET CCNFUSING AT FIFST TO LES Gi ASECONGEET AUL CONCEPT OF A CLASS IN DJFFERENT SENSES ELIT
 EEFME LIG OUJIAE ZE JH THE FHF:ASEGLOGY OF THE FFECENING CHAFTEF WE
 THF THEGIE WHILH 15 TO HE.FSTAHI.JSHED IN CHAFTEF: II WE REGAFIDED CI AESEE, AE DEFIVET FRGM ASSERTIGNS IE AE ALL THE ENTITIES EFTIEF PHIG SUME ASSERTION WHOSE FORM WAS LEFT WHOLLY VAGLIE I

SHOA LIECUES THIS VIEW CFITICALLY IM THE NEXT CHAFTEF FOL THE FFEEENT WE MAY COUETNE OUFEELVES TO CLASEES AS THEY ARE DEFIUED FFIUM FFEDJCHTES LEAUTNG OFFU: THE

4Ruls
THE EMEFEES ICTEEGHJNE HED A VEFY INTEFESTING AND VEFV FEMAE: AFPLE
 WEET JWTJEE GMI WFE IN FAFIE AT THE TIME QE THE FIEIGN OF TEEFRS NO'
 SURCEEMEI IH: WI: HEJNG GLILLEITINEI ANI: JM GETTINE INTE INTIMATE
 WIEM GEIE! WHAT HE HAII DCINE DUFIJNG THE TEFFOF FEMAEMED I SLIEUJYED

 E,

 GF-MG GIFFFFEL TINE GE VEF:GF AFTEF ANOTHFF: GENUA WHICH THF FFIENCH

 Gr. INE 7 G ARFIUE AINL SHE FLED OLIICKLY FFOM EAFFFAE TO NAFOLECINE AND
 WAE INEIDE HAUJME AFFIIUED EEFGF:E HEF: FOF: TWENTYFOUF HOUFE HE REFT
 MSEFGFTLME ALTEF, HAFGLEQNS FGLL WHEN THE EMFEF:OF: ALEXANDEF: CAME TU FAFIE E:HE THFMGHT WELL EMFEFIF:S AFE MY MEAT I OUGHT 10 HE AFLE TC CATEH HIN: EHE IFIED VEFYY HAF:D SHE INVITEI HIM TO IINNEF: AND FUl. UWIJHG 7 HE CUE 1 CH CIF FASHIDIVAELE LADIES OF THAT TIME SHE WOFE HFF LWESS WET IN LIFDEF: THAT IT MIGHT CLING TO THE FIGUFE THE FEEI:I WAE THAT GHE. CALIGHT A CHILL ANL IIED AND THE EMFEF:OF ALEYANIJEF FENAIHLD UNAFFECTED EY HEF: CHAFME HEF FELATIONE UITH WAECIEAM HAI, A SUTHEWHAT UNFOFTLINATE HEGINHING ON THEIR WEDIING NJGHIT JIET AE NHFOLEUW WAS GETTING INTG EEE JOEEFHINES DCEE EIT HIM JN THE CALF WHICH COMFLETEIY SFOILT THIS IMFOFTANT OCCASION MA!: Y YEAR:E AFTEFWAEDS WHEN HE WAS DIVORCING HEF HE EROUGHT THIE LIE. AE A GFIJEUHNCE AND IT AFFEAREU TO EE OINE OF 1 HE REASONS WHY HE WISHFI, TG II UCIECE HEF: FEQELE AFE ACCLISIGMED TO TREATING GFEEF: HIEIOFV IH A SFIFIT OF REUFHENCE WHICH MAFES EVEINTS LINFEAL THEY IO NOT SEE THISE ENEHITE. AS EEING VEFV SIMILAF TO THOSE OF OUF TJME TAKE FGH: INSTANCE THE AGE OF HEFIICLES ALWAVS FEGAFIJEI AS A SOFT OF GKEAT ANID GLDFIOUS AND SHIMMEFING WONDEFI ANII NEVER HREATEII IN TEFMG IF FIEAI ISM EUIT IN FACT FEFICIES WAS A FAFFTY ECIES WHO SUCOEEDED JH ESTAELISHING HIMSELF VEFY LAFGELY EV COF:GUFT ME AME AMI: WHE WHEN HE SET TO WCIRE TO EUJILI TEMFLES ON

WHEH MY CHILIREN: WERE VEFY YOUNE WE SFENT THE SUMMERS A MILE FF:OM THE EEL LIF A STEFF HILL AT THE END OF G DAY GM THE SEACH THE WOU.! FIHI 7 HE HILI. TIFINE GHL 3 TKJEI 70 THE THEJF MIMDE LEF

 WHELE THE FCTE 7 GFAGE MAD ETGOD THE FAESENEEFS OH A CFOSEGHANHEL

 AWGOUR WGE FGFETBEAT GF THE FOYA! SOCJETY NEXT DAY THE

 THE FRG? RFFJCE FDUNG THEIF NEW HGFITAT JLIST AE MUL AE FYNHE FLOM: TGU:N and at the reyt full mogn thev fleu home again ant

 THJE FEEITN AHIN WERE INTEFESTED F: THE ETRANGE SUCKING NGISE THAT
 CEMIFE OF THE SI GUBH SO I ASSUFED MY CHILDREN LIVED THE GFEGT GOD TCIMF THE TUIEIAFG DEJTY OF ALI SWAMF'S ANI QUKISMJFES ONCE UFCW A TIME AN EMINENT ZONI OGIET IN FLIFSUIT OF FAFEE FERNS HAD COME UFOM THE EO! GHI FIULIEN HIM OUIT WITH EXTKAQFDINAF:Y LAHOUF: THE ZOQ: CIFIST DFIEG HIM OUT AND FUT HIM IN A GLASS CASE IN THE NATLH:AL HISTOFY BLISEUM FLT THE NIGHT WATCHMAN COMFLAINEE THAT

 THAT THE FGOY EOI WUS SIJFFERING UNBEAFAAELE DESICCATION THE 2 OUl ligs S THOK FITY LIFON HIM AND TFANSFGRTED HIM IN THE DEAI, OF NIGHT TO THE WETTEST FAFT OF THE SWAMF AFTEF THIS THOUGH THE GODS Whing were linchaigen the emalialv That They staEsseil was entifiely IIFFEEEMI ANI ALL WHE HEAKD HIM REJOICES IN THE CHEEFFIUNESS OF HIS 7 ROMF ? OAMF 2 OOMF MY.CHILIDFFN AT ONE TIME EECAME INTEREETED IN TALFE OF THE FJEFCE BEASTS OF THE JUNGLE AND THE STRANGE , LMBWUS FIEHFS THAT LJVE JM THE DEEFEF FAFTE CIF THE OCEAN THJS i.EAI) ME TO TEI!. THEM AECUT THE VERY FEMARIGELE $2 O O$ NEAR

GO!, HAMETON: WHICH WFAE THE FRIVATE FFQEEFTY OF THAT EMINENT WEAL THY NATUFAL.IST SIF THEOFHILUS TWACKUM

NEWSPAPERS:

This category is made up of 5 long articles, so called "features" of varying style and quality. They appear in table 4.1 in descending order of factual writing - and ascending order of ijuiciness" - with the REC1 as an example of what 1 earlier called 'seductive pandering', highly conducive and, to many people, palatable style, which contrary to common belief is neither unakilled nor 1 ow in vocabulary.

The article from GLASGOW HERALD (Glasgow Herald,1981) reports on the Governments failure to back up gas piping from the North Sea oil fields. Although the writer allows his personal view to shine through, there is no direct declaration of his or his paper's emotional bias. I have picked this article for its factual subject matter, and the writers detachment.

The writer of the article from THE GUARDIAN (Guardian, 1983) is a vicar who unashamedly admits to having remarried in church a number of divorcees in spite of the moral stands of his Church. Although the writing isi biased in the sense, that it airs a personal view, the writer rarely departs from a sober conveying of his views. I have picked this article because its subject is emotional, but the style is relatively un-emotional.

With the article from THE DAILY MAIL (Daily Mail,19B1) we enter the fleemarket of journalism. In a rather pompous and selfassured style the writer gives a vivid account of two teachers' fight to break the spell cast upon some of their pupils by the "Moonies'. Both subject matter and style are highly emotional.

The DAILY RECORD has provided me with two gems; DREC1 and DREC2. DFEC2 (Daily Record, 1983) is a feature on the television series "To the manor born' revealing inside information about the filming of the series and generally establishing a pesudo relationship of pseudo intimacy between the reader and the actors. The style can - if anything - best be classed as hallucinogenic.

DRECI (Daily Record,1981) as a text string is not easy to deseribe, let alone classify. I can best describe DRECi as being like an adolescent day dreams word-play and action-repeat-with-minor-changes. As stated above, it is not the result of lack of skill or simple-mindedness. The vocabulary of this article, being the highest of any text i have measured (see next chapter), bears witness to the manipulative skills of the writer. In a style which sways hither and dither with the emotional charge of the "action", the reader can live out this infatuation with the life of a 'master criminal' turned super-grass, in around 1000 words.

MEL
THE GOUEFNHENT IS Nat TO kñ: THE HUGE 2 ? EILLIOH: FQUND NGITH SEA GAS EATHEFING FIFELINE FFEGECT AFTEF: WEEKS QF MEETINGE AND
 HEJUIDLGLL GIL COMFANIEE TU MAKE THEIF OWN AFFFANGEMENTS FGI E1 1H.INE THE GOE ASHCHE THE GQUEFINMENTS WITHIFAWAL FFOMM THE Fronect fegardeg as the most ameitious dfent to efiltain for many YEASE IS A EITTEF FLOW TO SCOTLANLS ECONOM ANL JOE HOFES IT WAS EFFECTED THE FFGIEECT WOLLD LEAD TO LAFGE INUESTMENT IN FETFIGCHEMICAL DEGELOFMENTS AT NJGG IN THE CFOMAFTTY FIRTH AND IN GLGHAN IN AREFDEENEHIRE AS WELL AS GIUING A MAJOF: EOOST TG
 FOLHL WOITH CIF FIFE FEEOIIFED IF THE OIL COMFANIES AFE TO GE IT

 FTGQ:-E I? AE \& ETATE ENTEFFFJSE THEY WAITED THE [IJ COMFIIIES TO
 GOEFMME FHEFING FAR ANS OTHEF CITY INETITLITIONE WEFE NET
 WGF. TLI GGFT ON THE EIFELIME AND THE FEEEFTION TEFNINAO GT ST

 IS REIHE FIATEF OFF MOST OF IT JS EEING REJNJECTED INTO THE FIELD BUT THIS CAM OHIV HE DONS FOF: A CERTHIN LENGIH: OF TIME A

 JMTEGFATT: ERHEME LE FY A MUMEEF: OF SEFAFATE SEHEMES THE VAST

 EHCHILI ?H THF FLITLRE AE IH THE FAST MAYE THEIF OUH: ARFGNEEMENTE FGF FEJIGING THE GAS ASHORE THEFE WAS ANGFY REACTION FFOM ALL
 LEEEFJSES TT $4 E$ G KICN IH THE TEETH TO SCOTLANE IH ALL SOFT OF
 Froin the theabuky ar: Cleafly disfegarding aduice ffom other
 WOGMA FEFOFE THE NEELS GF THIS COLINTFY OVEF THE NEXT 30 YEAFS A
 U'IEv: OF THIS IHDEFD IT WAS ONE OF THE MAIOE FACTOFS LIKELY TO GET THE SCOTTIEA ECONOMY GOJHE AGAIN IT IS NOIT JUST THE FJFELINE FFEIBECT ITSELF FUIT ALL THE SFINOFFS FOR THE CONSTFULCTION AND
 MF: JUHN SMITH SHADOU TFADE SECRETAF:V SAIII THE DECISION WAS AFH:MIING NEEEECT OF CIIF NATJONAI INTERESTE THF DEAD HANI OF SHISF:T TEFM FCILITICAI DOGMA HAD KILLED THE MOST VISIONARY DF ALL
 OF THE NOTH SEA WCILL EE WASTED AND IT WAS THE ENL OF A FICHEFIHA FARTNERSHIF GETWEEN FUELIC ANI FRIYATE INDUSTRY WHICH SUCH AN ENGFMGUS FFROJECT REQUIRED COUNCILLGF: SANY MLITCH CONVENEF B! GFAMFIGA FEEEJOUI SAID THE IIECISION WGS A SETRHCN: TO THE REGIONE HTEES GF GETTINS A SHAFE DF THE FETRDCHEMIC.AL AND OTHER LOUWETKEAM DEVEL OFMENTS WHICH WOLLD EFIJHE FEKMATIENT JOES TO THE AEEA WE HAUE MADE IT CLEAR WE ARE NOT CONTENT TO SEE FEEOUREES DF

THE NOETH SEG COMING ASHORE IN GRAMFIAN ONLY TO EE FIFED AULAY EL SEWHERE FGF FRIGCESSING HE SAID MF: ALEEFT MACQUAFiFIE
 ELIJI A CFiflliEf: FLANT WITH GAS FF:OM THE NORTH SEA SAID WE AFE LOEJNE 100 OO FOUNE A WEFY: FY GAS GEING FLAFED OFF AND TH:S CAHMET GO OH MT: JAMES FASMUSEEN OJL CONSULTANT TO THE SCOTTISH
 INDGETF WEHL TG USE THE EY:ISTJNE FIFELINES WHICH RGTH HGM SFAFE CAFACITY HE WOULI ALSC NOT RULE OUIT THE FOSSIFILITY OF A MOEIFIED FIFELINE HE JHG ELIJLD THE MAJN FEASOM THE OIL COMFANJES AFE

 CEFETGEY EHII THE DECIEIOH WAS ARIITHEF VICTOES FOF: THE HOTCHET
 EQUGHDEF A UAET NATIONAL FESOUF:CE

Gurif:
SJWCE 1 CAME TO M: FARISH IN 1977 I HAVE FEMAFFIEI IN CHUFICH SIX CDIEEEE IN FLIL KNOWLEDGE OF THE FACT THAT EY SO DOING I WAE GOIMG AGGINST THE LAW OF THE CHUF:CH OF ENGLANI EUT NOT AG̈AJHET THE LAL, of THE LAND THE FFOCEDUFE IS SJMFLE THE COUFLE COMCEFWET NEET, TG TAIE THEJF: LEEFEE AFSGLLITE TO THE LICAL SUFERINTENAEUT FEEIETFAF TGGETHEF WITH A LETTEK FFOM THE VICAF TGI SAY THAT HE IS FREFHFEN TO MIFE: THEM ON THE ISSUE OF THE FEEGSTR:ARS CEF:TIFJCATE A FORMALITY THE COLF'LE MAY THEN EE MAFR:IED ACCOFLING TO THE F:ITES
 THESE WEDIINGS IE THAT THE CHUFEH FFROUDEE NO ALTEENGTIVE WHICH

 MBFE ILEE EEFUICE JE A FLESSJNG THAT 15 WHY NEWLY GRDAINEE DEACOHE

 FFFRTMUEE THGT FEMLFF:IAGE GE VALIEI IN WHICH CASE WHY NOT GLLOW A
 (Hifent jw 3 ts gemulce of glessing fy ha means recoenises the UG IDIT GF CIUIL EEMAERIAGE THEN WE CAN ONAY WONDEF: AT THE
 FFOMDMEED ELEESED IT SEEHS TO ME THEFEFOFE THAT THE ONLY FOSETHE MEAUE FY WFICH THE HAFLESS UJCAF CAN AVOID HYFCICEISY ARE EITHEF TG FEFUSE CLI REOUFSTE FOF: FEMAFFIGGE ON THE GFOUNIDE THAT

RECOMDENES FEMAFEIGGE IN CHUFEH EUT THIS TUFNS OUT TO EE GT THE
 GEUCFGI LITE THE GSEOCIATION OF SCRIRES ANI FHAFISEES FIFST THE
 IHE:IFE INTO THE FLLL CIFCUMETANEES SURFRUMIDING THE APFLICATION WHY UHAT FIGHT HAS THE YJCAF: TO CONIUCT A FULL EXAMINATION OF FEGFLEE FEJUATE AFFGIFE AFTEF ALL HE IS NOT EXFECTED TO IO THIS W?'I- FIFET MAFFigGEE A EINGLE MAN MAY TIIFN LIF AT THE VICAFAEE AFiM IN GFM WITH A SINGLE WOMAN WITH WHOM HE HAS SFPENT A SINGLE NIGHTS ErUHEN LECHFFY IF HE ASK:S FOF MARFIAEE THE VICAR CANNOT AND FIGHTLY CANNOT LEGALLY FEFUSE IT EUT IF AFTEF A DISASTROUS FIRST MAFSIAGE IN WHICH HIS WIFE WAS FQSSESSEN OF THE MOFALS OF LUCFEZIA EOF:GIA A MAN COMES NOU WISHING TO EE MAFF:IED TO THE SEECEETAR:Y OF THE WOMENS INSTITUFE THE VICAR IS OELIGED TO COMDLICT A FULL EXAMINATIOW INTO THEIF: AFFAIRS SUCH A MOFAL INTERROGATION IE ItSEIF IMMOK:A: THAT IS NOT ALL THE VICAF IS NOT TO RE THE SOLE INTEHFOGATOR: HE MUST CONSULT GUIDE LINES TO EE FRGUIDED IN THE Eirdolis green rgor: AnI THEN FILL IN A FOFM GF AFFLIICATION TO THE fishaf flit event the eishaf is not left to decide the issue he MLET FASS GIN THE GFFLICATION TO A FANEI OF ADUISFFSS THOSE INTENIING FEMARFIGGE MIGHT RE FLEASED TO LEAFN THAT ONLY A
 COUFLEE FEFSONAL. ATTENDGNCE EEFORE THIS FANEL SHCLLLD EE MANLDGTOFIY EITT HE!F OF THE CGMIBTTEE DG THINK: THAT IN WHATEUEF SUFFLANTS
 STATEMEHT FOINTINE OUT THAT A DIVOF:CED FEFISON 15 INVOLVED GLL THIE MIET SOUNI VERY FINE IN THE CORFIDGRE OF ECCIESIAETICA
 COUFIES WHO AFF! Y FOE FEMAFEIAGE CEFTAINLY ALL WHO HAVE EUEF:
 FEMAFIES IN THE REDIETEF OFFICE AFTER THE HLIET AND
 MGTIERS THAT CONSTITUTE DIVDF:LE FROCEEDINGS IT REDUIFES COLRAGE
 CH UF JT $1 E$ CHPF?
 GEFE THEM COMING UF THE DF:IME AND TO ACCOMFANY EUERY FUFIITC FFFEEF:N :O THEIF: FOFTHCOMING NUFTIALS WITH THE SHFILL GTEFAME GE IIUDFCEG IIVORCED GS IF LEFROSY HAD UISITED THE

 FGH: - ATHDSEES GGAINST WHIEH EYY THE WAY NO AFFEAL IE EN:ISGGEL
 EOMETEEFAME EFFGOT TO SEE SEIFIITUAL SUFFOFT JS FEFUGHAMT TG THE
 FOE! CIF AMOSEES TG EE MADE LIF OF ALL THE HCLY UIFEINE ANI MAETYES CHAIEED F THE AFLHAVGEL MJCHAEL HIMSELF WHEFEAS THE FLUNE: OF CHEJETIANITY WELL KNOWN FOF HIS HARSH WORDS AGAINST

 WH:: WUl FEFMIT EWEN 7 HE HUREAUCRACV OF THE CHUFCH OF ENGLANE [FUTE: TH HKY SHEH FEEFLES OF SELFFIGHTEOLSNESE AGAIHET MEN AHD

MAIL
EYEFY MOFNING TWO TEACHEFS MEET IN A STAFFFOOM AND WONDEF WILL TOLAY FE THE DAY THE MLIORIEE IEEF THEIF FFOMISE FQF: THE FAET YEAF: MF: CGEEY MECAINN AND THE FEU FETER HULLAH HAVE EEEN GETTIRE UVIIEF: THE CILT LEGIIEFS GUAFI: WITH AN AMAZINE DOUELE ACT QF STFFIGHTT TALIIIUG ANL DJFLOMEE FULT ONLY WHEN THE NEW TEFM STAF:TS NEXT WEEY: WIIL THEV FNCIW TF THEIF: EFFRFITE TCI SAVE STLIDENTE SUCFEI IN FY THE M[QUl]ES HFUE SGUEEDEI MCEANN AND HULLAH GOT IWMLVED IN THF CTFULIGLE AGAINET THE UNIFICATION CHUFRCH WHEN TWO EXFLIFILS EECAME MCICNIES RIN A UJSIT TO AMEF:ICA DUFING THEJF: LINJYEFSITY HDL IEAYS THE \because THEY WIDFAED THETF: NO NONSENSE CANFOIEN TO COUEF: ALL EF:ITISH STULEMTE WHI HAL DFGTVIINEI: THEIF EDLICATION TQ FOLLOU THE FEU SUMI MVLIJG MJON ANI WF:HE AN IMFGFTANT FILEDGE OUIT OF ONE OF THE CULTS I.EADFF:S JN T:UF TIF: MOSE DUFEST FFESIIIENT OF THE AMEFICAN MCIOQIES FF:IMISED EASEY MCCANH THAT EFIITISH FEEFRLITS IN AMEFICA WCILLI RE EHEOM:ASEI TG FETUFN HCHE TG FINJEH THFIF ETUNIES IF THE MOONJES HEYT TO THEIF WOFI THE DIFECTNESE LEED EY MCCAN: AHI HULLAH WILL
 NHT THEFE W!LII EE A NEW WFOE CF FLIEIIC ANGEF AEAINET THE MEONJES AUE UEFY I ITTIE TJME FEMAIINS FOF THE FF:OMISE TO HE KEFT IT G!L EEEA', WHEN ME MCRGHN: GW ENEFGETIC 3 O YEAF: OLN HOIISEMASTEF: AT

 HEH, JHINEH THE CUIT WITHIH 24 HOUFS THEY WERE CIN THE DOQFSTEF TG GFFEF HELF WITHIN AE HOUSS MF: MCEANH WAS IN SAN FFIFIJCJSCO HE WENT ETF:GIGT FFOM THF AJFFGR:T TO THE CUHTS HEALOLAFITEFS IN RIICH ETFEET THE MOCNJES IMVAFIAELV ASI: UISITOFS TO FEMOVE THEIF: SHOEE
 FOGMS KIT CAEEY MCCA!! WAE HAWING NONE GF THAT I TLET TGLD THEM
 [IFF AHL EES.]DES I HAVE EOT VEFFIUCA AND WITH THAT INTFODUCTICIN HE WAII:EI STFAJGHT LIFSTAIFE WITH HIS FOOTS STILL ON BUTTONHOLEI THE THF EFIASS ANL INEISTED ON SEEING THE EOYS AFTER MLICH PEREISTENCE HE WAE GLIE TO TAIF: TO OHE OF THEM SINCE THEN MF: MCCANN HAS MET MUST OF THE TUF MUQNIEE IN THE UNITED STATES AND EFIITAIN ANI HAE FEEGUENTI Y IAFIOFFED IN LINANINOUNCED AT THEIF EFITISH HEADQLIAFTTEFE IN LUNDON THE MEETINGE HAVE HEEN SOMETIMES TENSE AND ANGFIY SUMFT JMES FEEL. HXED OUEF HALIF A IOZEN FINTS IN A LOCAL NOT ALL TOF. MODNIES RESFECT THE SECTS EAN ON ALCOHOL THEFE HAVE REEN MOMENTS WHEN HE FELT HE WAS FEACHING AN UNDERSTANDING INTERSPEFSED WITH STAMD LIF SHCIUT INE MATCHES MCCANN DOES NOT EEL.IEVE IN LEAVING HURTFU: THINGS UNEAII THEFE CAN NOT EE MANY SCHOOLMAETEFS LEFT WITH HJE NO NLWSENSE MANNEF: HE IE SIX FQOT TWO INCHES TALL WITH A FLOF:IB COMH EXION ANN A WITHEFING CCMMMAND OF THE ENGLISH LANGLIAGE MF: MJKE MAF SHALL ACTING DIFECTOF OF THE MOONIES IN EFIITAIN CHIDES HIM FGF TFEATING THEM LIVE SCHOOLFIDS CASEY DOES NOT MJND THE TIEE HE THINIE IT MEGNS HIS MESSAGE IS GETTING THROUEH FETEF: HULI.AH IS A J? YEAR OLD YCIFKSHJFEMAN WITH A RUGRY FOF:WAFID FIGURE ANI \& JOUIAI MANNEF HE THINHS OF HIMSELF AS CASEYS DLISTFIAN AND EIIFEFGLIIF EEGFEF: CASEY EFEAIS THE CFOCIEFY AINI FETEF FICKS IT UF AND FLITS 17 TUGETHEF: AGAIN NEITHEF MCEANN NDF HULLAH WDULD GET ANIWHERE WITH THE MCICINIES ON THEIF OWN EACH NEEDS THE OTHEFSS EAI. ANCING [HIALITIES MCCANN WOULD FAISE TOO MANY HACFLES IF HE DID NTIT HAUE THE CHAFLAIN TO SMOOTH THEM OUIT AGAIN THEIFI IOINT EFERFITS WEFE FIFST REWARIUED AT EASTEF WHEN THE VOUNGEF: OF THE TWO

EFOTHEES LEFT THE MOONIES 1 hAD IN:ITED HIM TO DINNEF AND ASIED H3H: WHAT HE WJULD LIFE TO DFINF: SAID MCCANN 1 THOUGHT HE WGULD SG: [GEFOT JUICE OF SOUASH GECAUSE MODNIES AFE NOT SUFFGSED TO
 HAE EOMETHINE TO CELEBF:ATE HE SAID YES ANIT HE WAE OUT THE ELDEF: FFOTHEK REMGIUS JN THE MOONHES FLIT MCCANH AND HULLAHS CAMFAIG:! HEE FIREUGFOUEL GTHEF FUFILS FFOM THEJF: SCHOOL THEY HAVE ALSO
 the friumise mane io them is veft they will have engineeried a
 Hes figiwn te amefica three times and me hullah tuice at theif oun EXFELEE THE, HA'SE HAL: ONLY TWA SMAIL DONATICUE TO HELF THE MOTIWATIOA FGF EGTH MEN WAS A FEELINE THAT THEY HAI, A DUTY TO TIEIF FGGMEF FLIFIIS THAT DUITY TO TWO FOYS EECAME A DUTY TO THEHSAMDE AND NDU THEY AKE BUSILY SFFEADING THE WOFD IN CITHEF: ECHOGE METAHI GUI HULIAH HAVE ALWAYS GONE THEIF OWII WAY GNO HAVE H. JGUMFD ANY OF THE ESTHENGBHED ANTI MOONJE GFOUFE 50 WHAT DG THESE GY GUS MOST OF WHOM HAUE EEEN WORHINS ON THE SAME FFROE! EMS FQF FGF LOHESE THIAH: LIF THEM MF: MCCANG IS A FJEFY INDEFENIENT GFIF IT UHO HAS ELIISTEFEO HIE WAY INTO LANEASTEF GATE THE MODNIE
 HFOFLEM SOLYEF ANL HE SEES NLI FEGEOM WHY THIS FFOELEM SHOULD NOT HE FOMEL LHEE AH LITHER THE TEST OF HIS SUCCESS V:]LI EE WHETHEF: AH OF THEEE EFITISH EOYE AHD GIELE CCME HOME TO COMFLETE THEIF: EnMEATIOW J WIS4 THEM WE:L

1FEC
AT THE AGE OF ZE FGGEF DENNHAFIDT HAI FEACHED THE FINNACLE OF HIS CHOSEN FFROESSION AFIMED ROEEEFVY HE WAS HOLDING UF EANKS SECLIRITY FIFME ANI SHEIFE TWE DF: THF:EE TIMES A WEEF WHEN HIS C.AFEEF: CAIVE TO A SUULIEN STGF HE WAS NICKED AND AFTEF THFEE VEAFS IN FFISQN DEINHHAFIT THE MCET ACCOMFLISHED UILLAIN OF HIS GENEFATICH: EECAME A SUFEFEF:AES THIE IS HIS AMAIING CHILLING ETOFV RUGEF DENRHAFIIT FECAME HCIGEI: CIN THE THFILL OF WFONGDOING FF:OM THE VEFY EEGINIJING HE FQUINI, 17 EASY AHI HE LOVED THE FEELING UF FOWEF THE FIFET TIME 1 FEI. T LIKE A CF:IMINAL HE SAYS WAS WHEN 1 FIFSST HELD A GUN IN MY HANE WITH MALIEIOUE INGTENT THE KIDS 1 STAFTED OUT WITH HAD EEEN [GING AFMIG FEEEE: WITH FICHHANLLES ANI A VNJFE THEY JUET IIE WOT FFGLA:IE THE FEGA: FEOFLE WEFE NOT IMFFESSED THEY WOUL D TFir TO FIGHE HAEH HE HECALS A SCENE FFOM HIS AFFFENTICESHIF IN CF:AME I FIL MFMFTF GITTITAG IH THE CAF HIGH AS A KITE AESOLUTELY TINGLING EEEALISE THIG WFE THE FIFSST FEAL CFIIME I HAL EUEF COMMIITTEI: GGTUFATET UITH GEFENALIN SIIZLING INEIDE EVEN NOU IT IS DIFFICUIIT
 TG DGMIJNTE IMASME: FEEGFE WITH A DEADLY WEAFUN IT WAS EETTEF: THAl! WGF: 1 US THE UEFY FIFST JOE: WE [:ID W!TH A GIN I GGT A

 EMWIIE MNI, CLYDE LGFEF HFGULEHT HIM NOTOFIIETY WHEN HE WAS ETILL A TEERAGEF: THEY ALEO EFROUGHT HIS FIRET PRISON SENTENCE AND HIE [QM]iNG TO CFIM]NAL MGNHIDCII ANY NLIMEER GF FEASONS CCIULD EXFLAIN WH: FESEG: LELIS DENNHAFLT EECANE AN AFMED FOEEEF HIS UNSTAELLE E:WLCTI COMTATHEI: A.I THE CLAEEIC IUGFEDJENTS WARFING FAEENTE THE NRッIT, ISTENT HOME LIFE INEONEISTENT SUFEFVISION EAL COMFANIONS
 QEM:HROLT HE FEEFECTS HIS FATHEF STILL ALTHCHGH THE: HAVE NIT MET FIF MANY YEAFis ANII LOUES HIS MOTHER DEEFLY HE DID NOT LACK: AFFECTIOUY EUIT AS A VEFIY YOUNG CHILD HE CAME TO ACCEFT VIOLENCE AS Firit di E - EFVIIAY LIFE 1 FEMEMEFF CONSTANT ELIMFIING AND EANGING SGLNTE ANI MY MIM SCFEEAMING HE SAYS THE FAMILY LIVED OH THE GFFIATIL HCLISINE ESTATE AT HAYES MIDDLESEX DENNHAFIDTS FIRST ILLILIT THRILL CAME FF:OM EOFFOOWING THEIF: CAF: FOF JOY FIIDES THEN IT WAE FUEHINIA FEF FILIS TO OTHEF VOUNGSTEFS THEN TAIIING CAFS WHICH LED EVENTLIALLY TO LOCILLF' FOR YOUAG OFFENDEFS AT FEDHILL S!H:REV DEINHAFTIT WENT OIN THE RLIN FROM REDHILL FUT HIS FATHER AND UNELE TOOF HIM EACK AT FEDHILL THEY TOOK ME INTO THIS FIDM LOCKED THE DCOF GML THESE MASTEFS LEAFT ON ME THEY FULLED MY TROUSEFE DCWW ANI: FIFECHED ME I WAS DUTRAGED THAT EEATING WAS A CHASTENING EXFEF:IEINCE WHAT HUFTT MGFE WAS THE FACT THAT THESE EASTAFIDS THESE GFiOWN MEN ALL GATHEFED TOGETHEF AND JUMFED ON ME A 15 YEAF ULD EOY THE STEF FF:UM WAYWAF:D YOUTH TO HAFIDENED CFIMINAL FFRQUED A SHIFT ONE WHEN HE WAS 19 DENNHAFDT TEAMED UF WITH TWO OTHER TEEINAGEFE ANI A GIFI. IN THE EONNIE AND CL.YDE RAMFAGE AROUND HALF A DUZEN COUINTIES DENNHAFDT MET THE TWO OTHER CLYDES CHRIS HAGUE ANII TEFFY THAFIME EY CHANCE HAGUE ANI THAKME WHO WERE ALFEADY FOEEING ALLNIGHT GAFAGES RECOGNISED A KINDFED SFIFIT THEIR FIFST FAII TUGETHEF: WAS A SUEFUST OFFICE THAFINE AND HAGUE WENT IN. WEAF INE C:AF:DERAFR CISCO.KID MASKS FROM WORLWORTHS MINLITES LATEF: THEY WEFE HFAC: IN THE STGYEN GETAWAY CAF EMFTYHANDED BUT EAWILING WITH LAUGHTEF: THE PGSTMASTER HAD IGNORED THEIR CLUES AND KNIFE

Aidy SWling a chaif. at them we can not have that he said aftef the FAITI HIS SENEE OF ORGANISATION AFFRONTED HE WAS NOT FRIGHTEMEI WE
 ANB STOFMEM ANOTHER FUST OFFICE THIS TIME THEY COLLECTED GE: FCUHIS THE GAHG DID MOFE FEET GFFICE FOBEERIES EEFOFE TRYINE THEJF: FIFST FGM! AT HANWQRTH MIDLLESEX 17 WAS A FLISHCIJEF: NGI COLITTEF: SCFEEN NOT EVEN AUITGMGTIC LOCKING TILLS THEY JLLST WA:'VEL THE GUN ARII TOOI HLL THE MONEY IN $51 G H 7$ उOOW FOLINDS EHOLEH IN THOS? DAYE AS DENNHAFDT REMEMEERS WITH GFEEDY RELISH TGI EUY A NEW
 COUGHT THEY GUDED TO THEIFI FAETGFEIWING LEGEND EY EFEAI 1 NG DUT [IF ASH OFS FEMAN CENTFE THEY TOOLED UF FOF MOFE RGEFEFIES FY FHMMING G, GUIEMITHE WINDOW WITH THEIF: CAF: ONLY WHEN AWED FAFENTS
 THEIF CHILDFEEN TO SUFFEENDEF DID ERITAINS EIGGEST MANHLNT COME TG A: EHT FJUE YFGFE ACIG FOGEF: DEHNHARIDT HAD IT MADE EACH OF HIS four mank accolnte etocis campaftagiy in fouk of five figukes he 2]FFED AF:INLI LOHION IH FAEI CARS THEN ONE DAY HE FOUNI A GUN MUIZ:E FFEESEE TG HIE GIWN WELLEAFEERED HEAT HE HAI WALKED INTO A FUI IGE TFA: IH JAIL THE MASTER CFIMINAL HAN TIME TO REFLECT O: HIS. FAST AND AFTEF THFEE YEAFS HE TUFINED INFOFMEF DENNHAEDTS
 FECGUEFY OF EASH ANO SICLEH FFRDFEFTY WGFTH HUNLEEDS OF THOUSANDE a: Fithirs he afflien himeelf 10 his new fiole with all the vigolif: ANI IUEIICATION HE HAD SFENT ON HIS CRIMINAL CAREER THE TASK OF LHDGFIHN SUEH \& MAES GF NAMES ANI NUMEEFS WAS AIDED FY A HEAF

 Filaniving dealing with the intricacies of verilcles weafons affrelach and escafe foutes the eacmuf ofer:ations the hafits of WILTIMS DENTHAFIT STOOD HIGH IN THE RANKS OF VILLAINY EEFOFE HE WGE TO HE WAS ACRNOW!EDGED AS A FACE A CFIMINAL CELEFRITY AT HJE FEAY HE F:AM: A HLACK GND WHITE OFEL AND A HCINEVRFIDWN EMW HE ALSO Fifl A MISTRESS MELISSA A FALESKINNED ERUNETTE WITH THE ROLY OF A EIIEL OF 15 WHICH SHE WAS ARID THE FACE OF A WOMAN OF 20 HAD AI'V Eliteafinde whir of LIOING JUst WHAT SHE WAS TOLD NIGHT AFTEF: NIGHT ANI: GFTEA: IN EROAD DAYLIGHT DENNHAFDT WGULD CHANGE HIS SHAFFF SUIT FGF: THE SINISTEF FIE OF HIS TFUE CALLING ANI TAKE UF THE LETHAL TODLS OF HIS TFADE ON HIS LAST $30 E$ A 300000 FOUNDS RAID ON A SECIR:ITY VAH HE CAFFIED A PLMFACTION SHCTGLIN ONE OF THE GANGS GETAWAY CAF:S LEN FOi_ICE TO DENNHAFIT HE WAS AFFESTED IN FEEFLIARY 1477 AND LATEK FECEIVED A 13 YEARS SENTENCE THE MORNING OF THE AFFEST IN NORTH LOHDON DENNHAF:DT AND MELISSA HAD MADE LOVE AFTER FATCHING LIF A OUAFFEL HE RECHLLS 1 KEFT THINKING IT WILL EE YEAFIS NCHI REFOFEE 1 SEE HEF AGAIN YEAFS MATE ELOODY STINKING YEAFS I WOUL NOT SAY ANYTHING ELIT I CFIIED DENNHARDT HAD TAKEN FART IN A MJIIICN FCUUHIS SEFIES OF CFIIMES DUER MDFE THAN A DECADE THE FGLICE HE SAYS hAVE RECOVERED HIS SHAFE OF THE LOOT GOING DE FOR OUEEVSS EVIDEINCE EARINEI IENUIHAFDT HIS FREEDOM

2F:E
 THOMIE IN SGMEF:SET TALHED EXFEFTLY AEOUT THE HIT TG SEFIES THAT
 AETIT TO THE MANDF EGFN AND ITS CHAF:ACTEFS FIIGHT DOUN TO THE
 EEGUTIFLHLY FOETYAYED EY FENELOFE NEITH EUIT SGON THE SEFIES FGF Wham the samerect fark haln a sfecial affection will be ma mare dufine filmine A T the weevend feneldife fevealed that the nebl EREJES THE THIFH WHLL ALSG HE THE LAET GT THE ENI OF THESE SEVEN FRCE:AMMES WHICH STAFT IN NOVEMEEF: IT WILI. EE FAFEWELL TO THE

 GU FICHEF: FINGLLY GET TOGETHEF IH THE LAET EFIEODE THE FOMASITIC

 TO UISIT THE MANG: EVERYOHE JS TIGHTLJFFED AEDUT THE FQSEIEIIITY
 WHC HEWE DECIDED TO DU A DALIAS FENELOFE WHO LOCUE MUCH MCEE

 G, NO L:ITH THE GOOD L.IFE WE ALL DECIDEI THAT IT WAE DVEF ANI: I

 GTSI THET SHI THGMAT IT WEE A GCIGD IDFA UF FUILDING UF EUSFE!ES
 WHUEFING VHGT IE COIBE 70 HAFFEN EHE SAIE VHILE SHE WGS TALKINE HEF H:ESHAND DETECTIVE CORETAHIE FCIDNEY TIMFSON SAT NEAFEEY AS THE CQDFLE CUTHE HSFFILY FENE DFE AGREED THAT SHE LIKED HAUING FOQU W?TH HER WHEY SHE 15 WGFIIINE WHEN YOLI AFE ON LOCATIOII IT SULEEH Y EECOHEE THE MOET IMFOKTANT THING IN THE WOFLLD SGI IT IS
 TAIKEL AECIIT THE FHSSIEILITY OF STAFITING A FAMILY IF A CHILD COMES A!QNE IT WOILD KE LOVELY SHE SAID FUT WE AFE NOT SOET OF DESFEF:ATE EY THE END OF THIS SEFIES FENELDFE WILL HAVE FLAYED ALINEY FOF: TEN AND A HAIIF HCLIFS EIIT SHE HAS NO DESJRE TO AFFEAF: IN A FEATUF:E FILM VEFSIION OF TO THE MANOF: EORN I DO NOT EELIEVE THOT IT WOUL D TFif:IEFEF TO THE CINEMA I HAVE NEVER SEEN A FILM OF A TU SEFIES WHICH WGFiED SHE SAId EMFHATICALLY SHE HAS MADE A FILM HOUEVEF: FF:BEST GF LOVE WHJCH STAHS JAH MCKELLEN AS DHLAWFENCE AND HEFSELF AS DOFOTHY EFETT THE SOCIETY GIFIL WHO FELL FGSEIONATELY FOF: HIM FENEL OFE DESGRIEEL THE CHAFACTEF SHE FLAYE AS A CHALLENGING FGLE DOFIOTHY EFETT WAS STONE DEAF AND I FOUND IT
 RESF:ONI TO THINGS THE FAFT FEALLY AFFEALED TO ME FENEL.OFE HOWEVER HAS NO JDEA AFOUT WHICH FOIES SHE WOULD LIKE TO TACKLE NEXT SHE TOLD ME WHEN 1 FINISH THIS 1 WILL RE AELE TO HAVE CHFISTMAS WITHOUT WORKING THEN I WILL TAKE A DEEF EREATH AND SEE WHAT THE NEXT THINE IS THE THIPG AEOLIT EEING AN ACTRESS IS NOT KNOWING WHAT THE FLITUFE WILL BFING•1 LIKE THAT EUT 1 DO NOT FEEL afifosaritiy of: not that 1 have to frove that i can act 50 I do not

2F:E
THE HAKVIGIII IN 7 HE COUNLTFV FUE: NEAF THE QUAINTLY NAMED CFIJCIET ET THOMFE IN SQMEF:SET TALHED EXFEFTLY AEOLIT THE HIT TW SEFIES THAT HAS HiMEST EECOME FAF:T OF HEF: COMM!NWITYS LIFE SHE KNEW EVEF:YHI!NE GEOIT TO THE MANGF EUFN ANE ITS CHAF:ACTEFS FIIGHT DOWN TO THE FFidF-EF: SFELL? INE CIF AUDFEY FFGFIEES HAMILTGI: THE TWEEDY LADY EG
 WHOM THE SOMEFEET FGKK HOLLI A SFECJAL AFFECTION WILL EE NQ METF: DUF:INE FILMITE AT THE WEEIEND FENELCIFE FEVEALED THAT THE NEL! SFFIEE THE THIFT WILI ALSO HE THE LAET AT THE ENI OF THESE GEVEN FFREE:AMMES WHICH STAFT IN NDVEMEEF IT WILL EE FAFEUELL TO THE
 UFOL TH: CHURF CIF THE MANIGF FLAYED EYY FETEF EOWILEE ANID THE

 WH: MEWE DEEIDEL TC: DU A IGHLAS FENELDFE WHO LOUSE MLICH MRFE
 FOF THE 1 AET TIME 1 FELT THE SEFOEE HGI FLH ITE COLFSE SHE TGLL
 EF: NO L:ITH THE GEOD LIFE WE ALL DECIDEII THAT IT WAE DVEF ANI! I THIM IT IE FAF FETTEF TCI LEAME THE FUFLIC WANTING MOFE THAU:

 HEF H:ES:AWD WETE I IVE CGI:ETARIE FGIDNEY TIMFOSON SAT NEAFEY AS THE COMFLE EUITL: ED H FFFILY FENEI OFE AGREED THAT SHE LIKED HAUING FOU: W? TH HEF: WHEI: SHE 15 WOFIIINE WHEN YOU AFE ON LOCATIOHS IT EMIAEMI Y EECOHE THE MOST IMFOKTANT THING IN THE WQFLLD SUI IT IS
 TALEEG AFCMIT THE FCIGSIEIILITY OF STAF:TING A FAMILY IF A CHILD COMES AGONE $1 T$ WCIILI KF LOUELY SHE SAID EUT WE AFE NOT SOFTT CF [ESFEFIATE EY THE END OF THIS SEFIES FENELOFE WILL HAVE FLAYED QLINEY FOF: TEN ANT A HAIG HCILIFS EHIT SHE HAS NO DESIFE TO AFFFEAF: IN A FEHTLFE FILM VEFSSION OF TO THE MANOF: EOFN I IO NOT EEL IEV'E THST IT WOULD TFifilヨFEF TO THE CINEMA I HAVE NEVEF SEEN A FILM OF A TU SEFIES WHICH WCIFYED SHE SAII EMFHATICALLY SHE HAS MADE A FILM HOIIEVEF: FFIJEST IF LOVE WHJCH STAKS IAH MCKELLET: AS DHLAWFENCE AND HEFISELF AS DOFOTHY EFETT THE SOCIETV GIFIL WHO FELL FGSEJONATELY FGF HJM FENEL OFE DESGFIEED THE CHAFACTEF: SHE FLAYS AS A CHALLENGING FCILE DDFIOTHY EFETT WAS STONE DEAF AND I FOLIND IT TEFE: Ki.Y DIFFJCIIT AT FIF:ET TG UNDERSTANL HOW A DEAF FEF:SON WCMIID RESFFONI TO THINGS THE FAFTT FEALLV AFFEALEL TO ME FENEL.OFE HOUEVER HAE NO ILEA AFIUIT WHICH FOIES SHE WOULD LJKE TO TACKLE NEXT SHE TOLD ME WHEN 1 FINISH THIS 1 WILL EE AELE TO HAVE CHFISTMAS WITHOUT WOFFING THEN 1 WILL TAFE A DEEF EFEATH AND SEE WHAT THE NEXT THING IS THE THIFG AEOLIT EEING AN ACTRESS IS NOT KNOWING Whtat THF FUITUFE WIIL EFJNG•I LIKE THAT ELIT 1 NO NOT FEEL AFFROGARITLV OF: NOT THAT I HAVE TO FROVE THAT I CAN ACT SO I DO NOT
 I JMAFIME GCIINE ON TILL I AM OLIJTE AN O! N LAIY SMILEI THE CTGF:
 FILES GI: : EF AFTEH HE FINISHEE FLAYIWG FIICHAFII DE VEFE ARI HE

 FINESHEEA:ISE HE HAS HAD A TFEMENDOLS EFFECT ON MY CAFEEF THH
 HIG TV FFHGLETS COIINE LIF A CCIMEDY SEEIEE HAS EEEN WFITTEN FGE:

 15 [H:.. HFCAHEE CIF MY FERENT SUCCESS THAT 1 WAS AE!E TGI AFFOFOD TO

 cirluch felatl:

ROOKS FOR CHILDREN.

For this category 1 first chose some well established children's books like 'Alice's Adventures in Wonderland' (L.Carroll,1865), 'Winnie the Pooh' (A.A.Milne.1926) and "Paddington Eear' (M. Fond,1958) which between them cover nearly a century of story telling for children. The next step was to make the best possible use of this particular choise in terms of finding other stories for children by the same authors. The first obvious choise was to use Lewis Carroll's 'The Nursery Alice' (L.Carroll, 1890) which Carroll intended to be an easier version of 'Alice in Wonderland' with a target audience of eight to ten year olds depending on the child's social class 'since 1 concider children of the lower orders to be 2 or 3 years behind the upper orders" (F.E. Lennon: Life of Lewis Carroll). It would have been interesting too, to compare an analysis of these text strings for children with those of Mr Dodgson's text books on logic and mathematics, but it turns out to be very difficult to find around boo words in his text books which are not interrupted by formulas or notes.
To secure variety in the more recent litterature, I have selected four text samples from different books in the 'Faddington' series (M. Bond,1958,59,60,62) Lastly I have picked R.Each's 'Jonathan Livingston Seagull' (F.Bach,1973), which deals with - for a child - rather compler human issues.

As most of these text samples are already well known, I shall not go into details regarding each of them, but refer the reader to the samples themselves on the following pages.

F 6
THE FIGET LIUED IN A UEFY GFAND HOUEE IN THE MIDDLE OF A
 THE FIGLET LJVES IN THE MDDLE OF THE HEUSE NEXT TO HIE HGUSE WGS

 CUH:W CIGELF. THES IS THET WHAT I AS: MVEELF 1 GES MYEELF WMO

 TG THE GF:QUNL $3 G$ FF:CN OF HIM WH:AT DG VOU SEE THEFE TFIACKS EAJI FIGLET FGMMAEAS HE GOVE A LITILE SQUEAK OH EXCITEMENT OH FOLH DO

 Way whr. 15 THE MATTEF: ASIEL FIE: ET IT IS A VEEFY FUNHY THING SAIV FFAF. BUIT THERE SEE:1 TO RE TUG ANIMALS NOW THIS WHATEVERITWAS HAS EEEN JOINETH FY AHGIHEF UHGTEVEFITIS ANG THE TWO OF THEM AFE

 IN A MIEF SOFI GF WAY ANE, SAID THAT HE HAD NOTHJNE TO DO UNTIL

 Fogit anis figlet said, that amirhiid he had nathing to do uhatil FHiJdAY SO GFF 7 HEY WENT TOGETHEF THEGE WHS A SHTHIL SFIJNEY OF lafihtrees juet here aidy it seemed as if the twi wocizles if thfit
 SFINNE WENT FGGM ANO FIGLET GFTER THEM FIGLET FAESINE THE TIME EFY TEGI HK FGOH WHAT H3S GFANDFATEK TFESFASEEKS W HAD WOINE 10 FEMOUE STIFFMESE GFTEF: TFACHINF AHD HOW: HIS GFANDFATHEF:
THESHASSERS W HAI: SLIFFEREI: IIS HIS LATEF YEAKS FROM SHORTNESS OF EFEETH ANE: GTHEF: GRTTERE OF INTEFEET AND FOOH WONDERING WHAT A GF\&HIFATHET WK: I_HKF AMI IF FERHAF'S THIS WAS TWO GRANDFATHEFS THEY WEFE AFTEF, NTM AND If SO WHETHEF HE WOLI.D EE ALLOWED to tare
 STILL THE TRGC. 5 WENT ON IN FRICNT OF THEN SUDDEN: Y WINNIE THE FOGH STOFPET
A. 11

 GER: HEE QT RUE ENI [IF THE TAELE HAUE SLME WINE THE MAFEH HAFE
 TH: :

 FIGIIES I KE: IEVE 1 CAN GLIESE THAI SHE ADDEW ALCLIT LO YOU MEAM

 CEE WHGT I EAT IS THE SAFIL THIME GE I EAT WHAT I SEE YCIL MIGHT JUE, GE WFI, SLY AIIIED THE MARCH HAFE IHAT I L.JIE WHAT I GET IE THK EGME THIMHI AE 1 EET WHAT 1 LIKE YOU MIGHT JLST AE WELL SAY

 17 1E THE GAMIE THING WITH VOLL SAID THE HATIEF ANIS HEFE THE

 WLITINTILES E WHICH WGE NIIT MLICH THE HATTEF WAS THE FIFIET TO EFEAF: THE SIIFIUCE KHAT IHY GF THE MIVTH IS $3 T$ HE SAID TUFNING TO ALICE HE HAN TAHEN HJS WGICH CUIT OF HIS FOCKET AND WHS LOOFING AT IT
 ALITE CCNSIDEFED A LITTLE AND SAIS THE FOUFITH TWO DAYE WFONE

 THE NGFCH HAOL MLLALY FEFI_IES YEG HLIT SCIME CFUMES MLIST HAUE GCIT IH AT WELI. THE HSTTEF: GRLIME:LED YOLI SHOIM. D NOT HAVE FUT IT IN WITH

C12
THE JE THE MGIM TEGEGSTY YOU SEE GLICE HAD LEFT THE CHESHIFECAT AIIf HG: GOHE OFE TO SEE THE MAEEH HARE AND THE HGTTEF: AE THE

 MAEIH HASE HAS GET $11:$ HIS HANI THAT 15 THE MAFCH HAEE V:ITH THE

 ATET HE ETT SHE HELFED HEFEELF TO SGME TEA AND EREADANDEUTTEF

 Hote SHE FGUMD HE HAD JUET LIFSET THE MILAJUG INTG HIS FLGATE EGI 1

 Ad: EJY FENTE WAE NOT THAB A FUNMY WAY OF SELLING HATS ANI HAE HILT HE GO:T Gi EEAETJFLLL NECKTIE ON EUCH A LOVELY YELLOW TIE WITH
 Whatc cutting thret was a rude thing to say was not it and do you
 LEMGIH JLIE 1 THE FIIGHT LENGTH THIS IS A LITTLE EIT GF THE ELAHITIFIL EGFBEN 1 TGLI YOU AYOHT YOU SEE AI-ILE HAI: MANAGELI AT LAET TO GET OUITE EMALL SO THAT SHE COLLD GO THFOLIGH THE L.ITTLE
 ITE HINDLEGS: SLI OF COIFSF THIS WAE A VEFY TINY FOSETFEE AND THESE
 THEY MEN DE YOU THINF: I THINK THEY MUST EE LIVE CARIDS WITH JUST
O.12

THIS JC THE MAII TEGFGiNTY YOUI EEE ALICE HAD LEFT THE CHEGHJFELAT AIIE HA: GOHE OFE TO SEE THE MF:SOH HAFE AND THE HGTTEF AE THE CHE-IFERGT HAI: A!N!SET HEF: AVI) SHE FOUNIT THEM HAWING TEA LUNIDR: A GOE THEE UITH \& DEFMADEE SITTING HETWEEN THEM THEFE WERE [H:L Y THSE THFEE AT THE TAF:LE ELS THEFE WEFE OLANTITJES OF TEAELIFS EET
 THE F, T YOU CAI CEE THEFR GFE MJWE CIIFE COUWTINE THE CME THE MAFiH HAEE HAE GET II: HIS HANII THAT IS THE MAFEH HAEE WIITH THE

 AETE Fi EIT SHE HELFED HEFSELF TO SCMME TEA AND EFEADANIEUITTEF

 HAE SHF FGUn! HE HAD JLIET LIFSET THE MILPJIIS INTG HIE FLATE ELI I SIEF[IGE HJE FIG? GHII THE MILKJLE AFE HIDHEN HEHINI THAT LAFGE TEARU THE HATTEF: LEEI, TG CAFEY AERUTT HATE TO SELL AND EVEN THE
 HGO FET IIE FFIC: OUI IT A TER! AND A EIX THAT MEANE TEN SHILLINGS
 HIT HE GRIT GEEEGITJFLLL NECRTIE ON EUEH A LOVELY YELLOW TIE WITH
 WHNTE CUITTING THAT WAE A FUDE THING TU SAY WAS NOT IT AND DD YOU THJHA HEF HFIF IMES WAIJT CLITTING I THJKAE IT 15 A YEFV FRETTY LEMGIH ILIET THF FIGGH LENGTH THIS IS A LITTLE EIT GF THE EKANITIFIL EAFBEN 1 TLLI' VOU AEOIIT VOUL SEE ALILLE HAI MANAGEL AT LAET TO EET OLITE EMALL SO THAT SHE COLILD GO THFOLEH THE L.ITTLE
 ITE HIMILEEG SLI IF ROIIFSE THIS WAS A UEFY TINY ROSETFEE AND THESE
 THFY MEN DO: YO: THIWE 1 THINH: THEY MLIST EE LIVE CAFIDS WITH JUEST

C12
This if the mal tegfirsty you gee alice hal left the cheshigecat ady H: GOt: OFF TO SEE THE MAREH HARE AND THE HfiTTEF AE THE

 MAEin hage has get ly his hang that is the marich hase bilth the

 H TET G EIT SHE HELFED HEFSELF TO GLME TEA AND EFEADANIEUITTEF

 HAEL SHF FGUHQ HE HitD JLIET LIFSET THE MILFJUG INTG HIS FLGTE SGI
 TEAFOI THE HATTEF: LEED TG CAFE:Y AFOUT HATE TO SELL AND EVEN THE
 Hor ge: IIS FHYC: OH: IT A TEH! AND A GIX THAT MEARE TEN SHILLINGE
 HIT HE GGIT G EEAGTIFLLL NEEKTIE ON SUEH A LOVELY YELLOW TIE WITH
 WHATE CUITINE THAT WAE A RUDE THING TO SAY WAS NOT IT AND DO YOU
 LEWGTH ILET THF FilGHT LENGTH THIS IS A LITTLE EIT GF THE ECAITIFIL EGFBEN I TGLI YOU AYOIT YOU SEE ALICE HAI MANAGEL AT LAET TO GET OUITE EMALL SO THAT SHE COLLD GO THFOLGEH THE LITTLE
 ITE HINHLEES SU OF COUH:SE THIS WAS A VEFY TINY ROEETFEE AND THESE
 THEY MEN DE YOU THIGH: I THIHK THEY MUST EE LIVE CAFDS WITH JUST

FADI
MF: ANI MF:S EFIOUN FIFET MET FADIJINGTOU ON A FAILWAY FLATFGFM IN
 FRF FADIINGTGN WAS THE NAME OF THE STATION THE EFOWNS WERE THEFE TO MEET THEJF: WAHEHTEF WUG WHO WHE COMIHG HOME FROM ECHCLL FGF THE HOLIDAYE JT WAS f; WAFM SUMMERIGY ANG THE STATION WAE CFIWTEED WITH FEGFLE ON THEJF WHY TL THE SEASIDF TFAINS WERE WHJETLINS TAXIS HOCTING FUF:TEFE FUSGHINE GEQUT SHEUTING AT ONE ANOTHES AKID Al 7 OGETHEF: THERF VAS SO MUCH NOISE THFT MF: EFOOWN WHO SAW HIM FIFLT HAI TO TELL HIE WIFE EEVEFIAL TIMES HEFORE SHE UNDEFETOND A

 ORE THEFE FEHIH: THOSE MAILRAGS IT WAE WEAEING A FUNH: IINS [IG Hit withoul wajo lle for a fiefly he callght holl of his wifes afM

 EIOF IT: LAFGE IFTTEFE WEFE THE WOFDS WANTED ON VOYAGE MFE EFOU!

 FGTHFF DIGT, FA TWH GRH IT WAS WEAFIDNG A MOET ODD LOCH ING HGT WITH
 AFGE FGGBM EVES ETGFE EACH Gi HEF SEEING THAT SUMETHINE WAE EスFECTED GF IT THE EEAT ETGGD UF AND FOLITELY FAISEII ITS HAT
 UGICE ES: GOGY GFTEFHOON FEFLIEI MF: FFOWN DOUETFULLY THEFE WAS A MOME:T GF SIIENEE THE FEGF LOOFEL AT THEM INOUIFINGLY CAN: I HELF
 Firt We weft wondering if we colid helf you mfis efiown eent dawn VOU AFE G: YEFY SMALL HEGF: SHE SAID THE GEAF FUFFED OUT ITS CHEET 1 AM A VEFY HAFE SORT OF HEAF HE REFLIED IMFRFTANTLY THEFE AFE NOT MAN' LFF US LEFT WHEFE 1 COME FROM AND WHERE IS THAT AEKEN MFSS EFOWN THE FEGF: LOOIED ROUNI CARFEFLILLY REFORE REFLYING DAFKEST FEF:U I GM NGT FEALLY SUIFFOSEN TO EE HEFE AT ALI. I AM A STOWIWAY A STOWAWAM MF FROUN LOWEFED HIS WOICE ANI LDOKED ANXIOUSI-Y OVEF: HIS SHCUL DEE: HE ALMOST EYFECTEL TO SEE A FOLICEMANS STANTING REHINE HIM WITH A NOTEHOOF. ANI FENCIL TAKING EVERYTHING DOUN YEE SAII, THE HEGF I EMIGFIGTEN YOUI FINHIH A SAD EXFFESSJON CAME INTG ITS EYES I USED TO LIVE WITH MV AUNT LLIC.Y IN FEF.U ELIT SHE HAD TO GO INTGI A HON: FOF: FETIRES REAKS YOUI DO NOT MEAN 10 SAY YOU HAVE COIAE AI.L THE WAY FF:OM SOITH AMEFJICA FY YOUFSELIF EXCLAIMED MRS EROWN THE
 1 WHS OLD ENOIGGH THAT 15 WHY SHE TALIGHT ME TO SFEAF ENGLISH EUJT WHATEVEF DIT, VOU! DO FOF FODI, GSHED MF: EF:OWIV YOU MUST EE STAF:VINE EENTING DCHM THE EEAF: UNLDCEE THE SUITCASE WITH A EMALL KEY
 GLASG JAF: 1 GITE MARMALADE HE SAID RATHEF FFRULDLY KEAES LIISE maf:malade hni I lived in a lifeegat elit what afe yous going to dal
 WATIING FOF SOIAETHING TU HAFFEN GH I SHALL EE ALL FIGHT 1 EXFEGT

 W? Tat: Hin WOT BUET IME THAT AFTER ALL AFTES AHL WHGT MFE:

F. r

 A WITE ROGH WIT ONE WhE THE FAINTWEFH A GLEAMINE WHITE SG THAT HE COUL ALMOST SEE HIS FAIE JN IT EUT THE WALLS WERE GAIIY

 OHCF FIFCFE OF FUFWTTIFE ANTI MF:S EFOWNI HAD FEEN EXTF:OVAGANT ANS: FOHTHI A THICI: FILE GAFEFT FOF THF FLIOR FADDINGTON WAE VEFV
 NEWEDAFEES OUSF THE FGETS WHEFE HE WALKED SO THAT HIS FALIS WOU IE
 1. THF FJFST WIGHT HE SFENT 3H: HIE NEW FOGOM HE COLII NOT MA:F LIF HIS

 TH- MAER LEFT FACK SO THAT HE COULD HAYE THE REST OF EOTH WHOTE

 ETGES THERE FGF: A LONG WHILE FEEFING OUT AT THE GAFIUEN EUT HE
 THGHTHY OHH HE DFEW EOTH CLIETAINS AND HIFFRIED EFACK TGEED
 Whe Al UENY MVETEFIGUE GND FADDINGTON DID NOT EELIEVE IN TAKING
 GOE HIM HJS FIFST CLIE SONEONE HAE STOLEN MY FFIIZE MAFF:TW HE wddardey chitsiry they must have gat in during the night fok same WFFF. :HET MF FROOWM HAD EEEN CAREFULLY NUFSING A HUGE MARF:OUI WHICH HE IMTENDED TO ENTEF FGE A VEGETAELE SHOW HE WATERED IT WGMIME ANG EVENING ANG MEASLIFED IT EVEFY NIGHT EEFORE GOING TO FIE, MFE FI OW.: EXCHANSED A EI ANCE WITH MF:S EIRD NEVEF MIND HENFY TEAE EHE SNID VUU HAME GOT SEVEFAL OTHEF:S ALMOST AS GOOD 1 DO
 IU TIME FOF THE SHOW FERHAF'S IT WAE ONE OF THE OTHER COMFETITOF:S DATI SGנTV .TONATHAN FEKHAPE THEY DID NOT WANT YOU TO WIN IT WAS A Jouly gace maficiw that is ouite fossiele said mf efown lonising MIEE FLIFASE! AT THE THEUIGHT 1 HAVE A GCIOL MIND TO GFFEF A SMAiL FEWARE MEE FIF:I HAETJLY FOURES, OUT SOME MOFE TEA FOTH SHE AND MFE ENCIWIJ AFFEAKEII ANXIOUS TO CHANGE THE SUEJECT FUT FADDINGTOIN FFilled uF hia eaks at the mention of a reward

$\mathrm{F} \cdot \mathrm{AL}$

F\&DNJMG?ON SGT LIE IH HED LATE THAT MIGHT WEITING HIE MEMOFIES ME
 WHICH HE NEFT A RECGFIN OF ALL HIS AIVENTIFEE TGGETHEF WJTH AN. INTEFESTMG FICTLFES AME HE CAFEFLILY FGSTED IN THE FEEEIFT FGF: HIS TENFENCE WHJCH THE GUCTIGNEEF HAD GJリE'S HIM WHEN HE DID

 UEFW FELJEYFI, TO FTME HE WISE STILL IN HIE OWN FOOM ANIL THGT THE EfWGJNG OF THE AIICTICNEELS HAMMEF WAS FEA:I Y OHA Y EOMEOUS WMOTING AT HJE DORE: AE HF SAT LFF IN FELY FUFEING HIS EVEE

 EYCIATHED MFE GOOW: AE SHF ENTEFED CARFYING THE FFGEAIFGET THIHEG
 GHOMTINE EGMING FFOM YOUF FCGM IN THE NIGHT I EYEECT IT WAS THE

 EO TO THE DEUTIET THA:IF YOU VEFY MUCH I WOUL MUCH FATHEF ETAY AT

 EAIT FAIIDINGTOH HOFING SHE WTULD SODN GD AS IT WAS GETTING VERY HC: LINIFE: THE HAAI: FTS AHI THE HAF:MALADE [HSH WHE STICYINE JH HIS EIDE AEGIA MFE BF:OUNA PGUSEE IN THE DODFWAY WE SHALL NOT EE ANY
 EXFECT I SHALI FINV SGMETHING TO DO SAID FADDINGTON VAGLIELY MES EFERWII HESJTATEN LEFGKF SHITTING THE [DOR SHE WOUL HAYE LIKED TO ASk FADIINGIOM A FEW! MORE DUESTIONE HE HAD A FAF: AWAY LOCH IN HIS EVEE WHICH SHE DIJ NOT I.IIF THE LOOK OF AT AIL. HUT EHF WAE AILEAMY LATE FQF THE AEFOINTMENT ANT THE CONERSATION WITH FAIIIJNGTON FAFT ICULAFI, Y IH THE EAFLY MOFINJNG WAS LIAHLE TO HECOME COMFILICATEI WHEN MES EIRN HEAKD ALL ABOLIT FADDINGTONS STRAMGE EFHAOJOLIF SHE HUFFIED LIFETGIFS 70 SEE WHAT WHS GOINE OH FL!T SHE AFifiged eack. A FEW MOMENTE LATEF WITH THE NEWS THAT HE WAS SITTJNG UF IN EED EATIHG HIS HFEAYFAST AMI READING A CGTALOGLIE OH WELL SAILI MKE EHOUNI LCIOHING MOET FELIEVED HE CAN NOT COME TO MUCH hafM tojhe that in fecent weeks fandineton hail hegun to collect CATh DGUEE AMD MMENEVER HE SAW AN INTERESTING ONE ALNERTISED IN THF HEWEFAFERES HE LISUALLY'SENT AWAY FGF: IT

Fi:I:A
ME FIFI. FAUSED FGIF: A MLMENT ANI, SIJ]FFEL: 7 HE GIF AS GHE AHII MF:

 FIFI, MEMT]GNET IT THEFE WMS A UEF:Y FERU! TAK GDOUF COMJUG FFIM
 FFTHEF EWEFT AKL EIGTLV ANT JT SEEMEI TG EE MADE LIF OF A NLHEEF:
 EOUFIFE SOMEUHEFE SHE REMAFIET SI THEY FICFED UF THEIFI SHOFFING
 IT WEEME TE KE EETTING WDFEE IN FACT CHE GDDET AE THEY NEAFED
 -HE EY'LGIMET: HE THEY MAIE THEJF WA: AIGNG THE DEJUE AT THE EJDE

 ENOTH HRS THOT FEAF: FEEH IF TO NOH LQOH INE AT MFE EIFDE KJTCHEN UTUSU:- TT SEEMET JUET AS IF IN SOKE ETFANGE WAV SOMEDVE HAI

 WTAEIET AS SHE FEEFEO IN VAIN FGF A GAF IN THE MIST THEDUSH WHIEH
 SEEING AONTHIHG AT ALI. THFDLIGH THE HAZE WEFE MOFE LINLIKEI.Y THÄI
 WGE HAUJHE iU ALMIT TU HIMEELF THÁT THINES WEFE GETTING A EIT CMIT
 IIFESTIGIG UIF THE STUVE WHEFE SEVEFAL LGFIGE SGUCEFANE ETOOL F:IFH IUE AH: FI]UNG FOFTH C: OUIS OF STEAM HE DECIDED HE DJD HLTT MICH I.IHE THE L IIM: GF THE FEW THINGS HF COULD SEE CLIMEING UF ON A IJTCHFN CHAJF HE LIFTES THE LID OFF ONE OF THE SALICEFANS ANI FEEFEI HEIFEFULY INS; IIE AS HE FOKED AT THE CONTENTS WITH CNE OF M1: IFISS 7 AFIIEGSFILHTJE THE MIXTUFE WAS MUCH STIFFEF THAN HE HAN EXFECTES, AHIS, IT WAE AS MUCH AS HE CCHLII MANAGE TO FUSH THE S:FOON IM LEE AI LHE STJF: WITH JT FALHIINGTGNE WHISFERS EEGAN TQ DF:QQF IN THE ETEAM AS HE WIFFED THE SFOON EACK AND FOF:TH ELIT IT WAS NDT UlSTI. HE IF.JEG 101 AILE 11 QUI $1 N$ OFIIEF TO TEST THE FESULT OF HIS L. AF:CIFS THAT A REAII Y WCFFFIED EXFFEESION CAME QVEF: HIS FACE FRF: T! H]S ©LIF:FF:]EF HCIMEVEF: MUCH HE FULLED AND TUGGED IT WCILD NGIT EvSN HMHGE THE MCIFE HE S.TFUJIGLED THE HOTTEF THE SFOON EECAME GNL.
 I.ET GI GE THE HANDLE AS HE CI.IMEED DOWN OFF THE CHAIE IN OFIDEF TO CrMEII T A L.AFGE MAGATIJNE UHJCH WAS LYINE OFEN CN THE FB OCHF: MAFIJHE: THFFEE WAE NOT AT FIL! THE EASV THING THE AETICLE IN THE MAGAZIHE Mitif IT OU'T TO LE

Eull
IT WGS MOFNING AND THE NEW SUN SFARHLED GOLD ACROSS THE FIFFIEES OF G EENTLE SE\& A MILE FFIOM SHOEE A FIEHING ROAT CHIMMED THE

 OUT EY HIMER: F EEYONU RUGT AIUD SHOFE JONATHAN LIUINGSTON SEGGLLL
 FEET LIFTEL HIS EEAK AND STFAINED TO HOLD A FAINFUL HAFDD TWISTINE CIFIVE THF:OU!GH HIS WJHGS THE C:UF:VE MEANT THAT HE WOLLI FL: SLCOMLY

 CHFVE THEL HIS FEATHEFS FUFFLED HE STALLELH AHI FELL SEAGMLLS AE YOU FWCH! WEVEF FAITEF WEOFF STAIL TO STALL. IN THE AJF: JE FGF. THEM

 FIJGHT HOU TG EET FFOM SHORE 10 FQOD ANL EACH AGAIM FOF MOST
 THELGH: $3 T$ UGS NGT EGBIHE 7 Hf:T MUTTEFEN ELIT FLIGHT MOFE THAN!

 LEEE THGN HFI'F HIS UJMFEFAN AFDNF THE WATEF HE COUN STAY IN THE कीt Low-
 HIIGUES THE SHIFACE WITH HIE FEET TIGHILY STHEAMIINED AGAINET HIS FIT, שHE HE EEGGAN SLIDING IN TO FEETLF LANLINGE OH THE EEACH

 LEAUE LGW FLYING 10 THE FELICANE THE ALEATROSS WHY DCI NOT YOU EAT
「EGTHEAS MIM 1 WUST WAN'I TO KNOW WHAT I CAN DO IN THE GIF: AME WHAT I CAH NHIT THAT 15 ALI. I JUST WANT TO RNOW SEE HERE JONGTHAN Sfild HIS FGTHEF NOT LINKINDLY WINTEF 15 NOT FAF: GWIAY HOATS WILL EEE FEG ANL THF SIJFFACE FISH WJIL EE SWIMMING IEEF IF YOU MLIST STLIE'
 VEFY WELL HUT YOU CII. NOT EAT A GLIDE YOLI NNOW DO NCIT YOL FGRGET THAT THE FEASDN YOU FLY IS TO EAT JONATHAN NODDEL OBEDIENTLY FQR
 FEEALLY TRIED SCREECHING AND FIGHTING W:ITH THE FLGCK AFOLIND THE FIEF:S ANID FJSHIHG FCHTS IHUING DN SCFAFFS OF FISH AND FREAD RLIT HE COULE NOT MAIEE IT WOFH. IT IS ALL SO FOINTLESS HE THOUGHT
 [-HESINTH HIM I CGULD EE SFENDING ALL THIS TIME LEARNING TG FLY THEFF IS SO MuCH TO LEATN IT WAS NOI LONG HEFOFE JONATHAN GULL WhS REF HIMSEI.F AEGIN FAF OLIT AT SEA HUNGFY HAFFY LEAFNIING THE SUPGEC:

CHAPTER 5.

EVALUATION OF STRUCTURE IN TEXT STRINGS USING SIMPLE STATISTICAL ANALYSES.

In this chapter I shall examine the relationship between structure and vocabulary in text strings. 'Structure' is here taken to mean structure in the information theoretical sense (see chapters 1 and 2), and 'vocabulary' is the 'raw' concept of vocabulary. Vocabulary in this sense means: numbers of different words in a text string. There is some common notion of a great vocabulary being a sign of great litteracy, and consequently most people put an emphasis on their producing a rich and varied vocabulary. This they use as a mean of posturing and impressing their fellow men, who - given the chance - will respond with an equally impressive display of such verbal plumage.

We suffer from a peculiar misapprehension. Even if normal physical development in young children is associated with increasing size we do not therefore automatically deduce that this applies to adults as well in the sense that bigger means better. And yet; the common attitude to the concept of vocabulary seems to be just that: The use of an increasing number of words rightly associated with childrens language development has become an accepted part of lay - and not so lay - assessment of the mental development of adults.

Whereas a small vocabulary may (but not: does) indicate arrested language development - just as small weight may (but not: does) mean stunned growth - this simplistic approach has sadly led to a pre-occupation with one minor, but easily assessed, aspect of language behaviour and consequently to a general lack of appreciation of the finer and richer features of human language. It is frequently said about some popular newspapers that their vocabulary is so small, that it is equivalent to that of a child of such and such an age, thereby infering, that this is why they are read by people who are so and so 'dum'. I shall later demonstrate, that the idea of the popular press relying on a smaller vocbulary, is a myth. In actual fact, of all the text strings used in this present research, the text strings with the highest vocabulary were features from the popular press.

To establish the usefulness - or limitations - of this established concept of vocabulary, let us imitate the reading - by a computer program which we can call INFOR - of a particular text string according to this concept:

ONCE UFON A TIME THERE WAS A LITTLE GIRL CALLED ALICE AND SHE HAD A VERY CURIOUS DREAM WOULD YOU LIKE TO HEAR WHAT IT WAS THAT SHE DREAMED ABOUT WELL THIS WAS THE FIRST THING THAT HAPPENED A WHITE RABBIT CAME RUNNING BY IN A GREAT HURRY AND JUST BEFORE IT PASSED ALICE IT STOPPED AND TOOK ITS WATCH DUT OF ITS POCKET......

Do not let the lack of grammatical signs: periods, commas and so forth upset you. At the moment 1 only want to explain to you the basics of INFDR and will leave the trickier bits out for a while. First problems first, and the first must be that of continuity.

The continuity of a text string is of course limited by the sheer fact, that a text string, even one constituted by a whole book, must begin and end somewhere. This sounds trivially true, but as we shall soon see, this is in fact going to cause us some problems. Let us however proceed according to the raw concept of vocabulary and fill in an information array IA so that each place in IA represents a word in the text string. If there are say, 64 words in the text string, the array IA will have 64 places to be filled. If a word is 'new' in the text, its place in the array IA will be set to '1'. If the word is a repeat, its place in the array will be set to '0'.
The first word in the text string is of course a 'new' word. The first place in the information array $I A$ is therefore set to 1 . which we will express like thiss

IA[1]: $=1$:

The program INFOR now stores this first word in the computer's memory and proceeds to the next words "UPON". INFOR reads the word, examines the memory store and since it does not find "UPON" in the memory, the word is a new word and accordingly INFOR sets the second place to 1 in array $I A: I A[2] s=1$. We can express whether the words read so far were new or repeats in this ways

IA[1:2]: $=1$, 1;

INFOR now stores "UPON" in the computer's memory and proceeds to the third word. Any word will be stored in the computer's memory first time it is encountered. Ey repeating the processes stated above. INFOR will find the first 6 words of the text string to be new, set the first 6 places of IA equal to 1 and store the words in the memory. When INFOR encounters the 7 th word " A " and checks the memory, it will find, that this word is a repeat and will accordingly set IA[7] to O. Array IA now looks like this

IA[1:7]: $=1,1,1,1,1,1,0 ;$

After all the words of text string (5.1) have been read by INFOR, we have an array which, if we remove the commas between the ones and the zeros, will look like thiss

> IAT $1: 64] z=111111011111111011111111111101110$
> $11110101111110110110100101111101 ;$

Array IA is now an ordered account of whether the words were new or repeats during the reading by INFOR of (5.1), and the vocabulary at any point of the string can be estabiished simply by counting the numbers of '1's. In (5.2) there are $51^{\prime} 1^{\prime \prime}$ so so the vocabulary of text string (5.1) is 51.
In this way any text string can be reduced to an array of ones and zeros, and what i am interested in is thiss is there any particular structure in this array of zeros and ones, or were the new words merely arriving at random during the reading of the text Etring (5.1)?

It is clear. even from a short array 1 ike (5.2) and without any further analysis, that the zeros in this array become more and more frequent as the reading goes on. All samples of normal natural text analysed in this way yield the same result: new words become less: and repeated words more frequent as the reading continues. This has already answered my question as to the randomness of the elements in (5.1). The obvious question must now bes Ey which rate do new words become less, and repeated words more frequent?

Number of worde

Figure 5.3. Vocabulary plotted against length of text string.
If we plot number of new words againgt length of text string in a co-ordinate system: we get araphic representation of the vocabulary at any given point of the text string. In the unlikely event of all the words in the string being different ie. the number of new words at any point of the string equaling the number of read words, we get a straight line $F(x)$ as x through (1,1), (2,2), (3,3) etc. This "every word is a new word" situation only exists at the start of a natural text string. After a few words, rarely more than 30 , the words begin to repeat themselves, and as we read along the string, the ratio of new words falls steadily. The graph representing a natural text string, would reflect this mixture of slowly increasing numbers of new words and fast increasing numbers of repeats and its "Eteepness" would decline every time a repeat was encountered. Figure 5. 3 shows much a typical graph. A graph of this shape can be represented by an equation of the form

$F(x)=A$ \& to the B power

where the factor A and power B depend on individual properties of the text etring being analysed, and therefore vary from text string to text string.

As it is not immediately obvious why I have chosen the curve $F(x)$ $=A \quad x$ to the E power as an expression of the relationsinp between vocabulary and length of text string I shall explain what my reasone are.

In the initial stage of my research, after I had realised that the relationship between vocabulary and length of text string is NOT one of ifnearity, I made number of attempte to plot this relationship in different kinds of coordinate systeme to see if it would plot as a straight ilne in any of them. I eventualiy found out, that this would be the case only in a double logarith-
mic coordinate system, i.e. a system where both axes are logarithmic.

In a normal equidistant coordinate system the equation for a straight line is the well known

$$
y=B x+A
$$

where E is the gradient of the line and A is the intersection with the y-axis. In a double logarithmic system, the expression of a straight line is correspondingly

$$
\ln (y)=\operatorname{Rn} \ln \left(x_{i}\right)+\ln (A)
$$

where E as before is the gradient of the line and A is the intersection with the ln(y) axis. If we 'take the logarithm on both sides' we get the expression

$$
y=A \quad x \text { in the } B \text { power }
$$

or
$F(x)=A \geqslant x$ in the B power
which is the equation 5.4.
The fact, that the relationship between vocabulary and length of text string for any text is NOT one of 1 inearity $\mathrm{ain}_{\mathrm{i}}$ an equidistant coordinate system), but one of exponential decay, has considerable bearing on the "type token ratio" mentioned in chapter 2 (page 18), since, if the relationship between vocabulary and length of a text string was one of linearity, the l (ype token ratio' would make some sense. However, as the relationship is one of exponential decay, "type token ratio" is a fiction, a bogus which should never have found its way into communication analysis.

When we know that in the original double logarithmic coordinate system, A is the y-intercept and $B i s$ the gradient of the straight line, it is quite easy to apprehend the relationship between A and E. The text strings analysed in this paper gave values for the gradient B between +0.64 to +0.91 , and values for the y-intercept A of between 0.88 and 2.96.

Figure 5.6. Graphic expression of equation 5.4 for different values of A and B

To visualise how the slope and shape of the graph depends on different values of A and E in equation (5.4), a number of graphs have been plotted in the same coordinate system with different values of A and B (fig. 5.6). The values of A and E are stated next to each graph.

The curve fitting algorithm explained in next chapter has been developed to find the intercept A and gradient E from a given text sample. This analysis has been carried out on all the childrens text strings and on a number of the text strings written by adults. As an example, a print-out from this curve fitting algorithm is enclosed here (fig. 5.7). I shall explain the contents of this print-out, which happens to be an analysis of an article from the Daily Record, an article with an amasingly high vocabulary.
In this print-out the vocabulary is given after each interval of 50 words. The size of vocabulary given at each interval constitutes a point on the graph, and after 10 intervals we have 10 points of araph. The size of the interval is fixed by the operator, and depends on the length of the text string to be analysed. In all cases I have fixed the interval such that the number of points have been around 10. For very short text strings, like some of the childrens strings in this work, this has meant an interval of only 5 words between each point. The size of the interval in itself is not so important as long as we get around 10 points spread over the entire string.

Bı DREC1.TXT:

A	WORD	NR:	50	VOCABLLARY:	41
AT	WORD	NR:	100	VOCABULARY:	72
AT	WORD	NR:	150	VOCABLLAR	101
AT	WORD	NR:	200	VOCABU	30
AT	WORD	NR:	250	VOCAB	148
AT	WORD	NR:	300	VOCABLLARY:	4
AT	WORD	NR:	350	VOCARLLARY:	200
AT	WORD	NR:	400	VOCABLLARY:	226
AT	WORD	NR:	450	VOCABLLARY:	249
AT	WORD	NR:	500	VOCABLLARY:	274
AT	WORD	NR:	550	VOCABLLARY8	297
AT	WOR	MR2	600	VOCABLLA	324

GEOMETRIC REGRESSION ANALYSIS:

$F(x)=1.6011000$ © TO THE 8.26290e-1 POWER COEFFICIENT OF DETERMINATION (R-SQUARED) $=0.9993$ COEFFICIENT OF CORRELATION $=0.9996$ STANDAFD ERROR OF ESTIMATE $=0.0179$
Fig.5.7. Example of print-out from graph fitting algorithm

The curve fitting algorithm will then on the basis of these points calculate the y-intercept A and the gradient B in the equation (5.4) and this result is given in the first line of the 'geometric regression inalysis'. together with the "closeness of fit': the correlation coefficient and the standard error of estimate. As the correlation coefficient of this example shows, the closeness of fit is very high (higher than +0.999). This is
not a particular feature of this print-out. All the print-outs in the appendix to this chapter show the same high closeness of fit and thus demonstrate, that equation 5.4 in all cases is a faithful representation of the relationship between vocabulary and length of text string.

To give an idea of the differences between such graphic representations of the vocabulary in specific text strings. I have plot-

Figure 5.8. The relationship between vocabulary and length of text strings for 6 text strings written by children.
ted 6 graphs from childrens text strings in figure 5.8. These graphs have been plotted on the basis of the print-outs from the curve fitting algorithm mentioned above. They have been picked so as to give a fair representation of the data, from the smallest to the steepest gradient. For reasons of elarity only the latter part of the graphs of C7C, C114, C130 and C141 has been plotted.

The same relationship between vocabulary and length of string but representing adult text strings - is presented in the follow ing graph (Figure 5.9). The texts can all be found in full in chapter 4 and are (from top to bottom of the graph) Daily Record 1, Bertrand Russell 4, The Guardian, 'Winnie the Pooh', Russell 3, 'Alice in Wonderland'. "The Nursery Alice'. It is interesting to see, that Daily Record 1 is high above Russell'. "The Principles of Mathematics' and that "The Nursery Alice'. which Lewis Carrol wrote as an easy "Alice in wonderiand" comes out only marginally lower than the work it was supposed to replace for younger children.

If you go through the trouble of reading the above mentioned text samples in chapter 4, and look at the graphs in figure 5.9, you will again find, that there is no obvious link between a high vocabulary of a text string and its litterary quality. This may come as a surprise to some and as a confirmation to others. I belong to the latter group, so my next step shall be to further demonstrate how little weight can be given to the size of vocabulary as a measure of litterary quality.

To assess whether there is a simple and direct relationship between age, competence, style and vocabulary, I arranged all text samples in descending order of vocabulary. However, as

Figure 5.9: The relationship between vocabulary and length of text strings for 7 text strings written by adults.

1	MAIL	Voc (50)	44.00	34	C77	voc (50)	37.00
2	FADS	VOC (50)	43.00	35	OLGA	VOC (50)	36.00
3	C76	VOC (50)	42.00	36	C91	vac (50)	36.000
4	HERALD	VOC (50)	42.00	37	CES	VOC (50)	36.00
5	filiss	VOC (50)	$=42.00$	38	C67	VOC (50)	36.00
6	F.AD2	VOC (50)	$=42.00$	39	FRANIENA	VOC(50)	36.00
7	C140	Voc (50)	42.00	40	C103	VOC (50)	36.00
8	ciol	VOC (50)	41.00	41	C74	VOC (50)	36.00
9	C114	Voc (50)	41.00	42	C141	$\operatorname{VOC}(50)$	36.00
10	C64	VOC (50)	41.00	43	C90	voc (50)	36.00
11	FAD1	voc (50)	41.00	44	C6S	VOC (50)	35.00
12	DREC1	voc (50)	41.00	45	C65	VOC (50)	35.00
13	DFEC2	voc (50)	41.00	46	C102	vac (50)	35.00
14	FADA	VOC (50)	41.00	47	RuSS4	VOC (50)	35.00
15	FUSS 1	VOC (50)	40.00	48	C75	VaC (50)	3.4 .00
16	C104	voc (50)	40.00	49	C70	VOC (50)	34.00
17	C113	voc (50)	40.00	50	C81	VOC (50)	34.00
18	C72	voc (50)	39.00	51	C62	VOC (50)	34.00
19	C78	voc (50)	39.00	52	C95	VOC (50)	34.001
20	RUSSE	VOC (50)	39.00	53	GUARD	VOC (50)	34.00
21	C110	voc (50)	39.00	54	C130	VOC (50)	33.00
22	C85	voc (50)	38.00	55	C92	VOC (50)	33.00
23	LaEdov	voc (50)	38.00	56	C8O	VOC (50)	33.000
24	C84	VOC (50)	38.00	57	C71	$\operatorname{VOC}(50)$	32.00
25	C111	VOC(50)	38.00	58	C66	$\operatorname{VOC}(50)$	32.00
26	ALICEL	voc (50)	38.00	59	C73	VOC (50)	32.00
27	C112	voc (50)	38.00	60	C101	$\operatorname{VOC}(50)$	32.00
28	SEAGULL	VOC (50)	38.00	61	ERIUNER	voc (50)	31.00
29	C79	VOC (50)	37.00	62	C61	VOC (50)	31.00
30	ALICEE	VOC (50)	37.00	63	c93	VOC (50)	30.00
31	C96	VOC (50)	37.00	64	C94	VOC (50)	29.00
32	RUS53	VOC (50)	37.00	65	C82	VOC (50)	29.00
33	Chamsky	VOC (50)	37.00	66	POOH	VOC (50)	26.00

Table S. 10: Vocabulary (per 50 words) arranged
in descending order of magnitude.
demonstrated above, the relationship between the vocabulary and length of text string is non-linear. Therefore, the numerical values of vocabulary for two or more text strings are not comparable unless the text strings are of equal length. 8o, if we want

1	MAIIL	Vac (100)	$=$	75.00	30	C140	VOC (1000	$=$	63.00
2	DFEC2	Vac: (100)	=	74.010	31	C113	VOC 1100$)$	$=$	2.00
3	C114	Vac (1 (10))	$=$	73.00	32	CHOMSKY	VOC (100)	=	62.00
4	HEFIALD	vace (100)	$=$	7E.00	33.	CBO	VOC 11001	$=$	62.00
5	F'AD4	vac (100)	$=$	73.00	34	RUSS4	VOC (100)	=	62.00
6	FLISSE	Vac. (100)	$=$	72.00	35	C74	VOC (100)	=	61.00
7	C300	Vac. (100)	=	72.00	36	C110	VOC (100)	$=$	61.00
B	EEAELILL	Vac (100)	$=$	72.00	37	C90	VOC (100)	=	61.00
9	[IFEE. 3	VOC (100)	$=$	72.00	38	c77	VOC (100)	$=$	61.00
10	FADE	Vac (100)	=	70.00	39	c79	VOC (100)	=	61.00
11	FAD 1	Vac (106)	$=$	70.00	40	C112	VOC (100)	$=$	60.00
12	LAEDV	Vac (100)	=	69.00	41	C101	VOC (100)	=	60.00
13	RUESE	VOC (150)	$=$	69.00	42	FRANKENA	VOC (100$)$	$=$	60.00
14	OLGG.	VaC (100)		69.00	43	C. 91	VAC (100)	=	60.00
15	FULSE?	Vos (100)		69.00	44	C103	VOC (100)	=	60.00
16	[111	Voc. (100)	$=$	6.9.00	45	C93	Vac 1100)		59.00
17	C. 104	Vac (100)		68.00	46	C.141	Vac (100)		57.00
18	FLISS 1	Vac. (100)	=	68.00	47	CE1	VOC 11010$)$		57.00
15	AL ICEE	Vac (100)		67.00	48	C130	VaC (100)		56.00
20	FALE	Voc (100)	$=$	67.00	45	C102	Vac (100)		54.00
21	GLAFAD	Voc (100)	$=$	67.00	50	C82	VAC (100)		54.00
22	C.E]	vac (100)	=	66.00	51	C54	VOC (100)		5 - 00
23	C84	Vac 1100$)$	$=$	66.00	52	c. 62	VOC (100)		$55^{51} 000$
24	c.96	Vac (100)		66.00	53	C70	VOC (100)		- 0
25	ALICEL	$\operatorname{VOC}(100)$	=	65.00	54	ERIUNEF:	VOC 1100$)$		50.00
26	C92	Voc. (100)	=	65.00	55	C71	VOC (1000		50.00
27	C85	Vac (10)	$=$	64.00	56	FOOH	VOC (100)		50.00
28	C.72	VaC (100)		6 6. 00	5 ?	C.73	VOC (100)		47.0
29	C95	VOC (100)		63.00					

Table 5.108 Vocabulary (per 100 words) in
deseending order of magnitude.

Table 5.11: Vocabulary (per 500 morde).
to compare numerical values of vocabulary, it is eseential that we compare vocabulary for text strings of the same 1 ength say, 50 words or 100 words or whatever 1 ength is suitable, as 1 ong as the vocabulary is given for etrings of aqual length. Accordingly when 1 have given in table 5.10 to 5.12 the vocabulary of different text strings, I have stated at which length of string the vocabulary was measured. In table 5.10 to table 5.12 the vocabulary is given for text stringe of 1 ength 50,100 and 500 respectively. As many of the childrens text strings were too short to figure in the vocabulary per 100 and all but 5 wore too short to figure in
the vocabulary per 500 words, tables 5.10 to 5.12 become progressively shorter as more and more text samples 'drop out'.

The hypothesis, that the four categories: newspapers, scientists, childrens books and children are drawn from different populations with regard to the numerical vocabulary, was tested with the Kruskal-Wallis one-way analysis of variance of the vocabulary per 50, 100 and 500 words respectively.

Tables 5.13 to 5.15 are schematic representations of the level of significance when any one category was tested against all other categories. An "ns" stands for "not significant" and means, that the 5% significance level was not reached. When the hypothesisg that any two categories are drawn from different populatione. is confirmed on a significance level better than 5%, the significance level is stated where the horizontal line from one category crosses the vertical line from another category. Thus, the hypothesis that newspapers constitute a different category from childreng judged on their vocabulary per 50 words (table 5.13b), is confirmed on a 3% significance level.
children scientists
papers
ch. bookis

mean	s.d.
35.8	3.5
37.2	3.2
40.4	3.8
38.0	5.1

Table 5.13a Mean vocabulary per 50 mords.
children
scientists

ns

children
scientists
papers
ch.books
papers
ch.books
3%
4%
ns ns ns

Table 5.13b Bignificance of Kruskal-Wallis test of difference between eategories in vocabulary per 50 words.

children	60.6	6.0
scientists	64.6	6.8
papers	72.2	3.1
ch.books	66.8	6.8

Table 5.14 a Mean vocabulary per 100 words.
children
scientists
ns
ns
--
papers
0.1%
3\%
ch.book:s
children
scientists
papers

mean	s.d.
60.6	6.0
64.6	6.8
72.2	3.1
66.8	6.8

Table 5.14b Significance of Kruskal-Wallis test of difference Table 5.14b Significance of ketwer in vocabulary per 100 words.
children
mean s.d.
scientists
173.4
238. 3
papers
$255.4 \quad 17.1$
ch.books
0.1%
ns
5%

Figure 5.15a Mean vocabulary per 500 worde.

From table 5.13b it would appear, that the vocabulary of children, measured over 50 words, is not significantly different from that of scientists, but is significantly different from that of newspapers and - interestingly enough - from that of childrens books.

Table 5.14 b shows that as the length of text string goes up from 50 to 100, newspapers show significant differences from the other categories, and the difference between childrens text strings on the one hand and childrens books and newpapers on the other, become more pronounced.

In text strings of 500 words, there is significant difference between ehildrens vocabulary and that of all other categories, but it is clear too, that none of the other categories vary significantly from each other in this respect.

It is clear too, that newspapers have the highest vocabulary whatever the length of text string.

The values for the categories of children in tables 5.13 to 5.15 were based on the 5 strings CB5, CO5, C130, C140 and C141 which were all longer than 500 words.

To assess more fully the dependence between the four parameters: vocabulary, intercept A; gradient B and age of writer, the correlation between these parameters was calculated over 100 words for 25 childrens text strings and - for comparative reasons - for all adult text strings. This length of text string - 100 words is somewhat arbitrary. It was chosen as a compromise between, on the one hand, the wish to accommodate as many of the younger writers as possible, on the other, the wish to preserve enough of the adult strings to retain the subject matter. Table 5.16a gives the correlation coefficients and table 5.16 b gives the statistical significance of these coefficients.

	A	B	VOCARULARY	AGE
A	-	-0.94696	-0.59826	-0.02029
B	-	+0.81154	+0.21889	
VOCAB.		-	$+0.3888 B$	

VOCAB.
Table 5.16a Coefficients of correlation between A, E, vocabulary and age over 100 words from 25 text strings written by children aged 6 to 14 years.
A B VOCABLLARY ABE

A	-	0.1\%	0.2\%	ns
B		-	0.1\%	5
vocas.			-	5\%

Table 5.16b Coefficients of table S.16a translated into statistical significance for $N=25$.

The highly significant reciprocal relationship between intercept A and gradient B seen in table $5.16 b$ we already knew about. The relationship between A and B on the one hand and the vocabulary on the other we too did know about, and as expected the parameter E, being the exponent, would contribute more to the relationship with the vocabulary (significant on the 0.1% level) than will the intercept A (significant on a 0.2% level). More surprising is the level of significance between age and vocabulary. This level of 5% has only just been reached and only because it would be reasonable to apply the less stringent demands of a one-tailed test since we would expect a direct relationship. If the two tailed test had been applied, as the case has been with the other values of table 5.16a, the relationship between age and vocabulary would have been significant on a 10% level only i.e. not significant.

In table $5.16 b$ we can see too, that A or E on their own are not significantly dependent on the age of the children. The kruskalWallis test gave that there was little difference (difference confirmed on a 50% level) between A and age of child, and B and age of child respectively.

We touched earlier in this chapter on the possibility that the parameters A and E were somehow related to the amount of structure in the text string. However, we have not quite settled what we mean by "structure". Is it the kind of structure which a child develops as he becomes aware of the operational rules we call grammar or is it a kind of structure we develop later when we learn to manipulate whole segments of text strings in order to achieve a special effect?

On the basis of the 25 childrens text strings of 100 words, and the 22 adults' text strings equally of 100 words each, all the categoriesi younger children, older children, scientists, newspapers and childrens books were tested against each other with the Kruskal-wallis test for difference with regard to A, B and vocabulary. The results of these analyses are presented on the following three pages, for intercept A, exponent B and the vocabulary respectively.

INTERCEPT A MEASURED OVER 100 WORDS:

	mean	8.d.
younger children	1.49	0.55
older children	1.65	0.30
scientists	1.55	0.34
papers	1.20	0.19
ch.books	1.35	0.21

Table 5.17 a A (mean) of different categories.
The difference between the younger children and the older children as measured with the Kruskal-Wallis test did not confirm that there was any significant difference between the two categories (significance level $=50 \%$). In spite of this. I have wanted to keep the two categories separate in the following analysis to judge how each category is faring when compared to each of the adult categories.

children-Y children-0 scientists papers chbooks	children younger older 0.5	$\begin{gathered} \text { scientists } \\ 0.05 \\ 1.24 \end{gathered}$	$\begin{gathered} \text { papers } \\ 3.69 \\ 5.38 \\ 3.75 \end{gathered}$	$\begin{gathered} \text { chbooks } \\ 1.70 \\ 5.011 \\ 1.56 \\ 1.05 \end{gathered}$
Table 5.17b	Krust:al-Wallis categogories	test of di values of		een

children			
younger older	scientists	papers	chbooks
--	$n s$	$n s$	$n s$
	$n s$	5%	$n s$
	-	n	$n \%$
			n
			$n s$
			n

children-Y
children-0
scientists
papers
chbool:s

Table 5.17e Significance of test in table 5.17b.

It is somewhat surprising to find in tables 5.17b and 5.17e that the older children show greater difference to any of the adult categories than do the younger children, to the extent, that 'older children' are significantly different from 'papers' and 'childrens books'. whereas none of the younger children are significantly different from any of the adult categories. A higher value of intercept A in the strings of older children means that these strings initially has a higher vocabulary than the other categories, but that the high vocabulary is not sustained througout the string. This could well reflect older childrens deliberate " \ddagger launting" of recently acquired 1 anguage behaviour and - in vocabulary terms - exhausting themselves in so doing.

GRADIENT E MEASURED OVER 100 WORDS:

	mean	s.d.
young children	0.78	0.06
oldchildren	0.80	0.06
scientists	0.81	0.06
papers	0.90	0.05
chbooks	0.85	0.06
Table 5.18a	B (mean)	

Again the Kruskal-Wallis test for difference shows that there is no significant difference between the values of E for the younger and older children. Again - and for the same reasons as above - the two categories shall be kept separate in the following analysis of difference between categories (Tables 5.18b and 5.18c).

children-Y children-0 scientists papers chbooks	children younger older - 0.30	$\begin{gathered} \text { scientists } \\ 1.07 \\ 0.51 \end{gathered}$	$\begin{gathered} \text { Fapers } \\ 9.64 \\ 5.91 \\ 4.84 \end{gathered}$	$\begin{gathered} \text { chbooks } \\ 8.39 \\ 4.67 \\ 1.56 \\ 4.82 \end{gathered}$
Table 5.18b	Kruskal-Wallis categogories i	test of di values of		een

Table 5.18c Significance of test in table 5.18b.

Tables $5.18 b$ and $5.18 c$ show that with regard to the gradient B, the difference between younger children and all adult categories is geater than between older children and any of the adult categories. This seems intuitively right if we are talking about parameters which represent developmental features. It may after all be, that B - but not $A-i s$ mesure of some kind of developmental linguistic feature. It is interesting to see itable S.18c), that not only are younger and older children significantly different from childrens books, but from newspapers as well. Scientiste are not eionificantly different from neither younger nor older children.

VOCARULARY MEASURED OVER 100 WORDS:

younger children	57.3	6.2
older children	63.1	6.0
scientists	64.6	6.8
papers	72.2	3.1
ch.boolis	66.8	7.2

Table 5.19a Vocabulary (mean) of different categories.

When 'younger children' was tested against 'older children' with the Kruskal-wallis test for difference with regard to vocabulary, the difference was - as above - not significant. However, instead of a significance level of 50% as the case was with the A and B values, the significance level with regard to vocabulary for vounger versus older children is nearer 7%.

Table 5.190 Krustal-Wallis test of difference in vocabulary between categories.

	children younger older	scientists	papers	chbooks
children-y	ns	5\%	1\%	1\%
children-o	--	ns	2\%	ns
scientists		\%	5\%	ns
papers			--	ns
chbooks				

Table 5.19c Significance of test in table 5.19b.

The above analysis of difference of vocabulary between the various categories gives a very similar picture to that of the analysis of gradient B on the preceding page. This is not surprising considering the high correlation between B and vocabulary in table 5.16. In both cases, the difference between the various categories is greater for the younger children than for the older children, and it seems reasonable to suggest, that B as well as vocabulary are directly related to some kind of developmental feature. The question iss which, since, as we have seen in table S.16b, gradient B is not significantly correlated with age - and with vocabulary only just.
dISCUSSION OF THE AEDVE ANALYSES.
If A and E are related to early linguistic development, we would have expected to see a difference in the values of A and B of younger children as compared to those of older children. As we saw in table 5.16b, this does not seem to be the case. A and E are not significantly correlated with age. Tables 5.17 and 5.18 confirmed that the two categories 'younger children' and 'older children' do not seem to be drawn from different population with regard to A and B. Consequently we would assume that A and B are either not related to linguistic development or are related to developments which take place later on in life i.e. during or after adolescence. The difference between children as a whole and adults as a whole, as measured with the Kruskal-Wallis test seemed to confirm the latter view; the difference in the features between the childrens and adults' language as represented by A or B was confirmed on a better than $5 \%(A)$ and better than 1% (E), thus confirming, that the parameters A and B may be related to linguistic developments which have taken place sometimes between the age of the child writers and the adult writers. So much said, tables 5.18 (a) and (b) do show, that even if there are no significant differences between the two categories younger children' and 'older children' per se, these two categories tested against the different adult categories, gave that the 'younger children" consistently showed greater difference to the adult categories than the older children' with regard to the gradient E, whereas the opposite was the case with regard to the intercept A (tables 5.17 (A) and (b)).

The parameters A and B may still contain elements of basic developmental features. The analysis of gradient E certainly looks that way. The analysis of intercept A is puzzling and inconclusive.
Not unexpectedly we can conclude that vocabulary is a significant developmental feature of text strings, but only just! Children measured against adults gave that the difference is confirmed on a better than 0.1% level. However, when we divided the children into 2 categories: the younger (6 to $9, n=13$) and the older 110 14, $n=12$) we found that when each category is tested againgt the adults ($n=22$), the difference between the younger category and the adults is confirmed on a better than 0.01% level, while the difference between the older children and the adults doesn't quite make it to the 5% level. This is interesting, since it means, that the strings written by the age group $10-14$ are not significantly different from the adult text strings with regard to vocabulary.

It would be interesting to contemplate further on the structural features measured by the parameters A, B and vocabulary. To that end let us look at different kinds of structure in text strings.

DISTRIBUTIVE, GEQUENTIAL AND CONTENT STRUCTURE.
As you may recall from the examination of Information Theory in chapter 1, the structure of a system according to this theory is invertiy related to the anount of entropy in the system; high
entropy equals little structure and low entropy equals a high level of structure, and on the whole we can express the level of structure by one single parameter, the entropy. We also saw, that entropy was related to the concept of randomness, but whether we want to associate structure with entropy or randomness, is not important. The important point is that in a simple physical system, we only need one parameter to express the level of structure.

When we talk about structure in text strings however, the concept of structure is not equally simple. For a start, the generation of a text string is more than a matter of different degrees of random distribution. In a simple physical systen we arrive at a structure which normally depends on only one thing, the level of entropy. Even though there is some variation and oscillation within this physical state or structure, basically the level of entropy determines which kind of bonding and at which orientation this bonding is to take place between units. In most physical systems we can predict pretty accurately the level of structure if we know the initial entropy of the system and the amount of energy which is going in to, or taken out of, the system.

In those physical systems which we call cognitive - and a text string is one such - there are at least three kinds of structure. First there is what I will term "distributive" structure. This is the structure constituted by the different distribution of words in different text strings. If we analyse a text string and count the number of different words and how often each word has been used in the same string, we get a discription - graphic or other - of the distribution of the words, and this distribution constitutes one kind of structure. If we shuffle the words of the text string as the case is if we permutate the words in the string, we do not alter the number of times each word has been used, and the distribution, as calculated before, remains unchanged.

Secondly there is the "sequential" structure. This is the structure which is most important in the semantic sense and it arises from the words being arranged sequentially. We can not normally change the sequence of the words in a text string without altering the semantic content of the string or loose it all together, even though in this case the particular words used in the string often will be able to convey some information as to what the string was a statement about i.e. the strings subject matter, even though we may have lost the statement itself. This information remnant, this ability to convey information about the string's subject matter even though the string has been 'broken up' is a third kind of structure which l shall term "content" structure, but not make a subject of a special examination since this paper is about automatic analysis of text strings, and the content structure is a purely cognitive feature.
Even though the distributive, sequential and content structures are all related since they are basically three 'side-effects' of the same capacity to generate natural language, they express different features of this generative capacity, or to put it another way, they express this generative capacity on three different levels. On the surface level we have the distributive structure which is a purely mathematical feature. On the deep level we have the conterit structure which is a purely semantical or cognitive feature. Neither of these structures change when the text string is permutated.

In between we have the sequential structure which ties the content structure (a semantic feature) to the distributive structure (a mathematical feature). As such it is half semantic, half mathematical and contrary to the other two structures it changes - it breakes down - if we permutate the text etring. Thus, if equation 5.4 can be seen as an expression of the average structure in a text string, this equation should render different values if it was applied to a text string before and after permutation of the terit string, and if this is the case, the difference should be equal to the break down of the sequential structure since the distributive structure and the content structure both remain unchanged by the permutation.

To test this hypothesis, the 22 adult text strings of 600 words used throughout this research and 5 text strings written by children, each 550 words long, were subsequently subjected to the same routine: the values of A and B were found by the graph fitting algorithm, as explained earlier, BEFDRE and AFTER permutation of each text ftring. The reason for selecting only the longer text strings for this experiment is solely that the effect I am looking for is so small, that relatively short strings would not exhibit any significant change. This has however meant, that all but E text strings written by children has had to be exeluded from the experiment.

In the majority of cases i.e. in 20 out of the 27 samples, A, the intercept, increased and E, the gradient, decreased with permutation. Recalling, that equation 5.4 originates from a straight line in a double logarithmic coordinate system, we can now see that what happens, when we permutate the words of a text string, is that the graph - which is a straight line in the original couble logarithmic system - tilts clockwise, so causing B, \quad the gradient to decrease, and A, the y-intercept to increase.

The relationship between vocabulary and length of text etring before and after permutation is illustrated in figure 5.20 where BRUNER NAT refers to the the text sample by Eruner in its natural form, and ERUNER FERM refers to the text string after permuta-

Figure 5.20 Relationship between vocabulary and length of text string before and after permutation (Bruner).
tion. This particular sample was chosen because it most clearly shows how the graph fitting algorithm 'sees" the difference: The dashed 1 ine (the permutated text) rises more steeply, than the full line (the natural text) until around word number 150, as a result of the ratio (new words) to (length of text string) being greater in the beginning of the permutated string than in the na-

Figure 5.21 Relationship between vocabulary and length of text string before and after permutation (C95).
tural string and consequently smaller later in the text string. A simple way of putting it would bes In the permutated string it looks like there are more new words in the beginning and fewer new words later than in the natural string.

As stated above, the text sample used in figure 5.20 was chosen because it most clearly illustrated the difference between the natural and the permutated text string i.e. it was the sample wich showed the greatest difference before and after permutation. More typical of the majority of the samples, but of course less instructive, is the sample used in figure 5.21 which is one of the childrens text strings. However, even if the difference is much smaller, the situation is the same as above.
In the remainder of the cases, the trend was either the opposites A decreased and B increased (5 cases) or both increased 12 cases). The exact movement for each sample can be found in the appendix to this chapter together with the statistical calculations. As an example of such movements I have made a graphic representation of the text sample which gave the biggest movement the opposite way (figure 5.22).

All movements were tested with the Wilcoxon matched pairs signedrank test and gave the result that with regard to the movement of the y-intercept A, and given that we were not initially able to prediet the direction of this movement (two tailed) the overall chance that these movements were due to chance was 0.0014 , well below even a 1% significance 1 imit. The result regarding the movements of the gradient B was narginally less significant, but still confirming the overall movements on a 1% significance level.

On the whole, we have confirmed on a $1 \% 1$ evel the hypothesis that the equation 5.4 is inderd associated with the sequential struc-
ture of a text string and that the y-intercept A is inversely related to this structure A increases when the structure decreases, is "brokien") while the gradient B is directly related (E decreases when the structure decreases).

Figure 5.22 Relationship between vocabulary and length of text string before and after permutation (C140).

However, the situation is more complex than this. If we examine the A values which went the "wrong" way after permutation i.e. where A (perm) was smaller after permutation than before, it becomes apparent. that all the A values which went the "wrong" way originated from maximum values. If you care to look at a couple of examples in the appendix to this chapter, you can see what I mean.
Let us look at the only one text string (C140) of the childrens text strings which had a smaller A value after permutation than before. The A value before permutation (A text) is by far the greatest of all the A values in this group (children). The same is the case with all other text strings, which had a smaller A after permutation. This must lead to the conclusion, that the graph 5.4 does not just tilt clockwise as a result of the string having been permutated, but adjusts itself to some hypothetical pre-determined A value. If the initial A value is gmaller than this hypothetical value, as the case is with most of the text strings in this analysis, the graph tilts clockwise; if the initial A value if greater than the same hypothetical A value, the graph tilts anti-clockwise. Presumably, this hypothetical A value constitutes some minimum structure level and the initial A value of the natural text string - be it bigger or smaller than this hypothetical A value - will "slip back" to the 1 ow structure value of A, as soon as some kind person releases the bindings between the words of the string. We say that we do this by permutating the words, but in a physical sense, we break the bonds between the units by adding energy to the system.

This kind of "behaviour" $1 s$ well known from simpler soccalled 'exo-thermal. phystcal systeme. By adding amall amount of energy, it is poseible to $11 f t$ " the syetem over a barrier" and release energy wile the system falls" into a minimum energy
state from which it was suspended by "weak" bonds.
If we look at the B values in the same tables in the appendis, of values before and after permutations, we find exactly the same behaviour. It is thus not only a question of an A value or a B value! we find to our amasement - at least to mine - that the graph 5.4 not only is connected to the sequential structure of the text string, but that this graph tends to seek towards a minimum structure position when the sequential structure is being brok:en down.

The best way to assess if this behaviour is significant is to measure the correlation between A of the natural text (A text) and the movement of A (delta A). If A is big, then $-i f$ this theory is correct - delta A should be small and vice versa, i.e. we should get a negative correlation coefficient. The correlation coefficients between all values of A and delta A, and all values of B and delta E were calculated. The correlation between all A^{\prime}. and delta $A^{\prime} s$ was -0.7098 . The correlation between all $E^{\prime} s$ and delta $B^{\prime} s$ was -0.6707 . With 27 observations this feature is significant on a 0.01% level (A) and a 0.03% level (B). There is thus only a probability of one in ten thousand (A) and one in three thousand (E) that this feature is due to chance.

The question is now: which is the minimum structure position of the graph 5.4? Is there one common position for all text samples or is the minimum structure position determined by features particular to each text string or to each type of text string.

If the minimum structure position is common to all text strings, one would presume, that the mean values of A (perm) and B (perm) for all the text strings would constitute this position. These mean values are stated in the appendix after all the values of A and B respectively. The mean value of A (perm) of all samples is 2. 3556 . If the minimum structure position was common to all text strings, one would expect this value to be the value, which all text strings would move towards when "released', iee. if the A value of a natural text was greater than 2.3556 , then we would expect the result of a permutation of the string to be that A decreased. If on the other hand the initial A value of a natural text string was smaller than 2.3556, we would expect the A value of the string to have increased after the permutation. Looking through the table of A and B values however, this is clearly not the case. Each group, children, newspapers, scientists and childrens books seem to have each their own minimum structure values of A and B.

Testing for difference between the A (perm) and B (parm) values of the 4 groups with the Kruskal-Wallis onemay analysis of variance we do indeed find, that the hypothesis that the four groups are drawn from different populations is confirmed on a better than 5% level for the A perm values, and on a better than 1\% level for the B perm values.

In an attempt to establish what exactly causes the change in the valuess of A and B when the text string is permutated, I have tried to assess the length of "runs" of new and repeated words befori and after permutation. The reason for my wanting to examine the 1 ength of runs before and after permutation had to do with my experience throughout this work, that particularly the first long run of new words in the beginning of a natural text
string often was broken into several shorter runs when the string had been permutated. This could well influence the final equation of the graph due to the fact, that the fitting of an exponential graph to a number of coordinate pairs $i s$ more "sensitive" to the first, lower values of coordinate pairs than to the later (as on logarithmic graph paper), and it would therefore seem reasonable to suggest. that few - to the Information Theory irrelevant changes in the succession of the first words of the sample caused by the permutation could account for the change in the values of A and B. As this may not be immediately apparent, I shall explain:

As stated before, the number of new words in a text string, as demonstrated in this work, will generally be falling exponentially along the string. In many cases however, there are a substantial number of "new words" in the beginning of a natural text string. In some cases the string of new words before a word is repeated in the beginning of a test can amount to 20 or 30 . What often happens during the permutation of this kind of text string is that the uninterrupted long string of new words in the beginning of a text string is broken down into smaller segments by one or two of the small words "and". "or", "the" etc. moving from later parts of the text string to the beginning of the text, where they would not normally occur.

To assess if this feature could account for the consistent changes in the A and B values after permutation, the number of 'new' words in the beginning of each text string was counted before and after permutation and evaluated with the Wilcoxon matched-pairs signed-rank test. The hypothesis, that the breakdown of the first long "run' of new words IN THE BEGINNING of a text string into two or more shorter "runs" was a feature correlated with the permutation of the string, had to be rejected 111% confidence level).

Instead of length of runs we can measure number of runs; this makes no difference since the number of runs is invertedly related to the length of runss many runs equals short runs, few runs equals 1 ong runs - everything else equal.

To test whether the breaking down of long segments of new words, not only in the beginning of the text string as analysed above, but IN THE STRING AS A WHOLE, was a constant feature of the permutation of a text string and thus could account for the other constant feature of A increasing and B decreasing in value due to permutation, a program was made which measured the 1 ength of runs of new words and repeated words both before and after permutation and made a suitable print-out. This analysis was carried out on all the 27 text samples above. Two examples of such a print-out are shown below (figure 5.23) and (figure 5.24), the first being runs measured before permutation, the second being runs measured after permutation. The remaining print-outs can be found in the appendix to this chapter.

I shall explain the 1 ay-out of figures 5.23 and 5.24. The printout begins with the name of the sample, in this case eiseruNER.TXT'. The Bi° in front of the name refers to a disk drive and is irrelevant in this connection. The TXT after the period in the name is the type of file and indicates, that this file contains the natural text string, whereas if the type had been file contained the permutated text etring. The next ine iss

E: EFIUNEF:. TXT
1 ECNOFFO
$1: 111111111111111111001101110010000000000001001111$ 1100101101110001110011101110000000000000000100100 111 111100010111101100010011000001110011011001111001 000111000110001101100011101000011001011101001111011 10010001100110010011010010001010110000100111001111 10111000001010101100101001010000101001010100101010 11001500001011100110010001100001000001300001101100
 00001010110001101110011001011100300010011010011110 001110161100000010100101001010011110111101100010011 0101010010910100111000010100110011001001110000010 000100111011000111000000011101010010001010101101101

LENGTH OF FILINE OF ONES

E: EFLINEF. FFM
1EGOPFO
111110さ1111111111011111101111011111011111111101110 11111011111111110111011110101110110100111111110101 01110110100110111011000100100001001011011010100110 01011100101010110110101001000011000011010011010011 0090111101011000101011100010101001111100001000101 01101100010111110001110110001100000101110001110000 00110600000101000011100190001000110001001001100000 000010000110000111010001010110110001100001001011 01101001111011000000100000010010001000000001000000 00011000011100000111110010111000000010010000100001 11000410101190001000010000100000001000010000111001 om0011000000000101000001001101000010101100101100

LENGTH GF FUUNE OF RNES

```
LENGTH: NUMEEF:
AF FILIN OF FIUNE
    rrern
SLM=272 | 33
LENGTH OF FIUNE OF ZEROES
\begin{tabular}{|c|c|c|c|}
\hline LENGTH & \multicolumn{3}{|l|}{Numitefi} \\
\hline CIF FiUld & OF & RUHS & \\
\hline 1 & 63 &  &  \\
\hline 2 & 23 &  & \\
\hline 3 & 15 &  & \\
\hline 4 & 19 &  & \\
\hline 5 & 3 & *** & \\
\hline 6 & 5 &  & \\
\hline 7 & こ & (*) \({ }^{\text {+ }}\) & \\
\hline P & 1 & * & \\
\hline 9 & 2 & ** & \\
\hline 10 & 0 & & - \\
\hline 11 & 1 & + &  \\
\hline SUM \(=327\) & & 133 & \\
\hline
\end{tabular}
```

Figure 5.24 Print-out of runs in text string after permutation.

1EGOORFO. This means, that the measurement is E for binary, that it starts at word number 1 and continues to word number bol. The "RF zero" I shall not explain here. It refers to a technique which will be developed in the last half of this thesis and which is not being employed in this present measurement, for which reason the RF is set to zero.

The next 12 lines represent the text string which was analysed. The first line of fifty $1^{\prime \prime} s$ or $0^{\prime \prime}$ s covers the first fifty words. The next 1 ine of fifty $1^{\prime \prime} \mathrm{s}$ or 0^{\prime} s covers the next $f i f t y$ words and so on. A ' 1 " means that the word was a new word, a " 0 " means, that a word was a repeat. As there were 600 words in the text string, there are 12 lines of fifty 1° हor $0^{\prime} s$ which together give the pattern of new and repeated words in the 600 word $10 n g$ text string. We can see, that in figure 5.23-before permutation - there are 20 new words in the beginning of the text string before we encounter the first repeat. If we then turn to figure 5. 24, we can see, that the run of twenty in the beginning of the natural text string has been split into one run of 5 plus one run of 11 in the permutated string - just the kind of change that was mentioned above.

Nent comes the 'length of runs of ones'. This is a graphich and numerical representation of the length and number of each run of ones, and should be read like this (referring to figure 5.23): There were 79 runs which were one digit long. There were 34 runs which were 2 digits long. There were 24 runs which were 3 digits long etc. Finally we can see, that there was 1 run which was 20 digits long. That was, as we know, the 20 new words in the beginning of the text string. Finally the sum of the product of the length of run and the number of runs is calculated for later control. The number of ''s $^{\text {coperesenting the numerical value of }}$ the number of each run were added to give - by means of a histogram - a graphic representation of the one half of the bellshaped distribution curve constituted by the number of each run length.

The same exercise is repeated for the number of runs of zeroes, and the sum product is calculated for control as before. These two sums should add up to the length of the text string if everything is all right. Furthermore, the first control number in figure 5.23 (before permutation) should be equal to the first control number in figure 5.24 (after permutation), because the number of $1^{\prime \prime}$: - the number of different words - should be the same after the permutation as it was before. The same is of course true for the 0^{\prime}.

Comparing 5.23 with 5.24, we find, that contrary to expectations influenced by ideas about chance and randomness, whereas in 5.23 (before permutation) there was only 1 run each of 5 , 6 and 20 (totalling 31), after permutation there were 6 runs of 5 , plus 1 run each of $8,9,10$, and 11 (totaliing 68). Cleariy what happened was the opposite of what we (I) had expecteds permutation increased the run lengths rather than reduced them. This is graphically illustrated by the bell-shaped distribution curve from being "high and narrow" becoming "flatter and wider" as a result of the permutation of the natural text etring.

Clearly, the expectation, that long runs will be broken into several small ones, is not always realistic. As a matter of fact, counting the number of runs (i.e. assessing the length of runsi
for all the samples before and after permutation, it turns out, that the opposite is trues The permutation of a natural text string leads almost invariably to fewer and longer runs.

Even masimum length of runs ANYWHERE in a text string is not generally reduced by permutation. The hypothesis, that the mari mum length of runs anywhere in a text is decreased by permutation had to be rejected when masimum runs mere assessed with the Wilcoxon test before and after permutation 140% significance level for runs of 1 "s, 38% significance level for runs of O^{\prime} s).

Table 5.25 shows the considerable difference in the number of runs caused by the permutation of a natural text string. All changes were tested with Wilcoxon's matched-pairs signed-ranks test wich confirmed this feature on a significance level better than 0.0003 i.e. on a.03\% level.

The mean NUMEER of runs easily translates into mean LENGTH of runs. Knowing that the adult text strings are 600 words 1 ang and the childrens text strings 550 words long, we simply divide length of text string with the relevant value of the mean number of runs. Table 5.26 gives the length of runs for the different groupe

The next obvious step was to compare number of runs before and after permutation with A and E values before and after permutation for each text string. In this way we would test if the change in the number of runs could account for the changes in A and E which we saw above.

NUMEER OF RUNS BEFORE permutation correlated negatively with the corresponding A-VALUES on a better than 0.1% significance level and positively with the corresponding B -VALUES on a better than 0.1% significance level.
NUMBER OF RUNS AFTER permutation correlated negatively with the corresponding A-VALUES on better than 2% significance level and positively with the corresponding E-VALUES on a better than 0.1% significance level.

If number of runs is invertedly related to both length of runs, and - as we have just seen - to the values of the intercept A, then length of runs must be DIRECTLY related to the values of A, and we can thus with a high level of confidence conclude, that as the text is permutated and the length of runs increase, so does the value of A.

A parallel argument for the gradient B leads to the conclusion, that as the length of runs increases with permutation, the gradient E decreases.

We have thus been able to tie together a number of loose ends and are now able to reconsider the whole area of structural changes in terms of run 1 engths.

DISCUSSION OF ANALYSES AROVE.
It can not be said too often, so 1 will say it agains it is essential that structure analyses are carried out on strings of equal length. Because of the exponential nature of equation 5.4, there is no such thing as a "Type Token Ratio".

We found earlier in this chapter, that the lowest A value of adult text strings was that of newspapers. This is reflected in table 5.268 of the three adult groups, newspapers have the shortest length of runs. The way adults generate text strings clearly result in shorter runs than when children perform the same task. The text strings written FOR ehildren too showed longer runs than the other adult categories, scientists and newspapers. These two groups, seientists plus newspapers on the one hand and textstrings written $F O R$ children plus text strings written BY children on the other, were tested against each other for independence with the Kruskal-Wallis test of variance and gave that the groups were drawn from different populations with a level of significance of better than 2%.

We have seen too, that text strings with a higher degree of structure, like adult strings, had shorter average runs than had text strings with a lower degree of structure like those of children. So, contrary to what I had expected, within the limits set out by a permutation, run length is not crrelated with strueture, but with lack of structure. High structure = short runs, low structure $=1$ ong runs. Consequently, when we brake down the
sequential structure of a text string the average run length increases. That the conscious internal manipulation of text strings, typical for adult language construction, should result in shorter runs, is somehwat different from what I had expected, and I can not offer any explanations as to why this should be so.

Contrary to common belief, we found that the text strings from newspapers came out as having the highest level of structure and the highest vocbulary of all the samples in this research. It was even the case, that the text strings from the most "popular" press scored higher than the strings from the more "serious" papers. Since the parameter we have analysed - the gradient Brepresents sequential structure, the interpretation of the result is probably that much more sequential manipulation goes on in the mind of the writers of the "popular" press than in the minds of the more 'serious" press, and certainly more than this category of journalists normally get credit for.

Apart from this apparent anomaly, the level of structure, according to this present analysis, came out very much as one would hav expected, with younger children (Table 5.18a) showing the least amount of structure (lowest E-values), fallowed by older children, scientists, childrens books and finally with the highest structure - as just stated - newspapers. It may be surprising to see that childrens books should have a higher structure than seientists, but it is quite feasable, that the internal sequential manipulation which goes into the writing of a feature in the popular press is the same as goes into the writing of a text string for children, bearing in mind, that what we have been measuring in the analyses above is not "childishnese", but to what extent the string has been manipulated and polished off before it was put down on paper.

In this chapter, we have looked at different concepts of language structure and applied our analysis to some of them. We have answered some of the questions, but other problems have arisen and some new questions await an answer.

The common concept of vocabulary and the concept of structure of the Information Theory are both one-parameter concepts of structure. Our analysis in this chapter expanded this concept to that of a two-parameter concept (the A-values and E-values), but even this is a long way from a deseription of the structure of natural language. For this reason we shall now turn our backs to the one or two parameter concepts of structure and look for a more - in linguistic terms - realistic method of structure analysis.

Thus, after the next ehapter, which consists of the programs implementing the methods of this chapter, we shall explore the most sensitive multi-component analysis of structure available, namely that of Fourier analysis. Fourier analysis is normally used to analyse electrical signals and - to a lesser extent - for event-analyeis. To my knowledge this method of analysis has not before been used to evaluate structures in text strings, and for this reason we shall later have to put considerable effort into adapting Fourier analysis to our particular information carriers text strings.

CHAPTER 6.
PROGRAMS IMPLEMENTING METHODS OF CHAPTER 5.

In this chapter I shall deseribe the different programs used in my initial research.

Program VOCOUTEXPGRAPH.
The first program is really two programs in one. The first part, made up by the procedure READWORD and the function NEWWORD, reads the text string and calculates the vocabulary. The second part, the procedures GETDATA and COMPREGRESSANALYSIS, finds the closest fit of a curve and the points constituted by the vocabulary at regular intervals.
Beginning in the main program (line 178) and following the data flow, we see, that the program asks for the beginning and the end of the measuring window (line 187 and 189). The beginning of the window is normally the beginning of the text string.

The next parameter to initiate is the number of words in each interval (line 191). The program is written to calculate the vocabulary of the text string at regular intervals. After each interval the program will provide a print-out. If each interval has been chosen to be 50 words, the program will give the vocabulary (as calculated from the beginning of the text string) after each 50 words. The size of the intervals depends only on how many points we need to establish the graph which constitutes the relationship between vocabulary and length of text string as as figure 5.3 in chapter 5. Normally I have wanted around ten points from each text string, which for adult strings of aorund 500 words meant intervals of around 50 words, and for childrens strings of around 100 words obviously meant intervals of around 10 words.

READWORD (line 27) then reads as much of the string as necessary and feeds the number of words read and the vocabulary between the start of the window and each particular point in to the array POINTS. This array is of course the basis for GETDATA's and COMFREGRESSANALYEIS' calculations which result in the program printing out the equation (Line 217) that was the closest fit to the points in POINTS.
Procedure Readword is atraight forward disk file read-procedure which will accept the words and numbers defined in the set LETTERS in line 180. Words longer than 20 letters will be truncated. Procedure MOVEONE takes the first word of the textstring and allocates it to the array LABL which is the label of the string. After MOVEONE all words have been moved one word formard. Function NEWWORD compares each incoming word with all the preced-
ing words from the start of the window. GETDATA finds A and B of the equations $F(x)=A * x$ in power B of the curve with the closest fit to the points in POINTS. The usual routine of the "least squares" method is used, esieept that it is "transposed" to a double logarithmic system. Finally COMFREGRESSANALYSIS calculates the coefficients of determination and correlation and the standard error of estimate.

Frogram PERMUTATE.
This program starts off with the same read procedure as the program above.

The function PRANDOM (1ine 107) is a pseudo random generator used to pick out word from the textstring at random.

If we start in the main program (line 119) and follow the data flow as usual, we see that after the usual disk file parameter routines, the program asks where we want the permutation to start and where to end. This is important, since the whole point of having a text string permutated - as opposed to randomised - is, that not only are the words of the original text string preserved in the permutated string, but so is their relative distribution. This means of course, that if a word appears stimes in the natural text string, then it will appear five times in the permutated string as well.

The permutation procedure works by the program moving words from the text string to the permutated string according to the randon number appearing from the random generator. This generator has been modified, so it only generates numbers within the range of the number of words in the text string. Each time a random number is generated and the appropriate word moved to the permutated string, that number is stored in the array RANDARRY. Each time a new random number is generated, it is first checked against all the numbers in RANDARRY to make shure that it is not a repeat. if it is a repeat, no word is pieked from the original text string and the random generator is asked to provide another number. In this way we are shures that each word from the original string is picked at random, but only picked once. By reducing the length of the string by 1 every time a word has been pieked (1ine 140) we make sure that the permutation increases in speed as we near the end of the permutation.

Program TESTRUNS.

This program was made to measure the length of "runs' of 1 's and O's in the information array before and after the text had been permutated with PERMUTATE as explained in chapter 5.

INFARRAY (initiated line 188) is an array with as many places as there are words in a given text string. When we read the first word we put a one in the first place of INFARRAY lbecause the first word is always a new word). When we read the next word, we put a one in the second place if this is a new word, or a zero if it is a repeat. This is done for every consecutive word. In this way we finish with an array filled with zeros and oness a zero or a one for each word according to whether the word was a repeat or

not.

A 'run' is a number of similar digits. In the beginning of the information array there may be more than 20 ones before they are interrupted by a zero, because it reflects the beginning of the text string and it takes a while before the words in the string start repeating themselves. In the end of the string there may on the other hand be quite long runs of zeros, because many of the words repeat themselves. The shortest run is of course only one digit long, and this is the most common 1 ength.

The first procedures in TESTRUNS are just like the first procedures of VDCOUTEXPGRAPH, so these need no further explanation. The only new procedure is RUNDETECTOR beginning at line 117. This procedure measures the length of each run (ones or zeros) and keeps track of how many there are of each length.

Finally the program prints a bar graph of the distribution of the different lengths of runs of 1 's and $0^{\prime \prime} s$ and checks that the number of runs multiplied by the lengths of the runs equal the number of places in INFARFi. or - which is the same - equals the number of words in the analysed text string.

```
PROGRAM VOCOUTEXPGRAPH(TEXTIN,TEXTOUT):
LAEEL 1:2,3;
CONST
        MAXWDRDLEN=20;
        NUMEOFWORD=1001;
TYPE
        WORDINDEX = 1 % MAXWORDLEN;
        TEXT INDEX=O; NUMEOFWORD;
        WORDTYPE=FACKED ARRAY[TEXTINDEX,WORDINDEXI OF CHAR:
        TRANSFTYPE=ARFAY[TEXTINDEX] DF REAL;
VAR
        WORD: WORDTYPE:
        LARL:PACKED ARRAY[WDRDINDEX] OF CHAR;
        TRANLA: TRANSFTYPE;
        POINTS:ARRAY[1:100,1:2] OF INTEGER;
        STAFT, FIN, VOC, NUMFOINTS, STEP,N,M: INTEGER:
        XCOOR, YCOOR, SUMLOGX,SUMLOGY, COEFFOFDET, STANDERRNLMERATOF,
        SUMXSQR, SUMYSQR,SUMXTIMESY,A, R& REAL;
        CHz CHAR;
        NAME:STRING:
        TEXTIN,TEXTOUT&TEXT;
        LETTERS:SET OF CHAR:
        F:INTERACTIVE;
    FROCEDURE READWORD (L: INTEGER);
    LABEL 1,2;
    CONST
        BLANK=' ';
    VAR
        N, CHARCOUNT: INTEGER:
        CH: CHAF:
    REGIN
            FOR Ns=1 TO MAXWORDLEN DO WORD[L,NJ8=BLANK;:
            CHARCOUNT 
    1: WHILE NOT EOF (TEXTIN) DO
            BEGIN
                WHILE NOT EOLN(TEXTIN) DO
                BEGIN
                READ (TEXTIN,CH):
                IF CH=RLANK THEN GOTO 2;
                IF EOLN(TEXTIN) THEN
                BEGIN
                    WORD[L, CHARCOUNT ] =CH;
                    BOTO 2;
                END;
                IF CH IN LETTERS THEN
                BEGIN
                    WORD[L, CHARCOUNT IS =CH;
                    CHARCOUNT : =CHARCOLNT+1:
                    IF CHARCOUNT MMAXWORDLEN THEN
                    BEGIN
                    WHILE CH<>BLANK DO
                                    READ (TEXTIN,CH):
                                    CHARCOUNTI=1:
                    END:
                    GOTO 1:
                END:
            END:
```

```
                    READLN(TEXTIN);
    END;
    IF EOF(TEXTIN) THEN
    BEGIN
        CONACT (O):
        WRITE("EDF AT WORD NR&",L);
        HALT:
    END:
28 IF WORD[L,1]=RLANK. THEN
    REGIN
        CHARCOLNNT & =1%
        GOTO 1:
    END;
END;
FROCEDURE MOVEONE;
VAR
    N,M&INTEGER;
EEGIN
    FOR N:=1 TO 20 DO
    LAEL[N]& =WORD[1,N];
    FOR N&=2 TO FIN+1 DO
    WORD[N-1]&=WOFD[N];
END;
FUNCTION NEWWORD(RE:INTEGER) & INTEGER;
VAF LE: INTEGER;
BEGIN
    NEWWORD; =1;
    FOF LE:=START TO RE-1 DO
    IF WORD[RE]=WORD[LE] THEN
    BEGIN
            NEWWORD: =O%
            EXIT(NEWHORD) &
        END:
END;
PROCEDURE BOOKIN:
BEGIN
    CONACT (O):
    WRITELN("NAME OF INPUT FILE:');
    READLN(NAME):
    {$I-1/O DFF}
    RESET(TEXTIN,NANE);
    WHILE IOREBLHT<<O DO
    BEGIN
                WRITELN("FILE NOT FOLND, TRY AGAIN');
                    READLN(NAME);
            RESET (TEXTIN, NAME):
        END;
END:
```

121 122: 123:

FFROCEDURE EODKOUT;
REGIN
REWRITE (TEXTOUT, "PRINTER\& ")
END;

PROCEDURE GETDATA;
VAR
I I INTEGER:
EEGIN
SUMLOGX: $=0$:
SUMLOGY $=0 ;$
SUMXSQR: $=0$
SUMYSQF: $=01 ;$
SUMXTIMESY8 $=0$ \&
FOR I: $=1$ TO NUMFOINTS DO
EEGIN
XCOOR: $=$ LN \langle POINTS[I, 1]) $;$ YCOOF: $=$ LN(POINTS[I,2]); SUMLOGX: $=$ SUMLOG $X+X C O O R ;$ SUMLDGY: $=$ SUMLOGY + YCOOF; SUMXSQF: $=$ SUM $X S Q R+X C O Q R * \times C O O R \%$ SUMYSOR: $=$ SLMYSSQR + YCOOR Y YCOOF: SUMXT IMESY: =SUMXT I MESY + XCOOF\% YCOOR;
END:
IF NLMFOINTS*SUMXSQF:=SUMLOGX*SLMLOGX THEN
WFITELN('REGRESSION CAN NOT BE CALCULATED')
ELSE
EEGIN
E: $=$ (NUMF•OINTS*SUMXTIMESY-SUMLOGY
/ (NUMFOINTS*SUMXSQR-SUMLOGX*SUMLOGX) :
As $=$ (SUMLOGY-E*SUMLOGX)/NUMPOINTS:
END:
END:

FROCEDURE COMFREGRESSANALYSIS:
VAF
TEMP: REAL;
EEGIN

COEFFOFDET \& =ARS (TEMF / (EUMYSQR-EUMLOGY*SLMLOBY/NLMPOINTS))
STANDERRNLMERATOR\& =SUMYSQF-SUMLOGY SUMLOGY/NUMPOINTS-TEMP \&
WRI TELN:
WRITE (TEXTOUT, COEFFICIENT QF DETERMINATION (R-GQUARED) =") WRITELN(TEXTOUT, COEFFOFDET\& 08 4);
WRITE (TEXTOUT, ${ }^{\left.\text {WOEFFICIENT OF CORRELATION }={ }^{*}\right): ~}$
WFI TELN (TEXTOUT, SQRT (ABS (CDEFFDFDET)) \& 08 4)
IF NUMFOINTE=2 THEN NMMPOINTS: $=3$ B
WFITELN(TEXTOUT, " STANDARD ERROR OF ESTIMATE =".
SQRT (AES (8TANDERRNMMERATOR/ (NLMPOINTE-2))) : 084):
END

BEGIN-MMAIN PROERAM
RESET (F. ${ }^{\text {CONSOLE }}{ }^{\circ}$)


```
181: 1:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223;
224
225;
226:
227:
ROOKIN;
EOOKOUT;
CONACT (O);
FOR N:=1 TO 4 DO WRITELN(TEXTOUT):
WRITELN('PRESENT LIMITATION: 1000 WORDS'):
WFITELN;
WFITELN('WINDOW TO START WITH WORD NRz'):
READLN(F,START):
WRITELN('WINDOW TO END WITH WORD NRz');
READLN(F,FIN)
WRITELN('HOW MANY WORDS BETWEEN INTERVALS?');
READLN(STEP)
FOR N:=1 TO FIN+1 DO READWORD (N):
MOVEONE
    WRITELN(TEXTOUT,NAME,' '*');
    WFITELN(TEXTOUT):
    VOC:=0%
    NUMFOINTS: =O&
    FOR N: =START TO FIN DO
    REGIN
        VOC: =VOC+NEWWORD (N);
        IF N MOD STEP = O THEN
        BEGIN
                    WRITE(TEXTOUT,'AT WORD NR: ',N);
                    IF N& 10 THEN WFITE(TEXTOUT," "):
                    IF N< < 100 THEN WRITE(TEXTOUT," "):
                    WFITELN(TEXTOUT," VOCABLLLARY: ",VOC);
                    NUMFOINTS: =NUMPOINTS+1;
                    POINTS[NUMFOINTS, 1]: }=
                    FOINTSCNUMPOINTS,218 =VOC;
        END;
    END;
    WFIITELN(TEXTOUT);
    WRITELN(TEXTOUT,"GEOMETRIC REGRESSION ANALYSIS:');
    WFITELN(TEXTOUT);
    GETDATA;
    WRITELN(TEXTOUT,'F(X) = ",EXP(A)," X TO THE ",E," POWER');
    COMPREGRESSANALYSIS;
    WRITELN('ANOTHER RUN? (Y/N)'):
    READ (F,CH);
    IF CH='Y' THEN
    BEGIN
        CLOSE (TEXTIN):
        GOTO 1:
    END;
END.
```

```
FFRGGF:AM FEFMLITATE{TEXTIN.TEXTOUT):
LAEEL 1:
COHET
    NOWOF:DS=E2O:--MAXIMUMY NUMEEF: OF WOFDS IN TEXTSTFIING
    MAXLENGTH=2O:--MAXIMLM NUMEEF OF LETTEFSS FEF: WOF:D
    ELATH:=" "
TYF'E
    WOFDINDEX=1: NOWOFIDS:
    LETTEF:INDEX=1:MAXLENGTH:
    WOFIITYF'E=F.ACH:ED AFFIAY[WGFIINDEX,LETTEFINDEX] OF CHAF:
VAF
    FIXWOFII,F.ERMWOFD: WOFIDTYFEE:
    ENNOFETFIING. EEGINF.EFIM, ENDFEERM,W,
    NIME:OFFEF:!Y, SHFINISTEF,M,N, FANLWF: INTEGER:
    TEYTIN.TEXTCHIT:INTEFIACTIVE:
    NAME:STF:JNG:
    SEED:LOING INTEGEF:
    CH1: CHAF:
FF:CICELUFE INITIATE:
EEEIN
    WF:ITELN("NAME QF INF'LTT FILE:"): REAILN(NAME):
    {&I- 1/口 口FF?
    FESET(TEXTIN,NAME):
    WHILE IGFESLILT &% O DO
    EEGIN
            WFIITELN("FILE NOT FOLIND: TRY AGAIN'):
            FEALILN(NAME):
            FESET(TEXTIN.NAME):
        ENL1:
        WF:ITELN('NAME QF QUTFUIT FILE:'): FEADLN(NAME):
        FESSET (TEXTOLIT, NAME):
        CLOSE(TEXTOUIT,FUFGGE):
        REWFIITE (TEXTOUT, NAME):
        WFIJTELN("FEEMLITATION TO STAFT AT WORD NUMEER:"):
        FEADLN(EEGINFEF:M):
        WF:ITEI_N('FEFMUUTATION TO FINISH WITH WOFD:"):
        FEADLN(ENDFERM):
        NUMEOFF'EFMM& =ENDIF'ERM-EEGINF'ERM+1:
        WF'ITELN('SEED:')&
        FEADLN(SEED)
END:
FROCEDUFE READWORD (L:INTEGER)
LAEEL 1.こ:
VAF
    N, CHAFCOUNT:INTEGEF:
    CH:CHAFis
    HEGIN
        CHARCOUNT: =18
        1: WHILE NOT EOF (TEXTIN) DO
        EEGIN
            WHILE NOT EOLN(TEXTIN) DO
            EEGIN
                READ (TEXTIN,CH):
                IF CH=BLANK, THEN GOTO 2;
                IF EOLN(TEXTIN) THEN
                BEGIN
                    FI XWORD[L, CHARCOUNT I: =CH!
```

```
            GOTO 2:
                END:
                IF CH IN ['G'z'G','A':'Z'] THEN
                EEGIN
                    FIXWOR:D[L, CHAFCOUNT I:=CH:
                    CHAF:COUNT: =CHARCOUNT +1:
                    IF CHARCOLNT \MAXLENGTH THEN
                    EEGIN
                    WHILE CH<\ELANK DO
                    FEAD (TEXTIN.CH):
                    CHAFCOUNT:=1;
                    ENL:
                GOTO 1:
                END:
            EHD;
            READLN(TEXTIN):
        END:
        IF EOF (TEXTIN) THEN
        FEGIN
            CONACT (O):
            WFITE('EOF AT FIXWORD NF:'.L):
            HALT:
        END:
        IF FIXWOF:D[L,1]=ELANK:THEN
        EEGIN
            CHAFCOUNT:=1:
            GOTO 1:
        END:
    END:
    FROCEDUFE MOVEONE:
    VAF
        M.N:INTEGEF::
EEGIN
        FOF M:=1 TO 4 DO IF FIXWORD[1,M]<<> , THEN
        WFITE (TEXTOUT,FIXWORD[1,MJ); WFITE(TEXTOUT.'.'):
        WFiITE (TEXTOUT, EEGINF'ERM,'F'.ENDF'EFM.' ');
        FOF: N:=2 TO ENDOFSTF:ING DO
        FIXWCIRD[N-1]:=FIXWORIL[N]:
        ENDOFSTRING: =ENDDFSTRING-1;
    END;
    FUNCTION FF:ANDOM(VAF: SEED:LONG_INTEGER):LONG_INTEGER:
        CONST
            MLLTIFLIEF=25173:
            INCREMENT=13849:
            MODULUS=65536:
        EEGIN
            PRANDOM: =ARS (SEED);
            SEED: = (MULTIPLIER*SEED+INCREMENT) MOD MODULUS;
            END:
EEGIN--MAINFROGRAM
1:. CONACT (0):
    INITIATE:
    ENDOFSTRING: =ENDFERM+2;
    FOR N:=1 TO ENDOFSTRING DD
    FOR Mz=1 TO MAXLENGTH DO
    FIXWORD[N,MJ:=ELLANK:&
```

 GOTO 2:
 END:
 IF CH IN ['O':'9', 'A':'Z'] THEN
 EEGIN
 FIXWOF:D[L, CHAFRCOUNT J: \(=\) CH:
 CHAFCOUNT: \(=\) CHARCOUNT +1 :
 IF CHARCCOLINT \(>\) MAXLENGTH THEN
 EEGIN
 WHILE CH SELANK DO
 FEAD (TEXTIN,CH);
 CHARCOUNT: \(=1\) :
 ENL:
 GOTO 1;
 END;
 EHD:
 READLN(TEXTIN):
 END:
 IF EOF (TEXTIN) THEN
 FEGIN
 CONACT (O):
 WFIITE('EOF AT FIXWOF:D NF:'.L):
 HALT:
 END:
 2: IF FIXWOFD[L, 1]=ELANK: THEN
 EEGIN
 C.HAFCOUNT: \(=1\) :
 GOTO 1:
 END:
 END:
 FROCEDURE MOVEONE:
 VAF
 M.N: INTEGEF:
 EEGIN
FOR M: $=1$ TO 4 DO IF FIXWORD[1,MJ< $>$ " THEN
WFITE (TEXTOUT, FIXWOFD[1,M]): WFITE (TEXTOUT.',') ?
WF:ITE (TEXTOUT, EEGINF'EFIM, 'F', ENDF'EFM.' '):
FOF: $N:=2$ TG ENDOFSTFINE DO
FIXWCRFD[N-J J: =FIXWOR:LIN3:
ENDOFSTFING: =ENDOFSTRING-1;
END;
FUNCTION FRANDOM (VAF: SEED:LONG_INTEGER) \& LONG_INTEGER:
CONST
MLLTIFLIEF $=25173$;
INCREMENT $=13849$:
MODULUS $=65536$;
EEGIN
FRANDOM: =ARS (SEED):
SEED: = (MULTIPLIER;SEED+INCREMENT) MOD MODULUS;
END:
FEGIN--MAINFROGRAM
1: CONACT (1):
INITIATE:
ENDOFSTRING: $=$ ENDFERM $+2 ;$
FOR $N_{8}=1$ TO ENDOFSTRING DO
FOR $M_{8}=1$ TO MAXLENGTH DO
FIXWORD[N, M]: $=$ ELANK:

SHFI INI:STEF: $=$ NLIMEOFFEFM:
FOF: $N:=1$ TO ENLUFSTFING DO FEADWOF:D (N): MLIVECINE:
FOF $N:=1$ TO EEGINFEFMM-1 DO FERMWOFD[N]: $=F I X W O R D[N]:$
FEFFMWOF:L[ENDFEF:M+1]:=FIXWOFID[ENDFEFFM+1]: F[IF: $N:=1$ TO NUMEGFFEFIM DO
$F I \times W O F D[N]:=F I X W O F L L E E G I N F E F M+N-1$]
FOF: $N:=1$ Tロ NLIMEOFFEFN DO
HEGiJ
FiANDNF: = F•RANDCM (SEED) MOD SHFIINKSTEF + 1:
FERMWORD[EEGINFERM+N-1]: =FIXWDRD[RANDNFI !
FLIF: $M:=F A N L N F: T O$ SHFINKSSTEF +2 DO
FI XW[IF:II[M]: =FIXWCF:I[M+1]:
SHFINF STEF: = SHFINFSTEF-1:
ENL:
(H: = ㄷ)
FOF $N:=1$ TU ENDOFSTFING DO GEGIN
$w:=W+1:$
FOF: $M:=1$ TO MAXLENGTH DO IF FEFMMWOF:IIN.M] $\langle>$ ELANT
THEN WFITE (TEXTOUT, FEFIMWOFTI[N,M]):
IF W 10 THEN WFITE\{TEXTQUT, FLANF?
ELSE IF $W=10$ THEN
HEGIM
WFIITEL_N(TEYTOUT):
$W:=0:$
END:
ENO:
WFITELN: ANOTHEF FUNT $(Y, N\rangle$);
READ (CHI):
IF $[H]=$ " Y THEN EEGIN

CLOSE (TEXTIN):
CLOSE (TEYTOUT);
GOTO 1:
END:

```
FFRGGFAM TESTRUNS(TEXTIN.TEXTOUT):
LAEEL 1:
CONST
        MAXWOFDLEN=20:
        NUMEOFWOFII= = 1001:
    TYFE
        WGRTIINDEX=1 : MAXWORDLIEN:
        TEXTINDEX=1:NLMEGFWOF:D:
        WOFIDTYFE=F:ACHEI AFF:AYLTEXTINDEX. WGF:DINDEXJ OF CHAF:
        TRANSFTYFE=ARFFAY[TEXTINDEX] OF INTEGEF:
    VHF:
        WOFID: WCRITTYFE:
        LAEL:FAC.EE[ AFFFAY[WOFDINDEX] OF CHAF:
        INFAFF:GY:IF:ANSFTYFE:
        STAFT,FIN.FIF.TI,N:INTEGEF:
        C:H:CHAF:
        NAME:STFTNG:
        TEYTIN:,TEYTOLIT:TEXT:
        LETTEF:S:SET OF CHAF;
        F:]NTEFFCTIUE:
        SECOWI: EOOLEAN:
    FFULEDUFE READWGF:I(L:IHTEGEF):
LAEEL 1.2:
    CONET
        ELANH:=";
    VAF:
        N,CHARCCIUNT: INTEGEF:
        CH: CHAF:
    FH6]N
        FOF: N:=1 TO MAXWGETLEN DO WORTI[L,N]:=FLANH:
        CHGFCOUINT: = 1:
    1: WHILE NOT EOF(TEXIJN) DO
        EEGIN
            WHILE NOT EOLN(TEXTIN) DO
            HEGIN
                FEA[!(TEXTIN.CH):
                IF CH=BLAI|: THEN GOTO 2:
                IF EOLN(TEXTIN) THEN
                    EEGIN
                    WOF:DIL. CHARCOUNT ]: =CH:
                    GOTO 2:
                    ENI:;
                    IF CH IN LETTERS THEN
                    EEGIN
                    WORUTL, CHAFCOUNT ]: =CH:
                    CHAFCCOUNT: =CHAF:COUNT+1;
                    IF CHARCOUNT \MAXWORDLEN THEN
                    EEGIN
                        WHILE CHK\PELANK. DO
                    READ (TEXTIN,CH):
                    CHAFCOUNT:=1%
                    END:
                    GGTO 1:
                    END:
            END:
            READLN(TEXTIN):
        END:
        IF EOF (TEXTIN) THEN
        EEGIN
            CONACT (O):
```

```
                WFITTE("EGIF AT WOF:D NF:E",L):
                HALT:
```

FROICEDUFIE EOOF:IN:
EEGIH
WFITELN("NAME OF INFUT FILE:"):
FEALLN(NAME):
\{ \ddagger I- I/O OFF\}
FESET (TEXTIN, NAME) !
WHILE IUFEESULT $\because O$ DO
EEGIM
WFITELN("FILE NOT FOUND. TRY AGAIN'):
FEADLN (NAME):
RESET (TEYTIN. NAME):
ENL:
ENI:
FFOCEDLIKE RUNDETECTOF (STOP1, STOF'2: INTEGEF):
VAF:
ELOCK:ARKAY[1:401] OF INTEGER:
SUM, MAX, N, M, RUN: INTEGER;
REGIN
FOF $N_{8}=1$ TO 40 DO RLOCK[NJs $=08$
$N_{1}=0 ; \mathrm{M}_{8}=\mathrm{O}_{8} \mathrm{MAX}=18$
FEFFEGT

```
        REFEGT
            RUN:=F:UN+1:
            M: =M+1:
                UNTIL (INFAFF:AY[M+1]=STOF'1) OF (M >= TI):
                IF FUNN : MEIX THEN MAX:=FIUN:
                ELOCK[FUNN]: ELOCL[RLUN]+1;
        FEFEAT
            M:=M+1:
        LNNTIL :INFARFFAY[M+1]=STOFO) CIF: (M %= TI);
        UNTIL M }>=Tl
        SUM:=O:
        IF SECOND THE:I FLOCI[1]:=ELOCK[1]-1:
        WFITELN(TEXTGLIT.'LENETH NUMEEF'':
        WH,TTELN(TEXTOUIT.'OF RLIN OF RLINS'?;
        FOR: M:=1 TO MAX D'3
        EEGJN
            WFITE(TEFTOUT,M:S." , FLOCH[MJ:S., "):
            FQF N:=3 TG HLCHTIM] DC, IF NES THEN WFITE(TEXTGLT."**):
            WF:ITELM!TFATCU17:
            SLIN: =SUM+MI* FLCICK[M]:
    EMI:
        WF:TTE:N(TEXTOLT, 'S(HI='.SUM:4):
        SEECOH:=7KLE:
    ENI:
    FFURETMIFE F:CNH CHIT:
    EEGIM
        FEL抽]TE(TE) TOUT, 'FFINTEF: '):
    ErIS:
mEgIM--MAIN FF:OGFAM
    CONACl(0):
    RESET (F, (CONSOLE:"):
    LETTERE:=['O':'O','A':'Z']:
1: SECOIND:=FALSE:
    EOCI:IN:
    COMACT (0):
    WF1TELN(NAME):
    FOOI:OUT:
    WFIITELN('FFESENT LIMITATION: 10GO WORDS'):
    WFITELN:
    WFITE ('WJNDOW TO STAFTT WITH WORI NF:'):
    FEADLN(F.STAFT):
    WK'JTE('WINSOLH TO END WITH WORD NF:: '):
    READLH(F,FIN::
    WF:ITE('RF: '):
    FEADLN(F,FF):
    WFITELN(TEXTOUIT,NAME):
    WFITEILN(TEXTGIIT,STAF'T,'E',FIN,'RF',RF):
    WFITELN(TEXTOUT):
    FOF N:=1 TO FIN+1 DO READWORD (N):
    MOVEDNE:
    T1:=0:
    FOF N: =STAFT TO FIN DO
    FEGIN
        T1:=T1+1:
        INFARFAY[TI]:=NEWWORID(N.RF):
```

```
180: END:
190: FOF: N:=1 TO TI DCI
151: EEGIN
192:
193:
194:
195:
196:
197:
19E:
199:
200:
201:
2:
20:
~4:
205:
O-
2,
LOE:
O0:
210: GOTO 1:
211: END:
212: END.
```

CHAPTER 7.
BASIS AND METHOD OF FOURIER ANALYEIS.

In chapter 5 we began our first attempts to analyse structure in text strings. where "structure" is taken to mean structure in the information theoretical sense as opposed to the concept of structure within the grammar-based structuralism usually associated with structural analysis of text strings.

We established a possible link between the position and gradient of the graphic representation of the vocabulary-decay on the one hand and the sequential structure on the other. Even so, this analysis was still anchored in the "accumulative" nature of the common concept of vocabularys ie. all the analysis evaluated structures starting from the first word of the string and accumullated new words and repeated words with no regard for the fact that words have different functions and that this function depends on - and $i s$ defined by - the SEQUENTIAL STRUCTURE of the teit string and the INTERACTION between the words of the string.

To start with the last features the interaction between words. In an analysis of text strings based on the non-cognitive reading by a computer. we have no hope of evaluating this feature since it is semantical and therefore depends on cognitive stilil. Regarding the first features the sequential structure, we are in a better position. We have already seen that we can analyse this feature. Our first attempt - in chapter 5 - to evaluate sequential strueture involved a simple plotting in a double logarithmic system based on the accumulations of new words and repeats in the text string. This evaluation of sequential structure was however very crude and yielded only two values - the position and the gradient of a graph - values which we on the whole were unable to correlate to other parameters.

So, to cater for a more sophisticated approach to the analysis of sequential structures in text strings, let us turn to other fields of pattern and structure analysis and see if we can find such a method which will lend itself to the analyeis of text strings. The obvious choise, if we want to analyse sequential etruetures or patterns, is FOURIER analysis.

Fourier analysis, or spectral analysis, has become one of the most important ways of applying numerical solutions to practical problems in a vide range of fields like optics, electronics, speech processing, image enhancing, engineering, etc. Not that there is anything new about fourior analysis. This method of numerical analysis was developed by the French mathematician Jean Rabtiste Josef Fourier in the beginning of last century, but was considered too complex and impractical to use until a modification, the "Fast Fourier Transform" (abbreviated as FFT) was deseribed by J.M. Cooley and J.W. Tukey in 1965, (Cooley and Tukey, 1965).

To explain how Fourier analysis can be used, I will begin in a field, well known to mosts If you look at the groove of one of your grammophone records through a magnifying glass, you will see, that at any point, all the sound is represented by one single groove. This is the case whether the recording is one of a pure sine wave or one of a full symphony orchestra. It is not difficult to understand how a pure sine wave can be represented by a single groove, but how does the human ear hear all of - and indeed distinguish between - the instruments when there is just one single groove. The explanation is of course, that all the sound waves were added together to just one sum wave during the recording and later cutting of the master record. Later - when we listen to this sum wave - our ear and brain - are able to extract the basic wave forms which went into the making of the sum wave. This is how Fourier analysis works. To say that our hearing device does this by means of Fourier transformation is probably to take the analogy a bit too far, since we do not yet understand how our auditory channel is able to do what it does. Fut the result is the same as that of a Fourier transformations the sum wave is dissolved into the single basic frequencies.

I shall now describe in greater detail the basis of fourier transformation. When 1 have done that, I will introduce vou to some applications of the Fourier transformation, and although the connection between these examples and our attempt to analyse text strings may not seem immediately obvious. their relevance will become apparent as our analysis comes along.

In Fourier analysis we talk about two "domaine', a time domain and a frequency domain, and the Fourier analysis is said to move the function which is analysed from the time domain to the frequency domain. This may initially sound difficult, but is really very easy to understand.

Generally, the move from a time domain to a frequency domain involves no more math than any of us would have had in primary school, so 1 can easily explain the basic principles.

Think about the meaning of the word "frequency". This means a number of events taking place in the space of a given unit. When we talk about sound waves, this unit is a time unit - normally a second - and the events taking place are wave tops. Say we have an event taking place 1 time every 4 seconds. this would be the time domain. If we want to express the frequency of this line of events we would of course get a frequency of events equal to $1 / 4$ per second ie a frequency of 0.25. This would be the frequency domain. Another event taling place 1 time every 10 seconds (time domain) gives a frequency of 0.1 per second (frequency domain). Fourier transformation gives us a means of expressing a - sometimes - complex function in a more intelligible way.

These were simple cases of transformation from a time domain to a frequency domain. Fig 7.1 expresess the first example in graphic form. The graph to the left represents the time domain with a wave which peaks once every 4 seconds. The graph to the right is the Fourier transform of the graph to the left and is said to be in the frequency domain. As the graph to the ieft peaks once every 4 seconds, the transform in the frequency domain gives a peak on $f=0.25$.

Let us now imagine, that the 1 ines of events taling place above were 1 ights flashing rather than the top of a wave, and we would have a light flashing once every 4 seconds, and another light once every 10 seconds. It would not be difficult to establish each of the frequencies by timing each light in turn. Eut if we connected the two lights so that they were both flashing when only one of them should have flashed, we could not easily establish how many - and which - different freqencies were involved. However, if we timed the now irregular flashing and used Fourier analysis to transform the series of timings into the frequency domain, the Fourier transform would give us a peak over $f=0.1$ and a peaki over $f=0.25$. The real power of the Fourier analysis is its ability to dissolve a comples waveform into all its basic components, and to show how much of each component contributed to the waveform. In the frequency domain, the height of the peal:s will show proportionately how much each basic waveform contributed to the final waveform. This is why the vertical

TIME DOMAIN

FREQUENCY DOMAIN

Figure 7.1 Transformation from time domain to frequency domain of a wave form.
axis in the frequency domain is labelled "power". This graph is called a power spectrum of the waveform in the time domaing and the analysis carried out in this way would be a power spectral analysis.

The more peaks a component has in the time domain, the higher will the peal: be in the frequency domain after the transformation. This means, that everything else equal, the higher number of events in the time domain will result in a peak with a higher power in the frequency domain.

While Figure 7.1 shows that the transform of a simple wave form is a single pulse, the next transformation (Figure 7.2) shows

Amplitude

TIME DOMAIN

Pomer

FREEUENCY DOMAIN

Figure 7.2 Transformation from time domain to frequency domain of a train of pulses.
that the transform of a train of pulses with the same lenoth as in Figure 7.2 is a wave whith a peak at the same frequency as in Figure 7.1.
Fourier transformation qoes both ways between the time domain and the frequency domain. If we had applied Fourier transformation to the spectrum to the right in fig 7.1 and 7.2 the resulting waveform would have been the ones to the left in fig 7.1 and 7.2 .

Fig 7.3 on the following page shows four pairs of graphs. In each pair, the graph to the left represents a function of time. The graph to the right shows the Fourier transform of the graph to the left and is in the frequency domain. The graph to the right show the amount of the different frequency components needed to make the graph to the left.
Whithout going into unnecessarily great detail. let us see what we can learn from the transform pairs in fig 7.3. Let us eramine each pair of graphs in turn.

Figure 7.3 (a). The transform of a constant (a,left) gives a zero-frequency value equal to this constant (a, right). The zerofrequency is said to give the DC (direct current) level of the transform, and from this example it is clear, that if the signal in the time domain is biased by a DC signal, this will show up in the frequency domain as a zero-frequency value equal to the bias.

Figure 7.3 (b). The transform (b,right) of a square pulse (b,left) is, as we shall later see, of particular relevance to the research presented in this paper. It contains a number of 10 w frequencies (to build up the area under the pulse and create the flat topped sections which obviously change little with time), but in addition, there is a fair mount of high frequencies. These reflect the need for "small building blocks" - or a higher resolution - to make the sudden change at the corners of the square pulse.
A triangular pulse (c,left) of the same area has similar requirements for low frequencies ($c, r i g h t$), but needs a lesser amount of high frequencies than (b, right) because the shape of the triangle wave changes less suddenly than the shape of the square wave.

A Gaussian (bell-shaped) curve (d,left) requires very little high frequencies (d,right) to build up its smooth function of time.

The correlation between sudden changes and high frequencies in the Fourier transform is quite general. Functions that change abruptly with time, like the square wave, or that have a lot of fine detail (sharp edges) require a lot of high frequencies to define them. As a square wave becomes narrower and narrower, more and more high freqwencies are necessary.

Nearly all the research presented in this paper is based on the labeling of words to produce a binary pattern of zeros and ones. Such a pattern constitutes a square wave, and although I have in most of my research eircumvented the "contamination" by high frequencies of my spectra by using a particular form of fourier transformation, this presence, of irrelevant amounts of high frequencies solely due to the basic signal being a square wave, will become apparent in the latter part of my research, where I have had to change the Fourier transform.

Figure 7.3 Some functions and their Fourier transform.

The general Fourier transform of a continuous function is given
 The "i" in equation (7.4) stands for the square root of -1. The constant "e" is the base of the natural logarithm. The variable "t" is often regarded as time while the variable "f" is taken to mean frequency, and then the Fourier transform is interpreted as taking a function of time into a function of frequeney as explained above.
This equation can only be applied to continuous functions, but it can be shown, that provided the sample points of a discrete function are equally spaced (equidistant), the corresponding -quation

$$
\begin{equation*}
A(j)=\sum_{k \geq 0}^{k \leqslant N-1} a_{k}^{2 \pi i j k / N} \quad 0 \leqslant j \leqslant N-1 \tag{7.5}
\end{equation*}
$$

can be used, and since our data base consists of words: this is the equation which is of special interest to us. In this equaltion, "N" is the total number of samples and "k" is the number of each individual sample point. The Fourier transform of a discrete function is closely related to that of a continuous function, two obvious differences being, that (7.5) is a sum instead of an area and that "t" (time) in (7.4) is replaced by k / N (number of indvidual sample divided by total number of samples) in (7.5). The condition stated above, that the sample points must be equally spaced, is important and I shall return to this later.

There are many ways to express the basic fourier transform of a discrete function. As I would like to demonstrate two important aspects of Fourier transformation more fully, we shall express the same relationship in polar form. This would ease the handling of the complex numbers involved in the basic fourier transform, since in polar form. complex numbers can be expressed in terms of sin and cos. I shall not attempt to develop this step by step however. since it would be unnecessary and beyond the scope of this paper, only state. that the fourier transform of a discrete function $F(x)$ with a period of L and consisting of $2 N$ sample points can be written as the following series
where

$$
\begin{align*}
& A_{k}=\frac{1}{N} \sum_{n=0}^{2 N-1} F(x) \cos \left(\frac{2 k \pi x_{n}}{L}\right)(k=0,1,2, \ldots, N) \\
& B_{k}=\frac{1}{N} \sum_{N=0}^{2 N-1} F\left(x_{n}\right) \operatorname{Sin}\left(\frac{2 k \pi x_{n}}{L}\right)_{(k-0,1,2, \ldots, N-1)} \tag{7.8}
\end{align*}
$$

and

Note, that the number of sampled points in the initial function $F(\%)$ were $2 N$. This is important since it is apparent from (7.6) that the resulting series gives only half that number of points namely N (Sigma "runs" only from $k=1$ to $k=N-1$). Thus, if our initial discrete function had 10 sample points, then the resulting power spectrum will have only 5 lines (frequency components). This is result of the sampling which takes place when we want to Fourier transform a discrete function, and in a physical way we can look at it as if our resulting power spectrum has been folded around the middle of the spectrum ie. around the sampling frequency divided by two.

At the moment I shall go no further into the intricacies behind the theory of fourier analysis, only remind you, that we have touched on three important points regarding power spectral analysis: 1) That the sample points of a discrete function must be equally spaced (equidistant) before we can apply the fourier transform. 2) That the powerspectrum of a discrete function is folded around a frequency equal to half of the sampling frequency and finally, 3) that because the spectrum is folded, high-frequency components are added to the components in the low-frequency end of the spectrum.

A point with I should mention before we begin to fourier analyse
text strings in earnest is the fact, that the way we are platting words along the x-axis, our time domain is not one of pure time. The unit in our time domain is one of words: a word unit.

The use of words as a parameter, instead of real time, is perfectly legitimate and is not at all as confusing as it may seem. Let us look at the transformation between the two domains the way we did it before: the TIME domain and the FREDUENCY domain. If we get a peak at 0.25 in the frequency domain, it is still a transformation of an event taking place every 4 units in the time domain, but the units are no longer seconds, but words. This means. that a peak in the frequency domain at 0.25 , reflects a pulse repetition every 4 words instead of every 4 seconds in the time domain. The way we have ploted the y-axis in the time domain ("new words") means, that each pulse constitutes a word which is new to the particular text string being analysed. Thus, a peal: in the frequency domain at 0.25 in our interpretation, means a higher than incidental arrival of new words for every 4 words being read, or repeated combinations (patterns) of new and repeated words adding up to segments which are 4 words long.

As an intrinsic part of the development of INFOR, I wrote some simple "text strings" which I knew would give well known and well defined Fourier transforms (Figure 7.11 to 7.14). These strings did not contain words, but numbers because it is easier to construct strings of numbers when you have to keep a check on new 'words' and repeats. This does not interfere with our task, since to INFOR a "word" is a number of characters (letters or digits) in between two separators (spaces, commaes, line shift) and if two 'words' differ in their content of letters or digits they are considered different. INFOR has of course no notion of the semantical or syntactical content of the units it analyses. So, to test and improve INFOR, these strings of periodically recurring numbers were put together. The strings were of the form

121234345656787891091011121112

When INFOF reads (7.10) the resulting information array will (in this particular case) look like this

IA [1:24]: $=1100110011001100110011001$
(7.10)
because INFOR compares each information unit the numbers in 7.10) and checke whether they are repeats or not: at the first "1" and "2" in (7.10) INFOR will register two new words; when "1" and " 2 " are repeated, INFOR will register two repeats, and so on

 $\begin{array}{llllllllllllllllllllll}46 & 47 & 47 & 48 & 48 & 49 & 49 & 50 & 50 & 51 & 51 & 52 & 52 & 53 & 53 & 54 & 54 & 55 & 55 & 56 & 56 & 57 \\ 68\end{array}$ $\begin{array}{llllllllllllllllllllllll}57 & 58 & 58 & 59 & 59 & 60 & 60 & 61 & 61 & 62 & 62 & 63 & 63 & 64 & 64 & 65 & 65 & 66 & 66 & 67 & 67 & 68 \\ 68 & 69 & 69 & 70 & 70 & 71 & 71 & 72 & 72 & 73 & 73 & 74 & 74 & 75 & 75 & 76 & 76 & 77 & 77 & 78 & 78 & 79\end{array}$
 $90 \quad 91 \quad 9192929393.949495959696 \quad 97 \quad 9798989999100100$

Figure 7.11 (a). Artificial text string which generates an information array with a wavelength lambda $=\overline{\mathbf{2}}$.
for each pair of numbers. The result is as can be seen in (7.11) a square wave with a wavelength lambda = 4 ('two up, two down') and 6 full oscillations. Such an oscillation with a wavelength of 4 should, as we have already seen, give a peak at 0.25 in the

> LA21, O3B10日RF2SOF 1
> POWER SPECTRUM

foscuanct

Figure 7.11 (b). Fower spectrum of text string in fig 7.11 (a).

 $\begin{array}{llllllllllllllllllllllll}36 & 35 & 36 & 37 & 38 & 37 & 38 & 39 & 40 & 39 & 40 & 41 & 42 & 41 & 42 & 43 & 44 & 43 & 44 & 45 & 46 & 45 \\ 46 & 47 & 40 & 48 & 49 & 50 & 49 & 50 & 51 & 52 & 51 & 52 & 53 & 54 & 53 & 54 & 55 & 56 & 55 & 56 & 57\end{array}$

Figure 7.12 (a). Artificial text string which generates an information array with wavelength lambda $=4$.

LA42, 6B140RF5S8F1
 POWER SPECTRUM

Fncensuct
Figure 7.12 (b). Power spectrum of text string in fig 7.12 (a).
frequency domain. Figure $7.12(a)$ is sueh a text string which should generate a wavelength of 4, and as the power spectrum figure $7.12(b)$ shows, this is indeed the case. Figures 7.11(a),
7.12(a), 7.13(a) and 7.14(a) are strings which generate wavelengths of $2,4,8$, and 16 respectively and the power spectra give peaks at $f=0.5$ (7.116), $f=0.25(7.12 b), f=0.125(7.13 b$) and $f=0.0625$ (7.14b) as expected.

The peak to the left in the spectra with periods 4; 8 and 16 are the main peaks; the pealss which indicate the main frequency in the time domain. The smaller peaks to the right of the main peak - in the higher frequency part of the spectrum - only indicate, that a certain amount of these frequencies was necessary to build up the particular shape of our function represented by the $1^{\prime} \mathrm{s}$ and the o's in the information array as explained in chapter 5. These secondary peaks only show up when the periodicity is highly regular, symmetrical and sharp-edged as the case is with our synthetically generated square waves as explained in the beginning of this chapter. In practice they are not going to interfere with our analysis of natural strings, so we will let them rest with this brief explanation.

 $92 \quad 899091929394959693949596979899100979899100$

Figure 7.13 (a). Artificial tent string which generates an information array with a wavelength lambda $=$.

LA84, 10B180RF9SOF 1
POWER SPECTRUM

previmer
Figure 7.13 (b). Power spectrum of text string in fig 7.13 (a).
Even though we have now seen that in principle it is possible to carry out fourier analysis on text strings, let us not however, get lured into a false feeling of success. The analysis of synthetic and well defined strings is one thing, the analysis of natural strings quite another. The production of text strings by our linguistic device is not a steady so-and-so-many-words-pr-timeunit kind of affair. The speed with which we create text strings vary considerably. Sometimes the speed itself is part of the
information and expresses emotions like intimacy, anxiety or enthusiasm and we talk slowly or fast according to what we want to convey. This is a problem we have not solved, merely worked our way around by letting INFQF use words as the time unit. Our frequency parameter in the power spectracalculated by INFOF is

 4344

Figure 7.14 (a). Artificial text string which generates an information array with a wavelength lambda = ib.

LA168, 17B337RF 1650F1
POWER SPECTRUM

Figure 7.14 (b). Fower spectrum of text string in fig 7.14 (a).
therefore not one of real time, but one of word units, but we shall later see, how this feature, which superficially looks like a serious limitation, turns out to be a 'blessing in disguise'.

The way I have described the concept of Fourier transformation, it may appear, that there is only one kind of Fourier transformation. As a matter of fact, there are almost as many different tranformation formulas as there are different geometrical shapes of pulses, i.e. triangular, sawtooth, square etc. On top of that, each of the different kinds of modulation, i.e.amplitude modulation and frequency modulation has got its own set of formulas. It is very much a question of defining what one wants to achieve, and then - sontimes by trial and error finding the right kind of transform l.e. the transform ahich gives consistent results. But whatever transform is used, the principle of all Fourier analysis is still basically that of 'dissolving" complex wave forms or structures into simple wave forms or structures.
The research presented in this thesis too has had to alternate between different types of transform, one being the Fast fourier Transform (FFT) and the other being a transform developed parti-
cularly for the analysis of time series or event-analysis.
It is important to understand the basic difference between a time series transform and the Fast Fourier Transform. The first transform - the time series transform - can only transform a series of timings i.e. times lapsed between successive events, or distances between events e.g. distances between successive peaks or between the 'ones' of our information arrays

$$
\operatorname{IA}[1: 20]=1,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,1
$$

I shall expand more fully on this when 1 explain the computer programs in chapter 9. Let us just now for the sake of explaining the nature of a time series say, that the information array could be translated into the time series

$$
\operatorname{IT}[1,5]=2,5,1,4,2
$$

by counting the spaces between the 1^{\prime} e in IA. This transform does not tal:e account of the shape of the pulse (square, triangular, sinusoidal etc.) and depends on the pulses of events being very narrow. Since the timeseries transform does not recognise shape particularly not hight - THE TIME SERIES TRANSFORM DOES NOT TAKE ACCOUNT OF THE AMFLITUDE OF THE SIGNAL.

This inability to provide for a multitude of signal levels is going to become a problem, because - as we shall see in chapter 8 - it is not realistic to imagine that all the words in a text string carry the same information. Our common sense tells us, that some words carry more information than others, so a realistic information array may look like this:

$$
\text { IA[1:20] }=1,0,0,8,0,0,0,0,0,1,0,1,0,0,0,0,8,0,0,1
$$

where some of the information carrying words have transferred information of magnitude 8 and others have transferred information of 1 or nothing. This array does not translate directly into a time series, so to transform this signal with its three signal levels 0.1 and 8 we would use the Fast Fourier Transform instead.

In the Fast Fourier Transform, the amplitude of the signal as well as the shape of its pulses have become part of the analysis and have an impact on the power spectrum. This is important often essential - in some kinds of analysis, but does on the other hand have its disadvantagess One is, that if the signal is made up of square pulses, as the case is in our application of the transforms, we will get some peaks in the high fequency part of the spectrum, which are not part of the structure of the text string, but rather the high frequencies which go to make up the sharp corners of the square pulses as explained in the beginning of this chapter (figure 7.3 b). Although this high frequency power is genuine in the sense that it is a part of the "squareness. of the pulses, it is not part of the text string structures themselves, but an arte fact arising from our use of square pulses to carry the information from the text string structures into the FFT.
-In cases where this high frequency power is going to 'mask' important high frequency peaks, one would instead try to use the time series transform to reduce the 'noise' in the high frequency part of the spectrum, but in the cases where the amplitude of the
signal MUST be taken into account, one would have to use the fast Fourier Transform and accept the "disfiguration" or "noise" in the high frequency part of the power spectrum.

We are primarily going to use the FFT for the analysis of analog signals - signals with more than two signal levels. If the signals we wanted to analyse had only two signal levels like the $1^{\prime} \mathrm{s}$ and O^{\prime} s of our information arrays, the FFT would still be perfectly usable since, if a transform is sensitive to a continuum of amplitudes or signal levels, it does not matter whether these levels are 1 and 0 - or 2 and five - or whatever. 80 in that sense the FFT is "binary" just as much as it is "analog". But if FFT caters for "binary" signals as well as for "analog" signals, what is the point of having two Fourier transforms - the timeseries and the FFT - instead of just the one, the FFT.

There are a couple of reasons why I have used both transforms. The first one is the necessity - in an experimental set-up like the present - to use at least two different methods so as to compare the spectra resulting from the different transforms. The two transforms used on the same text string should give more or less identical spectra. Figure 12.1 in chapter 12 shows. that this is indeed the case.

The second reason has to do with the demands which the FFT tends to impose on the experiment. The minimum number of frequency points necessary to give a good power spectrum is 32 points. But if we want a spectrum of 32 frequency points, then we need to "feed" the Fast Fourier Transform with 64 observations since the FFT only yields half as many frequency points as we have observations, whereas with the time series transform we get the same number of frequency points in the power spectrum as we have observations in the time domain. This means, that with the same number of observations: the FFT will give only half the resolution in the power spectrum of that of the timeseries. The FFT spectrum is thus coarser than the spectrum from the timeseries transform, for the same number of observations. other restrictions imposed on us by the FFT and by the perception model suggested in chapter B bring the minimum length of text string up to around 120 words: which is far too great a demand for many of the text strings written by children.
For this reason, the time series transform has been the main tool in my analysis of text strings. Only when the need to analyse amplitudes of the signal arises, will the FFT be called upon.

Two applications of Fourier analysis to black box" systems.
I shall now demonstrate a couple of applications of the fourier transformation to "enclosed' systems, one of wich is a mechanical one, the other a physiological one. Buperficially these examples may not have much to do with power spectral analysis of continuous text strings. However, they demonstrate the important application of Fourier analysis to the output information from 'black box' systems; systems wich are not directiy aceessible, or which would alter significantly if acceseed. Furthermore, the examples will give you a feel of what fourier analysis is.
The first example (fig.7.16) from a technical journal (Rand-
all,1980) shows how fourier analysis is used to distinguish between a worn and a not so worn gear bow by picking up, amongst a multitude of different noises, the repetitive sound pattern of one rotating part (worn ist gear cog-wheel). The graphs to the left are the power spectra resulting from a Fourier transformation of the sound waves emitted from the gear box. On the top graph (left) there is a clear peak at around 30 hz and a number of smaller peaks in fast succession along the entire sfectrum emanating from the second biggest peak at around 10 hz . This is the power spectrum and we are now on the frequency domain.

If we only wanted to know which cog-wheel (s) in the gear box were about to break up, we could deduct this information from the power spectrum, and we could terminate our analysis here.

However, we could go a bit further and transform the power spectrum back to where we came from, back to the initial time domain. As you may remember from my initial explanation of the fourier transformation, it works both ways. So if we apply the fourier transform to the power spectrum ($7.16,1 \mathrm{eft}$) we will move back to the time domain and our power spectrum turns back into a frequency spectrum. This would give the graphs to the right. The time domain is here called 'quefrency' domain (the unit is seconds) to indicate that it is not the initial time domaing but is derived from a frequency domain by means of a second Fourier transformation. What we have achieved by transforming ourselves back to where we came from, by the means of two Fourier transformations, is basically that we have produced an enhanced picture of the sound waves initially emitted by the gear box. We have, so to speak, produced a less 'noisy' picture of the initial sound spectrum, a noise level which allows us to distinguish features particularly associated with the wear of a gear box.

This demonstrates another and very important use of fourier transformation. Since structural features in any signal transform into peaks, while 'noise' - in the information theoretical sense - transforms into a low level current normally lying just over the base line throughout the spectrum, it is easy, after the signal has been moved to the frequency domain by the means of Fourier transformation, to extract the noise by simply subtract this low level current in the frequency domain. This is not going to affect the structural information which is contained in the peaks only. In this way, any information masked by noise, may be

Figure 7.16 Analysis of gearbox by Fourier transformation.
Fourier transformed, the noise subtracted, and the peaks transformed back again. This is the technique behind image enhancing
of photographs taken by (spy) satellites.
Although we are concerned with the application of Fourier analysis to "soft machines" rather than to gearboxes, the above example still demonstrates the ability of Fourier analysis to analyse what is inside a "black: box" by means of the patterns sound or otherwise - emitted by the box.

This first example demonstrated the analysis of a mechanical "black box:". But if we want to analyse a "black box" then it does not matter whether the box is mechanical or part of a "soft machine" as the human apparition has been termed. If the svstem we want to analyse emits a signal and if the emitted signal can be put on a form suitable for Fourier analyeis, then the origin of the signal is of little importance. The Fourier analysis will dissolve the signal into a number of periodic sub-signals each reflecting the presence of a number of (mechanical) sub-components. Eut a number of physiological (e.g. neurological) processes emit periodic signals and can therefore be analysed in e\%actly the same way as the gearbox above. Of course, any signal components present will reflect biological components rather than mechanical components, but apart from this: the method is no different from the one applied above.

Fourier analysis was applied to neurological signals shortly after the first description of the Fast Fourier Transform in 1965. A more recent application of Fourier analysis to a physiological process has been that of power spectral analysis of heart beat signals, developed at the University of Groningen in Holland over the past five years (Mulder,1979). As this research elearly demonstrates the potential of Fourier analysis in establishing the presence of biological sub-control systems, and as this is esentially what I am trying to do in my search for structures in the linguistic signal emitted by humans; my next example shall be Mulder's application of fourier analysis to the heartbeat signal.
A continuous heart beat signal (Figure 7.17) is obtained with a pressure sensor of some kind. This signal, which is in the time domain. is passed through a digital filter, which smoothes it and converts it into an equidistant time series (Figure $\overline{7} . i \bar{B}$, next page).

Figure 7.17 Continuous heart beat signal.

After Fourier transformation of the signal in figure 7.18 we get the power spectrum in figure 7.19. In this power spectrum a
number of frequency components can be distinguished. It is believed, that each of these reflect a subsystem, a biological control system.

Figure 7.18 Heart beat signal after filtering.

frequency
$\left(\mathrm{H}_{3}{ }^{10^{-1}}\right)$
Figure 7.19 Heart beat signal after Fourier transformation.

1) The component around 0.03 Hz is thought to be related to the body temperature control system.
2) The component around 0.10 Hz is caused by oscillations in the blood pressure control system.
3) A component between 0.25 and 0.40 Hz reflecting breathing activity.
4) A component between 0.40 and 0.50 Hz is thought to reflect reactions to external stimuli in psychomotor tasks.

With these examples of practical applications of Fourier techniques I shall end this introduction to Fourier analysis. As you can see, Fourier analysis is equally applicable to "black boxes" of physiological origin as to black boxes" of the mechanical sort. For this reason I want to apply Fourier analysis to natural language in the hope, that by doing so, the "black box" of our linguistic device' shall reveal some of its processes.

CHAPTER 8.

meaning and the processing of text gtrings.

The research presented in this thesis has up to this point been based on different varieties of the commonly accepted concept of vocabulary. Although we have rectified some of the most blatant misapprehensions about the concept of vocabulary and have established the nature of the relationship between vocabulary and length of text string, the analysis up to this point has been based on an entirely statistical - albeit a dynamic rather than a static - evaluation. The time has now come to examine, in some detail, the cognitive processing of text strings. I write' examine' as if this process was readily accessible, which of course it is not. However, I shall at least be adding my bit of speculation to the already existing corpus which suggests one or two features of cognitive text string processing which it may be possible to model in computer software.

Theories of meaning.
In chapter 3 we examined Minsky's theory of frames and compared its main constituentsi frames and information-retrieval network, with Johnson-Laird's two types of mental models: the physical /perceptional and the conceptual models, and we looked at one feature which the two theories have in common, namely that of 'frame selection'. As you may recall, if our cognitive apparatus perceives the reality around it by selecting appropriate frames out of a number of possible frames, the information theory states that every time one frame is selected, entropy is being transformed into information, or put more simplys information is being transferred.

When it comes to our own personal experience of cognitive processing of text strings, as when we read or listen, the most important aspect is whether the text string 'makes sense" or not. There may be several reasons why a text string may not make sense, one of which may be that we are not able to relate it to the real, or at least a possible, world. We refer to this relationship as 'meaning'. We may ask what the meaning is of such and such a word, expression or act, and we would expect the response to be an introduction to the real, or a possible, world. One could of course contend with Wittgenstein that there is no such thing as meaning, but this is probably at odds with most peoples subjective experience of their own cognitive processing of text strings - written or spoken - in so far as this process is accessible by introspection.

It is thus prudent that we in the following should concern ourselves with the various uses and theories of "meaning" and single out the particular sense in which the torm "meaning" is used in the theoretical basis of the research in this thesis. Later we shall examine in more detail how Minsky sees his theory of frames applied to the cognitive processing of text strings, and we shall
try to establish if there is room for a concept of 'meaning' in the application of the theory of frames to the cognitive processing of text strings.
John Lyons (J. Lyons, 1983) discusses six contemporary theoriesi
The referential theory which holds that the meaning of an expression is what it refers to, or stands for: e.g., 'Fido' means Fido, "dog' means either the class of dogs or the properties they all share.

The ideational, or mentalistic theory which holds that the meaning of an expression is the idea, or concept, associated with it in the mind of anyone who knows it.

The behaviourist theory which holds that the meaning of an expression is either the stimulus that evokes it or the response that it evokes, or a combination of both.

The meaning-ig-use theory which holds that the meaning of an expression is determined by its use in language.

The verificationigt theory which holds that the meaning of an expression is determined by the verifiability of the sentences containing it.

The truth=conditional theory which holds that the meaning of an expression is its contribution to the truth-conditions of the sentences containing it.

Human language behaviour is undoubtedly the most complex of human activities, and it is inconceivable that any single principle could account for the full complexity of this behaviour. As Austin points out (J.L. Austin, 1962) we use language for many things: We make assertions or statements, we ask questions, issue commands, make promises, threaten, insult, as well as all the things Austin calls 'performative' - to baptize a child, to plight one's troth, to sentence a criminal and so on. Consequently, the nature of the relationship between an expression and a real or a possible world - that relationship we term 'meaning" may be just as varied as the different uses we make of language.

Consequently the above mentioned theories are not necessarily incompatible; some of them are probably even complementary. For each of the theories above, I can imagine a language act for which that theory holds true. Likewise, for each of them I can imagine a language act for which the theory is clearly false. This is not the place, however, to indulge in this exercise, because, what I am interested in is not so much what each of these theories state about meaning, rather what all these theories have in common.
 language elements. Whether these ilements are words, expressions or utterances, each of the theories states something about language elements which have been removed from their natural linguistic environment and prepared for analysis by having all connections to this environment cut off. The overwhelming complexity of human language behaviour may justify such 'in vitro' analyses of language elements in isolation, but few - if any - conclusions can be drawn from the analysis of a detached language element about the nature of general language behaviour. Consequently we
can not conclude anvthing about the nature of "meaning' in human language behaviour on the basis of an analysis of the meaning of isolated language elements, or to put it another wav: we can not extrapolate from "in vitro" analvsisto "in vivo' functions. Language behaviour is coherent, not onlv within the information medium itself. but coherent with real or possible worlds. The emphasis on the propositional aspects of language and the analvsis 'in vitro' of the truth conditions of detached language elements lead us nowhere.

Johnson-Laird (F'.N.Johnson-Laird. 1983) discusses three theories of meaning:

1) The lexical decomposition theory which assumes that words are represented by structured sequences of semantic components (called markers). and that comprehension involves a process of semantic decomposition into a set of "linauisticallv universal" components (also called'semantic primitives'), e.g. underlving the meaning of "woman" are the fundamental concepts of "human'. "female" and 'adult". and the meaning of "child" are the fundamentals of "human" and "not adult".
2) The meaning postulate theory which assumes that words cannot be adequatelv defined and that each morpheme in the vocabulary of natural language is represented by a corresponding unanalysed token in the mental language (sometimes known as "mentalese"). E.g. a sentence like a man lifts a child" mobilises the 3 words of the mentalese lexicon: "man". "child' "lift". and their corresponding meaning postulates: \{man\}s FOR ANY X : IF X IS A MAN THEN X IS HUMAN AND X IS ADULT AND X IS MALE. \{ehild\}: FOR ANY X, IF X IS A CHILD THEN X IS HUMAN AND NOT $\{X$ IS AN ADULT). \{1ift\}: FOF ANY X AND Y. IF X LIFTS Y THEN X CAUSES Y TO MOVE UPWARDS. According to this theorv there are no semantic primitives into which the meanings of words can be decomposed. and accordinglv there are no mental dictionary entries representing the meaning of words.
3) Semantic networks are essentiallv means for representing large numbers of related facts in a wav that can be readily interrogated bv a computer program. The theorv assumes that the meaning of a word is its set of verbal associations involvino a varietv of associative links. including class inclusion, part-whole, propertv of, and variable relations as specified by other defining wordg. E.g. people are unlikelv to learn that poodles are animalis. Rather do thev first learn that poodles are dogs: and later that dogs are animals. Consequently the semantic representation of poodles is not linked directlv to the semantic representation of animals, but indirectly by a semantic chaini poodle -> doq -> animal. Such a semantic chain is onlv the most basic element of a memantic network: The fully fledged theory envisages a three-dimensional structure with probabilistic/heuristic chains. Resent research has indeed indicated that mental storage of (at least some) semantic information is hierarchically organi sed.

These three theories of meaning all assume that meanings are represented by expressions in a mental language. They diverge on the vocabularv of that language, and how inferences based on the meanings of words are made.

The lexical decomposition theory assumes that words are pepre-
sented by structured sequences of memantic markers, and that comprehension involves a process of semantic decomposition. John-son-Laird emphasises however, that unless a theory relates language to the world, or to model of it. it is not a complete theory of meaning. The word 'woman" may be decomposed into the components "human", "adult", "female", but this procedure does not specify the full meaning of the word. It relates words to other words, universals or markers; it does not relate words to the real, or possible, world. The illusion of aignificance is created by an analysis that uses terms that everyone understands.

Ey using exotic terms - rather than terms that everyone understands - Johnson-Laird is able to demonstrate that the theory of meaning postulates makes the same basic mistake as does the lexical decomposition theorys that of "side steppping", rather than relating words to the real world:
....consider the status of a semantic theory based on, say, meaning postulates: but using an exotic language that you do not understand. It might well contain the following meaning postulate:
for any k, if x is ZUG then x is a GEK and x is not a PLEK.
where, say ZuG is the token corresponding to the word 'zug'. Such a postulate might well enable you to infer from "zug brochna' that 'gek brochna", but no matter how complex the system becomes, or how sophisticated the inferences that it can make, it does not provide a complete sematics. It tells you about the relations between words without telling you anything about what they pick out in the world. (P.N. John-son-Laird, 1983, p.231).

According to Johnson-Laird, the main empirical claim of semantic networks - the inheritance of properties - too appears to be an over-simplification in the light of present experimental results. Networks however: can always be revimed to accommodate new empirical phenomena, and are perhaps best thought of as a notation rather than a strong theory of meaning.

Despite their differing inadequacies, the most important characteristic of the three theories is what they have in common. Their main scientific function is to account for the perception of semantic properties such as anomaly and ambiguity and semantic relations such as synonymy and paraphrase. On the question of how language is related to the world they are silent" (ibid p.230).

John Lyons' criticism (J.Lyons, 19日3) of present meaning theories is similar to that of Johnson-Laird in as much as these theories say little about how language relates to the real world, and he puts the blame for this on the positivistic tradition of American and Eritish linguistic thinking, with its emphasis on the propositional aspects of language and truth-conditonal semantice in an irrelevant meta-linguistic world. If lingulstic thinking in Britain had followed a more balanced view between Continental existentialistic and British positivistic thinking, says Lyans, present theories would not have failed so blatantly to account for the most important.aspect of language behaviour, that of self-expression or subjectivity. About self-expression and subjectivity of utterance Lyons writess
....I want the term "self-expression" to be taken literallv. The self is not to be understood as being logicallv and psvchologically distinguishable from the beliefs, attitudes and emotions of which it is the seat or location. Still less is it to be taken. as it commonly is in the dominant intellectualist tradition referred to at the beginning of this section, as the reasoning faculty operating dispassionately upon the propositions stored in the mind or brought to it for judgment from observation of the external world.... The inadequecy of thruh-conditional semantics as a total theorv. not onlv of utterance-meaning, but also of sentence-meaning. derives ultimatelv from its restriction to propositional content and its inability to handle the phenomenon of subjectivitv. Self-expression cannot be reduced to the expression of propositional knowledge and beliefs. (J.Lyons, 1983, p.240).

John Lvons is here touching on something of great importance, namelv that it is all very well to analyse propositional utterances in relation to a well defined world; the problem is that such a world - the positivistic world of propositional calculus and set theorv - has nothing to do with the real world. The language of each individual refers to his or her past and present reality and past and present values of a real world. There is my world, and there is your world, just as there is any speaker's world and any listener's world. There are manv possible worlds. and the main function of language is to convev worlds - not words.
...a speaker must necessarilv refer to the world that he is describing from the viewpoint of the world he is in. I might just as well have put it the other wav round, saving that a speaker must refer to the actual or non-actual world that he is describing from the viewpoint of the world that is in him. (ibid p.241).

The notion of 'possible worlds'. the emphasis on the subjectivity of the language act and its importance as means of self-expression are the most important moves awav from the positivistic theories of meaning. The problem is, that parallel to this development there is considerable research going on into artificial intelligence, and the move away from the positivistic approach to meaning complicates matters considerably when we want to apply computers to fields like cognitive processing of language. Lyons, however, is convinced that there is nothing in subjective linguistics which should make it principally different from pasitivistic linguistics in terms of "computer applicability". It is only a question of developing further our present software to account for the increased complexity of subjectivelinguistics. It is onlv a question of time before the increased complexity of subjective linguistics is mirrored in the software controlled reading of natural text strings. Minsky's frame theory is one such attempt to increase the sophistication of a basically positivistic approach to cognitive processing.

Minsky' = theorv of frames.

In Chapter three we examined Minsky's theory of frames (M.Minsky. 1975) in general terms, and 1 explained the mechanism of the selection of the best match' and its implication for the transfer of information. In the following I shall explain how Minsky
sees his theorv of frames applied to the cognitive processing of text strings, and we shall examine this application of his theorv in the light of Johnson-Laird's and Lyons' findings as I have presented them above.

When I explained Minsky's theory of frames in Chapter three, the explanation was based on the visual/cognitive processing of items of the real world, the reason being that the theory of frames lends itself most readily to the processing of non-abstract, well defined objects. When we move from the concrete visual world to the sumbolic acts of language, the theorv of frames meets with the same problems of other attempts to relate mental representations to the real or possible world.

The structural base for cognitive processing of text strings, as Minsty sees it, is case-grammar which, he suggests, already constitutes a theorv of frame recall and slot filling. In the frame theoretical version of case-grammar the different orammatical categories can be seen as frames with slot filling programs. The two most important categories of case-grammar, the noun group and the verb group. contain the following slots: NOUN GROUF: determiner: ordinal. number, adjective(s), classifier. noun, qualifier. VERE GROUF: agent, instrument, co-agent, source, object. destination, former support, convevance, future support, former surroundings; trajectory, future surroundings. When reading a text string, our linguistic device would first search for a noun group and, on encountering this, fill each slot in turn, or, failing that, our lingusitic device would be looking for the verb group. Once each grammatical category has been identified, the meaning of each is established through the filling of the appropriate slots of the appropriate frame.

Minsky further suggests that there should be a front line understander charged with reducing all action concepts to simple combinations of primitive acts. There are two reasons for reducing all action to primitive acts. The first one is that it would reduce the size of the knowledge library. The second is that reduction is one method by which paraphrases may be recognised.

Primitive acts of the physical world could be: MOVE-BODY-FART, MOVE-DRJECT, EXPEL, INGEST, PROFEL, SPEAK. Primitive acts of perception could be: SEE, HEAR, SMELL, FEEL. And some acts of the mental and social world could be: MOVE-CONCEPT, THINK-ABOUT. CONCLUDE, TRANSFER-POSSESSION.

For illustration let us look at TRANSFER-POSSESSION. 'Take' and ' ${ }^{\prime}$ ive' are words that mobilise a frame around TRANSFER-POSSESSION with, amongst other slots, an actor slot, a source slot, a destination slot and an object slot. The sentence. Sue gives Robin a cake' mobilises the frame around TRANSFER-POSSESSION with the actor slot and source slot both filled by 'Sue', destination slot filled by 'Robin' and object slot filled by 'cake'. If the sentence had instead been 'Robin receives a cake from Sue', the actor slot and destination slot would both be filled by "Robin'. the source slot by 'Sue' and the object slot by 'cake'. Notice that 'giving" implies TRANSFER-POSSESSION with same actor and source, while receiving implies TRANSFER-POSSESSION with same actor and destination.

To deal with eventualities of ungrammatical utterances and the general 'untidiness' of real-life linguage, Minsky envisages a
rich mental library of frames which may be called upon on default". Some library frames would provide general knowledge like plausible cause-effect relationship, actions and state changes; others would provide mpecialised knowledge like how cause-effect relationship may be altered under special circumetances. All the frames of the mental library could work as subprocessors.

Understanding natural text strings involves frame finding and slot filling. When we start reading a text string, the first sentence or two evoke frame. Minsky does not epecify the minimal unit necessary to make a frame: but - in terms of extent the parallel to an earlier smallest unit of meaning in linguistics, that of "semem", seems obvious. As we go on reading; subsequent text segments fill the slots in the first frame. The slot filling may evoke new frames, introducing more open slots, and as the actor-action frames interweaves with state-change frames in cause-effect relationships, the reader pieces together a network of linked frames which constitutes an understanding of the text string.

Several features of Minsky's theory as a semantic model are open to criticism. The first one is that we rarely communicate in neatly arranged, grammatically clear sentences; therefore we can not base our comprehension on grammatical correctness. The second feature, I would question, is Minsky's suggestion that during cognitive processing of text strings we first establish the grammatical structure of an utterance - even if it is in casegrammar terms - and then establish the meaning. Johnson-Laird' sentence "I saw the Azores flying the Atlantic" is just one example of how context and meaning interact with general knowledge and references to establish intension. The third criticism is that it is difficult to say whether our ability to categorize sentence segments into grammatical types is the condition or the result of the selection and restriction of referents. What is generally called grammatical structure is a complex mixture of functionally different morphologic and semantic features, some of which undoubtedly restrict and select, but most of which are so interwoven with context and meaning as to make it impossible to give a full account of their function.

In semantic terme frames present the same problem as do single words detached from their textual context. Minsky"s frame theory acknowledges the influence of the context, but his notion of "frames" seeme to me to be too "strong" in the sense that the strategy and aseignment criteria for a frame is in the frame itself. But if a frame is to contain its own strategy, a statement likes "particles have wave properties' would not make sense because the assignment rules ladd down in the frame "particle" would not allow the frame to be assigned to "wave property". Even if we could draw on a mental lexicon to provide us with a frame of special knowledge, it would effectively destroy the frame "particle". But clearly this does not happeni weasily understand the statement "particles have wave properties".

As a software approach to a mental model of the world, which is what Mineky's theory of frames is, the theory has several merits. As a gemantic model the theory has some merits, although, according to Johnson-Laird, the theory is probably best thought of as a theory of notion rather than as a strong theory of semantics. Even if the 'best match' selection is much more sophisticated, apart from the added feature of recursive constraints on refe-
rents (frames), the selection of frames is basically similar to that of Weinreich and Futnam's theories of instantiation page 195). However, Minstiv does not explain how the constraints on a particular meaning arrives from that meaning itself (F.N.JohnsonLaird. 1983.p 235). If the notion of frames is to account for the intense interaction between restriction of reference and restriction of meaning. then a frame is much weaker and has much more flexible bounderies than Minsky envisages. On the question of how lanquage is related to the world. the theory is silent.

Meaning and context.
1 have several times emphasised how unrealistic and misleading 'in vitro" analyses of language can be. This state of affair becomes most striking when we focus on the relationship between meaning and context.

The idea of what constitutes context in a text string is generalIV verv intuitive. We know that we should not take a word out of its context" bv which we mean that the proper content of that word must be assessed in its wider linguistic enviranment, and not just as a part of a short detached text segment. But how much of the linguistic environment constitutes the context and the constraint of a word?

Referents of homonvms like "plane" are normallv defined by their immediate linguistic environment. "The plane landed". "the plane cut the wood" and "the big plane tree" are minimal linguistic environments which still clearly define the appropriate referents. Eut even if the constraints of the context has clearlv defined a referent, we must not expect referents to remain static. The interesting thing is that we are quite used to our mental models changing without our noticing as we read along. One of the most important features of our cognitive processing of text strings is the continuous defining and re-defining of the mental models which our linguistic device sets up as we read along. The mental model of say. a character in a detective story, alters as we read along, right up to the last page. The success of a detective story depends: among other things: on the writer's abilitv to keep a number of possible 'worlds' pending.

But we do not have to resort to homonyms or the characters of a detective story to see the subtle changes of referents as the linguistic enviranment changes.

Let us see what happens when I swing myself to Shakespearean heights and place the word "tree" in different linguistic environments:
"The tree was
the object of her tender care..."
"The tree was
the pride of generations of the family..."
"The tree was
a flutter of lifes birds shot in and out..."
"The tree was
stretching its branches over the naked, cold fields...""

I am now going to ask you to look: - by introspection - at your own semantical processing of "tree" in the four different sentences above. What I am asking you to do is to make some processes phenic. which are normally cryptic to you. If you do this and look at your phenic image of "tree" in each sentence, you will easily recognise that 'tree" has four different referents. I am probablv not far wrong, if 1 suggest, that "tree-(8.1)" was small and fragile. 'tree-(8.2)' was a big old tree, 'tree-(8.3)' was big and full of leaves and the last one. "tree-(8.4)" was a dark, naked tree in winter. I could of course right away have informed vou that these trees were respectivelyi young. old, full of leaves, without leaves: however. that is not the wav we normallv process the linguistic environment. Instead it appears that the potential for this information is already contained in our mental model of "tree". and the linauistic environment picks out each particular quality from the mental picture of "tree".

Selectional restriction.
The thesis that words do not have a few qualitativelv distinct meanings, but rather a whole familv of potential meanings was suggested independently by Weinrich (U.Weinrich.1966) and Futnam (H. Putnam,1975). According to this thesis the occurence of a word in a specific linguistic context instantiates" a specific sense which is a member of the familv. Encountering "plane" in an utterance our lingusitic device would mobilise a family of meanings: a tool for wood work: an aeroplane, a geometric feature or an even shape, and based on the specific context of the linguistic environment one of the meanings would be selected. In an assertion like 'they are handsome'. depending on whether handsome means generous or good looking, the meaning of "they" is restricted accordinglv.

Although in agreement with the principle that some measure of selectional restriction takes place when we process natural language, Johnson-Laird makes two important points. It is nonsense, states Johnson-Laird. to suppose that the meaning of "thev' in 'thev are handsome" is affected by a selectional restriction: what changes is its referent, and, in general, what have to be constrained are the referents of expression. If we take a sentence like "it attacked the swimmer" chances are that we would suggest that "it" stands for shark. However, even if 'it" mav refer to indefinitely many entities, it still only has one meaning. What is being selected is not a specific meaning, but a specific referent.

Johnson-Laird also points out that in focusing on selectional restriction we often forget the interaction between meaning, referents and context. Meaning and context are complementary. In the interaction between meaning and context in natural language, context and meaning may restrict referents, but just as important is it that referents in their turn determine context and meaning. Likewise, the reference of some expressions may equally play a role in determining the senses of other expressions. Resorting to small text segments to demonstrate - "in vitro" - the impact of the context on the meaning of words, as is the usual practice, tends to demonstrate only one side of this complex interaction.

Pondering over the different (im)poseible interpretations of a
sentence like 'I saw the Azores flying the Atlantic' JohnsonLaird (P.N.Johnson-Laird,1983) concludes that the constraints on a Rarticylar meaning derive from that meaning itgelf. What a listener really does in interpreting the sentence. I saw the Azores flying the Atlantic' is to determine whether it is possible for the Azores to 'travel' through the air over the Atlantic Ocean. This proposition can only be decided by making an implicit inference based on general knowledges
.....such inferences often depend on the particular situation that is being referred to: e.g., in the context of a story about how the earth explodes, the Azores might well fly over the Atlantic Ocean. The evaluation of what is a possible referent for, say, the subject of a verb is almost invariably a matter that depends on the nature of the events to which reference is made...... The subject of the verb to love, for example, must be classifiable as human or animal. There is thus a semantic anomaly in the sentences "The chair loved the table'. Yet in a context where the dish ran away with the spoon, there may be nothing anomalous about a chair's falling in love with a table. The most that can be conceded is that some inferences become so frequent and commonplace that rather than having to make them over and over again, people keep a record of their outcome....Doctors generally cure patients rather than the converse; professors generally lecture students rather than the converse; waiters generally serve customers rather than the converse. (pp236-238).

Even if we accept that some inferences are so common that we keep a record of their outcome, there are still a number of assertions for which we would have to make inferences to real or possible worlds. However, a model of semantics based on inferences to real or possible worlds is not acceptable because there are infinitely many possible worlds; and infinitely many inferences might have to be made. What Johnson-Laird argues is that if we accept his theory of mental models (see Chapter three) then the solution to the problem of there being infinitely many possible worlds is that a mental model is a gingle cepresentative samele from the set of models 巨atisfying the assertion. Johnson-Laird stresses that the notion of a representative Eample does NOT imply that a set of models satisfying the context is constructed and then a sample is selected from them. On the contrary, comprehension normally leads to the construction of just one single model which satisfies an assertion. If subsequent assertion shows that this particular model is incorrect, then recursive procedures attempt to reconstruct the model so as to satisfy the current set of assertions. The important point is that the significance of an assertion depends on both the mental model and the procedures which evaluate and manipulate it.

With regard to the feature of selectional restriction it seems that Minsky's and Johnson-Laird's theories are opposed. Minsky's frames clearly depend on selectional restriction both on slot level and frame level. Johnson-Laird claims that his notion of a regresentative sample does NOT imply that a eet of models is constructed from which the selection takes place. According to Johnson-Laird only one single model is constructed which satisfy the constraints arising from the linguistic environment around a word. According to Johnson-Laird his theory does not depend on selectional restriction whereas Minsky's theory does. I can not agree with Johnson-Laird to his representative sample not
implying selectional restriction. The general notion of 'representative' assumes some measure of selection. The selection may take place on a level where models are not vet constructed, but selectional restriction does take place. The difference between Minsky's theory and Johnson-Laird's theory in terms of selectional restriction is not whether selectional restriction takes place or not, but the structure level on which the selectional restriction takes place. Whereas Minsky's selectional restriction takes place both within and above his frames, Johnson-Laird is merely claiming, so I shall contend, that the selectional restriction in his theory takes place as a precursor to the creation of a mental model.

In terms of selectional restriction the following model of "best fit, is placed between Minsky's theory of frames and JohnsonLaird's mental models. I want to emphasise that I am NOT attempting a full description or analysis of our linguistic device. Nor am I in any way trying to create a semantic model. I am only interested in one single feature of our linguistic device, namely that of the selectional restriction wich takes place as a result of the interaction between context and words. If, as I shall assume. selectional restriction in some form takes place during the cognitive processing of text strings, the concepts of information theory, with regard to selection, would apply, and we should be able to establish the presence of such selectional procedures by measuring the transfer of entropy into information caused by this selection.

A theary of "best fit".

We have in this and previous chapters been introduced to a number of linguistic/semantic theories and have examined more closely those that are most relevant to the research presented in this thesis. We have been made aware of the shortcomings of some of the theories and the pitfalls of others. We found that the major deficiencies of present linguistic/semantic models are their inability to account for self-expression and subjectivity of language, their inability to account for the interaction between referents and context, and the failure to describe the relationship between mental language and the real or possible world.

In the following 1 shall deseribe the theory of "best fit". This theory is based on what I have called a minimum reference unit (MRU). When our linguistic device encounters word in a text string, the word's MRU is mobilised. The minimum reference unit differs from Minsky's frames in three waysz

1. The extengion of an MRU is flexiblec

We must imagine an MRU as a dynamic entity, contracting and expanding in complex and little underetood ways.

Although the internal of a Minsky frame is easily ehanged in the sense that a number of slots are filled to match a specific linguistic environment, the frame itself is not changeable. If a best match can not be found by means of "reslotting", the frame is discarded. In the theory of "best fit", on the contrary, the MRU is not discarded if a best mateh can not be found. Instead, the MRU is revised in its
entirety by recursive processes until it $f \underline{i} \underline{\underline{E}}$ into its specific linguistic environment. Only this level of flexibility can account for the full interaction between referents and context.

2. An MRU has no internal strategy.

MRUs do not contain a strategy in the sense that an inference shall provide a predictable referent. An MRU is a probabilistic/heuristic unit which changes its program after each inference involving the unit. If MRUs are controlled by fixed strategies - algorithmic programs - it is entirely externally, from other MRUs or from supervisory functions. Only this level of adaptability can provide for the necessary flexibility of constraint of referents.

3. An MRU functions as an n-dimengional probability seace.

The MRU, as I envisage it. is an entity fneurological or otherwise) in which each of a number of referents: resulting from earlier inferences: are represented by a bond: the strength of which is probability weighted according to amongst other factors - how frequent that referent has been the result of former inferences. The bonds of an MRU are thus vectors in an n-dimensional probability space. The size of " n " I shall return to on the following page, but some of the parameters would depend on e.g. how long ago a particular referent was the result of an inference, the impact from other (grammatical) units, the impact from the context etc. in short: a number of forces from the full linguistic environment.

1 mentioned above that time is probably an important factor. If a specific inference has just been made there should be a very high probability that the resulting referent is re-selected. If 'plane' has just meant 'aeroplane' in a text string, we expect it to mean 'aeroplane' again if we meet 'plane' within a short space of time - or short length of text string. Accepting that time is one important parameter in the n-dimensional probability space would thus account for the feature of extension of context. The constancy of referent over some minimum period of time, or length of text string, means, in information theoretical terms, that the structure of the MRU, which provided the referent, has increased for as long as that referent is constant. We could say that the MRU temporarily has 'set', while the referent remains constant, to indicate that the structure within the MRU temporarily has increased. When the constraints on an MRU changes and a particular referent is no longer current, we must imagine that the MRU 'falls back' to its former, less structured, malleable state. I am of course not implying that inferences are made solely according to probability, but there must be significant elements of probability and learning involved, as quoted above (p 193) from Johnson-Laird.

The problem about semantic models based on inferences to real or possible worlds is, as Johnson-Laird also points out, that there are infinitely many possible worlds, and infinitely many inferences may have to be made. Let us consider for a moment how many inferences we would be able to muster for one word, or put
another ways What would be the maximum number of bonds our MRU could manage? I am sure that we do not expect astronomical numbers; but would an MRU be able to handle, say, 100 probability weighted vectors?? or only 20? Some research has focused on the ability of humans to assess and grade a sensory continuum (Miller. 1956). The experiments dealt with qualities like acidity of solutions, tone pitch and tone volume, and showed, that we can grade a continuum in no more than $7(+1-2)$ different levels. Experiments; which have been done on short span memory, give similar results: we can remember on average a sequence of 7 symbols without the use of special recall techniques. So, realistically the answer, to how big is ' n ' above, iss not greater than between 7 to 9. i.e. an MRU would be able to connect to maximally 7 to 9 referents.

Let us return to the four different miniature linguistic enviranments of sentences (8.1) to (8.4) on page 194 and process them with a view to selectional restriction, first according to Minsky's theory of frames, and next: according to the theory of best fit.

In Minsky's model of semantics, "tree" would mobilise the frame 'TREE' which would contain numerous empty slots. Some slots would be of the kind: 'shape-slot', 'size-slot': 'colour-slot'. Some slots could be: leaf-slot, 'nests-slot'. 'state-of-health-slot'. As each slot is being filled, our linguistic device compares the frame with the specific linguistic environment of 'tree' and selects in each case the slot-qaulifier which gives the whole frame 'TREE' the 'best match' with its linguistic environment. In information theoretical terms there would be considerable information transfer since each selection of the 'best match' slotqualifier and eventually the final selection of the "best match" frame would constitute a transformation of entropy into information.

According to the theory of best fit, when we perceive a word like 'tree' our linguistic device mobilises an MRU which contains a number of weak bonds which on their own are too weak to produce a referent. If 'tree' is placed in a linguistic environment, i.e. an environment with intimate interaction between words. each word will mobilise an MRU and some supervisory control contained in the linguistic device will attempt to establish manimum re= sigtance track through the bonds of all involved MRUs. To account for the intimate interaction between units: such a minimum resistance track must be established instantanously through all MRUs at the same time. The liking of the situation to a pile of index cards poked by a knitting needle i.e. sequentially, would not account for the interaction which we know takes place. We must envisage that the minimum resistance track is established through all MRUs at the same time, i.e. in garallel. The bond nearest the minimum resistance track in each MRU shall 'point' to that units referent (i.e. the probability vector assigned to that bond shall point to that units referent). The feature mentioned above - that each bond would be probability weighted - would still hold, and the chance, that the minimum resistance track would go through a bond, would depend on the probability aseigned to that bond if.e. would depend on the direction and length of the probability vector assigned to that bond).

Fractical problems around the theory of best fit.
The principle of restrictive selection outlined above has been the underlying principle throughout the analysis of text strings in the following research. Although I would have liked to carry out my analyses on the relative boldness of verbal text strings rather than on written text strings with their reflected structures and gloss-up, this has proved impossible. The linguistic environment of verbal text strings is so complex and difficult to handle, that I have had to limit my research to books and, in the case of children, self-contained short stories.

The benefit of using books or self-contained short stories as a data base is that each of this kind of material can be considered to provide a small 'language universe' of its own. A semantical enclave in which the whole linguistic environment is contained in the text itself, unlike the case of real life communication, where a whole range of uncontrollable parameters add to the linguistic environment. In a self-contained book we may consider to be present all the constraint-imposers necessary to reproduce the author's semantical enclave, his intension, around us - or within us. May be 'language universe' is a rather ambitious term when 'possible world' would do, but by terming it 'language universe'. I feel, that I preserve the idea of uniqueness of what any author - albeit with different skill - tries to conveys the idea of uniqueness and subjectivity which Lyons rightly holds in such high regard.

Let us imagine, that we are reading a particular text string, and let us simplify for the sake of comprehension. First of all, we want to analyse continuous text strings, so I shall start by assuming, that some of the words in the string have been read (some of the MRUs have produced a referent) and a linguistic environment is beginning to emerge. This is how I see Same of the cognitive processing involved in reading a continous text string according to the theory of best fit: We have read enough to have created a linguistic environment inside us. We read on, and when a new word arrives in the text string, another MRU is ready to be constrained by the linguistic environment. What happens INTERNALLY, in the MRU, is that the referent pointed to by the highest probability bond will be checked by the linguistic device to establish if it conforms with the external constraints sthe linguistic environment constituted by the text string). If it does not conform with the external constraints, the referent pointed to by the second highest probability bond will be checked and so on until the referent pointed to by the lowest probability bond has been checked. If none of the referents pointed to by the vectors of the MRU have been found suitable, i.e. if no best fit has been found, the linguistic device will insert the necessary referent somewhere near the MRU and point to it with a very short probability vector from a new bond inside the MRU. If a best fit has been found, we can go on taking the following words in. Every time our MRU has suggested a referent, this would be followed by external checking lanalysis by synthesis as suggested by Liberman (Liberman, Mattingly and Turvey, 1972), external /internal refusal, internal suggestion of another referent, another external checking and so on, back an fro between the MRU and the internal or external linguistic environments untill the best fit has been found. The intake of one single word at a time should not be taken too litteraliy. It is woll known, that a skilled reader often scans unconsciously ahead of the word his attention is
focused on. But simulating a reading technique, which reads one word at a time, is at least not unrealistic.

If you at this point can remember any of the information theory which opened this paper, you may recall, that gaining information had to do with structuring. We could increase the information in a system by increasing the structure in a sub-system. But this is exactly what happens during perception of textetrings in a model like the theary of best fit. When a new word is encountered, the MRU of this word is mobilised and if a best fit has been established; the structure of this MRU increases momentarily, or as long as the constraints from the linguistic environment remain stable. But according to the theory of information, the increase in the structure of the MRU constitutes an increase in information. But from that must also follow, that every time a new word is constrained and a best fit has been found, there must be a gain in information. It does not make sense to assume, that new words would not be constrained (a best fit not found), because this would mean, that the reader did not process the text. We can therefore take for granted, that provided the text string being analysed makes sense, then a new word's arrival in such a string implies a gain in information. What I have tried to establish in my research is whether there is a specific pattern of information pulses arising from the processes of selectional restriction and best fit, a super-structure which does not rely on a syntax grammar: but on a 'grammar' of information pulses.

Generally, a word is only new the first time it is encountered in the text string being analysed. However, whereas this is obvious in computer operational terms, in cognitive terms, such a view is far too simplistic. The semantic content of a word is a dynamic entity. We often forget this, because the fact, that we pronounce and spell a word the same way time and time again, belies the dynamic nature of what this word may refer to, and attaches to our language processing an illusion of concreteness.

In cognitive terms the semantic content of the same word in two linguistic settings is really only the same if the two linguistic environments are identical in every semantical detail, and that is unlikely. We do not use language the way we use mathematics or logic: if we did, very little information would be transferred. The languages of mathematics and logic are languages with a very high redundancy. Accordingly, what little information can be gained appears as re-arrangements of well defined units or 'words' which do not change their content when they are restructured or re-arranged. Natural 1 anguage is very different in that the information unit, be it on the word level or semem sevel, gets its meaning from its environment at the same time and to the same extent - as the environment becomes meaningful through the use of a particular referent.

Even though we can say with some justification that a word is more likely to transfer information first time it is encountered in a text string than when it is repeated, this does indeed depend on how much the semantic content of the word has changed from the first time it is encountered to the second or following times that its best fit; has been established. I envisage that the "best fit" of a word remains relatively unchanged for some time - or some length of text string. The problem is establishing this length of string. If we are too exact in our assessment of the change of semantic content we render our analysis unworkable
since the semantic content of most words is never entirely the same. If we are too 'loose', we render our analysis useless. I shall later suggest a method of establishing the length of the string - the REFERENCE FIELD - within which the semantic content, the 'best fit', of a word is defineg as being 'constant'. In this case however, it will be done on a pragmatic basis, for the purpose of a well defined Fourier transformation ONLY . The question is then whether we are any better off defining the reference field in this way, but as I shall explain later, I think we are at least marginaliy.

There is another important point; that of quantity of information transferred per new word i.e. per each new best fit. On page 198 and 199 we dealt briefly with the suggestion that the maximum number of referents, an MRU is able to point to, is around eight. As suggested elsewhere these referents are attached to the MRU through bonds which are probability weighted.

For the sake of explaining, let us say, that the MRU of a fairly concrete word like 'tree' contains four bonds representing four different referents of 'tree' and the attached probabilites: 0.4; 0.3 , 0.2 and 0.1 . Since the bonds are probability weighted the sum of the probabilities is of course 1.O. If the referent pointed to by the bond with the highest probability of 0.4 is selected as the best fit, the information transferred, as explained in Chapter 1, is $I=-\log (p)$ i.e. $I=-\log (0.4)=1.32$ bit. If the referent to be selected as a best fit was the one pointed to by the bond with the lowest probability of 0.1 the information transferred would be $1=-1 \mathrm{og}(0.1)=3.32$. As we recall, the legs likely the selection, the higher the transfer of information. By the same token, if the best fit to be selected is the "standard" referent of a word, the information transfer is not as great as if the referent to be selected represents the more unlikely case.

If we take another kind of word, an abstract like 'love', which, judging from variety, must number thousands and thousands of possible referents, the limitations of our perception still limits the number of bonds in the MRU 'love' to around eight. I shall not hazard to guess what these eight most common referents of 'love' are, suffice to sav, the probability weighting of the bonds in your MRU 'love' would probably be quite different from those of mine, since the MRU represents our own subjective linguistic experience. The fascinating thing about the notion of MRU is that the rarer the occurrence, the higher the information transfer: Let us assume that we can generally agree to what is the most common referent of 'love' and let us say that the bond in the MRU 'love' pointing to this referent has a probability weighting of, say, 0.5 because it is a very general token of 'love'). Let us further say that six of the other bonds in the MRU represent referents less common, but still quite 'acceptable' (in whatever terms) and say they each have a weighting of 0.08. The last referent picked as the best fit to a linguistic environment, however, turns out to be rather unheard of in terms of 'love' and gets the weighting 0.01 sbecause there are maximum 8 bonds, and 0.01 left until all probabilities add up to 1.0). In terms of information, the different best fits would transfers 'the ordinary' $=1.0$ bit, 'the acceptable' $=3.6$ bit and the "not so acceptable' = 6.6 bit! I leave it to you to judge what people would rather talk about!

It would be desirable if we could measure exactly the transfer of
information for each best fit as it is selected during the computerised reading of text strings later in this thesis. but it is not possible. However. what I am interested in are only the pulses of information not their amplitude. Fortunatelv their are versions of the fourier transform which are independent of the amplitude. so this is not going to become a problem. For simplicitv we could therefore say that a best fit transfers information of the value one or zero depending on whether the word is new or a repeat.

For the moment being. I shall asign to each RECOGNISED word the value O bit and to each NEW word a positive value of information equal to 1 bit. Furthermore. I shall for future purposes use the following terms: A word is in "I-mode" first time it is encountered in the text string which is being analysed, and in "O-mode" if it has been encountered before in the text string in question. Accordinglv. first time a word is being read and is in "I-mode" it will transfer a positive amount of information. If the word reappears in the textstring, and thus is in "ロ-mode", zero bit of information is being transferred.

Secondlv, whether a word is new or a repeat is a question of whether it is repeated within its REFERENCE FIELD. As touched upon above, it is possible to envisaoe - at least theoretically a length of text string within which the semantic content of a word is unchanged. This length of text string i shall call the word"s reference field and when we judge whether a word is in Imode or 0 -mode, it is onlv with reference to this field - not the entire text string from word one. If the ward is repeated within this reference field, the word will not have changed its semantic content and shall count as an o-mode. If the word is repeated outwith its reference field, the semantic content of the word has changed enough to justify that it counts as a new word: an Imode. I shall enlarge on this in the second half of this chapter.

I have assumed above. that all words in I-mode will transfer a pulse of information. However. some words like the small words "and", "the" and "for" and numerals like "two". "three" and "a dozen" do not so easily lend themselves to the same best fit selection as mav more likelv candidates like nouns and adjectives. The semantical content of such words is so entwined with the words thev relate to, that their own semantical content is negligible. It is questionable whether such words can be given a semantical content on their own. In a way, they seem to be passive parts of the linguistic environment, sections which constrain, but are not themselves constrained. Nevertheless, even if such words do not immediately fit the bill. I assume that they somehow do contribute to the information transfer. for which reason thev will be analysed and treated like all other words in the text strings.

The "one word - one role' concept of 1 anduage processing has its roots in the simplistic idea that the linguistic device orderly generates or decodes text etrings one word at time with minimum regard as to what precedes or succedes each unit. Or to put it another way, according to this view, text strings are processed serially. However, from the examples of this chapter, and indeed from every dav observations, it is obvious, that the basis of language processing can not be only serial, but must be parallel as well.

When the end result of the language generating process is a text string, this text string is by its very nature serial ie, the units of information are arranged seriallv. However, this is only the case on the superficial representative level. The process which generated the text string can not possibly be serial since, as we have seen above, the text string on the semantic level is produced or analysed in conjunction with its environment - its neighbouring semantical units, its svntax and its grammar.

As to whether the linguistic process of generating or decoding text strings is parallel AND serial or only parallel, the question is onlv academic. since a serial processs can be seen as a special case of parallel processing, namely the case $N=1$, where N is the number of parallel channels. As to how manv parallel channels our linquistic device is able to handle, one can only quess. If we look at simple channels - channels with no wait stages, which only process one semantic unit at a time - and we assume - equally simplistically - that the process is a one level process. then a SFOKEN, GRAMMATICALLY COHERENT AND SEMANTICALLY MEANINGFUL sentence would require as manv channels as there were semantic units in the sentence. However, it is equally possible, and much more probable, that our channels have wait stages, and that the processing is multi-level. If this is the case, then there are two possibilities: either each grammatical class constitutes one channel. or each channel can take on different qrammatical functions. The latter would be the more economical in terms of number of channels, the former would be the more economical in terms of speed.

Fersonallv, I see the stem diagrams of the functional analvsis, like the one in figure 2.5 (page 30) as representing such a kind of parallel processing. If it is indeed possible for our linguistic device to process one level at a time, and reprogram each channel according to which grammatical function it is going to proces, then we mav never need more than three channels (plus some intermediate store units, plus the hard wiring of the grammatical function of these channels, plus the firm wiring of the exceptions to the hard wired arammatical functions). If on the other hand, for the sake of speed, each grammatical function constitutes one channel, then we would need one channel per grammatical class plus intermediate store units, plus firm wiring of the exceptions to the hard wired processing through each grammatical channel.

Wherever our speculations may take us, one thing is certains the reality of the human language processing is far more complex than we are able to anticipate, and the above considerations, as to the nature of this processing, are only tentative excursions into the realms of the possible - as opposed to the probable.

So much said, it does appear from my research, that our linguistic device is able to handle a great number, may be as many as over a hundred, of parallel channels at any given time.

In the second half of this chapter we shall move the emphasis from the theoretical aspects of the model of best fit to the practical proplems arising from the application of this model to the stucture analysis of text strings by a computer program.

THE FRACTICAL IMFLEMENTATION OF THE MODEL OF 'EEST FIT'.

In the second half of this chapter I shall enlarge further on the model of 'best fit' developed in the last chapter and show how this model can be employed in practical terms in the automatic reading of text strings.
As you may recall from the beginning of this chapter, I introduced a new terminology: 'I-mode' Was the state of a word first time it was encountered in a text string, '0-mode' was the state of a repeated word. I furthermore decided, that the state of a word, I-mode or 0 -mode, should be determined not by reference to the whole string preceding the word in question, but by reference to some shorter string, the exact length of which we have yet to determine.
You may recall too, that we looked at the impulses of information transferred each time a word is in I-mode, and we illustrated this transfer by filling in an information array with ones or zeroes according to whether the word was in I-mode or in 0 -mode. The main obstacle against our accepting the checking of incoming words against all the preceding words in the string to establish if a word is in I-mode or 0-mode (an approach which I shall call the 'straight forward approach') was, that by doing so, we would get an information array with an increasing ratio of zeroes and very few "ones', which again would infer, that after some reading, there would be little or no information transferred. In the case of a book containing say, 10,000 words, if we stuck to the straight forward approach, there would be few - if any - new words arriving in the text string towards the end of the book.

This state of affairs is clearly at odds with our common-sense knowledge about what happens while we read a book. Al though some items of literature can be pretty trying, we know from experience that generally the transfer of information does not drop to virtually nil after the reading of even several thousand words. We normally feel that we get more and more out of a book as we read on: not less and less.

As our common-sense notion of reading is that the information transfer is fairly constant during the reading of whatever length of text string, we would expect thie information array of ones and zeroes to mirror this fact by the ratio between the ones and the zeroes being equally fairly constant.

Another obstacle to the 'straight forward approach' was the fact, that words are only vehicles of information - not the information itself. A word has an outer form, which can be the way it is spelled, but much more important than this outer form is its substance, i.e. the meanings or the connotations which are evoked in us by the outer form of the word. To take account of only the form and not the substance is to miss the essential, but also the most complex, feature of our linguistic behaviour. Ideally, when we analyse text strings; we are not interested in the words per se, what we really want to know is whether the content of each word, its meaning, has changed. So if we want to count proper 0-
modes and I-modes in a text string, we would ideally check: preceding semems - not words - for repeats.

This however, demands cognitive skills which we can not employ in our automatic reading of terit strings. We are confined to compare forms. and forms only.

However, a couple of times in the past we have touched on the idea, that although the semantic content of a word changes as its environment - its linguistic surroundings - changes, it is not conceivable that this content, the meaning of the word. should not be fairly constant over a certain minimum length of text string. I state 'not conceivable" because in all (other) intellectual processes our brain depends on some degree of generalisation of the environment (words included) to carry out these processes.
As implied above, the concept of a reference field is a concept closely related to each individual word. Each individual word has its own length of text string over which its semantic content stays fairly constant. The semantic content of some static abstracts like numerals would be constant over a considerable length of text string, whereas dynamic abstracts like 'love' and "hate" would be constant over relatively short lengths of string.

This minimum length of text string, during which the semantic content of a word - the word's 'best fit" - is fairly constant: I have called the 'reference field" of that particular word. The exact length of this reference field is however as difficult to establish as the semantic content of the word itself. For the purpose of this present research I shall only assume with regard to the length of reference field of a word, that any reference field shorter than the whole of the string preceding the word in question is more realistic than a reference field stretching from word one to the word in question.

To illustrate what I mean I shal draw on a text string from Eertrand Russell's "History of Western Philosophy" (8.5).

PHILOSOPHY: AS I SHALL UNDERSTAND THE WORD: IS SOMETHING INTERMEDIATE EETWEEN THEOLOGY AND SCIENCE. LIKE THEOLGGY IT CONSISTS OF SPECULATIONS ON MATTERS AS TO WHICH DEFINITE KNOWLEDGE HAS; SO FAR; BEEN UNASCERTAINABLE, BUT LIKE SCIENCE, IT AF'PEALS TO HUMAN REASON RATHER THAN TO AUTHORITY, WHETHER THAT OF TRADITION OR THAT OF REVELATION. ALL DEFINITE KNOWLEDGE, SO I SHOULD CONTEND, BELONGS TO SCIENCE! ALL DOGMA AS TO WHAT SURPASSES DEFINITE KNOWLEDGE RELONGS TO THEOLOGY. RUT BETWEEN THEOLOGY AND SCIENCE THERE IS A NO MAN'S LAND, EXPOSED TO ATTACK FROM BOTH SIDES; THIS NO MAN'S LAND IS PHILOSOPHY.

Text string 8.5

In text string 8.5 we see in praxis many of the features of the theory of 'best fit'. The huge, loosely defined concept "philosophy" is introduced with the first word. and the rest of the text string is basically an exercise in finding best fit'
for this concept. For good measure we get the 'best fit' of science and theology trown in as well. However: The important point here is, that if we have to decide if the last word in 8.5 'philosophy' (2), is the same as the first word in 8.5 'philosophy' (1), the straight forward approach says that the last word is an 0 -mode since it has been in the string before, whereas a more realistic approach would state, that the whole point of the text string 8.5 is to 'mould' - to modify - 'philosophy"(1) into 'philosophy' (2). Eecause of this, 'philosophy'(2) has become a subset of 'philosophy'(1), and thus - because of the smaller number of choises in this subset compared to the initial set some information must have been transferred. For this reason, 'philosophy' (2) can not be said to be in 0-mode, but must be in I-mode even though it is spelled the same way as 'philosophy' (1) and is placed in the same text string.

The question is: at which point of the string did "philosophy" (1) change into 'philosophy' (2)?. Let us look: at where the tert string modifies the concept 'philosophy' (1) as we read on. To make it easier to refer to the individual words in text string 8.5 I have reprinted the string with each word numbered successively from word one (text string 8.6). For the sake of clarity 1 have removed all punctuation. It still seems a bit messy, but let us try:

1. FHILOSOFHY 2.as 3.I 4.shall 5.understand 6.the 7.word 8.IS 9.SOMETHING 10.INTERMEDIATE 11.BETWEEN 12.THEOLOGY 13.AND 14.SCIENCE $15.1 \mathrm{ike} 16 . t h e o l o g y$ 17.IT 18.CONSISTS 19.0F 20. SFECULATIONS 21.ON 22.MATTERS 23.AS 24.TO 25.WHICH 26. DEFINITE 27.KNOWLEDGE 28.HAS 29.SO 30.FAR 31.REEN 32. UNASCEFTAINAELE $33 . b u t$ 34.1ike $35.5 c i e n c e ~ 36.1 T$ 37.AFFEALS 38. TO 39. HUMAN 40.REASON 41.RATHER 42. THAN 43.TO 44.AUTHORITY 45. WHETHER 46.THAT 47.OF 4B.TRADITION 49.0F 50.THAT 51.OF 52.REVELATION 53.all 54.definite 55.knowledge 56.50 57.1 58.should 59.contend 60.belongs 61.to 62.science 63.all 64.dogma 65.as 66.to 67.what 68.surpasses 69.definite 70.knowledge 71.belongs 72.to 73.theology 74.but 75.BETWEEN 76.THEOLOGY 77.AND 78.SCIENCE 79.THERE 80.15 81.A 82.NO 83.MANS 84.LAND 85.EXFOSED 86.TO 87.ATTACK BB.FROM B9.BOTH 9O.SIDES 91.THIS 92. NO 93.MANS 94.LAND 95.15 96. PHILOSOFHY

Figure 8.6 Textstring 8.5, words numbered successively.

Referring to text string 8.6, It seems to me, that 'philosophy' (1) is being modified 4 times. The first time is from word number 8 to word number 14 (incl.). The second time is from word number 17 to word number 32 (incl.). Third time is from word number 36 to 52 (incl.). The last modification is really a repeat of the first modification (with extentions) and stretches from number 75 to the last word 'philosophy' (2).

I have emphasised the modifying segments of string by keeping them in capital writing. The segments in small letters are mostly modifiers to the modifiers we are dealing with now, but we shall leave these, since the matter is complex enough as it is.

To return to the object of establishing how long is the reference field of 'philosophy' (2) we can with some justification say that this field stretches from "philosophy" (2), which is word number

96, back to word number 52 which was the last point where "philosophy' was modified. The semantic content of "philosophy' (2) has therefore been constant between word number 52 and number 96. 'Fhilosophy' (2)'s reference field is thus 96 minus $52=44$ words long.

So to get some approximation to reality we could instruct INFOR to only check 44 places back in the string while it was reading. This would work fine; 'philosophy' (2) would register as an I-mode and the automatic reading would have been semantically sound the string to word number 96, that is. All the other words in length; not has probably got reference fields which of word number 96, but from the reference field of each other. To put it boldly: there are probably as many different lengths of reference field as there are different words, and we can not possibly predict or make any general rule for how long each reference field is going to be. We can not even predict how long the reference field is going to be next time the word 'philosophy' has been used.

Accordingly we will eventually have to settle for an approach which is practical and approximate rather than ideal and exact. As stated before, we can can not without considerable cognitive involvment assess the reference field of each word. Our employment of a computer to carry out the practical aspects of reading and checking text strings against a reference field must be based on a GENEFAL REFERENCE FIELD i.e. the same length of reference field for all the words in the text string, rather than an INDIVIDUAL REFERENCE FIELD based on the cognitive awareness of the stability of the semantic content of each individual word.

This approach - although less than ideal - is however a sounder one than the straight forward approach attempted earlier, and although not even an attempt to simulate the cognitive coding/decoding of text strings, it is nevertheless an approximation.

A problem, closely related to the problem we have been dealing with here, is the falling ratio of O^{\prime} s over i's in the information array as explained in chapter B and again at the beginning of this chapter. As we fill in the information array according to the straight forward approach, the fact, that we check each incoming word against an ever increasing number of words, means that the chance of getting a new word in the text string becomes increasingly remote. Accordingly the O's in the information array become more and more frequent even though we have established, that realistically the ratio of 0 's over 1 's should stay pretty constant whatever the length of text string.

So how can we change INFOR's reading of a text string to satisfy this expectation. We can not just add I-modes ad libitum to make up for the fast increasing number of 0 -modes, and the reading of a text string must, as mentioned earlier, begin and end somewhere. However, as soon as we start reading, the number of 1 modes start falling exponentially until, after a few hundred words: the information array A is being filled with mainly zeros as a symptom of less and less information being transferred.

Let us just suppose we aggreed to a reference field of 1 or 2 words. This would mean, that an incoming word would only be checked against the last or the second last word before it. Shurely this would mean that nearly all of the incoming words
would be judged to be 'new' to the string and therefore in Imode. This would of course not bring us any nearer to a solution except for the fact, that we have now established the conditions for two opposite extremes: 1) if we check each incoming ward against a reference field which stretches from the first word to the incoming word we get an ever increasing number of zeroes in the information array. 2) if we chect: each incoming word against a reference field of only one or two words we get an ever inmusting number of 1^{\prime} s in the information array. Eut from this must follow, that somewhere in between these two extremes - a beference field of 1 and a reference field as long as from the there must be a length of reference field which would checked ratio of $1^{\prime} s$ to $0^{\prime} s$ constant whatever the length of the string we read.

But from this follows too, that it is not so much a question of which length of reference field we settle for, as the fact that we do settle for a CONSTANT reference field, since by checking each incoming word against a COSTANT number of words, we have also ensured the constancy of the probability that the word will be recognised.
To illustrate the reading of a text string with a general reference field I have made a numerical representation of a text string in figure 8.7 and shall explain how the analysis takes place.

Refrencetied of wh

 Referencefield of w11 $\underbrace{}_{\text {Referencefiese of w2 } 25}$
Figure 8.7 Numerical representation of the analysis of a text string of 26 words with a reference field of 10

Figure 8.7 represents a text string of 26 words, wi is the first word and w26 is of course the last word. Let us decide to read this string with a reference field of say, 10 words.

As explained, if the reference field is 10, it means, that we check each incoming word against the 10 preceding words in the string. Thus, if we want to analyse string 8.7 for I-modes and o-modes it means, that we can not start at word 1 , since that would give us no reference field at all. The firgt word we can analyse with a reference field of 10 is of course word number 11, since this would be the first word to have 10 preceding words. So let us start filling in our information array IA with $i^{\prime} s$ or $0^{\prime} s$ according to whether the incoming words are I-modes or 0 -modes.

So we start INFOF off by informing it to read from word number 11 and check against a reference field of 10 . INFOR now reads word number 11 and checks it against each of the words number 1 to number 10 to see if word 11 is a repeat or a new word with regard to its reference field i.e. with regard to any of the words number 1 to 10. If word number 11 is spelled differently from word number 1 the program will check it against word number 2 . If it is also different from word 2, INFOR will check it against
word 3 and so on. As long as word 11 is not similar to a word in the reference field. INFOF will check the next successive word up till and including word 10 . If the last word in the reference field, i.e. word 10 , too is different from word 11, word 11 will register as an I-mode and the eleventh place in IA will be set to 1.

Having checked word 11 against all the words in the reference field. INFOF established in our example, that word 11 was in Imode. INFOF now moves its analysis to the next word in the text string. This is word number 12. and it too will be checked against the ten words preceding this word i.e. wi2 will be checked against w11. w10, w9.... and so on down to w2. Because the reference field is constant $(=10)$ it has moved 1 word forward as the word being analysed has moved 1 word forward. Let us say that INFOF finds word 4 similar to the word being analysed (wi2). INFOR now sets place 12 in IA to zero and moves its analysis to word number 13 . The reference field is now constituted by word number 3 to word number 12, and word number 13 will now be checked against each of the words w3, w4, ws. and up to w12 to establish if wi3 is in I-mode or 0 -mode. Whatever mode word 13 is: the 1 了th place in IA will be set to the appropriate digit $\{1$ or G) and INFOF moves on to analyse word 14 and check it against the 10 words in its reference field, which is now made up of the words w4; wS, wh,.......w13.

And so on: each time a new word is being analysed, the reference field has moved one word forward, and the word which was the last to be analysed has itself become a member of the next words reference field. of course, if we decide to start our analysis with another word. say number 25, the reference field (RF=10) would now stretch from word 15 to word 24 , but everything else would work as before.

Summing up; the reading of say a string of 100 successive words with a reference field of 10 would mean the successive checking of 100 words against each of the words in a reference field stretching 10 words behind all the time.

Let us assume that we have decided on a fixed reference field of some particular length. Let us now look at what would happen to the ratio of $0^{\prime \prime} s$ over $1^{\prime \prime} s$ if we increased or decreased this reference field.

By increasing the reference field we would increase the number of words against which each incomming word is being checked, and consequently increase the probability that the word would be registered as an o-mode. This would give us a constant - but INCREASED - ratio of $0^{\prime} s$ over $1^{\prime} s^{\prime \prime}$

If we on the other hand decreased the length of the reference field, we would decrease the number of words aginst which the same incoming word is being checked, and consequently decrease the probability that the word would be registered as an 0-mode. This would give us a constant, but DECREASED, ratio of o's over 1's. Apparently, it is entirely up to us to decide how big we want this ratio to be.

So, by sheer use of logic we have now established, that somewhere in between using a reference field longer than 1 word, but shorter than the length of the full text string. INFOR is bound to
find a more or less similar number of I-modes and 0 -modes and fill the information array with a more or less equal number of 1's and o's. Whatever the length of the string, we can alwavs adjust the reference field so that the chance of a word being read by INFOF has an equal chance of becoming an I-mode or an 0 made.
Eefore we can analyse text strings however, we have to decide how far back: we want this reference field to stretch. It is one thing, that we have established, that by introducing a constant reference field, we have also introduced a constant ratio of $0^{\prime} s$ over 1"s. It is another matter to decide exactly how long this reference field must stretch back. Since we have established, that there is a close link between the length of the reference field and the resulting constant ratio of 0 's and $1^{\prime \prime} \mathrm{s}$: 1 suggest, that first we decide on the size of the ratio of $0^{\prime} s$ and $1^{\prime} s$ and then we establish which reference field would yield this ratio.

There are good reasons for wanting the number of I-modes in the final information array to be equal to the number of 0 -modes, ie a ratio of new words to repeated words equal to 1:1.

The first reason is that a level of redundancy of this size - 50% of the words recognised by the computer or guessed by a human reader - would be in agreemment with the levels of redundancy in communication established experimentally by Shannon and others.

The second reason is that of sensitivity of method of analysis. Just lif:e a pair of scales are most sensitive when they are in balance: so does a array of ones and zeros give the best indication of the balance between the two set of digits if the ratio between them is 1:1. I shall prove this in chapter 11. when we are fully ready to apply fourier analysis to text strings.
The program FINDFF which I shall be examining in chapter 10 has been written so as to establish - by means of a binary iteration technique - the length of reference field which yields a ratio of I-modes and 0 -modes equal to 1:1.

We have now seen how our accept of a reference field in the suggested "best fit" linguistic model accommodates the commonsense notion that the information transfer stays fairly constant whatever the length of text string i.e. a constant ratio of Imodes over o-modes and we have achieved our two main objectsi

1) A computer simulation of the reading of a continuous text string according to the suggested model of "best fit" and
2) an information array which is a fairly constant representation of the information transfer during this reading.

This information array, this series of zeros and ones reflecting the transfer of information is going to be the focus of our attention from now on. What particularly interests me is the possibility that these zeros and ones in the information array constitute patterns.

In the next chapter I shall introduce you to the various programs used in this research, amongst them two different INFOR's representing two different approaches to Fourier transformation.

CHAPTER 9.
programs implementing the methods of chapter 8.

In this chapter I shall describe the different programs used in the present research, in particular the two versions of INFOR, which have been the principal tools in this present analysis of structures in text strinas. and finally shall provide one example of a complete read-out of all intermediate data of the calculations of one of the INFOF versions.

As mentioned earlier, the programs are developed for use on a micro computer. The language is Fascal/M which is the fascal dialect written by the American software firm Sorcim. The reason for using this particular version is solely. that when 1 began developing these programs some years ago. Fascal/M was the only Fascal compiler available for micro computers. This version of Fascal is in mv opinion no worse and no better than other versions around at the moment. It has - lit:e all commercially available Fascal versions - quite a few extensions to the orioinal Fiascal version by Jensen and Wirth (Jensen and Wirth, 1975). On the other hand, to support the portability of all the programs. I have whenever possible avoided procedures not defined by Jensen and Wirth. This should matie it easy to imflement these on any machine - big or small - which supports Pascal.

To clarify what I mean when I in the following use the terms 'window' and 'reference field' I shall make a graphic representation of the terms (Fig.9.1) and explain.
 .$\omega 62$ mb3 m64 mb

Figure 9.1 Numerical representation of a text string. 65 words 1 ong

Let us say that the text string wi to wbs in figure 10.1 is going to be analysed by INFOR and that we are particularly interested in the information transfer in that segment of the string which runs from word number 31 (w31) to word number 65 (w65). This is the length of text string we want to assess 1 -modes and 0 -modes in, and this seament of the string is therefore the WINDOW. The window thus extends the 35 words from w. 31 to w65 (incl). As explained in chapter 9, INFOR now creates an information arrav IA with as many places as there are words in the window and for each word, starting from wal, INFOR will check this word against the words in the reference field. Let us say that window w31 to w65
is going to be read with a reference field of 10 . From what we have seen in chapter 8, this means, that the first word in the window (w?1) will be cherked against the 10 words preceding this word (wT1), that is, w31 will be checked against w21. W22. w23 or an 0 -mode, the first place in the information array is set to 1 or 0.

INFOR will now move to the next word in the window which is w 32 and chect: this word against the reference field of 10 words. which too has moved one word along. Word number 32 (w 32) will be chectred against w22. W23. w24.......,W30. w31. If w32 is an I-mode the second flace in IA will be set to 1 otherwise to 0 . And so on. each word in the window and finishing by the last word in the window (whE) which will be checked against the 10 words preceding it: the reference field alwavs extending backwards from the word in the window which is being analysed.

In the hope that this explanation will prove helpfull: I shall now turn to the explanation of the programs which implement the theory and methods of last chapter.

Frogram FINDFF.
It would be natural first to take a look at the program FINDRF (Fage 220) since before we can apply INFOF to anv text string, we must know the general reference field with which INFOR is going to read the string. The program FINDRF, as the name suggests. does iust that.

The procedures FEADWOFD. COMFAREWORD and MOVEONE are the same as in the two versions of INFOF and shall be dealt with more closely when these programs are being examined in a short while.

Let us examine the other procedures in FINDRF. After we have decided which particular measuring window of a particular tent string we want INFOF to analyse, we let FINDFF read the text string with the same window. On the basis of this window. FINDRF calculates the ratio of I-modes and 0 -modes after several consecutive readings with reference fields of varying length. When the program finds the reference field which gives the ratio 1:i between I-modes and 0 -modes, the program stops and gives a read out of the window and the length of the reference field.

The varying lengths of the reference fields used by FINDRF to establish the $1: 1$ field are naturally not a question of trial and error - that would take too long. Normally, the initial reference field tried by FINDFF is the length from the start of the string to the start of the window. This was the procedure in my first version of FINDRF, but this meant, that if I wanted to analyse a window starting at say, word or 501 then FINDRF would automatically use a reference field of 500 words in its first attempt. A reference field of 500 words is however unrealistically long: and so I waisted much time while FINDRF realised the hopelesness of its doings and eventually settled for a much shorter reference field. The length of the first reference field used by FINDRF is in this version of the program initialised by the operator with his answer to the question in 1 ine 155. I have found that this synthesis between an "educated" guess and FINDRF's binary seareh mentioned below, is the fastest way of establishing the finai reference field.

After FINDFF has established whether the ratio between I-modes and 0 -modes is greater than or less than 1 after the first run, the search for the reference field with a ratio equal to 1 is taken over by the binary search routine (Line 163 to line 201).

This routine will normallvestablish the final reference field within 4 to 5 attempts. There are however a couple of provisions for the possibility that this does fails. The first one - and quite common with short strings like some of the childrens tent samples used in this research - that the string is shorter than its necessary reference field (Line 169 to line 182). The second reason, why FINDFF may fail, is that the ratio between I-modes and 0 -modes is not exactly 1. In this case FINDRF moves the whale window 3 words to the left and starts all over again.

Froaram INFGF:2STIMESEFIES.
When FINDFF has established the proper reference field, we can then analyse the structure of the tevt string with INFOF: As mentioned above, I have had to make two slightlv different versions of this program. The two versions of INFOR represent two different wavs of afplying Fourier analvsis to a signal. The need for two different approaches reflects the basically two different linds of sional: binary or analog. I think the simplest way of enflaining INFOF to you is to deal fully with the first. INFOR I developed - the version which analyses onlv binary signals - and then after the full tour through this version. look at those procedures in the later version - the version which analvses analog signals - and explain the changes. Only a couple of procedures are different in the two versions.

INFOF is muild around a short main program - 63 lines - with 12 modules (procedures) which can be called in when necessarv. Including the procedures. which take up the major part of the program. the program is 401 lines long. The main program begins in line 338 and ends with line 401.

The text samples used as data have on all occasions been disk files i.e. the textstrings to be analysed first had to be written on to a memory disk. The first word of the text string is the label. and INFOR will extract this information before the reading of the words begins.

The easiest way to look at the program is to tate it step by step and follow the dataflow. Assuming that we have loaded and started the program we go to the start of the main program in line 338. The first two lines are reset and clear screen. Line 341 is reminder that the number number of words in the text string to be analysed is limited to 750 . Next line is a pause procedure which leaves the ahove information on the screen for 2 seconds. Line 343 define the letters and numbers allowed in the textstrings to be analysed. Line 344 sets the boolean variable "MORE" equal to false. If we run INFOR several times with different variables, "MORE" is changed to true and controls that the heading is only printed once on the printer output.

The next control variable is "HAM" in line 345. "HAM" is short for "Hamming" which is a smoothing procedure employed later on in the program. "HAM" is set to false because the program is going
to ask us later if we want smoothing of the power spectrum. If we at that point do want smoothing. HAM is changed to true. As a general rule, no smoothing has been used in the majority of ana1vsis. Only when we have made 'multiple run' analysis (see later) has the graphs been smoothed slightly to qive a more even surface.

The first two procedure calls, line 346 and 347 , refer to the procedures named in the calls. EOOKIN (line 28) initiates the input file and EOOKOUT (line 51) initiates the output file. The third procedure call INITIATE refers us to the procedure which first initiates the variable WIDTH OF ANALYSING WINDOW AFTER AOUTOCOF which is the number of frequencies in the fourier transform. neyt, initiates the beginning and end of the analvsing window, and finally asts for the value of FF and number of runs. FiF is the reference field as we defined it in chapter 8: and we would have found the value of this field by exposing the text string to the program "FINDRF" (page 204) using the same farameters for begining and end of window. "Number of runs" is a provision for up to 25 consecutive runs with the window moved STEF number of words to the right before each new run. The multiple run provision gives up to 25 successive power spectra of the same text string with the window moved - normally - 8 words to the rioht after each run. These 25 spectra represent 25 "scans" of a moving window and are arranged in a 3-dimensional coordinate system to give a topological surface which clearlv shows the changes of spectral features over a 200 word text string (25 runs moved 8 words each time $=200$).

With the procedure bodv INITIATE exhausted. the main program takes over. STEF is set to O. which means, that the window will be staticanary, and (line 350) if NOF (number of runs) is greater than 1 ie if we want more than one run, the main program asks for another value of STEF, and (line 354) whether we want to smoothe with a "Hamming window". If this is the case, we are asked for the weighting of this window.

The procedure body of HAMMING is at line 304. To understand what this procedure does: let us look at a series of datas A1, A2. A3. A4, A5,An. The Hamming smoothing procedure will at any point of this series exchange one value with an average, calculated from part of the original value and part of the two neighbour values. Sav that the Hamming window is at the value A3 in our series above and let us say that we have settled for a weighting of 0.60 . The procedure then takes 60% of the value of $A 3$ and adds to this 20% of each of the values of the neigbours A2 and A4. This becomes the new value of A3. The window then moves to the next value. A4 and calculates the weighted average between this value and the two neighbours $A 3$ and $A S$ in the same way, and substitutes A4 with this weighted average.

1 have arranged the parameters in such a way that the answer to "weighting?" is the amount with which we want the neighbour values to contribute to the weighted average. Thus, if we answer 0.40. each of the two neighbour points will contribute with 0.20 of their value to the weighted average, whereas an answer of 0.20 would imply that each of the two neigbour points would contribute with 0.10 of their value.

However, a Hamming window used on a Fourier transformation is like "a woolf in sheep"s clothes". By this I mean, that the
smoothed power spectra resulting from a 50% weighted Hamming window do indeed look seducively nice and smoothe, but in fact. manv of the significant peatis have gone. As a rule l have only used smoothing on the three-dimensional graphs and on these oraphe 1 have used a contribution from each neighbour of only 0.12. as this level of weighting smoothes the topological surface without changing its features dramatically.

We will continue with the main program. After the input file has heen opened (line 363) the procedure READWORD is called with the parameter N tal:ino the value from 1 to $1+F I N+N O F i S^{\prime} S T E F$. The latter value is the finishing point of the window after INFQFi has run NOF: runs: and the window has moved STEF words each time. Of course we do not want INFOF to read the textstring from the disf: file more than once even though we are moving the window each time, since this is a particular time consumino process, so INFQF reads the maximum necessarv teyt string once only and stores it in the worb: memory for re-reading.

Not much need to be said about READWDFD. It is a straight forward read file procedure which will ionare all characters except those defined in the set of LETTERS i.e. capital letters and numbers only. A word is defined as a number of permitted characters between 2 separators. Accepted separators are: space: end of line and end of file..

The words are stored in the array WOFD which is a two-dimensional arrav with outer boundaries of 1:751 and 1:20. Accordingly this arrav will store 751 words. which each are not lonoer than 20 letters. Words longer than 20 letters will be truncated. The array WOFD will contain all the words of the string which therefore must not be lonaer than 712 words. The first word of the string is stored in WOFD[1] place 1 to 20 . the second word is stored in WOFD[2] place 1 to 20 and so forth. When all the words have been read. the main program calls procedure MOVEONE. which moves to LAHL the word stored in WORD[1] as this constitutes the label of the string as mentioned above. Finally MOVEONE moves the rest of the words one place forward.

Wjth the required length of text string stored in WORD. all the places in the information arrav TFANSA are set to 1 (ine 372) and the procedure COMFAREWORD is called with the parameters TRANSA and N which will take the value from beginning of the window to the end of the window. For anv value of N, COMFAREWORD compares WORD[N] with all the preceding words in the text stiring as far back as the reference field stretches. Let us say, that we stated to the procedure INITIATE: that our window should begin with word number 4011 and end with word number 700 and let us sav, that our reference field is 200. COMPAREWORD(JRANSA.401) will then compare word number 401 to all preceding words starting from word number 201 (401 minus reference field) and ending with word number 400. If COMPAREWORD finds a word similar to WORD[401] the value of TFANSA[4O1] is set to zero. By consecutive cails of COMFAFEWORD with N rising from 401 to 700 each incoming word wili be compared to all the words of a reference field which remains a constant 200 words stretched out behind the word being checked. When a word is recognised, the place in the information array with the same number is the recognised word is set to zero. A place in the information array with the same number as a word which was not recognised, remains equal to one.

When COMFAFEWOFD has finished the checking of each word against the word"s reference field. TRANSA will contain a succession of zeros and ones, a one on the place of the words which were not recoonised, and a zero for each word which was recoonised. After this array which is numbered according to the window eg 401 to 700 is now renumbered from 1 to the length of the window (in this case: zog) and the length of the array is attributed to the parameter FEAL-TIME.
The array TRANSA is now of the form
TRANSA[1:...]:=10110001011110001101........
and as there are 20 digits. the window resulting in this array must have been 20 words iong. To change this series of pulses into a time series it will have to be transformed into a series of distances tetween the pulses constituted by the anes.

Frocedure FULLSE (line 167) is such a pulse detector and if we adhere to the evample above FULSE will transform TFiANSA to the time series

TFANSE[1:10]:=(1)2142111412
1 have put a paranthesis around the first timing in TRANSE since it is not a qenuine distance between two pulses. only between the start of the sional and the first pulse. As it is not immediately obvious how TFANSA transforms into TFANSE I shall explain how it is done. Fiqure 9.2 is a graphic representation of how the train of pulses in TRANSA is being translated into the time series TRANSE.

Fiqure 9.2 The transformation of TFANSA to
TFANSE in the procedure FULSE.

The imoortant thing to understand is that the distance between the pulses are measured between the top of the pulses where these become infinitivelv narrow. Understanding this: it becomes clear enough how TRANSA transforms into TRANSE.

The time series TRANSE however is still not suitable for Fourier analvsis: it consists of the timing of eleven peaks taken over the course of 20 time units (word-time units). What we need is a formula which could calculate the value of the signal in each of the 20 time unit points on the basis of interpolation between the eleven known timings. This is what the procedure SINX does. It is able to convert a number of time samples into an equidistant time series. Let us sav, more generally, that we have measured the time between M number of events spanned over a total of N seconds. SINX $i s$ able to expand the M values into a time series with N equally spaced values. The procedure does this by putting the M samples on polar form and expand this polar series while smoothing and interpolating. The equidistant time series re-
sulting from this procedure is stored in TRANSA which is now empty. Whatever the size of the time series, sinx will transform it into an equidistant time series of the same size as the measuring window.

To recapitulate: Let the measuring window be 200 words long. Let us further assume that after the analysis of I-modes and ci-modes, COMFAFEWORD has produced a time series with 100 samples of timing. some indicating long distances between the ones' in TRANSA, some indicating just one (word) time unit between them. SINX is able to restore this 100 paint time series of higlv different spacing into an equidistant time series of the same length as the original measuring window. i.e. 200 samples. The equidistant time series resulting from SINX is stored in TRANSA which is now emptv.
The main prooram now calls procedure AuTOCOR with the parameters TRANSA, TFANSE, REALTIME and SAMFLES. TRANSA contains the equidistant timeseries. TRANSE will contain the autocovariance function after this procedure, REALTIME is the length of the measuring window and WIDTH is the so called 'lag' of the autocovariance weighting window which must be the same size as the number of sample points entering the Fourier transform. I shall spend some time explaining the purpose of the autocovariance function.

AUTOCOR serves really two purposes:
Firstly, the autocovariance function can change the number of values entering this function into another number of values on exit from this function'. Say, that we want a 50 point power spectrum. If we want a 50 point spectrum from the Fourier transform used in this program. we would have to 'feed' it with 50 values from our time domain. This again means, that everv time we wanted to malie a Fourier analysis of the pattern. structure or whatever train of events we wanted to analyse, we would have to obtain exactly 50 measurements - or we would have to discard whatever number of measurements greater than 50 . This would certainly be possible in many cases, but more often than not. we would want many more measurements than 50 included in our analysis to increase the significance of our results, since as we shall see later, the sionificance of the results from the fourier analvsis is a function of the number of measurements in the time domain divided by the number of points in the frequency spectrum.

This is where the autocovariance function becomes a great help, since if we have sav, 217 measurements of the train of events we want to analyse, but have decided on a 50 point spectrum, we can 'feed' all 217 measurements into the autocovariance function, set the 'lad' of this function to 50 (see below), and out comes (most of) the information from the 217 measurements condensed into 50 values which we can now transform into a spectrum of 50 points. I write 'most of" the information, since some information like phase shift is lost. However, this is not going to have anv impact on our search for structures.
Secondly, when we are working with time series, the fourier transform of such series becomes particularly simple, even simpler than the Fast Fourier Transform, if we autocorrelate this time series, since all we need to do to obtain the power spectrum is to apply the simple so called cosine transform (the procedure
F.SFEC. line 2QI.). This procedure on its own is much faster than -The Fast Fourier Transform" mentioned earlier but since we would have to precede any Forier transform of a time series with a slow procedure like SINX to get an equidistant time series. nothing is gained.

As stated in chapter 7, when we dealt with the folding of the frequency spectrum, it is not possible to get higher frequencies in the frequency spectrum than half the sampling frequency. This means, that because our particular samplino was done once per word $=1 / 1$. our highest frequency in the frequency sfectrum is not ooing to be greater than $1 / 2=0.5$. If we want a resolution in this spectrum of 0.01 it means. that we shall need So points. That has a bearing on the autocovariance function since we must settle for a maximum 1 ag of 50 in this case. I shall explain what this means.

Althouoh I have no intention of sidestepfing into making this a course in statistics. I shall try - verv briefly - to account for what $i s$ going on in an autocovariance analvsis. You mav vaguelv rememter the "standard deviation" from an early introduction to besic statistics and vou may even remember. that this devjation was the difference between a set of data of a sample and the mean of this sample. Wariance is the square of the standard deviation. If vou look at equation (9.3) below you will see, that the last pert \{Y(i)-Y(mean)\}*\{Y(j+k)-Y(mean)\} is really just a glorified standard deviation squared. except for the....tk in the second last suthseribt. This k is the above mentioned lag. and I shall trv to describe the function of this.

Let us sav that we have an ordered set of data leg a time series) $Y(1), Y(2), Y(3), \ldots . ., Y(99), Y(100)$. To make an autocovariance function out of this set of data we decide on the size of the "lag". For the reasons stated above, we want a maximum lag af 5o. Eearing in mind. that during the first "run" through the series, f tal:es the value 1, during the second "run" the value 2 and so on up to 50, we then calculate the following according to (9.1): $Y(1)-Y(m e a n)$ and multiply this with $Y(1+1)-Y(m e a n)$. Let us call this variance $S(1)$. We are still in the first "run" and k remains at the value 1 whereas j tal:es successive values of $1,2,3,4 \ldots$ up to $100-k$. For each value of j we calculate the product of each variance $(Y$ and $Y+1 a g)$ up to 100 - the 1 ag. In this way we get successive products of variance $5(1), 5(2), 5(3) . .$. up to $S(99)=(100-k)$. For each "run" of a different value of k: we sum these variance products and multiply them whith the factor 1/(100-k). In the end we have the so called autocovariance function which. if the lag is 50. will consist of sulements. one for each value of k.

The following formula is the base of procedure AUTOCOF:
R

$$
\begin{equation*}
(k)=\frac{1}{N-K} \sum_{j=1}^{N-K} z_{j} \cdot z_{j+k}=\frac{1}{N-K} \sum_{j=1}^{N-K}\left(y_{j}-y_{\text {mean }}\right)\left(y_{j+k}-Y_{\text {mean }}\right) \tag{9.3}
\end{equation*}
$$

in which
N : number of elements in time series emerging from SINX.
$k=1$ ag in autocovariance function (k=1,2,3,4..., WIDTH).
$j=$ number of element in time series ($i=1,2,3,4 \ldots, \ldots$).
$Y=$ element (IN) of time series.
$R=$ element (OUT) of autocovariance function.

The elements resulting from the autocovariance function are stored in the array \quad ULT [O:WIDTH] in line 277. One last point: In line 261 and 276 an integer has been changed to a real number. This has been done because the integer in both cases were ooing to be squared in the following lines and thereby would have e::ceeded the highest integer value my microcomputer could cope with.

Frocedure FSFEC. (Line 265).
This procedure calculates the power density spectrum of a time series by fourier transformation of the autocovariance function as calculated by AUTOCOF. The following formula was used
s
$(m)=\frac{\Delta t}{100}\{R$
$(0)+2 \sum_{k=1}^{m-1} R$
(k) $\cdot \cos \frac{\pi k m}{M}+R$
(M) $\cos (\pi m)\}$
(9.4)
where
$S(m)=$ power of the m th frequency.
$F(f:)=f$ 'th autocovariance element.
$t=$ sample interval.
$m=$ element of frequency spectrum ($m=1,2,3, \ldots$, WIDTH).
$k=$ element of autocovari ance function ($1:=1,2,3, \ldots .$. WIDTH).
$M=$ mayimum frequency.
As a quideline, if you want to go through the principle of calculating the power spectrum according to this formula, note, that this time it is m which is kept constant during each rung while k tal:es the values $1,2,3$. WITH-1, WIDTH.

Enough has been sajd ahout the smoothing procedure HAMMING above. 50 there is only the procedure FILEOUT left to loal: at. This procedure quite simply channels the smoothed or not smoothed data comming from FSFEC to the disk file with initial information about the name of the string, the start and end of the measuring window, the length of the reference field, the number of runs and the size of STEF, which, as you may remember, is the number of words, the window is moved after each consecutive run.

Finally (Line 3.87 to line 390), if the counter (jin line 390) of the actual number of performed runs is less than the final number of runs. then the window is moved STEF words to the right and INFOF repeats the analysis with the window in the new position. This means, that if INFOR has made 25 consecutive analvsis' then the outfile contains the spectral powers for 25 consecutive spectra, ie. if the number of frequency points in each spectrum is 32 then the outfile will contain 25 times $32+1$ points (The extra point is the DC value or the value in the frequency point zero. These values are arranged in such a way, that the first 3$\}$ values constitute the first spectrum, the next 33 values constitute the second spectrum and so forth. These values will be stored on a memory disk and later fed to the program PLOT2S, which we shall have a look: at 1 ater.

Program INFOR2SFFT.
With this, I hope, adequate explanation of the first version of

INFOF (Program INFOF:2STIMESERIES) I shall turn to the second version (Frogram INFOFi2SFFT). The need for another version reflects a need for a more graded analvsis of the information transfer from a text string. The first version of INFOF is in accordance with the basic view of the model of "best fit" that when we read a text string there are only 2 states of information: zero and one. Eut is it realistic to assume, that eg. the word "and" in Imode, transfers just as much information (namely 1) as does a word like "war" in I-mode? Our common sense says not.

So, to accommodate a more graded approach to information transfer from test strings, the second version (Program INFOF2SFFT) which is atle to transform analog signals: was developed. While still within the model of "best $f i t "$ we are however now able ta analyse an information arrav, the values of which do not have to be zero or one, but can tal:e any (positive) value.

We have now oot two fourier transforms. The first one - the Cosine Transform - which we used in INFOR-TIMESERIES: and the secand one - the Fast Fourier Transform - which we are goina to use in the second version of INFOF - appropriately called INFOFFFT.

It is important to understand the basic difference between the Cosine Transform and the Fast Fourier Transform. The first transform - the one which js used to analyse a time series - can only transform a sional based on distances between events eq. distances between two peatss or between the "ones" of our information arrav. This transform - the Cosine Transform - depends on the pulses of events being very narrow, and does thus not provide for different shapes of pulse. like square or triangle pulses: nor does it provide for different amplitude of the pulses.

The Fast Fourier Transform on the other hand does nat impose such restrictions on our analvsis. The amolitude of the signal as well as the shape of its pulses have become part of the analysis and have an impact on the power spectrum. This is important - often essential - in some kinds of analysis, but does on the other hand have its disadvantages: One is, that if the signal is made up of square pulses, as the case is in our application of the transforms, the pawer peats in the high frequency part of the spectrum reflect the "squareness" of the pulses as explained in chapter 7. rather than the presence of a basic periodicity. In such cases one would try to use the Cosine Transform instead to reduce the "noise" in the high part of the spectrums but in the cases where the amplitude of the signal MUST be taken into account: one would have to use the Fast Fourier Transform and accept the disfiguration" or "noise" in the high frequency part of the power spectrum.

We are primarily going to use the FFT for the analysis of analog signals - signals with a variation of amplitudes. Although, in a sense, the use of the FFT on binary signals - signals with just two different levels like 1 and 0 - is over-kili", we shall try too to apply the FFT to our 'old' 1 and 0 signals. The advantage, of doing so, is that we can checki our results, we can compare the power spectrum we get from the Cosine Transform with the one we get from an analysis of the same text string made by the FFT. Apart from some differences in the high frequency part, the two spectra should be pretty similar. Figure 12.1 in chapter 12 shows, that this is indeed the case.

One problem regarding the FFT is that it can only transform a number of samples if the number is a power of two, ie. it can transform a sample of 32 or 64 or 128 values and so on, and the transform will contain two in the next lower power spertral points. This means. that if we provide 32 measurements to the FFT, we only get a 16 point spectrum. A 64 point function leaves us with 32 spectral point etc. This has proved a restriction in the anlvsis of childrens short tent strings, because I have found. that the minimum number of frequency points needed to give the necessary resolution in a power spectrum, is 32. This does not pose a problem with the Cosine Transform since this transform onlv needs a 32 point window to give a 32 point spectrum, whereas using the FFT, one needs a 64 point window to get a 32 point spectrum. This does not give much room for a reference field as well as a measuring window, when the text string is short, may be of less than 100 words.

Initiallv 1 only knew of the FFT analysis and found it hopelessly restrictive to worli with, as my main object (then) was to analyse childrens text strings only. From most of these text stringe I could get only 16 point spectra. and virtually no sta-tistical sionificance. My later encaunter with the time series traneform and some consideratile adaptation of this method to my purnose provided me with a means of analysing these shorter strings. Later. when I realised how far more flemible time series transformation is. it became my main tool. until the need to analvse different amplitudes - the more graded view of information transfer mentioned above - made it necessary to return to the FFT analvsic.

We shall now turn to another problem. That of 'gtationarity'. That a function is stationarv means: that a possible periodicity in the function does not change with time. However. it is almost inherent in our concept of life. that biological functions are not perfectly stationarveven though over a shorter period of time thev mav exhibit some measure of stationarity and periodicity. To find periodicity in a function which is not perfectly stationary is thus a balance between using a window which is lona enough for a periodicity to establish itself. and not so long that this periodicity hecomes unstationary. it is even quite feasable, that the different periodicities in a function may have different stationarity as well. That this is indeed the case with the output from our 'linguistic device" I shall demonstrate in the features on the topological surface on the graphs from the multiple - scanning - runs in the next chapter.

Eut let us now turn to INFOR25FFT (Page 231). The first (with regard to data $f 1 \mathrm{ow}$) difference between this version of INFOR and the former. is found in the main program at line 288, where the program asks whether we want to change from binary to analog coding. If this is the case - and I shall not enlarge further on the opposite possibility - the boolean variable CODE is changed to true. The test strings which were used for analog coding were of the form printed in the appendix to chapter 12. The first character in the words which I wanted to give a higher rating in I-modes were a number, normally an " B " as explained in chapters B and 9.

If we have chosen the program to read in analog mode, the procedure COMFAFEWDFD (Line 108), on encountering a word in I-made, checks the first character of the word, and if this character is a number. this number will be transferred to the information array. If the first character is not a number. the usual " 1 ' will be transferred to the information array. This means of course, that any coded word in I-mode in the text string will transfer to the information array the value we have put in front of the word, and that the information array, instead of being an array of only zeroes and ones, as before, now is an array of zeroes, ones and some higher values - namely the values we have chosen to put in front of some words as a tolien of a higher information transfer tal:ing place.

There is a provision for choosing the value of the "pulse" (Line 299). This was made so that I could choose the amplitude of the signal with regard to the non-encoded 1 -modes, but it has in all the results presented in this paper been set to " 1 " and is therefare no different from setting the information array to '1, before the start of the analvsis done in the first version of INFOF (INFOF2STIMESEFIES. line 372).

The next procedure which is different is the fourier Transform itself. the FFT. I shall not enter into an extensive examination of this procedure as it is rather complek. Suffice to say, that it is a two-dimensional transform. which is able to analyse the real as well as the imaginary part of a function. As we use it to analyse onlv real functions: the imaginary parameter of the procedure is set ta zero (Line 332).

As vou can see from the procedure calls before and after FFT, the number of points changes from 64 to 32 as explained above.

Like the case was in the first version of INFOR, there is also in this version the option of having the data from the power spectrum smoothed by a Hamming window. Like before. this option was onlv used to smoothe the date during the multiple scanning runs, never in the single runs. The option in this version of INFOR for multinle scanning runs i.e. 25 consecutive analysis with the window moved STEF number of words each time, is exactly the same as in the first version and the explanation shall not be repeated. With this. we have in fact concluded the examination of both versiong of INFDF.

Frogram FLOT25.

To transform the series of spectral points from either of the two versions of INFOR into a power spectrum, the program PLOT2S (Page 237) was written. This program is, as the name implies, a plotting routine. As my ambition all along has been to demonstrate the dynamic structures in text strings: both versions of INFOR provide for 25 consecutive runs - acanning - of a text string with the window moved a few words to the right each time. flot23 provides of course for the eventual plotting of those 25 consecutive spectra, and, by means of a hidden line routine, creates a topological surface within a $3-a x i s$ system where the parameters are: LN power (y-axis), frequency (x-axis) and length of text string or "time" (z-axis).

FLOT2S provides for the plotting of both single power spectra and
multiple rung by always first platting a single power spectrum. If the data comming in to flot2s are from a single run, this first graph is the final power spectrum (Figure 9.5). If the data fed to FiLOT2S are from a multiple run, the first graph will become an averaged spectrum of the 25 spectra, and the heading will change to 'AVEFAGED SFECTFUM' (Figure 9.6). In this case. as shown in figure 9.6. the three-dimensional surface will be plotted after the average power spectrum has been plotted.

PAD2, 273B600RF 185
PUWER SPECTRUM

Figure 9.5 Fower spectrum of FADDINGTON/2. window 273 to 600.

Eut let us focus first on single power spectra. These are FIXED WINDOW analvsis as opposed to the multiple run analysis with the moving window we have just been talking about. Figure 9.5 shows a typical spectrum. It is the 32 point power spectrum of the tent string FADDINGTON 2. from word number 273 to word number bo9: with a reference field of 185 words. The Y-axisg is the logarithm (ln e) to the power in each spectral point, the x-axis is equidistant and gives the frequency: with the lower frequencies to the left and higher frequencies to the right. The point furthest to the right (F $=0.5$) represents the highest resolution we will be able to get (2 words) when we sample at the frequency of 1 word at a time. This means, that the spectrum will not be able to tell us about structures between less than two words. Fourtunate-ly this has no bearing on our analysis, since we do not consider it possible to anticipate structures between less than two words anyway. As we move to the left on the x-axis, the change in frequency represents bindings between more and more words. F=0.2 thus represents periodicity or structures stretehing over 5 words while $F=0.1$ represents periodicity or structures stretching over 10 words etc. The point furthest to the left of the x-axis ($F=0.0$) represents the $D C$ power as explained in chapter 7.

I shall leave further considerations regarding the spectrum until the next chapter when we are going to analyse all the text samples in this way. Suffice only to explain the statistics procedure.

MFD stands for "Mean Power Density" and $i s$ the mean of the power of all 33 spectral points $(32$ points $+F=0.0)$. The mean power density is calculated in procedure FiNDMFDS (line 86). CHI2 stands for chi square and is chosen as the best measure of vari-
ance Eince there are considerable variations between the mean nower of all the individual spectra. Chi square remedies this by being a 'normalised' measure of variance i.e. a variance divided by a mean. Chi square and the standard deviation SDEV are calculated in procedure STAT (line 115). The standard deviation is needed for the calculation of the 0.95 upper and lower confidence limit. For this purpose we need the number of degrees of freedom as well. As stated earlier. the number of degrees of freedom is found as the length of the window divided by the number of frequency foints in the spectrum.

The confidence limits are calculated in procedure LIMITS (line 300) and the necessary T values come from the T table in function TEATAFLE (line 13:4). The single power spectrum is plotted bv pracedure MFDFLOT (line 312). The statistical information is printed and the upper and lower confidence limits drawn bu procedure FLOTSTAT in line 364.

> FAE2:29: : こ?RF:8SSBFI
> AJERHSE: - NER SFECTRUM

CONTINUOUS POWER SPECTRUM

Figure 9.6 Multiple power spectra of PADDINGTON/2.

In spite of the time aonsuming exercise of writing the threedimensional plotting algorithm. this particular aspect of ploT25 can be said to be of minor importance, since it was only used a
few times in my research. For this reason. I shall not enter inte lenathy explanations about this part of the program: only explain a couple of the less obvious routines.

The most comple: (and time consuming) algorithm is the hidden line routine made up of the two procedures SHADOW (Line 241) and MINALFA (Line 263). The first procedure is a shadow mast: consisting of a two-dimensional boolean array OFEN, B plotting points wide and 300 plotting points high, the initial value far all members of this array being set to 'true'. This shadow mask works as a man of the lines which have been drawn and is continually being updated.
The three-dimensional surface is plotted vertically from left to right, all 25 spectra at the same time. While the surface is beina plotted, the procedure EXFAND divides each area between two frequency points into a number of sub-zones, and MINAL.FA calculates the path - through these suh-zones - of each line connecting two frequency paints.

As each value in the shadow mask OFEN refers to a point in the sub-zones between two frequency points. the calculated path between two frequency points can be represented by a path in the two-dimensional boolean array OFEN of values being changed from 'true" to 'false".

At any point within an area covered by the 8 by 300 points of the shadow maski OFEN. this mask (reterence map) directs the piotting pen to touch the paper or not touch the paper according to whether the area is 'open" (DPEN $=$ true) i.e. no lines have been drawn here so far, or "not open" (OFEN $=$ false) i.e. another line was drawn here and the next line must then be hidden (not drawn). Consequently the plotting pen actually describes the moves of all lines - hidden or nat - but lifts from the paper when the line is hidden. and returns to the paper when the line is visible.

Each time we have plotted a line between two frequency points, we must update the shadow maski OFEN. As this mask consists of 8 times 300 points. and each spectrum consists of $32+1$ frequency points, and as there are 25 consecutive spectra, we can calculate that we would have to consult and/or update 1,980,000 reference points in the course of one full plotting. This is of course time consuming - particularly on a micro computer - so from experience 1 have established, that of the 300 points in the y-direction only 25 points around the line being plotted need to be consulted for the routine to work satisfactorily. This is the so called 'dynamic limit' initiated in line 4. This has brought the plotting time down from around 4 hours to under half an hour for a full topological graph representing 25 consecutive runs by INFOR. If the power spectrum is particularly "bouncy" (some lines that should be hidden are notl, the "dynamic limit" in line 4 should be increased to 30 or 35. As the Y-axis is logarithmic, we should however not get any wild moves up or down.

Program INFORNORMALISED.

The two versions of INFDR we have dealt with in the past - INFDR TIMESEFIES and INFOR FFT - give absolute measures of power in each frequency point, and the mean power density is an absolute
measure of the amount of structure in each text etring. The size of MFD varies widely between the different teat samples, and although no connection between the size of MFD and other factors has been established, it is a worthwile exercise comfaring the different text strings in this respect.

In the last part of mv research - the grammatical coding - it was necessary to change the calculation of the power spertra slightlv. In the analysis of grammatical coding we code the same text string in different wavs and want to compare the spectrum derived from each change of coding. To make it possible to superimpose one spectrum onto another spectrum to evaluate relative change, the spectra were "normalised". This simply means, that the power in each frequency point is divided by the highest power of anv of the frequency foints. In this way the maximum power of anv power spectrum will be 1 and all other values will be 1 or 1ess. This mal:es it easier to compare relative movements. but is paid for by the loss of the above mentioned information. (Now it becomes clear. that the reason, we had to use a logarithmic Yaxis in connection with the two versions of INFOF, was that we cauld not orevent the big fluctuations in the power snectra by normalising after the AllTOCOF procedure. since there would then have been no point in calculating and comparing mean power deneities).

INFOFINOFMALISED caters for this particular provision. Apart from the power being normalised, it is iust like a one-run INFOF FFT. INFOFNOFIMALISED is made for the sole purpose of orammatical coding (see chaoter 12) and evaluation of relative changes between power spectra. Even though the frimary purpose of INFOFNOKMALISED $i s$ to provide qualitative rather than quantitative comparisan between different power spectra, Mean Fower Density and Variance is provided never the less (on the power print-outs) and 95% confidence limits are shown on the spectra.

Frogram FLOTNORMALISED.

FLOTNORMALISED plots the data emerging from INFORNORMALISED's analvsis of the grammatically coded text string. The program provides for the plotting of two graphs in the same co-ordinate system. Normally the two graphs would be the spectra of the orammatically coded and the non-coded version of the same text string. This maties comparison between the two spectra easy. As it is evident from the explanation above; the Y axis does not need to be logarithmic any longer.

With FLOTNOFMALISED we have finished the examination of the programs which makie power spectral analysis of text strings possible. However, as I thought it might be of some help in the understanding of how INFOF TIMESERIES works, I have included two pages which show the intermediate values between each procedure of INFOR during the calculation of the power spectrum of figure 9.5.

In the next chapter we shall optimise some of the parameters of these programs: number of frequency points in the spectra. window width and reference field, and in chapter 11 we shall make use of these programs to evaluate quantity and quality of structure in text strings - and at the same time get a lookinto the in inguistic device.

FROGRAM CODE
INDEX:
Frogram:
Fage:

FINDRF . 220
INFOR25 TIMESERIES.................... 224
INFOR25 FFT............................. . . 231
FLOT25. 237
INFOR NORMALISED. 245
FLOT NORMALISED. 251

* --

Intermediate results from INFOR25 TIMESERIES.......page 254

```
FRGIGRAM FINDFF (TEXTIN):
LAEEL 1.2.3:
CONST
    MAXWOFDLEN=2O:
    NUMEOFWOF:D=801:
TYF'E
    WOFDINDEX=1 & MAX WOFILLEN:
    TEXTINDEX=O& NLMEOFWOFIL:
    WOFDTYF.E=FFACFED ARFFAY[TEXTINDEX,WOFIDINDEX] OF CHAF:
    TRANSFTYFE=ARRAY[TEXTINDEX] OF REAL:
VAF
    WOFD: WOFDTYFE:
    LARL:F'ACKED AR'FAY[WORIINDEX] DF CHAR;
    TFANLA: TRANSFTYFE:
    N,N1,NZ,F:F,STAFT,FIN: INTEGER;
    FIGTIO:FEAL:
    CH: CHAF:%
    FIFST: ECIOLEAN:
    TEXTIN: TEXT:
    LETTEFS:SET OF CHAF:S
    F:INTEFIACTIVE:
FROCEDUIFE FEADWORD (L:INTEGER)
LAEEL 1,2:
CONST
    ELANK=" ":
VAF:
    N. CHAFCOLINT: INTEGEF:
    CH: CHAF::
EEGIN
    FOF: N:=1 TO MAXWOF:DLEN DO WORD[L.N]:=ELANK:
    CHAKC:OLINT:=1:
    1: WHILE NOT EOF (TEXTIN) DO
    EEGIN
        WHILE NOT EOLN(TEXTIN) DO
        BEGIN
            FEAD (TEXTIN.CH):
            IF CH=ELANK: THEN GOTO 2:
            IF EOLN(TEXTIN) THEN
            EEGIN
                    WOFD[L., CHAF:COUNT ] & =CH:
                    GOTO 2&
            END:
            IF CH IN LETTERS THEN
            EEGIN
                    WORD[L. CHAFCOUNT ]: =CH:
                    CHARCOUNT & =CHAF:COUNT + 1%
                    IF CHAFCCOUNT >MAXWORDLEN THEN
                    BEGIN
                    WHILE CH<>ELANK:DO
                    READ (TEXTIN,CH);
                    CHARCOUNT: =1%
                    END:
                    GOTO 1:
            END:
        END:
        READLN(TEXTIN):
    ENDs
    IF EDF(TEXTIN) THEN
    REGIN
        CONACT (O):
        WRITE('EDF AT WORD NR:'.L):
```

```
                                    HALT:
    END:
2: IF WOFD[L,1]=ELANK THEN
    EEGIN
        CHAFCOUNT:=1:
        GOTD 1:
        END:
END:
FFOCEDURE MQUEONE:
VAF:
    N,M: JNTEGEF:
EEGIN
    FOF N:=1 TO 2O DO
    LABL[N]: =WOKD[1,N]:
    FOF N:=2 TO FIN+1 DO
    WOF:D[N-1]: =WORL[N]:
END:
FFOCEDUFE COMF'AFEWGFLI\VAF INFAFFAAY:TRAINSFTYFE:
RIGHTEDGE: INTEGEF):
LAEEL 1:
VAF:
    LEFTEDGE.K:INTEGEFi:
EEGIN
    LEFTEDGE: =FIGHTEDGE-FFF:
    V:=O;
    REF.EAT
        IF WOFD[LEFTEDGE+K]=WORD[FIIGHTEDGE] THEN
            EEGIN
                    INFAFRAY[RIGHTEDGE ]: =%:
                    GOTO 1:
                    END:
            K:=k+1:
        UNTIL K:=RF:
1:ENL:
FRROCEDURE FINDRATIO(VAR NEW: TRANSFTYFEE
                    N,M&INTEGEFI)&
VAR
    NIL,ONE,L:INTEGER:
EEGIN
        ONE:=1% NIL:=1%
        FOF L:EN TO M DO
        IF ROUND (NEW[L]) =0
        THEN NIL: =NIL+1
        ELSE ONE:=ONE+1:
        RATID&=NIL/ONE:
END:
PROCEDURE BODKIN%
VAF
    NAME & STRING:
BEGIN
    CONACT (O):
    WFITELN("NAME DF INFUT FILE:"):
    READLN(NAME):
    {$I- I/D OFF}
    RESET (TEXTIN, NAME):
    WHILE IOREBULT<>O DO
    EEGIN
        WRITELN(PFILE NOT FOUND, TRY AGAIN');
        FEADLN(NAME):
        RESET (TEXTIN.NAME):
```

```
130: ENU:
END
132:
13.3:
134:
135:
136:
13.7:
138:
159:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
15():
151:
15%:
157:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195.
EEGIN--MAIN FFROGRAM
    RESET (F,'CONSOLE:');
    LETTERS:=['O':'9','A':'Z'];
3: BCOKIN:
    FIRST:=TRUE:
    CONACT (O):
    WRITTELN('FFEESENT LIMITATION: BOO WORDS');
    WFITELN:
1: WFITELN('WINDOW TO START WITH WORD NF:');
    READLN(F.START):
    WFITELN('WINDOW TO END WITH WORD NR:'):
    READLN(F,FIN):
    N:=FIN-STAFT+1:
    IF ODD(N) THEN
    EEGIN
        WFITELN:
        WFITELN''ONE END OF WINDOW MUST RE EVEN. THE OTHER ODD'):
        WFITELN:
        GOTO 1:
        END:
        WFITELN('INITIAL RF: '):
        FEADLN(F,FF):
        IF FIRST THEIS
        EEGIN
        FOF N:=1 TO FIN+1 DO READWORD(N);
        MOVEONE:
        FIRST:=FALSE:
        END:
2: N1:=TFUNC(LN(RF)/LN(2));
    REFEAT
        WFITE('RF = 'FFF:S):
        FOF N:=START TO FIN DO TRANLA[N]:=1;
        FOF N:=START TO FIN DO COMFAREWORD(TRANLA,N):
        FINDFATIO(TRANLA,START,FIN):
        IF (FFF=STAFIT-1) AND (RATIO<1) THEN
        EEGIN
            WRITELN: WRITELN;
            WFIITELN('******** REFERENCE FIELD TOD SHORT ********')
            WFITELN('DO YOU WANT TO CONTINUE WITH THIS FILE? (Y/N
            READ (F.CH):
            WFITELN:
            IF CH = 'Y' THEN GOTO 1
            ELSE
            EEGIN
                CLOSE(TEXTIN):
                GOTO 3:
                    END:
            END:
            WRITELN(" RATIO = ,RATIO:382):
            N1:=N1-1;
            N2:=ROUND(EXF(N1*LN(2))):
            IF RATIO > 1.0 THEN RF:=RF-N2
            ELSE IF RAT.10< < 1.0 THEN RF:=RF+N2:
        UNTIL (RATIO = 1). OR (N1 < ()):
        IF RATIO <> 1 THEN
        BEGIN
            WRITELN('DO YOU WANT WINDOW MOVED? (Y/N)'):
            READ (F,CH):
        IF CH = ' Y' THEN
        BEGIN
            START:=STAFTT-38
```

```
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
21E:
```

```
PROGRAM INFOR2STIMESERIES(TEXTIN,TEXTOUT):
LABEL 1;
CONST
    MAXWOFDLEN=2C;
    NUMEOFWORD=751;
TYPE
    WORDINDEX=1:MAXWOFDLEN:
    TEXTINDEX=O& NUMEDFWORD;
    WORDTYPE=FACKED ARRAY[TEXTINDEX,WORDINDEX] OF CHAF;
    TRANSFTYPE=ARRAY[TEXTINDEX] OF REAL;
VAR
    WORD; WORDTYPE:
    LARL:PACKED ARRAY[WORDINDEX] OF CHAR;
    TRANSA,TRANSE: TRANSFTYFE:
    J,N,M, RF,START, FIN,NOR,STEP,SAMFLES,
    TRANSINT, REALTIME,WIDTH: INTEGER;
    TGEM,MFD,WEIGHT: REAL;
    F:INTERACTIVE:
    HAM, MORE: ROOLEAN;
    CH: CHAF;
    NAMEIN,NAMEOUT: STRING;
    TEXTIN,TEXTOUT:TEXT:
    LETTERS:SET OF CHAF;
    NUMEERS:SET OF CHAR;
PROCEDURE BOOKIN(VAR NAME:STRING);
BEGIN
    CONACT (0):
    If mare then
    BEGIN
        WFITELN(NAMEIN,' WAS LAST FILE IN'):
        WFITELN(NAMEOUT,' WAS LAST FILE OUT');
        WFIITELN; WFITELN;
    END;
    WRITELN('NAME OF INFUT FILE:'):
    READLN(F,NAME):
    {$1- 1/O OFF}
    RESET (TEXTIN,NAME):
    WHILE IORESULT<>O DO
    BEGIN
        WRITELN('FILE NOT FOUND, TRY AGAIN'):
        READLN(F,NAME):
        RESET (TEXTIN,NAME):
    END;
END;
PROCEDURE BOOKOUT (VAR NAME:STRING):
EEGIN
            WFITELN('NAME OF OUTPUT FILE:');
            READLN(F,NAME):
            {$1- 1/0 OFF)
            RESET (TEXTOUT, NAME):
            CLOSE (TEXTOUT,PURGE);
            REWRITE (TEXTOUT,NAME):
    END;
    PROCEDURE INITIATE:
```

```
VAR
    CHzCHAF;
    EEGIN
        CONACT(O): WFITELN(NAMEIN,' IS FILE IN'):
        WFITELN(NAMEOUT,' IS FILE OUT');
        WFITELN:
        WFITELN('WIDTH OF ANALYSING WINDOW AFTER AUTOCOF: ");
        READLN (F,WIDTH);
        WFITELN('WINDOW TO STAFT WITH WORD NF:');
        READLN(F,STAFT):
        WFIITELN('WINDOW TO END WITH WORD NR&');
        READLN(F,FIN);
        WFITELN('RF:'):
        READLN(F,FF):
        WFITELN('NUMEEF OF RUUNS: "):
        READLN(F,NOR);
    END:
    FROCEDURE READWORD(L:INTEGER):
    LAEEL 1,2;
    CONST
        ELANK=' ':
    VAF
        N,CHAF:COUNT: INTEGER;
        CH: CHAR:
    EEGIN
        FOF: N:=1 TO MAXWORDLEN DO WORD[L;N]:=ELANK:
        CHARCOUNT: =1;
    1: WHILE NOT EOF(TEXTIN) DO
        EEGIN
            WHILE NOT EOLN(TEXTIN) DO
            EEGIN
                READ (TEXTIN,CH);
                IF CH=ELANK: THEN GOTO 2;
                IF EOLN(TEXTIN) THEN
                EEGIN
                    WORD[L, CHARCOUNT ]: =CH;
                    GOTO 2:
                END:
                IF CH IN LETTERS THEN
                BEGIN
                    WORD[L, CHARCOUNT ] & =CH;
                    CHARCOUNT: =CHARCOUNT +1;
                    IF CHARCOUNT >MAXWORDLEN THEN
                    BEGIN
                        WHILE CH<>BLANK DO
                    READ (TEXTIN,CH):
                    CHARCOUNT: = 1;
                    END;
                    GOTO 1:
                END;
            END;
            READLN(TEXTIN):
        END;
        IF EOF (TEXTIN) THEN
        BEGIN
            CONACT (O):
            WRITE('EDF AT WORD NR&',L);
            MALT:
        END;
```

```
2: IF WOFRD[L,1]=ELAN:` THEN
    EEGIN
        CHARCDUNT & =1:
        GOTO 1;
    END:
END;
FROCEDURE MOVEONE:
VAF
    N,M: INTEGER;
EEGIN
FOF N:=1 TO MAXWOFDLEN DO
LARL[N]:=WORD[1,N];
FOF N:=2 TO FIN+1 DO
WORD[N-1]: =WORD[N];
END;
FFOCEDUFE COMFAFEWORD\UAF INFAFRAY& TRANSFTYFE:
                                    FIGHTEDGE:INTEGER)
VAR
    LEFTEDGE,K:INTEGEF:!
BEGIN
    LEFTEDGE:= FIGHTEDGE-FiF:
    k:%=0;
        REF'EAT
                IF WOFD[LEFTEDGE+K]=WOFDD[RIGHTEDGE] THEN
            EEGIN
                    INFAFRFAY[RIGHTEDGE]: =0;
                    EXIT (COMF\cdotAREWORD):
            END:
            K.z=K_1;
            UNTILK=RF&
END:
FROCEDURE FULSEIVAR TRANSF,INF: TRANSFTYPE:
                    NI&INTEGER;
                    VAR' ND:INTEGER);
VAR
    K,N,M,STEP& INTEGER:
EEGIN
    K&=0; N: =1%
    REPEAT
                    STEP8=18
                    WHILE TRANSF[N+STEF] < 0.5 DO STEF: =STEP+1;
                    K: =K+1;
            N: =N+STEF;
            INF[K]& =STEP:
            UNTIL N+STEF'> NI!
            NO: =K:
    END;
    PROCEDURE SINXIVAR NEWF,OUT:TRANSFTYPE;
                                    NI,NO: INTEGER);
187:
198
LABEL 1,2,3,4
VAR
```

```
    SIX,IND:ARFAY[-100:NUMEOFWOFDJ OF REAL:
    IST, I,N,K,IV,KU,LIMITS: INTEGEF;
    DELT,FI,RSI,VX,XS,ST,TSV,STS:REAL;
EEGIN
    TGEM: =0;
    FOF 1&=1 TO NI DO TGEM&=TGEM+NEWF[I];
    TGEMz =TGEM/NI;
    STS:=-40; ST;=STS; FII;=4*ARCTAN(1);
    IST: =ROUND (ST/TGEM);
    FOR I:=IST TO -1 DO
    BEGIN
        IND[I+1]s=TGEM:
        IND[NI-I]:=TGEM:
    END:
    IND[IST]:=0;
    FOF I:=1 TO NI DO IND[I]:=NEWF[I]:
    FOF I:=IST TO (NI-IST) DO
    HEGIN
            ST:=ST+IND[I];
            SIX[I]:=SIN(FI*ST):
    END;
    I:=IST; ST:=STS:
    FOR K:=1 TO NO DO
        EEGIN
            KU: =0: RSI: =0;
            DELT: =5T-K;
            IF DELT< -40 THEN GOTO 2
            ELSE
            BEGIN
                    IF KU=1 THEN GOTO S
                    ELSE
                EEGIN
                    TSV:=ST;
                    KU: =1;
                    IV:=I;
                    END:
3:
                    VX:=FI#DELT;
                IF VX=0 THEN
                BEGIN
                    IF ODD(K) THEN XS: = -1
                    ELSE XS;=1;
                END
                ELSE XS:=SIX[I]/VX;
                RSI:=RSI+XS;
                    If =1+1;
                    IF I>(NI-IST) THEN GOTO 4;
                    ST:= ST+IND[I];
                    IF DELT < 40 THEN GOTO 1;
            END;
4: IF ODD(K) THEN RSIz=(-1)*RSI;
        OUT[K]: =(RSI*TGEM):
            Is=IV:
        ST:=TSV:
    END;
END:--SINX
PROCEDURE AUTOCORIVAR NEWE,OUT:TRANSFTYPE:
                                    NI,NO& INTEGER):
var
            I,K,J,N: INTEGER:
            X,H,SX,8X1, BY, XY, TOL& REAL;
```

```
253: REGIN
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
```

254: SX:=O; 5X1%=0%

```
254: SX:=O; 5X1%=0%
```

 FOF N:=1 TO NI DO
    ```
    FOF N:=1 TO NI DO
    EEGIN
    EEGIN
        X: =NEWE[N]:
        X: =NEWE[N]:
        5x8=5x+\mp@subsup{x}{8}{\prime}
```

 5x8=5x+\mp@subsup{x}{8}{\prime}
    ```


```

 END;
    ```
    END;
    H: =NI; --INTEGER MOVED TO REAL
    H: =NI; --INTEGER MOVED TO REAL
    TOL: =SX1/H-SX*SX/(H*H);
    TOL: =SX1/H-SX*SX/(H*H);
    OUT[O]:=TOL:
    OUT[O]:=TOL:
    N:=NI;
    N:=NI;
    K:=1:
    K:=1:
    SY:=SX;
    SY:=SX;
    FOF Jz=1 TO NO DO
    FOF Jz=1 TO NO DO
    EEGIN
    EEGIN
        SX:=SX-NEWE[N]:
        SX:=SX-NEWE[N]:
        SYz=SY-NEWE[K];
        SYz=SY-NEWE[K];
        N: =N-1:
        N: =N-1:
        K:=K+1;
        K:=K+1;
        XY: =0:
        XY: =0:
        FOF: Is=1 TO N DO
        FOF: Is=1 TO N DO
        XY: =XY+NEWE[I] *NEWE[ITJ];
        XY: =XY+NEWE[I] *NEWE[ITJ];
        H:=N: --INTEGER MOVED TO REAL--
        H:=N: --INTEGER MOVED TO REAL--
        OUT[J]:=XY/H-SX*SY/(H*H);
        OUT[J]:=XY/H-SX*SY/(H*H);
        END:
        END:
    END;--AUTOCOR
    END;--AUTOCOR
PROCEDURE FSFECIVAR OUT:TRANSFTYFE:
PROCEDURE FSFECIVAR OUT:TRANSFTYFE:
                NI:INTEGER):
                NI:INTEGER):
VAF
VAF
    NEWE:AFRAY[O:128] OF REAL:
    NEWE:AFRAY[O:128] OF REAL:
    INT,I,J:INTEGER;
    INT,I,J:INTEGER;
    PI,STORE:REAL;
    PI,STORE:REAL;
BEGIN
BEGIN
    F1:=4*ARCTAN(1);
    F1:=4*ARCTAN(1);
    FOR I:=0 TO NI DO NEWE[I]:=OUT[I]:
    FOR I:=0 TO NI DO NEWE[I]:=OUT[I]:
    FOR I&=0 TO NI DO
    FOR I&=0 TO NI DO
    BEGIN
    BEGIN
        STORE:=O:
        STORE:=O:
        FOR Ji=1 TO NI-1 DO
        FOR Ji=1 TO NI-1 DO
        STORE:=STORE+NEWE[J]*COS(J#I#PI/NI):
        STORE:=STORE+NEWE[J]*COS(J#I#PI/NI):
        OUT[1]:=NEWB[O]+2*STORE+NEWB[NI]*COS(1*PI);
        OUT[1]:=NEWB[O]+2*STORE+NEWB[NI]*COS(1*PI);
        OUT[I]:=17*AES(OUT[I]):
        OUT[I]:=17*AES(OUT[I]):
        END;
        END;
    END:--PSFEC
    END:--PSFEC
    PROCEDURE HAMMING\VAR INOUT:TRANSFTYPE; NS: INTEGER;
    PROCEDURE HAMMING\VAR INOUT:TRANSFTYPE; NS: INTEGER;
                            WEIGHT&REAL):
                            WEIGHT&REAL):
    VAR
    VAR
        WORK: TRANSFTYPE;
        WORK: TRANSFTYPE;
        I:INTEGER:
        I:INTEGER:
        H,M,L&REAL;
        H,M,L&REAL;
BEGIN
BEGIN
        H:=1-WEIGHT; Ms=WEIGHT; Ls=H/2;
        H:=1-WEIGHT; Ms=WEIGHT; Ls=H/2;
        WORK[03: =H% INOUT[O]+M* INOUT[1];
        WORK[03: =H% INOUT[O]+M* INOUT[1];
        FOR 1:=1 TO NS-1 DO
        FOR 1:=1 TO NS-1 DO
        WORK[1] % =L { INOUT[ I-1]+H$ INOUT[1]+L $INOUT[ [ +1];
        WORK[1] % =L { INOUT[ I-1]+H$ INOUT[1]+L $INOUT[ [ +1];
        WORK[NS]: =H% I NOUT[NS]+M*INOUT[NS-1];
```

 WORK[NS]: =H% I NOUT[NS]+M*INOUT[NS-1];
    ```
```

316: FOF 1:=0 TO NS DO INOUT[I]:=WORK[I];
317: END;
318:
319:
320:
321:
322: VAR N: INTEGER:
323: EEGIN
IF J=0 THEN
EEGIN
FOR N:=1 TO 4 DO IF LAEL[N]<\> , THEN
WFITE(TEXTOUT,LAEL[N]):
WRITE(TEXTOUT,',',START):
WRITE(TEXTOUT, 'B');
WFITE (TEXTOUT,FIN,'RF',RF,'S',STEF,'F',1,' ');
WFITE (TEXTOUT,WIDTH,' ',NOK,', ');
END:
FOF N:=O TO K DO WFITE(TEXTOUT,OUT[NJ,' ');
END;
EEGIN--MAIN FFOGRAM
RESET(F,'CONSOLE:');
CONACT(O):
WFITELN('PRESENT LIMITATION IS 750 WORDS'):
FOF N:=1 TO 6000 DO: CONACT (O);
LETTEFS:=[',','0':'9','A':'2'];
NUMEEFS:=['O';'9']; MORE;=FALSE;
1: HAM:=FALSE;
ROOKIN(NAMEIN):
EODKOUT (NAMEOUT):
INITIATE:
STEF:=0;
IF NDF > 1 THEN
EEGIN
WRITELN('EVERY N WORD: "):
FEADLN(F,STEF):
WRITELN(`DO YOU WANT TO SMOOTHE WITH A HAMMING WINDOW? (Y
READLN(F,CH):
IF CH = 'Y' THEN
BEGIN
HAM: =TRUE;
WRITELN('WEIGHTING ? (EVEN NUMRER BETWEEN 0.2 AND 0.s
READLN(F,WEIGHT):
END;
END:
RESET (TEXTIN):
FOR N:=1 TO FIN+NOR*STEF+1 DO READWORD(N);
MOVEONE;
Js=0;
REPEAT
CONACT (O):
WRITELN('FILE IN\& ',NAMEIN):
WRITELN('FILE OUT: ',NAMEOUT):
N:=J+1; WRITELN('RUN NUMEER: ',N):
FOR N\&=0 TO FIN DO TRANSA[N]:=1;
FOR N: =START TO FIN DO COMPAREWORD(TRANSA,N):
M8=0;
FOR N: =START TO FIN DO
BEGIN
Mz=M+1:
TRANSA[M]: =TRANSA[N];

```
```

379: END;
380:
381:
382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:
393:
394:
395:
396:
397:
398:
399:
400:
401:

```
```

FROGRAM INFOF2SFFT(TEXTIN,TEXTOUT):
CONST
MAXWORDLEN=20:
NUMEOFWOFD=801;
SHORT=2OO!
TYFE
WORDINDEX=1:MAXWORDLEN:
TEXTINDEX=O: NUMEOFWORD;
SHORT INDEX=O:SHORT:
WORDTYFE=PACKED ARRAY[TEXTINDEX,WORDINDEX] OF CHAF;
TRANSFTYPE=ARRAY[TEXTINDEX] OF REAL;
SHORTTYPE=ARRAY[SHORTINDEX] OF REAL:
VAF
WORD: WORIDTYFE:
LAEL:ARFRAY[WORDINDEX] OF CHAR:
TRANSA,TRANSE: SHORTTTYFE;
TRANLA: TRANSFTYFE:
J,N,M,FF,START,FIN,NOR,STEF,
TRANSINT,REALTIME,FULSE:INTEGER;
MFD:FEAL:
HAMCH, CH: CHAR;
F:INTERACTIVE:
CODE:ROOLEAN:
TEXTIN,TEXTOUT:TEXT:
LETTEFS:SET OF CHAR:
NUMEERS:SET OF CHAR;
PROCEDURE READWORD(L: INTEGER):
LAEEL 1,2;
CONST
ELANK=' ';
VAF
N,CHARCOUNT: INTEGEF;
CH: CHAR;
REGIN
FOR: N:=1 TO MAXWORDLEN DO WORD[L,NJ:=ELANK!:
CHAFCOUNT:=1;
1: WHILE NOT EOF(TEXTIN) DO
BEGIN
WHILE NOT EOLN(TEXTIN)
DO
BEGIN
READ (TEXTIN,CH):
IF CH=ELANK: THEN BOTO 2:
IF EOLN(TEXTIN) THEN
REGIN
WORD[L,CHARCOUNT]:=CH;
GOTD 2;
END:
IF CH IN LETTERS THEN
BEGIN
WORD[L, CHARCOLNT]s =CH;
CHARCOUNT \& CHARCOUNT +1;
IF CHARCOUNT\MAXWORDLEN THEN
BEGIN
WHILE CH<>BLANK DO
READ (TEXTIN,CH):
CHARCOLNT: =1;
END:
GOTO 1;
END:
END;
READLN(TEXTIN):

```
```

 END;
 IF EOF(TEXTIN) THEN
 BEGIN
 CONACT (O):
 WFIITE('EOF AT WOFD NR:',L);
 HALT:
 END:
 IF WOFD[L,1]=BLANK: THEN
 EEGIN
 CHARCOUNT: =1:
 GOTO 1:
 END:
 END:
FROCEDURE EOOKIN:
VAF:
NAME:STRING:
EEGIN
CQNACT (O):
WFITELN('NAME OF INFUT FILE:');
READLN(NAME):
{\$I- I/O DFF}
RESET (TEXTIN,NAME);
WHILE IOFESULT<<O DO
EEGIN
WFITELN('FILE NOT FOUND, TRY AGAIN'):
READLN(NAME):
FEESET (TEXTIN,NAME):
END:
END:
FROCEDURE MOVEONE:
VAF
N,M\& INTEGEF:
EEGIN
FOR N:=1 TO 20 DO
LAEL[N]:=WORD[1,N]:
FOR N\&=2 TO FIN+1 DO
WORD[N-1]:=WOFD[N]:
END:
PROCEDURE COMPAREWORD (VAR INFARRAY: TRANSFTYPE:
RIGHTEDGE: INTEGER);
LABEL 1:
VAR
LEFTEDGE, K:INTEGER;
BEGIN
LEFTEDGE: =FIGHTEDGE-RF;
K\&=C!
REPEAT
IF WORD[LEFTEDGE+K]=WORD[RIGHTEDGE] THEN
BEGIN
INFARRAY[RIGHTEDGEJ: =0:
EOTO 1%
END;
K\& =K+18
UNTIL K=RF:
IF CODE THEN
IF WORDERIOHTEDGE, 1 I IN NLMEERS THEN
INFARRAY [RIGHTEDGE I: =ORD (WORD[RIGHTEDGE, 1]) -4B;

```
```

127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145
146
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186
187:
188
189:

```
```

1:END:

```
1:END:
PROCEDURE AUTOCOFIVAR INN:TRANSFTYPE:
PROCEDURE AUTOCOFIVAR INN:TRANSFTYPE:
            VAR OUT&SHORTTYPE;
            VAR OUT&SHORTTYPE;
                                    NI,NO: INTEGER);
                                    NI,NO: INTEGER);
VAF
VAF
    I,K,J,N: INTEGEF:
    I,K,J,N: INTEGEF:
    X,H,SX,SX1,SY,XY,TOL&FEAL;
    X,H,SX,SX1,SY,XY,TOL&FEAL;
EEGIN
EEGIN
    SX:=0: 5X1:=0;
    SX:=0: 5X1:=0;
    FOK N:=1 TO NI DO
    FOK N:=1 TO NI DO
    EEGIN
    EEGIN
        X8=INN[N]:
        X8=INN[N]:
        5x:=5X+X;
        5x:=5X+X;
        5x1:=5X1+X*X;
        5x1:=5X1+X*X;
    END:
    END:
    H:=NI: --INTEGEF MOVED TO REAL
    H:=NI: --INTEGEF MOVED TO REAL
    TOL:=5X1/H-5X*SX/(H*H);
    TOL:=5X1/H-5X*SX/(H*H);
    OUT[O]:=TOL:
    OUT[O]:=TOL:
    N:=NI;
    N:=NI;
    K:8=1:
    K:8=1:
    SY:=5X;
    SY:=5X;
    FOF J&=1 TO NO DO
    FOF J&=1 TO NO DO
    GEGIN
    GEGIN
        Sx:=SX-INN[N]:
        Sx:=SX-INN[N]:
        SY:=SY-INN[K];
        SY:=SY-INN[K];
        N:=N-1:
        N:=N-1:
        K: =K+1;
        K: =K+1;
        XY& =0;
        XY& =0;
        FOF Iz=1 TO N DO
        FOF Iz=1 TO N DO
        XY:=XY+INN[IJ*INN[I+J];
        XY:=XY+INN[IJ*INN[I+J];
        H:=N: --INTEGEF MOVED TO REAL--
        H:=N: --INTEGEF MOVED TO REAL--
        OUT[J]:=XY/H-SX*SY/(H*H);
        OUT[J]:=XY/H-SX*SY/(H*H);
    END;
    END;
END:--AUTOCOR
END:--AUTOCOR
FROCEDURE FFTIVAR XREAL,XIMAG:SHORTTYPE;
FROCEDURE FFTIVAR XREAL,XIMAG:SHORTTYPE;
        NUMEER,NU:INTEGER):
        NUMEER,NU:INTEGER):
LABEL 1;
LABEL 1;
VAR
VAR
    IM,N2,NU1,I,K,L:INTEGER;
    IM,N2,NU1,I,K,L:INTEGER;
    TREAL,TIMAG,F,ARG,CO,SI:REAL;
    TREAL,TIMAG,F,ARG,CO,SI:REAL;
FUNCTION BITREV(J,NU& INTEGER) & INTEGER;
FUNCTION BITREV(J,NU& INTEGER) & INTEGER;
VAR
VAR
    1,J1,J2,K:INTEGER;
    1,J1,J2,K:INTEGER;
REGIN
REGIN
    J1:=J;
    J1:=J;
    K8=0;
    K8=0;
    FOR I&=1 TO NU DO
    FOR I&=1 TO NU DO
    BEGIN
    BEGIN
        J2&=J1 DIV 2;
        J2&=J1 DIV 2;
            K:=k;2+(J1-2%J2):
            K:=k;2+(J1-2%J2):
            Jis=J2;
            Jis=J2;
        END;
        END;
        BITREVI=K:
        BITREVI=K:
END:--BITREV
END:--BITREV
EEGIN
EEGIN
            MPD; =O;
            MPD; =O;
            N2: =NUMBER DIV 2:
            N2: =NUMBER DIV 2:
            NU1: =NUS-1;
```

 NU1: =NUS-1;
    ```
```

190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210
211:
212
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:.
247: PROCEDURE FILEOUT (VAF OUT\& SHORTTYPE: K: INTEGER):
248: VAF N\& INTEGER;
249: REGIN
250: IF J=O THEN
251:
252;
FOF: L:=1 TO NU DO
EEGIN
FOR 1:=1 TO N2 DO
EEGIN
IMz=K DIV ROUND (EXF (NUI*LN(2))):
F:%=EITREV(IM,NU);
AFGG:=6.2日32*F/NUMEER;
CO:=COS (ARG):
SI:=SIN(ARG):
TREAL: =XREAL[K+N2]*CO+XIMAG[K+N2]*S1;
TIMAG: =XIMAG[K+N2]*CO-XREAL[K+N2]*SI;
XREAL[K+N2]:=XREAL[K]-TREAL;
XIMAG[K+N2]:=XIMAG[K]-TIMAG;
XFREAL[K]: =XREAL[K]+TREAL
XIMAG[K]:=XIMAG[K]+TIMAG:
K: KK+1;
END:
K:=x+N2;
IF K< NUMEER THEN GOTO 1:
K:=0;
NU1:=NU1-1;
N2:=N2 DIV 2;
END:
K:=0;
REFEAT
Iz=EITREV(K.NU);
IF I > K THEN
EEGIN
TREAL:=XREAL[K]:
TIMAG: =XIMAG[K]:
XREAL[K]:=XREAL[I]:
XIMAG[K]:=XIMAG[I];
XREAL[1]s=TFEAL:
XIMAG[I]: =TIMAG
END:
K: K K+1:
UNTIL K=NUMEER:
K: =NUMEEF: DIV 2:
FOR L:=0 TO K DO
XREAL[L]:=17*SQRT(SQR(XREAL[LJ)+SQR(X]MAG[L])):
END;
PROCEDURE HAMMING (VAF: INOUT:SHORTTYPE; NS:INTEGER):
VAR
WORK:SHORTTYPE;
I:INTEGER:
BEGIN
WORK[0]:=0.74*1NOUT[0]+0.26*]NOUT[1]:
FOR I:=1 TO NS-1 DO

```

```

 WORK[NS]:=0.74% INOUT[NS]+0.26%INDUT[NS-1];
 FOR I:=0 TO NS DO INOUT[I]:=WORK[I]:
 END:
BEGIN
Nz=1:

```
281: RESET(F, "CONSOLE:")

283: NUMEEFS: \(=\left[{ }^{\prime} 0^{\prime}\right.\) ' \(\left.^{\prime} 9^{\prime}\right]\)
284: CODE: =FALSE:
285: EOOFIN:
2B6: HOOK:OUT:
287: CONACT (O)
288: WRITELN("THE CODING OF I-MODES IN THE PRESENT STATE'):
289: WFITELN(:IS EINAFVY. DO YOU WANT ANALOG CODING? (Y/N)')
290: READ (F,CH):
291: CONACT (O):
292: IF CH='Y' THEN
293: EEGIN
WRITELN('CODING CHANGED TO ANALOG')!
    CODE: =TRUE:
    END
2968
297: ELSE
298: WFITELN('CODING REMAINS RINARY'):
299: WRITELN(PPULSE SIZE: ') ;
300: READLN(F,PULSE):
301: WFITELNs
3028
\(304:\)
306: READLN(F,START)
307: WRITELN\&"WINDOW TO END WITH WORD NR:"):
308: READLN(F,FIN)
309: WRITELN("RF:")
310: READLN(F,RF):
311: WFITELN('EVERY N WORD: ')!
312: READLN(F, STEF):
313: WFITELN('NUMEER OF RLHS: '):
314: READLN(F,NOR)
315: RESET (TEXTIN):
```

316: FOF N:=1 TO FIN+NOF*STEP+1 DO READWORD (N):
317: MOVEDNE:
318: J:=0;
319: REPEAT
320:
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
334:
335:
336:
337:
338:
338:
339:
340: UNTIL J=NOF:
341: END.

```
```

PROGFAM FLOT25(FLOTIN,F):
LAEEL 1,2,3,4;
CONST
LIMIT=25: -- PLUS/MINUS DYNAMIC LIMIT OF SHADOW MASK
TYF'E
FREQINDEX=0:12B:
FUNINDEX=0:25;
FOWERTTYFE=ARFAY[RUNINDEX,FREQINDEX] OF REAL;
SHADOWTYFE=PACKED AFFAY[0;8,08300] OF BOOLEAN:
VAR
POWEFI: FOWERTYFE:
OFEN: SHADOWTYFE
MFDDFREQ: ARFAY[FREQINDEX] OF REAL
LAEL:ARFIAY[1:30] OF CHAR:
STAFT, F IN, NFUNS, FREQ, STEF, STEFX, STEFY, SUMFFEQ, NF,,
DEGFEE, CROSSFACTOR,FR,MIN, MAX: INTEGER:
SDEV, CHISQUAFE, ALFA, MF-DSTAT, UF'LIMIT, LOLIMIT \& REAL:
CHz CHAF:
IA\& INTERACTIVE,
FLDTIN,F:TEXT;
FROCEDUFE ROOKIN:
VAF
NAME:STRING:
EEGIN
CONACT (O):
WFITELN("NAME OF INPUT FILE:");
READLN(NAME):
{\$I- 1/0 DFF}
RESET (FLLOTIN,NAME):
WHILE IORESULT<<>O DO
EEGIN
WFITELN('FILE NOT FOUND, TRY AGAIN'):
READLN(NAME):
RESET (PLOTIN,NAME):
END:
END:
PROCEDURE EDOKOUT:
VAR
N\& INTEGER:
NAME:STRING\&
EEGIN
REWFITE (P,'PRINTER:'):
WFITELN(P, 'A');
WRITELN(P,CHR(18)):
FOR N\&=1 TO 2000 DO;
END;
PROCEDURE ASKWINDOW%
BEGIN
WRITELN\&
WRITELN("START:"):
READLN(START):
WRITELN("FIN:")!
READLN(FIN):
END:

```

63: PROCEDURE READFILE (VAR FOW P FOWERTYFE):
64: VAR
65: NFi,FR: INTEGEF;
66:
67 :
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
B5:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115
116:
117:
118:
119:
120:
MEAN \(=0 ;\) CHIVAR \(=0 ;\) SVAR \(:=0\)
121: FOR FR\& =o TO FREQ DO MEAN: =MEAN+MPDFREQ[FRJ:
122: MEAN: =MEAN/(FREQ+1):-- NUMEER OF POINTS = FREQ+1
123: FDR FRI=0 TO FREQ DO
124: BEGIN
125:
PROCEDURE STAT
VAR
FR: INTEGER;
CHIVAR, SVAR, MEAN, DEVB REAL;
EGIN

DEV: -MPDFREQ[FRJ-MEAN;
```

 SVAR: =SVAF+DEV*DEV;
 CHIVAR: =CHIVAR+MF.DFREQ[FF]_MMFDFREQ[FRJ/MEAN;
 END:
 SDEV:=SQRT (SVAR/FREQ); --NUMEER OF POINTS = FREQ+1
 CHISQUARE: =CHIVAR-MEAN* (FREQ+1);
 END:
FUNCTION TEATAELE(D:INTEGEF):REAL:
EEGIN
CASE D DF

```

```

 4:TEATAELE:=2.132; 5:TEATAELE:=2.015; 6:TEATAELE:=1.943;
 7:TEATAELE;=1.895; 8:TEATAELE:=1.860; 9; TEATAELE:=1.833;
 10:TEATAELE:=1.812; 11:TEATARLE;=1.796; 12:TEATAELE:=1.782;
 13:TEATAELE:=1.771; 14:TEATAELE:=1.761; 15:TEATAFLE:=1.753;
 16:TEATAELE :=1.746; 17:TEATAELE : =1.740; 18:TEATAELE:=1.734;
 19:TEATAFLE & =1.729; 20:TEATABLE; =1.725; 21:TEATAELE:=1.721;
 22:TEATAELE:=1.717; 23:TEATAELE:=1.714; 24:TEATAFLE:=1.711;
 25:TEATAELE:=1.708; 26:TEATAELE;=1.706; 27:TEATAELE:=1.703;
 2B:TEATAELE:=1.701; 29:TEATAELE :=1.699; 30:TEATABLE:=1.697;
 END:
 END:
FROCEDURE MAKEZAXIS(VAR FOW:FOWERTYPE):
VAR
NR,FR: INTEGER:
EEGIN
FOR NF:=1 TO NFUNS DO
FOR FR:=FREQ DOWNTO O DO
FOW[NF,FR+NR-1]:=FOW[NF,FR]:
END;
PROCEDURE NEGMASK(VAR FOW% FOWERTYPE):
VAF
NR,FR,LIMES: INTEGER:
BEGIN
LIMES: =FREQ+1;
FOR NR:=1 TO NRUNS DD
REGIN
FOR FR:=LIMES TO SUMFREQ DO
POW[NR,FR]: =-100;
LIMES:=LIMES+1;
END;
END;
PROCEDURE EXPAND (VAR POW:POWERTYPE):--MAKES STEP SURINTERVALS
VAR
NR,FR: INTEGER:
BEGIN
FOR NFR=1 TO NRUNS DO
FOR FR:=0 TO SUMFREQ DO
POW[NR,FRJ: = CROSSFACTOR*POW[NR,FRJ;
END;
PROCEDURE PERSPECTIVE(VAR POW:POWERTYPE):
VAR
NR,FR: INTEGER;
BEGIN

```
```

 FOR NF:}=1\mathrm{ TO NRUNS DO
 FOR FFi: =0 TO SUMFREO DO
 FOW[NF;,FR]; =FOW[NF;,FR]+CROSSFACTOR* (NF-1)!
 END;
PFOCEDUFE AXIS:
VAF
X,Y,N,DIST: INTEGER:
F\&REAL:
EEGIN
WRITELN(P,'SO');
WFITTELN(F', MO, -400'):
WFITELN(F;"I'):
DIST\& =FRED:
IF DIST }>32\mathrm{ THEN DIST: =32
WFITELN(P,'X1,',DIST,',B')!
Y:=(NFUNS-1) \&STEF; }\mp@subsup{X}{8}{\prime}=\mp@subsup{Y}{;}{\prime
WFITELN(F,'J',X,',',V):
WFITELN(F, 'R', (-X DIV 2)+15,*:,-Y DIV 2):
WFITELN(F,'PTIME'):
WFITTELN(F,'H'):
WFITELN(F,'M',4較IST,',-20'){
WFITELN(F,'FFREQ')!
WFITELN(F',H'):
WFI TELN(F'; XO,30,10'):
WRITELN(P,'M8O,315');
WRITELN(P.'S1');
WFITELN(F:,F.CONTINUOUS PDWER SFEECTRUM'):
WRITELN(F':SO'):
WRITELN(F, 'M15,300');
WFIITELN(F;'FF FOWER (LN)'):
WFITELN(F,'H'):
END;
FROCEDURE PLOT (CH:CHAR; }X,Y\&\mathrm{ INTEGER):
EEGIN
WRITELN(P,CH,X,',',Y)
END;
PROCEDURE INITPQS (VAR POW\&POWERTYPE!
NR,FR\& INTEGER):
VAR X,Y:INTEGER;
CH:CHAF:
REGIN
CHz=*M'; }\mp@subsup{X}{8}{\prime=FR\&STEP; }\mp@subsup{Y}{8}{\prime=ROUND (POW[NR,FR]);
PLOT (CH, X,V);
END;
PROCEDLFE SHADOWIVAR POW\& POWERTYPE
VAR OPEN: SHADOWTYPE{
NR,FR\& INTEGER;
ALFA:REAL):
VAR }XX,X,Y,N:INTEGER;
BEGIN
FOR }X\mp@subsup{X}{8}{}=1 TO BTEP DO
BEGIN
Y\&=ROUND (ALFA\& }xx+PON[NR;FRJ):
X: =XX+FR* 8TEP;
IF OPEN[XX,YJ THEN

```
```

 CH:='D' ELSE CHz='M';
 PLOT (CH, X,Y):
 FOR N: =MIN TO Y DO
 REGIN
 IF N<O THEN N:=O;
 OFEN[XX,N]: =FALSE:
 END;
 END;
 END;
PROCEDURE MINALFA/VAR POWIPOWERTYPE;
NR,FR: INTEGER;
VAF MIN,MAXZINTEGEF;
VAR ALFA\&REAL);
REGIN
IF FOW[NR,FR]<POWER[NR,FR+1] THEN
MIN: =FOUND (FOW[NR,FRJ)-LIMIT ELSE
MIN:=FOUND (POW[NF;,FR+1J)-LIMIT;
IF FOW[NR,FR] \POW[NF;FR+1] THEN
MAX: =ROUND (FOW[NR,FRI]+LIMIT) ELSE
MAX: =ROUND (FOW[NR,FFi+1]+LIMIT);
ALFA: = (FOW[NR,FR+1]-FOW[NF,FR])/STEP;
END;
PROCEDURE ZERO(VAR OPEN:SHADOWTYPE;
MAX: INTEGER):
VAF M,N: INTEGER:
EEGIN
FOF Mz=O TO MAX DO
FOF: N: =O TO STEF DO
OFEN[N,M]: =TRUE:
END;
FROCEDURE STOF(NF,FRZ INTEGER):
VAR
X,Y:INTEGER;
CH:CHAR;
BEGIN
X:=STEP*FR;
Y\& =(NR-1)*CROSSFACTOR;
CHz='D';
PLOT (CH,X,Y);
END;
PROCEDURE LIMITS;
VAR
Bz REAL;
BEGIN
E\& =SDEV/SQRT (FREQ):
DEGREE: =ROUND ((FIN-START+1)/FREQ):
UPLIMIT; =MFDSTAT+R*TEATABLE (DEGREE):
LOLIMIT: MMPDSTAT-B*TEATABLE (DEGREE):
END;
PROCEDURE MPDPLOT:
VAR
Y, N, INTEGER:

```
```

315: BEGIN
WRITELN(P,'PCHI2='):
376: IF CHISQUARE < 100.0 THEN WRITELN(P,'P '):
377:

```
```

 STEFX: =ROUND (320/FREQ);
 STEPY: = 25:
 WRITELN(F','SO'):
 WFITELN(F,'M1O, -400'):
 WFITELN(F,'I'):
 WFITELN(P,'X1,64,5');
 WFITELN(F','H'):
 WFITELN(P,'M-B,-15');
 FOR N:=0 TO 5 DO
 BEGIN
 WFITELN(F,'PO.',N);
 WFITELN(F,'R4G,O'):
 END:
 WFITELN(F,'R-20,0'):
 WFITELN(F','PFREQUENCY'):
 WFITELN(F','H');
 WFITELN(F','X0, 25, 8');
 WFITELN(F,"M-1O,-4");
 WFITELN(F','I');
 FOF Nz=1 TO B DO
 REGIN
 Y& =N*25;
 WFITELN(F,'MO,',Y);
 WFITELN(F,'P',N);
 END;
 WFITELN(F,'M115,250'):
 WFITELN(F,'S1');
 FOR Nz=1 TO 30 DO
 WRITELN(F,'F',LAEL[N]):
 WFITELN(P;'M95, 22E');
 IF NRUNS=1 THEN
 WFITELN(F,'P FOWEF SPECTRUM') ELSE
 WRITELN(F',F' AVERAGED FOWER SFECTRUM');
 WRITELN(F,'SO'):
 WRITELN(F,'M1S, 200'):
 IF NRUNS=1 THEN WRITELN(F,'P POWER (LN)') ELSE
 WFITELN(F,'P AVERAGE FOWER (LN) OF ',NRUNS,' RUNS');
 WRITELN(F,'M1O,4'):
 WRITELN(P,'I');
 FOR N: =O TO FREQ DO
 BEGIN
 IF MFDDREQ[N] < 1 THEN
 Yi=O ELSE Yi=ROUND(STEPY*LN(MPDFREQ[NJ));
 WRITELN(P,'D',N#STEFX,',',Y);
 END:
 END:
 PROCEDURE PLOTSTAT;
 VAR
 PLOTVARX, PLOTVARY: INTEGER;
 BEGIN
 WRITELN(P,'M15,170'):
 WRITELN(P,'81'):
 WRITELN(P,'PMWD = '):
 IF MPDSTAT < 10.0 THEN WRITELN(P,'P '):
 WRITELN(P, 'P', MPDSTAT:5: 2):
 WRITELN(P,PP DEGR OF FREED = ',DEGREE:2);
 WRITELN(P,'M15,150'):
 WRITELN(P;'P', CHISQUARE: 3: 2);
    ```
WFITELN(F',P UPFEF CONF LIM=',UFLIMIT:4:2)!
WRITELN(P,"M15, 130');
WRITELN(F, "FSSDEV= ');
IF SDEV < 10.0 THEN WFIITELN(F; 'P '):
WRITELN(P;'P',SDEV&5&2);
WFITELN(F,'P LOWER CONF LIM=',LOLIMIT:4:2);
PLOTVAFX: =STEFX*FREQ:
PLOTVARY: =ROUND (STEPY&LN(UPLIMIT));
WRITELN(F, 'MO,', PLOTVARY);
WRI TELN(F;"D',PLOTVARX,",",FLOTVARY);
WRITELN(F,'SQ');
WFITELN(F','P MFDD UFFER 0.95 CONF LIM'):
PLOTVARY& =ROUND (STEFY&LN(LOLIMIT));
WFITELN (F', MO," PLOTVARY):
WFITTELN(F, 'D',FLOTVAFX,',",PLOTVARY);
WFITELN(F, 'F 'MPD LOWEF O.95 CONF LIM'):
WFITELN(P,'H');
END:
EEGIN--MAIN FFROGFAAM
    RESET (IA, 'CONSOLE:");
3: CONACT (O):
    EOOFIN:
    EOOKOUT:
    ASFWINDOW:
    FEADF ILE (FOWER) :
    FINDMFDS (POWER):
    STAT:
    LIMITS:
    EXPD(FOWER):
    MFDPLOT:
    FLOTSTAT:
    IF NRUNS = 1 THEN GOTO 4:
    STEF':=8
    --STEP SETS WIDTH OF GRAPH
    IF FREQ > 32 THEN STEF: }=256 DIV FREQ:
    CROSSFACTOF:=STEP: --CROSSFACTOR SETS HIGHT OF GRAPH
    MAKEZAXIS (POWER):
    NEGMASK.(POWER):
    EXPAND (POWER);
    PERSFECTIVE (POWER) :
    AXIS:
    MAX: =0;
    FOR FR& =0 TO SUMFREQ DO
    BEGIN
        ZERD(DPEN,MAX):
        FOR NR:=1 TO FR+1 DO
        EEGIN
            IF NRPNRUNS THEN GOTO 2:
            IF POWER[NR,FR+1]<0 THEN
            IF POWER[NR,FRJ>O THEN
            BEGIN
                    INITPOS (POWER,NR,FR):
                    ETOP(NR,FR):
                    BOTO 1;
                    END;
                    IF POWER[NR,FRJ<O THEN GOTO 1%
                    MINALFA (POWER,NR,FR,MIN,MAX, ALFA)
                    INITFOS (POWER,NFi,FR):
                    BHADOW (POWER, OPEN, NR,FR, ALFA):
                END:
            END:
            WRITELN("DO YOU WANT ANOTHER RUN? (V/N)') &
```

441:
442:
44.3:

444:
445:
446:
447:
448:
449:
450:

READ (IA, CH); IF $C H=$ ' V ' THEN EEGIN CLOSE (F'LOTIN): GOTO 3; END:
END.

```
FROGRAM INFORNORMALISED(TEXTIN,TEXTOUT):
CONST
    MAXWORDLEN=20;
    NUMBOFWORD=701;
    FREQ=64;
    TWOFREQ=12B;
    POWERTWD=7:
TYPE
    WORDINDEX=1 & MAXWORDLEN:
    TEXTINDEX=0: NUMEOFWORD;
    WORDTYFE=FACNED ARFAY[TEXTINDEX,WORDINDEX] OF CHAR;
    TRANSFTYFE=AFFRAY[TEXTINDEX] OF REAL;
VAR
    WORD: WOKDTYPE:
    LARL:PACKED ARFAY[WORDINDEX] OF CHAR;
    TRANSA,TRANSE: TRANSFTYFE:
    N,RF,START,FIN, SAMPLES,REALTIME: INTEGER;
    F:INTERACTIVE:
    HAM, CODE: ROOLEAN;
    CH:CHAF;
    TEXTIN,TEXTOUT&TEXT;
    LETTERS:SET OF CHAR:
    NUMEERS:SET DF CHAR;
PROCEDURE INITIATE:
REGIN
        WRITELN('THE CODING OF I-MODES IN THE FRESENT STATE'):
        WFITELN('IS EINARY. DO YOU WANT ANALOG CODING? (Y/N)'):
        READ (F,CH):
        CONACT(O):
        IF CH='Y' THEN
        BEGIN
            WFITELN('CODING CHANGED TO ANALOG'):
            CODE:=TRUE;
            END
        ELSE
        WFITELN('CODING REMAINS BINARY');WRITELN;
        WRITELN('WINDOW TO START WITH WORD NR&');
        READLN(F,START):
        WRITELN('WINDOW TO END WITH WORD NR:'):
        READLN(F,FIN):
        WRITELN('RF:');
        READLN(F,RF):
    END;
    PROCEDURE ROOKIN:
VAR
    NAME:STRING;
BEGIN
    CONACT (O):
    WRITELN('NAME OF INPUT FILE:');
    READLN (NAME):
    CB1- 1/0 OFF)
    RESET (TEXTIN,NAME):
    WHILE IORESLLT<>O DO
    BEGIN
        WRITELN('FILE NOT FOUND, TRY AGAIN'):
        READLN(NAME):
            RESET (TEXTIN,NAME):
            END:
    END;
```

```
64:
65:
66:
67:
68:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
: FROCEDURE READWOFD(L:INTEGER):
LAEEL 1,2;
CONST
        ELANK=' ';
    VAF
    N,CHAFCCOUNT: INTEGEF:
    CH: CHAF:
EEGIN
FOF N:=1 TO MAXWORDLEN DO WORD[L,N]:=ELANK:B
CHAFICOUNT:=1;
1: WHILE NOT EOF (TEXTIN) DO
    EEGIN
        WHILE NOT EOLN(TEXTIN) DO
            EEGIN
                READ (TEXTIN,CH);
                IF CH=RLANK THEN GOTO 2;
                IF EOLN(TEXTIN) THEN
                BEGIN
                    WORD[L, CHARCOUNT 3: =CH;
                GOTO 2;
                END:
                IF CH IN LETTERS THEN
                REGIN
                WORD[L, CHARCOUNT J: =CH;
                CHAFICOUNT =CHARCOUNT +1;
                IF CHARCOUNT PMAXWORDLEN THEN
                BEGIN
                    WHILE CH<.\BLANKK DO
                    READ(TEXTIN,CH):
                    CHARCOUNT8=1;
                END;
                    \mathrm{ cotO 1:}
                END;
            END;
            READLN(TEXTIN):
        END:
        IF EOF(TEXTIN) THEN
        BEGIN
            CONACT (0):
            WRITE('EOF AT WORD NR&',L);
            HALT;
            END;
            IF WORD[L, 1]=BLANK. THEN
    BEGIN
        CHARCOUNT: = 1;
        BOTO 1;
            END;
```

```
END;
FROCEDURE DCEQU(VAR INOUT:TRANSFTYFE: NI&INTEGER):
VAF
    I:INTEGER:
    MEAN, SUM: REAL;
BEGIN
    SUM& =C:
    FOR 1z=1 TO NI DO
    SUM: =SUM+INOUT[I];
    MEAN: =SUM/NI;
    FOR I&=1 TO NI DO
    INOUT[I]:=INOUT[I]-MEAN;
END;
PROCEDURE AUTOCOR(VAR NEWB,OUT; TRANSFTYPE;
                    NI,ND: INTEGER):
VAR
    I,K,J,N& INTEGER;
    X,H,8X,SX1,SY, XY,TOL&REAL;
BEGIN
    SX2=0; 5X1:=0;
    FOR Nz=1 TO NI DO
    BEGIN
        X: =NEWB[N];
        5X: =5X+X;
```



```
        END:
        Hz=NI: --INTEGER MOVED TO REAL
        TOL:=8\times1/H-8X*SX/(H*H):
        OUT[OJ:=TOL:
        Nz=N1:
        K8=1;
    SY:=5x:
```

128:
129:
130:
131: VAR
132:
133:
134:
135:
1368
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
$151:$
152:
153:
154:
155:
156:
157:
158:
159:
160:
1618
$162:$
163:
164:
165is
166:
167:
16E:
1698
1708
171.
1728
1738
174:
175:
1748
1778
178:
1798
180:
18:
182:
183:
1848
18:8:
186:
187:
1818:
189:

```
        FOF J&=1 TO NO DO
        BEGIN
        SX:=SX-NEWE[N]:
        SY:=SY-NEWE[K];
        N:=N-1;
        K:z =k:+1;
        XY&=0:
        FOR I;=1 TO N DO
        XY& = XY +NEWE[ I]&NEWE[I +J]!
        H: =N: --INTEGER MOVED TO REAL--
        OUT[J]& =XY/H-SX*SY/(H*H);
        END;
END:--AUTOCOR
FFOCEDURE NOFMALISE (VAF OUT: TRANSFTYFE:
                NI&INTEGEF:):
VAF
        N: INTEGEF:%
        MAX : REAL:
EEGIN
        MAX:=01:
        FOF N& =O TO NI DO IF MAX < OUT[N]
        THEN MAX: =OUIT[N]:
        FOF N:=0 TO NI DO
        OUT[N]:=OUT[N]/MAX;
END;
FROCEDURE FFT (VAF: XREAL,XIMAG&TFANSFTYPE:
                        NUMEER,NU: INTEGER):
LAEEL 1:
VAF
    IM,NZ,NU1,I,K,L:INTEGER;
    TREAL, TIMAG,F,ARG, CO,SI & REAL:
FUNCTION EITREV(J,NU:INTEGER): INTEGER:
VAR
    I,J1,J2,K& INTEGER;
BEGIN
    J1:=J:
    K: =0;
    FOR I&=1 TO NU DO
    REGIN
            J2:=J1 DIV 2%
            K&=K&2+(J1-2*J2);
            J1:=32;
    END:
    BITREV8 =K:
END;--BITREV
BEGIN
    N2:=NUMEER DIV 2%
    NU1:=NU-1:
    K&=0;
    FOR L:=1 TO NU DO
    EEGIN
                FOR I&=1 TO N2 DO
                BEEIN
                    IM&=K DIV ROUND (EXP (NUI&LN(2))):
                    P&=BITREV (IM,NU):
                    ARE&=6. 2832%P/NMMBER:
                    CO&=COS (ARG):
                            SI:=8IN(ARG):
```

TREAL $:=X R E A L[K+N 2]$ \& CO $+X I M A G[K+N 2] * S I ;$

$X R E A L[K ゙+N 2]:=X R E A L[K]-T R E A L ;$
$X I M A G[K+N 2] z=X I M A G[K]-T I M A G:$
$X F E A L[K] z=X R E A L[K]+$ TREAL
$X I M A G[K] s=X I M A G[K]+T I M A G ;$ $K:=k+1 ;$
END:
$K .8=K+N 2:$
IF $K<$ NUMEER THEN GOTO $1:$
$K_{1}=0 ;$
NU1: $=$ NU1 -1 ;
N2: $=$ N2 DIV 2;
END:
K: $=0$ O
REF'EAT
I: $=E I \operatorname{TREV}\left(K_{i}, N_{U}\right) ;$
IF I $>K$ THEN REGIN

TREAL: $=X$ FEAL[K]:
TIMAG: =XIMAG[K]:
XREAL[K]: $=X \operatorname{REAL}[I]:$
$X I M A G[K] z=X I M A G[I] ;$
XREAL[1]: $=$ TREAL
XIMAG[I] $=$ TIMAG;
END:
$K:=k+1:$
UNTIL K=NUMERER
K: =NUMRER:- DIV $2!$
FOR L: $=0$ TO K DO
XREAL[L]: $=0.944929$ \# 17 \#SQRT (SQR $(X R E A L[L J)+S Q R(X I M A G[L])):$
END: --FACTOR 0.944929 ADJUSTS FFT TO TIMESERIES

PROCEDLRE HAMMING ©VAR INOUT:TRANSFTYPE; NS: INTEGERः

VAR
WOFK. $:$ TRANSFTYFE:
I \& INTEGEFi:
H, M, L: REAL:
REGIN
$H_{8}=1-$ WEIGHT; $M_{8}=W E I G H T ; L s=H / 2 ;$

FOR I:=1 TO NS-1 DO
WORK[I]: $=$ L I NOUT[$I-1]+H$ I NOUT[1$]+L$ [INOUT $[1+1]$;
WORK[NS $]_{\mathrm{z}}=\mathrm{H}$ INOUT[NS]+M*INOUT[NS-1];
FOR $18=0$ TO NS DO INOUT[I]: =WORK[I]:
END;

PROCEDURE FILEOUT (VAR OUT: TRANSFTYPE; K: INTEGER): VAR NI INTEGER\&
REGIN
FOR $\mathrm{N}_{8}=1$ TO 4 DO
WRITE (TEXTOUT, LABL[N]):
WFITE (TEXTOUT, ", START) :
IF CODE THEN WRITE(TEXTOUT, " A ') ELSE
WRITE(TEXTOUT, ' B^{\prime}) :
WRITE(TEXTOUT,FIN, *RF",RF," ")
WRITE(TEXTOUT, K, 1 ")
FOR $N_{1}=0$ TO K DO WRITE (TEXTOUT, OUT[N], " 1 :

```
END:
```

316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326: 327:
328:
329 :
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351 :
351:
$353:$ 354
EEGIN--MAIN PROGRAM
RESET (F, ${ }^{\prime}$ CONSOLE:') ;
LETTERS: = [',','0':'9', 'A':'2'];
NUMEERS: =['0':'9'];
CODE: =FALSE; HAMz =FALSE;
WRITELN('This program samples 128 values for FFT and is');
WRITELN('not suitable for windows of less than 400 words'):
WFITELN:
BOOKIN:
EOOKOUT:
CONACT (O):
INITIATE:
RESET (TEXTIN):
WRITELN('DO YOU WANT TO SMODTHE WITH A HAMMING WINDOW? (Y/N)'):
READ (F, CH) ;
IF $C H=$ ' Y ' THEN HAM: =TRUE:
FOR $N:=1$ TO FIN+1 DO READWORD (N);
MOVEONE;
FOF $\mathrm{N}:=5$ TAFT TO FIN DD TRANSA[N]: $=$ NEWWOFD (N,FF):
REALTIME: $=0$;
FOR N : $=$ STAFT TO FIN DO
EEGIN
REALTIME: $=$ REALTIME+1:
TRANSA[REALTIME]: =TRANSA[N];
END:
FOR $\mathrm{N}_{2}=1$ TO REALTIME DO
REGIN
WFITE (ROUND (TRANSA[N])):
IF N MOD $50=0$ THEN WRITELN;
END:
DCEQU(TRANSA, REALTIME):
AUTOCOR (TRANSA, TRANSE, REALTIME, TWDFREO) ;
NORMALISE (TRANSE, TWOFREQ) ;
FOR $N_{1}=0$ TO TWDFREQ DO TRANSA[N]: $=0 ;$
FFT (TRANSB, TRANSA, TWOFREQ, POWERTWO) :
IF HAM THEN HAMMING (TRANSE,FREQ,0.26):
FILEOUT (TRANSB, FREQ):
END.

```
PFOGFAM PLOTNORMALISED (FLLOTIN,P):
CONST
    STEFX=5;
    STEFY=3:
TYFE
        FREOINDEX=0:64;
        FOWERTYF:E=ARFAY[FREQINDEX] OF REAL:
VAF
        POWER2, FOWER1:POWERTYPE:
        LAEL:ARFAY[1:3O] OF CHAF;
        FREQ, NFUNS,NF,FR,N: INTEGER:
        WORDING, NAME,NAME 1, NAME2,NAME3: STRING;
        IA: INTERACTIVE;
        FLOTIN,F:&TEXT;
    FFOCEDUFE ASK(VAF: FILENAME:STRING):
    EEGIN
        WRITE (FILENAME):
    END;
    PROCEDURE REED(VAR FILENAME&STFING);
    EEGIN
        FILENAME: =' ',
        READLN(IA,FILENAME):
    END;
    FROCEDURE ROOKIN(VAR NAME:STRING):
    VAR N:INTEGEK;
    EEGIN
        {$I-1/0 OFF}
        RESET (PLOTIN,NAME):
        WHILE IORESULT<>O DO
        REGIN
            WRITELN('FILE NOT FOUND, TRY AGAIN'):
            FEADLN(NAME):
            RESET (PLOTIN,NAME);
        END;
    END;
    PROCEDURE ROOKOUT;
    VAR
        N& INTEGER;
    BEGIN
        REWRITE(P,'PRINTER&*);
        WFITELN(F, 'A'):
        WRITELN(P,CHR(18)):
        FOR N:=1 TO 2000 DO;
    END;
    PROCEDURE READFILE (VAR POW:POWERTYPE):
    .VAR
        NF,FR:INTEGER:
        CH: CHAR:
    BEGIN
        FOR NR&=1 TO 30 DO LABL[NRJz=" ":
        NR: = 1:
        REPEAT
        READ (PLOTIN,CH):
```

```
        LAEL[NF]: =CH:
        NR: =NR+1
    UNTIL CHI' ':
    READ (FLOTIN,FREQ): READ (PLOTIN,NFUNS);
    FOR FFi: =0 TO FREQ DO
    READ (PLOTIN,FOW[FRJ):
END:
PROCEDURE AXIS:
VAF
    Y,N:INTEGER;
BEGIN
    WRITELN(P,'SO');
        WFITELN(F', M1O,-400'):
        WRITELN(F','I'):
        WRITELN(F,'X1.64,5'):
        WFITELN(F':H'):
        WFITELN(F,'M-B,-15');
        FOR N:=O TO S DO
        GEGIN
            WFITELN(F,'FOO.',N)&
            WFIITELN(P;'R46,0'):
        END:
        WRITELN(F,'R-2O,O'):
        WFITTELN(F', 'FFFREQUENCY'):
        WRITELN(F','H');
        WRITELN(F,'XO, 30,6'):
        WFIITELN(P,'M-10,-4');
        WFITELN(F',I'):
        FOF N:=1 TO 6 DO
        BEGIN
            Yg=N*3O%
            WRITELN(F',MO,',Y);
            WFITTELN(F','P',N):
        END:
        WFITELN(F,"M130,260'):
        WFITELN(F','S1'):
        WFITELN(F','P',NAME1);
        WRITELN(F,'M9S, 215');
        WFITELN(P,'P FOWER SFECTRLH'):
        WRITELN(P,'SO'):
        WRITELN(P;'M1S,180')
        WRITELN(F,'P POWER * 10'):
        WRITELN(F,*M1O,4*);
        WFIITELN(P,'I');
    END;
    PROCEDURE PLOT(VAR EACHPOWIPOWERTYPE{
    NAME&STRING):
    VAR N,Y& INTEGER;
    BEGIN
        FOR N: =O TO FREQ DO
        BEGIN
            IF EACHPOW[NJ < 1 THEN
            Y:=0 ELSE Y&=ROUND(STEPY*EACHPOW[NJ):
            WRITELN(P, 'D',N&STEPX,',',V);
        END:
        WRITELN(P,'J15,0'):
        WRITELN(P,'P , NAME):
        WRITELN(P,'H');
    END;
```

127:
128: 129: 130:
131:
132:
133:
134:
135:
136: 137: 138: 139: 140: 141: 142: 143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153: 154:
EEGIN--MAIN FROGRAM
FESET (IA; 'CONSOLE: ')
CONACT (O):
WRITELN("HEADING OF GRAFH: ${ }^{*}$);
READLN (IA, NAME 1) ;
WORDING: ='NAME OF DATA FILE FOF FULL LINE GFAFH: :
ASt: (WDRDING)
FEED (NAME) :
ROOFIN(NAME)
READFILE (F'OWEFI 1)
CLDSE (FLDTIN); OF DATA FILE FOR DOTTED LINE GRAF'H: *
ASF: (WORDING) s
REED (NAME):
EOOK:IN(NAME)
READFILE (FOWERZ):
WFITELN("MAME ON FULL GRAPH: *);
READLN (IA, NAME2)
HFITELN('NAME ON DOTTED GFAF'H: ')
READLN(IA, NAMES):
EOOFOUT;
AXIS:
PLDT (FOWER1, NAME2)
WRITELN(F; 'L4*);
FLOT (FODER2, NAME3);
END.

After COMF'AREWORD:

$1.000 .001 .000 .000 .00 \quad 0.000 .001 .00 \quad 0.00 \quad 0.00$ $1.000 .001 .001 .000 .001 .000 .00 \quad 0.000 .000 .00$ $0.001 .001 .0010 .001 .001 .001 .001 .00 \quad 0.001 .00$ $0.000 .000 .001 .00 \quad 0.001 .000 .001 .00 \quad 0.000 .00$ $1.000 .000 .001 .00 \quad 0.00 \quad 0.00 \quad 0.001 .00 \quad 0.001 .00$ 1.001 .001 .001 .001 .001 .0000 .000 .001 .001 .00 $1.000 .001 .00 \quad 0.00 \quad 0.001 .001 .000 .000 .000 .00$ $1.001 .001 .000 .00 \quad 0.00 \quad 0.00 \quad 1.000 .000 .000 .00$ $0.001 .00 \quad 0.001 .00 \quad 0.001 .001 .001 .00 \quad 0.001 .00$ 0.001 .000 .000 .000 .000 .001 .000 .000 .001 .00 $0.001 .000 .000 .00 \quad 0.00 \quad 0.000 .001 .000 .001 .00$ $0.001 .001 .00 \quad 0.00 \quad 0.001 .000 .001 .00 \quad 0.001 .00$ $1.00 \quad 0.001 .000 .00 \quad 0.00 \quad 0.00 \quad 1.00 \quad 1.000 .001 .00$ $0.001 .001 .001 .00 \quad 0.000 .00 \quad 0.001 .000 .001 .00$ $1.0010 .001 .0001 .001 .001 .00 \quad 1.001 .00 \quad 0.00 \quad 0.00$ 0.001 .001 .000 .000 .000 .000 .001 .000 .001 .00 $1.001 .00 \quad 0.000 .001 .00 \quad 1.00 \quad 0.001 .00 \quad 0.001 .00$ 1.001 .001 .001 .0010 .001 .001 .001 .001 .001 .00 1.001 .001 .000 .001 .001 .001 .001 .001 .001 .00 $0.001 .00 \quad 0.001 .00 \quad 0.001 .001 .001 .00 \quad 0.00 \quad 0.00$ $1.001 .001 .001 .00 \quad 0.001 .0010 .001 .00 \quad 0.001 .00$ $0.001 .000 .000 .001 .001 .0000 .001 .00 \quad 0.00 \quad 0.00$ $0.001 .00 \quad 0.00 \quad 1.00 \quad 0.001 .0000001 .00 \quad 1.00 \quad 0.00$ 0.001 .000 .001 .000 .001 .000 .000 .001 .001 .00 $1.001 .001 .001 .001 .001 .00 \quad 0.00 \quad 0.001 .001 .00$ $1.001 .001 .001 .001 .0010 .001 .0010 .00 \quad 0.00 \quad 0.00$ 0.000 .001 .000 .001 .000 .000 .000 .000 .001 .00 0.000 .000 .001 .000 .000 .001 .000 .0000001 .00 1.001 .0010 .001 .0010 .000 .000 .000 .001 .000 .00 0.001 .000 .0010 .000 .001 .000 .0010 .001 .001 .00
 $1.00 \quad 0.000 .000 .00 \quad 0.00 \quad 0.00 \quad 0.001 .00 \quad 0.001 .00$ $1.000 .000 .001 .001 .001 .00 \quad 0.00 \quad 0.00$

After PULSE:

```
0.00
2.00 5.00 3.00 2.00 1.00 2.00 6.00 1.00 2.00 1.00
1.00 1.00 2.00 4.00 2.00 2.00 3.00 3.00 4.00 2.00
1.00 1.00 1.00 1.00 1.00 1.00 3.00 1.00 1.00 2.00
3.00 1.00 4.00 1.00 1.00 4.00 5.00 2.00 2.00 1.00
1.00 2.00 2.00 5.00 3.00 2.00 6.00 2.00 2.00 1.00
3.00 2.00 2.00 1.00 2.00 4.00 1.00 2.00 2.00 2.00
4.00 2.00 1.00 2.00 2.00 1.00 1.00 1.00 4.00 1.00
5.00 2.00 1.00 1.00 3.00 1.00 2.00 2.00 1.00 1.00
1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 2.00 1.00
1.00 3.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 3.00
    1.00 2.00 4.00 2.00 2.00 2.00 1.00 3.00 2.00 2.00
    3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.00 1.00
    1.00.1.00 1.00 1.00 1.00. 2.00 6.00 2.00 5.00 4.00
    3.00 3.00 1.00 1.00 2.00 5.00 3.00 4.00 3.00 1.00
    1.00 1.00 4.00 1.00 1.00 3.00 7.00 2.00 1.00 3.00
    1.00 1.00 5.00
```

After SINX:

After AUTOCOR\&

```
1.04
-0.09 0.15-0.05 0.06 0.04 0.05 0.01 0.06-0.12 0.12
0.04 0.09-0.01 0.04 0.01-0.02-0.10 0.09 0.01 0.03
-0.05-0.04-0.07-0.02 0.16 0.03 0.03 0.01 0.02 0.02
0.09-0.14
```

After PSPEC and FILEOUT

36.1				13.1	23.7	11.2	19.3	6.5	6.2
20.3	22.5	8.3	13.1	30.3					
16.5	12.1	26.3	4.7	11.5	7.0	21.6	22.1	9.1	8.3
18.7	3.6	19.7	12.7	33.5	24.3	18.5	19.7	23.1	9.5
43.1	39.9								

CHAPTER 10.
THE OFTIMAL: SIZE OF REFERENCE FIELD, NUMBER OF FREQUENCY POINTS IN POWER SPECTRUM, AND WINDOW WIDTH.

OFTIMAL SIZE OF REFERENCE FIELD.
In chapter 8 , I explained that the reason we want a reference field which yields a ratio 1 -modes/0-modes of $1: 1$ is partlv that a series of a balanced number of ones and zeros aives a more sensitive analysis of periodicity, and partly that this would compare to the redundancy level in normal text stringe.

On the fallowing pages 1 shall suhstantiate the first part of this claim by showing the spectral analysis of a text string with varying lengths of reference field (Figure 10.1 to 10.5).

First, the normal reference field with the ratio 1:1 of 1 -modes and 0 -modes of a text string (C114, from word 265 to word 364) was established with the program FINDRF. The reference field was found to be 144. The spectrum from the analysis of C114 with this reference field is the one shown in figure 10.3 .
The length of reference field ($R=144$) was then multiplied by 0.50. 0.75 . 1.25 and 1.50 respectively, and the same string (C114, from word 265 to word 364) was analysed against these four reference fields, two of which were progressively shorter by o. 5 and 0.75), two of which were progressively 1 onger (by 1.25 and 1.5), than the normal reference field.

The shorter than normal fields (144 multiplied by 0.5 and 0.75 respectively) would yield more 1 -modes than 0 -modes in the information arrav than the normal reference field, because fewer words

114C, 265B364RF7250F1
POWER SPECTRUM

Figure 10.1 Reference field reduced by 50%

114C, 265B364RF 10850F 1
 POWER SPECTRUM

Fioure 10.2 Feference field reduced by 25%
in string C. 114 between word 265 and 364 will be recoanised. The longer than normal reference fields (144 multiplied by 1.25 and 1.5 respectively) will yield fewer I-modes than 0 -modes because. with a longer reference field: more words will be recognised.

With these lengths of reference field ranging from 0.50 to 1.50 of the value $R F=144$ as established by FINDFF, I hope to demonstrate, that the reference field established by FINDRF (the 1:1 field) is indeed the optimal one, the one with the greatest sensitivity i.e. the one with the greatest measure of variance.
Loding at figures 10.1 to 10.5 , the first thing that strikes the attentative observer is that as the reference field increases, so does the Mean Fower Density. As the reference field increases by 50%, the Mean Fower Density has increased by around 25%. As the reference field is decreased by 50%, the Mean Power Density has decreased by around 45%. We furthermore observe, that the variance, both the normalised chi square and the not normalised standard deviation, increases as the reference field increases until the reference field is the one established by FINDFF i.e the field with an equal number of I-modes and \square-modes. When the reference field is increased still higher, the variance falls again.
The actual values of the power densities from all the spectra can be found in the appendi; to this chapter.
As we have just seen, increasing the reference field increased the mean power density. Let us reflect for a moment on how this ties up with our concept of MPD as a measure of structures
When we increase the reference field in excess of the established 1:1 field, we are - as we have seen in chapter 8 - effectively increasing the probability, that the incoming words will be registered as 0 -modes.i.e. there are going to be more zeros in the information . But if MPD is a measure of structure and MFD raises with increased numbers of repeats, then - if we want to think of MFD in terms of structure - we must accept, that an

114C,265B364RF144S0F1

POWER SPECTRUM

Fioure 10.3 Reference field not altered.

114C, 265B364RF 180S0F 1
POWER SPECTRUM

Fiqure 10.4 Reference field increased by 25%
increased number of repeated words is equivalent to increased structure.
But how does that comply with our common sense view of structure? A good way to judge this situation is to carry it to extremes. Let us imagine. that more and more words become repeats. At one point we will have substituted all 'ones' for zeros. This kind of information array however, reflects an analysis of a text string where all incoming words are repeats! but a text string, where all the words are repeats of a number of initial words. is indeed coherent with our common sense notion of structure, at least compared to the other extremes a text string where all the words are different.
The clash between the change in MFD and our intuitive notion of 'structure', arises because we think of structure as something nice and ordered', but 20 different words repeating themselves 5 times is "structure" compared to 100 different words.

114C., 265B364RF216S0F1
POWER SPECTRUM

Fiqure 10.5 Feference field increased by 50%

Another interesting point, arising from the analvsis with different reference fields above, is the amount of power at the zero point of the spectrum ($F=0.0$. 0). You may remember, that the amount of power in $F=0.0$ is the amount of DC power in the initial function before it ig transformed to the frequency domain. When we start substituting "new' words with 'old" words in a text string. like we did above, we are in information theoretical terms just adding a constant to the signal ladding DC power to the sjgnal). That this is indeed the case can be seen on the level of the Y-axis intercept on the spectra in figures 10.1 to 10.5. The hiqher the increase in the reference field, the higher the power in $F=0.0$
As you may recall from the different functions and their Fourier transforms in chapter 7, the addition of a constant to a function would after Fourier transformation show up in $F=0.0$, the γ-axis intercept. as value equal to the constant which was added.

Having established that the reference field which yields an equal number of 0 -mode and 1 -modes is indeed optimal with regard to sensitivity, we now turn to two other parameters. Those of window width and number of frequency points in the power spectrum.
number of frequency points in the fower sfectrum.
The next important question is how many frequency points we want in our spectra (apart from point zero). A simplistic approach would demand as high a resolution as possible, that is, demand as many points as possible. Unfortunately, it is not this easy.
A number of different factors have to be taken into consideration like: the length of the text sample being analysed, the required level of statistical significance, the length of the measuring window, the lenath of the reference field of this window, the stationarity of the structures in the text string, which Fourier transform we use (time series or FFT), to name but a few. All

114C.,265B364RF216SDF1
POWER SPECTRUM

Fiqure 10.5 Reference field increased by 50%

Another interesting point, arising from the analysis with different reference fields above. is the amount of power at the zero point of the spectrum ($F=0.0$). You may remember, that the amount of power in $F=C$. 0 is the amount of $D C$ power in the initial function before it is transformed to the frequency domain. When we start substituting 'new' words with 'old' words in a text string. lifie we did above, we are in information theoretical terms just adding a constant to the signal ladding DC power to the signal). That this is indeed the case can be seen on the level of the Y-axis intercept on the spectra in figures 10.1 to 10.5. The hiaher the increase in the reference field. the higher the power in $F=0.0$
As you may recall from the different functions and their Fourier transforms in chapter 7, the addition of a constant to a function would after Fourier transformation show up in $F=0.0$, the V -axis intercept, as a value equal to the constant which was added.

Having established that the reference field which yields an equal number of 0 -mode and I-modes is indeed optimal with regard to sensitivity, we now turn to two other parameters. Those of window width and number of frequency points in the power spectrum.

NUMEER OF FREQUENCY POINTS IN THE POWER SFECTRUM.
The next important question is how many frequency points we want in our spectra (apart from point zero). A simplistic approach would demand as high a resolution as possible, that is, demand as many points as possible. Unfortunately, it is not tinis easy.
A number of different factors have to be taken into consideration liker the length of the text sample being analysed, the required level of statistical significance, the length of the measuring window, the length of the reference field of this window, the stationarity of the structures in the text string, which fourier transform we use (time series or FFT), to name but a few. All
\qquad
these parameters are closely interrelated, and it is difficult to evaluate any of them in isolation.

When we are dealing with the analysis of childrens tent strinos, the obvious limitation is the lacli of words. However. If we want a resolution of say, 100 frequency points. then AUTOCOF must be "fed' with more than 100 points to produce a " $1 \mathrm{ag}^{\prime}$ of 100 . Even though AUTOCOF would function with just 102 pointe in thie case, it reveals the repetitive features best if it is "fed" with at least double as many points as the wanted 'lag'. This ie particularlv important because the method of simulating information transfer from text strings, as presented in this thesis: is necessarily both crude and limited.
Eut if we want 200 points put in to AUTOCOF, then it means, that our measuring window must be 200 words wide. Not only is this an impossible demand on a text string which is say 150 words lona. but even if the string was 210 words long, there still would not be room for a reference field.

Ancther reason for keeping both number of frequency points and window width down has to do with computing time. Double as many frequency foints and double the window width, and mav be an increased reference field because of the wider window, means that for some computer procedures the time factor increases with the power of two rather than iust a factor of two. Farticularly on a micro computer this is a crucial point.
From experience. I have established that a 32 point spectrum represents the minimum resolution acceptable for our purpose. Even if we use the less demanding (in terms of length of string) time series transform. this resolution demands a window of at least 64 words because, as explained above, the AUTOCOR is most sensitive if we feed it with at least twice as many observations as we want spectral points.
If, instead of the time series transform, we use the FFT, the necessary minimum window suddenly raises to 128 words. As explained in chapter 7, the FFT yields only half as many frequency points as the number of observations before the tranformation. To produce, a spectrum with 32 frequency points, the FFT thus needs 64 observations. Eut to produce 64 observatione, AuTOCOF: must have a " 120 " of 64. As before. AUTOCOR works best if it is fed with at least twice the number of observations as the wanted lag'. With a '1an' of 64 we have to produce at least 128 initial observatione.
Otviouslv, if we want to analvse the vounger childrens text strings with a spectrum of 32 frequency points, the use of the ou its demands become impossible to estisf Fut of the quason. as explained before, the TIME SEFIES TFANSFOFM HAS EEEN THE MAIN TRANSFORM THOFUGHOUT THIS RESEARCH. both for the analysis of childrens and adults' text strings where the signal levels were binarvs zero and one. The FFT was used only in chapter 12 for the analysis of gramatical cateoories. because the signals in this case are analog (three levelsiz zero. one and eight. In mill these cases the analysis was of course carried out on strings which were sufficiently long.
The relationship between the number of frequency points in the The relationship between the number of frequency points in the
spectrum and the statistical significance of the power in each of
these farameters are closely interrelated, and it is difficult to evaluate any of them in isolation.

When we are dealing with the analysis of childrens text strinas, the obvious limitation is the lack of words. However. If we want a resolution of say: 100 frequency points, then AUTOCOF: must be 'fed" with more than 100 points to produce a "lag' of 100. Even though AUTOCOF would function with just 102 points in this case, it reveals the repetitive features best if it is "fed" with at least double as many points as the wanted 'lag'. This ie particularly important because the method of simulating information ransfer from text strings, as presented in this thesis, is necessarily both crude and limited.

But if we want 200 points put in to AUTOCOR, then it means, that our measuring window must be 200 words wide. Not only is this an impossible demand on a text string which is say 150 words lang. but even if the string was 210 words long, there still would not be room for a reference field.
Ancther reason for keeping both number of frequency points and window width down has to do with computing time. Double as many frequency points and double the window width, and mav be an increased reference field because of the wider window, means that for some computer procedures the time factor increases with the power of two rather than just a factior of two. Farticularly on a micro computer this is a crucial point.
From experience. I have established that a 32 point spectrum represents the minimum resolution acceptable for our purpose. Even if we use the less demanding (in terms of length of string) time series transform, this resolution demands a window of at least 64 words because, as explained above, the AUTOCOR is most sensitive if we feed it with at least twice as many observations as we want spectral points.
If, instead of the time series transform, we use the FFT, the necessary minimum window suddenly raises to 128 words. As explained in chapter 7, the FFT yields only half as many frequency points as the number of observations before the tranformation. To produce, a spectrum with 32 frequency points, the FFT thus needs 64 observations. Eut to produce 64 observations. AUTOCOR must have a "lag" of 64. As before, AUTOCOR works best if it is fed with at least twice the number of observations as the wanted laq'. With a 'lag' of 64 we have to produce at least 128 initial observations.
Obviously, if we want to analyse the younger childrens text strings with a spectrum of 32 frequency points, the use of the FFT is out of the question, its demands become the TIME SERIIES satisfy. For this reason. as explained before, the TIME SERIES TRANSFORM HAS BEEN THE MAIN TRANSF and adults, text strings where both for the analysis of childrens zero and one. The FFT was used the signal levels were binary because the chapter 12 for the case are analog (three levels) zero. one and eight. In pll these cases the analysis was of course carried out on strings which were sufficiently long.

The relationship between the number of frequency points in the pectrum and the statistical significance of the power in each of spectrum and the statistical significance of the power in each of
these frequency points. I shall eiplain in the following.

OFTIMAL SIZE OF THE MEASUFING WINDOW.
With regard to the size of the window we are again in the position of having to make compromises. There are at least three factors which we have to concider when we decide the size of the window.

The first problem is that of statistical significance. The level of significance is related to the number of degrees of freedom. The rule in power spectral analysis is, that the number of degrees of freedom $i s$ determined by the width of the window divided by the number of frequency points in the spectrum, i.e. if our window is 64 words wide and our spectrum has got 32 frequency points, the number of degrees of freedom is $64 / 32=2$.
The second and third problem are reciprocally related and are those of low-frequency sensitivity and of stationarity. If the te\%t string is not prohibitively short, we would be inclined to have a very wide window to get as high a confidence level as possible. However, if we do that, we may quench a periodicity which is not very stationary. On the other hand, if we try to counter this by maling the window smaller. we may not pick up weal: low-frequency structures.

To evaluate the impact of the window size on the factors mentioned above i.e. stationarity and low-frequency sensitivity, a number of power spectra were obtained by INFOR of the same text string with different sizes window. Fower spectra were made from windows of 50, 100, 200, 300, and 400 words respectivelv. Eecause of the distinct possibility, that structures in childrens text strings are substantially different from those of adult texi etrings, for erample with regard to stationarity, the analysis was carried out on a string written by an adult as weli as on a string written by a child.
Comparing the spectra of different window widths in tables 10.6 to 10.10, the effect of the width of the measuring window on the sensitivity of the spectrum can clearly be seen. With regard to the sensitivity to long frequency structures, you can observe the increasing sensitivity in the 1 ow-frequency part of the spectrum as the window length increases. With a window width of 50 words (table $1(1.6)$ the power at $f=0.016$ is 27.9 , well below the 95% confidence 1 imit of 40.1 . With a window width of 100 words itable 10.7) the power in $f=0.016$ has $r i s e n$ to 29.0, but is still not significant. Only with a window width between 100 and 200 (table 10.8) has the power in $f=0$. ©ib $r i s e n$ above the upper 95% confidence limit. This is of course partly due to the fact that the level of the upper 95% confidence limit is falling with increasing number of degrees of freedom. But the power level in f=0.016 is still increasing in absolute terms with increasing window width up to 200, after which the power drops, presumably due to lack of stationarity of the structures at this frequency.

At the high-frequency end of the spectrum (f=0.484) the situation is the same. As the window width increases up to between 100 and is the same. As the window width 1 nereases up
200 , the power increases from 15.2 at 50 words to 88.2 at 100

FIE1,151E200RF60 FOWER DENSITY IN FREQUENCY FOINTS:

FREQ:	POWER:
0.000	15.7
0.016	27.9
0.094	38.6
0.172	3.4
0.250	62.0
0.328	85.4
0.406	6.0
0.484	15.2

FREQ: FOWER:

0.031	13.2
0.109	5.8
0.188	3.6
0.266	7.4
0.344	8.0
0.422	2.2
0.500	21.2

FREQ: POWER:

0.047	15.7
0.125	24.7
0.203	1.1
0.281	14.8
0.359	24.3
0.438	23.1

FREQ: POWER:
0.06321 .7 0.141 B.6 $0.219 \quad 3.9$ $0.297 \quad 9.4$ 0.3753 .3 0.45318 .5
FREQ: FOWEF:

MEAN FOWER DENSITY: 19.22
DEGREES OF FFEEDOM $=1$
CHISOUAFE $=601.10$
ST.DEVIATION $=19.00$
MFIL UFFFER 0.95 CONF LIMIT $=40.10$
MFIL LOWER 0.95 COINF LIMIT $=-1.67$
NUMEEF DF SFEECTFAL FOINTS AROVE UFFFER LIMIT: NUMBEF OF SFECTRAL FOINTS EELOW LOWER LIMITs
NUMEER OF SFECTFAL FUINTS EELON LINAL POINTS:
TOTAL NUMEEF OF SIGNIFICANT SFECTRAL
Tahle 10.6 Fower level in each of 32 frequency points. Spectrum from child's text string. Measuring window: 50 words.

FIE1.151E2SORF68 FOWER DENSITY IN FREQUENCY FOINTS:

FREO: POWER:
0.000 14.
$0.016 \quad 29.0$
0.09424 .8
$0.172 \quad 16.1$
$0.250 \quad 36.8$
$0.328 \quad 20.0$
$0.406 \quad 33.8$
0.48488 .2

FREQ: POWER:

0.031	19.5
0.109	0.3
0.188	4.5
0.266	21.3
0.344	9.3
0.422	8.4

0.500101 .5

FREQ: POWER:
0.047
0.047
0.125
0.203
0.281
0.43818 .0

FREQ: POWER:

$0.063 \quad 27.3$
$0.141 \quad 13.1$
$0.219 \quad 4.8$
$0.297 \quad 21.5$
0.375
0.453

FREQ: POWER:
0.078
0.156
0.234
0.313
0.391
0.469

MEAN FOWER DENSITY: 22.23

DEGREES OF FREEDOM $=3$
CHISQUARE $=726.64$
ST. DEVIATION $=22.47$
MFD UPPER 0.95 CONF LIMIT $=31.44$
MPD LOWER 0.95 CONF LIMIT $=13.03$
NUMEER OF SPECTRAL POINTS AROVE LPPER LIMITs
NUMEER OF SFECTRAL POINTS BELOW LOWER LIMIT:
NUMEER OF SFECTRAL POINTS BELOW LOWER LIMI
TOTAL NUMEER OF SIGNIFICANT SPECTRAL POINTS: 17
6
11

Table 10.7 Fower level in each of 32 frequency points. Spectrum from child's text string. Measuring windowi 100 words.

FIES:									
FREQ: FOWER:	FREQ: FOWEF:	FREQ: POWER:	FREQ: FOWER:	FREQ: FOWEF:					
0.000	1.0								
0.016	37.6	0.031	11.5	0.047	0.4	0.063	11.1	0.078	7.5
0.094	14.7	0.109	6.9	0.125	16.9	0.141	13.6	0.156	14.6
0.172	15.0	0.188	2.3	0.203	17.5	0.219	14.6	0.23 .4	15.0
0.250	26.1	0.266	31.8	0.281	19.5	0.297	13.0	0.313	39.3
0.328	24.8	0.344	6.1	0.359	36.2	0.375	9.4	0.391	16.2
0.406	30.8	0.422	14.4	0.438	21.1	0.453	11.4	0.469	3.3 .9
0.484	43.1	0.500	23.6						

MEAN POWEF DENSITY: 18.20
DEGREES OF FREEDOM $=6$
CHISOUARE $=225.40$
ST. DEVIATION $=11.32$
MF'D UFFEF 0.95 CONF LIMIT $=22.03$
MFD LOWER 0.95 CONF LIMIT $=14.37$
NUMEEF OF SFECTRIAL FOINTS AEOVE UFFEF LIMIT: 10
NUMEER OF SFECTFIAL FOINTS EELOW LOWER LIMITs 13
TOTAL NLMEEF OF SIGNIFICANT SFECTFAL POINTS: 23
Table 10.8 Fower level in each of 32 frequencr points. Spectrum from child's text string. Measuring window: 200 words.

FIE1,151E450RF 60 FOWEF: DENSITY IN FREQUENCY FOINTS:

FREQ:	FOWER:	FREQ: FOWER:	FREQ: FOWER:	FREQ: POWER:	FREQ: POWEF:				
0.000	7.3							0.078	11.3
0.016	27.9	0.031	10.1	0.047	10.0	0.063	14.9	0.2	
0.094	10.2	0.109	8.4	0.125	15.2	0.141	13.2	0.156	15.5
0.172	14.8	0.188	5.1	0.203	23.4	0.219	18.0	0.234	13.0
0.250	19.1	0.266	21.7	0.281	17.6	0.297	12.7	0.313	38.4
0.328	15.4	0.344	16.3	0.359	29.7	0.375	6.3	0.391	15.7
0.406	26.6	0.422	22.1	0.438	22.8	0.453	12.3	0.469	22.3

FIE1,151E5EGFFF76 FOWEF: DENSITY IN FREQUENCY FOINTS:

FREQ: FRWEF:	FREQ: POWEF:		
0.000	10.8		
0.016	31.0	0.031	8.8
0.094	15.5	0.109	8.9
0.172	14.8	0.188	6.7
0.250	13.8	0.266	26.6
0.328	8.9	0.344	13.5
0.406	28.1	0.422	19.7
0.484	24.3	0.500	33.3

0.047	11.5
0.125	11.6
0.203	25.5
0.281	19.6
0.359	18.0
0.438	16.6

FREQ: POWER:
FREG: POWEF

0.063	19.9	0.078	12.9
0.141	16.0	0.156	15.2
0.219	13.7	0.234	19.9
0.297	13.7	0.313	33.6
0.375	8.9	0.391	12.4
0.453	14.7	0.469	24.6

MEAN FOWER DENSITY: 17.35
DEGREES OF FREEDOM $=12$
CHISOUARE $=99.82$
ST.DEVIATION = 7.36
MPD UFFFE 0.95 CONF LIMIT $=19.64$
MFD LOWEF 0.95 CONF LIMIT $=15.07$
NUMEER OF SFECTRAL POINTS AEOVE UFPER LIMIT: 11
NUMEEF OF SFECTRAL POINTS EELOW LOWER LIMIT: 16
TOTAL NUMEEF OF SIGNIFICANT SFECTRAL POINTS: 27

$$
\begin{aligned}
& \text { Table } 10.10 \text { Fower level in each of } 32 \text { frequencr } \\
& \text { foints. Spectrum from child's texit } \\
& \text { string. Measuring windows } 400 \text { words. }
\end{aligned}
$$

words. At 200 words the power has fallen to 43.1. We can see too how the lack of stationarity causes the power to dissipate from $f=0.484$ to $f=0.469$ as the window width is increased over 200 words: With increasing width, $f=0.469$ shares an increasingly high proportion of the power in $f=0.484$ (tables 10.6 to 10.10)

The impact on the statistical level of sionificance of a very short window can clearlv be seen in table 10.6 where the window is 50 words long. With a 32 point frequency spectrum we would need a window length of at least 64 words to get 2 degrees of freedom. as explained above. However, as l deliberately have kept the window lower than 64, we have achieved only 1 dearee of freedom. The result is. that the lower 95% confidence limit is less than the lowest power level of the spectrum. The result is of course, that our level of significance is unacceptably low and consequently only 3 of the 32 frequency points give significant power levels.
It is clear from tables 10.6 to 10.10, where the number of significant points are given in the bottom line of each table, that already with 2 degrees of freedom. there is a marked increase in the number of significant points: from 3 points (1 degree of freedom) to 17 points (2 degrees of freedom). We can see too, that once we have reached around 6 degrees of freedom, the number of significant points increases only slightly with increasing number of degrees of freedom.
Summing up, we have found, thet with a 32 point power spectrum, the minimum window which will give a statistically sound spectrum must be twice the number of frequency points. i.e. 64. We have seen too. that at windows of over 200 words, the lack of stationarity causes the power to drift in both the high and the low frequency bands.

Next, we shall have a look at the same kind of analysis, but this time applied to a text string written by an adult.

1FUS, 2O1E2EOFF182 FOWER DENSITY IN FREQUENCY POINTS:

FREQ:	FOWER:	FREQ: FOWEF:	
0.000	24.8		
0.016	2.3	0.031	18.5
0.094	18.0	0.109	2.3
0.172	3.9	0.188	21.1
0.250	3.4	0.266	2.1
0.3 .28	10.7	0.344	66.5
0.406	0.3	0.422	24.2
0.484	9.1	0.500	32.7

FREQ: POWER

0.047	0.5	0.063	14.6
0.125	1.7	0.141	1.2
0.203	19.4	0.219	28.7
0.281	34.0	0.297	32.5
0.359	5.5	0.375	27.4

$0.078 \quad 5.3$
0.15614 .6
0.23436 .3 $0.313 \quad 7.3$ 0.39142 .8
$0.469 \quad 38.0$

MEAN FOWEF DENSITY: 18.12
DEGREES OF FREEDOM $=1$
CHISQUAFE $=477.46$
ST. DEVIATION $=16.44$
MFD UFFFEF 0.95 CONF LIMIT $=36.19$
MFD LOWEF 0.95 CONF LIMIT $=0.05$
NUMEER OF SFECTRAL POINTS AEOVE UFPPER LIMIT: 5 NUMEEF OF SFECTFAL FOINTS EELOW LOWER LIMITs TOTAL NUMEEF OF SIGNIFICANT SPECTRAL FOINTS:

Table 10.11 Fower level in each of 32 frequency points. Spectrum from adult's text string. Measuring window: 50 words.

1RUS. 2OIESOORF198 FOWER DENSITY IN FREQUENCY FOINTS:

FREQ:	FOWEF:	FREQ: POWER:	
0.000	12.7		
0.016	43.8	0.031	18.2
0.094	6.1	0.109	1.2
0.172	10.0	0.188	10.7
0.250	2.7	0.266	23.8
0.328	18.2	0.344	22.4
0.406	14.7	0.422	10.7
0.484	24.6	0.500	90.3

FREQ: POWER:

0.047	10.1
0.125	3.1
0.203	11.6
0.281	0.4
0.359	22.3
0.438	15.9

FREQ: POWER:

0.063	3.0
0.141	2.5
0.219	13.7
0.297	38.7
0.375	27.9
0.453	2.6

FREQ: POWER
0.078
0.0785 .6
0.156 0.234
0.313
0.391
0.469

MEAN POWER DENSITY: 17.24
DEGREES OF FREEDOM $=3$
CHISQUARE $=554.14$
ST. DEVIATION = 17.28
MPD UPPER 0.95 CONF LIMIT $=24.32$
MPD LOWER 0.95 CONF LIMIT $=10.16$
NUMEER DF SPECTRAL POINTS ABOVE UFPER LIMIT8 6
NUMEER OF SFECTRAL POINTS BELOW LOWER LIMIT:
TOTAL NUMEER OF SIGNIFICANT GPECTRAL POINTS: 1E
Table 10.12 Power level in each of 32 frequency points. Spectrum from adult's text string. Measuring window: 100 words.

1FUS. 2OIEAOORF119 FOWER DENSITY IN FREQUENCY FOINTS:

FREO:	FOWER:	FREQ:	POWER:
0.000	29.0		
0.016	28.1	0.031	30.2
0.094	11.7	0.109	0.1
0.172	10.2	0.188	13.4
0.250	11.4	0.266	15.0
0.328	21.4	0.344	5.6
0.406	7.4	0.422	31.4
0.484	24.6	0.500	44.5

MEAN FOWEF DENSITY: 17.83
DEGREES OF FREEDOM $=6$
CHISQUARE $=189.93$
ST.DEVIATION $=10.29$
MFD UFFEF 0.95 CONF LIMIT $=21.31$
MFD LOWER 0.95 CONF LIMIT $=14.35$
NUMEER DF SFECTRAL POINTS AROVE UFPER LIMITs 13
NUMEEF OF SFECTRAL POINTS EELOW LOWER LIMIT: 16
TOTAL NUMEER OF SIGNIFICANT SFECTFAL POINTS: 29

Table 10.13 Fower level in each of 32 frequency points. Spectrum from adult's text string. Measuring window: 200 words.

1RUS, 2O1EEOORF1B1 POWER DENSITY IN FREQUENCY FOINTS:

FREQ:	POWER:	FREQ:	POWER:
0.000	35.2		
0.016	28.9	0.031	24.9
0.094	5.3	0.109	9.4
0.172	4.3	0.188	5.2
0.250	8.6	0.266	14.9
0.328	24.4	0.344	14.5
0.406	21.0	0.422	41.2
0.484	5.6	0.500	23.4

FREQ: POWER:

0.063	3.0
0.141	16.0
0.219	12.9
0.297	15.5
0.375	27.6
0.453	6.2

MEAN POWER DENSITY8 17.37
DEGREES OF FREEDOM $=9$
CHISQUARE $=173.19$
ST. DEVIATION $=9.70$
MPD UFFER 0.95 CONF LIMIT $=20.47$
MPD LOWER 0.95 CONF LIMIT $=14.28$
NUMEER OF SPECTRAL POINTS ABOVE UPPER LIMIT:
NUMEER OF SPECTRAL POINTS RELOW LOWER LIMITs
13
TOTAL MUMEER OF EIGNIFICANT SFECTRAL POINTS:

Table 10.14 Fower level in each of 32 frequency points. Spectrum from adult's text string. Measuring windows 300 words.

1RUS, 201EGOOFF162 FOWER DENSITY IN FREQUENCY POINTS:

FREO:	FOWER:	FREO:	FOWER:	FREQ:	POWER:	FREQ:	POWER:	FREQ:	FOWEF
0.000	29.1			0.047	17.2	0.063	13.7	0.078	17.1
0.016	23.9	0.031	25.0 8.9	0.047	19.6	0.141	14.0	0.156	20.9
0.094	7.2	0.109	8.9 11.1	0.203	10.1	0.219	14.5	0.234	25.8
0.172	8.9	0.188 0.266	11.1	0.281	10.4	0.297	16.2	0.313	23.2
0.250	10.7	0.266 0.344	16.7 15.2	0.359	19.0	0.375	23.5	0.391	20.7
0.328	16.7	0.344	36.1	0.438	15.0	0.453	7.4	0.469	25.3

MEAN FOWEF DENSITY: 17.06
DEGFEES OF FREEDOM $=12$
CHISOUARE $=89.49$
ST.DEVIATION $=6.91$
MFD UFFER 0.95 CONF LIMIT $=19.20$
MFD LOWER 0.95 CONF LIMIT $=14.91$
NUMEEF OF SFEETRAL FOINTS AEDVE UPPER LIMIT: 12
NUMEEF OF SFECTRAL FOINTS EELOW LOWER LIMIT: 13 TOTAL NUMEEF OF SIGNIFICANT SFFECTRAL FOINTS: 25

Table 10.15 Fower level in each of 32 frequency points. Spectrum from adult's text string. Measuring window: 400 words.

Comparing this last series of 'adult" spectra with the series
child' spectra. we note the following points:

Statistical significance.
Here too, the increase from 1 to 2 degrees of freedom sees a marked increase in the number of frequency points rising abov the upper 95% confidence 1 imit.
Regarding the optimal window, we find this time, that the number of sionificant spectral power points rises until the number of degrees of freedom is between 6 and 9. This is not much different from the case of a child's text string where we found that more than 9 degrees of freedom did not increase the number of significant points noticeably. In the case of the adult text string. the number of significant points actually falls slightly when the degree of freedom is higher than between 6 and 9.

Overall power.
For each of the windows of 50, $100,200,300$ and 400 , the Mean Power Density (MFD) of the child's string is higher than that of the adult string. This is different from our findings in an earlier chapter, that ehildrens text strings had a smaller (but
not significantlv sol level of structure than adult strings. but as the analysis in this case is carried out on only one string. it does not qualify as an inconsistency. In spite of minor fluctuations both strings show clearly the same tendency to a fall in MFD with an increase in window width. This has two implications: First we must try to reflect on whether this is consistent with our concept of MFD as representative of the concept of structure. I shall return to this point in the next chapter. Secondly. it means that whenever we want to compare power densities. we must be shure. that the spectra are obtained with windows of the same length. This is a parallel to our findings in an earlier chanter. that if we wanted to compare structure (or vocinularv) in different teit strings, the strings must be of the same lenoth.

Fower in low-frequencv band.
In the analysis of the adult string we find the same "behaviour": increasing sensitivity in the low frequencv end of the spectrum with increased window width, and diesipation of power from $f=0.016$ to $f=0.031$ if the window is increased above around 20% words.

Although the power level in $f=0.016$ (adult) is almost zero when the window is only 50 words, already with a window of 100 , the power at this frequency is almost twice that of the 95% confidence limit. This is significantly higher than in the case of the child's spectrum, both relatively with respect to the confidence limit. and in absolute terms. With increased window width, the power in $f=0.016$ decreases. However, a closer study of neighbouring frequencies show, that what happens is that the frequency drifts to the rioht in the spectrum i.e. the power in $f=0.0 \mathrm{I}_{1}$ and $f=0.047$ increases as the fower in $f=0.016$ decreases. This is agein due to lact: of stationarity.

STATIUNAFITY.
In the initial stages of my research I developed a scanning technique which gives a direct view of the feature of stationarity and its impact on the power spectrum. To give the reader a QUALITATIVE idea of stationarity and other features of the reading of a text string 1 shall present 6 of these scans. Eame text consists of 25 consequitive spectral analysis of the same text string, but moved B words forward between each analysis. Thus. each scan covers 25 times B words $=200$ words and can be looked at as a continuous picture of what goes on (on our crude level anyway) during the processing of a text string.
The scans are presented in pairs of contrasting features: The text string with the lowest vocabulary next to the text string with the highest vocabulary (figures 10.16 a and b), the text string which gave the lowest value of gradient B nexit to the text string with the highest gradient B (figures 10.17 a and b) and finally two text strings by Rertrand Rusesll, one from "The History of Western Philosophy" next to one from his "Childrens" Stories" (figures 10.18 a and b).

1REC, 422B549RF 368S8F 1
CONTINUOUS POWER SPECTRUM

Fioure 10.16 a.
Scan of text string with highest vocabulary

BRU, 273B400RF 200S8F 1
CONTINUOUS POWER SPECTRUM

Fiquie 10.17 a.
Scan of text string with highest value of B

POOH, 273B400RF87S8F1
CONTINUOUS POWER SPECTRUM

Fiqure 10.16 b.
Scan of tesit string with
lowest vocabulary

130C, 91B219RF4358F1
CONTINUOUS POWER SPECTRUM

Figure 10.17 B .
Scan of text string with lowest value of B

2RUS, 273B40RRF164S8F1
CONTINUOUS POWER SPECTRUM

Fioure 10.18 a. Scan of complex text string

4RUS, 273E.40RRF248S8F1
CONTINLIOUS FOWER SFECTFUM

Figure 10.18 b
Scan of simple text strina

The way to judoe stationarity on these surfaces is to look at the ridoes formed by consecutive peaks of power along the direction of the time avis. Figure 10.16 (a) has some verv straight ridoes and furrows to the left of the middle of the spectrum. We say that the periodicity at this frequency (around $f=0.125$ since each division on the frequency axis is 0.0625) is stationary. To the right of the middle labout 5 divisions from the beginning of the ains i.e $\left.f=0 . \mathrm{I}_{1}\right)$ we have a different situations beginning at the front, some ridoes and furrows can be seen to be moving to the right, so that half the way down the time axis. the peaks have moved to the 6th division (f $=0.38$). Obviously, around this frequency the periodicity is not stationary.
We can see that on most scans, there is a fair amount of stationarity. Peaks may come and go, but within half of the scan i.e 10 to 15 consecutive spectra or 'runs", the peaks on the whole stay on the same frequency. This means, that if we do not drag our analysis out over more than the span of 10 to ${ }^{15}$, runs then we can expect afair amount of sould span 80 to 120 words. The spans 8 words, 10 to 15 runs wour windowis shorter than conclusion must be that as much about the around 120 words we do not need

This finding compares well with our finding above (tables 10.6 to 10.15) that lack of stationarity is not a problem until the window width is increased to around 200 mords.

We can see too, that there is not much difference between the six
scans. There is certainly no way in which it would be immediately possible to tell that the surface of figure 10.16 (a) is that of acan of a text string with a very high vocabulary while figure 10.16 (b) is that of a low vocabulary text string, or that 10.18 (b) is a simple" text string while 10.18 (a) is a complen text string written by the same author.

However, I find these scans fascinating in their own right because they all - albeit crudely - depict the power distribution during the processing of the text strings in our linguistic device somewhere on the synthetical/generative or the analytical/ perceptual level. And 1 would like to believe, that some of the ridges and furrows of these topological surfaces do in fact represent control mechanisms of our linguistic device.

SUMMAFIY OF OFTIMAL FARAMETERS.

1) REFERENCE FIELD: The optimal field is the one which gives a 1:1 ratio of zeroes and ones in the information array.
2) NUMEEF OF FREQUENCY FOINTS IN POWEF SFECTRUM: Minimum 32 Foints, but if the combination: [length of tent string] VE [reference fieldj allows it, then 64 points.
3) WIDTH OF MEASURING WINDOW: MINIMUM: twice the number of frequence points (2 degrees of freedom). MAXIMLM: 6 to 9 times the number of frequency points (6 to 9 degrees of freedom), but if the window exceeds around 120-200 words. lack of stationarity may result at some frequencies.
In the newt chapter we shall apply the sum of our findings to all the text samples in chapter 4. This causes some problems with some of the childrens tert strings which are too short to give 2 degrees of freedom with a power spectrum of 32 frequency points. However, in spite of their lack of statistical significance I shall present these spectra in the following chapter as well - as a 'special case' - since, even with one degree of freedom, some tendencies might be revealed.
scans. There is certainly no wav in which it would be immediatelv possible to tell that the surface of figure 10.16 (a) is that of a scan of a text string with a very high vocabulary while figure 10.16 (b) is that of a low vocabulary text string, or that 10.18 (b) is a 'simple' text string while 10.18 (a) is a complex text string written by the same author.
However. I find these scans fascinating in their own right because they all - albeit crudely - depict the power distribution during the processing of the text strings in our linguistic device somewhere on the synthetical/generative or the analytical/ perceptual level. And 1 would like to believe, that some of the ridges and furrows of these topological surfaces do in fact represent control mechanisms of our linguistic device.

SUMMAFY OF OFTIMAL FARAMETERS.

1) FEFEFENCE FIELD: The optimal field is the one which gives a 1:1 ratio of zeroes and ones in the information array.
2) NUMEEF OF FREOUENCY FOINTS IN FOWEF SFECTRUM: Minimum 32 points, hut if the combination: [length of tent string] vs [reference fieldj allows it, then 64 points.
3) WIDTH OF MEASURING WINDOW: MINIMUM: twice the number of frequency points (2 deqrees of freedom). MAXIMUM: 6 to 9 times the number of frequency points (6 to 9 degrees of freedom), but if the window exceeds around 120-200 words. lack of stationarity may result at some frequencies.
In the next chapter we shall apply the sum of our findings to all the text samples in chapter 4. This causes some problems with some of the childrens text strings which are too short to give 2 degrees of freedom with a power spectrum of 32 frequency points. However, in spite of their lack of gtatistical significance 1 shall present these spectra in the following chapter as well - as a 'special case' - since, even with one degree of freedom, some tendencies might be revealed.

CHAPTER 11.
FOWER SFECTRAL ANALYSIS OF TEXT STRINGS.

Using the verv sensitive fourier analvsis we established in chapter 10 the optimal length of the reference field and the optimal number of frequency points in the power spectrum. The width of the measuring window was assessed, both with regard to its impact on the statistical sionificance and its immunity to lact: of stationarity. We established that the lower limit for a 32 frequency point spectrum was a window of 64 words and the upper limit was the window which would give between 6 and 9 degrees of freedom. which for the same 32 point spectrum means a window somewhere between 192 and 288 words: With regard to lack of stationarity, practical experience showed that a window oreater than 200 words caused power to be dissipated from one frequency to neighbouring frequencies. In this chapter we shall use these findings to obtain power spectra of those text samples in chapter 4 which are lono enough to satisfy these conditions.

A point which I mentioned at the end of chapter 10, but did not enlarge upon, was that from the two lines of analysis of an "adult' string and a 'child" string in chapter 10, it emerged that the degree of structure was reciprocally related to the width of the window: the shorter the window, the higher the degree of structure - evervthing else equal (table 10.6 to table 10.15).

Is this consistent with the concept of structure we have used so far? To answer this question, let us look at two sizes of window and let $u s$ approach the problem according to the Information Theory and think of the two windows as physical systems. Let us say that one window - system 1 - contains 64 units (words) and the other window - system II - contains 128 units (words). Let us further agree that the two windows are applied to sections of the same text string no further apart, than we can expect the grammatical structure or bonding between the words in each section to be roughly the same.

IF the units are distributed at random. then by the same token the information in system I (the shorter of the windows) is 6 bit (2 in power 6 equals 64) and in system II (the longer window) the information is 7 bit (2 in power 7 equals 128).

Fut by the definition of information and redundancy in the Information Theory (chapter 1) then, if system II is the higher on information, then it is the lower on redundancy, or put another way: If system II is the higher on information, then system is the higher on redundancy and structure. From this follows, that everything else equal - the shorter window should give a higher measure of structure.

You will probably want to interrupt me here and state, about the argument above, that the whole point of the strings being natural
tent strings is, that the units are NOT distributed at random, and this is of course true. However, by using the same text string in this mental experiment, we can assume that the distribution of units (words) in the two svstems - random or not - is the same.

This has important implications, both for our analysis in the past and for our future search for structures. When compared structure - as well as vocabularv - in chapter 5 bv fitting a straight line to the oraphical representation of the vocabulary of strinas in a double logartihmic coordinate system, we made sure that the tent strings were of equal length, and we picked the length of 100 words as a practical compromise. If we had not measured on strings of equal length, the shorter strings would redister as having a higher degree of structure - other parameters being equal.

We thus find ourselves in the same difficult situation as when we compared vocabulary of different categories: we can only legitimatelv compare power spectra if the spectra are based on analveis with the same size window. Now as then, this does not pose anv froblem when we are dealing with "adult' stringe. Eut if we want to campare the spectra of 'child' strings with those of 'adult' stririgs, it means. that either we compare short 'adult' strings with normal length "child" strings - which is not realistic for the 'adult" strings - or we compare the very few long 'child" strings of chapter 4 with normal size 'adult" strings which by the same token is not realistic for the "child" strings.

As stated above, the absolute minimum of the measuring window is 64 and the upper limjt is somewhere around 200 words. Within these limits 1 shall now try to establish if there is an optimal size window. Mv line of action shall be that of making spectra of as manv of the text samples in chapter 4 as possible, first with a measuring window of 64, then with a window of 128 and finally with a window of 256. I have picked these windows because they are powers of 2 within the acceptable upper and lower limits as atalished in chapter 10. The importance of the window size chect: the results from the time serimy use of the FFT to crossanalvses as explained more fully in chapters 7 and 10 .

All the 22 adult text strings in chapter 4 are long enough to provide reference field plus a window of 64,128 and 256 respectively. The problem arises with the childrens text strngs. of the childrens text samples in chapter 4, 25 of the samples were long enough to provide the necessary reference field plus the minimum window of 64 words: 13 samples were long enough to provide reference field plus a window of 128 , but only 5 samples were lona enough to participate in the analysis with a window of 256 .

I shall now make three analyses which differ in the size of the measuring window and the number of participating text strings onlv. The first analysis is performed with a measuring window of 64 words on 25 child strings and 22 adult strings, the second with a window of 128 words on 13 child strings and 22 adult strings and the last with a window of 256 words on 5 child strings and 22 adult strings. In this way we shall have - of the text samples in chapter 4 - 47 spectra obtained with a 64 word measuring window, 35 spectra obtained with a 128 word window and 27 spectra resulting from an analysis with a 256 word window.

These three groups shall be kept strictly separate. One feature which we. according to the considerations above. would empect these three analyses to confirm, is that the shorter the strings are, the higher the level of structure, i.e. the power spectra resulting from the analvses with a 64 word window should aive a higher overall structure than the spectra resulting from the 128 word window, which again should give higher structure levels than the analvses based on a 256 word window

We are now in danger of becoming confused about the terminology since each collection of spectra obtained with windows of 64.128 and 256 constitute a group, which again can be divided into subaroups: Adults, children, which in turn divide into sub-subgroups: children $=$ younger children + older children. and adults $=$ scientists + newspapers + childrens books.

For the sat:e of claritv 1 shall hereafter call a collection of spectra obtained with one particular window size for a 'windowaroup". and a group like that of scientists I shall call a categorv. Thus the 'window-group o4" is the collection of all the spectra obtained with a measuring window of 64 words, and the catenorv 'scientiets' is the collection of spectra based on the te\%t samples written by scientists. Thus. the window-group 64 comprises the categories: 'scientists'. "newspapers'. "childrens books'. 'voung children' and 'old children' each based on text string analyses with a 64 word window. Ey the same token windowaroup 128 " comprises the same categories as "window-group b4" but the text strings in each categorv have of course been analvsed with a window of 128 words.

Again for reasons of clarity and organisation, all individual spectra have been moved to the appendi: to this chapter together with their respective numerical read-outs. Included in this chapter are onlv the average power spectra from each window-oroup and the statistical considerations.

The LABEL of the averaged power spectra:

AVK stands of course for 'average'. The next group of letters and numerals are a' 1 lW ' and a number. After 10 has been subtracted from this number we have the total of the windows which this average is based on. Thus ' $10 \mathrm{OW} 60^{\circ}$ " would indicate, that the total number of words which have gone into the maling of this average would have been 650 minus 10 words equal to 640 words. If this was an average for one of the categories in the window-oroup 64, t would indicate, that 10 spectra each based on a window of 64 words had contributed to this average. This may seem complicated, but it has been necessary to do it this way because of the way the average power spectra have been calculated. The averaoed spectra are not just simple means of powers in each frequency point, but are WEIGHTED MEANS of the individual spectra:

If we have an averaged power spectrum based on an average of 10 windows and we want to find the average between this spectrum and another average power spectrum based on only two windows. we can not just add the powers in each frequency point of the two spectra and divide by two. This would give the spectrum based on two windows far more significance than it is entitled to. We must weigh the powers so that the numerical values of the 10 window spectrum count $10 / 12 \mathrm{th}$ of each average and the 2 window average
counts $2 / 12$ th of the averape.
Farticularlv when we calculate the adult average spectra this becomes important since newspapers have only 5 text samples $=5$ windows and scientists have 9 text samples $=9$ windows. If we calculated the average power spectrum of these two cateaories, newspapers and scientists, by simply adding and dividing by 2 . the "average" spectrum obtained in this wav would put far too great an emphasis on the features of "newspaper language'.

As an example, I shall oo through the averaging of the adult text strings to explain how this is done: We have three categories of adult writers: "SCIENTISTS'. 'NEWSFAFERS' and 'CHILDRENS" EOOKS'. For each of these three categories we have obtained an average spectrum as seen on the following 8 pages. To compare these three categories with the power spectra based on childrens text strings it would be convenient to ereate a new average called 'ADLLTS'. To calculate this power spectrum called 'ADULTS' i proceed as follows: The average spectrum marked "SCIENTISTS' is averaged from 9 windows. The average spectrum of 'NEWSFAFERS' is averaged from 5 windows and the average spectrum of 'CHILDFENS Boors' is based on 8 windows. This gives a total of 22 windows. To this total the scientists contributed 9 windows and thus the power in each frequency point of the average scientist spectrum should contribute with a factor of $9 / 22$ to the average adult spectrum. As newspapers and childrens books contributed with 5 and 8 windows respectively, the power in each frequency point must for the same reason be multiplied by a factor of $5 / 2 \pi$ and 8.2z respectively before they are added to make up one frequency point in the spectrum marked 'ADULTS'.

STATISTICS of the averaged power spectra

The statistics printed on each power spectrum were e\%plained in chapter 9 . but for convenience 1 shall give a short summary: MPD stands for Mean Fower Density and is the sum of the powers in each frequency point divided by the number of points. CHI2 is the usual chi square and is included here because it is a NOFMALISED measure of the variance (the variance divided by the mean) and thus does not depend on the size of the MFD. SDEV is the usual standard deviation i.e. the not normalised measure of variance and it is used together with the number of degrees of freedom to calculate the upper and lower 95% confidence limits.

On the following pages I shall present the spectra which are averaged from each of the 5 categories: "young children', 'old children'. 'scientists'. 'newspapers' and 'childrens books'. After these spectra I shall present: 1) the average of 'childrens power spectra (weighted average of "young children' and 'old children' average spectra). 2) the average of "adults' power spectra (weighted average of "scientist". "newspapers" and 'childrens books;). 3) average of all spectra.

On the basis of the spectra within each of the window-groups 64 , 128 and 256. I shall test with the Kruskal-Wallis one-way analysis of variance the following categories against each other: 'young children', 'old children'. 'all children', 'scientists'. newspapers'. 'childrens books' and 'adults' to evaluate if the difference between these categories is significant enough to sugoest that they are indeed drawn from different populations.

First, the averages for window-group 64 are presented followed by the statistical consideration for this window-group. Next, this approach is repeated for window-group 128 and window-group 256. Lastly I shall compare the findings from each of the three win-dow-groups.

AUR,10W850FF:YOUNGCHILD AUERAGED POWER SPECTRUM

AUF JOWEGOF: YOUNGCHILI FOWEF DENSITY IN FFEGUENCY FOIHTS:

FFEE:	FOUEF:	FFEC:	FOWEF:	FFED:	FOUEF:	FRED:	WUEF	Frev:	fret
0.000	12.1								
0.016	18.5	0.051	25.6	0.647	13.9	0.063	29.8	0.078	17.2
0.094	15.5	0.109	11.9	0.125	15.5	0.141	18.3	0.156	11.8
0.172	30.0	0.188	14.6	0.203	18.6	0.219	19.6	0.234	16.4
0.250	19.1	0.266	13.8	0.281	26.2	0.297	14.4	0.313	23.0
0.328	17.4	0.344	12.8	0.359	14.2	0.375	15.9	0.391	19.8
0.406	19.1	0.422	14.4	0.438	16.6	0.453	19.9	0.469	24.5

0.406	19.1	0.422	14.4
0.484	18.5	0.500	73.1

438 14.2

MEAN FOWEF DENSITY: 19.76
DEGFEES OF FFEEDCIM $=26$
CHISCUARE $=185.40$
ST.DEVIATION $=10.70$
MFD LIFFEF: 0.95 CONF LIMIT $=22.93$
MFD LOWEF 0.95 CONF LIMIT $=16.58$
NUMEEF OF SFECTFAL FOINTS AEOYE UFFEF LIMIT: 7
NUMEEF OF SFECTFAAL FGINTS EELOW LOWEF LIMIT: 14
TOTAL NIMEEF OF SIGMIFICANT SFECTFAL FOINTS: 21

Figure 11.1 Average Fower Spectrum 'Young Children', $W=64$.

AUR，10WフフフFF：OLDCHILD AUERAGED POWER SPECTRUM

A！F，1OW7？TFF：OLDCHILD FOWER DENSITY IN FFEQUENCY FOINTS：

FFEQ：FOWEF：	FREQ：FOWER：	FREQ：FOWER：	FREQ：FOWER：	FREQ：POWEF：					
0.000	11.0								
0.016	18.5	0.031	16.6	0.047	20.1	0.063	25.4	0.078	20.3
0.094	15.1	0.109	19.8	0.125	18.0	0.141	18.9	0.156	9.8
0.172	17.9	0.188	20.2	0.203	21.2	0.219	15.6	0.234	18.0
0.250	13.6	0.266	10.7	0.281	24.7	0.297	15.7	0.313	27.6
0.328	14.3	0.344	23.7	0.359	21.1	0.375	22.1	0.391	15.7
0.406	19.3	0.422	21.6	0.438	17.1	0.453	15.0	0.469	29.4

MEAN FOWEF DENSITY：20．15
DEGREES OF FREEDCM $=24$
CHISQUARE $=144.90$
ST．DEVIATION $=9.55$
MFD UPFEF 0.95 CONF LIMIT $=23.00$
MFD LOWER 0.95 CONF LIMIT $=17.31$
NUMBER OF SFECTFAL FOINTS AEOVE UFFER LIMIT： 6
NUMEER OF SFECTRAL POINTS EELOW LOWER LIMIT： 12
TOTAL NUMEER OF SIGNIFICANT SFECTRAL POINTS：1B

Fioure 11．2 Average Fower Spectrum＇Old Children＇．W＝64．

AUR, 10W585FF: SCIENTISTS AUERAGED POWER SPECTRUM

```
MPD = 19.92 DEGR OF FREED = 18
CHI2=153.36 UPPER CONF LIM= 22.87
SDEU= 9.77 LOWER CONF LIM= 16.97
```


AUF. 1 OWSBSFF: SCIENTISTS FQWEF DENSITY IN FFEDUENC:Y FOINTS:

FRED:	FOWEF:	FFEO:	F'DWEF:	FFED:	POWEF:	FREQ:	FOWEF:	FFEO:	FOWEF:
0.000	16.3								
0.016	20.8	0.031	20.3	0.047	10.6	0.063	15.9	0.078	18.6
0.094	14.3	0.109	18.2	0.125	13.5	0.141	21.1	0.156	26.6
0.172	13.8	0.188	18.4	0.203	12.6	0.219	16.4	0.234	15.5
0.250	18.1	0.266	11.9	0.281	28.8	0.297	17.9	0.313	14.2
0.328	21.7	0.344	22.2	0.359	16.4	0.375	16.8	0.391	27.9
0. 4016	17.1	0.422	23.6	0.438	13.2	0.453	20.4	0.469	3.3
0.484	15.5	0.500	66.5						

MEAN FOWEF DENSITY: 19.92
DEGREES OF FREEDOM $=18$
CHISQUAFE $=153.36$
ST. DEVIATION $=9.77$
MFD LIFFER 0.95 CONF LIMIT $=22.87$
MPD LOWER 0.95 CONF LIMIT $=16.97$
NUMEER OF SFECTRAL FOINTS ABQVE LPFER LIMIT:
NUMEEF OF SFEECTRAL POINTS EELOW LOWER LIMIT: 15
TOTAL NUMEER OF SIGNIFICANT SPECTFAL POINTS: 21

Figure 11.3 Average Fower Spectrum 'Scientists', W $=64$.

AVF. 1OWSSOFF: FAFERS FOWER DENSITY IN FREQUENCY FOINTS:

FREQ:	FOWER:	FREO: FOWER:	FFEQ: FOWER:	FREQ: FOWER:	FREQ: FOWEF:				
0.000	8.6								
0.016	18.7	0.031	15.1	0.047	15.9	0.063	12.8	0.078	12.9
0.094	17.6	0.109	17.2	0.125	14.0	0.141	17.0	0.156	15.8
0.172	12.3	0.188	26.7	0.203	25.1	0.219	20.6	0.234	17.3
0.250	13.2	0.266	26.2	0.281	12.5	0.297	21.2	0.313	29.3
0.328	29.9	0.344	14.6	0.359	22.3	0.375	28.1	0.391	15.0
0.406	13.9	0.422	16.1	0.438	22.4	0.453	42.0	0.469	29.2

MEAN FOWER DENSITY: 21.63
DEGREES OF FREEDOM $=10$
CHISQLIARE $=182.85$
ST. DEVIATION $=11.12$
MFD UFFER 0.95 CONF LIMIT $=25.14$
MFD LOWER 0.95 CONF LIMIT $=18.13$
NUMEEF OF SPECTRAL POINTS ABOVE UPPER LIMIT: 9
NLMEER OF SFECTRAL POINTS EELOW LOWER LIMIT: 18
TOTAL NUMEER OF SIGNIFICANT SFECTRAL POINTS: 27

Figure 11.4 Average Power Spectrum 'Newspapers': W=64.

AVR, $104521 F F:$ CHEOCIS FOWEF DENSITY IN FFEQUENCY FOINTS:
FREO: FOWER: FREQ: FQWER: FREQ: FOWER: FFEQ: FOWER
0.00010
0.00019.
$0.016 \quad 23.4$
$0.094 \quad 16$
$\begin{array}{llll}0.172 & 16.5 & 0.188 & 8.4\end{array}$
$\begin{array}{llll}0.328 & 17.0 & 0.266 & 11.3\end{array}$
$\begin{array}{llll}0.406 & 10.4 & 0.3 .44 & 10.6\end{array}$
$\begin{array}{llll}0.484 & 12.8 & 0.500 & 57.6\end{array}$

FREQ: FOWER:
FREQ: FOWEF:
$0.047 \quad 29.0$
$0.125 \quad 17.2$
0.20315 .0
$0.281 \quad 15.7$
$0.359 \quad 13.9$
0.43822 .6
0.063
0.141
$0.219 \quad 0$
$0.297 \quad 17.3$
$0.375 \quad 25.2$
0.45318 .2

FFEEQ: FCIWEF:
$0.078 \quad 242$
0.156 20.3
0.23421 .30.391 23.1
0.469 35. B

MEAN FOWEF DENSITY: 19.81
DEGREES OF FREEDOM $=16$
CHISQUARE $=156.12$
ST. DEVIATION $=9.83$
MFD UPFEF 0.95 CONF LIMIT $=22.80$
MFD LOWEF 0.95 CONF LIMIT $=16.82$
NUMEER OF SPECTRAL POINTS AROVE UPPER LIMIT:
NUMEEF OF SFECTRAL POINTS RELOW LOWER LIMIT: 14
TOTAL NUMEEF OF SIGNIFICANT SPECTRAL POINTS: 23

Figure 11.5 Average Fower Spectrum 'Childrens' Eooks', W=64.

AUR,10W1618FF:CHILDREN AUERAGED POWER SPECTRUM

$M P D=$	19.95	
CHI $2=155.29$	DEGR OF FREED $=50$	
SDEU $=$	9.84	LOWER CONF LIM $=22.85$

AUR, 1OW1O18FF:CHILDFEN FOWER DENSITY IN FREOUENCY FOINTS:

FRED: FOUEF:
0.00011 .6
24.2
$\begin{array}{llll}0.328 & 16.5 & 0.266 & 12.3\end{array}$
0.40619 .2
$0.484 \quad 19.7$
-031
$\begin{array}{lll}15.3 & 0.031 & 21.3\end{array}$
0.10915 .7
$16.0 \quad 0.344 \quad 18.0$
FREO: FOWEF:

0.031	21.3
0.109	15.7
0.188	17.3
0.266	12.3
0.344	18.0
0.422	17.8
0.500	70.3

FREQ: FOWER:

0.047	16.9	0.063	27.7
0.125	16.7	0.141	18.6
0.203	19.8	0.219	17.7
0.281	25.5	0.297	15.0
0.359	17.5	0.375	18.8
0.438	16.8	0.453	17.5

FREQ: FOWEF::

0.078	18.7
0.156	10.9
0.234	17.2
0.313	25.2
0.391	17.9
0.469	26.4

MEAN FOWER DENSITY: 19.95
DEGREES OF FREEDOM $=40$
CHISQUARE $=155.29$
ST.DEVIATION $=9.84$
MFD UFFER 0.95 CONF LIMIT $=22.83$
MFD LOWEF 0.95 CONF LIMIT $=17.06$
NUMEER OF SFECTRAL FOINTS ABOVE UFPER LIMIT: 6
NUMEEF OF SFECTRAL POINTS EELOW LOWEF LIMIT8 11 TOTAL. NLMEER OF SIGNIFICANT SFECTRAL FOINTS: 17

Figure 11.6 Average Power Spectrum 'All Children', $W=64$.

FREQ: FOWEF:	FREQ: FOWER:	FREQ: FOWER:	FREQ: POWEF:	FREQ: FOWEF:					
0.000	15.5								
0.016	21.3	0.031	19.2	0.047	18.5	0.063	14.6	0.078	19.3
0.094	15.9	0.109	17.3	0.125	15.0	0.141	23.2	0.156	21.8
0.172	14.4	0.188	16.7	0.203	16.3	0.219	14.9	0.234	18.0
0.250	16.6	0.266	14.9	0.281	20.3	0.297	18.4	0.313	15.6
0.328	22.4	0.344	16.3	0.359	16.8	0.375	22.4	0.391	23.2
0.406	13.8	0.422	26.6	0.438	18.7	0.453	24.5	0.469	32.9

[^3] TOTAL NUMEEF OF SIGNIFICANT SPECTRAL POINTS: 22

Fioure 11.7 Average Power Spectrum 'All Adults', $W=64$.

AUR,10W1418FF:ADLLTS AUERAGED PDWER SPECTRUM
$M P D=20.27$
$C H I 2=110.99$
SDEU $=8.39$

MPE LPPER 0.95 cTNF LI MPD LOWR $\operatorname{e.gs}$ conf LJI fRESUENCT
AMF. 1OW1418FF:ADLLTS FOWEF DENSITY IN FREQUENCY FOINTS:

FREQ:	FOWEF:	FREQ: FOWER:	FREQ: FOWER:	FREQ: FOWEF:	FREQ: FOWEF:				
0.000	15.5								
0.016	21.3	0.031	19.2	0.047	18.5	0.063	14.6	0.078	19.3
0.094	15.9	0.109	17.3	0.125	15.0	0.141	23.2	0.156	21.8
0.172	14.4	0.188	16.7	0.203	16.3	0.219	14.9	0.234	18.0
0.250	16.6	0.266	14.9	0.281	20.3	0.297	18.4	0.313	15.0
0.328	22.4	0.344	16.3	0.359	16.8	0.375	22.4	0.391	23.2
0.406	13.8	0.422	26.6	0.438	18.7	0.453	24.5	0.469	32.9
0.484	23.6	0.500	60.7						

MEAN FOWER DENSITY: 20.27
DEGREES OF FREEDOM $=40$
CHISQUARE $=110.99$
ST. DEVIATION $=8.3 .9$
MFD UFFEF 0.95 CONF LIMIT $=22.73$
MFD LOWER 0.95 CONF LIMIT $=17.81$
NUMEER OF SFECTRAL FOINTS AROVE UF'PER LIMIT: 7
NUMRER OF SFECTRAL FOINTS BELOW LOWER LIMIT: 15 TOTAL NUMEEF OF SIGNIFICANT SPECTRAL POINTS: 22

AUR, 10W2699FF: ALL64 AUERAGED POWER SPECTRUM

A!F. 1OW2G9OFF:ALLG4 FOWER DENSITY IN FREQUENCY FOINTS:

FREQ: FOWEF:	FREQ: POWEF:	FFEQ: POWER:	FREQ: POWER:	FREQ: FUWER:					
0.000	14.1								
0.016	20.7	0.031	18.9	0.047	17.6	0.063	20.3	0.078	18.2
0.094	15.3	0.109	17.1	0.125	15.8	0.141	20.2	0.156	17.0
0.172	19.2	0.188	18.0	0.203	16.9	0.219	15.8	0.234	17.6
0.250	17.0	0.266	13.5	0.281	23.8	0.297	16.6	0.313	21.3
0.328	18.4	0.344	17.6	0.359	17.3	0.375	21.8	0.391	20.0
0.406	16.4	0.422	21.9	0.438	19.3	0.453	21.6	0.469	30.6

MEAN FOWER DENSITY: 20.11
DEGREES OF FREEDOM $=120$
CHISQUARE $=118.62$
ST.DEVIATION $=8.66$
MFD UFFER 0.95 CONF LIMIT $=22.75$
MFD LOWEF 0.95 CONF LIMIT $=17.75$
NUMEER OF SFECTRAL FOINTS AEOVE UFFER LIMIT:
NUMEER OF SFECTRAL POINTS BELOW LOWER LIMIT:

Statistical evaluations in window-oroup 64.
In chapter 10 we found. on the basis of theoretical considerations and on the basis of number of significant spectral points, that if we wanted our spectral analysis to provide a 95% confidence level, this size of window was the minimum necessary.

However, having established a means of analysis which is 95% "safe" we mav still not be able to 'pict: up' any particular features from our text strings in chapter 4. In chapter 10 I explained how "entangled" were the different initial parameters which this method of analvsis is based on. The size of the

CATEGOFiV:	N	MFD	S.D.
young children	13	19.76	2.74
old children	12	20.15	2.42
scientists	9	19.92	3.83
newspapers	5	21.63	1.99
ch.bool:s	8	19.81	1.68
all children	25	19.95	2.77
all adults	22	20.27	2.80

Table 11.9 Number of samples. Mean Fower Density and Standard Deviation for each category in window-group 64.
measurina window is not only related to the statistical significance of the power in each frequency point, but is related to the stability of the structures. the so called 'stationarity'. One reason for choosing a very small, but statistically sionificant, window. was that with a small window we would counteract the lack of stationarity in the overall spectrum. This however, could only be done on the expence of sensitivitv, particularly the sensitivity in the low-frequency bands of the spectrum.

Table 11.9 gives the mean of the Mean Power Density for each category of window-group 64. The mean is the simple mean found by adding the MF'D's of the individual spectra within each category (see appendi\% to this chapter).

Confirming our findings of chapter 5 we find here that with progressivelv younger writers, the MFD decreases: 'adults' have a higher mean MPD than 'older children', which again has a higher MFD than 'younger children'. even though the difference is small.

To evaluate the significance of these findings, the distribution of the values of MPD between any two categories was measured with the Kruskal-Wallis one-way analysis of variance. The 'raw' Hvalues from this test can be found in table 11.10 and gave that no two categories are significantly (95\%) different and that, as far as the Mean Power Density is concerned, there is no reason to sugaest that the categories in window-group 64 are drawn from different populations. Even between the two categories "young children' and "newpapers" which show the greatest difference in MPD, this difference is only significant on a 20% level.

As the H-value for independence between "younger children' and "older children' indicates that there is nothing to suggest that these two categories are drawn from different populations, we will have to include the common group 'children' in table 11.10 . On the other hand. as we have two fairly big samples of children, it makes sense to continue the distinction between vounger and older children as well.
childy childo scient papers chbooks
child d
0.02
0.13

2.04	0.29
2.03	0.46
2.43	0.15
0.75	0.15
-	2.59

scientists
Fapers
chbook:
Table 11.10 H-values from Kruskal-Wallis one-wav test of variance based on analysis of Mean Fower Density over 64 words.

The only H-values approaching sionificance in table 11.10 are the values between newspapers on the one hand and children and childrens books on the other. These values translate into around a 15% significance level, and we can thus conclude, that analysed with a 64 word window, there does not seem to be any significant difference between the amount of overall structure in childrens text strings and adult te\%t strings.

CATEGORV:	N	CHI2	S.D.
young children	13	832.69	560.25
old children	12	643.67	357.59
scientists	9	711.11	398.94
newspapers	5	606.80	242.90
ch.books	8	713.75	536.31
all children	25	741.96	474.19
all adults	22	688.36	412.66

Table 11.11 Number of samples, Variance and Standard Deviation for each category in window-group 64.

Table 11.11 gives the mean of the normalised variance (CH12) for each category of window-group 64. The mean is the simple mean found by adding the CHI2's from the individual spectra within each category (see appendix to this chapter). As above, the H value of independence between the two categories younger children' and 'older children', although much higher than that of the
mean power density above, still does not suogest that these categories are drawn from different populations.

	childv	childo	scient	papers	chtioot: 5
childv	-	1.43	0.19	0.41	1.34
childo		-	0.85	0.01	0.05
children	-	-	0.06	0.09	0.40
scientists			-	0.54	0.33
papers				-	0.00

Tatale 11.12 H-values from Kirust:al-wallis one-wav test of variance based on analvsis of CHI2 over 64 words.

The probability that these values represented populations sionificantlv different from each other were evaluated in the same wav as above with the kimustial-wallis one-wav analysis of variance. The "raw" H-values from this test can be found in table 11.12 and gave that no two categories are significantly (5\%) different and that. based on evaluation of the normalised variance CHIZ. there $i s$ no reason to surgest that the categories in window-group 64 are drawn from different populations.

As above, the greatest difference is between "young children' and "newspapers" but even so. there is no more than a 50% chance that these two cateaories are drawn from different populations.

Finallv the correlations between aoe and MFD, and age and CHI 2 of the 25 children were measured. The correlation coefficient (MFD) came to -0.00203 and thus shows that there is no correlation between age and structure in this window-group. The correlation coefficient (CHI2) was - 0.1033 which is not significant, but for a sample of 12 can be said with some justification to indicate a tendency. Thus, the variance of the distribution of powers in the frequency points of the power spectra tend to be reciprocally related to the age of the writer, indicating that children have less, adults more variation in their spectra.

Although we have found some subtle features with a measuring window of 64 words. none of these features have been significant and none indicated a sionificant difference in structure between children and adults. This is clearly disappointing.

There are at least 2 reasons why this could be so. 1) A measuring window of 64 words is too short or too long. 2) There is no significant difference in the amount of structure in the different cateqories of text strings in chapter 4, particularly between children and adults.

To evaluate the first. possibility, we shall proceed to the neyt window-group, that of measuring window of 128 words.

AUR, 1DW393FF:YOUNGCHILD AUERAGED POWER SPECTRUM

AUF, 1OW 9 ?FF: YOUNGCHILD FOWEF DENSITY IN FREQLENCY FOINTS:

FREQ:	F-OWER:	FREQ:	FOWEF:	FFEQ:	FOWEF:	FREQ:	POWER:	FREQ:	F'OWEF:
0.000	15.2								
0.016	21.7	0.0 .31	8.4	0.047	4.5	0.063	16.0	0.078	8.9
0.0194	7.2	0.109	11.0	0.125	11.7	0.141	13.9	0.156	17.3
0.172	27.4	0.188	25.1	0.203	7.5	0.219	13.4	0.234	17.7
0.250	27.2	0. 266	11.6	0.281	21.2	0.297	11.2	0.313	26.0
0.328	18.3	0.344	11.7	0.359	25.1	0.375	15.5	0.391	28.4
0.406	14.8	0.422	9.1	0.438	18.3	0.453	21.0	0.469	33.5
0.484	48								

MEAN FOWER DENSITY: 18.17
DEGREES OF FREEDOM $=12$
CHISOUARE $=155.74$
ST. DEVIATION $=9.40$
MPD UFFEF 0.95 CONF LIMIT $=21.09$
MPD LOWER 0.95 CONF LIMIT $=15.25$
NUMRER OF SPECTRAL POINTS AROVE UPPER LIMIT\& 11
NUMRER OF SFEETRAL FOINTS BELOW LOWER LIMIT\& 15
TÜTAL NUMEER OF SIGNIFICANT SFECTRAL POINTS: 26

AVF, 10W1291FF:OI DEFCHILD FOWEF DENSITY IN FFEQUENCY FOINTS:

FREQ: FOWER:	FREQ: FOWER:	FFEQ: POWER:	FREQ: FOWER:	FREQ: PQWEF:					
0.000	9.4								
0.016	16.8	0.0 .31	13.1	0.047	15.1	0.063	20.8	0.078	15.5
0.094	15.3	0.109	17.6	0.125	12.6	0.141	13.7	0.156	12.8
0.172	13.9	0.188	16.4	0.203	16.5	0.219	12.9	0.234	13.5
0.250	16.7	0.266	13.2	0.281	20.1	0.297	19.9	0.313	22.1
0.328	12.2	0.344	21.2	0.359	20.3	0.375	24.6	0.391	13.1
0.406	15.8	0.422	23.3	0.438	29.1	0.453	20.9	0.469	21.5
0.484	30.9	0.500	33.9						

MEAN POWER DENSITY: 18.02
DEGREES OF FREEDOM $=40$
CHISQUAFE $=57.49$
ST.DEVIATION $=5.69$
MPD UPPER 0.95 CONF LIMIT $=19.69$
MPD LOWER 0.95 CONF LIMIT $=16.35$
NUMEEF OF SPECTRAL POINTS AROVE UPPER LIMIT: 13
NUMBER OF SFECTRAL FOINTS EELOW LOWER LIMITs 15
TOTAL NUMEER OF SIGNIFICANT SPECTRAL FOINTS: 28

Figure 11.14 Average Fower Spectrum 'Old Children', $W=128$.

AUF, 1OW1161FF:SCIENTISTS FOWEF DENSITY IN FREQUENCY FOINTS:

FFEQ: FOWEF:	FREO: FOWEF:	FFEQ: POWER:	FREQ: FOWER:	FREQ: FOWEF:						
0.000	15.9									
0.016	19.7	0.021	18.7	0.047	15.0	0.063	21.3	0.078	15.6	
0.094	16.9	0.109	0.9	0.125	9.3	0.141	13.9	0.156	20.4	
0.172	14.7	0.188	20.0	0.203	13.5	0.219	16.0	0.23 .4	14.9	
0.250	10.9	0.266	15.4	0.281	18.8	0.297	18.6	0.313	11.2	
0.328	18.9	0.344	20.6	0.359	18.2	0.375	17.1	0.391	18.9	
0.406	17.9	0.422	18.8	0.438	22.9	0.453	24.5	0.469	25.7	
0.484	26.5	0.500	26.8							

MEAN POWER DENSITY: 17.77
DEGREES OF FREEDOM $=40$
CHISQUARE $=36.64$
ST.DEVIATION $=4.51$
MFD UFFER 0.95 CONF LIMIT $=19.09$
MFD LOWER 0.95 CONF LIMIT $=16.44$
NUMEER OF SPECTRAL POINTS AROVE UPPER LIMIT: 10
NUMRER OF SPECTRAL POINTS BELOW LOWER LIMIT: 13
TOTAL NUMEER OF SIGNIFICANT SPECTRAL POINTS: 23

Figure 11.15 Average Power Spectrum 'Scientists', $W=128$.

AUR, 10W649FF:FAFERS FOWER DENSITY IN FFEQUENCY FOINTS:

FREQ: FOWEF:	FREQ: FOWER:	FREQ: FOWER:	FREQ: POWER:	FREQ: FOWEF:					
0.000	11.3								
0.016	17.9	0.031	22.8	0.047	7.7	0.063	13.2	0.078	17.9
0.094	12.1	0.109	9.6	0.125	13.3	0.141	10.3	0.156	16.5
0.172	17.0	0.188	17.5	0.203	18.3	0.219	18.8	0.234	18.8
0.250	15.6	0.266	29.1	0.281	9.0	0.297	19.1	0.313	12.4
0.328	25.6	0.344	21.5	0.359	18.4	0.375	29.2	0.391	20.7
0.406	17.8	0.422	15.2	0.438	20.2	0.453	26.1	0.469	17.6
0.484	27.8	0.500	22.7						

MEAN POWER DENSITY: 17.89
DEGREES OF FREEDOM $=20$
CHISOLIARE $=57.78$
ST.DEVIATION = 5.68
MFD UPFER 0.95 CONF LIMIT $=19.60$
MFD LOWER 0.95 CONF LIMIT $=16.19$
NUMEER OF SFECTRAL POINTS ABOVE UPPER LIMIT: 10
NLMEEF OF SFECTRAL FOINTS RELOW LOWER LIMIT: 11
TOTAL NUMEER OF SIGNIFICANT SPECTRAL POINTS: 21

Figure 11.16 Average Fower Spectrum 'Newspapers': $W=128$.

AUR, 10W1033FF:CHBOOKS AUERAGED POWER SPECTRUM

AVF, 1OW1OSSFF:CHEOOKS FOWEF DENSITY IN FREQUENCY FOINTS:

FFEEQ: FOWER:	FREQ: FOWER:	FREQ: POWER:	FREQ:	FOWER:	FREQ: POWER:				
0.000	20.6								
0.016	21.4	0.0 .31	21.7	0.047	12.9	0.063	18.3	0.078	15.6
0.694	18.4	0.109	17.8	0.125	12.7	0.141	20.1	0.156	20.6
0.172	9.9	0.188	20.8	0.203	24.0	0.219	12.5	0.234	17.3
0.250	14.6	0.266	12.9	0.281	12.6	0.297	18.2	0.313	18.5
0.328	13.9	0.344	13.8	0.359	23.2	0.375	24.0	0.391	23.2
0.406	15.9	0.422	19.5	0.438	21.8	0.453	17.2	0.469	17.1

AUR,10W1675FF:CHILDREN AUERAGED POWER SPECTRUM

$M P D=$	18.05		DEGR OF FREED $=52$
$C H I 2=$	59.10	UPPER CONF LIM $=19.76$	
SDEU $=$	5.77	LOWER CONF LJM $=16.35$	

AVF, 10W1675FF:CHILDREN FOWEF DENSITY IN FREQUENCY FOINTS:

FREQ: FOWER:	FREQ: FOWER:	FREQ: FOWER:	FREQ: FOWER:	FREQ: FOWER					
0.000	10.3								
0.016	17.9	0.031	12.0	0.047	12.6	0.063	19.7	0.078	14.0
0.094	13.4	0.109	16.1	0.125	12.4	0.141	13.7	0.156	13.8
0.172	17.0	0.188	18.4	0.203	14.4	0.219	13.0	0.234	14.5
0.250	15.1	0.266	12.9	0.281	20.3	0.297	17.9	0.313	23.6
0.328	13.6	0.344	19.0	0.359	21.4	0.375	22.5	0.391	16.6
0.406	15.6	0.422	20.0	0.438	26.6	0.453	20.9	0.469	24.3

MEAN POWER DENSITY: 18.05
DEGREES OF FREEDOM $=60$
CHISQUARE $=59.10$
ST.DEVIATION $=5.77$
MFD UFFFE 0.95 CONF LIMIT $=19.73$
MPD LOWER 0.95 CONF LIMIT $=16.37$
NUMEEF OF SFECTRAL POINTS AEDVE UPPER LIMIT: 10
NUMEER OF SFECTRAL POINTS EELOW LOWER LIMIT: 15
TOTAL NUMEER OF SIGNIFICANT SPECTRAL POINTS: 25

Figure 11.18 Average Power Spectrum 'All Children', $W=128$.

AUR,10W2825FF:ADLLTS AUERAGED POWER SPECTRUM

AVK, 1 OW2RZEFF: ANULTS FOWEF DENSITY IN FREQUENCY FOINTS:
FREO: FOWER:
16.3
$0.016 \quad 19.9$
$0.094 \quad 16.4$
0.172 13.5
$0.250 \quad 13.2$
. 328
$0.406 \quad 17.1$
$0.484 \quad 32.4$

FFEO:	FOWEF:
0.031	20.7
0.109	12.3
0.188	19.7
0.266	17.6
0.344	18.3
0.422	18.2

FREQ: FOWER:	FREQ: FOWEF:		
0.047	12.6	0.063	18.4
0.125	11.4	0.141	15.3
0.203	18.4	0.219	15.4
0.281	14.3	0.297	18.6
0.359	20.1	0.375	22.4
0.438	21.9	0.453	22.2

FREO: FOWER

MEAN FOWEF DENSITY: 18.44
DEGREES OF FREEDOM $=120$
CHISQUARE $=42.71$
ST. DEVIATION $=4.96$
MF:D UFPER 0.95 CONF LIMIT $=19.87$
MFD LOWER 0.95 CONF LIMIT $=17.01$
NUMEER OF SFECTRAL POINTS AROVE UPFER LIMIT8 10
NUMEER OF SPECTRAL FOINTS EELOW LOWER LIMIT8 13 TOTAL NUMEER OF SIGNIFICANT SFECTRAL POINTS: 23

Figure 11.19 Average Power Spectrum 'All Adults'. $W=128$.

AVF,10W4491FF:ALL12B FOWEFi DENSITY IN FFEQUENCY FOINTS:

FREQ:	FOWEF:	FFiEQ:	F'OWEF:	FREQ:	FOWER:	FREQ:	FOWEF:	FREQ:	POWEF:
0.000	14.1								
0.016	19.2	0.0 ± 1	17.5	0.047	12.6	0.063	18.9	0.078	15.3.
0.094	15.	0.109	13.7	0.125	11.8	0.141	14.8	0.156	17.4
0.172	14.8	0.188	19.2	0.203	16.9	0.219	14.5	0.234	15.8
0.250	15.4	0.266	15.8	0.281	16.5	0.297	18.3	0.313	17.
0.328	16.8	0.344	18.6	0.359	20.6	0.375	22.4	0.391	19.3
0.406	16.6	0.422	18.9	0.438	23.7	0.453	21.7	0.469	22.0

MEAN FOWEF DENSITY: 18. 30
DEGREES OF FREEDOM $=120$
CHISQUARE $=42.53$
ST. DEVIATION $=4.93$
MFD UFFER 0.95 CONF LIMIT $=19.72$
MFD LOWER 0.95 CONF LIMIT $=16.87$
NUMEER OF SPECTRAL FOINTS AROVE UPPER LIMIT: 7
NUMRER OF SFECTRAL POINTS BELOW LOWER LIMIT: 15
TOTAL NUMRER OF SIGNIFICANT SFECTRAL POINTS: 22

Figure 11.20 Average Power Spectrum 'All Window-Group 128'.

Statistical evaluations in window-aroup 128.

Table 11.21 gives the mean of the Mean Fower Density (MF'D) for each category of window-oroup 12B. The mean is the simple mean of the MFD's of the individual spectra within each category. (Individual spectra can be found in the appendix to this chapter).

CATEGOFY:	N	MFD	S.D.
voung children	3	18.17	1.09
oldchildren	10	18.02	1.31
scientists	9	17.77	1.11
newspapers	5	17.89	1.61
chaboots	8	19.55	1.10
all children	13	18.05	1.22
all adults	22	18.44	1.45

Table 11.21 Number of samples. Mean Fower Density and Standard Deviation for each category in window-group 128.

With regard to the category of "voung children" in this windowgroup. it must be pointed out, that it is questionable how representative this category of text strings is since the three text strings in this category are in fact written by the same child. albeit at different aqes. To evaluate if these two categories do in fact qualify as two independent populations. they were tested with the kruskal-Wallis one-wav analysis of variance and it was found that there was no indication of independence between the two categories. For this reason. I have combined the two groups into ones "children".

We aqain find, that the mean power density of children as a whole is siightly less than that of adults. However, if we check the two categories 'children" vs "adults" with the kiruskal-wallis one-way analysis of variance, we find, that the difference is not significant. The greatest difference in MFD (table 11.21) is between "scientists" (lowest at 17.77) and childrens bookis" (highest at 19.55). If we check these two categories against each other for independence with the Kruskial-wallis test. we find that there is a 99% chance that these two categories are drawn from different populations. The difference between the four categories "children", "scientists". "newspapers" and "childrens books" was evaluated with the same test and established on a 5% significance level. that these 4 categories are drawn from different populations. Finally, any one category was checked against all other categories for difference in MFD. The 'raw' H-values of this test and their "translation" into levels of significance is given in table 11.22 (a) and 11.22 (b).

The figures in tables 11.22 (a) and (b) are sligtly more encouraging than the results in window-group 64 . It is however surprising, that only the language in childrens books seems to stand out significantly with regard to overall structure.

children scientists papers chbooks

children	-	$n s$	$n s$
scientists	-	$n s$	2%
papers		-	$n=$

chbooks teqories in Mean Fower Density over $12 \boldsymbol{2} \boldsymbol{f}$ wrde

Table 11.22 (b) Significance of test in table 11.22 (a).

It is interesting to see, that there is no sionificant difference between the varicus categories of adult writers writing for adults. The significant differences emerge onlv when adult writers write for children.

Nor is there anv significant difference between the overall structure in childrens text strings and that of adult tent strings when the adult strings have adult target.

It is important to remember. that these results emeroe from a method of analvsis which not only is experimental. but ostensibly crude. I am surprised however. that this analysis does not pick up differences hetween the overall structure in childrens lanquage and adult language. where I should have thought that the difference was most obvious. The kruskal-wallis test established that the hypothesis that "children" and "adults" are drawn from different populations on the basis of the distribution of MFD within each category can only be established on a 30% significance level. This is clearly not significant and must reflect either that this method of analysis is too crude to pick up the difference in overall structure between adult and child language: or - as was suggested in window-group 64 - that there is not any structural difference to be picked up.

The same analysis was then carried out on the basis of the normalised variance CHI2. Table 11.23 gives the mean values for each caregorv.

As the case was above, the difference between the means of CHI2 between categories was evaluated with the Krumkall-wallis one-way analvsis of variance. The 4 categories "children", "scientists'. "newspapers" and 'ehildrens books" were tested as a whole and gave that the hypothesis that that they are drawn from different populations could be establiehed on a 0.5% significance level. For the two categories' adults" and "children" the significance level was 0.07% - altogether rather more encouraging than the results of the analysis of MPD.

CATEGORY:	N	CHI2	S.D.
young children	3	331.63	78.94
old children	10	226.83	32.01
scientists	9	369.11	97.38
newspapers	5	310.40	103.09
ch.bool:s	8	463.63	175.79
			9.44
all children	13	241.85	72.44
all adults	22	390.14	140.35

Table 11.23 Number of Samples, CHI2 and Standard Deviation for each category in window-group 128.

With regard to the category of "young children" in this windowgroup, I must again point out, that it is questionable how representative this category of text strinas is since the three tent strings in this category are written by the same child - albeit at different ages. When we evaluated the independence between the categories "young children and "old children" with regard to MFD above, we had already established. that the two categories were not significantlv independent of each other with regard to this parameter (Table 11.21). Combining the two categories into one in the same wav with regard to the present evaluation of CHIZ is not as straight forward, since by applying The kruskal-Wallis test to the two categories 'young children' and 'old children' with reard to CHI 2 we find, that the indepence between the two categories is iust on the verge of being significant (5\%). This accounts for the additional category 'children" in tables 11.24 (a) and (b).
childy childo scient papers chbook:

childy	-	3.77	0.42	0.02	1.04
childo	-	9.83	3.24	12.00	
			8.64	2.34	10.63
children				0.64	1.45
scientists					3.36

papers
chbooks
Table 11.24 (a) Kruskal-Wallis test of difference between categories in CHI 2 over 128 words.
childy childo scient papers chboot:s

childv childo	-	5%	$\begin{aligned} & n s \\ & 0.2 \% \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	(7\%)	$\begin{aligned} & \text { ns } \\ & 0.08 \% \end{aligned}$
children scientists papers chbooks			0.5%	$\begin{aligned} & n s \\ & n s \end{aligned}$	(15\%)	$\begin{aligned} & 0.1 \% \\ & n 5 \\ & n s(6 \%) \end{aligned}$

Table 11.24 (b) Significance of test in table 11.24 (a).

This time we find that the combination of the two oroups of children into one has been paid for by a decrease in significance. However, as seen in table 11.24 (b). where the independence between anv two categories was significant before the combination of the two age groups of children into one. even though the significance has decreased, the independence is still better than the 5% level of significance.

On the basis of CHI2 the hypothesis that children and adults were drawn from different populations was established on a 0.07% significance level, and as we would have expected, there is considerable difference between the categories "scientists" and 'children' as well. Furthermore, the power spectra of (older) children are significantly less varied than those of other categories with newspapers as a borderline case. On the whole it seems like the normalised variance CHI2 is a better measure of different features in text strings than the Mean Power Density.

We again find - with regard to CHI2 - that there is significant difference between 'older children' and 'childrens books'. whereas no such difference between 'younger children' and 'childrens books" was found. This is probably a reflection of the target atidience of the book:s for children being the younger age group. On the whole - both with regard to overall structure in text strings and with regard to the variance in the power spectrum - the text strings written by adults for children stand out as different from evervthing else. Almost as if high structure and hioh variance were the result of the adult writers attempt to "pretend".

The correlation between the age of the children on the one hand, and MFD and CHI2 on the other was measured. The correlation coetficient (MFD) is 0.030 indicating no correlation. The correlation (CHIZ) is -0.3803, which for a sample of 13 aives that a reciprocal relationship between age and CHI2 has been established on between a 5% and a 10% significance level bone tailed). Thus, the tendency we found in window-group 64 although still only a "tendency" - we have found again here: The more competent the writer: the more variation in the spectrum resulting from the fourier analysis of the teyt string.

If we can accept that the two groups of children, with regard to variance (CHI2) are really just one group - and the lack of difference as measured with the Kruskal-Wallis test does not suggest that we should not do so - it will be easier to establish a simple relationship between variance (CHI2) and our intuitive perception of linguistic ability of each category as stated in table 11.23 . We then have that children have the lowest variance. followed by newspapers and scientists in increasing order of variance. It is debatable whether the high variance scored by the tent strings in books written by adults for children fit into this intuitive ladder of linguistic ability, but the fact ify that the highest variance is found in the power spectra based on childrens bool:s, which brings us back to the 'irregularity' of the text strings in childrens books.

After the next basic analysis - that of window group 256 - I shall return to window group 128 and look at 1) distribution of run length before and after permutation, 2) reference fields and 3) power in the high frequency band of the power spectra.

AUR, 10W1289FF:CHILIREN AUERAGED POWER SPECTRUM

AVR, 1OW12ROFF:CHILDFEN FOWEF: DENSITY IN FFEQUENCY FOINTS:

FFEQ: FOWEF:	FFEQ: FOWEF:	FREQ: FOWER:	FREQ: POWER:	FREQ: FOWEF:					
0.000	13.4								
0.016	20.4	0.031	11.4	0.047	15.5	0.063	16.4	0.078	18.5
0.094	12.6	0.109	15.9	0.125	17.4	0.141	19.9	0.156	11.6
0.172	11.4	0.188	19.9	0.203	16.7	0.219	17.7	0.234	20.7
0.250	9.9	0.266	15.7	0.281	16.4	0.297	14.1	0.313	20.0
0.328	14.8	0.344	10.5	0.359	13.2	0.375	14.7	0.391	15.5
0.406	20.5	0.422	21.4	0.438	15.6	0.453	23.5	0.469	16.5
0.484	21.8	0.500	38.7						

MEAN POWEF DENSITY: 17.04
DEGREES OF FREEDOM $=40$
CHISQUARE $=51.84$
ST.DEVIATION $=5.25$
MPD UFFER 0.95 CONF LIMIT $=18.58$
MFD LOWER 0.95 CONF LIMIT $=15.50$
NUMEER DF SFECTRAL POINTS AEDVE UFPER LIMIT: 10
NUMBER OF SPECTRAL POINTS EELOW LOWER LIMIT\& 11
TOTAL NUMEER OF SIGNIFICANT SPECTRAL POINTS: 21

Figure 11.25 Average Power Spectrum 'Children', $W=256$.

AUR, 10W2313FF:SCIENTISTS AUERAGED POWER SPECTRUM

AVF.1OWES1SFF:SCIENTISTS FOWEF DENSITY IN FREQUENCY FOINTS:

FFEQ: FOWEF:	FFEQ: FOWER:	FFEQ: FOWEF:	FREQ: FOWER:	FREQ: FOWEF:					
0.000	11.8								
0.016	22.9	0.031	16.6	0.047	16.6	0.063	17.9	0.078	18.2
0.094	14.7	0.109	15.5	0.125	15.1	0.141	14.4	0.156	17.9
0.172	13.0	0.188	13.9	0.203	15.5	0.219	16.1	0.234	17.1
0.250	16.0	0.266	15.5	0.281	17.2	0.297	17.6	0.313	13.4
0.328	18.1	0.344	17.3	0.359	18.1	0.375	15.7	0.391	19.1
0.406	21.2	0.422	19.1	0.438	16.1	0.453	20.0	0.469	28.1

$0.406 \quad 21.2$
$0.484 \quad 22.9$
1.42219 .1
$0.500 \quad 29.1$
MEAN FOWEF DENSITY: 17.64
DEGREES OF FREEDOM $=60$
CHISQUARE $=26.05$
ST.DEVIATION $=3.79$
MPD UPFER 0.95 CONF LIMIT $=18.74$
MPD LOWER 0.95 CONF LIMIT $=16.53$
NUMEER DF SFECTRAL FOINTS AROVE UPPER LIMIT: B
NUMEER OF SFECTRAL POINTS RELOW LOWER LIMIT:
TOTAL NUMEER OF SIGNIFICANT SPECTRAL POINTS: 22

AUR,10W1289FF:PAPERS AUERAGED PDWER SPECTRUM

AUR, 1OW $1289 F F$:FAFEFS FOWEF DENSITY IN FREQUENCY FOINTS:

FFEQ:	FOWEF:	FFEC:	FOWEF:	FREQ:	FOWER:	FREQ:	FOWER:
0.000	15.2						
0.016	16.3	0.031	14.1	0.047	13.1	0.063	14.5
0.094	12.4	0.109	10.0	0.125	11.0	0.141	16.5
0.172	25.0	0.188	15.8	0.203	14.6	0.219	9.6
0.250	19.2	0.266	22.7	0.281	24.2	0.297	13.2
0.328	14.0	0.344	22.6	0.359	14.6	0.375	23.3
0.406	15.6	0.422	16.5	0.438	25.1	0.453	22.1
0.484	28.1	0.500	20.2				
MEAN POWER DENSITY 17.21							
DEGREES OF FREEDOM $=40$							
CHISQUARE $=46.99$							
ST. DEVIATION $=5.03$							
MFD UPFER 0.95 CONF LIMIT $=18.68$							
MPD LOWEF 0.95 CONF LIMIT $=15.74$							
NUMEER OF S		RAL FOI	NTS ABC	UFFER	LIMIT8		
NUMEER OF SP		RAL FOI	NTS EEL	LOWER	LIMIT8		
TOTAL	NUMEER	SIGNIF	ICANT S	CTRAL P	OINTS:		

FREO: FOWER:

0.078	20.6
0.156	8.3
0.234	22.4
0.313	15.9
0.391	16.6
0.469	14.2

Figure 11.27 Average Fower Spectrum 'Newspapers', $W=256$.

AVF, 1OW2OSYFF:CHEOORS FOWEF DENSITY IN FREQUENCY FOINTS:
0.00026 .1
$0.016 \quad 20.7$
$\begin{array}{llll}0.250 & 13.6 & 0.266 & 12.9\end{array}$
$\begin{array}{llll}0.328 & 13.9 & 0.344 & 16.9\end{array}$
$\begin{array}{llll}0.406 & 11.5 & 0.422 & 15.8\end{array}$
0.48424 .3
0.50044 .1
FFEEQ: POWEF:

FRED: POWER:

0.063	17.3
0.141	16.3
0.219	10.9
0.297	17.1
0.375	18.9
0.453	20.3

0.078
0.156
0.234
0.313
0.391
0.469

MEAN FOWEF DENSITV: 18.13
DEGREES OF FREEDOM $=60$
CHISQUARE $=69.26$
ST. DEVIATION $=6.26$
MFD UFFFE 0.95 CONF LIMIT $=19.95$
MFD LOWER 0.95 CONF LIMIT $=16.30$
NUMEER DF SFECTRAL POINTS AEQVE UPPER LIMIT:
NUMBER OF SPECTRAL POINTS EELOW LOWER LIMIT: 1 TOTAL NUMEER OF SIGNIFICANT SFECTRAL FOINTS: 25

Figure 11.28 Average Fower Spectrum 'Childrens' Rooks', $W=256$.

AUR, $10 \mathrm{~W} 5641 \mathrm{FF}:$ ADULTS
AUERAGED POWER SPECTRUM

MPD $=17.72$	DEGR OF FREED $=176$
CHI2 $=24.22$	UPPER CONF LIM $=18.80$
SDEU $=3.66$	LOWER CONF LIM $=16.64$

AVF. 1OWEG41FF:ADULTS FOWEF DENSITY IN FFEQUENCY FOINTS:

FFED: POWEF:
$0.000 \quad 17.8$
$0.016 \quad 20.6$
$0.094 \quad 14.6$
0.17216 .1
$0.250 \quad 15.9$
$0.328 \quad 15.6$
$0.406 \quad 16.4$
$0.484 \quad 24.6$

FREQ: POWER:
FREQ: POWEF:
FREQ: FOWER:
$0.031 \quad 19.4$
$0.109 \quad 15.8$
0.18817 .0
0.26616 .2
$0.344 \quad 18.4$
0.42217 .3
$0.500 \quad 32.5$
0.04714 .3
$0.047 \quad 14.3$
$0.125 \quad 14.0$
$0.203 \quad 15.4$
0.28117 .3
$0.359 \quad 17.8$
0.43818 .2
32.5

0.063	16.9
0.141	15.6
0.219	12.7
0.297	16.4
0.375	18.6
0.453	20.6

FREQ: FOWEF:

MEAN PDWER DENSITY8 17.72
DEGREES OF FREEDOM: >120
CHISQUARE $=24.22$
ST.DEVIATION $=3.66$
MFD UPFER 0.95 CONF LIMIT $=18.77$
MFD LOWER 0.95 CONF LIMIT $=16.67$
NUMEER OF SFECTRAL FOINTS AROVE UPFER LIMIT\& 7
NUMEER OF SFECTRAL POINTS BELOW LOWER LIMITs 15 TOTAL NUMEER OF SIGNIFICANT GPECTRAL POINTS: 22

0.078	17.9
0.156	16.3
0.234	17.9
0.313	13.3
0.391	21.0
0.469	22.1

GVF: $10 W 6921 F F: A L L 256$ FOWEF DENSITY IN FREQUENCY FOINTS:

FREQ: FOWEF:	FREQ: FOWER:	FREQ: POWER:	FREQ: POWER:	FREQ: PQWER:					
0.000	17.0								
0.016	20.6	0.031	17.9	0.047	14.5	0.063	16.8	0.078	18.0
0.094	14.3	0.109	15.9	0.125	14.6	0.141	16.4	0.156	15.4
0.172	15.2	0.188	17.6	0.203	15.7	0.219	13.7	0.234	18.4
0.250	14.8	0.266	16.1	0.281	17.1	0.297	16.0	0.313	14.6
0.328	15.5	0.344	16.9	0.359	17.0	0.375	17.9	0.391	20.0
0.406	17.2	0.422	18.1	0.438	17.7	0.453	21.1	0.469	21.0
0.484	24.1	0.500	33.7						

MEAN FOWER DENSITY: 17.59
DEGREES OF FREEDOM: > 120
CHISQUARE $=24.60$
ST.DEVIATION = 3.6 B
MPD UPFER 0.95 CONF LIMIT $=18.64$
MPD LOWER 0.95 CONF LIMIT $=16.54$
NUMEER OF SFECTRAL POINTS AROVE UPPER LIMIT\& NUMEER OF SPECTRAL TOTAL NUMEER OF SIGNIFICANT SPECTRAL POINTS:

Figure 11.30 Average Fower Spectrum 'All Window-Group 256'.

Statistical evaluations in window-aroup 256
Table 11.30 gives the mean of the Mean Fower Density (MFD) for each categorv of window-oroup 256. The mean is the simple mean of the MFD's of the individual spectra within each category. Individual spectra can be found in the appendir to this chapter). As the measuring window has been increased yet again! there are now so few children left - 2 "young" and 3 "old" - that it would not be statistically sound to keep them as two separate categories. Thus, in this window-group there are only 4 cateoories: 'children'. 'scientists". 'newspapers' and "childrens books'.

CATEGOFY:	N	MFD	S.D.
children	5	17.04	0.74
scientists	9	17.64	1.34
newspapers	5	17.21	0.85
ch.books	8	18.13	1.71
all adults	22	17.72	1.39

Table 11.30 Number of samples. Mean Fower Density and Standard Deviation for each category in Window-Group 256.

We again find, that the mean power density of children as a whole is slightlv less than that of adults. However, if we check the two categories 'children' vs "adults" with the Kruskal-wallis one-wav analysis of variance, we find, that the difference is not significant. The greatest difference in MFD (table 11.30) is between 'children' (lowest at 17.04) and "childrens books' (highest at 18.13). If we evaluate the difference between these two categories with the Kruskial-Wallis test, we find that the hypothesis that that these two categories are drawn from different populations cannot be established on a better than 40% significance level. The difference between the four categories "children', 'scientists'. 'newspapers' and 'childrens books' was evaluated with the same test and showed, in fact, that the hypothesis that the 4 oroups are drawn from the SAME population can be established on a 25% significance level.

This is not very encouraging. We have apparently reached a state of 'over-kill', a state where the measuring window is so long, that stationarity has become a serious problem. As the "raw" Hvalues of this test and their "translation" into levels of significance (tables 11.31 (a) and (b)) show. it was not possible to establish any significant level of difference between any two categories in this window-group.

	children	scientists	papers	chbooks
children			0.45	0.10
scientists	-	-	0.45	0.77
papers				0.33
chboaks				
che			0.54	

Table 11.31 (a) Kruskal-Wallis test of difference between categories in MPD over 256 words

Abstract

children scientists papers chboot:s

children scientists papers chbooks

Table 11.31 (b) Significance of test in table 11.31 (b).

In spite of this size window's overall failure to 'pick up' significant features of the individual categories, there is one interesting difference between table 11.31 (a) of window-group 128 and table 11.22 (a) of this window-group: the H-value of difterence between the two categories 'scientists" and "newspapers". With the longer measuring window, the H-value has - while still translating into insignificance - in fact increased considerably, from 0.04 to 0.45 . So may be there are, after all, features in the adult text strings which are being picked up by the longer window. However, on the whole, the findings of windoworoup 256 have been somewhat in-conclusive with regard to the levels of MFD.

With regard to the levels of CHI , the evaluation of difference between the four categories turns out to be equally feature-less. Table 11.32 gives the mean of the normalised variance (CHI2) of each category of window-group 256. As before. the mean is the simple mean of the CHIT's of the individual spectra within each ategorv. (Individual spectra can be found in the appendix to this chapter).

CATEGORY:	N	CHI2	S.D.
children	5	182.00	106.70
scientists	9	156.67	41.16
newspapers	5	196.60	54.98
ch.books	8	245.37	134.28
all adults	22	198.00	93.91

Table 11.32 Number of samples, CHI2 and Standard Deviation for each category in Window-Group 256.

As was the case in window-group 64 and window-group 128, each category has been tested aodinst the other categories with the Kruskal-Wallis test. The 'raw' H-values of this test and their

> children scientists papers
chbook:
children
_ 0.04
scientists
papers
0.04
1.58
0.34
2.35
1.33
chbooks
.02

Table 11.33 (a) Kruskal-Wallis test of difference between categories in CHI2 over 256 words.
children scientists Dapers chbooks
ns
ns
ns
$n 5$
ns

Table 11.33 (b) Sionificance of test in table 11.33 (a).
"translation' into levels of sionificance (tables 11. 33 (a) and (b)) show, that in no case was there reason to suggest, that the four categories had been drawn from different populations. The probabilitv. that the four cateoories 'children'. 'scientists'. 'newsoaders' and 'childrens boaks' are drawn from different populations was in fact 50%.

This concludes the basic evaluation of the three sizes of measuring window. With regard to the application of Fourier analvsis to the measurement of structure and varians in text strinos we have found that a window of 128 words offers the best compromise between sensitivitr and lack of stationarity. In the following I shall extend our application of WINDOW-GROUF 128 and: 1) measure the difference in Mean Fower Density (MFD) and Variance (CHI2) before and after permutation of the text strinos. 2) assess the distribution of run lengthe before and after permutation. both analvses being similar to the analvses carried out in chaoter 5 when we used a much simpler method to assess structure. 3) assess if the lenoth of reference field of the different cateoories of writers is significantlv different. 4) analyse more closelv the distribution of power in the hioh-frequency end of the spectra resulting from the Fourier analvsis with the 128 word lano measurino window.

Finallv. as a last measure of comparability between the simple statistical approach of chapter 5 and the present fourier analvses. I shall obtain correlations between the values of A, E and voc on the one hand. and MFD. CHI2 and RF on the other for all 34 teit strinos of window-oroup 128.

MEAN FOWER DENSITY EEFORE AND AFTEF: FEFMUTATION IN WINDOW-GFOUF 128.

In chapter 5 it was argued that if intercept A and gradient E were in some wavs related to sequential structure: we would expect the value of these parameters to change if the analysis was applied to the same text string before and after permutation of the string, and we saw, that not only was this the case with a high degree of significance, the direction of the change - from low A and high E before permutation to high A and low E after permutation - was equally significant.

Assuming that the Mean Fower Density resulting from the Fourier analvsis is related to sequential structure as were intercept A and gradient E in the simple statistical analysis in chapter 5 . we shall follow the same line of analysis in the fourier analysis of all the text strings in window-group 128 and examine if the permutation of each string leads to a significant change in the level of MFD of the power spectra.
To this end MFD was obtained from the power spectrum of each of the strings in window-aroup 128 before and after the string was permutated. The individual data can be found in the appendi\% to this chapter. The mean values of each category are presented in table 11.34 .

CATEGOFY:
MFDD (nat) MFD (perm)
MFD delta.

children	18.23	17.83	-0.40
scientists	17.77	17.84	0.07
newspapers	17.89	16.82	-1.08
ch.books	19.55	17.74	-1.81
all samples	18.37	17.66	-0.71

Table 11.34 Mean values of MFD before and after permutation for each rategory in Window-Group 128.

We see here, as we saw in chapter 5, that the category with the minimum value - that of scientists - moves in the opposite direction of that expected. Again, 'childrens books' gives the highest difference.

CATEGORY	N	T	Z	confidence level
children	12	43.5	0.35	36%
scientists	9	20.5	0.24	40%
newspapers	5	3.0	1.21	11%
ch.books	B	5.0	1.82	4%
all samples	34	202.5	1.62	5.3%

Table 11.35 Results of Wilcokon test of change in MPD before and after permutation within each category and for all the samples together.

As before, the size and direction of change of MFD. before and after permutation within each category, were measured with the Wilcoxon test and gave the results stated in table 11.35.

Clearly, the change in sequential structure, as picked up by the Fourier analysis, is not as significant as that found with our simple statistical method in chapter 5 where the:overall change caused by permutation of the string was confirmed on a better than 0.01% level for intercept A and on a better than 0.03% level for oradient E.

Whether one wants to consider as significant the 5.3% level of confirmation stated in table 11. J. $i s$, superficially at least. a question of temperament. However. it must be remembered, that in chapter 5 we measured the change over 550 to bou words per sample and even if we had only 27 samples there, as opposed to the present 34 samples of window-oroup 128, it can easily be calculated that the change found in the analvsis in chapter 5 was based on a total of 15050 words. while. in the present case of window-aroup 12B. the measurement is hased on a total of only 4उEs words i.e. almost a quarter of the size of the sample total in chapter 5. My reason for measuring the effect of permutation over 550 to bog words in chapter 5 was that I had found that the effect was very small measured over strings of less than 300 words. However. this particular analysis is part of a number of comparative analyses for window-oroup 128 and for this reason we can not: increase the length of the strings. Eut as we fonow that the effect is only 0.3% from reaching the 5% significance level and. added to that. that the effect is accumulative. it is safe to assume that spectra derived from permutated text strings do indeed on the whole show a sionificantly lower Mean Fower Density than the spectra based on natural text strings even though the difference is low, onlv around 4% for text strings of 12 m words.

As the term Mean Fower Density indicates, this is an over all measure of the power in the power spectrum. However, the reason for emploving fourier analysis was that we wanted more than just the single measure of structure obtained by the simple graphfitting algorithm in chapter 5 : we wanted to assess the distribution of structures of different length - or to put it another way: We wanted to measure the power density at different frequencies. The next obvious step along this line of thinking would therefore be to delve in to the distribution of power in the different parts of the power spectra obtained with the fourier analysis. However, to follow the line of action taken in chapter S. I shall first i) evaluate another parameter which seems to be equally - or more - affected by the permutation of the text strings than does the MFD. namely that of the Variance CHIZ. 2) enamine the correlation between these parameters and the run lengthe in the 128 word 1 ong measuring window.

VAFI ANCE EEFOFE AND AFTER
PERMUTATION IN WINDOW-GRDUF 128.

Still following the 1 ine of analysis of chapter 5 we shall examine the effect on the VARIANCE of the permutation of the text strings. We have several times in the past seen that the permuta-
tion of a text string causes the amount of structure to decrease. We were therefore able to predict the direction of the change in MEAN FOWER DENSITY following the permutation of the text strings. This meant, that the necessary test for significance was that of the less stringent one-tailed test. However, we can not possibly have any intuitive idea of which way the VARIANCE will move when the sequential structure is broken down. This means, our demands for significance will be more difficult to meet since, in this case. We must compete against the greater demands of the twotailed test for significance. Otherwise the method was as above: The value of CHI2 was obtained from the power spectrum of each of the strings in window-group 128 before and after the string was permutated and the difference and direction was tested with the Wilcoxon test. The individual data can be found in the appendi\% to this chapter. The mean values of each category are given in table 11.36 .

CATEGOFY: CHI2 (nat) CHI2 (perm) CHI2 delta.

children	260.66	319.88	59.22
scientists	369.74	335.60	-34.14
newspapers	311.04	282.67	-28.36
ch.books	463.92	305.63	-158.29
all samples	344.77	315.21	-29.55

Table 11.36 Mean values of CHI2 before and after permutation for each category in Window-Group 128.

Table 11.36 shows that as the strings are permutated - as the sequential structure is broken - the variance generally decreases. However, here too, the direction of move for the category with the minimum value is opposite to the general trend: Whereas the variance of 'scientists', 'newspapers' and 'childrens books' decreases as the sequential structure is broken, the variance of 'children' increases.

The size and direction of change of CHI2, before and after permutation within each category, were measured with the Wilcovon test and gave the results stated in table 11.37 .

CATEGORY	N	T	Z	confidence level
Children	12	16	1.80	7.1%
scientists	9	15	0.89	3.7%
newspapers	5	5	0.67	5.0%
Ch.books	8	5	1.82	6.9%
all samples	34	257	0.69	4.9%

Table 11.37 Results of Wilcoxon test of change in CHI2 before and after permutation within each category and for all the samples together.

The overall impression of Table 11.37 is that of a much higher qeneral level of significance than that of the effect on the Mean Fower Density in table 11.35 . Not only have two of the categories reached the 5% significance level: but even the two categories. which have not, are quite close: and the overall result - all samples" - shows clearly that the power spectra derived fram natural text strings have a higher variance than text strings which have been permutated.

One can only speculate at what causes the variance of the power spectrum to fall when the sequential structure is brol:en. My thesis - as I have enpressed it on several occasions - is that the power spectrum of a text string is an - albeit crude - graphic representation of (some of) the generator and control mechanisms in the linguistic device which generated the text string. I can envisage two principally different functions of the linguistic device which would be clearly visible in a power spectrum: That of EMISSION and that of ABSOFFTION. Eoth features are clearlv visible on most of the spectra. the emission being represented by the peaks and the absorbtion "lines" being represented by the fall in the power to zera - the troughs reaching the base line in the spectra. In this connection it must be pointed out. that the $D C$ level was not subtracted from the transformed function before the spectrum was plotted. Had it beeng the fall to zero of the power in parts of the spectrum would hardly have been surprising!

Lodijng at the power spectra as emission spectra containing absorbtion lines. the fall in variance caused by permutation becomes obvious rather than mysterious. The question is: What causes the features of emission and absorbtion in the power spectra. We must here try to envisage the linguistic device as representing at least two basic mechanisms: 1) One - or several generator function (s). This would account for the emission spectra. 2) One (or several) control function(s) or 'filter" function(s). This would account for the absorbtion lines. The idea. that we generate language and that the generated product filters through one or several controling barriers (lesical controls?) seems intuitively right and is neither astonishing nor, may be: important: but is emphasised here because these mechanisms could account for the features found in our analvsis.

DISTFIEUTION OF RUNS EEFORE AND AFTEF FERMUTATION.

Again following the 1 ine of action in chapter 5 , the distribution of runs in the 128 word window was measured before and after permutation of the 34 text strings.

In chapter 5 we found, much to our surprise, that the permutation of a text string caused an increase in run length rather than the expected decrease. Dne feature which was important in the analysis in chapter 5 was the, usually, long run of 1^{\prime} s in the beginning of each string, a feature caused, of course, by the number of 'new' words which a text string is bound to begin with.

In the present fourier analysis, where we compare each word in the measuring window with a number of words in the reference field, the information array does not normally begin with a
succession of 1^{\prime} 's. As you will recall, the primary function of the reference field was to give a balance between $1^{\prime \prime} s$ and 0 's in the information array. There is thus no point in assessing - as we did in chapter 5 - the length of the first run of $1^{\prime} \mathrm{s}$.

For all 34 tent strings in window-group 128, the distribution of run lengths before and after permutation was obtained in much the same way as we did it in chapter 5, except of, course, for the fact. that this time the strings were analysed with a reference field. All the oraphs and data can be found in the appendis to this chapter. The mean number of runs for each category is given in table 11.38.

	mean number of runs before perm. after perm.	delta	
children			
scientists	32.83	32.17	0.66
newspapers	3.67	32.78	0.89
ch.books	34.80	32.00	2.80
	32.63	31.50	1.13

Table 11.38 Mean number of runs before and after permutation for each cateqory in Window-Group 128.

Mean NLIMEEF of runs easily translates into mean LENGTH of runs. Knowing that the measuring window is 128 words wide. we simplv divide the length of window with the relevant mean number of runs. Table 11.39 gives the mean length of runs for the different categories.
mean length of runs
CATEGOFY: before perm. after perm. delta

children	3.90	3.98	0.08
scientists	3.80	3.90	0.10
newspapers	3.68	4.00	0.32
ch.books	3.92	4.06	0.14

Table 11. 39 Mean length of runs before and after permutation for each category in Window-Group 128.

Table 11.39 shows that the analvsis with a reference field yields the same result: the permutation of a text string increases the run length. Here, as in chapter 5, we find that 'newspapers' Mas the shortest run length of all categories followed by scientists" with "children" and "childrens books" as the text strings with the longest run lengths. That "newpapers" have the shortest run length of all text strings - i.e. that runs of 'new' words are more freqently interrupted by 'old" words - probably contri-
butes to this kind of text being more pallatable. We saw earlier that newspapers, contrary to common belief, have a higher vocabulary than any of the other text samples. That these kind of text strings are still able to sport the shortest run length supports my frequent suggestions, in the past, that these strings far from being rudimentary are in fact verv clever: very reflected; constructions.

The change in size and direction of run lenoths was measured with the Wilcoxon test and gave that for all the text strings as a whale, the change is confirmed on a 4.7% significance level. This is - although significant - again less significant than the changes in run length found in chapter 5 using the simple graph fitting algorithm, but again we must remember, that the measurements in window-group 128 are based on only a quarter of the sample size used in chapter 5.

REFERENCE FIELDS.

The final analvsis, before we turn to the distribution of power in the power spectra, is that of the length of reference field within each category. All along my research I was aware of the relatively long computing time needed to analyse adult strings as compared to childrens strings of similar length. The reason is that childrens strings generallv have shorter reference fields than do adult strings. To get a more exact measure of this difference, the mean length of reference field was calculated for each category and the difference measured with the kruskal-Wallis test. The mean length of reference field for each categorv are qiven in table 11.40 .

	Mean length of reference field	
Category		$5 . d$.
		85.50
Children	154.78	22.24
Scientists	220.40	60.78
Newspapers	142.25	101.07
Ch.books		56.98

Table 11.40 Mean length of reference field for
each category in window-group 128.

Table 11.40 gives the values one would intuitively have expected with newspapers well above all other strings followed by scientists, childrens books and, with the shortest reference field. children. This is somewhat better - in developmental terms - than the results shown in table 5.19 (a) regarding vocabulary in chapter 5 where childrens books fared better than scientists.

Table 11.41 (a) gives the values when each category was tested against each other category with the Kruskal-Wallis test for difference with regard to length of reference field.
children
children scientists papers chbook:s
scientists
8.50
papers
chbooks
7.83
6.50
1.60
0.06
.6

Table 11.41 (a)
Krust:al-Wallis test for difference between categories in window-group 128.

This translates into the significance levels of table 11.41 (b).
children
scientists
papers
chbooks
children
1%
1%
2\%
scientists
ns
ns
papers
ns
chboot:s
Table 11.41 (b) Significance of test in table 11.41 (a).

Comparing table 11.41 (t) with table 5.19 (c) in chapter 5 it would appear. that length of reference fieldis an altogether better measure than vocabulary in terms of developmental factors since, with regard to length of reference field. there is a clear cut difference between children and all adult categories. while there is no significant difference between any of the adult categories. It is interesting to see too. that where one would expect a slightly smaller difference - between children and childrens books - the significance level is indeed 2% rather than the 1% for children/scientists and children/papers. No such clear distinction could be found with regard to vocabulary. The overall level of significance in table 11.41 (b) is interesting too. since still with only about a quarter of the sample size of chapter 5, the difference is confirmed on about the same significance level as in chapter 5. In fact. when children as a whole were measured against adults as a whole the difference was confirmed on a 0.1% significance level with regard to length of reference field. In spite of the much smaller samples used heres this is exactly the same level of significance found in chapter 5 with regard to vocabulary. This must mean. that the length of reference field is a MUCH better measure of developmental features than is vocabulary.

DISTRIEUTION OF PQWER IN THE POWER SFECTRA.

The motivation for adapting Fourier analysis to our search for structures in text strings was partly that it is a very sensitive method and partly that it gives much more information about the structures found in the data base.

The main benefit of power spectrum analysis is that we are able to measure what size of structures are present in the data oase.

Ev the nature of a spectrum and its division into frequencies we are able to see directly the frequencies of the main periodicities present in the data base. If one particular feature is repeated every 4 words in the text string we would find, as explained earlier, a peat: in the power spectrum at $F=0.25$. Likewise. periadicities of $2.3: 5$ or 10 wald give peat:s at $F=0.5, F=0.3 J_{0} F=0.2$ and $F=0.1$ respectively. Thus the frequencies in the power spectrum refer to periodicities - or bindings - of different length. and we have just seen that the integers 2. 3. 4. 5 etc correspond to the frequencies 0.5. 0.33. 0. 25 and 0. 1 respectivelv.

One feature. which we must adjust ourselves tog is the fact, that the resolution in the spectrum is greater in the high-frequency end of the spectrum (the 0.5 end to the right) than in the lowfrequency end to the left. I can best explain this by referring to the axis on ane of the spectra in this chapter. A periodicity which stretches over, say: 2 words in the text string. would give a peal: at $F=0$. 5 in the power spectrum as we have just sefn. The neit higher integer (3 words) periodicity would come out as a peal: at $F=0,3$. . The difference is of course 0.17. which is almost two divisions in the higher right part of the spectrum. Eut if we lool: at frequencies in the lower left part of the spectrum and measure the difference in frequency between a periodicity of say 10 words which would give a peat: at $F=0.1$ and 11 words which would give a peat: at $F=0.09$ we see that in this end of the spectrum the difference between 2 adjacent integers (10 and 11) translates into a difference in frequency of only o. ol which is only one tenth of a division.

Hecause of the much higher resolution in the high-frequency end of the spertrum. we will be able to measure a given periodicity with greater accuracy. Say we have a peak at F=0.25. We could with some conviction claim that this peat: refers to a periodicity of 4 words: not 3 words - because that would have given a peak: at $F=0$ I. 3 ? not 5 words - because that would have given a peak at $F=0.20$, both positions on the axis well separated from the position of $F=0.25$. Eut if the peaki was in the low-frequency end, say at $F=0.1$. it would be impossible to find out if this peak referred to a periodicity of 9 words. 10 words or 11 words.

Of the possibilites. which the present use of Fourier analvgis has opened up: I find that of lool:ing into the 1 inguistic device by far the most fascinating. As we have seen in an earlier chapter, Fourier analysis applies to black box" problematic. Until now, we have managed to access only the sequential structure of a text string. and have yet to move from the caracteristics of the output of the 1 inguistic device into the device itself.

A frequency which is the reciprocal of an integer i.e. refers to an integer periodicity like $F=0.5$ (integer: 2), $F=0.33$ (integer: 3). $F=0.25$ (integer: 4) etc. I shall in the following call an 'Integer Fefer Frequency" or IRF for short. Eecause of the discontinuous integer nature of our text strings (there are only whole words in our text strings, no fractions) it is important that we distinguish between the powers in the IRF's and the power found in between. The reason for this is that the power found IN the $I^{\prime} F^{\prime}$ s refers to the sequential structure i.e. the periodicity arising from the $1^{\text {, }}$ and $O^{\prime} s^{\prime}$ in the information array being linked together in combinations of two's. three's. four's etc. to mention the simplest combinations. whereas the power in EETWEEN the

IRF's. power which does not refer to periodicities based on simple combinations of integers, represents sub-sequential information. information which the Fourier analvsis has been able to e\%tract. because of its ability to dissolve a sum-frequency into basic frequencies.

According to the above, the greatest distance between two IfF's, on the spectrum axis: is in the right, high frequency part of the spectrum, between $F=0.33$ and $F=0.50$ which of course represents that piece of the axis which refer to combinations of between 2 and 3 words. However. we know that there are no bindings in the tent strings which are longer than two units (words), but shorter than 3 units (words) because we only analyse whole units (words). Consequently, we know that a power peak: in this part of the spectrum is either an arte-fact or refers to a basic periodicity picked out by the Fourier analysis from the sum of periodicities constituted by the multitude of combinations of $1^{\prime \prime} s$ and $0^{\prime} s$ in the information array.

In this part of the spectrum, between $F=0.33$ and $F=0.50$, most of the spectra of all three window-groups have two or three power peats. not counting eventual pealss at the IRF's 0.33 and 0.50 themselves. (It is easier to find the different maxima and minima on the power read-outs of the spectra in the appendi\% to this chapter than to try to judge the positions of the peaks in the spectra themselves).

As it can be seen on the power read-outs: the intermediate steps between $F=0.33$ and $F=0.50$ in a 32 point spectrum are the ten frequencies:
$.344 \quad .359 \quad .375 \quad .391 \quad .406 \quad .422 \quad .438 \quad .453 \quad .469 .484$

To the left we would have $F=0.33$ and to the right $F=0.50$. Over these 10 frequencies 1 have determined - where possible - the position of maxima. As it turned out, most spectra had three maxima in this part of the high-frequency band.

These three power peaks: which I have for convenience called alpha, beta and gamma, did roughly look like they were positioned with alpha to the right around $F=0.453$, beta in the middle around $F=0.422$ and gamma to the left at around $F=0.375$. A closer analysis proved however, that the position was different for the different window-groups, and within the same window-group, the position depended as well on whether it was a child spectrum or an adult spectrum.

For the ten frequency steps in the band between IRF (3) and IRF (2) the number and size of ALL significant maxima found at each step was measured and the hypothesis that they were - as a group significantly higher than the upper 95% confidence limit was tested with the Wilcoxon test.

This indicated that - within each window-group - peaks do indeed occur at three significant positions in the band between IFiF (3) and IRF(2). Table 11.42 gives the significance levels of each position of the three window-groups 64, 128 and 256 for adults and for children. Some of the peak positions are not associated directly with one of the ten frequency steps above -e.g. the peak beta (see table 11.42) confirmed on a 0.1% significance level in adult window-group 128 positioned EETWEEN Fmo. 406 and
$F=0.422$. This is due to the analvsis being carried out on half steps by interpolation rather than just on the ten frequency steps as stipulated above.

ADULTS

freq:	. 359	. 375	. 391	. 406	. 422	. 438	. 453	. 469	. 484	. 500
64			. 2%		1\%			. 2%		
128		. 01%			. 1%		. 02\%			
256			. 06%		. 15%			.03\%		

CHILDREN

freq:	.359	.375	.391	.406	.422	.438	.453	.469	.484
64			4%			$.4 \%$		$.4 \%$	
128		$.3 \%$				3%	00		
256				4%		3%			

Table 11.43 Significance level for each peak in the 0.33 to 0.55 frequency band for windows of 64,128 and 256 wards. Childrens' text strings.

We have seen before, that a window of 128 words was the best compromise between sensitivity and lack of stationarity. It is thus not surprising. that in table 11.42 the significance level is highest for window-group 12B. Recause of this, I would expect the position of the three peaks alphay beta and gamma stated under window 128 in table 11.42 to reflect the real position for adults' text strings rather than those stated under windows 64 and 256.

This feature is reflected again in table 11.43 which too shows a higher level of significance in window-group 128 than in the other two window-groups.' Thus, the positions of peaks alpha, beta and gamma for childrens text strings are probably those stated in window-group 128 rather than in window-groups 64 or 256.

Another feature of table 11.43, the COMFAFATIVELY low Eignificance levels in childrens window-group 256 as compared to the significance levels for adult window-group 256 (table 11.42), would suggest that childrens text strings are less stationary than those of adults.

As mentioned earlier, the peaks alpha, beta and gamma may indeed represent sub-generator functions of our linguistic device. On the other hand, qoing back to the initial explanation of fourier analysis in chapter 7, you may recall, that when we fourier transformed 'square' functions - as opposed to smooth functions 'spurious' peakis appeared in the high-frequency band of the power spectrum.

To assess if these peal:s alpha, beta and gamma, and their positions - however significant they are - are the result of "squareness" or whether they are indeed ripples created by sub-generator functions of our lingusitic device, the analysis above was carried out again after the strings had been permutated and the differences were measured with the Wilcoxon test. Tables 11.44 and 11.45 give the level of significance of the difference between the peal:s of natural text and the peaks of permutated text. The analyses were carried out on text strings of window-group 128 onlv. First for adults, next for children.

neat:	frequency	T	Z	significance level
"alpha"	0.453	127	0.02	49%
"beta"	0.422	87	0.90	16%
"gamma"	0.375	77	1.61	5.4%

Table 11.44 Significance of change to peaks in 0.33 to 0.50 band when text strings are permutated. Adult, $W=128$

It thus appears. that the last two analyses have dismissed, right away: peak:s alpha and beta of adult text strings and peaks beta and gamma of childrens text strings. This is not to say, that our original findings were not significant, only that two of the three peaks from both adults" and childrens' spectra are, most probably, high-frequency peaks resulting from "squareness" in the initial information array.

Left are the two peaks around $F=0.375$ (adults) and around $F=0.484$ (children). It is aqain a question of temperament if one wants to accept as sionificant the 5.4% sionificance level of the adult peat: at $F=0.375$. I am inclined to do so, partlv because one of the peats in the childrens spectra proved sionificant. but mostiv because I carried the positioning of the individual masima out verv critically during the test: If there was the slightest doubt about whether a maximum was indeed a maximum or just fower which had dissipated from an adjacent frequency, the frequency point in question would not the included. This "maximum demand" approach did undrubtedlv leave out same maxima which a less critical approach would have included. Given this knowledoe, I think it is fair to tip the balance in favour of accepting the 5.4% as sionificant.

Consequentlv. we are no longer talking about a number of peats in the 0.33 to 0. 50 band. only about two - or mav be onlv one peak: It mav be that the linouistic sub-generator function which is represented bu the peak at $F=0.484$ in childrens spectra is of the same nature $a s$ the peak at $F=0.375$ in adults" spectra and that the move from a hioher frequency in childrens spectra towards a lower frequence in adults" spectra is a developmental feature. However. this is sheer speculation. The two peats may iust as well represent two distinctiv different sub-generator functions.

The same line of action could have been taken with regard to the minima of alj the spectra. In this wav we would possibly have found sub-contral functions or sub-filter functions instead of sub-cenerator functions.

THE CGFFELATION EETWEEN A. E. AND VOC OF THE STATISTICAL AMALYSIS AND MFD. CHIZ. AND FF OF THE FOUFIER ANALYSIS.

Finallv, I shall compare the results from the two different approaches to text structure analvsis presented in this thesis. that of the relativelv simnle statistical methods of Chapter 5 and that of the fourier analvsis presented in the latter half of the thesis. The most important values from the statistical approanh were: the intercent A, the oradient. E and the vocabularv voc. The most important parameters resulting from the fourier analvsis were: the mean power densitv MFD. the variance CHI2 and the reference field FF. To establish the correlation between the parameters in question. A. B and VOC were found for each of the text strinos used in window oroup 128 and compared with MFD. CHI2 and RF for the same strings within each of the groups: children ($N=12$). scientists ($N=9$). newspapers ($N=5$). children's books $(N=B)$. and for all strings $(N=34)$.

First. each of the 12 samples of children's stories, used in the analvses in window group 12B, were analysed by the graph fitting prooram vacout (see Chapters 5 and 6) to establish intercept A : gradient E and vocabulary VOC. In each case A, E and VOC were measured over the same 128 words used in the fourier analvsis of window oroup 128 to find the mean power density MPD, the variance CHI2 and the reference field RF. Secondlv, the correlation between each of the groups A. B and VOC were measured against each of the groups MFD. CHI2 and RF. The result can be found in table 11.46 (a) and the significance level for a sample of 12 can be found in table 11.46 (b).

CHILDFEN $(N=12)$	MFD	CHI2	FF
A	-0.6269	0.0051	-0.4494
B	0.4867	0.1055	0.7194
VOC	0.0079	0.2774	0.8949

Table 11.4b(a) Coefficients of Correlation between A. B. VOC and MPD, CHI2, FF for children's text strings.

CHILDEEN	($\mathrm{N}=12$)	MFD	CHI 2	FFF
A		2.5\%	$n \mathrm{~s}$	ns
E		nc	$n \mathrm{~s}$	0.5\%
voc		ns	ns	0.05\%

Table $11.46(b)$ Sianificance levels (one-tailed) of Coefficients of Correlation in table 11.46 (a).
$A s$ we recall from Chapters 5 and 6 . the intercept A was inverselv. and the oradient E directly. related to the structure of a text string. We would therefore expect a negative coefficient of correlation between the mean power densitv MFD - itself a measure of etructure - and A. while we would exnect the coefficient between the correlation of MFD and E to be positive. Consequentlv, the one-tailed significance levels apoly. Likewise. we t:now from earlier measurements that the reference field fif is directlv related to the vocabularv voc, so also here the one tailed level apply.

The following tables aive the results of the same measurements analied to the text samples written bu scientists (Table 11.47). newsnaders (11.48). children's books (11.49) and the correlation between A. E. VOC and MFD. CHI2. FF for all the samples invalved in window aroup 128 ($N=\Im \mathbf{S}$).

SCIENTISTS $(N=9)$	MFD	CHI2	RF
A	0.1271	-0.0983	0.0819
B	-0.1730	-0.1066	0.1483
VOC	-0.1491	-0.4061	0.6796

Table 11.47(a) Coefficients of Correlation between A. E. VOC and MFD, CHIZ. RF for scientists' tert strinọs.

SCIENTISTS $(N=9)$	MFD	CHI2	RF
A	$n s$	$n s$	$n s$
E	$n S$	$n s$	$n E$
VOC	$n s$	$n S$	2.5%

Table 11.47 (b) Significance levels of Coefficients of Correlation in table 11.47 (a).

| FAFERS | $(N=5)$ | MFD | CHI2 |
| :--- | ---: | ---: | ---: |$]$ RF

Table $11.48(a)$ Coefficients of Correlation between A. B, VOC and MPD, CHI2, RF for newspapers.

FAFERS	$(N=5)$	MFD	CHI 2
		RF	
A		$n s$	$n s$
B		$n s$	$n s$
VOC		$n s$	$n s$
		$n s$	
			$n .5 \%$

Table $11.48(b) \quad$ Sionificance levels of Coefficients of Correlation in table 11.48 (a).

CHILDRENS' EOOKS $(N=9)$	MFD	CHI2	RF
A	-0.4430	-0.1076	0.1315
B	0.3224	0.1738	0.1779
VOC		-0.1671	-0.1464

Table 11.49 (a) Coefficients of Correlation between A, B, VOC and MPD, CHI2, RF for children's books.

CHILDRENS ${ }^{\text {P }}$	BOOKS	$(N=9)$	MF'D	CHI 2	RF
A			ns	ns	ns
B			ns	ns	ns
voc			ns	ns	5\%

A	-0.2406	-0.0771	0.3132
E	0.1369	0.2234	0.5018
VOC	-0.1071	0.1834	0.5250

Table $11.50(a)$ Coefficients of Correlation between A. E. VOC and MFD, CHI2, FF for all samples of $w=128$.

ALL SAMF'LES $(N=34)$	MFD	CHI2	RF
A	6%	$n s$	$n 5$
B	$n s$	$n s$	0.5%
VOC	$n s$	$n s$	0.5%

Table $11.50(b) \quad$| Sionificance levels of Coefficients of Cor- |
| :--- |
| relation in table 11.50 (a). |

DISCUESION OF ANALYSES IN THIS CHAFTER.
After the text strinos were analvsed with three different size windows: 64 words. 12 words and 256 words respectivelv. it was found that a window of 128 words gave the hiohest sionificance with reaard to the ability of the analveis to distinouish between different catoories of writers. Fresumablv, the lack of periodicitv in strinos lonoer than around 200 words. would account for the failure of window-oroup 256 to pick up sionificant features found bv window-aroup 128. Likewise. window-oroup 64 failed to pict: up sionificant features due to lack of sensitivitv.

It was found too. that whatever the window size, both Mean Fower Density and Variance were higher for the more skilled - or older - writers. Adults showed persistentlv higher MFD and CHIZ than children. whatever the window size. This difference however, was not significant with regard to MFD, but was highly significant with regard to CHIZ.

The difference between the 'sensitivity' of MFD and CHI2 to characteristics of the text strings was demonstrated again when MFD and CHI2 were measured before and after permutation of the text strings. Even though both MPD and CHI2 decreased with permutation of the strings, the difference with regard to CHI2 was more significant than that of MPD.

The size of reference field established for each string in the window-group 128 turned out to be a highly significant measure of developmental features of the text strings. "Children" showed significant differences to all adult categories. This is a far clearer picture than that vielded by the measure of vocabulary in chapter 5.

The hypothesis, that there are sionificant peaks positioned at freouencies common to all the spectra of all the window-aroups was evaluated. Even though the exact positions differed slightly between window-groups and between adult spectra and child spectra, three positions of peaks common to all the text strings were estathished with a high degree of significance in the highfrequencr band between $F=0.33$ and $F=0.50$.

Further analvsis of the impact of permutation on these peaks made it probable however. that only a peak at $F=0.484$ in childrens text strinos and a peak at $F=0.375$ in adults' text strinas did indeed constitute a feature which. with some justification. can be seen as a oraphical representation of a sub-generator function of the human linouistic device.

Finallv. for window-oroup 128. the values of intercept A. oradient E and vocabularv VOC were established with the program VOCOLT and compared to the mean power density MFD. the variance CHI 2 and the reference field RF found with the Fourier analvis prooram INFOR for the same text samples. The correlations and levels of sionificance can be found in tables 11.46 to 11.50 .

Where these measurements of correlation are sionificant they reaffirm our expectations: Vocabularv and reference field are hiohlv correlated because a lona reference field is the result of a high vocabularv. The high negative correlation which we would have expected between A and MFD is onlv found in children's teyt strings (Table 11.46), and - less significant - in the analvsis of all the samples together (Table 11.50). We found in Chapter 5 that A was inverselv, and E directlv related to structure. We would thus expect to find a high positive correlation between E and MFD. This is obviouslv not the case. Onlv in children's text strinos (Table 11.46) is there anv indication of such a relationshif and even there it is not significant. In Table 11.50 (All samoles) there is no indication that E is inversely related to MFD - or related at all for that matter. However, in the same table it appears that there is a very significant relationship between B and the reference field of a text string. It thus appears, as it has appeared before (Fage 140). that E is more sensitive to vocabularv than to structure. On the whole, the comparabilitv between the two methods, the relativelv simple statistical analvsis and the Fourier analvsis: as expressed in the low levels of sionificance in tables 11.46 to 11.50 , is disappointing. However. a number of factors make these results quite understandable.

First of all. we have seen in the past that the measurements of structure. by the simple statistical methods emploved in Chapter 5. needed more than zoo words to become significant. If the values of A and E are measured over 128 words: as in this case, I would not expect the results to carry much weight, except ferhaps for children's text strings. where a string of 128 words is much more tvpical of general 1 anguage behaviour of the individual and much closer to exhaustion of vocabulary. Possibly for this reason we find the highest level of correlation between A and MFD in children's text strings (Table 11.46). It is, on the whole. clear that the more untvpical a text string of 128 words is from the real life language behaviour. the less correlation we find between the values of MFD and A for that group, culminationg with the group of newspapers which shows a pogitive correlation between A and MFD. We recall, that newspapers had, by far, the
hiohest vocabularv and sequential structure.
Apart from the low sensitivitv of the statistical analvsis to strings under 300 words. to further understand the lack of correlation in tables 11.46 to 11.50 it is important to recall (Fages 144 to 150$)$ that the concept of structure, as seen bv the simple statistical analvses. was not as straight forward as one could have hoped. In some. strings the sequential structure was kept lower than that of a random text string and the structure increased when we permutated the string. In other strings the structure was higher than that of a random string and the structure decreased with permutation.

In view of the sometimes more sionificant results of the simple statistical method used in Chapter 5 . does this mean that the Fourier analvsis of text strinos is merelv redundant'

This could well have been the case if it was not for the fact that in two important aspects the foumier analvsis provides us with more information than does the simole statistical method: 1) With the fourier analvsis we not onlv get the level of structure. but a oicture of the distribution of this structure: 2) With the Fourier analvsis we oet. a measure of the variance CHIZ. which in mu opiniori is just as valuable as the measure of structure because I see it.as a measure of the filter functions and generator functions of our linouistic device. As a matter of fact. the variance CHIZ is the only parameter of the four A. E. MFD and CHI2 to show a clear and sionificant correlation with linouistic development (paoes 297 to 299).

So the answer to the question raised above is clearlv that the Fourier analveis of text strinos is far from superfluous. It obviouslv needs further development. but already at the present level it has provided us with several thought provoking results.

On the whole the analvses in this chapter have - I hope - substantiated mv claim that the use of Fourier analysis - even in its present crude form - on the output from our linouistic device, is not onlv feasable, but indeed opens up new venues to our uriderstanding of internal language processing. One such venue is presented in the next - and last - chapter. where I shall oive an examale of how fourier analysis may be used to expose orammatical oenerator and filter functions in our linouistic device.

CHAPTER 12.
gRammatical coding, A Pilat study.

In this chapter I shall demonstrate how the theory and methods developed in the second half of this thesis - from chapter 7 onwards - can be applied to grammatical categories. This opens up a whole new field of possibilities, of which only a few examples shall be given in this chapter. The scope is considerable and the full evaluation of this application of Fourier analysis would in itself provide enough material for an additional thesis.

We have, up to this point of time, used the fourier analysis only in the shape of the time series transform called INFOR2STIMESEFIES. This transform was adequate for the simple evaluation of Mean Fower Density - or mean structure - which we have performed so far. However, it did suffer from the serious limitation of only being able to analyse EINAFY series, e.g. series of zeroes and ones, a limitation which made it a poor approximation of our linguistic device.

If we instead use a Fourier transform which can handle more than two energy levels we would presumably get a more realistic simulation of the processes which take place in our linguistic device. The version of the Fast Fourier Transform, the INFORZSFFT presented in chapter 9, is such a Fourier transform. This version can handle ANALOG signals, and it is this transform which we shall be using for the analysis of grammatical categories presented in this chapter.

For this particular piece of research, I wanted to increase the resolution of the spectrum to 64 frequency points. This would mean a serious loss of significance, so I have increased the windows to 400 words. This leaves us with a significance of $400 / 64=$ around 6 degrees of freedom. This kind of analysis was carried out with the special version of INFOR2SFFT called INFORNORMALISED. Flease refer to chapter 9 for an account of the slight difference bewteen these two programs.

As I shall hope to demonstrate features which are common to very different litterary styles: I picked the files FAD2 and RUSSi for this analysis because of their great stylistic difference, so as to get as 'unfavourable' a data base as possible.

ALIGNMENT.

To preserve the continuity in the research presented in this thesis we would want - before we turn to the use of the FFT and analog coding - to check, that the spectra obtained by this method are basically the same as the epectra arrived at by the time series transform and the binary coding which we have been using up till now.

So to assess the difference between the "old" spectra obtained in the usual binary way with the INFOR25TIMESERIES, and the 'new' spectra arrived at with the fast Fourier Transform and analag
coding, we shall superimpose a "new" spectrum on an "old" spectrum to assess the difference.

Figure 12.1 is the result of such an alignment. First FAD2 was anaysed in the "usual" binary way and the data transformed with the time series transform INFOR25TIMESERIES. Nent, the same tent string was analysed and again coded binary, but this time the data were transformed with the Fast Fourier Transform INFORNORMALISED. Thirdly, the two spectra were plotted in the same coordinate system.

The only major difference is in $f=0.5$. This difference arises, as have explained in chapter 7, from the difference in the shape of the pulse between the binary and the analog signal:

When we analyse the text string with INFOR25TIMESERIES the information array consists of only zeroes and ones and the binary signal thus obtained is transformed as a series of infinitely narrow peaks. When on the other hand we analyse the text string with INFORNOFMALISED (The Fast Fourier Transform) the information array - even if we have coded the I-modes binary - is being transformed as a train of square pulses. The 'corners' of these square pulses transform into power in the high frequency end of the power spectrum.

Figure 12.1 Alignment of spectra from time series and FFT.

If We disregard the power values obtained in $f=0.5$ we can thus apparently continue our research with the FFT as if 'nothing has changed', and it is with this Fourier transform we shall do the remaining analysis in this chapter because it gives us the possibility of analog coding.

For reasons of clarity I have smoothed the spectra, obtained by INFORNORMALISED, with a 10% Hamming Window as explained in chapter 9. The impact of such a smoothing can be seen in figure 12.2 where the smoothed FFT spectrum has been superimposed on the 'raw' FFT spectrum. The spectrum in figure 12.2 is the same as the FFT in figure 12.1. The two spectra in figure 12.2 are marked NO WEIGHTING (RAW) and NO WEIGHTING (SMOOTHED) respectively. The "NO WEIGHTING" means that the coding of the I-modes was 1 as in the usual binary coding.

ANALYSIS OF TEXT STFINGS WITH GRAMMATICAL CODING.
In chapter 7, during the examination of Fourier analysis. and again in chapter 9, during the examination of INFOR25FFT, I enplained how the need for a program which could fourier-transform ANALOG signals arose from the realisation, that the EINAFY coding of I-modes and 0 -modes is too crude a simulation of the processes which take place in our linguistic device. So to make our coding more graded, we want to rank some words higher than others. There are two problems here. The first one is: what values shall we attribute to the different ranks?. The second is: How do we do the ranting?

Fig. 12.2 Spectrum before and after smoothing.

The first problem is the simplest to solve. I have decided, that considering the human limitation in judging a sensory continuum (see page 193) I shall stick to the findings presented there, that we are able to judge on average 7 plus minus 2 different sensory levels. If we take 8 as being near enough to the average, then we have got a nice round value in Information Theory terms since 8 is equal to 3 bit. In Information Theory terms there are then 4 integer levels of information transfer: $0,1,2$ and 3. Not that I believe for one moments a) that it is possible to imagine that the same word would have the same information value in different contexts, and b) that the information transfer would only take integer values. But to make it as simple as possible and still plausible - we shall pretend just that.

The second problem is more difficult. To rank the words in a string realistically is not possible, because, at this stage, we simply do not know the function and coding of our linguistic device. However, we would expect some grammatical categories to have a greater information content than others. But do verbs transfer a greater amount of information than do nouns? After all, the verbs is the category which connect the other categories in an action. Or are the nouns, pronouns and proper nouns more information rich since they are the agents, and we can not have the action without the agents? It is simply impossible to assess with any measure of confidence. So, I have refrained from sug-
gesting such a ranking procedure, which would be nothing more than an adventure into the realms of speculation.

Instead I shall be analysing the problem from a slightly different angle. This shall not be an attempt to simulate real life information transfer. Rather is it an attempt to look into the 'black box" of our linguistic device. We have already seen two examples of Fourier analysis being used in the analysis of such a 'black box' (chapter 7) and came to realise that the power spectra resulting from the fourier transformation revealed periodicities, and that in the case of the biological "black box" "the heart beat signal), these periodicities could be interpreted as biological sub-control systems.

My thesis is now, that if we pick a grammatical category feg. verbs) and code any word in the text string belonging to this grammatical category with a higher transfer value in I-modes than the rest of the words, we might get one or more significant feal:/s in the power spectrum and may or may not interpret it as a graphic representation of the specific sub-control system for this particular grammatical category.

Say we code all verbs in a text string in a way which transfers the value ' 8 ' (3 bit) to the information array every time a VERE is being read in I-mode. Say furthermore, that all other I-modes than verbs transfer only the value ' 1 ' as usual. and the 0 -modes (verbs or not) transfer the value ' 0 ' as usual. This marks each appearance of a verb in I-mode with a pulse of 8 (3 bit) in the information array and should according to my theory result in a signal (an information array) with more information about the specific verb control mechanism in our linguistic device than about any other controls. We could then try to code words of another orammatical category and see if we got peaks in a different part of the spectrum. Finally we could repeat the experiment on different text strings and see if there are inter-human similarities. The initial results from this research are presented on the following pages.

Three grammatical categories common to sentence analysisi nouns: subjects and verbs were coded in turn. and each time the result ing spectrum was superimposed on the uncoded (no weighting) spectrum from the same string for comparison. The coding and analysis was done on two very different files, RUS1 and FAD2. The coded text strings as well as the numerical power in each frequency point of the spectra and all statistics can be found in the appendi\% to this chapter.

NOUN WEIGHTING.
Figures 12.3 (a) and (b) are the spectra resulting from the coding of NOUNS in text strings from FAD2 and RUSi respectively. In each case, the spectrum resulting from the weighting of the nouns has been superimposed on the spectrum resulting from the text version where the nouns were treated no differently from any other I-modes or 0 -modes in the text string i.e. in the NOUNweighted text string, all nouns have been given the weight 8 , other I-modes have been given the weight 1 and the 0 -modes have been given the weight zero as usual. In the un-weighted text string, the nouns have not been given special weighting, i.e.
they have been treated like any other I-modes and 0 -modes and been weighted 1 (I-modes) or zero (0 -modes).

PAD2, 201A600RF 185

Figure 12. 3 (a) Nouns weighted and unweighted in FAD2

RUS 1, 301Aフ00RF162
POWER SPECTRUM

Figure 12.3(b) Nouns weighted and unweighted in RUSSI

In the weighted spectrum of both files fAD2 and RUSl the weighting of the nouns have given rise to three peaks between $f=0$. 3 and f=0.4. As we saw in chapter 7 and as explained above: such peaks in the power spectrum may reflect sub-control systems in the generation of the signal being analysed: in this case a text string. and although it borders on speculation, it is feasable that the three peaks seen in the NOUN-weighted spectrum of both files might be the tell-tale of a common NOUN-generating subfunction in our 1 inguistic device.

If it is the case that the three peaks appearing in both spectra between $f=0.3$ and $f=0.4$ are indeed specific to a NOUN generating mechanism. we would expect another grammatical category to give
rise to another, but equally specific feature somewhere else in the spectrum, and we would also expect such a feature to appear in the spectra from both F'AD2 and RUS1.

To examine if such grammar-specific features could be established further. the analysis was repeated first with verbs weighted and later with subjects of sentences weighted.

VERE WEIGHTING.
Figures 12.4 (a) and (b) are the spectra resulting from the coding of VERES in text strings from FAD2 and RUSi respectively. In each case, the spectrum resulting from the weighting of the verbs has been superimposed on the spectrum resulting from the

PAD2, 201 A600RF 185

Figure 12.4(a) Verbs weighted and unweighted in FAD2

RUS 1, 301AフOORF 162
POWER SPECTRUM

Figure $12.4(b)$ Verbs weighted
and unweighted in RUSSI
text version where the verbs were treated no differently from any other I-modes or 0 -modes in the text string i.e. in the VEREweighted text string, all verbs have been given the weight B, other I-modes have been given the weight 1 and the 0-modes have been given the weight zero as usual. In the un-weighted text string, the verbs have not been given special weighting, i.e. they have been treated like any other I-modes and 0 -modes and been weighted 1 (I-modes) or zero (0 -modes).

If we look at figure 12.4 (a) we find that the most prominent difference between the two spectra - the VERE-weighted and the un-weighted from FAD2 is a peak arising around $f=0.2$ of the VEREweighted spectrum. Looking at the spectra in figure 12.4 (b) from FUSI we find that the most prominent feature is that of a peak in the middle of the spectrum (around $f=0.25$) of the VERE-weighted spectrum.

This would again indicate, that some structures are common to the VEFE-weighted versions of the two files, however different the te:t style of the two files. This lends credit to my sugoestion, that. we are indeed looking at the telltales of some of the subgenerator mechanisms of our linguistic device.

WEIGHTING OF SENTENCE SLIEJECTS.
Finally, the same analysis was carried out with the sentence suhjects weighted and unweighted respectively. Figures 12.5(a) and $12.5(b)$

PAD2, 201A600RF 185

Fig. 12.5(a) Subjects weighted and unweighted in PADZ
show the SUBJECT-weighted and unweighted spectra of PAD2 and RUS1 respectively. The weighting of subjects in a text string seems to give rise to 3 or 4 peaks in the low-frequency part of the spectrum. This is clearly the case for both PAD2 and RUS1.

RUS1,301Aフ00RF162
POWER SPECTRUM

Fig. 12.5(b) Subjects weighted and unweighted in RUSSI

DISCUSSION OF THE AEOVE ANALYSIS..
It is interesting to look at the spectra resulting from grammatical coding in terms of emission and absorbtion features. The peat:s arising in different spectra; at very much the same position for the same grammatical cathegory, may well be telltales of sub-generator functions as explained in chapter 11. Functions which are specific to each grammatical cathegory.

Eecause of the fluctuation in the spectra arising from lack of stationarity in the data base before the Fourier transformation, it is difficult to assess whether the prominent peaks in the weighted spectra above (figures 12.3 to 12.5) do indeed rise from an already existing peak or a trough in the un-weighted spectra. In figure 12.3 (a) and (b) it could look like the three peaks between $f=0.3$ and $f=0.4$ arise from already existing peaks.

In figure 12.4 (a) and (b) the opposite seems to be the case. The single peak arising in the middle of the spectrum from both files seems to rise from a feature which could be a minimum between two maxima or it could be a cut-off maximum.

If the findings here do indeed reflect factual structures, then clearly, there are structures much further towards the 1 ow end of the spectrum, than we had anticipated. The longest structures reflected in these two last spectra are of a periodicity of around 60 to 120 words. It is difficult to anticipate, that our linguistic device should be so far ranging. when our naturai sentence length is about an order of magnitude smaller.

On the other hand, looking at such structural lengths in terms of words may be misleading. Producing, or listening to, 100 words in real time does not take more than around 20 seconds, and it is
clear, that we are able to, and indeed do, anticipate both the synthesis of our own strings and the analysis of other peoples. text strings over this length of time.

The other peaks in the low frequency part of the spectrum, which emerged when we weighted the subjects, reflect structural lengths of $18(f=0.55), 10(f=0.102)$ and $7(f=0.141)$. It is far easier to accept, that this kind of length could have something to do whith the linguistic device's synthesis and control of outgoing text strings.

Clearly, this last application of Fourier analysis opens up a whole new field of possibilities and with it a great need for further research. As I emphasised, at the beginning of this last chapter, the presentation of my initial research in this use of Fourier analysis is only meant to be an introduction to this field of possibilities. The amount of research needed to establish whether the findings in this chapter are factual or incidental would demand the space and time of another doctoral thesis.

CHAPTER 13.
CONCLUSION.

1. AIM OF THE STUDY.

The aim of this studv has been to evaluate information transfer and struetures in texit strings.
1.1 "information" and "structure" are here tabien in the information theoretical sense. For this reason this thesis beqins with an introduction to Information Theory with particular empliasis on the concepts of information and structure oriqinating from this theory (chapter 1). Another two chapters give an account of the use of Information Theory in linquistics (chapter 2) and linouistic models relevant to the present approach (chapter 3).
1.2 Although the data hase of the present study has been in the form of written tent strings. it is emphasised, that the meaning of "text string" is the one usually accepted in linquistics i.e. not restricted to written communication.
2. METHODS.

To achieve the aim set out above: two principally different methods of analysis were used; the first - a relatively simple statistical approach (chapters 5 and 6) - based on the established static concept of vocabulary: the second - a pattern evaluation technique hy fourier analysis (chapters 9 to 12) - based on a concept of more dynamic cognitive word processing developed in this thesis (chapter 8).
2. 1 The first method is based on my discovery that the vocabulary in a natural text string decreases exponentially with increasing length of string.
2.1.1 This relationship between length of text string and exponential "decay" of vocabulary means that any natural text string can be represented graphically in a double-logarithmic coordinate system with great accuracy by a straight line of which only two parameters are needed to position the line: The intercept A and the gradient B.
2. 2 The second method was developed after some considerations as to how the concept of sememes could be accommodated in a simplistic computer model of cognitive language processing.
2.2.1 No attempt was made to simulate genuine sememe recognition. A much more rudimentary, but - given the present level of computing power and knowledge - more realistic approsch, the 'model of best fit' deseribed in
chapter 8, was chosen.
2.2.1.1 The "model of best fit" is based on the concept of sememes in as much as it recognises that a word may have several different connotations and that the connotation which best fits into the contept of the word will be chosen by our perception as the "meaning" of the word.
2.2.1.2 Instead of trying to incorporate in a computer model the choise of the 'best fit" from a number of connotations. the choise of 'best fit' is seen in terms of length of text string.

2.2.1.2.1 Given a word AAA in a text string

'KKKK EEE AAA LLL MMM.......TTT DDD AAA FFF'
where AAA appears twice. It is reasonable to sugqest that the identity between sememe AAA(1'st appearance) and sememe AAA(2'nd appearance) depends on the length of text string between the two appearances.
2.2.1.2.2 If AAA(1'st appearance) is very close to $A A A(2$ nd appearance) the sememes $A A A(1)$ and $A A A(2)$ would probably be identical. in which case the second appearance of AAA would not transfer any new information to the linguistic device.
2.2.1.2.3 At the reappearance of AAA after a oreat number of different words it is reasonable to suapest that sememe AAA(2) has changed from sememe AAA(1) and that therefore sememe AAA(2) would transfer information to the 1 inguistic device.
2.2.1.2.4 The information transfer from a text string can now be seen in terms of length of text string bewteen reappearances of words rather than cognitive choise between sememes.
2.2.1.2.5 Thus; a word in atext string appearing for the first time would transfer information to the linguistic device.
2.2.1.2.6 Within a given length of text string the word reappearing would not transfer any information to the linguistic device because the sememe of the word would be the same.
2.2.1.2.7 After a given length of text string the word reappearing would again transfer information to the linguistic device because its sememe is considered to have changed.
2.2.1.2.8 This length of text string, the so called "reference field". was chosen so that the number of words in a text string which
transfer information is identical to the number of words which do not transfer information. The reasons for this choise are explained in chapters 8 and 10 .
2.2.1.2.9 A glossary accommodating the features above was established: An "I-mode" refers to a word first time it appears within the reference field. Subsequent reappearances are called '0-modes'.
2.2.1.2.10 Accordingly, the reference field is that length of string which results in the transfer of a steady ratio 1:1 of I-modes and O-modes to the 'linguistic device".
2.2.1.2.11 An I-mode is defined as transferring a positive amount of information to the 'linquistic device'. An O-mode transfers zero bit of information. The shortcomings of this approach are discussed in chapters 8 and 9 .
2.3 Within the second approach, that of Fourier analvsis. two principally different methods of Fourier analysis were developed: that of timeseries analysis and that of direct Fattern evaluation using the Fast Fourier Transform (chapters 7 and 9).
2.3.1 Eecause of the lesser demand of the timeseries transform to the length of the text strings, the timeseries analysis was used in all the analyses except for the analog coding in chapter 12 where the Fast Fourier Transform was used.
2.3.2 The purpose of developing two different methods was basically that of my wanting to compare the results when the two different transforms were applied to the same text strings. The spectra from the different transforms of the same text strings were almost identical except for the frequency $F=0.50$. The difference has been accounted for in chapter 12, where an example is shown of a spectrum from a timeseries transform superimposed on the spectrum of the same text string resulting from the direct pattern evaluation algorithm based on the Fast Fourier Transform.

3. DATA EASE - SAMFLING AND CLASSIFICATION.

The data base of 60 text samples is divided into two main groups. That of childrens text samples $(N=42)$ and that of adults? text samples $(N=18)$.
3.1 Childrens text samples: The 42 samples were written specifically for this study by kind cooperation of two primary schools in Central Region in Scotland. The age of the children ranges from 6 to 14 years. In some of the analyses, the children have been divided into a younger age group (6-9 years) and an older age group (10-14 years).
3.1.1 Of the childrens text samples a total of 1900 words were used in the analvsis in chapter 5. Of the 42 teit samples written by children only 25 were long enough to be analysed by Fourier analysis in chapter 11 . These 25 samples accounted for a total of 1600 words with 13 samples (8.32 words) witten by the 6 to 9 year old. and 12 samples (768 words) written by the age group 10 to 14 year.
S. 2 Adults text samples: The 22 text samples written by adults were taken from books and newspapers to cover as wide a range of styles as possible. Each text sample was 600 words long. The categories were: Scientists (9 samples), newspapers (5 samples) and bool:s written for children (8 samples). The total number of words of the adult text strings were 13200. of this total all were used in the analysis in chapter 5 while around 6000 words formed the data base of the fourier analysis in chapters 11 and 12.

4. FESULLTS OF ANALYSES

As explained under 2. METHODS, the analyses fall in two parts. In chapter 5 the method is based on fairly simple statistics and a araph fitting algorithm, while in chapters 11 and 12 the method is that of Fourier analysis. Common to the two aporoaches is the evaluation of structures before and after permutation of the text strings. In chapter 5 three different kinds of structure, present in text strings, were examineds ' distributive'. 'sequential' and 'content' structure, and it was suggested that the structure measured by any of the methods used in this study is mainly that of sequential structure. It was argued too, that only the sequential structure is affected by the permutation of a text string. Consequently, the difference in the amount of structure, before and after a text string has been permutated, as established in all the analvses of this study, is a measure of the change in sequential structure.
4.1 Analyses of text strings based on simple statistical methods (chapter 5):
4.1.1 The numerical values of intercept A and gradient B were established with a graph fitting algorithm for all the 42 text samples of this study. High vocbulary gave low values of A and high values of B. If A and B are related to early linguistic development, we would have expected to see a difference in the values of A and E of younger children as compared to those of older children. This however, did not seem to be the case. A and B were not significantly correlated with age. Tables 5.17 and 5.18 confirmed that the two categories 'younger children" and "older children" do not seem to be drawn from different populations with regard to A and B. Consequently we would assume that A and B are either not related to linguistic development or are related to developments which take place later on in life i.e. during or after adolescence. The difference between children as a whole and adults as a whole, as measured with the Kruskal-Wallis test seemed to confirm the latter view: the difference in the features between the
childrens and adults' language as represented by A or B was confirmed on a better than 5% (A) and better than 1% (B) level, thus suggesting, that the parameters A and E are related to linguistic developments which tak: place sometimes between the age of the child writers and the adult writers. So much said, tables 5.18 (a) and (b) do show, that even if there are no significant differences between the two categories 'younger children' and 'older children' per se, these two categories tested against the different adult categories, gave that the "younger children" consistently showed greater difference to the adult categories than the older children" with regard to the gradient E. whereas the opposite was the case with regard to the intercept A (tables 5.17 (a) and (b)).
4.1.2. Not unexpectedly it was found that vocabulary is a significant developmental feature of terit strings, but only just! Children measured against adults gave that the difference is confirmed on a better than 0.1% level. However: when the children were divided into 2 categories: the younger (6 to 9 years, $n=13$) and the older (10-14 years, $n=12$) it was found that when each category was tested adainst the adults ($n=22$), the difference between the younger category and the adults was confirmed on a better than 0.01% level, while the difference between the older children and the adults did not quite make it to the 5% level. This is interesting, since it means, that the strings written by the age group $10-14$ are not significantly different from the adult text strings with regard to vocabularv. Contrary to common belief. the text strings from newspapers came out as having the highest vocbulary of all the samples in this research. It was even the case, that the more dubious the litterary quality, the higher the vocabulary.
4.1.3. Each of the 42 text strings were then permutated and the parameters A and B measured as before. All movements were tested with the Wilcoxon matched-pairs signed-rank test which established, on a better than 1% significance level, that the overall movement of A and E, after the permutation of the strings; was towards higher values of A and lower values of B i.e. the straight lines representing the text strings generally tilted clockwise in the double-logarithmic coordinate system as a result of the permutation of the string. As the permutation of a text string breaks up the sequential structure rather than the distributive or the content structure, and as the permutation of a string causes A to increase and E to decrease, it was concluded that intercept A is invertedly related, and gradient E directly related to sequential structure.
4.1.4. The analysis showed that newspapers had the lowest A mean values $(A=1.20)$ followed by childrens books ($A=1.35$) and scientists ($A=1.55$) children had the highest A value $(A=1.57)$. This suggests that text strings from newspapers have the highest degree of sequential structure while childrens text strings have the lowest degree of sequential structure, and indicates that a greater amount of internal sequential manipulation of
text strings takes place during the writing of newspapers and childrens books: than during the writing of scientists" and childrens text strings.
4.1.5. The values found for the gradient E suggested the same distribution of sequential structure in the text samples: B values for children were the lowest ($\mathrm{E}=0.79$) i.e. lowest amount of sequential structure, while E values for newspapers were the highest ($B=0.90$) again suggesting that newspapers have the highest degree of sequential structure, and confirming that a greater amount of internal sentence manipulation goes on during the writing of newspapers and childrens books than during the writing of the other categories of text strings in this study.
4.1.6. The mean length of runs of 'new' words was measured in the text strings for the different categories. Children had the longest runs followed by childrens books, scientists and finally newspapers which had the shortest run lengths.
4.1.7. It was established that the mean length of runs increased whith the permutation of a text string suggesting that in natural text the sequential structure keeps the run length 'artificially' short.
4.1.8. It was established too, that there was a positive correlation cconfirmed on a better than 1% significance level) between the difference in run lengths before and after permutation, and the corresponding differences in the values of A and E.
4.1.9. The high vocabulary of newspaper text strings, combined with the high level of sequential structure found in these strings, suggests that much more sequential manipulation goes on in the mind of the writers of the "popular" press than in the minds of the writers of the 'serious" press, and certainly more than this category of journalists normally gets credit for.
4.1.10. The fact that the text strings of the popular press combined the highest vocabulary with the shortest run length confirms that even if these strings superficially exhibit litterary incompetence, they are - in a sense - highly specialised and sophisticated form of writing.
4.2. Analysis of text strings based on Fourier analysis (Fower spectral analysis: chapters 10 to 12):
4.2.1. Through practical trials: the optimal size of 3 of the parameters of the power spectral analysis: Reference field, number of frequency points, and width of mesuring window, were established (chapter 10).
4.2.1.1. Reference fields It was shown that the optimal field is the one which gives a $1: 1$ ratio of zeroes and ones in the information transfer array.
4.2.1.2. Number of frequency points in power spec-
trum: Minimum उ̃ points, but if the combination: (length of text string) vs (reference field) allows it, then 64 points.
4.2.1.. . Width of measuring window: Minimum: Twice the number of frequency points (2 degrees of freedom). Maximum: 6 to 9 times the number of frequency points (6 to 9 degrees of freedom). but if the window exceeds around $120-200$ words. there may be 1 act: of stationarity at some frequencies.
4.2.2. After the text strings were analysed with three different size windows: 64 words, 128 words and 256 words respectivelv, it was found that a window of 128 words gave the highest significance with regard to the ability of the analysis to distinguish between different catgories of writers. Fresumably: the lack: of periodicity in strings longer than around 200 words. would account for the failure of window-group 256 to pick up significant features found by window-group 128. Likewise, window-group 64 failed to pict: up significant features due to lack of sensitivity (chapter 11).
4.2.3. It was found toos that whatever the window size, both Mean Fower Density (MFD) and Variance (CHI2) of the power spectra were higher for the more skilled - or older - writers. Adults showed persistently higher MFD and CHI2 than children. whatever the window size. This difference however, was not significant with regard to MFD, but was highly significant with regard to CHIZ (better than 1% significance level).
4.2.4. The difference between the 'sensitivity" of MFD and CHI 2 to the characteristics of the text strings was demonstrated again when MFD and CHI 2 were measured before and after permutation of the text strings. Even though both MFD and CHI2 decreased with permutation of the strings: only the difference with regard to CHI2 was significant (better than a 5% significance level).
4.2.5. The size of reference field established for each string in the window-group 128 turned out to be a highly significant measure of developmental features of the text strings. 'Children' showed significant differences to all adult categories. This was a far clearer and more reliable picture than that yielded by the measure of vocabulary in chapter 5.
4.2.6. Two significant features present in all the power spectra in this study are those of "emission" and "absorbtion', graphically represented by the peaks and the troughs respectively in the spectra.
4.2.6.1 It is suggested that the peaks in the power spectra, being emission features, represent subgenerator functions of the 'lingusitic device' while the troughs, being absorbtion features, represent sub-control, filter or lexical functions.
4.2.6.2. The view that the peaks and troughs in the spectra are indeed the graphical representations of
sub-generator and sub-control functions of the 'linguistic device' is supported by the fact that the variance of the spectra decreased significantly with the permutation of the text strings.
4.2.7. The hypothesis, that some peaks in the power spectra are positioned at frequencies common to all the spectra of all the window-groups was evaluated. Even though the exact positions differed slightly between window-groups and between adult spectra and child spectra, three positions of peaks common to all the text strings were established with a high degree of significance in the high-frequency band between $F=0.33$ and $\mathrm{F}=0.50$.
4.2.8. Further analysis of the impact of permutation on these peaks made it probable however. that only a peak: at $F=0.484$ in childrens text strings and a peak at F=0. 375 in adults' text strings did indeed constitute a feature which, with some justification, can be seen as a oraphical representation of a sub-generator function of the human linguistic device.
4.2.9. To evaluate the hypothesis under 4.2.6.1., two text strings, of very different style, were coded so that a 3 bit pulse was transferred to the information array every time a noun was encountered in the text strings, and the resulting spectra were superimposed on the normal spectra where nouns had not been given special weighting (chapter 12).
4.2.9.1. In the two spectrabased on the two different text strings, wich had been noun-weighted, three peaks appeared in the high-frequency band of both spectra (around $F=0.3$), suggesting that some generative and control principles were common to the two different text strings.
4.2.9.2. The same weighting was then given to verbs and sentence subjects respectively in the two text strings. The weighting of verbs gave rise to a peak in the frequency band around $F=0.2$ in both spectra, while the weighting of sentence subjects gave rise to 4 peaks in the low-frequency band of the two spectra, again suggesting that identical, but grammar specific, sub-generator and sub-filter (lexical) functions were involved in the generation of the two different text strings.

5. LIMITATIONS AND FURTHER DEVELOPMENT.

The limitations of the present approach have been emphasised throughout this study. The task of analysing cognitive information transfer is overwhelming and, as i have stated before, I have not attempted anything like a full description of cognitive language processing.

What I have done is il to point out that one very important
feature of language perception - the sememe evaluation of our linguistic device - probably is a function, amongst others. of the lenath of text string between near-identical sememes: and 2) incorporated this feature in a model which lends itself to the very sensitive analvsis of fourier analysis.
That the length of text string between near-identical sememes is just one of presumably myriads of factors involved in the sememe evaluation which goes on in our linguistic device means that only a fraction of the structure present in text strings will be picked up by this analysis. As such this method is both crude and simplistic: not because it is simple in itself - I am sure you did not get that impression - but because it only deals with one particular feature of the overwhelming complexity of natural language.

So much said, the results of this study do suggest that in spite of all the incompleteness of the 'model of best fit'. the power sectral analvses do indeed pick up some of the structures which we know must be present in natural text strings.

The 'model of best fit' could be improved in two ways:

1) The first obvious limitation of the model is the inflexibility of the reference field. It is not terribly realistic that all words in a text string should have the same reference field. As touched upon in chapter 8, the sememes of numerals, prepositions and small words like 'and', 'or' etc. are relatively stable over long strings of text i.e. should have long reference fields, while huge, vaguely defined concepts with highly unstable sememes like 'love' should have rather shorter reference fields.
2) The second obvious limitation of the 'model of best fit' is the fact that we have attributed one of only four levels of information transfer: 0, 1, 2, and 3 bit. It has been explained in chapter 8 that resent research suggests that the human sensory continuum can only bee divided into 8 (3 bit) distinct levels. This is the reason for our maximum transfer of information being set to 3 bit. There is however no reason why the amount of transferred information should be an integer. Most words in Imode would probably transfer between 1 and 2 bit of information when their 'best fit" was established, while numerals and prepositions would transfer less information, say between 0 and 1 bit. Only the big and vague concepts like 'love', 'clever', 'God' etc. would have enough sememe variety to transfer between 2 and 3 bit of information when their "best fit" was established by the linguistic device.
Since both limitations are a function of 'sememe stabilty', both limitations could be remedied by the inclusion of a wordlist where each word could be looked up by the program and attributed a weighting according to some predetermined scale of sememe stability".

However, given that the analyses presented in this study have been a contionuous struggle against the lack of computing power at my disposal, I have not contemplated the addition of such an extensive lexicon to my program.
It is my hope that someone who reads this study shall find it interesting and convincing - or challenging - enough to continue

APPENDIX TO CHAPTER 5.

Output from vocout (100).................... page 342
Dutput from VOCOUT (600)...................page 364
Runs before and after permutation......page 396

OUTFUT FROM VOCOUT(100)

Index

Childrens text strings page:
C62, C70, C71 343
C73, C77, CBO 344
C82, C85, C90 345
C91. C94, C95. 346
C96, C100, C101 347
C102, C103: C104 348
C110, C111, C113 349
C114, C130, C140 350
C141 351
Statistics 352
Scientists" text strings page:
RUSS1, RUSS2, RUSS3 353
RUSS4, RUSSS, RRUNER 354
LAROV, FRANKENA, CHOMSKY 355
Statistics 356
Newspaper text strings page:
DFEC1, DFEC2, MAIL 357
HERALD, GUARDIAN. 358
Statistice 359
Text strings from Childrens books page:
PAD1, PAD2, PAD3. 360
PAD4, POOH, ALICEB 361
ALICEL, SEAGULL 362
Statistics. 363
h:c62.tッt:

AT WOFD NF: 10 AT WCIFD NF: 20 AT WOFD NF: 30 AT WQF:D NF: 40 AT WOFID NF: 50 AT WOFN NF: 60 AT WOF:D NF: 70 AT WDFD NF: $B 0$ AT WDFD NF: 90 AT WOFD NF: 100

VOCAEULAFIY: 10 VOCABULAFY: 17 VOCAEULAFY: 26 VOCAEULAFY: 29 VOCABLLAFY: 34 VOCAEULAFY: SB VOCABULAFY: 41 VOCAEULAFY: 4Z VOCAEULAFY: 48 VOCABULAFY: 5S
$F(\%)=2.13611 \mathrm{eO} * \times$ TO THE 6.98960e-1 FOWER COEFFICIENT OF COFRELATION $=0.9944$ STANDARD ERFOF OF ESTIMATE $=0.0580^{\circ}$

E:C70.TXT:

AT WOFD NF: 10 AT WURD NF: 20 AT WORD NF: 30 AT WOFD NF: 40 AT WOF:D NF: 50 AT WORD NF: 60 AT WORD NE: 70 AT WORD NE: EO AT WORD NF: 90 AT WURD NE: 100

VOCAEULAFY: 10
VOCABULAFY: 16
VOCABULAFY: 24
VOCAELLAFY: 29
VOCAEULARY: 34
VOCABULAFY: 38
VOCAELLAFF: 40
VOCAEULAF:Y: 45
VOCAEULARY: 48
VOCAEULAFIY: 51
$F\left(x_{i}\right)=1.99414 \mathrm{eO} \times \mathrm{TO}$ THE $7.12844 \mathrm{e}-1$ FOWER COEFFICIENT OF CORFELATION $=0.9967$
STANDARD ERFIOF: OF ESTIMATE $=0.0452$

E:C71.TXT:
AT WORD NR: 10
AT WOFD NF: 20
AT WORD NF: 30
AT WORD NF: 40
AT WORD NF: 50
AT WORD NF: 60
AT WORD NF: 70
AT WORD NF: 80
AT WORD NF: 90 AT WORD NR: 100

VOCARULARY: 9
VOCAELLAFY: 16
VOCAEULARY: 22
VOCAEULAFY: 28
VOCABULARY: 32
VOCAEULAFIY: 38
VOCAEULARY: 42
VOCABLLARY: 46
VOCAEULARY: 47
VOCARULARY: 50
$F(x)=1.66378 e 0$ \& X THE $7.53572 e-1$ POWER COEFFICIENT OF CORRELATION $=0.9974$
STANDAFID ERROR OF ESTIMATE $=0.0425$

E:C7E.TXT:

AT WORD NF: 10	VOCARULAFY:	
AT WORD NF: 20	VOCAEULAFY:	16
AT WORD NF:	30	VOCAEULAFY: 22
AT WORD NF: 40	VOCARULARY:	26
AT WORD NF: 50	VOCARULAFY: 32	
AT WORD NF: 60	VOCARULARY: 34	
AT WORD NF: 70	VOCARULARY: 39	
AT WORD NF: 80	VOCAEULARY: 40	
AT WORD NF: 90	VOCAEULARY: 43	
AT WORD NF: 100	VOCAEULARY: 47	

$F(x)=1.90879 \mathrm{e}=\mathrm{X}$ TO THE $7.03120 \mathrm{e}-1 \mathrm{FOWER}$ COEFFICIENT OF CORRELATION $=0.9961$ STANDAFI EFFOF OF ESTIMATE $=0.0486$

E:C77.TXT:

AT	WORD	NK:	10	VUCAEULARY:	10
AT	WCIRD	NF:	20	VOCAEULARY:	
AT	WORED	NF:	30	VOCAEULAFY:	
AT	WORED	NF:	40	VOCAEULAFY:	
AT	WOF:D	NF:	50	VOCARLLAFY:	3
AT	WORD	NF:	60	VOCAELILAFY:	
AT	WORD	NF:	70	VOCAEULARY:	
AT	WOF:D	NF:	80	VOCAELLLAFY:	
AT	WORD	NR:	90	VOCAEULARY:	
AT	WORD	NF:	100	VOCAEULA	

$F(x)=1.48464 \mathrm{eO}^{0} \times \times$ TO THE 8.09649e-1 FOWER COEFFICIENT OF CORFELATION $=0.9979$
STANDARD ERFOR OF ESTIMATE $=0.0409$

E:CBO.TXT:

AT WORD NF:	10	VOCAEULARY:	10
AT WOFD NF:	20	VOCAEULARY:	14
AT WORD NF:	30	VOCAEULARY:	19
AT WOFD NF:	40	VOCAEULARY:	26
AT WORD NF:	50	VOCAEULARY:	33
AT WORD NF:	60	VOCABULARY:	38
AT WORD NF: 70	VOCAEULARY:	44	
AT WORD NR:	BO	VOCAEULAFY:	51
AT WOFD NF: 90	VOCAEULAFY:	57	
AT WORD NR: 100	VOCAEULAFYY:	62	

$F(x)=1.2512600 * x$ TO THE 8.37209e-1 POWEF COEFFICIENT OF CORFELATION $=0.9917$ STANDAFD ERROR OF ESTIMATE $=0.0846$

E:CRE.TXT:

AT WORD NF: 10
AT WORD NF: 20
GT WOFD NF: 30
AT WORD NF: 40
AT WOF:D NF: 50
AT WORD NF: 60
AT WOFD NF: 70
AT WORD NF: 80
AT WOFD NF: 90
AT WIRD NF: 100

VOCABULAFY: 10
VOCAEULAFY: 18
VOCAEULAFY: 21
VOCAELILAF:Y: 27
VOCAELLARY: 29
VOCAEULARY: 35
VOCAELLAFY: 38
VOCAEULAFY: 43
VOCABUL AFY: 48
VOCAEULARY: 54
$F(\%)=2.0378$ Se0 * x TO THE $6.97506 e-1$ FOWER COEFFICIENT OF COFFELATION $=0.9955$
STANDAFD EFRFOF OF ESTIMATE $=0.0518$

E:CBS.TXT:
AT WOF:D NF: 10
AT WORD NF: 20
AT WORD NF: 30
AT WORD NF: 40
AT WORD NF: 50
AT WORD NF: 60 AT WCRD NF: 70
AT WOFD NF: 80
AT WORD NF: 90
AT WOFD NF: 100
VOCAFULAFY: 10
vocabllafir: 18
VOCAEULAFY: 25
VOCABULARY: 31
VOCAEULARY: $3 E$
VOCAEULAF:Y: 44
VOCAEULARY: 47
VOCAEULARY: 53
VOCAEULAFY: 58
VOCABULAFY: 64
$F(x)=1.63892 e 0 * \times$ TO THE $7.96401 e-1$ FOWER COEFFICIENT OF COFFELATION $=0.9994$
STANDAFD ERFOR OF ESTIMATE $=0.0221$

E:CPO.TXT:
AT WORD NF: 10
AT WORD NF: 20 AT WORD NF: 30 AT WORD NF: 40 AT WORD NF: 50 AT WORD NF: 60 AT WORD NR: 70 AT WOFD NF: 80 AT WORD NF: 90

VOCAEULARY: 9
VOCARULAFY: 18
VOCARULARY: 24 VOCARULARY: 30 VOCARULARY: 36 VOCAEULARY: 41 VOCAEULARY: 47 VOCARULARY: 53 VOCARULARY: 58 AT WORD NR: 100

VOCABULAFY: 61
$F(x)=1.44310 \mathrm{eO} * \times$ TO THE B.20548e-1 POWER COEFFICIENT OF CORRELATION $=0.9985$
STANDAFD ERF:OF OF ESTIMATE $=0.0348$

E:C91.TXT:

AT	WOFD	NF:	10	VOCAEULAFY:	
AT	WORD	NF:	20	VOCAEULAFY:	15
AT	WORD	NF:	30	VOCAEULARY:	3
AT	WOED	NF:	40	VOCAEULAFY:	30
AT	WOFD	NF:	50	VOCAEULAFY:	36
AT	WORD	NF:	60	VOCAELLAFY:	38
AT	WORD	NF:	70	VOCAFULARY:	5
AT	WORD	NF:	80	VOCAEULAFY:	52
AT	WORD	NF:	90	VOCAHLLAF:Y:	56
	WORD	NR	100	VOCAELLAFA	

$F(x)=1.11808 \mathrm{O}=\mathrm{x}$ TO THE 8.73500e-1 FOWER COEFFICIENT OF COFFELATION $=0.9976$ STANDAFID EFFIOF OF ESTIMATE $=0.0467$

E:C94.TXT:

E:C95.TXT:

AT	WOFED	NF:	10	VOCAELLARY:	10
AT	WORD	NF:	20	VOCAEULAFIY:	16
AT	WORD	NF:	30	VOCAEULARY:	22
AT	WOFDD	NR:	40	VOCABLLARY:	27
AT	WORD	NF:	50	VOCAEULAFY:	34
AT	WOF:D	NR:	60	VOCARULAFY:	41
AT	WORD	NF:	70	VOCARLLARY:	47
AT	WORD	NF:	80	VOCAEULARY:	54
AT	WORD	NR:	90	VOCAELLARY:	60
AT	WORD	NR:	100	VOCABULARY:	63
$F(x)=1.37391 e 0 \quad x$ TO THE B.28790e-1 POWER COEFFICIENT OF CORRELATION $=0.9970$ STANDARD ERROR OF ESTIMATE $=0.0501$					

E:C96.TXT:

AT	WOFD	NF:	10	VOCAEULAFY:	10
AT	WUFD	NF:	20	VOCARULLARY:	17
AT	WOFD	NF:	30	VOCAELILAFY:	24
AT	WOKD	NF:	40	VOCAELILAF:Y:	32
AT	WOFD	NF:	50	VOCAELILAFIY:	37
AT	WOF:D	NF:	60	VOCAELILAFY:	41
AT	WOFD	NF:	70	VOCAEULAF:Y:	50
AT	WOFPD	NF:	80	VOCABULAFY:	54
AT	WOF:D	NF:	90	VOCABULAFY:	61
AT	WOFD	NF:	100	VOCAELILAFIY:	66
COEFFICIENT OF COFFELATION $=0.9991$ STANDAFI EFFIOF OF ESTIMATE $=0.0266$					

$\mathrm{H}=\mathrm{C100.TXT:}$

AT	WOF:D	NR:	10	VOCAELILAFY:	1	
AT	WCIF:D	NR:	20	VOCABULARY:	20	
AT	WOF:D	NR:	30	VICAFULAFY:	27	
AT	WOED	NR:	40	VOCAEUL AFiY:	34	
AT	WOF:D	NR:	50	VOCAEULAFS:	41	
AT	WORD	NR:	60	VOCAEULAFEY:	49	
AT	WOFiD	NR:	70	VOCARULAFY:	54	
AT	WOFD	NR:	80	VOCARULAFiY:	60	
AT	WOFD	NR:	90	VOCAELILARY:	66	
AT	WOFD	NR:	100	VOCAEULAFY:	72	
$F(x)=1.51607 \mathrm{O} \times \times \mathrm{TO}$ THE E						
COEFFICIENT OF				CORFELATION $=0.9989$		
				STANDAFD EFRROF OF ESTIMATE $=0.0311$		

E:C1O1.TXT:

AT	WORD	NF:	10	VOCAELILARY:	10
AT	WOFD	NR:	20	VOCARULARY:	17
AT	WOFD	NR:	30	VOCAEULAFY:	25
AT	WORD	NR:	40	VOCAELLLAFVY:	29
AT	WORD	NR:	50	VOCAELLLAFY:	32
AT	WOFD	NR:	60	VOCAELULAFY:	37
AT	WORD	NR:	70	VOCAELLAFY:	44
AT	WOFD	NF:	80	VOCABULAFIY:	49
AT	WORD	NF:	90	VOCAEULAFY:	56
AT	WOFDD	NR:	100	VOCABULAFYY:	60
$F(x)=1.730146 \mathrm{E}^{\circ} \mathrm{O}$ (TO THE 7.63447e-1					
COEFFICIENT DF COFFELATION $=0.9970$					
STA	ANDAFID	D ER	ROF	ESTIMATE $=$	0.0460

E:C102.TXT:

	WOFD	NF:	10	VOCABULAFIV:	10
AT	WOFD	NF:	20	VOCAELLAFY:	17
AT	WOFD	NF:	30	VOCAEULLAFY:	23
AT	WOFD	NF:	40	VOCAELLL AFYY:	30
AT	WOFS	NF:	50	VOCARULLARY:	35
AT	WOFD	NF:	60	VOCAEULAFY:	3.7
AT	WORD	NF:	70	VOCAELILAFY:	44
AT	WOFR	NR:	80	VOCAELILARY:	47
AT	WOR:D	NF:	90	VOCAEULAFY:	52
AT	WOFD	NF:	100	VOCAELLAFY:	56
$F(: 1)=1.81970 \mathrm{e}$ COEFFICIENT OF CORFELATION $=0.9992$ STANLIAFD EFF:DF OF ESTIMATE $=0.0236$					

E:C1OE.TXT:

E:C104.TXT:

AT	WORD	NR:	10	VOCAELLLAFiY:	10
AT	WORD	NR:	20	VOCARULAFY:	19
AT	WOFD	NR:	30	VOCAEULAFY:	27
AT	WORD	NR:	40	VOCAEULARY:	35
AT	WORD	NR:	50	VOCAEULAFY:	40
AT	WOFD	NR:	60	VOCARLILARY:	43
AT	WORD	NR:	70	VOCAELILAFY:	49
AT	WORD	NR:	80	VOCAEULARY:	54
AT	WOFD	NR:	90	VOCAEULARY:	62
AT	WORD	NR:	100	VOCABLLARY:	68
			7701	* X TO THE	
COEFFICIENT OF CORRELATION $=0.9970$ STANDARD ERROR OF ESTIMATE $=0.0487$					

E:C110.TXT:

```
AT WORD NK: 10
AT WOFD NF: 20
AT WORD NR: 30
AT WORD NR: 40
AT WOFD NF: EO
AT WOFD NF: 6O
AT WDFD NR: 70
AT WOFD NR: BO
AT WORD NR: 9O
VOCAEULAFY: 10
VOCABULAFY: 20
VOCABLILAFY: }2
VOCARULAFIY: 33
VOCABULAFIY: 39
VOCAEULAFIY: 45
VOCAELILAFVY: 49
VOCAEU|LAFY: 51
VOCAEULARY: 57
VOCABULAFFY: 61
AT WORD NF: 100
\(F(i)=1.88790 \mathrm{O}) * \times\) TO THE \(7.64381 \mathrm{e}-1\) FOWEF COEFFICIENT OF COFFELATION \(=0.9956\)
STANDAF:D EFRIOF OF ESTIMATE \(=0.0558\)
```

H:C111.TXT:

AT	WORD	NF:	10	VOCAELILAFY:	9
AT	WOFD	NF:	20	VOCABULAFIV:	17
AT	WOFD	NF:	30	VOCAEULAFY:	24
AT	WOFD	NF:	40	VOCARULAFY:	31
AT	WORD	NR:	50	VOCARULAFIY:	38
AT	WORD	NF:	60	VOCAEULAFY:	45
AT	WOFD	NF:	70	VOCARULAFY:	53
AT	WORD	NF:	80	VOCAEULAFY'	58
AT	WOFD	NF:	90	VOCAELLAFY:	64
AT	WOFD	NF:	100	VOCAELLAFEY:	69
COEFFICIENT OF CORFELATION $=0.9998$ STANDAFID ERROF OF ESTIMATE $=0.0150$					

E:C113.TX7:

AT	WORD	NF:	10	VOCARULARY:	
AT	WORD	NF:	20	VOCARULAFY:	19
AT	WORD	NF:	30	VOCAELLARY:	27
AT	WORD	NR:	40	VOCABULAFY:	35
AT	WORD	NR:	50	VOCARULAFY:	40
AT	WORD	NR:	60	VOCABLILAFY:	44
AT	WORD	NF:	70	VOCAEULARY:	51
AT	WORD	NR:	80	VOCARULAFIY:	55
AT	WOFD	NFi:	90	VOCAEULARY:	61
AT	WOFDD	NR:	100	VOCABLLARY:	62
	(x) $=$	1.5	1848	* \times TO THE	8. $25223 e^{-1}$
COEFFICIENT OF CORRELATION $=0.9936$ STANDARD ERROR OF ESTIMATE $=0.0731$					

E:C114.TXT:

A	WORD	NF:	10	VOCAELILAF	
AT	WORD	NF:	20	VOCAELILAFY:	7
AT	WOFPD	NR:	30	VOCAFULARY:	25
AT	WORD	NR:	40	VOCAEULAFIY:	33
AT	UOFED	NF:	50	VOCAELL AFIY:	41
AT	WORD	NF:	60	VOCAEULAFY:	48
AT	WORE	NF:	70	VOCAEULARY:	56
AT	WOFD	NR:	80	VOCAELILAFY:	64
AT	WOFD	NF:	90	VOCAELILAFY:	70
AT	WORD	NR:	100	VOCAEULAFIY:	3

$F(x)=1.06023 E 0 * x$ TO THE $9.30204 \mathrm{E}=1$ FOWEF COEFFICIENT OF COFRELATION $=0.9995$ STAINUAFID EFFROF OF ESTIMATE $=0.0223$

E:C130.TXT:

T	WOFD	NR:	10	VOCAEULAFY:	10
AT	WORED	NF:	20	VOCAELILAF:Y:	19
AT	WORD	NR:	30	VOCAELLLAF:Y:	25
AT	WOF:D	NR:	40	VOCAELLLAFY:	29
AT	WOFD	NR:	50	VOCAEULAFY:	33
AT	WORD	NR:	60	VOCAELILAFY:	37
AT	WOF:D	NF:	70	VOCAEULAFY:	40
AT	WOFD	NR:	80	VOCAELILAF:Y:	47
AT	WOFD	NR:	90	VOCAELLAFFY:	52
AT	WOFD	NF:	100	VOCAEUL AFY'	56
```F(%)=2.09279e0 * x TO THE 7.09968e-1 POWEF COEFFICIENT OF COFRELATION =0.9955 STANDAFD ERFOF OF ESTIMATE =0.0526```					

E:C140.TXT:

AT	WORD	NR:	10	VOCAEULARY:	10
AT	WORD	NF:	20	VOCAELILAFY:	18
AT	WORD	NF:	30	VOCAEULAFY:	26
AT	WORD	NF:	40	VOCARLILAFIY:	36
AT	WORED	NF:	50	VOCAEULAFY:	42
AT	WORD	NF:	60	VOCABLLAFY:	46
AT	WORD	NF:	70	VOCAELLLARY:	52
AT	WORD	NF:	80	VOCAELLARY:	54
AT	WORD	NF:	90	VOCAEULARY:	61
AT	WORD	NF:	100	VOCABLILAFY:	63
$F(\%)=1.65549 \mathrm{e}$ ( X TO THE 8.09742e-1 POWER					
COE	EFFIC	IENT	OF	RRELATION =	0.9952
ST	ANDARD		ORF	ESTIMATE $=$	0.0622

```
E:C141.TXT:
```

AT WOFD NF: 10 AT WORD NF: 20 AT WOF:D NF: 30 AT WOFD NF: 40 AT WOF:D NF: 50 AT WOFED NF: 60 AT WOFD NF: 70 AT WORD NF: 80 AT WOFD NF: 90 AT WORE NF: 100

VOCABLILAFY: 10
VOCAELILAFY: 19
VOCAEULAF:Y: 26
VOCAELLAFY: 30
VOCAEULAFY: $\Xi 6$
VOCABULAFY: 41
VOCAEULAFY: 45
VOCAEULAFY: 49
VOCAELILAFY: 54
VOCAELILAF:Y: 57

```
\(F(x)=1.97809 \mathrm{EO} * \times\) TO THE \(7.37278 \mathrm{E}-1\) FQWER
COEFFICIENT OF COFFELLATION \(=0.9970\)
STANDARD EFFIOR OF ESTIMATE \(=0.0444\)
```

VOUNGEF: CHILDFEN"S TEXT STF:INGE:


OL DEF CHILDFEN'S TEXT STFINGS:

A

C.100 1	1.5161	0.8422
C101 1	1.7364	0.7634
C 1021	1.8197	0.7475
C103 1	1.7114	0.7795
C104 1	1.6770	0.8027
C110 1	1.8879	0.7644
C111 1	1.1639	0.8915
C113	1.5185	$0.825 ?$
C114 1	1.0602	0.9302
[130	2.0928	0.7100
C140	1.685	0.8097
C141	1.9781	0.7373
A MEAN:	1.6493	
S.DEV.:	0.3045	
E MEAN:	0.8010	
S.DEV.:	0.0 .044	
VICAELLAFY	Y MEAN:	63.0833
S.DEV.:		6.0221

VOC:AEILAFFY (FR 100)
72
60
56
60
68
61
69
62
73
56
6.
57

E: FUSSE1.TXT:

AT	WOFD	NFi:	10	VOCAEULAR'Y:	
AT	WOFD	NF:	20	YOCAFLLLAFY:	8
AT	WOFD	NF:	30	VOCAEULAFY:	22
AT	WOFID	NF:	40	VOCARULIAFY:	2
AT	WOFD	NF:	EO	VOCAEIJLAFFY:	0
AT	WOFE	NF:	60	VOCAELLAFY:	46
AT	WOFED	NF:	70	VOCAEULAFIY:	53
AT	WOFD	NF:	80	VOCAELLLAFY:	8
AT	WORE	NF:	90	VOCAELILAFiY:	5
AT	WORD	NF:	100	VOCABIJLARY:	

$F(\because)=1.17697 \mathrm{E}=\mathrm{O}$ * TO THE 8.90556e-1 FOWEF
COEFFICIENT OF COFFFELATION $=0.9975$
STANDAFID ERFIOF OF ESTIMATE $=0.0488$

E: FULSS2.TXT:

AT	WOFD	NF:	10	VOCAFLILAFY:	10
AT	WORD	NF:	20	VOCAELLAFEY:	15
AT	WORD	NR:	30	VOCAEULARY:	21
AT	WOFD	NR:	40	VOCARULARY:	29
AT	WOF:	NF:	50	VOCAEULAFF:	39
AT	WORD	NF:	60	VOCAEULAFY:	42
AT	WOFD	NR:	70	VOCAELLAFY:	47
AT	WOFD	NF:	80	VOCAELILAF:Y:	5
AT	WOF:D	NF:	90	VOCAFULAFY:	69
AT	WORD	NR:	100	VOCAEULAFY:	69
F	(x) $=$	1.2	734	* $\times$ TO THE	8.70024e-1
COEFFICIENT OF				COFRELATION =	
	ANLAF:	D E	ROF:	ESTIMATE $=$	0.0716

E: RUSSS. TXT:

AT	WORD	NF:	10	VOCAEULAFiY:	10
AT	WORD	NFis	20	VOCAEULAFYY:	18
AT	WORD	NF:	30	VOC.AEULAFY:	24
AT	WORD	NF:	40	VOCAELLARY:	30
AT	WORD	NF:	50	VOCAEULAFY:	37
AT	WORD	NR:	60	VOCABULARY:	4
AT	WORD	NF:	70	VOCABULARY:	58
AT	WORD	NF:	80	VOCAEULAFIY:	58
AT	WORD	NFi:	90	VOCAELILARY:	64
AT	WORD	NR:	100	VOCABULAFY:	69
	) $=$	1.4	0527	. $\times$ TO THE	8. $42651 e^{-1}$
COEFFICIENT OF				COFFELATION	0.9990
	ANDAR	D ER	ROR	ESTIMATE $=$	0.0288


AT	WOF:D	NR:	10	$v$	9
AT	WORD	NF:	20	VOCAEULAF:Y:	18
AT	WCIED	NR:	30	VOCAEUL AFY:	26
AT	WIED	NR:	40	VOCAEULAFY:	32
AT	WOF:D	NF:	50	VOCAELILAFY:	35
AT	WORD	NF:	60	VOCAELLLAFY:	40
AT	WOFD	NR:	70	VOCAEULAFY:	44
AT	WOFD	NR:	80	VOCABULAF:Y:	51
AT	WOFD	NR:	90	VOCAEULAFY:	56
AT	WORD	NR:	100	VOCAEULAFY:	62

$F(\%)=1.5720$ Se0 $* \times$ TO THE $7.97275 e-1$ FOWER COEFFICIENT OF COFFELATION $=0.995$ S STANDAFID EFFIOF OF ESTIMATE $=0.0605$

E: FUSSS.TXT:

```
AT WOFD NR: 10
AT WOFD NR: 20
AT WORD NF: 30
AT WOF:D NR: 40
AT WOF:L NR: 5O
AT WOFDD NR: GO
AT WOFED NR: 70
AT WOF:D NR: BO
AT WORD NR: 9O
AT WORD NR: 100
VOCAEULAFY: 10
VOCAELLARY: 18
VOCAELLLARY: 25
VOCABLLAFIY: 33
VOCABULAFiY: 42
VOCABULAFY: 50
VOCAEULAFIY: 56
VOCAEULARY: 61
VOCAEULAFY: 66
VOCAEULAFY: 72
\(F(x)=1.32650 \mathrm{O}=\times\) TO THE B.74244e-1 FOWEF COEFFICIENT OF COFFELATION \(=0.9989\) STANDAFD EFFOR OF ESTIMATE \(=0.0315\)
```

E: RFIUNEF. TXT:

AT	WOF:D	NF:	10	VOCAEULARY:	10
AT	WOFED	NF:	20	VOCAELLAFY:	20
AT	WOFD	NR:	30	VOCAEULARY:	25
AT	WORD	NF:	40	VOCARLILARY:	26
AT	WORD	NR:	50	VOCAEULAFY:	51
AT	WORD	NR:	60	VOCAEULARY:	36
AT	HOFD	NF:	70	VOCARLILAFY:	42
AT	WOFD	NR:	80	VOCABULARY:	48
AT	WORD	NF:	90	VOCAEULARY:	48
AT	WORD	NF:	100	VOCAEULAFEY:	50
$F\left(x_{i}\right)=2.29933 \mathrm{e}$ ( X TOTHE 6.78168e-1					
COEFFICIENT OF				CORRELATION $=0.9893$	
ST	ANDARD	ER	ROR	ESTIMATE =	0.0777

B:RUSS4.TXT:

AT	WORD	NF:	10	VOCAEULAFY: 9
AT	WORD	NF:	20	VOCAFULAFIY:
AT	WORD	NF:	30	VOCAEUL AFY: 26
AT	WORD	NF:	40	VOCAELLLAFY: 52
AT	WORD	NF:	50	VOCAELLAFYY: 35
AT	WORD	NF:	60	VOCABULAFY:
AT	WORD	NF:	70	VOCARULARY: 44
AT	WORD	NF:	80	VOCABULAFY: 51
AT	WORD	NF:	90	VOCAEULAFY: 56
AT	WORD	NF:	100	VOCAEULAFiY:

$F(x)=1.5720$ SeO $* \times$ TO THE $7.97275 e-1$ FOWER COEFFICIENT OF COFFELATION $=0.995 .3$ STANDAFD EFFROF OF ESTIMATE $=0.0605$

E:FUSS5.TXT:

AT	WORD	NR:	10	VOCAEULAFY:	10
AT	WORD	NR:	20	VOCAELILARY:	18
AT	WORD	NR:	30	VOCAFLILAFY:	25
AT	WORD	NR:	40	VOCABULAFY:	33
AT	WOF:D	NR:	50	VOCAEULAFY:	42
AT	WORD	NR:	60	VOCAEULAFY:	50
AT	WOFII	NR:	70	VOCAEULARY:	56
AT	WOFD	NR:	80	VOCAEULARY:	61
AT	WORD	NR:	90	VOCARULARY:	66
AT	WORD	NR:	100	VOCAEULAFY:	72
$F(\%)=1.3265$				- X TO THE	8.
COEFFICIENT OF				FFELATION =	0.99
COEFFILI		ER	QR	ESTIMATE =	0.03

E: GFIUNEF. TXT:

AT	WOF:D	NF:	10	VOCAEULARY:	10
AT	WOFD	NF:	20	VOCAEULARY:	20
AT	WORD	NR:	30	VOCAEULARY:	25
AT	WORD	NF:	40	VOCARLILAFY:	26
AT	WORD	NR:	50	VOCAEULAFY:	I 1
AT	WORD	NR:	60	VOCAELLARY:	36
AT	HOFD	NF:	70	YOCARLILAFY:	42
AT	WORD	NF:	80	VOCABULARY:	48
AT	WORD	NF:	90	VOCAEULARY:	48
AT	WORD	NF:	100	VOCAEULARY:	50
$F(x)=2.29933 \mathrm{C}$ ( X T0 THE 6.78168e-1					
COEFFICIENT OF				RRELATION =	0.9893
STA	ANDARD	D ER	FOR	ESTIMATE =	0.0777

E: LAEICV.TXT:

AT	WOF:D	NR:	10	VOCAEULAFY:	
AT	WORD	NR:	20	VOCAEULAFY:	19
AT	WOF:D	NR:	30	VOCAELLLAFY:	7
AT	WOF:D	NR:	40	VOCAELLAFY:	2
AT	WUFD	NF:	50	VOCAELILAFY:	8
AT	WOFD	NR:	60	VOCAELLARY:	2
AT	WORD	NR:	70	VOCAELLLAFY:	49
AT	WOFD	NR:	80	VOCABLLLARY:	57
AT	WOFD	NR:	90	VOCAEULAFY:	
	O	NR:	100	VOCABULLA	69

$F(x)=1.60724$ e0 $* \times$ TO THE 8.11292e-1 FOWER COEFFICIENT OF CORFELATION $=0.9981$ STANDARD ERFROF OF ESTIMATE $=0.0590$

E:FFANKENA. TXT:

```
AT WOFD NF: 10
GT WORD NF: 2O
AT WORD NF: SO
AT WOFD NF: 40
AT WOFDD NF: 5O
AT WOFDD NF: 60
AT WOFD NF: ?O
AT WOFD NF: BO
AT WOFD NF: 9O
AT WOFD NF: 100
VOCAEULAFYY:9
F(x) = 1.61118eO * TO THE 7.87362e-1 FOWEF
COEFFICIENT OF CORRELATION =0.9953
STANDAFDD EFFOF OF ESTIMATE =0.0597
```

E: CHOMSKY.TXT:

AT	WOFD	NR:	10	VO
AT	WORD	NF:	20	VOCABLILAFV:
AT	WOFD	NF:	30	VOCAELILAFY: 25
AT	WORD	NF:	40	VOCAEULAFY: 3 ?
AT	WOFED	NF:	50	VOCAELLAFY: 37
AT	WOFD	NR:	60	VOCAEULAFY: 44
AT	WOFD	NF:	70	VOCAELILAFY: 48
AT	WOFD	NR:	80	VOCAELILARY: 5
AT	WORD	NF:	90	VOCAELILARY:
AT	WORD	NF:	100	VOCAELILARY:

$F(x)=1.74646 \mathrm{e}_{\mathrm{O}} \mathrm{F}$ TO THE $7.81811 \mathrm{e}-1$ POWER COEFFICIENT OF CORRELATION $=0.9983$ STANDARD ERFOF: OF ESTIMATE $=0.0356$

	A	E	VOCAEULAFiY (FF 100)
Fuss 1	1.1770	0.8906	68
RUSS2	1.2073	0.8702	69
RUSES	1.4053	0.8427	69
FUSS4	1.5720	0.7973	62
RUSES	1.3265	0.8742	52
EFIUNEF:	2.2993	0.6782	60
LAEOV	1.6072	0.8129	69
FFAMIEENA	1.6111	0.7874	62
CHOMSKY	1.7465	0.7818	0
A MEAN:	1.6161		
S.DEV:	0.3172		
E MEAN:	0.8150		
S. DEV.:	0.0651		
VOCABULA   © DEV:	$Y$ MEAN:	$\begin{array}{r} 64.5556 \\ 6.8211 \end{array}$	

E: DREC1.TXT:


E: DFECC2.TXT:

AT	WURD	NF:	10	VOCAEULARY:	
AT	WORD	NF:	20	VOCAEULAFIY:	16
AT	WOFD	NF:	30	VOCAELILAFY:	26
AT	WOFED	NF:	40	VOCABLILAFY:	34
AT	WORD	NF:	50	VOCAELILAFY:	1
AT	WORD	NF:	60	VOCAELILAFY:	)
AT	WORD	NR:	70	VOCAEULARY:	56
AT	WOFED	NF:	80	VOCAELILAFY:	6
AT	WOFED	NR:	90	VOCAELILAFY:	70
AT	WOFD	NR:	100	VOCAEULAFY:	

$F\left(x_{i}\right)=8.70253 \mathrm{e}-1 \times$ TO THE $9.81356 \mathrm{e}-1$ FOWER
COEFFICIENT DF CORFELATION $=0.9982$
STANDAFID EFFROF OF ESTIMATE $=0.0458$

E:MAIL.TXT:

AT	WOFD	NF:	10	VOCAEULAFY:	10
AT	WORD	NF:	20	VOCABLULARY:	19
AT	WORD	NF:	30	VOCAEULARY:	26
AT	WORD	NR:	40	VOCAEULAFY:	35
AT	WORD	NF:	50	VOCARLLARY:	44
AT	WORD	NF:	60	VOCARULARY:	52
AT	WORD	NF:	70	VOCARULARY	60
AT	WORD	NF:	80	VOCAEULARY:	64
AT	WORD	NR:	90	VOCARULARY:	69
AT	WORD	NR:	100	VOCABLLARY:	75
F (	( ) =	1.3	136	- $\times$ TO THE	8.88350e
COEFFICIENT OF CORRELATION $=0.9986$   STANDAFD ERROR OF ESTIMATE $=0.0361$					

E: HEFIALD.TXT:

AT	WORD	NR:	10	VOCAEULARY:	
AT	WORD	NF:	20	VOCAELLAFY:	19
AT	WOFP	NR:	30	VOCAEULI AFY:	28
AT	WOFED	NR:	40	VOCAELLIARY:	35
AT	WOFD	NR:	50	VOCAELLAFYY:	42
AT	WORD	NF:	60	VOCAELILAFY:	48
AT	WOFD	NF:	70	VOCAELILAFY:	55
AT	WORD	NF:	80	VOCAEULAFY:	61
AT	WOFI	NR:	90	VOCABULAFF:	68
AT	WOKL	NF:	100	VOCARLLAFEY:	73
	( )	1.2	6552	* X TO THE	8.89357e-1
COEFFICIENT OF				CORRELATION $=0.9975$	
STANDAFD EFFOF OF ESTIMATE $=0.0489$					

E: GUAFD. TXT:

AT	WORD	NR:	10	VOCAEULAFY:	9
AT	WORD	NF:	20	VOCARLLLARY:	17
AT	WORD	NR:	30	VOCAEULAFIY:	25
AT	WORD	NR:	40	VOCAELLAF'Y:	29
AT	WOFD	NF:	50	VOCAELILAFY:	34
AT	WORD	NR:	60	VOCAEULAF:Y:	41
AT	WOFD	NR:	70	VOCAEULAFFY:	49
AT	WDFD	NR:	80	VOCAELILAFYY:	55
AT	WOFD	NF:	90	VOCAEULAFY:	60
AT	WOFD	NR:	100	VOCABULAFY:	67
$F(x$	( ) $=$	1.2	7938	* $\times$ TO THE	$8.54727 e-$
COEFFICIENT OF COFRELATIONSTANDAFID ERFOF OF ESTIMATE					

FAFEFS:


H: FADI.TXT:

```
AT WOFD NF: 10
AT WOFD NF: 20
AT WORD NF: 3O
GT WOFD NR: 40
AT WOF:D NR: 50
AT WOKD NF: 60
AT WOFD NF: }7
AT WORD NR: BO
AT WORD NR: 90
AT WORD NR: 100
```

VOCAEULAFY: 10 VOCAEULAFY: 20 VOCAEULAFY: 26 VOCAEULAFY: 32 VOCAEULARY: 41 VOCABULAFY: 45 VOCAEULAFY: 49 VOCAEULAFY: 58 VOCAEULAFY: 66 VOCABULAFY: 70

```
\(F\left(x_{i}\right)=1.56629 \mathrm{EO} \times\) TO THE \(8.24691 \mathrm{e}-1\) FOWER COEFFICIENT OF COFFELATION \(=0.9977\) STANDAFD EFROF OF ESTIMATE \(=0.04 .22\)
```

AT	WOFD	NR:	10	VOCAELLAFY:	10
AT	WORD	NF:	20	VOCAEULAFY:	19
AT	WOKD	NF:	30	VOCAELLLAFY:	26
AT	WORD	NR:	40	VOCABLLLAFYY:	3
AT	WOFD	NR:	50	VOCAEULAFY:	42
AT	WOFD	NR:	60	VOCAELILAFIY:	49
AT	WOFDD	NR:	70	VOCAELLARY:	54
AT	WOFRD	NR:	80	VOCABLILAFIY:	5
AT	WOFD	NR:	90	VOCARULARY:	65
AT	WORD	NR:	100	VOCARULAFY:	70
		1.4	7679	* $\times$ TO THE	8.44597e-
COEFFICIENT OF CORRELATION $=0.9989$					
STA	ANDARD	D EF	FOF:	ESTIMATE =	0.0312

E:FADS.TXT:

AT	WORD	NF:	10	VOCAEULARY:	10
AT	WORD	NF:	20	VOCARULARY:	20
AT	WORD	NF:	30	VOCAELLAFY:	27
AT	WOFRD	NF:	40	VOCAELLAFY:	36
AT	WORD	NR:	50	VOCAEULAFIY:	43
AT	WORD	NR:	60	VOCABULARY:	47
AT	WORD	NR:	70	VOCARULARY:	54
AT	WORD	NR:	80	VOCABLLLARY	59
AT	WOFiD	NF:	90	VOCAELLARY:	63
AT	WORD	NR:	100	VOCARLL $A R Y:$	67
```F(x)=1.64496e0 x TO THE B.18935e-1 POWER COEFFICIENT OF CORRELATION =0.9966 STANDARD ERFOR OF ESTIMATE =0.0529```					

E:FALA. TXT:

AT	WOFD	NF:	10	VOCAEULAFY:	10
AT	WOF:D	NR:	20	VOCAEULAF:Y:	17
AT	WOFD	NF:	30	VOCAEULAFY:	24
AT	WORD	NR:	40	VOCAEULAFY:	32
AT	WOFED	NR:	50	VOCAEULAFY:	41
AT	WORD	NR:	60	VOCAELILAFIY:	47
AT	WORD	NR:	70	VOCAELILAFY:	54
AT	WOFD	NR:	80	VOCAEULAFY:	60
AT	WOFD	NF:	90	VOCAEULAFY:	66
AT	WORD	NF:	100	VOCAELILAFY:	73
$\begin{aligned} & F(x)=1.2598100 * \times \text { TO THE } 8.6 \\ & \text { COEFFICIENT OF COFFELATION }=0.9 \end{aligned}$$\text { STANDAFD EFFIOR OF ESTIMATE }=0.0$					

E: FOOH.TXT:

AT	WOFD	NF:	10	VOCAEULAFY:	
AT	WOF:D	NF:	20	VOCAEULAFV:	13
AT	WOFD	NF:	30	VOCAELLAFIY:	14
AT	WORD	NR:	40	VOCABLILARY:	17
AT	WOFD	NF:	50	VOCABULAFY:	26
AT	WOFD	NF:	60	VOCAEULAFIY:	33
AT	WOFD	NF:	70	VOCAELULAFY:	37
AT	WORD	NF:	80	VOCAELILAFY:	42
AT	WOF:	NF:	90	VOCAEULAFIY:	47
AT	WOFD	NF:	100	VOCAELLAFY:	50
$F(\%)=9.87037 e-1 * \times$ TO THE COEFFICIENT OF COFRELATION $=0.9779$ STANDAFID EFRROF OF ESTIMATE $=0.1401$					

E:ALICEE. TXT:

```
AT WOFR NF: }1
AT WORD NF: }2
AT WORD NF: 30
AT WOF:D NF: 40
AT WORD NF: 50
AT WORD NR: 60
AT WORD NF: }7
AT WORD NR: }8
AT WOFD NF: 90
AT WORD NF: 100
VOCABULAFiY: }
VOCABULAFIY: 16
VOCAEULAFIY: }
VOCAELILARY: 31
VOCAEULAFIY: }3
VOCABULARY: 45
VOCAEULARY: 51
VOCABULARY: 56
VOCARULARY: 61
VOCABULARY& 67
\(F(\because)=1.17858 \mathrm{BeO} \times\) TO THE 8.81953e-1 FOWER COEFFICIENT OF CORFELATION \(=0.9995\) STANDARD EFFROR OF ESTIMATE \(=0.0221\)
```

E:ALICEL.TXT:

AT	WORD	NF:	10	VOCAEULARY:
AT	WORD	NF:	20	VOCAEULAFY: 16
AT	WORD	NF:	30	VOCARLILAFY:
AT	WORD	NF:	40	VOCAEULAFY: 30
AT	WORD	NF:	50	VOCAEULAFY: 38
AT	WORD	NF:	60	VOCAELLAFY: 45
AT	WORD	NF:	70	VOCAELILAFY: 51
AT	WORD	NR:	80	VOCAELLARY: 55
AT	WORD	NF:	90	VOCAELLAFY: 60
	WORD	NR:	100	VOCARULAF:

$F(x)=1.3062700 * x$ TO THE B.52374e-1 FOWEF
COEFFICIENT OF CORRELATION $=0.9960$
STANDAFD EFIFOF OF ESTIMATE $=0.0597$

E: SEAGULL.TXT:

AT	WOF:D	NF:	10	VOCAEULAFY:	10
AT	WOFD	NF:	20	VOLAFULAFY:	18
AT	WCF:D	NF:	30	VICAELILAFIY:	24
AT	WOFD	NF:	40	VOCAELLLAFY:	31
AT	WOFD	NF:	50	VOCAELILARY:	38
AT	WOFD	NF:	60	VOCAELILAFY:	52
AT	WOFD	NF:	70	VOCABULAF:	59
AT	WORD	NF:	80	VOCARULLARY:	36
AT	WOFD	NF:	90	VOCAELILAFIY:	72
AT	WOFD	NF:	100	VOLAELLARY:	

COEFFICIENT OF COFRELATION $=0.9992$
A E VOCAEUEAFY (FF: 1OO)

		11.8247
FADI	1.4765	0.8446
FADC	1.6450	0.8189
FACOA	1.2598	0.8811
FOICH	0.9870	$0.842=$
ALICEE	1.1786	0.8220
AL TCEL	1.065	E
SEAGULL	1. 304	0.860 -
A MEAH:	1.3451	
S.DEV:	O. 2141	
E. MECin:	0.8508	
S.LEC:	0.023	
VCUAELLAEAY MEAM:		66.75
		7.2850

ADULL TEXT STFIIMGS (SCIENT. + FAFEFS + CH. EUOYS):

A MEAN:	1.3968
S.DEV.	0.2940
E MEAN:	0.8471
S.DEV.:	0.0576
VUCAELALFYY MEAN:	67.0909
S.DEV.:	

QUTPUT FROM VOCOUT (600)

Index

Childrens text strings page:
C85 365
C95 366 366
C130 367
C140 368
C141 369
Statistics 370
Scientists" text strings page: 371
RUSS 1
RUSS 1
RUSS2 372 372
RUSS3 373
RUSS4 374
RUSSS 375
BRUNEF 376
LABOV 377
FRANKENA 378
CHOMSKY 379
Statistics 380
Newspaper text strings page:
DREC1 381
DREC2 382 303
HERAL
HERAL 384
GUARDIAN
GUARDIAN
MAIL 385
Statistics 386
Text strings from Childrens Books page:
PAD 1 387 388
PAD2.
PAD3. 389
PAD4 390
POOH. 391
392ALICEL
ALICEB 393
SEAGULL 394
statistics 395

AT	WOFD	NF:	50	VOCAEULAFY:	38
AT	WOFD	NF:	100	VUCAEULAFYY:	64
AT	WOF:D	NF:	150	VOCAELILAFY:	84
AT	WOFT	NF:	20,	VOCABULAF:	94
AT	WOFIT	NF:	25:1	WOCAHLLAEFY:	114
AT	WCIFD	NR:	300	VOCAELLLAF:Y:	127
AT	WIF:D	NE:	250	YOCAELILAFY:	134
AT	WORED	NF:	400	VOCAELUAFY:	152
GTT	WGF:D	WF:	450	VOCAELILAFY:	168
AT	WOFI	NF:	500	VOCAELILAFY:	188
	WOFIT	NF:	55	VOCAEULLAFIY:	201
$F(\%)=2.8484 E_{0} 0 * \times T 0$ THE COEFFICIENT CIF COFFELATION $=0.9978$ STARULAFT EFFOF: OF EETIMATE $=0.0 .40$					

E:CEE,FFFM:


```
F:COE.TXT:
AT WOF:D NF: 5O
AT WOFD NF: 100
AT WCIFD NF: 150
AT WOFD NF:: 2OO
AT WOFID NF: 2:SO
AT WIFID NF: SOO
AT WGIFI NF: בEO
AT WOFD NF: 4OM
AT WOFD NF: 45O
AT WOFD NF: EOO
AT WUFIL NF: ESO
VOCAFHILAFY: 34
VOCABULAFY: 63
VOCAEULAF:Y: }7
VOCAELLLAF:Y: 95
VOCAELLAFY: 116
VOCAELILAEYY: 1S9
VOCAB!ILAFYY: 15%
VUCAELILAFYY: 179
VOCABULAFY: 198
VGCAELLAF:Y: 217
VOCAEULLAFI': 2SS
F(%)=1.47109e0 * X TO THE 7.99715E-1 FOUEF:
C:OEFFIEIENT OF COFFELATION =0.997?
STAMDAFD EFFOLF: OF ESTIMATE =0.042S
E:CPE.FFIM:
```

```
AT WGNT NF: EO
```

AT WGNT NF: EO
AT WOFD NF: 1OO
AT WOFD NF: 1OO
AT WCHII WF: 15O
AT WCHII WF: 15O
AT WOFD NF: 200
AT WOFD NF: 200
AT WOFID NF: 250
AT WOFID NF: 250
AT WORD NF: SOO
AT WORD NF: SOO
AT WOFID NF: }55
AT WOFID NF: }55
AT WOFD NF: 40O
AT WOFD NF: 40O
AT WOFID NF:: 45O
AT WOFID NF:: 45O
AT WOFD NF:: 500
AT WOFD NF:: 500
AT WOFLL NF: 550
AT WOFLL NF: 550
VOCAEULLAFY: 40
VOCAEULLAFY: 40
YOCAELILAF:Y: }7
YOCAELILAF:Y: }7
WOCABLLLAFY: 104
WOCABLLLAFY: 104
VGCAELLLAF:Y: 119
VGCAELLLAF:Y: 119
VOCAFLILAF:Y: 137
VOCAFLILAF:Y: 137
VOICABULAF:Y: 153.
VOICABULAF:Y: 153.
VOCAELILAFY: 171
VOCAELILAFY: 171
VIICABULAFFY: 194
VIICABULAFFY: 194
VOCAEULAFIY: 210
VOCAEULAFIY: 210
VOCAEULAFY: 221
VOCAEULAFY: 221
VOCAEULAF:Y: 236
VOCAEULAF:Y: 236
F(:) = 2.60563e0 * x TD THE 7.17789e-1 FOWEF:
F(:) = 2.60563e0 * x TD THE 7.17789e-1 FOWEF:
COEFFICIENT OF COFFELATION =0.9969
COEFFICIENT OF COFFELATION =0.9969
STANDAFID EFFROF OF ESTIMATE =0.0446

```
STANDAFID EFFROF OF ESTIMATE =0.0446
```

```
F:C1SO.TXT:
```



```
E:C1SG.FHM:
\begin{tabular}{|c|c|c|c|c|c|}
\hline AT & WOtid & NF: & 50 & VUCAEULAFY: & 33 \\
\hline AT & WCIF:D & NF: & 100 & VOCAEULAFIY: & 58 \\
\hline AT & UGFD & NF: & 150 & VOCAEULAFEY: & 76 \\
\hline AT & WCFD & NF: & 200 & VCICAEULLAF:Y: & 93 \\
\hline AT & WOFD & NF: & 250 & VOCAELILAFY: & 07 \\
\hline AT & WCIFSI & NF: & 300 & VOCAELILAFY: & 3 \\
\hline AT & WOFil & NF: & 350 & VOCABULAFY: & 142 \\
\hline AT & WORED & NF: & 400 & VOCAEULAF:Y: & 51 \\
\hline AT & WOF:D & NF: & 450 & VOCAELILAFIV: & 60 \\
\hline AT & WOFIL & NF: & 500 & VOCAELLLARY: & 171 \\
\hline A & WOED & NF: & 550 & VOCAELILAFY: & 178 \\
\hline
\end{tabular}
\(F(\%)=2.20871 e 0 * \times\) TO THE \(7.03078 e-1\) FOWEF:
COEFFICIENT OF CORRELATION \(=0.9985\)
STANDARD EFFOLF OF ESTIMATE \(=0.0308\)
```

E:C. 4 G. TX]:

E:CAB.FEM:

E：CJA1．TXT：

A1	WUFD	NT：	50	VGCALULARY：	
41	WOFI	NF：	100	VGCAELILAFEY：	
$\mathrm{AT}_{\boldsymbol{T}}$	WOFIS	NF：	150	VOCAELILAFY：	
at	WCF：L	NF：	200	VLICAEULAF＇Y：	94
4.5	vatis	NF：	250	VOCAEILLAFY：	
$4 T$	WOFD	NH：	300	VCICAEUILAFY：	
AT	WOH：	NF：	350	vorcamulafy：	
fil	WCFID	NF：	400	VOCAEULAFEY：	
AT	warm	NF：\％	450	VCICAEULAFY：	2
AT	WORL	NF：	500		
AT	WCtw	NF：	550	ILARI：	

$F(\therefore)=1.95 E E E E 0 \times$ TO THE $7.35543 E-1$ FOWEF COEFFICIENT OF COFFELATION $=0.9992$ CTANDAFO EFHOE：OF ESTIMATE $=0.0234$

E：E141．FFOT：

AT	vide	NF：	50	VCICAHLIL AFY：	58
fil	WLF．D	ME：	100	UOCAFLILAFY：	59
Al	W以下近	NF：	150	VOCAELILAFE：	
AT	WCA：	NF：	200	VOICAELILAFiY：	101
AT	WCFD	NF：	250	VOCAFLLLAFF：	118
AT	WOFE	NF：	300	VOCAELILAFY：	132
AT	WCIFE	NF：	350	VOCAEMILAF：Y：	15.2
AT	WOFD	NF：	400	VOCAELILAF：Y：	167
47	WOFD	NF：	450	VOCAELILAFY：	184
AT	WOFD	NF：	500	VUCAELILAFiY：	199
AT	WOFD	NF：	550	VOCAEULAFY：	208
$F(\%)=2.16623$ e0＊\times TO THE COEFFICIENT OF CORFELATION $=0.9994$ STANDAFD ERFOR OF ESTIMATE $=0.0189$					

CHILIFE! E G TEXT STFINGS:


```
E:FLUES1.T兑:
\begin{tabular}{|c|c|c|c|c|c|}
\hline AT & WOFD & NF: & 50 & VCICAELILAFY: & 40 \\
\hline AT & WOFE & NF: & 100 & VOCAEILLAFY: & 68 \\
\hline AT & WOFI & NF: & 150 & VOCAELILAFY: & 97 \\
\hline AT & WOF:D & NE: & 200 & VOCAEULAFIY: & 115 \\
\hline AT & WGFD & NK: & 250 & VOCAELILAFiY: & 138 \\
\hline AT & WUF:L & NK: & S00 & VOCAELLLAFY: & 162 \\
\hline AT & WOF:D & NF: & -50 & VICAEULAFIY: & 185 \\
\hline A! & WOFI & NF: & 400 & VOCAELILAFY: & 199 \\
\hline AT & WCF: & NS: & 450 & VUCABULAFY: & 217 \\
\hline AT & Wratn & NF: & 500 & VOCAEULAF:Y: & 238 \\
\hline AT & WCIFS & NF: & 5EG & YOCAEULIAFY: & 257 \\
\hline AT & WOFEL & NF: & 0 & VCICAELILAFIY: & 266 \\
\hline
\end{tabular}
F(%)=1.0日ES4EO * * TQ THE 7.69619e-1 FOWEF:
COEFFICIENT OF COFFEELATION =0.9996
STANTAFIL EFFOF: GF ESTIMATE = 0.0179
E:FILSS1.FENM:
\begin{tabular}{|c|c|c|c|c|c|}
\hline AT & WC & : & 50 & VCLCAEULAFAY: & 4. \\
\hline AT & Wrest & NF: & 100 & VICAETILAFiY: & 74 \\
\hline AT & WIFID & NR: & 150 & VICAEULARY: & 102 \\
\hline AT & WGF:D & NR: & 200 & VOCAELILAF:Y: & 118 \\
\hline AT & WOFID & NF: & 250 & VOCAELILAFY: & 141 \\
\hline AT & WAFD & NR: & 300 & VIICAEILILAFY: & 157 \\
\hline AT & WOFTI & NF: & 350 & VOCABLILAFY: & 172 \\
\hline AT & WOEL & NF: & 400 & VOCAELILAFY: & 191 \\
\hline AT & Waki & NF: & 450 & VOCAELILAFY: & 211 \\
\hline AT & WOFD & NF: & 500 & VOCABULAFY: & 23.4 \\
\hline AT & WOF:D & NF: & 550 & VOCAEULAFY: & 251 \\
\hline AT & WIRED & NR: & 600 & VIICAEULAFIY: & 266 \\
\hline
\end{tabular}
\(F(x)=2.65574 \mathrm{eO} * \times\) TO THE \(7.18065 \mathrm{e}-1\) F.OWER
COEFFICIENT OF COFFELATION \(=0.9989\)
STANDAFD EFF:QF OF ESTIMATE \(=0.0262\)
```

E: FUSSZ. TXT:

AT	WCIED	NK:	50	VOCAEULAFY:	39	
AT	WOFD	NF:	100	VICAEULAFY:	69	
AT	WCIFD	NF:	150	VOCAELLAFPY:	98	
AT	WOFED	NF:	200	VOCABULAFY:	123	
AT	WCIF:	NF:	250	VOCAEULAFY:	151	
AT	WORE	NR:	300	VOCAELLAFEY:	174	
AT	WCFIT	NE:	250	VOCAEULARY:	192	
AT	WOFED	NF:	400	VOCAEULAFIY:	215	
AT	WCFD	WF:	450	VOCAEIJLAFY:	237	
AT	WGFD	NF:	500	VICAELULAFY:	261	
AT	WURD	NF:	550	VOCAELILAF:Y:	278	
AT	WURED	NF:	600	VOCAEULAFY:	296	
F (,)	1.6	316	* \times TO THE	8.	$5 e-1$
COEFFICIENT OF				CIFFELATION $=0.9998$		
STANDARD ERFIOF OF ESTIMATE $=0.0138$						

F: KULEEN. FFMM:

AT	WOFID	NF:	50	YOCAFULAFIY:	44
AT	WURT	NF:	100	VOCAELILAFY:	81
AT	WOFS	NF:	150	VOCAEULAF:Y:	10
AT	WOFE	NF:	200	VICAELILAFIY:	1
AT	WCF:I	NF:	250	VOCAEULAFY:	155
AT	WUFD	NF:	300	VIICAELILAFY:	179
AT	WCRED	NF:	350	VUCAELILA	210
AT	WIRD	NF:	400	VOCAELILAFY:	219
AT	WOF:L	NF:	450	VOCAEULAFFY:	244
AT	WOFED	NFi:	500	VCCAEULAFY:	279
AT	WOF:D	NF:	550	VOCAEUL ARY:	296
AT	WOFD	NF:	600	vaicarulary:	296
COEFFIC:IENT OF COFFELATION $=0.9994$					

AT	WORD	NF:	50	VOCAEULARY:	
AT	WORD	NR:	100	VOCAELLARY:	69
AT	WORD	NF:	150	VOCAELULARY:	9
AT	WORD	NR:	200	VOCAELLLARY:	122
AT	WORD	NR:	250	VOCAEULARY:	144
AT	WORD	NR:	300	VOCAELLARY:	60
AT	WORD	NF:	350	VOCABLLARY:	171
AT	WORD	NF:	400	VOCABULARY:	189
AT	WORD	NF:	450	VOCARULARY	7
AT	WORD	NR:	500	VICABULAFIY:	2
AT	WORD	NF:	550	VOCARULARY:	223
AT	WORD	NR:	600	VOCAELLLARY	244

GEOMETFIC REGFESSION ANALYSIS:
 COEFFICIENT OF DETERMINATION (R-SQUARED) $=0.9885$ COEFFICIENT OF CORFELATION $=0.9942$ STANDARD ERROR OF ESTIMATE $=0.0624$

E:RUSSSF.TXT:

AT WORD NR:	50	VOCARLLARY: 44	
AT WORD NR:	100	VOCABLLARY:	70
AT WORD NR:	150	VOCABULARY: 93	
AT WORD NR:	200	VOCAEULARY:	108
AT WORD NR:	250	VOCARULARY:	127
AT WORD NR:	300	VOCARULARY:	147
AT WORD NR: 350	VOCARULARY:	161	
AT WORD NR:	400	VOCARULARY:	177
AT WORD NR:	450	VOCARULARY:	197
AT WORD NR:	500	VOCABULARY:	212
AT WORD NR: 550	VOCARULARY: 230		
AT WORD NR: 600	VOCABULARY: 244		

GEOMETRIC REGRESSION ANALYSIS:

```
F(x) = 2.93395e0 x TO THE 6.87247e-1 POWER
COEFFICIENT OF DETERMINATION (R-SQUARED) =0.9984
COEFFICIENT OF CORRELATION =0.9992
STANDARD ERROR DF ESTIMATE =0.0217
```

E: RUSSU.TXT:

A	WOFiD	NF:	50	VOCAELLARY:	35
AT	WORD	NR:	100	VOCAELLLAFY:	62
AT	WORD	NF:	150	VOCAEULARY:	86
AT	WORD	NR:	200	VOCARLLIARY:	111
AT	WORD	NF:	250	VOCAEULARY:	9
AT	WORD	NR:	300	VOCAEULAFY:	
AT	WORD	NF:	350	VOCABLLAR	
AT	WORD	NF:	400	VOCA	238
AT	WOFD	NR:	450	VOCABULARY:	250
AT	WORD	NF:	500	VOCABULARY:	273
AT	WORD	NF:	550	VOCARULARY:	295
AT	WORD	NF:	600	VOCAELLARY8	295

GEOMETRIC REGFESSION ANALYSIS:
$F(x)=1.15996$ eO x TO THE B.65273e-1 POWER
COEFFICIENT OF DETERMINATION (R-SQUARED) $=0.9995$ COEFFICIENT OF CORRELATION $=0.9998$
STANDAFD ERROF OF ESTIMATE $=0.0153$

R: FUSS4F.TXT:

AT	WORD	NF:	50	VOCAEULARY:	38	
AT	WORD	NR:	100	VOCABULARY8	68	
AT	WORD	NR:	150	VOCABLLARY8	99	
AT	WORD	NR:	200	VOCARLLLARY:	126	
AT	WORD	NR:	250	VOCARLLARY:	154	
AT	WOFD	NR:	300	VOCARULARY:	177	
AT	WORD	NR:	350	VOCARULARY:	194	
AT	WORD	NR:	400	VOCABULARY:	217	
AT	WORD	NR:	450	VOCARLLLARY	242	
AT	WORD	NR:	500	VOCARULARY:	256	
AT	WORD	NR:	550	VOCABULARY:	275	
AT	WORD	NR:	600	VOCABLLLARY:	295	
GEOMETRIC REGRESSION ANALYSIS:						
F) $=$	1.5	6054	- X TO THE	B. $23929 \mathrm{e}-1$	POWER
COEFFICI		IENT	OF	TERMINATION	(R-SQUARED)	9783
\mathbf{C}	FFIC	IENT	OF	ORRELATION =	0.9991	
	ANDARD			ESTIMATE =	0.0271	

AT	WOF:D	N	50	VOCAEULAFY:	42
1	WOFLD	NF:	100	VOCARULAF:Y:	72
AT	WCFPD	NF:	150	VOCAHLILAFIY:	97
AT	WOF:D	NF:	200	VOCAFULAFiY:	124
AT	WCTE	NF:	25:	VOCAELILAFY:	6
AT	WORE	NF:	300	VICAELILAFEY:	
T	WEFD	Nf:	550	VICABULAFY:	187
AT	WCFD	NF:	400	VOCAELILAFE:	6
AT	WCRE	NF:	450	VOCAEULAFiY:	225
AT	WOFE	NF:	EOO	VOLAEULAFEY:	49
AT	WCFIL	HF:	55	VICAEULAFY:	271
AT	WCIFS	NF:	600	YCICAEULAFY:	87

$F(x)=2.0 E 75 \mathrm{SeO} * \times$ TO THE $7.70970 \mathrm{E}-1$ FOWEF
COEFFICIENT OF COFFELATION $=0.9998$
GIAHMAFD EFFOLF OF ESTIMATE $=0.0106$

F: FUUESE.FFiM:

AT	WOFID	NJF:	50	VOCARLILARY:	43
AT	WOFD	NF:	100	VOLCAELILAFY:	78
AT	Ward	NF:	150	VOCAELILAFY:	107
A^{\top}	WOF:	NF:	200	VOCAEULAFIY:	136
θ^{-1}	W上er	NF:	250	VOCAELILARY:	155
AT	WOFD	HR:	$\therefore 0$	VOCAEHLLAFEY:	169
AT	WCFED	NF:	350	VOCAELLAFEY:	191
AT	WCIED	NF:	400	VIC.AELILAFEY:	215
AT	WUF:I	NFE:	450	VOCAELILAF:Y:	238
Fit	WCIFD	NF:	500	VOCAELILAF:Y:	256
AT	WORD	NF:	550	VUCAEULAFY:	272
AT	WOFE	NF:	60	VOCAEULLAF:Y:	287
					7.51085e-1
STANDAND EFFFIF OF ESTIMATE $=0.0312$					

E: EFUITEF, TXT:


```
E:LGROV.T关T:
AT WOFI NF:S EO
AT WIF:D NF: 100
AT WOF:' NE: 150
AT WCNFI NF: 2OO
AT WUH:N NF: 250
AT WOED NE: 300
AT VOFD NF: 350
AT WGRD NF: 400
AT WUNTH NF: 450
AT WOFLS WF: 500
HT WFH NF: 55O
AT WCTED NF: 6OO
VNCAELLAFEY: 38
VOCAELILAF:Y: 69
VGCAEULAFF: 102
VICAEULLAFFY: 129
VOLAELLLAFY: 153
VCICAELILAFYY: 175
VOCAFHILARY: 199
    VLHAHULAFY: 227
    vOCAEMLLAF'Y: 2AE
    VOCARLLLAFIY: 269
    VOCABLLAFIY: 2g4
    VGCAFULAFYY: SO2
    F:O)=1.4%15Qeg * T TO THE R. S5772e-1 FOWEF:
    CGEFFICIENH OF CORFELATION =0.9QQS
    ETAMDAEL EFFROF OF EETIMATE =0.0247
H:LAEOV.FFMM:
\begin{tabular}{|c|c|c|c|c|c|}
\hline mT & ar． & 5： & 50 & VOCHESUAAE： & 41 \\
\hline bl & W？F！ & NF： & 100 & VOLGELLAFY： & \\
\hline AT & WOFS & NF： & 150 & VOCAHULAFYY： & 101 \\
\hline 417 & V：DFI & NC： & この & VOSAESMAFS＇ & 127 \\
\hline FT & W止： & n－ & －68 & WCAELILAF：Y： & 0 \\
\hline AT & WOFD & NF： & 500 & VIICAEULAF：Y： & 7 \\
\hline AT & WGEET & NH：： & 350 & VOCAEULLAF：Y： & 4 \\
\hline fit & WURE & NF： & 400 & VOCAELIL AFY： & 7 \\
\hline かt & W0ET： & NF： & 450 & VOCARULAF：Y： & 240 \\
\hline ¢T & W0RD & Nix： & 50 & VICAELILAFEY： & 261 \\
\hline 47 & WCFED & NF： & 550 & VOCABLLAFEY： & 281 \\
\hline AT & HEFD & NF： & 600 & VOCAELILAFY： & \\
\hline
\end{tabular}
    F(%)=1.21342eO * x TO THE 7.99855e-1 FOWEF:
    COEFFICIENT OF COFRELATION =0.9999
    STANDAFID ERFOF OF ESTIMATE =0.0095
```

E: FRANK.ENA.TXT:

AT	WORD	NF:	50	VOCAEULAFY:	
AT	WORD	NR:	100	VOCABLLARY:	60
AT	WORD	NF:	150	VOCARULARY:	87
AT	WORD	NF:	200	VOCARLLARY:	110
AT	WORD	NF:	250	VOCAEULARY:	128
AT	WORD	NR:	300	VOCAEULAFiY:	142
AT	WOFD	NF:	350	VOCARLLARY:	162
AT	WORD	NF:	400	VOCABLLLARY:	182
AT	WORD	NR:	450	VOCABULARY:	198
AT	WORD	NR:	500	VOCABULARY:	219
AT	WOFD	NF:	550	VOCAEULARY:	-
	WOFD		600	VICAEULAR	23

geometric regression Analysis:

```
COEFFICIENT OF DETERMINATION (R-SQUARED) = 0.9985
COEFFICIENT OF CORRELATION =0.9993
STANDAF:D ERROR OF ESTIMATE =0.0236
```

E:FRANKF. TXT:

AT	WORD	NR:	50	VOCABLILARY:	37	
AT	WORD	NR:	100	VOCABLILARY:	66	
AT	WORD	NR:	150	VOCABLLLARY:	89	
AT	WORD	NR:	200	VOCARULARY:	111	
AT	WORD	NR:	250	VOCABULARY:	128	
AT	WORD	NR:	300	VOCABULARY:	148	
AT	WORD	NR:	350	VOCARLLARY:	172	
AT	WORD	NR:	400	VOCARULARY:	185	
AT	WORD	NR:	450	VOCARLLARY:	199	
AT	WORD	NR:	500	VOCABULARY8	209	
AT	WORD	NR:	550	VOCABULARY	224	
AT	WORD	NR:	600	VOCABLLARY:	239	
GEOMETRIC REGRESSION ANALYSIE:						
F (() x					POWER
COE	FFIC	IENT	OF	TERMINATION	(R-SQUARED)	$=0.9978$
COL	FFIC	IENT	OF	ORRELATION =	0.9989	
	NDA			ESTIMATE =	0.0276	

E:CHMA.TYT:

E:CHOMEYY.FRM:
aT bOES HF: 50
AT WOKE NE: 100
AT WORD HF: 150
AT WORD NF: 200
DT WARD NE: 250
AT WOFD NE: 300
AT WNRD NF: 350
AT WORD NE: 400
AT WOED NE: 450
AT WORED NF: 500
AT WOFID NF: 550
AT WORD NF: 600
vocatulary: 42 VOCAELLAFY: 70
VOCAEULAFY: 96
VOCAEULARY: 117
vOCAEULAFY: 133
VICAEULAFY: 149
VOCABULLAFY: 170
VOCAELLAFY: 193
VCICAELLAFY: 209
VICAEULAFY: 217
VOCABLILAFY: 229
VICAEULAFY: 242
$F(\%)=2.70257 \mathrm{E}=2 * \mathrm{TO}$ THE $7.06924 \mathrm{e}-1$ FOWEF: CUEFFICIENT OF CORFELATION $=0.9991$
GTANDARII ERFOK OF ESTIMATE $=0.0234$

ETHFHT]ETS:

0.
$0.164=$
0.0189
-0.0395
1.5090
-0.01414
0.4046
-0.0226
-
-0.0126
-0.0125
0.
-0.0070
0.0001
-0.0202

E：DFEC1．TXT8

AT	WORD	NR：	50	VOCAELILAFY：	41
AT	WORD	NR：	100	VOCARULARY：	72
AT	WORD	NR：	150	VOCARLLARY：	101
AT	WOFD	NR：	200	VOCABLLLAFY：	130
AT	WORD	NR：	250	VOCARULARY：	148
AT	WORD	NR：	300	VOCABULARY：	174
AT	WOFD	NR：	350	VOCAELLLARY：	200
AT	WOFD	NR：	400	VOCABLLLARY：	226
AT	WOFD	NR：	450	VOCABULARY：	249
AT	WORD	NR：	500	VOCARULARY：	274
AT	WORED	NR：	550	VOCARULARY：	297
AT	WORD	NR：	600	VOCABULAFY：	324

GEOMETRIC REGRESSION ANALYSIS：
$F(x)=1.60110 \mathrm{eO} \times$ TO THE B．26290e－1 FOWER COEFFICIENT OF DETERMINATION（R－SQUARED）$=0.9993$ COEFFICIENT OF CORRELATION $=0.9996$ STANDAFD ERROR OF ESTIMATE $=0.0179$

E：DEEC1，FFM：

AT	Wafor	1ve：	Err	VOCAELILAFY：	48
fit	WTEN	HF：	100	VOCAELILAFY：	79
tir	WOEL	？ $\mathrm{FF}^{\text {：}}$	300	VUCAEDLAFY：	115
AT	WOLT	NE：	$\because 0$	VOLAELILAF゙Y：	142
AT	WOFE	NF：	250	UQCAELILAFIY：	171
$6 T$	WCIFI	NF：	300	VOCAEULLAFY：	194
－T	WOFD	HF：	『E	VICAFAFULAFY：	220
$6 T$	Wran	ME：	400	VECAELILAFiY：	2こ7
AT	WCIFI	HF：	450	WOCAHULLARY：	266
47	WCRIL	MS：	50	VOCABULAFY：	285
07	WaF：	NF：	550	VOCAELILAFE：	308
AT	WCRE	Nis：	bor	VOLALGILAFV：	324
$F(\because)=1.95458$				＊x to the	8.0
COEFFICIENT OF				FFELATION＝	0．99
ETANDAEL EFFIOK				ESTIMATE＝	． 02

E: DFECZ.TXT:

A	WOF:L	NF:	50	VOCAFULAF:Y:	41
AT	WOF:D	NF:	100	VICAELLLAFY:	74
AT	WORD	NF:	150	VOCAELLAFY:	103
AT	WORD	NF:	200	VICAELLLAFiY:	122
AT	WOED	NF:	250	VOCAELILAFFY:	145
AT	WORED	NF:	300	VICAEULAFY:	168
AT	WOF:L	NF:	350	VOCAELIL AF:Y:	193
AT	WOR:D	NF:	400	VICAEILLAFY:	218
AT	WOF:D	NF:	450	VOCAEULAFY:	231
AT	WOFD	NF:	500	VOC.AFULAFiY:	246
AT	WCIFD	NF:	550	VOCASSJLAF:Y:	273
AT	WOFD	NF:	600	VOCAEULAFY:	290

$F(\%)=2.01720$ OO $* \times$ TO THE $7.77076 \mathrm{E}-1$ FOWER COEFFICIENT OF CGFIFELATION $=0.9994$ STANDAFD EF:FOF: OF ESTIMATE $=0.0222$

B: DFECC. FFIM:

AT	WOFD	NF:	510	YOC:AELJAFAY:	41
AT	WUTF:D	NE:	100	VOCAELILAFY:	69
AT	WDFL	NE:	150	VOCAEUILAFV:	91
AT	WCIED	NF:	200	VOCAELLAFAY:	117
AT	WaFL	NF:	250	VOCABULAFY:	143
AT	WORD	NF:	300	VOCAEULAFY:	167
AT	WOFD	NF:	350	VOCAEULAFY:	187
AT	WOFD	NF:	400	VUCAEULLAFF:	211
AT	WGF:L	NF:	450	VOCAEULAFIY:	226
AT	WORD	NF:	500	VOCAELLAFAY:	251
AT	WOF:D	NF:	550	VOCAELILAFY:	270
AT	WORD	NF:	600	VICAELILAFY:	290

$F(\because)=1.7627600 * \times$ TO THE $7.96281 \mathrm{e}-1$ PQWER COEFFICIENT OF COFFELATION $=0.9995$
STANLAFED EFF:OF OF ESTIMATE $=0.0206$

E: HEFFALD.TXT:

H7	WOFID	NF:	50	VOCAELILAFY:	42	
AT	WOFiD	NF:	100	VOCAELILAFEY:	73	
AT	WCRI	NF:	150	VOCAELILAFY:	98	
4 AT	WOFED	NF:	200	VOCAEILLAF:Y:	126	
AT	WCIFI,	NF:	250	VCICAELILAFY:	147	
AT	WOFE	NF:	300	VOCAEILAFVY:	165	
AT	WOFD	NF:	350	VOLAEULAFY:	177	
AT	WOED	NF:	400	VIICAELILAF:Y:	203	
AT	WUFIL	NF:	450	VOCAEULAFY:	227	
AT	WOFED	NF:	E60	VICARULAF:Y:	248	
AT	WOFED	NF:	550	VOCARULAF:Y:	267	
Ail	WGFID	NF:	600	VCICAEULAF:Y:	285	
F 0	$)=$	2.1	311 l	* x to the	7.61296e-1	FIOWEF:
COEFFICIENT OF COFFEELATION $=0.9893$						
STHNIWFIL EFFROF OF ESTIMATE $=0.0232$						
E:HEFAILI FFM:						
AT	WDE]	ME:	50	VGCAELLAFY:	40	
AT	WCED	NR:	100	VOCAEULAE:Y:	? 0	
AT	WOED	HF:	150	VOCAELILAF:Y:	95	
AT	WUFD	NF:	200	VICAELILAFY:	131	
AT	WCFID	NF:	250	VOCABULAFY:	154	
AT	WOFED	NF:	300	VOCAEULAFiY:	176	
AT	WDET	NF:	350	VOCAELL AFIY:	196	
AT	WCFD	NF:	40	VOCAEVUAFIY:	216	
AT	WGFiL	NF:	450	VOCAELILAFY:	233	
AT	UOFD	NF:	500	VUCAEULLAFY:	- 251	
AT	WOFD	NF:	55	VOCAELILAFY:	268	
AT	WUFD	NF:	600	VOCAEULAFY:	285	
Fi	:) $=$	1.8	7003	* X TO THE	$7.91454 \mathrm{e}-1$	FOWEF:
COEFFICIENT OF COFFELATION $=0.9987$						
	NDAFED	EF	RUF:	ESTIMATE $=$	0.0319	

B: GUARD. TXT:

AT	WORD	NF:	50	8	34
AT	WORD	NR:	100	VOCABULARY:	67
AT	WORD	NR:	150	VOCARULARY:	90
AT	WORD	NR:	200	VOCABLLARY:	114
AT	WOFD	NF:	250	VOCABULARY:	133
AT	WORD	NR:	300	VOCABULARY:	151
AT	WO	NR:	350	OCABU	178
AT	WO	NR:	400	OCABU	198
AT	WO	NR:	450	OCARULARY:	218
AT	WORD	NR:	500	VOCARLLARY:	
AT	WORD	NR:	550	VOCARLLARY:	
AT	WORD	NR:	600	vocarul	

GEOMETRIC REGRESSION ANALYSIS:
$F(x)=1.47574 e 0 * x$ TO THE B.16292e-1 POWER COEFFICIENT OF DETERMINATION (R-SQUARED) $=0.9979$ COEFFICIENT OF CORRELATION $=0.9989$ STANDARD ERRDR OF ESTIMATE $=0.0300$

E: GUARDP. TXT:

AT	WORD	NR:	50	VOCARULARY8	
AT	WORD	NR2	100	VOCARLLARY:	6
AT	WORD	NR:	150	VOCABULARY8	9
AT	WORD	NR:	200	VOCABLILARY:	117
AT	WORD	NR:	250	VOCABLLARY:	141
AT	MORD	NR:	300	VOCABULARY:	162
AT	WORD	NR:	350	VOCABLILARY:	181
AT	WORD	NR:	400	VOCABLLARY:	198
AT	WORD	NR:	450	VOCABLLARY:	213
AT	WORD	NR:	500	VOCABULARY:	230
AT	WORD	NR:	550	VOCABLLARY8	248
AT	WORD	NR:	600	VOCABULARY:	268

GEOMETRIC REGRESSION ANALYSI8:

$F(x)=1.95017 \mathrm{eO} \times$ TO THE $7.70623{ }^{-1} 1$ POWER COEFFICIENT OF DETERMINATION (R-SQUARED) = 0.9992 COEFFICIENT OF CORRELATION $=0.9996$ STANDARD ERROR DF ESTIMATE $=0.0172$

F:MAIL. TXT:

AT	WOFET	NF:	50	VOCAEULAFY:	44
AT	WOFED	NF:	100	VOCAELILAFY:	75
AT	WORD	NF:	150	VOCAFULAFY:	105
AT	WOF:D	NF:	200	VOCAELLLAF:Y:	12B
AT	WCIE:	NF:	250	VOCAEULAFiY:	153
AT	WCIFD	NF:	300	VOCAELLAFIY:	176
AT	WCIFD	NF:	350	VOCAELLAFY:	199
AT	WOFD	NF:	400	VOCAELILAFIY:	222
AT	WOF:	NF:	450	YOCAELILAFY:	244
AT	WORD	NF:	500	VOCAELILAFY:	273
AT	WUFE:I	NF:	550	VOCATHLLAFY:	293
AT	WORD	NF:	600	VICAEULAFY:	316

$F(x)=1.97516 E 0 * x$ TO THE $7.90052 \mathrm{E}-1$ FOWEF COEFFICIENT OF COFFELATION $=0.9997$ STARIDAFIL EFFIOF OF ESTIMATE $=0.0157$

E:MAIL. FEMM:

AT	WCF5	NE:	50	VGCARULLAFY:	40
AT	Warat	NF:	100	VCCAEULAFEY:	78
AT	WCr:	NF:	150	VOCAELILARY:	112
AT	WCFPD	NF:	20	VCICAEULAFIY:	142
T	WDF.	Nr:	250	WOCAEJLAFY:	175
AT	WOED	NFF:	300	VUCAELILAFY:	196
AT	WCEIM	NF:	350	VOCAFULAFY:	216
AT	WOFTD	NF:	400	VOCAELILAFY:	243
AT	UCFL	NF:	450	VOCAELILAF:Y:	263
AT	WCFE	NF:	500	VOCAELILAFV:	280
AT	WOF:D	NF:	550	VOCAEULAFY:	300
AT	WOF:D	NF:	600	VIICAEULAFY:	316
CUEFFICIENT OF CORFELATION $=0.99$ STANDAFD EFFFOF: OF ESTIMATE $=0.014$					

NEUSFAFEFS:

$$
A(T E Y T) \text { A(FEFM) DELTA A DEV FFOM TOTAL MEAN }
$$

NE WSFAFEFS:
DELTA E
DEV FROM TOTAL MEAN

$\mathrm{E}($ TEXT)	E(F.EF:M)	DELTA E	DEV FFIOM TOTAL	MEAN
G.MEFALD 0.761E	0.7915	0.0302	0.0591	
GUAFIDIAN 0.8163	0.7706	-0.0457	-0.0168	
D.MFIL 0.7901	0.8210	0.0309	0.0598	
D.FECLIEI 0.8263	0.8058	-0.0205	0.0084	
D. FECOFD 0.7708	0.7963	0.0255	0.0544	
E(TEXT) MEAN (THIS	GFROUF):	0.7930		
VAFIANCE: O. 00008				
S.DEV.: 0.0281				
E(FEFM) MEAN (THIS	GROUF):	0.7970		
VAFJANCE: O.OOOE				
S.DEV. O.0186				
DELTA E MEAN (THIS	GFiOLF) :	0.0041		
VAFIANCE: 0.0012				
S.DEV.: 0.0352				

-0.6736
0.0932
-0.6021
-0.0476
-0.6355

A!	WCIED	NF:	50	VOCAELILAFY:	41
AT	WCFD	NF:	100	VOCAEULAEY:	70
AT	WCrid	NF:	150	VOCAEULAFY:	98
$4 T$	WOFD	NF:	200	VICAEULAFY:	126
A 1	WCFD	NE:	250	VOCAINLLAFY:	151
AT	WOES:	ME:	300	VGCAELLLAFV:	160
AT	Wors	NF:	350	VOCAEVLLARY:	188
AT	WGFD	NF:	400	VOCAELLAFY:	209
AT	WCIFD	NF:	450	vocabll aft:	225
AT	WORD	NF:	500	VCLAELLAFY:	241
AT	HORL	NF:	550	vocamulary:	263
AT	WCFED	NF:	600	vochelllafy:	278
$F(\%)=2.05 s 71 e 0$ * x TQ THE $7.70377 e-1$ COEFFJCIENT OF CORFELATION $=0.9993$ STANDARD EFFROR OF ESTIMATE $=0.0230$					

E:FADI FFRM:

AT UOFD NF: 50
AT WCIED NR: 100
AT WOKD NR: 150
AT WOFD NR: 200 AT WORED NF: 250 AT WOFD NR: 300 AT WOFII NR: 350 AT WORD NR: 400 AT WOFID NF: 450 AT WORD NF: 500 AT WOF:D NR: 550 AT WOFID NR: 600

VOCAEULLAFIY:
47
VOCAELILAF:Y: 81
VIICAELILAFY: 107
VOICAELLLAFY: 130
VOCABULAFY: 158
VOCAEULAFY: 179
VOCAEULAFY: 197
VOCAEULAFY: 216
VOCAELLLARY: 228
VOCAHLLLAFY: 246
VOCAELILAFY: 265
VOCAEULLAFY: 278
$F(x)=3.00989 \in 0 * \times$ TO THE $7.11363 \mathrm{E}=1$ FOWEF COEFFICIENT OF COFFELATION $=0.9992$
STANUARD ERFUR OF ESTIMATE $=0.0225$

E:FADE.TXT:

A?	WOFII	NF:	50	VOCAELILAF:Y:	42
AT	WDFD	NF:	100	VDCAEULLAF:Y:	70
AT	WOF:I	NF:	150	VOCAELILAFY:	92
AT	WOF:L	NF:	200	VOCAEULLAFY:	115
AT	WOFS	NF:	250	VOCAELIL AFY:	136
AT	WCEIT	NF:	300	VOCARULAFY:	156
AT	WGEM,	NF:	S50	VOCAELILAFY:	177
AT	WCFID	NF:	400	VCICAELILAFY:	195
AT	WClFil	NF:	450	VOCAELILAFY:	217
AT	WCiFil	NF:	50	VOCAELLAF:Y:	235
AT	WCIF:L	NF:	550	VOCAEULAFY:	256
AT	HCFID	NF:	40	VICAEULAFY:	273

$F\{\Leftrightarrow\}=2.12562$ e日 * \times TO THE $7.56397 e-1$ FOWEF: COEFFICIENT OF COFFELATION $=0.9995$
STANIAKL EFFIGF OF ESTIMATE $=0.0189$

E:FANO, FFMM:

AT	WCHF	NF:	50	VOCAELLAFY:	41
AT	WOFD	NF:	100	VOCAELLLAFY:	71
AT	UOFE	NF:	150	VOCAELLAFY:	99
AT	WCIED	NF:	200	VOCAELILAF:Y:	126
AT	WOFIT	NF:	250	VOCAELILAFY:	148
AT	WORD	NF:	300	VICAEULAFV:	166
AT	WCIRD	NK:	350	YOCAELILAFIY:	185
AT	WOFD	NF::	400	VOCAEULAFY:	207
AT	WORD	NF:	450	VOCAEULAFYY:	227
AT	WOF:I	NF:	500	VOCABLILAFY:	239
AT	WORD	NF:	550	VOCAEULAFY:	255
AT	WORD	NF:	600	VOCAEULAFYY:	273
2.16t29eO * X TO THE COEFFICIENT UF CORFELATION $=0.999$ STANLIAFD ERFIOK OF ESTIMATE $=0.02$					

```
H:F.ADE.TXT:
AT WOFIN NF: 50
AT WOFU NF: 100
AT WOFD NF: 150
AT WOFD NF: 2OO
HT MORII NF: 25O
AT W[FID NF:: 30O
AT WCF:I NF: SEO
OT WOFID NF: 400
GT WOFID NF: 450
AT WOFEL NF: EOO
HT WOFOU NF:: 5EO
AT WOFID NF: 6OO
```

VOCAEULAF:Y:43
VOCAELLLAF:Y: 67
OCAKULLAFIY:VOCAEULAFY: 114
VOCAEULAFFY:110
VICAEULAFY: 15
VOCAEULAF:Y: 178
VUCAELILAF:Y: 197
VOCARULAREY: 208
VOCAEULLARY: 228
VOCAETILLAF:Y: 245
VOCAEULAFY: 260

```
F{: = 2. 3.112e0 * Y TO THE 7.37312e-1 FOWEF:
COEFFICIENT OF COFFELATION =0.9YGE
STANDAFD EFFOF: OF ESTIMATE =0.0189
E:FALIE.FHIN:
\begin{tabular}{|c|c|c|c|c|c|}
\hline AT & WOF:I) & NF: & 50 & VOCARULARY: & 39 \\
\hline AT & WOF:D & NF: & 100 & VOCAEULAFY: & 72 \\
\hline T & WOFD & NF: : & 150 & VOCAFLILAFY: & 94 \\
\hline AT & WOF:D & NF: & 200 & VOCAELILAFY: & 119 \\
\hline AT & WOFID & NF: & 250 & VOCAEULAR': & \(1 \leq 1\) \\
\hline AT & WOF:D & NK: & 300 & VOCAEULAFIY: & 150 \\
\hline AT & WOFD & NF: & 250 & VOCAELILAFY: & 171 \\
\hline AT & WCF:D & NF: & 400 & VOCAELILARY: & 190 \\
\hline AT & WCJF:D & NF: & 450 & VOCAEULAFY: & 210 \\
\hline AT & WORD & NF: & 500 & VOCAEULAF:Y: & 229 \\
\hline AT & WORD & NF: & 550 & VOCAEULARY: & 242 \\
\hline AT & WORD & NF' & 600 & vOCA & 60 \\
\hline
\end{tabular}
\(F(\%)=2.21388 \mathrm{E}=\mathrm{x}\) TO THE 7.4450 E®e-1 FOWER COEFFIEIENT OF COFFFELATION \(=0.9997\) STANDAFD ERFOF OF ESTIMATE \(=0.0299\)
```

```
E:FGGIS.TXT:
```



```
E:FFHEA.FFM:
\begin{tabular}{|c|c|c|c|c|c|}
\hline AT & Waftr & NF: & 50 & VICAELILAFY: & 43 \\
\hline AT & WOFED & NF: & 100 & VOCAELILARY: & 76 \\
\hline T & WOKD & NK: & 150 & VOLCAEULAEY: & 106 \\
\hline AT & WOF:D & NF: & 200 & VICAEULAFY: & 131 \\
\hline AT & Whrid & NF: & 250 & VOCAEULLAFY: & 152 \\
\hline AT & WOFD & NR: & 300 & VOCAEULAFIY: & 174 \\
\hline AT & WORD & NF: & S50 & VOCAELILAFIY: & 197 \\
\hline AT & WORD & NF: & 400 & VUCAEULAFIY: & 215 \\
\hline AT & WDED & NF: & 450 & VOCAELILAFY: & 225 \\
\hline AT & WCFED & NF: & 500 & VOCAEULAFY: & 243 \\
\hline AT & WORD & NF: & 550 & VOCAEULAFY: & 256 \\
\hline AT & WORD & NF: & 600 & VOCAEULAFY: & 269 \\
\hline
\end{tabular}
\(F(\%)=2.58192 \mathrm{e} 0 \times \times\) TO THE \(7.34094 \mathrm{e}-1\) PQWEF COEFFICIENT OF COFKELATION \(=0.9980\) STANIIAFD ERFIOR OF ESTIMATE \(=0.0364\)
```


E: POOH.TXT:

A	WORD	NF:	50	VOCAELLARY:	26
AT	WORD	NF:	100	VOCAELLARY:	50
AT	WORD	NF:	150	VOCAELLARY:	71
AT	WORD	NF:	200	VOCABLILARY:	91
AT	WORD	NF:	250	VOCAELLARY:	107
AT	WOFD	NF:	300	VOCAELLAFAY:	122
AT	WORD	NF:	350	VOCAELLLARY:	138
AT	WORD	NF:	400	VOCARULARY:	161
AT	WORD	NF:	450	VOCAEULARY:	175
AT	WORD	NF:	500	VOCARULARY:	188
AT	WOFD	NF:	550	VOCAELILARY:	202
AT	WOFD	NF:	600	VOCARLLAR	215

GEOMETRIC REGRESSION ANALYSIS:
$F(x)=1.01524 \mathrm{e} 0 \times \mathrm{TO}$ THE 8.41574e-1 POWER COEFFICIENT OF DETERMINATION (R-SQUARED) $=0.9983$ COEFFICIENT OF CORRELATION $=0.9992$ STANDARD ERROR OF ESTIMATE $=0.0274$

I: FOLHAFFIM:

A	WOF:5	NF:	50	VOCAFULAF'Y:	-
AT	MEFED	NR:	100	WOCAEULLAEY:	65
AT	WCEID	NR:	150	VILAELILAFY:	82
AT	WHED	NE:	200	VOCAELILAF:Y:	103
AT	WIFI	NE:	250	VOCAELILAFIY:	123
AT	WCOFL	NF:	300	VOCABULAFY:	141
AT	WHFD	NF:	350	YOCABULAFY:	160
AT	WORD	NR:	400	VICAELILAFY:	176
AT	WORD	NR:	450	VOCAELLAF:Y:	188
AT	WORD	MR:	500	VGICAEULAFAY:	196
AT	WORD	NF:	550	VOCABIILAFY:	204
AT	WORD	NR:	600	VUCAEIULAFY:	215

$F(::)=2.54257 \mathrm{E}=\mathrm{x}$ TO THE 7.0056Se-1 FOWEF:
CTEFFICIENT OF CCIFFELATION $=0.9985$
STANDAFI ERFIOF: OF ESTIMATE $=0.0802$

E:ALICEL.TXT:

AT	WOFPD	NF:	50	VOCAEULARY:	38
T	WORD	NR:	100	VOCARULARY:	65
AT	WORD	NR:	150	VOCARLLARY:	
AT	WORD	NR:	200	VOCAELLARY:	-
AT	WORD	NR:	250	VOCARULARY:	126
AT	WORD	NR:	300	VOCAELLLARY:	139
AT	WORD	NF:	350	VOCAEULARY8	156
AT	WORD	NR:	400	VOCABULARY:	66
AT	WORD	NF:	450	VOCABULARY:	
AT	WORD	NFiz	500	VOCARLLARY:	198
AT	WORD	NF:	550	VOCAEULARY:	209
AT	WORD	NFiz	600	VOCABULARY:	22

GEOMETFIC REGRESSION ANALYSIS:
$F(x)=2.61388 e 0 \times 1$ TO THE 6.96739e-1 PQWER COEFFICIENT OF DETERMINATION (R-SQUARED) $=0.9975$ COEFFICIENT OF CORRELATION $=0.9988$ STANDARD EFRROR OF ESTIMATE $=0.0276$

E: ALICEL.FFFM:

AT	WCtrit	NF:	50	VOCAELILAFY:	36
AT	WHELD	NF:	100	VOC:AELILAFY:	66
AT	WOFSD	NH:	1 E0	YOCAHULAFY:	8 E
AT	WITFD	NF: :	200	VOCAELLAFIY:	111
AT	WCFET	NF:	250	VOCAEULAFY:	1 11
AT	WOF:L	NF:	300	VOCAE:LLAF:Y:	147
AT	WOFil	NF:	350	VOCAEIULAFY:	162
T	WOF:D	NF:	400	VOCAEULAFY:	174
AT	WOFD	NE:	450	VIC:ABULAFY:	188
AT	WGKD	NF:	500	VOCAELUAFY:	203
AT	WORD	NF:	550	YGICAELLAFY:	210
AT	WCRED	NF:	600	VOCAELILAFY:	222

$F(\because)=2.32417 \mathrm{E}$) x TO THE $7.20907 \mathrm{E}-1$ FOWEF
COEFFICIENT OF CORFELATION $=0.9971$
STANLAFIU EFROF OF ESTIMATE $=0.043 .7$

B:ALICEB.TXT:

	WOFD	NF:	S0	VOCARLILARY:	37
AT	WORD	NF:	100	VOCABLLLARY:	67
A	WORD	NR:	150	VOCAELLLARY:	86
A	WORD	NF:	200	VOCAELLARY:	101
AT	WORD	NR:	250	VOCARLLLARY:	126
AT	WORD	NR:	300	VOCABLLARY:	148
AT	WORD	NR:	350	VOCAELLARY:	164
AT	WORD	NR:	400	VOCAELLLARY:	171
AT	WORD	NR:	450	VOCAEULARY:	178
AT	WORD	NFi:	500	VOCABULARY:	194
AT	WORD	NF:	550	VOCABULARY:	211
AT	WORD	NR:	600	VOCARULARY:	224

GEOMETRIC REGRESSION ANALYSIS:

```
F(x)=2.42983ed x TO THE 7.09971e-1 POWER
COEFFICIENT OF DETERMINATION (R-SQUARED) = 0.9946
COEFFICIENT OF CORRELATION =0.9973
STANDARD ERRDR OF ESTIMATE =0.0414
```

E:ALICERF. TXT:

AT	WORD	NR	5	VOCAEULARY:	36
AT	WORD	NR:	100	VOCAEULARY8	69
A	WORD	NR:	150	VOCARLLARY:	94
AT	WORD	NR: 8	200	VOCABULARY:	110
AT	WORD	NR:	250	VOCABULARY:	123
AT	WORD	NR:	300	VOCARLLARY:	137
A	WORD	NR:	350	VOCABULARY:	160
AT	WORD	NR 8	400	VOCAELLARY:	171
AT	WORD	NR:	450	VOCARLLARY:	184
AT	WORD	NR8	500	VOCABULARY:	197
AT	WORD	NR8	550	VOCABULARY:	213
AT	WORD	NR8	600	VOCABLLARY:	22

GEOMETRIC REGRESSION ANALYSIS:
$F(x)=2.53646 e 0$ t TO THE 7.03888 - 1 POWER COEFFICIENT OF DETERMINATION (R-SQUARED) $=0.9919$ COEFFICIENT OF CORRELATION $=0.9959$
STANDARD ERROR OF ESTIMATE $=0.0504$

```
E:GEAGLLLL.TXT:
AT WLFID NE: SO
AT WCFED NF: }10
AT W[FIT NF: 15O
AT HOFL MF: 2OO
GT WCKEL HF:S 2SO
CT WOFDD NF: BOC
GT WGFD NF: EEO
4T WOF:T NF: 400
GT WOFF NF: }\triangle5
AT WCF:T NF: EOO
AT WLFD NF: EEO
AT WOFD NF: EOO
```

VOC ABLILAF:Y:
VICABLILAFY:
VILCABLILAFY: 102
VOCARLILAFY: 126 VOCAEULAFY: 146 VOICAEULLGFY: 17 E VOCAELILAFIY: 196 VOCABLLAFY: 218 YOCAFULAFY: 23S VOCAELLAF:Y: 252 VOLABLLAFFY 265 VUCARLILAFFY: 2EE


```
CLEFFIEIENT OF CUFFELATION \(=0.5985\) STANDAFD EFFROF: OF ESTIMATE \(=0.0346\)
```


AT WOFO PR: 100
AT HRFIL NF: 150
GT WRFIN KF: SOO
AT WOFI WE: 250
AT WOED NF: SOO
A7 WOEL NF: E5O
AT WOFD NE: 400
AT WOFE NF: 450
AT WOKL NF: EOO
AT WOFII NF: EEO
AT WOFD NF: GOO

VOCイEDI:AFY: 4E VUCARILLAFY: 72 VOCAERILAF:Y: 100 VCKAELILAFY: 122 WOLABIILAFY: 141 VOCABLLLAF:Y: 1太5 VCICAEILAAFY: 191 VOCABLLLAFY: 208 VOLABIILAFY: 232 VCCAELLLAFY: 247 VOCABLILAFY: 266 VUCAEULAFY: 23?

```
\(F(x)=2.40162 \mathrm{CO} * \times\) TG THE 7.4485be-1 FOWEF COEFFICIENT OF COFFELATION \(=0.9993\) ETANDARD EFFOF OF ESTIMATE \(=0.0223\)
```

EOCHE WFITTEN FOF CHILDEEN:

GOOKS UFITTEN FOF CHILDREN:

RUNS EEFORE AND AFTER PERMLITATION

Index
before perm.
Childrens text strings
page
after perm.

C85
397
398
C95............. $399 . .$. 400
C130...................... . 401
402
C140........................ 403
404
C141.................... 405
406

Scientists' text strings

RUSS3.................... . $411 . .$. 412

RUSS5. 415416
ERUNER. $417 . .$. 418
LAROV. 419. 420
FRANKENA. 421.
CHOMSKY................... 423.
424

Newspaper text strings
DREC1.... 425. 426
DREC2. 427. 428
HERALD. 429
GUARDI AN. 431
432

Text strings from Childrens Books

PAD2. $437 . .$. 438
PAD3. $439 . .$. 440
PAD4. $441 . .$. 442
POOH. 443. 444
ALICEL. 445. 446
ALICEB. $447 . .$. 448
SEAGULL. 449. 450

Statistics (all categories)...... - page 451

E: [05.TXT
1FEESEO
11111111110101111111011101101101100011110111100111 11110010100010110000101011101011100011001101011001 111001113010010001001011100001100010010000110010 10001000011101011000100000000000010100000100010110 0!101000111110001010010000010001010010000100000000 00110100000001011000101100010000010000000001000100 00000000001000000160100010010001000000000000001 100000180011010110000100110000110001010100001101 $0011000001 \mathrm{~g} 1 \mathrm{moj} 11 \mathrm{b001010010000101101001100000000}$ 0100001101100010011011010006100100011111000101001 $110100 \% \pi \% 16004000001610100010010101000100 \% 001000$

LENGH OF FUIVE OF ONES

```
LENGTH HMHEES
OF FL| EH EDlHE
    l
    < %|⿻****
    4 ****
    2**
    0
    #**
    O
    0
    1*
```

CUT: $=201 \quad$ ',
I.ENGTH OF FUHE OF ZEFDES
LENGTH NUMEEF:
(IF FUN OF FUUNS
1
2
20 ********************
1 *************

$* * * *$

**
*

*
1 *
1 *
121

3131100111111111111111110111110000111111101111101 10101001101100011001101001110100110000011010100101 11011011001001101101010111010110111100010001100101 1011630101000101000001101000000011001001100011

 00001110000110100001110000001000100000100010001100 11010010060110150001000001100000001000010001 G000 00100600000000110100000000010110000000000000 01000011010101000010010000000000100010000100100100 0110061 10 Jemonoon 11001000000000000100010000000

LENGTH GF FUWNS GF GNES

1．ENGTH NUMFEF：
GF FUH：OF FUNE
उ4 **********************************
「*******
こ *
こ *
**
0
0
$0 \quad 0$
12
12
17
16
0
$5 u M=201$
LENGTH OF RUINS OF ZEFDES
LENGTH
of FILIN
NLIMEEF
OF Filirs
40 **
24 ************************
14 **************
1こ ************

* * *
**

*
**
*
*
1 *
1 *
1 *
111

E：［CS．TXT
1FELOFTO

11111111111301000111011111100010011601011001011111 1101111001001111101011101101900110111010010100100
 100001000110100111101010000000010000011101000100 1010110600001160100100110100110011000000100111110 0011111011011100101101001100011000101000010060101 130010100011400111006401011101000011010001101000 60111011 00000\％111114110000100010100101011000000
 $0101100110 \% 10040001001100100000010011101010101001$ 0011000101100001110004011101000011001010110000010

LEHETH OF FUHE GF RMFE
LEHTIT HAMEEE
of Fun
Cif Rillei

①＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

2＊＊
＊＊＊＊
＊
1 ＊
0

0

1 ＊
SUM $=224$
$1 \sim 1$

LENETH OF FULIS GF ZEFOES
LENETH
OF RUH：
1
1
2
3
MLMBEF：
IF FUliS

5＊＊＊＊＊
を＊＊＊＊＊＊＊＊
与＊＊＊
4 が＊＊
θ
2＊＊
$5 U_{r}=214$

F: EE F. FKM
AEEEOFFO
11111311111111101101111111100111110111011010110101 1011111111011111011110111011111011001101000010161 1111011101111001011300111001110011111001101000001
 0110000000040011000000011001010110011101011010010 0001101010001000000100101110010000010001011100
 110010111001010100100101111000001010110100001101 010000111000001010010010100000111101000000010001
 01101010010010100000111000100001100000000110000100

```
LENGTH IF FILINE OF CINES
```

```
LENCTH NUMEEF:
GF FiLIN GIF FUNS
```



```
    25*************************
    1こ*************
        5*****
        *****
        **
        *
SUM= 236
LEMGTH OF FIUNS OF ZEF:OES
```

LENETH
GIF FUN
1
2
OF FIUNS
57 ***
29 *****************************

**

**
sum $=314$

22

E：C130．TXT
ABESORFO
11111111111111111011111110100011101000000011010100 6011106101010100000100110111101010010110101100100 10toment110001131000010006100010000600001010101001
 05001001110101100101100000001100001000001000010110
 204150160\％月10141011100101111011000000011010101000 10010 2001600100110000000000001001000000000060110 0101131001010106000001100001001001110010000100000 1010041140010116000011000000000000000000100100


```
ENHTH OF FRINS OF OHES
```

LEMOTH NUMGEF
［0：FuM OF FUNS

21 ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
＊＊＊＊も半
こ＊＊＊
0
0
i
1

$$
0
$$

$$
0
$$

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

$$
0
$$

$5 \mathrm{SH}=17 \mathrm{E}$

$$
1 *
$$

LEHETH OF KUNS OF ZEFICES
LENETH NLMEEF
OF RUH OF FUUNE
gr kuns
4 O
＊＊
$25 * . ~$
＊＊＊＊＊＊＊
＊＊＊＊＊＊＊＊＊＊＊＊＊
＊＊＊＊＊＊＊
＊＊＊＊＊
＊＊＊＊
＊＊＊＊
＊＊
＊
＊＊＊
2
＊＊＊
＊＊
？

```
E:[120.FFM
1FEEGFFO
```

11011110010101111100001111110111111110011011001010 01101010111000010011100001101100010110000110011111 0110000000010100110000100010111100000101001001110 1100001000010101101111010000001001000000101000010 00ma11 00010001100001100001011001000001001000100 0010010010101010000600100001001000001011100101001 11001000000000000100111100100010010111010000101011 01100000\%0100100060001601000000000100000000010100 60100\%mono 10001011001000000000000101000000000 600000001000100001011000001010000001001001001000 01040001300010000000600000000010100000100000000

```
LENGTH OF FURG GF OMES
```

```
LEHESHG NIMEEF
OF Fu, LOF FLD&S
    1
        &******
        4****
        2**
        *
        1*
SUM= 173 1,6
LENETH OF FUNS OF ZEFRES
LEMGTH NLIMHEF:
OF FUN OF FIUNS
    f***************************************
    2\epsilon *****************************
        *********
        *************
        **********
        ****
        **
        **
        ****
            O
        O
        1 *
        *
        O
        0
        1 *
        1*
        372
            113
```


E:C140.TXT

1EEEORFO
11111131111111111001011111101111111111111000111101 11000010010111000111000010100010110111010000001010 00011010010000010000100000100011000100100000101000 1111011000010000019100010000001000100001010110001 01101000160000011010000011110100000010000000110100 1000016001101610100001010111000000000100000000000 00001100100011001100000010000000000000000010000010 0010000010000116010100111000000010010001010001001 0001001010000030030000060010000400000000010000000 10000100000001000000000001000001010110000011000000 001001100000101101001011000001000000000000001100

LENGTH OF RUINE OF CINES

```
LENGT:H NUH1EEES
OF RLINS OF RUNS
```



```
2 15*******************
******
        ****
        *
        \
        )
        *
        0
        1*
    04
LENGTH OF FUUIS OF ZEFDES
```

```
LENITTH NUMEEF:
GF FIUN OF FIUNS
    33 **********************************
    15 ***************
        *****************
        ********
        ***************
        *******
        ****
        *
        **
        *
        *
        **
    1 *
```

E:C. 40 FFHM
1EEEOFFO
11111111011001111111101101101110111011101101101111 10011110100111000111010111100000010110000001001100 00101001000011000010010110000000001001110110110100 1000011000000000000010001000100000011000011000111 01000101100000011010011100000001101101010001100001 010010000160111000010000000011010001001000111000 110000000000000000100001000000011001100010001000 0012010010002300016000000100010000000100110001000 0010160000000000111100010000100100010000000000110


```
LENSTH OF FLINS OF GINES
```

```
LEMGTH NUMEEE:
OF FilNG GO FLUNE
```



```
    -G******************************
        *********
        ***
        *
    **
SUM= 17%
    -
LENETH OF FUNE OF ZEFOES
LENGTH NUMEEE:
GF RUN: OF FULINS
    *********************************
    *****#####*******
    8 ********.************
    **********
        **&**
        *****
        ******
        ***
        **
        **
        *
    **
        0
        O
        373
            102
```

11111111110111111111011111110001001100101110101001 10010101011010001010100100110011000111000100100010 01100101000000011011101000001010010101010000010101 01000000010110000011011011101000011001000000010101 01000110000110000101001010111010110100110101100110 11100000000000000011000001001000010100100100010000 01000010100100000010000001000000010011000101001101 0000010011100110111101000111001100001101000000000 00010001001010010000010010001010000001010000000100 100010000100110011000001101101010001001011000100 01001100001100110001101000010010000000010000011010

LENETH DF FEIME DF QNES
LENGTH MUMEEE:
DE FUN DF FLINE

1	88	$* * *$
2	-3	$* *$
3	8	$* *$
4	1	$*$
5	0	
6	0	
7	1	$*$
8	0	
9	1	$*$
10	1	$*$

LENGTH OF FILINS OF ZEFIOES

```
LENGTH NUMEEF
GF FUN OF RUNS
    1
    2
    4
    6
    5 *****
    8
    10 0
    11 12 0
    13 0
    14 0
    15 1*
SUH= = 342
```

11111110111111111110101110011110011101011101001111 1100011000111010100100000010000100610101010011111 0000000000001111100010101111100101110011110101000 10010003001500010010100111101111101100001000010000 0010000010001001110000001100001011101010110010000 00110001010001000000001001101000101100000000010100 10001000001111011010100101010011000000000101101010 0000010010000000101100001101000001000000110110011 W0010000000010011100111110000001001100000100111110 1110000100010010100001000100100100001010001100 01000016010000000000000001000000100001000100100100

LEWETH GF FLINE GF GNES

```
MENGTH NURHEEF:
af Fill Of RINE
    1
    ¢苂*********
    G******
    ****
    1*
    1*
    l
    10 1 0
6:H=208
    \varepsilon
LENETH OF RUINS OF ZEROES
```

```
LEMETH NLIMEEF:
```

LEMETH NLIMEEF:
LIF FIUN OF FUNS
LIF FIUN OF FUNS
1 41 ***
1 41 ***
2}29\mp@code{*.*.***:***************************
2}29\mp@code{*.*.***:***************************
14 ****************
14 ****************
4 14 ***************
4 14 ***************
5 5 *****
5 5 *****
6}\mathrm{ \&*******
6}\mathrm{ \&*******
7 3-***
7 3-***
8 ll
8 ll
3***
3***
O
O
1*
1*
O
O
SUMY= 342

```
    SUMY= 342
```

 118
 E: FUSE1.TXT
1EEOOFFO
115110111111110111110100101010111111111111111110110 10010011111110101011111000001110110101110100011000 11101010110001111011001011100011011010000101111011 00110011000011100010011000000000016011110116100000 01001011011010011001101011010110110001010101000000 0001000001011001110100110100110101010111011101010 11001011011011100101100000101001011000101001010010 000011000000000001010100101010100010010001110000 11010000101000000011010000010100110101001000011100 10110100001010000100111011100110000000100101010110 0000000011010010010011111001101011101101000000000 0000010001001100000000100100000000000010000000101

LENETH OF FLUNS OF CINES
LENGTH NUMEEFS
QF FIll: TIF FULINE
巳空 **
1

14 **************
گ ***
$4 * * * *$
*
*
0

13
0
0
$15 \quad 0$
$51 \mathrm{M}=24$

LENGTH OF RUINS OF ZEF:OES
Lengith
GiF FUN
1
1
2
3
4
5
6
6
7
8
NUMEEF
OF FLINS
80 **
3క *********************************
10 **********

**

*

0
2 **
*

E：FUEE 1 ．FFW
1FBOGEFU
11111111111111100110111111110110011111011111111111
 91100121001610111110100011101011100111001100011010
 10011100101010001101111100101000000100110110001 000010000100010以1001000011100100110100110011001
 11000000011101100000010101111000010000011101100000 6多1100世4014011100101100010001001001111100010010 010ण0111000\％100010110011001110001110001111101001 （1） 10011040141001100110000101100000100101110000 001010010000101101110000100001000010001000100

LENETH QF FULHE OF ONES

```
LENGTH NHIMEEF
OF RUM, OF FUNE.
    E ****************************************************************
    纯 ************************************
    ***************
        **
        ******
        ***
        *
        O
        0
        0
        *
        1*
    SUM= 2EE 1F:
    LENGTH OF FUNS OF ZEFOES
```

```
LENGTH NUMEER
```

LENGTH NUMEER
OF FUN OF RUUNS
OF FUN OF RUUNS
4 4\Xi **
4 4\Xi **
2 34 **********************************
2 34 **********************************
3 20 **\#*************\#\#\#\#
3 20 **\#*************\#\#\#\#
4 11 ***********
4 11 ***********
5 11 ************
5 11 ************
0 4 ****
0 4 ****
7 3***
7 3***
8 - *
8 - *
9}
9}
1 *
1 *
SUM== 334

```
SUM== 334
```

E:FULESE.TXT
1FEOOFFO

11111111111111001000001110111010011111111111111111 00009111011001001101101111011101110111111001011110 10111011001011010101010010110101111011100010011011 00011101010000101011010101100011010111100111010100 11111110101110001101101010010010010011100101101100 01011001010010100010001100010001001111101101100110 1010100100003000100110000010011101111000000010110 01000000101001011101110100011111010001010101001001 001101110000110101010111000100111011000111000000 0110001110100000001111011110010100101100101101101 00100101101130000000001010100011001001011000000100 0111010001011110010010101010000100100001000000001

LENGTH GF RUNE GF CINES

LENGIH
(IF FIJN
MIMEER
Of FILINS
***************.***
茂********************************
1९ * ******************

- ********

*

1 *
0
0
0
0
1 *

1 *
=-

LENGTH OF FUNS OF ZEROES
LENGTH NUMEEF
OF FUN OF FIUNS

19 *******************

** **
*

Fi:FUESZ.FHM
1 EEODFFO
11111111011111111101111111111111111111001110101111 11110011101101101110111111010111011111011101011101 11101110100100111011111000100110110110000001010000 00101001100001001100100101111010001110001110011101 11000000011100011110111100101001101100110001100011 01011011010101111001001010010111001000010101100010 11110100101111011110000000000101100101101110000001 00000001000011001000110010001111100000110000000101 11111101100100001100111110110010111000001000001001 00001100001000100001010100100010010000011011101001 00101011000010000110010110100100110010010010100000 01001111001000001001101011000000000000011010100010

LENGTH OF FUINS OF ONES

```
LENETH NLMEEEF:
IIF FIUN OF FLIINS
```



```
<2 ********************************
17******************
    ¢ **********
        ****
        *
        *
        **
        *
        O
        0
        0
        O
        O
    1*
    SUM= 296
\prime%.
```

LENGTH OF FUNS OF ZEFIOES

LENGTH
GF RUN
1
1
2
3
4
5
6
7
8
8
$\begin{array}{ll}8 & 3 \\ 9 & 0\end{array}$
0
1 *
0
0
1 *
304
NUMEEF
OF RUNS
63 ***
38 **************************************
12 ************

I
*
1

E:FUESE.TXT
1EGOOFFO
11111111111101111101011010110110110111001100111101 10101101110010110111110111011110101110010010111010 10011001000111110100101100101110110111011101011011 00100011110101010110110010001111100000001001001011 0101000111100001110010010101001000000110101111100 0000010000100000001011101000000111001100100100101 00001001100001010100000001100000000010000001001 00101001110010000101100000111000100010100000010101 00010001010001010000011000000011000000000000100000 00001010110000000010110000100000000110000100100000 0000000000000000010111101000000011010100001011000 10010011000001100000100001001000010110001101111111

LENGTH OF FLINS OF ONES

```
LENETHH NLIMEEF
OF FUN GF RUUNS
    1 7ᄀ *****************************************************************
    2 子2***************
    4 5 *****
    5 5*****
    6}
    8 1 *
    9}
    11 0
    SLMM=244
```

 LEHETH OF FUNS OF ZEFRES
 LENGTH NUMEEF:
 CF FIUN OF FUNS
 勺క ***
 29 *****************************
 10 **********

 **
 *
 0
 0
 \(\begin{array}{ll}15 & 0 \\ 16 & 0\end{array}\)
 16
 17
18
20
21
22
23
24
25

11111111111111111111011110111111101111111111000111 31001010100110001011001110000110111011101101000101 11111111190160101000013010011100010111010001001010 11100101010011110000110001100110110100011010110010 (01, 1 10110100れ1110010000001010110101000010010000101 10110101010000001000011001111100011101010100010101
 10001000101101100101010001000000000111010000000001 10000001001001100011000100100000000010110110000100 000000011000001011011000010000000110000000010000 1110030001 y 10001000 s 1001001000000001000100000001 20000000000001110000100000001000010000000000001011

```
LENGTH OP FLHE OF ONES
```

LENGTH OF FUNS OF ZEFIOES
LENGTH NLIMEEF
OF FIUN OF FUUNS

**

**

-
0
**
356

E:FUSEA. TXT
1EWOOFEO
$1111 \pm 111011111011111110110111101001011111001100000$ 00110110101000000111111110100101111010001110100101 001000001101100110011110101000010010111110100110011 01000001001110011101110100011101000101010111100011 11000100110111111110101011000011101000100110111001 10000111 000101111610011011010111000111001010100100 11100001100110101100010100110001101000100100110000 001010100110011110011010100100011110010011000010110 10100101101010100101010110000101100001100101000101 04000001101000100011011100000010110001011010111000 100t6100100100000110 001010101110010101111001100001 00010001010101001010101101101010010001100011010110

LENGTH OF FILINS OF ONES

```
LENGTH MLIMEEF
QF El!H GF FUINS
```



```
    40****************************************
    14****************
        ********
        ***
        *
        ****
        295
            6?
LENGTH OF FUNNS OF ZERGES
    LENETH NLIMEEF
    OF RUN OF RUINS
        1 87 *******************************************
    21*********************
    8 ********
        ****
        ***
    1*
```

15SORFO
111.101110111131111101111111110100311100010000110 10111110111100010101100010100110101110000011111101 01111100111011011111001100110011010111010011101001 10101011011012010010011000010011100000111110111000 0110000100111110101100101101111110000111011101111 11010010000001110111000111110011001010001000010011 1001000011011110111100010000110000101000010100010 01000011000011000001000010000000011000100110100100 1090011010111111100010100111001101111001101011010 00001010011000110101101010010001100001011010010101 1100110101010000000001101011001001001111000000001 01000100001100010010110100000110100111110010010001

LENOTH OF FURAS OF CINES

```
IFNGTH HUMEEE
OF FUIN CIF FIUNS
    1 <1 *****************************************
    14**************
    6 *******
    \Xi *********
    \Xi ****
    1 *
    O
    *
    SUM=295
LENGTH OF RUUNS OF ZEFROES
LENGTH NUMEEF
OF FLLN OF FUNE
    1
    66****************************************************************
    34 ***********************************
    16 ****************
    13*************
        ********
        *
        0
        **
        *
            141
```

E:FUESE.TXT

11:31111111310110111011011011119011111111111111110 10110111111001101110000110110100101101101101001110 10210101100010006131106011104110011011001111010000 11111100101001010000110011011100111100000111010011 10151010011111000110000000010011011011100010011 110010000100110000010011110000101001110001010011 10011111010500010」0101010011000110011100000011000 001110001000000101101000000000011101111110000
 1041010000111011011011001011010110100000100110010

EDGTH LH FLUG OF ORES
LENGTH NUMEEFO
TV FUN UF FUAS
**

22 **********************

*

)
0
10
11

1 *
0

1 *
$5 U M=287$
\because

LENGTH OF RLINS OF ZEFOES

```
LENGTH NUMEEF:
OF FUUN OF FLINS
    1 65 ********************************************************************
    2 40 *****************************************
    15**************
    5 11 ************
    5 5******
    7 4 ****
    8 1*
    9 1*
    10 1*
    11 1*
```


FOF!EEE.FFIM

1ESCOFFO
11111113111111101111101111111111010111111100111101 Q月211111110131010111011010001101110111111110101110 11111010101001101109011100010113000100111111001110 $1110110111111110001 \pm 100101100110101011110010000001$ 002400160000110001010000121100001010011001100111 101010110160000016100010010000101001001001000010 10101000111001110001110001101011001010000010001001 01001010101111001001010000001010010101100111010111 401003013J011001011000010110110100110101100100001 1111000001010001100000010001000000101000011111010 000010000110000091:101010011100111100000100110000 00000101101600100101001000001010000110000100110

LENETH OE FLINS OF ONES

```
LENSTH NUHTREF
ON flith cIF FU|NE
```



```
    27 ****************************
    16*******&*********
        *****
        ****
        *
        **
        *
        *
        **
        *
SNM=28?
    %.
LENGTH GF FUNAS OF ZEFIOES
LENGTH
OF RUUN
    1
    2
    NUMEER
    OF FILINS
    70 ****************************************************************
    34 ***********************************
    ****************
        *********
        ***
        *********
        *
        0
    1*
    *
```

1111111111111101111101111111119010111111100111101 OH21111111011961011101101000110111011111110101110 11211010101001101100011100010111000100111111001110 $1 \pm 011011111111000111001011001101010111100110000001$ 0010001000001 3001010000001100001010011001100111 1010101101600000010160010010000101001001001000010 10101000111001110001110001101011001010000010001001 01001010101111001001010000001010010101100111010111 a10100100131011001011000010110110100110101100100001 1111006001010001160000010001000000101000011111010 G0000000010000041 1101010011100111100000100110000 0000001011010000100101001000001010000110000100110

ENGTH GF FLINS OF CINES

LENGTH ar full

MIMEEF
CF Fuws

1
* $\# * * *$

*
**
*
*
*
0
0
1 *
$84 M=2 E 7$

1.
LENGTH OF FUNS OF ZEROES

E: EFUNEF: TXIT
1BSOOFFO

121111111111111111111001101110010000000000001001111 11000101101110001110011101110000000000000000100100 11111110001011110110001001100000111001101100111001 00011100011000110110001110100001100101110100111011 10010001100110010011010010001010110000100111001111 10111000001010101100101001010000101001010100101010 11001000001011100110010001100001000001000001101100 00111101001100100100001010000100111000001011101001 00000101010001101110010010111001000010011010011110 00111010110000001010010100101001110111101100010011 01010100010110100111000010100110011001001110000010 0000001101100011100000001101010010001010101101101

LENETH OF Fiths of ONES

```
LENETH NUMEES
OF FINW OF FLWNS
    l
    4 *************************
    4 ****.
        *
        1*
        *
        0
        0
        0
        O
        0
        0
        0
        1*
            144
LENGTH OF FILINS OF ZEFOES
```

```
LENGTH
```

LENGTH
OF RUN
OF RUN
NUMEEF:
NUMEEF:
OF FIUNS
OF FIUNS
59 **

```
    59 ******************************************************
```



```
    17 *******************
```

 17 *******************

 1*
 1*
 *
 *
 *
 *
 1*
 1*
 0
    ```
            0
```



```
                **
```

 **
 O
 O
 0
 0
 1*
 1*
 327
 327
 144
    ```
                144
```


E:EFRINEF. FFIM

1EGOOFFO

11111011111111111011111101111011111011111111101110 11111011111111110111011110101110110100111111110101 01110110100110111011000100100001001011011010100110 11011100101010110110101001000110001101001101011 000011901011000101011100010101001111100001000101 G1101100010111110001110110001100000101110001110000 00110000000101000011100100001000110001001001100000 0000100001100011109001010110110001100001001011
 00011000011100000111110010111000000010010000100001 $11000010101100001000010 \% 0100000001000010000111001$ 0000411000000000101000001001101000010101100101100

LENGTH OF FUNE OF CINES

```
ENGTHI NUMRER
GF FUlld OF FILINS
    1 <S ***********************************
    *****************
    ***
    #######
    *
    *
    *
    *
    *
        1 3 3
LENGTH OF FULIS LIF ZEFOES
```

```
LENGTH NLMHEF:
```

LENGTH NLMHEF:
OF FIUIN DF FUNS
OF FIUIN DF FUNS
<} **:

```
    <} ******************************************************:
```



```
    13 **************
```

```
    13 **************
```



```
    ***
```


 *
 *
 **
 **
 0
 0
 1*
    ```
        1*
```

 133
 1E6OOFFO
11111111:11111111110011111011110011001101110011001 10010010011111101100111111001100101110010111101101 01001016110111111001100101010111111011010111101111 00101111101011010000000101011111101001100010111110 0009011011001111001000101101000130111010101010110 10101010110111001000000110100100101111000000110100 01101110000010010111011000101001110101100000101011 01101101101011001010101001101111001101111101001000 , 0000010300110001001000001010001110011011100101011 001011100001001001010101010110010100101011010010 , 60110100101001100100000010010100000100000100001011 10001100010110111001110100100000010010100000010000

LENETH OF FULNS OF ONES
LENGTH NUMEEE:
THF Filly ac FuHS

31 1已*************
子 *******
4 ****
5*****
0
0
0
0
0
0
0
0
0
i*
$302 \quad 159$

LENGTH OF FUNS OF ZEROES
LEMGTH
OF FUUN
1
OF CUMIS
OF FUUNS
S6 **
$44 *$
11 ***********
? ***
7*******
5 *****
2**
$S U M=298$
$1: \%$

E:LABCH.FFM
1FGOFFO

10*11111111111111111010161111111110001111101111101 11110111010110110111111001100110101010111000100110 11110010110010000010110110101111101011011110001011 6001010001001110101010000110111110011101110011110 01101100000001101111001111010010011001000010001011 00100001111111110011111110001000001101110101011000 00101011001000000011000100100001101000100010001110 10001011110000101011010100010101100110010010100110 00001110001 j 1011110011100101100000001011100110001 00100100111001100001000001101010010110011001011001 00100016010011000001000011001000111000110001101111 1201001111100000011001111000010010100010010010001

IEWTHH OF RULNS OF ONES

```
LENETH NLMEEE
HIF FLUN OF FUNS
```



```
    *************************************
    **************
    ********
    ******
    **
    *
    **
LENGTH OF FIUNS OF ZEFIOES
LENGTH
OF FilN
    1
    2
    3 20 ********************
    4 9 *.*********
    5 5*****
    1*
    4 ****
    NUMEEF
    NOMEER
    OF FIUNS
    59 ***********************************************************
    42 ******************************************
```

```
LENETH OF FUNS OF CINES
```

SENETH MLIMEEF
UF F:HU OF FUNS

2 उO ******************************
〕 1 已 *************
42 **
5 1 *
$6 \quad 2 * *$
2 2 **
$5 \quad 2 * *$
$\begin{array}{cc}4 & 0 \\ 10 & 0\end{array}$
11 1*
$501+1=23$
[s
LEMGTH OF FUNS OF ZERAES
LENETH NUMEEF:
OF FUH
1
OF FiUNS
$55 * ~$

315 ************:***
412 ************
5 E ******
$\begin{array}{ll}6 & 2 * * \\ 7 & 1 * *\end{array}$
- 1
$\begin{array}{ll}8 & 2 \\ 0 & 2\end{array}$
10
$11 \quad 1$
12
$13 \quad 0$
16
17
18
18
19
SUM $=363$
1,5

Pere

F:FCATAF:TXT
1E:ODEC
11101111051111111110111111101001111100013001010111 11010110111101010011101100110111001110101010001001 1100010110111011110010001000000013001100010101100 601 10001101110000111001000101001111011000010001010 0001901010100000110010101101100011000001000001010 004101110000000610000001001011100100001111111110 01011001310010 s 1111110000000011110116010110001001 $00001010100010 \% 0001001000100000000010001101011000$ 3020101 $6000100 \% 16 \mathrm{~m} 1000100000010000100001100011$ ar00 1600100030100013000100100000000100000000000 $10200 \% 40600001 \pm 3000011130000001100000010000110$ Commohomo110000 10000100001101010000101001011

LE:ATH EF FWNE OF OMEE
LEMGTH MUEEE
It FIll CF FUIUS
min
$\frac{2}{3}$
$77 * * * * * * ~$
डの******************************
$12 * * * * * * * * * * * *$

**
1*
1 *
1 *
1 *
stme $=235$
3

LENGTI GF FURE OF LEFCIES
LEMETH of FUll

NUMEEF
OF Furds
$4 \mathrm{~S} *$
こt **************************

15 ***************

*

0
1 *

E：CHOMERY．TXT
1FtOCRFG
111：1111111110111111110011101000111111111010000110 11110001110000111010100011100100101101011010100100 0100100101010010012111111010011501100100101311100 01100100001100101000100110101111101001001010000010 000000000410110012101001000011011011101010100103 100000000001110101100011001011010100110101010101
 101100100600010010000000000001001011000010011001110 02000000000100010000100101011000010010000000001 11011010110101000100100100101011001100110001100000 00100\％nomonomoso1100n011001000100100100100110000 0001110001100101000010000000010100010000000010010

IENETH GF FUME GF ONES

TEMGTH
HBADEF
of FUM
（1F F～LUS

こ＊
曹
0

束亲
1 券
＊
$1 *$
$\underline{2}$

LEMGTH OF RUNE OF ZERGES

LENGTH NUMEER

IIF FIUN
1
2
OF FLUAE
57 ＊＊＊

$1 *$
2＊＊
＊＊
＊＊
＊＊
＊＊
＊
2 ＊＊
2＊＊
$* *$
©
j13110113211111 1160111101111111111011111001110111 1011001101000100111101011000010111100001110111011 01011131100011111110000001101010011100001111010000 0100102101000101010100110011300000001101000111100 0101001000011100160000100010010001110010010010000 non001000100110101000110001110010000011001010000100
 10010\%1010130010111009100011011001001101100011001 wat0000 0001000601100000031101000011011000110100

 0011014001001100011000010100001000100010000010

```
LENOTH OF RUNES OF ONES
```

LEMETH NUMEEF:

DF Fill: H- FUHE

- 1 *
$6-2 *$
$5 \quad 1$
$\begin{array}{cc}5 & 0 \\ 36 & 1\end{array}$
111 *
SUM $=242 \quad \therefore$

LENGTH OF FUHS OF IEROEC

LENGTH
QF RUM
1
2
2
NuMEER
CF RUNE
**

22 **********************

**
**
0
0
*
1 *
358
126

E: DFEC1.TXT
1 EwORFO
11111111101011111111111111111111101110110010101110 01110011011101110001101011011011100101010111110101 0001010111110101100110001001111110111010110110101 0910110011101111000100011011111001100110110111 01 104011001010001100000101011100100100000000000111 01016eth1101611110001010100001001601110111101601 01011509111101111111110000101010000101010001010010 1100111000110001101010001101100110001100111011101 00131001310011101301111101001011010010000001100000 01101101011100016110100010100111100010010110110100 011110164610101100010160011001000011101100000111 0111500101111101100100011100001111101110000011010

LEDETH OF FEDME OF OHEE

```
LENGTH NMMEES
IF F:H! IN FU|!
    I
```



```
    &******
        ********
        *
    **
        %
```



```
        17 
        19
    S4:=324 \ddots
```

LENETH OF RUMS OF ZERRES

```
LENGGTH
    GF FUUN
        1
        3
    OF RLINS
    89 ************************************************:*****************
    -巳*****************************
    20 #*********************
        *******
        ****
        こ**
        *
        1*
        270
            ! %1
```

$1+111 \mathrm{i} 11111111111101111101111110011111111110101110$ 10111111111111011011001100101101111011101001101111 1106の11100111110111111011111110110110011011110111 0161001100101111010100100111101101010101010111010 Q111011300010111100100000160010110111010111110111 0011001100000111100110100101010011110001101011000 1f001101016111111000110010000111101001000011001101 0011001001000001001000100010001001001100111100001 0111101111111001100011001010011000101010000111111 10111000001001111100000100000011000001000011100110 10110010100000101001001100101100100001011011110110 00101001000001011001001011110000000010111000000

LENGTH CF FLHE QF OUES
LE：GSH RUMEEE
OF ith af fune
白
こム $\because * ~$
11 ＊＊＊＊＊＊＊ 1 ＊＊＊
12＊＊＊＊＊＊＊＊＊＊＊
E \＃＊＊＊＊
A $x * *$
已＊＊＊
0
＊

1＊
0
0

1 ＊

LENGTH OF FILNS OF ZEF：OES
LEMGTH OF FiU：

NUMEEF：
OF Fillns
67 ＊＊
उ๑＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
1こ＊＊＊＊＊＊＊＊＊＊＊＊＊

＊＊＊＊＊
＊＊＊＊＊
0
1 ＊
S．lliv $=276$
137

E:TVEC- TXT
15 wome
11101110111110111101111111111111110101111111001101 11011111111110011001111111111110101001001010010010 11111011001001010011101100010110010111101011000111 0010110001111100000061011001100000110001010010100 10001001111100161101010011010010010001000011100110 10111001101100000010101010000010010011010110111001 0100010011010111001000101110111001010100110101011 00101111111001110100101000001001110110111001000100 6101010000000101001110001000000101000010000000100 11000101001110000000010001001001100000001001001100 11940111010101101101101010101001100011001011010100 010101001100000000100101100000100010011610010110

LENETH OT FUNE OF ONES

```
LEN4.NH
OF Rull
```



```
    44 **********************************
    17*****************
    **
        ****
    **
    *
    *
    *
Sum=200
    154
```

LENETH OF FUNIS GF ZEROES

LENGTH NLIMEEF

GF FIUN OF FILNS
$\begin{array}{ll}1 & 76 \\ 2 & 47\end{array}$
**

**

**
*0911111000110010001111100010101110000001110101010000011013000000001100001110011000011100000011000001113101100111100011011001001010000011011000100110Bomomsoogo11010016100010111011101100100000101300$11091000116 \% 0101111010111010010001010000000101000$

LENETH GF FUULS OF ONES

```
LEHOTH: NUDMEEE:
OF FOIN OF FND:1E
    \squareF FL1:15
    &&*************************
```



```
    E********
    G******
        E*
        **
        O
        O
        0
        14 15 0
SUM=290
    134
```

 LENGTH OF FUNS OF ZEFRES
 LEHETTH NUMEEF
OF FLl:d
OF FLINS
60 *****************: **
$29 *$
19 *************:*****
10 **********
ع ********
4 ****
**
1 *
1 *

E: HEFABD.TXT
15:OOFFO
111113011111111111111111111101110011101111110010111 00110111010110111011011011001101111111001100101010 10110111011000100101110001010101100100110011000011 01001111001001000110100001111001111011011110101110 01011011000011011000111001010000010010110010000011 600001111000011101011101001101001100010000001000010 01010010110110010000100000010000000010001000000000 10110110110011110001001010010111100101101001011000 10100110111101001101100000100011011100100100011010 0010000100100010010010010000101111100101101110110 11001100100001100010000100000010000100111101001110 111101100001001001010000010001110010010000010100

```
LENGIH OF FLINE OF ONES
```

LEUGTH MUMEEF
CF Find CHE FUHE

$315 * * * * * * * * * * * * * * *$
4 9*********
$51{ }^{5}$ *
t $2 * *$
7 2*
8
9
10
11
12
14
14
14
15
16
17
18
19
20
$54 M=2.95$
147
LENGTH OF FUNS OF ZEROES
LENGTH
OF FIUN
1
1
2
3
4
510 **********
$\begin{array}{ll}6 & \text { E *** } \\ 7 & \text { ? *** }\end{array}$
$8 \quad 0$
SUM $=2.25$
NLMEEER
OF FIUNS

46 ***************
10 **********

1*
1 *
14

E: HEFFALD. FFM
1H6OFFO
110111111111111111111110011001001111111111110011011 01901011011110001111110101110110100110110001001101 10111101100101101001101010001101011011110101000111 10110101110111001010111101011000010111100111111101 00100110100110110101001000001001111001101111000100 00011100110001001110011111110010010001000000010101 00001101000101100100001000101101111000010101101000 00110100101010010011110110100000110001000000100101 11000000100111101100110010011001010000000100000000 1001001001110010010000100011110000000010100101001 10011010101010100010000000100110001010100001100000 1100001000100100011100001000000001100001001111010

LENETH OF FUNS OF GNES

LENSTH NUMEEF:
OF FUH OF FiUNS

| 1 | 80 |
| :---: | :---: |
| 2 | 3 |
| 3 | 8 |
| 4 | 13 |
| 5 | 0 |
| 6 | 1 |
| 7 | 2 |
| 8 | 0 |
| 9 | 0 |
| 10 | 0 |
| 11 | 1 |
| 12 | 0 |
| 13 | 0 |
| 14 | 0 |
| 15 | 0 |
| 16 | 0 |
| 17 | 0 |
| 18 | 0 |
| 19 | 0 |
| 20 | 1 |
| Sum | 285 |

R \quad ***
ड甲 ***************************************

*
**
*

285

$$
145
$$

LENGTH OF RUNS OF ZERIOES

```
IENGTH NLIMEEF:
    IF FIUN OF RUNS
    OF RUNS 
    41 ***)
    16*****************
        8 ********
        6*******
        **
        ***
        ***
            145
```

E: GUGFTI. TXT
1FEDTFO

11115111011011101111111110111010000111000001011101 11011110011111111010101010111010011010011111001110 00011100111000011110110101101011101100000000100010 1001000001111101011101011110010000010111010011001 10010010010011000100001000001001010010011011011001 00110101100010000100100101111000100000110001000001 10111011001611001011001100011111011100110010000011 00001010001010000100101010001011000111000110101110 00100101111000010100000110110011000001010010011100 10000101010000001000011010010110011100000100110001 000000000001411000000000001100111100100111001001000 01010000101000016000010110010101000100010101000111

LENGTH OF FILINS OF OINES

```
LENGTH. NUMEEE
OF FUN OF FILHSS
    1 B2 ******************************************************************
    2 डs ********************************
    3 21 **********************
        6*******
        2**
    0
        2 **
        1*
SUM=268
LENETH OF FUINS OF ZEFROES
\begin{tabular}{|c|c|}
\hline LENGTH & NIMMEEF \\
\hline OF FIUN & OF FiUNS \\
\hline 1 & E2 ************************************************************** \\
\hline 2 &  \\
\hline 3 & 15*************** \\
\hline 4 & 13************* \\
\hline 5 & \(10 * * * * * * * * * *\) \\
\hline 6 & 1 * \\
\hline 7 & 1 * \\
\hline 8 & 1 * \\
\hline - & 0 \\
\hline 10 & 0 \\
\hline 11 & 2 ** \\
\hline SUM \(=332\) & 145 \\
\hline
\end{tabular}
```

E：GUAFDF．TXT
1EかGRFO
11111111011121100111111111101011011101011010110111 11001110011001111101110111100101010011001000110011 10110001100001011001110011010100100111010010101010 11111010110001101000110010001000110000111100110101 01000011010001010110101010011101000110011111001100 00000000001011101001101100100111110101000011000101 01004001101110001010000011010011010100000000110100 00100101000000001011000011000101001000101100110010 00000000011101011010000010010000001100101001000001 10100001000000000001010110100111010000010101010001 4010．110001000001010010160010001011001101001000110 11011610000100000101101000001111001011001000100100

```
LEHSTH OF FUNSE OF ONES
LENGTH NLMEEEF
OF FUINS OF FIUNS
```



```
    4こ ******************************************
    11***********
        ***
        ******
        1*
        *
    *
    LG
            !こい
    LENGTH OF RUHNS OF ZEROES
```


[^4]18SOOFFO

11111111111111101111101111100111111101111111111101 11101111101110111110100010001100110110011010101101 11010111011101110101001110101110100100111110010100 101001010110101000100101100000011111110001110000101 10000111100000010100001301111011000111110011010011 00100111000010110100010111100010001011001110101100 10110011100001100111101101100000011010100010001010 00111010110101011110010100001000111000000110100110 1000010100110101110110010000101101000100100101101 1110101011110100111000101110110011001100110111100 00011010110001010101010010000100100111000000011110 11010100100010111010011000001110111001101001000001

LEINGTH OF FLUHS OF ONES

```
IENGTH NUMFIEF
OF FULN OF FIUNS
```



```
    ************************************
    *********************
    ************
    ******
        *
        *
    *
    0
    *
SUM= =16
    151
LENGTH OF RUNS OF ZEFIDES
LENGTH NUMEEF:
IF FUN OF RUNS
```



```
    35 ************************************
    15****************
        **********
        4 ****
        4 ****
        1*
        2 8 4
            150
```

E: MAIL.FFM
1EGOOFFO
11111111111111101011111101011101001101111101101111 11111111101011110101110111011101111011011110101110 11101001111100011111101011101001101110101111010111 11100010011011111001000111111111010010011011111000 01111111101111010110101111100010100101001011111011 10001000010111100000110010000111111000010111100000 10111001110000110000000110001110001000000011111000 01111100011110111001101001000101000011011011110010 11110001000001110010011000101100100001010000011001 10001000000000110001000101101101100001000001010110 0011001110100111001100100011111010000000000000110 0010010000000011001110100001000001001011100010010

LENGTH OF FELHE OF OMES

| NGTH | NUMEEF: |
| :---: | :---: |
| or Filly | GF RUME |
| 1 | 5s ** |
| 2 | 26 ************************** |
| 3 | $18 * * * * * * * * * * * * * * * * * *$ |
| 4 | 10 ********** |
| 5 | 9 ********* |
| 6 | 4 **** |
| 7 | 9 |
| 8 | 1* |
| 9 | 1 * |
| 10 | 0 |
| 11 | 0 |
| 12 | 0 |
| 13 | 1 * |
| 14 | 0 |
| 15 | 1 * |
| SUM $=216$ | 18.7 |
| LENGTH OF | FUUNS OF ZEFIGES |
| LENETH | NUMEEF: |
| OF FiLIM | OF FIUNS |
| 1 | |
| 2 | 25************************* |
| 3 | $18 * * * * * * * * * * * * * * * * * *$ |
| 4 | 11 *********** |
| 5 | 白****** |
| 6 | 0 |
| 7 | $2 * *$ |
| 8 | 1 * |
| 9 | 1 * |
| 10 | 0 |
| 11 | 0 |
| 12 | 0 |
| 13 | 1 * |
| Sum $=284$ | * |

EFFTD1. TXT

11111111111111111111111110100019101011101111101111 00120011000011100100110111111111101011110000110101 11311110000000101101111110100001011010111001011100 10110111001011001101010110110101011010001001011011 10110111001101000010100001110111001010010100101110 6010\%30001101001011001101001000100101001110000010 011000100000000101100000011110001111000101001001110 01010100001101100101111000001110010010001010000110 01000001110001001011010000110000000000100101001100 00100010111010000010000001011100011001000001000010 10010010100101100001011101000010101101000101011100 00001000011000101000000011110000010010001011000100

LENGTH GF FILIUS OF ONES
LENGTH NIMEEF
QF Fild OF RUNE

19 *******************

* *

1 *
*
*
0
0
0
0
0
\qquad
*
SUM $=278$

LENGTH OF RUNS OF ZEROES
LENGTH
UF FUN
1
2
3
4
5
6
7
8
9
10
SUM

```
NUMEER
    OF FUNS
```



```
    36*************************************
    15****************
    13*************
        *******
        ***
        **
        1*
        1*
```

 322
    ```
E:FALI.FRH
```

1ELCOFFO

A11131111」おうoj111111111111111011111111111111111101 19011111101100111101101010011010101110011111110101 00111001100110010111101110111110101000011010010010 10100011011001100011010101001100101001011000001110 00111111101111011001100101010011011101001010010100 0010011011010000010101011101100110101101000100000 0000010000319101110011011000010101001001011100000 41001100000011006111011000100101001010110001101000 $0610100010000 \% 0000000010010000111000011000000101$ $011010030001 \pm 1000100101106001001000100000011000011$ 6000100000010000010010010101001110011000011111111 00100\％00 1001000010000100100000100111000000001101

LENETH OF FUUS OF ONES
LETSTH MUMEEF：
OF FUN OF FUIS
＊＊ ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
＊＊＊＊＊＊＊＊＊＊＊＊＊＊
＊＊＊
＊
＊
＊＊＊
0
0
1＊
0
0
1＊
1 ＊
sum $=278$
0

LENGTH OF RUNS OF ZEROES

```
LENGTH NUMEEF:
OF FIUN
    OF FUUNS
    62 *******************************************
    ************
        ***********
        *********
        ****
        **
        *
        *
        1 *
        O
        1*
        32
            138
```

```
E:FAT:T.TXT
1EGONFFG
```

11111111111111011111111011110010111001111111101111 00111110111010100011101000100101111101100100101101 11000100110001110010001000000111011011010001101010 11000101003101010101101000000001011011110000101110 00100101100010110010000010000001011111101010101011 01000016011100000100101010000100101101000001101111 01001101010010010001011110110011101001100001000010 00010101110101000010010100000100010000010110100011 0100100010100101111000010000101110000010111110011 111110111160000011060001010001010011010001010101 1000101601101110100010011101000001010000000010000 0015000001001000100011100010100100000010110011000

LENETH GF RUHE OF CINES

```
LENETH MLMEEF
OE RISH: OF FIHNE
    \varphiを****************************************************************
    26 **************************
    14**************
        ********
        ***
        1*
        *
        **
        0
        0
        0
        1 *
    SuM=2.73
        &
    LENGTH OF FUNS OF ZEFOES
LENGTH NUMEEF
IF RIUN OF RUNS
    qF RUNS
    26***************************
    21 *.********.**************
    11 ***********
    8*********
    5 ******
    *****
    З***
SUM= 327
    mos
```

12111111111111011111111111011011111111110111001000 $10 \pm 10110111001100011110101011001001111110011001011$ 1001010111100100110011111100001011101101111100100 00101101001011101000110101100100111110101110010101 00011301101010000100110001111010000010001110011001 10011000110001000000000100001100000010101101101011 01100001011010100100000110000110010010001110010100 10111001100001101000000100100010011101001111000101 00100010101010110010101110111000000010000000111100 00010110000000000001000001100010010010100000001010 00100100010100100011100001010000100000001110110000 10000100111100000001000111000001011100100000001110

```
1ENGTH GF FLINE OF ONES
```

```
GENETH NUMEEF
```

GENETH NUMEEF
GF FUN: OF FUNE
GF FUN: OF FUNE
1 7s **
1 7s **
3 18********************
3 18********************
4 © *******
4 © *******
2***
2***
8
8
10 1*
10 1*
11 1*
11 1*
13 0
13 0
14 1
14 1
SUM= 273 ,
SUM= 273 ,
LENGTH OF FUNS OF ZEFOES

```
```

LENGTH	NUMEER
OF RIUN	OF FUUNS
1	59 ¢**
2	35***********************************
3	18 ******************
4	11 ***********
5	5*****
6	2 **
7	6 ******
8	0
9	1 *
10	0
11	0
12	$1 *$
SUM $=327$	
	138

```

E：FGDE TXT
15＝6MF：
1111：j11111111111111111110101011101111111011011101 00100010111111101001011100100100011010101001000101 00111001111101011111001101001001001101001001100010 01101011001000000101011001001100000000011110011101 11010101101101010001111000001000100100101101010110 01100010000000101100000000001010100110001111001011 01110000001010000101111110100100110001110001010010 11110000101010000011061100110110011100010000000110 0000100010010000001001000010110100000000000010010 10101101100101001000001000010011100000101001110001 110000\％ \(00 \% 00010010001001001001001011000100111011\) 00001000010011001000100010001010100011000000011001

LENGTH OF FUHES OF ONES
```

ENGTH NUMEER
OF FIIN: OF RUNS
1
¢工**
こ口*****************************
13*************

**
*
**
*
0
0
%
0
0
0
0
SLIM=260
*"

```
    LENGTH OF FUNS OF ZEFRES
        LENGTH
        GIF FILIN
    OF FIINE

    4క *******************************************
    21 *********************
        6 ******
        ****
        ****
        ***
        0
        1 *
        1 *
        0
        *

F:FADE. FFIM
1E6OOFFO
11111111101011101111101111111111110111111011000001 11110110111111110101110011110010110010110111000101 00011001000010100111000000101111010100111000100111 11111000010100111010011011011010100111010010010000 000001100011010001000000000000010000111000001100000 00101100010101000011100000110000100111100010100100 10000310110001110001100111000110001001101010000100 11100101100010100011011000001110100001000000000101 10011011100000010101001000000010011100011011110000 00001100100111001011101001101100011000100000000010 01000100100000100000000101001110000000100010110000 01011100010000100111101000001011100100000011000000

LENGTH OF RUNS OF ONES
```

LENGTH NUMEEF:
OF FUN OF FIUNS
67 **
30 ******************************
20***********************

**.
*
**
*
*
Suvi=250
|
LENGTH OF FUNS OF ZEROES
LENGTH NUMEEF
OF RUN
OF FIUNS
50 **
31 ********************************
19 *******************

**

O
1*
340
126

```

11111111111100110111111110100111111001111011111111 10011110011010011111101010101110110100111101101101 11011001010011110100101001110101111001000010010000 01110011110000010100110110010000100000000010110111 10111000101011001001001111000110111001000111100101 01101100010100000011001000011101100101000101001000 0110001000110001110111000110000000011111010010100 10010010100100101001001000010101100001011101000100 0000101010000010000001110100000001101111011100010 0000000100001000010101110000011001001000001010010 G010mm0000101010101001100100000100000000010101000 10101001001010161000110010101001000101001010011010
```

LENETH OF FLIHS OF OHES

```
```

LENETH NLIMEEEF

```
LENETH NLIMEEEF
OF FiUN FIF FILINS
OF FiUN FIF FILINS
    1
    1
    ร心****************************************************************
    ร心****************************************************************
    #
    #
    1-********####
    1-********####
    1分***##*****
    1分***##*****
        *
        *
        **
        **
        *
        *
        *
        *
        *
        *
        4
        4
    LENGTH OF FUINS OF ZEROES
    LENGTH OF FUINS OF ZEROES
    LEIGTH NLIMEEF
    LEIGTH NLIMEEF
    OF RUN OF FILNS
    OF RUN OF FILNS
    OF FilINS
    OF FilINS
    1
    1
    68******
    68******
    *)
    *)
    4马 *********************************************
    4马 *********************************************
    14 ****************
    14 ****************
    9*********
    9*********
    6******
    6******
    **
    **
    2**
    2**
    2**
    2**
    \Xi***
```

 \Xi***
    ```

\section*{E: FGiEA. FFM}

1HEOOFFO

111111101111111111111110111110111111111111110101100 11111111110000101111100100001011110111110111011001 01111001100110110110111011001110110100010011110011 11011101101100010010101010001100101001110110011000 60110000010111101101100110011100010001010000000110 0000101100011101101010010011000011101011000101010 10100100011101010000100100000010010110110111011011 00110100100000600110000001101010001000111111000100 00000010000000001000011000010001001100010000001000 01011010100001001001000001101001001010110001100000 00010001000100010110000100010000000001010001001010 110110000000010001000100101011000000100000000001000

LENGTH OF RUINS OF ONES
```

LENETH NUMEEF:
CIF RUN OF FIUNE
1 }5\mathrm{ \ **
2 こூ **
CO***********
E*****

*
**
O
1 *
*
O
1*
SUM=269
:`,
LENGTH OF FIUNS OF ZEFIDES
LENGTH NLIMEEF
OF FIUN OF FUNS
62 **
2B *******************************

*

**
1*
SuM= 331

```

E: FOOH. TXT
1EEOOFFO

11111111001103100100000100000000001110001011111111 1111001011100011001001101100011111100000100101000011 00100000100000110101101110000111000001110111000011 10001101010000101100010100110000110110000010110010 00001100001000000100001101000110000010100101001101 01000001000100100000001010010101101100100000010100 0100000001110001110000000100011010000001001100110 0011610001000001110110100010111011110000100101101 00100011100100101001000000001001100010000010000100 00001000000001000000011001000110101001110000000010 01000000000000001000100010001011000100000100111101 11101001000010010000000000010001010101000000101000
```

LENGTH OF FIUNS OF ONES
LENGTH NUMEEE:
IF FUIN GF FUUIS
1
8E **
\XiO ******:***************************
\Xi **************
**
1*
O
1 *
*
31
LENETH OF RUNS OF ZEFIOES
LENETH NUMEER:
OF FUN OF FUINS
1
44**
28 ****************************
2 1 *)
11 ***********
12************


```

```

 1*
 *
 O
 O
 1*
 385
 3
    ```

\section*{E: FOLH. FFM}

1EGOOFFO

11111111111111110111110010111110101011111100011110 11110011000111001110010111001101110000111100000010 10000010011001000010100010100100011001000101001010 00011000010100010111100010010101100110010110010001 00011001011000100011011100010110000000111101100000 01000010001000100010001001110011110001100100001010 11600010000011001000001001011011010000100101111000 11011001010000110000011001000010100000000000010110 011000100000010000010000000100100100000001000100111 000000000001000100100000000000000001000100000001110 000101000000010100000000001000001000000000010010000 100010010101100000010000000101000000000100001000000
```

LEINGTH OF FILINS OF GNES
LENETH: NHMEEF:
OF F:UN OF FIUNS
8コ **
26**************************

**
*
O
0
0
O
0
0
1*
215
126
LENGTH OF FIUINS OF ZEROES
LENGTH
NLIMEEF
CIF FUN
OF FUUNS
7**************************************
30 *******************************
23 ***********************
13 **************

*
*
*
1*
1*
385
1?6

```

E:ALICEL. TXT
1ESOMFF

11111111110110111001100110001101111111111011101111 11011001111111011000001011010000111101000110111000 00011011100100111011001110011011111000000111001000 0101001100101011001001001000000001011000011100001 \(00011600 \% 000001100000010000111010101111110011000\)
 01011100111010010000001000000011001101001000100010 001010010150019010000011000000000001010000000000 m110110010101010000000000000011000001100010010101 0010001101000000011010111001100000000000110001100 00mog(00110000(x)11001000000000101000000101010100


LENCITH OR FUNAS CF CMES
```

LENETH NUMEEE:
TFFHUS: OF FuHS
< < **
2 *************************************
3 11************

```
LENGTH OF FLINE OF ZEROES
LEMGTH NUMEEF
OF FUUH OF FIUNS
    1
    2
3
    3
4
    511 **********
    5 4 ****
    - 5 *****
    \(\begin{array}{ll}7 & 4 \\ 9 & \text { **** }\end{array}\)
    \(\begin{array}{ll}8 & 1 \text { * } \\ 0 & 2 *\end{array}\)
    9 2**
    10 1*
    11 3 ***
    \(\begin{array}{ll}12 & 1 * \\ 13 & 0\end{array}\)
    14
    0
    1 *
        0
        150
        \(\begin{array}{ll}17 & 0 \\ 18 & 0\end{array}\)
        18
        19
SUM \(=378\)
    1 *
            122

E:GALCEL. FFEM
1EsGOFFO
11111111111111111011111100101110000010110100011111 11000110011111011001101001000011111110101111100101 10011110111101010000000010100011110110101001000000 10010011110110000000110110110011000111100100001100 0010001000001011100010000101110001111101010010010 00101011000011111000000110100001010000100000100000 00010000100110011010000100101000101100100000010000 00000016111000101001000000000000000000011100100100 11000110001610001112000000000010000100000011100000 0101100016100000001100010000000011000101000011010 00000001010010110000000000000010000001000000000000 0010100000000000001010000000110010001011000100100

LEWGTH GF Fillde aF ordes
LENETH HUMEEF OF FUM UF FEMS
```

2

```
******
        ******
        ****
        *
        **
        Ex
    0
    0
    0
    0
    1 *
    SUM \(=222\)
    LENETH OF FUUS OF ZEFIOES
    LENGTH NUMEEF
    OF RUN OF FIUNS
    1
    \(42 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)
    25 *************************
    6****************
    उ *************
        ***:
        ******
        **
        *****
        **
        2 **
        0
        0
        3 ***

E：AL ICEH．TXT
1FBOOFFO

11111110111111101100111111010111110011010101111100 11111110011100101101110000111010111001001100110101 01001001010111000100100011100000111010100001000001 0110010000000100001011100610000000010111000001010 01000001001111001110001111000011010101110110011100 00100010010101010000001001101111001100011001110101 11011001001001001000000110000011000001000011010000 20000011 000000010000011010000001000000000000000000 00000001000000000000000000111010001001000000000000 0000000000010110010100110000011110110010000001010 10010000100001010001000001101000010001010100010111 0010110101000000000001000010100110100000100001000

LENGTH OF FUUNS OF DNE S
\begin{tabular}{|c|c|}
\hline LENSTH & NumEEFi \\
\hline af Fllyd & OF Fiurss \\
\hline 1 & 77 为＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \\
\hline 2 &  \\
\hline 3 & 1公＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \\
\hline 4 & \(4 * * * *\) \\
\hline 5 & 2 ＊＊ \\
\hline 6 & 1 ＊ \\
\hline 7 & こ＊＊＊ \\
\hline \(5 L M=224\) & － 10 \\
\hline \multicolumn{2}{|l|}{LENGTH OF FUUS GIF ZEROES} \\
\hline LEMETA & NUMEEF： \\
\hline OF RIUN & OF RULNS \\
\hline 1 & 51 ¢＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \\
\hline 2 & ड0＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \\
\hline 3 & 12 ＊＊＊＊＊＊＊＊＊＊＊＊ \\
\hline 4 & 11 ＊＊＊＊＊＊＊＊＊＊＊ \\
\hline 5 & 10＊＊＊＊＊＊＊＊＊＊ \\
\hline 6 & 4 ＊＊＊＊ \\
\hline 7 & 1 ＊ \\
\hline 8 & \(2 * *\) \\
\hline 9 & 0 \\
\hline 10 & 1 ＊ \\
\hline 11 & 1 ＊ \\
\hline 12 & 0 \\
\hline 13 & 0 \\
\hline 14 & 0 \\
\hline 15 & 0 \\
\hline 16 & 0 \\
\hline 17 & 0 \\
\hline 18 & 1 ＊ \\
\hline 19 & 0 \\
\hline 20 & 0 \\
\hline 21 & 0 \\
\hline 22 & 0 \\
\hline 23 & 0 \\
\hline 24 & \\
\hline 25 & \(1 *\) \\
\hline SUM \(=376\) & \\
\hline
\end{tabular}

\footnotetext{
E:ALICEE.FFM
1ESOORFO

11011111111111111100011010101110010110111111010110 00111111111100100111100110111111110011011001001110 11101000110110110100100101010010000100111001101110 00100011000000001110011010010010010100000100001010 00000010100001000010100000001010000000100111001010 10010100000010010000000100000000011111101000000001 10000110010000100100011010000011000001000000101000 11101010000111001010000100100101010111101000001000 00100100100000010000000000100011000000010000010001 0000100000100110110101000000010010000110110000011 01000000000000010111010110010001000100100001000001 0000011000000011000000100010101100000001000001010
}

LEMETH OF FILIMS OF ONES
```

LENGTH NLMEEE:
OF FILI: OF FIUME
87 ***
27 *****************************
10 ***********
**
**
*
*
*
2 2 4
.,

1	87
2	27
3	10
4	2
5	0
6	2
7	0
8	1
9	0
10	1
11	0
12	0
13	0
14	0
15	1
$5 U N$	224

 *
    ```
        - 1
LENETH OF RUUNS OF ZEROES
```

LENGTH NLIMEEF:
OF RUN
OF FUNS
49*******.***.**
**************:*****************

```

```

 ::*****

**
*
*

```

E: SEAGLILL.TXT
1EかOFFO

11111111110111110111011101001111110110100111110101 01001111111111110001110101110111110101010101111001 00110111010110100100100111110101011101111110010110 10101111101000001011000100001100100100100110011111 11101010110110100000100000001010101110000010000110 00100010101000001111111101110011101101110100101010 11110101100011000100100100010111000001110010100011 10100110011101010100100100011010100110001001101000 00100110001010000100110010011000101100100000000000 00100000110101011001111010001001110110000000000100 010000001000001001000000110010001101000001010100010 10001010001000000100001011101100110100001001100100

LENETH OF FUNS OF ONES
```

LENETH NUMEEE:
OF FUINH GF FUINS
1 92,*******************************

**
**
*
1*
SUT= 2g3,

```
LENETH OF RUNS OF ZEFGES
LENETH
aF FIUN
    NUMEEF:
    OF RUNS

    \(38 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
    \(18 * * * * * * * * * * * * * * * * * *\)
        *****
        *********
        ***
        *
    0
    0
    1 *
    0
    1 *

\section*{E: EEAGULLL.FFM}

1E6ORFO
1111111111110111101011111111111111111111111101111 11110001011111101110001001010001101001000110001110 00111100101100011100100111101110010100110011110110 10101101110000001101101100010000100011001010010101 10300101100001000011100101000000011100000110011001 00101001011110011111101011010110010011101111100000 10010100100000010101111110100001100011101000001110 01010111101010001110000100000110010000000010001000 11011011010111000101110001000000001011000110010111 000000101000001100000101000010010101001010011010 00010110011101100010000001011000011110100010100000 00110000101101010101010101000000011000001001100000
```

LEINGTH OF FUNS OF ONES
LENGTH NLMESEF
OF RUN OF FIUNS
8 ***

*

*
*
0
O
O
O
0
0
1 *
SUM=283
lg}
LENGTH OF RUNS OF ZEFOES

```
```

LENGTH

```
LENGTH
OF RUN
OF RUN
    1
    1
    1
    1
    2 29
    2 29
    29 ******************************
    29 ******************************
    18 *******************
    18 *******************
        *********
        *********
        7 *******
        7 *******
        4 ****
        4 ****
        4 ****
        4 ****
        2 **
        2 **
SUM= 317
SUM= 317
NUMEEF
NUMEEF
    OF RUUNS
```

 OF RUUNS
    ```


```

 **
    ```
```

 **
    ```

\section*{NUMEEF OF FUNS EEFDFE AND AFTEF FEFMUTATION：}

CHILDREN：S TEXT STFINGS：\｛numbers in（）are adjusted for lengti）
natural terit \(242(264)\) 266 （290） 224（244） 208（2ック）
266（290）

241．2（263）
Mean
permutated tert
222（242）
244 （266）
2コ6（247）
295（224）
236（257）

ぶ心．6（247．心）
15．4（17）

NEWSF：AF＇EFS：
natural tept
HEF：ALD
GUJFFTI IAN
294

Mfil 29 E01 502 T08 259.2

Fernultated texit
290
308
254
274
268
278.8

EOOHS WFITTEN FOF CHILDFEH：
natural tent
\begin{tabular}{lr} 
& natural tent \\
FAOI & 292 \\
FOAD & 296 \\
FAD & 287 \\
FADA & 274 \\
FOOH & 262 \\
ALICEE & 252 \\
ALICEL & 244 \\
SEAGULL & 300 \\
MEan & 275.9
\end{tabular}
tent－perm
permutated tert
terst－perm

277
276
258
298
252
262
236
278
267.1

15
20
20
\(-24\)
10
\(-10\)
22
B． 8

SCIENTISTS：
natural test
permutated tesit
tert－perm
\begin{tabular}{llll} 
RUSS1 & 293 & 256 & 37 \\
RUSS2 & 305 & 272 & 33 \\
RUSS3 & 267 & 261 & 6 \\
RUS54 & 326 & 283 & 43 \\
RUSSS & 284 & 284 & 0 \\
FFUNEF & 289 & 266 & 23 \\
LAEOU & 316 & 282 & 34 \\
FFANKENA & 261 & 250 & 11 \\
CHOMSKY & 278 & & 28 \\
Mean & 291.0 & 267.1 & 23.9
\end{tabular}

\section*{APPENDIX TO CHAPTER 10.}

Optimal size of Reference Field
 Ref. Field reduced by 0.25................. Repage \(^{453}\)
Ref.Field not altered....................... page 454
Ref. Field extended by 0.25. .............. . page 455
Ref.Field extended by 0.5................ P . 45 g . 45

\section*{Reducad 0.25}

114C,265R364FF108SOF1 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{|c|c|c|c|c|}
\hline FFEO: & POWEF: & FREQ: & POWER: & F \\
\hline 0.000 & 3.8 & & & \\
\hline 0.016 & 6.4 & 0.031 & 0.4 & 0 \\
\hline 0.094 & 25.0 & 0.109 & 35.6 & 0 \\
\hline 0.172 & 19.0 & 0.188 & 3.2 & 0 \\
\hline 0.250 & 19.9 & 0.266 & 18.2 & 0 \\
\hline 0.328 & 6.8 & 0.344 & 22.4 & 0 \\
\hline 0.406 & 7.2 & 0.422 & 3.1 & 0 \\
\hline 0.484 & 20.4 & 0.500 & 26.8 & \\
\hline \multicolumn{5}{|l|}{MEAN IPOWEF DENSITY: 14.14} \\
\hline \multicolumn{5}{|l|}{DEGREES OF FFEEDOM \(=3\)} \\
\hline \multicolumn{5}{|l|}{CHISQUAFE \(=269.20\)} \\
\hline ST. DE & VIATION & 10.91 & & \\
\hline MFID U & FFER 0. & CONF L & MIT \(=\) & \\
\hline MF'D L & OWER 0. & CONF L & MIT \(=\) & \\
\hline
\end{tabular}

114C:265E364FFT2SOF1 POWER DENSITY IN FREQUENCY POINTS:
0.0001 .5
0.01610 .0
0.09426 .5
\(0.031 \quad 8.4\)
\(0.047 \quad 7.4 \quad 0.0632 .3\)
0.17214 .4
0.25020 .4
0.18810 .9 0.26618 .1
0.32812 .8 0.34423 .2
0.40163 .3 \(\begin{array}{ll}0.422 & 1.6 \\ 0.500 & 9.2\end{array}\)
\(\begin{array}{ll}0.141 & 1.7 \\ 0.219 & 2.4\end{array}\)
0.29720 .1
\(0.375 \quad 6.9\)
\(0.453 \quad 10.7\)
Redresad 0.5
FREQ: POWEF:
0.078
0.17 .3
0.23 .4
0.313
0.30 .4
0.391
0.469
2.5
3.3

MEAN POWER DENSITY\& 10.93
DEGFEES OF FREEDOM \(=3\)
CHISQUARE \(=155.54\)
ST. DEVIATION \(=7.29\)
MFD UFFER 0.95 CONF LIMIT \(=13.91\)
MFD LOWER 0.95 CONF LIMIT \(=7.94\)
\begin{tabular}{lllllllll} 
FFEQ: FOWER: & FREQ: POWER: & FREQ: FOWER: & FREQ: FQWER: & FREQ: POWER: \\
0.000 & 5.4 & & & & & & & \\
0.016 & 6.1 & 0.031 & 6.2 & 0.047 & 0.1 & 0.06310 .3 & 0.078 & 52.9 \\
0.094 & 15.3 & 0.109 & 39.5 & 0.12523 .1 & 0.141 & 1.7 & 0.15630 .2 \\
0.172 & 11.7 & 0.188 & 7.3 & 0.203 & 16.6 & 0.219 & 0.8 & 0.234 \\
0.250 & 23.8 & 0.266 & 23.2 & 0.281 & 12.3 & 0.297 & 46.0 & 0.313 \\
0.328 & 10.7 & 0.3 .44 & 17.0 & 0.359 & 17.7 & 0.375 & 22.4 & 0.391 \\
0.406 & 18.9 & 0.422 & 0.2 & 0.43822 .9 & 0.453 & 25.6 & 0.469 & 3.4 \\
0.484 & 39.8 & 0.500 & 82.3 & & & & &
\end{tabular}

MEAN FOWER DENSITY: 19.10 DEGREES OF FREEDOM \(=3\) CHISQUAFE \(=520.69\)
ST. DEVIATION \(=17.63\)
MFD UPFER 0.95 CONF LIMIT \(=26.33\)
MFD LOWER 0.95 CONF LIMIT \(=11.88\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline FREQ: & FOWER: & FREQ: & POWER: & FREQ: & POWER: & FREQ: & FQWER: & FREQ: & POWER: \\
\hline 0.000 & 5.4 & & & & & & & & \\
\hline 0.016 & 6.1 & 0.031 & 6.2 & 0.047 & 0.1 & 0.063 & 10.3 & 0.078 & 52.9 \\
\hline 0.094 & 15.3 & 0.109 & 39.5 & 0.125 & 23.1 & 0.141 & 1.7 & 0.156 & 30.2 \\
\hline 0.172 & 11.7 & 0.188 & 7.3 & 0.203 & 16.6 & 0.219 & 0.8 & 0.234 & 6.4 \\
\hline 0.250 & 23.8 & 0.266 & 23.2 & 0.281 & 12.3 & 0.297 & 46.0 & 0.313 & 26.7 \\
\hline 0.328 & 10.7 & 0.344 & 17.0 & 0.359 & 17.7 & 0.375 & 22.4 & 0.391 & 3.9 \\
\hline 0.406 & 18.9 & 0.422 & 0.2 & 0.438 & 22.9 & 0.453 & 25.6 & 0.469 & 3.4 \\
\hline 0.484 & 39.8 & 0.500 & 82.3 & & & & & & \\
\hline
\end{tabular}

MEAN FOWER DENSITY: 19.10
DEGREES OF FREEDOM \(=3\)
CHISQUARE \(=520.69\)
ST. DEVIATION \(=17.63\)
MFD UPFER 0.95 CONF LIMIT \(=26.33\)
MFD LOWER 0.95 CONF LIMIT \(=11.88\)

\section*{114C. 265B364RF18OSOF1 FOWER DENSITY IN FREQUENCY POINTS:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FREQ: PCWEF: & FREQ: & FOWER: & FREQ: & POWER: & FREQ: & POWER: & FREQ: & POWEF: \\
\hline 0.0004 .8 & & & & & & & & \\
\hline 0.01610 .0 & 0.031 & 4.2 & 0.047 & 3.4 & 0.063 & 4.5 & 0.078 & 41.4 \\
\hline 0.09423 .1 & 0.109 & 31.5 & 0.125 & 30.1 & 0.141 & 10.7 & 0.156 & 17.9 \\
\hline \(0.172 \quad 6.7\) & 0.188 & 5.4 & 0.203 & 19.6 & 0.219 & 5.7 & 0.234 & 7.7 \\
\hline 0.25023 .7 & 0.266 & 37.0 & 0.281 & 12.6 & 0.297 & 69.5 & 0.313 & 44.1 \\
\hline \(0.328 \quad 6.4\) & 0.344 & 23.1 & 0.359 & 25.2 & 0.375 & 34.0 & 0.391 & 2.4 \\
\hline 0.40622 .9 & 0.422 & 2.5 & 0.438 & 32.8 & 0.453 & 32.3 & 0.469 & 9.2 \\
\hline 0.48450 .8 & 0.500 & 36.1 & & & & & & \\
\hline \multicolumn{9}{|l|}{MEAN FOWER DENSITY: 20.96} \\
\hline \multicolumn{9}{|l|}{DEGFEES OF FREEDOM \(=3\)} \\
\hline \multicolumn{9}{|l|}{CHISQUAFE \(=413.59\)} \\
\hline ST. DEVIATICN = & 16.46 & & & & & & & \\
\hline MFD LIFFEF 0.95 & CONF LI & IMIT \(=\) & & & & & & \\
\hline MFD LOWER 0.95 & CONF LI & MIT \(=\) & & & & & & \\
\hline
\end{tabular}

\section*{Extinded 0.5}

114C.265B364RF216SOF1 FOWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline FFEO: 0.000 & \[
\begin{gathered}
\text { FOWER: } \\
8.0
\end{gathered}
\] & FREQ: & POWER: & FREQ: & POWER: & FREQ: & POWER: & FREQ: & POWEF: \\
\hline 0.016 & 9.6 & 0.031 & 4.5 & 0.047 & 2.0 & 0.063 & 14.6 & 0.078 & 36.6 \\
\hline 0.0194 & 23.0 & 0.109 & 38.5 & 0.125 & 36.2 & 0.141 & 8.0 & 0.156 & 32. 3 \\
\hline 0.172 & 21.1 & 0.188 & 7.9 & 0.203 & 20.3 & 0.219 & 28.9 & 0.234 & 21.2 \\
\hline 0.250 & 18.4 & 0.266 & 30.3 & 0.281 & 13.4 & 0.297 & 52.8 & 0.313 & 41.5 \\
\hline 0.328 & 23.0 & 0.344 & 28.2 & 0.359 & 16.9 & 0.375 & 25.1 & 0.391 & 16.9 \\
\hline 0.406 & 8.0 & 0.422 & 0.1 & 0.438 & 16.3 & 0.453 & 42.9 & 0.469 & 14.4 \\
\hline 0.484 & 67.8 & 0.500 & 33.6 & & & & & & \\
\hline
\end{tabular}

MEAN POWER DENSITY: 23.10
DEGREES OF FREEDOM \(=3\)
CHISQUARE \(=317.36\)
ST. DEVIATION \(=15.14\)
MFD LFFER 0.95 CONF LIMIT \(=29.30\)
MFD LOWER 0.95 CONF LIMIT \(=16.90\)

\section*{APPENDIX TO CHAPTER 11. \\ Fower spectral analyses of text strings.}

Index to window-group 64..... .. .. .. .. . . . .page 457
Index to window-group 128.................
Index to window-group 256..................page 632

WINDOW-GROUF 64
Index

Fower spectra of natural text strings:
Children ................................................. 458
Scientists................................................... 483
Newspapers. . . . . . . . . . . . . . . . . . . . . . . . . . page 492
Childrens books...................................... 497

\section*{62C, 37B100RF 16}

62C,37B10ORF16 FOWER DENSITY IN FREQUENCY FOINTS:
\(\begin{array}{lc}\text { FREQ: } & \text { POWER: } \\ & \\ 0.078 & 65.0 \\ 0.156 & 7.7 \\ 0.234 & 15.8 \\ 0.313 & 14.3 \\ 0.391 & 24.5 \\ 0.469 & 34.5\end{array}\)

-تへ

\(\begin{array}{lr}\text { FREQ: } & \text { FOWER: } \\ & \\ 0.031 & 50.3 \\ 0.109 & 11.2 \\ 0.188 & 4.8 \\ 0.266 & 2.9 \\ 0.344 & 11.8 \\ 0.422 & 43.9 \\ 0.500 & 102.2\end{array}\)


MEAN POWER DENSITY: 19.97
DEGREES OF FREEDO 80
ST. DEVIATION \(=20.94\)
NUMBER OF SPECTRAL POINTS AROVE UFFER LIMIT:
NUMBER OF SPECTRAL POINTS BELOW LOWER LIMIT:
70C, 109B172RF53

70C, 109R172RF53 POWER DENSITY IN FREQUENCY POINTS:

MEAN POWER DENSITY: 18.14
DEGREES OF FREEDOM \(=2\)
CHISQUARE \(=503.68\)
ST.DEVIATION \(=16.90\) MPD UPFER 0.95 CONF LIMIT \(=26.73\)
MFD LOWER 0.95 CONF LIMIT \(=9.55\)
Nov
POWER SPECTRU \(\begin{array}{lr}\text { FREQ: } & \text { POWER: } \\ 0.031 & 31.6 \\ 0.109 & 4.2 \\ 0.188 & 0.6 \\ 0.266 & 0.7 \\ 0.344 & 18.9 \\ 0.422 & 17.4 \\ 0.500 & 39.4\end{array}\)

FREQ: FOWER:
g N N O N O
0
0
0

71C, 30B101RF29

\section*{POWER SPECTRUM}

73C, 40B103RF26

POWER:


POWER DENSITY IN FREQUENCY POINTS:




73C, 40B103RF26

MEAN POWER DENSITY: 17.52
DEGREES OF FREEDOM \(=2\)
DEGREES OF FREEDOM \(=2\)
CHISQLARE \(=420.56\)
ST. DEVIATION \(=15.17\)
MPD UPPER 0.95 CONF LIMIT \(=25.23\)
MPD LOWER 0.95 CONF LIMIT \(=9.81\)
NUMBER OF SPECTRAL. POINTS ABQVE UFFER LIMIT:

 o
FREQ: POWER:

N00



MEAN POWER DENSITY: 24.59 DEGREES OF FREEDOM = CHISQUARE \(=1881.88\)
ST. DEVIATION \(=38.02\) MPD UPFER 0.95 CONF LIMIT \(=43.91\)
MPD LOWER 0.95 CONF LIMIT \(=5.26\) NUMBER OF SPECTRAL POINTS ABOVE NUMRER OF SPECTRAL POINTS ABOVE UPPER LIMIT: :SINIOA 7 HYLJJdS INGOIJINGIS JO yヨawnin \(7 \forall 101\)
80C, 103B166RF48

POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{|c|}
\hline \multirow[b]{5}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}


POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}
\(85 c\)
FIE1,201B264RF76SOF1 POWER DENSITY IN FREQUENCY POINTS:


\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}






MEAN POWER DENSITY: 22.49
DEGREES OF FREEDOM \(=2\)
CHISQUARE \(=2206.44\)
MPD UPPER 0.95 CONF LIMIT \(=42.51\)
MPD LOWER 0.95 CONF LIMIT \(=2.47\)
NNA

NUMRER OF SPECTRAL POINTS AROVE UPPER LIMIT:


91C, 187B250RF72

ER:

\begin{tabular}{lrrrrr} 
FREQ: & POWER: & FREQ: & POWER: & FREQ: & POWER: \\
0.031 & 0.6 & 0.047 & 27.8 & 0.063 & 14.9 \\
0.109 & 23.3 & 0.125 & 15.0 & 0.141 & 33.3 \\
0.188 & 6.5 & 0.203 & 7.5 & 0.219 & 71.7 \\
0.266 & 40.2 & 0.281 & 15.6 & 0.297 & 14.9 \\
0.344 & 25.2 & 0.359 & 0.1 & 0.375 & 12.0 \\
0.422 & 1.2 & 0.438 & 3.6 & 0.453 & 6.3 \\
0.500 & 82.8 & & & &
\end{tabular}


POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lr} 
FREQ: & POWER: \\
& \\
0.078 & 3.2 \\
0.156 & 12.4 \\
0.234 & 0.9 \\
0.313 & 6.7 \\
0.391 & 52.5 \\
0.469 & 22.8
\end{tabular}


94C, 126B189RF72
\begin{tabular}{cc} 
FREQ: & POWER: \\
0.000 & 27.6 \\
0.016 & 68.1 \\
0.094 & 4.1 \\
0.172 & 11.8 \\
0.250 & 9.7 \\
0.328 & 15.7 \\
0.406 & 23.2 \\
0.484 & 84.0
\end{tabular}
CHISQUARE \(=655.68\)
ST. DEVIATION \(=20.66\)
MPD UPPER 0.95 CONF LIMIT \(=31.34\)
MPD LOWER 0.95 CONF LIMIT \(=10.3\)
NLMBER OF SPECTRAL POINTS AROVE UPPER LIMIT: 6


POWER SPECTRUM

95C, 201B264RF173 POWER DENSITY IN FREQUENCY POINTS:
95C,201B264RF173


96C, 198B261RF 106
POWER SPECTRUM


96C, 198B261RF106 POWER DENSITY IN FREQUENCY POINTS:CHISQUARE \(=783.07\)
ヘ N N
\[
\text { MEAN POWER DENSITY: } 19.05
\]DEGREES OF FREEDOM \(=2\)
MPD UPPER 0.95 CONF LIMIT \(=30.02\)
MPD LOWER 0.95 CONF LIMIT \(=8.07\)
 DEGREES OF FREEDOM \(=2\)
CHISQUARE \(=783.07\) ST. DEVIATION \(=21.59\) NUMBER OF SPECTRAL POINTS ABOVE UPPER LIMIT: TOTAL NUMBER OF SIGNIFICANT SPECTRAL FOINTS:
\[
\begin{array}{ll}
\text { FREQ: } & \text { POWER: } \\
0.078 & 9.0 \\
0.156 & 0.0 \\
0.234 & 2.5 \\
0.313 & 8.6 \\
0.391 & 0.4 \\
0.469 & 1.4
\end{array}
\]
100C. 142B205RF 120
POWER SPECTRUM

FOWER DENSITY IN FREQUENCY POINTS:
100C, 142R205RF 120
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
nounmo \(\rightarrow\) シNNN \\
 \(\therefore \dot{\circ} \circ \circ \circ\)
\end{tabular}} \\
\hline \\
\hline
\end{tabular}



101C，192B255RF78
POWER SPECTRUM
\(\begin{array}{ll}\text { C．H12 }=488.72 & \text { UPPER CONF LIM }=29.76 \\ \text { SDEU }=17.79 & \text { LOWER CONF LIM }=11.68\end{array}\)

\(\begin{array}{rr}\text { FRED：} & \text { POWER：} \\ 0.078 & 23.8 \\ 0.156 & 7.2 \\ 0.234 & 9.7 \\ 0.313 & 20.4 \\ 0.391 & 20.4 \\ 0.469 & 27.1\end{array}\)

POWER DENSITY IN FREDUENCY POINTS：


\section*{76
68}

3n0
.11
.62

101C，192B255RF78
\(\begin{array}{lr}\text { FREQ：} & \text { POWER：} \\ 0.000 & 8.6 \\ 0.016 & 9.0 \\ 0.094 & 0.6 \\ 0.172 & 43.2 \\ 0.250 & 14.6 \\ 0.328 & 1.9 \\ 0.406 & 5.5 \\ 0.484 & 4.5\end{array}\)
MEAN POWER DENSITY： 20.72
DEGREES OF FREEDOM \(=2\)
CHISQUARE \(=488.72\)
CHISQUARE \(=488.72\)
ST．

NUMEER OF SPECTRAL
： 1 IWI7 YヨMO7 M07ヨa SINIOd 7 HyIJヨdS \(\pm 0\) yヨawn
102C, 101B164RF 102


\begin{tabular}{|c|c|}
\hline \(\ddot{\ddot{y}}\)
\(\frac{\ddot{4}}{3}\)
首 & \begin{tabular}{l}
MMMNOO \\

\end{tabular} \\
\hline \[
\begin{aligned}
& \ddot{0} \\
& \ddot{\ddot{u}} \\
& \stackrel{y}{4}
\end{aligned}
\] &  \\
\hline  &  \\
\hline  &  \(\therefore 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\) \\
\hline
\end{tabular}
MEAN POWER DENSITY: 17.14
CHISOUARE \(=454.27\)
ST. DEVIATION \(=15.60\)
MPD UPPER 0.95 CONF LIMIT \(=25.07\)
NUMEER OF SPECTRAL POINTS AROVE UPFER LIMIT:

103C, 158B221RF65
POWER SPECTRUM

103C, 158B221RF65 POWER DENSITY IN FREQUENCY POINTS:
\[
\begin{array}{lc}
\text { FREQ: } & \text { POWER: } \\
0.000 & 11.2 \\
0.016 & 26.6 \\
0.094 & 6.4 \\
0.172 & 23.5 \\
0.250 & 16.6 \\
0.328 & 33.9 \\
0.406 & 42.9 \\
0.484 & 18.4
\end{array}
\]
MEAN POWER DENSITY: 23.03 DEGREES OF FREEDOM \(=2\)
CHISQUARE \(=932.14\)
ST. DEVIATION \(=24.47\)
MPD UPPER 0.95 CONF LIMIT \(=35.47\)
NUMBER OF SPECTRAL POINTS AROVE UPPER LIMIT: 5
0


104C, 151B214RF118 POWER DENSITY IN FREQUENCY POINTS:


POWER DENSITY IN FREQUENCY POINTS:
CHISQUARE \(=451.58\)
ST. DEVIATION \(=16.22\)
\[
110 \mathrm{C}, 201 \mathrm{B264RF} 94
\]
MPD LPPPER 0.93 CONF LIMIT \(=26.90\)
MPD LOWER 0.95 CONF LIMIT \(=10.41\)
POWER SPECTRUM
NHMBER OF SPECTRAL POINTS BELOW LOWER LIMIT: 12


111C，161B224RF96

\section*{POWER SPECTRUM}
POWER DENSITY IN FREQUENCY POINTS：

111C，1618224RF96
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{} & \multicolumn{6}{|l|}{\begin{tabular}{l}
 \\
 \\
 \(I \Sigma^{\circ} O I=1 I W I 7 \operatorname{INOJ} 56^{\circ} \mathrm{O}\) y3MO7 adW \\
 ェI•Iz＝NOIL甘Iへヨa•1S \\
 \\
z＝WOOB3yd 50 S33493a \\
SO＇IL 8A1ISNEd צBMOd NGEW
\end{tabular}} \\
\hline \(6^{\circ} 8\) & 69600 & \(8^{\circ} \mathrm{LI}\) & ESt＊ 0 & \(S^{-2}\) & \(8 \Sigma 6^{\circ} 0\) & \[
\begin{aligned}
& 8^{\circ} \mathrm{z6} \\
& 6^{\circ} \mathrm{zl}
\end{aligned}
\] & \[
\begin{aligned}
& 005^{\circ} 0 \\
& 2 乙 \overbrace{}^{\circ} 0
\end{aligned}
\] & \[
\begin{aligned}
& L^{\circ} G \\
& 8^{\circ} \Sigma I
\end{aligned}
\] & \[
\begin{aligned}
& 48 t^{\circ} 0 \\
& 90 t^{\circ} 0
\end{aligned}
\] \\
\hline \(S^{\circ} \mathrm{L}\) & 165＊0 & O．II & S \(\angle \Sigma^{\circ} 0\) & \(8^{\circ}\) 乙 & 6SE 0 & \(\angle^{\circ} \mathrm{OZ}\) & tts．0 & 0\％ 21 & 日zs \({ }^{\circ} 0\) \\
\hline ぐも & EIE 0 & \(6^{\circ} \mathrm{Z} \mathrm{\Sigma}\) & \(\angle 6 C^{\circ} 0\) & 0．65 & 182 \({ }^{\circ} 0\) & I•II & 992＊0 & \(\Sigma \cdot \mathrm{cz}\) & 0gz＊o \\
\hline E．Gz & も£て・0 & \(\Sigma{ }^{\circ} \mathrm{\Sigma}\) & 6ご0 & \(c^{\circ} \mathrm{B}\) & 202 \({ }^{\circ}\) & \(8 \cdot 62\) & \(88{ }^{\circ} 0\) & \(6{ }^{\circ}\) & 2 \(\angle 11^{\circ} 0\) \\
\hline 8． 21 & 951 0 & \(\Sigma \cdot\) 乙 & 1ヶ100 & 8．6 & Gご＊O & \(L^{\circ} \mathrm{G}\) & \(601{ }^{\circ} 0\) & \(<69\) & \(660^{\circ} 0\) \\
\hline cis & \(8<0^{\circ} 0\) & 「＊gて & \(\Sigma 90^{\circ} 0\) & て「ご & \(\angle \boxplus 0^{\circ} 0\) & \(8^{\circ} 0\) & \(120 \% 0\) & 1＊ & \(910^{\circ} 0\) \\
\hline & & & & & & & & \(9^{\circ} \mathrm{L}\) & \(000 \%\) \\
\hline casmod & 2383 & ：ymMOd & 803．9J & 8 CBMOd & 80384 & ：y Mmad & ：0ヨyd & sy3mDd & 80381 \\
\hline
\end{tabular}
113C,101B164RF35

113C,101R164RF35 POWER DENSITY IN FREQUENCY POINTS:


114C,201B264RF 104
POWER SPECTRUM


114C,201R264RF104 POWER DENSITY IN FREQUENCY FOINTS:
NUMEER OF SPECTRAL POINTS AROVE UPPER LIMIT:

130C， 151 B2 14 RF 38
POWER SPECTRUM

130C，151B214RF38．POWER DENSITY IN FREQUENCY POINTS：
130C， 151 B 214 RF 38


\footnotetext{
MEAN POWER DENSITY： 23.0
CHISQUARE \(=1273.74\)
STPD DEVIATION 3 30． 26 MT 39
MPD LOWER 0.95 CONF LIMIT \(=7.62\)
}
リッロ


NUMBER OF SPECTRAL POINTS AROVE UPPER LIMIT：


140C,201B264RF96
140C,201B264RF96 POWER DENSITY IN FREQUENCY POINTS:



POWER DENSITY IN FREQUENCY POINTS:
141C,201B264RF88
1RUS，301B364RF 104
POWER SPECTRUM

1RUS，301R364RF104 POWER DENSITY IN FREQUENCY POINTS：

MEAN POWER DENSITY： 17.97 DEGREES OF FREEDOM \(=2\)
CHISQUARE \(=471.20\) ST．DEVIATION \(=16.27\) MPD UPPER 0.95 CONF LIMIT \(=26.24\)
ローの
2RUS, 201R264RF118 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lr} 
FREQ: & POWER: \\
& \\
0.078 & 2.6 \\
0.156 & 17.2 \\
0.234 & 4.2 \\
0.313 & 5.5 \\
0.391 & 15.9 \\
0.469 & 14.2
\end{tabular}

3RUS, 301B364RF98
POWER SPECTRUM

3RUS, 301B364RF9B POWER DENSITV IN FREQUENCY POINTS:
\begin{tabular}{lr} 
FREQ: & POWER: \\
& \\
0.078 & 14.1 \\
0.156 & 9.8 \\
0.234 & 9.8 \\
0.313 & 10.6 \\
0.391 & 89.4 \\
0.469 & 90.6
\end{tabular}

FREQ: POWER: FREQ: POWER: FREQ:



\(\begin{array}{lr}\text { FREQ: } & \text { PDWER: } \\ & \\ 0.031 & 42.7 \\ 0.109 & 9.9 \\ 0.188 & 6.6 \\ 0.266 & 12.4 \\ 0.344 & 12.3 \\ 0.422 & 18.7 \\ 0.500 & 26.9\end{array}\)
FREEQ: POWIER:
\(\begin{array}{rr}0.000 & 19.1 \\ 0.016 & 27.4 \\ 0.094 & 26.3 \\ 0.172 & 3.1 \\ 0.250 & 0.4 \\ 0.328 & 27.2 \\ 0.406 & 24.0 \\ 0.484 & 12.0\end{array}\)
MEAN POWER DENSITY: 19.35
DEGREES OF FREEDOM \(=2\)
ST. DEVIATION \(=286.37\)
MPD UPPER 0.95 CONF LIMIT \(=29.70\)
NUMBER OF SPECTRAL POINTS ABOVE UPPER LIMIT: 3
NUMRER OF SPECTRAL POINTS RELOW LOWER LIMIT: TOTAL NUMEER OF SIGNIFICANT SPECTRAL POINTS:



SRUS, 301B364RF 136 POWER SPECTRUM


FREQ: POWER:


\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}
MEAN POWER DENSITY: 20.05 DEGREES OF FREEDOM \(=2\)
ST. DEVIATION \(=20.12\)
MPD LPPPER 0.95 CDNF LIMIT \(=30.28\)
NUMRER OF SPECTRAL POINTS ABOVE UPPER LIMITs
E

1FRK, 301B364RF 152

MEAN POWER DENSITY\& 23.96 DEGREES OF FREEDOM \(=2\)
CHISQUARE \(=713.09\)
ST. DEVIATION \(=23\).
MPD UPPER 0.95 CONF LIMIT \(=35.70\)
NUMBER OF SPECTRAL POINTS ABOVE UPPER LIMIT: 8 NUMER UMSER OF SIGNIFICANT SPECTRAL POINTS: 20
LAB, 401R464RF 136 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lr} 
FREQ: & POWER: \\
& \\
0.078 & 1.2 \\
0.156 & 63.5 \\
0.234 & 45.0 \\
0.313 & 6.6 \\
0.391 & 1.9 \\
0.469 & 31.2
\end{tabular}

\begin{tabular}{lrl} 
FREQ: & POWER: & FREQ: \\
& & \\
0.047 & 12.9 & 0.063 \\
0.125 & 44.2 & 0.141 \\
0.203 & 8.7 & 0.219 \\
0.281 & 14.6 & 0.297 \\
0.359 & 32.0 & 0.375 \\
0.438 & 25.6 & 0.453
\end{tabular}
BRU, 301 B364RF 136
POWER SPECTRUM


POWER DENSITY IN FREQUENCY POINTS:
CHOM, 301 B364RF 104

1REC，201B264RF 100

1REC，201B264RF100 PDWER DENSITY IN FREQUENCY POINTS：



\(\begin{array}{rr}\text { FREQ：} & \text { POWER：} \\ 0.031 & 32.3 \\ 0.109 & 5.3 \\ 0.188 & 67.5 \\ 0.266 & 21.2 \\ 0.344 & 9.2 \\ 0.422 & 7.1 \\ 0.500 & 28.9\end{array}\)
MEAN POWER DENSITY： 19.37
DEGREES OF FREEDOM \(=2\)
CHISQUARE \(=450.27\)
ST．DEVIATION＝\(=16.51\)
MPD UPPER 0．95 CONF LIMIT \(=27.77\)
MUMRER OF SPECTRAL POINTS ABOVE UPPER LIMIT：

SINIDA 7GYIJヨdS IN甘JIGINSIS 10 yヨuwn \(7 \forall 101\)
2REC, 251B315RF130
POWER SPECTRUM

2REC, 251B315RF130 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

MEAN POWER DENSITY: 24.06 DEGREES OF FREEDOM \(=2\)
CHISQUARE \(=682.85\) CHISQUARE \(=682.85\)
ST. DEVIATION \(=22.66\) MPD UPPER 0.95 CONF LIMIT \(=35.58\)
NUMRER OF SPECTRAL POINTS ABOVE UPPER LIMIT: 5

HRLD, 201B264RF 116

HRLD, 2O1R264RF116 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lr} 
FREQ: & POWER: \\
0.078 & 3.5 \\
0.156 & 9.2 \\
0.234 & 13.8 \\
0.313 & 10.1 \\
0.391 & 15.5 \\
0.469 & 25.7
\end{tabular}
MAIL, 301B364RF270
WIIdIJJdS y


MAIL, 301B364RF270 POWER DENSITY IN FREQUENCY FOINTS:
\(\begin{array}{lrrrr}\text { FREQ: } & \text { POWER: } & \text { FREQ: } & \text { POWER: } & \text { FREQ: } \\ & & & & \\ 0.031 & 1.1 & 0.047 & 19.2 & 0.063 \\ 0.109 & 30.1 & 0.125 & 3.7 & 0.141 \\ 0.188 & 30.0 & 0.203 & 40.3 & 0.219 \\ 0.266 & 41.0 & 0.281 & 11.4 & 0.297 \\ 0.344 & 8.6 & 0.359 & 55.4 & 0.375 \\ 0.422 & 0.1 & 0.438 & 15.1 & 0.453 \\ 0.500 & 98.0 & & & \end{array}\) \(\begin{array}{cc}\text { FREQ: } & \text { POWER: } \\ 0.000 & 8.3 \\ 0.016 & 14.4 \\ 0.094 & 13.3 \\ 0.172 & 24.7 \\ 0.250 & 19.0 \\ 0.328 & 3.3 \\ 0.406 & 24.6 \\ 0.484 & 121.0\end{array}\)

MEAN POWER DENSITY: 23.31
CHISQUARE \(=963.62\)
ST. DEVIATION \(=26.50\)
MPD UPPER 0.95 CONF LIMIT \(=36.78\)
NUMBER OF SPECTRAL LIMIT \(=9.85\)
NUMRER OF SPECTRAL POINTS BELOW UPPER LIMIT: 5


GUAR, 201B264RF76
POWER SPECTRUM


POWER DENSITY IN FREQUENCY POINTS:

GUAR, 201B264RF76
\begin{tabular}{lr} 
FREQ: & POWER: \\
0.078 & 1.4 \\
0.156 & 10.8 \\
0.234 & 49.7 \\
0.313 & 48.9 \\
0.391 & 7.3 \\
0.469 & 21.4
\end{tabular}

\(\begin{array}{lrrrr}\text { FREQ: } & \text { POWER: } & \text { FREQ: } & \text { POWER: } & \text { FREQ: } \\ 0.031 & 12.9 & 0.047 & 0.9 & \\ 0.109 & 4.3 & 0.125 & 20.4 & 0.033 \\ 0.188 & 8.6 & 0.203 & 28.2 & 0.141 \\ 0.266 & 36.2 & 0.281 & 2.3 & 0.297 \\ 0.344 & 6.6 & 0.359 & 9.5 & 0.375 \\ 0.422 & 6.0 & 0.438 & 21.8 & 0.453 \\ 0.500 & 14.5 & & & \end{array}\)


MEAN POWER DENSITY: 21.05 DEGREES OF FREEDOM \(=2\)
CHISQUARE \(=613.58\)

ST. DEVIATION \(=20.09\)
MPD LPPER 0.95 CONF LIMIT \(=31.27\)
NUMRER OF SPECTRAL POINTS AROVE UPPER LIMIT: 8

PAD1,201B264RF116

PAD1, 201R264RF116 POWER DENSITY IN FREQUENCY FOINTS:

FREQ: POWER: FREQ: POWER: FREQ: POWER: FREQ:



MEAN POWER DENSITY: 20.66 MEAN POWER
DEGREES OF

CHISQUARE \(=335.14=2\)
ST. DEVIATION = 14.71
MPD LPPER 0.95 CONF LIMIT \(=28.14\)
MPD LOWER 0.95 CONF LIMIT \(=13.18\)
NUMBER OF SPECTRAL POINTS ABQVE UPPER LIMIT:


PAD2, 201R264RF116 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { FREQ: } \\
& 0.000
\end{aligned}
\] & POWER: 6.5 & FREQ: & POWER: & FREQ: & POWER: & FREQ: & POWER: & FREQ: & POWER: \\
\hline 0.016 & 6.5 & 0.031 & 31.5 & & & & & & \\
\hline 0.094 & 14.8 & 0.109 & 16.7 & 0.047 & 33.4 & 0.063 & 17.9 & 0.078 & 51.4 \\
\hline 0.172 & 1.5 & 0.188 & 0.5 & O. 125 & 21.8 & 0.141 & 13.6 & 0.156 & 4.4 \\
\hline 0.250 & 9.1 & 0.266 & 17.6 & 0.281 & 7.6
8.4 & 0.219
0.297 & 4.3 & 0.234 & 8.4 \\
\hline 0.328 & 34.3 & 0.344 & 1.1 & 0.381 & 8.4 & 0.297 & 9.1 & 0.313 & 8.9 \\
\hline 0.406 & 23.4 & 0.422 & 52.7 & 0.359 & 5. 21.7 & 0.375 & 7.0 & 0.391 & 37.9 \\
\hline 0.484 & 18.2 & 0.500 & 21.7 & 0.438 & 21.7 & 0.453 & 33.7 & 0.469 & 62.5 \\
\hline \multicolumn{10}{|l|}{MEAN POINER DENSITY: 18.58} \\
\hline \multicolumn{10}{|l|}{DEGREES OF FREEDOM \(=2\)} \\
\hline \multicolumn{10}{|l|}{CHISQUARE \(=432.80\)} \\
\hline \multicolumn{10}{|l|}{ST. DEVIATION = 15.85} \\
\hline \multicolumn{10}{|l|}{MPD UPPER 0.95 CONF LIMIT \(=26.64\)} \\
\hline \multicolumn{10}{|l|}{MPD LOWER 0.95 CONF LIMIT \(=10.52\)} \\
\hline \multicolumn{10}{|l|}{NUMBER OF SPECTRAL POINTS AROVE UPFER LIMIT:} \\
\hline \multicolumn{2}{|l|}{NLMBER OF SPEC} & Ral Poin & NTS REL & \multicolumn{6}{|l|}{UPFER LIMIT:} \\
\hline \multicolumn{10}{|l|}{TOTAL NUMRER OF SIGNIFICANT SPECTRAL POINTS: 23} \\
\hline
\end{tabular}
PAD3, 201B264RF100

PAD3, 201B264RF 100 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lr} 
FREQ: & POWER: \\
& \\
0.078 & 8.5 \\
0.156 & 42.7 \\
0.234 & 19.7 \\
0.313 & 6.5 \\
0.391 & 33.8 \\
0.469 & 45.3
\end{tabular}


PAD4,251B314RF144

PAD4,251B314RF144 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lccccccc} 
& & \multicolumn{5}{c}{ FOWER DENSITY IN FREQUENCY POINTS: } \\
FREQ: POWER: & FREQ: POWER: & FREQ: PQWER: & FREQ: \\
0.000 & 11.6 & & & & & \\
0.016 & 12.9 & 0.031 & 21.9 & 0.047 & 15.0 & 0.063 \\
0.094 & 31.4 & 0.109 & 25.7 & 0.125 & 0.6 & 0.141 \\
0.172 & 14.2 & 0.188 & 0.8 & 0.203 & 24.0 & 0.219 \\
0.250 & 7.4 & 0.266 & 7.4 & 0.281 & 12.4 & 0.297 \\
0.328 & 9.9 & 0.344 & 14.2 & 0.359 & 10.9 & 0.375 \\
0.406 & 11.2 & 0.422 & 45.7 & 0.438 & 67.8 & 0.453 \\
0.484 & 10.1 & 0.500 & 35.6 & & &
\end{tabular} MEAN POWER DENSITY: 20.22
DEGREES OF FREEDOM \(=2\) DEGREES OF FREEDOM \(=2\)

CHISQUARE \(=536.66\)
ST. DEVIATION
MPD UPPER 0.95 CONF LIMIT \(=29.58\)
MPD LOWER 0.95 CONF LIMIT \(=10.86\)
NMMRER OF SPECTRAL POINTS ABOVE U
NLMRER OF SPECTRAL POINTS RELOW L
NLMRER OF SPECTRAL POINTS RELOW LOWER LIMIT:
POOH，201B264RF60

PODH，201R264RF60
POWER DENSITY IN FREQUENCY POINTS：

\footnotetext{
FREQ：POWER：
：ロッMOO
 －NMN

－M M \(00^{\circ} 0^{\circ}\)

のこへ

\(\begin{array}{lr}\text { FREQ：} & \text { POWER：} \\ & \\ 0.031 & 4.4 \\ 0.109 & 25.2 \\ 0.188 & 1.9 \\ 0.266 & 7.2 \\ 0.344 & 14.6 \\ 0.422 & 8.4 \\ 0.500 & 1.7\end{array}\)


MEAN PDWER DENSITY\＆ 17.74
DEGREES OF FREEDOM
CHISGUARE \(=685.97\)
ST．DEVIATION \(=19.50\)
MPD UPPER 0.93 CONF LIMIT \(=27.65\)
NUMBER OF SPECTRAL POINTS ABOVE UPPER LIMIT： NOTAL MIMPER OF

}

ALIB, 2O1R264RF148 POWER DENSITY IN FREQUENCY POINTS:


\begin{tabular}{|c|c|}
\hline  &  \\
\hline  &  \\
\hline
\end{tabular}


\section*{MEAN POWER DENSITY: 21.80 \\ 6
11
17 \\  GNIFICANT SPECTRAL POINTS:}
ALIL,201B264RF68
POWER SPECTRUM

ALIL, 201B264RF68 POWER DENSITY IN FREQUENCY POINTS:
ALIL, 201B264RF68
\begin{tabular}{lr} 
FREQ: & POWER: \\
0.078 & 50.6 \\
0.156 & 31.8 \\
0.234 & 38.0 \\
0.313 & 12.2 \\
0.391 & 35.5 \\
0.469 & 0.0
\end{tabular}
Non
GULL, 201B264RF68 OWER SPECTRUM

POWER DENSITY IN FREQUENCY FOINTS:

\(06=\)
\begin{tabular}{lr} 
FRED: & PQWER: \\
& \\
0.047 & 53.0 \\
0.125 & 31.4 \\
0.203 & 0.0 \\
0.281 & 1.3 \\
0.359 & 11.3 \\
0.438 & 2.6
\end{tabular}

GULL, 201B264RF68
\begin{tabular}{lr} 
FREQ: & POWER: \\
0.078 & 9.7 \\
0.156 & 12.2 \\
0.234 & 4.2 \\
0.313 & 4.0 \\
0.391 & 2.7 \\
0.469 & 14.7
\end{tabular} MEAN POWER DENSITY: 22.23
DEGREES OF FREEDOM \(=2\)
CHISQUARE \(=1950.50\)
ST. DEVIATION \(=36.81\)
MPD UPPER 0.95 CONF LIMIT \(=40.94\)
NUMBER OF SPECTRAL POINTS ABOVE UPPER LIMIT:

WINDOW-GFOUF ..... 128
Inde:
Fower spectra and power in frequency points:
Children
Scientist ..... 506
Newspapers ..... 518
Childrens books. ..... 527
532
Fower in frequency points AFTER permutation:
Children ..... 540
Scientists ..... 546
Newspapers ..... page 551Childrens books.page 554
Statisitics:
Mean power density (MPD) page 558
Variance (CHI2) page ..... 561
Runs before permutation:
Children page 564
Scientists ..... page 576
Newspapers...
Oage 585
Oage 585
Childrens books page ..... 590
Runs after permutation:
Children page 598 Scientists  Childrens books page 624
CRS FIE1,201B328RF68
POWER SPECTRUM

POWER DENSITY IN FREQUENCY FOINTS:

SQUARE \(=406.77\)
DEVIATION \(=15.02\)
MPD UPPER 0.95 CONF LIMIT \(=23.33\)
MPD LOWER 0.95 CONF LIMIT \(=12.18\)
NUMRER OF SPECTRAL POINTS ABOVE UFPER LIMIT:

95C, 201B328RF 140

POWER DENSITY IN FREQUENCY POINTS:
FREQ:
\begin{tabular}{lr} 
FREQ: & POWER: \\
0.078 & 7.4 \\
0.156 & 14.7 \\
0.234 & 17.4 \\
0.313 & 26.3 \\
0.391 & 37.6 \\
0.469 & 57.7
\end{tabular}
MEAN POWER DENSITY: 19.41
DEGREES OF FREEDOM \(=\)
CHISQUARE \(=338.75\)
ST. DEVIATION, \(=14.33\)
MPD UPPER 0.95 CONF LIMIT \(=24.73\)
MPD LOWER 0.95 CONF LIMIT \(=14.0\)
MUMRER OF SPECTRAL POINTS ABOUE
\(\begin{array}{ll}\text { NUMRER OF SPECTRAL POINTS ABOVE UPPER LIMIT: } & 10 \\ \text { TOTAL }\end{array}\)
96C, 190B317RF92
POWER SPECTRUM

POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lr} 
FREQ: & POWER: \\
0.078 & 18.9 \\
0.156 & 17.6 \\
0.234 & 23.0 \\
0.313 & 17.0 \\
0.391 & 28.5 \\
0.469 & 9.5
\end{tabular}
101C, 128B255RF93
POWER DENSITY IN FREQUENCY FOINTS:
\begin{tabular}{lr} 
FREQ: & POWER: \\
& \\
0.078 & 23.4 \\
0.156 & 3.7 \\
0.234 & 9.7 \\
0.313 & 27.0 \\
0.391 & 8.5 \\
0.469 & 28.7
\end{tabular}

\(\begin{array}{lr}0.000 & 15.7 \\ 0.016 & 7.9 \\ 0.094 & 0.1 \\ 0.172 & 23.0 \\ 0.250 & 14.5 \\ 0.328 & 10.5 \\ 0.406 & 3.7 \\ 0.484 & 17.6\end{array}\)
MEAN POWER DENSITY: 17.13
DEGREES OF FREEDOM \(=4\)
CHISQUARE \(=185.84\)
ST.DEVIATION \(=9.97\)
MPD UPPER 0.95 CONF LIMIT \(=20.84\)
NUMEER OF SPECTRAL POINTS AROVE UFPER LIMIT: 11

103C, 94B221RF73
POWER SPECTRUM

POWER DENSITY IN FREQUENCY POINTS:
103C,94B221RF73
\begin{tabular}{lc} 
FREQ: & POWER: \\
0.078 & 24.7 \\
0.156 & 14.8 \\
0.234 & 16.9 \\
0.313 & 15.3 \\
0.391 & 40.3 \\
0.469 & 7.9
\end{tabular}

55
: 11WI7 yヨMO7

104C, 87B214RF82
POWER SPECTRUM

FREQ: POWER:


FREQ: POWER:

:IIWI7 yヨadn 3noav siniod fuylojas SIGNIFICANT SPECTRAL FOINTS:
104C,87B214RF82

\section*{ \\ }
MEAN POWER DENSITY\& 18.44
DEGREES OF FREEDOM \(=4\)
CHISQUARE = 220.94
MPD UPPER 0.95 CONF LIMIT \(=22.63\)
MPD LOWER 0.95 CONF LIMI
sinrod byiJads 70 yヨawnn
TOTAL NUMBER OF SIGNIFICAN
110C, 137B266RF 100
OWER SPECTRUM

\(110 \mathrm{C}, 137 \mathrm{~B} 266 \mathrm{RF} 100\)
FREQ: POWER: FREQ: POWER: FREQ, POWER:
 MEAN POWER DENSITY\& 19.58 DEGREES OF FREEDOM \(=4\) CHISQUARE \(=251.50\)
ST. DEVIATION \(=12.41\)
MPD UPPER O.9S CONF LIMIT \(=24.19\)
POWER DENSITY IN FREQUENCY POINTS:
NUMER OF SFECTRAL POINTS AROVE UFPER LIMIT: 9
玉
NUMRER OF SPECTRAL FOINTS EELOW LOWER LIMIT:
\[
\begin{array}{ll}
\text { FREQ: } & \text { POWER: } \\
0.078 & 15.6 \\
0.156 & 31.3 \\
0.234 & 12.2 \\
0.313 & 12.2 \\
0.391 & 18.4 \\
0.469 & 29.4
\end{array}
\]
113C,43B1 J0RF42
POWER SPECTRUM


FREQ: POWER:


FREQ: POWER:


FREQ: POWER:
\(\because\)

113C, 43B170RF 42
POWER DENSITY IN FREQUENCY POINTS:
FREQ: POWER: FRER DENSITY IN FREQUENCY POINTS:
FREQ: POWER:

MEAN POWER DENSITY: 18.95
CHISQUARE \(=261.56\)
ST. DEVIATION \(=12.44\)
MPD UPPER 0.95 CONF LIMIT
MPD LOWER 0.95 CONF LIMIT
MPD LOWER 0.95 CONF LIMIT \(=23.56\)
MPD LOWER 0.95 CONF LIMIT \(=14\).
NUMBER OF SPECTRAL POINTS AROVE
NUMBER OF SPECTRAL POINTS ABOVE UPPER LIMIT:
NUMRER OF SPECTRAL POINTS BELOW LOWER LIMIT:
TOTAL NUMBER OF SIGNIFICANT SPECTRAL POINTS:

114C,201B328RF 116 POWER DENSITY IN FREQUENCY POINTS:

N~N
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \ddot{\alpha} \\
& \stackrel{\ddot{\alpha}}{\underline{u}} \\
& \frac{0}{2} \\
& 0
\end{aligned}
\]} & \\
\hline & \\
\hline & \\
\hline &  \\
\hline
\end{tabular}

MEAN POWER DENSITY: 18.60
DEGREES OF FREEDOM \(=4\)
CHISQUARE \(=315.48\)
MPD UPPER 0.95 CONF LIMIT \(=23.62\)
MPD LOWER 0.95 CONF LIMIT \(=13.57\)
\[
\begin{aligned}
& \text { 114C, 201B328RF } 116 \\
& \text { POLIFR }
\end{aligned}
\]
NUMRER OF SPECTRAL POINTS ABOVE UPPER LIMIT:
TOTAL NUMRER OF SIGNIFICANT SPECTRAL POINIT:

13OC,201B328RF60 POWER DENSITY IN FREQUENCY POINTS:




MEAN POWER DENSITY: 17.01
MEAN POWER DENSITY: 17.01
DEGREES OF FREEDOM \(=4\)
CHISQUARE \(=220.79\)
ST. DEVIATION \(=10.83\)
MPD UPPER 0.95 CONF LIMIT \(=21.03\)
NUMBER OF SPECTRAL POINTS ABDVE
NUMBER OF SPECTRAL POINTS RELOW LOWER LIMIT: 9
TOTAL NUMBER OF SIGNIFICANT SPECTRAL FOINTS: 22
141C,201B328RF68
POWER SPECTRUM

 MEAN POWER DENSITY: 20.03 DEGREES OF FREEDOM \(=4\)
STISQUARE \(=277.23\)
MPD UPPER 0.95 CDNF LIMIT \(=24.92\)
MPD LOWER O.9S CONF LIMIT \(=15.14\)
\(\begin{array}{lll}\text { NUMBER OF SPECTRAL POINTS AROVE LPPER LIMIT: } & 10 \\ \text { SPECTRAL PQINTS RELOW LOWER LIMIT: } & 14\end{array}\)
1RUS, 273B400RF 125
POWER SPECTRUM

DENSITY IN FREQUENCY POINTS:


2RUS, 273B400RF 164

\begin{tabular}{rl} 
LED & \(=4\) \\
LIM & \(=26.22\) \\
LIM & \(=13.15\)
\end{tabular}
2RUS, 273B4OORF 164 POWER DENSITY IN FREQUENCY POINTS:
FREQ: POWER: FREQ: POWER: FREQ: POWER: FREQ: PI



\begin{tabular}{lr} 
FREQ: & POWER: \\
& \\
0.031 & 11.1 \\
0.109 & 0.0 \\
0.188 & 11.8 \\
0.266 & 18.3 \\
0.344 & 23.6 \\
0.422 & 15.2 \\
0.500 & 95.5
\end{tabular} MEAN POWER DENSITY: 19.69
DEGREES OF FREEDOM \(=4\)
CHISQUARE \(=504.59\)
ST. DEVIATION \(=17.62\)
MPD UPPER 0.95 CONF LIMIT \(=26.22\)
MPD LOWER 0.95 CONF LIMIT \(=13.15\)
NUMBER OF SPECTRAL POINTS BELOW LOWER LIMIT: 7


:ogyd :yBMOd :ojyd :ygmod :ojy
3RUS, 273B400RF106

MEAN POWER DENSITY: 17.57
DEGREES OF FREEDOM \(=4\)
CHISQLARE \(=483.71\)
ST. DEVIATION \(=16.30\)
MPD UPPER 0.95 CONF LIMIT \(=23.62\)
MPD LOWER 0.95 CONF LIMIT \(=11.53\)
NIMRER OF SPECTRAL POINTS RELOW LOWER LIMIT:
TOTAL NUMBER OF SIGNIFICANT SPECTRAL POINTS: 14
4RUS, 273B400RF216
POWER SPECTRUM

4RUS,273B4OORF216 POWER DENSITY IN FREQUENCY FOINTS:

5RUS, 273B400RF206
POWER SPECTRUM

SRUS, 273B400RF206 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { FREQ: } \\
& 0.000
\end{aligned}
\] & POWER: 16.4 & FREQ: & POWER: & FREQ: & POWER: & FREQ: & POWER: & FREQ: & POWER: \\
\hline 0.016 & 11.5 & 0.031 & 19.2 & 0.047 & 63.7 & & & & \\
\hline 0.094 & 19.3 & 0.109 & 2.5 & 0.125 & 32.1 & 0.063 & 31.1 & 0.078 & 5.8 \\
\hline 0.172 & 14.4 & 0.188 & 18.1 & 0.203 & 5.7 & 0.1419 & 6.9 & 0.156 & 13.7 \\
\hline 0.250 & 13.2 & 0.266 & 30.8 & 0.281 & 6.3 & 0.219 & 25.7 & 0.234 & 9.5 \\
\hline 0.328 & 24.2 & 0.344 & 4.6 & 0.359 & 14.4 & 0.375 & 2.1
18.5 & 0.313 & 21.6 \\
\hline 0.406 & 8. 1 & 0.422 & 3.7 & 0.438 & 27.9 & 0.375 & 18.5 & 0.391 & 7.8 \\
\hline 0.484 & 13.8 & 0.500 & 39.6 & & & & 43.8 & 0.469 & 7.4 \\
\hline \multicolumn{10}{|l|}{MEAN POWER DENSITY: 17.68} \\
\hline \multicolumn{10}{|l|}{DEGREES OF FREEDOM \(=4\)} \\
\hline \multicolumn{10}{|l|}{CHISQUARE \(=334.79\)} \\
\hline \multicolumn{10}{|l|}{ST. DEVIATION = 13.60} \\
\hline \multicolumn{10}{|l|}{MPD LPPPER 0.95 CONF LIMIT \(=22.73\)} \\
\hline \multicolumn{10}{|l|}{MPD LOWER 0.95 CONF NIMEER OF SPIT \(=12.63\)} \\
\hline \multicolumn{10}{|l|}{NUMBER OF SPECTRAL POINTS AROVE UPPER LIMIT:} \\
\hline \multicolumn{2}{|l|}{NUMPER OF SPE} & Al poi & NTS PEL & LOWER & LIMIT: & & & & \\
\hline \multicolumn{2}{|l|}{TOTAL NUMBER OF} & SIGNI & CANT & RAL P & INTS: & & & & \\
\hline
\end{tabular}
LAB, 273B400RF254
POWER SPECTRUM

LAB, 273B40ORF254 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}
Nan
UPFER LIMIT:
LOWER LIMIT:
0.95 CONF LIMIT \(=20.14\)
 NT SPEC
1FRK,273B400RF 74
POWER SPECTRUM
BRU, 273B40ORF152 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{ll} 
FREQ: & POWER: \\
& \\
0.078 & 31.5 \\
0.156 & 29.1 \\
0.234 & 17.7 \\
0.313 & 30.3 \\
0.391 & 10.7 \\
0.469 & 21.6
\end{tabular}

\begin{tabular}{cr} 
FFEEQ: & POWER: \\
0.000 & 9.2 \\
0.016 & 0.8 \\
0.094 & 31.3 \\
0.172 & 42.5 \\
0.250 & 5.7 \\
0.328 & 16.8 \\
0.406 & 11.0 \\
0.484 & 31.1
\end{tabular}

CHOM, 273B400RF96
POWER SPECTRUM


ONN
:IIWI 7 yヨddn 3 Moag Siniod \(7 \forall y 103\) SINIOd :SINIOd 7GyIJJas INGJI fingis 10 yjawn

1REC, 401RS2BRF350 POWER DENSITY IN FREQUENCY POINTS:
\(\begin{array}{lr}\text { FREQ: } & \text { POWER: } \\ 0.000 & 3.5 \\ 0.016 & 23.4 \\ 0.094 & 24.2 \\ 0.172 & 11.4 \\ 0.250 & 14.1 \\ 0.328 & 34.3 \\ 0.406 & 21.9 \\ 0.484 & 25.1\end{array}\)
1REC, 4O1RS2BRF350 POWER DENSITY IN FREQUENCY POINTS:
2REC, 301B428RF264
POWER SPECTRUM

2REC, 301B42BRF264 POWER DENSITY IN FREQUENCY POINTS:

FREQ: POWER: FREQ: POWER: FREQ:




MEAN POWER DENSITY: 15.77
DEGREES OF FREEDOM \(=4\)
CHISQUARE \(=438.59\)
ST. DEVIATION \(=14.7\)
MPD LPPER 0.95 CONF LIMIT \(=21.22\)



HRLD, 301B428RF 138
POWER SPECTRUM

HRLD, 301B42日RF138 POWER DENSITY IN FREQUENCY FOINTS:

MEAN POWER DENSITY: 17.51
DEGREES OF FREEDOM \(=4\)
CHISQUARE \(=166.51\)
ST. DEVIATION \(=9.55\)
MPD UPPER 0.95 CONF



GUAR, 201B32BRF100 POWER DENSITY IN FREQUENCY POINTS:
FREQ: POWER: FREQ: POWER: FREQ: POWER: FRED:
\(\begin{array}{lrrr}0.000 & 7.5 & & \\ 0.016 & 23.3 & 0.031 & 42.5 \\ 0.094 & 15.2 & 0.109 & 1.9 \\ 0.172 & 12.6 & 0.188 & 19.3 \\ 0.250 & 9.6 & 0.266 & 20.2 \\ 0.328 & 44.3 & 0.344 & 10.6 \\ 0.406 & 27.3 & 0.422 & 0.8 \\ 0.484 & 25.6 & 0.500 & 36.9\end{array}\)

MEAN POWER DENSITY: 20.28 DEGREES OF FREEDOM \(=4\)

ST.DEVIATION \(=15.44\)
MPD UPPER 0.95 CONF LIMIT \(=26.01\)
NUMEER OF SPECTRAL POINTS ABOUE
NUMBER OF SPECTRAL POINTS BELOW LOWER LIMIT: 11
TOTAL NUMBER OF SIGNIFICANT SOW LOWER LIMIT: 15
PAD1, 273B400RF 166
POWER SPECTRUM

PAD1,273B40ORF166 POWER DENSITY IN FREQUENCY POINTS:


PAD2, 273B40ORF 119 POWER DENSITY IN FREQUENCY POINTS:

PAD3, 273B400RF 166 WกУ1כヨdS yヨMOd

PAD3, 273B40ORF 166 POWER DENSITY IN FREQUENCY POINTS:

FREQ:
0.063
0.141
0.219
0.297
0.375
0.453
 \(\begin{array}{lr}\text { FREQ: } & \text { POWER: } \\ 0.031 & 63.3 \\ 0.109 & 42.8 \\ 0.188 & 21.9 \\ 0.266 & 9.0 \\ 0.344 & 0.1 \\ 0.422 & 20.5 \\ 0.500 & 78.3\end{array}\)

MEAN POWER DENSITY: 18.80 DEGREES OF FREEDOM \(=4\) CHISQUARE \(=561.45\)
ST. DEVIATION \(=18.16\)

MPD LPIPER 0.95 CONF LIMIT \(=25.54\)
MPD LOWER 0.95 CONF LIMIT \(=12.06\)
NUMBER OF SPECTRAL POINTS ABOVE UPFER LIMIT: 11 TOTAL NUMBER OF SIGNIFICANT SPECTRAL POINTS:
PAD4, 273B400RF 157
POWER SPECTRUM

POWER DENSITY IN FREQUENCY POINTS:
PAD4, 273B400RF 157
\begin{tabular}{lr} 
FREQ: & POWER: \\
& \\
0.078 & 4.8 \\
0.156 & 15.2 \\
0.234 & 7.3 \\
0.313 & 9.6 \\
0.391 & 32.2 \\
0.469 & 23.7
\end{tabular}
\begin{tabular}{lr} 
FREQ: & POWER: \\
& \\
0.047 & 20.8 \\
0.125 & 11.1 \\
0.203 & 59.9 \\
0.281 & 5.8 \\
0.359 & 23.0 \\
0.438 & 18.2
\end{tabular}
POOH, 273 B400RF 106

POOH, 273B4OORF 106 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lr} 
FREQ: POWER: \\
& \\
0.078 & 43.6 \\
0.156 & 21.4 \\
0.234 & 8.1 \\
0.313 & 25.4 \\
0.391 & 36.2 \\
0.469 & 12.9
\end{tabular}

SPECTRAL POINTS ABOVE UPPER LIMIT: ER OF SIGNIFICANT SPECTRAL POINTS:

 MEAN POWER DENSITY: 19.64
CHISQURE FRED 20
CHISQUARE \(=293.20\)
ST. DEVIATION \(=13.42\)
ST. DEVIATION \(=13.42\)
MPD UPPER 0.95 CONF LIMIT \(=24.62\)


POWER SPECTRUM
\[
\text { ALIL, 273B400RF } 110
\]

ALIL,273B4OORF110 POWER DENSITY IN FREQUENCY FOINTS:
\begin{tabular}{ll} 
FREQ: & POWER: \\
& \\
0.078 & 11.6 \\
0.156 & 19.2 \\
0.234 & 29.7 \\
0.313 & 21.9 \\
0.391 & 13.4 \\
0.469 & 17.7
\end{tabular}
\(\begin{array}{lrr}\text { FREQ: } & \text { POWER: } & \text { FREQ: } \\ & & \\ 0.047 & 19.7 & 0.063 \\ 0.125 & 20.9 & 0.141 \\ 0.203 & 4.4 & 0.219 \\ 0.281 & 9.1 & 0.297 \\ 0.359 & 30.2 & 0.375 \\ 0.438 & 17.5 & 0.453\end{array}\)


MEAN POWER DENSITY: 19.77
DEGREES OF FREEDOM \(=44\)
CHISQUARE \(=292.91\)
ST. DEVIATION \(=13.45\)
MPD UPPER 0.95 CONF LIMIT \(=24.76\)
MPD LOWER 0.95 CONF LIMIT \(=14.7\)
NUMBER OF SPECTRAL POINTS ABOVE
NUMEER OF SPECTRAL POINTS BELOW
MOרB INGOIGINGIS 70 y
ALIB, 273B400RF62
POWER SPECTRUM


\section*{freguencr}
POWER DENSITY IN FREQUENCY POINTS:
\(\begin{array}{ll}\text { FREQ: } & \text { POWER: } \\ 0.078 & 32.5 \\ 0.156 & 13.3 \\ 0.234 & 20.4 \\ 0.313 & 11.1 \\ 0.391 & 7.7 \\ 0.469 & 17.9\end{array}\)

ヘNO


ALIB,273B400RF62
\[
\begin{aligned}
& \text { GULL, } 273 \text { B400RF } 252 \\
& \text { POWER SPECTRUM }
\end{aligned}
\]


GULL, 273B40ORF252 POWER DENSITY IN FREQUENCY FOINTS:




004
 NUMBER OF SPECTRAL POINTS BELOW LOWER LIMIT: :SINIOd 7 Galjads in

96C, \({ }^{190 R 317 R F 92}\)






MEAN POWER DENSITY: 19.89 PRM
DEGREES OF FREEDOM \(=4^{\text {PR }}\)
CHISQUARE
CHISQUARE \(=418.39\)
ST. DEVIATION \(=16.13\)
MPD UPPER 0.95 CONF LIMIT \(=25.87\)
\begin{tabular}{l} 
MPD LOWER 0.95 CONF LIMIT \(=25.87\) \\
\hline 13.90
\end{tabular}
NUMBER OF SPECTRAL POINTS ABOVE UPPER LIMIT: 8
NUMBER OF SPECTRAL POINTS BELOW LOWER LIMIT: 15
TOTAL NUMBER OF SIGNIFICANT SPECTRAL FOINTS:
\(103 \mathrm{C}, 94 \mathrm{E221RF} 73\)

103C,94E221RF7S FOWER DENSITV IN FFEQUENCY POINTS:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline FREQ:
\[
0.000
\] & \[
\begin{gathered}
\text { FOWER: } \\
3.2
\end{gathered}
\] & FREC: & POWEF: & FREO: & FOUEF: & FRED: & FDWER: & FRED: & FOWER: \\
\hline 0.016 & 16.6 & 0.031 & 19.1 & 0.047 & 11.1 & 0.063 & & & \\
\hline 0.094 & 22.9 & 0.109 & 21.4 & 0.125 & 6.0 & 0.141 & 20.7
39.4 & 0.078
0.156 & 2.1
20.7 \\
\hline 0.172 & 12.8 & 0. 188 & 18.8 & 0.203 & 34.1 & 0.219 & 17.2 & 0.1.234 & 20.7
7.5 \\
\hline 0.250 & 7.0 & 0.266 & 24.4 & 0.281 & 21.2 & 0.297 & 17.9 & 0.234
0.313 & 7.5
20.8 \\
\hline 0.328 & 6.3 & 0.344 & 2.7 & 0.359 & 12.0 & 0.375 & 44.5 & 0.313 & 20.8
40.7 \\
\hline 0.406 & 36. 5 & 0.422 & 9.3 & 0.438 & 38.9 & 0.453 & 44.5
56.0 & 0.391
0.469 & 40.7 \\
\hline 0.484 & 23.0 & 0.500 & 5.0 & & -8.7 & 0.45 & 5. & 0.469 & 4.7 \\
\hline
\end{tabular}

\section*{MEAN POWER DENSITY: 19.13 PeM}
\(\begin{aligned} & \text { DEGREES OF FREEDOM } \\ & \text { CHISQUARE }\end{aligned}=322.28\)
ST. DEVIATION \(=13.88\)
MPD LOWER 0.95 CONF LIMIT \(=13.98\)
MBER OF SPECTRAL POINTS ABOVE UPPER LIMIT: B
NUMBER OF SPECTRAL POINTS RELOW LOWER LIMIT:
110C， 13 TBZGGRF100 POWER DENSITY IN FREQUENCY FOINTS：
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \ddot{x} \\
& \ddot{u} \\
& \frac{3}{3} \\
& 0 \\
& 0
\end{aligned}
\] &  \\
\hline  &  \\
\hline \[
\begin{aligned}
& \ddot{x} \\
& \frac{\ddot{4}}{\frac{1}{3}} \\
& 0 \\
& 0
\end{aligned}
\] &  \\
\hline  &  \\
\hline \[
\begin{aligned}
& \ddot{2} \\
& \frac{\ddot{4}}{3} \\
& \frac{10}{3} \\
& \frac{1}{4}
\end{aligned}
\] & \begin{tabular}{l}
onNaoo \\

\end{tabular} \\
\hline  &  \(00^{\circ} 0^{\circ} \circ\) \\
\hline \[
\begin{aligned}
& \ddot{2} \\
& \text { 亲 } \\
& \frac{1}{3} \\
& 0
\end{aligned}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  &  \\
\hline \[
\begin{aligned}
& \ddot{6} 0 \\
& \frac{6}{3} 0 \\
& \frac{10}{3} \\
& \frac{1}{4}
\end{aligned}
\] &  \\
\hline  &  OKNMNOM 0000000 \\
\hline
\end{tabular}
MEAN POWER DENSITY： 19.72 PRM
DEGREES OF FREEDOM \(=4\)
CHISQUARE \(=389.43\)
ST．DEVIATION \(=15.49\)
MPD LPPER O．95 CONF LIMIT \(=25.47\)
MPD LOWER O．95 CONF LIMIT \(=13.97\)
NUMRER OF SPECTRAL POINTS AROVE UPFER LIMIT： 9
NUMRER OF SPECTRAL POINTS EELOW LOWER LIMIT： 14
TOTAL NUMRER OF SIGNIFICANT SPECTRAL FOINTS： 23

114C, 2O1R32GRF116 FOWER DENSITY IN FREQUENCY FOINTS: \(\begin{array}{lcll}\text { FREQ: } & \text { POWER: } & & \\ \text { FREQ: } & \text { POWER: } \\ 0.000 & 6.0 & & \\ 0.016 & 5.9 & 0.031 & 28.8 \\ 0.094 & 8.7 & 0.109 & 15.5 \\ 0.172 & 10.7 & 0.188 & 4.5 \\ 0.250 & 8.5 & 0.266 & 19.1 \\ 0.328 & 5.5 & 0.344 & 8.6 \\ 0.406 & 12.3 & 0.422 & 24.8 \\ 0.484 & 15.3 & 0.500 & 46.3\end{array}\) MEAN POWER DENSITY: 19.15
DEGREES OF FREEDOM \(=4\) CHISOUARE \(=461.43\) ST. DEVIATION \(=16.62\) MPD UPPER 0.95 CONF
MPD UPPER 0.95 CONF LIMIT \(=25.31\)
MPD LOWER 0.95 CONF LIMIT \(=12.98\)
NUMRER OF SPECTRAL POINTS ABOVE UPF
NUMEER OF SPECTRAL POINTS BELOW LOW
MPD UPPER 0.95 CONF LIMIT \(=25.31\)
MPD LOWER 0.95 CONF LIMIT \(=12.98\)
NUMRER OF SPECTRAL POINTS ABOVE UPF
NUMEER OF SPECTRAL POINTS BELOW LOW
\begin{tabular}{llr} 
NUMBER OF SPECTRAL POINTS ABOVE UPPER LIMIT: & 9 \\
TOTAL. NUMBER OF SIGNIFICANT SPECTRAL FIMIT: & 16 \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
FREQ: & POWER: & \multicolumn{2}{c}{ FREQ: } & POWER: \\
0.031 & 28.8 & 0.047 & 41.3 & 0.063 \\
0.109 & 15.5 & 0.125 & 11.0 & 0.141 \\
0.188 & 4.5 & 0.203 & 1.8 & 0.219 \\
0.266 & 19.1 & 0.281 & 29.3 & 0.297 \\
0.344 & 8.6 & 0.359 & 22.8 & 0.375 \\
0.422 & 24.8 & 0.438 & 0.0 & 0.453 \\
0.500 & 46.3 & & &
\end{tabular}

\section*{PRHA}




\(\begin{array}{ll}\text { FREO: } & \text { POWER: } \\ 0.078 & 20.8 \\ 0.156 & 17.7 \\ 0.234 & 16.3 \\ 0.313 & 6.2 \\ 0.391 & 31.0 \\ 0.469 & 53.9\end{array}\)

130C, 201B328RF60 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{llll} 
FREQ: & POWER: & \multicolumn{2}{l}{ FREQ: } \\
POWER: \\
0.000 & 0.3 & & \\
0.016 & 6.3 & 0.031 & 11.9 \\
0.094 & 13.1 & 0.109 & 14.1 \\
0.172 & 26.4 & 0.188 & 26.3 \\
0.250 & 9.3 & 0.266 & 20.2 \\
0.328 & 11.1 & 0.344 & 29.0 \\
0.406 & 1.4 & 0.422 & 4.8 \\
0.484 & 28.4 & 0.500 & 6.9
\end{tabular}



FREQ: POWER:
140C, 201 R328RF92


1RUS, 273B400RF125
FOWER DENSITY IN FREQUENCY FOINTS:


\[
\begin{array}{lr}
\text { FREQ: } & \text { POWER: } \\
0.031 & 4.7 \\
0.109 & 6.3 \\
0.188 & 4.0 \\
0.266 & 0.7 \\
0.344 & 26.3 \\
0.422 & 3.8 \\
0.500 & 18.2
\end{array}
\]


\section*{MEAN POWER DENSITY: 17.06 PR
DEGREES OF FREEDOM \(=4\)
CHISQUARE \(=241.83\)
ST. DEVIATION \(=11.35\)
MPD UPPER 0.95 CONF LIMIT \(=21.27\)
MPD LOWER 0.95 CONF LIMIT \(=12.84\)
NUMBER OF SFECTRAL FOINTS ABOVE UFF
NUMBER OF SPECTRAL POINTS RELOW LOW
TOTAL NUMBER OF SIGNIFICANT SPECTRA \\ NUMBER OF SPECTRAL POINTS REL OW UFFER LIMIT: 11 \\ TOTAL NUMBER OF SIGNIFICANT SPECTRAER LIMIT: 14}

SRUS,273B4OORF10B FOWER DENSITV IN FREOUENCY FOINTS:

 MEAN POWER DENSITY: 19.57 PRME
DEGREES OF FREEDOM \(=4\)

CHISQUARE \(=435.69\)
ST. DEVIATION \(=16.32\)
MPD UPPER 0.95 CONF LIMIT \(=25.63\)
MPD UPPER 0.95 CONF LIMIT \(=25.63\)
MPD LOWER 0.95 CONF LIMIT \(=13.51\)
NUMBER DF SPECTRAL FOINTS ABOVE UPFER LIMIT: 9
NUMRER OF SPECTRAL POINTS RELOW LOWER LIMIT: 17
TOTAL NUMEER OF SIGNIFICANT SPECTRAL. FOINTS: 26
TOTAL NUMEER OF SIGNIFICANT SPECTRAL POINTS: 26
TiON
MPD UPPER 0.95 CONF LIMIT \(=27.61\)
MPD LOWER 0.95 CONF LIMIT \(=14.00\)
NUMBER OF SPECTRAL FOINTS AROVE UPFER LIMIT: 9
\(\begin{array}{ll}\text { NUTAL NUMEER OF SIGNIFICANT SFECTRAL. FOINTS: } & 24 \\ \text { TOTA }\end{array}\)
SRUS, 273B4OORF206 POWER DENSITY IN FREOUENCY FOINTS:
\begin{tabular}{lrrrrrrrrr} 
FREQ: POWER: & FREQ: FOWER: & FFEQ: FOWER: & FREQ: POWER: & FREQ: POWER: \\
0.000 & 32.5 & & & & & & & & \\
0.016 & 9.7 & 0.031 & 37.7 & 0.047 & 16.0 & 0.063 & 39.5 & 0.078 & 44.8 \\
0.094 & 1.3 & 0.109 & 22.6 & 0.125 & 9.0 & 0.141 & 23.4 & 0.156 & 1.0 \\
0.172 & 28.5 & 0.188 & 1.4 & 0.203 & 21.8 & 0.219 & 0.2 & 0.234 & 18.3 \\
0.250 & 16.5 & 0.266 & 9.1 & 0.281 & 11.8 & 0.297 & 7.2 & 0.313 & 5.5 \\
0.328 & 8.8 & 0.344 & 32.8 & 0.359 & 13.5 & 0.375 & 4.0 & 0.391 & 20.4 \\
0.406 & 19.1 & 0.422 & 28.2 & 0.438 & 43.1 & 0.453 & 6.2 & 0.469 & 24.1
\end{tabular}
MEAN POWER DENSITY: 17.05 PRK
DEGREES OF FREEDOM \(=4\)
CHISQUARE \(=326.23\)
MPD UPPER 0.95 CONF LIMIT \(=21.94\) TOTAL NUMEER OF SIGNIFICANT SPECTRAL POINTS: 26
LABD,273B40ORF254 POWER DENSITY IN FREQUENCY FOINTS:
FREQ:
0.063
0.141
0.219
0.297
0.375
0.453
9 NN
POWER:
12.8
10.9
26.3
18.7
4.5
12.8

FREQ: PQWER:
\(\begin{array}{rr}0.031 & 23.0 \\ 0.109 & 12.3 \\ 0.188 & 16.9 \\ 0.266 & 5.8 \\ 0.344 & 21.6 \\ 0.422 & 2.5 \\ 0.500 & 13.0\end{array}\)
DENSITY: 15.54

FREQ:
0.000
0.016
0.094
0.172
0.250
0.328
0.406
0.484
DEGREES
CHISQUARE \(=215.86\)
MPD UPPER 0.95 CONF LIMIT \(=19.34\)
MPD LOWER 0.95 CONF LIMIT \(=11.74\)
NUMBER OF SPECTRAL POINTS ABOVE UPPER LIMIT:
TOTAL NUMRER OF SIGNIFICANT SPECTRAL PDINTS:
1FRK, 273B4OORF74
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { FREQ: } \\
& 0.000
\end{aligned}
\] & POWER: 2.9 & FREQ: & POWER: & FREQ: & POWER: & FREO: & POWER: & FREQ: & POWER: \\
\hline 0.016 & 7.5 & 0.031 & 1.6 & 0.047 & 9.4 & 0.063 & & & \\
\hline 0.094 & 35.9 & 0.109 & 30.8 & 0.125 & 16.7 & O. 141 & 0.7 & 0.078 & 12.5 \\
\hline 0.172 & 11.3 & o. 188 & 12.6 & 0.203 & 15.5 & 0.1419 & 7.0 & 0.156 & 4.8 \\
\hline 0.250 & 27.6 & 0.266 & 19.0 & 0. 281 & 12.4 & 0.219 & 3.5 & 0.234 & 16.4 \\
\hline 0.328 & 24.2 & 0.344 & 23.0 & 0.359 & 28.4 & 0.375 & 21.4 & 0.313 & 16.3 \\
\hline 0.406 & 34.0 & 0.422 & 6.7 & 0.438 & 9.3 & 0.453 & 14.6 & 0.391 & 1.9 \\
\hline 0.484 & 16.5 & 0.500 & 10.2 & & & & 14.6 & 0.469 & 18.9 \\
\hline
\end{tabular}
MEAN POWER DENSITY: 14.95 PRM DEGREES OF FREEDOM
CHISQUARE \(=192.99\)
ST. DEVIATION \(=9.49\)
MFD UPPER 0.95 CONF LIMIT \(=18.47\)
NUMBER OF SPECTRAL POINTS AROVE UPPER LIMIT: 11 NUMRER OF SPECTRAL FOINTS EELOW LOWER LIMIT: 13 TOTAL NUMRER OF SIGNIFICANT SFECTRAL FOINTS
\begin{tabular}{llllllllll} 
FREQ: & POWER: & FREQ: & POWER: & FREQ: & POWER: & FREQ: & POWER: & FREQ: POWER: \\
O.000 & 1.1 & & & & & & & & \\
0.016 & 16.0 & 0.031 & 10.2 & 0.047 & 7.8 & 0.063 & 14.7 & 0.078 & 8.3 \\
0.094 & 33.4 & 0.109 & 17.2 & 0.125 & 5.2 & 0.141 & 9.1 & 0.156 & 45.7 \\
0.172 & 39.0 & 0.188 & 1.1 & 0.203 & 11.1 & 0.219 & 3.8 & 0.234 & 10.8 \\
0.250 & 3.1 & 0.266 & 18.0 & 0.281 & 9.8 & 0.297 & 16.9 & 0.313 & 20.2 \\
0.328 & 20.9 & 0.344 & 63.3 & 0.359 & 37.4 & 0.375 & 3.6 & 0.391 & 25.9 \\
0.406 & 11.4 & 0.422 & 1.4 & 0.438 & 25.8 & 0.453 & 29.8 & 0.469 & 1.6
\end{tabular}

\footnotetext{
MEAN POWER DENSITY: 18.54 PRRE
DEGREES OF FREEDOM \(=4\)
CHISQUARE \(=440.44\)
MPD UPPER 0.95 CONF LIMIT \(=24.47\)
MPD LOWER 0.95 CONF LIMIT \(=24.47\)
NUMBER OF SPECTRAL POINTS AROVE UPFER LIMIT: 10
TOTAL NUMBER OF SIGNIFICANT SFECTRAI FOINTS: 26
}
\[
0 \geq 4
\]


CHISQUARE \(=262.42\)
POWER DENSITY IN FREOUENCY FOINTS:
\[
\begin{array}{ll}
\text { FRED: } & \text { POWER: } \\
0.031 & 43.2 \\
0.109 & 27.8 \\
0.188 & 15.6 \\
0.266 & 25.8 \\
0.344 & 17.7 \\
0.422 & 20.8 \\
0.500 . & 22.8
\end{array}
\]
MPD UPPER 0.95 CONF LIMIT \(=23.01\)
NUMBER OF SPECTRAL POINTS AROVE UPPER LIMIT:
\[
\begin{array}{lr}
\text { FREQ: } & \text { POWER: } \\
0.078 & 8.4 \\
0.156 & 3.6 \\
0.234 & 11.8 \\
. .313 & 49.5 \\
0.391 & 17.1 \\
0.469 & 13.8
\end{array}
\]

1REC, 401R528RF350
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline FREQ:
\[
0.000
\] & FOWER:
\[
9.5
\] & FREQ: & POWER: & FREQ: & FOWER: & FRED: & FOWER: & FREQ: & FOWER: \\
\hline 0.016 & 25.4 & 0.031 & 12.2 & 0.047 & 19.6 & 0.063 & 11.0 & 0.078 & 7.4 \\
\hline 0.094 & 2.0 & 0.109 & 8.0 & 0.125 & 17.3 & 0.141 & 4.2 & 0.156 & 32.4 \\
\hline 0.172 & 27.8 & 0. 188 & 23.6 & 0.203 & 22.2 & 0.219 & 11.0 & 0.234 & 13.19 \\
\hline 0.250 & 5.9 & 0.266 & 0.2 & 0.281 & 33.7 & 0.297 & 15.4 & 0.313 & 1.9 .9 \\
\hline 0.328 & 5.5 & 0.344 & 8.3 & 0.359 & 0.7 & 0.375 & 36.2 & 0.391 & \\
\hline 0.406 & 8.4 & 0.422 & 37.4 & 0.438 & 12.5 & 0.453 & 31.6 & 0.469 & \\
\hline 0.484 & 21.2 & 0.500 & 12.4 & & & & & & \\
\hline \multicolumn{10}{|l|}{\multirow[t]{4}{*}{MEAN POWER DENSITY: 16.19 DEGREES OF FREEDOM \(=4\) CHISQUARE \(=304.49\) ST. DEVIATION \(=12.41\)}} \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{MPD LPPER 0.95 CONF LIMIT \(=20.80\)
MPD LOWER 0.95 CONF LIMIT \(=11.58\)}} \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{MPD LOWER 0.95 CONF LIMIT \(=11.58\)}} \\
\hline & & & & & & & & & \\
\hline \multicolumn{4}{|l|}{NUMBER OF SPECTRAL POINTS ABOVE UPFER} & LOWER & LIMIT: & & & & \\
\hline TOTAL & NUMRER & SIGNIF & ICANT & TRAL P & OINTS: & & & & \\
\hline
\end{tabular}

\footnotetext{
\(\begin{array}{lr} & \\ & \\ 0.078 & \\ 0.078 & 24.8 \\ 0.156 & 22.8 \\ 0.234 & 37.1 \\ 0.313 & 19.3 \\ 0.391 & 12.2 \\ 0.469 & 8.7\end{array}\)

2REC, \(301 \mathrm{B4} 2 \mathrm{RRF} 264\) POWER DENSITY IN FREQUENCY POINTS:


\[
\begin{array}{lr}
\text { FREQ: } & \text { POWER: } \\
0.047 & 6.1 \\
0.125 & 3.5 \\
0.203 & 6.5 \\
0.281 & 3.1 \\
0.359 & 32.7 \\
0.438 & 7.7
\end{array}
\]

FR
ST. DEVIATION \(=15.24\)
\begin{tabular}{lccr} 
FREQ: & POWER: & \multicolumn{2}{l}{ FREQ: } \\
OOWER: \\
0.000 & 9.2 & & \\
0.016 & 5.7 & 0.031 & 28.2 \\
0.094 & 13.9 & 0.109 & 8.4 \\
0.172 & 7.3 & 0.188 & 8.2 \\
0.250 & 20.3 & 0.266 & 8.6 \\
0.328 & 50.3 & 0.344 & 45.4 \\
0.406 & 5.1 & 0.422 & 8.4 \\
0.484 & 14.9 & 0.500 & 3.1
\end{tabular}
MEAN POWER DENSITY: 17.23
DEGREES OF FREEDOM \(=4\)
MPD UPPER 0.95 CONF LIMIT \(=22.89\)
MPD LOWER 0.95 CONF LIMIT \(=11.57\)
NUMBER OF SPECTRAL POINTS ABOVE UPPER LIMIT:

}

HRLD, 301 B428RF 138
POWER DENSITY IN FREQUENCY POINTS:
\(\begin{array}{lr}\text { FREQ: } & \text { POWER: } \\ 0.047 & 32.0 \\ 0.125 & 23.3 \\ 0.203 & 18.9 \\ 0.281 & 4.1 \\ 0.359 & 14.1 \\ 0.438 & 9.8\end{array}\)

FREQ:

.031
.109
.188
.266
.344
.422
500
000000

\section*{FREQ: POWER: \\ FREQ:
0.000}
\(\begin{array}{ll}0.016 & 14.9\end{array}\)
\(\begin{array}{ll}0.016 & 14.9 \\ 0.094 & 11.8\end{array}\)
. MEAN POWER DENSITY:

CHISOUARE \(=205.13\)
MFD UPPER 0.95 CONF LIMIT \(=19.88\)
MFD UPPER 0.95 CONF LIMIT \(=19.88\)
MFD LOWER 0.9 CONF LIMIT \(=12.33\)
NUMBER OF SPECTRAL POINTS ABOVE
NUMBER OF SPECTRAL POINTS BELOW LOWER LIMIT: 9
TOTAL NUMBER OF SIGNIFICANT SPECTRAL POINTS: 22

MAIL, 301 B 42 RRF 250 POWER DENSITY IN FREQUENCY POINTS:
FREQ: POWER: FREQ: POWER: FREQ POWER: FREQ:
FRED:
0.063



MEAN POWER DENSITY: 17.84
DEGREES OF FREEDOM =
CHISQUARE \(=173.16\)
ST. DEVIATION \(=9.83\)
MFD UPPER 0.95 CONF
MFD LOWER 0.95 CONF LIMIT \(=21.49\)
NUMBER OF SPECTRAL POINTS ABOVE UPPER LIMIT: 13
NUMBER OF SPECTRAL POINTS BELOW LOWER LIMIT:
TOTAL. NUMBER OF SIGNIFICANT SPECTRAL POINTS:
\[
\text { GUAR,201B32BRF } 100 \text { POWER DENSITY IN FREOUENCY FOINTS: }
\]
\begin{tabular}{lllllrr} 
FREQ：POWER： & \multicolumn{2}{l}{ FREQ：POWER：} & FREQ：FOWER： & FREQ： \\
O．000 & 11.2 & & & & & \\
0.016 & 31.5 & 0.031 & 14.6 & 0.047 & 7.2 & 0.063 \\
0.094 & 11.3 & 0.109 & 5.8 & 0.125 & 5.0 & 0.141 \\
0.172 & 5.6 & 0.188 & 23.6 & 0.203 & 42.8 & 0.219 \\
0.250 & 23.7 & 0.266 & 35.4 & 0.281 & 4.2 & 0.297 \\
0.328 & 2.4 & 0.344 & 4.9 & 0.359 & 7.3 & 0.375 \\
0.406 & 38.4 & 0.422 & 2.7 & 0.438 & 41.1 & 0.453 \\
0.484 & 23.6 & 0.500 & 12.6 & & &
\end{tabular}

\footnotetext{
のn N

空空梁
\(\begin{aligned} & \text { MPD UPP } \\ & \text { MPD LOWER } 0.95 \text { CONF LIMIT }=21.36 \\ & \text { CONF LIMIT }=12.08\end{aligned}\)
NUMRER OF SPECTRAL POINTS ABOVE UPPER LIMIT： 11
NUMBER OF SPECTRAL POINTS BELOW LOWER LIMIT： 15 DEGREES OF FREEDOM＝ DEGREES OF FREEDOM \(=4\)
CHISQUARE \(=299.07\)
ST．DEVIATION POWER DENSITY：16．72 PRME

MPD UPPER 0.95 CONF LIMIT \(=21.36\)
}
\[
\begin{array}{lr}
\text { FREQ: } & \text { POWER: } \\
0.078 & 13.9 \\
0.156 & 19.5 \\
0.234 & 19.8 \\
0.313 & 15.6 \\
0.391 & 21.9 \\
0.469 & 0.7
\end{array}
\]
PAD 1, 273R400RF 166
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline FRED: 0.000 & POWER: & FREQ: & POWER: & FREQ: & FOWER: & FREQ: & POWER: & FREQ: & POWER: \\
\hline 0.016 & 8.8 & 0.031 & 1.0 & & & & & & \\
\hline 0.094 & 10.0 & 0.109 & 1.0 & 0.047 & 40.7 & 0.063 & 24.5 & 0.078 & 15.1 \\
\hline 0.172 & 19.1 & 0.188 & 10.0 & 0.203 & 31.4
26.2 & 0.141 & 30.6 & 0.156 & 3.6 \\
\hline 0.250 & 27.3 & 0.266 & 12.8 & 0.281 & 26.2 & 0.219 & 31.9 & 0.234 & 4.8 \\
\hline 0.328 & 17.4 & 0.344 & 11.8 & 0.359 & 16.5 & 0.297 & 5.9 & 0.313 & 7.0 \\
\hline 0.406 & 15.8 & 0.422 & 11.2 & 0.438 & 16.5 & 0.375 & 10.0 & 0.391 & 21.5 \\
\hline 0.484 & 7.6 & 0.500 & 25.3 & 0.438 & 29.9 & 0.453 & 6.4 & 0.469 & 12.8 \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{MEAN POWER DENSITY: 16.39}} \\
\hline & \multicolumn{9}{|l|}{DEGREES OF FREEDOM \(=4\)} \\
\hline \multicolumn{10}{|l|}{CHISQUARE \(=249.08\)} \\
\hline \multicolumn{10}{|l|}{ST. DEVIATION \(=11.29\)} \\
\hline \multicolumn{10}{|l|}{MPD UPPER 0.95 CONF LIMIT \(=20.58\)} \\
\hline \multicolumn{10}{|l|}{MPD LOWER 0.95 CONF LIMIT \(=12.20\)} \\
\hline \multicolumn{10}{|l|}{NUMBER OF SPECTRAL POINTS ABOVE UPFER LIMIT:} \\
\hline NUMBER & OF SPEC & AL POI & NTS EEL & LOWER & LIMIT: & & & & \\
\hline TOTAL N & MBER & SIGNIF & ICANT 5 & TRAL P & OINTS: & & & & \\
\hline
\end{tabular}

PAD3,273R4OORF166 FOWER DENSITY IN FREQUENCY FOINTS:
\begin{tabular}{lllrlrlrll} 
FREQ: & FOWER: & FREQ: POWER: & FREQ: POWER: & FREQ: POWER: & FREQ: POWER: \\
0.000 & 7.5 & & & & & & & \\
0.016 & 34.9 & 0.031 & 4.4 & 0.047 & 41.6 & 0.063 & 33.3 & 0.078 & 35.3 \\
0.094 & 36.6 & 0.109 & 11.3 & 0.125 & 5.7 & 0.141 & 12.2 & 0.156 & 33.1 \\
0.172 & 6.6 & 0.188 & 8.6 & 0.203 & 0.0 & 0.219 & 1.3 & 0.234 & 20.3 \\
0.250 & 5.7 & 0.266 & 0.3 & 0.281 & 32.9 & 0.297 & 14.0 & 0.313 & 44.4 \\
0.328 & 10.4 & 0.344 & 10.3 & 0.359 & 12.7 & 0.375 & 18.9 & 0.391 & 32.4 \\
0.406 & 8.9 & 0.422 & 7.4 & 0.438 & 35.0 & 0.453 & 21.2 & 0.469 & 35.0
\end{tabular}

\section*{MEAN POWER DENSITY: 18.92 PR
DEGREES OF FREEDOM \(=4\)
CHISQUARE \(=309.88\)
ST. DEVIATION \(=13.54\)
MPD UPPER 0.95 CONF LIMIT \(=23.95\)
MPD LOWER O.95 CONF LIMIT \(=13.90\)
NUMBER OF SPECTRAL POINTS AROVE UPP
NUMRER OF SPECTRAL POINTS RELOW LOW
TOTAL NUMBER OF SIGNIFICANT SPECTRA \\ \(\begin{array}{lll}\text { NUMBER OF SPECTRAL POINTS ABOVE UFPER LIMIT: } & 12 \\ \text { NUMRER OF SPECTRAL POINTS RELOW LOWER LIMIT: } & 16 \\ \text { TOTAL NUMBER OF SIGNIFICANT SPECTRAL FOINTS: } & 28\end{array}\)}
POOH, 273B4OORF 10
FOWER DENSITY IN FREQUENCY FOINTS:

MEAN FOWER DENSITY: 21.39 PRM
DEGREES OF FREEDOM \(=4\).
DEGREES DF FREEDOM \(=4\)
CHISQUARE \(=482.97\)
ST. DEVIATION \(=17.97\)
MPD UPPER 0.95 CONF LIMIT \(=28.06\)
MPD LOWER 0.95 CONF LIMIT \(=14.72\)
NUMBER OF SPECTRAL POINTS BEI OW LPFER LIMIT:
TOTAL NUMBER DF SIGNIFICANT SPECTRAL. POINTS: 23
 MEAN POWER DENSITY: 19.19 PRM
DEGREES OF FREEDOM \(=4\)
CHISQUARE \(=213.34\)
ST. DEVIATION \(=11.31\)
MPD UFFER 0.95 CONF LIMIT \(=23.38\)
MFD LOWER O.95 CONF LIMIT \(=14.99\)
NUMBER OF SPECTRAL FOINTS ABOVE UFPER LIMIT: 12
NUMBER OF SFECTRAL POINTS BELOW LOWER LIMIT: 12
TOTAL. NUMBER OF SIGNIFICANT SPECTRAL. FOINTS: 24
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline FREO: & FOWER: & FREO: & POWER: & FREQ: & POWER: & FRED: & POWER: & & \\
\hline 0.000 & 12.0 & & & & & & POWER: & FREO: & POWER: \\
\hline 0.016 & 28.9 & 0.031 & 12.2 & 0.047 & 17.8 & 0.063 & 31.4 & & \\
\hline 0.094 & 6.3 & 0.109 & 26.4 & 0.125 & 10.7 & O. 141 & 38.4 & 0.078
0.156 & 21.2 \\
\hline 0.172 & 0.4 & 0.188 & 2.6 & 0.203 & 12.4 & 0.219 & 28.7
14.7 & 0.156 & 22.4 \\
\hline 0.250 & 27.3 & 0.266 & 2.8 & 0.281 & 38.0 & 0.297 & 14.7 & 0.234 & \(\begin{array}{r}9.5 \\ \hline 8.1\end{array}\) \\
\hline 0.328 & 17.7 & 0.344 & 19.0 & 0.359 & 22.4 & 0.375 & 19.3 & 0.313 & 38.1 \\
\hline 0.406 & 6.7 & 0.422 & 11.5 & 0.438 & 1.6 & 0.453 & 14.8 & 0.391 & 55.9 \\
\hline 0.484 & 55.8 & 0.500 & 55.7 & & & & & 0.469 & 10. \\
\hline
\end{tabular}

\section*{MEAN POWER DENSITY: 19.85 PRNe
DEGREES OF FRREEDOM \(=4\)
CHISQUARE \(=380.36\)
ST. DEVIATIION \(=15.36\)
MPD UPPER O.95 CONF LIMIT \(=25.56\)
MPD LOWER O.95 CONF LIMIT \(=14.15\)
NUMBER OF SPECTRAL POINTS AROVE UPF
NUMRER OF SPECTRAL POINTS RELOW LOW
TOTAL NUMBER OF SIGNIFICANT SPECTRA \\ \(\begin{array}{lll}\text { NUMBER OF SPECTRAL POINTS AROVE UPFER LIMIT: } & 10 \\ \text { NOTRER OF SPETRAL POINTS RELOW LOWER LIMIT: } & 14 \\ \text { TOTAL NUMBER OF SIGNIFICANT SPECTRAL POINTS: } & 24\end{array}\)}

WER:


 PRH \(\begin{array}{lr}\text { FREQ: } & \text { POWER: } \\ 0.031 & 21.4 \\ 0.109 & 11.1 \\ 0.188 & 1.4 \\ 0.266 & 19.3 \\ 0.344 & 36.3 \\ 0.422 & 6.1 \\ 0.500 & 23.2\end{array}\) FREQ: POWER:
\(\begin{array}{rr}0.000 & 0.1 \\ 0.016 & 32.1 \\ 0.094 & 13.7\end{array}\)
MEAN POWER DENSITY: 15.64
DEGREES OF FREEDOM \(=4\)

CHISQUARE \(=255.73\)
MPD UPPER 0.95 CONF 118 IMIT \(=19.79\)
MPD UPPER 0.95 CONF LIMIT \(=19.79\)
MPD LOWER 0.95 CONF LIMIT \(=11.49\)
NUMBER OF SPECTRAL POINTS ABOVE UPFER LIMIT: 11 TOTAL. NUMBER OF SIGNIFICANT SPECTRAL. FOINTS:

CHILDRENS: TEXT STRINGS:

MPD (TEXT) MPD (PERM) DELTA MPD DEV FROM TOTAL MEAN


SCIENTISTS:
MPD (TEXT) MPD (PERM) DELTA MPD DEV FROM TOTAL MEAN
\begin{tabular}{|c|c|c|c|c|}
\hline RUSS1 & 17.76 & 17.06 & -0.70 & 0.68 \\
\hline RUSS2 & 19.69 & 18.59 & -1.10 & -0.39. \\
\hline RUSS3 & 17.57 & 19.57 & 2.00 & 2.71 \\
\hline RUSS4 & 16.67 & 20.80 & 4.13 & 4.84 \\
\hline RUSS5 & 17.68 & 17.05 & -0.63 & 0.08 \\
\hline LABOU & 15.95 & 15.54 & -0.41 & 0.30 \\
\hline RRUNER & 18.68 & 18.54 & -0.14 & 0.57 \\
\hline FRANKENA & 18.54 & 14.95 & -3.59 & -2.88 \\
\hline CHOMSK.Y & 17.35 & 18.45 & 1.10 & 1.81 \\
\hline MPD (TEXT) VARIANCE: & MEAN (THIS 1.23 & GROUP): & 17.77 & \\
\hline S.DEV.: & 1.11 & & & \\
\hline MPD (PERM) VARIANCE: & MEAN (THIS
\[
3.51
\] & GROUP): & 17.84 & \\
\hline S. DEV. 8 & 1.87 & & & \\
\hline
\end{tabular}

MPD DELTA MEAN (THIS GROUP): 0.07
VARIANCE: 4.67
S.DEV. 2.16

NEWSPAPERS:

MPD(TEXT) MPD(PERM) DELTA MPD DEV FROM TOTAL MEAN
\begin{tabular}{lllrr} 
DAILY RECORD1 & 17.91 & 16.19 & -1.72 & \\
DAILY RECORD2 & 15.77 & 17.23 & 1.46 & -1.01 \\
DAILY MAIL & 18.00 & 17.84 & -0.16 & 2.17 \\
GLASGOW HERALD & 17.51 & 16.11 & -1.40 & 0.55 \\
GUARDIAN & 20.28 & 16.72 & -3.56 & -0.69 \\
& & & &
\end{tabular}
```

MPD(TEXT) MEAN (THIS GROUP): 17.89
VARIANCE: 2.59
S.DEV.: 1.61
MPD(PERM) MEAN (THIS GROUF): 16.82
VARIANCE: 0.53
S.DEV.: 0.73
MPD DELTA MEAN (THIS GROUP): -1.0760
VARIANCE: 3.49
S.DEV.: 1.87

```

BOOKS WRITTEN FOR CHILDREN:
\begin{tabular}{lcccc} 
& MPD (TEXT) & MPD (PERM) & DELTA MPD & DEV FROM TOTAL MEAN \\
PAD1 & 18.85 & 16.39 & -2.46 & -1.75 \\
PAD2 & 20.18 & 16.20 & -3.98 & -3.27 \\
PAD3 & 18.80 & 18.92 & 0.12 & 0.83 \\
PAD4 & 21.36 & 14.33 & -7.03 & -6.32 \\
POOH & 19.64 & 21.39 & 1.75 & 2.46 \\
ALICEL & 19.77 & 19.19 & -0.58 & 0.13 \\
ALICEB & 20.07 & 19.85 & -0.22 & 0.49 \\
SEAGULL & 17.70 & 15.64 & -2.06 & -1.35
\end{tabular}

MPD(TEXT) MEAN (THIS GRQUP): 19.55
VARIANCE: 1.21
8.DEV. 1.10

MPD (PERM) MEAN (THIS GROUP): 17.74
VARIANCE: 5.93
S.DEV. 2.43

MPD DELTA MEAN (THIS GRQUP): -1.81
VARIANCE: 7.55
8.DEV. 2.75

MFD (TEXT) MEAN ALL SAMPLES: 18.37 VARIANCE: 1.74
S.DEV.: 1.32

MPD (PERM) MEAN ALL SAMPLES: 17.66 VARIANCE: 3.70
S.DEV.: 1.92

MPD DELTA MEAN ALL SAMFLES: -0.71 VARIANCE: 5.35
S.DEV.: 2.31

CHILDRENS* TEXT STRINGS:
CHI2(TEXT) CHI2(FERM) DELTA CHI2 DEV FROM TOTAL MEAN
\begin{tabular}{lrrrr}
\(C 85\) & 406.77 & 254.35 & -152.42 & -122.87 \\
\(C 95\) & 338.75 & 348.41 & 9.66 & 39.21 \\
\(C 96\) & 249.39 & 418.39 & 169.00 & 198.55 \\
\(C 101\) & 185.84 & 283.65 & 97.81 & 127.36 \\
\(C 103\) & 182.15 & 322.28 & 140.13 & 169.68 \\
\(C 104\) & 220.94 & 288.57 & 67.63 & 97.18 \\
\(C 110\) & 251.50 & 389.43 & 137.93 & 167.48 \\
\(C 113\) & 261.56 & 207.77 & -53.79 & -24.24 \\
\(C 114\) & 315.48 & 461.43 & 145.95 & 175.50 \\
\(C 130\) & 217.48 & 305.05 & 87.57 & 117.12 \\
\(C 140\) & 220.79 & 292.89 & 72.10 & 101.65 \\
\(C 141\) & 277.23 & 266.28 & -10.95 & 18.60
\end{tabular}

CHI2(TEXT) MEAN (THIS GROUP): 260.66 VARIANCE: 4339. 22
S.DEV. 65.87

CHIZ(PERM) MEAN (THIS GROUP): 319.88 VARIANCE: 5306.79
S.DEV.: 72.85

CHI2 DELTA MEAN (THIS GROUP): 59.22
VARIANCE: 9071.61
S.DEV.: 95. 25

\section*{SCIENTISTS:}

CHI2(TEXT) CHI2(PERM) DELTA CHI2 DEV FROM TOTAL MEAN

RUSS1
RUSS2
RUSS3
RUSS4
RUSSS
LABDV
RRUNER
FRANKENA
CHOMSKY
281.44 504.59 483.71 364.78 334.79 255.74 251. 39 460.83 390.43
241.83 387.83 435.69 517.11 326.23 215.86 440.44 192.99 262.42
\(-39.61\)
\(-116.76\)
\(-48.02\)
152.33
-8. 56
\(-39.88\)
189.05
\(-267.84\)
-128. 01
CHI2(TEXT) MEAN (THIS GRQUP): 369.74
VARIANCE: 9493.11
S.DEV. 97.43

CHI2(PERM) MEAN (THIS GROUP): 335.60
VARIANCE: 13199.30
S.DEV.: 114.89

CHI2 DELTA MEAN (THIS GROUP): - 34.14
VARIANCE: 19468.50
S.DEV. 139.53
\(-10.06\)
\(-87.21\)
\(-18.47\)
181.88
20.99
\(-10.33\)
218. 60
\(-238.29\)
-98. 46

\section*{NEWSPAPERS:}

CHI2(TEXT) CHI2(PERM) DELTA CHI2 DEV FROM TOTAL MEAN


ROOKS WRITTEN FOR CHILDREN:
CHI2(TEXT) CHI2(PERM) DELTA CHI2 DEV FROM TOTAL MEAN

PAD 1
PAD2
PADS
PAD4
POOH
ALICEL
ALICER
SEAGULL
305.26
481.09
561.45 770.08
293. 20
292. 91
617.11
390.24
249.08
360.13
309.8 B
193.52
482.97
213.34
380. 36
255.73
-56.18
-120.96
-251.57
-576.56
189.77
-79.57
-236.75
-134.51
463.92
S.DEV. 175.66

CHI2(PERM) MEAN (THIS GROUP): 305.63
VARIANCE: 9542.34
S.DEV. 97.68

CHI2 DELTA MEAN (THIS GRQUP): -158.29
VARIANCE: 47076.40
S.DEV. 216.97
CHI2(TEXT) MEAN ALL SAMPLES: ..... 344.77
VARIANCE: 17940.10S.DEV.: 133.94
CHI2(PERM) MEAN ALL SAMPLES 315.21
VARIANCE: 8536.37S.DEV.: 92.39CHI2 DELTA MEAN ALL SAMPLES: -29.55VARIANCE: 25086.40
S. DEV. ..... 158.39
```

b:c85.t%t
201E32日FF68
00101100111110101010010000011001010010000101101110 00110101100101011000101100010000010000010001000101 0111001000010000001001001101 LENGTH OF FUNS OF ONES

```
```

LENGTH NUMEEF

```
LENGTH NUMEEF
OF FllN OF FUNS
OF FllN OF FUNS
    1 25 ****************************
    1 25 ****************************
        2 8*********
        2 8*********
        3 2**
        3 2**
        4
        4
TOTAL OF NUMEEF: DF RUNS= 3E
NUMEEFOFFUUNS*LENGTHOFRUNS= 52
LENGTH OF FILNS OF ZEFDES
LENGTH NUMEEF
OF FLUN OF FUNS
    14 **************
    2 9*********
    3 5*****
    4 2***
    5 3***
    6 1*
TOTAL OF NUMEER OF RUNS= }3
NUMMEEROFFUUNS*LENGTHOFRUNS=}7
```

```
E:CG5.TXXT
2O1BE2BFF140
101011000000011001001001101001100110000001001111110
001111101101111101011010011000110001010000010010101
1100101000101000111000010101
LENGTH OF FULIE OF ONES
```

```
LENGTH NUMEEF
```

LENGTH NUMEEF
OF RUNN OF FIUNS
OF RUNN OF FIUNS
120 ********:************
120 ********:************
2 9 **********
2 9 **********
3 2**
3 2**
4 1*
4 1*
TOTAL OF NUMEEE OF FUNS = 3 4
NUMEEFOFFUNS*LENGTHOFFUINS= 58
LENGTH OF FILINS OF ZEROES
LENGTH NUMEER
OF RUN OF FUNS
1 1 1\Xi *************
3 5 ******
4 1*
5 1 *
7 1 1*
TOTAL OF NUMEEF OF RUNS= 32
NUMEEFOFRUNS*LENGTHOFRUNS=70

```
```

E:COS.TXT
190BE17FF92
100111011101010111001111100011101111011001000110100
110000000001101000110000001110001000010000100001100
0000110101101100111000010011
LENGTH OF FLINS OF ONES
LENGTH NUMEEF
DF FILN OF RUNS
11 ************
11 ***********
5 *****
2**
TOTAL OF NUMEEF OF FUNS= 29
NLIMEEFOFFIUNS*LENGTHOFFUNS= 5\&
LENGTH OF FUNE OF ZEFIIES
I.ENGTH NUMEER
OF FLIN OF RUNS
1 10***********
1 rrater******
3 5*****
4 4 ****
5 0
6
7
2**
0
8
TOTAL OF NUMEER OF RUNS= 27
NUMEEROFRUNS*LENGTHDFRUNS=72

```

\footnotetext{
E:C1O:.TXT
12RE25SRF93

10110111010101011001001000101101110011000000100110 00000011010111011001111001110010010010000010010010 1000101001000010100010000011
LENGTH OF FUNS OF ONES
LENETH NLMEEF
OF FLIN DF FIUNS
\(\begin{array}{rrr}1 & 22 & * * * * * * * * * * * * * * * * * * * * * * ~\end{array}\) 2 日 ******** 41 1*
TOTAL OF NLIMEEF OF RUNS \(=35\) NUMEEFOFFUNS*LENGTHOFRUNS \(=54\)

LENGTH OF RUNS OF TEROES
\begin{tabular}{ll} 
LENGTH & NUMEER \\
OF FUUN & OF FUNS \\
1 & \(12 * * * * * * * * * * * *\) \\
2 & \(13 * * * * * * * * * * * * *\) \\
3 & \(3 * * *\) \\
4 & 1 \\
5 & 2 \\
6 & 1 \\
7 & 1
\end{tabular}

TOTAL OF NUMEER OF RUNS \(=33\) NUMEEF:OFRLLNS*LENGTHOFRUNS \(=74\)
}
```

E:C1OS.TXT
94R221FF73
01000101111010000101101011101110110010001010001011
0001010011010001110100000001010000011100010000000000
001010000000011001100000000111
LENGTH OF RUINS OF ONES
LENGTH NUMEEF:
OF FUN OF FUNS
17 ******************
7********
5 ******
1*
TOTAL OF NUMEEF: OF RUNS= SO
NLIMEEROFRUNS*LENGTHOFRLNS=50
lengTh of runs of zeroes

LENGTH	NUMEEF
OF RUUN	OF RUNS
1	$14 * * * * * * * * * * * * *$
2	$3 * * *$
3	$6 * * * * *$
4	$2 * * *$
5	0
6	0
7	3
8	0
9	0
10	0
11	1

TOTAL OF NUMEEF OF RUNS= 29
NUMEEROFRUNS*LENGTHOFRUNS=78

```

E:C1O4. TXT
87E214FFB2

10100101111101001001000101010010101100011100100100 01110010000101001110000010100010110000001010101101 1101110001001000101110110001
LENGTH OF FUNS OF ONES
\begin{tabular}{ll} 
LEINGTH & NLIMRER \\
OF FLIM & OF FUNS \\
1 & 26 \\
2 & \(4 * * * * * * * * * * * * * * * * * * * * * * * * * ~\)
\end{tabular}

TOTAL OF NUMEER OF RUNS \(=37\) NUMEEFOFFUNS*LENGTHOFFUNS \(=57\)

LENGTH OF FiUNS OF ZEROES
\begin{tabular}{ll} 
LENGTH & NLIMEER \\
OF FLIN & OF FLINS \\
1 & 15 \\
2 & \(15 * * * * * * * * * * * * * *\) \\
3 & 7 \\
3 & 1 \\
4 & \(* * * * * * * * * *\) \\
5 & 1
\end{tabular}

TOTAL OF NUMEEF OF RUNS= 3 E NUMEEFOFFUUNS*LENGTHOFFUUNS \(=71\)
```

 E:C110.TXT
 13TENOGRF100
 00101011000001010001100111111100101111111100000101111
 01001010000011010010100011000100100000000001000001
 10011101100100101010100001100
 LENGTH OF FIUNS OF ONES
LENGTH NUMEEF
OF RUNN OF FUNS
1 22***********************
27 *******
3 2**
4
5}
1*
1 *
TOTAL OF NLIMEEF OF RUNS = S3
NUMEETIOFFUNS*LENGTHOFFUNS= 55
LENGTH OF FUNS OF ZEFIOES
LENGTH NUMEEF
OF RUN OF FUNS
1 12 *************
2 10 ***********
3 ***
1*
4****
0
O
0
1*
TOTAL OF NUMEEF OF FUNS = 31
NUMMEFOFRUNS*LENGTHIGRUNS=75

```

E:C11Z.TXT
4SEI 7 OFFF 42
10001101101001001001110110110000101011091000111100 00000100000000110110101001001001010000010000000101 1001000010100011011100001010
LENGTH OF FUNS OF ONES
LENGTH NUMEEF:
OF FUN OF FUNS
120 ********************

210 **********
32 2

TOTAL OF NUMEEF OF RUNS \(=\) こ
NUMEEFOFFIUNS*LENGTHOFFUINS \(=50\)

LENGTH OF RUNS OF ZEFOES
\begin{tabular}{ll} 
LENGTH & NUMEEF: \\
OF FUN & OF FUNS \\
1 & \(15 * * * * * * * * * * * * * * *\) \\
2 & \(7 * * * * * * *\) \\
3 & \(2 * * *\) \\
4 & \(4 * * * *\) \\
5 & 1 \\
6 & 0 \\
7 & 2 \\
8 & 1
\end{tabular}

TOTAL OF NUMEER OF RUNS \(=32\) NUMEEROFRUNS*LENGTHOFRUNS \(=78\)

E:C114.TXT
2O1ET2RFF116
10111010110000100101011010101100001001100000001000 0001011111001010110001111000001011101100010100110 0100100000011000010110001000
LENGTH OF FIUNS OF ONES
\begin{tabular}{ll} 
LENGTH & NUMEER \\
OF FULI & OF FUNS \\
1 & \(19 * * * * * * * * * * * * * * * * * * *\) \\
2 & \(9 * * * * * * * * *\) \\
3 & \(2 * *\) \\
4 & 1
\end{tabular}

TOTAL OF NIMMEEF OF FUNS \(=32\)
NLIMEEFOFF:LINS*LENGTHOFR:INS=52

LENGTH OF FUNS OF ZERDES
\begin{tabular}{ll} 
LENGTH & NUMEER \\
DF RUN & OF RUNS \\
1 & \(13 * * * * * * * * * * * * *\) \\
2 & \(7 * * * * * * *\) \\
3 & \(4 * * * *\) \\
4 & 3 \\
5 & 1
\end{tabular}

TOTAL OF NUMEEF OF RUNS \(=31\) NUMREROFRUNS*LENGTHOFRUNS \(=76\)
```

E:C1SO.TXT
2O1BE28FFGO
010111011111101111111110010001111000011000001000110110
000000100010101001001010010100000100100000011011100
0001100100001000101110010111
LENGTH OF FUNS OF ONES
LENGTH NUMRER
OF RUN OF FUNS
1 18 *******
G *****
O
1*
0
O
1*
TOTAL OF NUMEEE OF RUNS= 30
NUMEEROFRUNS*LENGTHITFRUNS= 55
LENGTH OF FLINE OF ZEFOES
LENGTH NUMEER
OF FUUN OF RUNS
1 11 ***********
2 7 *******
3 4 ****
4 2**
5 3***
6
TOTAL OF NUMEEF: OF RUNS= }2
NUMREFDFRUNS*LENGTHOFRUNS=73

```
```

E:C140.TXT
2G1ES2BFF92
(1111000100000011111001011111101111010101000101111100
100000100011010101001010101110010100011101000011000
0000110010001100110000101010
LENGTH OF FLINS OF ONES

LENGTH	NiIMEEF:	
OF FUUN	DF	FIUNS
1	21	*********************
2	5	*****
3	2	**
4	己	***
5	2	**

TOTAL OF NUMEER OF FLINS= Z3
NUMEEFIOFFUUNS*LENGTHOFRUNS= 59
LENGTH OF FLINS OF ZERIOES
LENGTH NLIMEEF
OF RUN: OF FUNS
1 17 ******************
2 6 ******
3 6 **.*****
4 1*
5 1*
6
TOTAL OF NUMRER OF RUNS = 33
NUMEEFOFRUNS*LENGTHOFRUNS=69

```
```

E:C14].TXT
201EX2RFF6E
010101100001100001010010101111110110100110101100110
11101000000000001011000001101000010100100100010000
010000111100101011111000000100
LENGTH OF FUNS OF ONES

```
```

LENGTH NLIMEEF

```
LENGTH NLIMEEF
OF FUN OF RUNS
OF FUN OF RUNS
    1
    1
    2 9 **********
    2 9 **********
    3 2**
    3 2**
    4 4
    4 4
TOTAL OF NUMEEF OF FUNS = S2
TOTAL OF NUMEEF OF FUNS = S2
NUMAEFOFRUNS*LENGTHOFFILINS= 52
NUMAEFOFRUNS*LENGTHOFFILINS= 52
LENGTH OF FUNS OF ZEFROES
LENGTH NUMEEF
OF FLIN OF FINNS
16 *****************
    *******
    1*
    4 ****
    2 **
    1*
    0
        0
        0
        0
    1.
TOTAL OF NUMEER OF RUNS = 32
NUMEEFOFRUNS*LENGTHOFRUNS=76
```

E: FUSE1.TXT
273E4OOFF 125
01111001101011101110111010101100101101101111010110 00001010010110001010010100100010011000000000000101 0110101011100010010001110000 LENGTH OF FUNS OF ONES

LENGTH NUMEEF:
OF FUN OF FUNS
$120 *$
B ********
5*****
1 *
1 *
TOTAL OF NUMEEF OF RUNS $=35$
NUMEEROFFUNS*I_ENGTHOFRIINS $=60$

LENGTH OF RUNS OF ZEROES
LENGTH NUMEEF
OF FIUN OF FIUNS
$\begin{array}{rrr}1 & 21 & \text { ******* } \\ 2 & 7 & \text { ******* }\end{array}$

1 *
*
0
0
0
0
0
1
12
1 *
TOTAL OF NUMEER OF FUNS $=35$ NUMEEFOFRUNS \ddagger LENGTHDFRUNS $=68$

```
E:RUSS2.TXT
27SE40OFIF164
110011000101111111011011001101010100010000100010011 
000011000110111110000000101110100000010100101110111
0100011111011101010101001001
LENGTH OF RLINS OF ONES
LENGTH NUMREF'
OF RLIN OF RUNS
    1
    2 8 ********
    *****
    *
    *
    1*
TOTAL OF NLMEEF: OF FUNS= }3
NUMEEROFRUNS*LENGTHOFFUNS= 62
LENGTH OF FIUNS OF ZEFIOES
LENGTH NUMEEF
OF FUNN OF RUINS
    1 18 ********
    2 5 % *****
3
4
5
7 1
TOTAL OF NUMEER OF RUNS \(=33\) NLMEEROFRUNS*LENGTHOFRUNS \(=66\)
```

E: FUSSE.TXT
273E4OOFF 106

11010100001111011101001001110000010011010111010100 00001011000000000100000010010010100111001101010110 0000111000100010110101010101
LENGTH OF FUUNS OF ONES

```
LENGTH NUMEEF:
GF RUN OF RUNS
    1
        $
            2క ************************
                    G *******
                    5*****
4 1*
```

TOTAL OF NUMEER OF RUNS $=35$
NUMEEFOFFUNS*LENGTHOFFLINS $=54$
LENGTH OF FUNS OF ZERDES
LENGTH NUMEER:
OF RUN OF RUNS
1
2
27 *******
3 2 **
4 1*
5 2*
6 2 2
70
7
91 *
TOTAL OF NUMEER OF RUNS $=34$
NUMREFOFRUNS*LENGTHOFRUNS= 74

```
E:RUSSS4.TXT
273E40ORF216
10110101110001110010101001001110000110011010110001 
0100110001101000100100110000001010100111001111100110
1010010001110010011101010110
LENGTH OF RUNS OF ONES
LENGTH NUMEEF
OF FUNN OF FUNS
    1
    2
    3
TOTAL OF NUMEER OF RUNS= 37
NUMEEROFFUNS*LENGTHOFRUNS= 60
LENGTH OF FUNS OF ZEROES
LENGTH NUMEER
OF RIUN OF RUNS
    1
    2 14 ***************
    3 5 *****
    4 1*
    5 % 0
TOTAL OF NUMBER OF RUNS = 36
NUMREROFRUNS*LENGTHOFRUNS= 68
```

E: FUSS4.TXT
273E40OFF216

10110101110001110010101001001110000110011010110001 01001100011010001001001100000010101001100111100110 1010010001110010011101010110
LENGTH OF RUNS OF ONES

```
LENGTH NUMEEF:
OF FUUN OF RUNS
    1
    I
    2 10************
    3
```

TOTAL OF NUMEEF OF RUNS $=37$
NUMEEROFFUUNS*LENGTHOFRUNS $=60$
LENGTH OF FUNS OF ZEFROES
LENGTH NUMEER
OF FIUN OF RUNS
1
2
$\begin{array}{rr}2 \\ 3 & 5 \\ 3\end{array}$
41 *
$\begin{array}{ll}5 & 0 \\ 6 & 1\end{array}$
TOTAL OF NUMEER OF RUNS $=36$
NUMREROORUNS*LENGTHOFRUNS $=68$

[^5]E: LAEOV.TXT
273E4OOFF254

01101001001011110000001101000110111000001001011101 10001010011101011000001010110110110110101100101010 1001101511001101111101001000
LENGTH OF RUNS OF ONES
LENGTH NLIMEER
OF FUN OF FLINS
1
18 ******************
11 * * * * * * * * * *

3
2**
$5 \quad 1$ *
TOTAL OF NUMEER OF RUNS $=36$ NUMEEFOFFIUNS*LENGTHOFFILIS = 65

LENGTH OF FLINS OF ZEFRES

LENGTH NLIMEEF:
OF FUN OF FUNS
$\begin{array}{rrr}1 & 22 & \text { ******** } \\ 2 & 8 & * * * * * * * *\end{array}$
$\begin{array}{ll}3 \\ 3 & \text { 3*** }\end{array}$
40
$\begin{array}{ll}5 & 2 * *\end{array}$
TOTAL OF NUMRER OF RUNS $=36$ NUMEEROFRUNS*LENGTHOFRUNS $=63$

E:FRANIENA. TXT
273E40ORF74

01010101001010001000101000010000010101000010110000 01100111011011011101011110110110001110110101101111 1100101100000000101010100111
LENGTH OF RUNS OF ONES

```
LENETH NUMBER
OF RUNN OF RUNS
20 **********************
2 10 ***********
4 ****
1*
6 1*
TOTAL OF NUMEER OF RUNS \(=36\) NUMEEROFRUNS*LENGTHOFRUNS \(=62\)
```

LENETH OF RUNS OF ZEROES

LENGTH	NUMEER
OF FUUN	OF RUNS
1	23
2	$4 *$
3	3
4	2
5	2
6	0
6	0
7	0

TOTAL OF NUMEER OF RUNS $=35$ NUMEERDFRUNS*LENGTHOFRUNS $=66$

F: BRUNEF: TXT
2?3E4OORF152

10011100011010010101001010101101100000101110011001 00111000110000010000011011000011110100110010010000 1110001100111000001011101001
LENGTH OF FUNS OF ONES

LENGTH	NUMEEF
OF RUN	OF FUNS
1	17 *****************
2	9
3	$6 * * * * * * * *$
3	1

TOTAL OF NUMEEF OF FUINS $=33$ NUMEEFDFFUNS*LENGTHOFFUNS = 57

LENGTH OF RUNS OF ZEFDES

LENGTH	NUMEER
OF RUN	OF RUNS
1	11
2	$10 * * * * * * * * * *$
3	4
3	$2 * * * * * * * * *$
5	4
5	$4 * * * *$

TOTAL OF NUMEER OF FUNS $=31$ NUMEEROFRUNS*LENGTHOFFUNS= 71

E: CHOMSKY. TXT
273E4OORF96
00110111111101001101010101011100001101000000000100 00001110001111111111000101001111001000000100100000 0000000100101100011001001110 LENGTH OF FUNS OF ONES

LENGTH	NUMEER
OF RUN	OF RUNS
1	$16 * * * * * * * * * * * * * * * *$
2	$5 * * * * *$
3	$3 * * *$
4	$1 *$
5	0
6	0
7	1
8	0
9	0
10	1

TOTAL OF NUMEER OF RUNS $=27$ NUMBEROFRUNS*LENGTHOFRUNS $=56$

LENGTH	OF RUNS OF ZERDES
LENGTH	NUMEER
OF RUN	OF RUNS
1	10 **********
2	$8 * * * * * * * * * ~$
3	3 ***
4	1 *
5	0
6	2 **
7	0
8	0
9	1 *
10	0
11	0
12	$1 *$
TOTAL OF	NUMEER OF RUNS $=$

E: DREC1.TXT
 401ES2RRF350

00011001110011101101111101001011010010000001100000 01101101011100010110100010100111100010010110110100 0111101011010101100010110101
LENGTH OF RUNS OF ONES

LENGTH	NUMEER
OF RUN	OF RUNS
1	$19 * * * * * * * * * * * * * * * * * *$
2	12
3	$3 * * * * * * * * * * *$
4	2
5	$3 * * *$

TOTAL OF NUMEER OF RUNS $=37$ NUNEEROFRUNS*LENGTHOFRUNS $=65$

LENETH OF RUNS DF ZEROES

LENGTH	NUMEER:
OF RUM	OF RLINS
1	$21 * ~$
2	$6 * * * * * *$
3	$6 * * * * * *$
4	9
5	0
6	$2 * *$

TOTAL OF NUMEER OF RUNS $=35$ NUMEEFOFRUNS*LENGTHOFRUNS $=63$

E: DRECE.TXT
301E42日FFこ64
01000100111101110010000101110111001010100110101011
00111111111001110100101000001001110110111001000100 0101010001000010100111000100
LENGTH OF FILINS OF ONES
LENGTH NUMEEF:
OF FIUN OF FUNS
$\begin{array}{rrr}1 & 21 & * * * * * \\ 2 & 4 & * * * *\end{array}$

*
4
50
7
0
0
$3 \quad 0$
TOTAL OF NUMEEF OF FUNS= 34 NLIMEEROFFLINS*LENGTHOFFUNS $=63$

LENGTH OF FUNS OF ZERDES
LENGTH NUMEER
OF FUUN OF RUNS
115 ***************
211 ***********
35 5*****
$\begin{array}{ll}4 & 2 * * \\ 5 & 1\end{array}$
TOTAL OF NUMEER OF RUNS $=3.4$ NUMEEROFFUUNS*LENGTHOFRUNS $=65$

[^6]```
E:HEFALD.TXT
S01E428FF128
0111001011011001001010000000101000000100011001000000
1111111101100111110001001010010111100101101001011000
1010011011110100110111000010
LENGTH OF FUNS OF ONES
LENGTH NUMEEF
OF FLING OF FUINS
 1 19 *********
 2 % 8**
 4 4****
 5}
 6
TITAL OF NUMEEF OF RUNS: =33
NUMEEFOFFUINS*LENGTHOFRUNS = 61
LENGTH OF FULNS DF ZEROES
LENGTH NUMEER
OF FUNN OF RUNS
 15***************
 11 ************
 3 ***
 1*
 1*
 2**
TOTAL OF NUMEER OF RUNS= 33
NUMEEROFRLINS*LENGTHOFRUNS=67
```


## E: GUAFD. TXT

201Eこ2RFF100

10010010010011000100001000101001010110011011011001 00110101100010000110100101111010100000110001000001 1011101100101100101100110001
LEMGTH OF FILINE OF ONES

| LENGTH | NLIMEEF |
| :--- | :--- |
| OF FLIN | OF FUNS |
| 1 | $21 * * * * * * * * * * * * * * * * * * * * *$ |
| 2 | $14 * * * * * * * * * * * * * *$ |
| $\vdots$ | $1 *$ |
| 4 | $1 *$ |
| TOTAL OF NUMEER GF FUNS $=37$ |  |
| NUMEEROFFUNS*LENGTHDFFUMS $=5.6$ |  |

LENGTH OF FUNS OF ZEROES

| LENGTH | NLIMEEF: |  |
| :---: | :---: | :---: |
| OF FUN | OF | FuNs |
| 1 | 14 | ************** |
| 2 | 11 | *********** |
| 3 | 6 | ****** |
| 4 | 2 | ** |
| 5 | 2 | ** |

TOTAL OF NUMEEF OF RUNS $=35$ NLMEEFOFFLINS*LENETHOFFILNS $=72$

```
E:FAD1.TXT
273F4OORF1日G
11010010001011010011100000100110001100000001011000
00011100011110011110010011100111010000110110010111
10000011100100100010100001110
LENGTH OF FLLMS OF ONES
LENETH NUMEEF:
OF FILN DF FLUNS
 1 1こ**************
 2 8 *********
 3 5*****
 4 \Xi ***
TOTAL OF NUMEEF OF FIUNS= 29
NUMEEFIOFFUNE*LENGTHOFFUNS= 56
LENETH OF RUNS OF ZERDES
\begin{tabular}{ll}
LENGTH & NUMEER \\
OF FILIN & OF FUNS \\
1 & \(9 * * * * * * * * *\) \\
2 & \(10 * * * * * * * * * * *\) \\
3 & \(4 * * * *\) \\
4 & \(2 * *\) \\
5 & 2 \\
6 & 1
\end{tabular}
TOTAL OF NUMEER OF RUNS= }2
NUMEEFIOFRUNS*LENGTHOFFLINS=72
```

```
E:FAD2.TXT
27SE40ORF119
10100001001011010000011011110100010101001001000101
11111100111010011000110000100001010111010100001001
0100000101011000010110100011
LENGTH DF RLINS OF ONES
LENGTH NUMEEF
OF RUN OF RUNS
 125 **************************
 27*******
 3 2 **
 1 1*
 5
 6
TOTAL OF NUMEER OF RUINS= 36
NUMEEROFRUNS*LENGTHOFRUNS= 56
LENGTH DF RUNS OF ZEROES
LENETH NUMBER
OF RUN OF RLINS
 1 16 ******************
 7 7*******
 4 ****
 5******
 2**
TOTAL OF NUMBER OF RUNS= 34
NUMEEROFRUNS*LENGTHOFRUNS= 72
```


## E: FADE. TXT <br> 273B4OORF 166

```
00001011101001100011110010110111000000101000010111
11101001001100011100010100101111000010101000000100
1000110110011101110000000110
LENGTH OF FUNS OF ONES
LENGTH NUMEER
OF FUN OF RUNS
 1 1 17 ********
 3 5 *****
2 2**
5
TOTAL OF NLIMEER OF RUNS= 31
NUMEEROFRUNS*LENGTHOFRUNS=58
```

LENGTH OF RUNS OF ZEROES
LENGTH NUMEER
OF RUN OF FUNS

34 ****
4 3 ***
50
$\begin{array}{lll}6 & 2 & * * \\ 7 & 1 & *\end{array}$
TOTAL OF NUMRER OF RUNS $=30$
NUMEEROFRUNS*LENGTHOFRUNS $=70$

E:FADA. TXT
27SE4OGFF 157
10000111011001010101010010101110001000011000111011 10001100000110111110100101001001001010010010101101
1000010101100001011101000100
LENGTH OF FUNS OF ONES

```
LENGTH NLIMEEF:
OF FLIN OF FUNS
 24 ************************
 2 7 *********
 5 5 *****
 4 0
 5 1 *
```

TOTAL. OF NUMEEF OF RUNS $=37$
NLMEEFIOFRLINS $\operatorname{LENGTHOFFLINS}=58$
LENGTH OF FUNS OF ZERDES

```
LENGTH NUMEER
OF RUN OF RUNS
 1
 2
 3
 4 3***
 5 2 **
TOTAL. OF NUMEER OF FUNS= 36
NUMEEROFRUNS*LENGTHIFFUNS=70
```

```
E:FOOH.TXT
27SH4GOFF106
10100101011011001000000101100100000010111000111000
0011010111100000110011001100001101000110000111011
01000101111111110000100101101
LENGTH OF RUMS OF ONES
\begin{tabular}{ll}
LENGTH & NLIMEER \\
OF FLUN & OF FLUNS \\
1 & \(15 * * * * * * * * * * * * * * *\) \\
2 & \(11 * * * * * * * * * * *\) \\
3 & \(3 * * *\) \\
4 & 1 \\
5 & 0 \\
6 & 0 \\
7 & 0 \\
8 & 1
\end{tabular}
TOTAL OF NLIMEEF OF RLINS \(=31\) NLIMEEROFFUNE*LENGTHOFFUNS \(=58\)
LENGTH OF RUNS OF ZEROES
LENGTH NUMEER
OF FUUN OF FUNS
112 ************
27 7******
3 3***
4 3 ***
51 *
6 3 ***
TOTAL DF NUMEEF DF RUNS \(=29\) NUMEEFIOFRUNS*LENGTHOFRUNS \(=70\)
```

E:ALICEE, TXT
27SE40ORF62
10111011111011101111011101011111110100100110100001 11100100110000010000110100000000001101000001000001 1110001001000000000000000000
LENGTH OF RLINS OF ONES

```
LENGTH NUMEER
OF RUN OF RUNS
 1 12% *************
 2 4 ****
 3 3***
 4 3****
 5 1*
 l
TOTAL OF NLMEER OF FLINS=24
NUMEEROFRUNS*LENGTHOFRUNS=53
```

LENGTH OF RUNS OF ZERDES

| LENGTH | NUMEER |
| :--- | :--- |
| OF RUN | OF FUNS |
| 1 | $9 * * * * * * * * *$ |
| 2 | $6 * * * * * *$ |
| 3 | $1 * *$ |
| 4 | $2 * *$ |
| 5 | 3 |
| 6 | 0 |
| 7 | 0 |
| 8 | 0 |
| 9 | 0 |
| 10 | 1 |
| 11 | 0 |
| 12 | 0 |
| 13 | 0 |

```
B:ALICEL.TXT
273E4OORF110
10000000010011000110011011010101110101101101001000
101000001100110100100010001001010101101010011111100
0011001000011001010100000000
LENGTH OF FUNS OF ONES
LENGTH NUMEER
OF FUN OF RUNS
 1
 1 11 **************
 3 1*
4
TOTAL OF NUMBER OF RUNS= 35
NUMEEROFRUNS*LENGTHOFRUNS=
LENGTH OF RUNS OF ZEROES
LENGTH NUMEER
OF RUN OF RUNS
 1 14 % ***********
 4 4 ****
 2 2**
 5 1*
 0}
 7 0
 9 1. 1*
TOTAL OF NUMBER OF RUNS = 34
NUMEEROFRUNS*LENGTHOFRUNS = 76
```

E: SEAGLILL. TXT
273E4OORFこ52
11011100111011011101001010101111010110001100010010
01000101110100011100101000111010011001110101010010
0100011010100110001001101000
LENGTH OF FUNS OF ONES

| LENGTH | NUMEER |
| :--- | :--- |
| OF FUN | OF FUNS |
| 1 | $22 * * * * * * * * * * * * * * * * * * * * * * *$ |
| 2 | $8 * * * * * * * *$ |
| 3 | 7 |
| 4 | $1 * * * * * * *$ |

TOTAL OF NUMEEF: OF RUNS $=38$
NUMEEFOFRLINS*LENGTHOFFLINS $=63$

LENGTH OF FUINS OF ZEFIOES

LENGTH OF RUN

1
2
3
$\begin{array}{rrr} & 11 & \text { ******** } \\ \text { 3 } & 8 \text { ******** }\end{array}$
NUMBER OF RUNS = 38 NUMEEFIDFFUNS*LENGTHOFRUNS $=65$

E:CB5.FRM
201ES2RRF6E
00011101111111001010010101001000111100001011011101 10000010000010110000001000001001100001001110001000 1001001110101100000010010000
LENGTH OF FUNS OF ONES

```
LENGTH NUMEEF:
OF RUN OF FILINS
 19*******************
 5*****
 4 ****
 1*
 0
 6
```

TOTAL OF NUMEER OF FUNS $=30$
NUMEEFOFFUNS*LENGTHOFFUNS $=52$
LENGTH OF RUNS OF ZEROES
LENGTH NUMEER
OF RUN OF RUNS
1
2
3
4
5
6
TOTAL OF NUMEER OF FUNS $=29$
NUMEEFDFRUNS*LENGTHOFRUNS= 76

```
B:C95.FFMM
201ES2BFF140
01100101010100111110110001011110000101000001110001 01101111000110111100010100101001000000000101110100 0100001010000101111010011100
LENGTH OF RUNS OF ONES
```

```
LENGTH NUMEER
```

LENGTH NUMEER
OF FUN OF FUNS
OF FUN OF FUNS
1 20 ***********************
1 20 ***********************
2 3 ***
2 3 ***
3 4 *****
3 4 *****
4 4 ****
4 4 ****
5 1*
5 1*
TOTAL OF NUMEEF OF FLINS= 3.2
NUMEEFOFFUNS*LENGTHDFFUNS=50
LENGTH OF FUNS OF ZERDES

| LENGTH | NUMEEF |
| :--- | :--- |
| OF RUN | OF RUNS |
| 1 | $16 * * * * * * * * * * * * * * * *$ |
| 2 | $6 * * * * * *$ |
| 3 | $5 * * * * *$ |
| 4 | 3 |
| 5 | 1 |
| 6 | 0 |
| 7 | 0 |
| 7 | 0 |
| 8 | 1 |

TOTAL OF NUMEER OF RUNS= 32
NUMBEROFRUNS*LENGTHOFRUNS=69

```

E:COS.FRM
1GOHS17FF92
01110010101101000110111011010000001000000000010110 00100010010001111011111110111000000111001111110101 0100100000101000101100010000
LENGTH OF FUNS OF ONES
\begin{tabular}{ll}
LENGTH & NUMEEF \\
OF FIUN & OF FUNS \\
1 & 17 ***************** \\
2 & \(5 * * * * *\) \\
3 & \(3 * * *\) \\
4 & 2 \\
5 & 0 \\
6 & 1
\end{tabular}

TOTAL OF NLIMEEF OF FUNS \(=29\) NUMEEFOFFUNS*LENGTHOFRUNS \(=57\)

LENGTH OF FUNS OF ZEROES
\begin{tabular}{ll}
LENGTH & NUMEEF \\
OF FUN & OF RUNS \\
1 & \(14 * * * * * * * * * * * * * *\) \\
2 & \(4 * * * *\) \\
3 & \(6 * * * * * *\) \\
4 & 1
\end{tabular}

TOTAL OF NUMEEF OF RUNS \(=29\) NLMBEROFRUNS*LENGTHOFFUNS= 71

\footnotetext{
E:C101.FRM
128 E 255 RF 93
00000111001010010000110001001010101010000000110100 11101100011011111010101101010101101010110001011001 0000000100000100111010000011 LENGTH OF RUNS OF ONES

LENGTH
OF RUN OF RUNS
1
23 ***
23 *********************** ********* ***
3
4
5
3
0
1
TOTAL OF NUMBER OF RUNS \(=36\) NUMBEROFRUNS*LENGTHOFRUNS \(=55\)

LENGTH OF FUNS OF ZERDES
LENGTH NUMEER
OF RUN OF RUNS
\(\begin{array}{rrr}1 & 19 & \text { ******* } \\ 2 & 6 & 6 * * * * *\end{array}\)
\(\begin{array}{ll}2 & 6 \\ 3 & 3 * * * \\ 4 & 3 * *\end{array}\)
4 1*
5 3 ***
\(\begin{array}{ll}6 & 2 \\ 7 & 2 *\end{array}\)
TOTAL DF NUMBER OF RUNS \(=34\) NUMBEROFRUNS*LENGTHOFRUNS \(=73\)
}

E:C10E. FFIM
94E221FF73
10101011101001010100111000001100010100001010000010 10111101101010000011010000001100001000010110001100 0110000000011010000101100010
LENGTH OF FUNNS OF ONES
LENGTH NUMEEF:
OF RLIN OF RUNS
121 *********************
2 ○ \(2 * * * * * * * *\)
3
4
TOTAL OF NUMEEF OF FIUNS \(=33\) NUMEEFOFFUNS*LENGTHOFFUNS \(=49\)

LENGTH OF RUNS OF ZEROES
\begin{tabular}{ll}
LENGTH & NUMEEF: \\
OF FUN & OF RUNS \\
1 & \(16 * * * * * * * * * * * * * * * *\) \\
2 & \(3 * * *\) \\
3 & 4 \\
4 & 4 \\
5 & \(3 * * * *\) \\
6 & 1 \\
7 & 0 \\
8 & 1
\end{tabular}

E:C104. FFM
B7E214FF82

01101010010001011101111101110011000001001011101101 11100000111000010011100010010101100101000010000010 1101011011000000100001001001
LENGTH OF FUNS OF ONES

\begin{tabular}{|c|c|c|c|}
\hline LENGTH & \multicolumn{3}{|l|}{RUNS OF ZERIOES} \\
\hline LENGTH & \multicolumn{3}{|l|}{NLIMEEF:} \\
\hline OF RUN & DF & RUNS & \\
\hline 1 & 15 & ****** & ********** \\
\hline 2 & 8 & ***** & \\
\hline 3 & 2 & ** & \\
\hline 4 & 3 & * \({ }^{*}\) * & \\
\hline 5 & 3 & * \({ }^{*}\) * & \\
\hline 6 & 1 & * & \\
\hline TOTAL OF & \multicolumn{3}{|l|}{NLIMEER DF FUNS \(=32\)} \\
\hline NUMEEFO & FFUNS & *LENG & HOFRUNS \(=\) \\
\hline
\end{tabular}
```

F:C11O.FRM
137E266FF100
01011000111010011011001001110010000010101101100001
110010110101010101000101001111100001100000010010100
000110000100010110001101000001
LENGTH OF FUNS OF ONES
LENGTH NUMEER
OF RUN OF RLINS
1
2
11 ************
3 3***
1*
TOTAL OF NUMEER OF RUNS= 35
NUMEEROFRUNS*LENGTHOFRUNS= 55
LENGTH OF RUNS OF ZEROES
LENGTH NUMBER
OF RUIN OF RUNS
1
16 ******************
7 7 ********
3 4 ****
3 3***
5 3 ***
6 1 *
TOTAL OF NUMEER OF RUNS= }3
NUMEEROFRUNS*LENGTHOFRUNS=75

```
```

E:C113. FRM
43E17ORF42
01100111101010110010100110010011001000111001110000 00101100010100000001000010110001000000010010000000 1001001010101001000110111011 LENGTH OF RUNS OF ONES

```

```

| LENGTH | OF RUNS OF ZERDES |
| :---: | :---: |
| LENGTH | NUMEER |
| OF RUN | OF RUINS |
| 1 | 12 ************ |
| 2 | 11 *********** |
| 3 | 4 **** |
| 4 | 1 * |
| 5 | 0 |
| 6 | 1 * |
| 7 | 3 *** |

TOTAL OF NUMEER OF RUNS $=32$ NLIMEEROFRUNS*LENGTHOFRUNS $=77$

```

E:C114.FRM
201ES2GFF116
01010000100100011111000000000101101010001010110100 000100010001111110110011010100100101001011100011000 0010011110000001010010001011
LENGTH OF FUNS OF ONES
LENGTH NUMEEF
OF RUN OF RUNS
1
22 **********************

\section*{*******}
*
1 *
2
* *
TOTAL OF NUMEER OF RUNS \(=33\) NUMEEF:OFFUNS*LENGTHOFFUNS \(=53\)

LENGTH OF FUNS DF ZEROES
\begin{tabular}{ll}
LENGTH & \multicolumn{1}{l}{ NUMEEF } \\
OF RUN & OF RUNS \\
1 & 14 \\
2 & \(7 * * * * * * * * * * * * *\) \\
2 & \(6 * * * * * *\) \\
3 & \(6 * * * * * *\) \\
4 & 1
\end{tabular}

TOTAL OF NUMEEF OF RUNS 32 NUMEERDFRUNS*LENGTHOFRUNS= 75

\section*{E:C13O. FRM}

201BS28RF60
11100001100111000110101010011101000010001001110011 11001001010110010110000010010100100100000001000001 0100010001111001100110110010
LENGTH OF RUNS OF ONES
\begin{tabular}{ll}
LENGTH & NUMEER \\
OF RUN & OF RUNS \\
1 & \(20 * * * * * * * * * * * * * * * * * * *\) \\
2 & 7 \\
3 & \(4 * * * * * * *\) \\
4 & 2
\end{tabular}

TOTAL OF NUMEER OF RUNS \(=33\) NUMEEROFRUNS*LENGTHOFRUNS \(=\mathbf{5 4}\)

LENGTH OF RUNS OF ZEROES
\begin{tabular}{ll}
LENGTH & NUMEER \\
OF RUN & OF RUNS \\
1 & \(11 * * * * * * * * * * *\) \\
2 & \(13 * * * * * * * * * * * * *\) \\
3 & \(4 * * * *\) \\
4 & \(2 * *\) \\
5 & 2 \\
6 & 0 \\
7 & \(1 *\)
\end{tabular}

TOTAL OF NUMEER OF RUNS \(=33\) NUMEEROFRUNS*LENGTHOFRLINS \(=74\)

E:C140. FFM
201E22GFF92
11110110111010101111111100010001100100111001110011 10100000100010110000000000111110000001110100001000
0111000110000110001100010010
LENGTH OF FUUNS OF ONES
\begin{tabular}{ll}
LENGTH & NUMFEF \\
OF FLIN & OF FUNS \\
1 & 11 *********** \\
2 & \(6 * * * * * *\) \\
3 & \(6 * * * * * *\) \\
4 & \(1 * *\) \\
5 & \(1 * *\) \\
6 & 0 \\
7 & 0 \\
8 & 1
\end{tabular}

TOTAL OF NUMREF OF FUNS \(=26\) NUMEEROFRUNS*LENGTHOFRUNS = 58

LENGTH OF FUNS OF ZEROES
\begin{tabular}{|c|c|}
\hline LENGTH & NUMEER \\
\hline OF RUN & OF RUNS \\
\hline 1 & \\
\hline 2 & 5 ***** \\
\hline 3 & 6 ****** \\
\hline 4 & 3 *** \\
\hline 5 & 1 * \\
\hline 6 & 1 * \\
\hline 7 & 0 \\
\hline 8 & 0 \\
\hline 9 & 0 \\
\hline 10 & 1 * \\
\hline
\end{tabular}

TOTAL OF NLIMEER OF RUNS \(=26\) NUMEEROFRUNS*LENGTHOFRUNS \(=70\)

\section*{E:C141.FRM}

201E328FF68
10010011010100100001100111101000000010000001101100 01001111001110101000010111001010011000101100110010 0101001001000100010011000000
LENGTH OF RUNS OF ONES
\begin{tabular}{cl}
LENGTH & NUMBER \\
OF RUN & OF RUNS \\
1 & \(21 * * * * * * *\) \\
2 & \(8 * * * * * * *\) \\
3 & \(2 * *\) \\
4 & \(2 * *\)
\end{tabular}

TOTAL OF NUMRER OF RUNS \(=33\) NUMEERDFRUNS*LENGTHOFRUNS \(=51\)

LENGTH OF RUNS OF ZEROES
\begin{tabular}{ll}
LENGTH & NUMEER \\
OF FUN & OF RUNS \\
1 & \(9 * * * * * * * * *\) \\
2 & \(13 * * * * * * * * * * * * *\) \\
3 & \(5 * * * * *\) \\
4 & \(2 * *\) \\
5 & 0 \\
6 & \(2 * *\) \\
7 & 1
\end{tabular}

TOTAL OF NUMEER OF RUNS \(=32\) NUMREROFRUNS*LENGTHOFRUNS \(=77\)
```

E:RUSS1.FRM
27SE400RF125
110111101100001101101101001111100111001010100100000
10000011010110110101100011010101011000011000011011
0000000011000111001000100011
LENGTH OF RUNS OF ONES

| LENGTH | NUMEER |
| :---: | :--- |
| OF RUN | OF RUNS |
| 1 | $13 * * * * * * * * * * * * *$ |
| 2 | $16 * * * * * * * * * * * * * * * *$ |
| 3 | $2 * *$ |
| 4 | 2 |

TOTAL OF NLIMEER OF RUNS $=33$ NUMBEROFFUNS*LENGTHOFRUNS $=59$
LENGTH OF RUNS OF ZEROES

| LEMSTH | NUMBER |
| :--- | :--- |
| OF FUIN | OF FUUNS |
| 1 | $17 * * * * * * * * * * * * * * * * *$ |
| 2 | 5 |
| 3 | $4 * * * *$ |
| 3 | 3 |
| 4 | $2 * * *$ |
| 5 | 0 |
| 6 | 0 |
| 7 | 0 |
| 8 | 1 |

TOTAL OF NUMEER OF RUNS $=32$ NUMBEROFRUNS*LENGTHOFRUNS $=69$

```

\section*{E:FilIESE.FFH}

27EE4OORF 164

10111110011101110111001110011101010111001100001010 0001010110001011110100011001010001110000011000101 1000000001011101010100100101
LENGTH OF FUNS OF ONES
\begin{tabular}{|c|c|c|}
\hline LENGTH & \multicolumn{2}{|l|}{NUTIEER} \\
\hline OF FILN & OF & FuTS \\
\hline 1 & 19 & ******** \\
\hline 2 & E & ***** \\
\hline 3 & 8 & ******** \\
\hline 4 & 1 & * \\
\hline 5 & 1 & * \\
\hline
\end{tabular}

TOTAL OF NLIMEEF OF RUNS \(=34\) NLIMEEFIOFFUNS \(*\) LENGTHOF FUUNS \(=62\)

LENGTH OF FLINE OF ZERRES
\begin{tabular}{ll}
IENKTH & NUMEEF: \\
OF FILIN & OF FiLNS \\
1 & \(16 * * * * * * * * * * * * * * * *\) \\
2 & \(8 * * * * * * * *\) \\
3 & \(4 * * * *\) \\
4 & \(1 *\) \\
5 & 2 \\
6 & 0 \\
7 & 0 \\
8 & \(1 *\)
\end{tabular}

TOTAL OF NUMEEF DF RUNS \(=32\) NLIMEEFOFFUNS*LENGTHUFRUNS \(=66\)

\footnotetext{
E: FLISSE.FFM
273E40OFF 106

10101001011001001000101001011001011000101011000010 01011011010001111000011111010111010010110000010000 0010000010101001001100000110
LENETH OF FUNS OF ONES
```

LENGTH TUIMEEF:
OF FiLUS OF FULINS
1 24 **********
3 1*
4 lll

```
TOTAL OF NLIMEEF OF FUIN: \(=36\)
NUMEEF OFFUNS*LENGTHOFFIUNS \(=54\)
LENGTH OF FUNS OF ZEFOES
LENGTH NUMEEF
OF FUUN OF FUNS
 1
 16 ****************
 10 **********
 了 ***
 2**
 3 ***
 1*

TOTAL OF NUMEEF OF RUNS \(=35\) NUMEEROFFUNS*LENGTHOFRUNS = 74
}

E: RUSS4. FRM
273B400RF216
00111001101101110001001000110111100100101100010100 00100110111011100111100110000011001000000101001011 1000110001010011101100010101
LENGTH OF RUNS OF ONES
\begin{tabular}{ll}
LENETH & NUMEER \\
OF RUN & OF RUNS \\
1 & \(17 * * * * * * * * * * * * * * * * *\) \\
2 & 9 \\
3 & \(6 * * * * * * * *\) \\
4 & 2 \\
\hline
\end{tabular}

TOTAL OF NUMEER OF RUNS \(=34\) NUMEEROFRUNS*LENGTHOFRUNS \(=61\)
```

LENGTH OF RUNS OF ZEROES
LENGTH NUMEER
OF RUN OF RUNS
1 12 *************
2 11 ************
3 6 ******
4 1*
5 1*
6 1*
TOTAL. OF NUMEER OF RUNS= }3
NUMEEROFRUNS*LENGTHOFRUNS=67

```
```

E:FUSSE.FFIM
273H400RF206
1101111110000000010110101011011111111101000001101011
00010000110100111000000000100100011110011010000100010
1111000001111101101100011010
LENGTH OF RUNS OF ONES

| LENGTH | NUMEEF |
| :--- | :--- |
| OF FUUN | OF RLINS |
| 1 | $13 * * * * * * * * * * * * *$ |
| 2 | $10 * * * * * * * * * *$ |
| 3 | $2 * *$ |
| 4 | 1 |
| 5 | $1 *$ |
| 6 | 1 |
| 7 | 0 |
| 8 | 1 |

TOTAL OF NLMMEE OF RUNS $=29$ NUMEEROFRUINS*LENGTHOFRUNS $=62$
lengit of rulns of zeroes
LENGTH NUMEER
OF RUN OF RUNS
116 ****************
2 3***
*****
*

```

```

0
1
1*
TOTAL OF NUMRER OF RUNS $=29$ NUMREROFRUNS*LENGTHOFRUNS $=66$

```

E: LAEMV. FFM
27ER4OOFF254

11001011000010111111111011010111110000000010110011 00001010111011010101110001001111011100010110100000 1111010111000100001000110000
LENGTH OF RUNS OF ONES
\begin{tabular}{ll}
LENGTH & NUMEEF \\
OF FUIN & OF RLINS \\
1 & \(14 * * * * * * * * * * * * * *\) \\
2 & \(8 * * * * * * * *\) \\
3 & \(4 * * * *\) \\
4 & 2 \\
5 & \(1 * *\) \\
6 & 0 \\
7 & 0 \\
8 & 0 \\
9 & 1
\end{tabular}

TOTAL OF NUMEER OF FUNS \(=30\)
NUMEEFIOFRUINE \(*\) LENGTHOFFIUNS \(=64\)

LENGTH OF FUNS OF ZERIOES
\begin{tabular}{ll}
LENGTH & NUMEEF \\
OF RUN & OF RUNS \\
1 & 17 ***************** \\
2 & 3 \\
3 & 4 \\
4 & \(4 * * * *\) \\
5 & 1
\end{tabular}

TOTAL OF NUMEEF OF FUNS \(=30\) NUMREROFRUNS*LENGTHOFRUNS \(=64\)

E: FRANKENA. PRM
273B400RF74

10010101100101011001000111110010011101001001011011 00101100001001110000011111010111101100100010011100 0100100010000110110001101100
LENGTH OF FULNS OF ONES
\begin{tabular}{ll}
LENGTH & NLIMRER \\
OF FLIN & OF RUNS \\
1 & 18 \\
2 & 10 \\
3 & \(3 * * * * * * * * * * * * * * * * * *\) \\
4 & 1 \\
5 & 2 \\
5 & \(* * *\)
\end{tabular}

TOTAL OF NUMREF OF RUNS \(=34\) NUMBEROFRUNS*LENGTHOFRUNS \(=61\)

LENETH OF RUNS OF ZEROES
\begin{tabular}{cl}
LENGTH & NUMEER \\
OF RUN & OF RUNS \\
1 & 12 \\
2 & \(12 * * * * * * * * * * *\) \\
3 & \(6 * * * * * * * * * *\) \\
4 & 2 \\
5 & 1
\end{tabular}

TOTAL OF NUMBER OF RUNS \(=33\) NLIMEEROFRUNS*LENGTHOFRUNS \(=67\)

E: EFRLINEF: FFMM
27EE4OOFF 152
00001110110100011111000110010010010010010010111100 10010011000010111011010001100001100010010000010000 1010101101001011011011100011
LENGTH OF FUNS DF ONES
LENGTH NUMEEF:
OF FLIN OF FIUNS
\(120 *\)
210 **********
コ ふ ***
41 *
TOTAL OF NUMEEF OF FUNS \(=35\)
NUMEEFOFFUNS*:LENGTHOFFUNS \(=58\)

LENGTH OF FUNS OF ZEFIDES
LEIVGTH NUMEEF
OF RUN OF RUNS
112 ************
211 ***********
3 5 ** 3 *
44 ****
51 *
TOTAL OF NUMEEF OF FUNS= 33 NUMEEROFFUNS*LENGTHOFFUNS \(=70\)

E: CHOMSKY. FRM
27SE4COKFF6

01011111000100100100110010100110101010001001000000 01000101111110100010000100111010000001111111001100 0000110111101001000110000010 LENGTH OF FUNS OF ONES
\begin{tabular}{ll}
LENGTH & NUMRER \\
OF FUN & IF FLINS \\
1 & 19 \\
2 & \(6 * * * * * * * * * * * * * * * * * *\) \\
3 & 1 \\
3 & 1 \\
4 & 1 \\
5 & \(*\) \\
6 & 1
\end{tabular}

TOTAL OF NUMEEF OF FUNS \(=30\) NUMEEFOFFUNS*LENGTHOFRUNS \(=56\)

LENGTH OF FUNS OF ZEFIOES
\begin{tabular}{cl}
LENGTH & NUMEER \\
OF RUN & OF FUNS \\
1 & 11 *********** \\
2 & \(9 * * * * * * * * *\) \\
3 & \(5 * * * * *\) \\
4 & 1 \\
5 & 1 \\
6 & 2 \\
7 & 1
\end{tabular}

TOTAL OF NUMEER OF FUNS \(=30\) NUMEEROFRUNS*LENGTHOFRUNS \(=72\)

\section*{E: DFEC1.FFM \\ 401E52BFFS50}

00000101101110111010011101001000010100011100001100 00101011010100101100101011111111111100100111001110 0110000101001010010000110111
LENGTH OF FILNS OF ONES
\begin{tabular}{ll}
LENETH & NUMEER \\
OF FUN & OF FUNS \\
1 & 20 \\
2 & \(6 * * * * * * * * * * * * * * * * * * *\) \\
3 & \(7 * * * * * *\) \\
4 & 0 \\
5 & 0 \\
6 & 0 \\
7 & 0 \\
8 & 0 \\
9 & 0 \\
10 & 0 \\
11 & 0 \\
12 & 1
\end{tabular}

\section*{LENGTH OF FUNS OF ZEFIOES}
```

LENGTH NUMBEF
OF RUN OF FUNS
1 15***************
2 10 ***********
3 1 *

```

```

    5 1 #
    ```
TOTAL OF NUMEER OF RUNS \(=32\)
NUMEEROFFUNS*LENGTHOFRUNS \(=63\)
```

E:DFEC2. FFIM
301E42BFF264
1110100101101101100100100000100100001000111111111000
01111010110010010110111111010000010000111111000010011
0111000110010000110010110000
LENGTH OF RUNS OF ONES
LENGTH NUMEEF:
OF FUN OF FUNS
1 15****************
2 }9*********
3 2**
4 1*
5 1*
5
8 1*
TOTAL OF NUMEEF: OF RUNS= 30
NLIMEEROFRUNS*LENGTHOFRUNS= 62
LENGTH OF RUNS OF ZEROES
LENGTH NUMAER
OF RUN OF FUNS
1 11 ***********
2 9 **********
3 5 ******
4
5
3 ***
2**
TOTAL OF NUMEEF OF RUNS= 30
NUMEEROFRUNS*LENGTHOFRUNS= 66

```
```

F:MAIL.F'RM
S01E428FF250
010111000011001101000110010011101000001011011011111
10100010011101110100000011000010101000111110011000
0110110111010010000010001011
LENGTH OF FILINS OF ONES
LENGTH NUMEER
OF FLIN OF FUNS
14 ****************
2 11 ************
4 O
5 2**
TOTAL. OF NLIMEEF: OF RUNS= 32
NUMEEROFFUUNS*LENGTHOFRUNS = 61
LENGTH DF FUNS OF ZEFOES
LENGTH NUMEEF:
OF RUN OF FIUNS
15 ***************
2 6 ******
34 \#***
4
***
1*
TOTAL OF NUMEER OF RUNS= 31
NUMEEFROFFUNS*LENGTHDFFUNS=67

```

E: HEFIALD. FFM
301E42RFF138

10101000111101111001010000000011110100100111011011 11100110000010111011110001101001100010100000100110 0010110000010111111001000000
LENGTH OF FUNS OF ONES
\begin{tabular}{ll}
LENGTH & NUMEEF \\
OF FUN & OF FUINS \\
1 & \(15 * * * * * * * * * * * * * * *\) \\
2 & \(6 * * * * * *\) \\
3 & \(2 * *\) \\
4 & \(4 * * * *\) \\
5 & 1 \\
6 & \(1 *\)
\end{tabular}

TOTAL OF NLIMEEF OF FLINS \(=29\) NUMEEFOFFUNS*LENGTHOFFUNS \(=60\)

LENGTH OF FIUNS OF ZERDES
\begin{tabular}{ll}
LENGTH & NUMEER \\
OF FUN & OF RUNS \\
1 & 11 \\
2 & \(8 * * * * * * * * * *\) \\
3 & \(4 * * * * * * * *\) \\
4 & 0 \\
5 & 3 \\
6 & 1
\end{tabular}

\footnotetext{
E:GUAFD. FFM
201RE2RFF100

00010000101011000101000111110011010111011000001110 10010001010100101011001011001110011001100001010001 0001000100100100001110011110
LENGTH OF RUNS OF ONES
\begin{tabular}{ll}
LENGTH & NLIMEEF \\
OF FUUN & OF RLINS \\
1 & \(22 *\) \\
\(\frac{2}{2}\) & \(7 * * * * * * *\) \\
3 & \(4 * * * *\) \\
4 & 1 \\
5 & 1
\end{tabular}

TOTAL OF NLMMEER OF RLINS \(=35\) NUMBEROFFUINS*LENGTHOFFUNS \(=57\)

LENGTH OF FUNS OF ZEROES
\begin{tabular}{ll}
LENETH & NUMEEF: \\
OF RUN & OF FUNS \\
1 & \(13 * * * * * * * * * * * * *\) \\
2 & \(10 * * * * * * * * * *\) \\
3 & \(7 * * * * * * *\) \\
4 & 3 \\
5 & 1
\end{tabular}

TOTAL OF NUMEER OF RUNS \(=34\) NUMEEROFRUNS*LENGTHOFFUNS \(=71\)
}
```

B:FAD1.FRM
27SE4OORF166
11000101100110111001011010110010000111011100100100 10000010110111101000000011100011110010010000100101 0001000010001110010101001001
LENGTH OF FUNS OF ONES

LENGTH	NUMEER
OF RUN	OF RUNS
1	21 ************
2	b ******
3	$5 * * * * *$
4	$2 * *$
TOTAL OF	NUMEER OF RUNS $=$
NUMEEROFFI	UNS *LENGTHOFRUIN
LENGTH OF	RUNS OF ZEROES
LENGTH	NUMBER
OF RUN	OF RUNS
1	12 ************
2	$12 * * * * * * * * * * * *$
3	4 ****
4	3 ***
5	1 *
6	0
7	1 *

TOTAL OF NUMEER OF RUNS $=33$ NUMEEROFRUNS*LENGTHOFRUNS $=72$

```

\footnotetext{
E:FAD2.FRM
273E4OORF119
00110100000110011100101111100001101101110001101001 10001010001010000001110000100010111011000000001001 0100111011000100011011001011
LENGTH OF RUNS OF ONES
```

LENGTH NUMEER
OF RUN OF RUNS
15 15***************
2 11 ***********
3 5 *****
4 5 0
TOTAL OF NUMEER OF RUNS= 32
NUMEEROFRUNS*LENGTHOFRUNS= 57

```

LENGTH OF RUNS OF zEROES
\begin{tabular}{|c|c|c|}
\hline LENGTH & \multicolumn{2}{|l|}{Number} \\
\hline OF RUUN & OF & RUNS \\
\hline 1 & 12 & **** \\
\hline 2 & 7 & **** \\
\hline 3 & 6 & **** \\
\hline 4 & 2 & ** \\
\hline 5 & 1 & * \\
\hline 6 & 1 & * \\
\hline 7 & \(\bigcirc\) & \\
\hline
\end{tabular}

TOTAL OF NUMEER OF RUNS \(=30\) NUMBEROFRUNS*LENGTHOFRUNS \(=71\)
}

E:FADZ. FEM
273 E4OORF 166
00111101000101111110110010001010001000001111001001 00001010111010000101000010101111000001111110110101 0100000000001100010110010110
LENGTH OF RUNS OF ONES
```

LENGTH NUMBER
OF RUN OF RUNS
21 ************************
2 5******
3 1*
4 3 ***
5
6 2**

```

TOTAL OF NUMEEF OF RUNS \(=32\) NUMEEROFRUNS*LENGTHOFRUNS \(=58\)
```

LENETH OF FUNS OF ZEROES
LENGTH NUMBER
OF RUN OF RUNS
16 *****************
*****
****
***
**
0
0
O
TOTAL DF NUMEER OF RUNS= }3
NUMEEROFRUNS*LENGTHOFRUNS=70

```

\section*{E:FAD4. FFM \\ 273E4OORF157}

01111001000011000100010010011111000111011000000101 10101011111110000001100110100000000000111111100010 0010110001101101011000101010 LENGTH OF RUNS DF ONES
```

LENGTH NUMEER
OF RUN OF RLINS
14 ***************
9 **********
1*
0
2**
2**
TOTAL OF NUMEER OF RUNS = 28
NUMEEROFRUNS*LENGTHOFRLINS= 59

```

LENGTH OF RUNS OF ZEROES
\begin{tabular}{ll}
LENGTH & NLIMEER \\
OF RUN & OF FUNS \\
1 & \(13 * * * * * * * * * * * * *\) \\
2 & 4 **** \\
3 & 7 ******* \\
4 & 1 \\
5 & 0 \\
6 & 2 \\
7 & 0 \\
8 & 0 \\
9 & 0 \\
10 & 0 \\
11 & 1
\end{tabular}

TOTAL OF NUMEER OF RUNS \(=28\) NUMREROFRUNS*LENGTHOFRUNS \(=69\)

\section*{E: FOODH. FRM \\ 273E4OGFF 100}

00100101001100110101011111010101110011011000010001 10110010010101011011100100111100000100011100001001 1011000010100000001100100110
LENGTH OF FUINS OF ONES
\begin{tabular}{ll}
LENGTH & NLIMEER \\
OF FUN & GF RUNS \\
1 & \(19 * * * * * * * * * * * * * * * * * * *\) \\
2 & \(11 * * * * * * * * * * *\) \\
3 & \(3 * * *\) \\
4 & 1
\end{tabular}

TOTAL OF NUMEEF OF FUNS \(=35\) NUMEEFOFFUNS*LENGTHOFFUNS \(=59\)

LENGTH OF RUNS OF ZERIOES
\begin{tabular}{ll}
LEINGTH & NUMEEF \\
OF FIUN & OF FLINS \\
1 & \(15 * * * * * * * * * * * * * * *\) \\
2 & \(12 * * * * * * * * * * * *\) \\
3 & \(2 * *\) \\
4 & 3 \\
5 & 1
\end{tabular}

TOTAL OF NLIMREF OF FUNS \(=34\) NUMEEROFRUNS*LENGTHOFFUNS \(=69\)

\footnotetext{
E:AL.ICEE. FFM
27EE4OOFF62

00111111111011010110011101000001110100100101001000 00100001110000100110110010000000001011011010011001 0000001010100011000011010000
LENGTH OF FUNS OF ONES
\begin{tabular}{ll}
LENGTH & NUMERER \\
OF FIUN & OF FUINS \\
1 & \(18 * * * * * * * * * * * * * * * * * *\) \\
2 & 9 \\
3 & \(3 * * * * * * * *\) \\
4 & 0 \\
5 & 0 \\
6 & 0 \\
7 & 0 \\
8 & 0 \\
9 & 1
\end{tabular}

TUTAL OF NUMEER OF RUNS \(=31\) NUMEEFOFFILINS*LENGTHOFFUNS \(=54\)
I.ENGTH OF FILINS OF ZEFDES

LENGTH NUMEER
OF RUN OF RUNS
1 12 ************

3
4
1 *

**
*
6
7
1
0
1 *
TOTAL OF NUMEER OF RUNS= 30 NUMEEROFRUNS*LENGTHOFRUNS \(=74\)
}
```

    E:ALICEL.FFM
    27SR4OORF110
    001001111101010001000010011000010010001001111111011
    0001101101011000101101001110000000011110001011110000
    00110100100001000100000000001
    LENGTH OF RUNS OF ONES
LENGTH NUMEEF
OF FLIN OF RUNNS
18******************
7 ********
2 **
1*
1*
1*
TOTAL OF NUMEEF OF RUUNS = 30
NUMEEFOFFIUNS*LENGTHOFFUUNS=53
LENGTH OF RUNS OF zeroes
LENGTH NUMEER
OF RUN DF FUNS
1 % 9
3 6 *******
4 3***
5
6 1*
7 1*
8 % 0
TOTAL OF NUMEER OF RUNS=28
NUMEEROFRUNS*LENGTHOFRUNS=75

```

B: SEAGULL. PRM
273E4OORF252

10101000011111110011110111111100010100111000110010 00010001111011101011001001111011000000110000001000 0001101101011001011010000101
LENGTH OF RUNS OF ONES
LENGTH NUMEER
OF RUN OF RUNS
1 15 ****************
\(28 * * * * * * * *\)
\(3 \quad 2 * *\)
4 3 ***
50
6
7
0
2 **
TOTAL DF NUMBER OF RUNS \(=30\) NUMEEROFRUNS*LENGTHOFRUNS \(=63\)

LENGTH OF RUNS OF ZEROES

TOTAL OF NUMEER OF RUNS \(=28\) NUMBEROFRUNS*LENGTHOFRUNS \(=65\)

\section*{WINDOW-GROUF 256}

Index

Fower spectra of natural text strings:
Children ... 633
Scientists.. 638

Childrens books.. 652
C35FIE1,301B556RF90 WחyIJJdS y3MOd

\section*{CIE1,}
FIE1, 3O1RS56RF9O POWER DENSITY IN FREQUENCY POINTS:
\(\begin{array}{lr}\text { FREQ: } & \text { POWER: } \\ & \\ 0.078 & 12.6 \\ 0.156 & 6.3 \\ 0.234 & 20.0 \\ 0.313 & 29.0 \\ 0.391 & 8.0 \\ 0.469 & 24.1\end{array}\)

95C, 301RS56RF120 POWER DENSITY IN FREQUENCY POINTS:
\(\begin{array}{lcccccr}\text { FREQ: POWER: } & \text { FREQ: POWER: } & \text { FREQ: POWER: } & \text { FREQ: } \\ \text { 0.000 } & 1.8 & & & & \\ 0.016 & 8.9 & 0.031 & 6.5 & 0.047 & 17.2 & 0.063 \\ 0.094 & 15.0 & 0.109 & 18.7 & 0.125 & 12.6 & 0.141 \\ 0.172 & 0.6 & 0.188 & 16.3 & 0.203 & 12.0 & 0.219 \\ 0.250 & 5.0 & 0.266 & 17.7 & 0.281 & 8.2 & 0.297 \\ 0.328 & 13.4 & 0.344 & 17.7 & 0.359 & 12.5 & 0.375 \\ 0.406 & 15.4 & 0.422 & 11.7 & 0.438 & 19.2 & 0.453 \\ 0.484 & 56.1 & 0.500 & 73.8 & & & \end{array} l\) MEAN PDWER DENSITY: 18. 33 DEGREES OF FREEDOM

CHISQUARE \(=372.78\)
ST. DEVIATION \(=14.61\)
MPD UPPER 0.95 CONF LIMIT \(=23.06\)
MPD LOWER 0.95 CONF LIMIT \(=13.60\)
0 OG

NUMBER OF SPECTRAL POINTS REL OW LFPER LIMIT:

130C，301B5SGRF60 POWER DENSITY IN FREQUENCY POINTS：

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { 130C, } 301 \text { BS566RF60 } \\
& \text { POWER SPECTRUM }
\end{aligned}
\]

MEAN POWER DENSITY： 16.55
DEGREES OF FREEDOM \(=8\)
CHISQUARE \(=129.04\)
ST．DEVIATION \(=8.17\)
MPD UPPER 0.95 CONF LIMIT \(=19.20\)
MPD LOWER 0.95 CONF LIMIT \(=13.91\)
\(\begin{array}{lll}\text { NUMRER OF SPECTRAL POINTS ABOVE UPFER LIMIT：} & 10 \\ \text { POINTS BELOW LOWER LIMIT：} & 16\end{array}\)

MEAN POWER DENSITY: 16.97 DEGREES OF FREEDOM \(=8\)

CHIEQUARE \(=147.26\)
ST. DEVIATION \(=8.84\)
MPD UPPER 0.95 CONF LIMIT \(=19.83\)
MPD LOWER 0.95 CONF LIMIT \(=14.11\)
NUMRER OF SPECTRAL POINTS ABOVE
NLMRER OF SPECTRAL POINTS BELOW LOWER LIMIT: 12
141C, 301B556RF80
POWER SPECTRUM

141C,3O1RS56RFBO POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& \stackrel{\circ}{0} \\
& \stackrel{U}{x} \\
& \text { K }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{lrllllr}
FREQ: & POWER: & \multicolumn{2}{l}{ FREQ: POWER: } & FREQ: POWER: \\
0.031 & 14.2 & 0.047 & 11.4 & 0.063 & 8.7 \\
0.109 & 13.0 & 0.125 & 15.1 & 0.141 & 5.4 \\
0.188 & 23.2 & 0.203 & 15.1 & 0.219 & 19.1 \\
0.266 & 7.6 & 0.281 & 18.8 & 0.297 & 10.0 \\
0.344 & 3.4 & 0.359 & 18.5 & 0.375 & 7.4 \\
0.422 & 34.8 & 0.438 & 16.0 & 0.453 & 29.2
\end{tabular}
MEAN POWER DENSITVA 16.72 MEAN POWER DENSITY: 16.72
DEGREES OF FREEDOM \(=8\) CHISQUARE \(=141.21\) MPD UPPER 0.95 CONF LIMIT \(=19.50\) MPD LOWER 0.95 CONF LIMIT \(=13.94\) NUMRER OF SPECTRAL POINTS ABOVE UPPER LIMIT:

1RUS，SOIRSSGRF157 POWER DENSITY IN FREQUENCY POINTS：

が呙

MPD UPPER 0.95 CONF LIMIT \(=19.57\)
MPD LOWER 0.95 CONF LIMIT \(=14.37\)
NUMBER OF SPECTRAL POINTS AROVE UPFER LIMIT： TOTAL NUMBER OF SIGNIFICANT SPECTRAL POINTS：
2RUS, 301BS56RF 164
POWER SPECTRUM

2RUS, \(3018556 R F 164\) POWER DENSITY IN FREQUENCY POINTS:

\(\underset{\sim}{N} \mathrm{~N}\)

MEAN POWER DENSITY: \(19: 25\)
DEGREES OF FREEDOM \(=8\)
CHISQUARE \(=174.48\)
MT. DEVIATION \(=10.25\)
MPD UPPER 0.95 CONF LIMIT \(=22.57\)
MPD LOWER 0.95 CONF LIMIT \(=15.93\)
NUMBER OF SPECTRAL POINTS AROVE UPFER LIMIT:

3RUS，301B556RF82
POWER SPECTRUM

3RUS，301B5S6RFE2 POWER DENSITY IN FREQUENCY POINTS：

NNがッオ
\begin{tabular}{lllrlrr}
FREQ： & POWIER： & \multicolumn{2}{l}{ FREQ：POWER：} & FREQ：POWER： & FREQ： \\
0.000 & 20.4 & & & & & \\
0.016 & 42.7 & 0.031 & 15.5 & 0.047 & 23.8 & 0.063 \\
0.094 & 15.7 & 0.109 & 17.2 & 0.125 & 14.3 & 0.141 \\
0.172 & 17.7 & 0.188 & 0.8 & 0.203 & 8.2 & 0.219 \\
0.250 & 9.1 & 0.266 & 9.1 & 0.281 & 9.0 & 0.297 \\
0.328 & 19.5 & 0.344 & 10.7 & 0.359 & 13.3 & 0.375 \\
0.406 & 8.5 & 0.422 & 14.8 & 0.438 & 7.4 & 0.453 \\
0.484 & 25.6 & 0.500 & 46.9 & & &
\end{tabular}

\begin{abstract}
\(\sigma N\)

\end{abstract}
4RUS, 301B556RF248
POWER SPECTRUM
4RUS, 3O1RSS6RF24B POWER DENSITY IN FREQUENCY POINTS:

\(\begin{array}{lr}\text { FREQ：} & \text { POWER：} \\ 0.078 & 11.0 \\ 0.156 & 9.9 \\ 0.234 & 46.8 \\ 0.313 & 17.3 \\ 0.391 & 13.5 \\ 0.469 & 30.4\end{array}\)

\(\because N\)
\[
\begin{aligned}
& \text { WחلlJヨdS yヨMOd } \\
& \text { てぃI Jygssaroc‘sחys }
\end{aligned}
\]
感空

85
43 MO7
 DENSITY： 16.42
FREEDOM \(=8\)

REED16
171.16
\(=9.37\)

 HISQUARE \(=\)
 MEAN POWER DEGREES OF

FRK, 301 BS56RF 88
POWER SPECTRUM

FFRK, \(301 R 5 S 6 R F 8 B\) POWER DENSITY IN FREQUENCY POINTS:
\(\begin{array}{lr}\text { FREQ: } & \text { POWER: } \\ & \\ 0.078 & 16.7 \\ 0.156 & 17.5 \\ 0.234 & 6.3 \\ 0.313 & 4.3 \\ 0.391 & 10.9 \\ 0.469 & 20.9\end{array}\)
ons

\(\begin{array}{ll}\text { FREQ: } & \text { POWER: } \\ 0.031 & 27.2 \\ 0.109 & 11.1 \\ 0.188 & 10.7 \\ 0.266 & 15.4 \\ 0.344 & 22.0 \\ 0.422 & 13.9 \\ 0.500 & 15.4\end{array}\)

MEAN POWER DENSITY: 16.08
DEGREES OF FREEDOM \(=\)
MPD UPPER 0.95 CONF LIMIT \(=18.84\)
MPD LOWER 0.95 CONF LIMIT \(=13.32\)

TOTAL NUMEER OF SIGNIFICANT SPECTRAL POINTS:
LAB, 301B556RF 190
POWER SPECTRUM

POWER DENSITY IN FREQUENCY POINTS:

BRU, 301B556RF200 POWER SPECTRUM

CHOM, 301B556RF82
POWER SPECTRUM

POWER DENSITY IN FREQUENCY POINTS: MEAN POWER DENSITY: 18.09
\[
\begin{array}{lllll}
\text { FREQ: } & \text { POWER: } & \text { FREQ: POWER: } & \text { FREQ: } \\
0.031 & 17.8 & 0.047 & 24.7 & 0.063 \\
0.169 & 20.7 & 0.125 & 18.2 & 0.141 \\
0.188 & 13.5 & 0.203 & 9.7 & 0.219 \\
0.266 & 3.6 & 0.281 & 15.6 & 0.297 \\
0.344 & 22.7 & 0.359 & 30.0 & 0.375 \\
0.422 & 24.6 & 0.438 & 13.1 & 0.453 \\
0.500 & 30.6 & & &
\end{array}
\]

DEGREES OF FREEDOM \(=8\)

CHISQUARE \(=120.80\)
MPD UPPER 0.95 CONF LIMIT \(=20.77\)
\(\underset{\sim}{N}\)
 IIWI7 \(4 \exists M O 7\) Molas SINIOd \(7 \forall \& 1 J \exists\)

1REC, 401RGSGRF36B POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lr}
& \\
& \\
& \\
0.078 & 34.5 \\
0.156 & 10.4 \\
0.234 & 16.6 \\
0.313 & 9.1 \\
0.391 & 2.3 \\
0.469 & 23.6
\end{tabular}

MEAN POWER DENSITY: 16.52

DEGREES OF FREEDOM
CHISQUARE \(=215.60\)
CHISQUARE \(=215.60\)
ST. DEVIATION \(=10.55\)
MPD UPPER 0.95 CONF LIMIT \(=19.94\)
NUMBER OF SPECTRAL POINTS AROVE UPPER LIMIT: 12 NUMBER OF SPECTRAL POINTS EELOW LOWER LIMIT:
TOTAL NUMBER OF SIGNIFICANT SFECTRAL POINTS:

2REC, \(301 \mathrm{BS} 56 R F 207\) POWER DENSITY IN FREQUENCY POINTS:

MAIL, 401RGSGRF346 POWER DENSITY IN FREQUENCY POINTS:
FREQ: POWER:
F FREQ: POWER:
0.000
O. FREQ: POWER: F FREQ:
MEAN POWER DENSITY: 18.20
DEGREES OF FREEDOM \(=8\)
CHISQUARE: \(=198.09\)
CHISQUARE: \(=198.09\)
ST. DEVIATION \(=10\).
\(\begin{array}{ll}\text { NUMBER DF SPECTRAL POINTS AROVE UPFER LIMIT: } & 12 \\ \text { NUMRER OF SFECTRAL POINTS RELOW LOWER LIMIT: }\end{array}\)
HRLD, 301B556RF200
POWER SPECTRUM

HRLD, 3O1BS5GRF200 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lr}
FREQ: & POWER: \\
& \\
0.078 & 26.9 \\
0.156 & 3.8 \\
0.234 & 25.8 \\
0.313 & 15.1 \\
0.391 & 24.6 \\
0.469 & 12.0
\end{tabular}
\begin{tabular}{lr}
FREQ: & POWER: \\
0.047 & 3.3 \\
0.125 & 20.3 \\
0.203 & 19.0 \\
0.281 & 29.8 \\
0.359 & 21.9 \\
0.438 & 17.9
\end{tabular}
MPD UPPER 0.95 CONF LIMIT \(=19.72\)
MPD LOWER 0.95 CONF LIMIT \(=14.01\)
NUMBER OF SPECTRAL FOINTS ABOVE UFPER LIMIT:
SINIOd TG\&1Jヨas INGIIJINEIS to yヨawn \(7 \forall 101\)
GUAR, JO1RSSGRF140 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lr}
FREQ: & POWER: \\
0.078 & 17.8 \\
0.156 & 10.0 \\
0.234 & 9.2 \\
0.313 & 14.4 \\
0.391 & 14.8 \\
0.469 & 1.4
\end{tabular}

PAD1, 301B556RF 147
POWER SPECTRUM
PAD1, 301R556RF 147 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lr}
FREQ: & POWER: \\
0.078 & 1.4 \\
0.156 & 13.9 \\
0.234 & 16.4 \\
0.313 & 15.0 \\
0.391 & 21.9 \\
0.469 & 31.2
\end{tabular}
PAD2, 301B556RF217

POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{ll}
FREQ: & POWER: \\
& \\
0.078 & 18.8 \\
0.156 & 28.8 \\
0.234 & 12.2 \\
0.313 & 4.4 \\
0.391 & 43.1 \\
0.469 & 17.9
\end{tabular}
NNO
\(\begin{array}{lllr}\text { FREQ: } & \text { POWER: } & \text { FREQ: } & \text { POWER: } \\ 0.031 & 26.6 & 0.047 & 5.7 \\ 0.109 & 20.3 & 0.125 & 10.5 \\ 0.188 & 17.3 & 0.203 & 23.7 \\ 0.266 & 14.9 & 0.281 & 15.5 \\ 0.344 & 6.1 & 0.359 & 17.1 \\ 0.422 & 13.0 & 0.438 & 21.0 \\ 0.500 & 60.4 & & \end{array}\)
MEAN POWER DENSITY: 18.57
DEGREES OF FREEDOM \(=8\)
CHISQUARE \(=251.26\)
MPD UPPER 0.95 CONF LIMIT \(=22.48\)

NUMBER OF SPECTRAL POINTS ABOVE UPFER LIMIT:
TOTAL NUMBER OF SIGNIFICANT SPECTRAL POINIT:
PAD3, 301B556RF 164
POWER SPECTRUM

PAD3, KO1RS5GRF 164 POWER DENSITY IN FREQUENCY FOINTS:

\begin{tabular}{lccccr}
FREQ: POWER: & \multicolumn{2}{l}{ FREQ: POWER: } & FREQ: FOWER: \\
0.031 & 27.3 & 0.047 & 20.7 & 0.063 & 7.9 \\
0.109 & 25.4 & 0.125 & 12.6 & 0.141 & 4.4 \\
0.188 & 16.0 & 0.203 & 24.3 & 0.219 & 22.8 \\
0.266 & 20.0 & 0.281 & 7.8 & 0.297 & 15.6 \\
0.344 & 15.5 & 0.359 & 23.0 & 0.375 & 32.1 \\
0.422 & 12.5 & 0.438 & 23.5 & 0.453 & 7.7 \\
0.500 & 6.7 & & & &
\end{tabular}

\footnotetext{
MEAN POWER DENSITY: 16.70
CHISQUARE \(=110.59\)
MPD UPPER 0.95 CONF LIMIT \(=19.16\)
}
NUMRER OF SPECTRAL POINTS ABOVE UFPER LIMIT: 13

PAD4，301B556RF144
POWER SPECTRUM

PAD4，3O1BSSGRF 144 POWER DENSITY IN FREQUENCY POINTS：
\(\begin{array}{lr}\text { FREQ：} & \text { POWER：} \\ & \\ 0.078 & 5.6 \\ 0.156 & 15.5 \\ 0.234 & 10.2 \\ 0.313 & 7.3 \\ 0.391 & 24.8 \\ 0.469 & 24.7\end{array}\)
のロバ
AROVE UPPER LIMIT： SINIOd 7GYIJ．
POOH, 3O1B556RFE7 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lr}
FREQ: & POWER: \\
& \\
0.078 & 36.2 \\
0.156 & 18.8 \\
0.234 & 24.7 \\
0.313 & 2.8 \\
0.391 & 12.2 \\
0.469 & 11.7
\end{tabular}

\(\begin{array}{lr}\text { FREQ: } & \text { POWER: } \\ 0.063 & 26.9 \\ 0.141 & 22.5 \\ 0.219 & 18.5 \\ 0.297 & 18.9 \\ 0.375 & 8.8 \\ 0.453 & 26.5\end{array}\) MEAN POWER DENSITY: 16.00
DEGREES OF FREEDOM \(=8\)
CHISQUARE \(=138.52\)
ST. DEVIATION \(=8.32\)
MPD UPPER 0.95 CONF LIMIT \(=18.70\)
MPD LOWER O.95 CONF LIMIT \(=13.31\)
MUMBER OF SPECTRAL POINTS AROVE UFFER LIMIT: 14
NUMRER OF SPECTRAL POINTS BELOW LOWER LIMIT: 15
TOTAL NUMRER OF SIGNIFICANT SPECTRAL POINTS: 29

ALIB, 301R556RF62 POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lr}
FREQ: & POWER: \\
0.078 & 31.3 \\
0.156 & 31.6 \\
0.234 & 22.1 \\
0.313 & 7.7 \\
0.391 & 3.8 \\
0.469 & 6.4
\end{tabular}
FREQ:
0.063
0.141
0.219
0.297
0.375
0.453
\begin{tabular}{lclc}
FREQ: POWER: & FREQ: POWER: \\
& & & \\
0.031 & 56.8 & 0.047 & 14.2 \\
0.109 & 20.5 & 0.125 & 18.0 \\
0.188 & 7.6 & 0.203 & 7.5 \\
0.266 & 16.1 & 0.281 & 11.1 \\
0.344 & 20.8 & 0.359 & 14.6 \\
0.422 & 7.5 & 0.438 & 13.0 \\
0.500 & 31.9 & &
\end{tabular}

MEAN POWER DENSITY: 20.14
DEGREES OF FREEDOM \(=\)
ST. DEVIATION \(=17.50\)
MPD UPPER 0.95 CONF LIMIT \(=25.81\)
NUMRER OF SPECTRAL POINTS ABDVE UPPER LIMIT:

ALIL, 301B556RF 108
Wחylojds ymmod

POWER DENSITY IN FREQUENCY POINTS:
\begin{tabular}{lrrrrrrrrr}
FREQ: POWER: & FREQ: POWER: & FREQ: PQWER: & FREQ: POWER: & FREQ: PQWER: \\
0.000 & 6.5 & & & & & & & & \\
0.016 & 17.7 & 0.031 & 13.7 & 0.047 & 22.1 & 0.063 & 22.9 & 0.078 & 4.4 \\
0.094 & 13.8 & 0.109 & 14.2 & 0.125 & 13.7 & 0.141 & 14.3 & 0.156 & 12.5 \\
0.172 & 9.1 & 0.188 & 40.5 & 0.203 & 14.7 & 0.219 & 18.8 & 0.234 & 15.4 \\
0.250 & 6.6 & 0.266 & 11.1 & 0.281 & 9.1 & 0.297 & 12.0 & 0.313 & 7.7 \\
0.328 & 24.8 & 0.344 & 21.5 & 0.359 & 12.7 & 0.375 & 19.2 & 0.391 & 31.1 \\
0.406 & 12.8 & 0.422 & 20.5 & 0.438 & 8.5 & 0.453 & 24.2 & 0.469 & 22.5 \\
0.484 & 13.4 & 0.500 & 26.4 & & & & & &
\end{tabular}
MEAN POWER DENSITV: 16.32 DEGREES OF FREEDOM \(=8\)
ST. DEVIATION \(=7.73\)
MPD UPPER 0.95 CONF LIMIT \(=18.82\)
MPD LOWER 0.95 CONF LIMIT \(=13.81\)

TOTAL NUMBER OF SIGNIFICANT SPECTRAL POINIT:
GULL, 301B556RF 136
POWER SPECTRUM

GULL, 301BSS6RF 136 POWER DENSITV IN FREQUENCY POINTS:

\section*{APPENDIX TO CHAPTER 12.}

\section*{Grammatical coding.}

Index.
Alignment of spectra from FFT andtimeseries analysipage 661
'Raw' and smoothed spectra of FFT 662
Nouns weighted:
Text string PAD2 page 663
Power in freq.points, PAD2 665
Text string RUSS1 666
Fower in freq.points, Russ1 668
Verbs weighted:
Text string FAD2 page 669
Fower in freq.points, PAD2 671
Text string RUSS1 672
Power in freq.points, RUSS1 page 674
Subjects weighted
Text string PAD2 675
Power in freq.points, PAD2. 677
Text string RUSS1 678
Power in freq.points, Russi page 680
No weighting
Power in freq.points, PAD2 page 681
Power in freq.points, Rusi 682

TIMESERIES POWER DENSITY IN FREQUENCY POINTS:

PAD2, 201 B600RF 185

合
\[
\begin{array}{cc}
\text { SMOOTHED FFT } \\
\text { FREO: } & \text { POW: } \\
0.039 & 23 \\
0.078 & 29 \\
0.117 & 24 \\
0.156 & 27 \\
0.195 & 28 \\
0.234 & 21 \\
0.273 & 30 \\
0.313 & 19 \\
0.352 & 27 \\
0.391 & 40 \\
0.430 & 27 \\
0.469 & 29
\end{array}
\]

\section*{PAD2， 201 B600RF 185}
REG：POW：
ジロN゙思NMNMNNNNN
 MEAN POWER DENSITY： 26.45

\begin{tabular}{|c|c|}
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
 \\
 \\
OOOMNNMMMは \\
\(0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 00^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular}} \\
\hline & \\
\hline
\end{tabular}

K \(00^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\)

PAD2，2018600RF185

MEAN POWER DENSITY： 18.34

THE OLD BEOXROOM WAS FINISHED AT LAST AND BEVERYONE INCLUDING bPADDINGTON AGREED THAT BHE WAS A VERY LUCKY beEAR TO MOVE INTO SUCH A NICE GROOM NOT ONLY WAS THE GFAINTWORK A GLEAMING WHITE SO THAT BHE COULD ALMOST SEE HIS BFACE IN BIT RUT THE BWALLS WERE GAILY PAPERED AND BHE EVEN HAD NEW GFURNITURE OF HIS OWN AS WELL IN FOR A BPENNY IN FOR A BPOUND GMR BEROWN HAD SAID AND BHE HAD ROUGHT BPADDINGTON A RRAND NEW GRED WITH SFECIAL SHORT BLEGS A BSPRING GMATTRESS AND A BCUPROARD FOR HIS BODDS AND BENDS BTHERE WERE SEVERAL OTHER GPIECES OF BFURNITURE AND GMRS BRROWN HAD BEEN EXTRAVAGANT AND ROUGHT A THICK BPILE BCARPET FOR THE BFLOOR BFADDINGTON WAS VERY FROUD OF HIS BCARPET AND BHE HAD CAREFULLY SFREAD SOME OLD GNEWSPAPERS OVER THE BPARTS WHERE GHE WALKED SO THAT HIS BFAWS WOULD NOT MAKE BIT DIRTY MRS EIRDS BCONTRIEUTION HAD BEEN SOME BRIGHT NEW BCURTAINS FOR THE BWINDOWS BWHICH GFADDINGTON LIKED VERY MUCH IN FACT THE FIRST GNIGHT BHE SPENT IN HIS NEW GRODM BHE COULD NOT MAKE UF HIS GMIND WHETHER TO HAVE GTHEM DRAWN TOGETHER SO THAT BHE COULD ADMIRE GTHEM OR LEFT APART SO THAT GHE COULD SEE THE BVIEW BHE GOT OUT OF GEED SEVERAL BTIMES AND EVENTUALLY DECIDED TO HAVE BONE DRAWN AND THE BOTHER LEFT BACK SO THAT GHE COULD HAVE THE BREST OF ROTH GWORLDS THEN BSOMETHING STRANGE CAUGHT HIS BEYE BFADDINGTON MADE A BPOINT OF KEEPING A BTORCH BY THE BSIDE OF HIS BEED IN BCASE GTHERE WAS AN GEMERGENCY DURING THE BNIGHT AND BIT WAS WHILE GHE WAS FLASHING BIT ON AND OFF TO ADMIRE THE DRAWN BCURTAIN THAT BHE NOTICED BIT EACH BTIME BHE FLASHED THE BTORCH BTHERE WAS AN ANSWERING BFLICKER OF BLIGHT FROM BSOMEWHERE OUTSIDE BHE SAT UP IN BEED RUBRING HIS BEYES AND STARED IN THE BDIRECTION OF THE BWINDOW BHE DECIDED TO TRY A MORE COMFLICATED BSIGNAL TWO SHORT BFLASHES FOLLOWED RY SEVERAL LONG BONES WHEN BHE DID SO BHE NEARLY FELL OUT OF GRED WITH BSURPRISE FOR EACH BTIME BHE SENT A BSIGNAL BIT WAS REPEATED IN EXACTLY THE SAME BWAY THROUGH THE BGLASS BPADDINGTON JUMPED OUT OF GBED AND RUSHED TO THE BWIMDOW BHE STAYED THERE FOR A LONG BWHILE PEERING OUT AT THE BGARDEN BUT GHE COULD NOT SEE GANYTHING AT ALL HAVING MADE SURE THE BWINDOW WAS TIGHTLY SHUT GHE DREW ROTH BCURTAINS AND HURRIED BACK TO BBED PULLING THE BCLOTHES OVER HIS BHEAD A LITTLE FARTHER THAN USLAL 8IT WAS ALL VERY MYSTERIOUS AND GPADDINGTON DID NOT BELIEVE IN TAKING ANY BCHANCES BIT WAS GMR BBROWN AT GBREAKFAST THE NEXT GMORNING BWHO GAVE BHIM HIS FIRST ECLLE BSOMEONE HAS STOLEN MY PRIZE GMARROW BHE ANNOUNCED CROSSLY BTHEY MUST HAVE GOT IN DURING THE BNIGHT FOR SOME BWEEKS PAST GMR GRROWN HAD BEEN CAREFLLLY NURSING A HUGE BMARROW WHICH BHE INTENDED TO ENTER FOR A VEOETABLE BSHOW GHE WATERED BIT GMORNING AND BEVENING AND MEASURED GIT EVERY BNIGHT BEFDRE GOING TO BBED GMRS BBROWN EXCHANGED A BGLANCE WITH BMRS GEIRD NEVER MIND EHENRY BDEAR BSHE SAID GYOU HAVE GOT SEVERAL BOTHERS ALMOST AS GOOD BI DO MIND GRUMBLED EMR BBROWN AND THE BOTHERS WILL NEVER BE AS GOOD NOT

\begin{abstract}
PAD 2 cent NOUNS WEIGHT.
IN TIME FOR THE BSHOW PERHAPS BIT WAS ONE OF THE OTHER COMPETITORS BDAD SAID BJONATHAN PE THAT IS QUITE POSSIBLE SAID BM GROWN LOOK AT THE THOUGHT BI HAVE A GOOD AT THE BTHOUGHT BI HAVE A GOOD MIND TO OFFER A SMALL REWARD EMFS BEIRD HASTILY POURED OUT SOME MORE BTEA ROTH aSHE AND GMRS BEFROWN APPEARED ANXIOUS TO CHANGE THE 8SUEJECT RUT BFADDINGTON PRICKED UF HIS bEARS AT THE MENTION OF A REWARD
\end{abstract}

Nouns WEIGATT.
\(\begin{array}{cc}\text { FREQ: } & \text { FOWER: } \\ & \\ 0.039 & 27.8 \\ 0.078 & 24.2 \\ 0.117 & 21.2 \\ 0.156 & 22.4 \\ 0.195 & 24.6 \\ 0.234 & 27.2 \\ 0.273 & 31.6 \\ 0.313 & 35.8 \\ 0.352 & 39.7 \\ 0.391 & 25.2 \\ 0.430 & 20.6 \\ 0.469 & 20.7\end{array}\)

\[
\begin{aligned}
& \text { MEAN POWER DENSITY: } 26.11 \\
& \text { DEGREES OF FREEDOM }=6 \\
& \text { CHISQUARE }=101.04 \\
& \text { ST. DEVIATION }=6.42 \\
& \text { MPD UPPER } 0.95 \text { CONF LIMIT }=27.66 \\
& \text { MPD LOWER } 0.95 \text { CONF LIMIT }=24.57 \\
& \text { NUMRER OF SPECTRAL POINTS AROVE UPFER LIMIT: } 20 \\
& \text { NUMRER OF SPECTRAL POINTS BELOW LOWER LIMIT: } 26 \\
& \text { TOTAL NUMBER OF SIGNIFICANT SFECTRAL. POINTS: } 46
\end{aligned}
\]

TRUS NOUNS WEIGHT.
THE CONCEFTIONS OF LIFE AND THE WORLD WHICH WE CALL
FHILOSOFHICAL ARE A FRODUCT OF TWO FACTORS ONE INHERITED RELIGIOUS AND ETHICAL CONCEFTIONS THE OTHER THE SORT OF INVESTIGATION WHICH MAY RE CALLED SCIENTIFIC USING THIS WORD IN ITS EROADEST
SENSE INDIVIDUAL FHILOSOPHERS HAVE DIFFERED WIDELY IN REGARD TO THE FROPORTIONS IN WHICH THESE TWO FACTORS ENTERED INTO THEIR SYSTEMS EUT IT IS THE PRESENCE OF BOTH IN SOME DEGREE
THAT CHARACTERIZES PHILOSOPHY PHILOSOPHY IS A WORD WHICH HAS BEEN USED IN MANY WAYS SOME WIDER SOME NARROWER I PROPOSE TO USE IT IN A VERY WIDE SENSE WHICH I WILL NOW TRY TO EXPLAIN GPHILOSOPHY AS BI SHALL UNDERSTAND THE BWORD IS BSOMETHING INTERMEDIATE BETWEEN BTHEOLOGY AND BSCIENCE LIKE BTHEOLOGY BIT CONSISTS OF BSPECULATIONS ON BMATTERS AS TO WHICH DEFINITE BKNOWLEDGE HAS SO FAR BEEN UNASCERTAINARLE RUT LIKE BSCIENCE BIT AFPEALS TO HUMAN BREASON RATHER THAN TO BAUTHORITY WHETHER BTHAT OF GTRADITION OR BTHAT OF GREVELATION ALL DEFINITE GKNOWLEDGE SO 8I SHOULD CONTEND RELONGS TO BSCIENCE ALL BDOGMA AS TO BWHAT SURFASSES DEFINITE
BKNOWLEDGE RELONGS TO BTHEOLOGY BUT BETWEEN
BTHEDLOGY AND BSCIENCE BTHERE IS A BND BMANS BLAND EXPOSED TO ATTACK FROM BOTH GSIDES BTHIS BND BMANS BLAND IS BFHILOSOFHY ALMOST ALL THE BQUESTIONS OF MOST BINTEREST TO SPECULATIVE BMINDS ARE SUCH AS BSCIENCE CANNOT ANSWER AND THE CONFIDENT BANSWERS OF BTHEOLOGIANS NO LONGER SEEM SO CONVINCING AS BTHEY DID IN FORMER BCENTURIES IS THE BWORLD DIVIDED INTO GMIND AND BMATTER AND IF SO BWHAT IS BMIND AND GWHAT IS BMATTER IS BMIND BSUBJECT TO BMATTER OR IS BIT FOSSESSED OF INDEPENDENT BFOWERS HAS THE BUNIVERSE ANY BUNITY OR GFURFOSE IS BIT EVOLVING TOWARDS SOME BGOAL ARE BTHERE REALLY BLAWS OF GNATURE OR DO BWE BELIEVE IN BTHEM ONLY EECAUSE OF OUR INNATE BLOVE OF BORDER IS GMAN BWHAT GHE SEEMS TO THE BASTRONOMER A TINY BLUMP OF IMPURE BCAREON AND BWATER IMPOTENTLY CRAWLING ON A SMALL AND UNIMPORTANT BFLANET OR IS BHE BWHAT BHE APPEARS TO BHAMLET IS BHE FERHAPS BROTH AT ONCE IS BTHERE A BWAY OF LIVING BTHAT IS NORLE AND BANOTHER BTHAT IS BASE OR ARE ALL BWAYS OF GLIVING MERELY FUTILE IF BTHERE IS A BWAY OF BLIVING BTHAT IS NORLE IN BWHAT DOES BIT CONSIST AND HOW SHALL BWE ACHIEVE BIT MUST THE BGOOD BE ETERNAL IN ORDER TO DESERVE TO BE VALUED OR IS BIT WORTH SEEKING EVEN IF THE GUNIVERSE IS INEXORARLY MOVING TOWARDS BDEATH IS BTHERE SUCH A BTHING AS BWISDOM OR IS BWHAT SEEMS BSUCH MERELY THE ULTIMATE GREFINEMENT OF BFOLLY TO SUCH BQUESTIONS NO BANSWER CAN BE FOUND IN THE BLABORATORY BTHEOLOGIES HAVE PRDFESSED TO GIVE BANSWERS ALL TOO DEFINITE BUT THEIR VERY GDEFINITENESS CAUSES MODERN BMINDS TO VIEW 8THEM WITH BSUSPICION THE BSTUDVING OF THESE BQUESTIONS IF NOT THE BANSWERING OF BTHEM IS THE BBUSINESS OF BPHILOSOPHY WHY THEN GYOU MAY ASK WASTE BTIME ON SUCH INSOLUBLE BPROELEMS TO BTHIS BONE MAY ANSWER AS A BHISTORIAN OR AS AN BINDIVIDUAL FACING THE BTERROR OF COSMIC ELONELINESS THE BANSWER OF THE BHISTORIAN IN SO FAR AS BI AM
CAFARLE OF GIVING BIT WILL APPEAR IN THE BCOURSE OF
THIS GWORK EVER SINCE BMEN BECAME CAPABLE OF FREE BSPECULATION

\section*{Rest cont Nount WEIGNT.}

THEIR BACTIONS IN INNUMERARLE
IMFORTANT GRESPECTS HAVE DEPENDED UPON THEIR
BTHEORIES AS TO THE BWORLD AND HUMAN BLIFE AS TO
BWHAT IS GOOD AND BWHAT IS EVIL BTHIS IS AS
true in the present gday as at any former biime
to UNDERSTAND AN BAGE OR A BNATION BWE MUST UNDERSTAND
ITS BPHILOSOPHY AND TO UNDERSTAND ITS BPHILOSOPHY BWE MUST BOURSELVES
RE IN SOME DEGREE BPHILOSOPHERS BTHERE IS HERE A RECIPROCAL
BCAUSATION THE BCIRCUMSTANCES OF MENS BLIVES DO MUCH TO DETERMINE
THEIF BPHILOSOPHY EUT CONVERSELY
THEIR BPHILOSOPHY DOES MUCH TO DETERMINE
THEIR BCIRCUMSTANCES THIS BINTERACTION
thfioughout the bcenturies will be the
8TOFIC DF THE FOLLOWING BFAGES BTHERE IS ALSO HOWEVER A MORE FERSONAL BANSWER BSCIENCE TELLS US BWHAT BWE CAN KNOW RUT BWHAT GWE CAN KNOW IS LITTLE AND IF BWE
FORGET HOW MUCH BWE CANNOT KNOW BWE RECOME INSENSITIVE TO MANY GTHINGS OF GREAT BIMPORTANCE BTHEDLOGY ON THE OTHER HAND induces a dogmatic beelief that bwe have knowledge where in FACT BWE HAVE BIGNORANCE AND EY DOING SO GENERATES A BKIND OF IMPERTINENT BINSOLENCE TOWARDS THE GUNIVERSE BUNCERTAINTY IN THE

\section*{Rusi conk Nonas WFIamt}

THEIR BACTIONS IN INNUMERARLE
IMFORTANT BRESFECTS HAVE DEPENDED UPON THEIR
BTHEORIES AS TO THE BWORLD AND HUMAN BLIFE AS TO
8WHAT IS GOOD AND BWHAT IS EVIL BTHIS IS AS TRUE IN THE PRESENT GDAY AS AT ANY FORMER ETIME TO UNDEFSTAND AN BAGE OR A BNATION BWE MUST UNDERSTAND ITS BPHILOSOPHY AND TO UNDEFSTAND ITS BFHILOSOPHY BWE MUST BOURSELVES BE IN SOME DEGREE 8PHILOSOPHERS BTHERE IS HERE A RECIPROCAL BCAUSATION THE BCIRCUMSTANCES OF MENS BLIVES DO MLCH TO DETERMINE THEIF BPHILOSOPHY EUT CONVERSELY
THEIR BPHILOSOPHY DOES MUCH TO DETERMINE THEIR BCIRCUMSTANCES THIS BINTERACTION THFOUGHOUT THE BCENTURIES WILL BE THE 8TOFIC OF THE FOLLOWING BFAGES BTHERE IS ALSO HOWEVER A MORE PERSONAL BANSWER BSCIENCE TELLS US BWHAT BWE CAN KNOW BUT BWHAT BWE CAN KNOW IS LITTLE AND IF BWE FORGET HOW MUCH BWE CANNOT KNOW BWE RECOME INSENSITIVE TO MANY BTHINGS OF GFEAT BIMPORTANCE BTHEOLOGY ON THE OTHER HAND INDUCES A DOGMATIC BEELIEF THAT BWE HAVE KNOWLEDGE WHERE IN FACT BWE HAVE BIGNORANCE AND EY DOING SO GENERATES A BKIND OF IMPERTINENT BINSDLENCE TOWAFDS THE BUNIVERSE BUNCERTAINTY IN THE
1RUS, 301ATOORF162 POWER DENSITY IN FREDUENCY FOINTS: RESS1 DBNASS WEIGNT.
\begin{tabular}{llll}
FREQ: & FOWER: & FREQ: FOWER: \\
0.031 & 26.6 & 0.039 & 26.8 \\
0.070 & 25.8 & 0.078 & 20.3 \\
0.109 & 18.0 & 0.117 & 16.0 \\
0.148 & 24.6 & 0.156 & 22.7 \\
0.188 & 16.5 & 0.195 & 16.9 \\
0.227 & 23.4 & 0.234 & 26.9 \\
0.266 & 20.3 & 0.273 & 27.1 \\
0.305 & 37.1 & 0.313 & 42.8 \\
0.344 & 30.9 & 0.352 & 31.5 \\
0.383 & 46.4 & 0.391 & 35.0 \\
0.422 & 31.2 & 0.430 & 32.4 \\
0.461 & 25.5 & 0.469 & 22.6 \\
0.500 & 17.1 & &
\end{tabular}

PAD2 Veress weinle.
THE OLD ROXROOM BWAS BFINISHED AT LAST AND EVERYONE INCLUDING PADDINGTON BAGREED THAT HE BWAS A VERY LUCKY BEAR BTO bMOVE INTO SUCH A NICE ROOM NOT ONLY BWAS THE PAINTWORK A GLEAMING WHITE SO THAT HE BCOULD ALMOST BSEE HIS FACE IN IT BUT THE WALLS BWERE GAILY BPAPERED AND HE EVEN BHAD NEW FURNITURE OF HIS OWN AS WELL IN FOR A PENNY IN FOR A POUND MR ERIOWN BHAD BSAID AND HE BHAD BRDUGHT PADDINGTON A BRAND NEW EED WITH SPECIAL SHORT LEGS A SPRING MATTRESS AND A CUFEOAFD FOR HIS ODDS AND ENDS THERE BWERE SEVERAL OTHER FIECES OF FURNITURE AND MRS EROWN GHAD BREEN EXTRAVAGANT AND BROUGHT A THICK PILE CARPET FOR THE FLODR PADDINGTON BWAS VERY BPROUD OF HIS CARFET AND HE BHAD CAREFULLY BSFREAD SOME OLD NEWSFAPERS OVER THE PARTS WHERE HE BWALKED SO THAT HIS PAWS BWOULD NOT GMAKE IT DIRTY MRS
GIRDS CONTRIRUTION BHAD BEEEN SOME BRIGHT NEW CURTAINS FOR THE WINDOWS WHICH FADDINGTON BLIKED VERY MUCH IN FACT THE FIRST NIGHT HE BSPENT IN HIS NEW ROOM HE BCOULD NOT BMAKE UF HIS MIND WHETHER BTO GHAVE THEM BDRAWN TOGETHER SO THAT HE BCOULD BADMIRE THEM OR BLEFT APART 80 that he gcould gsee the view he bgot out of
EED SEVERAL TIMES AND EVENTUALLY BDECIDED BTO BHAVE ONE BDRAWN and the other bleft mack so that he gcould bhave
THE REST OF EOTH WORLDS THEN SOMETHING STRANGE GCAUGHT HIS EYE FADDINGTON BMADE A POINT OF BKEEPING A TORCH BY THE SIDE OF HIS RED IN CASE THERE BWAS AN EMERGENCY DURING THE NIGHT AND IT BWAS WHILE HE BWAS BFLASHING IT ON AND DFF BTO BADMIRE THE BDRAWN CURTAIN THAT HE BNOTICED IT EACH TIME HE BFLASHED THE TORCH THERE BWAS AN ANSWERING FLICKER OF LIGHT FROM SOMEWHERE OUTSIDE HE BSAT UP IN RED GRURRING HIS EYES AND BSTARED IN THE DIRECTION OF THE WINDOW HE BDECIDED BTO BTRY A MORE COMFLICATED SIGNAL TWO SHORT FLASHES GFOLLOWED BY GEVERAL LONG ONES WHEN HE BDID SO HE NEARLY BFELL OUT OF RED WITH SURPRISE FOR EACH TIME HE BSENT A SIGNAL IT GWAS BREPEATED IN EXACTLY THE SAME WAY THROUGH THE GLABS PADDINGTON BJUMPED OUT OF BED AND BRUSHED TO THE WIMDOW HE BSTAYED THERE FOR A LONG WHILE GPEERING OUT AT THE GARDEN BUT HE BCOULD NOT GSEE ANYTHING AT ALL BHAVING BMADE SURE THE WINDOW BWAS TIGHTLY gSHUT HE BDREW ROTH CURTAINS AND GHURRIED BACK TO BED GPULLING THE CLOTHES OVER HIS HEAD A LITTLE FARTHER THAN USUAL IT BWAS ALL VERY MYSTERIOUS AND PADDINGTON. BDID NOT BRELIEVE IN BTAKING ANY CHANCES IT BWAS MR BROWN AT BREAKFAST THE NEXT MORNING WHO BGAVE HIM HIS FIRST CLUE SOMEONE BHAS BSTOLEN MY PRIIE MARROW HE BANNOUNCED CROSSLY THEY MUST BHAVE BGOT IN DURING THE NIGHT FOR SOME WEEKS PAST MR BROWN BHAD GREEN CAREFLKLY GNURSING A HUGE MARROW WHICH HE BINTENDED BTO BENTER FOR A VEGETABLE SHOW HE BWATERED IT MORNING AND EVENING AND GMEASURED IT EVERY NIGHT BEFDRE BGOING TO BED MRS BROWN BEXCHANGED A GLANCE WITH MRS BIRD NEVER MIND HENRY DEAR SHE BSAID YOU GHAVE 日GOT SEVERAL OTHERS ALMOST AS BOOD I BDO EMIND EGRUMBLED MR BROWN AND THE OTHERS BWILL NEVER BBE AB GOOD NOT

\section*{PADL cout Veres uneigut.}

IN TIME FOR THE SHOW FERHAPS IT BWAS ONE OF
THE OTHER COMPETITORS DAD GSAID JONATHAN PERHAPS THEY BDID NOT BWANT YOU BTO BWIN IT BWAS A JOLLY GOOD MARROW
THAT BIS QUITE POSSIELE BSAID MR BROWN BLOOKING MORE PLEASED AT THE THOUGHT I GHAVE A GOOD MIND GTO BOFFER
A SMALL REWARD MRS EIRD HASTILY BFOURED OUT SOME MORE TEA ROTH SHE AND MRS RROWN BAPFEARED ANXIOUS BTO BCHANGE THE SURJECT FUT PADDINGTON GPRICKED UP HIS EARS AT THE MENTION OF A REWARD
PAD2, 201AGOORF185 POWER DENSITY IN FREQUENCY FOINTS: PA 2 VERES WEICATT.

\(\begin{array}{ll}\text { FREQ: } & \text { FOWER: } \\ & \\ 0.023 & 30.3 \\ 0.063 & 21.0 \\ 0.102 & 27.2 \\ 0.141 & 20.5 \\ 0.180 & 38.4 \\ 0.219 & 20.9 \\ 0.258 & 26.5 \\ 0.297 & 16.1 \\ 0.336 & 21.0 \\ 0.375 & 27.5 \\ 0.414 & 26.3 \\ 0.453 & 26.0 \\ 0.492 & 50.9\end{array}\)

\section*{\(\begin{array}{ll}.398 & 19.0 \\ .438 & 21.3 \\ .477 & 24.4\end{array}\)}
FREQ: FOWER:

NO
NUMBER OF SPECTRAL POINTS ABOVE UPFER LIMIT: MEAN POWER DENSITY: 26.44
DEGREES OF FREEDOM \(=6\)

DEGREES OF FREEDOM \(=\)
CHISQUARE \(=109.49\)
ST. DEVIATION \(=6.73\)
MPD UPFER 0.95 CONF LIMIT \(=28.06\)
TOTAL NUMRER OF SIGNIFICANT SPECTRAL
Verles wright.

Verest weighe.
1 RUS
THE CONCEPTIONS OF LIFE AND THE WORLD WHICH WE CALL PHILOSOPHICAL ARE A PRODUCT OF TWO FACTORS ONE INHERITED RELIGIOUS AND ETHICAL CONCEPTIONS THE OTHER THE SORT OF INVESTIGATION WHICH MAY EE CALLED SCIENTIFIC USING THIS WDRD IN ITS BROADEST SENSE INDIVIDUAL PHILOSOPHERS HAVE DIFFERED WIDELY IN REGARD TO THE PROPORTIONS IN WHICH THESE TWO FACTORS ENTERED INTO THEIR SYSTEMS RUT IT IS THE FRESENCE OF EOTH IN SOME DEGREE
THAT CHARACTERIZES PHILOSOPHY PHILOSOPHY IS A WORD WHICH HAS REEN USED IN MANY WAYS SOME WIDER SOME NARROWER I PROPOSE TO USE IT IN A VERY WIDE SENSE WHICH I
BWILL NOW BTRY BTO BEXPLAIN PHILOSOFHY AS I BSHALL BUNDERSTAND THE WORD BIS SOMETHING INTERMEDIATE BETWEEN THEDLOGY AND SCIENCE LIKE THEOLOGY IT BCONSISTS OF SFECULATIONS ON MATTERS AS TO WHICH DEFINITE KNOWLEDGE BHAS SO FAR BREEN UNASCERTAINARLE BUT LIKE SCIENCE IT GAFPEALS TO HUMAN REASON RATHER THAN TO AUTHORITY WHETHER THAT OF TRADITION OR THAT OF REVELATION ALL DEFINITE KNOWLEDGE SO I BSHOULD BCONTEND BEELONGS TO SCIENCE ALL DOGMA AS TO WHAT BSURPASSES DEFINITE KNOWLEDGE BEELONGS TO THEOLOGY RUT BETWEEN THEOLOGY AND SCIENCE THERE \(8 I S\) A ND MANS LAND BEXPOSED TO ATTACK FROM ROTH SIDES THIS NO MANS LAND BIS
PHILOSOFHY ALMOST ALL THE QUESTIONS OF MOST INTEREST TO SPECULATIVE MINDS BARE SUCH AS SCIENCE BCANNOT ANSWER AND THE CONFIDENT ANSWERS OF THEOLOGIANS NO LONGER BSEEM SO CONUINCING AS THEY BDID IN FORMER CENTURIES GIS THE WORLD GDIVIDED INTO MIND AND MATTER AND IF SO WHAT \(8 I S\) MIND AND WHAT BIS MATTER BIS MIND SUBJECT TO MATTER OR BIS IT GFOSSESSED OF INDEPENDENT POWERS GHAS THE UNIVERSE ANY UNITY OR PURFOSE BIS IT EVOLVING TOWARDS SOME GOAL BARE THERE REALLY LAWS OF NATURE OR BDO WE BRELIEVE IN THEM ONLY because of our innate love of order gis man what HE GSEEMS TO THE ASTRONOMER A TINY LUMP OF IMPURE CARRON AND WATER IMPOTENTLY BCRAWLING ON A SMALL AND UNIMPORTANT PLANET OR BIS HE WHAT HE GAPPEARS TO HAMLET BIS HE PERHAPS BOTH AT ONCE BIS THERE A WAY OF LIVING THAT BIS NOBLE AND ANOTHER THAT BIS BASE OR BARE ALL WAYS OF LIVING MERELY FUTILE IF THERE BIS A WAY OF LIVING THAT BIS NOBLE IN WHAT BDOES IT BCONSIST AND HOW BSHALL WE BACHIEVE IT BMUST THE GOOD BBE ETERNAL IN ORDER BTO BDESERVE BTO BBE GVALUED OR BIS IT WORTH BSEEKING EVEN IF THE UNIVERSE BIS INEXORARLY BMOVING TOWARDS DEATH BIS THERE GUCH A THING AS WISDOM OR BIS WHAT BSEEMS SUCH MERELY THE ULTIMATE REFINEMENT OF FOLLY TO SUCH QUESTIONS NO ANSWER BCAN BRE GFOUND IN THE LABORATORY THEOLOGIES BHAVE BPROFESSED BTO GGIVE ANSWERS ALL TOO DEFINITE BUT THEIR VERY DEFINITENESS BCAUSES MODERN MINDS BTO QVIEW THEM WITH SUSPICIDN THE STUDYING OF THESE QUESTIONS IF NOT THE ANSWERING OF THEM BIS THE BUSINESS OF PHILOBOPHY WHY THEN YOU BMAY BASK WASTE TIME ON SUCH INSOLUBLE PROELEMS TO THIS ONE GMAY GANSWER AS A HISTORIAN OR AS AN INDIVIDUAL BFACING THE TERROR OF COSMIC LONELINESS THE ANSWER OF THE HISTORIAN IN SO FAR AS 1 GAM BCAPABLE OF BGIVING IT BWILL BAPPEAR IN THE COURSE OF THIS WORK EVER SINCE MEN BBECAME CAPABLE OF FREE BPECLLATION THEIR ACTIONS IN INMMEERABLE IMPORTANT
Ruァ1 conemenem URON THEIRRESFECTS BHAVE BDEPENDED UPON THEIRTHEORIES AS TO THE WORLD AND HUMAN LIFE AS TOWHAT \(8 I S\) gOOD AND WHAT BIS EVIL THIS 日IS ASTRIUE IN THE PRESENT DAY AS AT ANY FORMER TIMEBTO BUNDERSTAND AN AGE OR A NATION WE BMUST BUNDERSTANDITS FHILOSOFHY AND BTO BUNDERSTAND ITS PHILOSOPHY WE BMUST OURSELVESBEE IN SOME DEGREE PHILOSOPHERS THERE BIS HERE A RECIFROCALCAUSATION THE CIRCUMSTANCES OF MENS LIVES BDO MUCH 8TO BDETERMINETHEIR PHILOSOPHY BUT CONVERSELY THEIRPHILOSOFHY BDDES MUCH BTO BDETERMINETHEIR CIRCUMSTANCES THIS INTERACTIONTHFOUGHOUT THE CENTURIES BWILL EE THETOFIC OF THE FOLLOWING PAGES THERE BIS ALSO HOWEVER AMORE FERSONAL ANSWER SCIENCE BTELLS US WHAT WE BCAN BKNOWRUT WHAT WE BCAN BKNOW BIS LITTLE AND IF WEBFORGET HOW MUCH WE BCANNOT BKNOW WE BEECOME INSENSITIVE TOMANY THINGS OF GREAT IMPORTANCE THEQLOGY ON THE OTHER HAND8INDUCES A DOGMATIC BELIEF THAT WE GHAVE KNOWLEDGE WHERE INFACT WE BHAVE IGNDRANCE AND BY BDOING SO GGENERATES AKIND OF IMFERTINENT INSOLENCE TOWARDS THE UNIVERSE UNCERTAINTY IN THE
1RUS, 3O1ATOORF 162 pOWER DENSITY IN FREQUENCY FOINTS: RUSSI VERSS WEIGNT.

850

MEAN FOWER DENSITY: 25.16
DEGREES OF FREEDOM \(=\)
CHISQUARE \(=178.42\)
ST. DEVIATION \(=8.37\)
MPD UPPER 0.95 CONF LIMIT \(=27.17\)
NUMRER OF SPECTRAL FOINTS ABOVE UPFER LIMIT: TOTAL NUMBER OF SIGNIFICANT SPECTRAL POINTS:

\section*{PAD2 SUB3, w OGFT}

GTHE BOLD BROXROOM WAS FINISHED AT LAST AND GEVERYONE BINCLUDING BPADDINGTON AGREED THAT GHE WAS A VERY LUCKY BEAR TO MOVE INTO SUCH A NICE ROOM NOT ONLY WAS BTHE BFAINTWORK A GLEAMING WHITE SO THAT GHE COULD ALMOST SEE HIS FACE IN IT EUT BTHE BWALLS WERE GAILY PAPERED AND GHE EVEN HAD NEW FURNITURE OF HIS OWN AS WELL IN FOR A PENNY IN FOR A POUND BMR BRROWN HAD SAID AND GHE HAD BOUGHT PADDINGTON A BRAND NEW RED WITH SPECIAL SHORT LEGS A SPRING MATTRESS AND A CUPEOARD FOR HIS ODDS AND ENDS THERE WERE GSEVERAL BOTHER BFIECES BOF GFURNITURE AND BMRS BEROWN HAD BEEN EXTRAVAGANT AND BOUGHT A THICK PILE CARPET FOR THE FLOOR BPADDINGTON WAS VERY FROUD OF HIS CARPET AND BHE HAD CAREFULLY SPREAD SOME OLD NEWSFAPERS OVER THE FARTS WHERE GHE WALKED SO THAT BHIS BPAWS WOULD NOT MAKE IT DIRTY GMRS BRIRDS BCONTRIRUTION HAD BEEN SIME RRIGHT NEW CURTAINS FGR THE WINDOWS WHICH GFADDINGTON LIKED VERY MUCH IN FACT THE FIRST NIGHT BHE SPENT IN HIS NEW ROOM BHE COULD NOT MAKE UP HIS MIND WHETHER TO HAVE THEM DRAWN TOGETHER SO THAT BHE COULD ADMIRE THEM OR LEFT APART SO THAT BHE COULD SEE THE VIEW BHE GOT OUT OF
BED SEVERAL TIMES AND EVENTUALLY DECIDED TO HAVE ONE DRAWN and the other left back so that bhe could have
THE BEST OF BOTH WORLDS THEN BSOMETHING BSTRANGE CAUGHT HIS EYE BFADDINGTON MADE A POINT OF KEEFING A TORCH EY THE SIDE OF HIS BED IN CASE THERE WAS BAN BEMERGENCY DUFING THE NIGHT AND BIT WAS WHILE BHE WAS FLASHING IT ON AND OFF TO ADMIRE THE DRAWN CURTAIN THAT BHE NOTICED IT EACH TIME BHE FLASHED THE TORCH THERE WAS BAN BANSWERING BFLICKER BOF GLIGHT FROM SOMEWHERE OUTSIDE BHE SAT UP IN EED RUBBING HIS EVES AND STARED IN THE DIRECTION OF THE WINDOW GHE DECIDED TO TRY A MORE COMPLICATED SIGNAL TWO SHORT FLASHES FOLLOWED BY SEVERAL LONG ONES WHEN GHE DID SO BHE NEARLY FELL OUT OF EED WITH SURPRISE FOR EACH TIME GHE SENT A GIGNAL BIT WAS REPEATED IN EXACTLY THE SAME WAY THROUGH THE GLASS BFADDINGTON JUMPED OUT OF BED AND RUSHED TO THE WIMDOW BHE STAYED THERE FDR A LONG WHILE PEERING OUT AT THE GARDEN BUT GHE COULD NOT SEE ANYTHING AT ALL HAVING MADE SURE BTHE BWINDOW WAS TIGHTLY gHUT BHE DREW ROTH CURTAINS AND HURRIED BACK TO BED PLLLING THE CLOTHES OVER HIS HEAD A LITTLE FARTHER THAN USUAL 8IT WAS ALL VERY MYSTERIOUS AND BPADDINGTON DID NOT BELIEVE IN TAKING ANY CHANCES IT WAS GMR BBRDWN AT BREAKFAST THE NEXT MORNING BWHO GAVE HIM HIS FIRST CLUE BSOMEONE HAS STOLEN MY PRIZE MARROW GHE ANNOUNCED CROSSLY BTHEY MUST HAVE GOT IN DURING THE NIGHT FOR SOME WEEKS PAST GMR BBROWN HAD BEEN CAREFULLY NURSING A HUGE MARROW WHICH GHE INTENDED TO ENTER FOR A VEGETABLE SHOW GHE WATERED IT MORNING AND EVENING AND MEASURED IT EVERY NIGHT BEFORE GOING TO BED GMRS BBROWN EXCHANGED A GLANCE WITH MRS BIRD NEVER MIND HENRY DEAR BSHE SAID BYOU HAVE GOT SEVERAL OTHERS ALMOST AS BOOD BI DO MIND GRLMBLED EMR GRROWN AND ETHE GOTHERS WILL NEVER EE AS GOOD NOT

\footnotetext{
PADZ cont Sump. weigh .
IN TIME FOR THE SHOW PERHAPS IT WAS BONE BOP
ETHE BOTHER BCOMPETITORS DAD SAID JONATHAN PERHAPS BTHEY DID NOT WANT YOU TO WIN GRIT WAS BA BJOLLY GOOD GMARROW GTHAT IS QUITE FOSSIRLE SAID BMR GROWN LOOKING MORE PLEASED AT THE THOUEHT BI hAVE A GOOD MIND TO OFFER
A SMALL REWARD BARS BAIRD HASTILY POURED OUT SOME MORE TEA BERTH SHE BAND BARS BROWN APPEARED ANXIOUS TO CHANGE THE SUBJECT RUT BFADDINETON PRICKED UP HIS EARS AT THE MENTION OF A REWARD
}

\section*{PAPZ cont Sulp.weighe. \\ IN TIME FOR THE SHOW PERHAPS IT WAS BONE GIF \\ THE BOTHER BCOMPETITORS DAD SAID JONATHAN FERHAFS THEY DID NOT WANT YOU TO WIN GAIT WAS BA BJOLLY GEOD BMARROW THAT IS QUITE FOSSIELE SAID BM GROWN LOOKING MORE PLEASED AT THE THOUGHT BI hAVE A GOOD MIND TO OFFER A SMALL REWARD EMFS BAIRD HASTILY POURED OUT SOME MORE TEA BROTH BSHE BAND EMFS BROWN APPEARED ANXIOUS TO CHANGE THE SUBJECT RUT BFADDINGTON PRICKED UP HIS EARS AT THE MENTION OF A REWARD}
PAD2,201AGOORF185 FOWER DENSITY IN FREQUENCY FOINTS: PAD2 SMB3ECSS WEOGO
 MEAN POWER DENSITY: 26.03 DEGREES OF FREEDOM CHISQUARE \(=157.53\) MPD UPPER 0.95 CONF LIMIT \(=27.95\) NUMBER OF SPECTRAL FOINTS ABOVE UFPER LIMIT: TOTAL. NUMBER OF SIGNIFICANT SFECTEAL FOINTS: 58

\section*{1 RUS \\ sub, waight.}

THE CONCEFTIONS OF LIFE AND THE WORLD WHICH WE CALL
FHILOSOPHICAL ARE A PRODUCT OF TWO FACTORS ONE INHERITED RELIGIOUS AND ETHICAL CONCEFTIONS THE OTHER THE SORT OF INVESTIGATION WHICH MAY EE CALLED SCIENTIFIC USING THIS WORD IN ITS RROADEST
SENSE INDIVIDUAL PHILOSOFHERS HAVE DIFFERED WIDELY IN REGARD TO THE PROFORTIONS IN WHICH THESE TWO FACTORS ENTERED INTO THEIR SYSTEMS RUT IT IS THE PRESENCE OF BOTH IN SOME DEGREE
THAT CHARACTERIZES PHILOSOPHY PHILOSOPHY IS A WORD WHICH HAS BEEN USED IN MANY WAYS SOME WIDER SOME NARROWER I PROPOSE TO USE IT IN A VERY WIDE SENSE WHICH BI
WILL NOW TRY TO EXFLAIN BPHILOSOPHY BAS 8I SHALL BUNDERSTAND
BTHE BWORD IS SOMETHING INTERMEDIATE BETWEEN THEOLOGY AND SCIENCE LIKE THEOLOGY BIT CONSISTS OF SPECULATIONS ON MATTERS AS TO EWHICH
BDEFINITE BKNOWLEDGE HAS SO FAR REEN UNASCERTAINABLE BUT LIKE SCIENCE BIT APPEALS TO HUMAN REASON RATHER THAN TO AUTHORITY WHETHER
THAT OF TRADITION OR THAT OF REVELATION BALL BDEFINITE BKNOWLEDGE SO 8I SHOULD CONTEND RELONGS TO SCIENCE BALL BDOGMA BAS BTO BWHAT BSURPASSES BDEFINITE BKNOWLEDGE
EELONGS TO THEOLOGY EUT RETWEEN
THEOLOGY AND SCIENCE THERE IS BA BNO GMANS GLAND EXPOSED
TO ATTACK FROM FOTH SIDES BTHIS BNO BMANS BLAND IS PHILOSOPHY BALMOST BALL BTHE
BQUESTIONS BOF BMOST BINTEREST BTO BSPECULATIVE BMINDS ARE SUCH AS BSCIENCE CANNOT ANSWER AND BTHE BCONFIDENT BANSWERS GOF BTHEOLOGIANS NO LONGER SEEM SO CONUINCING AS BTHEY DID IN FORMER CENTURIES IS BTHE BWORLD DIVIDED INTO MIND AND MATTER AND IF SO WHAT IS GMIND AND WHAT
IS BMATTER IS GMIND SURJECT TO MATTER OR IS BIT
POSSESSED OF INDEPENDENT POWERS HAS BTHE BUNIVERSE ANY UNITY OR PURFOSE IS BIT EVOLVING TOWARDS SOME GOAL ARE THERE REALLY BLAWS BOF BNATURE OR DO BWE BELIEVE IN THEM ONLY BECAUSE OF OUR INNATE LOVE OF ORDER IS BMAN WHAT BHE SEEMS TO THE ASTRONOMER A TINY LUMP OF IMPURE CAFBON AND WATER IMPOTENTLY CRAWLING ON A GMALL AND UNIMPORTANT PLANET OR IS BHE WHAT BHE APPEARS TO HAMLET IS BHE PERHAPS BOTH AT ONCE IS THERE BA BWAY BOF BLIVING THAT IS NOELE AND BANOTHER THAT IS BASE OR ARE BALL BWAYS BOF BLIVING MERELY FUTILE IF THERE 18 BA BWAY BOF BLIVING THAT IS NOBLE IN HHAT DOES BIT CONSIST AND HDW SHALL BWE ACHIEVE IT MUST BTHE 8GOOD BE ETERNAL IN ORDER TO DESERVE TO BE VALUED OR IS BIT WORTH SEEKING EVEN IF BTHE BUNIVERSE IS INEXORARLY MOVING TOWARDS DEATH IS THERE BSUCH BA BTHING BAS BWISDOM OR IS BWHAT SEEMS SUCH BMERELY BTHE GLLTIMATE BREFINEMENT BOF BFOLLY TO SUCH QUESTIONS BNO BANSWER CAN BE FOUND IN THE LABORATORY BTHEDLOGIES HAVE PRDFESSED TO GIVE ANSWERS ALL TOD DEFINITE BUT GTHEIR GVERY GDEFINITENESS CAUSES MODERN MINDS TO VIEW THEM WITH SUSFICION BTHE BSTUDYING BDF GTHESE BQUESTIONS BIF GNOT GTHE GANSWERING BOF BTHEM 13 THE BUSINESS OF PHILOSOPHY WHY THEN BYOU MAY ASK WASTE TIME ON BUCH INBOLUBLE PRORLEMS TO THIS BONE MAY ANSWER AS A HISTORIAN OR AS AN INDIVIDUAL FACING THE TERRDR OF COSMIC LONELINESS BTHE GANSWER GOF GTHE BHISTORIAN IN BO FAR AB BI AM CAPABLE OF GIVING IT WILL APPEAR IN THE COUREE OF

Rust cone. rely. weigh l.
THIS WORK EVER SINCE OMEN BECAME CAPABLE OF FREE SPECULATION BTHEIR BACTIONS BIN BINNUMERARLE
BIMFORTANT GRESPECTS HAVE DEPENDED UPON THEIR
theories as to the world and human life as to WHAT IS GOOD AND WHAT IS EVIL BTHIS IS AS true in the present day as at any former time TO UNDERSTAND AN AGE OR A NATION EWE MUST UNDERSTAND ITS PHILOSOPHY AND TO UNDERSTAND ITS PHILOSOPHY EWE MUST OURSELVES BE IN SOME DEGREE PHILOSOPHERS THERE IS HERE BA RECIPROCAL GCAUSATION THE CIRCUMSTANCES GIF GMENS OLIVES DO MUCH TO DETERMINE THEIR PHILOSOPHY BUT CONVERSELY
THEIR PHILOSOPHY DOES MUCH TO DETERMINE
THEIR CIRCUMSTANCES BTHIS BINTERACTION
BTHROUGHOUT THE BCENTURIES WILL BE THE
TOPIC OF THE FOLLOWING PAGES THERE IS ALSO HOWEVER A MORE PERSONAL ANSWER BSCIENCE TELLS US WHAT EWE CAN KNOW GUT BWHAT EWE SCAN BKNOW IS LITTLE AND IF EWE FORGET HOW MUCH EWE CANNOT KNOW EWE BECOME INSENSITIVE TO MANY THINGS OF GREAT IMPORTANCE THEOLOGY ON THE OTHER HAND induces a dogmatic belief that awe have knowledge where in FACT EWE HAVE IGNORANCE AND BY DOING SO GENERATES A KIND OF IMPERTINENT INSOLENCE TOWARDS THE UNIVERSE UNCERTAINTY IN THE
1RUS, SO1AGOORF162 FOWER DENSITY IN FREQUENCY FOINTS: Rugst Sas3ECTS WEIGEUT
\begin{tabular}{lclll}
FREQ: & FOWER: & FREQ: & FOWER: \\
0.031 & 38.6 & 0.039 & 39.1 \\
0.070 & 33.3 & 0.078 & 43.5 \\
0.109 & 22.7 & 0.117 & 20.7 \\
0.148 & 27.5 & 0.156 & 23.5 \\
0.188 & 24.4 & 0.195 & 27.1 \\
0.227 & 16.8 & 0.234 & 22.9 \\
0.266 & 19.9 & 0.273 & 24.6 \\
0.305 & 23.9 & 0.33 & 30.0 \\
0.344 & 18.8 & 0.352 & 18.4 \\
0.383 & 19.9 & 0.391 & 33.3 \\
0.422 & 29.8 & 0.430 & 31.3 \\
0.461 & 25.0 & 0.469 & 23.6 \\
0.500 & 9.3 & &
\end{tabular}
988

MEAN FOWER DENSITY: 27.20
DEGREES OF FREEDOM \(=4\)

\footnotetext{
72
29.
24.
BOVE

ST. DEVIATION \(=9.53\)
MPD UPFER 0.95 CONF LIMI

OIIINGIS JO Gヨawnn 76101
}
UPFER LIMIT:
PAD2,201RGOORF185 POWER DENSITY IN FREOUENCY POINTS: PAS 2 Ro wR GMFINK

\begin{tabular}{ll}
FREQ: & FOWER: \\
0.023 & 31.2 \\
0.063 & 17.1 \\
0.102 & 23.7 \\
0.141 & 14.1 \\
0.180 & 21.9 \\
0.219 & 24.2 \\
0.258 & 26.1 \\
0.297 & 18.0 \\
0.336 & 24.3 \\
0.375 & 22.3 \\
0.414 & 18.2 \\
0.453 & 28.5 \\
0.492 & 60.2
\end{tabular}
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}

MEAN POWER DENSITY: 26.04
DEGREES OF FREEDOM \(=6\)
DEGISOUARE FREEDOM \(=\)
MPD UPPER 0.95 CONF 9.49 IMIT \(=28.33\)
MPD UPPER 0.95 CONF LIMIT \(=28.33\)
MPD LOWER 0.95 CONF LIMIT \(=23.75\)
NUMBER OF SPECTRAL POINTS ABOVE UFPER
NUMBER OF SPECTRAL POINTS RELOW LOWER LIMIT:

1RUS, SO1B7OORF162 POWER DENSITY IN FREDUENCY FOINTS: RuSSI NO WEICNTING
\begin{tabular}{lccccccccc}
FREQ: & POWER: & FREQ: POWER: & FREQ: & POWER: & FREO: FOWER: & FREO: FOWER: \\
0.000 & 5.6 & & & & & & & & \\
0.008 & 22.1 & 0.016 & 29.3 & 0.023 & 38.6 & 0.031 & 46.3 & 0.039 & 33.5 \\
0.047 & 19.4 & 0.055 & 20.1 & 0.063 & 26.4 & 0.070 & 29.7 & 0.078 & 28.8 \\
0.086 & 23.5 & 0.094 & 18.5 & 0.102 & 20.9 & 0.109 & 25.2 & 0.117 & 29.9 \\
0.125 & 34.8 & 0.133 & 28.2 & 0.141 & 22.2 & 0.148 & 24.3 & 0.156 & 23.1 \\
0.164 & 19.9 & 0.172 & 17.2 & 0.180 & 16.0 & 0.188 & 14.3 & 0.195 & 12.7 \\
0.203 & 15.7 & 0.211 & 21.1 & 0.219 & 26.7 & 0.227 & 33.3 & 0.234 & 34.6 \\
0.242 & 30.3 & 0.250 & 32.4 & 0.258 & 36.0 & 0.266 & 30.1 & 0.273 & 23.1 \\
0.281 & 22.7 & 0.289 & 25.6 & 0.297 & 28.5 & 0.305 & 33.0 & 0.313 & 33.7 \\
0.320 & 27.1 & 0.328 & 20.2 & 0.336 & 15.2 & 0.344 & 19.6 & 0.352 & 25.1 \\
0.359 & 24.6 & 0.367 & 30.6 & 0.375 & 38.8 & 6.383 & 35.1 & 0.391 & 25.0 \\
0.398 & 18.5 & 0.406 & 19.6 & 0.414 & 32.4 & 0.422 & 44.6 & 0.430 & 35.3 \\
0.438 & 20.1 & 0.445 & 15.8 & 0.453 & 22.6 & 0.461 & 31.9 & 0.469 & 27.6 \\
0.477 & 19.2 & 0.484 & 17.4 & 0.492 & 17.7 & 0.500 & 13.3 & &
\end{tabular}```

[^0]: 660
 1 HAVE A LITTLE HOLISE IN KILLEARN IT IS A
 LOVELY EOINTFFi VILLAGE I HAVE SEEN MANY EIRDS THEFE AFE
 DFAAEON FLJES AND ELACK EIFISS AND A ROEIN I LIKE

 - ILLEAFIN EEITEF THGY EISHUFEFIGGS EECALISE THEFE AFE MOFE FFIENDS THAN

 IH E」SH[IFEFIGGS EISH[IFEF:IGES IS MESSY EUT RILLEAFIN IS NOT MESSY
 ANI 1 LIUE I ILLEAFIG EECAUSE THE TEACHEFS AFE NICEF:

[^1]: 790
 EVERY NIGHT FEOFLE FROM ALL OVER THE WORLD GO EED EED IS A VEFY COMFGRTAELE FLADE TO EE IT 15 VEFYY SOFT AND HAS ELANIETS AND FILLOWS AT NIGHT IT IS VEFY COLD AND DARY. EED IS MARVELLOUS MUMMY SAYS EEDTIME STOIIES FOF ME I RUN UF THE STAIFS ERULSH MY TEETH AND GO TO EED I GO TO GED AT EIGHT OCLOCR SOME TIMES I LISTEN TO MY FADIIG OF DO SOME DFAWINGS FFOM A BOOK. I LOVE to go to fen hecause I will not me Annoyed ANY MGFE ONE OF THE FFROBLEMS I HAVE AT NIGHT IS THAT DADDY SNORES AND I AM KEFT AWAKE ALL NIGHT

[^2]: 100 c
 CFACF: WENT ANOTHEF: OF FROFESSOF: DANIEL MACNAHS TEST TUEES OH DEAR AS HE SFILT SOME ACID ON THE FLOOF THIS WEEI: HAD EEEN A TEFF:IHLE ONE FQR THE FFOFESSOF: HE HAD EFROKEN EIGHTEEN TEST TUEES ANI SET ALIGHT HIS JACKET TWICE THfit Night aftef: he hfil done all his exferiments HE SAID WHY DCINT I TALE A HOLIDAY TO GET AWAY FFinm all this chemistry and he did the next DAY HE DECIDEN TO GCI TO ELACKFOOL WHEN HE WAS THEFE HE HAL GF:EAT FUN FESIDES A FEW LIFS AND DCUNS FOF INSTANCE WHILE ON A EOAT TOLIR HE FELL OUERHOARD ANUTHEF 1 IME HE WAS WALKING ALONG THE EEACH AND HE STEFFEL IN A EUCMET AND FELL IN TO A HOLE WHICH SOMEGNE HAI DUG AND IT WAS SO DEEFHE WAS THEFE FGF THE NIGHT ANDTHEF: INEIDENT WAS WHEN HE WAS FOSTING A FOSTCAFI. HIS HAND GOT STUCK: IN the slit and the fire frigane had to come to FFEEE $1 T$ AFTEF: a WEEK HE WENT GACK HOME THEN HE HAD A EFAAINWAVE TG HIMSELF HE SAID WHY DONT I WFi]TE A FIII AEGUIT MYSELF AND HE DID THE FGOH: WAE A GREAT SUCCESS AND SOON THE FROFESSOR WAS FFEETTY FIICH WHICH HE SFEINT NEARLY GLL OF HIS MONEY ON REFLACING EFCIE EN TEST THEES

[^3]: MEAN FOWER DENSITY: 20.27
 DEGREES OF FREEDOM $=40$
 CHISOUARE $=110.99$
 ST.DEVIATION = B. 39
 MPD UFFEF 0.95 CONF LIMIT $=22.73$
 MFD LOWER 0.95 CONF LIMIT $=17.81$
 NUMEER OF SFECTRAL FOINTS AROVE UFPER LIMIT: 7
 NUMRER OF SPECTRAL FOINTS BELOW LOWER LIMITs 15

[^4]: E:MAML.TXT

[^5]: E: RUSSE. TXT
 273 R400RF206

 01111100101010011100010100111011111101010001001010 10100110101100111000000110110010111000100000001111 1010000000000011101111110010
 LENGTH OF RUNS OF ONES
 LENGTH NUMEER
 DF FUN OF RUNS

 117 *****************
 24 ****
 5 *****
 0
 1 *
 3 ***
 TOTAL OF NUMEER OF RUNS $=30$ NUMEEROFRUNS*LENGTHOFRUNS $=63$

 LENGTH OF RUNS OF ZEROES

 | LENGTH | NUMEER |
 | :--- | :--- |
 | OF RUN | OF RUNS |
 | 1 | $16 * * * * * * * * * * * * * * * *$ |
 | 2 | 8 |
 | 3 | $3 * * * * * * * *$ |
 | 4 | 0 |
 | 5 | 0 |
 | 6 | $1 *$ |
 | 7 | $1 *$ |
 | 8 | 0 |
 | 9 | 0 |
 | 10 | 0 |
 | 11 | 1 |

[^6]: E:MAIL.TXT
 301B428FF250

 10110011100001100111101101100000011010100010101010 00111010110101011110010100001000111000000110100110 1000001010111010111011001000 LENGTH OF RUNS OF ONES

    ```
    LENGTH NUMEEF
    OF FUN OF RUNS
    1 19
    2 5 9 ******
    4 2**
    ```

 TOTAL OF NUMEER OF RUNS $=35$
 NUMEEROFRUNS*LENGTHOFRUNS $=60$
 LENGTH OF RIINS OF ZEROES
 LENGTH NUMEER
 OF FUN OF RUNS
 1
 2 r $\quad 19$ ****************)
 34 ****
 4 2**
 1*
 6 2**

 TOTAL OF NUMBER OF RUNS $=34$ NUMEEROFRUNS*LENGTHOFRUNS $=68$

