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&e timetabling problem (TTP) and vehicle scheduling problem (VSP) are two indispensable problems in public transit planning
process. &ey used to be solved in sequence; hence, optimality of resulting solutions is compromised. To get better results, some
integrated approaches emerge to solve the TTP and VSP as an integrated problem. In the existing integrated approaches, the
passenger comfort on bus and the uncertainty in the real world are rarely considered. To provide better service for passengers and
enhance the robustness of the schedule to be compiled, we study the integrated optimization of TTP and VSP with uncertainty. In
this paper, a novel multiobjective optimization approach with the objectives of minimizing the passenger travel cost, the vehicle
scheduling cost, and the incompatible trip-link cost is proposed. Meanwhile, a multiobjective hybrid algorithm, which is a
combination of the self-adjust genetic algorithm (SGA), large neighborhood search (LNS) algorithm, and Pareto separation
operator (PSO), is applied to solve the integrated optimization problem. &e experimental results show that the approach
outperforms existing approaches in terms of service level and robustness.

1. Introduction

&e public transit planning process is usually divided in
sequential steps: network route design, timetabling [1],
vehicle scheduling [2], and crew scheduling and rostering
[3]. &e output of each activity positioned higher in the
sequence becomes an important input for lower-level de-
cisions [4]. Timetabling and vehicle scheduling are two
important activities in the transit operational planning. &e
timetabling problem (TTP) is to find the best dispatching
policy for transit vehicles with the objectives of minimizing
passenger waiting time at stops andminimizing the headway
unevenness governed by the headway smoothing rule [5].
&ese objectives refer to the service level provided to pas-
sengers. &e vehicle scheduling problem (VSP) is concerned
with determining the optimal allocation of vehicles to carry
out all the trips in a given transit timetable. &e objective is
to minimize the operation cost related with the usage of
vehicles and fuel consumption [6]. &e TTP and VSP are

usually solved individually in sequence. &is may lead to a
compromised solution for the optimization problem of
timetabling and vehicle scheduling as a whole [7]. In order to
meet the passenger demand with high social benefits and
lower operators’ costs, it is necessary to coordinate the
timetabling and vehicle scheduling. However, building a
proper model and developing an integrated approach are
challenging.

&e mostly used integrated approach to the TTP and
VSP is the recursive approach. &e basic idea can be de-
scribed as follows: (1) generate an initial timetable based on
passenger demand; (2) determine the minimum number of
vehicles that is needed to execute the timetable; (3) change
the trip chain to reduce the vehicle scheduling cost; and (4)
adjust the initial timetable and return to step (2) until the
generated vehicle schedule is acceptable [8]. For example,
Ceder [9] proposed a solution approach to combine time-
tabling and vehicle scheduling so as to improve the corre-
spondence of vehicle departure times with passenger
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demand while minimizing the fleet size required.&e author
stated that the proposed approach could obtain efficient
schedules to the test instances from both the passenger and
operator perspectives. Ceder [10] proposed a method to
construct timetables based on even-headways and even-load
with different vehicle types. &e timetable was used as an
input to solve the vehicle scheduling problem using the
deficit function theory. Schmid and Ehmke [11] developed
hybrid mathematical models and solution approaches to
solve the vehicle scheduling problem with time windows as
well as balanced departure times based on the research of
Kliewer et al. [12], which discussed the multiple-depot,
multiple-vehicle-type bus VSP while using time-space-based
instead of connection-based networks for modeling.

&e recursive approach is hard to find the global opti-
mum solution. In recent years, the approaches to build an
integrated model of TTP and VSP have been widely studied.
For instance, Petersen et al. [13] formulated a partial inte-
grated model of TTP and VSP, in which the objectives were
to minimize the costs of vehicles usage and passenger
transfers. Meanwhile, a large neighborhood search meta-
heuristic approach was proposed. Carosi et al. [14] studied
the integrated timetabling and vehicle scheduling and
proposed a mixed-integer linear programming (MILP)
multicommodity flow-type model to obtain the vehicle
schedule with desired headways and minimum deviation
from the ideal frequency of service. Yue et al. [15] proposed
an optimization methodology that integrated both train
timetabling and rolling stock scheduling based on time-
dependent passenger flow demands and employed a sim-
ulated-annealing (SA)-based heuristic algorithm to solve the
proposed model.

Obviously, the integrated problem has multiple objec-
tives, which conflict with each other. More and more re-
searchers tend to establish multiobjective models and build
intelligent optimization algorithms for the integrated
problem. For example, Ibarra-Rojas et al. [16] proposed a
biobjective optimization problem to jointly solve the single-
depot VSP and the synchronization bus timetabling problem
in which time windows for departure times were considered
and the passenger demand were assumed to be constant.&e
objectives were to maximize the number of passengers
benefited by well-timed transfers and to minimize the fleet
size. Teng and Chen [17] focused on the TTP and VSP for
electric buses and developed a multiobjective optimization
model under single-line mode. &e objectives included
smoothing the vehicle departure intervals and minimizing
the number of vehicles and total charging costs. A multi-
objective particle swarm optimization (MOPSO) algorithm
was developed to get the Pareto optimal solution set. Wang
et al. [18] studied the integration of train scheduling and
rolling stock circulation planning under time-varying pas-
senger demand for an urban rail transit line. A multi-
objective approximated mixed-integer linear programming
approach was presented to provide better passenger services
and reduce the operational complexity and costs of the
scheduling.

Table 1 summarizes the relevant studies on the inte-
gration of TTP and VSP, in terms of the approach type of

integration, objectives, solution method, and data type.
Among the existing studies on the integrated problem, the
passenger crowding on the bus is rarely considered. &e
timetable obtained without considering crowding on the bus
might bring passengers unsatisfied or uncomfortable and
increase the cost of the transport system. Moreover, these
researches do not consider the uncertainty of the passenger
flow and trip times, which exists commonly in the real-world
bus operation. Evaluating the passenger travel cost that
consists of waiting cost and comfort cost would be inac-
curate regardless of the stochastic passenger flow. Fur-
thermore, when the stochastic trip times are employed, some
infeasible trip links in the traditional VSP with fixed and
tight trip times might become compatible, and the resulting
schedule might be more robust (i.e., with high on-time
performance) [19]. Considering the stochastic passenger
flow and trip time, the integrated problem would be more
complex and hard to optimize. &erefore, to have better
performance, an improved optimization strategy for the
integrated problem with uncertainty should be proposed.

To enhance the passenger satisfaction and the robustness
of the vehicle schedule generated, we proposed a multi-
objective model of the integrated TTP and VSP with sto-
chastic passenger flow and trip times. And a hybrid
algorithm is applied to optimize the multiobjective model.
&e remainder of the paper is structured as follows: Section 2
proposes a multiobjective optimization model for the in-
tegrated TTP and VSP, which aims at lowering the passenger
travel cost, vehicle operating cost, and incompatible trip-link
chain cost while satisfying the passenger and bus corpora-
tion demands. Section 3 develops a solution method to solve
the integrated problem of timetabling and vehicle sched-
uling. Section 4 displays experimental results. Some con-
cluding remarks and possible future research directions are
given in Section 5.

2. Mathematical Model

&e aim of the coordinated study about timetabling and
vehicle scheduling is the assignment of departure intervals
and the allocation of a fleet of vehicles to carry out all the
trips in the timetables minimizing the costs at the same time.
In this section, an integrated multiobjective optimization
model of timetabling and vehicle scheduling is presented to
solve the problem efficiently. &is model considers the
passenger waiting cost and comfort cost and scheduling
scheme costs with the stochastic passenger flow and trip
time.

2.1. Problem Description

2.1.1. Solution Structure of the Integrated Problem. &e in-
tegrated problem of timetabling and vehicle scheduling is
concerned with the generation of a timetable and a vehicle
schedule. Considering the departure intervals are different in
different time periods, the whole day trips should be divided
into different periods. Hence, a timetable contains a set of
headways within each time period. &e departure time of
each trip could be calculated based on the set of headways in
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the timetable. An example of the timetable based on
headway is presented as Figure 1. Based on the timetable, the
vehicle schedule is acquired with a network flow model. &e
network flowmodel is shown in Figure 2, where the letter (A
or B) in the cycle before a solid arrow denotes the departure
time/point of a trip, while the letter in the cycle after a solid
arrow denotes the arrival time/point of a trip.&e daily work
of a vehicle starts from a pull-out from a depot followed by a
sequence of service trips and ends at a pull-in to the depot.
Each trip has to be assigned to exactly one vehicle. &e
connection of two consecutive trips in a vehicle is called a
trip-link arc.

A solution that contains the set of headway and allo-
cation of the vehicle trip-link chain can refer to the
scheduling scheme of the integrated problem. Suppose there
are f time periods, the solution structure of the integrated
problem is shown in Figure 3, where T0 is the beginning of
the timetable and N is the fleet size of the vehicle schedule.

2.1.2. Stochastic Passenger Flow and Trip Time Problem.
&e passenger boarding and alighting flow would be dif-
ferent under different timetables. A small example of the
changeable passenger flow is presented in Figure 4. From the
illustration, we can observe that the passenger flow varies at
same time under different timetables, and the distribution of
passenger flow follows some certain rules. &erefore, eval-
uating the cost based on a certain value of the passenger flow
would be inaccurate. To estimate the passenger flow under
different timetables feasibly, the passenger flow may be
calculated as an integral of the distribution.

Considering the stochastic trip time, the compatibility
of any pair of trips becomes uncertain, and the com-
patibility probability is defined to determine the existence
of the arcs between trips. A compatibility probability of
two trips i and j can be defined as illustrated in Figure 5,
where the curve denotes the arrival time distribution fie (t)

of trip i; Tie,ear and Tie,lat denote the earliest and latest
arrival times of trip i, respectively; Tj denotes the
scheduled departure time of trip j; and DHij denotes the
deadhead time [19]. Different from the VSP with certain
trip time, the compatibility probability of the pair of trips
is defined as an integral of the probability distribution.
Evaluating the cost of trip-link arc with uncertainty is
more complicated since the incompatibility probability of
the pair of trips should be penalized. Dividing the cost of
VSP into the vehicle scheduling cost and the incompatible
trip-link penalty cost would simplify the evaluating of the
cost and make the influence of the stochastic trip time
more obvious.

2.1.3. Multiobjective Optimization Problem. As mentioned
before, there are three optimization objectives in the inte-
grated problem, which are minimizing the passenger travel
cost, minimizing the vehicle scheduling cost, and mini-
mizing the incompatible trip-link costs. &e passenger travel
cost reflects the passenger waiting time spent on each stop
and passenger crowding kilometers on the bus. &e costs of
the available vehicles and the links between trips consist of
the cost of vehicle scheduling and reflect the vehicle cost and
fuel consumption. &e incompatible trip-link cost penalizes
the infeasible trip link in the trip chain, which is attributed to
the stochastic trip time. Obviously, these optimization ob-
jectives conflict with each other. A shorter headway would
reduce the passenger cost but require more bus vehicles,
which would increase the vehicle scheduling cost. A lower
incompatibility trip-link penalty would require a longer
headway and shorter trip-link chain, which would increase
the passenger cost and vehicle scheduling cost. &erefore,
establishing a multiobjective optimization model is a ben-
eficial way to solve the integrated problem. &e relationship
between the objectives in the integrated problem is shown as
Figure 6.

Table 1: Summary of relevant studies on the integration of TTP and VSP.

Approach type Publication Objectives Solution method Data type

Recursive
approach

Ceder [9] Maximize the correspondence of vehicle departure
times, the fleet size

Deficit function
approach

Fixed passenger load at
each stop, fixed trip time

Ceder [4] Even-headways and even-load with different vehicle
types, minimize vehicle scheduling cost Heuristics Fixed passenger load at

each stop, fixed trip time
Schmid and
Ehmke [11]

Minimize costs of operation, maximize quality of
timetables

Hybrid
metaheuristic

Fixed time windows, fixed
trip time

Integrated
model

Petersen et al.
[13]

Minimize the costs of vehicles usage and passenger
transfers LNS approach Fixed passenger volume

estimates, fixed trip time

Carosi et al. [14] Minimum deviation from the ideal frequency of
service, vehicle schedule cost

Diving-type
approach

Changeable time window,
fixed trip time

Yue et al. [15] Minimizing infeasible trains, waiting times for
passengers SA algorithm Fixed passenger volume,

fixed trip time

Multi-
objective
model

Ibarra-Rojas
et al. [16]

Maximize the number of passengers benefited,
minimize the fleet size

ε-constraint
method

Fixed passenger volume
estimates, fixed trip time

Teng and Chen
[17]

Smooth the vehicle departure intervals, minimize the
number of vehicles and total charging costs

MOPSO
algorithm Fixed trip time

Wang et al. [18]
Minimize the load factor variation and the headway
variation of trains, the number of entering and existing

depot operations
MINLP approach Fixed passenger traveling

rates, fixed trip time limits
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2.2. A Multiobjective Optimization Model for the Integrated
Problem. To formulate a mathematical model for the in-
tegrated timetabling and vehicle scheduling problem, some
notations are provided in Tables 2 and 3.

&e objectives of the multiobjective optimization model
are to minimize the passenger travel cost, the bus vehicle
scheduling cost, and the incompatible trip-link cost. &e
solution of the integrated model would optimize the ob-
jectives and satisfy the constraints at the same time. In the
integrated model, the decision variables are departure in-
terval and arc link, which refer to the headway and vehicle
trip-link chain, respectively. &e integrated model can be
expressed as

minZ � Z1, Z2, Z3( 􏼁,

whereZ1 � 􏽘
S

s�1
􏽘

N

n�1
ts,n − ts,n−1􏼐 􏼑 · 􏽚
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Cveh · xdj + 􏽘
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Figure 1: &e example of the timetable based on headway.
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Figure 2: A network flow model for the VSP (Figure 2 is reproduced from [19]).
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Figure 4: An example of the passenger flow of same stop under different timetables.
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Figure 5: Compatibility probability of any two trips i and j (Figure 5 is reproduced from [19].).
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xij ∈ 0, 1{ }, ∀(i, j) ∈ A. (9)
Formula (1) is the objective function, where Z1 is the

objective function to minimize the passenger travel cost, Z2
is the objective function to minimize the vehicle scheduling
cost, and Z3 is the objective function to minimize the in-
compatible trip-link cost. Formula (2) is the assumption of
vehicle running at constant speed in one period. Formula (3)
is the assumption of vehicle leaving on schedule. Formula (4)
is the departure interval constraint for decision variables hf.
Formula (5) is the passenger capacity constraint, which
requires that the number of passengers on the bus does not
exceed the capacity of the vehicle. Formulae (6) and (7) are
the flow-conservation constraints. Formula (8) is the cover

constraint requiring that each trip must be covered exactly
by one vehicle, and formula (9) is the 0–1 constraint for trip-
link decision variables xij.

Considering the uncertainty, the passenger flow in
function Z1 is assigned as the time integral of passenger flow
distribution to get more accurate estimation. In general, the
passenger flow distribution is fitted with a certain function,
such as normal distribution [20]. In objective function Z1,
􏽐

S
s�1 􏽐

N
n�1(ts,n − ts,n−1) · 􏽒

ts,n

ts,n−1
fb

s (t)dt · Qb
s is the passenger

waiting cost, α is a non-negative weight to adjust the penalty
of crowding, and Fc (n, s) is the passenger crowding function
expressed as formula (10). &is formula reflects that the
passenger crowding cost increases with the passenger vol-
ume on the bus at different periods.
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􏽚
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f
b
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b
s − 􏽚
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f
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o
s􏼠 􏼡.

(10)

Objective function Z2 is defined as the sum of the costs of
the available vehicles and the links between trips. &e costs
of the available vehicles is assigned as 􏽐(d,j)∈PCveh · xdj, in
which xdj is defined as the pull-out trip links.&e costs of the
links between trips is expressed as 􏽐(i,j)∈ACij · xij.

Objective function Z3 reflects the gap between the
theoretical trip time and the realistic trip time, which would
reduce the feasibility of the scheduling scheme. As suggested
by Shen et al. [20], Pij in function Z3 denotes the penalty of
the infeasible time of arc (i, j) and can be defined as

Pij � E IF2ij􏼐 􏼑 � 􏽚
+∞

Tj−DHij

t
e
i − Tj + DHij􏼐 􏼑

2
f

e
i (t)dt

� 􏽚
+∞

Tj−Ti−DHij

Ti + t − Tj + DHij􏼐 􏼑
2
fi(t)dt,

(11)

where Ti and Tj denote the scheduled departure time of trip i
and j, respectively; DHij denotes the deadhead time from
arrival point of trip i to departure point of trip j; IFij �

te
i − Tj + DHij is the infeasible time of an arc (i, j); andfi(t) is
the probability density function about the duration of trip i.

3. The Multiobjective Hybrid Algorithm

Due to the NP-hard nature of the multiobjective optimi-
zation problem, the exact approach is difficult to solve the
problem. &erefore, we develop a multiobjective hybrid
algorithm to optimize the multiobjective integrated opti-
mization problem. &e algorithm is a combination of a self-
adjust genetic algorithm (SGA), large neighborhood search
(LNS) algorithm, and Pareto separation operator (PSO).&e
SGA is applied to construct a new headway, the LNS is
employed to find the optimal trip-link chain under the
headway, and the PSO is used to select the multiobjective
optimal solution. &e solution obtained by the hybrid al-
gorithm is the scheduling scheme that consists of the
headway and trip-link chain. Basic steps of the multi-
objective hybrid algorithm are shown in Figure 7. Some
definitions and the constructive approaches for the solution

Table 2: Subscripts and parameters of the problem formulation.

Notations Definition
S Number of stops
N Number of trips
F Number of time periods
ts,n Arrival time of the trip n on stop s
fsb (t) Passenger boarding flow distribution function
fso (t) Passenger alighting flow distribution function
Qs

b Expectation of total passenger boarding flow
Qs

o Expectation of total passenger alighting flow
Cveh Vehicle available cost
Cij Link cost of arc (i, j)
Pij Penalty of the infeasible time of arc (i, j)
Tf Trip time in period f
hf

min Lower bound of the headway at period f
h f

max Upper bound of the headway at period f
Cmax Maximum capacity of the bus vehicles

Table 3: Sets and variables of the problem formulation.

Notations Definition
P Set of pull-out arcs
Q Set of pull-in arcs
R Set of the trip-link arcs
A Set of all arcs, A�P∪Q∪R
D Set of depots
T Set of trips
hf Headway during the period f
xij 1 if arc (i, j) is selected; 0 otherwise
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structure, the SGA, the LNS, and the PSO are elaborated in
Sections 3.1–3.4.

3.1.7e Structure of Solution Set. As mentioned in Section 2,
the solution of the multiobjective model consists of two
parts: headway vector Tg � (t1, t2,. . ., tn) and trip chain set
Dg � {X1, X2,. . ., XM}. &e vector element tn in Tg represents
the headway value of the n-th characteristic periods. &e
elementXM inDg represents a feasible trip chain operated by
vehicleM and can be expressed as XM � (xi, . . ., xj), in which
xi denotes the i-th trip in the trip set.

For example, suppose there are three trips and two
characteristic periods in the model. &e headway vector
Tg � (10, 8) refers to the headway being 10minutes in period
1 and 8 minutes in period 2, respectively. &e trip-link chain
set Dg\� {X1} refers to that vehicle 1 is to carry out all the
trips based on Tg, and the trip-link chain set element X1 � (1,
3, 2) refers to the trips 1 and 3 and 3 and 2 that are linked as
one chain.

3.2. 7e Self-Adjust GA for Headway Vector

3.2.1. Basic Frame of the Method G (s). &e GA is the most
commonly used metaheuristic algorithm and performs well
in operation research fields such as crew scheduling [21] and
vehicle scheduling [22]. &e GA search is based on a
population of solutions and some operators used to perform
the evolution in search process. &e main operators in this
method are selection, crossover, and mutation. &e solution
in GA is usually coded in finite length string, which is called
chromosome. Starting from a population of chromosomes,
all the chromosomes are evaluated using fitness function to
rank the individuals. &e crossover operator and mutation
operator are responsible for the creation of new individuals.

In our self-adjust genetic algorithm G (s), a chromosome
represents a headway vector Tg. &e new headway vector Tg

at each iteration g is acquired from a pair of parent chro-
mosomes, which are selected by the roulette wheel. Each
gene in the chromosome Tg represents a headway value in
one period. &e process of the crossover operator and
mutation operator is illustrated as Figure 8. &e location of
the chromosome in the crossover operator and mutation
operator are selected randomly at each iteration. &e off-
spring individual created in each iteration should satisfy the
headway constraints in the model to ensure the solutions
obtained from the algorithm are feasible in the real world.
&e basic steps of the G (s) are shown in Table 4.

3.2.2. Self-Adjust Strategy of G(s). Different from the normal
GA approach in which population size is assigned as a fixed
value on initialization, the population size in our method is
adjusted with iteration g. &at is, the population size is
initially defined as three and is adjusted with the new feasible
solution added. In general, the median value of the headway
constraints is supposed to be the expected headway.
&erefore, we define that there are three individuals in the
initial population set Pg, one is the headway vector

consisting of the median value of the headway constraints in
each period, and others are the headway vectors plus one and
reduce one, respectively, based on themedian value headway
vector. &at is, the three initial chromosomes are Ts1 � (t1,
. . ., tn), Ts2 � (t1 + 1, . . ., tn+ 1), and Ts3 � (t1 − 1, . . ., tn − 1),
where tf � (hf

min + hf
max)/2, and hf

min and hf
max are the

lower and upper bounds of the headway in period f. After
each iteration, the new headway vector is added to the
population set, and the population size is enlarged by one.

&e parent chromosomes are selected using the roulette
wheel at each iteration. Different from the normal roulette
wheel method in which the selection probability of each
chromosome in the population is calculated by fitness
function, the selection probability of the three initial in-
dividuals is adjusted with the population size change. &e
selection probability of the initial individuals is calculated
as 1/n, where n is the number of individuals in the pop-
ulation set at each iteration. &e fitness function value in
the roulette wheel is the sum values of three objectives in
formula (1).

3.3. 7e LNS Method for Trip-Link Chain. &e LNS is
originally proposed by Shaw [23] and has been successfully
applied to the VSP and some extensions [24].&e basic idea
of the LNS is to search in large neighborhoods, which may
contain more potentially better solutions compared with
small neighborhoods. &e search neighborhood of the
solution is defined implicitly by a destroy method and a

Begin

Generate a new headway vector Tg
with SGA method G (S)

Find the optimal trip link chain set
Dg using the large neighborhood
search method L (S) based on Tg

Save the new solution (Tg, Dg) to
archive set S

Iteration number G = G + 1

G = Gmax?

Select the pareto optimal solution from
S with PSO

Output the pareto optimal front SPF

End

No

Yes

Figure 7: &e framework of the multiobjective hybrid algorithm.
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repair method. A destroy method disrupts part of the
current solution, while a repair method rebuilds the
destroyed solution. In the LNS, one or more destroy and
repair methods would be employed. And in each iteration,
the destroy and repair methods to be applied are selected
according to their weights, which are defined by users
before the iterations. &e resultant solution is accepted
based on an acceptance criterion, and the heuristic stops
when the stop criterion is met.

&e solution search of method L (S) begins from an
initial trip chain set Dg. &is trip set is received by a greedy
constructive heuristic method based on the timetable ac-
quired from headway Tg. First, the trips are sorted in a
nondecreasing order of their start times.&en, these trips are
added to the solution during iteration. In each iteration, the
selected trip is inserted to the end of the existing vehicle tasks
that is compatible in time and leads to theminimum increase
in the objective value of vehicle scheduling cost. If the trip is
unfeasible to be added to any existing trip-link arc, it would
be set as a new trip-link chain. &e procedure stops until all
the trips are served. &e basic steps of the LNS method L (S)
are shown in Table 5.

&e operators used in method L (S) at each iteration are
selected randomly. &e iteration of method L (s) is to search

trip link combination in solution neighborhood.&e destroy
operator is to remove some trips, and the repair operator is
to insert these trips back to find new trip links. &e defi-
nitions of the destroy operators and repair operators are
described in the following sections.

3.3.1. Destroy Operators. A selection of destroy operators
are implemented in our LNS, including random remove
operator, short trip-link remove operator, and incompati-
bility trip-link remove operator.&ese removal operators are
given different weights before iteration L and selected by the
roulette wheel. &e removal methods used in our LNS are
defined as follows:

(1) Random remove operator. It simply removes a number
of trips randomly from the solution to diversify the
search into different parts of the solution space.

(2) Short trip-link remove operator. It would remove the
shortest trip-link chain to reduce the vehicle
scheduling costs.

(3) Incompatibility trip-link remove operator. It would
remove some maximal incompatibility penalty trip
links from the solution to reduce the penalty costs.

10 15 11 9 14 13 11 14 12 15 10 11

10 15 11 9 14 13

11 14 12 15 10 11

10 15 11 15 10 11

10 15 11 15 10 11

10 15 12 15 10 11

Parent chromosomes

Crossover operator

Mutation operator

New offspring
chromosome 

Figure 8: &e crossover and mutation process of method G (S).

Table 4: Framework and steps of method G (s).

Method G (s)
1 Initialize population set Pg � Ts1, Ts2, Ts3􏼈 􏼉

2 For g � 1 toG

3 Select a pair of parent chromosomes Ti, Tj from Pg using roulette wheel
4 Create a new chromosome Tg using crossover and mutation operators based on parent chromosomes
5 If Tg satisfy the headway constraints, go to step 6; otherwise, go to step 3
6 Add Tg to the population set as Pg+1 � Pg, Tg􏽮 􏽯

7 End for
8 Return the headway vector set Pg � Ts1, Ts2, Ts3, T1, . . . , Tn􏼈 􏼉
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3.3.2. Repair Operators. A class of regret insertion heuristics
is implemented as the repair operators in method L (S).
&ese operators insert one trip to the best position at a time.
&ey differ in their ways of selecting the trip to be inserted
[25]. &ese approaches could be defined as below:

Let Nr denote the set of trips to be inserted, and Δfi,p

denotes the cost of inserting trip i ∈ Nr to position p in the
current partial solution. If trip i is inserted to position p,
Δfi,p � cpre(p),i + ci,suc(p) − cpre(p),suc(p), where pre (p) and
suc (p) are the predecessor trip and successor trip corre-
sponding to position p, respectively, and ci,j denotes the cost
of trip-link arc (i, j). If the insertion leads to an infeasible
solution, we set Δfi,p �∞.

Let c1i denote the insertion cost of trip i at its best po-
sition, c1i � minp∈Pcip, where P is the set of all the positions,
and ck

i is the insertion cost at the k-th best position. In a
regret-k heuristic, the trip i∗ � argmaxi∈Nr

(􏽐
j�k
j�1(c

j
i − c1i )) is

selected as the next trip to be inserted.
In our LNS, the regret-2, regret-3, and regret-4 heuristic

methods are implemented and selected randomly with equal
probability at each iteration. &e trip insertion cost is cal-
culated as the weighted sum of the vehicle scheduling cost
and the penalty cost in formula (1).

3.4. 7e PSO to Simplify Computational Complexity

3.4.1. Pareto Dominance Relation. Multiobjective optimi-
zation deals with optimizing multiple objectives. As
mentioned in Section 2, the integrated model formulates a
problem with three objectives. Different from the opti-
mization with one objective, a solution cannot be com-
pared with another using relational operators in a
multiobjective search space because objectives can be in
conflict and require special considerations. &is is due to
the existence of more than one criterion for comparison
[26]. &erefore, we need other operators to measure and
find out how much a solution is better than another. &e
Pareto dominance is the most widely used operator to
measure the solution of multiobjective model, and a series
of multiobjective optimization algorithms are developed
based on it [27]. &e operator can be mathematically
defined in a minimization optimization problem as
follows:

∀i ∈ 1, 2, . . . , k{ }: fi( x
→

)≤fi( y
→

)∧∃i ∈ 1, 2, . . . , k{ }: fi( x
→

)≤fi( y
→

),

(12)

where x
→

� (x1, x2, . . . , xk) and y
→

� (y1, y2, . . . , yk). &is
equation shows that a solution (vector x) is better than
another (vector y) if it has equal and at least one better value
on all objectives and can be denoted as x≺y. Suppose there
are two objective functions f1 and f2 in a minimization
optimization problem, the dominance relation could be
presented from an example in Figure 9. &is figure shows
that the circles are better than squares because they provide a
lower value in both objectives.

For the multiobjective optimization problem, there is a
set of nondominated solutions. Consequently, the projection
of Pareto optimal solutions in the objective space are stored
in a set called Pareto optimal front. &e optimization of
multiobjective problem aims to find the Pareto optimal front
of the problem.

3.4.2. Pareto Separation Operator. &e Pareto dominance
relation is applied in our multiobjective hybrid method to
find the optimal operation scheme of the integrated model.
Suppose there are m objectives and n acquired solutions in
the multiobjective optimization problem, the number of
comparison is C2

n · m in general, which would increase
rapidly with the addition of the objectives and solutions. In
order to reduce the number of comparison in our multi-
objective algorithm and find the Pareto optimal front
quickly, a separation solution comparison method which is
called the Pareto separation operator is applied. &e process
of the PSO is presented as below.

It is easy to find that if one solution is nondominated
in the multiobjective problem, it would be nondominated
in at least one subproblem of the multiobjective opti-
mization problem. &at is, if one solution is non-
dominated in a two-objective subproblem of the
multiobjective model, it would be a Pareto optimal so-
lution. &e relation between the multiobjective problem
and the subproblem is illustrated in Figure 10, in which
the point in the Pareto front is also the nondominated
point in the projection. &erefore, in our comparison
method, we only need to find the nondominated solutions
in the two-objective subproblem of the multiobjective
model, and the union of these solutions is the Pareto
optimal solution set.

&e comparison between two objectives is easier than
the comparison betweenmore objectives. Suppose there are
n solutions in the two-objective subproblem, after we find
the optimal solution Sm on the objective 1, we just need to

Table 5: Framework and steps of method L (S).

Method L (S)

1 Initialize trip chain set Dg � X1, . . . , XM􏼈 􏼉. Define the destroy operator set
α− � (α−

1 , . . . , α−
i ) and repair operator set β+ � (β+

1 , . . . , β+
j )

2 For l � 1 to L

3 Select a destroy method α−
i and a repair method β+

j randomly
4 Remove q trips from Dg using α−

i .
5 Insert the removed trips on Dg usingβ+

j

7 End for
8 Return the final solution Dg
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find the solution better than the solution Sm on the ob-
jective 2, and these solutions are the Pareto optimal so-
lution of the two-objective subproblem. &e number of
comparison in our method would be no more than
C2

m · 2(n − 1), where C2
m denotes the number of the two-

objective subproblem. It is easy to prove that, if n is larger
than 2 (m − 1), C2

n · m would be larger than C2
m · 2(n − 1). In

the most multiobjective problem, the number of solutions n
is far larger than the number of objectives m. Hence, our
method would effectively reduce the computational com-
plexity. An example of the comparison method is shown in
Figure 11.

4. Experiments and Results

To verify the effectiveness of the multiobjective optimization
model, the experiments are carried out based on a case study
on Route 3 of Jingmen Bus (JMB3) in China, which operates
128 trips and carries around 800 passengers per day. 23 buses
are currently deployed on this route.&e scheduled headway
is about 5 to 15 minutes at most time throughout the day,
with a maximum of 20 minutes in the afternoon off-peak
period.

&e experimental data preprocessing is presented in
Section 4.1. &is section proposes the approach based on
history data to get the passenger flow distribution function,
expectation of total passenger flow, and characteristic period
division. &e parameter setting of the multiobjective heu-
ristic algorithm proposed in Section 3 is presented in Section
4.2. After that, the experimental results are presented in
Section 4.3.

4.1. Passenger Flow Data and Trip Time Data Processing

4.1.1. Distribution Curve Fitting. &e passenger flow and trip
time would be changed over time. According to clustering
method proposed by Fisher [28], the bus operating period
could be divided to f periods with each period called a ho-
mogeneous running time (HRT) period [29]. In the same
period, the passenger flow has the same distribution function,
and the trips with departure time in same period have common
time probability distribution. In this paper, the distribution is
fitted with normal distribution. An example of the distribution
curve fitting is shown as Figure 12, where the blue bar is the
passenger flow and the red line is the fitting curve.

4.1.2. HRT Period Division. &eHRTperiod is calculated on
loss function. According to the method proposed by Fisher
[28], the loss function values of different classification
numbers are shown in Figure 13, in which the loss function
values corresponding to the classification numbers of 5 and 6
are quite different, and there is not much difference from the
loss function with the number of classifications being 6.
&erefore, it is appropriate to divide the whole day into six
characteristic periods in order to balance the efficiency and
complexity of the method.

Based on the method proposed before, the HRT period
division and trip time during each period are shown as Table 6.

4.2. Parameter Setting of theMultiobjectiveHybridAlgorithm.
In the study case experiments, the multiobjective algorithm
executes 1000 iterations, that is, g � 1000 in the algorithm.

Minimize Z

Minimize YMinimize X

A (1, 1, 1)

B (1, 2, 2)

Minimize X

Minimize Z

A (1, 1)

B (1, 2)Projection

Pareto front

Expansion

Figure 10: &e relation between multiobjective problem and subproblem.

Minimize f2

M
in

im
iz

e f
1

Figure 9: &e Pareto dominance relation.
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Meanwhile, the method L (S) executes 1000 iterations. For
the destroy operator 1 removes more trips and searches a
larger neighborhood than other two destroy operators, the
weight of destroy operator 1 is larger than others. &e
weights of three destroy operators in L (S) are (0.5, 0.3, 0.2),
and the random remove operator removes 10 trips randomly

at each iteration L. In the trip insertion, the weights of the
vehicle scheduling costs and the penalty costs are assigned as
0.6 and 0.4 separately.

Objective 1 Objective 2 Objective 3

Solution 1 x1 x1
y1 y1

z1 z1
Solution 2 x2

x2
y2

y2
z2

z2

Solution 3 x3 y3 z3

Solution 4 x4

x4
y4

y4
z4

z4

Solution 5 x5

x5

y5

Solution 1 x1 y1

Solution 2 x2 y2

Solution 3 x3 y3

Solution 4 x4 y4

Solution 5 x5

x1

x2

x3

x4

x5y5

Solution 1 z1

Solution 2 z2

Solution 3 z3

Solution 4 z4

Solution 5 z5

Solution 1

Solution 2

Solution 3

Solution 4

Solution 5 

y5

z5

z5

Comparison
Solution 1 Solution 2

…
Solution 4 Solution 5 

x1 y1x2 y2

x4 y4x5 y5

x1 z1x2 z2

x4 z4x5 z5

y1 z1y2 z2

y4 z4y5 z5

Pareto front : solution 1, solution 2, solution 5
Comparison number = C5

2·3 = 30 

Division

Objective 1 Objective 2
Subproblem 1

Comparison

Solution 1 Solution 2

…
Solution 4 Solution 5

Pareto front : solution 1, solution 2
Comparison number = 2· (5 – 1) = 8

Objective 1 Objective 3
Subproblem 2

Comparison

Solution 1 Solution 2

…
Solution 4 Solution 5

Pareto front : solution 1, solution 5
Comparison number = 2· (5 – 1) = 8

Objective 2 Objective 3
Subproblem 3

Comparison

Solution 1 Solution 2

…
Solution 4 Solution 5

Pareto front : solution 2, solution 5
Comparison number = 2· (5 – 1) = 8

The union
Pareto front : solution 1,

solution 2, solution 5
Comparison number

= 2· (5 – 1)·3 = 24

y1
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y3

y4

y5
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Figure 11: &e example of the Pareto separation operator.
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4.3. Experimental Results. Using the above data of the study
case and the algorithm parameters, the MATLAB version
R2017b is used to solve the integrated model. It runs on a
personal computer (PC) with Windows 10, Intel Core i5,
and 16GB random access memory (RAM).

Figure 14 presents a solution of the integrated problem
acquired through the multiobjective hybrid algorithm.
Figure 15 illustrates the Pareto optimal solution set and
initial solution set of the integrated model obtained by the
multiobjective method. From Figure 15, we can see that our
multiobjective hybrid algorithm is effective to find the Pareto
optimal front. Ourmultiobjective method focuses on finding
the solutions with lower vehicle scheduling cost and in-
compatibility penalty.

Figure 16 illustrates the comparison between the Pareto
optimal front of the integrated model, the cost of recursive
approach schedule, and the cost of the current imple-
mentation schedule on JMB3. &e figure shows that the
scheduling scheme of the integrated model is partially better
than the recursive approach schedule and better than the
current implementation schedule.

&e fleet size and objective function value comparison
among the Pareto optimal front, the recursive approach
schedule, and the current schedule are shown in Table 7.
Based on Euclidean distance, the closest point of the Pareto
optimal solution to the recursive approach schedule and
the current implementation schedule are shown in
Figure 17.

Table 6: Trip time during each period on Route 3 of Jingmen Bus.

Characteristic periods Range of departure interval (min) Expected value of trip time (min)
6 : 30–7 : 00 10–20 62
7 : 01–8 : 00 5–15 61
8 : 01–10 : 00 5–15 66
10 : 01–13 : 00 10–20 75
13 : 01–15 : 00 5–15 81
15 : 01–17 : 30 5–15 78

Trip chain Trips

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

19 85 35 100 53 116
60 6 65 110
17 76 104 57 120
88 51 114
9 69 22 87 36 46 109
1 3 64 39

62 41 105 58
78 28 94 47
5 68 21 83 40 103 56

13 72 91 112
12 80 30 95 44 107
67 20 79 29 93 42
25 89 38 101 54 117
4 63 48 111
2 15 74 26 90 37 102 55

66

119
18 77 27 33 97 59
8 84 92 43 106
7 82 32 96 49 113

71 23 118
61 14 73 81 31
10 34 98 50
11 70 24 86 45 108
16 75 99 52 115

Headway 15 10 10 15 10 10 15 10 10 15 10 10

Up direction Down direction

Figure 14: An example of the integrated problem solution.
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5. Conclusion

&is paper has proposed a multiobjective optimization
approach for timetabling and vehicle scheduling with sto-
chastic trip time and passenger flow. A multiobjective op-
timizationmodel has been established comprehensively with
the objectives of minimizing the passenger travel costs,
vehicle scheduling costs, and incompatible trip-link costs
while satisfying the passenger and bus corporation demands
and improving the scheduling robustness by considering the
uncertainty. In this paper, the objective of minimizing the
passenger travel costs is different from the previous research
projects, which optimize the timetabling based on headway
smoothing rule by considering the passenger waiting cost
and comfort cost. And the objective of minimizing the
incompatible trip-link costs is to penalize the incompatible
trip-link chain attributed to the stochastic trip time and
enhance the robustness of the vehicle schedule. Meanwhile,
the probability distribution of the stochastic trip time and
passenger flow following are obtained by the measurement
history data in advance. After the model establishment, a
multiobjective hybrid algorithm, which is combined with

self-adjust GA, LNS, and Pareto separation operator, is
proposed to solve the problem. A case study on real instance
of Route 3 of Jingmen Bus (JMB3) is reported.

&e experimental results on the problem instance de-
rived from the JMB3 case show that our multiobjective
optimization approach can produce the scheduling schemes
that perform better than the current implementation
schedule at one or more objectives. Compared with the
recursive approach, the multiobjective hybrid method
proposed in this paper can generate the scheduling scheme
that balances the different costs.

Since the scheduling schemes generated by the multi-
objective optimization method are a series of feasible
schemes, our proposed approach in this paper would
contribute to the transit network planning. Although the
method in this paper performs well, there is still room for
further improvement. For example, the model does not
consider the stochastic deadhead time, and the probability
distribution model of passenger flow and trip time is derived
from limited data; hence, the probability distribution model
is simple. &ese problems will require more work in the
future.

Table 7: Results of the different schedules.

Fleet size Passenger travel cost Incompatible trip-link cost Vehicle scheduling cost
Pareto optimal solution 20–23 1.2×106∼1.4×106 0–1.2×106 3.6×106∼7.8×106

Recursive approach schedule 23 1.3×106 1.5×106 6.3×106

Current implementation schedule 23 1.3×106 1.2×106 8.7×106
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Figure 17: Closest Pareto optimal point to the different schedules.
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