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Abstract: We study the wave equation on a bounded domain of Rm and on a
compact Riemannian manifold M with boundary. We assume that the coefficients
of the wave equation are unknown but that we are given the hyperbolic Neumann-
to-Dirichlet map Λ that corresponds to the physical measurements on the boundary.
Using the knowledge of Λ we construct a sequence of Neumann boundary values so
that at a time T the corresponding waves converge to zero while the time deriva-
tive of the waves converge to a delta distribution. The limit of such waves can be
considered as a wave produced by an artificial point source. The convergence of the
wave takes place in the function spaces naturally related to the energy of the wave.
We apply the results for inverse problems and demonstrate the focusing of the waves
numerically in the 1-dimensional case.
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1. Introduction

We consider the wave equation in M that is a compact set in Rm, m ≥ 1, with
a C∞-smooth boundary, or a compact manifold. Let u = uf (x, t) be the solution
of the wave equation

∂2
t u(x, t) +Au(x, t) = 0, in M × R+,

u|t=0 = 0, ∂tu|t=0 = 0,

∂νu|∂M×R+
= f,

(1)

whereA is a selfadjoint second order elliptic differential operator with time-independent
coefficients of the form

A = −∆g +
m∑
j=1

Vj(x)∂xj ,

where ∆g is the Laplace operator associated to a Riemannian metric g, see (6) for
the precise definition. Moreover, f ∈ L2(∂M × R+) is a Neumann boundary value
that physically corresponds to a boundary source, u = uf is the unique solution
wave corresponding to the boundary source f, and ν is the interior pointing normal
vector of the boundary ∂M.We assume that we are given the Neumann-to-Dirichlet
map, Λf = uf |∂M×R+ . The map Λ corresponds to the knowledge of measurements
made on the boundary of the domain and it models the response uf |∂M×R+

of the
medium to a source f put on the boundary of M .

We show that using Λ we can find a sequence of Neumann boundary values fi
such that the wave and its time derivative at the large enough time T , that is, the
pair (ufi( · , T ), ufit ( · , T )) converge in the energy norm to (0, 1

Vol(Ω)1Ω), as i→∞.
Here, 1Ω(x) is the indicator function a small neighborhood Ω of a point x̂ ∈M and
Vol(Ω) is the Riemannian volume of Ω in (M, g). More precisely, x̂ = γẑ,ν(t̂) is a
point on the normal geodesic emanating from a boundary point ẑ. Furthermore,
when the neighborhood Ω converge to the point x̂, the limits (0, 1

Vol(Ω)1Ω) converges
in suitable function space to (0, δx̂), where δx̂ is the Dirac delta distribution. We call
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the waves ufi that concentrate their energy in a small neighbourhood Ω of a point
inside the domain the focusing waves. When Ω→ {x̂}, the waves ufi(x, t) converge
in the set M × (T,∞) to G(x, t; x̂, T ), where the Green’s function G(x, t;x0, t0) is
the solution of

(2)

{(
∂2
t +A

)
G(x, t;x0, t0) = δx0(x)δt0(t) on M × R

G(·, ·;x0, t0)|t<t0 = 0; ∂νG(·, ·;x0, t0)|∂M×R = 0.

Roughly speaking, the waves ufi in the set M × (T,∞) converge to the wave that
is produced at a point source located at (x̂, T ). Due to this, we say that when
Ω→ {x}, the limit of the focusing waves produces an artificial point source at time
t = T .

We emphasize that the boundary sources fi that produce focusing waves can
be determined without knowing the coefficients of the operator A, that is, when
the medium in M is unknown and it is enough only to know the map Λ that
corresponds to measurements done on the boundary of the domain. Our main
resut is the following:

Theorem 1.1. Let T > 1
2diam (M) and x̂ = γẑ,ν(t̂) ∈ M , ẑ ∈ ∂M , 0 < t̂ < T .

Let τ∂M (ẑ) be the critical distance along the normal geodesic γẑ,ν , defined in (7).
Then (∂M, g|∂M ) and the Neumann-to-Dirichlet map Λ determine Neumann

boundary values f(α, β, k), k ∈ Z+, α, β > 0, such that the following is true:
If t̂ < τ∂M (ẑ) then

lim
α→0+

lim
β→0+

(
uf(α,β,k)(·, T )
∂tu

f(α,β,k)(·, T )

)
=

(
0

1
Vol(Ωk)1Ωk

)
in H1

0 (M)× L2(M),(3)

where Ωk ⊂M are neighborhoods of x̂ satisfying limk→∞ Ωk = {x̂}. Moreover,

lim
k→∞

(
lim
α→0+

lim
β→0+

(
uf(α,β,k)(·, T )
∂tu

f(α,β,k)(·, T )

))
=

(
0
δx̂

)
,(4)

where the inner limits with respect to β, α are in H1
0 (M) × L2(M) and the outer

limit with respect to k is in the space H−s+1(M) ×H−s(M) with s > dim(M)/2.
In addition, for t > T

lim
k→∞

(
lim
α→0+

lim
β→0+

uf(α,β,k)( ·, t)
)

= G( ·, t; x̂, T )(5)

where the inner limits with respect to n, β, α are in H1
0 (M) and the outer limit with

respect to k is in the space H−s+1(M).
If t̂ > τ∂M (ẑ), then limits (3), (4) and (5) are equal to zero.

The boundary sources f(α, β, k) in Theorem 1.1, that produce an artificial point
source, can obtained using an iterative sequence of measurements that produce
sources fn(α, β, k) such that fn(α, β, k) → f(α, β, k) as n → ∞. In this iteration,
we first measure for n = 1 the boundary value, Λf1, of the wave that is produced by
a certain boundary source f1. In each iteration step, we use the boundary source fn
and its response Λfn to compute the boundary source fn+1 for the next iteration
step. The iteration algorithm in this paper was inspired by time reversal methods,
see [4, 5, 11, 10, 18, 19, 24, 37, 38, 39]. We note that when the traditional time-
reversal algorithms are used in imaging, one typically needs to assume that the
medium contains some point-like scatterers.

Generally, when the coefficients of the operator A are unknown, one can not
specify the Euclidean coordinates of the point x̂ to which the waves focus, but only
the Riemannian boundary normal coordinates (ẑ, t̂) (called also the ray coordinates
in optics or the migration coordinates in Earth sciences) of x̂ can be specified.
However, in the case whenM ⊂ Rm and the operatorA is of the formA = −c(x)2∆,
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we show in Corollary 4.3 that the Euclidean coordinates of the point x̂ can be
computed using the Neumann-to-Dirichlet map Λ.

The problem studied in the paper is motivated by recent advances in the applica-
tions of optimal control methods to lithotripsy and hyperthermia. In lithotripsy, one
breaks down a kidney or bladder stone using a focusing ultrasonic wave. Likewise,
in hyperthermia in medical treatments, cancer tissue is destroyed by ultrasound
induced heating that produces an excessive heat dose generated by a focusing wave
[36]. Often, to apply these methods one needs to use other physical imaging modal-
ities, for example X-ray tomography of MRI to estimate the material parameters in
M . However, for the wave equation there are various methods to estimate material
parameters using boundary measurements of waves. These methods are, however,
quite unstable [3, 27]. Therefore they might not be suitable for hyperthermia, where
safety is crucial. An important question is therefore how to focus waves in unknown
media.

In the paper we advance further the techniques developed in [9] and [15]. In [15],
a construction of focusing waves was considered in the analogous setting to this
paper, but using the function space L2(M)× L2(M) instead of the natural energy
space H1

0 (M) × L2(M) in (3). The use of the function space associated to energy
makes it possible to concentrate the energy of the wave near a single point. For
instance in the above ultrasound induced heating problem, the use of correct energy
norm is crucial as otherwise the energy of the wave may not be concentrating at
all.

The other novelties of the paper are that in the case of isotropic medium, that
is, with the operator A = −c(x)2∆ we can focus the wave near a point x̂ whose
Euclidean coordinates can be computed (a posteriori). We apply this to an inverse
problem, that is, for determining the wave speed in the unknown medium.

The methodology in this paper arises from boundary control methods used to
study inverse problems in hyperbolic equations [3, 6, 8, 28, 29, 25, 26, 34] and
on focusing of waves for non-linear equations [16, 17, 20, 30, 31, 33, 49]. Similar
problems have been studied using geometrical optics [40, 41, 42, 44] and the methods
of scattering theory [12], see also the reviews of these methods in [47, 48].

In particular, Theorem 1.1 provides for linear equations an analogous construc-
tion of the artificial point sources that is developed in [31] for non-linear hyperbolic
problems with a time-dependent metric. We note that this technique is used as a
surprising example on how the inverse problems for non-linear equations are some-
times easier than for the corresponding problems for the linear equations. Thus
Theorem 1.1 shows that some tools that are developed for inverse problems for
non-linear equations can be generalized for linear equations. Observe that in this
paper the coefficients of the partial differential equations are assumed to time-
independent. This is essential as the used techniques are based on Tataru’s sharp
unique continuation theorem that does not work for general wave equations whose
coefficients are not real analytic in time, as shown by Alinhac’s counterexamples,
see [1]. This causes the crucial difference in the creation of artificial point sources in
the non-linear and the linear problems: In non-linear problems (see e.g. [31, 33]) the
artificial point sources are produced via non-linear interaction of conormal waves
which works also in a time-dependent setting, whereas in this paper concerning
time-independent linear equations the artificial point sources are produced via con-
trol theory.

The outline of this work is as follows. In Section 2 we introduce notation, bound-
ary control operators and review some relevant results from control theory. In Sec-
tion 3 we state and describe the minimization problem for the boundary sources. In
Section 4, we discuss focusing of the waves and prove Theorem 1.1. In Section 5 we
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introduce the modified iteration time-reversal scheme to generate boundary sources
using an iteration of simple operators and boundary measurements. In Section 6 we
present the results of the numerical experiment. In Section 7 we apply the results
for inverse problems.

2. Definitions

2.1. Manifold M . We assume that M is closed C∞-smooth bounded set in Rm
(m ≥ 1) with non-empty smooth boundary ∂M or an m-dimensional C∞-smooth
compact manifold with boundary. Furthermore, we assume that M is equipped
with a C∞-smooth Riemannian metric g =

∑m
j,k=1 gjk(x) dxj ⊗ dxk. Elements

of the inverse matrix of gij are denoted by gij . Let dVg be the smooth measure
dVg = |g(x)|1/2dx1 · · · dxm, where |g| = |g(x)| = det([gjk]). Then the inner product
in L2(M) is defined by the inner product

〈u, v〉L2(M) =

∫
M

u(x)v(x) dVµ(x),

where dVµ(x) = µ(x)dVg(x) and µ ∈ C∞(M) is a strictly positive function on M .
We assume that A, introduced in (1), represents a general formally selfadjoint

elliptic second order differential operator such that its potential term vanishes (see
[25] for the details). In local coordinates, A can be represented in the form

(6) Av = −
m∑

j,k=1

1

µ(x)|g(x)|1/2
∂

∂xj

(
µ(x)|g(x)|1/2gjk(x)

∂v

∂xk

)
.

For example, if µ = 1 then A reduces to the Riemannian Laplace operator.
On the boundary ∂M , operator ∂ν is defined by

∂νv =

m∑
j=1

µ(x)νj(x)
∂

∂xj
v(x)

where ν(x) = (ν1, ν2, . . . , νm) is the interior unit normal vector of the boundary
satisfying

∑m
j,k=1 gjk(x)νjνk = 1. To integrate functions on ∂M we use the measure

dS = µdSg on ∂M induced by dVg. If Ω ⊂ ∂M × R+, we denote L2(Ω) = {f ∈
L2(∂M × R+) : supp(f) ⊂ Ω}, identifying functions and their zero continuations.

2.2. Travel time metric. Let d(x, y) be the geodesic distance corresponding to g.
The metric d is also called the travel time metric because it describes how solutions
of the wave equation propagate. When Γ ⊂ ∂M is open, and f ∈ L2(Γ × R+),
then at time t > 0, by finite velocity of wave propagation, the solution uf ( · , t)
is supported in the domain of influence (see [21], Thm. 28.3.4 and page 242 on
applications for 2nd order operators or [25], Thm. 2.47)

M(Γ, t) = {x ∈M : d(x,Γ) ≤ t}.

The diameter of M is defined as diam(M) = max {d(x, y) : x, y ∈M}.
Let TxM be the tangent space of M, x ∈M and ξ ∈ TxM , ‖ξ‖g = 1. We denote

by γx,ξ(s) the geodesic inM , which is parameterized with its arclength and satisfies
γx,ξ(0) = x and γ̇x,ξ(0) = ξ. Suppose z ∈ ∂M and ν = ν(z) is the interior unit
normal vector at z ∈ ∂M . Then a geodesic γz,ν is called a normal geodesic, and
there is a critical value τ∂M (z) > 0, such that for t < τ∂M (z) the geodesic γz,ν([0, t])
is the unique shortest curve in M that connects γz,ν(t) to ∂M , and for t > τ∂M (z)
this is no longer true. More precisely, we define the critical value

τ∂M (z) = sup{s > 0 : d(γz,ν(s), ∂M) = s}.(7)
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A simple acoustic operator is defined by A0 = −c2(x)∆, such that µ(x) = c(x)2−m,
∂νv = c(x)−m+1∂nv, where ∂nv is the Euclidean normal derivative of v, and c(x)
describes the speed of sound in an isotropic medium with volume c(x)−2dx.

2.3. Controllability for wave equation. Let us denote uf (T ) = uf ( · , T ). The
seminal Tataru’s unique continuation result [45] implies the following approximate
controllability result:

Proposition 2.1 (Tataru’s approximate global controllability). Let T > 2 diam(M).
Then the linear subspace {(uf (T ), uft (T )) : f ∈ C∞0 (∂M × (0, T ))} is dense in
H1

0 (M)× L2(M).

The proof of Proposition 2.1 is given in [25, Thm. 4.28].
Tataru’s unique continuation result implies also the following local controllability

result. The indicator function of a set S is denoted by 1S .

Proposition 2.2 (Tataru’s approximate local controllability). Let T > 0, let
Γ1, . . . ,ΓJ ⊂ ∂M be non-empty open sets, and let 0 < sk ≤ T for k = 1, . . . , J .
Suppose

B =

J⋃
j=1

Γj × (T − sj , T ), N =

J⋃
j=1

M(Γj , sj),(8)

and P is multiplication by the indicator function 1B,

P : L2(∂M × (0, 2T ))→ L2(∂M × (0, 2T )), (Pf)(x, t) = 1B(x, t) f(x, t).(9)

Then the linear subspace
{
uPh(T ) : h ∈ L2(∂M × (0, 2T ))

}
is dense in L2(N ).

Proposition 2.1 follows directly from [25, Thm. 3.10].

2.4. Auxiliary operators. In this section we introduce several operators to ma-
nipulate boundary sources.

Let h ∈ L2 (∂M × (0, 2T )) be the Neumann boundary value (a source function).
Then by [32, Thm. A]), the initial-boundary value problem (1) has a unique solution
uh and we define a map

U : L2 (∂M × (0, 2T ))→ C
(

[0, 2T ];H3/5−ε(M)
)
, U : h 7→ uh,(10)

where ε > 0. We define also the space

H1
0

(
(0, T );L2(∂M)

)
= {f : ∂M × [0, T ]→ R | f, ∂tf ∈ L2(∂M × [0, T ]),

f(x, t)|t=0 = 0, f(x, t)|t=T = 0}.

Let a ∈ H1
0

(
(0, T );L2(∂M)

)
be another Neumann boundary value, then solution

of the initial-boundary value problem (1) defines a bounded map

U : H1
0

(
(0, T );L2(∂M)

)
→ C

(
[0, 2T ];H3/2(M)

)
, U : a 7→ ua,(11)

see [32, Thm. 3.1(iii)].

2.4.1. Sobolev spaces on the boundary. Let us introduce Sobolev spaces

V = L2 (∂M × (0, 2T )) , Y = H1
0

(
(0, T );L2(∂M)

)
, Z = H1

0

(
(0, 2T );L2(∂M)

)
,

while the inner product in Y is given by

〈a1, a2〉Y = 〈a1, a2〉L2(∂M×(0,T )) + 〈∂ta1, ∂ta2〉L2(∂M×(0,T ))

and similarly, the inner product in Z is 〈a1, a2〉Z = 〈a1, a2〉V + 〈∂ta1, ∂ta2〉V .
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2.4.2. Neumann-to-Dirichlet map. For h ∈ V , the boundedness of the map (10) im-
plies that the trace of solution satisfies uh|∂M×(0,2T ) ∈ C

(
[0, 2T ];H3/5−1/2−ε(∂M)

)
,

where ε > 0. Hence the Neumann-to-Dirichlet map

Λ: V → V, Λh = uh|∂M×(0,2T )(12)

is a bounded linear operator, where uh is the solution of (1).

2.4.3. Time-reversal map and time filter map. Let

R : V → V, Rf(x, t) = f(x, 2T − t),

be the time reversal map and

J : V → V, Jf(x, t) =
1

2

∫
[0,2T ]

1L(s, t)f(x, s)ds,(13)

be the time filter map, where

L = {(s, t) ∈ R+ × R+ : t+ s ≤ 2T, s > t}.(14)

For 0 < t < T , Jf(x, t) is given by the integral

Jf(x, t) =
1

2

∫ 2T−t

t

f(x, s)ds, 0 < t < T,

that roughly speaking, can be considered as a low-pass filter. Note that above
1L(s, t) = G(T − s, T − t) where G(s, t) is Green’s function of a one-dimensional
wave operator, written with the space variable s and the time variable t, see [9, eq.
21].

The adjoint Λ∗ : V → V , of the Neumann to Dirichlet map Λ: V → V , is
Λ∗ = RΛR, see [9, eq. 21].

2.5. Blagovestchenskii identities. The inner product of solutions of (1) at time
T , i.e. waves uf ( · , T ) and uh( · , T ), generated by two boundary sources f, h can
be calculated from boundary measurements on ∂M using the identity below. For
f, h ∈ V the first Blagovestchenskii identity states that

(15)
∫
M

uf (T )uh(T ) dVµ =

∫
∂M×[0,2T ]

(Kf)(x, t)h(x, t) dSg(x)dt,

where dSg is the Riemannian volume on ∂M , and K is defined in terms of the
Neumann-to-Dirichlet map Λ and simple operators on boundary as

K : V → V, K = RΛRJ − JΛ,(16)

see [9, eq. 23]. The second Blagovestchenskii identity is

〈uh(T ), 1〉L2(M) = −〈h,ΦT 〉V ,(17)

where ΦT : (∂M × (0, 2T ))→ R is the function

ΦT (x, t) = (T − t)+ =

{
T − t, t ≤ T
0, t > T.

(18)

The proofs for formulas (15) and (17) can be found [9, Lemma 1] and [15].
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2.5.1. Projection Operators. We use frequently the projection operator P = PB
introduced in (9). We define also an orthogonal projection in Z (a support shrinking
projector)

NY : Z → Z, Ran(NY ) = Y ⊂ Z.(19)

Note that NY can be written also as a minimization problem

NY f = arg min
u∈H1

0 ((0,T );L2(Γ))

‖f − u‖2H1
0 ((0,2T );L2(Γ)),

which is equivalent to the weak formulation of the differential equations for v(x, t) =
NY f(x, t), that is,

− ∂2

∂t2
v(x, t) + v(x, t) = − ∂2

∂t2
f(x, t) + f(x, t), t ∈ [0, T ],

v(t;x)

∣∣∣∣
t=0

= 0, v(t;x)

∣∣∣∣
t=T

= 0,

for almost every x ∈ Γ, that is,

(− ∂2

∂t2
+ 1)(v(x, t)− f(x, t)) = 0, t ∈ [0, T ],

(v(x, t)− f(x, t))

∣∣∣∣
t=0

= 0, (v(x, t)− f(x, t))

∣∣∣∣
t=T

= −f(x, T ).

The solution of these equations is given by NY f = f(x, t) − sinh(t)
sinh(T )f(x, T ). Addi-

tionally, we introduce a projection

P̂ : V → V, (P̂ f)(x, t) = 1∂M×(0,T )(x, t) f(x, t).(20)

2.5.2. Green’s operator on the boundary. Let

Q : V → Z, Qf(x, t) =

∫ 2T

0

g(t, s)f(x, s)ds,(21)

where g : (0, 2T )2 → R,

g(t, s) =
1

2(e4T − 1)

{
(et − e−t)(e4T e−s − es), t < s,

(es − e−s)(e4T e−t − et), t > s,

is the Green’s function for the problem{
(1− ∂2

t )g(t, s) = δ(t− s), t ∈ (0, 2T )

g|t=0 = 0, g|t=2T = 0,

where s ∈ (0, 2T ). Note that Q : V → Z is bounded.

3. Minimisation Problems

Below, we use arguments based on the energy of the waves.

Definition 3.1. Let us define the energy function in the following way

E(a, t) = ‖uat (t)‖2L2(M) + ‖∇gu
a(t)‖2L2(M), t ∈ (0, 2T ).(22)

In the following Lemma we compute energy of the wave at time T using the
boundary data.

Lemma 3.2. Energy function defined in (22) satisfies

E(a, T ) = −2〈a, P̂ ∂tΛa〉V , a ∈ V.(23)
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Proof. Using (22) we get

E(a, t) =

∫
M

[∂tu
a(x, t)∂tu

a(x, t) +

n∑
j,k=1

gjk(x)∂xju(x, t)∂xku(x, t)]µ(x)dVg(x).

Differentiation respect the time and integration by parts gives us

∂tE(a, t) = 2

∫
M

∂2
t u

a(x, t)∂tu
a(x, t) +

n∑
j,k=1

gjk∂xju(x, t)∂xk∂tu(x, t)

 µ(x)(det g)
1
2 dx

= −2

∫
∂M

[a(t)∂tΛa(t)] dSg(x).

At time t = 0 we have the initial values ∂tu(x, 0) = 0 and u(x, 0) = 0, and thus
E(a, 0) = 0. Thus

E(a, T ) = −2

∫ T

0

∫
∂M

[a(t)∂tΛa(t)] dSg(x) dt = −2〈a, P̂ ∂tΛa〉V .

�

Let P be the projector given in (9) associated to the sets B and N given in
(8). We will consider two minimization problems. The first one considered is to
find h ∈ V such that uPh(T ) is close to the indicator function 1N in L2(M).
The second minimization problem considered is to find a ∈ Y such that the time
derivative uat (T ) is close to uPh(T ) and therefore close to 1N in L2(M) and that
the value of the wave ua(T ) is close to zero in H1

0 (M).
To consider the first minimization problem, we define for α ∈ (0, 1) the quadratic

form h 7→ F1(h, α),

F1(h;α) = ‖1N − uPh(T )‖2L2(M) + α‖h‖2V , h ∈ V(24)

Then, we define hα ∈ V be the minimizer

hα = arg min
h∈V

F1(h;α).(25)

To consider the second minimization problem, for β ∈ (0, 1), h ∈ V we define

F2(a;β, h) = ‖uat (T )− uPh(T )‖2L2(M) + ‖ua(T )‖2H1(M) + β‖a‖2Y , a ∈ Y.(26)

We minimize this functional with respect to a when h = hα, and define

a(α, β) = arg min
a∈Y

F2(a;β, hα).(27)

We can replace the second term in (26) using the identity

‖ua(T )‖2H1(M) = E(a, T )− ‖uat (T )‖2L2(M) + ‖ua(T )‖2L2(M).(28)

Thus, using the Blagovestchenskii identities (15) and (17), and Lemma 3.2, we
rewrite F1(h, α) and F2(a, β|h) in terms that, up to a constant term, can be com-
puted on the boundary,

(29) F1(h;α) = 〈1N ,1N 〉L2(M) + 2〈Ph,ΦT 〉V + 〈Ph,KPh〉V + α〈h, h〉V ,

F2(a;β, h) = 〈Ph,KPh〉V − 2〈Ph,K∂ta〉V + 〈∂ta,K∂ta〉V(30)

− 2〈a, P̂ ∂tΛa〉V − 〈∂ta,K∂ta〉V + β〈a,Ka〉V .

Next we consider how hα and a(α, β) can be found using the map Λ.
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Theorem 3.3. For α ∈ (0, 1), the solution of the equation

(31) (PKP + α)h = −PΦT

is the unique minimizer hα ∈ V of F1(h;α) in the space h ∈ V , see (24). Further-
more, the map PKP : V → V is non-negative, bounded, and selfadjoint. Moreover
‖hα‖2V ≤ 1

α (1 + T )2.

Proof. First, we recall that operators K (16) and P (9) are bounded operators
V → V and hence PKP : V → V is bounded. By (15), see also [9, eq. 21], it holds
for all f, h ∈ V that

(32) 〈Kf, h〉V = 〈uf (T ), uh(T )〉L2(M) = 〈uh(T ), uf (T )〉L2(M) = 〈Kh, f〉V
and hence K = K∗ in V and we see that 〈Kf, f〉V ≥ 0. Moreover, P : V → V is an
orthogonal projector and thus P = P ∗. These show that PKP is selfadjoint and
non-negative. This implies that F1 is strictly convex and the minizer is unique.
Using (29) we see that the Fréchet derivative of h 7→ F1(h;α) at h ∈ V in the
direction η ∈ V is given by

DF1( · ;α)|hη = 〈η, (PKP + α)h+ PΦ〉V .
For a fixed α, the Fréchet derivative is zero when the boundary source function hα
is a solution of (31), and hα is the minimizer for the functional (24). Note that
PKP + αI ≥ αI and ‖(PKP + αI)−1‖V ≤ 1

α . �

Theorem 3.4. Let hα ∈ V be the solution of the equation (31). For β ∈ (0, 1), the
unique minimizer a = a(α, β) ∈ Y of the functional F2(a;β, hα), see (26), is the
solution of the equation

(33) (L+ β)a = −NYQ∂tKPhα
where

L : Y → Y, L = NYQ
(
RΛR∂t − P̂ ∂tΛ +K

)
.(34)

Furthermore, L : Y → Y is non-negative, bounded, and selfadjoint.

We observe that as for a ∈ Y we have a = P̂ a, we can write the operator L in
(34) in a more symmetric form

La = NYQ
(
RΛR∂tP̂ − P̂ ∂tΛ +K

)
a, a ∈ Y.(35)

Lemma 3.5. Let Q be given in (21) and NY be the projector in (19). For a ∈ Y
and f ∈ V we have

〈NYQf, a〉Y = 〈f, a〉V .(36)

Proof. Let f ∈ V and a ∈ Y . Definition (21) also implies that Qf ∈ Z and

〈NYQf, a〉Y = 〈Qf,NY a〉Y = 〈Qf, a〉Y = 〈Qf, a〉Z = 〈(1− ∂2
t )Qf, a〉V = 〈f, a〉V .

(37)

�

Proof of Theorem 3.4. Let us first show that ∂tKPhα ∈ V . To this end, ob-
serve that J increases smoothness the time variable by one, that is, J : V →
H1
(
(0, 2T ), L2(∂M)

)
.

Moreover, by the definition of the set L in (14), we see that RJhα|t=0 = 0 and
Jf(x, 2T ) = 0. First, this shows that JΛPhα ∈ H1

(
(0, 2T ), L2(∂M)

)
. Second, as

by [32, Thm. 3.1(iii)] and the trace theorem we have

Λ : {a ∈ H1
(
(0, 2T );L2(∂M)

)
: a(x, 0) = 0} → C1

(
[0, 2T ];H

3
5−

1
2−ε(∂M)

)
,
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we see that RΛRJPhα ∈ C1([0, 2T ];H
3
5−

1
2−ε(∂M)). These show that ∂tKPhα ∈

V . Hence, we have NYQ∂tKPhα ∈ Y . To continue the proof, we need the following
lemma.

Lemma 3.6. The operator L : Y → Y,L = NYQ
(
RΛR∂t − P̂ ∂tΛ +K

)
is

bounded.

Proof. Note that K : Y 7→ V is bounded. Also ∂t : Y → V is bounded. Let
a ∈ Y . The boundedness of the operator RΛR : V → V implies RΛR∂ta ∈ V . Let
a ∈ H1

0

(
(0, T );L2(∂M)

)
. Due to [32, Thm. 3.1 (iii)] and the trace theorem, we

have

Λa ∈ C1
(

[0, 2T ];H
3
5−

1
2−ε(∂M)

)
, ε > 0,(38)

and thus P̂ ∂tΛ : Y → V is bounded. The map (RΛR∂t − P̂ ∂tΛ + K) : Y → V is
bounded. Using definitions of Q in (21) and NY in (19), we see that NYQ(RΛR∂t−
P̂ ∂tΛ +K) : Y → Y is bounded. �

Lemma 3.7. The operator L : Y → Y is selfadjoint and non-negative.

Proof. Below we use formula (35) several times. For f1, f2 ∈ Y, due to Lemma 3.5
we have

〈NYQ(RΛR∂tP̂ − P̂ ∂tΛ +K)f1, f2〉Y = 〈(RΛR∂tP̂ − P̂ ∂tΛ +K)f1, f2)〉V .
Since operator K : V → V is selfadjoint and since Λ∗ = RΛR, we have

〈(RΛR∂tP̂ − P̂ ∂tΛ +K)f1, f2〉V = 〈f1, (RΛR∂tP̂ − P̂ ∂tΛ +K)f2〉V .
By Lemma 3.5, we get

〈f1, (RΛR∂tP̂ − P̂ ∂tΛ +K)f2〉V = 〈f1, NYQ(RΛR∂tP̂ − P̂ ∂tΛ +K)f2〉Y .
Thus for f1, f2 ∈ Y , we conclude that 〈Lf1, f2〉Y = 〈f1, Lf2〉Y . This proves that
L : Y → Y is selfadjoint.

Next we show that the operator L : Y → Y is non-negative. Recall that Λ∗ =
RΛR : V → V. Thus for f ∈ Y we have

〈f, Lf〉Y = 〈f, (Λ∗∂tP̂ − P̂ ∂tΛ +K)f〉V = −2〈f, P̂ ∂tΛf〉V + 〈f,Kf〉V .
By definition for energy (22) and Blagovestchenskii identity (15) we have

−2〈f, P̂ ∂tΛf〉V + 〈f,Kf〉V = E(f, T ) + ‖uf (T )‖2L2(M) ≥ 0.

Therefore, for f ∈ Y , we have showed that 〈f, Lf〉Y ≥ 0. �

Next we rewrite F2(a;β, hα) in (30) by using equations (28), (23), Blagovestchen-
skii identitities (15), (17), and ∂tua(T ) = u∂ta(T ). These yield that

F2(a;β, hα) = 〈Phα,KPhα〉V − 2〈Phα,K∂ta〉V
−2〈a, P̂ ∂tΛa〉V + 〈a,Ka〉V + β〈a, a〉Y .

As operators K : V → V and P̂ : V → V are selfadjoint, and Λ∗ = RΛR,

F2(a;β, hα) = 〈Phα,KPhα〉V + 2〈∂tKPhα, a〉V − 〈a, P̂ ∂tΛa〉V
+〈a,RΛR∂tP̂ a〉V + 〈a,Ka〉V + β〈a, a〉Y .

Further, Lemma 3.5 implies that F2(a;β, hα) can be written in the form

F2(a;β, hα) = 〈Phα,KPhα〉V + 2〈NYQ∂tKPhα, a〉Y − 〈a,NYQP̂∂tΛa〉Y
+〈a,NYQRΛR∂tP̂ a〉Y + 〈a,NYQKa〉Y + β〈a, a〉Y ,

whereas the latter can be written as

F2(a;β, hα) = 〈Phα,KPhα〉V + 〈(L+ β)a+ 2NYQ∂tKPh, a〉Y .
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The operator L : Y → Y is non-negative, bounded, and selfadjoint. Thus the
functional a 7→ F2(a;β, hα) is strictly convex. Hence the unique minimum of
F2(a;β, hα) is at the zero of the Fréchet derivative of a 7→ F2(a;β, hα) at a given
by

DF2(· ;β, hα)|aξ = 〈NYQ∂tKPh+ (β + L)a, ξ〉Y , ξ ∈ Y.

The Fréchet derivative is zero when the boundary source a is the solution of the
equation (33). Thus

a(β, hα) = −(β + L)−1NYQ∂tKPh

is the minimizer for the functional (26). This completes the proof of Theorem
3.4. �

Lemma 3.8. Let T > 2 diam(M) and let hα ∈ V and a(β, hα) ∈ Y be the mini-
mizers of (24) and (26), respectively, with the set B defined in (8). Then

lim
α→0

lim
β→0

(
ua(β,hα)(T )

u
a(β,hα)
t (T )

)
=

(
0
1N

)
,

where limits are in H1
0 (M)× L2(M), and N is defined in (8).

Proof. Proposition 2.2 implies that for any ε > 0 there is h(ε) ∈ V such that

‖1N − uPh(ε)(T )‖2L2(M) < ε.

On the other hand, for every α ∈ (0, 1), the minimizer hα satisfies

‖1N − uPhα(T )‖2L2(M) + α‖hα‖2V ≤ ‖1N − uPh(ε)(T )‖2L2(M) + α‖h(ε)‖2V .

If α ≤ α0(ε) = ε
1+‖h(ε)‖2V

, we have ‖1N − uPhα(T )‖2L2(M) ≤ 2ε, and hence

uPhα(T )→ 1N in L2(M) as α→ 0.(39)

By Proposition 2.1, for ε > 0 and hα ∈ Y, there exists a boundary source
aε = aε,α, for which

‖uPhα(T )− ∂tuaε(T )‖2L2(M) + ‖uaε(T )‖2H1(M) < ε.

On the other hand for every β ∈ (0, 1) the minimizer a(β, hα) satisfies

‖uPhα(T )− ∂tua(β,hα)(T )‖2L2(M) + ‖ua(β,hα)(T )‖2H1(M) + β‖a(β, hα)‖2Y
≤ ‖uPhα(T )− ∂tuaε(T )‖2L2(M) + ‖uaε(T )‖2H1(M) + β‖aε‖2Y .

We choose β ≤ ε
1+‖aε‖2Y

, and thus

‖uPhα(T )− ∂tua(β,hα)(T )‖2L2(M) + ‖ua(β,hα)(T )‖2H1(M) ≤ 2ε,

and we see that ∂tua(β,hα)(T )→ uPhα(T ) in L2(M) and ua(β,hα)(T )→ 0 inH1
0 (M),

as β → 0. This and (39) yield the claim.
�

4. Focusing of waves

For a function space X ⊂ L2(M), let X ′ is the dual space of X with respect to
the pairing defined by the L2-inner product of the distributions and test functions.
Let Xs = D((1 − A)

s
2 ) ⊂ Hs(M), s ≥ 0 be the domain of the s-th power of the

selfadjoint operator (1 − A) endowed with the Neumann boundary values and let
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X−s denote the dual space of Xs. When ϕj ∈ L2(M), j = 0, 1, . . . are a com-
plete family orthogonal eigenfunctions of operator A and λj are the corresponding
eigenvalues, that is, Aϕj = λjϕj , we have

Xs = {
∞∑
j=0

ajϕj :

∞∑
j=0

(1 + |λ|)s|aj |2 <∞}, ‖
∞∑
j=0

ajϕj‖Xs = (

∞∑
j=0

(1 + |λ|)s|aj |2)1/2

Note that as Hs
0(M) ⊂ Xs, for s > 0, we have that the embedding X−s ⊂ H−s(M)

is continuous.
Let

B =

(
0 I
A 0

)
be the unbounded operator inH1(M)×L2(M) with domainD(B) = D(A)×H1(M).
The operator B extends to bounded operator B : Xs+1 ×Xs → Xs ×Xs−1 for all
s ∈ R, and the corresponding semi-group U(t) = exp(−Bt), t ∈ [0,∞) defines a
bounded map

U(t) : Xs+1 ×Xs → Xs+1 ×Xs(40)

Note that U(t) is in fact defined for all t ∈ R and these maps are isometric iso-
morphisms. Following the terminology of [2, Sec. V.2.8] on abstract evolution
equations, we say that when (ψ0, ψ1) ∈ Xs+1 ×Xs with s ∈ R, and(

u0(t)
u1(t)

)
= U(t− T )

(
ψ0

ψ1

)
, t ≥ T,(41)

then u(x, t) = u0(t) ∈ C([T,∞);Xs+1) ∩ C1([T,∞);Xs) is a mild solution of the
equation 

∂2
t u(x, t) +Au(x, t) = 0, in M × [T,∞,
u|t=T = ψ0, ∂tu|t=T = ψ1,

∂νu|∂M×R+
= 0.

(42)

Below, we call u(x, t) just a solution of (42). For example, Green’s function
G(x, t; x̂, T ), x̂ ∈M int, is a (mild) solution of (42) with s < −n/2− 1.

Next we prove Theorem 1.1.

Notation 1. Let T > 2 diam(M), let x̂ = γẑ,ν(t̂), where ẑ ∈ ∂M , and 0 < t̂ < T .
Let Γk ⊂ ∂M for k = 1, 2, . . . be open neighborhoods of ẑ, such that diam(Γk) <
1/k, Γk ⊃ Γk+1 and

⋂∞
k=1 Γk = {ẑ}.

Let a(α, β, k), ã(α, β, k) ∈ Y be functions described in Lemma 3.8, with the
corresponding sets B ⊂ ∂M × R+ of the form

B(k) = ∂M ×
(
T − (t̂− 1

k
), T

)
, k ∈ N,(43)

and

B̃(k) =

(
∂M ×

(
T − (t̂− 1

k
), T

))
∪
(
Γk ×

(
T − t̂, T

))
,(44)

respectively, where k ∈ N. Under these assumptions, we define

b(α, β, k) = ã(α, β, k)− a(α, β, k) ∈ Y.(45)
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By Lemma 3.8, in the space H1
0 (M)× L2(M) we have the limits

lim
α→0

lim
β→0

(
ua(α,β,k)(T )

u
a(α,β,k)
t (T )

)
=

(
0

1N (k)

)
,(46)

lim
α→0

lim
β→0

(
uã(α,β,k)(T )

u
ã(α,β,k)
t (T )

)
=

(
0

1Ñ (k)

)
,(47)

where

N (k) = M(∂M, t̂− 1

k
), Ñ (k) = M(∂M, t̂− 1

k
) ∪M(Γk, t̂).

Let k ∈ N and we define

Ωk = Ñ (k) \ N (k).(48)

Proof of Theorem 1.1. As Ωk+1 ⊂ Ωk and Ωk ⊂ M(ẑ, t̂ + 1
k ) \ M(∂M, t̂ − 1

k ),

it follows from [15, Lemma 12], that if t̂ < τ∂M (ẑ) then
⋂∞
k=1 Ωk = {x̂} where

x̂ = γẑ,ν(t̂). If t̂ > τ∂M (ẑ) then
⋂∞
k=1 Ωk = ∅.

Recall that a(α, β, k), ã(α, β, k) ∈ Y are the sources defined in Lemma 3.8, with
the sets B ⊂ ∂M × R+ of the form (43) and (44), respectively. Lemma 3.8 implies
that the boundary sources a(α, β, k), ã(α, β, k) ∈ Y and b(α, β, k) given in (45)
satisfy in the space H1

0 (M)× L2(M) the limit

lim
α→0

lim
β→0

(
ub(α,β,k)(T )

u
b(α,β,k)
t (T )

)
=

(
0
1Ωk

)
,(49)

where Ωk is defined in (48).
The volumes of the sets Ωk can be written as the inner products,

lim
α→0

lim
β→0
〈∂tb(α, β, k),ΦT 〉 = lim

α→0
lim
β→0
〈ub(α,β,k)
t (T ), 1〉L2(M) = Vol(Ωk)

and hence we can also determine Vol(Ωk) using the map Λ. Thus we can define

f(α, β, k) =
1

Vol(Ωk)
b(α, β, k),(50)

and we are ready to prove the the main result of this paper.
We have limk→∞(limα→0 limβ→0 u

b(α,β,k)(T )) = 0 in H1
0 (M) and

lim
k→∞

( lim
α→0

lim
β→0

u
b(α,β,k)
t (T )) = lim

k→∞

1Ωk(x)

Vol(Ωk)
= δŷ(x)(51)

in C(M)′ ⊂ (Hs(M))′ ⊂ D((1−A)−
s
2 ) ⊂ H−s(M), where s > dim(M)

2 = n
2 . As the

map U(t − T ), t > T , see formulas (40) and (41), is bounded, the formulas (49),
(50), and (51) yield that for t > T

lim
k→∞

(
lim
α→0+

lim
β→0+

uf(α,β,k)( ·, t)
(
uf(α,β,k)( ·, t)
∂tu

f(α,β,k)( ·, t)

))
= U(t− T )

(
0
δŷ

)
,(52)

where the limits are defined in the space Xs+1 × Xs with s < −n/2 − 1. As the
operator semigroup U(t−T ) maps the initial state (0, δŷ) to Green’s function, that
is,

U(t− T )

(
0
δŷ

)
=

(
G( ·, t; x̂, T )
∂tG( ·, t; x̂, T )

)
,

the formula (52) proves the formula (5). Hence, we have proven the claims of
Theorem 1.1. �
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Lemma 4.1. Let T1 > T > diam (M). For ẑ ∈ ∂M and t̂ < τ∂M (ẑ) and the point
x̂ = γẑ,ν(t̂) ∈M we have

lim
k→∞

lim
α→0+

lim
β→0+

uf(α,β,k)

∣∣∣∣
∂M×(T,T1)

= G( · , · ; x̂, T )

∣∣∣∣
∂M×(T,T1)

,(53)

where the limit takes place in (Hs
0(∂M × (T, T1)))′, s > dim(M)/2. Moreover, if

t̂ > τ∂M (ẑ) the above limit is zero.

Proof. Let s > n
2 . By Theorem 1.1, see (4), we have that(

φ
(k)
0

φ
(k)
1

)
= lim
α→0+

lim
β→0+

(
uf(α,β,k)(·, T )
∂tu

f(α,β,k)(·, T )

)
(54)

satisfy (φ
(k)
0 , φ

(k)
1 )→ (0, δx̂) in H−s(M)×H−(s+1)(M) = (Hs

0(M)×Hs+1
0 (M))′ as

k →∞.
Let us consider the map W : (φ0, φ1)→ u|∂M×(T,T1), where T1 > T and{

∂2
t u(x, t) +Au(x, t) = 0, in M × (T, T1),

u|t=T = φ0, ut|t=T = φ1, ∂νu|∂M×(T,∞) = 0.
(55)

Next we show that

W :
(
Hs

0(M)×Hs+1
0 (M)

)′ → (Hs
0(∂M × (T, T1)))

′(56)

is continuous. To this end, we use the property that the map W : H1
0 (M) ×

L2(M) → L2 (∂M × (T, T1)) is bounded, see [25]. Hence, its adjoint is the map
W ∗ : h 7→ (∂tw|t=T , wt|t=T ) where w is the solution of the time-reversed wave
equation with the Dirichlet boundary value,{

∂2
tw(x, t) +Aw(x, t) = 0, in M × (T, T1),

w|t=T1
= 0, wt|t=T1

= 0, w|∂M×(T,T1) = h.

The map W ∗ : L2 (∂M × (T, T1)) →
(
H1

0 (M)× L2(M)
)′ is continuous (see [25],

Lemma 2.42). Also, the restriction of the map W ∗ to a smoother Sobolev spaces,
W ∗ : Hs

0 (∂M × (T, T1))→ Hs
0(M)×Hs+1

0 (M), s > 0 is continuous by [25], Theo-
rem 2.46. This implies that the map (56) is bounded. Hence, formula (53) follows
from the limit (φ

(k)
0 , φ

(k)
1 )→ (0, δx̂) in (Hs

0(M)×Hs+1
0 (M))′ as k →∞, see (54).

�

Using methods developed in [7] we next consider a special case of an isotropic,
or, a conformally Euclidean metric

Lemma 4.2. Assume that M ⊂ Rm and the operator A is of the form A =
−c(x)2∆. Then for wj(x) = xj we have

〈uft (x, T ), wj〉L2(M) = 〈Λ∗(φT
∂wj
∂ν

)− φTwj , f〉L2(∂M×(0,2T )).(57)

where φT (x, t) = 1[0,T ](t) ∈ L2(∂M × (0, 2T )).

Proof. Let wj ∈ L2(M), j = 1, 2, . . . , n be the coordinate functions wj(x) =
wj(x1, x2, . . . , xn) = xj . We see that Awj = 0 and thus the inner product

Ij(t) =

∫
M

uf (x, t)wj(x)c(x)−2dx

satisfies the initial boundary value problem

∂2
t Ij(t) =

∫
∂M

((Λf)
∂wj
∂ν
− fwj)dS(x), ∂tIj(t)|t=0 = 0, Ij(t)|t=0 = 0.
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By solving this ordinary differential equation and computing ∂tIj(t), we obtain
(57). �

Lemma 4.2 implies that when the operator A has the form A = −c(x)2∆, the
coordinates of the point x̂ where the waves focus can be computed a posteriori.

Corollary 4.3. Assume that M ⊂ Rm and the operator A is of the form A =
−c(x)2∆. Let ẑ ∈ ∂M , x̂ = γẑ,ν(t̂) ∈M , 0 < t̂ < T and let f(α, β, k) be the sources
defined in Theorem 1.1. Then the Euclidean coordinates of the point x̂ = (x̂`)

m
`=1 ∈

Rm are given by

lim
k→∞

(
lim
α→0

lim
β→0

〈uf(α,β,k), w`〉L2(M)

〈uf(α,β,k), 1〉L2(M)

)
= x̂`,

where the inner products on the left hand side are determined by Λ via the formulas
(17) and (57).

Proof. By (49),

lim
α→0

lim
β→0

u
b(α,β,k)
t (T ) = 1Ωk .

in L2(M), and hence by Lemma 4.2

lim
α→0

lim
β→0

〈uf(α,β,k), w`〉L2(M)

〈uf(α,β,k), 1〉L2(M)

= 〈 1Ωk( · )
volg(Ωk)

, w`〉L2(M).

As w`(x1, x2, . . . , xn) = x` and the sets Ωk converge to {x̂} ⊂ M , as k → ∞, we
see that

lim
k→∞

〈 1Ωk( · )
volg(Ωk)

, w`〉L2(M) = lim
k→∞

1

volg(Ωk)

∫
Ωk

x` dVg(x) = x̂`,

which proves the claim. �

5. Construction of boundary sources sources via iterated
measurements

In this section we present a modified time-reversal iteration scheme for deter-
mination of the boundary sources hα and a(α, β) given in (25) and (27), respec-
tively. The modified time-reversal iteration scheme makes it possible to construct
the sources without measuring the whole Neumann-to-Dirichlet map Λ, but only
evaluating Λfn with sources fn that are chosen adaptively, similarly to the adaptive
imaging algorithms introduced in [14, 22]. This makes it also possible to reduce
the effect of the measurement errors [13]. We will explain this in a context of a
simple iteration. For the computational study in the next section we use a more
efficient, but also more complicated, iterative method (the generalized minimal
residual method).

Let H be Hilbert space and let L : H → H be linear, non-negative selfadjoint
operator. Let α ∈ (0, 1) and f ∈ H. Then there is a solution gα for problem

(58) (L+ α) gα = f.

Let ω > 0 be such that ω > 2(1 + ‖L‖H), and let

S = (1− α

ω
)I − 1

ω
L.(59)

Then (58) is equivalent to (I − S)gα =
1

ω
f.

We define a sequence gn ∈ Z, n = 1, 2, . . . by

g0(α) =
1

ω
f, gn(α) = g0(α) + Sgn−1(α), n = 1, 2, . . . .(60)
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Theorem 5.1 (Iteration of boundary sources). Let gα be defined by (58) and let
the sequence g1(α), g2(α), . . . be defined by (60). Then limn→∞ gn(α) = gα in the
space H.

Proof. Since operator L is a positive operator satisfying 0 ≤ L ≤ ‖L‖I and 1
ω (α+

‖L‖) < 1
2 , we see using spectral theory and (59) that 1

2I ≤ S ≤ (1 − α
ω )I. Hence

‖S‖ < 1. Thus we see using the Neumann series that

gα = (I − S)−1
( f
ω

)
=

∞∑
n=0

Sn
( f
ω

)
= lim
n→∞

gn(α).

�

To obtain the boundary sources hα and a(α, β) that produce the focusing waves
we apply Theorem 5.1 in the two cases: To obtain hα we consider the setting of
Theorem 3.3 where the Hilbert space H is V , the operator L is defined by

L = PKP and f = PΦT .

To obtain a(α, β) we consider the setting of Theorem 3.4 where the Hilbert space
H is Y , the operator L is defined by

L = NYQ
(
RΛR∂tP̂ − P̂ ∂tΛ +K

)
and f = −NYQ∂tKPhα.

In these cases, we call the iteration (60) the modified time reversal iteration scheme
as in the iteration (60) we iterate simple operators, such as NY , Q, P̂ and the
time-reversal operator R, and the measurement operator Λ. In particular, the
iteration (60) can be implemented in an adaptive way, where we do not make
physical measurements to obtain the complete operator Λ, but evaluate the operator
Λ only for the boundary sources appearing in the iteration. In other words, we
do not make measures to obtain the whole operator (or “matrix”) Λ but make a
measurement only when the operator Λ is called in the iteration. By doing this,
the effect of the measurement errors is reduced as in each step of the iteration, the
measurement errors are independent. This strategy to do imaging using iteration of
Neumann-to-Dirichlet map originates from works of Cheney, Isaacson, and Newell
[14, 22], see also [13] the applications for acoustic measurements.

6. Computational study in 1 + 1 dimensions

In this section we present a computational implementation of our energy focusing
method for a 1+1-dimensional wave equation. LetM be the half axisM = [0,∞) ⊂
R, T > 0 and consider the Neumann-to-Dirichlet operator Λ = Λc,

Λ : L2(0, 2T )→ L2(0, 2T ), Λf = uf |x=0,

where u is the solution of(
∂2

∂t2
− c(x)2 ∂

2

∂x2

)
u(x, t) = 0 in M × (0, 2T ),(61)

∂xu(0, t) = f(t), u|t=0 = 0, ∂tu|t=0 = 0.

We assume that

C0 ≤ c(x) ≤ C1, supp (c− 1) ⊂ (L0, L1)(62)

for some 0 < C0 < C1 and 0 < L0 < L1. In order to be able to control u(x, T ) for
x ∈ (L0, L1) using f in the sense of Proposition 2.2, we assume furthermore that

T >
L1

C0
.(63)
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Figure 1. Left: The function c(x) used in computational exam-
ples. Right: Convergence of the error (68) as a function of N in
log-log axes.

We use the wave speed function c in Figure 1 in all the computational examples
below. It satisfies the bounds (62) with L0 = 0.05, L1 = 0.55, C0 = 0.8 and C1 =
1.4. Moreover, we take T = 2 and then (63) holds. In the one dimensional case, the
travel time metric is given by metric tensor g = c(x)−2dx2 and the corresponding
distance function d(x1, x2) = dg(x1, x2) (i.e., travel time beween points is given by

d(x1, x2) =

∫ x2

x1

1

c(x)
dx, x1 ≤ x2.(64)

We denote by x(r) the point that satisfies d(0,x(r)) = r, that is, x(r) ∈ M is the
point which travel time to the boundary point 0 is r. The domain of influence for
the boundary point 0 and time r > 0 are

M(r) = {x ∈M ; d(0, x) ≤ r}.(65)

6.1. Simulation of measurement data. We use H1-conformal piecewise affine
finite elements on a regular grid on (0, 2T ) to discretize the Neumann-to-Dirichlet
operator Λ. Let us explain this in more detail. For N ∈ Z+ and n = 1, ..., 2N − 1
we write h = T/N and denote by φn,N ∈ H1

0 (0, 2T ) the function that is supported
on [(n − 1)h, (n + 1)h], that satisfies φn,N(nh) = 1, and whose restrictions on
[(n− 1)h, nh] and [nh, (n+ 1)h] are affine. Then the subspace

PN = span
{
φ1,N, . . . , φ2N−1,N

}
⊂ H1

0 (0, 2T )(66)

consists of piecewise affine functions and we write

PN : H1
0 (0, 2T )→ PN, PNf(t) =

2N−1∑
j=1

f(jh)φj,N(t).(67)

for the corresponding interpolation operator. The function uφ1,N , solving (61) with
f = φ1,N, is computed with high accuracy using the k-Wave solver [46]. Then we
define the discretization of Λ,

Λ
(d)
N : PN → PN,

by Λ
(d)
N φ1,N = PN(uφ1,N |x=0) together with the translation invariance in time,

Λ
(d)
N φj,N(t) = Λ

(d)
N φ1,N(t− (j − 1)h), for j = 2, 3, . . . , 2N− 1. We can also write

Λ
(d)
N f =

2N−1∑
j=1

j∑
k=1

fkΛj−k+1φj,N, for f =

2N−1∑
j=1

fjφj,N.

In the computational examples, uφ1,N is solved using a regular mesh with 213 spatial
and 215 temporal cells.
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6.2. Implementation of the energy focusing. Computational implementation
of the energy focusing method boils down to solving discretized versions of the
linear equations (31) and (33).

Most of the operators X appearing in (31) and (33) are simply discretized by
setting X(d)φj,N = PNXφj,N. This is the case for R and J , see the definition (16)
of K, as well as, for N and Q in (33).

In the 1 + 1-dimensional case, the projection P , appearing in (31) and (33), is
equal to the multiplication with the characteristic function of the interval (T −r, T )
for some r, that is,

P = Pr : L2(0, T )→ L2(0, T ), (Prf)(t) = 1(T−r,r)(t)f(t).

We discretize P by setting

P (d)φj,N =

{
φj,N, T − r < jh < T,

0, otherwise.

Then P (d) : PN → PN. The projection P̂ is discretized analogously, see the
definition (34) of L. The time derivative is discretized using first order forward
finite differences at the points nh, n = 1, . . . , 2N− 2, as follows

∂
(d)
t f =

2N−2∑
j=1

fj+1 − fj
h

φj,N(t), for f =

2N−1∑
j=1

fjφj,N.

We have now given discretizations of all the operators appearing in (31) and (33).
The function ΦT on the right-hand side of (31) is discretized by Φ

(d)
T = PNΦT .

Solving for h in (31), with the operators replaced by their discretizations, gives us
h

(d)
α ∈ PN. Then we solve for a in (33), with the operators replaced again by their

discretizations, and with hα replaced by h(d)
α . We denote the so obtained solution

by a(d) ∈ PN.
We use the restarted generalized minimal residual (GMRES) method to solve

the discrete versions of (31) and (33). The maximum number of outer iterations
is 6 and the number of inner iterations (restarts) is 10. We use zero as the initial
guess, and the tolerance of the method is set to 10−12.

Figure 2. Functions uPr1h1(x, T ) ≈ 1M(r1)(x) (blue) and
uPr2h2(x, T ) ≈ 1M(r2)(x) (red), where h1 and h2 are obtained by
solving the discretized version of (31).

6.3. Computational examples. We set r1 = 1
2 , r2 = 5

8 and N = 211, and denote
by h(d)

α,j the solution of the discretized version of (31) with r = rj , j = 1, 2. As we
want to approximate the sharp jump in the indicator functions 1M(rj), j = 1, 2,
we are using high resolution, i.e. large N, in our computations. Physically this
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corresponds to a high sampling rate in time. This also explains why we simulate
the direct problem with even higher resolution.

The solutions uPr1h
(d)
α,1(x, T ) and uPr2h

(d)
α,2(x, T ) with α = 0.001 are shown in

Figure 2. Moreover, we denote by a(d)
j the solution of the discretized version of (33)

with hα = h
(d)
α,j . The difference of the corresponding solutions

ua
(d)
2 (x, T )− ua

(d)
1 (x, T ) = ua

(d)
2 −a

(d)
1 (x, T ),

with β = 1.02 · 10−4 and α as above, is shown in Figure 3. The spurious oscilla-
tions near the origin in Figure 3 were present also in our computations using finer
discretizations, however, they appear to converge to zero in L2(M) as predicted by
Theorem 1.1. Convergence of the error

‖ua
(d)
2 −a

(d)
1

t (·, T )− 1M(r2)\M(r1)‖L2(M)(68)

is shown in Figure 1 (Right) as a function of N. Different regularization parameters
α and β are chosen for each N.

Figure 3. Functions ua(x, T ) (left) and ∂tua(x, T ) (right) where
a = a

(d)
2 −a

(d)
1 and a(d)

1 and a(d)
2 are the solutions to the discretized

version of the minimization problem (33). The time derivative of
the wave at time T , that is, x 7→ uat (x, T ), where a = a

(d)
2 −a

(d)
1 , is

concentrated near the interval [x(r1),x(r2)] = cl(M(r2) \M(r1)),
where x(r1) ≈ 0.5 and x(r2) ≈ 0.62. The “spike” in the time de-
rivative on right close to the value x = 0.05 has a relatively small
L2-norm despite its visual appearance.

7. Observation times and boundary distance functions

In this section we will apply focusing of waves to inverse problems, that is,
to determine the coefficients of the operator A that correspond to the unknown
material functions in M . Results in [6, 8, 25] show that the mapping Λ determines
uniquely the isometry type of the Riemannian manifold (M, g). Here we consider
an alternative proof for these results. We show that Λ determines the time when
the wave emanating from a point source in the domain M is observed at different
points of the boundary ∂M . We do this by considering waves that focus at a point
x̂. As shown in formula (5), the waves focusing at time T to the point x̂ converge to
Green’s functionG(x, t, x̂, T ) at times t > T . Below we show that by considering the
boundary values of the focusing waves we can determine the observation times from
point sources located at all points x̂ ∈M . These functions determine the metric g
in M up to an isometry, see [25]. A similar approach has been used for non-linear
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wave equation, e.g. �gu + au2 = 0, where the non-linear interaction of the waves
is used to produce artificial microlocal points sources in M × R. Such artificial
microlocal points sources determine the information analogous to the observation
times from point sources in the medium, see [16, 20, 31, 33]. We note that for
genuinely non-linear equations this technique makes it possible to solve inverse
problems for non-linear equations that are still unsolved for linear equations, e.g.
for equations with a time-varying metric. Below, we will show that some of these
techniques are applicable also for linear wave equations.

Consider a manifold (M, g) and Green’s function G(·, · ; x̂, T ) satisfying (2). For
x̂ ∈M , T ∈ R, and y ∈ ∂M we define the observation time function corresponding
to a point source at (x̂, T ) ∈M × R,

Tx̂,T (y) = sup{t ∈ R; the set {y} × (−∞, t) has a neighborhood(69)
U ⊂ ∂M × R such that G(·, ·, x̂, T )

∣∣
U

= 0}.

In other words, Tx̂,T (y) is the first time when the wave G(·, ·, x̂, T ) is observed on
the boundary at the point y.

Proposition 7.1. (i) For all z ∈ ∂M , the pair (∂M, g|∂M ) and the map Λ deter-
mines function τ∂M (z).

(ii) For all z ∈ ∂M and t̂ < τ∂M (z) the pair (∂M, g|∂M ) and the map Λ deter-
mines Tx,T (z) for the point x = γz,ν(t̂) ∈M .

(iii) We have Tx̂,T (y) = dM (y, x̂) + T .

Proof. Let us first prove (iii), and then (i) and (ii).
(iii) Using the finite velocity of the wave propagation for the wave equation, see

[21], we obtain that the support of Green’s function G(·, ·, x̂, T ) is contained J+(q),
where J+(q) is in the causal future the point q = (x̂, T ) ∈M × R, given by

J+(q) = {(y′, s) ∈M × R; s ≥ dM (y′, x̂) + T}.
Hence, the boundary value G(·, ·, x̂, T )|∂M×R vanishes outside the set J+(q)∩(∂M×
R). This implies that Tx̂,T (y) ≥ dM (y, x̂) + T . Next, we consider the opposite
inequality. To this end, assume that there is t1 > dM (y, x̂) + T such that t1 <
Tx̂,T (y). Then, G(·, ·; x̂, T ) vanishes in an open set U1 ⊂ ∂M × R that contains
{y} × (−∞, t1). As ∂νG(·, ·; x̂, T )|∂M×R = 0, we then have that the Cauchy data
of G(·, ·; x̂, T ) vanishes in the set U1. Let ψε ∈ C∞(R) be a function such that∫
R ψε(t)dt = 1 and supp (ψε) ⊂ (−ε, ε). By the above, the function

Gε(x, t; x̂, T ) =

∫
R
G(x, t− t′; x̂, T )ψε(t

′)dt′

is a C∞-smooth function satisfies the homogeneous wave equation(
∂2
t −A

)
Gε(·, ·; x̂, T ) = 0, on (M × R) \ Iε,(70)

Gε(·, ·; x̂, T )|Uε1 = 0; ∂νG
ε(·, ·; x̂, T )|Uε1 = 0

where Uε1 ⊂ ∂M ×R is a neigbhorhood of {y} × (−∞, t1 − ε) and Iε = {x̂} × (T −
ε, T + ε). Using Tataru’s unique continuation theorem [45] in the domain M × R
we see that

Gε(x, t; x̂, T ) = 0 for (x, t) ∈ {(M × R) \ {x̂} × Iε) : t < t1 − dM (x, y)− ε}.
As Gε(x, t; x̂, T )→ G(x, t; x̂, T ) in the domain (M \ {x0})×R in sense of distribu-
tions as ε→ 0, we see that

G(x, t; x̂, T ) = 0 for (x, t) ∈ V \ {(x̂, T )},
where

V = {(x, t) ∈M × R : t < t1 − dM (x, y)}.
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Since V is an open neighborhood of the point (x̂, T ), we see that G(·, ·; x̂, T )|V is a
distribution supported in a single point (x̂, T ). By [43], Thm. 6.25, page 150, this
implies that F = G(·, ·; x̂, T )|V is finite sum of derivatives of the delta distribution
supported at (x̂, T ). Considering such a distribution F in local coordinates and
computing its Fourier transform, we see that (∂2

t − A)F can not be the delta-
distribution δ(x̂,T )(x, t). This is in contradiction with the equation (2), and hence
we conclude that the claimed t1 ∈ (dM (y, x̂) + T, Tx̂,T (y)) can not exists. Thus
Tx̂,T (y) = dM (y, x̂) + T . This proves (iii).

(i) The map Λ determines the functions fn(α, β, k). If t̂ > τ∂M (z), the limit (53)
is zero. If t̂ < τ∂M (z), the considerations in the proof of claim (ii) show that the
limit (53) is non-zero. Thus Λ determines τ∂M (z).

(ii) The claim follows from the definition (69) of Tx̂,t̂(y).
�

By (7.1) the pair (∂M, g|∂M ) and map Λ determine the function τ∂M (z) for all
z ∈ ∂M . Those determine also Tx,T (y) and dM (x̂, y), y ∈ ∂M for the point x =

γz,ν(t̂) ∈M where t̂ < τ∂M (z). As the distance function is continuous, we see that
when t̂ → t1 = τ∂M (z), we have that dM (γz,ν(t̂), y) → dM (γz,ν(t1), y). Thus the
pair (∂M, g|∂M ) and the map Λ determine dM (x0, y) for the point x = γz,ν(t̂) ∈M
for all t̂ ≤ τ∂M (z) and y ∈ ∂M . This implies that the pair (∂M, g|∂M ) and Λ
determine the collection of boundary distance functions, that is, the set

R(M) = {dM (x̂, · ) ∈ C(∂M) : x̂ ∈M}.

Further, the set R(M) determines the isometry type of (M, g), see [25] (see also
generalizations of this result in [35] (see also [23]). Moreover, in the case when
M ⊂ Rn andA = −c(x)2∆ we can determine the Euclidean coordinates of the point
x̂ = γz,ν(t̂) using Cor. 4.3. Hence we can determine vector v̂ = limt→t̂− ∂tγz,ν(t)
and c(x̂) = 1/‖v̂‖Rn . This gives an algorithm to determine the unknown wave speed
c(x) at all points x ∈M .
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