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Abstract. Metaheuristics are randomised search algorithms that are
effective at finding “good enough” solutions to optimisation problems.
However, they present no justification for generated solutions and these
solutions are non-trivial to analyse in most cases. We propose that iden-
tifying the combinations of variables that strongly influence solution
quality, and the nature of this relationship, represents a step towards
explaining the choices made by a metaheuristic. Using three benchmark
problems, we present an approach to mining this information by using
a “surrogate fitness function” within a metaheuristic. For each problem,
rankings of the importance of each variable with respect to fitness are
determined through sampling of the surrogate model. We show that two
of the three surrogate models tested were able to generate variable rank-
ings that agree with our understanding of variable importance rankings
within the three common binary benchmark problems trialled.
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1 Introduction

With the uptake and utilisation of Artificial Intelligence (AI) driven systems
across multiple sectors, we are seeing an increase in the presence of such sys-
tems within many businesses and organisations. As this continues these systems
are being tasked to handle a larger number of decisions at greater levels of im-
portance and with fewer checkpoints of human interference and guidance. It is
thus vital that the decisions they are making can not only be trusted but more
importantly understood by the end user as much as possible. It is hoped that,
if individuals are able to build confidence in the suggestions of AI systems, they
will be more likely to employ these systems and act on the solutions they pro-
vide. For this reason, enabling these processes to be understood and explained
is paramount to maximising the real world utility of many machine driven ap-
proaches [18].

One branch of AI, known as metaheuristics, comprises search-based methods
that have been shown to efficiently find well performing solutions to difficult opti-
misation problems. Metaheuristics look for solutions that minimise or maximise
a set of objectives that are often related to cost or performance. Optimisation
problems are prevalent in many branches of industry and have an impact on
numerous aspects of everyday life for many, from Computing Science and Engi-
neering to the less traditional fields of Medicine and Retail [8, 22, 24], and can
take many forms.
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Whilst metaheuristics are able to produce well-performing solutions, the pro-
cess by which they arrive at the suggested final solution remains largely unex-
plained to the end-user. This is problematic for a number of reasons. Firstly,
a poorly understood solution will reduce the confidence an end user has in the
highlighted solution that can have a knock-on effect in its uptake and imple-
mentation. Secondly, there can be additional criteria that were not included in
the formal problem definition (e.g., aesthetics of a design, or having person X’s
working pattern accommodate their family life). Greater understanding of how
the problem was solved could lead to a refinement of the problem that will, in
turn, produce better performing solutions which can then lead to insight learned
from this problem being applied to other similar problems. Thirdly, metaheuris-
tics follow random processes that can lead to noise in the final outputs. It would
be helpful to know what characteristics of a solution might simply be the re-
sult of this noise and can be eliminated with impacting solution quality. Finally,
metaheuristics are very good at finding loopholes in the problem definition [19].
It would be helpful to know whether the solutions genuinely solve the problem
or have just found a weakness in the specification.

These points together can reduce trust in an algorithm, meaning that sub-
optimal approaches may remain in practice that ultimately lead to wasted re-
sources and inefficient practice. Whilst metaheuristics follow a relatively clear
framework by which candidate solutions for a given problem are repeatedly gen-
erated, evaluated and modified, the search processes underpinning them are suf-
ficiently complex as to be non-interpretable to humans and are regarded as a
“blackbox”. The problems metaheuristics solve are encompassed using a fitness
function as a means to evaluate solutions, this is also difficult to interrogate
directly for human understandable explanations and can take a variety of forms
from truly blackbox examples driven by complex simulations to the more “grey
box” optimisation examples where fitness is determined by a series of mathe-
matical formulae.

In order for human users to adopt the recommendations of these automated
decisions, it may be enough to provide explanation in the form of justifications
for an individual outcome as opposed to interrogating and describing the inner
processes by which an algorithm ultimately performs [1]. Research in explain-
ability of deep learning can be seen to follow this type of approach, however there
is little work of this type concerning metaheuristics, which address a different
niche of problems than their deep learning siblings. When deciding whether to
adopt a solution found by a metaheuristic, we suggest [7] that the decision maker
is likely to want the focus to be on two main insights. Firstly: does the proposed
solution actually solve the problem or have we stumbled upon a loophole in the
problems definition; and, secondly: can we identify which characteristics of a so-
lution are related to its performance and optimality for the problem, and which
are simply an unrelated result of the random processes inherent to metaheuris-
tics. The first of these points is more broadly applicable to any optimisation
approach (including mathematical programming and brute-force optimisations),
although here we focus purely on metaheuristics because of the ease with which
the proposed solution approach (surrogate models) can be integrated with them.

Our focus within this paper is to offer some first steps towards making
these insights. We propose a new approach to identify important characteris-
tics of metaheuristic derived solutions to a series of binary benchmark problems,
particularly which variables strongly influence solution quality and which are
less important or can be ignored. The approach exploits surrogate fitness func-
tions [9, 16], a well-established technique for improving metaheuristic search
efficiency. A computationally cheap model is trained in parallel with the opti-



mization process, with the majority of the calls to a costly fitness function being
replaced by a call to the surrogate model. Crucially, the surrogate is an explicit
model of what the algorithm has learned about high-fitness solutions. Our ap-
proach takes a high-fitness solution returned by the metaheuristic and probes it
with respect to the surrogate model to determine which variables are important,
and their impact on fitness.

We begin in Section 2 by reviewing related work on trust and explanation
in metaheuristics, before highlighting the role surrogates currently play in op-
timization problem solving and how we plan to utilise them for explainability
in Section 3. The approach to mining the surrogate for problem information in
the form of variable rankings is described in Section 4. We then demonstrate the
approach with some easily understood simple benchmark problems being solved
by a surrogate-assisted genetic algorithm in Section 5 and reflect on the results
found in Section 6. Finally, we draw conclusions and set out our immediate plans
for future work in this area in Section 7.

2 Related Work

Within the past decade, Explainability as a topic has seen a growing level of
interest within the deep learning community as well as across other Machine
Learning based approaches to problem solving. However there has been a no-
ticeable gap in the research concerning metaheuristics and search algorithms
with the closest examples being innovization proposed by Deb et al. in their
2014 paper [12] and illumination algorithms such as MAP-Elites discussed in a
2019 paper by Urquhart et al [25].

Deb et al [11, 12] proposed “innovization” to generate additional problem
based knowledge alongside the normally generated near-optimal solutions, by
identifying common principles among Pareto-optimal solutions for multi-objective
optimisation problems. This is based on the fact most optimization techniques
adopted within industry are used to yield a single or small selection of optimal
solutions and builds on it to allow these optimization techniques to yield addi-
tional problem-based knowledge alongside the generated optimal solution(s) via
the innovization process. This process takes a generated set of high-performing
trade-off solutions and looks for common principles concealed within them. The
philosophy here is that principles common amongst this set of high perform-
ing solutions will represent properties that ensure Pareto-Optimality and are by
extension valuable properties related to the problem as a whole.

More recently Urquhart’s 2019 paper looked at using MAP-Elites [21] to in-
crease trust in metaheuristics. This paper was based on the common complaint
from end users when presented with a solution constructed via a metaheuristic
approach that they themselves had no role in the solution construction. In or-
der to address this the authors applied MAP-Elites, which creates a structured
archive of high performing solutions that are mapped onto a set of solution char-
acteristics defined by the user such as cost or time. These solutions are generated
by mutation and recombination and each solution is then assigned a bin within
the solution space; should a generated solution be assigned to an already oc-
cupied bin solution only the solution with the highest fitness is retained within
this bin. MAP-Elites provides the end user with a structured archive of high
performing yet diverse solutions: Urquhart et al presented this archive via an
interactive decision-making tool from which the user is ultimately responsible
for choosing the preferred solution. It can be seen that MAP-Elites serves as



filter of the solution space for an end user that takes a large and impractical
search space and refines it to a diverse set of high-quality solutions that are
more readily usable for the end user to interact with.

In 2017, Gaier et al. [13] described using surrogate modelling alongside MAP-
elites, in order to speed up the MAP-Elites process by reducing the need for such
a large number of evaluations normally required for MAP-Elites to produce
worthwhile results, this was known as Surrogate-assisted illumination (SAIL).
This is achieved by integrating approximate models in the form of surrogates
as well as intelligent sampling of the objective function in question. Similarly
to the original MAP-Elites approach the search space is partitioned into bins
each holding a design with a different configuration of feature values. A sur-
rogate is constructed on an initial population of candidate solutions and their
fitness scores, MAP-elites then produces solutions seen to maximise the acquisi-
tion function in every region of the feature space producing our acquisition map.
New solutions are then sampled from this map and sampled with the additional
observations being used to improve the model. Repetition of the process results
in increasingly accurate models of high fitness regions of the feature space. The
performance predictions are then used by MAP-elites in place of the original ob-
jective function to produce a prediction map of estimated near-optimal designs.

The present work differs from the above approaches. In contrast to Innoviza-
tion, we target single-objective optimisation problems. In contrast to the illumi-
nation methods using MAP-elites, we do not seek to present many solutions to
the end user but, rather, seek to explain a single solution that was chosen by the
algorithm.

3 Background: Surrogate Models

Metaheuristics, including evolutionary algorithms, follow a well-known general
framework whereby a population of solutions are generated at random, then
evaluated against a fitness function, and new solutions are generated, usually bi-
ased towards solutions known to be high in fitness. The fitness function measures
solution quality and is used to guide the search but for many applied problems
is costly, especially when a long running simulation or human-in-the-loop evalu-
ation is used.

A common approach to speed up these metaheuristics is to build a surrogate
model of this fitness function [4,15,16] and use this to suggest where near-optimal
solutions fall within the decision space. The surrogate model uses machine learn-
ing techniques to approximate the true fitness function, ideally retaining some
of its key properties such as regions of high fitness, but is capable of evaluating
solutions at a faster rate than the fitness function. As well as offering a quicker
way to evaluate potential solutions the surrogate represents an explicit model
of the population and thus can be exploited to gain insight into the algorithm’s
understanding of the problem at hand. The outline framework for a surrogate-
assisted genetic algorithm that forms the subject of our study is illustrated in
the flow diagram in Figure 1. In our work, the GA alternates between using
the surrogate to evaluate solutions and using the true fitness function, with the
surrogate being updated as new evaluations are carried out by the true fitness
function. Many strategies for management and application of surrogate models
exist and the interested reader is directed to [10,15,16] for more detail.

Surrogates are usually constructed through training a model in parallel with
the optimization run, with the motivation for their use being an improvement
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Fig. 1. The outline of the surrogate assisted genetic algorithm that we use on our
experiments. In our study, n==5, i.e., the surrogate is retrained every 5 generations.

in the speed of our search. For this reason any extra problem knowledge we
are able to extract from them can largely be viewed as “free” in terms of ad-
ditional resources and CPU time at least. The explicit model of the population
in the form of our surrogate can then be mined, similarly to regression analysis
in principle [14, 17, 20]. This mining of models has already been demonstrated
when looking at Estimation of Distribution Algorithms (EDAs), which construct
probabilistic models reflecting the distribution of high fitness solutions within
the population, then sample this distribution to yield solutions likely to be high
in fitness. With existing work highlighting how useful information can be ex-
tracted from these probabilistic models [3, 6], it has been observed [7] within
some real world problems the additional information gleamed from the EDA
can prove just as advantageous as the optimisation results themselves.

It is important to note that the usefulness of this additional information is
highly problem dependent and entirely reliant on the nature of the surrogate
model used. More opaque black box modelling approaches involving neural nets
are likely to be much harder to mine than any of the more transparent meth-
ods like functions derived using linear regression [23]. Our major hypothesis is
that some semblance of explanation for the global optimum can be provided in
the form of variable importance rankings, extracted by mining surrogate fitness
models and visualisation of the results.



Data: x = (x0 . . . xn), xi = {0, 1}, near-optimal solution found by GA
Data: S(X)→ f , surrogate fitness function to estimate fitness f of a

solution X
Result: C = (c0 . . . cn), ci ∈ R, absolute change to surrogate fitness for

each variable in x
C ← ∅;
forg ← S(x) /* surrogate fitness of solution */

for i = 0 to n− 1 do /* for each variable xi */

xi ← (xi + 1) mod 2 /* flip variable xi */

f̂i /* surrogate fitness of mutated solution */

C ← |ci| /* add to list */

end
Algorithm 1: Method for probing variables in a solution with respect to
the surrogate fitness function

4 Methodology: Mining the Model

The proposed approach to determine and quantify the importance of individual
variables takes the form of local sensitivity analysis [26], whereby the optimal
solutions are perturbed and the resulting mutants tested against the surrogate
model, following Algorithm 1. Once the metaheuristic run has completed and a
surrogate fitness function built, the best-found solution over the metaheuristic
run was retained. Due to the relative simplicity of binary benchmark problems
this often lay on or near the true globally optimal solution s. Each binary vari-
able within s was then flipped to form a neighbour ŝ. The fitness of ŝ was
calculated using the surrogate, allowing us to understand not only the impor-
tance a given variable may have on the overall fitness of a solution but, more
importantly, whether our surrogate was able to accurately capture and utilize
this information.

This method also brings insight into whether the problem contains variables
which, when altered, would not impact negatively on performance. This is less
relevant for benchmark problems but is significant should this approach be ap-
plied to more real life and noisy problems. This mutated fitness score was then
compared to that of the original solution and the amount to which it has risen
or fallen recorded. Once a value for each variable change was recorded the vari-
ables themselves were ranked in terms of absolute effect on fitness and these
together constituted an experimental run. This entire process of GA and surro-
gate generation and subsequent surrogate model mining for variable importance
was repeated 50 times to give us a set of repeat runs. From these 50 runs, the
median absolute change in fitness and median ranking for each variable was cal-
culated. An example of the outcome of these rankings can be seen in Figure 3
and Figure 4.

The idea here is that the importance of each variables is derived from the
surrogate fitness function. This surrogate is biased towards high-quality solutions
that have been visited by the metaheuristic, and so reflects something of the
metaheuristic’s understanding of the problem. Probing in this way also costs
very little, because no additional calls to the fitness function are required.



5 Experiments

As a baseline, we focus on three well-known bit-string encoded benchmark func-
tions (BinVal, AltOnes and Checkerboard) and use three problem sizes for each.
In the case of BinVal and AltOnes these were 20, 50 and 100, whilst in the case
of Checkerboard, a square structure was required so problems sizes of 25, 64 and
100 were used. These functions are well understood and, in each function, we
have direct control over the interactions between variables and the importance
of variables.

5.1 Benchmark Problems

Our experiments focus on three benchmark functions using a bit string repre-
sentation. The three were chosen to give some basic variation in the importance
attached to each variable and the presence or absence of interactions.

BinVal was chosen because the problem variables have a clear rank order-
ing of importance. In the standard version of this problem, fitness is simply the
integer represented by the bit string in binary. In order to ensure that the impor-
tance of the least significant bits on fitness was not infinitesimal compared to the
most significant bits, we flattened the growth in weight applied to each bit by
changing the base c from 2 in the original benchmark to 1.1 in our experiments.

f(x) =

n−1∑
i=1

cixi (1)

AltOnes applies equal importance to all variables, and introduces interac-
tions. Fitness is the count of directly neighbouring pairs of bits in the bit string
that have differing values.

f(x) =

n−1∑
i=0

δ(xi, xx + 1) (2)

Checkerboard also introduces bivariate interactions, and though these are
equally weighted in the fitness function, implicitly those in the centre of the
grid have greater impact on fitness [5]. Solutions represent the rows of a s x s
grid concatenated into one string, and the objective is to realise a grid with a
checkerboard pattern of alternating 1s and 0s:

f(x) = 4(s− 2)2 −
s−1∑
i=2

s−1∑
j=2

{
δ (xij , xi−1j) + δ (xij , xi+1j)

+δ (xij , xij−1) + δ (xij , xij+1)

}
(3)

where δ is Kronecker’s delta function,

δij =

{
1 if i = j
0 if i 6= j (4)



5.2 Experimental Procedure

When addressing each of the benchmark problems above, a similar experimental
approach was undertaken. An initial random population of 100 candidate solu-
tions was created and a Genetic Algorithm (GA) used with a view to determine
a near-optimum solution. The GA has population size 100, tournament size 2,
mutation gene rate of 0.1, and a crossover rate of 0.95 and ran for 100 gener-
ations. The GA also used elitism, with the single fittest solution being carried
from one generation to the next without mutation.

The GA takes the initial population and iterates through a cycle of assessing
the fitness of the population, selecting candidate solutions to take forward to the
next newly formed population and breeding these solutions through a cycle of
crossover and mutation, following the outline in Figure 1. The best found solution
over the entire metaheuristic run is returned to the end user once completed with
no true explanation as to how it arrived at a given solution. In order to try and
capture some of this explainability a surrogate model was constructed using
the current GA population and calculated fitness scores at different periods
throughout the GA run with retraining occurring at set intervals. Clearly for
these simple benchmark functions the surrogate is unnecessary for the purpose
of speeding up the process; but we aim to demonstrate its utility for mining the
importance of problem variables.

For each problem, three different surrogate models were used in order to
see how the problems performed over a variety of surrogate model types: lin-
ear regression; decision tree; and random forest. These were trained using the
WEKA Java machine learning library1, and used with the default hyperparam-
eter configurations. In principle better modelling could be achieved by tuning of
the hyperparameters, but as the purpose of this study is a proof of concept for
mining the model, we have left this stage to future work for now.

6 Results and Discussion

Before we go onto to discuss the results, it is important to note that one of
the surrogates failed to accurately grasp enough about any of the problems in
question: this was the decision tree in the form of a WEKA RepTree. In the
smaller sized instances of BinVal, RepTree was able to ascertain that greater
importance lay in the lower numbered variables, nearer the beginning of the bit
string but failed to pick up any further knowledge about variable importance.
With both AltOnes and Checkerboard this surrogate did not pick up sufficient
information to be of use to us. An example of the results that RepTree generated
for BinVal can be seen in Figure 2

Looking firstly at the BinVal benchmark problem over the three problem
sizes with linear regression and random forest as the surrogate models, we see
similar results as shown in Figure 3. The average bearing a variable has on
fitness diminishes as the variable number increases. This is further reinforced
by Figure 4, which shows that, as the variable number increases, its rank and,
by extension, its bearing on fitness, can be seen to reduce. This agrees with our
understanding of the BinVal problem and paints a clear picture that surrogate
mining has found information directly relevant to the quality of solutions in the
optimisation problem at hand.

1Version 3.8.5 — https://www.cs.waikato.ac.nz/ml/weka/
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Fig. 2. This plot shows the distribution of importance ranks allocated to each variable
over 50 runs (lower values indicate closer to 1st place; i.e., more important). In this
case, showing the ability of the surrogate decision tree (RepTree) to capture problem
knowledge. Even the most important variables (left-most) are often ranked far from
first place, and after the tenth variable, rarely was any importance detected.

Similarly when looking at the AltOnes problem, where equal importance is
seen across the suite of variables, it was observed both linear regression and
random forest surrogates were able to detect that all variables shared the same
level of change in absolute fitness. In each case, each variable had an impact of
1/n on overall fitness, indicating they shared a similar degree of importance in
solving the problem. This was further reinforced when the variables were ranked
in terms of importance and all fell on or around half of the total number of
variables in a given problem, as shown in Figure 5, where a linear regression
model was used as the surrogate.

Finally when looking at the Checkerboard problem, we see a similar pattern
to AltOnes, with all variables sharing a similar relationship to fitness and their
alteration resulting in a similar fitness change. When ranked, all variables fall on
or around halfway, as seen in Figure 6. The only caveat to this is small regular
pockets of apparently slightly more influential and higher ranked variables (there
is a lot of noise but roughly speaking, 13–17, 21–28, 55–61, 73–79). These were
determined to be variables that lay nearer the central region of our hypothetical
Checkerboard and thus had a higher number of neighbours surrounding them.
At this stage, we are only concerned with the individual variable importance but,
in future, more work could be done to investigate this neighbourhood element
of the problem and how best to capture it.

7 Conclusion

This paper serves as an initial indicator for the potential to use a collection of
machine learning algorithms to aid in the explainability of optimization processes
utilizing metaheuristics. It focuses on the reporting of relationships between the
location of variables within a given candidate solution and their bearing on this
solutions ability to solve benchmark problems. It applies sensitivity analysis to
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Fig. 3. The absolute fitness change resulting when individual variables are flipped
with the BinVal problem of size 100, using a linear regression surrogate. Each box is
the distribution of absolute fitness changes detected for each variable by mining the
surrogate. A smooth drop off in importance can be observed.
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Fig. 4. The rankings of variables within the BinVal problem of size 100, using the linear
regeression surrogate. A clear and consistent rank ordering of importance corresponding
to the location of each variable can be observed.

a proposed solution with a surrogate model to achieve this. Some immediate
benefits of this can be quickly seen:

– Outside of traditional benchmark problems, gaining knowledge about vari-
able rankings and the sensitivity of individual variables can allow for so-
lutions to be fine tuned for factors and constraints not initially considered
during the optimization run, whilst retaining an idea of the effect a given
change will have on the optimality of a given solution.
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Fig. 5. Showing the variable ranking resulting when individual variables are flipped
with the AltOnes problem of size 100
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Fig. 6. Showing variable rankings within checkerboard problem

– More obviously, if the optimal solution / set of solutions returned by the
metaheuristic run agrees with the conclusions drawn from our surrogate
model, it gives a decision maker more confidence in the optimality of solu-
tions in question and increases the likelihood they will be utilized.

– Finally in the case of complicated or long running optimization algorithms,
the surrogate is able to point towards the likely location of well performing
solutions and by extension likely global optima. This has a possible two-
fold benefit. Firstly, allowing us to narrow the search space to filter out
solutions we know to be of poorer quality and focus on only the higher quality
solutions. Secondly, the potential to indicate where a stochastic technique
such as those employed by many metaheuristic optimization techniques may
have neglected or passed over a region of high fitness or perhaps even the
globally optimal solution itself.



Comparing the results of the two successful surrogates (linear regression and
random forest) we see very similar variable rankings generated for each of the
benchmark problems. In the case of BinVal both showed a clear sliding level of
variable importance as a variable is further from the beginning of the bit string.
Similarly, in the case of AltOnes and Checkerboard a generally similar level of
importance was shared by all variables within the bit string as expected with
our own understanding of these problems.

We have looked at using surrogate fitness functions as a way to obtain ad-
ditional information pertaining to variable importance rankings within a subset
of common binary benchmark problems. Going forward from here additional fo-
cus needs to remain on introducing and disseminating the concept of applying
surrogate model mining to a much wider range of problems particularly those
traditionally solved using processes derived from metaheuristic approaches. This
work has further strengthened the argument for using surrogates as a means of
gaining additional problem knowledge and explaining metaheuristic optimisation
results in the future.

Future work following this line could involve applying similar methods to real
world and non-binary problems as well as multi-objective problems. We also wish
to investigate whether taking surrogate models built at different stages of a GA
run (after a set number of generations) will affect the surrogate’s performance.
Furthermore, we will seek to extend our current methods to work on problems
involving interactions, such as the known neighbourhood structure in this bench-
mark problem, or following a structure learning procedure such as those set out
in [2].
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