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Abstract: Water transparency (or Secchi disk depth: ZSD) is a key parameter of water quality; thus,
it is very important to routinely monitor. In this study, we made four efforts to improve a state-
of-the-art ZSD estimation algorithm that was developed in 2019 on the basis of a new underwater
visibility theory proposed in 2015. The four efforts were: (1) classifying all water into clear (Type I),
moderately turbid (Type II), highly turbid (Type III), or extremely turbid (Type IV) water types;
(2) selecting different reference wavelengths and corresponding semianalytical models for each water
type; (3) employing an estimation model to represent reasonable shapes for particulate backscattering
coefficients based on the water type classification; and (4) constraining likely wavelength range
at which the minimum diffuse attenuation coefficient (Kd(λ)) will occur for each water type. The
performance of the proposed ZSD estimation algorithm was compared to that of the original state-of-
the-art algorithm using a simulated dataset (N = 91,287, ZSD values 0.01 to 44.68 m) and an in situ
measured dataset (N = 305, ZSD values 0.3 to 16.4 m). The results showed a significant improvement
with a reduced mean absolute percentage error (MAPE) from 116% to 65% for simulated data and
from 32% to 27% for in situ data. Outliers in the previous algorithm were well addressed in the new
algorithm. We further evaluated the developed ZSD estimation algorithm using medium resolution
imaging spectrometer (MERIS) images acquired from Lake Kasumigaura, Japan. The results obtained
from 19 matchups revealed that the estimated ZSD matched well with the in situ measured ZSD,
with a MAPE of 15%. The developed ZSD estimation algorithm can probably be applied to different
optical water types due to its semianalytical features.

Keywords: secchi disk depth; water quality; water type classification; semianalytical models; MERIS

1. Introduction

Water transparency relates to the depth to which light will penetrate water and to
photosynthesis changes in a specific waterbody over time; thus, it is key to thoroughly
evaluating water quality [1–9]. Changes in water transparency can also be an indicator of
a human threat to an ecosystem [10–14]. Water transparency is often represented using
Secchi disk depth (ZSD), which can be measured using a traditional Secchi disk or estimated
using the remote sensing technique. Recently, the remote sensing technique has been widely
used because it is capable of providing a synoptic view of ZSD distribution in waters and
estimation algorithms have been fine tuned [15–17].

Generally, two types of ZSD estimation algorithms are used with the remote sensing
technique: empirical and semianalytical algorithms. Empirical algorithms use a simple
regression analysis between remote sensing data and in situ measured ZSD values, while
semianalytical algorithms are based on an underwater visibility theory [4,18–21]. Compared
to empirical algorithms, they are more suitable for estimating ZSD values from remote
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sensing data because they can be applied to various waters without the requirements of in
situ data for algorithm recalibration [21,22].

Two underwater visibility theories are currently in use: the classic theory proposed in
1952 [23] and the new theory proposed in 2015 [4]. Previous studies have found that ZSD
estimation algorithms based on the new theory perform better than those based on the clas-
sic theory [4,20–22,24]. Algorithms based on the new theory rely on the diffuse attenuation
coefficient (Kd(λ)) at a wavelength corresponding to the maximum light transparency [4]. In
these algorithms, the accurate estimation of total absorption and backscattering coefficients
(a(λ) and bb(λ), respectively) using an appropriate quasianalytical algorithm (QAA) is
a key step for estimating ZSD values more accurately. Therefore, the selection of the most
appropriate QAA for each water type is necessary [4,15,19,21,25–28].

Recently, Jiang et al. [21] developed a semianalytical algorithm (hereafter referred to
as the Jiang19 algorithm) to estimate ZSD values with the aim of improving a ZSD estima-
tion algorithm developed previously by Lee et al. [4]. Both algorithms are based on the
new underwater visibility theory. However, only two water types (i.e., clear and turbid
waters) were considered in the Jiang19 algorithm, and thus only two reference wavelengths
(560 nm for clear waters and 754 nm for turbid water) were used to estimate a(λ) and
bb(λ). Although previous studies have confirmed the success of using 560 nm for clear
waters [29] and 754 nm for highly turbid waters [30] as reference wavelengths in total
absorption coefficient estimations, the assumption of a pure water absorption coefficient
dominating the total absorption coefficient at these two wavelengths will probably be
invalid in moderately turbid and extremely turbid waters. This is because the absorption
coefficients of phytoplankton and nonalgal particles at 560 and 754 nm will also be high in
moderately and extremely turbid waters [31]. Therefore, the applicability of the Jiang19 al-
gorithm to different optical water types is still a challenge. It is thus necessary to revisit the
Jiang19 algorithm and improve its water type classification, reference wavelength selection,
and water-type-corresponding QAA application to estimate more accurate ZSD values in
waters with different optical properties.

Consequently, the objectives of our study were to: (1) develop a new algorithm for
estimating ZSD more accurately in waters with different optical properties by classifying
more water types and by selecting a more appropriate reference wavelength and corre-
sponding QAA for each water type; and (2) evaluate the performance of the developed ZSD
estimation algorithm using synthetic, in situ, and medium resolution imaging spectrometer
(MERIS) data.

2. Materials and Methods
2.1. Data Acquisition
2.1.1. In Situ Data Collection

We collected 305 in situ measured hyperspectral remote sensing reflectance (Rrs(λ))
and ZSD data pairs from 20 lakes and Tokyo Bay in Japan (Figure 1, hereafter referred to as
the in situ dataset). The ZSD values were measured with a 30 cm diameter white Secchi
disk. The ZSD data ranged from 0.3 to 16.4 m and covered clear to highly turbid waters.
The in situ measured Rrs(λ) values were obtained through the above-water approach.
This approach measures the radiance of the skylight (Ls), the total upwelling radiance
from the water (Lt), and the radiance from a standard gray board (Lg) using a FieldSpec®

HandHeld spectroradiometer (ASD, Boulder, CO, USA) with a sensor zenith angle of
40◦ and an azimuth angle of 135◦ from the sun [32]. All measurements were carried out
between 9:30 to 14:00 local time (three measurements were taken between 14:00 and 16:00).
Then, the Rrs was calculated as follows:

Rrs= (Lt − ρLs)/
(

π

Rg
Lg

)
− ∆ (1)

where ρ is the water surface reflectance factor (0.028 when the wind speed is less than
5 m/s) [32], Rg is the reflectance of the gray board, and ∆ is the residual reflected skylight
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calculated using a method proposed by Jiang et al. [33]. All Rrs(λ) spectra were then
converted to MERIS bands based on the MERIS spectral response functions. This dataset
was used to evaluate the performance of the developed ZSD estimation algorithm.
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To further evaluate the estimated ZSD values from MERIS images, we also acquired in
situ measured ZSD values at 10 stations in Lake Kasumigaura (Figure 1b) between January
2003 and March 2012 from the Lake Kasumigaura database, which were collected by the
National Institute for Environmental Studies (NIES), Japan [34].

2.1.2. Synthetic Data Collection and Generation

In this study, we collected one synthetic dataset from Jiang et al. [31], which is called
Synthetic Dataset I (N = 91,287) in Table 1. Synthetic Dataset I contains pairs of Rrs(λ) spec-
tra as well as total absorption coefficient (a(λ)) and total backscattering coefficient (bb(λ))
values. The Rrs(λ) spectra were generated from the simulated a(λ) and bb(λ) values by us-
ing a bio-optical model proposed by Gordon et al. [35] and Lee et al. [29] with assumptions
of a nadir viewing angle and optically deep waters. For Synthetic Dataset I, the chlorophyll-
a concentration (Cchl), tripton concentration (Ctr), and CDOM absorption coefficient at
440 nm (aCDOM(440)) were varied with different intervals between 0.01–1000 mg/m3,
0.01–1000 g/m3, and 0.01–5 m−1, respectively. More details on Synthetic Dataset I genera-
tion can be found in Jiang et al. [31].

Table 1. Summary of Synthetic Datasets I, II, and III.

Synthetic
Dataset

I
(Jiang et al. [31])

II
(This Study)

III
(This Study)

Total Number
of Data Usage

Parameter a(λ), bb(λ), Rrs(λ) Kd(λ) ZSD(0.01–44.68 m) 91,287 Algorithm Validation

We then generated two other synthetic datasets to help with the development and
evaluation of the algorithms. Synthetic Dataset II contains the diffuse attenuation coefficient
(Kd(λ)) values, which were generated from the simulated a(λ) and bb(λ) values in Synthetic
Dataset I by using the following semianalytical equation proposed by Lee et al. [36,37]:

Kd(λ) = (1 + 0.005θ)a(λ) + 4.259(1 − 0.265ηw(λ)
(

1 − 0.52e−10.8a(λ)
)

bb(λ) (2)
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where θ is the solar zenith angle and ηw is the ratio of bbw (backscattering coefficient of pure
water [38]) to bb.

Synthetic Dataset III consists of simulated ZSD values. These ZSD values were gener-
ated from the simulated Kd(λ) values (Synthetic Dataset II) and the corresponding Rrs(λ)
values (Synthetic Dataset I) using the following semianalytical equation developed by
Jiang et al. [21]:

ZSD =
1

(1 + KT/Kd)·minKd(λ)
ln

(∣∣0.14 − RPC
rs
∣∣

Cr
t

)
, KT/Kd =

1.04(1 + 5.4µ)0.5

1/
(

1 − sin(θ)2

RI2

)0.5 (3)

where min Kd(λ) is the minimum Kd(λ) value among the visible wavelengths, RPC
rs is the

corresponding Rrs at the wavelength with the minimum Kd(λ), Cr
t is the contrast threshold

for sighting a white disk (i.e., 0.013 sr−1), RI is the refractive index value of water (1.34, [39]),
KT is the diffuse attenuation coefficient of upwelling radiance at the wavelength with the
minimum Kd(λ), θ is the solar zenith angle, and µ is defined as bb/(a+bb). A summary of
all synthetic datasets is listed in Table 1.

2.1.3. Satellite Data Collection and Processing

In our study, the MERIS Level-1B data between 2002 and 2012 for Lake Kasumigaura
were collected from the European Space Agency (ESA, https://merisfrs-merci-ds.eo.esa.
int, accessed on 4 February 2018). We selected MERIS data due to their good spatial
(300 × 300 m) and spectral (15 bands in visible and near-infrared domains) characteristics.
Atmospheric correction was performed using the Case-2 Regional Processor in BEAM 5.0,
and clouds and cloud shadows were identified using the IdePix module in SNAP. We then
masked out the pixels with clouds, cloud buffers, cloud shadows, and failed atmospheric
correction. Finally, we compiled 19 matchups from Lake Kasumigaura by matching the
acquisition times of in situ measured ZSD values and satellite images (acquired on the same
day). These matchups were used to further evaluate the performance of the developed ZSD
estimation algorithm. In addition, the averages of the ZSD values derived from 3-by-3 pixels
were used as satellite-estimated values.

2.2. Development of a ZSD Estimation Algorithm
2.2.1. The Original Jiang19 Algorithm

The original Jiang19 algorithm contains three main steps. First, a QAA hybrid is
developed to retrieve a(λ) and bb(λ) from Rrs(λ) spectra. In the QAA hybrid, a maximum
chlorophyll index (MCI) proposed by Gower et al. [40] is used to switch QAA_V5 [29] and
QAA_T (i.e., QAA_Turbid in [30]). In detail, if MCI <= 0.0016 sr−1, 560 nm is used as the
reference wavelength and thus QAA_V5 is selected to estimate a(λ) and bb(λ) for clear
waters; otherwise, 754 nm is used as the reference wavelength and thus QAA_T is selected
to estimate a(λ) and bb(λ) for turbid waters.

Then, Kd(λ) is estimated from a(λ) and bb(λ) using Equation (2) as the second step,
and ZSD is estimated from the minimum Kd(λ) in the visible domain (e.g., 443 nm, 490 nm,
510 nm, 560 nm, 620 nm, 665 nm) and the corresponding Rrs(λ) using Equation (3) (the
third step).

2.2.2. Development of a New ZSD Estimation Algorithm

Since previous studies have confirmed that semianalytical Equations (2) and (3) are
robust in waters with different optical properties if accurate a(λ) and bb(λ) are provided
(e.g., [4,21,22,36,41]), our efforts were focused on how to obtain more accurate a(λ) and
bb(λ) values from Rrs(λ) spectra. A flowchart of the developed ZSD estimation algorithm
is shown in Figure 2. Comparing to the Jiang19 algorithm, four improvements were carried
out in this study, which are detailed sequentially in the following paragraphs.

https://merisfrs-merci-ds.eo.esa.int
https://merisfrs-merci-ds.eo.esa.int
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First, we adopted a recently proposed water type classification algorithm that can
classify all waters into four types, clear (Type I), moderately turbid (Type II), highly turbid
(Type III), and extremely turbid (Type IV), by comparing the values of Rrs at 490, 560,
620, and 754 nm [31]. This approach allowed us to more reasonably assume that the pure
water absorption coefficient dominated the total absorption coefficients at the reference
wavelengths (i.e., 560 nm for Types I & II, 754 nm for Type III, and 865 nm for Type
IV) [29,31,42]. The water type classification algorithm is described as follows:

If Rrs(490) > Rrs(560), then Type I waters,

Else, if Rrs(490) > Rrs(620), then Type II waters,

Else, if Rrs(754) > Rrs(490) and Rrs(754) > 0.01 sr−1, then Type IV waters,

Else, Type III waters.

(4)

Second, we selected a different reference wavelength and corresponding QAA for each
water type to retrieve a(λ0) and bb(λ0) values at the reference wavelength (λ0). For Type I
waters, we selected 560 nm as the reference wavelength and then used an empirical equation
in QAA_V5 to estimate a(560) due to its good performance in clear water [29,43–45]. The
Equations are:

a(560) = aw(560) + 10−1.146−1.366x−0.469x2
(5)

x = log10(
rrs(443) + rrs(490)

rrs(560) + 5 rrs(665)
rrs(490) rrs(665)

) (6)

where rrs is the remote sensing reflectance just below the water surface, aw(560) is the
absorption coefficient of pure water at 560 nm, and a(560) is the total absorption coefficient
at 560 nm.

For Type II waters, we selected the same wavelength (i.e., 560 nm) as the refer-
ence wavelength but used a different empirical equation from QAA_TM (developed by
Curtarelli et al. [42]) to estimate a(560). We adopted QAA_TM because of its good perfor-
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mance in moderately turbid waters compared to QAA_V6 developed by Lee et al. [42,46].
The equation is:

a(560) = aw(560) + 0.43(
Rrs(560)

Rrs(665) + Rrs(709)
)
−1.44

(7)

where Rrs(560), Rrs(665), and Rrs(709) are the remote sensing reflectance just above the
water surface at 560, 665, and 709 nm, respectively. However, since Equation (7) used
a longer wavelength (709 nm) than those used in Equation (6), and considering the ef-
fects of a low signal-to-noise ratio in a practical application, we followed Lee et al.’s [46]
suggestion to use QAA_V5 for the waters with Rrs(665) < 0.0015 sr−1 (i.e., we still used
Equations (5) and (6)).

For Type III waters, 754 nm was selected as the reference wavelength, and the equations
from QAA_T were adopted to estimate a(754) (i.e., a(754) ≈ aw(754) [30]). Similar to the
consideration for Type II waters, we used a threshold of Rrs(754) < 0.0015 sr−1 and used
QAA_TM for those waters with lower Rrs(754). This approach allowed us to avoid the
effects of a low signal-to-noise ratio in a practical application.

For Type IV waters, 865 nm was selected as the reference wavelength and the as-
sumption of a(865) ≈ aw(865) was adopted, as suggested by Jiang et al. [31]. After esti-
mation of a(λ0) at the reference wavelength (λ0), the particulate backscattering coefficient
(bbp(λ0)) could be calculated by the following equation [21,29]:

bbp(λ0) =
µ(λ0)a(λ0)

1 − µ(λ0)
− bbw(λ0) (8)

Here, bbw(λ0) is the backscattering coefficient of pure water at the reference wavelength.
In the third effort, we employed two empirical models (for Types I and II, respectively)

and one semianalytical model (for both Types III and IV waters), which can represent
reasonable shapes for particulate backscattering coefficients (bbp(λ)), thereby allowing us
to retrieve more accurate a(λ) and bb(λ) values at a given wavelength for each water type.
For Type I waters, the spectral slope Y was calculated using an empirical Equation in
Lee et al. [29]:

Y = 2.0
(

1 − 1.2exp
(
−0.9

rrs(443)
rrs(560)

))
(9)

For Type II waters, the spectral slope Y was calculated using a different empirical
Equation in Curtarelli et al. [42]:

Y = 0.5248exp
(

rrs(665)
rrs(709)

)
(10)

For Types III and IV waters, the spectral slope Y was calculated using a semianalytical
Equation in Yang et al. [30]:

Y = −372.99
[

log10

(
µ(754)
µ(779)

)]2
+ 37.286log10

(
µ(754)
µ(779)

)
+ 0.84 (11)

Then a(λ) and bb(λ) at the given wavelength (λ) were calculated using the following
Equations [29]:

bb(λ) = bbw(λ) + bbp(λ0)(
λ0

λ
)

Y
(12)

a(λ) =
(1 − µ(λ))bb(λ)

µ(λ)
(13)

To summarize the second and third efforts, we selected QAA_V5 for Type I waters,
QAA_TM for Type II waters, QAA_T with a reference wavelength of 754 nm (hereafter
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renamed QAA_T754) for Type III waters, and QAA_T with a reference wavelength of
865 nm (renamed QAA_T865) for Type IV waters.

In the fourth effort, we carried out a statistical analysis using Synthetic Dataset II
to investigate the possibility of a minimum Kd(λ) for each water type. Figure 3 shows
the number of synthetic water samples with the minimum Kd(λ) occurring at each visible
wavelength for each water type. From the figure, we can observe that the minimum
Kd(λ) almost always occurred at 490 and 560 nm for Type I waters, 560 nm for Type II
waters, 560, 620, and 665 nm for Type III waters, and at 665 nm for Type IV waters.
Accordingly, we considered the relating wavelengths to find the minimum Kd(λ) for each
water type. This effort avoided the selection of inappropriate wavelengths due to estimation
errors in the previous steps (e.g., due to uncertainty in the estimations of Y values using
Equations (9)–(11).
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2.3. Accuracy Assessment

We used the root mean square error (RMSE) in a log10 unit, the mean absolute percent-
age error (MAPE), bias, and the Nash-Sutcliffe efficiency (NSE) to evaluate the performance
of the developed algorithm. The Equations are as follows:

RMSE =

√
∑N

i=1[log10(Xestimated,i)− log10(Xmeasured,i)]
2

N
(14)

MAPE =
1
N

N

∑
i=1

∣∣∣∣Xestimated,i − Xmeasured,i

Xmeasured,i

∣∣∣∣·100% (15)

Bias = 10Y − 1, Y =
∑N

i=1[log10(Xestimated,i)− log10(Xmeasured,i)]

N
(16)

NSE = 1 − ∑N
i=1(Xestimated,i − Xmeasured,i)

2

∑N
i=1
(
Xmeasured,i − Xmeasured

)2 (17)
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where Xestimated is the estimated ZSD value, Xmeasured is the corresponding in situ measured
or known ZSD value, Xmeasured is the mean of in situ measured or known ZSD values, and N
is the number of data pairs. The regression results between the estimated and the known or
in situ measured ZSD values (i.e., R2, slope, and intercept) were also used to help evaluate
algorithm performance.

3. Results
3.1. Validation Using Synthetic Datasets I and III

Figure 4 compares known ZSD values (i.e., Synthetic Dataset III) and estimated ZSD
values from Synthetic Dataset I using the Jiang19 algorithm and the algorithm developed
in our study, respectively. From the figure, we observed many overestimations around
the boundary between Type I and Type II waters as well as around the boundary between
Type II and Type III waters when the Jiang19 algorithm was used (Figure 4a). These
outliers resulted in very low values of R2 (=0.008) and NSE (=−200.12), and high values
of RMSE (0.30 in log10 ZSD units), MAPE (116%), and bias (83%). In contrast, the outliers
are well addressed in the new algorithm, with improved values of R2 (0.97), NSE (0.90),
RMSE (0.23 in log10 ZSD units), and MAPE (65%) (Figure 4b). Even when the outliers in
Jiang et al.’s results were removed (N = 84,166), our proposed algorithm still performed
better than the Jiang19 algorithm, with reduced values of RMSE (0.29 to 0.23 in log10 ZSD
units) and MAPE (90% to 68%) as well as increased values of R2 (0.95 to 0.97) and NSE
(0.85 to 0.90). However, a systematic overestimation was found in the new algorithm (bias
of 60%). The results shown in Figure 4a,b are also represented according to the QAA used
(Figure 4c,d) and to the selected wavelength with the minimum Kd(λ) (Figure 4e,f). These
figures were used to discuss how the proposed estimation algorithm worked (see Section 4).

3.2. Validation Using In Situ Dataset

Figure 5 compares the in situ measured and estimated ZSD values. The estimated ZSD
values were obtained from in situ measured Rrs(λ) spectra using the Jiang19 algorithm
or the algorithm developed in this study. The results show that the new ZSD estimation
algorithm outperformed the Jiang19 algorithm with a reduced RMSE (from 0.18 to 0.17 in
log10 unit) and MAPE (from 32% to 27%) as well as increased NSE (from 0.90 to 0.92) and
R2 values (from 0.90 to 0.93). In particular, we observed that three points with large errors
due to the use of the Jiang19 algorithm (blue circles with red boxes in Figure 5a) were
improved substantially by using the new algorithm (Figure 5b). However, compared to the
use of the Jiang19 algorithm, the bias due to the use of the new algorithm increased slightly,
from a 13% underestimation to an 18% underestimation. In addition, unlike the results
shown in Figure 4, systematic overestimation was not found in the application of in situ
measured Rrs(λ) spectra to estimate ZSD, regardless of the use of the Jiang 19 algorithm
or the new algorithm. Type IV waters were not found from our in situ dataset. As in
Figure 4, the results shown in Figure 5a,b are also represented according to the QAA used
(Figure 5c,d) and to the selected wavelength with the minimum Kd(λ) (Figure 5e,f). These
figures were also used to discuss how the proposed ZSD estimation algorithm worked
(see Section 4).
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3.3. Validation Using MERIS Data

We further compared the estimated ZSD values from MERIS images using the newly
developed algorithm to the in situ measured ZSD values (Figure 6). The in situ measured
ZSD values were obtained from the Kasumigaura database, and all matchups were classified
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to Type III waters based on their MERIS-derived Rrs(λ) spectra. From the figure, the MERIS-
derived ZSD values were consistent with the in situ measured ZSD values, with a MAPE
value of 15%, an RMSE value of 0.08 (in log10 unit), and a bias value of −9%. The R2 value
of 0.57 and the slope of 0.82 also indicate the good performance of the new ZSD estimation
algorithm. Since the Jiang19 algorithm also selected the same reference band (band 12 of
MERIS) and the corresponding QAA (QAA_T754) for all matchups, identical results were
obtained when we used the Jiang19 algorithm (data not shown). Systematic overestimation
was not found in the application of MERIS data.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 15 
 

 

𝑍ௌ values were obtained from the Kasumigaura database, and all matchups were classi-
fied to Type III waters based on their MERIS-derived 𝑅௦(λ) spectra. From the figure, the 
MERIS-derived 𝑍ௌ values were consistent with the in situ measured 𝑍ௌ values, with 
a MAPE value of 15%, an RMSE value of 0.08 (in 𝑙𝑜𝑔10 unit), and a bias value of −9%. The 
R2 value of 0.57 and the slope of 0.82 also indicate the good performance of the new 𝑍ௌ 
estimation algorithm. Since the Jiang19 algorithm also selected the same reference band 
(band 12 of MERIS) and the corresponding QAA (QAA_T754) for all matchups, identical 
results were obtained when we used the Jiang19 algorithm (data not shown). Systematic 
overestimation was not found in the application of MERIS data. 

 
Figure 6. Comparisons of the in situ measured 𝑍ௌ  values and the estimated 𝑍ௌ  values from 
MERIS data using the new 𝑍ௌ estimation algorithm. 

4. Discussion 
We developed a new algorithm to estimate 𝑍ௌ from MERIS data. Since this algo-

rithm is based on several existing semianalytical algorithms [21,29–31,42], it can be ap-
plied to different optical water types, from clear to extremely turbid. The validation results 
from the synthetic dataset (with a wide range of inherent optical properties, 𝑍ௌ values 
ranging from 0.01 to 44.68 m) and the in situ dataset (from 21 Japanese waters, 𝑍ௌ values 
ranging from 0.3 to 16.4 m) provide strong evidence to confirm the applicability of the 
developed 𝑍ௌ estimation algorithm.  

However, a systematic overestimation of 𝑍ௌ values was observed from the valida-
tion results of the use of the synthetic dataset (Figure 4b). This is because the assumption 
for a(𝜆) at the reference wavelengths resulted in an underestimation of a(𝜆) values and 
thus an underestimation of bb(λ) values at the same wavelength. These underestimations 
propagated to the final estimated 𝑍ௌ values. However, no overestimation of 𝑍ௌ  values 
was observed when the developed algorithm was applied to the in situ and satellite data 
(Figures 5b and 6). This is probably because the measurement errors contained in the in 
situ and satellite data hid (or offset) the systematic overestimation due to the mechanism 
of the developed algorithm. Therefore, further correction to mitigate the systematic over-
estimation was not carried out in this study.  

Optical water type classification is very important because it helps to both clarify 
relationships between different properties inside a certain class and quantify the variation 
between classes [25,47]. Recently, interest has grown in the application of the optical water 
type classification in the remote sensing of ocean color (e.g., [21,31,48–51]). In this study, 

Figure 6. Comparisons of the in situ measured ZSD values and the estimated ZSD values from MERIS
data using the new ZSD estimation algorithm.

4. Discussion

We developed a new algorithm to estimate ZSD from MERIS data. Since this algorithm
is based on several existing semianalytical algorithms [21,29–31,42], it can be applied to
different optical water types, from clear to extremely turbid. The validation results from
the synthetic dataset (with a wide range of inherent optical properties, ZSD values ranging
from 0.01 to 44.68 m) and the in situ dataset (from 21 Japanese waters, ZSD values ranging
from 0.3 to 16.4 m) provide strong evidence to confirm the applicability of the developed
ZSD estimation algorithm.

However, a systematic overestimation of ZSD values was observed from the validation
results of the use of the synthetic dataset (Figure 4b). This is because the assumption
for a(λ) at the reference wavelengths resulted in an underestimation of a(λ) values and
thus an underestimation of bb(λ) values at the same wavelength. These underestimations
propagated to the final estimated ZSD values. However, no overestimation of ZSD values
was observed when the developed algorithm was applied to the in situ and satellite
data (Figures 5b and 6). This is probably because the measurement errors contained
in the in situ and satellite data hid (or offset) the systematic overestimation due to the
mechanism of the developed algorithm. Therefore, further correction to mitigate the
systematic overestimation was not carried out in this study.

Optical water type classification is very important because it helps to both clarify
relationships between different properties inside a certain class and quantify the variation
between classes [25,47]. Recently, interest has grown in the application of the optical water
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type classification in the remote sensing of ocean color (e.g., [21,31,48–51]). In this study,
we found that water type classification is a guide to select the most appropriate reference
wavelength and corresponding QAA for the more accurate estimation of a(λ) and bb(λ) in
waters with different optical properties. Therefore, we adopted the latest classification algo-
rithm to classify all waters into four types. In contrast, the Jiang19 algorithm classified wa-
ters into only two types (clear and turbid) and used two corresponding QAAs (QAA_V5 and
QAA_T754), thus generating large errors around boundaries of different water types
(Figure 4a). For example, in Figure 4c, the Jiang19 algorithm classified some data samples
as the clear water type and used QAA_V5 to estimate a(λ) and bb(λ); thus, large errors
occurred in the ZSD estimations (yellow points in Figure 4c). In contrast, we classified
these data samples as Water Type II (moderately turbid waters), which enabled us to use
QAA_TM for a(λ) and bb(λ) estimations and in turn improved the ZSD estimations (blue
points in Figure 4d). Similar results can also be observed from Figure 5c. For example,
the Jiang19 algorithm classified the yellow point with red box 3 as clear water and two green
points with red boxes 1 and 2 as turbid water, and thus used QAA_V5 and QAA_T754 to
estimate a(λ) and bb(λ), resulting finally in large errors in the ZSD estimations. These
three ZSD estimations were improved by classifying them as Type II waters and thus using
QAA_TM to replace QAA_V5 and QAA_T754 (Figure 5d).

In addition, Jiang et al. [31] suggested the use of QAA_V6 to estimate a(λ) and bb(λ)
at the reference wavelength of 665 nm for Type II waters. However, several previous
studies have reported that QAA_V6 often failed in turbid waters [6,21,30,42]. Therefore,
we used QAA_TM instead of QAA_V6 in this study. Our results also show that QAA_TM
performed better than QAA_V6 for Type II waters (data not shown).

We improved the accuracy of a(λ) and bb(λ) estimation by classifying waters into four
types (effort 1), and then adopted different QAA to estimate a(λ) and bb(λ) for each water
type (efforts 2 and 3). These three efforts addressed most of the outliers caused by using
the Jiang19 algorithm. However, some outliers remained after the above three efforts. This
is because 620 or 665 nm was sometimes identified as the wavelength with the minimum
Kd even for some Type I and II waters due to uncertainty in the Y estimation model [30].
The identification of 620 or 665 nm is obviously inappropriate as the wavelength with the
minimum Kd in Type I and II waters should be at 490 or 560 nm based on the statistical
results in Figure 3. Therefore, in this study, we also limited the wavelengths used to
estimate the minimum Kd(λ) in each water type. This effort can make the wavelengths for
estimating minimum Kd(λ) close to the reference wavelength in each water type and thus
can reduce errors due to uncertainty in the Y estimation model as seen in Figure 4e,f (not
clearly observed in Figure 5e,f).

5. Conclusions

In this study, we developed a semianalytical algorithm for estimating ZSD values from
remote sensing data. The developed ZSD estimation algorithm considers different optical
properties in four water types, thus allowing the selection of the most optimal reference
wavelength and QAA for more accurate estimation of total absorption and backscatter-
ing coefficients and, in turn, improved ZSD estimations compared to the previous study.
In addition, constraining the wavelength range of minimum Kd(λ) in each water type
contributed to the improvement of ZSD estimation accuracy. The validation results using
synthetic and in situ data show that the developed algorithm is applicable to different
optical water types.
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